

Residential-Commercial Building

**Graduation project report submitted to the faculty of
Civil Engineering Department
The Hashemite University**

**in partial fulfillment
of the requirements for the degree of
Bachelor's in civil engineering**

By

Emran Migdady (1738040)
Waleed Dawas (1732492)
Hamza Aqel (1732416)
Abdullah Qadoumi (1737532)
Emad Al-Maayah (1732457)

Supervised by

Dr. Iqbal Marie

Date: 24-5-2021

ABSTRACT

Structural Design is the second process after Architectural, it is the process that transfers the project from papers to reality and produce a structure capable of resisting all applied loads without failure during its intended life.

The Structural Design process is divided to 3 main phases, planning phase, Design and Construction phases and are defined as the following:

- 1- Planning phase: during this phase, we study the building layout, from its dimensions to the shape of it as all, prepare the basic structural plans and drawings and plan the schedule of the construction.
- 2- Design phase: Study the stability, strength and rigidity of the structure and ensure that the planned structure will be sufficiently strong to carry its intended load.
- 3- Construction phase: it's the stage that the planned project start becoming real.

TABLE OF CONTENTS

ABSTRACT	2
TABLE OF CONTENTS	3
LIST OF FIGURES AND TABLES	5
LIST OF SYMBOLS AND ABBREVIATIONs	12
Chapter 1 : Introduction.....	14
1.1 Genral information.....	14
1.2 Objectives	15
1.3 Motivations and Importance	16
1.4 Methodology and Implementation	16
1.5 Codes,books,and programmes	17
Chapter 2 : Structure Description and Analysis.....	18
2.1 Structural System Components.....	18
2.2 Structural Elements.....	18
2.3 Modeling	21
Chapter 3 : Slabs.....	22
3.1 Slab types	22
3.2 Loading	24
3.3 Calculations and Part Selections	29
3.4 Slab analysis and Final Design.	35
Chapter 4 : Beams.....	57
4.1 Beams Distribution	57
4.1.1 Load calculations	57
4.1.2 Calculations and Part Selections.....	58
4.2 Design.	64
Chapter 5 : Columns	98
5.1 Type of columns	98
5.2 Design	99
5.3 Final results.....	104
Chapter 6 : Shear Walls	107
6.1 Introduction.....	107
6.2 Typs of walls.....	107
6.3 Design Response Spectra	109
6.4 Design.....	111
6.5 Final results.....	119

Chapter 7 : Foundation.....	120
7.1 Foundation Types.....	120
7.2 Loading and Size Selection.....	122
7.3 Design Procedure	125
Chapter 8 : Stair Case	136
8.1 Stair Design Procedure.....	137
8.2 Loads.....	139
8.3 Analysis and Reinforcements Design	140
Chapter 9: QUANTITY SURVEY AND COST ESTIMATE.....	147
9.1 Quantities and Costs of Beams	149
9.2 Quantities and Costs of Slabs	156
9.3 Quantities and Costs of Columns and Shear wall	158
9.4 Quantities and Costs of Foundation	163
9.5 Quantities and Costs of Stairs	164
9.6 Final Cost and Quantities Estimating	166
REFERENCES	167
Appendix A : Detailed drawings	168
Appendix B : Design Aids.....	171

LIST OF FIGURES AND TABLES

Table 1-1: Different area of the building.....	15
Figure 2.1: Truss	19
Figure 2.2: Load Distribution.....	20
Figure 2.3: Shear Wall	20
Figure 2.4: Stair.....	21
Figure 2.5: ETABS 3D Modeling 1	21
Figure 2.6: ETABS 3D Modeling 2	21
Figure 2.7: SAFE Typical Slab Modeling.....	21
Figure 2.8: SAFE Roof Slab Modeling.....	21
Figure 3.1: Real flat slab with drop panels.....	22
Figure 3.2: Flat Slab.....	22
Figure 3.3: construction of Flat Slab.....	23
Figure 3.4: Live Load from jordanian code	24
Figure 3.5: Load distibution table	25
Figure 3.6: Load distibution on slab.....	25
Figure 3.7: Safe Load distrubition in all slab	26
Figure 3.8: Safe Load distrubition in corridor.....	26
Figure 3.9: Safe live Load in corridor	26
Figure 3.10: Safe super imposed Dead Load in corridor	26
Figure 3.11: Safe Bed room load distribution	27
Figure 3.12: Safe Live load in bed room.....	27
Figure 3.13: Safe super imposed Dead Load in bed room	27
Figure 3.14: Safe Bath room load distribution	28
Figure 3.15: Safe Live load and super imposed Dead Load in bath room	28
Figure 3.16: Summary of all load on whole slab	28
Figure 3.17: Slab section.....	29
Figure 3.18: slab section with black corner.....	29
Figure 3.19: Table 9.5 (c).....	30
Figure 3.20: column two way shear section	31
Figure 3.21: moment distribution for beams	32
Figure 3.22: longitudinal moment in column strip,ACI section 13.6.4.....	33
Figure 3.23: ACI Table 9.5 (b).....	35
Figure 3.24: SAFE longterm deflection before add coloumn	36
Figure 3.25: section of slab before add column	36
Figure 3.26: section of slab after add column	37

