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Fluid Mechanics 
Mechanics is the field of science focused on 
the motion of material bodies. Mechanics 
involves force, energy, motion, deformation, 
and material properties.  

When mechanics applies to material bodies 
in the solid phase, the discipline is called 

. solid mechanics 

When the material body is in the gas or 
liquid phase, the discipline is called fluid 
mechanics 



More about Definition of Fluids 

Unlike solid, a fluid is a substance whose 

molecules move freely past each other.  

More specifically, a fluid is a substance that 

will continuously deform—that is, flow 

under the action of a shear stress. 

Alternatively, a solid will deform under the 

action of a shear stress but will not flow 

like a fluid.  

Both liquids and gases are classified as fluid 



1.1 Liquids and Gases 

The difference between Liquids and gases is because 
of forces between the molecules. 

liquid will take the shape of a container whereas a 
gas will expand to fill a closed container.  

The behavior of the liquid is produced by strong 
attractive force between the molecules. This strong 
attractive force also explains why the density of a 
liquid is much higher than the density of gas. 

A gas is a phase of material in which molecules are 
widely spaced, molecules move about freely, and 
forces between molecules are minuscule, except 
during collisions. Alternatively, a liquid is a phase of 
material in which molecules are closely spaced, 
molecules move about freely, and there are strong 
attractive forces between molecules. See Table 1.1. 



1.2 The Continuum Assumption 

While a body of fluid is comprised of molecules, most 
characteristics of fluids are due to average molecular 
behavior. That is, a fluid often behaves as if it were 
comprised of continuous matter that is infinitely 
divisible into smaller and smaller parts. This idea is 
called the continuum assumption.  

When the continuum assumption is valid, engineers can 
apply limit concepts from differential calculus. Recall 
that a limit concept, for example, involves letting a 
length, an area, or a volume approach zero.  

Because of the continuum assumption, fluid parameters 
such as density and velocity can be considered 
continuous functions of position with a value at each 
point in space. 



More on Continuum Assumption 

To gain insight into the validity of the continuum assumption, 
consider a hypothetical experiment to find density.  

Fig. 1.1a shows a container of gas in which a volume has been 
identified. The idea is to find the mass of the molecules DM 
inside the volume and then to calculate density by 

 

 

The calculated density is plotted in Fig. 1.1b. When the measuring 
volume is very small (approaching zero), the number of 
molecules in the volume will vary with time because of the 
random nature of molecular motion. 

Thus, the density will vary as shown. As volume increases, the 
variations in calculated density will decrease until the calculated 
density is independent of the measuring volume. This condition 
corresponds to the vertical line at . If the volume is too large, as 
shown by , then the value of density may change due to spatial 
variations. 



Figure 1.1 

Continuum Assumption 



Continuum Assumption 
In most engineering applications, continuum 

assumption is valid. To demonstrate this, 

compute the volume required to have 106 

molecules. Using Avogadro number 

(~6x1023 molecules/mole), the limiting 

volume for water is 10-13 mm3 (or <10-4 mm 

cube). For ideal gas at standard 

conditions, the limiting volume is 10-10 mm3 

(or <10-3 mm cube).  



1.3 Dimensions and Units 

A dimension is a category that represents a physical 
quantity such as mass, length, time, momentum, 
force, acceleration, and energy. To simplify matters, 
engineers express dimensions using a limited set that 
are called primary dimensions. Table 1.2 lists one 
common set of primary dimensions. 

 

Table 1.2 PRIMARY DIMENSIONS 

Dimension Symbol   Unit (SI) 

 Length L    meter (m) 

 Mass M     kilogram (kg) 

 Time T     second (s) 

 Temperature θ   kelvin (K) 

 Electric current i   ampere (A) 

 Amount of light C   candela (cd) 

 Amount of matter    mole (mol) 



Secondary dimensions such as momentum and 

energy can be related to primary dimensions by 

using equations. 

For example, the secondary dimension “force” is 

expressed in primary dimensions by using 

Newton's second law of motion, F = ma. The 

primary dimensions of acceleration are L/T2, so 



Units 

While a dimension expresses a specific type of 

physical quantity, a unit assigns a number so 

that the dimension can be measured. For 

example, measurement of volume (a 

dimension) can be expressed using units of 

liters. 

Similarly, measurement of energy (a dimension) 

can be expressed using units of joules. Most 

dimensions have multiple units that are used for 

measurement. For example, the dimension of 

“force” can be expressed using units of 

newtons, pounds-force, or dynes. 



Suggested Problems 
1.1 For each variable below, list three common units. 

 a. Volume flow rate (Q), mass flow rate (m), and pressure (p). 

 b. Force, energy, power. 

 c. Viscosity. 

 

1.5 Find the primary dimensions of each of the following terms. 

 a. (ρV2)/2 (kinetic pressure), where ρ is fluid density and V is 

velocity. 

 b. T (torque). 

 c. P (power). 

 d. (ρV2L)/δ (Weber number), where ρ is fluid density, V is 

velocity, L is length, and σ is surface tension. 
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Fluid Properties 
 

A fluid has certain characteristics by which its 

physical condition may be described. These 

characteristics are called properties of the 

fluid. 



2.1 Properties Involving Mass and Weight 

 

Mass Density ρ 

Mass density is defined as the ratio of mass to 

volume at a point, given by 

 

 

 

Mass density has units of kilograms per cubic meter 

(kg/m3). 

 
The mass density of water at 4°C is 1000 kg/m3 and it decreases slightly 

with increasing temperature, as shown in Table A.5. The mass density 

of air at 20°C and standard atmospheric pressure is 1.2 kg/m3 



Specific Weight, γ 

The gravitational force per unit volume of fluid, or simply 

the weight per unit volume, is defined as specific 
weight. It is given the Greek symbol γ (gamma). 

 

 

 

 Water at 20°C has a specific weight of 9790 N/m3. In 

contrast, the specific weight of air at 20°C and 

standard atmospheric pressure is 11.8 N/m3.  

 

Specific weights of common liquids are given in Table 

A.4. 
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Variation in Liquid Density 

In practice, engineers need to decide whether or not to 
model a fluid as constant density or variable density.  
Usually, a liquid such as water requires a large 
change in pressure in order to change the density. 
Thus, for most applications, liquids can be considered 
incompressible and can be assumed to have 
constant density. An exception to this occurs when 
different solutions, such as saline and fresh water, are 
mixed. A mixture of salt in water changes the density 
of the water without changing its volume. Therefore in 
some flows, such as in estuaries, density variations 
may occur within the flow field even though the fluid is 
essentially incompressible. A fluid wherein density 
varies spatially is described as nonhomogeneous. 
This text emphasizes the flow of homogeneous 
fluids, so the term incompressible, used throughout 
the text, implies constant density. 



Specific Gravity, S 

The ratio of the specific weight of a given fluid to the 

specific weight of water at the standard reference 

temperature 4°C is defined as specific gravity, S:  

 

 

The specific weight of water at atmospheric pressure is 

9790 N/m3. The specific gravity of mercury at 20°C is 

 

 

Because specific gravity is a ratio of specific weights, it 

is dimensionless and therefore independent of the 

system of units used. 
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2.2 Ideal Gas Law 

The ideal gas law relates important thermodynamic 

properties, and is often used to calculate density. One 

form of the law is 

 

where p is the absolute pressure,   is the volume, n is 

the number of moles, Ru is the universal gas constant 

(the same for all gases), and T is absolute 

temperature. Absolute pressure, introduced in Chapter 

3, is referred to absolute zero. The universal gas 

constant is 8.314 kJ/kmol-K in the SI system. 

A second form of the ideal gas law is 

TnRp u




EXAMPLE 2.1 DESITY OF AIR 

Air at standard sea-level pressure (p = 101 

kN/m2) has a temperature of 4°C. What is the 

density (kg/m3). of the air?  R = 287 J/kg K. 

 

Solution: Apply ideal gas law 



2.3 Properties Involving Thermal Energy 

Specific Heat, c 

The property that describes the capacity of a substance 

to store thermal energy is called specific heat. By 

definition, it is the amount of thermal energy that must 

be transferred to a unit mass of substance to raise its 

temperature by one degree. The specific heat of a gas 

depends on the process accompanying the change in 

temperature. If the specific volume v of the gas (v = 

1/ρ) remains constant while the temperature changes, 

then the specific heat is identified as cv. However, if 

the pressure is held constant during the change in 

state, then the specific heat is identified as cp. The 

ratio cp/cv is given the symbol k. Values for cp and k for 

various gases are given in Table A.2. 



Internal Energy 

The energy that a substance possesses because 

of the state of the molecular activity in the 

substance is termed internal energy. Internal 

energy is usually expressed as a specific 

quantity; i.e., per unit mass. In the SI system, 

the specific internal energy, u, is given in joules 

per kilogram; in Traditional Units it is given in 

Btu/lbm. The internal energy is generally a 

function of temperature and pressure. However, 

for an ideal gas, it is a function of temperature 

alone. 



Enthalpy 

The combination u + p/ρ is encountered 

frequently in equations for thermodynamics and 

compressible flow; it has been given the name 

specific enthalpy. For an ideal gas, u and p/ρ 

are functions of temperature alone. 

Consequently their sum, specific enthalpy, is 

also a function solely of temperature. 



2.4 Viscosity 

The property of viscosity is important to engineering 
practice because it leads to significant energy loss 
when moving fluids contact a solid boundary, or when 
different zones of fluid are flowing at different 
velocities.  

Viscosity, μ 

The symbol used to represent viscosity is μ (mu). 
Viscosity (also called dynamic viscosity, or absolute 
viscosity) is a measure of a fluid's resistance to 
deformation under shear stress. For example, crude 
oil has a higher resistance to shear than does water. 
Crude oil will pour more slowly than water from an 
identical beaker held at the same angle. This relative 
slowness of the oil implies a low ―speed‖ or rate of 
strain.  



Viscosity, μ (continue) 

To understand the physics of viscosity, it is useful 

to refer back to solid mechanics and the 

concepts of shear stress and shear strain. 

Shear stress, t (tau) is the ratio of force/area on 

a surface when the force is aligned parallel to 

the area. Shear strain is a change in an interior 

angle of a cubical element, (φ, that was 

originally a right angle. The shear stress on a 

material element in solid mechanics is 

proportional to the strain, and the constant of 

proportionality is the shear modulus: 

 



In solids,  

 

 

In fluid flow, however, the shear stress on a fluid 

element is proportional to the rate (speed) of 

strain, and the constant of proportionality is the 

viscosity: 

 

 

To derive an expression for the shear stress in 

fluids, consider Figure 2.1 



Figure 2.1 



Viscosity, μ (continue)  

Consider an initially rectangular element in a 
parallel flow field. As the element moves 
downstream, a shear force on the top of the 
element (and a corresponding shear stress in 
the opposite direction on the bottom of the 
element) causes the top surface to move faster 
(with velocity V + DV) than the bottom (at 
velocity V). The forward and rearward edges 
become inclined at an angle Dφ with respect to 
the vertical. The rate at which Dφ changes with 
time, given by φ, is the rate of strain, and can 
be related to the velocity difference between the 
two surfaces. 

 



In time (Dt) the upper surface moves (V + DV) Dt 
while the bottom surface moves VDt, so the net 
difference is DVDt. The strain Dφ is 

 

 

where Dy is the distance between the two surfaces. 
The rate of strain is 

 

 

In the limit as Dt, Dy → 0, the rate of strain is related 
to the velocity gradient by φ=dφ/dt = dV/dy, so the 
shear stress (shear force per unit area) is 



The term dV/dy represents the velocity gradient 

(or change of velocity with distance from the 

wall), where V is the fluid velocity and y is the 

distance measured from the wall, see Figure 

2.2. The velocity distribution shown is 

characteristic of flow next to a stationary solid 

boundary, such as fluid flowing through a pipe. 

Several observations: First, the velocity 

gradient at the boundary is finite. The curve of 

velocity variation cannot be tangent to the 

boundary because this would imply an infinite 

velocity gradient and, in turn, an infinite shear 

stress, which is impossible. 



Figure 2.2 



 

Second, a velocity gradient (dV/dy) that 

decreases with distance from the boundary has 

a maximum shear stress at the boundary, and 

the shear stress decreases with distance from 

the boundary. Also note that the velocity of the 

fluid is zero at the stationary boundary. That is, 

at the boundary surface the fluid has the 

velocity of the boundary—no slip occurs 

between the fluid and the boundary. This is 

referred to as the no-slip condition. The no-slip 

condition is characteristic of all flows used in 

this text. 



The units for the viscosity can be derived, 

 

 

 

A common unit of viscosity is the poise, which is 

1 dyne-s/cm2 or 0.1 N ・ s/m2. The viscosity of 

water at 20°C is one centipoise (10-2 poise) or 

10-3 N・s/m2. The unit of viscosity in the 

traditional system is lbf・s/ft2. 



Think? 

Problem 2.38 A laminar flow occurs between two 

horizontal parallel plates under a pressure 

gradient dp/ds (p decreases in the positive s 
direction). The upper plate moves left (negative) 

at velocity ut. The expression for local velocity u 
is given as 

1) Where is the shear stress 

is maximum? 

2) Where is the shear stress  

is zero? 

3) Derive the expression for  

shear stress in terms of y. 



EXAMPLE 2.3 MODELING A BOARD SLIDING 

ON A LIQUID LAYER 

A board 1 m by 1 m that weighs 25 N slides down an 

inclined ramp (slope = 20°) with a velocity of 2.0 cm/s. 

The board is separated from the ramp by a thin film of 

oil with a viscosity of 0.05 N・s/m2. Neglecting edge 

effects, calculate the space between the board and 

the ramp. Velocity profile is linear.     

Dy 
Oil 



Solution 

1. Freebody analysis 

 

 

2. Substitution of dV/dy as DV/Dy 

 

3. Solution for Dy 

 



Kinematic Viscosity, n 

Many equations of fluid mechanics include the 

ratio μ/ρ. Because it occurs so frequently, this 

ratio has been given the special name 

kinematic viscosity. The symbol used to identify 

kinematic viscosity is n (nu). Units of kinematic 

viscosity n are m2/s, as shown. 

 

 

 

The units for kinematic viscosity in the traditional 

system are ft2/s. 



Temperature Dependency of Viscosity 

The effect of temperature on viscosity is different 

for liquids and gases. The viscosity of liquids 

decreases as the temperature increases, 

whereas the viscosity of gases increases with 

increasing temperature; this trend is also true 

for kinematic viscosity (see Fig. 2.3 and Figs. 

A.2 and A.3). 



Figure 2.3 Kinematic viscosity for air and crude oil. 



An equation for the variation (interpolation) of liquid viscosity 
with temperature is 

 

 

where C and b are empirical constants that require viscosity data 
at two temperatures for evaluation. This equation should be 
used primarily for data interpolation. The variation of viscosity 
(dynamic and kinematic) for other fluids is given in Figs. A.2 
and A.3. 

An estimate for the variation of gas viscosity with temperature is 
Sutherland's equation, 

 
 

 

where μ0 is the viscosity at temperature T0, and S is Sutherland's 
constant. All temperatures are absolute. Sutherland's constant 
for air is 111 K; values for other gases are given in Table A.2. 
Using Sutherland's equation for air yields viscosities with an 
accuracy of ±2% for temperatures between 170 K and 1900 K. 
In general, the effect of pressure on the viscosity of common 
gases is minimal for pressures less than 10 atmospheres. 



Newtonian Versus Non-Newtonian Fluids 

 
Fluids for which the shear stress is directly proportional to the rate 

of strain are called Newtonian fluids. Because shear stress is directly 
proportional to the shear strain, dV/dy, a plot relating these variables 
(see Fig. 2.6) results in a straight line passing through the origin. The 
slope of this line is the value of the dynamic (absolute) viscosity. 

 

For some fluids the shear stress may not be directly proportional to the 
rate of strain; these are called non-Newtonian fluids. One class of 
non-Newtonian fluids, shear-thinning fluids, has the property that 
the ratio of shear stress to shear strain decreases as the shear strain 
increases (see Fig. 2.6). Some common shear-thinning fluids are 
toothpaste, catsup, paints, and printer's ink. Fluids for which the 
viscosity increases with shear rate are shear-thickening fluids. 
Some examples of these fluids are mixtures of glass particles in 
water and gypsum-water mixtures. Another type of non-Newtonian 
fluid, called a Bingham plastic, acts like a solid for small values of 
shear stress and then behaves as a fluid at higher shear stress. The 
shear stress versus shear strain rate for a Bingham plastic is also 
shown in Fig. 2.6. This book will focus on the theory and applications 
involving Newtonian fluids. 



Figure 2.6 Shear stress relations for different types of fluids. 



2.5 Bulk Modulus of Elasticity 

The bulk modulus of elasticity, Ev, is a property that 

relates changes in pressure to changes in volume 

(e.g., expansion or contraction) 

 

 

where dp is the differential pressure change,    is the 

differential volume change,and    is the volume of fluid.  

Because            is negative for a positive dp, a 

negative sign is used in the definition to yield a 

positive Ev. The elasticity is often called the 

compressibility of the fluid. Also, it can be shown that 

Ev equals to  

 



The bulk modulus of elasticity of water is 

approximately 2.2 GN/m2, which corresponds to 

a 0.05% change in volume for a change of 1 

MN/m2 in pressure. Obviously, the term 

incompressible is justifiably applied to water 

because it has such a small change in volume 

for a very large change in pressure. The 

elasticity of an ideal gas is proportional to the 

pressure, according to the ideal gas law. For an 

isothermal (constant-temperature) process, 

which implies 



Think? 

Problem 2.46 Calculate the pressure increase 

that must be applied to water to reduce its 

volume by 2%. Ev = 2.2 GPa 

 

 

Answer: 

Dp = 44 MPa 

Dp 

DV 



2.6 Surface Tension 

Surface tension, σ (sigma), is a material property whereby a liquid 
at a material interface, usually liquid-gas, exerts a force per unit 
length along the surface. According to the theory of molecular 
attraction, molecules of liquid considerably below the surface 
act on each other by forces that are equal in all directions. 
However, molecules near the surface have a greater attraction 
for each other than they do for molecules below the surface 
because of the presence of a different substance above the 
surface. This produces a layer of surface molecules on the 
liquid that acts like a stretched membrane. Because of this 
membrane effect, each portion of the liquid surface exerts 
―tension‖ on adjacent portions of the surface or on objects that 
are in contact with the liquid surface. This tension acts in the 
plane of the surface, and is given by: 

 

 

where L is the length over which the surface tension acts. 



Surface tension for a water–air surface is 0.073 N/m at room 
temperature; σ decreases with increasing temperature. The effect of 
surface tension is illustrated for the case of capillary action (rise 
above a static water level at atmospheric pressure) in a small tube 
(Fig. 2.7). The relatively greater attraction of the water molecules for 
the glass rather than the air causes the water surface to curve 
upward in the region of the glass wall. It may be assumed that the 
contact angle θ (theta) is equal to 0° for water against glass. The 
surface tension force produces a net upward force on the water that 
causes the water in the tube to rise above the water surface in the 
reservoir. 

Figure 2.7 Capillary action in a small tube. 



EXAMPLE 2.4 CAPILLARY RISE IN  A TUBE 
To what height above the reservoir level will water (at 20°C) rise in 

a glass tube, such as that shown in Fig. 2.7, if the inside 

diameter of the tube is 1.6 mm? 

Properties: Water (20 °C), Table A.5, σ = 0.073 N/m; γ = 9790 

N/m3. 

Solution 

1. Force balance: Weight of water (down) is balanced by surface 

tension force (up). 

 

 

Because θ~0, hence cos θ =1. Therefore: 

 



2.7 Vapor Pressure 

The pressure at which a liquid will vaporize, or boil, at a given temperature, is 
called its vapor pressure. This means that boiling occurs whenever the local 
pressure equals the vapor pressure. Vapor pressure increases with 
temperature. Note that there are two ways to boil a liquid. One way is to 
raise the temperature, assuming that the pressure is fixed. For water at 
101.3 kPa, this can be accomplished by increasing the temperature of water 
to 100°C, thus reaching the temperature where the vapor pressure is equal 
to the same value. However, boiling can also occur in water at temperatures 
much below 100°C if the pressure in the water is reduced to the vapor 
pressure of water corresponding to that lower temperature. For example, the 
vapor pressure of water at 10°C is 1.230 kPa. Therefore, if the pressure in 
water at 10°C is reduced to 1.230 kPa, the water boils. Such boiling often 
occurs in localized low-pressure zones of flowing liquids, such as on the 
suction side of a pump. When localized low-pressure boiling does occur in 
flowing liquids, vapor bubbles start growing in local regions of very low 
pressure and then collapse in regions of higher pressure downstream. This 
phenomenon, which is called cavitation, can cause extensive damage to 
fluids systems. Table A.5 gives values of vapor pressure for water. 



Suggest problems 
2.6) Determine the density and specific weight of methane gas at at a pressure 

of 300 kN/m2 absolute and 60°C. 

Answer: 

 

2.11 What are the specific weight and density of air at an absolute pressure of 

600 kPa and a temperature of 50°C? 

 

 

2.33 The sliding plate viscometer shown below is used to measure the viscosity 

of a fluid. The top plate is moving to the right with a constant velocity of 10 

m/s in response to a force of 3 N. The bottom plate is stationary. What is the 

viscosity of the fluid? Assume a linear velocity distribution. 



2.34 The velocity distribution for water (20°C) near a wall is given by u = a(y/b)1/6, 

where a = 10 m/s, b = 2 mm, and y is the distance from the wall in mm. Determine 

the shear stress in the water at y = 1 mm. 

 

 

 

 

2.45 A pressure of 2 × 106 N/m2 is applied to a mass of water that initially filled a 2000 

cm3 volume. Estimate its volume after the pressure is applied. 
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This chapter deals with mechanics of fluids by 

introducing concepts related to pressure and by 

describing how to calculate forces associated with 

distributions of pressure. This chapter is restricted to 

fluids that are in hydrostatic equilibrium. 

 

As shown in Fig. 3.1, the hydrostatic condition 

involves equilibrium of a fluid particle. A fluid particle, 
is defined as a body of fluid having finite mass and 

internal structure but negligible dimensions. Thus, a 

fluid particle is very small, but large enough so that the 

continuum assumption applies. The hydrostatic 
condition means that each fluid particle is in force 

equilibrium with the net force due to pressure 

balancing the weight of the fluid particle. 



Figure 3.1 The hydrostatic condition. 
 
(a) A fluid particle in a body of fluid. 
(b) Forces acting on the fluid paricle. 



3.1 Pressure 
Definition of Pressure 

Pressure is defined as the ratio of normal force to area 

at a point. 

 

  

Pressure is a scalar quantity; that is, it has magnitude 

only. Pressure is not a force; rather it is a scalar that 

produces a resultant force by its action on an area. 

The resultant force is normal to the area and acts in a 

direction toward the surface (compressive). 

The SI units for pressure give a ratio of force to area. 

Newtons per square meter of area, or pascals (Pa. 



Absolute Pressure, Gage Pressure, and Vacuum Pressure 
Engineers use several different scales for pressure. Absolute pressure 

is referenced to regions such as outer space, where the pressure is 
essentially zero because the region is devoid of gas. The pressure in 
a perfect vacuum is called absolute zero, and pressure measured 
relative to this zero pressure is termed absolute pressure. 

 
When pressure is measured relative to prevailing local atmospheric 

pressure, the pressure value is called gage pressure. For example, 
when a tire pressure gage gives a value of 300 kPa (44 psi), this 
means that the absolute pressure in the tire is 300 kPa greater than 
local atmospheric pressure. To convert gage pressure to absolute 
pressure, add the local atmospheric pressure. For example, a gage 
pressure of 50 kPa recorded in a location where the atmospheric 
pressure is 100 kPa is expressed as either 

 

 

Gage and absolute pressures are often identified after the unit as shown 
above in the equation. 



