

• • •	Contractors are classified based Capital Owned equipment Personnel experience Personnel level of education Other	d on:
Dept. of Civil Eng. Hashemite Univer:	sity	Construction Methods Spring 2011 Dr. Mohammad El-Mashaleh 10

	Management Conditions*			
Job Conditions**	Excellent	Good	Fair	Poo
Excellent	0.84	0.81	0.76	0.70
Good	0.78	0.75	0.71	0.65
Fair	0.72	0.69	0.65	0.60
Poor	0.63	0.61	0.57	0.52
*Management conditions in Skill, training, and motiva Selection, operation, and Planning, job layout, sup **Job conditions are the ph type of material involved). T Topography and work dir Surface and weather cor	clude: tion of workers. maintenance of equipm ervision, and coordinatio ysical conditions of a job hey include: nensions. iditions.	ent. n of work. that affect the prod	luction rate (not in	cluding the

	Example 3	
Dept. of Civil Eng. Hashemite University		Construction Methods Spring 2011 Dr. Mohammad El-Mashaleh 16

	Unit Weight [lb/cu yd (kg/m³)]		nuracteri.	sues				
	Loose	Bank	Compacted	Swell (%)	Swell (%)	Shrinkage (%)	Load Factor	Shrinkage Factor
Clay	2310 (1370)	3000 (1780)	3750 (2225)	30	20	0.77	0.80	
Common earth Rock (blasted)	2480 (1471) 3060 (1815)	3100 (1839) 4600 (2729)	3450 (2047) 3550 (2106)	25 50	10 -30**	0.80	0.90	
gravel	2860 (1697)	3200 (1899)	3650 (2166)	12	12	0.89	0.88	
*Exact values var exact values for a **Compacted rock	y with grain size specific soil. c is less dense th	distribution, mol an is in-place ro	sture, compactio ock.	n, and oth	ner factors. Tests	are require	d to determine	

Material	Angle of Repose (deg)
Clay	35
Common earth, dry	32
Common earth, moist	37
Gravel	35
Sand, dry	25
Sand, moist	37

Construction Methods

Fall 2010 Dr. Mohammad El-Mashaleh

Construction Methods

Fall 2010 Dr. Mohammad El-Mashaleh

21

Dept. of Civil Eng. Hashemite University

(3) Find the average depth

(4) Multiply average depth by the horizontal area to find volume of excavation

Dept. of Civil Eng. Hashemite University

(3) Water line capacity

- Assumes a level of material flush with the lowest edge of the bucket
- Material level corresponds to the water level that would result if the bucket were filled with water

(4) Heaped volume

• The maximum volume that can be placed in the bucket without spillage based on a specified angle of repose for the material in the bucket

Dept. of Civil Eng. Hashemite University Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh

Material	Bucket Fill Factor	
Common earth, loam	0.80-1.10	
Sand and gravel	0.90-1.00	
Hard clay	0.65-0.95	
Wet clay	0.50-0.90	
Rock, well-blasted	0.70-0.90	
Rock, poorly blasted	0.40-0.70	
Bucket fill factors wer or us to estimate the	e developed to mak volume of material i	e it easier n one
Bucket fill factors wer for us to estimate the bucket load	e developed to mak volume of material i	e it easier n one
Sucket fill factors wer or us to estimate the ucket load	e developed to mak volume of material i	e it easier n one
icket fill factors wer us to estimate the cket load e most accurate es	e developed to mak volume of material i stimate of bucket loa	e it easier n one d is
icket fill factors wer us to estimate the cket load e most accurate es tained by multiplyir	e developed to mak volume of material i stimate of bucket loa	e it easier n one d is et volume
Bucket fill factors wer for us to estimate the ucket load The most accurate es btained by multiplyir	e developed to mak volume of material i stimate of bucket loa ig the heaped bucket	e it easier n one d is et volume

