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Chapter 2   Fluid Properties 

 

fluid is a substance whose molecules move freely past each other, or it’s a substance that 

deforms continuously when subjected to a shear stress. 

Shear stress exists in fluid when the particles of fluid move in different velocities relative to each 

other. 

Shear stress is equal zero when  

a) Fluid at rest   b) Fluid is moving in common velocity to all of its particles. 

Fluid “gasses  or liquids” 

Gases : Widely spaced molecules with small intermolecular forces Take volume and shape of 

container.  Compressible: density is not constant with pressure, doesn’t form a free surface. 

Liquids: Closely spaced molecules with large intermolecular forces, Retain volume and take 

shape of container. Incompressible: density is constant with pressure. They form a free surface. 

 

2.1 Properties Involving Mass and Weight 

 

Density:  the quantity of matter contained in a unit volume of the substance. 

 

Mass density      
the ratio of mass to volume at a point 

  
    

      
         

Density of water at 4   = 1000        

Density of air at 4   = 1.27       

 

Specific weight     

The gravitational force per unit volume of fluid, or simply the weight per unit volume, 

            
Specific weights of common liquids are given in Table A.4. 

 

Specific Gravity “S” 

The ratio of the specific weight of a given fluid to the specific weight of water at the standard 

reference temperature 4°C 
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Ideal Gas Law “ONLY FOR GASES” 

 

        

P: the absolute pressure,    Volume, n: number of moles,     universal gas constant “8.314 

kJ/kmol-K”, T: absolute temperature. 

 

  
  

 

   

 
 

M: molecular weight , 
  

 
  :gas constant ,

  

 
: mass per unit volume, or density 

      
 

EXAMPLE 2.1 DENSITY OF AIR 

Air at standard sea-level pressure (p = 101 kN/m
2
 “Pa”) has a temperature of 4°C. What is the 

density of the air? 

Problem Definition: Situation: Air with a known temperature and pressure. 

Find: Density (kg/m3). 

Properties: Air, 4°C, p at 101 kN/m
2
 “Pa”; Table A.2, R = 287 J/kg K. 

Plan 

Apply the ideal gas law, Eq. 2.5, to solve for density, ρ 

Solution 

       

  
              

                     
            

Remember: Use absolute temperatures and pressures with the ideal gas law. 

Remember: use R from Table A.2. Do not use Ru. 

 

2.3 Properties Involving Thermal Energy 

 

Specific Heat, c 

The property that describes the capacity of a substance to store thermal energy 

The specific heat of a gas depends on the process accompanying the change in temperature. If 

the specific volume v of the gas (v = 1/ρ) remains constant while the temperature changes, then 

the specific heat is identified as   . However, if the pressure is held constant during the change in 

state, then the specific heat is identified as   . The ratio       is given the symbol k. Values for 

cp and k for various gases are given in Table A.2. 

 

Internal Energy 

The energy that a substance possesses because of the state of the molecular activity in the 

substance. Internal energy is usually expressed as a specific quantity—that is, internal energy per 

unit mass. the specific internal energy, u, is given in joules per kilogram. 

 

Enthalpy 

The combination u + p/ρ is encountered frequently in equations for thermodynamics and 

compressible flow; it has been given the name specific enthalpy. For an ideal gas, u and p/ρ are 

functions of temperature alone. Consequently their sum, specific enthalpy, is also a function 

solely of temperature. 
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2.4 Viscosity, μ 

 (also called dynamic viscosity, or absolute viscosity) is a measure of a fluid's resistance to 

deformation under shear stress. 

Shear stress, τ, is the ratio of force/area on a surface when the force is aligned parallel to the area. 

Shear strain is a change in an interior angle of a cubical element, Δφ, that was originally a right 

angle. The shear stress on a material element in solid mechanics is proportional to the strain, and 

the constant of proportionality is the shear modulus: 

Shear stress = shear modulus x strain 

In fluid flow, however, the shear stress on a fluid element is proportional to the rate (speed) of 

strain, and the constant of proportionality is the viscosity: 

Shear stress = Viscosity x rate of strain 

   
  

  
    

 

     
        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 depicts an initially rectangular element in a parallel flow field. As the element moves 

downstream, a shear force on the top of the element (and a corresponding shear stress in the 

opposite direction on the bottom of the element) causes the top surface to move faster (with 

velocity V + ΔV) than the bottom (at velocity V). The forward and rearward edges become 

inclined at an angle Δφ with respect to the vertical. The rate at which Δφ changes with time, 

given by φ, is the rate of strain, and can be related to the velocity difference between the two 

surfaces. 
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For strain in flow near a wall, as shown in Fig. 2.2, the term dV/dy represents the velocity 

gradient (or change of velocity with distance from the wall), where V is the fluid velocity and y is 

the distance measured from the wall. several observations: 

 First, the velocity gradient at the boundary is finite. The curve of velocity variation cannot be 

tangent to the boundary because this would imply an infinite velocity gradient and, in turn, an 

infinite shear stress, which is impossible. Second, a velocity gradient that becomes less steep 

(dV/dy becomes smaller) with distance from the boundary has a maximum shear stress at the 

boundary, and the shear stress decreases with distance from the boundary. Also note that the 

velocity of the fluid is zero at the stationary boundary. That is, at the boundary surface the fluid 

has the velocity of the boundary—no slip occurs between the fluid and the boundary. This is 

referred to as the no-slip condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kinematic Viscosity, ν 

 

        ρ       
 

Temperature Dependency 

The effect of temperature on viscosity is different for 

liquids and gases. The viscosity of liquids decreases 

as the temperature increases, whereas the viscosity 

of gases increases with increasing temperature; this 

trend is also true for kinematic viscosity. 

An equation for the variation of liquid viscosity with 

temperature is 

 

        
where C and b are empirical constants that require 

viscosity data at two temperatures for evaluation. 

This equation should be used primarily for data 

interpolation. 
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An estimate for the variation of gas viscosity with temperature is Sutherland's equation, 

 

  
  

 

  
 

       

   
 

 

where  0 is the viscosity at temperature T0, and S is Sutherland's constant. All temperatures are 

absolute. Sutherland's constant for air is 111 K; values for other gases are given in Table A.2. 

Using Sutherland's equation for air yields viscosities with an accuracy of ± 2% for temperatures 

between 170 K and 1900 K. In general, the effect of pressure on the viscosity of common gases 

is minimal for pressures less than 10 atmospheres. 

 

Q2.37) Suppose that glycerin is flowing (T = 20°C) and that the pressure gradient dp/dx is -

1.6kN/m
3
. What are the velocity and shear stress at a distance of 12 mm from the wall if the 

space B between the walls is 5.0 cm? What are the shear stress and velocity at the wall? The 

velocity distribution for viscous flow between stationary plates is 

    
 

  

  

  
        

Properties: Glycerin at 20 ◦C from Table A.4:   = 1.41N.s/m
2
. 

 

a.) Velocity and shear stress (at y = 12mm) 

 

velocity 

   
 

         
 

  

                                     = 0.2587 m/s 

 

Rate of strain 
  

  
 

 

  
  

 

  

  

  
          

 

  

  

  
       

  

  
           

 

         
 

  

                                     

 

Shear stress 

    
  

  
         

 

                      

 

b.) Velocity and shear stress (at y = 0mm) 

   
 

         
 

  

                                       

 

Rate of strain @ y=0 
  

  
       

 

         
 

  

                                    

 

Shear stress 
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Newtonian Versus Non-Newtonian Fluids 

Fluids for which the shear stress is directly proportional to the rate of strain are called Newtonian 

fluids. Because shear stress is directly proportional to the shear strain, dV/dy, a plot relating these 

variables results in a straight line passing through the origin. The slope of this line is the value of 

the dynamic (absolute) viscosity. 

For some fluids the shear stress may not be directly proportional to the rate of strain; these are 

called non-Newtonian fluids.  

1. Shear-thinning fluids, has the interesting property that the ratio of shear stress to shear 

strain decreases as the shear strain increases. Some common shear-thinning fluids are 

toothpaste, catsup, paints, and printer's ink. 

2. Shear-thickening fluids, the viscosity increases with shear rate. Some examples of these 

fluids are mixtures of glass particles in water and gypsum-water mixtures.  

3. Bingham plastic, acts like a solid for small values of shear stress and then behaves as a 

fluid at higher shear stress. 

 

 

 

 

 

 

 

 

  

 

 

 

Bulk Modulus of Elasticity 

The bulk modulus of elasticity,   , is a property that relates changes in pressure to changes in 

volume (e.g., expansion or contraction) 

    
  

    
  

                  

                           
 

where: dp is the differential pressure change,    is the differential volume change, and   is the 

volume of fluid. 

Negative sign is used in the definition to yield a positive    since      is negative for positive 

dp. 
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                                    

   
  

    
 

                  

                            
 

The bulk modulus of elasticity of water is approximately 2.2 GN/m2, which corresponds to a 

0.05% change in volume for a change of 1 MN/m2 in pressure. Obviously, the term 

incompressible is justifiably applied to water because it has such a small change in volume for a 

very large change in pressure. 

The elasticity of an ideal gas is proportional to the pressure, according to the ideal gas law. For 

an isothermal (constant-temperature) process 
  

  
    hence       

  

  
       

For an adiabatic process “
 

           ”,    = kp, where k is the ratio of specific heats,      . 

 

Surface Tension σ 

Surface tension, σ (sigma), is a material property 

whereby a liquid at a material interface, usually 

liquid-gas, exerts a force per unit length along 

the surface. 

Surface tension is the result of molecular 

attraction near a free surface, causing the surface 

to act like a stretched membrane. 

     , where L is the length over which the 

surface tension acts. 

 

Vapor Pressure 

The pressure at which a liquid will vaporize, or boil, at a given temperature, is called its vapor 

pressure. This means that boiling occurs whenever the local pressure equals the vapor pressure. 

Vapor pressure increases with temperature. Note that there are two ways to boil a liquid. One 

way is to raise the temperature, assuming that the pressure is fixed. @ 1 atm ( p= 101.325 KPa), 

[p=14.7psi]water boils at 100 °C [212°F] thus reaching the temperature where the vapor pressure 

is equal to the same value.  

