

Special Topic in Structural Engineering: CE 783 Evaluation, Repair and Rehabilitation of Concrete Structures

INTRODUCTION

Wall-Bearing System: Walls Carry Ceilings Through Cushion Beams.

SKELETON SYSTEM: SLABS, BEAMS COLUMNS

	Spans appropriate for resident units	Spans appropriate for large spaces	Flexibility	First cost	Impact on other system costs	Appearance	Material delivery and construction timing	Impact on interior space and building height	Responds to current and future codes	Familiar to local construction industry	Impacted by soil conditions
Wood Frame	0	Ø	0	0	0	0	0	0	Ø	0	0
Structural stud	0	Ø	0	0	0	0	0	0	0	Ø	0
Bearing wall and concrete plank	0	X	Х	0	Ø	Ø	Ø	0	0	0	Ø
Steel and concrete plank	0	0	0	Ø	Ø	Ø	Ø	Х	0	0	0
Steel and poured concrete deck	0	0	0	Ø	Ø	0	Ø	Х	0	0	0
Precast concrete	0	0	Ø	Ø	Ø	0	Ø	Ø	0	Ø	0
"Beam & Slab" poured in place concrete	0	0	0	Ø	0	Ø	0	0	0	0	0
"Flat plate" poured in place concrete	0	Ø	Ø	Ø	0	0	0	0	0	0	0
Prestressed/post-tensioned concrete	0	0	Ø	X	0	0	0	0	0	Х	0

Structural System

O Not often a significant issue

Ø May be a problem or issue

X Often a significant problem or issue

Source: Perkins Eastman Architects PC.

Post-tensioned Girders

Post-tensioned Carlo

Introduction

Typical Building Components

» Slabs
» Beams
» Columns
» Shear Walls
» Bearing Walls
» Foundations

Construction

CONSTRUCTION STAGES

Studying The Engineering Properties of Soil Layers in order to determine:
Appropriate <u>Foundation</u> depth.
Soil bearing capacity.
Whether Piles are needed or not.
Appropriate type of foundation.
Water level.
Chemical composition of soil and water.
Secure neighboring structures.

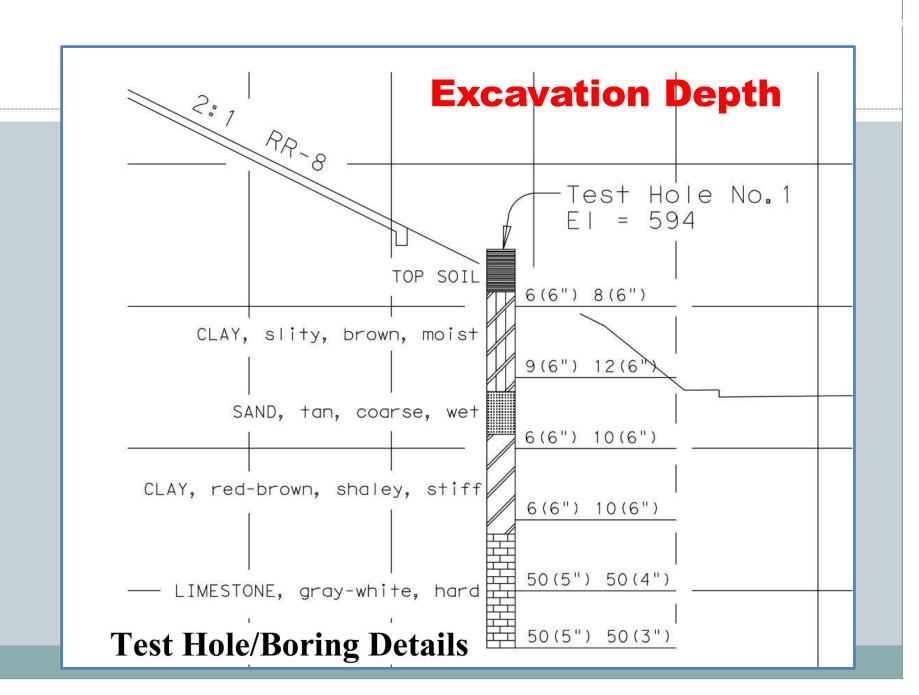
Construction

CONSTRUCTION STAGES

- ARCTICTURAL DESIGN

 Dictated by land topography and esthetic view.

- STRUCTURAL DESIGN


- Foundation Depth.
- Bearing Capacity of Soil.
- Live and Dead Leads Imposed.
- Earth Quake Activity of The Region.
- Construction Materials Properties.

CONSTRUCTION STAGES

Construction materials

> Selection of appropriate aggregates and cement type.

Design of concrete mixture such that Fresh and Hardened Concrete Properties satisfy strength and durability requirements.

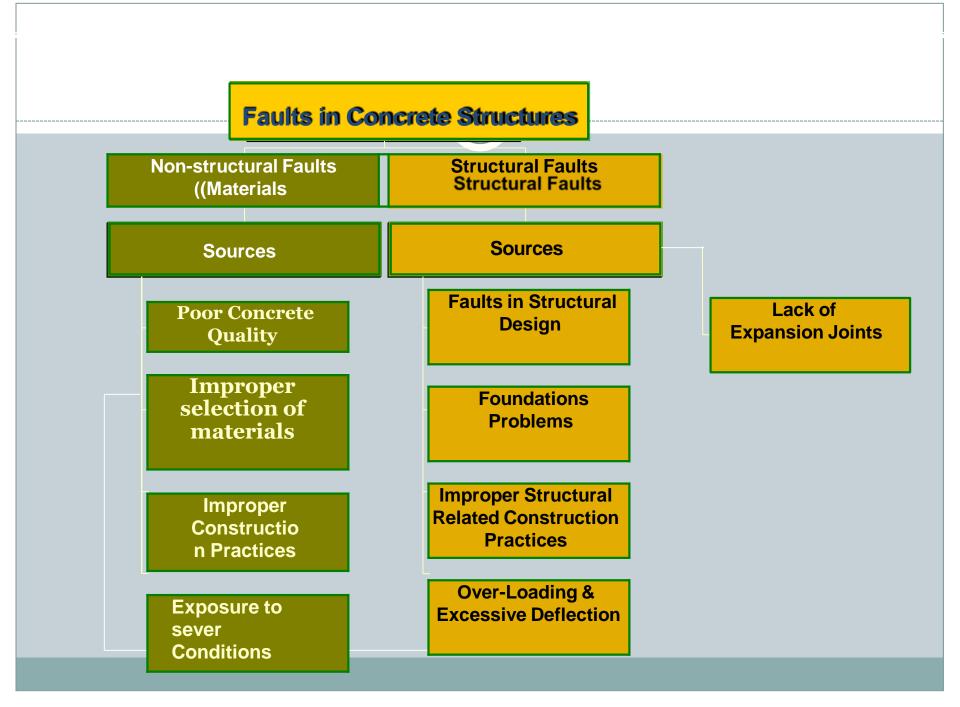
Construction

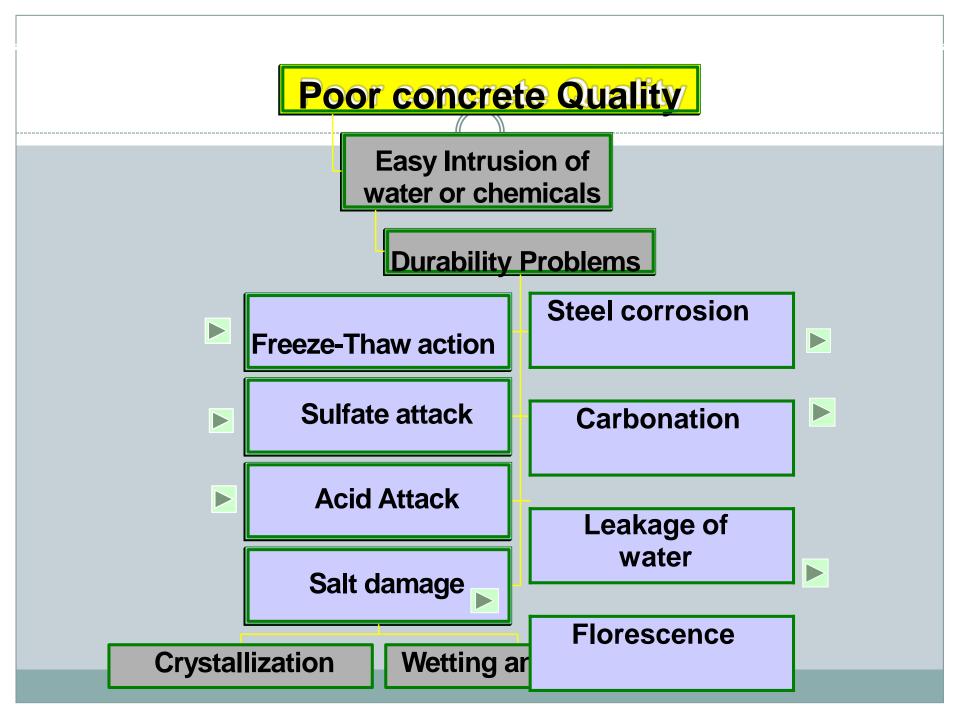
- » Carrying out Pore Hole Test To Ensure Establishing the Foundation on Solid Soil Layers.
- » Ensuring the Safety of Neighboring Buildings and Infrastructures.
- » Storing Construction Materials in Dry Places.
- » Testing of Materials.

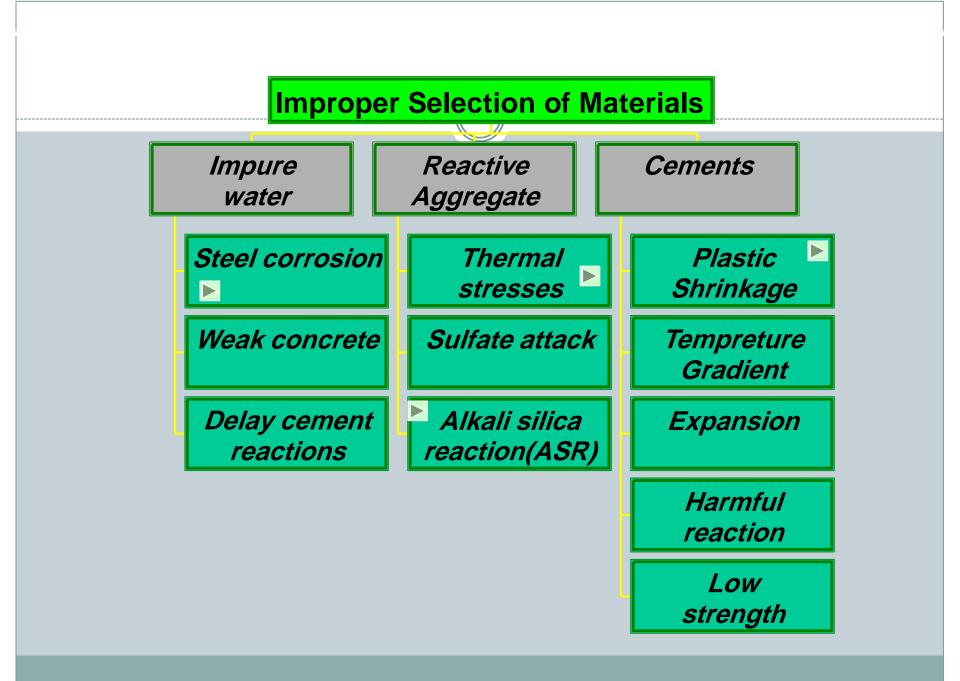
Construction

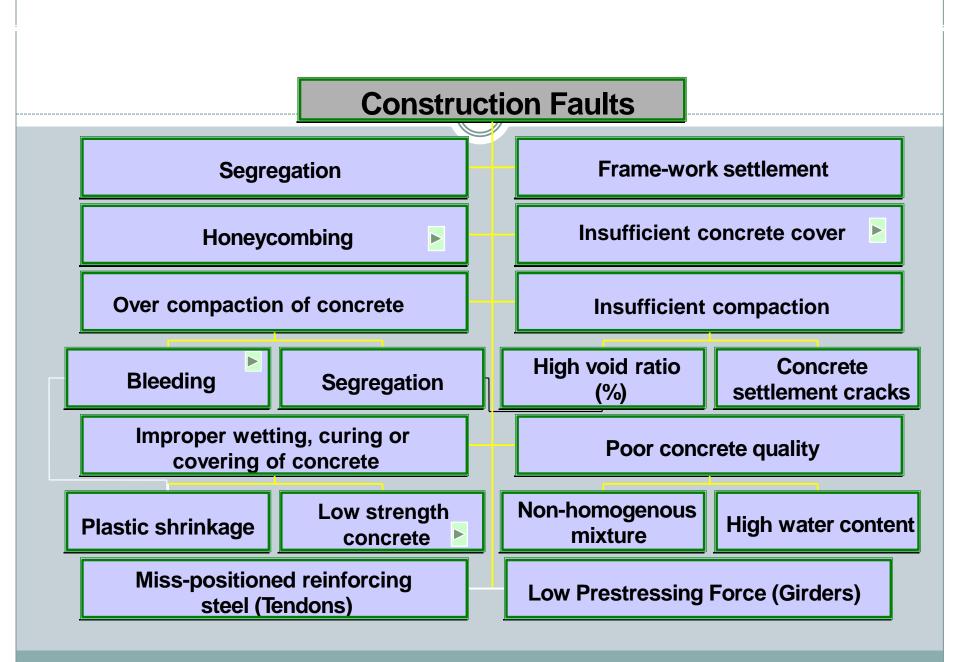
CONSTRUCTION STAGES

CONSTRUCTION PROCEDURES


- » Matching Column and Foundation Axes with Engineering Plans.
- » Ensuring Columns and Abutments are Straight and Vertical.
- » Checking Quantities and Distribution of Reinforcing Steel.
- » Ensuring Appropriate Casting of Concrete.
- » Ensuring Safety of Sanitary System.


Concr


Concrete Materials

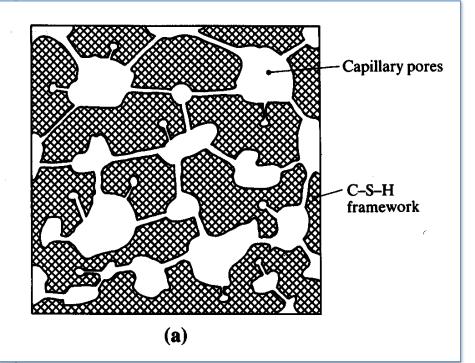

Gement Paste >
Aggregate >
Goncrete Structure >
Goncrete Mix Design
Reinforcing Steel >

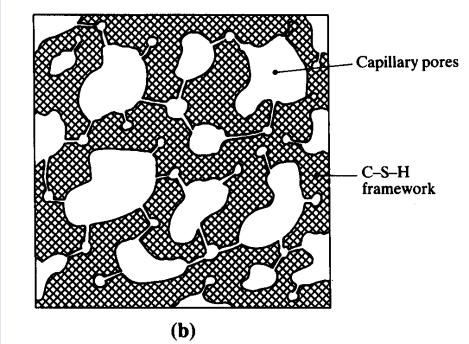
CAUSE OF DETERIORATION & DURABILITY ASPECTS

Permeability and Durability

The durability of concretes one of its important properties because it is essential that concrete should be capable of withstanding conditions for which it has been designated throughout the life of the structure.

According to Darcy's Equation:

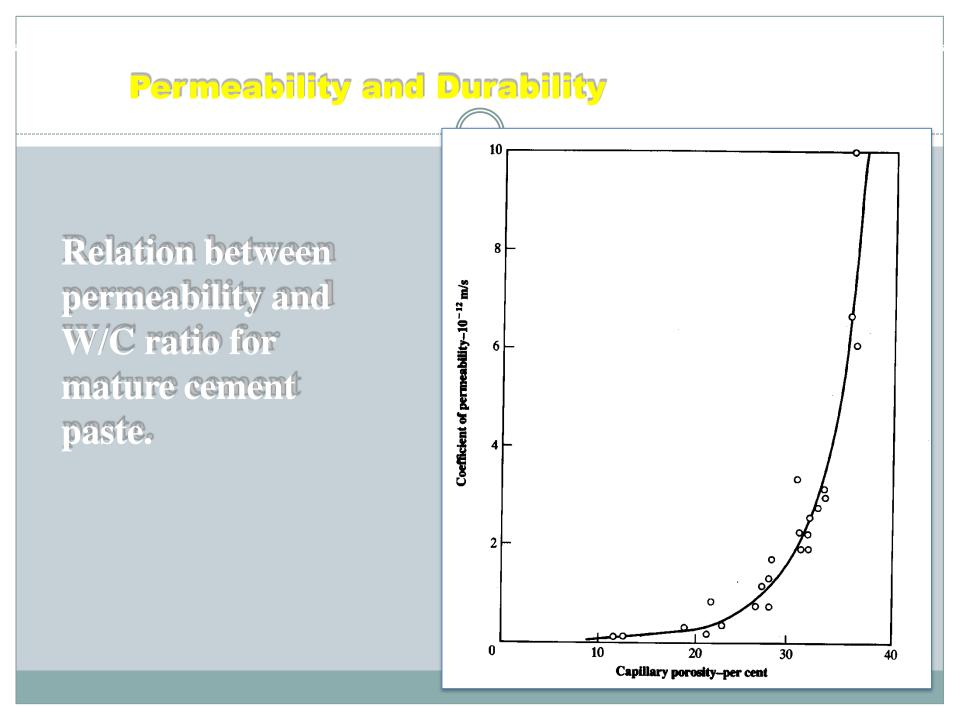

$$\frac{1}{A}\frac{\mathrm{d}q}{\mathrm{d}t} = k\frac{\Delta h}{L}$$


where $\frac{dq}{dt}$ is the rate of flow of water, *A* is the cross-sectional area of the sample, Δh is the drop in hydraulic head through the sample, and *L* is the thickness of the sample.