Fall 2010 Dr. Mohammad El-Mashaleh 14

data				
Table 3-3 Standard cycles	per hour for hydra	ulic excavators Machine	Size	
Type of Material	Wheel Tractor	Small Excavator: 1 yd (0.76 m ³) or Less	Medium Excavator: 11-21 yd (0.94-1.72 m ³)	Large Excavato Over 2 ¹ / ₂ y (1.72 m ³)
Soft	170	250	200	150
Average (common earth soft claw)	135	200	160	120
Hard (tough clay, rock)	110	160	130	100

Chapter 3: Excavating and Lifting

Part (3) - Shovels

Dr. Mohammad S. El-Mashaleh

Dept. of Civil Eng. Hashemite University

(2) Bottom-dump

- Provides greater reach and dump clearance
- Produces less spillage

 The cost of transporting the machine. A large shovel will involve more cost than a smaller one

3. The combined cost of drilling, blasting, and excavating. For a large shovel, these costs may be less than for a small shovel, as a large machine will handle more massive rocks than a small one. Large shovel may permit savings in drilling and blasting

Dept. of Civil Eng. Hashemite University

	Machine Size						
	Small Under 5 yd (3.8 m ³)		Medium 5–10 yd (3.8–7.6 m³)		Large Over 10 yd (7.6 m ³)		
Material	Bottom Dump	Front Dump	Bottom Dump	Front Dump	Bottom Dump	Front Dump	
Soft (sand, gravel, coal)	190	170	180	160	150	135	
(common earth, soft clay, well-blasted rock)	170	150	160	145	145	130	
Hard (tough clay, poorly blasted rock)	150	135	140	130	135	125	
	1.2.1.1	Adjustment	for Swing Ang	jie	191.81		
	Angle of Swing (deg)						
	45	60	75	90	120	180	
djustment factor	1.16	1.10	1.05	1.00	0.94	0.83	

(2) Lost time during the production cycle. Haul units must be positioned to minimize the time lost as units enter and leave the loading position

Dept. of Civil Eng. Hashemite University

			li u	laç	,		սդ	Jui			
Table 3-7 Ideal	dragline ou	tput-sho	rt boom (E	BCY/h (Bm	i³/h)}* Bucket	Size (cu vo	(m ³)]				
Type of Material	% (0.57)	1 (0.75)	1% (0.94)	1% (1.13)	1% (1.32)	2 (1.53)	2% (1.87)	3 (2.29)	3% (2.62)	4 (3.06)	(3.
Light moist clay	130	160	195	220	245 (187)	265	305	350	390	465	540
Sand and gravel	125	155	185	210	235	255	295	340	380	455	530
Common earth	105	135	165	190	210	230	265	305	340	375	445
Tough clay	90	110	135	160	180	195	230	270	305	340	410
Wet, sticky clay	55	75	95	110	130	145	175	210	240	270	330
	(42)	(37)	(3)	(9+)	(99)	unj	(134)	(101)	(105)	(200)	(a)

Source: Nunnally (2006)

Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh

Optimum depth of cut

	Bucket Size (cu yd (m ³))										
Type of Material	% (0.57)	1 (0.75)	1% (0.94)	1% (1.13)	1% (1.32)	2 (1.53)	2% (1.87)	3 (2.29)	3½ (2.62)	4 (3.06)	5 (3.82)
Light moist clay, loam, sand, and gravel	6.0 (1.8)	6.6 (2.0)	7.0 (2.1)	7.4 (2.2)	7.7 (2.3)	8.0 (2.4)	8.5 (2.6)	9.0 (2.7)	9.5 (2.9)	10.0 (3.0)	11.0 (3.3)
Common earth	7.4 (2.3)	8.0 (2.4)	8.5 (2.6)	9.0 (2.7)	9.5 (2.9)	9.9 (3.0)	10.5	11.0	11.5	12.0	13.0
Wet, sticky clay	8.7 (2.7)	9.3 (2.8)	10.0 (3.0)	10.7 (3.2)	11.3 (3.4)	11.8 (3.6)	12.3 (3.7)	12.8 (3.9)	13.3 (4.1)	13.8 (4.2)	14.3 (4.4)
10700-00-0550-8070) 											