When pressure is less than atmospheric, the pressure can be 
described using vacuum pressure. Vacuum pressure is defined 
as the difference between atmospheric pressure and actual 
pressure. Vacuum pressure is a positive number and equals 
the absolute value of gage pressure (which will be negative). 
For example, if a gage connected to a tank indicates a vacuum 
pressure of 31.0 kPa, this can also be stated as 70.0 kPa 
absolute, or - 31.0 kPa gage. 

 

Figure 3.4 provides a visual description of the three pressure 
scales. Notice that pA = of 301 kPa abs is equivalent to 200 kPa 
gage. Gage, absolute, and vacuum pressure can be related 
using equations labeled as the “pressure equations.” 



Figure 3.4 Example of pressure relations. 



• Hydraulic Machines 

• A hydraulic machine uses components such as 
pistons, pumps, and hoses to transmit forces 
and energy using fluids. Hydraulic machines 
are applied, for example, to braking systems, 
forklift trucks, power steering systems, and 
airplane control systems 3. Hydraulic machines 
provide an example of Pascal's law. This law 
states that pressure applied to an enclosed and 
continuous body of fluid is transmitted 
undiminished to every portion of that fluid and 
to the walls of the containing vessel. 

• Hydraulic machines provide mechanical 
advantage. For example, a person using a 
hydraulic jack can lift a much larger load, as 
shown in Example 3.1. 



EXAMPLE 3.1 LOAD LIFTED BY A 

HYDRAULIC JACK 
A hydraulic jack has the dimensions shown. If one exerts a force F 

of 100 N on the handle of the jack, what load, F2, can the jack 

support? Neglect lifter weight. 



Solution 
1. Moment equilibrium 

 

 

2. Force equilibrium (small piston) 

 

 

Thus, 

 

3. Force equilibrium (lifter) 

Note that p1 = p2 because they are at the same elevation (this fact 

will be established in the next section). Apply force 

equilibrium: 



3.2 Pressure Variation with Elevation 

The Hydrostatic Differential Equation 

• The hydrostatic differential equation is derived 

by applying force equilibrium to a static body of 

fluid. To begin the derivation, visualize a 

cylindrical body of fluid, and then sketch a free-

body diagram (FBD) as shown in Fig. 3.5. 

Notice that the cylindrical body is oriented so 

that its longitudinal axis is parallel to an 

arbitrary ℓ direction. The body is Dℓ long, DA in 

cross-sectional area, and inclined at an angle α 

with the horizontal. Apply force equilibrium in 

the ℓ direction: 



Figure 3.5 Variation in pressure with elevation. 



It is evident from the figure that: 

 

 

Combining the above equation and letting Dz 
approaches zero, 

  

 

 

The equation is valid for hydrostatic conditions and it 
means that changes in pressure correspond to 
changes in elevation. If one travels upward in the fluid 
(positive z direction), the pressure decreases; if one 
goes downward (negative z), the pressure increases; 
if one moves along a horizontal plane, the pressure 
remains constant.  



Uses of the Hydrostatic Equation 

Case 1. Constant density 

In this case g is constant and then by integrating the 

hydrostatic equation gives 

 

 

where the term z is elevation, which is the height 

(vertical distance) above a fixed reference point 

called a datum, and pz is piezometric pressure. 

Dividing the equation by g gives 

 

 

where h is the piezometric head. 



Since h is constant in the previous equation, then 

 

 

where the subscripts 1 and 2 identify any two points in a 
static fluid of constant density. Multiplying the equation by 
g gives 

 
 

The hydrostatic equation is given by either of the above 
equations are equivalent, because any one of the 
equations can be used to derive the other. The hydrostatic 
equation is valid for any constant density fluid in 
hydrostatic equilibrium. 

 

To calculate piezometric head or piezometric pressure, an 
engineer identifies a specific location in a body of fluid and 
then uses the value of pressure and elevation at that 
location 



EXAMPLE 3.2 WATER PRESSURE IN A TANK 

What is the water pressure at a depth of 10 m in 

the tank shown? 



Solution 

The hydrostatic equation:  

p1 = patm = 0 kPa gage 

z1 = 76 m 

z2 = 73.9 m 

 

Substituting,  0 + 76 = p2/g + 73.9; g =9.81 kN/m3 

Hence, p2 =98.1 kPa gage 

 

Remember! Gage pressure at the free surface of 

a liquid exposed to the atmosphere is zero. 



• EXAMPLE 3.3 PRESSURE IN TANK WITH 

TWO FLUIDS 

Oil with a specific gravity of 0.80 forms a layer 

0.90 m deep in an open tank that is otherwise 

filled with water. The total depth of water and oil 

is 3 m. What is the gage pressure at the bottom 

of the tank? 



Solution 

1. Hydrostatic equation (oil) 

 

 

2. Oil-water interface 

 

3. Hydrostatic equation (water) 



Uses of the Hydrostatic Equation 

Case 2. Variable density 

Example, pressure variation in atmospheric 

air. In this case, one uses ideal gas for 

density,   hence 

 

And 

 

To solve this equation one must have the 

variation of temperature as a function of 

elevation (z).  



3.3 Pressure Measurements 

This section describes five scientific instruments for 
measuring pressure: the barometer, Bourdon-tube 
gage, piezometer, manometer, and transducer.  

 

1) Barometer 

An instrument that is used to measure atmospheric 
pressure is called a barometer. The most common 
types are the mercury barometer and the aneroid 
barometer. A mercury barometer is made by inverting 
a mercury-filled tube in a container of mercury as 
shown in Fig. 3.8. The pressure at the top of the 
mercury barometer will be the vapor pressure of 
mercury, which is very small: pv = 2.4 × 10-6 atm at 
20°C. Thus, atmospheric pressure will push the 
mercury up the tube to a height h. The mercury 
barometer is analyzed by applying the hydrostatic 
equation: 



Figure 3.8 A mercury barometer. 

Thus, by measuring h, local atmospheric pressure can be determined using the  

above equation) 



2) Bourdon-Tube Gage 

A Bourdon-tube gage, Fig. 3.9, measures pressure by 
sensing the deflection of a coiled tube. The tube has 
an elliptical cross section and is bent into a circular 
arc, as shown in Fig. 3.9b. When atmospheric 
pressure (zero gage pressure) prevails, the tube is 
undeflected, and for this condition the gage pointer is 
calibrated to read zero pressure. When pressure is 
applied to the gage, the curved tube tends to 
straighten (much like blowing into a party favor to 
straighten it out), thereby actuating the pointer to read 
a positive gage pressure. The Bourdon-tube gage is 
common because it is low cost, reliable, easy to 
install, and available in many different pressure 
ranges. There are disadvantages: dynamic pressures 
are difficult to read accurately; accuracy of the gage 
can be lower than other instruments; and the gage can 
be damaged by excessive pressure pulsations. 



Figure 3.9 Bourdon-tube gage. 
(a) View of typical gage. 
(b) Internal mechanism (schematic). 

Bourdon-Tube Gage 



3) Piezometer 
A piezometer is a vertical tube, usually transparent, in which a liquid 

rises in response to a positive gage pressure. For example, Fig. 

3.10 shows a piezometer attached to a pipe. Pressure in the pipe 

pushes the water column to a height h, and the gage pressure at 

the center of the pipe is p = gh, which follows directly from the 

hydrostatic equation (3.7c). The piezometer has several 

advantages: simplicity, direct measurement (no need for 

calibration), and accuracy. However, a piezometer cannot easily 

be used for measuring pressure in a gas, and a piezometer is 

limited to low pressures because the column height becomes too 

large at high pressures. 

Figure 3.10 Piexometer attached to a pipe. 

Think? This chapter about static fluid, then 

how does moving fluid affect pressure measurement? 



4) Manometer 

A manometer, often shaped like the letter “U,” is a device for 

measuring pressure by raising or lowering a column of 

liquid. For example, Fig. 3.11 shows a U-tube manometer 

that is being used to measure pressure in a flowing fluid. 

In the case shown, positive gage pressure in the pipe 

pushes the manometer liquid up a height Dh.  To use a 

manometer, engineers relate the height of the liquid in the 

manometer to pressure. 

Figure 3.11 U-tube manometer. 



EXAMPLE 3.6 PRESSURE MEASUREMENT 

(U-TUBE MANOMETER) 
Water at 10°C is the fluid in the pipe of Fig. 3.11, and mercury is 

the manometer fluid. If the deflection Dh is 60 cm and ℓ is 180 

cm, what is the gage pressure at the center of the pipe? 

1. Water (10°C), Table A.5, g = 9810 N/m3. 

2. Mercury, Table A.4: g = 133, 000 N/m3. 

Solution 

1. Calculate the pressure at point 2 using the hydrostatic 

equation 

 

 

 

2. Find the pressure at point 3. 



When a fluid-fluid interface is flat, pressure is 

constant across the interface. Thus, at the oil-

water interface 

 

3. Find the pressure at point 4 using the 

hydrostatic equation. 



EXAMPLE 3.7 MA%OMETER A%ALYSIS 

Sketch: What is the pressure of the air in the 

tank if ℓ1 = 40 cm, ℓ2 = 100 cm, and ℓ3 = 80 

cm? 



Solution 

Manometer equation 



Because the manometer configuration shown in Fig. 3.12 is 

common, it is useful to derive an equation specific to this 

application. To begin, apply the manometer equation (3.18) 

between points 1 and 2: 

 
 

Simplifying gives 

 

Dividing through by gA gives 

 

 

Recognize that the terms on the left side of the equation are 

piezometric head and rewrite to give the final result: 



Figure 3.12 Apparatus for determining change in piezometric head  
corresponding to flow in a pipe. 



EXAMPLE 3.8 CHANGE IN PIEZOMETRIC 

HEAD FOR PIPE FLOW 

A differential mercury manometer is connected to 

two pressure taps in an inclined pipe as shown 

in Fig. 3.12. Water at 10°C is flowing through 

the pipe. The deflection of mercury in the 

manometer is 2.5 cm. Find the change in 

piezometric pressure and piezometric head 

between points 1 and 2. 
 

1. Water (10°C), Table A.5, g = 9.81 kN/m3. 

2. Mercury, Table A.4: g = 133 kN/m3. 

 



Solution 

Difference in piezeometric head 

 

 

 

 

Piezometric pressure 



5) Pressure Transducers 

A pressure transducer is a device that converts pressure to an 
electrical signal. Modern factories and systems that involve flow 
processes are controlled automatically, and much of their 
operation involves sensing of pressure at critical points of the 
system. Therefore, pressure-sensing devices, such as pressure 
transducers, are designed to produce electronic signals that 
can be transmitted to oscillographs or digital devices for 
recordkeeping or to control other devices for process operation. 
Basically, most transducers are tapped into the system with one 
side of a small diaphragm exposed to the active pressure of the 
system. When the pressure changes, the diaphragm flexes, 
and a sensing element connected to the other side of the 
diaphragm produces a signal that is usually linear with the 
change in pressure in the system. There are many types of 
sensing elements; one common type is the resistance-wire 
strain gage attached to a flexible diaphragm as shown in Fig. 
3.13. As the diaphragm flexes, the wires of the strain gage 
change length, thereby changing the resistance of the wire. 
This change in resistance is converted into a voltage change 
that can then be used in various ways. 



Figure 3.13 Schematic diagram of strain-gage pressure transducer. 

Another type of pressure transducer used for measuring rapidly 

changing high pressures, such as the pressure in the cylinder head of 

an internal combustion engine, is the piezoelectric transducer 2. These 

transducers operate with a quartz crystal that generates a charge when 

subjected to a pressure. Sensitive electronic circuitry is required to 

convert the charge to a measurable voltage signal. 



3.4 Forces on Plane Surfaces (Panels) 

This section explains how to represent hydrostatic pressure 

distributions on one face of a panel with a resultant force that 

passes through a point called the center of pressure. 

 

Uniform Pressure Distribution 

A plane surface or panel is a flat surface of arbitrary shape. A 

description of the pressure at all points along a surface is called 

a pressure distribution. When pressure is the same at every 

point, as shown in Fig. 3.14a, the pressure distribution is called 

a uniform pressure distribution. The pressure distribution in Fig. 

3.14a can be represented by a resultant force as shown in Fig. 

3.14b. For a uniform pressure distribution, the magnitude of the 

resultant force is F where 



Figure 3.14 

(a) Uniform pressure distribution, and (b) equivalent force. 

and     is the average pressure. The resultant force F passes 

through a point called the center of pressure (CP).  Notice that the 

CP is represented using a circle with a “plus” inside. For a uniform 

pressure distribution, the CP is located at the centroid of area of 

the panel. 



Hydrostatic Pressure Distribution 
When a pressure distribution is produced by a fluid in hydrostatic 

equilibrium, then the pressure distribution is called a hydrostatic 
pressure distribution. Notice that a hydrostatic pressure distribution is 

linear and that the arrows representing pressure act normal to the 

surface. In Fig. 3.15b, the pressure distribution is represented by a 

resultant force that acts at the CP. Notice that the CP is located 

below the centroid of area. 

Figure 3.15 

(a) Hydrostatic pressure distribution, and 
(b) resultant force F acting at the center of pressure. 



Magnitude of Resultant Hydrostatic Force 

To derive an equation for the resultant force on a 

panel under hydrostatic loading, sum-up forces 

using an integral. The situation is shown in Fig. 

3.16. Line AB is the edge view of a panel 

submerged in a liquid. The plane of this panel 

intersects the horizontal liquid surface at axis 0-

0 with an angle a. The distance from the axis 0-

0 to the horizontal axis through the centroid of 

the area is given by    . The distance from 0-0 to 

the differential area dA is y. The pressure on 

the differential area is: 



Figure 3.16 Distribution of hydrostatic pressure on a plane surface. 



The differential force is 

 

The total force on the area is 

 

 

In the above equation, g and sin a are constants. Thus 

 

 

Now the integral in right hand side is the first moment of the area. 

Consequently, this is replaced by its equivalent,   A. Therefore 

 

           or 

The product of the variables within the parentheses is the 

pressure at the centroid of the area. Thus 



Line of Action of the Resultant Force 
A general equation for the vertical location of the CP is derived 

next. The initial situation is shown in Fig. 3.16. The torque due 

to the resultant force F will balance the torque due to the 

pressure distribution. 

 
The differential force dF is given by dF = p dA; therefore, 

 

 
Also, p = gy sin a so 

 

 

Since g and sina are constants, 



The integral on the right-hand side of Eq. (3.25) is the second 

moment of the area (often called the area moment of inertia). 

This shall be identified as I0. However, for engineering 

applications it is convenient to express the second moment with 

respect to the horizontal centroidal axis of the area. Hence by 

the parallel-axis theorem, 

 

which leads to 

 

 

However, since F = g sinaA. Therefore, 



Notes on previous equations 
The area moment of inertia    is taken about a horizontal axis that 

passes through the centroid of area. Formulas for   are 
presented in Fig. A.1. The slant distance    measures the length 
from the surface of the liquid to the centroid of the panel along 
an axis that is aligned with the “slant of the panel” as shown in 
Fig. 3.16. 

 

It is seen that the Center of Pressure (CP) will be situated below 
the centroid. The distance between the CP and the centroid 
depends on the depth of submersion, which is characterized by 

        and on the panel geometry, which is characterized by /A. 

 

Due to assumptions in the derivations, there are several 
limitations on the previous equations. First, they only apply to a 
single fluid of constant density. Second, the pressure at the 
liquid surface needs to be p = 0 gage to correctly locate the CP. 
Third, the last equation gives only the vertical location of the 
CP, not the lateral location. 



EXAMPLE 3.9 HYDROSTATIC FORCE DUE TO 

CONCRETE 
Determine the force acting on one side of a concrete form 2.44 m 

high and 1.22 m wide that is used for pouring a basement wall. 

The specific weight of concrete is 23.6 kN/m3. 

Solution 
The force, 

 

 

 

 

 

Hence, the resultant force 



EXAMPLE 3.10 FORCE TO OPEN AN ELLIPTICAL 

GATE 

An elliptical gate covers the end of a pipe 4 m in diameter. If the 

gate is hinged at the top, what normal force F is required to 

open the gate when water is 8 m deep above the top of the pipe 

and the pipe is open to the atmosphere on the other side? 

Neglect the weight of the gate. 

Properties: Water (10°C), Table A.5: g = 9810 N/m3. 

Free Body Diagram 



Solution 
1) Hydrostatic (resultant) force: 

 

A = area of elliptical panel (using Fig. A.1 to find formula) 

 

 

Calculate resultant force 

 

2) Center of pressure 

     = 12.5 m, where    is the slant distance from the water surface to 

the centroid. Area moment of inertia   of an elliptical panel using a 

formula from Fig. A.1 

 

 

Finding center  

of pressure 

 



3.5 Forces on Curved Surfaces 

This section describes how to calculate forces on surfaces that 

have curvature. Consider the curved surface AB in Fig. 3.17a. 

The goal is to represent the pressure distribution with a 

resultant force that passes through the center of pressure. One 

approach is to integrate the pressure force along the curved 

surface and find the equivalent force. However, it is easier to 

sum forces for the free body shown in the upper part of Fig. 

3.17b. The lower sketch in Fig. 3.17b shows how the force 

acting on the curved surface relates to the force F acting on the 

free body. Using the FBD and summing forces in the horizontal 

direction shows that 

 

The line of action for the force FAC is through the center 

of pressure for side AC, as discussed in the previous 

• section, and designated as ycp. 



EXAMPLE 3.11 HYDROSTATIC FORCE ON A 

CURVED SURFACE 
Surface AB is a circular arc with a radius of 2 m and a width of 1 

m into the paper. The distance EB is 4 m. The fluid above 

surface AB is water, and atmospheric pressure prevails on the 

free surface of the water and on the bottom side of surface AB. 

Find the magnitude and line of action of the hydrostatic force 

acting on surface AB. 



Solution 
1. Equilibrium in the horizontal direction 

 

 

2. Equilibrium in the horizontal direction 

 -Vertical force on side CB 

 

Weight of the water in volume ABC: 

 

 

 

Thus, total force in vertical direction Fy is: 



3.6 Buoyancy 

A buoyant force is defined as the upward force that is produced on a body that 
is totally or partially submerged in a fluid when the fluid is in a gravity field. 
Buoyant forces are significant for most problems that involve liquids. 
Buoyant forces are sometimes significant in problems involving gases, for 
example, a weather balloon. 

 

The Buoyant Force Equation 

The initial situation for the derivation is shown in Fig. 3.20. Consider a body 
ABCD submerged in a liquid of specific weight g. The sketch on the left 
shows the pressure distribution acting on the body. The pressures acting on 
the lower portion of the body create an upward force equal to the weight of 
liquid needed to fill the volume above surface ADC. The upward force is 

 

 

  

where      is the volume of the body (i.e., volume ABCD) and     is the volume of 
liquid above the body (i.e., volume ABCFE ). The pressures acting on the 
top surface of the body create a downward force equal to the weight of the 
liquid above the body: 

 



Subtracting the downward force from the upward force gives the 

net or buoyant force FB acting on the body: 

 

 

Hence, the net force or buoyant force (FB) equals the weight of 

liquid that would be needed to occupy the volume of the body. 

 

Figure 3.20 Two views of a body immersed in a liquid. 



The Hydrometer 
A hydrometer (Fig. 3.22) is an instrument 

for measuring the specific gravity of 
liquids. It is typically made of a glass 
bulb that is weighted on one end so 
the hydrometer floats in an upright 
position. A stem of constant diameter 
is marked with a scale, and the 
specific weight of the liquid is 
determined by the depth at which the 
hydrometer floats. The operating 
principle of the hydrometer is 
buoyancy. In a heavy liquid (i.e., high 
g), the hydrometer will float shallower 
because a lesser volume of the liquid 
must be displaced to balance the 
weight of the hydrometer. In a light 
liquid, the hydrometer will float deeper. 

Figure 3.22 Hydrometer 



3.7 Stability of Immersed and Floating Bodies 

This section describes how to determine whether an object will tip 
over or remain in an upright position when placed in a liquid. 
This topic is important for the design of objects such as ships 
and buoys. 

Immersed Bodies 

When a body is completely immersed in a liquid, its stability 
depends on the relative positions of the center of gravity of the 
body and the centroid of the displaced volume of fluid, which is 
called the center of buoyancy. If the center of buoyancy is 
above the center of gravity, such as in Fig. 3.23a, any tipping of 
the body produces a righting couple, and consequently, the 
body is stable. However, if the center of gravity is above the 
center of buoyancy, any tipping produces an increasing 
overturning moment, thus causing the body to turn through 
180°. This is the condition shown in Fig. 3.23c. Finally, if the 
center of buoyancy and center of gravity are coincident, the 
body is neutrally stable—that is, it lacks a tendency for righting 
or for overturning, as shown in Fig. 3.23b. 



Figure 3.23 Conditions of stability for immersed 
bodies. 
(a) Stable. 
(b) eutral. 
(c) Unstable. 



Figure 3.24 Ship  
stability relations. 

Floating Bodies 

The question of stability is more involved for floating bodies than for immersed bodies 

because the center of buoyancy may take different positions with respect to the center of 

gravity, depending on the shape of the body and the position in which it is floating. For 

example, consider the cross section of a ship shown in Fig. 3.24a.  Here the center of 

gravity G is above the center of buoyancy C. Therefore, at first glance it would appear 

that the ship is unstable and could flip over. However, notice the position of C and G 
after the ship has taken a small angle of heel. As shown in Fig. 3.24b, the center of 

gravity is in the same position, but the center of buoyancy has moved outward of the 

center of gravity, thus producing a righting moment. A ship having such characteristics is 

stable. 



EXAMPLE 3.12 BUOYA&T FORCE O& A 

METAL PART 
A metal part (object 2) is hanging by a thin cord from a floating 

wood block (object 1). The wood 

block has a specific gravity S1 = 0.3 and dimensions of 50 × 50 × 

10 mm. The metal part has a volume of 6600 mm3. Find the 

mass m2 of the metal part and the tension T in the cord. 

Properties: 

1. Water (15°C),  

Table A.5: g = 9800 N/m3. 

2. Wood: S1 = 0.3. 



Solution 
1. FBDs 

2. Force equilibrium (vertical direction) 

applied to block 

 

· Buoyant force FB1 for the submerged 

 

 

 

· Weight of the block 

 

 

 

· Tension in the cord 

FBD 



3. Force equilibrium (vertical direction) applied to metal part 

· Buoyant force 

 

 

· Equilibrium equation 

 

 

4. Mass of metal part 



Suggested Problems 



3.4 The Crosby gage tester shown in the figure is used to calibrate or to test 

pressure gages. When the weights and the piston together weigh 140 N, the 

gage being tested indicates 200 kPa. If the piston diameter is 30 mm, what 

percentage of error exists in the gage? 

Answer: 

% error = 1.01% 

 

 

 

 

3.11 For the closed tank with Bourdon-tube gages tapped into it, what is the 

specific gravity of the oil and the pressure reading on gage C? 



3.18 A tank is fitted with a manometer on the side, as shown. The liquid in the 
bottom of the tank and in the manometer has a specific gravity (S) of 3.0. 
The depth of this bottom liquid is 20 cm. A 15 cm layer of water lies on top of 
the bottom liquid. Find the position of the liquid surface in the manometer. 

 

Answer: 

Fh = 5.00 cm 

 

 

 

 

3.30 Is the gage pressure at the center of the pipe (a) negative, (b) zero, or (c) 
positive? Neglect surface tension effects and state your rationale. Note, 
solve in SI units. 

 

Answer: 

p(center of pipe) = 0.0 lbf/ft2= 0.0 kPa 



3.39 Find the pressure at the center of  

pipe A. T = 10°C. 

 

 

 

 

 

 

 

 

3.58 As shown, a round viewing window of diameter D = 0.8 m is situated in a 

large tank of seawater (S = 1.03). The top of the window is 1.2 m below the 

water surface, and the window is angled at 60° with respect to the 

horizontal. Find the hydrostatic force acting on the window and locate the 

corresponding CP. 