None-Structural Faults

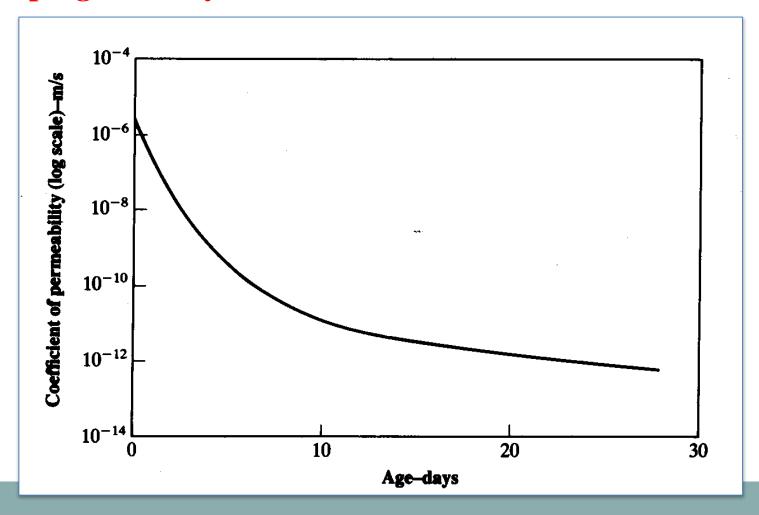
Permeability and Durability

Schematic representation of materials of similar porosity.


High permeability-capillary pores connected by large passages;

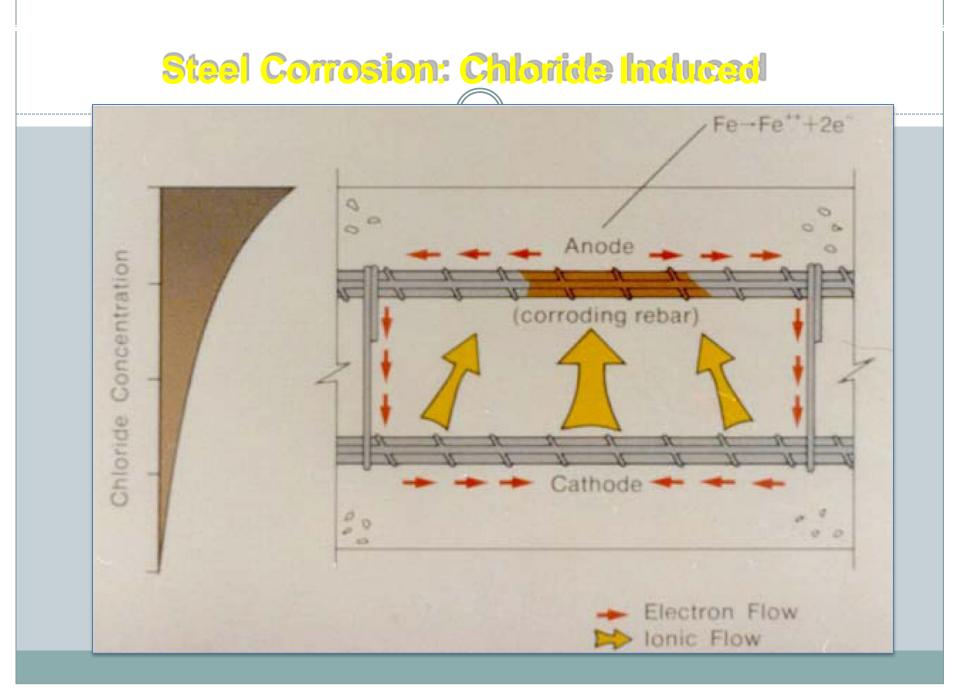
Low permeabilitycapillary pores segmented and only partly connected

Permeability and Durability


Relation between permeability and capillary porosity of cement paste.

None-Structural Faults

Permeability and Durability Reduction in permeability of cement paste with the progress of hydration (W/C ratio = 0.7).



Reinforcing Steel Corrosion

The strongly alkaline nature of Ca(OH)2 (pH=13) prevents the corrosion of the steel reinforcement by the formation of thin protective film of iron oxide on the metal surface: this protection is known as passivity.

- To break passivity:
- *Carbonation of concrete with contact of steel
- *Penetration of soluble chlorides to reinforcement.

Correstion of steel occurs because of decire-chemical action which is usually encountered when two dissimilar metals are in electrical contact in the presence of moisture and oxygen. The same process takes place in steel alone because of the difference in the electro-chemical potential on the surface which forms anodic and cathodic regions; connected by the electrolyte in the form of the salt solution in the hydrated cement.

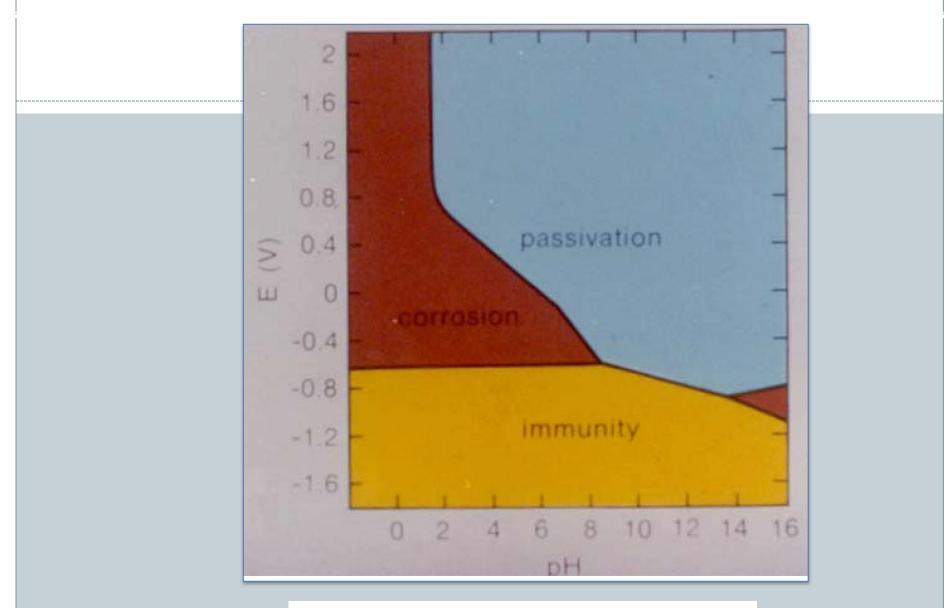
anodic reactions:

$Fe \rightarrow Fe^{++} + 2e^{-}$ $Fe^{++} + 2(OH)^{-} \rightarrow Fe(OH)_2$ (ferrous hydroxide) $4Fe(OH)_2 + 2H_2O + O_2 \rightarrow 4Fe(OH)_3$ (ferric hydroxide)

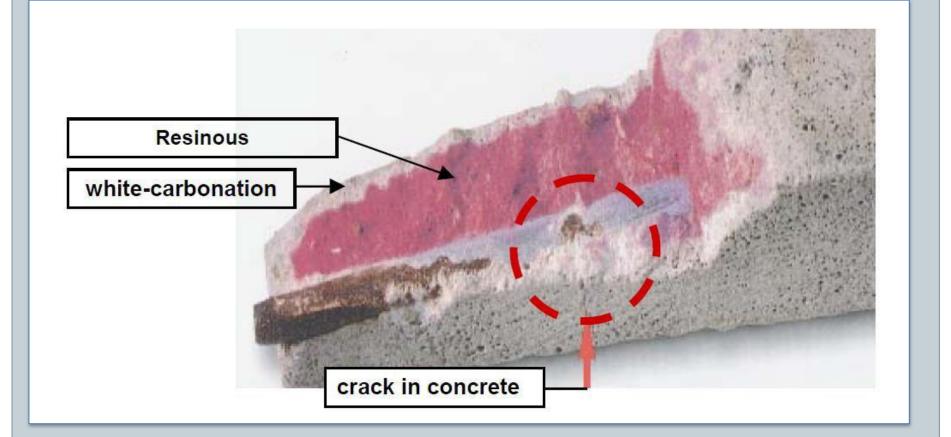
cathodic reaction:

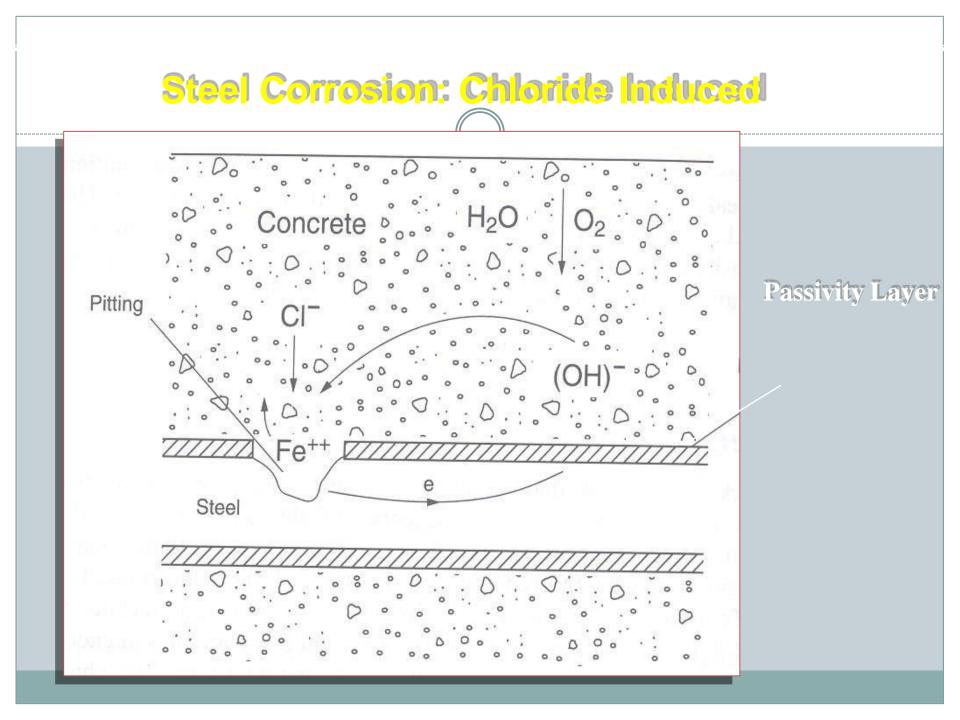
 $4e^- + O_2 + 2H_2O \rightarrow 4(OH)^-$.

For corrosion to be initiated, the passivity layer must be penetrated. Chloride ions activate the surface of the steel to form an anode, the passivated surface being the cathode. The reactions involved are as follows:


 $Fe^{++} + 2Cl^{-} \rightarrow FeCl_2$ $FeCl_2 + 2H_2O \rightarrow Fe(OH)_2 + 2HCl.$

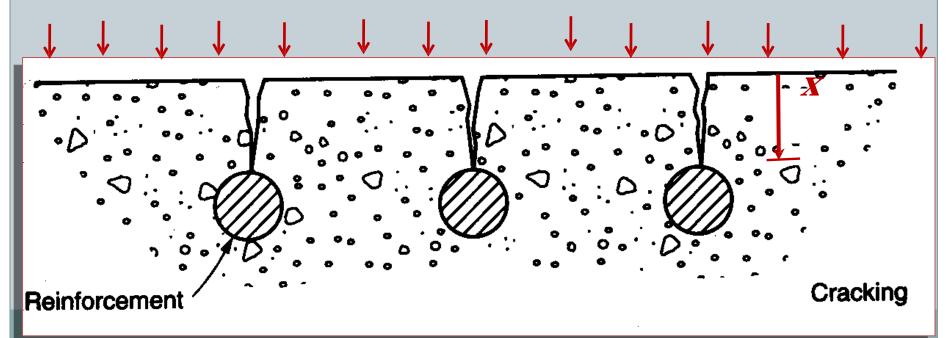
None-Structural Faults

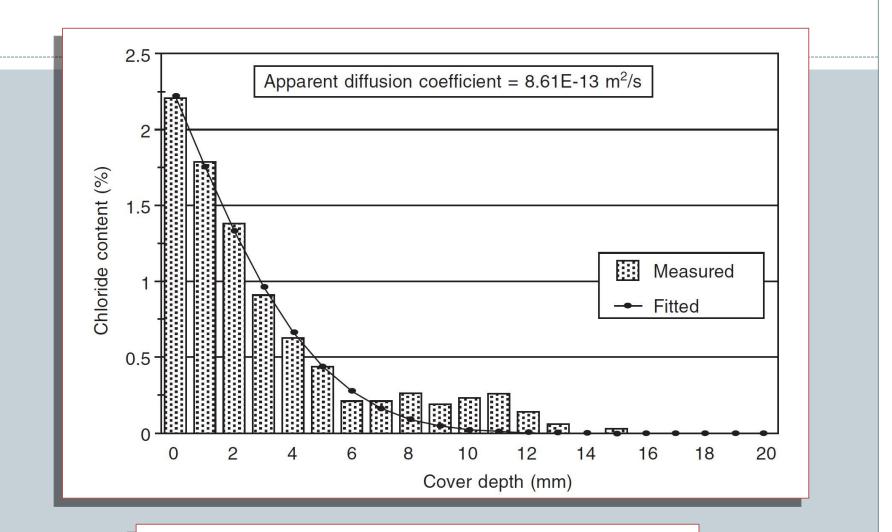



Diagram of the progression of rust over time during corrosion.

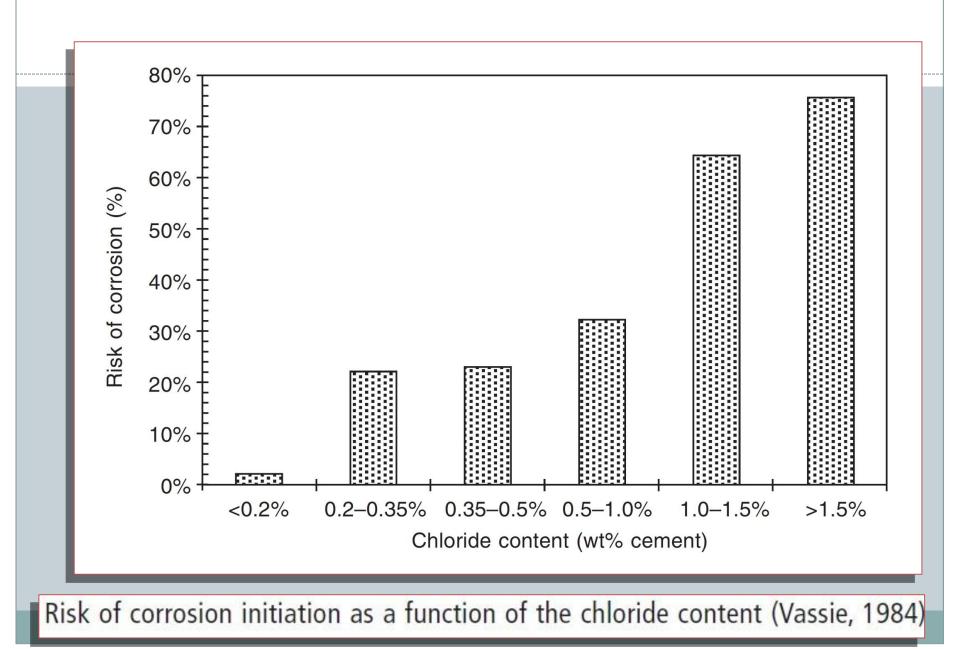
Steel-Water Pourbaix Diagram

Carbonation of concrete



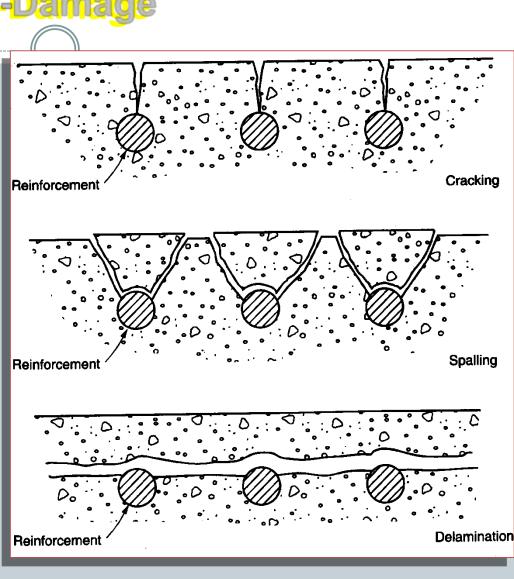


following formula:

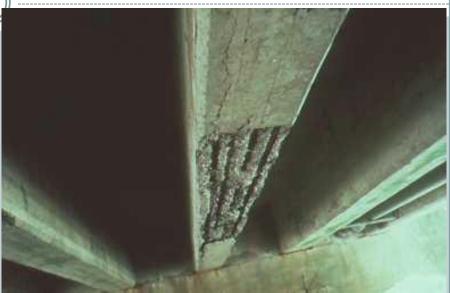

$$C(x,t) = C_0 \operatorname{erfc}\left(\frac{x}{2\sqrt{D_{\rm p}t}}\right)$$

Where, C(x,t) is the concentration of chloride at depth x from surface after time t; Dp is the diffusion coefficient, and erfc is the error function.