Other way is to reduce pressure, this causes the water to boil at temperature much less than 100 

°C [212°F]. For example, the vapor pressure of water at 50°F (10°C) is 0.178 psia 

(approximately 1% of standard atmospheric pressure). Therefore, if the pressure in water at 50°F 

is reduced to 0.178 psia, the water boils. Such boiling often occurs in localized low-pressure 

zones of flowing liquids, such as on the suction side of a pump. When localized low-pressure 

boiling does occur in flowing liquids, vapor bubbles start growing in local regions of very low 

pressure and then collapse in regions of higher pressure downstream. This phenomenon, which is 

called cavitation, can cause extensive damage to fluids systems. 

Table A.5 gives values of vapor pressure for water. 

 



Chapter 3 

Fluid Statics 



3.1 Pressure 
 

• Pressure : The ratio of normal force to area at a 

point. 

 

 

 

 

• Pressure often varies from point to point. 

• Pressure is a scalar quantity; it has magnitude only 

 

 



• It produces a resultant force by its action on an 

area. The resultant force is normal to the area 

and acts in a direction toward the surface 

“Compression” 

• Units: SI units: Newton/m2=Pascal (Pa) 

• Standard atmospheric pressure, which is the air 

pressure at sea level, can be written using multiple 

units: 1.0 atm =101.3 KPa = 14.7 Psi = 33.9 ft- 

H2O = 760 mm-Hg = 29.92 in-Hg = 2116 Psf 

 

 



Absolute Pressure, Gage Pressure, and 

Vacuum Pressure 

• The pressure in a perfect vacuum :absolute zero 

• Pressure measured relative to this zero pressure is 

termed absolute pressure 

• gage pressure : measured relative to local 

atmospheric pressure 

• Vacuum pressure : When pressure is less than 

atmospheric 

• Pabs = Patm + Pgage 

• Pabs = Patm – Pvacuum 

• Pvacuum = - Pgage 

 



Hydraulic Machines 

• A hydraulic machine uses components such as 

pistons, pumps, and hoses to transmit forces and 

energy using fluids.  

• braking systems, forklift trucks, power steering 

systems, and airplane control systems. 

• Pascals Law: pressure applied to an enclosed and 

continuous body of fluid is transmitted undiminished 

 to every portion of that fluid and to the walls ”غير منقوص“

of the containing vessel. 

 



• F=100N , find F2 
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3.2 Pressure Variation with Elevation 

Hydrostatic Differential Equation 
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Hydrostatic Equation 

• The hydrostatic equation is used to predict pressure 

variation in a fluid with constant density 

 

• where the term z is elevation, which is the height 

(vertical distance) above a fixed reference point called 

a datum, and  is piezometric pressure. 

• Dividing by γ gives    

 h is the piezometric head.  

Since h is constant 
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Problem 3.11) For the closed tank with Bourdon-tube 

gages tapped into it, what is the specific gravity of the oil 

and the pressure reading on gage C? 

 



Pressure Variation in the Atmosphere 

 

 

 

 

The last equation requires 

Temp-vs-elevation data for the 

atmosphere 

Troposphere height  =13.7km 

 

γ

The ideal gas law 
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Pressure Variation in the Troposphere 

Linear Temperature profile approximation 

0 0

0
 : T at a reference level 

where the pressure is known

(

  : the lapse rate.

)
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Pressure Variation in the Lower Stratosphere 

In the lower part of the stratosphere (13.7 to 16.8 km 

above the earth's surface ) temperature is 

approximately constant 
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3.3 Pressure Measurements  

• Barometer:  

Mercury  Barometer  

 

 

 

 

 

 

 

pv = 2.4 × 10-6 atm at 20°C 

 

atm Hg v Hg
p γ h p γ h  

 

 

 

 

 

 

 

 

Bourdon-Tube Gage 
pressure by sensing the 

deflection of a coiled tube 

 

 



3.3 Pressure Measurements  
Piezometer  

 

 

 

 

vertical tube-transparent- in which 

a liquid rises in response to a 

positive gage pressure.  

Simplicity, direct measurement 

(no need for calibration) & 

accuracy.  

Limited to low pressure ,not easy 

measure   Gas Pressure  

Pressure transducers 

They convert pressure to 

an electrical signal 

 

 

 

 

 

 

γhp



3.3 Pressure Measurements  
Manometer 

 

 

 

 

 

 

 
2 1

 the specific weight 

  deflection "Height"
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h

P3.39 

Find the pressure at the center of 

pipe A.  
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89 47
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.

  

    



 A B i i i i

down up

A

A

p p γ h γ h

p * *

p  kPa gage



Note : SG: specific Gravity “S” 

PA + (ρgh)w + (ρgh)Hg −(ρgh)gly + (ρgh)oil = PB 

PB - PA = (ρgh)w + (ρg)w (S h)Hg −(ρg)w (S h)gly 

+ (ρg)w (S h)oil 

PB - PA =(ρg)w [(S h)w+(S h)Hg − (S h)gly + 

(S h)oil] 

 

PB - PA = (9.81m/s )(1000 kg/m )[1(0.6 m)+ 

13.5(0.2m) − 1.26(0.45m) + 0.88(0.1m)] 

PB - PA =27700 N/m2 

PB - PA =27.7 kN/m2= 27.7 kPa 
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Calculate the pressure difference between the pipes   



3.4 Forces on Plane Surfaces (Panels) 

Uniform Pressure Distribution 

 

 

 

 

 

 

 

Hydrostatic Pressure 

Distribution 

 

p 
A

F pdA A



Distribution of hydrostatic pressure on a plane surface 

_

A

F Sin y dA Sin y A    ApASinyF
__

 

Pressure on the differential 

area can be computed if the y 

distance to the point is known 

  

dF = p dA = ( y sin) dA 

 

Integrating the differential 

force over the entire area A 

Hydrostatic Force 

Integral is the first moment of the area Pressure at the centroid 



Line of Action of the Resultant Force 

The torque due to the resultant force F will balance the torque due to the 

pressure distribution 

 

                            ,  dF = p dA                                        also 

 

 

  

 

                                                                     

 

 

2
the second moment of the " "areaI  

A

y dA  

2

0

2

 ( )   

I

I also

y

y y

 

 
    

 
cp

I A

y F γ sin α  A F γ sin α A

y

I
y

I








 

 

cp

cp

y

y A

y

y A



Hydrostatic Force 

Hydrostatic Force Terms 

 

h: Vertical distance from centroid to the water surface 

    (This distance determines the pressure at the centroid)  

          

 

         Inclined distance from water surface to the centroid 

 ycp:  Inclined distance from water surface to centre of pressure 

 

      The pressure at the centroid 

 

:y


:p


 sinp h y  
 
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Problem 3.63 Determine P_load  necessary to just 

start opening the 2 m–wide gate. 

The length of the gate =  

 Hydrostatic force  

h:the water VERTICAL depth at the 

centroid  
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Hydrostatic Forces on Curved Surfaces 

Find the magnitude and line of action of the hydrostatic force acting 

on surface AB 

1. What is the shape of the 

curve? 

2.  How deep is the curved 

surface? 

3. Where does the curve 

intersect straight 

surfaces? 

4. What is the radius of the 

curve? 

Important Questions to Ask 



Hydrostatic Forces on Curved Surfaces 

A free-body diagram of a suitable volume of 

fluid can be used to determine the resultant 

force acting on a curved surface. 



Hydrostatic forces on Curved surfaces. 

Find the magnitude and line of action of the hydrostatic force acting on surface AB 

1. FV : Force on the fluid element due to the 

weight of water above C.  

2.  FH : Force on the fluid element due to 

horizontal hydrostatic forces on AC  

3. W : Weight of the water in fluid element 

ABC  

4.  F : The force that counters all other  

forces 

  

 - F has a horizontal component: Fx 

  

 - F has a vertical component: Fy 

Forces acting on the fluid element 



Hydrostatic forces on Curved surfaces 

Find the magnitude and line of action of the hydrostatic force acting 

on surface AB , - Given: Surface AB with a width of 1 m  
 

1. By inspection, curve is a ¼ circle. 

2. The depth to the beginning of the 

curve (4 m depth to B) 

3. The curve radius (2 m horizontal 

curve projection distance = curve 

radius) 

4. Label relevant points:   

• BCDE is water above fluid 

element defined by the curve   

•  ABC is the fluid element 

defined by the curve 

Problem Solving Preparation 



Example 3.11: Hydrostatic forces on Curved surfaces 

Find  Fv, FH, W, Fx, Fy, F,  Line of action for FH & Fv 

Given: Surface AB goes 1 m into the paper 

The hydrostatic force acting on AB 

is equal and opposite to the force 

F shown 

Fx= FH = (5 x 9810)   (2 x 1) = 98.1 kN 

     Pres. at the cenroid     AC side area 

Fy= W + Fv 

 

Fv= 9810 x 4 x 2 x 1 = 78.5 kN 

 

W= γVABC= 9810 (1/4 x  r2) 1 = 30.8 kN 

 

Fy= 78.5 + 30.8 = 109.3 kN 



The centroid of the quadrant 

Location of the resultant force 



If the region above the surface, volume abcd, were 
filled with the same liquid, the pressure acting at 
each point on the upper surface of ab would equal 
the pressure acting at each point 
on the lower surface. In other words, there would be 
no net force on the surface 



The arc has a radius of 3 meters and the water level is at 6 meters. 

The spillway gate is 8 meters wide. 

What is the magnitude and the line of action of the resultant force 

exerted on the circular surface AB by the fluid? 

FRx = ρghc AAC   

FRx =(1000 kg/m3) (9.8 m/s2) (4.5 m) (3 m) (8 m)  

 FRx = 1,058 kN , Note that hc is the vertical distance 

to the centroid of plane area AC. 

 

the y-component of the resultant force is the weight of 

the water directly above the curved surface (i.e., 

imaginary volume ABEF). 

 

 

 

 

 

 

 

 

FRy = ρg VolABEF = ρg (VolADEF + VolABD) 

FRy = (1000 kg/m3) (9.8 m/s2) [ (3 m) (3 m) (8 m)  + (π 32/4) m2 (8 m) ] 

 FRy = 1,260 kN 

 

Hence, the resultant force is given by      

 FR = (FRx
2 + FRy

2)0.5  = [ (1,058 kN)2 + (1,260 kN)2 ]0.5  

 FR = 1,645 kN 

And the angle θ is given by 

     θ = tan -1 (FRy / FRx) 

        = tan -1 (1,260 kN / 1,058 kN)         = 50o 

 





Buoyancy, Flotation & Stability 

  Archimedes’  Principle 

The resultant fluid 

force acting on a 

body that is completely 

Submerged or floating 

in a fluid is called the 

buoyant force. 