Answer: 

 



3.40 Determine (a) the difference in pressure and (b) the 

difference in piezometric head between points A and B. The 

elevations zA and zB are 10 m and 11 m, respectively,  

ℓ1 = 1 m, and the manometer deflection ℓ2 is 50 cm. 

 

Answer: 

pA - pB = 4.17 kPa, hA - hB = -0.50 m 



3.93 Determine the minimum volume of concrete (g = 23.6 kN/m3) needed to 

keep the gate (1 m wide) in a closed position, with ℓ = 2 m. Note the hinge at 

the bottom of the gate.  
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This photograph shows the eye of a 
hurricane. The motion is the result of 

pressure variations. 



Overall Look 
In this chapter the pressure variation in flowing fluids will 

be addressed. The concepts of pathlines and 

streamlines are introduced to visualize and 

understand fluid motion. The definition of fluid velocity 

and acceleration leads to an application of Newton's 

second law relating forces on a fluid element to the 

product of mass and acceleration. These relationships 

lead to the Bernoulli equation, which relates local 

pressure and elevation to fluid velocity and is 

fundamental to many fluid mechanic applications. This 

chapter also introduces the idea of fluid rotation and 

the concept of irrotationality. 



4.1 Descriptions of Fluid Motion 

Engineers have developed ways to describe fluid flow 
patterns and to identify important characteristics of 
the flow field. 

  

Streamlines and Flow Patterns 

To visualize the flow field it is desirable to construct lines 
that show the flow direction. Such a construction is 
called a flow pattern, and the lines are called 
streamlines. The streamline is defined as a line drawn 
through the flow field in such a manner that the local 
velocity vector is tangent to the streamline at every 
point along the line at that instant. Thus the tangent of 
the streamline at a given time gives the direction of the 
velocity vector. A streamline, however, does not 
indicate the magnitude of the velocity. The flow 
pattern provided by the streamlines is an 
instantaneous visualization of the flow field. 

 



An example of streamlines and a flow pattern is shown 
in Fig. 4.1a for water flowing through a slot in the side 
of a tank. The velocity vectors have been sketched at 
three different locations: a, b, and c. The streamlines, 
according to their definition, are tangent to the velocity 
vectors at these points. Also, the velocities are parallel 
to the wall in the wall region, so the streamlines 
adjacent to the wall follow the contour of the wall. 

  

Whenever flow occurs around a body, part of it will go to 
one side and part to the other as shown in Fig. 4.1b 
for flow over an airfoil section. The streamline that 
follows the flow division (that divides on the upstream 
side and joins again on the downstream side) is called 
the dividing streamline. At the location where the 
dividing streamline intersects the body, the velocity will 
be zero with respect to the body. This is the stagnation 
point. 

 



Figure 4.1 Flow through an opening in a tank and over  
an airfoil section. 



Another example of streamlines is shown in Fig. 4.2. 

These are the streamlines predicted for the flow over 

an Volvo ECC prototype. Flow patterns of this nature 

allow the engineer to assess various aerodynamic 

features of the flow and possibly change the shape to 

achieve better performance, such as reduced drag. 

 

Figure 4.2 Predicted 
streamline pattern over the 
Volvo ECC prototype. 
(Courtesy J. Michael Summa, 

Analytic Methods, Inc.) 



The velocity of the fluid may be expressed in the form  

    V = V(s,t) 

where s is the distance traveled by a fluid particle along 
a path, and t is the time, as shown in Fig. 4.3. Flows 
can be either uniform or nonuniform. In a uniform flow, 
the velocity does not change (magnitude and 
direction) along a fluid path; that is, 

 

  

 

Figure 4.3 Fluid particle moving 
 along a pathline. 



It follows that in uniform flow the fluid paths are straight 

and parallel as shown in Fig. 4.4 for flow in a pipe.  

Figure 4.4 Uniform flow in a pipe. 

(repeated) 



In nonuniform flow, the velocity changes along a fluid path, so 

 

 

For the converging duct in Fig. 4.5a, the magnitude of the velocity 

increases as the duct converges, so the flow is nonuniform. For 

the vortex flow shown in Fig. 4.5b, the magnitude of the velocity 

does not change along the fluid path, but the direction does, so 

the flow is nonuniform. 

Figure 4.5 Flow patterns for nonuniform flow. (a) Converging flow. (b) Vortex flow. 



Flows can be either steady or unsteady. In a steady flow 
the velocity at a given point on a fluid path does not 
change with time: 

 

 

The flow in a pipe, shown previously in Fig. 4.4, would 
be an example of steady flow if there was no change 
in velocity with time. An unsteady flow exists if 

 

 

If the flow in the pipe changed with time due to a valve 
opening or closing, the flow would be unsteady. 



Pathlines and Streaklines 

The pathline simply is the path of a fluid particle 
as it moves through the flow field. In other 
words, if a light were attached to a fluid particle, 
the trace that it makes would be the pathline.  

 

The streakline is the line generated by a tracer 
fluid, such as a dye, continuously injected into 
the flow field at a single point. 

 

In general, streamlines, pathlines are streaklines 
are different in an unsteady flow. But in a 
steady flow they are identical. 



Laminar and Turbulent Flow 

Laminar flow is a well-ordered state of flow in which 
adjacent fluid layers move smoothly with respect to 
each other. A typical laminar flow would be the flow of 
honey or thick syrup from a pitcher. Laminar flow in a 
pipe has a smooth, parabolic velocity distribution as 
shown in Fig. 4.7a. 

 

Turbulent flow is an unsteady flow characterized by 
intense cross-stream mixing. For example, the flow in 
the wake of a ship is turbulent. The eddies observed in 
the wake cause intense mixing. The transport of 
smoke from a smoke stack on a windy day also 
exemplifies a turbulent flow. The mixing is apparent as 
the plume widens and disperses. An instantaneous 
velocity profile for turbulent flow in a pipe is shown in 
Fig. 4.7b. 



Figure 4.7 Laminar and turbulent flow in a straight pipe.  
(a) Laminar flow. (b) Turbulent flow. 

In general, laminar pipe flows are associated with low 

velocities and turbulent flows with high velocities. 

Laminar flows can occur in small tubes, highly viscous 

flows, or flows with low velocities, but turbulent flows 

are, by far, the most common. 



Examples and Demonstration of 

Turbulent Flows 

Flow direction 

http://www.geafiltration.com/library/processing_considerations_milk.asp


One-Dimensional and Multi-Dimensional Flows 

The dimensionality of a flow field is characterized by the 
number of spatial dimensions needed to describe the 
velocity field.  

 

The definition is best illustrated by example. Fig. 4.8a 
shows the velocity distribution for an axisymmetric 
flow in a circular duct. The flow is uniform, or fully 
developed, so the velocity does not change in the flow 
direction (z). The velocity depends on only one 
dimension, namely the radius r, so the flow is one-
dimensional. Fig. 4.8b shows the velocity distribution 
for uniform flow in a square duct. In this case the 
velocity depends on two dimensions, namely x and y, 
so the flow is two-dimensional. Figure 4.8c also shows 
the velocity distribution for the flow in a square duct 
but the duct cross-sectional area is expanding in the 
flow direction so the velocity will be dependent on z as 
well as x and y. This flow is three-dimensional. 



Figure 4.8 Flow dimensionality: (a) one-dimensional flow,  
(b) two-dimensional flow, and (c) Three-dimensional flow. 



4.2 Acceleration 

The acceleration of a fluid particle as it moves 
along a pathline, as shown in Fig. 4.9, is the 
rate of change of the particle's velocity with 
time. The local velocity of the fluid particle 
depends on the distance traveled, s, and time,t. 
The local radius of curvature of the pathline is r. 
The components of the acceleration vector are 
shown in Fig. 4.9b. The normal component of 
acceleration an will be present anytime a fluid 
particle is moving on a curved path (i.e., 
centripetal acceleration). The tangential 
component of acceleration at will be present if 
the particle is changing speed 



Figure 4.9 Particle moving on a pathline.  
(a) Velocity. (b) Acceleration. 



Using normal and tangential components, the velocity of 
a fluid particle on a pathline (Fig. 4.9a) may be written 
as 

    V = V(s, t) et 

where V(s, t) is the speed of the particle, which can vary 
with distance along the pathline, s, and time, t. The 
direction of the velocity vector is given by a unit vector 
et. 

Using the definition of acceleration, 

 

 

To evaluate the derivative of speed in the above 
equation the chain rule for a function of two variables 
can be used. 

(4.1) 



In a time dt, the fluid particle moves a distance ds, so 

the derivative ds/dt corresponds to the speed V of the 

particle; becomes 

 

 

In Eq. (4.1), the derivative of the unit vector det/dt is 

nonzero because the direction of the unit vector 

changes with time as the particle moves along the 

pathline. The derivative is 

 

 

where en is the unit vector perpendicular to the pathline 

and pointing inward toward the center of curvature 1. 



Substituting the above into Eq. (4.1) gives the 

acceleration of the fluid particle: 

 

 

 

The interpretation of this equation is as follows. The 

acceleration on the left side is the value recorded at a 

point in the flow field if one were moving with the fluid 

particle past that point. The terms on the right side 

represent another way to evaluate the fluid particle 

acceleration at the same point by measuring the 

velocity, the velocity gradient, and the velocity change 

with time at that point and reducing the acceleration 

according the terms to the equation. 

(4.5) 



Convective, Local, and Centripetal Acceleration 

Inspection of Eq. (4.5) reveals that the acceleration 

component along a pathline depends on two terms. 

The variation of velocity with time at a point on the 

pathline, namely ∂V / ∂t, is called the local 
acceleration. In steady flow the local acceleration is 

zero. The other term, V∂V / ∂s, depends on the 

variation of velocity along the pathline and is called the 

convective acceleration. In a uniform flow, the 

convective acceleration is zero. The acceleration with 

magnitude V2 / r, which is normal to the pathline and 

directed toward the center of rotation, is the 

centripetal acceleration. 



EXAMPLE 4.1 EVALUATING ACCELERATION IN A 

NOZZLE 

A nozzle is designed such that the velocity in the nozzle 

varies as  

 

where the velocity u0 is the entrance velocity and L is the 

nozzle length. The entrance velocity is 10 m/s, and the 

length is 0.5 m. The velocity is uniform across each 

section. Find the acceleration at the station halfway 

through the nozzle (x/L = 0.5). 



Solution 

The distance along the pathline is x, so s in Eq. 4.5 

becomes x and V becomes u. The pathline is straight, 

so r → ∞. 

1. Evaluation of terms: 

Convective acceleration 

 



Evaluation at x/L = 0.5: 

 

 

 

Local acceleration: 

 

 

Centripetal acceleration: 

 

2. Acceleration: 



4.3 Euler's Equation 

In Chapter 3 the hydrostatic equations were 

derived by equating the sum of the forces on a 

fluid element equal to zero. The same ideas are 

applied in this section to a moving fluid by 

equating the sum of the forces acting on a fluid 

element to the element's acceleration, 

according to Newton's second law. The 

resulting equation is Euler's equation, which 

can be used to predict pressure variation in 

moving fluids. 



Development of Euler’s Equation 

Consider the cylindrical element in Fig. 4.11a oriented in 

an arbitrary direction ℓ with cross-sectional area DA in 

a flowing fluid. The element is oriented at an angle a 

with respect to the horizontal plane (the x-y plane) as 

shown in Fig. 4.11b. The element has been isolated 

from the flow field and can be treated as a “free body” 

where the presence of the surrounding fluid is 

replaced by pressure forces acting on the element. 

Neglect viscous forces. 



Figure 4.11 Free-body diagram for fluid element 
accelerating the ℓ-direction.  (a) Fluid element.  

(b) Orientation of element in coordinate system. 



Here the element is being accelerated in the ℓ-direction. Note that 

the coordinate axis z is vertically upward and that the pressure 

varies along the length of the element. Applying Newton's 

second law in the ℓ-direction results in 

 

 

 

The mass of the fluid element is 

 

 

The net force due to pressure in the ℓ-direction is 

 

 

Any pressure forces acting on the side of the cylindrical element 

will not contribute to a force in the ℓ-direction. 

m = r DA Dℓ 

SFℓ = m aℓ 

F pressure + F gravity = m aℓ 



The force due to gravity is the component of weight in the ℓ-

direction 

    

notes that sin α = Dz/Dℓ, and substitute back leads to 

 

 

Substitute for the weight D W = gDℓDA and rearrange; 

 

 

Taking the limit as 'ℓ approaches zero 

 

 

This equation applies to both incompressible and compressible 

fluids. 

 

Fgravity = -DWℓ= DW sin a 

-Dp DA + DW Dz/Dℓ = r DA Dℓ aℓ 



For incompressible fluids g is constant, hence 

 

 

 

This is the Euler’s equation for motion of fluid. It shows that the 

acceleration is equal to the change in piezometric pressure with 

distance, and the minus sign means that the acceleration is in 

the direction of decreasing piezometric pressure. The 

assumption went into this equations are: 

1- In viscid (neglect viscous forces) 

2- Incompressible 

 

In a static body of fluid, Euler's equation reduces to the hydrostatic 

differential equation, 
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Euler's equation can be applied to find the pressure distribution 

across streamlines in rectilinear flow. Consider the flow with 

parallel streamlines adjacent a wall, Fig. 4.12. In the direction 

normal to the wall, the n direction, the acceleration is zero. 

Applying Euler's eqn in the n direction gives  ∂/∂n(p + gz) = 0, 

so the piezometric pressure is constant in the normal direction. 

Figure 4.12 “Normal direction to parallel stream surface 



EXAMPLE 4.2 APPLICATIO OF EULER'S 

EQUATIO TO ACCELERATIO OF A FLUID 

A column of water in a vertical tube is being accelerated 

by a piston in the vertical direction at 100 m/s2. The 

depth of the water column is 10 cm. Find the gage 

pressure on the piston. The water density is 103 kg/m3. 

Solution 

1. Because the acceleration is 

constant there is no dependence 

on time so the partial derivative in 

Euler's equation can be replaced 

by an ordinary derivative. Euler's 

equation in z-direction: 



 

 
2. Integration between sections 1 and 2: 

 

 

 

 

3. Substitution of limits: 

 

4. Evaluation of pressure: 



EXAMPLE 4.3 PRESSURE IN A DECELERATIG TANK 

OF LIQUID 

The tank on a trailer truck is filled completely with gasoline, which 

has a specific weight of 42 lbf/ft3 (6.60 kN/m3). The truck is 

decelerating at a rate of 10 ft/s2 (3.05 m/s2). 

(a) If the tank on the trailer is 20 ft (6.1 m) long and if the 

pressure at the top rear end of the tank is atmospheric, what 

is the pressure at the top front? 

(b) (b) If the tank is 6 ft (1.83 m) high, what is the maximum 

pressure in the tank? 



Solution 

1.  Euler's equation along the top of the tank 

 

 

Integration from back 1 to front 2 

 

 

2. Evaluation of p2 with p1 = 0 

 

 

 



3. Euler's equation in vertical direction 

 

 

4. For vertical direction, az = 0. Integration from top of tank 2 to 

bottom 3: 

p2 + gz2 = p3 + gz3 

p3 = p2 + g(z2 –z3) 



4.4 Pressure Distribution in Rotating Flows 

Situations in which a fluid rotates as a solid body are found in 

many engineering applications. One common application is the 

centrifugal separator. The centripetal accelerations resulting 

from rotating a fluid separate the heavier elements from the 

lighter elements as the heavier elements move toward the 

outside and the lighter elements are displaced toward the 

center. A milk separator operates in this fashion, as does a 

cyclone separator for removing particulates from an air stream. 



Apply Euler's equation in the direction normal to 

the streamlines and outward from the center of rotation. In this 

case the fluid elements rotate as a rigid body, so the direction ℓ 

in Euler's equation is replaced by r giving 

 

 

where the partial derivative has been replaced by an ordinary 

derivative since the flow is steady and a function only of the 

radius r. The acceleration in the radial direction (away from the 

center of curvature) is  opposite to the centripetal acceleration, 

 

 

Hence the Euler’s equation becomes, 



For a liquid rotating as a rigid body V = wr, and substituting back 

into the Euler’s equation 

 

 

Separating variables and integrating yields 

 

 

  or, 

 

 

The equation can also be written as, 

 

 

 

This equation describes how pressure changes in rotating flows. 

= r rw2 



EXAMPLE 4.4 SURFACE PROFILE OF ROTATING 

LIQUID 

A cylindrical tank of liquid shown in the figure is rotating as a solid 

body at a rate of 4 rad/s. The tank diameter is 0.5 m. The line 

AA depicts the liquid surface before rotation, and the line A′ A′ 
shows the surface profile after rotation has been established. 

Find the elevation difference between the liquid at the center 

and the wall during rotation. 

Pathlines when 

viewed from top 

2 

1 r 



Solution 

1. Equation (4.13a) applied between points 1 and 2. 

 

 

The pressure at both points is atmospheric, so p1 = p2 and the 

pressure terms cancel out. At point 1, r1 = 0, and at point 2, r 
= r2. The equation reduces to 

 

 

 

 

2. Evaluation of elevation difference: 



EXAMPLE 4.5 ROTATING MANOMETER TUBE 

When the U-tube is not rotated, the water stands in the tube as 

shown. If the tube is rotated about the eccentric axis at a rate of 

8 rad/s, what are the new levels of water in the tube? 



Solution 

1. Application of pressure variation for rotating flows between 

top of leg on left (1) and on right (2): 

 

 

 

 

 

 

 

2. The sum of the heights in each leg is 36 cm. 

 

Solution for the leg heights: 



4.5 The Bernoulli Equation Along a Streamline 

From the dynamics of particles in solid-body 

mechanics, one knows that integrating 

Newton's second law for particle motion along a 

path provides a relationship between the 

change in kinetic energy and the work done on 

the particle. Integrating Euler's equation along a 

pathline in the steady flow of an incompressible 

fluid yields an equivalent relationship called the 

Bernoulli equation. 

 



Derivation 

The Bernoulli equation is developed by applying Euler's equation 

along a pathline with the direction , ℓ replaced by s, the distance 

along the pathline, and the acceleration aℓ replaced by at, the 

direction tangent to the pathline. Euler's equation becomes 

 

 

The tangential component of acceleration is given by: 

 

 

For a steady flow, the local acceleration is zero and the pathline 

becomes a streamline. Also, the properties along a streamline 

depend only on the distance s, so the partial derivatives 

become ordinary derivatives. 



Moving all the terms to one side yields 

 

 

  or 

 
where C is a constant. This is known as the Bernoulli equation, 

which states that the sum of the piezometric pressure (p + γz) 

and kinetic pressure (ρV2/2)* is constant along a streamline for 

the steady flow of an incompressible, inviscid fluid. Dividing the 

by the specific weight yields the equivalent form of the Bernoulli 

equation along a streamline, namely 

 

 

 

where h is the piezometric head and (V2/2 g) is the velocity head. 



In words, 

 

 

 

• The concept underlying the Bernoulli equation can be illustrated 

by considering the flow through the inclined venturi 

(contraction-expansion) section as shown in Fig. 4.13. This 

configuration is often used as a flow metering device. The 

reduced area of the throat section leads to an increased 

velocity and attendant pressure change. The streamline is the 

centerline of the venturi. Piezometers are tapped into the wall at 

three locations, and the height of the liquid in the tube above 

the centerline is p/γ. The elevation of the centerline (streamline) 

above a datum is z. The location of the datum line is arbitrary. 



The constant in the Bernoulli equation is the same at all three 

locations, so 

Figure 4.13 Piezometric and velocity head variation for flow through a venturi section. 



The assumptions for Bernoulli equation: 

1) Flow is steady 

2) Flow along streamlines 

3) Fluid is inviscid 

4) Fluid is incompressible 

 

NOTE:   

The fact that the Bernoulli equation has been derived for 

an inviscid fluid does not limit its application here. 

Even though the real fluid is viscous, the effects of 

viscosity are small for short distances. Also, the 

effects of viscosity on pressure change are 

negligible compared to the pressure change due to 

velocity variation. 



Application of the Bernoulli Equation 

The Bernoulli equation is often used to calculate the velocity in 

venturi configurations given the pressure difference between 

the upstream section and the throat section, as shown in 

Example 4.6 

 

EXAMPLE 4.6 VELOCITY IN A VENTURI SECTION 

Piezometric tubes are tapped into a venturi section as shown in 

the figure. The liquid is incompressible. The upstream 

piezometric head is 1 m, and the piezometric head at the throat 

is 0.5 m. The velocity in the throat section is twice large as in 

the approach section. Find the velocity in the throat section. 



Solution 
1. The Bernoulli equation with V2 = 2V1 

gives 



EXAMPLE 4.7 OUTLET VELOCITY FROM 

DRAININGTANK 

A open tank filled with water and drains through a port at the 

bottom of the tank. The elevation of the water in the tank is 10 

m above the drain. The drain port is at atmospheric pressure. 

Find the velocity of the liquid in the drain port. 



Solution 

1. The Bernoulli equation between points 1 and 2 on streamline: 

 

 

2. The pressure at the outlet and the tank surface are the same 

(atmospheric), so p1 = p2. The velocity at the tank surface is 

much less than in the drain port so . Solution for V2: 

 

 

 

 

3. Velocity calculation: 



Application of the Bernoulli Equation to Velocity 

Measurement Devices 

The Bernoulli equation can be used to reduce data for flow 

velocity measurements from a stagnation tube and a Pitot-static 

tube. 

Stagnation Tube 

A Stagnation tube (sometimes call a total head tube) is an open-

ended tube directed upstream in a flow and connected to a 

pressure sensor. Because the velocity is zero at the tube 

opening, the pressure measured corresponds to stagnation 

conditions. 

Consider the stagnation tube shown in Fig. 4.14. In this case the 

pressure sensor is a piezometer. The rise of the liquid in the 

vertical leg is a measure of the pressure. When the Bernoulli 

equation is written between points 0 and 1 on the streamline, 

one notes that z0 = z1. 



Therefore, the Bernoulli equation reduces to 

Figure 4.14 Stagnation tube 



The velocity at point 1 is zero (stagnation point). Hence, Eq. (4.19) 

simplifies to 

 

By the equations of hydrostatics (there is no acceleration normal 

to the streamlines where the streamlines are straight and 

parallel), p0 = gd and p1 = g(l + d). Therefore, 

 

 

which reduces to 

 

 

This equation will be referred to as the stagnation tube equation. 

Thus it is seen that a very simple device such as this curved 

tube can be used to measure the velocity of flow. 



Pitot-Static Tube 

The Pitot-static tube, named after the eighteenth-century 

French hydraulic engineer who invented it, is based on 

the same principle as the stagnation tube, but it is 

much more versatile than the stagnation tube. The 

Pitot-static tube, shown in Fig. 4.15, has a pressure 

tap at the upstream end of the tube for sensing the 

stagnation pressure. There are also ports located 

several tube diameters downstream of the front end of 

the tube for sensing the static pressure in the fluid 

where the velocity is essentially the same as the 

approach velocity. When the Bernoulli equation is 

applied between points 1 and 2 along the streamline 

shown in Fig. 4.15, the result is 



The result is 

Figure 4.15 Pitot-static tube. 

But V1 = 0, so solving that  

equation for V2 gives the  

Pitot-static tube equation 

Here V2 = V, where V is the 

velocity of the stream and pz,1 

and pz,2 are the piezometric 

pressures at points 1 and 

2, respectively. 



By connecting a pressure gage or manometer between the 

pressure taps shown in Fig. 4.15 one can easily measure the 

flow velocity with the Pitot-static tube. A major advantage of the 

Pitot-static tube is that it can be used to measure velocity in a 

pressurized pipe. 

 

If a differential pressure gage is connected across the taps, the 

gage measures the difference in piezometric pressure directly. 

Therefore Eq. (4.22) simplifies to 

 

 

where Dp is the pressure difference measured by the gage. 