Chloride profile in concrete


Steel Corrosion-Damage

Diagrammatic representation of damage induced by corrosion:

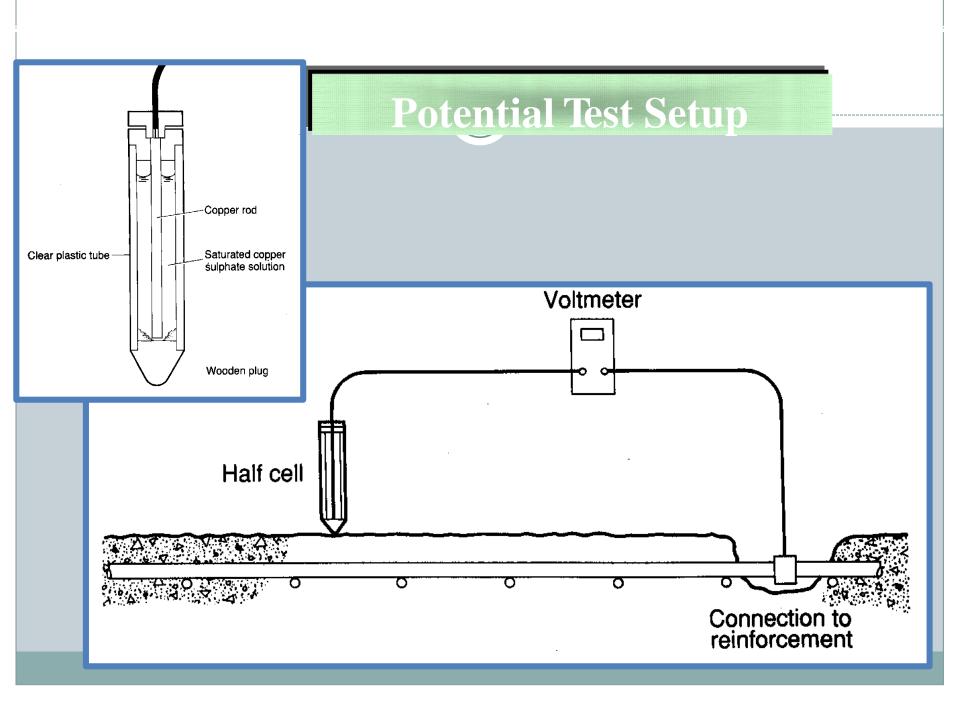

✓ Cracking

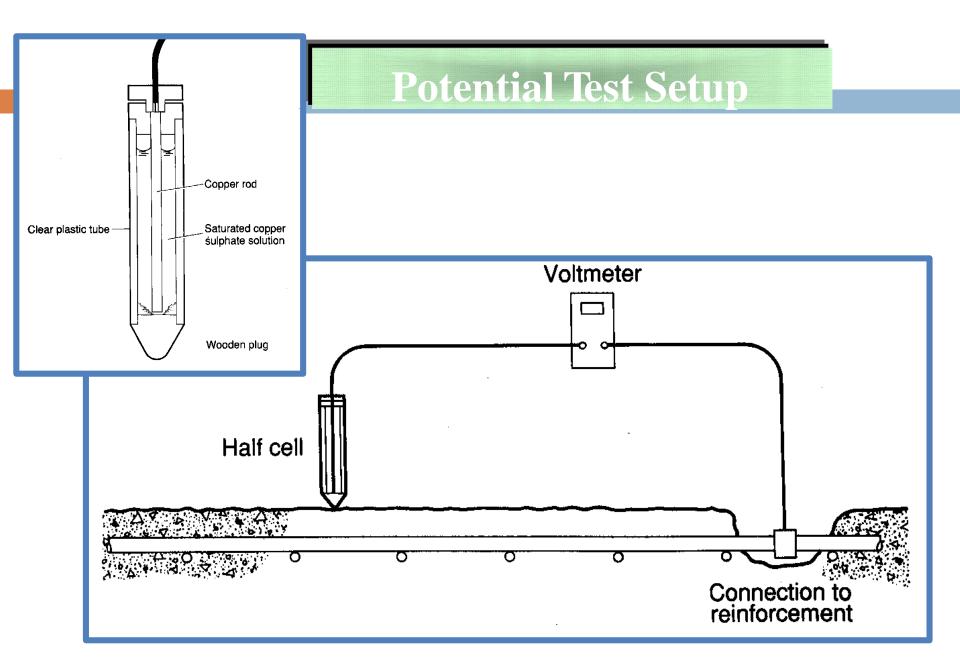
✓ Spalling

✓ Delamination

✓ Delamination of AConcrete Beam

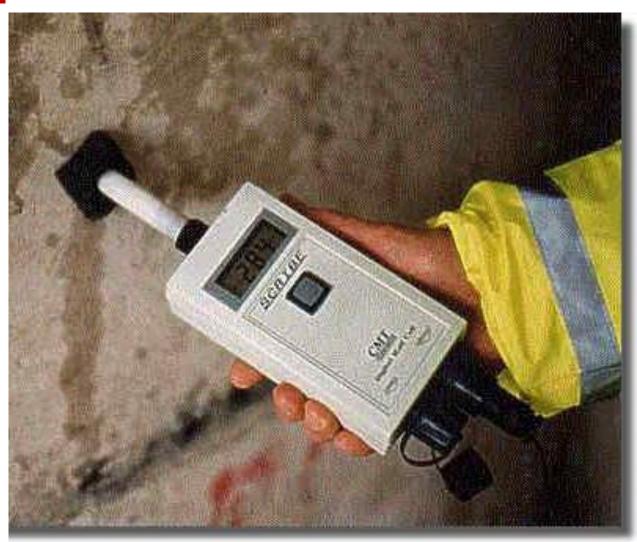
✓ Delamination of Concrete

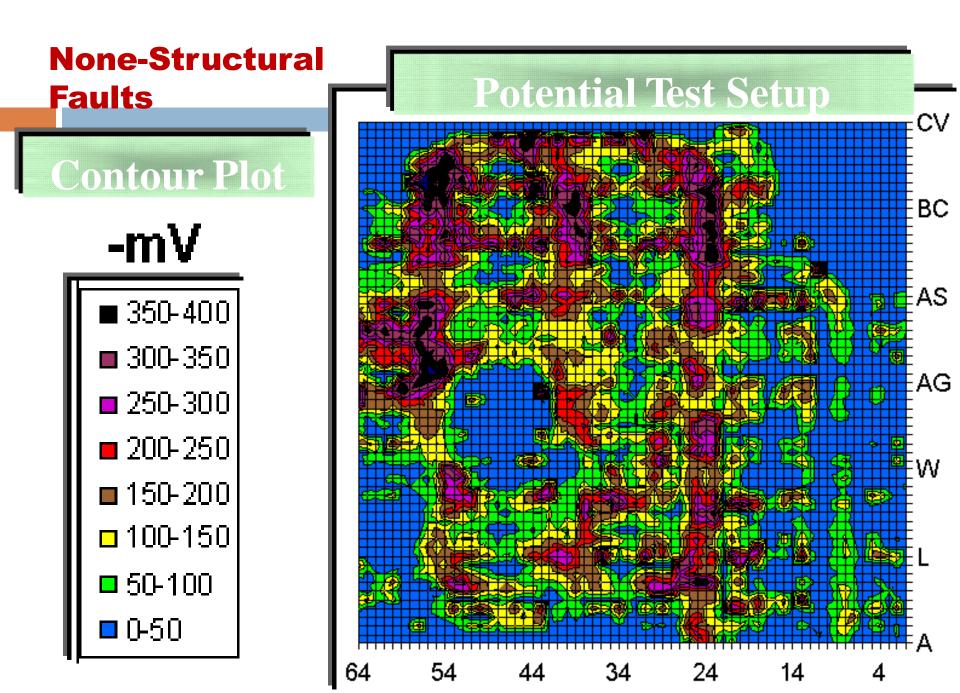

Steel Corrosion: Chloride Induced

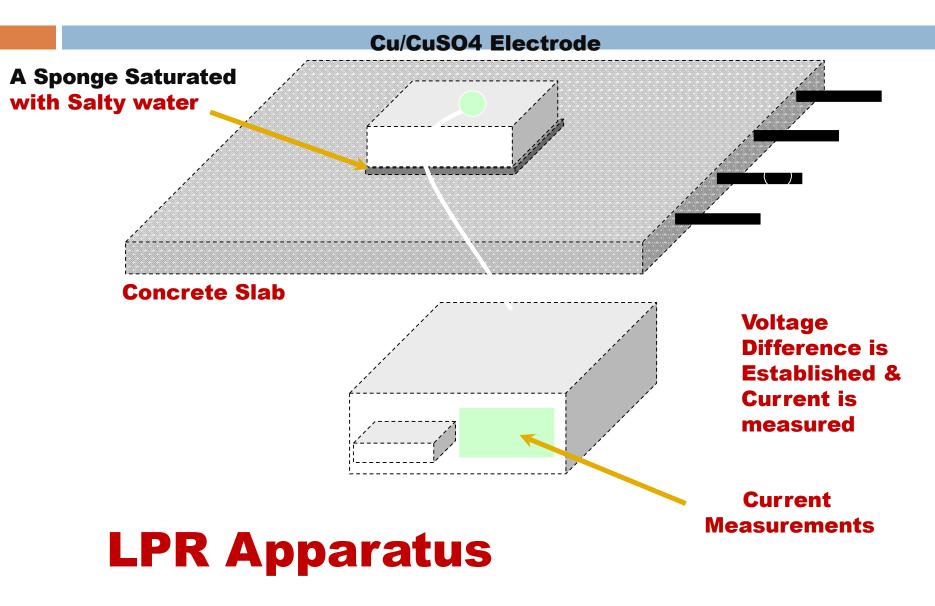

Requirements of ACI 318-89 for W/C ratio and strength for special exposure conditions.

Exposure condition	Maximum water/ cement ratio, normal density aggregate concrete	Minimum design strength* in MPa (psi), low density aggregate concrete
Concrete intended to be watertight:		
(a) exposed to fresh water	0.50	25 (3630)
(b) exposed to brackish or sea water	0.45	30 (4350)
Concrete exposed to freezing and thawing in a moist condition: (a) kerbs, gutters, guardrails or thin		
sections	0.45	30 (4350)
(b) other elements	0.50	25 (3630)
(c) in presence of de-icing chemicals	0.45	30 (4350)
For corrosion protection of reinforced concrete exposed to de-icing salts, brackish water, sea water or spray		
from these sources	0.40†	33 (4790)†

* See page 330.

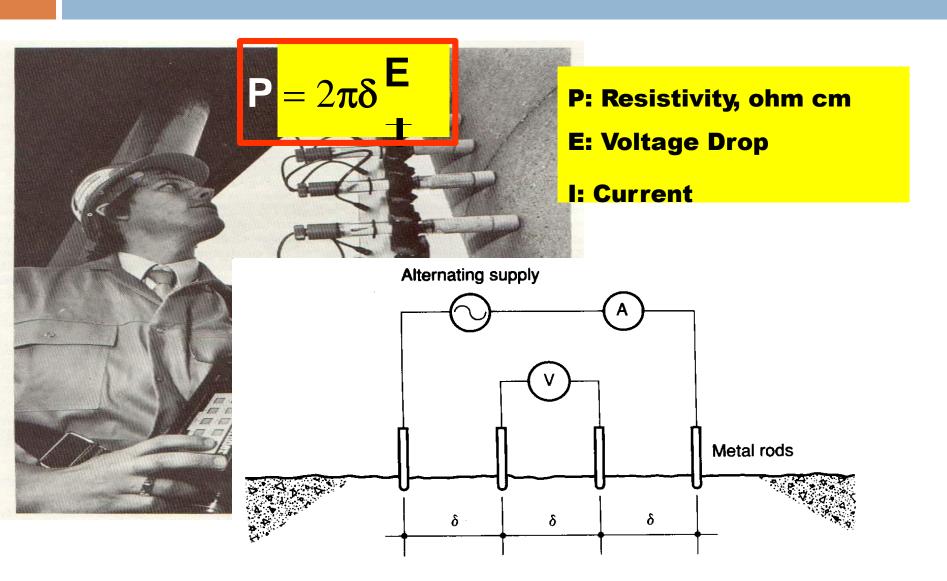

† If minimum cover required by Table 14.7 is increased by $10 \text{ mm} (\frac{1}{2} \text{ in.})$, water/cement ratio may be increased to 0.45 for normal density concrete or design strength reduced to 30 MPa (4350 psi) for low density concrete.




According to ASTM C876, a potential that is more negative than -350 mV ($Cu/CuSO_4$) indicates that there is 90% probability that active corrosion is taking place.

Potential Test Setup

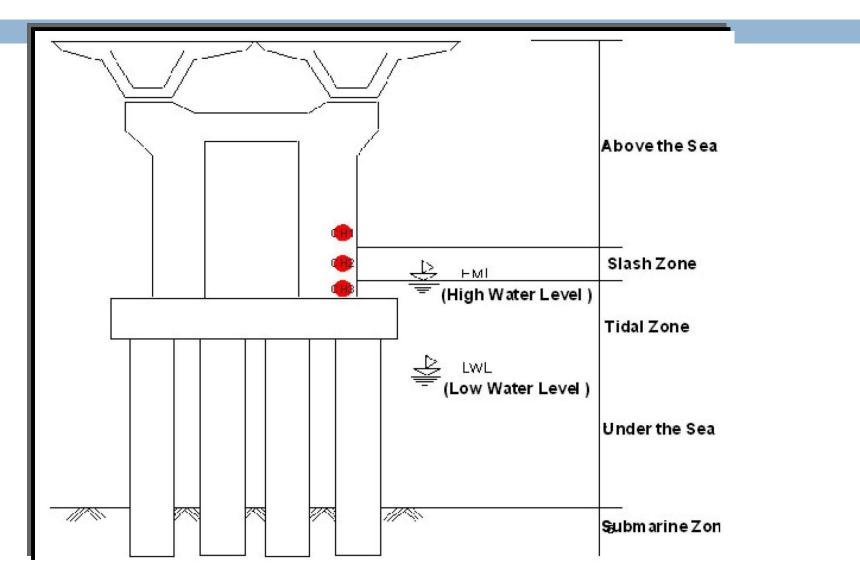
Linear Polarization Resistance (LPR)



The weight loss W_t of the steel is calculated as follows:

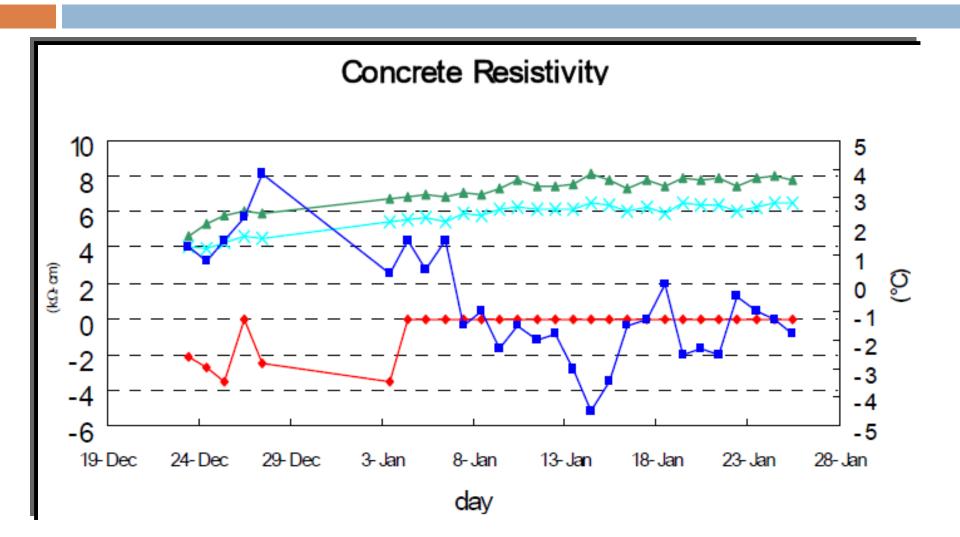
$$w_t = \frac{At_m}{zF} \sum \Delta t I_{ave}$$

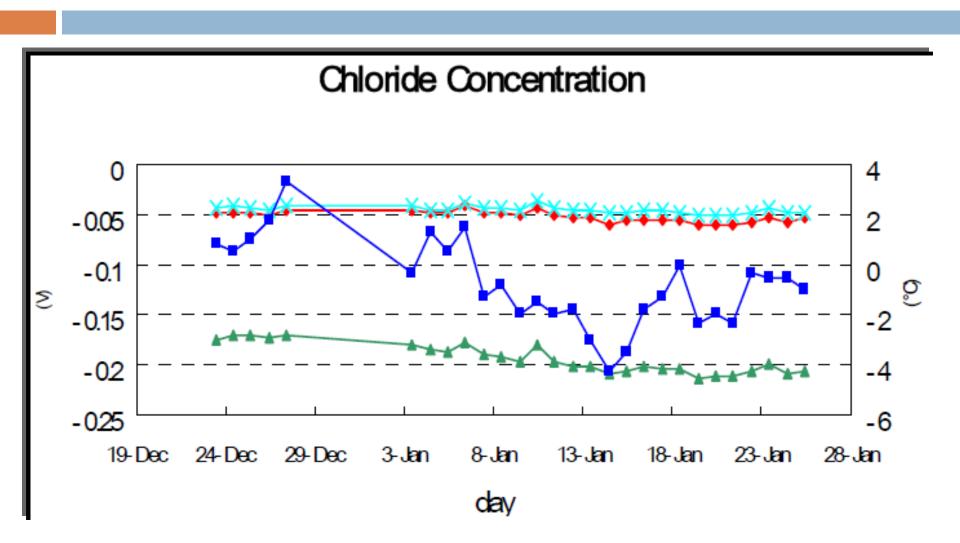
where At_m is the atomic mass of the metal, z is its valency, F is Faraday's constant (96487 C/mol), Δt the time step, and I_{ave} is the average uniform current measured. For reinforcing steel, which is primarily iron, the atomic mass is 55.85 g/mol and the valency is 2.