Buoyancy is due to the fluid displaced by a body 

VD is the displaced or “Submerged ”Volume  

 

 
B D

F γ



What is the minimum volume [in m3] of submerged alloy block 

shown (S=2.9) needed to keep the gate (1 m wide) in a closed 

position? let L = 2 m. Note the hinge at the bottom of the gate, 

ignore reactions at the stop. 
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Stability of Immersed and Floating Bodies  

• Buoyancy force FB is equal 

only to  

The displaced volume * specific 

weight 

• 1.ρbody<ρfluid: Floating body 

• 2.ρbody= ρfluid: Neutrally 

buoyant 

• 3.ρbody> ρfluid::Sinking body 



Immersed Bodies: Rotational stability  

• Rotational stability of immersed bodies depends 

upon relative location of center of gravity (G) and 

center of buoyancy(C) 

1. G below C: stable     2. G above C: unstable    

3. G coincides with C: neutrally stable. 

 



Floating Bodies  

The center of gravity G is above 

the center of buoyancy C.  

The buoyant volume changes 

due to the side motion 

“inclination” of the ship 

Center of buoyancy changes 

and produces moment that 

makes the ship stable.  



The point of intersection of the lines of action of the 

buoyant force before and after heel is called the 

metacenter M. 

The distance GM is called the metacentric height.  

If GM is positive—that is, if M is above G—the ship is 

stable; however, if GM is negative, the ship is unstable. 



Chapter 4 

Flowing Fluids and Pressure Variation 
 

4.1 Descriptions of Fluid Motion 

Streamlines and Flow Patterns 
 

Streamlines: lines that show the flow direction, group of these line is called flow pattern. 

streamline is defined as a line drawn through the flow field in such a manner that the local 

velocity vector is tangent to the streamline at every point along the line at that instant. 

 

Water flowing through a slot in 

the side of a tank Fig(a). The 

velocity vectors have been 

sketched at three different 

locations: a, b, and c. The 

streamlines, are tangent to the 

velocity vectors at these points. 

Also, the velocities are parallel to 

the wall in the wall region, so the 

streamlines adjacent to the wall 

follow the contour of the wall. 

The generation of a flow pattern 

is a very effective way of 

illustrating the geometric features 

of the flow field. 

Whenever flow occurs around a body, part of it will go to one side and part to the other as shown 

in Fig. (b) for flow over an airfoil section. The streamline that follows the flow division (that 

divides on the upstream side and joins again on the downstream side) is called the dividing 

streamline. At the location where the dividing streamline intersects the body, the velocity will be 

zero with respect to the body. This is the stagnation point. 

 

The fluid velocity can be expressed in the form         , where s is the distance traveled by a 

fluid particle along a path, and t is the time. In a uniform flow, the velocity does not change along 

a fluid path; that 
  

  
  , It follows that in uniform flow the fluid paths are straight and parallel. 

In nonuniform flow, the velocity changes along a fluid path, so 
  

  
  ,  

 

 

 

 

 

 

 

 

 

 

  

 

 



For the converging duct in Fig. (a), the magnitude 

of the velocity increases as the duct converges, so 

the flow is nonuniform. For the vortex flow shown 

in Fig. (b), the magnitude of the velocity does not 

change along the fluid path, but the direction does, 

so the flow is nonuniform. 

 

Flows can be either steady or unsteady. In a steady 

flow the velocity at a given point on a fluid path 

does not change with time: 
  

  
   . 

 The flow in a pipe, would be an example of steady flow if there was no change in velocity with 

time. An unsteady flow exists if 
  

  
  . If the flow in the pipe changed with time due to a valve 

opening or closing, the flow would be unsteady; that is, the velocity at any point selected on a 

fluid path would be increasing or decreasing with time. Although unsteady, the flow would still 

be uniform.steadiness or unsteadiness of the flow because the streamlines are only an 

instantaneous representation of the flow field. 

 

Pathlines and Streaklines 

 

Two other approaches used to visualize flow fields; namely, the pathline and streakline. 

The pathline simply is the path of a fluid particle as it moves through the flow field 

For an example of a pathline, consider a two-dimensional flow that initially has horizontal 

streamlines as shown, At a given time, t0, the flow instantly changes direction, and the flow 

moves upward to the right at 45° with no further change. The flow is unsteady because the 

velocity at a point changes with time. A fluid particle is tracked from the starting point, and up to 

time t0, the pathline is the horizontal line segment shown on Fig. a. After time t0, the particle 

continues to follow the streamline and moves up the right as shown in Fig. b. Both line segments 

constitute the pathline. 

The streakline is the line 

generated by a tracer fluid, such 

as a dye, continuously injected 

into the flow field at the starting 

point. Up to time t0, the dye will 

form a line segment as shown in 

Fig.c. Up to this time, there is no 

difference between the pathline 

and the streakline. Now the flow 

changes directions, and the initial 

horizontal dye line is transported, 

in whole, in the upward 45° 

direction. After t0 the dye 

continues to be injected and 

forms a new line segment along 

the new streamline, resulting in 

the streakline shown in Fig. d  

 

 



Obviously, the pathline and streakline are very different. In general, neither pathlines nor 

streaklines represent streamlines in an unsteady flow. Both the pathline and streakline provide a 

history of the flow field, and the streamlines indicate the current flow pattern. 

In steady flow the pathline, streakline, and streamline are coincident if they pass through the 

same point. 

 

Laminar and Turbulent Flow 

Laminar flow is a well-ordered state of flow in which adjacent fluid layers move smoothly with 

respect to each other. A typical laminar flow would be the flow of honey or thick syrup from a 

pitcher. Laminar flow in a pipe has a smooth, parabolic velocity distribution. 

Turbulent flow is an unsteady flow characterized by intense cross-stream mixing. For example, 

the flow in the wake of a ship is turbulent. The eddies “الدوامات” observed in the wake cause 

intense mixing. The transport of smoke from a smoke stack on a windy day also exemplifies a 

turbulent flow. The mixing is apparent as the plume widens and disperses. 

 

An instantaneous velocity profile 

for turbulent flow in a pipe is 

shown in Fig. (b). A near uniform 

velocity distribution occurs across 

the pipe because the high-velocity 

fluid at the pipe center is 

transported by turbulent eddies 

across the pipe to the low-velocity 

region near the wall. Because the 

flow is unsteady, the velocity at 

any point in the pipe fluctuates 

with time. 

 

The standard approach to treating turbulent flow is to represent the velocity as a time-averaged 

average value plus a fluctuating quantity,        . The time-averaged value is designated 

   by in Fig. (b). The fluctuation velocity is the difference between the local velocity and the  

averaged velocity. A turbulent flow is often designated as “steady” if the time-averaged velocity 

is unchanging with time.  

In general, laminar pipe flows are associated with low velocities and turbulent flows with high 

velocities. Laminar flows can occur in small tubes, highly viscous flows, or flows with low 

velocities, but turbulent flows are, by far, the most common. 

 

One-Dimensional and Multi-Dimensional Flows 

The dimensionality of a flow field is characterized by the number of spatial dimensions needed 

to describe the velocity field. Fig. 4.8a shows the velocity distribution for an axisymmetric flow 

in a circular duct. The flow is uniform, or fully developed, so the velocity does not change in the 

flow direction (z). The velocity depends on only one dimension, namely the radius r, so the flow 

is one-dimensional. Fig. 4.8b shows the velocity distribution for uniform flow in a square duct. 

In this case the velocity depends on two dimensions, namely x and y, so the flow is two-

dimensional. Figure 4.8c also shows the velocity distribution for the flow in a square duct but the 

 



duct cross-sectional area is expanding in the flow direction so the velocity will be dependent on z 

as well as x and y. This flow is three-dimensional. 

 

Another good example of three-

dimensional flow is turbulence, 

because the velocity components at 

any one time depend on the three 

coordinate directions. For example, 

the velocity component u at a given 

time depends on x, y, and z; that is, 

u(x,y,z). Turbulent flow is unsteady, 

so the velocity components also 

depend on time. 

Another definition frequently used 

in fluid mechanics is quasi–one–

dimensional flow. By this definition 

it is assumed that there is only one 

component of velocity in the flow 

direction and that the velocity 

profiles are uniformly distributed; 

that is, constant velocity across the 

duct cross section. 

 

4.2 Acceleration 
Acceleration of a fluid particle as it moves along a 

pathline, as shown in Fig (a). is the rate of change of 

the particle's velocity with time. The local velocity of 

the fluid particle depends on the distance traveled, s, 

and time, t. The local radius of curvature of the 

pathline is r. The components of the acceleration 

vector are shown in Fig.(b). The normal component of 

acceleration an will be present anytime a fluid particle 

is moving on a curved path (i.e., centripetal 

acceleration). The tangential component of 

acceleration at will be present if the particle is 

changing speed. 

           
 

where V(s, t) is the speed of the particle, which can vary with distance along the pathline, s, and 

time, t. The direction of the velocity vector is given by a unit vector   . 
 

Using the definition of acceleration, 

  
  

  
  

  

  
      

   
  

  

       

  
  

  

  
  

  

  
  

  

   
 

 

 

Particle moving on a pathline. (a) Velocity. (b) 

Acceleration 



       

  
   

  

  
  

  

   
 

The derivative of the unit vector         is nonzero because the direction of the unit vector 

changes with time as the particle moves along the pathline. The derivative is 
   
  

 
 

 
   

where en is the unit vector perpendicular to the pathline and pointing inward toward the center of 

curvature. 

     
  

  
  

  

   
     

  

 
    

 

Convective, Local, and Centripetal Acceleration 

The acceleration component along a pathline depends on two terms. The variation of velocity 

with time at a point on the pathline, namely ∂V / ∂t, is called the local acceleration. In steady 

flow the local acceleration is zero. The other term, V∂V / ∂s, depends on the variation of velocity 

along the pathline and is called the convective acceleration. In a uniform flow, the convective 

acceleration is zero. The acceleration with magnitude V
2
 / r, which is normal to the pathline and 

directed toward the center of rotation, is the centripetal acceleration. 