EXAMPLE 4.8 APPLICATION OF PITOT EQUATION 

WITH MANOMETER 

 

A mercury manometer is 

connected to the Pitot-static 

tube in a pipe transporting 

kerosene as shown. If the 

deflection on the manometer is 

7 in., what is the kerosene 

velocity in the pipe? Assume 

that the specific gravity of the 

kerosene is 0.81. 



Solution 
1. Manometer equation between points 1 and 2 on Pitot-static tube: 

 

Or 

 

 

2. Substitution into the Pitot-static 

 tube equation: 

 

 

3. Velocity evaluation: 



EXAMPLE 4.9 PITOT TUBE APPLICATION WITH 

PRESSURE GAGE 

A differential pressure gage is connected across the taps of a Pitot-

static tube. When this Pitot-static tube is used in a wind tunnel 

test, the gage indicates a Dp of 730 Pa. What is the air velocity in 

the tunnel? The pressure and temperature in the tunnel are 98 kPa 

absolute and 20°C, respectively. 
Solution 
1. Density calculation:: 

2. Pitot-static tube equation with  

differential pressure gage: 



Application of the Bernoulli Equation to Flow of 

Gases 

In the flow of gases, the contribution of pressure change due to 

elevation difference is generally very small compared with the 

change in kinetic pressure. Thus it is reasonable when applying 

the Bernoulli equation to gas flow (such as air) to use the 

simpler formulation 



Applicability of the Bernoulli Equation to Rotating Flows 

The Bernoulli equation relates pressure, elevation, and kinetic 
pressure along streamlines in steady, incompressible flows 
where viscous effects are negligible. The question arises as to 
whether it can be used across streamlines; that is, could it be 
applied between two points on adjacent streamlines? The 
answer is provided by the form of the equation for pressure 
variation in a rotating flow, where the equation can be written as 

 

 

where ωr has been replaced by the velocity, V. Obviously the sign 
on the kinetic pressure term is different than the Bernoulli 
equation, so the Bernoulli equation does not apply across 
streamlines in a rotating flow. 

In the next section the concept of flow rotation is introduced. 
There is a situation in which flows have concentric, circular 
streamlines and yet the fluid elements do not rotate. In this 
“irrotational” flow, the Bernoulli equation is applicable across 
streamlines as well a along streamlines. 



4.6 Rotation and Vorticity 

Concept of Rotation 

The idea of fluid rotation is clear when a fluid rotates as a solid body. 

However, in other flow configurations it may not be so obvious. 

Consider fluid flow between two horizontal plates, Fig. 4.16, the 

bottom plate is stationary and the top is moving to the right with a 

velocity V. The velocity is linear; therefore, an element of fluid will 

deform as shown. Here it is seen that the element face that was 

initially vertical rotates clockwise, whereas the horizontal face does 

not. Is this a case of rotational motion? 

Figure 4.16 Rotation of a fluid  
Element in flow between a moving 
and stationary parallel plate. 



Rotation is defined as the average rotation of two initially mutually 
perpendicular faces of a fluid element. The test is to look at the 
rotation of the line that bisects both faces (a-a and b-b in Fig. 
4.16). The angle between this line and the horizontal axis is the 
rotation, θ. 

The general relationship between θ and the angles defining the 
sides is shown in Fig. 4.17, where θA is the angle of one side 
with the x-axis and the angle θB is the angle of the other side 
with the y-axis. The angle between the sides is 

 

 

Figure 4.17 Orientation of 
 rotated fluid element. 



so the orientation of the element (bisector) with respect to the x-

axis is 

 

The rotational rate of the element is, 

 

 

If          , the flow is irrotational. 

 

 



An expression will now be derived that will give the rate of rotation of the 

bisector in terms of the velocity gradients in the flow. Consider the 

element shown in Fig. 4.18. The sides of the element are initially 

perpendicular with lengths Dx and Dy. Then the element moves with 

time and deforms as shown with point 0 going to 0′, point 1 to 1′, and 

point 2 to 2′. After time Dt the horizontal side has rotated 

counterclockwise by DθA and the vertical side clockwise (negative 

direction) by - DθB. 

Figure 4.18 Translation and  
deformation of a fluid element. 



The y velocity component of point 1 is ν + (∂ν/∂x)6x, and the x 
component of point 2 is u + (∂u/∂y)6y. The net displacements of 

points 1 and 2 are: 

 

 

 

 

 

Referring to Fig. 4.18, the angles DθA and DθB are given by: 

for small angles 

for small angles 



Dividing the angles by 6t and taking the limit as 6t → 0, 

 

 

 

 

Substituting these results into Eq. (4.24) gives the rotational rate 

of the element about the z-axis (normal to the page), 

 

 

This component of rotational velocity is defined as Wz, so 

 

 

Likewise, the rotation rates about the other axes are 

 
and 



Note rotation is a vector, thus 

 
An irrotational flow (W = 0) requires that  all its components equal 

to zero, therefore, 

 

 

 

The most extensive application of these equations is in ideal flow 

theory. An ideal flow is the flow of an irrotational, 

incompressible fluid. Flow fields in which viscous effects are 

small can often be regarded as irrotational. In fact, if a flow of 

an incompressible, inviscid fluid is initially irrotational, it will 

remain irrotational. 

and and 



Vorticity 
Another property used frequently in fluid mechanics is vorticity, 

which is a vector equal to twice the rate-of rotation vector. The 
magnitude of the vorticity indicates the rotationality of a flow 
and is very important in flows where viscous effects dominate, 
such as boundary layer, separated, and wake flows. The 
vorticity equation is 

 

 

 

 

 

 

where    × V, from vector calculus means the curl of the vector V. 

 

An irrotational flow signifies that the vorticity vector is everywhere 
zero. 



EXAMPLE 4.10 EVALUATION OF ROTATION OF 

VELOCITY FIELD 

The vector V = 10xi - 10yj represents a two-dimensional velocity 

field. Is the flow irrotational? 

 

Solution 

Velocity components and derivatives 

 

 

 

 

Thus flow is irrotational. 



EXAMPLE 4.11 ROTATION OF A FLUID ELEMENT 

A fluid exists between stationary and moving parallel flat plates, and the 

velocity is linear as shown. The distance between the plates is 1 cm, 

and the upper plate moves at 2 cm/s. Find the amount of rotation that 

the fluid element located at 0.5 cm will undergo after it has traveled a 

distance of 1 cm. 

Solution 
1. Velocity distribution:  

Rotational rate 

 

 

 

2. Time to travel 1 cm: 

 

 

 

 

3. Amount of rotation 



Rotation in Flows with Concentric Streamlines 

It is interesting to realize that a flow field rotating with circular 

streamlines can be irrotational; that is, the fluid elements do not 

rotate. Consider the two-dimensional flow field shown in Fig. 

4.19. The circumferential velocity on the circular streamline is 

V, and its radius is r. The z-axis is perpendicular to the page. 

As before, the rotation of the element is quantified as before, 

which is 

Figure 4.19 Deformation of element  
in flow with concentric,  
circular streamlines. 



From geometry, the angle DθB is equal to the angle Dφ. The 
rotational rate of angle φ is V/r, so 

 

 

Using the same analysis for      , with r replacing x, yields 

 

 

Since V is a function of r only, the partial derivative can be 
replaced by the ordinary derivative. Therefore, the rotational 
rate about the z-axis is 

 

As a check on this equation, apply it to a flow rotating as a solid 
body. The velocity distribution is V = ωr, so the rate of rotation 
is 

 

 

as expected. This type of circular motion is called a “forced” vortex. 



If the flow is irrotational, then 

 

   

  or 

 

Integrating this equation leads to velocity distribution in this case, 

  
 

where C is a constant. In this case, the circumferential velocity 

varies inversely with r, so the velocity decreases with increasing 

radius. This flow field is known as a “free” vortex. The fluid 

elements go around in circles, but do not rotate. 

In a general flow there is both deformation and rotation. An ideal 

fluid is one that has no viscosity and is incompressible. If the 

flow of an ideal fluid is initially irrotational, it will remain 

irrotational. This is the foundation for many classical studies of 

flow fields in fluid mechanics. 



4.7 TheBernoulli Equation in Irrotational Flow 
Previously, the Bernoulli equation was developed for pressure 

variation between any two points along a streamline in steady 
flow with no viscous effects. In an irrotational flow, the 
Bernoulli equation is not limited to flow along streamlines 
but can be applied between any two points in the flow field. This 
feature of the Bernoulli equation is used extensively in classical 
hydrodynamics, the aerodynamics of lifting surfaces (wings), 
and atmospheric winds. 

The Euler equation applied in the n direction (normal to the 
streamline) is 

 

where the partial derivative of n is replaced by the ordinary 

derivative because the flow is assumed steady (no time 

dependence). Two adjacent streamlines and the direction n is the 

same as r as shown in Fig. 4.21.  

(4.35) 



The local fluid speed is V, and the local radius of curvature of the 

streamline is r. The acceleration normal to the streamline is the 

centripetal acceleration, so 

where the negative sign occurs because the direction n is 

outward from the center of curvature and the centripetal 

acceleration is toward the center of curvature.  

Figure 4.21 Two adjacent streamlines 
showing direction in between lines 



Using the irrotationality condition, the acceleration can be written 
as 

Also the derivative with respect to r can be expressed as a 

derivative with respect to n by 

because the direction of n is the same as r so dn/dr = 1.Equation 

(4.37) can be rewritten as 

(4.37) 



Substituting the expression for acceleration into Euler's equation, 

Eq. (4.35), and assuming constant density results in 

Recognizing that the derivative of a constant is zero, implies that 

sum of the terms between the parentheses are zero, hence 

which is the Bernoulli equation, and C is constant in the n 
direction (across streamlines). Thus for an irrotational flow, the 

constant C in the Bernoulli equation is the same across 

streamlines as well as along streamlines, so it is the same 

everywhere in the flow field.  



Equivalently, the sum of the piezometric head and velocity head 

 

Thus, for icompressible, inviscid, and irrotaional then between any 

two points in the flow field, 

EXAMPLE 4.12 VELOCITY AND PRESSURE 

DISTRIBUTION IN A FREE VORTEX 
A free vortex in air rotates in a horizontal plane and has a velocity 

of 40 m/s at a radius of 4 km from the vortex center. Find the 

velocity at 10 km from the center and the pressure difference 

between the two locations. The air density is 1.2 kg/m3. 



Solution.  

The velocity at location 10 km is 

 

 

The pressure difference is obtained by applying the Bernoulli 

equation for a horizontal plane; 



Pressure Variation in a Cyclonic Storm 

A cyclonic storm is characterized by rotating winds with 

a low-pressure region in the center. Tornadoes and 

hurricanes are examples of cyclonic storms. A simple 

model for the flow field in a cyclonic storm is a forced 

vortex at the center surrounded by a free vortex, as 

shown in Fig. 4.22. This model is used in several 

applications of vortex flows. In practice, however, 

there will be no discontinuity in the slope of the 

velocity distribution as shown in Fig. 4.22, but rather a 

smooth transition between the inner forced vortex and 

the outer free vortex. Still, the model can be used to 

make reasonable predictions of the pressure field. 



Figure 4.22 Combination of forced and free vortex to model  
a cyclonic storm. 



The model for the cyclonic storm is an illustration of where the 

Bernoulli equation can and cannot be used across 

streamlines. The Bernoulli equation cannot be used across 

streamlines in the vortex at the center because the flow is 

rotational. The pressure distribution in the forced vortex is given 

by the rotating flow equation. The Bernoulli equation can be 

used across streamlines in the free vortex since the flow is 

irrotational. 

 

Take point 1 as the center of the forced vortex and point 2 at the 

junction of the forced and free vortices, where the velocity is 

maximum. Let point 3 be at the extremity of the free vortex, 

where the velocity is essentially zero (V3=0) and the pressure is 

atmospheric pressure p0. Applying the Bernoulli equation 

between any arbitrary point in the free vortex and point 3, one 

can write 



Neglecting any elevation change, setting p0 = p3, and taking V3 as 

zero gives 

which shows that the pressure decreases toward the center. This 

decreasing pressure provides the centripetal force to keep the 

flow moving along circular streamlines. The pressure at point 2 is 

Applying the equation for pressure variation in rotating flows in the 

forced vortex region yields 



Neglect elevation change (air), at point 2, ωr2 is the maximum 

speed Vmax, and ωr is the speed of the fluid in the forced vortex. 

Solving for the pressure, one finds 

Substituting in the expression for p2 from free vortex region gives,  

This relates the pressure in the forced region to the outside 

pressure p0. The difference between the center of the cyclonic 

storm where the speed is zero and the outer edge of the storm is 



The Pressure Coefficient 

Describing the pressure distribution is important because pressure 

gradients influence flow patterns and pressure distributions 

acting on bodies create resultant forces. A common 

dimensionless group for describing the pressure distribution is 

called the pressure coefficient: 

where the subscript (0) is some reference point. 



EXAMPLE 4.13 PRESSURE DIFFERENCE IN TORNADO 

Assume that a tornado is modeled as the combination of a forced and a free 

vortex. The maximum wind speed in the tornado is 240 km/h. What is the 

pressure difference, in centimeters of mercury, between the center and the 

outer edge of the tornado? The density of the air is 1.2 kg/m3. 

 

Solution 

Using the equation developed earlier for cyclonic storms, 

The velocity Vmax = 66.67 m/s, hence 

 

 p1 – p0 = -1.2 x 66.672 

    = -5333.3 Pa 

Converting the pressure difference to centimeters of Hg, 

  p1 – p0 = gDh, ghg = 133.4 kN/m3 

 

 Dh = -4.0 cm of mercury. 



Pressure Distribution around a Circular Cylinder—Ideal Fluid 
If a fluid is nonviscous and incompressible (an ideal fluid) and if the flow is 

initially irrotational, then the flow will be irrotational throughout the entire 
flow field. If the flow is also steady, the Bernoulli equation will apply 
everywhere because all the restrictions for the Bernoulli equation will 
have been satisfied. The flow pattern about a circular cylinder with such 
restrictions is shown in Fig. 4.24a. 

Because the flow pattern is symmetrical with either the vertical or the 
horizontal axis through the center of the cylinder, the pressure 
distribution on the surface of the cylinder, obtained by application of the 
Bernoulli equation, is also symmetrical as shown in Fig. 4.24b. The 
pressure coefficient reduces to 

Figure 4.24 

Irrotational flow 
past a cylinder. 
(a) Streamline 
pattern. 
(b) Pressure 
distribution. 

If V=2V0 

Cp? 

V=? 



4.8 Separation 
Flow separation occurs when the fluid pathlines adjacent to body 

deviate from the contour of the body and produce a wake. This 

flow condition is very common. It tends to increase drag, reduce 

lift, and produce unsteady forces that can lead to structural 

failure. 

Examples of flow seperation are shown for a cylinder, airfoil and a 

square rod 



Figure 4.25 Flow of a real fluid past a circular cylinder. 
  (a) Flow pattern. 
  (b) Pressure distribution 



Figure 4.26 Smoke traces showing separation on an airfoil 
section at a large angle of attack. (Courtesy of Education 
Development Center, Inc. Newton, MA) 



Figure 4.27 Flow pattern past a square rod illustrating separation 
at the edges. 
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Approach to Analyses of Fluid flows 

The engineer can find flow properties (pressure and velocity) in a 

flow field in one of two ways. One approach is to generate a 

series of pathlines or streamlines through the field and 

determine flow properties at any point along the lines by 

applying equations like those developed in Chapter 4. This is 

called the Lagrangian approach. The other way is to solve a 

set of equations for flow properties at any point in the flow field. 

This is called the Eulerian approach (also called control 

volume approach).  

 

The foundational concepts for the Eulerian approach, or control 

volume approach, are developed and applied to the 

conservation of mass. This leads to the continuity equation, a 

fundamental and widely used equation in fluid mechanics. 

Control volume is a region in space that allows mass to flow in 

and out of it. 



5.1 Rate of Flow 
It is necessary to be able to calculate the flow rates 

through a control volume. Also, the capability to 
calculate flow rates is important in analyzing water 
supply systems, natural gas distribution networks, and 
river flows. 

 

Discharge 
The discharge, Q, often called the volume flow rate, is 

the volume of fluid that passes through an area per 
unit time. For example, when filling the gas tank of an 
automobile, the discharge or volume flow rate would 
be the gallons per minute flowing through the nozzle. 
Typical units for discharge are ft3/s (cfs), ft3/min (cfm), 
gpm, m3/s, and L/s. 



Figure 5.3 Volume of fluid in 
flow with uniform velocity 
distribution that passes 
section A-A in time t. 

To develop an equation for the discharge, consider a fluid flow 

with a uniform velocity flowing in a pipe, Figure 5.3. The volume of 

the fluid indicated that passes section A-A is during time interval Dt 

 

 D    = A Dl = A (V Dt) 

The volume flow rate is the volume indicated per unit time 

Taking the limit as Dt → 0 gives 

=Dl 



Volume flow rate is referred to as discharge and will be given the 

symbol Q. 

In general the velocity is not uniform and in this case the 

discharge is given by 

The mean velocity is defined as the discharge divided by the 

cross-sectional area, 

For laminar flows in circular pipes, the velocity profile is parabolic, 

and the mean velocity is half the centerline velocity. For turbulent 

pipe flow time-averaged velocity profile is nearly uniformly 

distributed across the pipe, so the mean velocity is fairly close to 

the velocity at the pipe center. It is customary to leave the bar off 

the velocity symbol and simply indicate the mean velocity with V. 



In Fig. 5.5 the flow velocity vector is not normal to the surface but 

is oriented at an angle θ with respect to the direction that is 

normal to the surface. The only component of velocity that 

contributes to the flow through the differential area dA is the 

component normal to the area, Vn. The differential discharge 

through area dA is 

Figure 5.5 Velocity 
vector oriented at 
angle θ with respect 
to normal. 

dAVdQ
n

=



Note that the dA is a vector with magnitude and direction normal 

to the area. But since Vn dA = abs(V) cos(q) dA = V.dA, then in 

general, the discharge is 

If the velocity is uniform, the discharge is 

Note, if the velocity is tangent to the surface area, then the 

discharge is zero. 



Mass Flow Rate 

The mass flow rate,    , is the mass of fluid passing through a 

cross-sectional area per unit time. The common units for mass 

flow rate are kg/s, lbm/s, and slugs/s. Using the same approach 

as for volume flow rate, the mass of the fluid in the marked 

volume in Fig. 5.3 is                  , where ρ is the average 

density. The mass flow rate equation is 

m

As before in case of discharge, the general form of mass flow 

rate is 

The mass flow rate also can be expressed in terms of the mean 

velocity as, 



EXAMPLE 5.1 VOLUME FLOW RATE AND MEAN 

VELOCITY 

Air that has a mass density of 1.24 kg/m3 flows in a pipe with a 

diameter of 30 cm at a mass rate of flow of 3 kg/s. What are 

the mean velocity and discharge in this pipe? 

Solution 

1. Discharge: 

 

 

2. Mean velocity 



EXAMPLE 5.2 FLOW IN SLOPING CHANNEL 

Water flows in a channel that has a slope of 30°. If the velocity is 

assumed to be constant, 12 m/s, and if a depth of 60 cm is 

measured along a vertical line, what is the discharge per meter 

of width of the channel? 

Solution 



EXAMPLE 5.3 DISCHARGE IN CHANNEL WITH NON-

UNIFORM VELOCITY DISTRIBUTION 

The water velocity in the channel shown in the accompanying figure 

has a distribution across the vertical section equal to u/umax = 

(y/d)1/2. What is the discharge in the channel if the water is 2 m 

deep (d = 2 m), the channel is 5 m wide, and the maximum 

velocity is 3 m/s? 

Solution 

The discharge equation, 



5.2 Control Volume Approach 

The control volume (or Eulerian) approach is the method 
whereby a volume in the flow field is identified and the 
governing equations are solved for the flow properties 
associated with this volume. A scheme is needed that 
allows one to rewrite the equations for a moving fluid 
particle in terms of flow through a control volume. 
Such a scheme is the Reynolds transport theorem.  

Definition: System and Control Volume 

A system is a continuous mass of fluid that always 
contains the same matter. A system moving through a 
flow field is shown in Fig. 5.6. The shape of the 
system may change with time, but the mass is 
constant since it always consists of the same matter. 
The fundamental equations, such as Newton's second 
law and the first law of thermodynamics, apply to a 
system. 



Figure 5.6 System, control 
surface, and control volume 
in a flow field. 

A control volume is volume located in space and through which matter 

can pass, as shown in Fig. 5.6. The indicated system can pass through 

the control volume. The selection of the control volume position and 

shape is problem dependent. The control volume is enclosed by the 

control surface as shown in Fig. 5.6. Fluid mass enters and leaves the 

control volume through the control surface. The control volume can 

deform with time as well as move and rotate in space and the mass in 

the control volume can change with time. 



Intensive and Extensive Properties 

An extensive property is any property that depends on 
the amount of matter present. The extensive 
properties of a system include mass, m, momentum, 
mv (where v is velocity), and energy, E. Another 
example of an extensive property is weight because 
the weight is mg. An intensive property is any 
property that is independent of the amount of matter 
present. Examples of intensive properties include 
pressure and temperature. Many intensive properties 
are obtained by dividing the extensive property by the 
mass present. The intensive property for momentum is 
velocity v, and for energy is e, the energy per unit 
mass. The intensive property for weight is g. 

In this section an equation for a general extensive 
property, B, will be developed. The corresponding 
intensive property will be b. The amount of extensive 
property B contained in a control volume at a given 
instant is 



For an extensive property B, the corresponding intensive property 

will be b; that is b=B/m, where m is the system mass. The 

amount of extensive property B contained in a control volume at 

a given instant is 

 

where dm and d      are the differential mass and differential 

volume, respectively, and the integral is carried out over the 

control volume. 



Property Transport Across the Control Surface 

When fluid flows across a control surface, properties such as 
mass, momentum, and energy are transported with the fluid 
either into or out of the control volume. Consider the flow 
through the control volume in the duct in Fig. 5.7. If the velocity 
is uniformly distributed across the control surface, the mass 
flow rate through each cross section is given by 

Figure 5.7 Flow through 
control volume in a duct. 

The net mass flow rate out* of the control volume, that is, the 

outflow rate minus the inflow rate, is 



The same control volume is shown in Fig. 5.8 with each control 

surface area represented by a vector, A, oriented outward from 

the Control volume and with magnitude equal to the cross-

sectional area. The velocity is represented by a vector, V. 

Taking the dot product of the velocity and area vectors at both 

stations gives 

Figure 5.7 Flow through 
control volume in a duct. 



Because at station 1 the velocity and area have the opposite 
directions while at station 2 the velocity and area vectors are in 
the same direction. Now the net mass outflow rate can be 
written a 

(5.11) 

Equation (5.11) states that if the dot product ρV · A is summed for 

all flows into and out of the control volume, the result is the net 

mass flow rate out of the control volume, or the net mass efflux. If 

the summation is positive, the net mass flow rate is out of the 

control volume. If it is negative, the net mass flow rate is into the 

control volume. If the inflow and outflow rates are equal, then 

there is no change of mass inside the control volume. 



Similarly, to obtain the net rate of flow of an extensive property B 
out of the control volume, the mass flow rate is multiplied by the 

intensive property b: 

(5.12) 

Equation (5.12) is applicable for all flows where the properties are 

uniformly distributed across the area. If the properties vary across 

a flow section, then it becomes necessary to integrate across the 

section to obtain the rate of flow. Specifically,  

This is the most general expression for the net rate of flow of an 

extensive property from a control volume. 



Reynolds Transport Theorem 

The Reynolds transport theorem relates the Eulerian and Lagrangian 

approaches. The Reynolds transport theorem is derived by 

considering the rate of change of an extensive property of a system 

as it passes through a control volume. A control volume with a 

system moving through it is shown in Fig. 5.9. The control volume is 

enclosed by the control surface identified by the dashed line. The 

system is identified by the darker shaded region. At time t the system 

consists of the material inside the control volume and the material 

going in, so the property B of the system at this time is 

Figure 5.9 

Progression of a 
system through a 
control volume. 