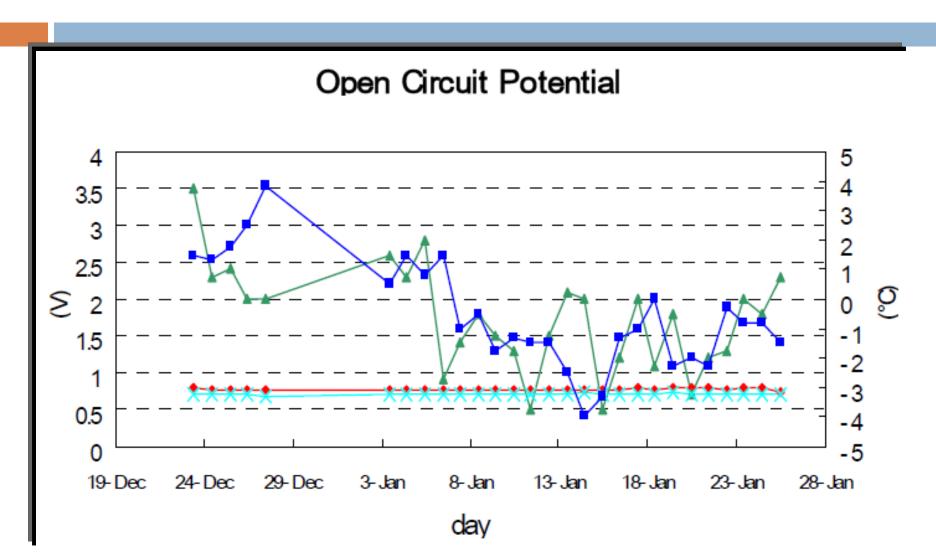

Four-Probe Wenner Array

Four-Probe Wenner Array

Surface Resistivity - Permeability		
Chloride Ion Permeability	Surface Resistivity Test kΩ–cm	
High	< 12	
Moderate	12 – 21	
Low	21 – 37	
Very Low	37 – 254	
Negligible	> 254	



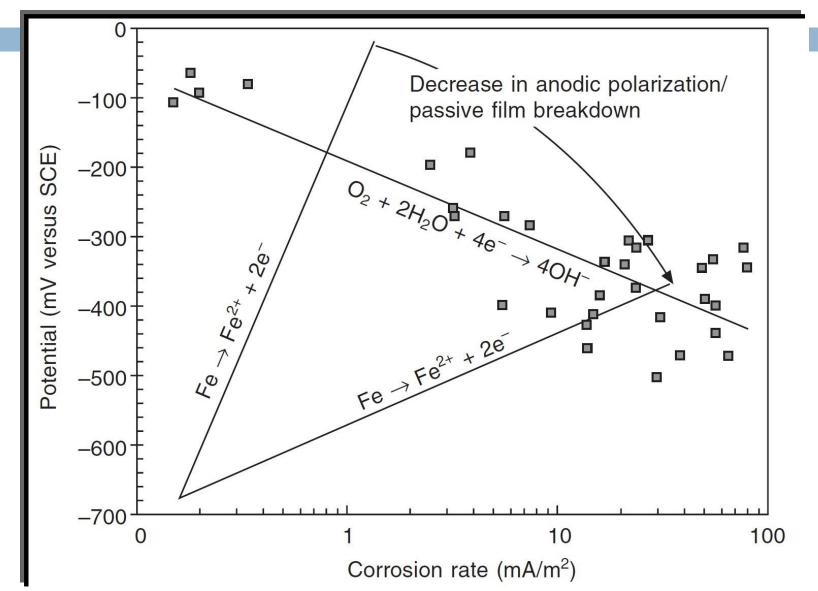




Reinforced Concrete Corrosivity Monitor (RCCM)

Linear Polarization Resistance 5 20 18 4 16 3 2 14 12 (kΩ cm²) 1 õ 10 0 8 -1 -2 6 -3 4 2 -4 0 -5 19-Dec 13-Jan 18-Jan 23-Jan 24-Dec 29-Dec 3-Jan 8-Jan 28-Jan day

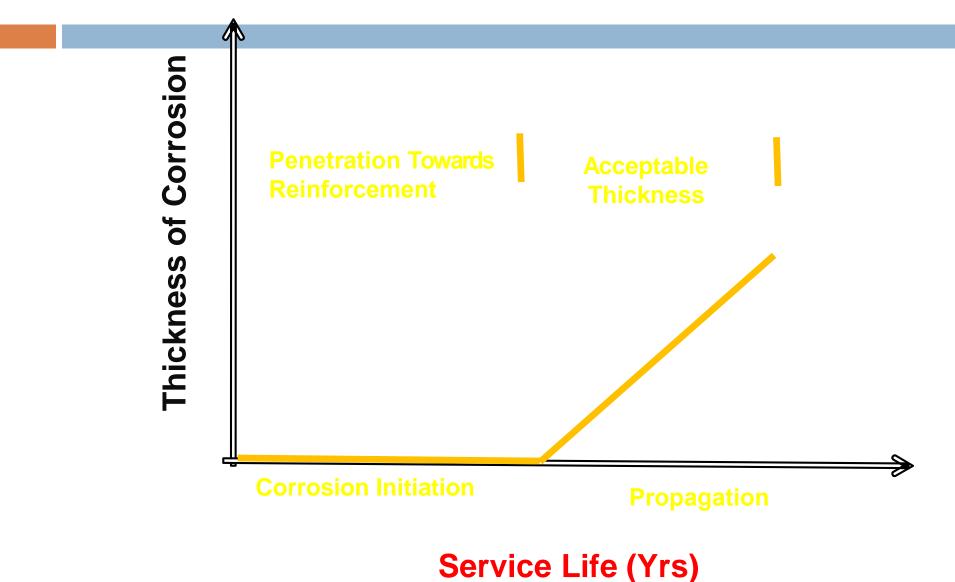
Reinforced Concrete Corrosivity Monitor (RCCM)

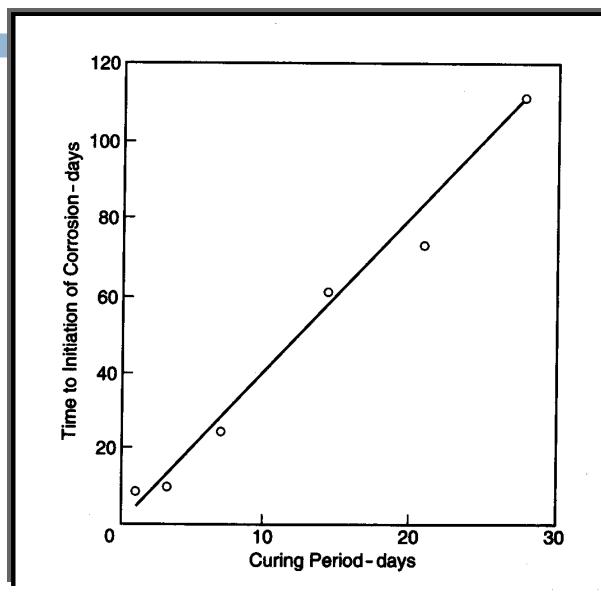

PROBABILITY OF CORROSION FOR DIFFERENT E_{CORR} VALUES¹⁴

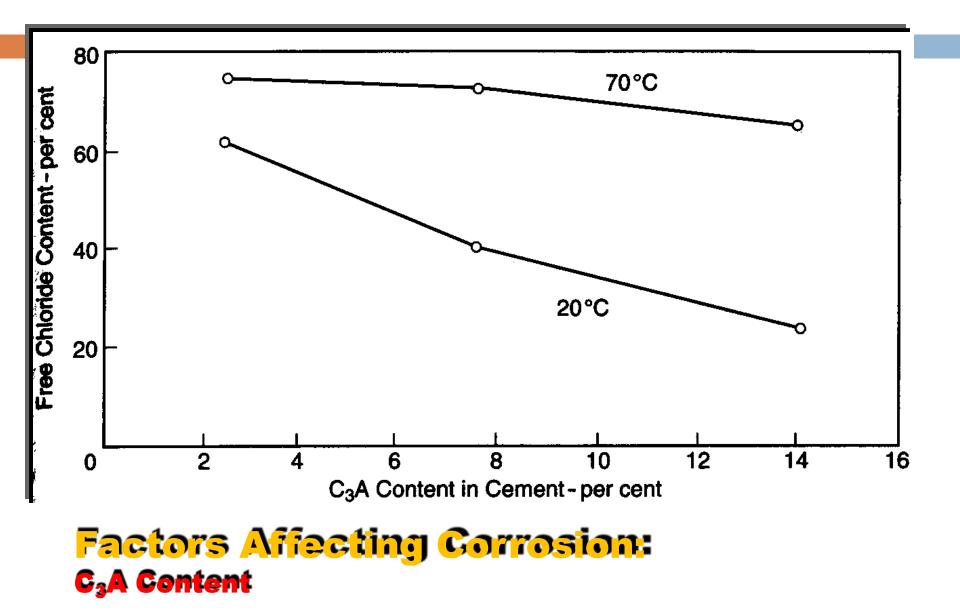
Probability of	E _{corr} (vs Cu/CuSO ₄)	E _{corr} (vs SCE)	E _{corr} MnO ₂
corrosion			
> 95 %	< -350 mV	< -276 mV	< -430 mV
< 5 %	> -200 mV	> -126 mV	> -280 mV
approx. 50%	-200 to -350 mV	-126 to -276 mV	-280 to -430 mV

TYPICAL E_{CORR} VALUES OF THE DIFFERENT CORROSION STATES OF STEEL IN CONCRETE

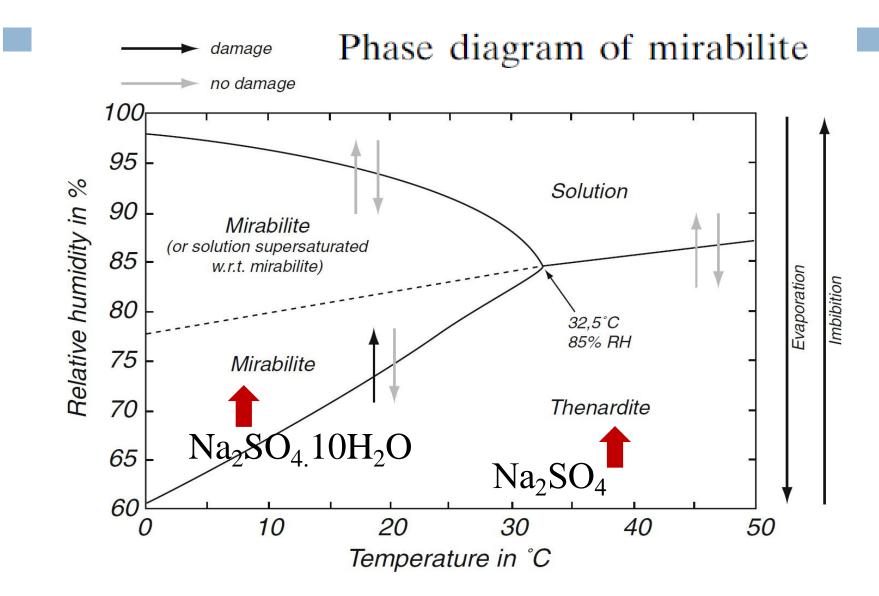
Corrosion state	Range of possible $E_{corr} / mV_{(SCE)}$	Converted to $mV_{(MnO2)}$
Passive state	+200 to -200	40 to -360
Pitting corrosion	-200 to -500	-360 to -510
General corrosion	-450 to -600	-610 to -760
Corrosion with limited oxygen access	Around -1000	-1160


Corrosion Potential Evaluation


Steel Corrosion: Chloride Induced

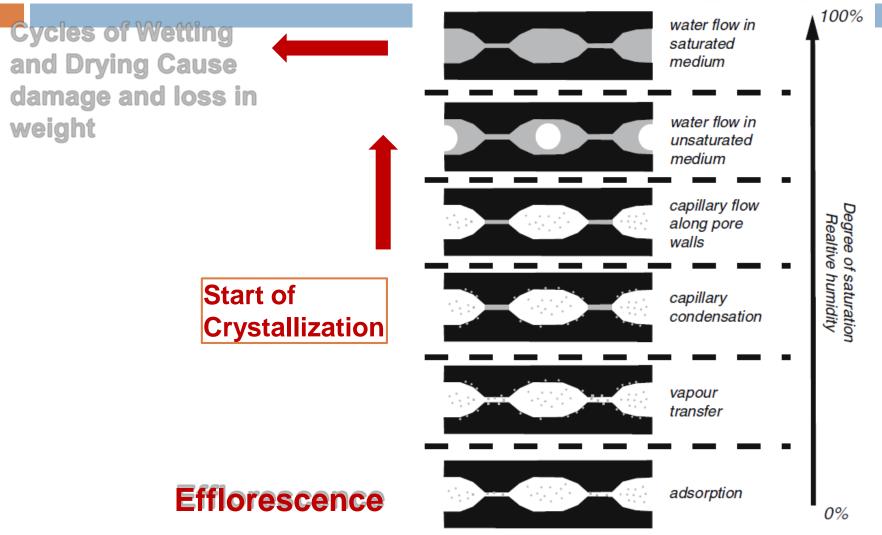

- Factors Affecting Corrosion:
- **Curing Period**
- #C3A content
- Concrete cover thickness
- **Porosity and Pore size distribution**
- **%W/C ratio**
- **Pozzolan Addition**
- Moisture Content
- «Temperature

Steel Corrosion: Service Life

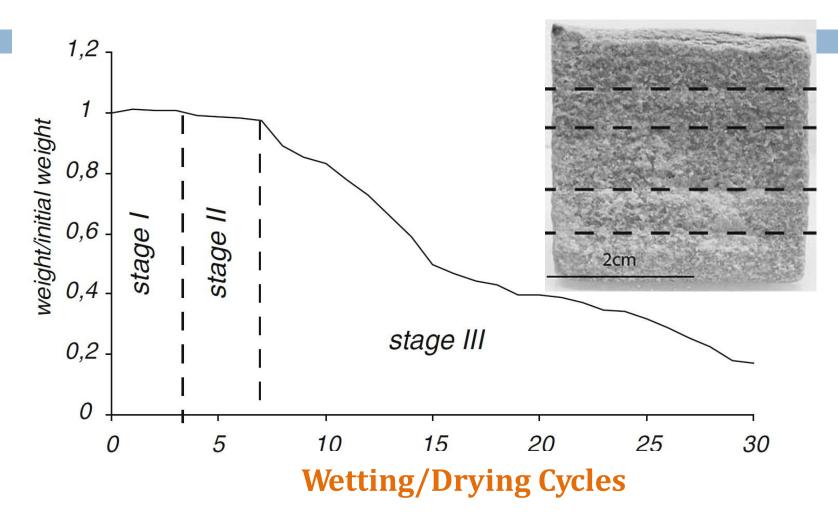

Crystallization of Salt

Repeated or continuing evaporation of salty water from concretes in marine environments or from concrete foundation resting on salt contaminated soil cause salt deposits to build up in the concrete pore system to the point where they cause concrete cracking.

Remedy

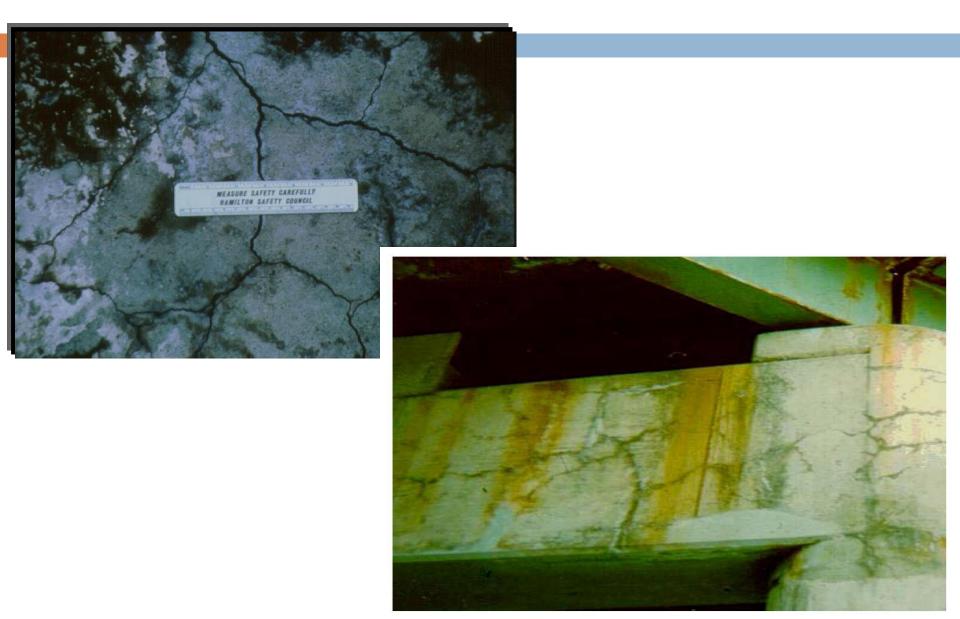

- Sealing the concrete, either to prevent ingress of moisture or subsequent evaporation.
- Concrete below ground may be surrounded by an impervious clay fill to keep salts from coming in contact with the concrete (reduce concrete permeability).