 

Problems 4.22, & 4.23  

Liquid flows through this two-dimensional slot with a velocity of V = 2(q0/b)(t/t0), where q0 and 

t0 are reference values. What will be the local and convective acceleration at x = 2B and y = 0 in 

terms of B, t, t0, and q0? 
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4.3 Euler's Equation 
 

Consider the cylindrical element in Fig.(a) 

oriented in an arbitrary direction ℓ with cross-

sectional area ΔA in a flowing fluid. The element 

is oriented at an angle α with respect to the 

horizontal plane (the x-y plane) as shown in 

Fig.(b). The element has been isolated from the 

flow field and can be treated as a “free body” 

where the presence of the surrounding fluid is 

replaced by pressure forces acting on the 

element. Assume that the viscous forces are zero. 

Here the element is being accelerated in the ℓ-

direction. Note that the coordinate axis z is 

vertically upward and that the pressure varies 

along the length of the element. Applying 

Newton's second law in the ℓ-direction results in 

 

         

                        

The mass of the fluid element is         
The net force due to pressure in the ℓ-direction is                              

Any pressure forces acting on the side of the cylindrical element will not contribute to a force in 

the ℓ-direction. 

The force due to gravity is the component of weight in the ℓ-direction  

                       

where the minus sign occurs because the component of weight is in the negative ℓ-direction. 

From the diagram in Fig.(b).            , so   

            
  

  
 

Also          substitute back to get 

           
  

  
          

Divide by      

 
  

  
  

  

  
     

Taking the limit as    approaches zero (element shrinks to a point) leads to the differential 

equation for acceleration in the ℓ-direction, 

 
  

  
  

  

  
     

 
 

  
           

Euler's equation for motion of a fluid. It shows that the acceleration is equal to the change in 

piezometric pressure with distance, and the minus sign means that the acceleration is in the 

direction of decreasing piezometric pressure. 

  

Free-body diagram for fluid element accelerating the ℓ-

direction. (a) Fluid element. (b) Orientation of element in 

coordinate system. 

Orientation of element in coordinate system. 



In a static body of fluid, Euler's equation reduces to the hydrostatic differential equation. In a 

static fluid, there are no viscous stresses, which is a condition required in the derivation of 

Euler's equation. Also there is no motion, so the acceleration is zero in all directions. Thus, 

Euler's equation reduces to ∂/∂ℓ(p + γz) = 0. 

 

Euler's equation can be applied to find the pressure 

distribution across streamlines in rectilinear flow. 

Consider the flow with parallel streamlines adjacent a 

wall shown in Fig. 4.12. In the direction normal to the 

wall, the n direction, the acceleration is zero. Applying 

Euler's equation in the n direction gives ∂/∂n(p + γz) = 0, 

so the piezometric pressure is constant in the normal 

direction. 

 

Problem 4.29  

The hypothetical liquid in the tube shown in the figure has zero 

viscosity and a specific weight of 10 kN/m
3
. If        is equal 

to 12 kPa, one can conclude that the liquid in the tube is being 

accelerated (a) upward, (b) downward, or (c) neither: 

acceleration = 0. 
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Since    has a positive value then the liquid in the tube is being accelerated upward 

 

 

 

 

 

Normal direction to parallel stream surfaces. 

 



P4.38 The closed tank shown, which is full of liquid, is 

accelerated downward at (2g/3) and to the right at 1g. 

Here L = 2.5 m, H = 3 m, and the liquid has a specific 

gravity of 1.3. Determine pC - pA and pB - pA
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Chapter 5    Control Volume Approach and Continuity Equation 
 

Lagrangian and Eulerian Approach 

 

To evaluate the pressure and velocities at 

arbitrary locations in a flow field. 

The flow into a sudden contraction, It is 

desired to evaluate the pressure at point B. 

The pressure and velocity are known at the 

inlet. 

Lagrangian approach: locate the pathline 

that starts at the inlet, point A, and passes 

through point B. along this pathline,  

The pressure changes with velocity according to Euler's equation. Integrating Euler's equation 

from A to B would yield the pressure at point B. If the flow is steady, the Bernoulli equation 

could be used between the two points. 

It is an enormous task to keep track of all the pathlines required to evaluate the flow properties at 

a given point in the flow field. Besides in unsteady flows, where different pathlines will pass 

through the same point at different times, problem becomes compounded. 

Eulerian approach: Solving the fluid flow equations to yield the flow properties at any point in 

the field. Develop a solution to the flow field that provides the flow properties at any point. Thus 

if the pressure were available as a function of location, p(x,y), then the pressure at point B would 

simply be obtained by substituting in the values of the coordinates at that point. 

The Eulerian approach  the basic equations must 

be recast in Eulerian form. 

In solid body mechanics, the fundamental equations 

are developed using the “free body” concept in 

which an element in the field is isolated and the 

effect of the surroundings is replaced by forces 

acting on the surface of element. 

Same approach is used in fluid mechanics as shown 

in Fig. The volume enclosing a point is identified as 

a “control volume.” The effects of the surroundings 

are replaced by forces due to pressure and shear 

stress acting on the surface of the control volume.  

 

In addition to the forces like those applied to the “free body,” there is a flow through the control 

volume that has to be taken into account. 

 
5.1 Rate of Flow 

Discharge 

The discharge, Q, often called the volume flow rate, is the volume of fluid that passes through an 

area per unit time. For example, when filling the gas tank of an automobile, the discharge or 

volume flow rate would be the gallons per minute flowing through the nozzle. Typical units for 

discharge are ft3/s (cfs), ft3/min (cfm), gpm, m3/s, and L/s. 
The discharge “volume flow rate” in a pipe is related to the flow velocity and cross-sectional area. 

 

The Lagrangian and Eulerian approaches for quantifying the 

flow field in sudden contraction. 

 

A control volume in a flow field 



Consider the idealized flow of fluid in a pipe as shown in Fig. 

in which the velocity is constant across the pipe section. 

Suppose a marker is injected over the cross section at section 

A-A for a period of time   . The fluid that passes 

A-A in time ,t is represented by the marked volume. The 

length of the marked volume is V    so the volume is 

       , where A is the cross-sectional area of the pipe. 

The volume flow per unit time past A-A is 
 

  

  
    

Taking the limit as    → 0 gives 

     
       

  

  
    

The discharge given by Eq. is based on a constant flow velocity over the cross-sectional area. 

 

In general, the velocity varies across the section such as 

shown in Fig. The volume flow rate through a differential 

area of the section is V dA, and the total volume flow rate is 

obtained by integration over the entire cross-section 

      

 

 

       
Laminar flows in circular pipes, the velocity profile is 

parabolic the mean velocity is half the centerline velocity 

Turbulent pipe flow, the time-averaged velocity profile is 

nearly uniformly distributed across the pipe, so the mean 

velocity is fairly close to the velocity at the pipe center. 

 

The volume flow rate equation can be generalized 

by using the concept of the dot product. The flow 

velocity vector is not normal to the surface but is 

oriented at an angle θ with respect to the direction 

that is normal to the surface. The only component of 

velocity that contributes to the flow through the 

differential area dA is the component normal to the 

area, Vn. The differential discharge through area dA  

 

        

If the vector, dA, is defined with magnitude equal to the differential area, dA, and direction 

normal to the surface, then Vn dA = |V| cos θ dA = V.dA where V . dA is the dot product of the 

two vectors. Thus a more general equation for the discharge or volume flow rate through a 

surface A is 

       

 

 

 

Volume of fluid in flow with uniform velocity 

distribution that passes section A-A in time    

 

Volume of fluid that passes section A-A in time    

 

Velocity vector oriented at angle θ with respect to normal. 



If the velocity is constant over the area and the area is a planar surface, then the discharge is 

given as         

If, in addition, the velocity and area vectors are aligned, then      

 

Mass Flow Rate 

The mass flow rate,   , is the mass of fluid passing through a cross-sectional area per unit time. 

The common units for mass flow rate are kg/s, lbm/s, and slugs/s. Using the same approach as 

for volume flow rate, the mass of the fluid in the marked volume in is         , where ρ is 

the average density. The mass flow rate equation is 

      
      

  

  
     

      

  

  
        

         

 

 

Also if the velocity vector is aligned with the area vector, such as integrating over the cross-

sectional area of a pipe, the mass flow equation reduces to  

        

 

 

       
  

 
      

 

 

 

P 5.18 The rectangular channel shown is 1.5 m wide. What is the discharge in the channel? 

 

       

 

 

       

                   
 

                                 
 

              

     

 

 

   
 

 
  

 

 
       

 

     
 

  
 

 
                     

 

P 5.10 An aircraft engine test pipe is capable of providing a flow rate of 200 kg/s at altitude 

conditions corresponding to an absolute pressure of 50 kPa and a temperature of -18°C. The 

velocity of air through the duct attached to the engine is 240 m/s. Calculate the diameter of the 

duct. 

       
  

 
 

 

Problem 5.18 



  
 

  
 

      

       
            

  
  

 
 

   

      
              

 

  
 

  
 

 

 
   

 

   
 

 

 

  
 
   

  
 

 
 

      

   
 
   

        

 

5.2 Control Volume Approach 

 
A system is a continuous mass of fluid that always contains the 

same matter. The shape of the system may change with time, 

but the mass is constant since it always consists of the same 

matter. The fundamental equations, such as Newton's second 

law and the first law of thermodynamics, apply to a system. 

A control volume is volume located in space and through 

which matter can pass. The system can pass through the 

control volume. 

Fluid mass enters and leaves the control volume through the 

control surface. The control volume can deform with time as 

well as move and rotate in space and the mass in the control 

volume can change with time. 

 

Intensive and Extensive Properties 

An extensive property is any property that depends on the amount of matter present. The 

extensive properties of a system include mass, m, momentum, mv (where v is velocity), and 

energy, E. Another example of an extensive property is weight because the weight is mg. 

An intensive property is any property that is independent of the amount of matter present. 

Examples of intensive properties include pressure and temperature. Many intensive properties 

are obtained by dividing the extensive property by the mass present. The intensive property for 

momentum is velocity v, and for energy is e, the energy per unit mass. The intensive property for 

weight is g. 

In this section an equation for a general extensive property, B, will be developed. The 

corresponding intensive property will be b. 

        

  

      

  

 

      : are the differential mass and differential volume, respectively, and the integral is 

carried out over the control volume. 