It can be shown that the final form of the Reynolds Transport 

Theorem is, 

In words, the theorem can be stated as follows, 



5.3 Continuity Equation 

The continuity equation derives from the conservation of mass, 

which, in Lagrangian form, simply states that the mass of the 

system is constant.  

 
The Eulerian form is derived by applying the Reynolds transport 

theorem. In this case the extensive property of the system is its 

mass, Bcv = msys. The corresponding value for b is the mass per 

unit mass, or simply, unity. 



General Form of the Continuity Equation 

The general form of the continuity equation is obtained by 

substituting the properties for mass into the Reynolds transport 

theorem, resulting in  

 

However, dmsys/dt = 0, so the general, or integral, form of the 

continuity equation is 

This equation can be expressed in words as 



If the mass crosses the control surface through a number of inlet 

and exit ports, the continuity equation simplifies to 

where mcv is the mass of fluid in the control volume. Note that the 

two summation terms represent the net mass outflow through the 

control surface. 



EXAMPLE 5.4 MASS ACCUMULATION IN A TANK 

A jet of water discharges into an open tank, and water leaves the 
tank through an orifice in the bottom at a rate of 0.003 m3/s. If 
the cross-sectional area of the jet is 0.0025 m2 where the 
velocity of water is 7 m/s, at what rate is water accumulating in 
(or evacuating from) the tank 

 

Solution 
1. Continuity equation 

Because there is only one 

inlet and one outlet, the 

equation reduces to 



2. Term-by-term analysis 

· The inlet mass flow rate is calculated as follows, 

· Outlet flow rate is 

3. Accumulation rate: 



EXAMPLE 5.5 RATE OF WATER RISE IN 

RESERVOIR 

A river discharges into a reservoir at a rate of 

11,3,00 m3/s, and the outflow rate from the 

reservoir through the flow passages in the dam 

is 7,000 m3/s. If the reservoir surface area is 

100 km2, what is the rate of rise of water in the 

reservoir? 



Solution 

Continuity equation: 

 

Considering the control volume is constant, so dmcv/dt = 0 

At the inlet, the mass flow rate is. 

There two outlets in this case, 

Substitution in the continuity equation, 

The rate of rise simply is velocity, 
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EXAMPLE 5.6 WATER LEVEL DROP RATE IN DRAINING 

TANK 

A 10 cm jet of water issues from a 1 m diameter tank. Assume 

that the velocity in the jet is          m/s where h is the elevation 

of the water surface above the outlet jet. How long will it take 

for the water surface in the tank to drop from h0 = 2 m to hf = 

0.50 m? 

gh2

Solution 
1. Continuity equation 

Accumulation rate, 

where AT is cross-sectional area of 

tank. 



Inlet mass flow rate with no inflow is 

The mass flow rate leaving is 

Substitution of terms into continuity equation 

Equation for elapsed time and separating variables 



Integrating 

Substituting in initial condition, h(0) = h0, and final condition, h(t) = 

hf, and solving for time 

Evaluating the parameters and calculating time 



EXAMPLE 5.7 DEPRESSURIZATION OF GAS IN TANK 

Methane escapes through a small (10-7 m2) hole in a 10 m3 tank. 

The methane escapes so slowly that the temperature in the 

tank remains constant at 23°C. The mass flow rate of methane 

through the hole is given by the equation below with p is the 

pressure in the tank, A is the area of the hole, R is the gas 

constant, and T is the temperature in the tank. Calculate the 

time required for the absolute pressure in the tank to decrease 

from 500 to 400 kPa. 

 
RT

pA
m

66.0
=

Solution 
1. Continuity equation 



Rate of accumulation term. The mass in the control volume is the 
sum of the mass of the tank shell, mshell and the mass of 
methane in the tank, 

where V is the internal volume of the tank which is constant. The 

mass of the tank shell is constant, so 

= 
shellcv

mm

There is no mass inflow: 

Mass out flow rate is 

Substituting terms into continuity equation 



Equation for elapsed time and Using ideal gas law for ρ, 

Because R, T, A, and V are constant, 

or 

Integrating equation and substituting limits for initial and final 

pressure and computing for time, 



Continuity Equation for Flow in a Pipe 

Several simplified forms of the continuity equation are used by 
engineers for flow in a pipe. Consider a control volume inside a 
pipe, Fig. 5.10. Mass enters through station 1 and exits through 
station 2. The control volume is fixed to the pipe walls, and its 
volume is constant. If the flow is steady, then mcv is constant so 
the mass flow formulation of the continuity equation reduces to 

    m1 = m2 fix 

For flow with a uniform velocity and density distribution, the 
continuity equation for steady flow in a pipe is 

If the flow is incompressible, then 

or 

Figure 5.10 Flow through a 
pipe section. 

This equation is valid for 

both steady and unsteady 

incompressible flow. 



If the flow is not uniformly distributed, the mass flow must be 

calculated using the integral form of the equation. 

If there are more than two ports, then the general form of the 

continuity equation for steady flow is 

 

If the flow is incompressible, then the above can be written in 

terms of discharge 

EXAMPLE 5.8 VELOCITY IN A VARIABLE-AREA PIPE 

A 120 cm pipe is in series with a 60 cm pipe. The speed of the 

water in the 120 cm pipe is 2 m/s. 

What is the water speed in the 60 cm pipe? 

Solution: incompressible, then 



EXAMPLE 5.9 WATER FLOW THROUGH A VENTURIMETER 

Water with a density of 1000 kg/m3 flows through a vertical 

venturimeter as shown. A pressure gage is connected across 

two taps in the pipe (station 1) and the throat (station 2). The 

area ratio Athroat/Apipe is 0.5. The velocity in the pipe is 10 m/s. 

Find the pressure difference recorded by the pressure gage. 

Assume the flow has a uniform velocity distribution and that 

viscous effects are not important. 

Solution: 

The Bernoulli equation 

Rewrite the equation in terms of 

piezometric pressure. 



Incompressible, then continuity equation V2/V1 = A1/A2 

Gage is located at zero elevation. Apply hydrostatic equation 

through static fluid in gage line between gage attachment point 

where the pressure is and station 1 where the gage line is tapped 

into the pipe, 

But, 

So, 



5.4 Cavitation 

Cavitation is the phenomenon that occurs when the fluid pressure is 
reduced to the local vapor pressure and boiling occurs. Under 
such conditions vapor bubbles form in the liquid, grow, and then 
collapse, producing shock waves, noise, and dynamic effects that 
lead to decreased equipment performance and, frequently, 
equipment failure. Engineers must design flow systems to avoid 
potential problems. 

However, despite cavitation deleterious effects, cavitation can also 
be beneficial. Cavitation is responsible for the effectiveness of 
ultrasonic cleaning 

Cavitation typically occurs at locations where the velocity is high. 
Consider the water flow through the pipe restriction shown in Fig. 
5.11. The pipe area decreases, so the velocity increases 
according to the continuity equation and, in turn, the pressure 
decreases as dictated by the Bernoulli equation. For low flow 
rates, there is a relatively small drop in pressure at the restriction, 
so the water remains well above the vapor pressure and boiling 
does not occur. However, as the flow rate increases, the pressure 
at the restriction becomes progressively lower until a flow rate is 
reached where the pressure is equal to the vapor pressure. At this 
point, the liquid boils to form bubbles and cavitation ensues. The 
onset of cavitation can also be affected by the presence of 
contaminant gases, turbulence and viscosity. 



Figure 5.11 Flow through pipe restriction: variation of pressure  
for three different flow rates. 



The formation of vapor bubbles at the restriction is shown in Fig. 
5.12a. The vapor bubbles form and then collapse as they move 
into a region of higher pressure and are swept downstream with 
the flow. When the flow velocity is increased further, the 
minimum pressure is still the local vapor pressure, but the zone 
of bubble formation is extended as shown in Fig. 5.12b. In this 
case, the entire vapor pocket may intermittently grow and 
collapse, producing serious vibration problems. Severe damage 
that occurred on a centrifugal pump impeller is shown in Fig. 
5.13. Obviously, cavitation should be avoided or minimized by 
proper design of equipment and structures and by proper 
operational procedures. 

Figure 5.12 Formation of vapor bubbles in the process of cavitation. 
(a) Cavitation. (b) Cavitation—higher flow rate. 



Figure 5.13 Cavitation damage to impeller of a centrifugal pump. 



5.5 Differential Form of the Continuity Equation 

In the analysis of fluid flows and the development of numerical 
models, one of the fundamental independent equations needed 
is the differential form of the continuity equation. The derivation 
is accomplished by applying the integral form of the continuity 
equation to a small control volume and taking the limit as the 
volume approaches zero. A small control volume defined by the 
x, y, z coordinate system is shown in Fig. 5.15.  

Figure 5.15 Elemental 
control volume. 



When applying the integral form of the continuity to the differential 

control volume one can eventually lead to 

If the flow is steady, the equation reduces to 

And if the fluid is incompressible, the equation further simplifies to 

which is valid for both steady and unsteady flow. In vector 

notation, Eq. (5.33) is given as 

where     is the del operator, defined as 



Solution 
Continuity equation for two-dimensional flow: 

EXAMPLE 5.10 APPLICATION OF DIFFERENTIAL FORM OF 

COBTINUITY EQUATION 

The expression V = 10xi - 10yj is said to represent the velocity for 

a two-dimensional (planar) incompressible flow. Check to see if 

the continuity equation is satisfied. 
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Introduction 

The analysis of forces on vanes and pipe bends, the 

thrust produced by a rocket or turbojet, and torque 

produced by a hydraulic turbine are all examples of 

the application of the momentum equation.  

In this chapter the Reynolds transport theorem is applied 

to Newton's second law of motion, F = ma, to develop 

the Eulerian form of the momentum equation. 

Application of this equation allows the engineer to 

analyze forces and moments produced by flowing 



6.1 Momentum Equation: Derivation 
When forces act on a particle, the particle accelerates according 

to Newton's second law of motion: 

Since mass is constant, it follows, 

where mv is the momentum of the particle.  The above equations 

are for a single particle; however, for a system of particles (e.g. 

fluid), the law still applies, 

The momentum is the extensive property B for the system, which 

can be made intensive by dividing by mass; b = B/m 



Using the Reynolds transport theorem 

Substituting momentum for B leads to 

But, rate of momentum change equal to sum of forces acting on 

system, hence 

which is called the integral form of the momentum equation. 



In words, it can be stated as, 

It is important to make the following observations: one; the 

momentum equation is a vector and thus has three components in 

general, see next slide; two, the equation is based on Newton’s 

second law, thus the momentum per unit mass (v) must be with 

respect to inertial frame of reference, as explained below, 

With respect to inertial 

frame of reference  

With respect to 

control surfaces 



The components of the momentum equation 

If velocity enters and exits the control volume at several ports and 

occur such that it is uniform at these ports, then the momentum 

equation is simplified as 



In applying the momentum equation follow these steps: 

 1) identify and draw the control volume 

 2) draw the coordinate system 

 3) identify where mass enters/leaves the control volume 

 4) identify the forces acting on the control volume 

 

For forces there two kinds: 1) is called body forces like gravity 

which acts at every element of the body; 2)  surface forces, 

which require a contact with the control volume, thus they act at 

the surfaces of the control volume. 



EXAMPLE 6.1 THRUST OF ROCKET 
The sketch below shows a 40 g rocket, of the type used for model 

rocketry, being fired on a test stand in order to evaluate thrust. 

The exhaust jet from the rocket motor has a diameter of d = 1 

cm, a speed of ν = 450 m/s, and a density of ρ = 0.5 kg/m3. 

Assume the pressure in the exhaust jet equals ambient 

pressure, and neglect any momentum changes inside the 

rocket motor. Find the force Fb acting on the beam that 

supports the rocket. 

Solution 
Apply momentum equation in vertical 

direction. Observe that there is no 

momentum accumulation inside the 

control volume, hence steady. No 

momentum entering; but only exiting. Also, 

assume that gases velocity at exit is 

uniform 



Draw the control volume and the frame of reference as 

indicated.  

The forces that are identified are Fb , which the force exerted by 

the beam and weight. There is no pressure forces since 

gases exit at atmospheric pressure. 



EXAMPLE 6.2 CONCRETE FLOWING INTO 

CART 
As shown in the sketch, concrete flows into a cart sitting on a 

scale. The stream of concrete has a density of ρ = 150 ibm/ft3, 

an area of A = 1 ft2, and a speed of V = 10 ft/s. At the instant 

shown, the weight of the cart plus the concrete is 800 lbf. 

Determine the tension in the cable and the weight recorded by 

the scale. Assume steady flow. 

 



Solution 

The momentum in x and z directs are 

The forces acting on the control volume are 

Observing that the momentum 

accumulation is zero and no 

momentum leaving.  



The inflow of momentum in the x and z directions are: 

To evaluate tension, consider the x-direction 

To evaluate force on scale, consider the z-direction 



Nozzles 
Nozzles are flow devices used to accelerate a fluid stream by 

reducing the cross-sectional area of the flow. When a fluid flows 

through a nozzle, it is reasonable to assume the velocity is 

uniform across inlet and outlet sections. Hence,the momentum 

flows will have magnitude If the nozzle exhausts into the 

atmosphere, the pressure at the exit is atmospheric.  

In many applications involving finding the force on a nozzle, the 

Bernoulli equation is used along with the momentum equation. 



EXAMPLE 6.3 FORCE ON A NOZZLE 
Air flows through a nozzle where the inlet pressure is p1 = 105 

kPa abs, and the air exhausts into the atmosphere, where the 

pressure is 101.3 kPa abs. The nozzle has an inlet diameter of 

60 mm and an exit diameter of 10 mm, and the nozzle is 

connected to the supply pipe by flanges. Find the air speed at 

the exit of the nozzle and the force required to hold the nozzle 

stationary. Assume the air has a constant density of 1.22 kg/m3. 

Neglect the weight of the nozzle. 



Solution 
1. Select control volume (and control surface). Control volume is 

stationary  Application of the Bernoulli equation between 

sections 1 and 2 

Set z1 = z2. thus, the Bernoulli, 

and 

From the continuity equation, 



Substituting the velocity into the Bernoulli, lead to 

Consequently, the inlet velocity 



Momentum 

Sum of forces in x-direction 

Observe that the accumulation term is zero since the the flow is 

steady. The momentum leaving at section 2 and entering at 

section 1, 

and 

Substituting into the momentum equation, 



Vanes 

A vane is a structural component, typically thin, that is used to turn 
a fluid jet or is turned by a fluid jet. Examples include a blade in 
a turbine, a sail on a ship, and a thrust reverser on an aircraft 
engine. Figure 6.4 shows a flat vane impacted by a jet of fluid. 
A typical control volume is also shown. In analyzing flow over a 
vane, it is common to neglect the pressure change due to 
elevation difference. Since the pressure is constant 
(atmospheric pressure or surrounding pressure), the Bernoulli 
equation shows the speed is constant ν1 = ν2 = ν3. Another 
common assumption is that viscous forces are negligible 
compared to pressure forces. Thus when a vane is flat, as in 
Fig. 6.4, the force needed to hold the vane stationary is normal 
to the vane. 

Figure 6.4 Fluid jet striking a flat vane. 



EXAMPLE 6.4 WATER DEFLECTED BY A VANE 

A water jet is deflected 60° by a stationary vane as shown in the 

figure. The incoming jet has a speed of 30 m/s and a diameter 

of 3 cm. Find the force exerted by the jet on the vane. Neglect 

the influence of gravity. 

Solution 
The control volume selected is shown in the sketch to the left. The 

control volume is stationary. 



The momentum: 

The force vector is 

The control volume is stationary and flow is steady leads to the 

accumulation term equals to zero. The momentum outflow, 

The momentum inflow, 



EXAMPLE 6.5 FORCE ON AN AXISYMMETRIC VANE 

As shown in the figure, an incident jet of fluid with density ρ, 

speed ν, and area A is deflected through an angle β by a 

stationary, axisymmetric vane. Find the force required to hold 

the vane stationary. Express the answer using ρ, ν, A, and β. 

Neglect the influence of gravity. 

Solution 
The selected control volume is shown. The control volume is 

stationary 



The momentum equation in x-direction. 

The accumulation term is zero since the flow is zero. The sum of 

forces 

Momentum outflow is 

Momentum inflow is 

Force on vane 

Apply mass flow rate equation 



Pipe Bends 

Calculating the force on pipe bends is important 

in engineering applications using large pipes to 

design the support system. Because flow in a 

pipe is usually turbulent, it is common practice 

to assume that velocity is nearly constant 

across each cross section of the pipe. Also, the 

force acting on a pipe cross section is given by 

pA, where p is the pressure at the centroid of 

area and A is area. 



EXAMPLE 6.6 FORCES ACTING ON A PIPE BEND 

A 1 m–diameter pipe bend shown in the diagram is carrying crude 

oil (S = 0.94) with a steady flow rate of 2 m3/s. The bend has an 

angle of 30° and lies in a horizontal plane. The volume of oil in 

the bend is 1.2 m3, and the empty weight of the bend is 4 kN. 

Assume the pressure along the centerline of the bend is 

constant with a value of 75 kPa gage. Find the net force 

required to hold the bend in place. 

Solution 
The control volume is shown which is stationary.  



Solution 

The flow is steady (accumulation term is zero) and there is no flow 

in z-direction, thus 

Momentum equation in x-dir: 

 

Momentum equation in the y-dir 

Momentum equation in the y-dir 

The fluid velocity, pressure force and momentum flux are 



Therefore, the components of the required force are: 

where Rz = W 



EXAMPLE 6.7 WATER FLOW THROUGH REDUCING 

BEND 

Water flows through a 180° reducing bend, as shown. The 

discharge is 0.25 mm/s, and the pressure at the center of the 

inlet section is 150 kPa gage. If the bend volume is 0.10 m3, 

and it is assumed that the Bernoulli equation is valid, what force 

is required to hold the bend in place? The metal in the bend 

weighs 500 N. The water density is 1000 kg/m3. The bend is in 

the vertical plane. 



Solution 

Momentum equations in x- and z-directions 

Summation of forces in x- and z-directions 

Hence, momentum in x-dir 



Hence, momentum in x-dir 

Inlet and outlet speeds 

Outlet pressure (the Bernoulli equation between sections 1 and 2) 

From diagram, neglecting pipe wall thickness, z1 - z2 = 0.325 m. 



Simplifying terms, 

Hence, the components of the reaction force, 



EXAMPLE 6.8 DRAG FORCE ON WIND-TUNNEL 

MODEL 

The drag force of a bullet-shaped device may be measured using 

a wind tunnel. The tunnel is round with a diameter D 1 m, the 

pressure at section 1 is 1.5 kPa gage, the pressure at section 2 

is 1.0 kPa gage, and air density is 1.0 kg/m3. At the inlet, the 

velocity is uniform with a magnitude of 30 m/s. At the exit, the 

velocity varies linearly as shown in the sketch. Determine the 

drag force on the device and support vanes. Neglect viscous 

resistance at the wall, and assume pressure is uniform across 

sections 1 and 2. 



Forces on model Forces on control volume 

Integral form of momentum equation in x-direction 

Summation of forces acting on control volume. 

Note that the FD is the sum of the two forces (Fs1, Fs2) and also 

represents their directions; i.e. forces on the control volume. 



Need to determine velocity profile at section 2. Velocity is linear in 

radius, so choose ν2 = ν1 K(r/ro), where ro is the tunnel radius 

and K is a proportionality factor to be determined as follow, 

The flow is steady (accumulation term is zero). The momentum 

flux into the control volume (at section 1) since flow is uniform, 

The momentum flux out of the control volume (at section 2) since 

flow is non-uniform, 

(incompressible flow) 



Hence, the drag force is found by substituting into the x-dir 

momentum equation, 



EXAMPLE 6.9 FORCE ON A SLUICE GATE 

A sluice gate is used to control the water flow rate over a dam. 

The gate is 6 m wide, and the depth of the water above the 

bottom of the sluice gate is 5 m. The depth of the water 

upstream of the gate is 6 m, and the depth downstream is 1 m. 

Estimate the flow rate under the gate and the force on the gate. 

The water density is 1000 kg/m3. 



Momentum in x-dir 

The Bernoulli equation 

The piezometric pressure is constant across sections 1 and 2, so 

and 

From continuity equation, Eq. (5.27), (ν1d1 w) = (ν2d2 w) where w 
is the flow width. Combine the Bernoulli and continuity equations. 



Velocity and discharge, 

The forces acting on the control volume, 

The hydrostatic force on planar surface,  

10.045 m/s 



Accumulation term is zero (steady), and the momentum fluxes at 

inlet and outlet are: 

and 

Hence, the force on the sluice gate is, 



Moving Control Volumes 
All the applications of the momentum equation up to this point 

have involved a stationary control volume. However, in some 
problems it may be more useful to attach the control volume to 
a moving body.  

As discussed previously, the velocity v in the momentum equation 
must be relative to an inertial reference frame. When applying 
the momentum equation each mass flow rate is calculated 
using the velocity with respect to the control surface, but the 
velocity v must be evaluated with respect to an inertial 
reference frame. 

 



EXAMPLE 6.10 JET IMPINGING ON MOVING BLOCK 

A stationary nozzle produces a water jet with a speed of 50 m/s 

and a cross-sectional area of 5 cm2. The jet strikes a moving 

block and is deflected 90° relative to the block. The block is 

sliding with a constant speed of 25 m/s on a surface with 

friction. The density of the water is 1000 kg/m3. Find the 

frictional force F acting on the block. Solve the problem using 

two different inertial reference frames: (a) the moving block and 

(b) the stationary nozzle. 



Figure showing a 

moving control volume 

The selected control volume is shown in the sketch. Observe, the 

cart is not stationary.  

The momentum equation in the x-dir is, 

The sum of forces is, 

The accumulation term is zero (steady). The 

momentum inflow and outflow are, 

and 

Case 1: Frame of ref is attached to control 

volume 



The mass flow rate. Since flow is steady with respect to the block, 

To evaluate force 

Case 1:  

To evaluate force 

Case 2. Frame of 

reference is attached 

to ground 

Which both give the same answer, as they should. Evaluate the 

magnitude of the force, 



Water Hammer: Physical Description 
Whenever a valve is closed in a pipe, a positive pressure wave is 

created upstream of the valve and travels up the pipe at the 
speed of sound. In this context a positive pressure wave is 
defined as one for which the pressure is greater than the 
existing steady-state pressure. This pressure wave may be 
great enough to cause pipe failure. This process of pressure 
wave is called water hammer, is necessary for the proper 
design and operation of such systems. 

The magnitude of the pressure Dp is 

where r is fluid density, V is its velocity and c is the speed of 

sound in that fluid, which computed as, 

where Ev is the bulk modulus of elasticity of the fluid. For water, 

where Ev = 2.2 GPa, hence c =  1483 m/s. 



6.5 Moment-of-Momentum Equation 

The moment-of-momentum equation is very useful for situations 

that involve torques. Examples include analyses of rotating 

machinery such as pumps, turbines, fans, and blowers. 

Torques acting on a control volume are related to changes in 

angular momentum through the moment of momentum 

equation. Development of this equation parallels the 

development of the momentum equation as presented 

previously. When forces act on a system of particles, used to 

represent a fluid system, Newton's second law of motion can be 

used to derive an equation for rotational motion: 

where M is a moment and Hsys is the total angular momentum of 

all mass forming the system 

(6.24) 



Equation (6.24) is a Lagrangian equation, which can be converted to an 

Eulerian form using the Reynolds transport theorem. The extensive 

property Bsys becomes the angular momentum of the system: Bsys = 

Hsys. The intensive property b becomes the angular momentum per 

unit mass. The angular momentum of an element is r × mv, and so b 
= r × v. Substituting for Bsys and b into the Reynolds transport 

theorem gives 

or, 

If the mass crosses the control surface through a series of inlet and 

outlet ports with uniformly distributed properties across each port, the 

moment-of-momentum equation becomes 

As the case with momentum equation, the velocities must be with 

respect to an inertial frame of reference. 