Crystallization of Salt



Crystallization of Salt

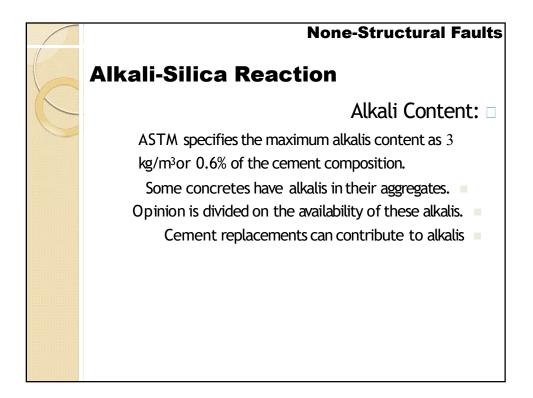
Stages in the wetting of a porous system

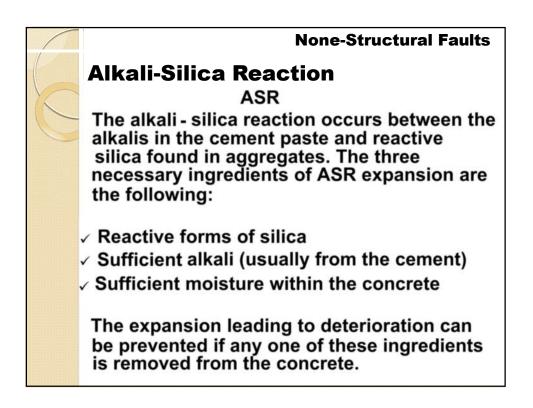

Crystallization of Salt

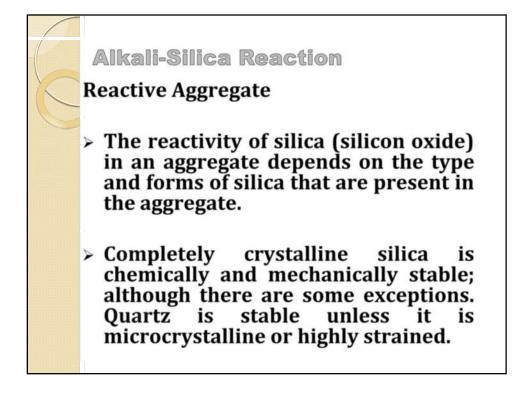
WETTING/DRYING CYCLES VS WEIGHT LOSS OF CONCRETE

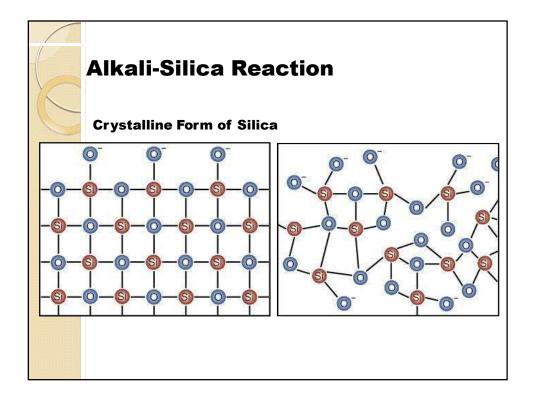
Alkali-Silica Reaction

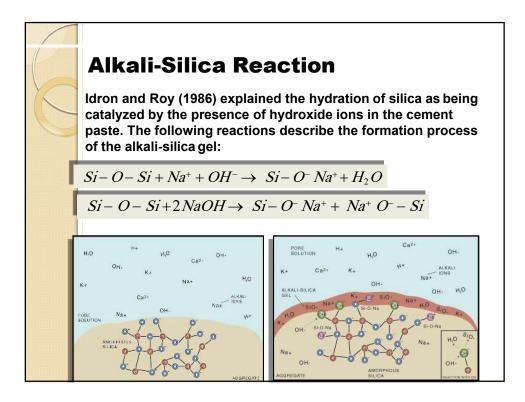
None-Structural Faults

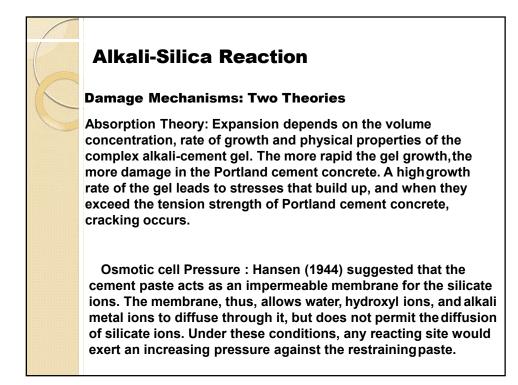


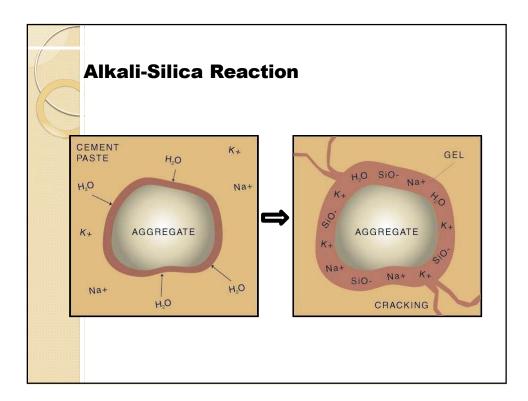

• 7/• 7/1 289

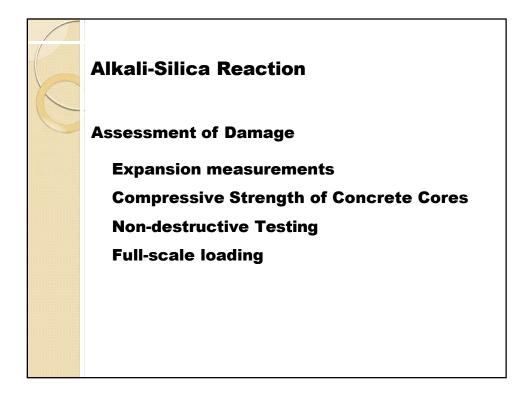

Alkali-Silica Reaction Causes: Reaction between alkalis, usually from cement and certain siliceous aggregates Reaction forms silica gel inside or round the periphery of the aggregate Silica gel absorbs water and swells Swelling eventually bursts the concrete and typical "map" cracks form

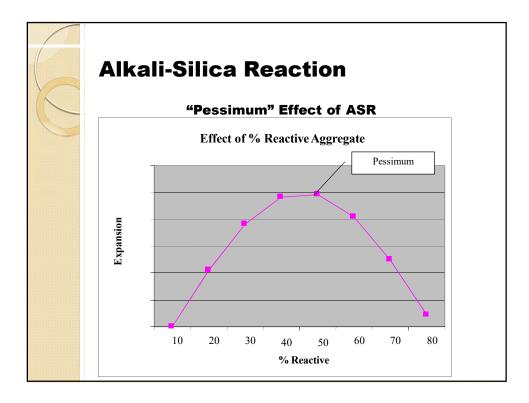


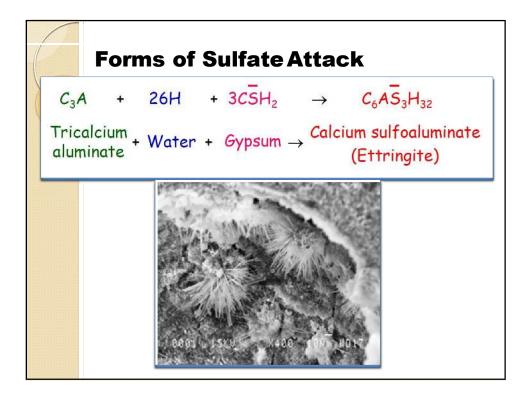

. 7/. 7/1 289

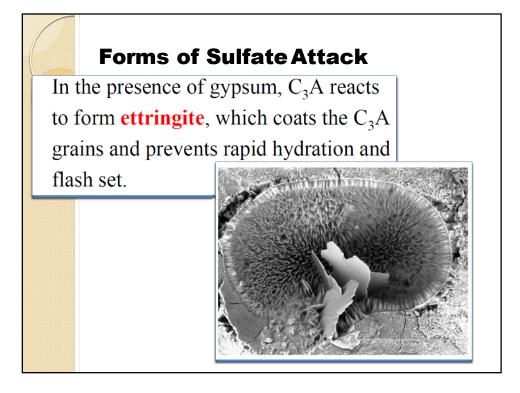


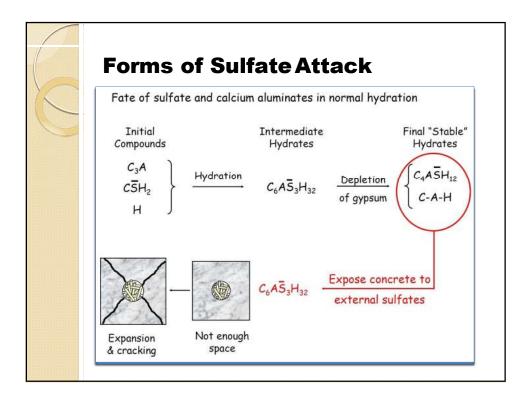

. 7/. 7/1 289



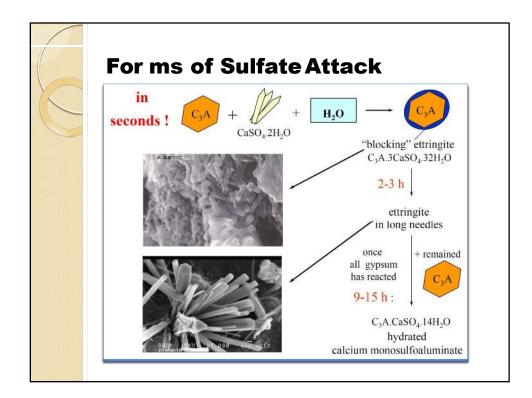

. 7/. 7/1 289

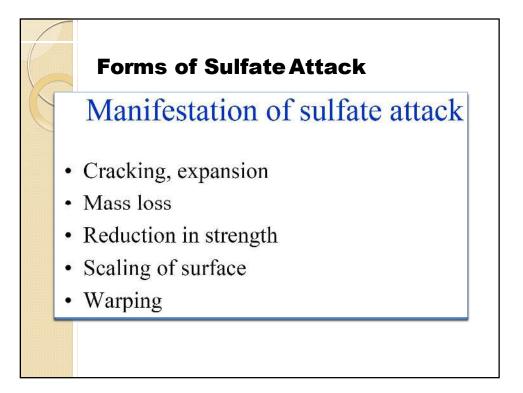

• 7/• 7/1 289

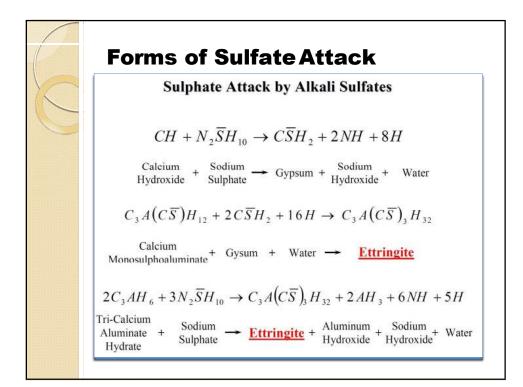


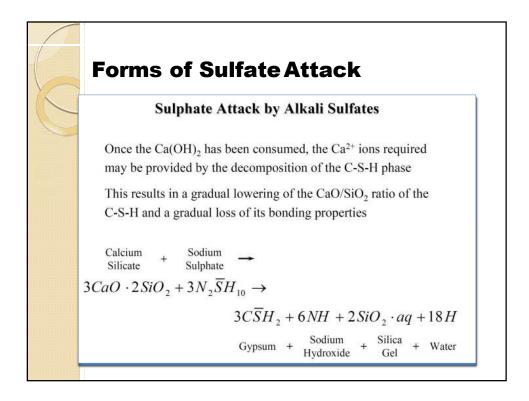


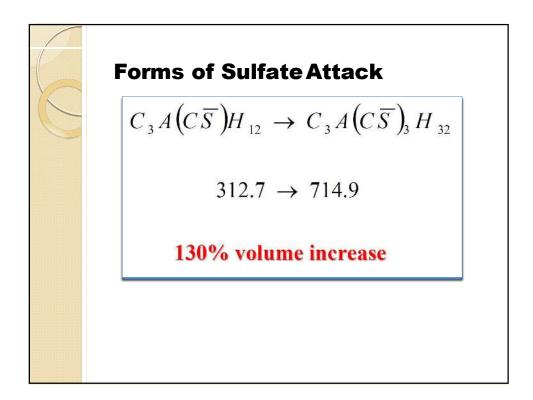
• 7/• 7/1 289

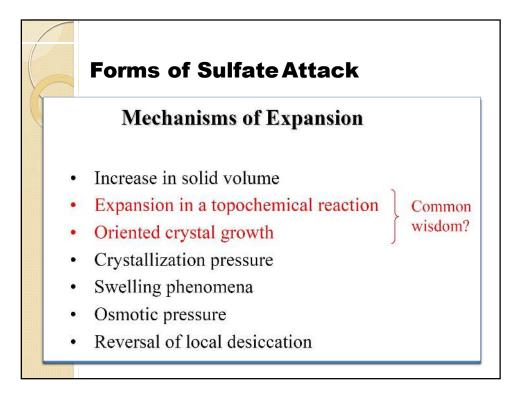


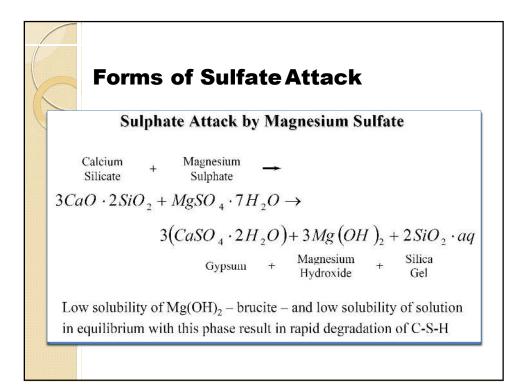


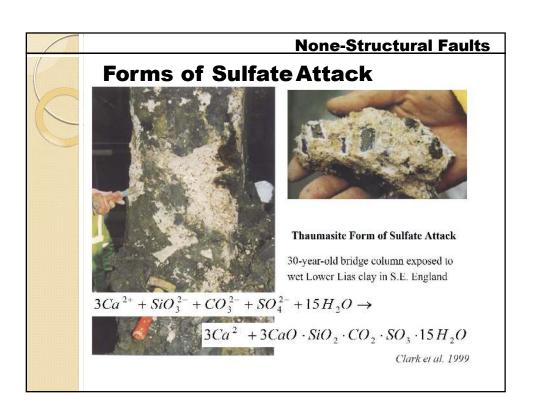


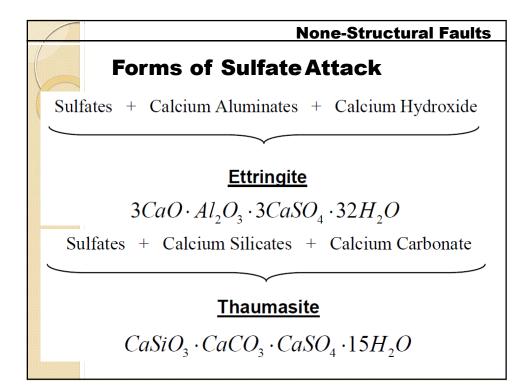

. 1/. 7/1 289

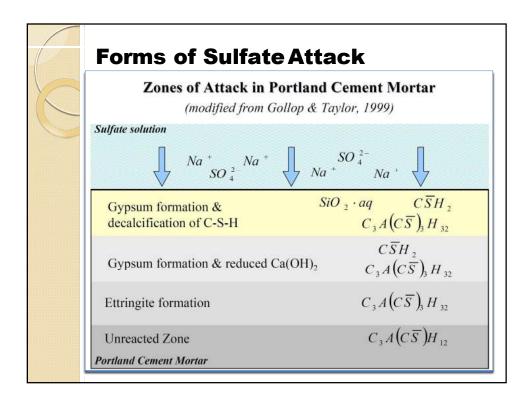


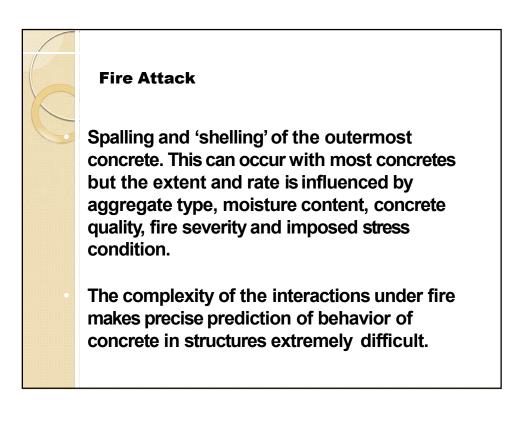

Fo	rms of S	Sulfate Atta	ick
Sources	of sulfate?		
• Natur	ally occurring sulf	fates may be found in soi	ls and groundwaters
anhy	drite CaSO ₄	thenardite	Na_2SO_1
bassa	nite CaSO ₁ .½F	I ₂ O mirabilite	Na ₂ SO ₁ ·10H ₂ O
gyps	um CaSO ₄ ·2H	₂ O arcanite	K_2SO_4
kiese	rite MgSO ₄ ·H ₂	2O glauberite	Na ₂ Ca(SO ₄) ₂
epsoi	nite MgSO ₄ ·7H	I ₂ O langbeinite	$\mathrm{K_2Mg_2(SO_4)_3}$
• Amm	onium sulfate - (N	IH ₄) ₂ SO4 - found in agrid	cultural soils and fertilize
		in wastewaters, water-tre her industrial processes	atment and sewage-
	nic waste can prod ic acid – H ₂ SO ₄	uce H2S which can be o	xidized to bacteria to form
• Seaw	aler		

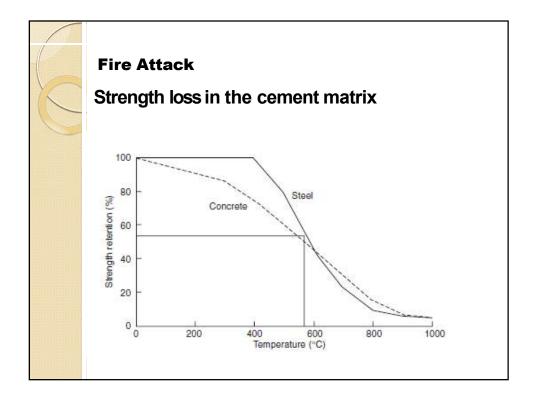


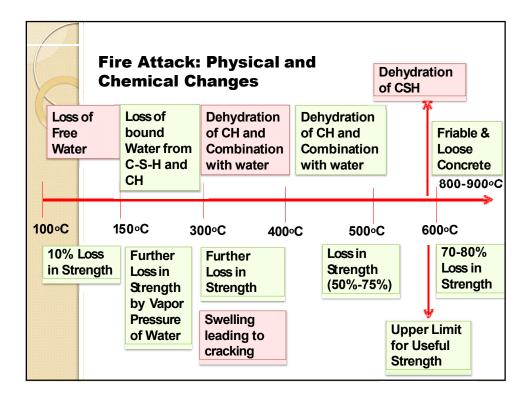






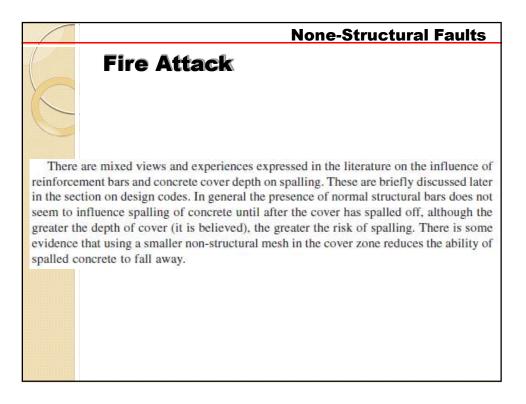



Fire Attack

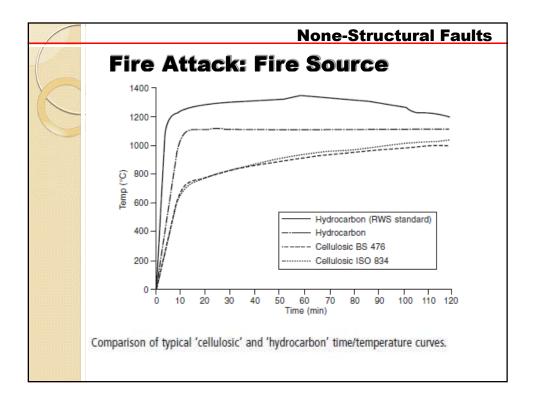

There are two principal effects of fires on structural concrete:

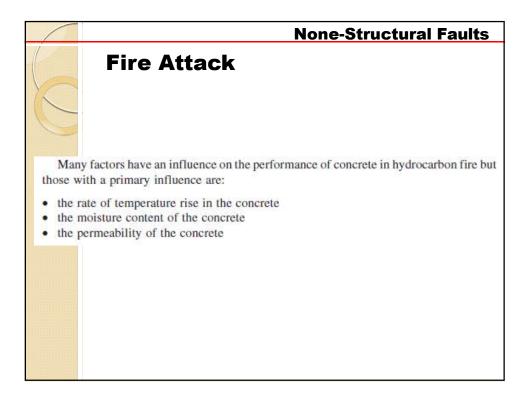
Loss in strength of matrix by degradation of hydrate structure. This occurs at various stages from 300°C upwards but the main losses are seen at 500°C plus.