 

 

 

 

 

System, control surface, and control volume in 

a flow field. 



Property Transport Across the Control Surface 

When fluid flows across a control surface, properties 

such as mass, momentum, and energy are transported 

with the fluid either into or out of the control volume.  

 

Consider the flow through the control volume in the 

duct in the fig. If the velocity is uniformly distributed 

across the control surface, the mass flow rate through 

each cross section is given by 

           and             

The net mass flow rate out of the control volume [ the outflow rate minus the inflow rate] is 

                                 
 
      

 
       

 

The same control volume is shown in Fig. with each 

control surface area represented by a vector, A, 

oriented outward from the Control volume and with 

magnitude equal to the cross-sectional area. The 

velocity is represented by a vector, V. Taking the dot 

product of the velocity and area vectors at both 

stations gives 

 

           and            

Since at station 1 the velocity and area have the opposite directions while at station 2 the velocity 

and area vectors are in the same direction. Now the net mass outflow rate can be written as 

                       
 
      

 
      

 
       

 
           

  

 

if the dot product ρV · A is summed for all flows into and out of the control volume, the result is 

the net mass flow rate out of the control volume, or the net mass efflux. If the summation is 

positive, the net mass flow rate is out of the control volume. If it is negative, the net mass flow 

rate is into the control volume. If the inflow and outflow rates are equal, then 

     

  

   

In a similar manner, to obtain the net rate of flow of an extensive property B out of the control 

volume, the mass flow rate is multiplied by the intensive property b: 

            

  

 

       
 

    
  

    

    
   

 

    
  

This Equation is applicable for all flows where the properties are uniformly distributed across the 

area. If the properties vary across a flow section, then it becomes necessary to integrate across 

the section to obtain the rate of flow. A more general expression for the net rate of flow of the 

extensive property from the control volume is thus 

             
  

 

 

 

Flow through control volume in a duct 

 

Control surfaces represented by area vectors and 

velocities by velocity vectors. 



Reynolds Transport Theorem 

 

     

  
 

 

  
     

  

        
  

 

 
                  

                      
   

                  
               

   
                         

          
  

The left side of the equation is the Lagrangian form; that is, the rate of change of property B 

evaluated moving with the system. The right side is the Eulerian form; that is, the change of 

property B evaluated in the control volume and the flux measured at the control surface. 

This equation applies at the instant the system occupies the control volume and provides the 

connection between the Lagrangian and Eulerian descriptions of fluid flow.  

The application of this equation is called the control volume approach. The velocity V is always 

measured with respect to the control surface because it relates to the mass flux across the surface. 

 

A simplified form of the Reynolds transport 

theorem can be written if the mass crossing the 

control surface occurs through a number of inlet 

and outlet ports, and the velocity, density and 

intensive property b are uniformly distributed 

(constant) across each port. Then 

     

  
 

 

  
     

  

       

  

 

where the summation is carried out for each port 

crossing the control surface 

An alternative form can be written in terms of the mass flow rates: 

     

  
 

 

  
     

  

     
  

       
  

   

where the subscripts i and o refer to the inlet and outlet ports, respectively, located on the control 

surface. This form of the equation does not require that the velocity and density be uniformly 

distributed across each inlet and outlet port, but the property b must be. 

 

5.3 Continuity Equation 

The continuity equation derives from the conservation of mass, which, in Lagrangian form, 

simply states that the mass of the system is constant.                

The Eulerian form is derived by applying the Reynolds transport theorem. In this case the 

extensive property of the system is its mass, Bcv = msys. The corresponding value for b is the mass 

per unit mass        
    

    
   

 

General Form of the Continuity Equation 

     

  
 

 

  
    

  

       
  

 

 

Progression of a system through a control volume. 



However, dmsys/dt = 0, so the general, or integral, form of the continuity equation is 

 

  
    

  

       
  

   

 
                    

             
   

                    
                   

    

If the mass crosses the control surface through a number of inlet and exit ports, the continuity 

equation simplifies to 
 

  
        

  

     
  

   

where mcv is the mass of fluid in the control volume. Note that the two summation terms 

represent the net mass outflow through the control surface 

 

Problem 5.46 Two streams discharge into a pipe 

as shown. The flows are incompressible. The 

volume flow rate of stream A into the pipe is 

given by QA = 0.02t m
3
/s and that of stream B by 

QB = 0.008t
2
 m

3
/s, where t is in seconds. The 

exit area of the pipe is 0.01 m2. Find the velocity 

and acceleration of the flow at the exit at t = 1s. 

solution 
Continuity principle 

Qexit = QA + QB 

Vexit = (1/Aexit)(QA + QB) 

= (1/0.01 m
2
)(.02t m

3
/s + 0.008t

2
 m

3
/s) 

Vexit = 2t m/s + 0.8t
2
 m/s 

Then at t=1sec 

Vexit = 2.8 m/s 

 

Accelaration 

aexit =∂V/∂t+ V∂V/∂x , Since V varies with time, but not with position, this becomes 

aexit =∂V/∂t =2+1.6t  

aexit = 2+1.6=3.6 m/s
2 

 

Problem 5.47  

Air discharges downward in the pipe and then 

outward between the parallel disks. Assuming 

negligible density change in the air, derive a 

formula for the acceleration of air at point A, which 

is a distance r from the center of the disks. 

If D = 10 cm h = 1 cm, r = 20 cm and the discharge 

is given as Q = Q0(t/t0), where Q0 = 0.1 m
3
/s and t0 

= 1 s. For the, what will be the acceleration at point 

A when t = 2 s and t = 3 s? 

 

 

 

 



Q = Q0(t/t0), Q0 = 0.1 m
3
/s and t0 = 1 s 

Q=(0.1 t )m
3
/s 

Vr = Q/A = Q/(2πrh)= Q0(t/t0) /(2πrh) 

ac = Vr ∂Vr/∂r 

    = (Q/(2πrh))(−1)(Q)/(2πr
2
h) 

ac = −( Q0(t/t0))
2
/[r

3
{2πh}

2
] 

 

al = ∂V /∂t = ∂/∂t(Q/(2πrh)) 

al = ∂/∂t[Q0(t/t0) /(2πrh)]= (Q0/t0) /(2πrh) 

 

At t = 2s, Q = 0.2 m
3
/s,   

ac = −(0.2)
2
/[(0.2 )

3
{2π(0.01)}

2
]  = −1266 m/s

2
,  

al = (0.1/1)/(2π × 0.20 × 0.01) = 7.958 m/s
2
 

a = al+ ac =7.958−1266=1258 m/s
2
 

 

At t = 3s, Q = 0.3 m
3
/s,   

ac = −(0.3)
2
/[(0.2 ){2π(0.2)(0.01)}

2
] = −2850 m/s

2
,  

al = (0.1/1)/(2π × 0.20 × 0.01) = 7.958 m/s
2
 

a = al+ ac =7.958−2850= -2842 m/s
2
 

 

Continuity Equation for Flow in a Pipe 

 
Position a control volume inside a pipe, 

Mass enters through station 1 and exits through 

station 2. The control volume is fixed to the pipe 

walls, and its volume is constant. If the flow is 

steady, then mcv is constant so the mass flow 

formulation of the continuity equation reduces to 

        

For flow with a uniform velocity and density 

distribution, the continuity equation for steady 

flow in a pipe is 

              
If the flow is incompressible, then  

                  
If there are more than two ports, then the general form of the continuity equation for steady flow: 

    
  

     
  

 

If the flow is incompressible 

   

  

    

  

 

 

 

 

 

 

 



5.4 Cavitation 

 

Cavitation is the phenomenon that occurs when the fluid pressure is reduced to the local vapor 

pressure and boiling occurs. Under such conditions vapor bubbles form in the liquid, grow, and 

then collapse, producing shock waves, noise, and dynamic effects that lead to decreased 

equipment performance and, frequently, equipment failure. Engineers are often concerned about 

the possibility of cavitation, and they must design flow systems to avoid potential problems. 

Cavitation can also be beneficial. Cavitation is responsible for the effectiveness of ultrasonic 

cleaning. Supercavitating torpedoes have been developed in which a large bubble envelops the 

torpedo, significantly reducing the contact area with the water and leading to significantly faster 

speeds. Cavitation plays a medical role in shock wave lithotripsy for the destruction of kidney 

stones. 

Cavitation typically occurs at locations where the velocity is high.  

The pipe area decreases  velocity increases 

[according to the continuity equation]  the pressure 

decreases [the Bernoulli equation].  

For low flow rates  small drop in pressure at the 

restriction water remains well above the vapor 

pressure and boiling does not occur.  

As the flow rate increases, the pressure at the 

restriction becomes progressively lower until a flow 

rate is reached where the pressure is equal to the 

vapor pressure as shown in Fig. At this point, the 

liquid boils to form bubbles and cavitation ensues. 

Cavitation can also be affected by the presence of 

contaminant gases, turbulence and viscosity. 

The formation of vapor bubbles at the restriction is 

shown in Fig. a. The vapor bubbles form and then 

collapse as they move into a region of higher 

pressure and are swept downstream with the flow. 

When the flow velocity is increased further, the 

minimum pressure is still the local vapor pressure, 

but the zone of bubble formation is extended as 

shown in Fig. b. In this case, the entire vapor pocket 

may intermittently grow and collapse, producing 

serious vibration problems. Severe damage that 

occurred on a centrifugal pump impeller and serious 

erosion produced by cavitation in a spillway tunnel 

of Hoover Dam. Cavitation should be avoided or 

minimized by proper design of equipment and 

structures and by proper operational procedures. 

Experimental studies reveal that very high pressure, 

as high as 800 MPa develops in the vicinity of the 

bubbles when they collapse damage to boundaries 

such as pipewalls, pump impellers, valve casings, 

and dam slipway floors. 

 

Flow through pipe restriction: variation of pressure 

for three different flow rates. 

 

Formation of vapor bubbles in the process of cavitation. 

(a) Cavitation.   (b) Cavitation—higher flow rate. 



Chapter 6  Momentum Equation 
 

6.1 Momentum Equation: Derivation 

When forces act on a particle, the particle accelerates according to Newton's second law  

      

    
    

  
 
     

  
 

The law can also be formulated for a system composed of a group of particles, for example, a 

fluid system. In this case, the law may be written as 

   
         

  
 

The term        denotes the total momentum of all mass comprising the system. 