	3w	ing-	-ae	วเท	lac	lor		
Angle of Swing (deg)								
Depth of Cut (% of Optimum)	30	45	60	75	90	120	150	180
20	1.06	0.99	0.94	0.90	0.87	0.81	0.75	0.70
40	1.17	1.08	1.02	0.97	0.93	0.85	0.78	0.72
60	1.25	1.13	1.06	1.01	0.97	0.88	0.80	0.74
80	1.29	1.17	1.09	1.04	0.99	0.90	0.82	0.76
100	1.32	1.19	1.11	1.05	1.00	0.91	0.83	0.77
120	1.29	1.17	1.09	1.03	0.98	0.90	0.82	0.76
140	1.25	1.14	1.06	1.00	0.96	0.88	0.81	0.75
160	1.20	1.10	1.02	0.97	0.93	0.85	0.79	0.73
180	1.15	1.05	0.98	0.94	0.90	0.82	0.76	0.71
200	1.10	1.00	0.94	0.90	0.87	0.79	0.73	0.69
Based on PCSA data.				1.00				

0.80-1.10 0.90-1.00
0.90-1.00
0.65-0.95
0.50-0.90
0.70-0.90
0.40-0.70

Part (6) – Trenching and Trenchless Technology

Dr. Mohammad S. El-Mashaleh

Construction Methods

Fall 2010 Dr. Mohammad El-Mashaleh

Dept. of Civil Eng. Hashemite University

•	After the bore has been completed, several methods are available to place pipe into the borehole:
1.	The pipe is pulled through the bore using the tool's air hose or steel cable pulled by the air hose
2.	Using the piercing tool to push the pipe through the borehole
3.	Using a pipe pulling adapter attached to the piercing tool to advance the pipe at the same time as the piercing tool advances the bore
Dept. of Civil Eng Hashemite Unive	2. Construction Methods Fail 2010 Dr. Mohammad El-Mashaleh 11

	Rolling Resistance Factor			
Type of Surface	lb/ton	kg/t		
Concrete or asphalt Firm, smooth, flexing slightly under load Rutted dirt roadway, 1–2 in. penetration Soft, rutted dirt, 3–4 in. penetration Loose sand or gravel Soft, muddy, deeply rutted	40 (30)* 64 (52) 100 150 200 300-400	20 (15) 32 (26) 50 75 100 150–200		

Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh

Dr. Mohammad El-Mashaleh

• When a crawler tractor tows a wheeled vehicle, the rolling resistance of the towed vehicle must be considered in calculating the total resistance of the combination

Dept. of Civil Eng. Hashemite University Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh

Recall that

Total Resistance =

Grade Resistance + Rolling Resistance

We are done with Rolling Resistance, lets move to Grade Resistance

Dept. of Civil Eng. Hashemite University Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh

	Example 1	
Dept. of Civil Eng. Hashemite University		Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh 26

Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh _____27

Type of Surface	Rubber Tires	Tracks
Concrete, wet	0.80	0.45
Earth or clay loam, dry	0.60	0.90
Earth or clay loam, wet	0.45	0.70
Gravel, loose	0.35	0.50
Quarry pit	0.65	0.55
Sand, dry, loose	0.25	0.30
Sand, wet	0.40	0.50
Snow, packed	0.20	0.25
lce	0.10	0.15

* Substitute maximum altitude for rated performance, if known.

Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh

Dept. of Civil Eng. Hashemite University

Dept. of Civil Eng. Hashemite University Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh 29

(4) Cushion blade

- Reinforced and equipped with shock absorbers to enable it to push-load scrapers
- May also be used for cleanup of the loading or dumping areas and for general dozing when not push-loading scrapers

Dept. of Civil Eng. Hashemite University

Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh

- 3. Obtain the height of the pile (H)
- Obtain the length of the pile (L) parallel to the blade