Figure 3.27: SAFE longterm deflection before add coloumn	37
Figure 3.28: punshing shear column	38
Figure 3.29: SAFE shear stud	39
Figure 3.30: Design of Shear stud.....	39
Figure 3.31: Value of moment in X axis.....	40
Figure 3.32: moment diagram in X axis.....	40
Figure 3.33: Value of moment in Y axis.....	40
Figure 3.34: moment diagram in Y axis.....	40
Figure 3.35: reinfrocement Steel in X axis not enough.....	41
Figure 3.36: reinfrocement Steel in Y axis not enough.....	42
Figure 3.37: reinfrocement Steel in X axis not enough around coloumn	43
Figure 3.38: reinfrocement Steel in X axis not enough around coloumn	43
Figure 3.39: reinfrocement Steel in X axis enough	44
Figure 3.40: reinfrocement Steel in Y axis enough	44
Figure 3.41: reinfrocement Steel in X axis enough around coloumn	45
Figure 3.42: reinfrocement Steel in Y axis enough around coloumn	45
Figure 3.43: deflection roof.....	47
Figure 3.44: punching shaer roof	47
Figure 3.45: moment value in X axis roof	48
Figure 3.46: moment diagram in X axis roof	48
Figure 3.47: moment value in Y axis roof	48
Figure 3.48: moment diagram Y axis roof	48
Figure 3.49: reinfrocement Steel in X axis1	49
Figure 3.50: reinfrocement Steel in Y axis1	49
Figure 3.51: reinfrocement Steel in X axis2.....	50
Figure 3.52: reinfrocement Steel in Y axis2.....	50
Figure 3.53: reinfrocement Steel in X axis3.....	51
Figure 3.54: reinfrocement Steel in Y axis3.....	51
Figure 3.55: reinfrocement Steel at X axis	52
Figure 3.56: reinfrocement Steel at Y axis	52
Table 3-1: Summary of rainforcmnt.....	54
Figure 3.57: reinfrocement Steel in typical x – axis around opening.....	55
Figure 3.58: reinfrocement Steel in typical y–axis around opening	55
Figure 3.59: reinfrocement Steel in roof x–axis around opening	56
Figure 3.60: reinfrocement Steel in roof y – axis around opening.....	56

Figure 4.1: beam selection in manual calculation	57
Figure 4.2: beam section	57
Figure 4.3: Table 9.5 (a).....	58
Figure 4.4: Smin.....	60
Figure 4.5: shear in beam	61
Figure 4.6: shear cases	62
Figure 4.7: Design of beam strip	64
Figure 4.8: Prokon deflection typical slab	64
Figure 4.9: Prokon load value1	65
Figure 4.10: Prokon moment shear 1	65
Figure 4.11: Prokon typical reainforcement moment 1	85
Figure 4.12: Prokon typical reainforcement shear 1	85
Figure 4.13: Section of Strip1	66
Figure 4.14: Prokon deflection2.....	66
Figure 4.15: Prokon load value2	67
Figure 4.16: Prokon moment shear 2	67
Figure 4.17: Prokon typical reainforcement moment 2	86
Figure 4.18: Prokon typical reainforcement shear 2	86
Fig.4.19: Section of Strip2.....	68
Figure 4.20: Prokon deflection3.....	68
Figure 4.21: Prokon load value3	69
Figure 4.22: Prokon moment shear 3	69
Figure 4.23: Prokon typical reainforcement moment 3	87
Figure 4.24: Prokon typical reainforcement shear 3	87
Fig.4.25: Section of Strip3.....	70
Figure 4.26: Design of roof srip	72
Figure 4.27: Prokon Defletion roof value	72
Figure 4.28: Prokon load value 1	73
Figure 4.29: Prokon roof moment and shear 1	73
Figure 4.30: Prokon roof reainforcement moment1.....	88
Figure 4.31: Prokon roof reainforcement shear1	88
Fig.4.32: Section of Strip1	74
Figure 4.33: Prokon Defletion2.....	74
Figure 4.34: Prokon load value 2	75
Figure 4.35: Prokon roof moment and shear 2.....	75
Figure 4.36: Prokon roof reainforcement moment 2.....	88