The above equation is a Lagrangian equation. To derive an Eulerian equation, the Reynolds 

transport theorem 

     

  
 

 

  
     

  

        

  

 

Where V is fluid velocity relative to the control surface at the location where the flow crosses the 

surface. The extensive property Bsys becomes the momentum of the system: B =       . The 

corresponding intensive property b becomes the momentum per unit mass within the system. The 

momentum of any fluid particle of mass m in the system is mv, and so b = (mv) / m = v.  

The velocity v must be relative to an inertial reference frame, that is, a frame that does not rotate 

and can either be stationary or moving at a constant velocity. Substituting for Bsys and b 

         

  
 

 

  
     

  

        

  

 

Combining Eqs. above gives the integral form of the momentum equation: 

   
 

  
     

  

        

  

 

This equation can be expressed in words as 

 
                    
                     

              

   
                    
               
              

   

                   
                
                

  

It is important to remember that the momentum equation is a vector equation; that is, there is a 

direction associated with the each term in the equation. 

If the flow crossing the control surface occurs through a series of inlet and outlet ports and if the 

velocity v is uniformly distributed across each port, then a simplified form of the Reynolds 

transport theorem, can be used, and the momentum equation becomes 

   
 

  
     

  

       
  

       
  

 

where the subscripts o and i refer to the outlet and inlet ports, respectively. This form of the 

momentum equation will be identified as the vector form. Notice that the product of     



corresponds to the mass per unit time times velocity, or momentum per unit time, which has the 

same units as force. 

As long as v is uniformly distributed across control surface, Eq. above applies to any control 

volume, including one that is moving, deforming, or both. In all cases, is the rate at which mass 

is passing across the control surface, and v is velocity evaluated at the control surface with 

respect to the inertial reference frame that is selected. 

                
 

  
      

  

        
  

        
  

 

                
 

  
      

  

        
  

        
  

 

                
 

  
      

  

        
  

        
  

 

where the subscripts x, y, and z refer to the force and velocity components in the coordinate 

directions. These equations will be identified as the component form of the momentum equation. 

When velocity v varies across the control surface, the general form of the momentum equation 

must always be used. 

 

6.2 Momentum Equation: Interpretation 
Force Terms 

 

Consider flow inside a vertical pipe (Fig a) 

One possible control volume is a cylinder 

with diameter D and length L located just 

inside the pipe wall. As shown in (Fig. b), 

the fluid within the control volume has been 

isolated from its surroundings, and the effect 

of the surroundings are shown as forces. The 

effect of the wall is replaced by a force 

equal to the shear stress ( ) times the pipe 

surface area (As = π DL). The force due to 

pressure is given by pressure (p) times the 

section area (A=πD
2
/4) and always acts 

toward the control surface (a compressive 

force). The weight of the fluid is given by W 

= γ(πD
2
/4)L. Thus, the net force acting in 

the z-direction is given by 

           
π

 
     π    γ

π

 
    

 

Another possible control volume has a length L and a diameter that is larger than the pipe's 

outside diameter. As shown in (Fig. c), this control volume cuts through the pipe wall. 

Comparing (Figs. b and c) shows that the pressure forces are the same. However, in (Fig. c), 

there is no force associated with shear stress, but there are two new forces, F1 and F2, which 

 

Forces associated with flow in a pipe: (a) pipe schematic, (b) 

control volume situated inside the pipe, and (c) control volume 

surrounding the pipe. 



represent the forces due to the pipe wall. Also, the weight of matter within the control volume 

now includes the weight of the fluid and the pipe wall (Wp). The net z-direction force is 

           
π

 
             γ

π

 
     

The choice of control volume depends on what information being sought.  

To relate the pressure change between sections to wall shear stress? 

To find the tensile force carried by the pipe wall? 

The sketches shown in (Figs. b and c) are identified as force diagrams (FD). A force diagram 

shows the forces acting on the matter contained within a control volume. A force diagram is 

equivalent to a free-body diagram at the instant in time when the momentum equation is applied. 

In Fig. b, the force of gravity (weight) acts on each mass element in the control volume (with the 

resultant force acting at the mass center). A force that acts on mass elements within the body is 

defined as a body force. A body force can act at a distance without any physical contact. 

Examples of body forces include gravitational, electrostatic, and magnetic forces. 

Except for the body force (weight), all forces shown in (Figs. b and c ) are surface forces. A 

surface force is defined as a force that requires physical contact, meaning that surface forces act 

at the control surface. 

 
Momentum Accumulation 

The term 
 

  
     
  

 represents the rate at which the momentum of the material inside the 

control volume is changing with time. In particular, the mass of a volume element in the control 

volume is    . so the product      is the momentum of a volume element.  Integrating over 

the control volume gives total momentum of the material in the control volume. Taking the time 

derivative gives the rate at which the momentum is changing. This term may be described as the 

net rate of momentum accumulation, and it will be referred to it as the momentum accumulation 

term. The units are momentum per unit time, which are equivalent to the units for force 

In many problems, the momentum accumulation 

is zero. For example, consider steady flow 

through the control volume surrounding the 

nozzle shown in Fig. The fluid inside the control 

volume has momentum because it is moving. 

However, the velocity and density at each point 

do not change with time, so the total momentum 

in the control volume is constant, and the 

momentum accumulation term is zero. The 

evaluation of the momentum accumulation term 

is completed by considering the structural 

elements (i.e., the nozzle walls). Since the 

structural elements are stationary, there is no 

momentum change, so the momentum 

accumulation rate is zero. 

In summary, the momentum of the material inside a control volume is evaluated by integrating 

the momentum of each volume element over the control volume. If the momentum in each 

differential volume is constant with time (e.g., steady flow, a stationary structural part), the 

momentum accumulation rate is zero. 

 

 



Momentum Diagram 

The momentum terms on the right side of momentum Eq. may be visualized with a momentum 

diagram (MD). The momentum diagram is created by sketching a control volume and then 

drawing a vector to represent the momentum accumulation term and a vector to represent 

momentum flow at each section where mass crosses the control surface. 
Although the momentum diagram applies to the integral form of the momentum principle, the 

diagram takes on a simple form when the velocity v is uniformly distributed across each inlet and 

outlet port. For example, consider steady flow through the nozzle shown above. For the control 

volume indicated, the momentum accumulation term is zero, and this vector is omitted from the 

diagram. If the velocity is assumed to be uniform across the inlet and exit sections, the outlet 

momentum flow is given by      and the inlet momentum flow is given by      . To evaluate the 

momentum flow, one can use the diagram to see that 

      
  

                           

And  

      
  

          

Recognizing that            , the above equations can be combined to show that the net 

outward flow of momentum is 

      
  

       
  

                              

 

Systematic Approach 
Problem Setup 

· Select an appropriate control volume. Sketch the control volume and coordinate axes. Select an 

inertial reference frame. 

· Identify governing equations. This will include either the vector or component form of the 

momentum equation. Other equations, such as the Bernoulli equation and/or the continuity 

equation, may be needed. 

Force Analysis and Diagram 

· Sketch body force(s) (usually only gravitational force) on the force diagram. 

· Sketch surface forces on the force diagram; these are forces caused by pressure distribution, 

shear stress distribution, and supports and structures. 

Momentum Analysis and Diagram 

· Evaluate the momentum accumulation term. If the flow is steady and other materials in the 

control volume are stationary, the momentum accumulation is zero. Otherwise, the momentum 

accumulation term is evaluated by integration, and an appropriate vector is added to the 

momentum diagram. 

· Sketch momentum flow vectors on the momentum diagram. For uniform velocity, each vector 

is   . 

 

 

 

 

 



Q6.77) A windmill is operating in a 10 m/s wind 

`that has a density of 1.2 kg/m
3
. The diameter of 

the windmill is 4 m. The constant-pressure 

(atmospheric) streamline has a diameter of 3 m 

upstream of the windmill and 4.5 m downstream. 

Assume that the velocity distributions are uniform 

and the air is incompressible. 

Determine the thrust on the mill. 

 

Continuity principle 

Q1=Q2 since density is constant 

V1 A1=V2 A2 

V2= 10 × (3/4.5)
2
= 4.44 m/s 

 
 

Q6.64) This “double” nozzle discharges water (at 10°C) 

into the atmosphere at a rate of 0.50 m
3
/s. If the nozzle is 

lying in a horizontal plane, what x-component of force 

acting through the flange bolts is required to holdthe nozzle 

in place? Note: Assume irrotational flow, and assume the 

water speed in each jet to be the same. 

Jet A is 10 cm in diameter, jet B is 12 cm in diameter, and 

the pipe is 30 cm in diameter. 

 

solution 

VA =VB  given 

Qtotal =QA +QB   for incompressible flow 

Qtotal =VA AA+ VB AB 

VA =VB  = Qtotal/( AA+ AB) 

     = 0.5/(π × 0.05 × 0.05 + π × 0.06 × 0.06) = 26.1 m/s 

V1 = 0.5/(π × 0.15 × 0.15) = 7.07 m/s 

 

Bernoulli equation {between 1 & A [same as 1 & B] } 

p1 = (1000/2)(26.12 − 7.072) = 315, 612 Pa 

 

 



 
 

Q 6.86 

A cart is moving along a track at a constant velocity of 5 

m/s as shown. Water (ρ = 1000 kg/m3) issues from a 

nozzle at 10 m/s and is deflected through 180° by a vane 

on the cart. The cross-sectional area of the nozzle is 

0.0012 m2. Calculate the resistive force on the cart. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.30 A vane on this moving cart deflects a 10 cm 

water (ρ = 1000 kg/m3) jet as shown. The initial 

speed of the water in the jet is 20 m/s, and the cart 

moves at a speed of 3 m/s. If the vane splits the jet so 

that half goes one way and half the other, what force 

is exerted on the vane by the jet? 

 
 

 

 

 

Equation of motion of a rocket 

 

 

 
T: thrust of the rocket, the sum of the momentum 

outflow and the pressure force at the nozzle exit. 

Neglecting the drag and weight, the equation of 

motion reduces to 

 
           

where mi is the initial rocket mass and t is the time from ignition 

 

 

 



 
Where vbo is the burnout velocity and mf is the final (or payload) mass. The ratio      is known 

as the specific impulse, Isp, and has units of velocity. 