Dept. of Civil Eng. Hashemite University

5. Calculate blade volume as follows: Blade load (LCM) = $0.375 \times H (m) \times W (m) \times L (m)$

	Operating Conditions	Time (min)
	Powershift transmission Direct-drive transmission Hard digging	0.05 0.10 0.15
Table 4-5 Typi Operation	col dozer operating speeds	Struck
Dazing Hard materials, Hard materials, Loose materials, Loose materials, Return 100 ft (30 m) o	haul 100 ft (30 m) or less haul over 100 ft (30 m) , haul 100 ft (30 m) or less , haul 100 ft (30 m) or less , haul over 100 ft (30 m) r less	1.5 mi/h (2.4 km/h) 2.0 mi/h (3.2 km/h) 2.0 mi/h (3.2 km/h) 2.5 mi/h (4.0 km/h) Maximum reverse speed in second
Over 100 ft (30) m)	range (power shift) or reverse speed in gear used for dozing (direct drive) Maximum reverse speed in third range (power shift) or highest reverse speed (direct drive)

Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh 26

Table 4-8 Typical push	er cycle time (min)	
Loading Method	Single Pusher	Tandem Pusher
Back-track Chain or shuttle	1.5 1.0	1.4 0.9

Typical grader operating speed				
i ypical glader operating opera				
Table 5-6 Typical grader operating speed				
	Speed			
Operation	mi/h	km/h		
Bank sloping	2.5	4.0		
Ditching	2.5-4.0	4.0-6.4		
Finishing	4.0-9.0	6.5-14.5		
Grading and road maintenance	4.2-6.0	6.4-9.7		
Mixing	9.0-20.0	14.5-32.2		
Snow removal	12.0-20.0	19.3-32.3		
Spreading	6.0-9.0	9.7-14.5		

 However, note that placing schedule, stripping time, and other factors related to a specific job make it sometimes impractical to take advantage of all theoretical opportunities to reuse forms

Dept. of Civil Eng. Hashemite University Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh

	Construction Safety	
	Chapter 19	
	Dr. Mohammad S. El-Mashalel	٦
Dept. of Civil Eng. Hashemite University		Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh 1

•	The previous OSHA quotes refle elements in a working definition "construction safety"	ect two of
•	A person will not be required to v in surroundings or conditions wh are unsafe dangerous to health	work ich
•	Employers are responsible for initiating and maintaining a safety/health program that comp with standards	lies
Dept. of Civil En Hashemite Unive	g. rsity	Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh 13

(c) "... subcontractor of any stage ... also assumes responsibility for complying with the standards in this part with respect to that part. Thus, the prime contractor assumes the entire responsibility under the contract and the subcontractor assumes responsibility with respect to his portion of the work. With respect to subcontracted work, the prime contractor and any subcontractor or subcontractors shall be deemed to have joint responsibility"

Dept. of Civil Eng. Hashemite University Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh

(d) Where joint responsibility exists, both the prime contractor and his subcontractor or subcontractors, regardless of tier, shall be considered subject to the enforcement provisions of the Act.

Dept. of Civil Eng. Hashemite University Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh

 In recent years, OSHA has become more aggressive in posing penalties for non compliance

• Fines of more than \$1 million have been imposed against some employers!

Construction Methods Fall 2010

Dr. Mohammad El-Mashaleh

Dept. of Civil Eng. Hashemite University

Table 19-1 Maximum penalties under OSHA **Administrative Proceedings Maximum Penalty** Violation \$70,000/violation Willful or repeated 7,000/violation Routine or serious 7,000/day Failing to correct cited violation Failing to post citation near the 7,000/violation place where violation exists **Criminal Proceedings** Ģ Maximum Imprisonment **Maximum Fine** Violation Killing, assaulting, or resisting Life \$10,000 OSHA officials Willful violation resulting in death 6 months of employee, first conviction 10,000 Willful violation resulting in death 20,000 1 year of employee, second conviction 6 months Falsifying required records 10,000 Unauthorized advanced notice Source: Nunnally (2006) **Construction Methods** Dept. of Civil Eng. Hashemite University Fall 2010 Dr. Mohammad El-Mashaleh

How can a construction firm lose its competitive edge because of safety?