. 1/. 7/1 289

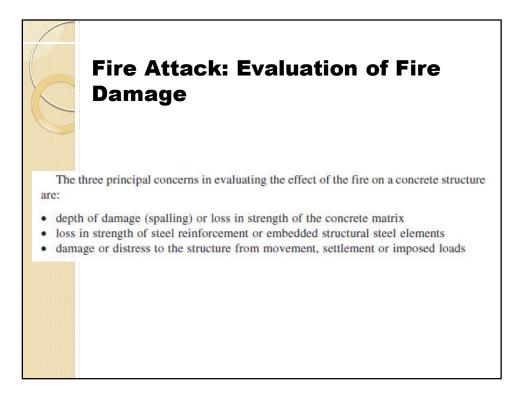


• 7/• 7/1 289

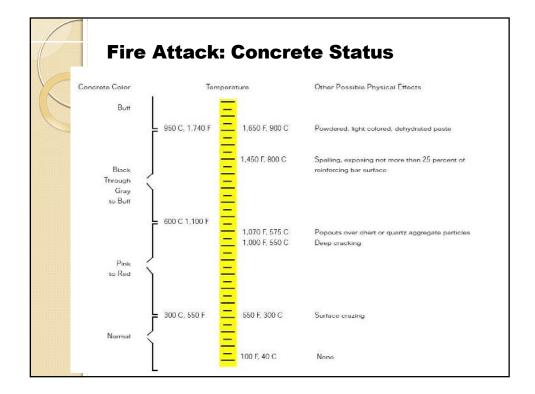

Fire Attack: Spalling


Spalling of concrete in fires is the breaking-off of layers of the concrete surface in response to the applied heat. Spalling can be either localized or widespread depending upon the fire and/or concrete condition, particularly moisture content, and the susceptibility to break-up of heat-unstable aggregate particles. On prolonged heating areas of concrete cover can also just fall away, a process that is sometimes called 'sloughing'. The processes causing sloughing are not generally reported, although it is noted that it occurs from corners of beams and slabs and seems to spread along a plane of weakness parallel to the outer surface. Because 'sloughing' occurs late in a fire exposure it is considered by some as being of less concern than explosive spalling that occurs earlier upon exposure to fire. Understanding explosive spalling is important because of the potential for loss in section of the concrete element, the depth of fire affected concrete and the reduced protection to embedded steel.

Spalling is a frequently observed phenomenon in fire; more prominently on soffits of slabs and on beams because of the greater exposure to heat and possibly heat 'entrapment'. It is not certain that this frequent observation is fully anticipated by design codes and this is discussed in more detail below, in the section on design codes.

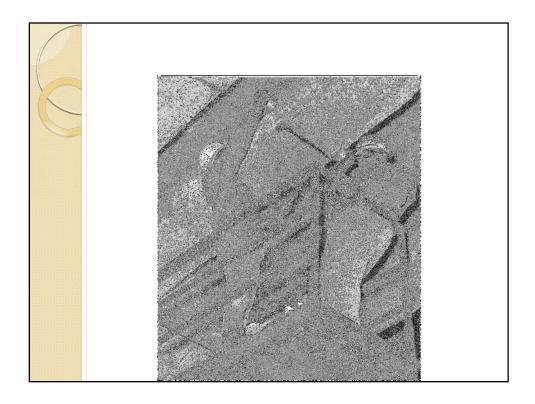


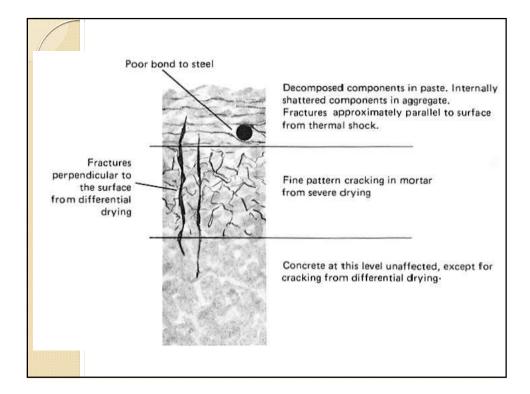
. 1/. 7/1 289



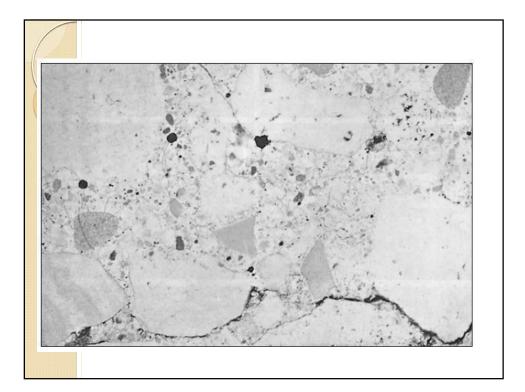
. 1/. 7/1 289

6	Fire	Attac	k: Concrete Stat	us
X	Τ	Color Change	Change in Physical and Benchmark Temperature	Concrete Condition
	0-290∘C	None	Unaffected	Unaffected
	290-590∘C	Pink to red	Surface crazing- 300°C Deep cracking-550°C Popouts over Chert and Quatz aggregate-575°C	Sound but strength significantly reduced
	590-950∘C	Whitish Grey	Spalling, exposing not more than 25% of reinforcing steel-800°C Powdered, light colored, dehydrated paste-575°C	Weak & Friable
	950+∘C	Buff	Extensive spalling	Weak & Friable

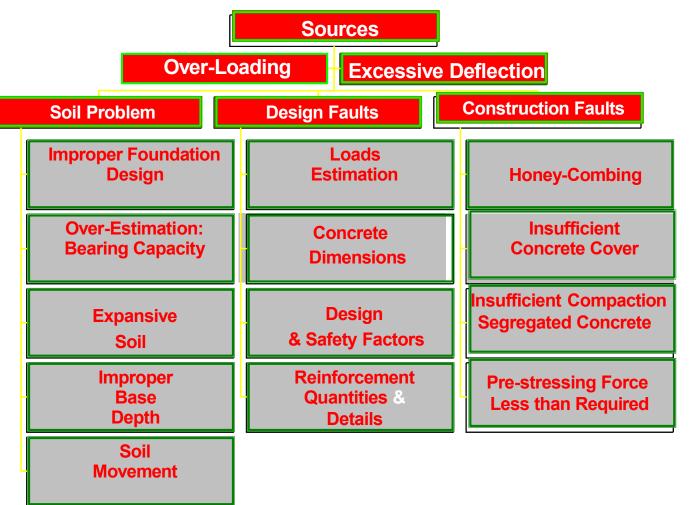


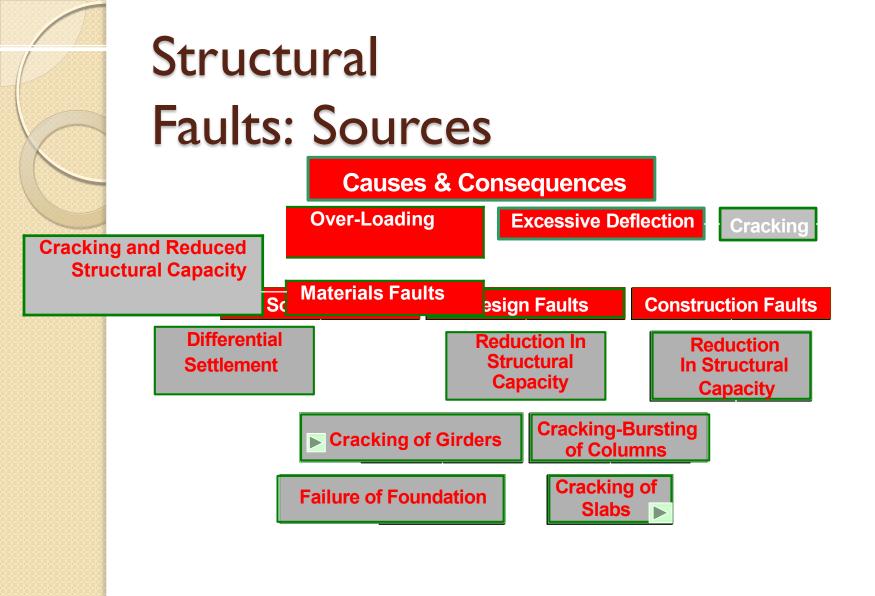

TABLE III Methods for Deta	ils Appraisals of Condition of Fire-Damaged Co	ncrete
Condition of Property	Methods	Notes
Actual temperature reached in building	Examination of building contents	See Tables 1 and 2
Actual temperature reached in concrete	Visual examination of concrete, Petrographic, DTA, and metallurgical studies of steel.	See Fig. 1
Compressive strength	Tests on cores. Impact hammer studies. Penetration resistance. Soniscope studies.	

• 7/• 7/1 289


Soundness at highly stressed areas (upper	
side at center of	Hammer and chisel. Visual examination
beam; beam supports;	Soniscope studies.
anchorages for	
reinforcement near	
support; frame corners)	
Modulus of elasticity	Tests on cores. Soniscope studies.
Dehydration of	DTA. Petrographic analysis.
concrete	Chemical analysis.


Surface hardness	Dorry hardness or other tests
Abrasion resistance	Los Angeles abrasion test on concrete chips*
Depth of damage	Visual examination for spalling, cracking. Color variation in cores. Chipping. Petrographic analysis.
Deformation of beams,	Visual examination. Straightedge and scale. Dial gages or theodolite if needed.
Gross expansion	Visual examination. Checking of dimensions and levels.
Differential thermal movements	Visual check of cores for loss of bond to steel. Color change in concrete next to steel.
STEEL CONDITION	
Reinforcing steel,	Physical tests. Metallurgical studies.
structural steel or	Dimensional changes, displacement
prestressing steel	and distortion.
 Load carrying capacity	Load tests on structure

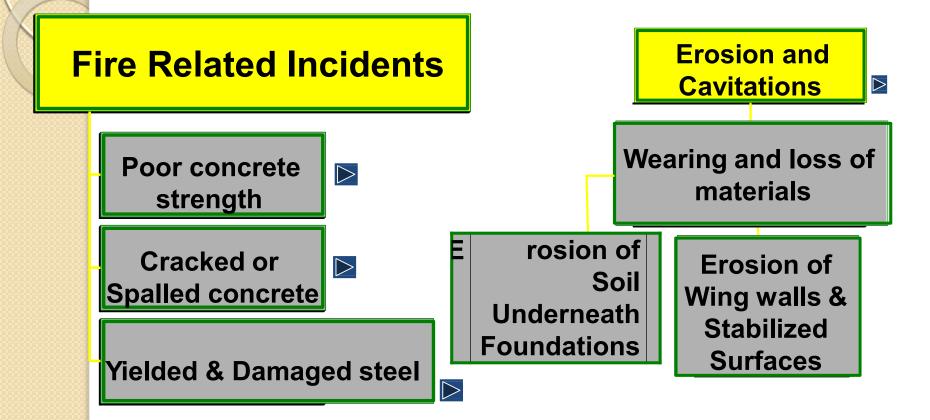

• 7/• 7/1 289

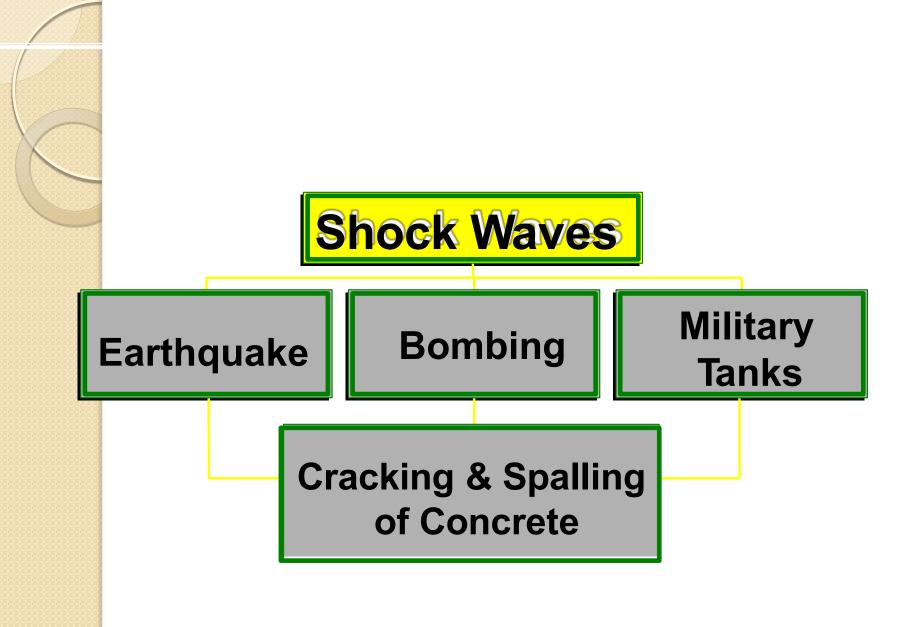


STRUCTURAL FAULTS: SOURCES AND TYPES

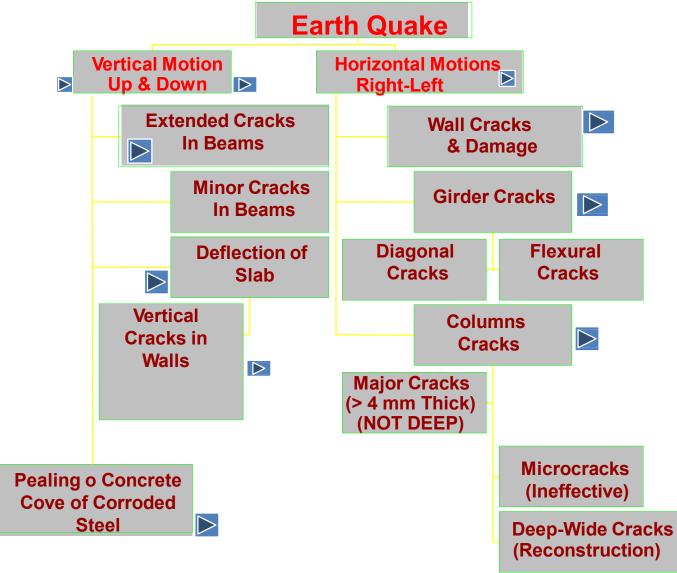
Structural Faults: Sources

Common Design Faults


- Underestimation of loads on columns {Using Areas Methods Instead of Using Reactions}.
- Insufficient Development Length of Reinforcement in Concrete.
- Termination of Steel in Zones of High Tension.
- Constructing Stiffening Beams in Slabs {Increasing Deflecting}.


Common Design Faults

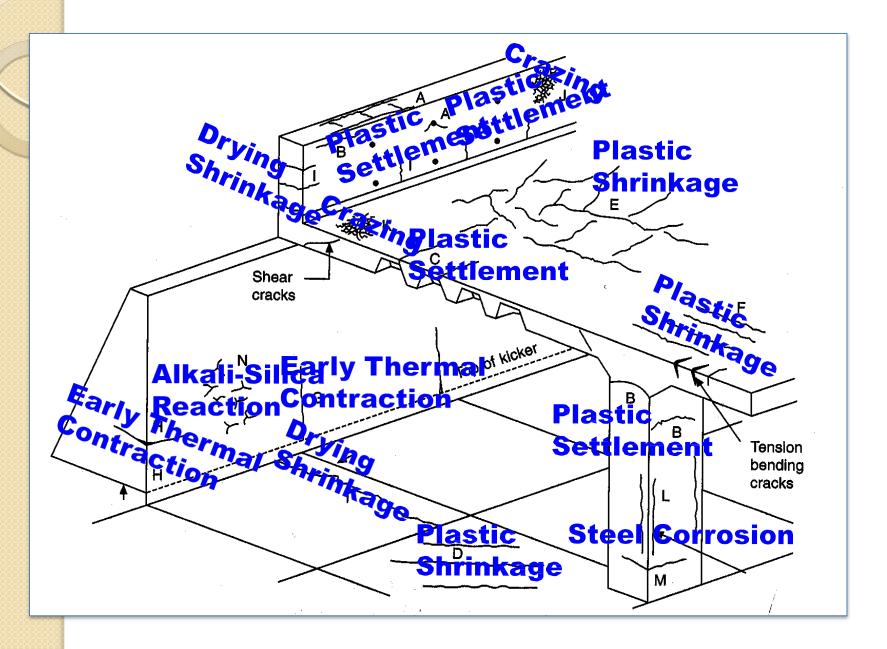
- Termination of Negative Steel in Zones of High Tension.
- Adjustments on Design with Consulting with Engineers.
- Reduce Concrete Cross Sections.
- Reduce quantities of Steel by Number or Size.
- Over-loading.
 - Lack of adequate number of expansion joints.