EXAMPLE 6.13 RESISTING MOMENT ON REDUCING 

BEND 

The reducing bend shown in the figure is supported on a 

horizontal axis through point A. Water flows through the bend at 

0.25 m3/s. The inlet pressure at cross-section 1 is 150 kPa 

gage, and the outlet pressure at section 2 is 59.3 kPa gage. A 

weight of 1420 N acts 20 cm to the right of point A. Find the 

moment the support system must resist. The diameters of the 

inlet and outlet pipes are 30 cm and 10 cm, respectively. 

Properties: From Table A.5, 

ρ = 998 kg/m3. 

Control 

volume 
r1 r2 



Apply the moment-of-momentum equation,  

Sum of moments (due to external forces, and note the r vector for 

each force, also choose clockwise to be positive) about axis A, 

The flow is steady, thus the accumulation is zero. The inflow and 

outflow of angular momentum are,  

and 

The resisting moment at A 



Compute terms: torque due to pressure 

Net moment-of-momentum flow 



Moment exerted by support 

Thus, a moment of 3.62 kN . m acting in the j, or clockwise, 

direction is needed to hold the bend stationary. Stated differently, 

the support system must be designed to withstand a 

counterclockwise moment of 3.62 kN . m. 



6.6 Navier-Stokes Equation 

The continuity equation at a point in the flow was derived 
using a control volume of infinitesimal size (chapter 5). 
The resulting differential equation is an independent 
equation in the analysis of fluid flow. The same 
approach can be applied to the momentum equation, 
yielding the differential equation for momentum at a 
point in the flow. For simplicity, the derivation will be 
restricted to a two-dimensional planar flow, and the 
extension to three dimensions will be outlined. 

Consider the infinitesimal control volume shown in Fig. 
6.10a. The dimensions of the control volume are Dx 
and Dy, and the dimension in the third direction 
(normal to page) is taken as unity. Assume that the 
center of the control volume is fixed with respect to the 
coordinate system and that the coordinate system is 
an inertial reference frame. Also assume that the 
control surfaces are fixed with respect to the 
coordinate system. The 



Figure 6.10 Infinitesimal 
control volume 

In the derivation of the differential form 

of the momentum equation, one starts 

with the integral form of the equation 

and apply it to the small control volume. 

For example, the forces due to pressure 

in the x-dir are, 



In a similar manner shear force can be dealt with. In the end for 

incompressible fluid with constant properties, the final form for 

the momentum differential equation will be,  

x-dir: 

y-dir: 

The left terms in both equation represent density fluid 

acceleration, thus the units are Newton per unit volume. These 

two terms can be expanded as, 



The physical meaning for each term in the equation is shown 

below. Notice this is a form of Newton’s second law applied to a 

fluid particle (the units are per unit volume) 

Acceleration times density 

Net pressure forces in x-dir 

Net shear forces 

Body (gravity) forces 



Example 

In chapter 5 your were given the velocity field for a flow to be 

 V = 10xi – 10yj 
 

where x and y are given in meters. Let the gravity vector be 
defined in the y direction. Find the pressure gradient in the x-
direction at location x =1 m and y=1 m. Let density be that for 
water 1000 kg/m3. 

 

Solution. The flow satisfies the continuity equation as was shown 
previously. Also, observe if the shear stress is zero upon 
evaluation of the second partial of the velocity u. Also, the 
gravity in the x-direction is zero. The flow is also steady since is 
not a function of time. From the Navier-Stokes equation in the 
x-dir with no gravity and shear forces, the equation simplifies to  



The acceleration in the x-direction is 

The first term on the right hand side is zero since the flow is 

steady. Also, the third term is zero since the u component is not a 

function of y. The second term is evaluated as,  

10 

Hence, = (1000) x (10 x 1) x 10 

= 100 kN/m3 

Thus, to compute the pressure gradient at x = 1 m and y = 1 m, 

only need to compute the acceleration at this location. 
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7.2 Energy Equation: General Form 

The energy equation for a system is written as 

In words, this is stated as, 

In this case, E is the energy of the system and it is an extensive 

property. To make it an intensive simply divide by mass; i.e.,  

e = E/m. Thus, using the Reynolds transport theorem, 

This integral form of the energy equation written for a control 

volume (Eulerian form) 



In general, in fluids there are three forms of energy we are 

interested in; kinetic, potential and internal energies. The kinetic 

energy per unit mass is V2/2, the potential energy per unit mass 

is gz, and the internal energy per unit mass is given the symbol 

u. Thus, 
 

  e = u + V2/2 + gz 

 

Substituting for e into the integral form of the energy equation 

leads to 

(1) 



Shaft and Flow Work 

Work is classified into two categories: 

  Work = flow work  +  shaft work  

Each work term involves force acting over a distance. When this 

force is associated with a pressure distribution, then the work is 

called flow work. Alternatively, shaft work is any work that is 

not associated with a pressure force. Shaft work is usually 

done through a shaft (from which the term originates) and is 

commonly associated with devices like pumps and turbines. 

According to the sign convention for work when work is done a 

system it is negative else when it is done by the system it is 

positive, therefore for pump work is negative and for turbine 

work is positive. Thus, 



To derive an equation for flow work, consider Fig. 7.3 which 

defines a control volume that is situated inside a converging 

pipe. At section 2, the fluid that is inside the control volume will 

push on the fluid that is outside of the control volume. The 

magnitude of the pushing force is p2A2. During a time interval 

Dt, the displacement of the fluid at section 2 is Dx2 = V2Dt. Thus, 

the amount of work is 

Figure 7.3 Sketch 
for deriving flow 
work. 

Dx 



Convert the amount of work given by previous equation into a rate 

of work: 

This work is positive because the fluid inside the control volume is 

doing work on the environment. In a similar manner, the flow work 

at section 1 is negative and is given by 

Therefore, the net flow work is 



For the generalized situation involving multiple streams of fluid 

passing across a control surface the net flow work: 

To account for velocity and pressure variation across the control 

surface the integral form is used. Also, use the dot product to 

account for flow direction. The general equation for flow work is 

Thus, the rate of work is the sum of flow work and shaft work, 

(2) 



Substitute the work expression, equation (2), into the general 

energy equation, equation (1), leads to  

Realize the definition for enthalpy, h = u + p/r, 

Combine terms, 
(3) 

(4) 

(5) 



For uniform conditions, the equation is simplified to 

7.3 Energy Equation for Pipe Flow 

An important application of the energy equation is in pipe flows. 

However, for this the first step is to develop a way to account for 

the kinetic energy distribution in the flowing fluid. 



Kinetic Energy Correction Factor 

Figure 7.4 shows fluid that is pumped through a pipe. At sections 

1 and 2, kinetic energy is transported across the control surface 

by the flowing fluid, 

Figure 7.4 Flow carries 
kinetic energy into and out 
of a control surface. 

The right hand side 

is not equal to 



Define a correction factor as, 

For incompressible fluid, 

In general, α takes either 1 for turbulent flows, or 2 for laminar 

flow. 



The simplified form of the energy equation is obtained by applying 

equation (4) to the control volume in Figure 7.4 and assuming 

steady flow, 

Recognizing that pressure, elevation and internal energy varies 

little across the flow in a pipe and using the kinetic correction 

factor lead to 



Substituting for shaft work pump work and turbine work and divide 

by the mass flow rate simplifies to, 

Introduce pump head and turbine head as, 

Substitute these definition into the above equation, 



All terms but the bracketed terms are form of mechanical 

energies. The bracketed terms on the right hand side are 

thermal energies and are always positive. This term is called 

head loss and is represented by hL. Head loss is the conversion 

of useful mechanical energy to waste thermal energy through 

viscous action between fluid particles. Therefore, the final form 

of the simplified energy equation applied to pipe flow, 

In words, 



EXAMPLE 7.2 PRESSURE IN A PIPE 

A horizontal pipe carries cooling water at 10°C for a thermal 

power plant from a reservoir as shown. The head loss in the 

pipe is  

 

where L is the length of the pipe from the reservoir to the point in 

question, V is the mean velocity in the pipe, and D is the diameter 

of the pipe. If the pipe diameter is 20 cm and the rate of flow is 

0.06 m3/s, what is the pressure in the pipe at L = 2000 m. Assume 

α2 = 1. 



Solution 

Apply the energy equation between sections 1 and 2, 

Simplify as, 

p1 = 0 because the pressure at top of a reservoir is patm = 0 gage. 

V1 ≈ 0 because the level of the reservoir is constant or changing 

very slowly. 

z1 = 100 m; z2 = 20 m. 

hp = ht = 0 because there are no pumps nor turbines in the system 

Find V2 using the flow rate equation 



Compute head loss from given relation, 

Substitute into the energy equation leads to 



7.4 Power Equation 

to relate head to power and efficiency follows directly from the 

head definition of the pump head and turbine head, 

These equations can be generalized to give the power equation, 

where the h can either be the pump head or turbine head. The 

efficiency is defined as, 



It follows the efficiency for the pump and turbine are, 

and 

EXAMPLE 7.3 POWER NEEDED BY A PUMP 

A pipe 50 cm in diameter carries water (10°C) at a rate of 0.5 

m3/s. A pump in the pipe is used to move the water from an 

elevation of 30 m to 40 m. The pressure at section 1 is 70 kPa 

gage and the pressure at section 2 is 350 kPa gage.  

What power in kilowatts 

and in horsepower must 

be supplied to 

the flow by the pump? 

Assume hL = 3 m of 

water and α1 = α2 = 1. 

Where the subscript s mean shaft while p and T indicate energy to 

or from fluid.  



Solution. Apply the energy equation between sections 1 and 2, 

Simplify terms, 

Velocity head cancels because V1 = V2. 

ht = 0 because there are no turbines in the system. 

All other head terms are given. 

Inserting terms into the general equation gives 

Consequently, 



Power consumption, 



EXAMPLE 7.4 POWER PRODUCED BY A TURBINE 

At the maximum rate of power generation, a small hydroelectric 
power plant takes a discharge of 14.1 m3/s through an elevation 
drop of 61 m. The head loss through the intakes, penstock, and 
outlet works is 1.5 m. The combined efficiency of the turbine 
and electrical generator is 87%. What is the rate of power 
generation? 



Solution. Apply the energy equation between sections 1 and 2, 

Simplify terms, 

Velocity heads are negligible because V1 ≈ 0 and V2 ≈ 0. 

Pressure heads are zero because p1 = p2 = 0 gage. 

hp = 0 because there is no pump in the system. 

Elevation head terms are given. 

Substitute into energy equation, 

Efficiency: 

Power: 



7.5 Comparing the Bernoulli Equation and the Energy 
Equation 

While the Bernoulli equation and the energy equation have a 
similar form and several terms in common, they are not the 
same equation. The difference between the two is important to 
understand for conceptual understanding of these two very 
important equations. 

The Bernoulli equation and the energy equation are derived in 
different ways. The Bernoulli equation was derived by applying 
Newton's second law to a particle and then integrating the 
resulting equation along a streamline. The energy equation was 
derived by starting with the first law of thermodynamics and 
then using the Reynolds transport theorem. Consequently, the 
Bernoulli equation involves only mechanical energy, whereas 
the energy equation includes both mechanical and thermal 
energy. 

The two equations have different methods of application. The 
Bernoulli equation is applied by selecting two points on a 
streamline and then equating terms at these points. In addition, 
these two points can be anywhere in the flow field for the 
special case of irrotational flow 



The energy equation is applied by selecting an inlet section and 
an outlet section in a pipe and then equating terms as hey 
apply to the pipe. The two equations have different 
assumptions. The Bernoulli equation applies to steady, 
incompressible, and inviscid flow. The energy equation applies 
to steady, viscous, incompressible flow in a pipe with additional 
energy being added through a pump or extracted through a 
turbine. 

Under special circumstances the energy equation can be reduced 
to the Bernoulli equation. If the flow is inviscid, there is no head 
loss. If the flow in the pipe is uniform, then α = 1. There is no 
pump or turbine along a streamline. In this case the energy 
equation is identical to the Bernoulli equation.  

Note that the energy equation cannot be developed starting with 
the Bernoulli equation. 

 

In summary, the energy equation is not the Bernoulli equation. 



7.6 Transitions 

In the analyses of these components energy, momentum, and 
continuity equations are used together to analyze (a) head loss 
for an abrupt expansion and (b) forces on transitions. 

Abrupt Expansion 

An abrupt or sudden expansion in a pipe or duct is a change from 
a smaller section area to a larger section area as shown in Fig. 
7.6. Notice that a confined jet of fluid from the smaller pipe 
discharges into the larger pipe and creates a zone of separated 
flow. Because the streamlines in the jet are initially straight and 
parallel, the piezometric pressure distribution across the jet at 
section 1 will be uniform. This same uniform pressure 
distribution will also occur in the zone of separated flow. Apply 
the energy equation between sections 1 and 2: 

(6) 



Figure 7.6 Flow through an abrupt expansion. 



Assume turbulent flow conditions so α1 = α2 ≈ 1. The momentum 

equation for the fluid in the large pipe between section 1 and 

section 2, written for the s direction, is 

Neglect the force due to shear stress to give, 

or 

The continuity equation simplifies to 

Combining equations (6), (7), and (8)and solving for the head loss 

hL caused by a sudden expansion 

(7) 

(8) 



If a pipe discharges fluid into a reservoir, then V2 = 0 and the 

sudden-expansion head loss simplifies to 

which is the velocity head of the liquid in the pipe. This energy is 

dissipated by the viscous action of the fluid in the reservoir. 



Forces on Transitions 

To find forces on transitions in pipes, apply the momentum 
equation in combination with the energy equation, the flow rate 
equations, and head loss equations.  

EXAMPLE 7.5 FORCE O A COTRACTION IN A PIPE 

A pipe 30 cm in diameter carries water (10°C, 250 kPa) at a rate 
of 0.707 m3/s. The pipe contracts to a diameter of 20 cm. The 
head loss through the contraction is given by 

where V2 is the velocity in 

the 20 cm pipe. What 

horizontal force is 

required to hold the 

transition in place? 

Assume α1 = α2 = 1. 



Solution. Momentum equation (horizontal direction) 

The forces acting on the 

control volume are: 

Momentum accumulation is zero because flow is steady. 

Momentum efflux is 



Substitute force and momentum terms into the momentum 

equation 

Energy equation (from section 1 to section 2). Since α1 = α2 = 1, z1 

= z2, and hp = ht = 0, simplifies to 

Find velocities 

using the flow 

rate equation 

Pressure at section: 



Calculate head loss. 

Calculate pressure. 



Calculate Fx. 



7.7 Hydraulic and Energy Grade Lines 
The hydraulic grade line (HGL) and the energy grade line (EGL), which are 

graphical representations that show head in a system. The EGL, shown in 

Fig. 7.7, is a line that indicates the total head at each location in a system.  

Figure 7.7 EGL 
and HGL in a 
straight pipe. 



The EGL is related to terms in the energy equation by 

The HGL, shown in Fig. 7.7, is a line that indicates the piezometric 

head at each location in a system: 

Since the HGL gives piezometric head, the HGL will be coincident 

with the liquid surface in a piezometer as shown in Fig.7.7. 

Similarly, the EGL will be coincident with the liquid surface in a 

stagnation tube. 



Examples on EGL and HGL 
For this case, note how the EGL decreases along the flow 

direction to the left of the pump due to head loss in the pipe. 
The EGL increases by hp that receives from the pump. Because 
the diameter is constant, the increase in EGL is equal to HGL. 

Figure 7.8 Rise in EGL 
and HGL due to Pump. 



Figure 7.9 Drop in EGL 
and HGL due to turbine. 



Figure 7.10 Change in 
HGL and EGL due to 
flow through a nozzle. 

Jet open to the atmosphere 



Figure 7.11 Change in EGL and HGL due to change in diameter of pipe. 



Figure 7.12 Subatmospheric pressure when pipe is above HGL. 



EXAMPLE 7.6 EGL AND HGL FOR A SYSTEM 
A pump draws water (10°C) from a reservoir, where the water-

surface elevation is 160 m, and forces the water through a pipe 
1525 m long and 0.3 m in diameter. This pipe then discharges 
the water into a reservoir with water-surface elevation of 190 m. 
The flow rate is 0.2 m3/s, and the head loss in the pipe is given 
by 

Determine the head supplied by the pump, hp, and the power 

supplied to the flow, and draw the HGL and EGL for the system. 

Assume that the pipe is horizontal and is 155 m in elevation. 



Solution 

Energy equation (general form) 

Velocity heads are negligible because V1 ≈ 0 and V2 ≈ 0. 

· Pressure heads are zero because p1 = p2 = 0 gage. 

· ht = 0 because there are no turbines in the system. 

Calculate V using the flow rate equation 
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Introduction 

Because of the complexity of fluid mechanics, the design of many 

fluid systems relies heavily on experimental results. Tests are 

typically carried out on a subscale model, and the results are 

extrapolated to the full-scale system (prototype). The 

principles underlying the correspondence between the model 

and the prototype are addressed in this chapter. 

 
Dimensional analysis is the process of grouping of variables into 

significant dimensionless groups, thus reducing problem 

complexity. 

Similitude (Similarity) is the process by which geometric and 

dynamic parameters are selected for the subscale model so 

that meaningful correspondence can be made to the full size 

prototype. 



8.2 Buckingham Π Theorem 

In 1915 Buckingham showed that the number of independent 

dimensionless groups (dimensionless parameters) can be 

reduced from a set of variables in a given process is n - m, 

where n is the number of variables involved and m is the 

number of basic dimensions included in the variables. 

Buckingham referred to the dimensionless groups as Π, which is 

the reason the theorem is called the Π theorem. Henceforth 

dimensionless groups will be referred to as π-groups. If the 

equation describing a physical system has n dimensional 

variables and is expressed as 

then it can be rearranged and expressed in terms of (n - m) π-

groups as 

),...,,(
321 mn

 



Example 
If there are five variables (F, V, ρ, μ, and D) to describe the drag 

on a sphere and three basic dimensions (L, M, and T) are 

involved. By the Buckingham Π theorem there will be 5 - 3 = 2 

π-groups that can be used to correlate experimental results in 

the form 

 

   F= f(V, r, m, D) 



8.3 Dimensional Analysis 
Dimensional analysis is the process used to obtain the π-groups. 

There are two methods: the step-by-step method and the 

exponent method. 

The Step-by-Step Method 

The method is best describe by an example  

 

EXAMPLE 8.1 Π-GROUPS FOR BODY FALLING IN A 

VACUUM 

There are three significant variables for a body falling in a vacuum 

(no viscous effects): the velocity V; the acceleration due to 

gravity, g; and the distance through which the body falls, h. Find 

the π-groups using the step-by-step method. 



Solution 

The variables involved in this example are n=3, V, g, and h. The 

dimension of these variables in terms of the basic dimensions 

are: 

►Note the notation used: brackets means dimension of the 

variable contained between the brackets.  

►The number of basic dimension that appear in the dimension of 

the variable is 2 

►Hence, the number of -groups is n – m = 3 – 2 = 1 

►Construct the following table by listing the variable along with 

their dimensions in terms of the basic dimensions. 



The steps involved in this table are 

1- List the variable along with their dimensions in the first and 

second columns. 

2- Choose a variable to combine new variables with and to 

eliminate a dimension from the new formed variables. List these in 

the second and third column 

3- If the resulting dimensions is 0 (dimensionless) stop 

4- Else, choose another variable from the third column to form 

new variables and to eliminate that dimension. 

5- Repeat as necessary to arrive at dimensionless groups. 

The final result as expected one p-group, 

Consequently, the functional form is 



EXAMPLE 8.2 Π-GROUPS FOR DRAG ON A SPHERE USING 

STEP-BY-STEP METHOD 

The drag FD of a sphere in a fluid flowing past the sphere is a 

function of the viscosity μ, the mass density ρ, the velocity of 

flow V, and the diameter of the sphere D. Use the step-by-step 

method to find the π-groups. 

Solution 
Given FD = f(V, ρ, μ D).  

Dimensions of significant variables, 

Follow the same steps as in previous example and construct table 

as shown on next slide. 



The final -groups are  

Thus, the final functional form is 

 

    1 = f(2)  



The Exponent Method 

An alternative method for finding the π-groups is the exponent 

method. This method involves solving a set of algebraic 

equations to satisfy dimensional homogeneity. The procedural 

steps for the exponent method is illustrated in the following 

example. 

 

EXAMPLE 8.3 Π-GROUPS FOR DRAG ON A SPHERE USING 

EXPONENT METHOD 

The drag of a sphere, FD, in a flowing fluid is a function of the 

velocity V, the fluid density ρ the fluid viscosity μ and the 

sphere diameter D. Find the π-groups using the exponent 

method. 

 

Solution 

Given FD = f(V, ρ, μ D). 

 



Dimensions of significant variables are 

Number of π-groups is 5 - 3 = 2. 

Choose repeating variables equal to the number of basic 

dimensions, m = 3. The repeating variables are typically r, V, D, 

Form product with the remaining dimensions at a time. Start with 

dimensions of force as follow, 

Dimensional homogeneity. Equate powers of dimensions on each 

side. For M, the equation is 

 M: 1 + b = 0, implies b = -1 
 T: -2 – a = 0, implies a = -2 
 L: 1 + a -3b + c = 0, implies c = -2 
 



The final functional form: 

Thus, the resulting -groups is: 

Repeat the same procedure with the viscosity as below, 

Solving for the exponents lead to the second -groups, 



8.4 Common π-Groups 

The most common π-groups can be found by applying 
dimensional analysis to all the variables that might be 
significant in a general flow situation.  

Variables that have significance in a general flow field are the 
velocity V, the density ρ, the viscosity μ, and the acceleration 
due to gravity g. In addition, if fluid compressibility were likely, 
then the bulk modulus of elasticity, Ev, should be included. If 
there is a liquid-gas interface, the surface tension effects may 
also be significant. Finally the flow field will be affected by a 
general length, L, such as the width of a building or the 
diameter of a pipe. These variables will be regarded as the 
independent variables. The primary dimensions of the 
significant independent variables are: 

There are several other independent variables that could be 

identified for thermal effects, such as temperature, specific heat, 

and thermal conductivity. Inclusion of these variables is beyond 

the scope of this text. 



Typically one is interested in pressure distributions (p), shear 
stress distributions (τ), and forces on surfaces and objects (F) 
in the flow field. These will be identified as the dependent 
variables. The primary dimensions of the dependent variables 
are 

There are 10 significant variables, which, by application of the 

Buckingham Π theorem, means there are seven π-groups. 

Utilizing either the step-by-step method or the exponent method 

yieldsو 



The first three groups, the dependent π-groups, are identified by 

specific names. For these groups it is common practice to use 

the kinetic pressure, ρV2/2, instead of ρ V2. In most applications 

one is concerned with a pressure difference, so the pressure π-

group is expressed as 

where Cp is called the pressure coefficient and p0is a reference 

pressure. The π-group associated with shear stress is called the 

shear-stress coefficient and defined as 

where the subscript f denotes “friction.” The π-group associated 

with force is referred to, here, as a force coefficient and defined as 



The independent π-groups are named after earlier contributors to 

fluid mechanics. The π-group VLρ/μ is called the Reynolds 

number, after Osborne Reynolds, and designated by Re. The 

group              is rewritten as (V/c), since is the speed of sound, 

c. This π-group is called the Mach number and designated by 

M. The π-group ρLV2/σ is called the Weber number and 

designated by We. The remaining π-group is usually expressed 

as              and identified as the Froude (rhymes with “food”) 

number * and written as Fr.  

The general functional form for all the π-groups is 

which means that either of the three dependent π-groups are 

functions of the four independent π-groups; that is, the pressure 

coefficient, the shear-stress coefficient, or the force coefficient are 

functions of the Reynolds number, Mach number, Weber number, 

and Froude number. 