 

Q6.89 It is common practice in rocket trajectory analyses to neglect the body-force term and 

drag, so the velocity at burnout is given by     
 

 
          

Assuming a thrust-to-mass-flow ratio of 3000 N.s/kg and a final mass of 50 kg, calculate the 

initial mass needed to establish the rocket in an earth orbit at a velocity of 7200 m/s. 

    
 

 
          

                   
                              

  

  
           

                       

 
Water Hammer: Physical Description 

Whenever a valve is closed in a pipe, a positive pressure wave is created upstream of the valve 

and travels up the pipe at the speed of sound. If the pressure is greater than the existing steady-

state pressure. This pressure wave may be great enough to cause pipe failure. Therefore, a basic 

understanding of this process, which is called water hammer, is necessary for the proper design 

and operation of such systems. 

Consider flow in the pipe shown in Fig. 6.7. Initially the valve at the end of the pipe is only 

partially open (Fig. 6.7a); consequently, an initial velocity V and initial pressure p0 exist in the 

pipe. At time t = 0 it is assumed that the valve is instantaneously closed, thus creating a pressure 

increase behind the valve and a pressure wave that travels from the valve toward the reservoir at 

the speed of sound, c. All the water between the pressure wave and the upper end of the pipe will 

have the initial velocity V, but all the water on the other side of the pressure wave (between the 

wave and the valve) will be at rest. This condition is shown in Fig. 6.7b. Once the pressure wave 

reaches the upper end of the pipe (after time t = L/c), it can be visualized that all of the water in 

the pipe will be under a pressure p0 + Δp; however, the pressure in the reservoir at the end of the 

pipe is only p0. This imbalance of pressure at the reservoir end causes the water to flow from the 

pipe back into the reservoir with a velocity V. Thus a new pressure wave is formed that travels 

toward the valve end of the pipe (Fig. 6.7c), and the pressure on the reservoir side of the wave is 

reduced to p0. When this wave finally reaches the valve, all the water in the pipe is flowing 

toward the reservoir with a velocity V. This condition is only momentary, however, because the 

closed valve prevents any sustained flow. 



 
Water hammer process. 

(a) Initial condition.        (b) Condition during time 0 < t < L/c. 

(c) Condition during time L/c < t < 2L/c. (d) Condition during time 2L/c < t < 3L/c. 

(e) Condition during time 3L/c < t < 4L/c. 



Next, during time 2L/c < t < 3L/c, a rarefied wave of pressure (p < p0) travels up to the reservoir, 

as shown in Fig. 6.7d. When the wave reaches the reservoir, all the water in the pipe has a 

pressure less than that in the reservoir. This imbalance of pressure causes flow to be established 

again in the entire pipe, as shown in Fig. 6.7f, and the condition is exactly the same as in the 

initial condition (Fig. 6.7a). Hence the process will repeat itself in a periodic manner. 

From this description, it may be seen that the pressure in the pipe immediately upstream of the 

valve will be alternately high and low, as shown in Fig. 6.7a. A similar observation for the 

pressure at the midpoint of the pipe reveals a more complex variation of pressure with time, as 

shown in Fig. 6.8b. Obviously, a valve cannot be closed instantaneously, and viscous effects, 

which were neglected here, will have a damping effect on the process. Therefore, a more realistic 

pressure–time trace for the point just upstream of the valve is given in Fig. 

6.8c. The finite time of closure erases the sharp discontinuities in the pressure trace that were 

present in Fig. 6.8a. However, it should be noted that the maximum pressure developed at the 

valve will be virtually the same as for instantaneous closure if the time of closure is less than 

2L/c That is, the change in pressure will be the same for a given change in velocity unless the 

negative wave from the reservoir mitigates the positive pressure, and it takes a time 2L/c before 

this negative wave can reach the valve. The value 2L/c is called the critical time of closure and is 

given the symbol tc. 



Chapter 7  The Energy Equation 
 

7.1 Energy, Work, and Power 

When matter has energy, the matter can be used to do work. A fluid can have several forms of 

energy. For example a fluid jet has kinetic energy, water behind a dam has gravitational potential 

energy, and hot steam has thermal energy. 

Work is force acting through a distance when the force is parallel to the direction of motion 

Work = Force x distance =Torque x Angular displacement 

Machine is any device that transmits or modifies energy, typically to perform or assist in a 

human task. 

 a turbine is a machine that is used to extract energy from a flowing fluid. 

a pump is a machine that is used to provide energy to a flowing fluid. 

Work and energy both have the same primary dimensions, and the same units, and both 

characterize an amount or quantity  

Power: Amount of work per unite time. 

     
    

  

  
    

         
   

  
                    , V: velocity 

         
   

  
                        ,  : Angular speed 

 

           
Watt, kWatt, Horsepower 

1 Horsepower (Hp) = 746 Watt  or 1 Kw = 1.34 Hp 

 

7.2 Energy Equation: General Form 

      
  

  
 

 

            
              
               

   
                  
               
            

   

                
                

                    
  

 

      
 

  
  

  

 
         

  

   
  

 
      

  

      

 u: internal energy 

Shaft and Flow Work 

Work = flow work + shaft work 

                                 

 

         
 

 
      

  

 



      
 

  
  

  

 
         

  

      
  
 

 
        

  

      
  
 

 
        

  

 

Where h = u+p/ρ : enthalpy 

 

7.3 Energy Equation: Pipe Flow 
Kinetic Energy Correction Factor 

 

  
 

 
  

 

  
 
 

 

   

In most cases, α takes on a value of 1 or 2. When the velocity profile in a pipe is uniformly 

distributed, then α = 1. When flow is laminar, the velocity distribution is parabolic and α = 2. 

When flow is turbulent, the velocity profile is plug-like and α ≈ 1.05. For turbulent flow it is 

common practice to let α = 1. 

 

A Simplified Form of the Energy Equation 

 
  
 
      

   
 

  
      

  
 
      

    
 

  
        

                                                                

 

 

   
   

   
    

   
   

 

   
        

  
                   

 

Example 

Water (10°C) is flowing at a rate of 0.35 

m3/s, and it is assumed that hL= 2V
2
/2g 

from the reservoir to the gage, where V is 

the velocity in the 30-cm pipe. What power 

must the pump supply? Assume α= 1.0 at all 

locations  

 

 

 



 
 

 

Example 

In the pump test shown, the rate of flow is 0.16 m
3
/s of oil (S = 

0.88). Calculate the horsepower that the pump supplies to the oil 

if there is a differential reading of 120 cm of mercury in the U-

tube manometer. Assume α= 1.0 at all locations. 

Solution  

   
 

  
 

    

 
 
     

 
      

Similarly  

   
 

  
 

    

 
 
      

 
      

Manometer equation 

 
  
 
      

  
 
     

         

  
 
               

    
           

Energy equation reduces to 

 
  
 
      

   
 

  
      

  
 
      

    
 

  
  

    
  
 
      

  
 
      

    
 

  
 
   
 

  
           

               

      
        

                                     

Power = 39.81 HP 

 



7.4 Power Equation 

          

                       

                    

Efficiency the ratio of power output to power input 

  
                                  

                                  
 
    
   

 

Mechanical efficiency of the pump is   , the power output delivered by the pump to the flow is  

          

Where     power supplied to pump, usually by a rotating shaft that is connected to a motor. 

For a turbine, the output power     is usually delivered by a rotating shaft to a generator 

Mechanical efficiency of the turbine is   , the output power supplied by the turbine is 

          

where    is the power input to the turbine from the flow. 

 

7.5 Contrasting the Bernoulli Equation and the Energy Equation 

The Bernoulli equation and the energy equation are derived in different ways. 

 The Bernoulli equation was derived by applying Newton's second law to a particle and then 

integrating the resulting equation along a streamline. The energy equation was derived by 

starting with the first law of thermodynamics and then using the Reynolds transport theorem. 

Consequently, the Bernoulli equation involves only mechanical energy, whereas the energy 

equation includes both mechanical and thermal energy. 

The Bernoulli equation is applied by selecting two points on a streamline and then equating 

terms at these points: 

In addition, these two points can be anywhere in the flow field for the special case of irrotational 

flow. The energy equation is applied by selecting an inlet section and an outlet section in a pipe 

and then equating terms as they apply to the pipe. 

The two equations have different assumptions. The Bernoulli equation applies to steady, 

incompressible, and inviscid flow. The energy equation applies to steady, viscous, 

incompressible flow in a pipe with additional energy being added through a pump or extracted 

through a turbine. 

Under special circumstances the energy equation can be reduced to the Bernoulli equation. If the 

flow is inviscid, there is no head loss; that is, hL = 0. If the “pipe” is regarded as a small stream 

tube enclosing a streamline, then α = 1. There is no pump or turbine along a streamline, so hp = 

ht = 0. In this case the energy equation is identical to the Bernoulli equation. Note that the energy 

equation cannot be developed starting with the Bernoulli equation. 

 

7.6 Transitions 

Abrupt Expansion 

An abrupt or sudden expansion in a 

pipe or duct is a change from a 

smaller section area to a larger 

section area. 

 

 

 



7.7 Hydraulic and Energy Grade Lines 

 

 
 

 

 

 

Tips for Drawing HGLs and EGLs 
1. In a lake or reservoir, the HGL and EGL will coincide with the liquid surface. Also, both the HGL and 

EGL will indicate piezometric head. For example, see Fig. 7.7. 

2. A pump causes an abrupt rise in the EGL and HGL by adding energy to the flow. For example, see Fig. 

7.8. 

3. For steady flow in a Pipe of constant diameter and wall roughness, the slope (7hL/7L) of the EGL and 

the HGL will be constant. For example, see Fig. 7.7 

4. Locate the HGL below the EGL by a distance of the velocity head (αV2/2g). 

5. Height of the EGL decreases in the flow direction unless a pump is present. 

6. A turbine causes an abrupt drop in the EGL and HGL by removing energy from the flow. For example, 

see Fig. 7.9. 

7. Power generated by a turbine can be increased by using a gradual expansion at the turbine outlet. As 

shown in Fig. 7.9, the expansion converts kinetic energy to pressure. If the outlet to a reservoir is an 

abrupt expansion, as in Fig. 7.11, this kinetic energy is lost. 

8. When a pipe discharges into the atmosphere the HGL is coincident with the system because p/γ = 0 at 

these points. For example, in Figures 7.10 and 7.12, the HGL in the liquid jet is drawn through the jet 

itself. 