SOURCES AND TYPES

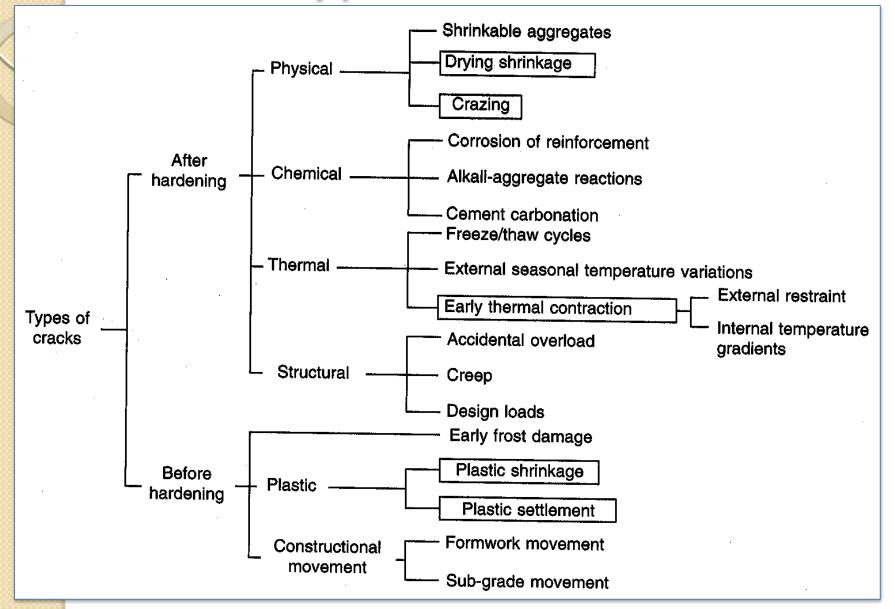
Other Causes of Materials & Structural Faults

Cracking: Earthquake

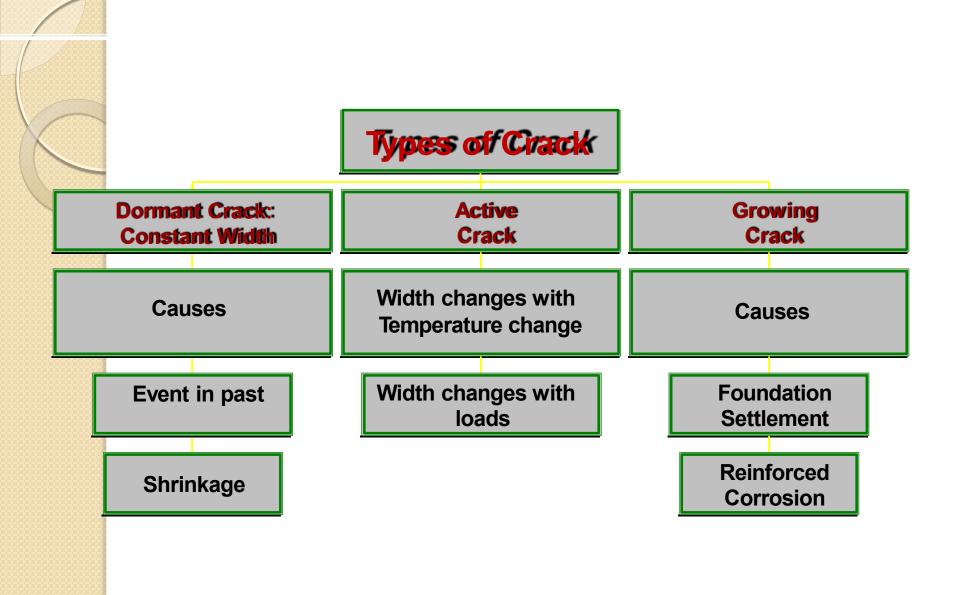
Common Construction Faults


- Use of improper Concrete Ingredients.
- Structural Members are Not Proportioned According to Engineering Plans.
- Insufficient Compaction of Members.
- Use of Improper Cement in Casting Concrete.
- Use of Contaminated Water.
- Use Low quality Reinforcing Steel.
- Improper Distribution of Reinforcing Steel.

CRACKS; CLASSIFICATION & CAUSES


Classification of Intrinsic Cracks

Type of cracking	Letter (See Figure 6.13	Subdivision	Most common location	Primary cause (excluding restraint)	Secondary causes/ factors	Remedy (assuming basic redesign is impossible) In all cases reduce restraint	Time of appearance
Plastic settlement	A	Over Reinforcement	Deep sections	Excess bleeding	Rapid early drying conditions	Reduce bleeding (air entrainment) or re-vibrate	10 minutes to 3 hours
	B C	Arching Change of depth	Top of columns Trough and waffle slabs				
Plastic shrinkage	D	Diagonal	Roads and slabs	Rapid early drying	Low rate of bleeding	Improve early curing	30 minutes to 6 hours
2	E	Random	Reinforced concrete slabs				
	F	Over- reinforcement	Reinforced concrete slabs	Ditto plus steel near surface			
Early thermal contraction	G	External restraint	Thick walls	Excess heat generation	Rapid cooling	Reduce heat and/or insulate	One day to two or three weeks
	Н	Internal restraint	Thick slabs	Excess temperature gradients			
Long-term drying shrinkage	Ι		Thin slabs (and walls)	Inefficient joints	Excess shrinkage, inefficient curing	Reduce water content, improve curing	Several weeks or months
Crazing	J	Against formwork	Fair-faced concrete	Impermeable formwork	Rich mixes, poor curing	Improve curing and finishing	One to seven days, sometimes much later
	К	Floated concrete	Slabs	Over-trowelling			
Corrosion of reinforcement	L	Natural	Columns and beams	Lack of cover	Poor-quality concrete	Eliminate causes listed	More than two years
	М	Calcium chloride	Pre-cast concrete	Excess calcium chloride			
Alkali–silica reaction	N		(Damp locations)	Reactive aggregate plu cement	s high-alkali	Eliminate causes listed	More than 5 years


Classification of Intrinsic Cracks

Cracks Types : Causative Factor Cracks Types :

	Materials and Structural Cra	cks
	Problemat	ic Cracks
	Aesthetically Unacceptable	Non-Water Tight of The Structure
Α	ffect The Structure's Durability	Structural Significance

Sources & Characterization of Cracks

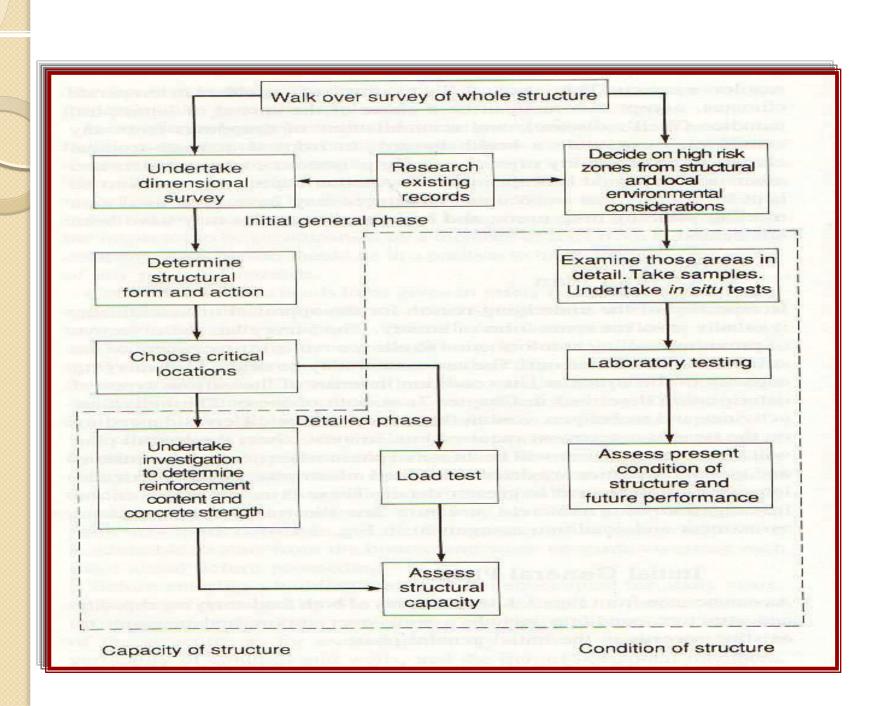
1	Crack width is under 0.2 mm. Cracks are small, mainly surface cracks.			
2	Crack width is 0.2 to 0.4 mm. Cracks are small structural cracks, generally due to shrinkage.			
3	Crack width is 0.3 to 1.0 mm. Structural cracks are generally due to deflection, exceeding of the shear capacity, or creep.			
4	Crack depth is over 1.0 mm. Structural cracks are due to uneven settlement or a large deformation.			

SURVEY & ASSESSMENT METHODS

Engineering Judgment is very fundamental in directing the evaluation process of a deteriorated buildings. Therefore the following fundamental information must be well known:

>History of the concrete structure: time constructed, materials used and their properties, repair performed, general problems.

>History of construction practices.


History of the surrounding region: earthquakes, floods, aggregate quality in the region.

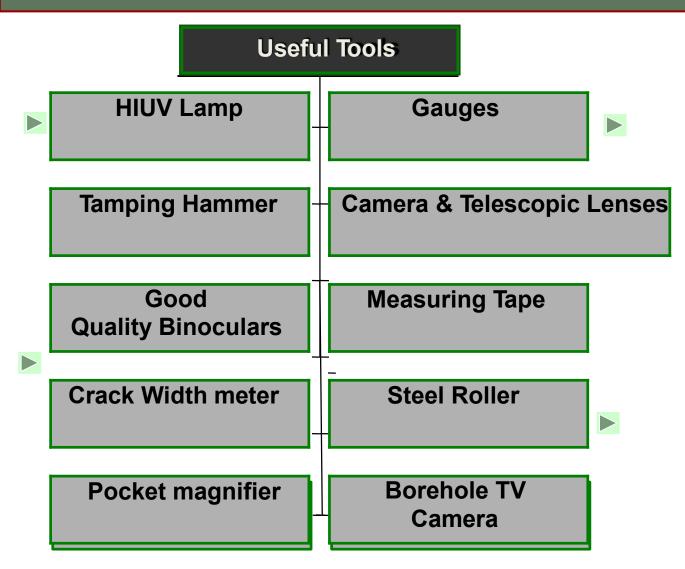
>Type of loads.

>Topography of the region.

Climate and use of deicing agents.

>Accidents

		spection Form for A concrete I		
Building Name:	Location:	Date Built:	Occupancy:	Owner:
Occupancy:				
Residential	Parking	Public Services	🗆 Industrial	
Commercial	□ School		□ Agricultural	
Offices	Hotel	□ Storage	🗌 Other	
ype of Structure:			Soft Story	□ Yes □ No
Reinforced Concrete	□ Masonry bearing wall with	Mixed RC and Masonry	Stories Below Ground	□ Yes □ No
	floor of RC, steel, or wood.	vertical members.	The building is in use	🗆 Yes 🗆 No
condition	Slab: S1 S2 S3 S4 S5	Beams: B1 B2 B3 B4 B5	Column: C1 C2 C3 C4 C5	Wall: W1 W2 W3 W4 W5
1. Surface General				
Good				
Satisfactory				
B				
Poor				
Poor 2. Cracks: Frequence				
2. Cracks: Frequenc Vertical	y			
2. Cracks: Frequenc Vertical Horizontal	y			
2. Cracks: Frequenc Vertical	y			
2. Cracks: Frequence Vertical Horizontal Random Size:	y			
2. Cracks: Frequence Vertical Horizontal Random Size: Fine (<1mm)	y			
2. Cracks: Frequence Vertical Horizontal Random Size: Fine (<1mm) Medium (1-2 mm)	y			
2. Cracks: Frequence Vertical Horizontal Random Size: Fine (<1mm)	y			
 Cracks: Frequence Vertical Horizontal Random Size: Fine (<1mm) Medium (1-2 mm) Wide (>2mm) Scaling 	y			
 Cracks: Frequence Vertical Horizontal Random Size: Fine (<1mm) Medium (1-2 mm) Wide (>2mm) Scaling Light (<5mm) 	y			
 Cracks: Frequence Vertical Horizontal Random Size: Fine (<1mm) Medium (1-2 mm) Wide (>2mm) Scaling Light (<5mm) Medium (5- 	y 			
 Cracks: Frequence Vertical Horizontal Random Size: Fine (<1mm) Medium (1-2 mm) Wide (>2mm) Scaling Light (<5mm) Medium (5- 10mm) 	y			
 Cracks: Frequence Vertical Horizontal Random Size: Fine (<1mm) Medium (1-2 mm) Wide (>2mm) Scaling Light (<5mm) Medium (5- 	y 			


4.	Spalling				
4.	Small Large Many Few				
5.	Previous Repair Present None				
	Good Satisfactory Poor				
6.	Signs of: Settlement Expansion Deflection (Buckling)				
7.	Note Locations: Building Usability Classification	Usable- Occupancy Permitted.	Temporarily Unusable: Not to until a second evaluation.	be used on continuous basis	Unusable (Dangerous)
General	Comments and Reco	l ommendations for NDT and c	l ther tests.		1
Date of	Inspection:				
Signatu	re of Inspection Tear	n Leader:			

Field & Laboratory Evaluation Methods

I.Visual Inspection:

II. Testing Techniques
III. Laboratory Testing.
IV. Coring Testing (ASTM C 42).
V. Fall-Scale Loading

I. Visual Inspection

II. None-Destructive Techniques

- Surface Hardness Tests (Schmidt Hammer "Impact Hammer").
- Penetration Resistance (Windsor Probe Test).
- 🔹 Pull-off Test. 🕨
- Ultrasonic Plus Velocity Measurements.
- Resonant Frequency Method(suitable for Freezing and Thawing)
- 🕥 Impact -Echo Method. 🖻
- **Acoustic Emission.**

9- Corrosion activity test. 🕨 Radar. **Covermeter (measures concrete** cover to reinforcing steel). **Relative Humidity in Concrete 13- Delaminating Detection. Tools:** -Tapping Hammer. - Electromechanical Devices. Infrared Themography .

- Chain Drag Techniques.

Pre-cast Prestressed T-beam

AE sensor attached to the bottom surface.

Historic index is a measure of the changes in Signal Strength throughout the test, defined by

$$H(t) = \frac{N}{N-K} \frac{\sum_{i=K+1}^{N} S_{Oi}}{\sum_{i=1}^{N} S_{Oi}}$$

where H(t) is the historic index at time t, N is the number of hits up to and including time t, S_{Oi} is the signal strength of the *i*-th event, and K is an empirically derived factor that varies with the number of hits. For N < 50, K = 0: for $50 \le N < 200$, K = N – 30: for $201 \le N < 500$, K = 0.85N: and for $501 \le N \le 2000$, K = N – 35 [8] The second parameter used for this analysis is known as severity (S_r) and is defined as the average signal strength for the 50 events having the largest numerical value of signal strength and is defined by the following equation:

$$S_r = \frac{1}{50} \sum_{i=1}^{i=50} S_{Oi}$$

where S_r is severity and S_{Oi} is the signal strength of the *i*-th event as above.

III. Laboratory Testing and Evaluation

- Strength test, Density, Absorption , Void ratio and Permeability determination.
- Petrography's and Image analysis.
- Air voids system.
- Chloride content determination.
- **Condition of rebar.**
- Ultrasonic plus velocity determination.
- Determination of cement and aggregate contents and aggregate size distribution.
- **Chemical analysis of cement paste.**

IV. Core Testing

Testing Cores For Compressive Strength: ASTM C42

Example: The data obtained from a compressive strength test of three concrete 100 mm-diameter cores are listed in the Table below. If the specified cylinder strength is 25 MPa, would the concrete pass or fail the test?!.

Solution: The average σ_{cyl} =21.6 MPa (36% of Specified Strength) > 35%, Yet σ_{cyl} of core III is 71% < 75% of specified strength. **Decision: The concrete fails the test**.

(Core	Load	σ_{core}	L (mm)	L/D	CF	σ_{cyl}
	1	200 kN	25.6 MPa	150	1.5	0.96	24.6 MPa
	н	180 kN	23.0 MPa	175	1.75	0.96	22.5 MPa
	III	155 kN	19.8 MPa	113	1.13	0.96	17.8 MPa

- Loading Structures that failed to attain the required concrete core strength.
- Loading Structures that had been repaired for lack of bearing capacity of its major components.
- What should you measure under load effect?
- ✓ Deflection
- ✓ Induced strain
- Monitor crack formation and widening (if any)
- ✓ Regained deflection

General-Test Conditions:

- Slabs and beams of age (56 days and less).
- Loading in Field is carried out by a party of recognized expertise.
- The structure should be loaded by design superimposed dead loads (excluding own weight of slabs & beams) before 48 hours of of loading test.