Each independent π-group has an important interpretation as 

indicated by the ratio column in Table 8.3 (see textbook). The 

Reynolds number can be viewed as the ratio of kinetic to 

viscous forces. The kinetic forces are the forces associated with 

fluid motion. The Bernoulli equation indicates that the pressure 

difference required to bring a moving fluid to rest is the kinetic 

pressure, ρV2/2, so the kinetic forces, Fk should be proportional 

to 

The shear force due to viscous effects, Fν, is proportional to the 

shear stress and area 

and the shear stress is proportional to 



so Fν ~ μ VL. Taking the ratio of the kinetic to the viscous forces 

yields the Reynolds number. The magnitude of the Reynolds number 

provides important information about the flow. A low Reynolds 

number implies viscous effects are important; a high Reynolds 

number implies kinetic forces predominate. The Reynolds number is 

one of the most widely used π-groups in fluid mechanics. It is also 

often written using kinematic viscosity,  Re = ρVL/μ = VL/ν. 

 

The other p-groups are also given physical interpretation: 

►The Mach number is an indicator of how important compressibility 

effects are in a fluid flow 

►The Froude number is important when gravitational force 

influences the pattern of flow, such as in flow over a spillway 

►The Weber number is important in liquid atomization where surface 

tension of the liquid at the droplet’s surface is responsible for 

maintaining the droplet's shape 



8.5 Similitude 
Scope of Similitude 

Similitude is the theory and art of predicting prototype 
performance from model observations. Experiments are 
performed to obtain information that cannot be obtained by 
analytical means alone. The rules of similitude must be applied 
to select parameters for the model. The theory of similitude 
involves the application of π-groups, such as the Reynolds 
number or the Froude number, to predict prototype 
performance from model tests. Present engineering practice 
makes use of model tests more frequently than most people 
realize. For example, whenever a new airplane is being 
designed, tests are made not only on the general scale model 
of the prototype airplane but also on various components of the 
plane. Numerous tests are made on individual wing sections as 
well as on the engine pods and tail sections. 

Other examples include models for automobile, fast trains, dams, 
rivers, flood-control structure, etc. 

Two conditions must be satisfied for similitude between model and 
prototype: 1) Geometric similitude, 2) Dynamic Similitude 



Geometric Similitude 

Geometric similitude means that the model is an exact geometric 

replica of the prototype. Consequently, if a 1:10 scale model is 

specified, all linear dimensions of the model must be 1 / 10 of 

those of the prototype. In Fig. 8.4 if the model and prototype are 

geometrically similar, the following equalities hold: 

Figure 8.4 (a) Prototype. 
(b) Model. 



Here ℓ, w, and c are specific linear dimensions associated with the 

model and prototype, and Lr is the scale ratio between model 

and prototype. It follows that the ratio of corresponding areas 

between model and prototype will be the square of the length 

ratio:            . Similarly, the ratio of corresponding volumes will 

be given by Vol)m/Vol)p = Lr
3. 



Dynamic Similitude 

Dynamic similitude means that the forces that act on 

corresponding masses in the model and prototype are in the 

same ratio (Fm/Fp = constant) throughout the entire flow field. 

For example, the ratio of the kinetic to viscous forces must be 

the same for the model and the prototype. Since the forces 

acting on the fluid elements control the motion of those 

elements, it follows that dynamic similarity will yield similarity of 

flow patterns. Consequently, the flow patterns for the model 

and the prototype will be the same if geometric similitude is 

satisfied and if the relative forces acting on the fluid are the 

same in the model as in the prototype. This latter condition 

requires that the appropriate π-groups be the same for the 

model and prototype, because these π-groups are indicators of 

relative forces within the fluid. 



A more physical interpretation of the force ratios can be illustrated 

by considering the flow over the spillway shown in Fig. 8.5a. 

Here corresponding masses of fluid in the model and prototype 

are acted on by corresponding forces. These forces are the 

force of gravity Fg, the pressure force Fp, and the viscous 

resistance force Fν. These forces add vectorially to yield a 

resultant force FR, which will in turn produce an acceleration of 

the volume of fluid in accordance with Newton's second law of 

motion. Hence, because the force polygons in the prototype 

and model are similar, the magnitudes of the forces in the 

prototype and model will be in the same ratio as the magnitude 

of the vectors representing mass times acceleration 

or 



which reduces to, 

But, 

so, 

Taking the square root of each side gives 

Thus the Froude number for the model must be equal to the 

Froude number for the prototype to have the same ratio of forces 

on the model and the prototype. 



Figure 8.5 Model-
prototype relations: 
(a) prototype view; 
and (b) model view 



Equating the ratio of the forces producing acceleration to the 

ratio of viscous forces, 

 

where Fν ~ μ VL leads to 

Referring back to the general functional relationship 

if the independent π-groups are the same for the model and the 

prototype, then dependent π-groups must also be equal so 

To have complete similitude between the model and the prototype, 

it is necessary to have both geometric and dynamic similitude. 



8.6 Model Studies for Flows without Free-Surface 

Effects 

Free-surface effects are absent in the flow of liquids or gases in 

closed conduits, including control devices such as valves, or in 

the flow about bodies (e.g., aircraft) that travel through air or 

are deeply submerged in a liquid such as water (submarines). 

Free-surface effects are also absent where a structure such as 

a building is stationary and wind flows past it. In all these cases, 

fluids reasonably may be assumed incompressible, the 

Reynolds-number criterion is the most significant for dynamic 

similarity. That is, the Reynolds number for the model must 

equal the Reynolds number for the prototype. 



EXAMPLE 8.4 REYOLDS NUMBER SIMILITUDE 

The drag characteristics of a blimp 5 m in diameter and 60 m long 

are to be studied in a wind tunnel. If the speed of the blimp 

through still air is 10 m/s, and if a 1/10 scale model is to be 

tested, what airspeed in the wind tunnel is needed for 

dynamically similar conditions? Assume the same air 

pressure and temperature for both model and prototype 

Solution 
Reynolds-number similitude 

Model velocity 



EXAMPLE 8.5 REYOLDS NUMBER SIMILITUDE OF A 

VALVE 

The valve shown is the type used in the control of water in large 

conduits. Model tests are to be done, using water as the fluid, 

to determine how the valve will operate under wide-open 

conditions. The prototype size is 6 ft in diameter at the inlet. 

What flow rate is required for the model if the prototype flow is 

700 cfs? Assume that the temperature for model and prototype 

is 60°F and that the model inlet diameter is 1 ft. 



Solution 

Reynolds-number similitude 

Velocity ratio 

Since νp = νm, 

Discharge 



8.7 Model-Prototype Performance 

Geometric (scale model) and dynamic (same π-groups) similitude 
mean that the dependent π-groups are the same for both the 
model and the prototype. For this reason, measurements made 
with the model can be applied directly to the prototype. Such 
correspondence is illustrated in this section. Recall, 

 

 

EXAMPLE 8.6 APPLICATION OF PRESSURE COEFFICIENT 

A 1/10 scale model of a blimp is tested in a wind tunnel under 

dynamically similar conditions. The speed of the blimp through still 

air is 10 m/s. A 17.8 kPa pressure difference is measured between 

two points on the model. What will be the pressure difference 

between the two corresponding points on the prototype? The 

temperature and pressure in the wind tunnel is the same as the 

prototype. 



Solution 
Reynolds-number similitude 

Pressure coefficient correspondence 

Pressure difference on prototype 



EXAMPLE 8.7 DRAG FORCE FROM WIND TUNNEL 

TESTING 

A 1/10 scale of a blimp is tested in a wind tunnel under 

dynamically similar conditions. If the drag force on the model 

blimp is measured to be 1530 N, what corresponding force 

could be expected on the prototype? The air pressure and 

temperature are the same for both model and prototype. 

 

 



Solution 

Reynolds-number similitude 

Force coefficient correspondence 

Therefore 



8.8 Approximate Similitude at High Reynolds 

Numbers 

Consider the following dimensionless functional relationship, 

   Cp = f(Re) 

In this case, the pressure coefficient is a function of the Reynolds 

number which is an important parameter for setting dynamical 

similarity between model and prototype for situations of 

incompressible fluids and free-surface effects are absent.  

There are situations where the functional relationship approaches 

an asymptotic value with increasing Re, For example consider 

determining the pressure coefficient in a venturi as shown in Fig 

8.6. The pressure difference is measured as shown and the 

velocity is at the throat. 

It is seen from the figure that for Re greater than 3000, the Cp 

becomes constant; in other words, same Cp is obtained whether 

test is made at Re 50,000 or 100,1000. 



This is what is meant by approximate similitude. That is, if the Re 

for the flow over the prototype is high, The Re for testing on the 

model may not be necessarily of the same large magnitude.  

To understand the physics involved, recall the meaning of Re 

which is the ratio of kinetic (inertia) forces to viscous forces. For 

low Reynolds numbers, the viscous forces are significant, so 

pressure changes are a result of fluid acceleration and viscous 

resistance. However, for high Re, the viscous forces are of less 

importance and the pressure changes are due to kinetic forces, 

thus the Cp does not change; i.,e., the ratio of pressure 

difference to kinetic forces remain constant. 

Two examples are given on approximate similitude.  



Figure 8.6 Cp for a venturi meter as a function of 
the Reynolds number 



EXAMPLE 8.8 MEASURING HEAD LOSS IN NOZZLE 

IN REVERSE FLOW 

Tests are to be performed to determine the head loss in a nozzle 

under a reverse-flow situation. The prototype operates with 

water at 50°F and with a nominal reverse-flow velocity of 5 ft/s. 

The diameter of the prototype is 3 ft. The tests are done in a 

1/12 scale model facility with water at 60°F. A head loss 

(pressure drop) of 1 psid is measured with a velocity of 20 ft/s 

on the model. What will be the head loss in the actual nozzle? 

Assume approximate similitude to exist for Re>3000. 

 

Solution 

Determine the Re for model and prototype, 



Because both Re for model and prototype exceed 3000, then by 

approximate similitude we have, 
 

  Cp)p = Cp)m 

Thus, compute Cp)m, 

Equate this value with Cp)p for the prototype and then find Dpو 



EXAMPLE 8.9 MODEL TESTS FOR DRAG FORCE ON 

AN AUTOMOBILE 

A 1/10 scale of an automobile is tested in a wind tunnel with air at 

atmospheric pressure and 20°C. The automobile is 4 m long 

and travels at a velocity of 100 km/hr in air at the same 

conditions. What should the wind-tunnel speed be such that the 

measured drag can be related to the drag of the prototype? 

Experience shows that the dependent π-groups are 

independent of Reynolds numbers exceeding 105. The speed of 

sound is 1235 km/hr. 

 

Solution 

Compute Re for the actual automobile, 



Since prototype Re exceeds 105, then the model testing can be 
conducted at at least Re = 105. Thus the wind speed on the 
model, 

Thus, for wind velocities greater than 3.8 m/s, dynamic similarity 

holds between the model and prototype, therefore, correlation of 

results can be made between model and prototype. 



8.9 Free-Surface Model Studies Spillway Models 
The flow over a spillway is a classic case of a free-surface flow. 

The major influence, besides the spillway geometry itself, on 
the flow of water over a spillway is the action of gravity. Hence 
the Froude-number similarity criterion is used for such model 
studies. 

Typically, these flows have high Re (why?), thus viscous effect 
are insignificant.  However, if the model is made too small, the 
viscous forces as well as the surface-tension forces would have 
a larger relative effect on the flow in the model than in the 
prototype. Therefore, in practice, spillway models are made 
large enough so that the viscous effects have about the same 
relative effect in the model as in the prototype  

It is not uncommon to design and construct model spillway 
sections that are 2 m or 3 m high. Figures 8.7 and 8.8 show a 
comprehensive model and spillway model for Hell's Canyon 
Dam in Idaho. 



EXAMPLE 8.10 MODELING FLOOD DISCHARGE 

OVER A SPILLWAY 

A 1/49 scale model of a proposed dam is used to predict 

prototype flow conditions. If the design flood discharge over the 

spillway is 15,000 m3/s, what water flow rate should be 

established in the model to simulate this flow? If a velocity of 

1.2 m/s is measured at a point in the model, what is the velocity 

at a corresponding point in the prototype? 
 

Solution 

This is a free-surface problem; i.e., there is a free surface in the 

flow and gravity has effects on the flow pattern. Therefore, for 

dynamic similarity, Froude no must be the same, 

which leads to 



The question is about flow rate which can be obtained by 

multiplying velocity and area (L2), thus 

Thus, the discharge for the model, 

The velocity for the corresponding point on the prototype is, 
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Wind tunnel used for testing flow over models. 



Introduction 
Resistances exerted by surfaces are a result of viscous stresses 

which create resistance (or drag) to motion as a body travels 

through a fluid. Aeronautical engineers and naval architects are 

vitally interested in the drag on an airplane or the surface. 

The phenomena responsible for shear stress are viscosity, and 

velocity gradients presented in Chapter 2.  

In addition the concepts of the boundary layer and separation, 

introduced in Chapter 4, will be further expanded. 

Will consider surface resistance in two flow situations: 

 1) uniform flows 

 2) Non-uniform flows; i.e., boundary-layer flows 

   - Laminar boundary-layer flows 

   - Turbulent boundary-layer flows 



9.1 Surface Resistance with Uniform Laminar Flow 
A one-dimensional laminar flow with parallel streamlines occurs for 

example between two plates: one is stationary and the other 
moving and also between two stationary parallel plates. These 
flows are uniform and steady. These flows illustrate the 
connections between velocity gradient and shear stress. 

 

Differential Equation for Uniform Laminar flow 
Consider the control volume shown in Fig. 9.1, which is aligned with 

the flow direction s. The streamlines are inclined at an angle θ with 
respect to the horizontal plane. The control volume has 
dimensions Ds × Dy × unity; that is, the control volume has a unit 
length into the page. By application of the momentum equation, 
the sum of the forces acting in the s-direction is equal to the net 
outflow of momentum from the control volume. The flow is uniform, 
so the outflow of momentum is equal to the inflow and the 
momentum equation reduces to 



Figure 9.1 Control volume for analysis of uniform flow 
with parallel streamlines. 



There are three types of forces that act on the control volume: 

 - Pressure forces  - Shear forces - Weight 

The pressure forces in s direction, 

 

The net force due to shear stress is, 

The weight along the flow direction is, 

Summing the above forces and dividing by DsDy lead to, 



Substituting for shear stress t = m du/dy, leads to 

where μ is constant. This equation is now applied to a flow 

between two plates; one is moving and the other is stationary. 
 

 

(9.3) 



Flow Produced by a Moving Plate (Couette Flow) 

Consider the flow between the two plates shown in Fig. 9.2. The 

lower plate is fixed, and the upper plate is moving with a speed U. 

The plates are separated by a distance L. In this problem there is 

no pressure gradient in the flow direction (dp/ds = 0), and the 

streamlines are in the horizontal direction (dz/ds = 0),so Eq. (9.3) 

reduces to 
along with the two 

boundary conditions: 

Figure 9.2 Flow generated by a moving 
plate (Couette flow). 

Integrating this equation 

twice gives 

Applying the boundary 

conditions results in 



The shear stress is constant and equal to 

This flow is known as a Couette flow after a French scientist, M. 

Couette, who did pioneering work on the flow between parallel 

plates and rotating cylinders. It has application in the design of 

lubrication systems. 

EXAMPLE 9.1 SHEAR STRESS I, COUETTE FLOW 

SAE 30 lubricating oil at T = 38°C flows between two parallel 

plates, one fixed and the other moving at 1.0 m/s. Plates are 

spaced 0.3 mm apart. What is the shear stress on the plates? 
 

Solution: 

This is significant. 



Non-Uniform Flows: Boundary-Layer Flows 

9.2 Qualitative Description of the Boundary Layer 

The boundary layer is the region adjacent to a surface over which 
the velocity changes from the free- stream value (with respect 
to the object) to zero at the surface. This region, which is 
generally very thin, occurs because of the viscosity of the fluid. 
The velocity gradient at the surface is responsible for the 
viscous shear stress and surface resistance. 

The boundary-layer development for flow past a thin plate 
oriented parallel to the flow direction shown in Fig. 9.4a. The 
thickness of the boundary layer, δ, is defined as the distance 
from the surface to the point where the velocity is 99% of the 
free-stream velocity. The actual thickness of a boundary layer 
may be 2%–3% of the plate length, so the boundary-layer 
thickness shown in Fig. 9.4a is exaggerated at least by a factor 
of five to show details of the flow field. Fluid passes over the top 
and underneath the plate, so two boundary layers are depicted 
(one above and one below the plate). For convenience, the 
surface is assumed to be stationary, and the free-stream fluid is 
moving at a velocity Uo. 



Figure 9.4 

Development of 
boundary layer and 
shear stress along a 
thin, flat plate. 
(a) Flow pattern 
above and below the 
plate. 
(b) Shear-stress 
distribution on either 
side of plate. 



The development and growth of the boundary layer occurs because 
of the “no-slip” condition at the surface; that is, the fluid velocity at 
the surface must be zero. As the fluid particles next to the plate 
pass close to the leading edge of the plate, a retarding force (from 
the shear stress) begins to act on the particles to slow them down. 
As these particles progress farther downstream, they continue to 
be subjected to shear stress from the plate, so they continue to 
decelerate. In addition, these particles (because of their lower 
velocity) retard other particles adjacent to them but farther out from 
the plate. Thus the boundary layer becomes thicker, or “grows,” in 
the downstream direction. The broken line in Fig. 9.4a identifies 
the outer limit of the boundary layer. As the boundary layer 
becomes thicker, the velocity gradient at the wall becomes smaller 
and the local shear stress is reduced.  

The initial section of the boundary layer is the laminar boundary 
layer. In this region the flow is smooth and steady. Thickening of 
the laminar boundary layer continues smoothly in the downstream 
direction until a point is reached where the boundary layer 
becomes unstable. Beyond this point, the critical point, small 
disturbances in the flow will grow and spread, leading to 
turbulence. The boundary becomes fully turbulent at the transition 
point. The region between the critical point and the transition point 
is called the transition region. 



The turbulent boundary layer is characterized by intense cross-
stream mixing as turbulent eddies transport high-velocity fluid 
from the boundary layer edge to the region close to the wall. 
This cross-stream mixing gives rise to a high effective viscosity, 
which can be three orders of magnitude higher than the actual 
viscosity of the fluid itself. The effective viscosity, due to 
turbulent mixing is not a property of the fluid but rather a 
property of the flow, namely, the mixing process. Because of 
this intense mixing, the velocity profile is much “fuller” than the 
laminar-flow velocity profile as shown in Fig. 9.4a. This situation 
leads to an increased velocity gradient at the surface and a 
larger shear stress. 

The shear-stress distribution along the plate is shown in Fig. 9.4b. 
It is easy to visualize that the shear stress must be relatively 
large near the leading edge of the plate where the velocity 
gradient is steep, and that it becomes progressively smaller as 
the boundary layer thickens in the downstream direction. At the 
point where the boundary layer becomes turbulent, the shear 
stress at the boundary increases because the velocity profile 
changes producing a steeper gradient at the surface. 



9.3 Laminar Boundary Layer - Boundary-Layer Equations 

In 1904 Prandtl, 1 first stated the essence of the boundary-layer 
hypothesis, which is that viscous effects are concentrated in a 
thin layer of fluid (the boundary layer) next to solid boundaries.  

In 1908, Blasius, one of Prandtl's students, obtained a solution for 
the flow in a laminar boundary layer on a flat plate with a 
constant free-stream velocity. One of Blasius's key assumptions 
was that the shape of the nondimensional velocity distribution 
did not vary from section to section along the plate. That is, he 
assumed that a plot of the relative velocity, u/U0, versus the 
relative distance from the boundary, y/δ, would be the same at 
each section. With this assumption and with Prandtl's equations 
of motion for boundary layers, Blasius obtained a numerical 
solution for the relative velocity distribution, shown in Fig. 9.5. 
In this plot, x is the distance from the leading edge of the plate, 
and Rex is the Reynolds number based on the free-stream 
velocity and the length along the plate (Rex = U0x/ν). In Fig. 9.5 
the outer limit of the boundary layer (u/U0 = 0.99) occurs at 
approximately, 



Figure 9.5 Velocity distribution in laminar boundary 
layer.  



Since y = δ at this point, the following relationship is derived for 

the boundary-layer thickness in laminar flow on a flat plate 

The Blasius solution also showed that 

which can be used to find the shear stress at the surface. The 

velocity gradient at the boundary becomes (at a section; x 

=constant) 



Shear Stress 

The shear stress at the boundary is obtained from 

Surface Resistance 

Because the shear stress at the boundary, to, varies along the 

plate, it is necessary to integrate this stress over the entire surface 

to obtain the total surface resistance, Fs. For one side of the plate, 

(9.13) 



EXAMPLE 9.3 LAMINAR BOUNDARY-LAYER 

THICKNESS AND SHEAR STRESS 

Crude oil at 70°F(n = 10-4 ft2/s, S = 0.86) with a free-stream 

velocity of 1 ft/s flows past a thin, flat plate that is 4 ft wide and 

6 ft long in a direction parallel to the flow. The flow is laminar. 

Determine and plot the boundary-layer thickness and the shear 

stress distribution along the plate. 



Solution 

Reynolds-number variation with distance 

Boundary-layer thickness 

Shear-stress distribution 

The results for Example 9.3 are plotted in the accompanying 

figure and listed in Table 9.1. 



Table 9.1 RESULT— δ AND τo FOR DIFFERENT VALUES OF x 
 x = 0.1 ft  x = 1.0 ft  x = 2 ft   x = 4 ft   x = 6 ft 

x1/2  0.316   1.00   1.414   2.00   2.45 

τ0, psf  0.018   0.0055   0.0037   0.0028   0.0023 

δ, ft  0.016   0.050   0.071   0.10   0.122 

δ, in  0.190   0.600   0.848   1.200   1.470 



To find the resistive force, substitute in Eq. (9.13) for t0 and 

integrate, giving 

(9.14) 



Shear-Stress Coefficients 

It is convenient to express the shear stress at the boundary, t0, 

and the total shearing force Fs in terms of π-groups involving 

the kinetic pressure of the free stream, . The local shear-stress 
coefficient, cf, is defined as 

Substituting the value for t0 in the above gives cf as a function of 

Reynolds number based on the distance from the leading edge. 

The total shearing force, given by Eq. (9.13), can also be 

expressed as a π-group 



where A is the plate area. This π-group is called the average 

shear-stress coefficient. Substituting Eq. (9.14) into the definition 

of Cf, gives 

EXAMPLE 9.4 RESISTANCE CALCULATION FOR LAMINAR 

BOU#DARY LAYER ON A FLAT PLATE 

Crude oil at 70°F (ν = 10-4 ft2 /s, S = 0.86.) with a free-stream 

velocity of 1 ft/s flows past a thin, flat plate that is 4 ft wide and 6 ft 

long in a direction parallel to the flow. The flow is laminar. 

Determine the resistance on one side of the plate. 



Solution 

Reynolds number. 

Value for Cf 

Total shear force. 



9.4 Boundary Layer Transition 

Transition is the zone where the laminar boundary layer changes 
into a turbulent boundary layer as shown in Fig. 9.4a. As the 
laminar boundary layer continues to grow, the viscous stresses 
are less capable of damping disturbances in the flow. A point is 
then reached where disturbances occurring in the flow are 
amplified, leading to turbulence. The critical point occurs at a 
Reynolds number of about 105(Recr 105) based on the distance 
from the leading edge. Vortices created near the wall grow and 
mutually interact, ultimately leading to a fully turbulent boundary 
layer at the transition point, which nominally occurs at a 
Reynolds number of 3 × 106(Retr 3 × 106). For purposes of 
simplicity in this text, it will be assumed that the boundary layer 
changes from laminar to turbulent flow at a Reynolds number 
500,000.  

Transition to a turbulent boundary layer can be influenced by 
several other flow conditions, such as free-stream turbulence, 
pressure gradient, wall roughness, wall heating, and wall 
cooling. With appropriate roughness elements at the leading 
edge, the boundary layer can become turbulent at the very 
beginning of the plate. In this case it is said that the boundary 
layer is “tripped” at the leading edge. 