9. When a flow passage changes diameter, the distance between the EGL and the HGL will change (see 

Fig.7.10 and Fig. 7.11) because velocity changes. In addition, the slope on the EGL will change because 

the head loss per length will be larger in the conduit with the larger velocity  

10. If the HGL falls below the pipe, then p/γ is negative, indicating subatmospheric pressure (see Fig. 

7.12) and a potential location of cavitation. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 8 Dimensional Analysis 
enormous savings in time and money 
F =f(L,U,ρ,μ), find dimensional  groups using Pi-therorem. 
Solution 
Write the function and count variables: 
F =f(L,U,ρ,μ) 
There are five variables (n= 5) 
List dimensions of each variable. 
 
 
 
 
 
Find j. No variable contains the dimension θ, and so j is less than or equal to 3 (MLT). We 
inspect the list and see that L, U, and ρ cannot form a pi group because only ρ contains mass and 
only U contains time. Therefore j does equal 3, and n - j =5 -3 =2 = k.  
The pi theorem guarantees for this problem   two independent dimensionless groups. 
Select repeating j variables. The group L, U, ρ we found in step 3 will do fine. 
Combine L, U, ρ with one additional variable, in sequence, to find the two pi products. 
First add force to find   . You may select any exponent on this additional term as you please, to 
place it in the numerator or denominator to any power. Since F is the output, or dependent 
variable, we select it to appear to the first power in the numerator: 

       ρ                                  
Equate exponents: 
Length: a + b - 3c + 1 = 0 
Mass: c +1 = 0 
Time: -b -2 = 0 
We can solve explicitly for    b=-2, c=-1 and a=-2 
Therefore 

         ρ    
 

ρ    
    

 
Finally, add viscosity to L, U, and ρ to find     

 

       ρ μ                                   
  a+b-3c-1=0 

           c+1=0 

      -2b  -1 =0 

        a=b=c=-1 

   
μ

    ρ 
 

Or  

   
ρ  

μ
    

 
 

ρ    
   

ρ  

μ
  

 

 



Example 

At low velocities (laminar flow), the volume flow Q through a small-bore tube is a function only 

of the tube radius R, the fluid viscosity μ, and the pressure drop per unit tube length dp/dx. Using 

the pi theorem, find an appropriate dimensionless relationship. 

Solution 

Write the given relation and count variables: 

      μ        
Four variables (n = 4) 

  
 

  μ       

                        

There are three primary dimensions (M, L, T), hence j ≤3. 

By trial and error we determine that R, μ, and dp/dx cannot be combined into a pi group.  Then 

j=3, and n - j = 4 - 3 =1.  

There is only one pi group, which we find by combining Q in a power product with the other 

three 

     μ  
  

  
 
 

                                       

Equate exponents: 
Mass :              b + c        = 0 
Length :      a – b - 2c + 3 = 0 

Time :            – b - 2c – 1 = 0 

Solving simultaneously, we obtain a=-4, b= 1, c =-1. Then 

      μ  
  

  
 
  

  

   
μ 

   
  
  

 
          

8.4 Common π-Groups 
Pressure coefficient  

   
    

 
 ρ 

 
 

Shear stress coefficient “friction” 

   
 

 
 ρ 

 
 

Force coefficient  

   
 

 
 ρ 

   
 

F =Drag  Drag coefficient , F=Lift  Lift coefficient 

The general functional form for all the π-groups is                        
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μ
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8.5 Similitude 
Geometric Similitude 

Geometric similitude means that the model is 

an exact geometric replica of the prototype. 

Consequently, if a 1:10 scale model is 

specified, all linear dimensions of the model 

must be 1 / 10 of those of the prototype 
if the model and prototype are geometrically 

similar, the following equalities hold: 
  

  
 

  
  

 
  

  
    

    scale ratio,  hence 

       
     

  

  
     

  

Dynamic Similitude 
Dynamic similitude means that the forces that act on corresponding masses in the model and 

prototype are in the same ratio (Fm/Fp = constant) throughout the entire flow field. 

1. The Froude number for the model must be equal to the Froude number for the prototype to 

have the same ratio of forces on the model and the prototype. 

    
  

    

 
  

    

     

2. The Reynolds number for the model must be equal to the Reynolds number for the prototype 

to have the same ratio of forces on the model and the prototype. 

    
ρ
 
     

μ
 

 
ρ
 
     

μ
 

     

 

3. Mach Number 

4. Weber Number 

 

 

 

 

(a) Prototype. (b) Model. 

 



Q 8.30) The drag on a submarine moving below the free surface is to be determined by a test on 

a 1/15 scale model in a water tunnel. The velocity of the prototype in sea water (ρ = 1015 kg/m
3
, 

ν = 1.4 × 10
-6

 m
2
/s) is 2 m/s. The test is done in pure water at 20°C. Determine the speed of the 

water in the water tunnel for dynamic similitude and the ratio of the drag force on the model to 

the drag force on the prototype. 

 

Solution 

Dynamic similarity is achieved when the Reynolds numbers are the same 

Drag coefficient on prototype & model will be the same    
  

 

 
ρ    

 

 
8.33 A large venturi meter is 

calibrated by means of a 1/10 

scale model using the 

prototype liquid. What is the 

discharge ratio Qm/Qp for 

dynamic similarity? If a 

pressure difference of 300 

kPa is measured across ports 

in the model for a given 

discharge, what pressure 

difference will occur between 

similar ports in the prototype 

for dynamically similar 

conditions? 

 

Match Reynolds Number. 

Equate pressure coefficient. 

  
 



Chapter 10 Flow in Conduits 

 
10.1 Classifying Flow 

Laminar Flow and Turbulent Flow 

 

   
   

 
 
  

 
         

 

 
 

                 Laminar flow  

                  Unpredictable 

        Turbulent flow 

   
   

 
 

  

   
 

   

   
 

Near entrance: undeveloped “developing” flow 

In developing flow, the wall shear stress is changing. In fully developed flow, the wall shear 

stress is constant 

 

10.3 Pipe Head Loss 

Combined (Total) Head Loss 

 

Total Head Loss = pipe head loss + component head loss 

Component head loss is associated with flow through devices such as valves, bends, and tees.  

Pipe head loss is associated with fully developed flow in conduits, and it is caused by shear 

stresses that act on the flowing fluid. 
The Darcy-Weisbach equation, the flow should be fully developed and steady 

    
 

 

  

  
 

  
   

     
 
                          

                
 

10.5 Laminar Flow in a Round Tube 

For laminar flow 

                  
   

       
  
 

  
  

   

  
  

  : radius of pipe,    is the change in 

piezometric head over a length    of conduit. 

     
  

   
  

   

  
  

    

 
 

    
 

 

  

  
          

  

  
 

10.6 Turbulent Flow and the Moody Diagram 

Turbulent flow is a flow regime in which the movement of fluid particles is chaotic, eddying, and 

unsteady, with significant movement of particles in directions transverse to the flow direction. 

Because of the chaotic motion of fluid particles, turbulent flow produces high levels of mixing 

and has a velocity profile that is more uniform or flatter than the corresponding laminar velocity 

profile. Engineers and scientists model turbulent flow by using an empirical approach. Because 

the complex nature of turbulent flow has prevented researchers from establishing a mathematical 

solution of general utility 

 

 



Equations for the Velocity Distribution 

 
    

    
  

    

  
 
  

 

 

 

 

the turbulent boundary-layer equations 

    

  
       

          

 
      

                       

Equations for the Friction Factor, f 

the resistance coefficient for turbulent flow in tubes that have smooth walls 
 

  
                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moody Diagram 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

To provide a more convenient solution to some types of problems, the top of the Moody diagram 

presents a scale based on the parameter Re f1/2. This parameter is useful when hf and ks/D are 

known but the velocity V is not. 

In the Moody diagram, Fig., the variable ks denotes the equivalent sand roughness. That is, a 

pipe that has the same resistance characteristics at high Re values as a sand-roughened pipe is 

said to have a roughness equivalent to that of the sand-roughened pipe. Table 10.4 gives the 

equivalent sand roughness for various kinds of pipes. This table can be used to calculate the 

relative roughness for a given pipe diameter, which, in turn, is used in Fig.”Moody chart” to find 

the friction factor 

Using the Darcy-Weisbach equation and the definition of Reynolds number 

        
 
 
 

 
 
    

 
 

   

 

In the Moody diagram, curves of constant         are plotted using heavy black lines that slant 

from the left to right. 

    
 

 

  

  
 

When using computers to carry out pipe-flow calculations, it is much more convenient to have an 

equation for the friction factor as a function of Reynolds number and relative roughness 

 

 

 

 

 

 

 

 

 

 

 

   

 



  
    

       
  
     

    
     

  
 

It is reported that this equation predicts friction factors that differ by less than 3% from those on 

the Moody diagram for 4 × 10
3
 < Re < 10

8
 and 10

-5
 < ks/D < 2 × 10

-2
. 

10.8 Combined Head Loss 
The Minor Loss Coefficient, K 

When fluid flows through a component such as a partially open value or a bend in a pipe, viscous 

effects cause the flowing fluid to lose mechanical energy. 

  
  

     
 

  

       
 

    drop in piezometric head that is caused by a component. 

    drop in pressure that is caused by a component 

   Mean velocity 

    
  

  
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 
Combined Head Loss Equation 

Total head loss = {Pipe head loss} + {Component head loss} 

     
 

 

  

  
     

   
  

  
         

 

 

 

10.9 Non-round Conduits 

    
 

  

  

  
 

   
                    

                
 

For rectangular cross section:     , area =     , perimeter = 2L+2w=2(L+w) 

   
      

      
 

   

   
 

 

 

 

 

 

 

 

 

 

 

 



 

The head loss per kilometer of 20 cm asphalted cast-iron pipe is 12.2 m. What is the flow rate of 

water through the pipe? 

 
 

Q 10.72 A heat exchanger consists of a closed system with a series of parallel tubes connected 

by 180° elbows as shown in the figure. There are a total of 14 return elbows. The pipe diameter 

is 2 cm, and the total pipe length is 10 m. The head loss coefficient for each return elbow is 2.2. 

The tube is copper. Water with an average temperature of 40°C flows through the system with a 

mean velocity of 10 m/s. Find the power required to operate the pump if the pump is 80% 

efficient. 
 



 
 

 
 



 

 

 