Construction Methods Fall 2010

Dr. Mohammad El-Mashaleh

Dept. of Civil Eng. Hashemite University

<section-header><list-item><list-item><list-item><code-block><list-item></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></code>

 Do not exceed safe load limits when operating cranes (considering operating radius and boom position) 	
 Park equipment with the brake set, blade or bowl grounded, and ignition key removed at the end of work 	
 When hauling heavy or oversized loads on highways, make sure that loads are properly secured and covered if necessary 	
 Slow-moving and oversized vehicles must use required markings and signals to warn other traffic 	
Dept. of Civil Eng. Hashemite University Construction Methods Fall 2010 Dr. Mohammad El-Mashalet 4	h .7

Dept. of Civil Eng. Hashemite University Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh

Emergency rescue equipment such as breathing equipment should be provided whenever adverse atmospheric (breathing) conditions may be encountered

> Construction Methods Fall 2010

Dr. Mohammad El-Mashaleh

Dept. of Civil Eng. Hashemite University

Productivity ratings for several construction trades developed by a large construction firm

Trade or	Percent of total time in category				
craft	Effective	Contributory	Not useful		
Bricklayer	42	33	25		
Carpenter	29	38	33		
Cement finisher	37	41	22		
Electrician	28	35	37		
Insulator	45	28	27		
f Civil Eng. nite University	Source: Ogle:	sby et al. (1989)	Construction Meth Fall 2010 Dr. Mohammad El-Mc		

Trade or craft	Percent of total time in category			
	Effective	Contributory	Not useful	
Ironworker	31	36	33	
Laborer	44	26	30	
Painter	46	26	28	
Pipe fitter	27	36	37	
Average	36	33	31	

Dept. of Civil Eng. Hashemite University Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh ____34

Dept. of Civil Eng. Hashemite University

Construction Methods

Fall 2010 Dr. Mohammad El-Mashaleh

Dept. of Civil Eng. Hashemite University Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh

	5-minute rating example					
Time	Iron worker	Iron worker	Carpenter	Carpenter	Carpenter	Welde
	(1)	(2)	(3)	(4)	(5)	(6)
10:13	√					
10:14	√	√	√	\checkmark	\checkmark	
10:15	√	√	\checkmark	V	\checkmark	
10:16		√	√	√	√	
10:17		√		√	√	

Start	Iron worker	Iron worker	Carpenter	Carpenter	Carpenter	Welde
	(1)	(2)	(3)	(4)	(5)	(6)
10:18			\checkmark	\checkmark	\checkmark	
10:19			\checkmark	\checkmark	\checkmark	
10:20			\checkmark	√	√	
10:21	\checkmark	\checkmark	\checkmark			
10:22	\checkmark	\checkmark	\checkmark			
10:23						\checkmark
10:24						\checkmark
10:25						\checkmark
Sum	5	6	8	7	7	3

Dept. of Civil Eng. Hashemite University	Construction Methods Fall 2010 Dr. Mohammad El-Mashaleh 52

6	Climb down	Idle			Move and hold honner
90	Vibrate	Climb down			move and hold hopper
34	Idle	Hook hopper			Hook hopper
78 72	Idle	Dump			Dump
36 30	Idle	Idle	Idle	Idle	Refill bucket
54	Vibrate		iule	1010	
48 42	Idle	Dump			Dump
36	Vibrate	Idle			Hold bucket
30 24	Idle	Dump			Dump
18		Set hopper			Set hopper
12	Climb	Climb	Move scaffold	Move scaffold	Hold booper
6	Move	Move			

6	Climb down	Idle			Move and hold hopper
90	Vibrate	Climb down		L L	
84	Idle	Hook hopper	<u> </u>	ļļ	Hook hopper
78 72	Idle	Dump			Dump
66 60	Idle	Idle	Idle	Idle	Refill bucket
54	Vibrate		i dite	idio	
48 42	Idle	Dump			Dump
36	Vibrate	Idle			Hold bucket
30 24	Idle	Dump			Dump
18		Set hopper			Set hopper
12	Climb	Climb	Move scattold	Move scaffold	Hold booner
6	Move	Move	more seanore	more scanou	
	Man 1	Man 2	Man 3	Man 4	Crane