Loading Procedure:

- Slabs and beams are loaded with 0.85(1.4 DL+1.7LL) minus the dead load that is already applied.
- LVDTs of dial gauges are placed under the slabs and beams at critical locations to measure deflection. These are maintained at their specified positions through a special frame work.
- Before loading, the LVDTs or dial gages are set to zero readings, then the load calculated is applied equally at four stages. The loads are left above the slabs and beams for 24 hours, before deflection readings are taken.
- The loads calculated are removed, and deflection readings are taken after 24 hours. The difference between these readings and those before lifting the loads represents Self-Recovery.

Specification Requirements:

The slabs and beams fail the test if extensive cracking or failure signs appeared during loading or if it do not achieve the following requirements:

A. Deflections measured $\leq 50L^2/h$, where L is the span of loading expressed as the center-center distance between supports or the loading span+ the depth of the slab or beam. In case of cantilevers, the span is the double distance between the support and the free end.

B-If the deflection in A is violated, Self-Recovery should not be less than 75% of ultimate deflection.

Example: The core testing, obtained from the second floor- Prince Rashed Hospital, failed the Jordanian Specifications regarding core strength, although equivalent strength remained above 15 MPa. Therefore, the contractor and the supervising team had agreed on carrying out a loading test for the floor.

Loads Calculations:

Superimposed Dead Load:	Tiles > 0.03 x 2000	= 60 kg/m ²
	Mortar ▶ 0.02 x 200	0 = 40 kg/m ²
	Sand ▶ 0.10 x 1800	= 180kg/m ²
	Total ►	= 280 kg/m ²
Dead Load of Ribs & Slabs:	Rib ▶ 0.24 x 0.15 x 2500 =	90 kg/m²
	0.07 x 0.55 x 2	2500 = 96 kg/m ²
	Slab ▶ 15 x 5	= 75 kg/m ²
	Total ▶	= 475kg/m²
Live Load:		400 kg/m ²

- The superimposed loads (280 kg/m2) are placed before
 48 hours. These were achieved using 25 (100 voided
 Bricks) on 1 m² {mass of each brick = 11.5 kg).
- After 48 hours, six dial gages were placed at certain points under the roof and were set at a reference reading.
- The the following load is placed directly at four stages:
 = 0.85{1.4(475+280)+1.6(204)} (475+280) = 421 kg/m²
 This load was achieved by placing 28 100-mm Bricks + 2 (50-kg Bags) ▶ 28 x 11.5 + 2 x 50 = 422 kg/m².
- After 24 hours, dial gages reading were taken. Results are summarized in the following Table.

Example:

Dial Gage #	Deflection, mm	Allowable Deflection, mm
1	3.115	5.47
2	3.35	4.27
3	1.95	5.37
4,	1.01	6.29
5	2.55	4.38
6	0.58	5.42

Conclusion: The floor showed no cracking, and deflection are below allowable values. Therefore, the floor passes the load test.

Concrete Chemical & Physical Properties: Guide

Evaluation Procedure Chemical And Physical Properties	Acoustic Impact (Table 1.3)	Air Content test (ASTM C457)	Cement Content Test (ASTM C1084)	Chemical Tests	Core Testing	Electrical potential measurements (Table1.3)	Electrical resistance measurements (Table1.3)	Flexural tests(ASTM C42)	Freeze thaw test (ASTM C666)	Gamma radiography (Table 1.3)	Nuclear moisture meter (Table 1.3)	Permeability test (CRD C48)	Petrographic analysis (ASTM C856)	Pullout testing(ASTM C900)	Rebound hammer (ASTM C805)	Ultrasonic pulse (ASTM C597)	Windsor probe (ASTM C803)
Acidity																	
Air content																	
Alkali-Carbonate																	
Reaction																	
Alkali-Silica																	
Reaction																	
Cement content			\bullet														
Chemical																	
Composition																	
Chloride content																	
Compressive strength																	
Contaminated																	
Aggregate																	
Contaminated																	
Mixing water																	
Corrosion																	
environment																	

Concrete Chemical & Physical Properties: Guide

Evaluation Procedure Chemical And Physical Properties	Acoustic Impact (Table 1.3)	Air Content test (ASTM C457)	Cement Content Test (ASTM C1084)	Chemical Tests	Core Testing	Electrical potential measurements (Table1.3)	Electrical resistance measurements (Table1.3)	Flexural tests(ASTM C42)	Freeze thaw test (ASTM C666)	Gamma radiography (Table 1.3)	Nuclear moisture meter (Table 1.3)	Permeability test (CRD C48)	Petrographic analysis (ASTM C856)	Pullout testing(ASTM C900)	Rebound hammer (ASTM C805)	Ultrasonic pulse (ASTM C597)	Windsor probe (ASTM C803)
Croop																	
Creep Density																	
Elongation																	
Frozen components Modulus of elasticity																	
Modulus of rupture																	
Modulus of Tupture																	
Moisture Content																	
Permeability					-						-						
												-	•				
Pullout strength																	
Quality of aggregate					_												
Resistance to																	
Freezing and																	
Thawing																	
Soundness																	

Concrete Chemical & Physical Properties: Guide

Evaluation Procedure Chemical And Physical Properties	Acoustic Impact (Table 1.3)	Air Content test (ASTM C457)	Cement Content Test (ASTM C1084)	Chemical Tests	Core Testing	Electrical potential measurements (Table1.3)	Electrical resistance measurements (Table1.3)	Flexural tests(ASTM C42)	Freeze thaw test (ASTM C666)	Gamma radiography (Table 1.3)	Nuclear moisture meter (Table 1.3)	Permeability test (CRD C48)	Petrographic analysis (ASTM C856)	Pullout testing(ASTM C900)	Rebound hammer (ASTM C805)	Ultrasonic pulse (ASTM C597)	Windsor probe (ASTM C803)
Splitting tensile					•												
strength Sulfate resistance				•									•				
Tensile strength					•			•									
Uniformity	•												•		•		•
Water cement ratio													•				

Concrete Physical Condition: Guide

Evaluation				03												
Procedure Physical condition	Acoustic Emissions (Table 1.3)	Acoustic impact (Table 1.3)	Chemical Tests	Core Testing(ASTM C42)	Fiber optics (Table 1.3)	Gamma Radiography (Table 1.3)	Infrared thermography (Table 1.3)	Load testing (ACI 437R)	Petrographic analysis (ASTM C856)	Physical measurement	Radar (Table 6.3)	Rebound hammer (ASTM C805)	Ultrasonic pulse (ASTM C597)	Ultrasonic pulse echo (Table 1.3)	Visual examination(ACI 201.1R, ASTM C823)	Windsor Probe (ASTM C803)
	» ۲	+	+	1	1	1				I	↓ ↓	k				+
Bleeding channels			-													
Chemical Deterioration				-												
Corrosion of steel	-	-	\bullet		-									-		
Cracking		\bullet			\bullet		\bullet				\bullet		\bullet		\bullet	
Cross-sect. Properties and				\bullet												
thickness		-		-								ļ	_		_	<u> </u>
Delamination																
Discoloration			\bullet												\bullet	
Disintegration																
Distortion																

Concrete Physical Condition: Guide

	<u> </u>			-					ř –	ř –			í -	Í Í	-	— — — —
Evaluation Procedure															3)	
	s (Table 1.3)	able 1.3)		M C42)	1.3)	hy (Table 1.3)	phy (Table 1.3)	437R)	sis (ASTM C856)	lent		(ASTM C805)	ASTM C597)	ho (Table 1.3)	Visual examination(ACI 201.1R, ASTM C823)	STM C803)
Physical condition	Acoustic Emissions (Table 1.3)	Acoustic impact (Table 1.3)	Chemical Tests	Core Testing(ASTM C42)	Fiber optics (Table 1.3)	Gamma Radiography (Table 1.3)	Infrared thermography (Table 1.3)	Load testing (ACI 437R)	Petrographic analysis (ASTM C856)	Physical measurement	Radar (Table 6.3)	Rebound hammer (ASTM C805)	Ultrasonic pulse (ASTM C597)	Ultrasonic pulse echo (Table 1.3)	Visual examination	Windsor Probe (ASTM C803)
Efflorescence																
Erosion			-						ě						ě	
Freeze-Thaw damage									ě						ŏ	
Honeycomb				\bullet	\bullet				Ŏ				\bullet		ŏ	
Popouts															•	
Scaling																
Spalling				\bullet		\bullet	\bullet								\bullet	
Stratification		•			•									•	•	
Structural performance																
Uniformity of concrete																\bullet

Concrete Physical Condition: Guide

	Acoustic impact(table 1.3)	Chemical analysis(ASTM A571)	Coating tests(ASTM A775,G12,14,20)	Cover meters pachometer(table 1.3)	Electrical potential measurements(table 1.3)	Gamma radiography(table 1.3)	Physical measurements	Radar(table 1.3)	Tension tests(table 1.3)	Ultrasonic pulse echo(table 1.3)	Visual inspection
Adhesion of			•								
epoxy coating Anchorage							•				
Bend test							•				
Breaking strength											
Carbon content											
Chemical composition Coating Properties		•	•								
Concrete cover											
Continuity of epoxy coating			•								

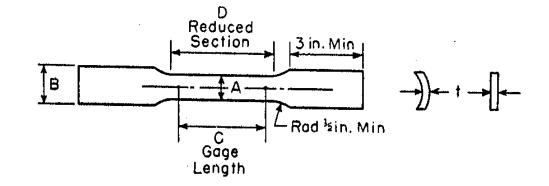
Reinforcing Steel Properties: Guide

	le 1.3)	ASTM A571)	l A775,G12,14,20)	meter(table 1.3)	neasurements(table	(table 1.3)	nts		.3)	o(table 1.3)	
	Acoustic impact(table 1.3)	Chemical analysis(ASTM A571)	Coating tests(ASTM A775,G12,14,20)	Cover meters pachometer(table 1.3)	Electrical potential measurements(table 1.3)	Gamma radiography(table 1.3)	Physical measurements	Radar(table 1.3)	Tension tests(table 1.3)	Ultrasonic pulse echo(table 1.3)	Visual inspection
,									·	· 	
Corrosion											
Cross sectional							lacksquare				
properties and thickness											
Deformations											
Elongation							•				
Exposure											
Rebar location											
Reduction of area											
Shape											
Strength of connections							•				
Tensile strength											
Thickness of epoxy coating											
Weld shear strength											
Yield strength											

Stress-strain Diagram Hardness Test Corrosion Extent Geometric Properties

Method: ASTM A 370

Objective: Determine properties of <u>Wrought &</u> <u>Cast</u> steel products used in Structures. These include:


TENSION TEST.
BEND TEST.
HARDNESS TEST.

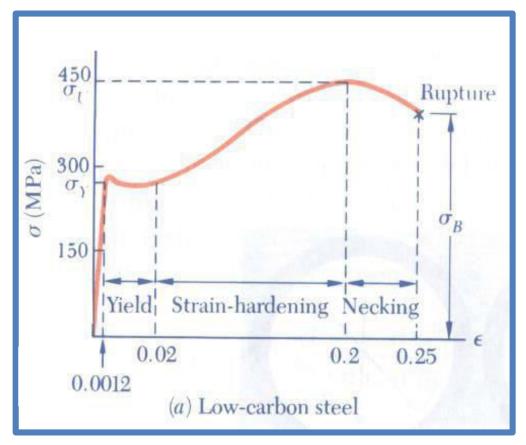
Tension Test

Objective: Determine properties of CHARACTERISITIC OF STRESS-STRAIN DIAGRAM FOR Steel Specimens:

Round Specimen

Flat or curved Specimen

VI. Laboratory Testing of Steel


TENSION TEST

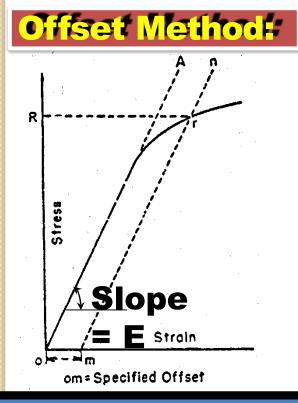
Procedure:

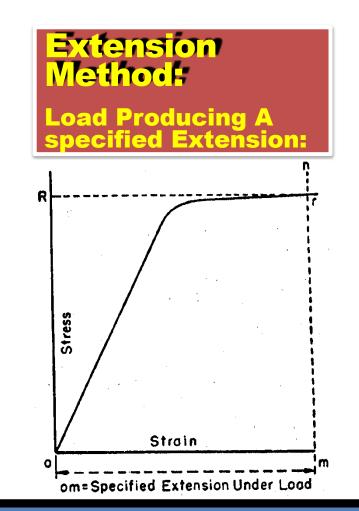
 The specimens are subjected to axial an increasing tensile force along with length and diameter changes measurements are acquired.

The stress and strains are computed as:

$$\sigma = \frac{T}{A}$$
; and $\varepsilon = \frac{\delta}{L_o}$

VI. Laboratory Testing of Steel


TENSION TEST


Characteristics of Stress-Strain Diagram

- •Yield Point (Offset Method)
- Ultimate Strength
- •Facture Strength
- Strain At Failure
- Modulus of Elasticity {E}
- Area Under Stress-Strain Diagram
- Toughness of Steel

VI. Laboratory Testing of Steel

TENSION: YIELD POINT

Om=0.005 (Fy ≤ 550 MPa) OR 0.01 (Prestressed Steel)

BEND TEST

Objective: Evaluate QUALITATIVELY the Ductility of Steel

Procedure: The chemical composition, tensile properties, hardness type, and quality of steel specified, in addition to the bar size and the inside diameter to which the specimens is bend determine the severity of the bend. Pre-heat or aging treatment of steel is usually done in order to perform bending in field without major cracking on the outside of the bent portion.

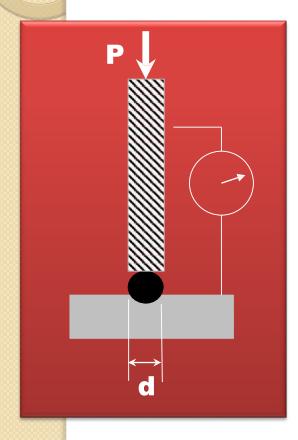
Standard Specifications:

- For wires of sizes ≤ 7 mm, bend around a pin of diameter equal to that of the wire.
- For wires of sizes > 7 mm, bend around a pin of double the diameter of that of the wire.

HARDNESS TEST

Objective: Determine resistance to penetration & is occasionally employed to obtain A quick approximation of tensile strength

Specimens: Flat Surface Steel


Procedure: The hardness is evaluated by different scales; the most known of which are: Rockwell & Brinell.

Rockwell: The hardness value is obtained by using a directreading testing machine which measures hardness by determining the depth of penetration of a diamond point or a steel ball into the specimen under certain arbitrary fixed conditions. A minor load is applied first, then a major load is applied. The difference in dial gage reading indicates the hardness. The number is proportional to hardness.

Brinell: The hardness value is obtained by • measuring the indentation resulting from pressing standard steel ball against a steel flat specimens. The smaller the indentation the harder is the steel.

VI. Laboratory Testing of Steel

HARDNESS TEST

Steel Ball (1/16") Load 10-100

Diamond-Brale Load 10-100 kgf

Steel Ball (Diameter =10mm) Load 1500 or 3000 kgf

$$HB = P / [(\pi D / 2)(D - \sqrt{D^2 - d^2})]$$

D: Ball Diameter (mm)

d: Indentation diameter (mm)

VI. Laboratory Testing of Steel

HARDNESS TEST

Hardness Numbers of Different Scales				
Rockwell C Scale, 150-kgf Load, Diamond Penetrator	Vickers Hardness Number	Brinell Hardness, 3000-kgf Load, 10-mm Ball	Approximate Tensile Strength, ksi (MPa)	
68	940	• • •	· · · · · · · · · · · · · · · · · · ·	
67	900			
66	865	• • •		
. 65	832	739	,	
64	800	722		
63	772	706	· • • • •	
62	746	688		
61	· . 720	670		
60	697	654		
59	674	634	351 (2420)	
58	653	615	338 (2330)	
57	633	595	325 (2240)	
56	613	577	313 (2160)	
55	595	560	301 (2070)	

Steel Mechanical Tests TENSION TEST

Chemical Standard Specification - ASTM A 36 (Riveted, Bolted or Welded Constructions)

Element	Shapes	Plates	Bars
Carbon, max, %	0.25	0.25-0.25	0.26-0.26
Manganese, %		0.80-1.2	0.60-0.90
<mark>%</mark> hosphorus, max, %	0.04	0.04	0.04
Sulfur, max, %	0.04	0.04	0.04
Silicon, %		0.15-0.40	
Copper, min, %	0.20	0.20	0.20

Steel Mec TENSION TEST Carbon Steel: Rivet Cons	Standard ed, Bolted	I Specificat	ions
Property Tensile Strength (MPa) Yield Stress (MPa) Elongation	Shape: 400-55 250 20-21%	0 400-550 250	Bars 400-550 250 20-23%
Concrete Reinforcemen Property y Tensile Strength, min, MPa Yield Stress, min, MPa Reduction of Area, Min, %	t - D ≥ 2 m Wires ≤ 16 mm 550 485 20-23%	m- ASTM A Welded Fabric 485 ¹ -515 ² 385-450	82 1: Size ≤ 3 mm 2: Size ≥ 3 mm

TENSION TEST: Standard Specifications

Reinforcing Steel - ASTM A 615

Property	Grade 40	Grade 60
T ensile Strength, min, MPa	483	621
Yield Stress, min, MPa	276	415
Elongation, min, %	11-9*	9-7*

(Sizes Up to ϕ =32 mm)

Steel Mechanical Tests TENSION TEST: Standard Specifications

Steel for Prestressed Concrete-ASTM C 421

D (mm)	Tensile Strength, min, MPa		Yield Stress, min, Extension at 1%, MPa		Initial Stress
	Type BA	Type WA	Type BA	Type WA	(MPa)
4.88	NA	1725	NA	1465	200
4.98	1655	1725	1407	1465	200
6.35	1655	1655	1407	1407	200
7.01	1655	1620	1377	1377	200