9.5 Turbulent Boundary Layer 

In the majority of practical problems the boundary layer is 
turbulent which is primarily responsible for surface shear force, 
or surface resistance. 

 

Velocity Distribution 

The velocity distribution in the turbulent boundary layer is more 
complicated than the laminar boundary layer. The turbulent 
boundary has three zones of flow that require different 
equations for the velocity distribution in each zone, as opposed 
to the single relationship of the laminar boundary layer. Figure 
9.6 shows a portion of a turbulent boundary layer in which the 
three different zones of flow are identified. The zone adjacent to 
the wall is the viscous sublayer; the zone immediately above 
the viscous sublayer is the logarithmic region; and, finally, 
beyond that region is the velocity defect region. Each of these 
velocity zones will be discussed separately. Figure 9.6 Sketch 
of zones in turbulent boundary layer. Viscous Sublayer The 
zone 



Figure 9.6 Sketch of zones in turbulent boundary layer. 

The three zones in a turbulent boundary layer. 



Boundary-Layer Thickness and Shear-Stress Correlations 

Unlike the laminar boundary layer, there is no analytically derived 

equation for the thickness of the turbulent boundary layer. It can 

be shown that the thickness of the turbulent boundary layer is 

where x is the distance from the leading edge of the plate and Rex 
is U0x/ν. 

 

Many empirical expressions have been proposed for the local 

shear-stress distribution for the turbulent boundary layer on a flat 

plate. One of the simplest correlations is 



The corresponding average shear-stress coefficient is 

The boundary layer, however, usually consists of laminar and 

turbulent. To account for this combined effect, it can be shown that 

the average shear-stress coefficient for this case is,  

The variation of Cf with Reynolds number is shown by the solid 

line in Fig. 9.12. This curve corresponds to a boundary layer that 

begins as a laminar boundary layer and then changes to a 

turbulent boundary layer after the transition Reynolds number. 

This is the normal condition for a flat-plate boundary layer. Table 

9.3 summarizes the equations for boundary-layer-thickness, and 

for local shear-stress and average shear-stress coefficients for the 

boundary layer on a flat plate. 



Figure 9.12 Average shear-stress coefficients. 



Table 9.3 SUMMARY OF EQUATIONS FOR BOU"DARY LAYER ON A FLAT PLATE 

 

   Laminar Flow Rex,   Turbulent Flow Rex, 

     ReL < 5 × 105       ReL ≥ 5 × 105 

 

 

Boundary-Layer  

Thickness, δ 

 

 

Local Shear-Stress  

Coefficient, cf 

 

 

 

Average Shear-Stress 

Coefficient, Cf 



If the boundary layer is “tripped” by some roughness or leading-
edge disturbance (such as a wire across the leading edge), the 
boundary layer is turbulent from the leading edge. This is 
shown by the dashed line in Fig. 9.12. For this condition the 
boundary layer thickness, local shear-stress coefficient, and 
average shear-stress coefficient are fit reasonably well by the 
following equations, 

which are valid up to a Reynolds number of 107. 



EXAMPLE 9.6 LAMINAR/TURBULENT BOUNDARY 

LAYER ON FLAT PLATE 

Assume that air 20°C and normal atmospheric pressure flows 

over a smooth, flat plate with a velocity of 30 m/s. The initial 

boundary layer is laminar and then becomes turbulent at a 

transitional Reynolds number of 5 × 105. The plate is 3 m long 

and 1 m wide. What will be the average resistance coefficient Cf 
for the plate? Also, what is the total shearing resistance of one 

side of the plate, and what will be the resistance due to the 

turbulent part and the laminar part of the boundary layer? 

Air properties at 20 °C: 



Solution 

Reynolds number based on plate length 

Average shear-stress coefficient 

Total shear force 

Transition point 



Laminar average shear-stress coefficient 

Laminar shear force 

Turbulent shear force 



EXAMPLE 9.7 RESISTANCE FORCE WITH TRIPPED 

BOUNDARY LAYER 

Air at 20°C flows past a smooth, thin plate with a free-stream 

velocity of 20 m/s. Plate is 3 m wide and 6 m long in the 

direction of flow and boundary layer is tripped at the leading 

edge. 
 

Solution 

Reynolds number 

Reynolds number is less than 107. Average shear-stress 

coefficient 



Resistance force 



Fluid Mechanics 
 

 

Chapter 10 
Flow in Conduits  

 

 
Dr. Amer Khalil Ababneh 



The Alaskan pipeline, a significant accomplishment of the 
engineering profession, transports oil 1286 km across the state of 
Alaska. The pipe diameter is 1.2 m, and the 44 pumps are used to 
drive the flow 



A conduit is any pipe, tube, or duct that is completely filled with a 
flowing fluid. Examples include a pipeline transporting liquefied 
natural gas, a microchannel transporting hydrogen in a fuel cell, 
and a duct transporting air for heating of a building. A pipe that 
is partially filled with a flowing fluid, for example a drainage 
pipe, is classified as an open-channel flow. 

 

The main goal of this chapter is to describe how to predict head 
loss. Predicting head loss involves classifying flow as laminar or 
turbulent and then using equations to calculate head losses in 
pipes and components. 



10.1 Classifying Flow 

The flow in a conduit may be classified as: (a) whether the flow is 
laminar or turbulent, and (b) whether the flow is developing or 
fully developed.  

 

Laminar Flow and Turbulent Flow 

Flow in a conduit is classified as being either laminar or turbulent, 
depending on the magnitude of the Reynolds number. The 
original research involved visualizing flow in a glass tube as 
shown in Fig. 10.1a. Reynolds 1 in the 1880s injected dye into 
the center of the tube and observed the following: 

- When the velocity was low, the streak of dye flowed down the 
tube with little expansion, as shown in Fig. 10.1b. However, if 
the water in the tank was disturbed, the streak would shift about 
in the tube. 

- If velocity was increased, at some point in the tube, the dye 
would all at once mix with the water as shown in Fig. 10.1c. 

- When the dye exhibited rapid mixing (Fig. 10.1c), illumination 
with an electric spark revealed eddies in the mixed fluid as 
shown in Fig. 10.1d. 



Figure 10.1 Reynolds' experiment. 
   (a) Apparatus. 
   (b) Laminar flow of dye in tube. 
   (c) Turbulent flow of dye in tube. 
   (d) Eddies in turbulent flow. 



Reynolds showed that the onset of turbulence was related to a π-
group that is now called the Reynolds number (Re = ρVD/μ) in 
honor of Reynolds' pioneering work. Reynolds discovered that if 
the fluid in the upstream reservoir was not completely still or if 
the pipe had some vibrations, then the change from laminar to 
turbulent flow occurred at Re ~ 2100. However, if conditions 
were ideal, it was possible to reach a much higher Reynolds 
number before the flow became turbulent. Reynolds also found 
that, when going from high velocity to low velocity, the change 
back to laminar flow occurred at Re ~ 2000. Based on 
Reynolds' experiments, engineers use guidelines to establish 
whether or not flow in a conduit will be laminar or turbulent. The 
guidelines used in this text are as follows: 

(10.1) 



The range (2000 ≤ Re ≤ 3000) corresponds to a the type of flow 

that is unpredictable because it can changes back and forth 

between laminar and turbulent states.  

Recognize that precise values of Reynolds number versus flow 

regime do not exist. Thus, the guidelines given in Eq. (10.1) are 

approximate and other references may give slightly different 

values. For example, some references use Re = 2300 as the 

criteria for turbulence. 

There are several equations for calculating Reynolds number in a 

pipe 



Developing Flow and Fully Developed Flow 
Flow in a conduit is classified as being developing flow or fully 

developed flow. For example, consider laminar fluid entering a 
pipe from a reservoir as shown in Fig. 10.2. As the fluid moves 
down the pipe, the velocity distribution changes in the 
streamwise direction as viscous effects cause the plug-type 
profile to gradually change into a parabolic profile. This region 
of changing velocity profile is called developing flow. After the 
parabolic distribution is achieved, the flow profile remains 
unchanged in the streamwise direction, and flow is called fully 
developed flow. 

The distance required for flow to develop is called the entrance 
length (Le). Correlations for entry length are: 



Figure 10.2 In developing flow, the wall shear stress is changing. 
In fully developed flow, the wall shear stress is constant. 



EXAMPLE 10.1 CLASSIFYING FLOW IN CONDUITS 

Consider fluid flowing in a round tube of length 1 m and diameter 

5 mm. Classify the flow as laminar or turbulent and calculate 

the entrance length for (a) air (50°C) with a speed of 12 m/s 

and (b) water (15°C) with a mass flow rate of 8 gm/s, 

Properties: 

1. Air (50°C), Table A.3, n = 1.79 × 10-5 m2/s. 

2. Water (15°C), Table A.5, m = 1.14 × 10-3 N ・ s/m2. 



Solution 

(a) Air 

Since Re > 3000, the flow is turbulent 

(b) Water 

Since Re < 2000, the flow is laminar 



10.3 Pipe Head Loss 

The Darcy-Weisbach equation is used for calculating head 

loss in a straight pipe. This equation is one of the most 

useful equations in fluid mechanics. 

Combined (Total) Head Loss 

Pipe head loss is one type of head loss; the other type is 

called component head loss. All head losses are 

classified using these two categories: 

Component head loss is associated with flow through devices 

such as valves, bends, and tees. Pipe head loss is associated 

with fully developed flow in conduits, and it is caused by shear 

stresses that act on the flowing fluid. Note that pipe head loss is 

sometimes called major head loss, and component head loss is 

sometimes called minor head loss. 



Derivation of the Darcy-Weisbach Equation 

To derive the Darcy-Weisbach equation, consider Fig. 10.4. 

Assume fully developed and steady flow in a round tube of 

constant diameter D. Situate a cylindrical control volume of 

diameter D and length DL inside the pipe. Define a coordinate 

system with an axial coordinate in the streamwise direction (s 
direction) and a radial coordinate in the r direction. 

Figure 10.4 Initial situation for the derivation of the Darcy-Weisbach equation. 



Apply the momentum equation to the control volume shown in Fig. 
10.4. 

The net efflux of momentum is zero because the velocity 

distribution at section 2 is identical to the velocity distribution at 

section 1. The momentum accumulation term is also zero 

because the flow is steady. Thus, Eq. (10.5) simplifies to ΣF = 0.   

Forces are shown in Fig. 10.5. Summing forces in the streamwise 

direction gives 

(10.5) 

Figure 10.5 Force diagram. 

Since, sin a = (Dz/DL), the equation 

becomes, 



Next, apply the energy equation to the control volume shown in 

Fig. 10.4. Recognize that hp = ht = 0, V1 = V2, and α1 = α2. 

Thus, the energy equation reduces to 

Combine the equation from the momentum and the above (form 

the energy) and replace DL by L. Also, introduce a new symbol hf 
to represent head loss in pipe. 

Rearrange the right side of Eq. (10.9). 



Define a new π-group called the friction factor f that gives the ratio 

of wall shear stress (to) to kinetic pressure (ρV2/2): 

In the technical literature, the friction factor is identified by several 

different labels that are synonymous: friction factor, Darcy friction 

factor, Darcy-Weisbach friction factor, and the resistance 

coefficient. There is also another coefficient called the Fanning 

friction factor, often used by chemical engineers, which is related 

to the Darcy-Weisbach friction factor by a factor of 4. 

This text uses only the Darcy-Weisbach friction factor. Combining 

the previous equations, gives the Darcy-Weisbach equation: 



To use the Darcy-Weisbach equation, the flow should be fully 
developed and steady. The Darcy-Weisbach equation is used 
for either laminar flow or turbulent flow and for either round 
pipes or nonround conduits such as a rectangular duct. 

The Darcy-Weisbach equation shows that head loss depends on 
the friction factor, the pipe-length-to-diameter ratio, and the 
mean velocity squared.  

The key to using the Darcy-Weisbach equation is calculating a 
value of the friction factor f. 



10.4 Stress Distributions in Pipe Flow 

This section derives equations for the stress distributions on a 

plane that is oriented normal to stream lines. These equations, 

which apply to both laminar and turbulent flow, provide insights 

about the nature of the flow.  

In pipe flow the pressure acting on a plane that is normal to the 

direction of flow is hydrostatic. This means that the pressure 

distribution varies linearly as shown in Fig. 10.6. What is the 

reason that the pressure distribution is hydrostatic? 

Figure 10.6 For fully 
developed flow in a pipe, 
the pressure distribution 
on an area normal to 
streamlines is hydrostatic. 



To derive an equation for the shear-stress variation, consider flow 

of a Newtonian fluid in a round tube that is inclined at an angle 

α with respect to the horizontal as shown in Fig. 10.7. Assume 

that the flow is fully developed, steady, and laminar. Define a 

cylindrical control volume of length DL and radius r. 

Figure 10.7 Sketch for derivation of an equation for shear stress. 



Apply the momentum equation in the s direction. The net 

momentum efflux is zero because the flow is fully developed; 

that is, the velocity distribution at the inlet is the same as the 

velocity distribution at the exit. The momentum accumulation is 

also zero because the flow is steady. The momentum equation 

(6.5) simplifies to force equilibrium. 

Analyze each term using the force diagram shown in Fig. 10.8: 

Figure 10.8 Force diagram 
corresponding to the control 
volume defined in Fig. 10.6. 



Since W = gADL, also sin a = Dz/DL. Next, divide the previous 

equation by ADL: 

(10.15) 

Equation (10.15) shows that the shear-stress distribution varies 

linearly with r as shown in Fig. 10.9. Notice that the shear stress is 

zero at the centerline, it reaches a maximum value of t0 at the 

wall, and the variation is linear in between. This linear shear 

stress variation applies to both laminar and turbulent flow. 

Figure 10.9 In fully developed flow (laminar or turbulent), the shear-stress distribution on 
an area that is normal to streamlines is linear. 



10.5 Laminar Flow in a Round Tube 

Laminar flow is important for flow in small conduits called micro-
channels, for lubrication flow, and for analyzing other flows in 
which viscous forces are dominant. Also, knowledge of laminar 
flow provides a foundation for the study of advanced topics. 
Laminar flow is a flow regime in which fluid motion is smooth, 
the flow occurs in layers (laminae), and the mixing between 
layers occurs by molecular diffusion, a process that is much 
slower than turbulent mixing. 

Laminar flow occurs when Re ≤ 2000. Laminar flow in a round 
tube is called Poiseuille flow or Hagen-Poiseuille flow in honor 
of pioneering researchers who studied low-speed flows in the 
1840s. 



Velocity Profile 

To derive an equation for the velocity profile in laminar flow, start 

by relating stress to rate-of-strain 

In pipe flow, velocity is expressed as a function of r while y is the 

distance from the wall; r and y are related by y = r0 – r, thus the 

derivative of the velocity becomes 

Substitute for shear stress from the stress distribution, 

Observing that the left hand side (velocity) is a function of r while 

the right hand side is differentiated with s; this can only be true if 

the two sides equal to a constant. 



Another way is to remember the flow is fully developed, which 
means that is not accelerating, hence the difference in the 
piezometric pressure must be constant. 

Therefore, when integrating the right hand side is constant, hence 

where gDh = D(p + gz). To evaluate C, apply the no-slip condition, 

Solving for C, substituting and re-arranging lead to, 



The maximum velocity occurring at r = 0, hence 

This expression can be substituted into the velocity expression to 

give, 

This indicates that the velocity distribution is parabolic which is 

shown in Figure 10.10 

Figure 10.10 The 
velocity profile in 
Poiseuille flow is 
parabolic. 



Discharge and Mean Velocity V 

The discharge is easily obtained form, 

which upon integration leads to 

The mean velocity is obtained from, 

which leads to 



Notice that the mean and maximum velocities are related, 

Head Loss and Friction Factor f 
The equation for head loss in a round tube, assume fully 

developed flow in the pipe shown in Fig.10.11, is obtained by 

going back to the derived equation, 

Given the velocity profile one can find the shear at the wall and 

then substituting into the above equation with re-arranging gives, 



Equating the last expression with the Darcy-Weisbach, 

After some manipulation give, 

EXAMPLE 10.2 HEAD LOSS FOR LAMI)AR FLOW 

Oil (S = 0.85) with a kinematic viscosity of 6 × 10-4 m2/s flows in a 

15 cm pipe at a rate of 0.020 m3/s. What is the head loss per 100 

m length of pipe? 



Solution 

Determine the flow nature by computing Reynolds number. For 

the Re, the mean velocity is required, 

Thus, 

Since Re < 2000, flow is laminar, hence the head loss, 



10.6 Turbulent Flow and the Moody Diagram 

This section presents equations for calculating the friction factor f, 
and presents a famous graph called the Moody diagram.  

Qualitative Description of Turbulent Flow 

Turbulent flow is a flow regime in which the movement of fluid 
particles is chaotic, eddying, and unsteady, with significant 
movement of particles in directions transverse to the flow 
direction. Because of the chaotic motion of fluid particles, 
turbulent flow produces high levels of mixing and has a velocity 
profile that is more uniform or flatter than the corresponding 
laminar velocity profile. Turbulent flow normally occurs when Re 
≥ 3000. Engineers and scientists model turbulent flow by using 
an empirical approach. This is because the complex nature of 
turbulent flow has prevented researchers from establishing a 
mathematical solution of general utility. Over the years, 
researchers have proposed many equations for shear stress 
and head loss in turbulent pipe flow. The empirical equations 
that have proven to be the most reliable and accurate for 
engineering use are presented in the next section. 



Equations for the Velocity Distribution 

The time-average velocity distribution is often described using an 

equation called the power-law formula. 

where umax is velocity in the center of the pipe, r0 is the pipe 

radius, and m is an empirically determined variable that depends 

on Re as shown in Table 10.2. 

Table 10.2 EXPONENTS FOR POWER-LAW EQUATION AND RATIO OF 

MEAN TO MAXIMUM VELOCITY 

(10.35) 



Notice in Table 10.2 that the velocity in the center of the pipe is 
typically about 20% higher than the mean velocity V. While Eq. 
(10.35) provides an accurate representation of the velocity 
profile, it does not predict an accurate value of wall shear 
stress. 

An alternative approach to Eq. (10.35) is to use the turbulent 
boundary-layer equations presented in Chapter 9. The most 
significant of these equations, called the logarithmic velocity 
distribution, 

where u* the shear velocity, is given by 

(10.36) 



Equations for the Friction Factor, f 

To derive an equation for f in turbulent flow, substitute the log law 

in Eq. (10.36) into the definition of mean velocity given 

After some manipulations, 

Equation (10.37) gives the resistance coefficient for turbulent flow 

in tubes that have smooth walls. To determine the influence of 

roughness on the walls, Nikuradse, one of Prandtl's graduate 

students, glued uniform-sized grains of sand to the inner walls of a 

tube and then measured pressure drops and flow rates. 

(10.37) 



Nikuradse's data, Fig. 10.12, shows the friction factor f plotted as function of 
Reynolds number for various sizes of sand grains. To characterize the size 
of sand grains, Nikuradse used a variable called the sand roughness 
height with the symbol ks. The π-group, ks/D is given the name relative 
roughness. 

Figure 10.12 

Resistance 
coefficient f versus 
Re for sand-
roughened pipe. 
[After  ikuradse 4]. 



In laminar flow, the data in Fig. 10.12 show that wall roughness 
does not influence f. In particular, notice how the data 
corresponding to various values of ks/D collapse into a single 
line that is labeled “laminar flow.”  

In turbulent flow, the data in Fig. 10.12 show that wall roughness 
has a major impact on f. When ks/D = 0.033, then values of f 
are about 0.04. As the relative roughness drops to 0.002, 
values of f decrease by a factor of about 3. Eventually wall 
roughness does not matter, and the value of f can be predicted 
by assuming that the tube has a smooth wall. This latter case 
corresponds to the curve that is labeled “smooth wall tube.” The 
effects of roughness are summarized by White 5 and presented 
in Table 10.3. These regions are also labeled in Fig. 10.12. 





Moody Diagram 

Colebrook advanced Nikarudse's work by acquiring data for 
commercial pipes and then developing an empirical equation, 
called the Colebrook-White formula, for the friction factor. 
Moody used the Colebrook-White formula to generate a design 
chart similar to that shown in Fig. 10.13. This chart is now 
known as the Moody diagram for commercial pipes. 

In the Moody diagram, Fig. 10.13, the variable ks denotes the 
equivalent sand roughness. That is, a pipe that has the same 
resistance characteristics at high Re values as a sand-
roughened pipe is said to have a roughness equivalent to that 
of the sand-roughened pipe.  

Table 10.4 gives the equivalent sand roughness for various kinds 
of pipes. This table can be used to calculate the relative 
roughness for a given pipe diameter, which, in turn, is used in 
the Moody diagram to find the friction factor. 



Figure 10.13 Resistance coefficient f versus Re. Reprinted with 
minor variations. [After Moody 3.  



Table 10.4 EQUIVALENT NA'D-GRAIN ROUGHNESS, (kS), FOR 

VARIOUS PIPE MATERIAL 



EXAMPLE 10.3 HEAD LOSS IN A PIPE (Direct application) 

Water (T = 20°C) flows at a rate of 0.05 m3/s in a 20 cm asphalted 

cast-iron pipe. What is the head loss per kilometer of pipe? 

Solution 

Mean velocity, 
 

Reynolds number 

Flow is turbulent. Equivalent sand roughness (Table 10.4): ks = 

0.12 mm. Hence, the relative roughness: 

Look up f on the Moody diagram for Re = 3.18 × 105 and ks/D = 

0.0006: 



Darcy-Weisbach equation 



10.8 Combined Head Loss 

This section describes how to calculate head loss in components.  

The Minor Loss Coefficient, K 
When fluid flows through a component such as a partially open 

value or a bend in a pipe, viscous effects cause the flowing fluid 
to lose mechanical energy. For example, Fig. 10.14 shows flow 
through a “generic component.” At section 2, the fluid head of 
the flow will be less than at section 1. To characterize 
component head loss, engineers use a π-group called the 
minor loss coefficient K 

Figure 10.14 Flow through a 
generic component. 

where Dh is drop in piezometric head 

that is caused by a component, Dp is 

the pressure drop that is caused by 

the component, and V is mean 

velocity. 



Data for the Minor Loss Coefficient 

Pipe inlet. Near the entrance to a pipe when the entrance is 

rounded, flow is developing as shown in Fig. 10.1 and the wall 

shear stress is higher than that found in fully developed flow. 

Alternatively, if the pipe inlet is abrupt, or sharp-edged, as in 

Fig. 10.15, separation occurs just downstream of the entrance. 

Hence the streamlines converge and then diverge with 

consequent turbulence and relatively high head loss. The loss 

coefficient for the abrupt inlet is approximately 0.5. Other values 

of head loss are summarized in Table 10.5. 

Figure 10.15 Flow at a sharp-edged inlet. 









Flow in an Elbow. In an elbow (90° smooth bend), considerable 
head loss is produced by secondary flows and by separation 
that occurs near the inside of the bend and downstream of the 
midsection as shown in Fig. 10.16. 

Figure 10.16 Flow pattern in an elbow. 



Combined Head Loss Equation 

The total head loss is, 

An equation for the combined head loss,  



EXAMPLE 10.7 PIPE SYSTEM WITH COMBI&ED HEAD LOSS 

If oil (ν = 4 × 10-5 m2/s; S = 0.9) flows from the upper to the lower 

reservoir at a rate of 0.028 m3/s in the 15 cm smooth pipe, what 

is the elevation of the oil surface in the upper reservoir? 



Solution 

Energy equation and term-by-term analysis 

Interpretation: Change in elevation head is balanced by the total 

head loss. The combined head loss equation 



Substitute into the energy equation 

Resistance coefficient. Flow rate equation, 

The Reynolds number 

Thus, flow is turbulent. Use Moody diagram or Swamee-Jain 

equation 



Calculate z1: 