Figure 4.37: Prokon roof reainforcement shear 2	89
Figure 4.38: Section of Strip2	76
Figure 4.39: Prokon Defletion3.....	76
Figure 4.40: Prokon load value 3	77
Figure 4.41: Prokon roof moment and shear 3.....	77
Figure 4.42: Prokon roof reainforcement moment 3.....	89
Figure 4.43: Prokon roof reainforcement shear 3	89
Figure 4.44: Section of Strip3	78
Figure 4.45: Prokon load value 4	78
Figure 4.46: Prokon Defletion 4.....	79
Figure 4.47: Prokon roof moment and shear 4.....	79
Figure 4.48: Prokon roof reainforcement moment 4.....	90
Figure 4.49: Prokon roof reainforcement shear 4	90
Figure 4.50: Section of Strip 4	80
Figure 4.51: Prokon load value 5	80
Figure 4.52: Prokon Defletion 5.....	81
Figure 4.53: Prokon roof moment and shear 5.....	81
Figure 4.54: Prokon roof reainforcement moment 5.....	90
Figure 4.55: Prokon roof reainforcement shear 5	90
Figure 4.56: Section of Strip5	82
Figure 4.57: Prokon load value 6	82
Figure 4.58: Prokon Defletion 6.....	83
Figure 4.59: Prokon roof moment and shear 6.....	83
Figure 4.60: Prokon roof reainforcement moment 6.....	91
Figure 4.61: Prokon roof reainforcement shear 6	91
Figure 4.62: Section of Strip 6	84
Table 4-1: Summary of rainforclment by prokon for typical slab.....	87
Table 4-2: Summary of rainforclment by prokon for roof slab.....	91
Figure 4.63: Tie beams strip.....	93
Figure 4.64: Prokon TB load 1	93
Figure 4.65: Prokon TB deflection 1	94
Figure 4.66: Prokon TB moment and shear 1	94
Figure 4.67: Prokon TB reainforcement moment 1	95
Figure 4.68: Prokon TB reainforcement shear 1	95
Table 4-3: Summary of rainforclment by prokon for tie beams.....	96

Figure 5.1: column selection in manual calculation.....	99
Figure 5.2: PU on the column (#3) from ETABS program.....	100
Figure 5.3: column section.....	100
Figure 5.4: non dimensional interaction diagram for rectangular tied column	102
Figure (5.5): Cross section for column ((#3))	104
Table 5.1: Summary for all columns.....	106
Figure 6.1: Bearing wall.....	107
Figure 6.2: Shear wall	108
Figure 6.3: Cantilever retaining wall.....	108
Figure 6.4: Compression panel in a bridge deck	108
Table 6.1: Site Class Definitions from ASCE 7-02 and ASCE 7-05	109
Table 6.2: Seismic coefficient Ca	110
Table 6.3: Seismic coefficient Cv	110
Figure 6.5: Response spectrum for our building.....	110
Figure 6.6: Rigid diaphragms.....	111
Figure 6.7: mass source.....	112
Figure 6.8: Seismic load For EX1.....	112
Figure 6.9: wind load.....	113
Table 6.4: Stiffness factor.....	114
Figure 6.10: Stiffness modifiers for shear wall.....	115
Figure 6.11: Base reaction.....	117
Figure 6.12: Detail (1) of wall#4 in story2	117
Figure 6.12: Detail (2) of wall#4 in story2	118
Figure 6.13: Detail (3) of wall#4 in story2	118
Table 6.5: Final results.....	120
Figure 7.1: Raft foundation	120
Figure 7.2: Typical section for raft foundation.....	120
Figure 7.3: Typical Raft Section	120
Figure 7.4: reinforcement in raft foundation under columns.....	121
Figure 7.5: bent the steel at the end of foundation.....	121
Figure 7.6: bearing capacity of soil.....	122
Figure 7.7: soil subgrade property date	123
Figure 7.8: Factor of Max-Max combination.....	124
Figure 7.9: actual deflection in footing	125

Figure 7.10: Punching Shear.....	126
Figure 7.11: Value of moment (positive) in X axis.....	127
Figure 7.12: positive moment diagram in X axis	127
Figure 7.13: Value of moment (positive) in Y axis.....	127
Figure 7.14: positive moment diagram in Y axis	127
Figure 7.15: Value of moment (Negative) in X axis	128
Figure 7.16: Negative moment diagram in X axis	128
Figure 7.17: Value of moment (Negative) in Y axis	128
Figure 7.18: Negative moment diagram in Y axis.....	128
Figure 7.19: reinforcement Steel in X axis at the Negative moment	129
Figure 7.20: reinforcement Steel in Y axis at the Negative moment	130
Figure 7.21: reinforcement Steel in X axis at the Positive moment.....	131
Figure 7.22: reinforcement Steel in Y axis at the Positive moment.....	131
Figure 7.23: reinforcement Steel in X axis at the Positive moment (Under columns).....	132
Figure 7.24: reinforcement Steel in Y axis at the Positive moment (Under columns).....	133
Figure 7.25: Length of bend steel in the foundation	135
Table 7.1: Summary of reinforcement (Positive & negative).....	135
Figure 7.26: Summary of reinforcement (Positive & negative)	135

Figure8.1: some technical terms which are used in connection with the planning and design of stairs	136
Figure 8.2: roof stair section	138
Figure 8.3: detailed stair section 1	138
Figure 8.4: detailed stair section 2	138
Table 8.1: minimum thickness of solid one-way slab, beams and ribbed slab	138
Table 8.2: Live Load from Jordanian code.....	139
Figure 8.5: Prokon Deflection in stair beam.....	143
Figure 8.6: Prokon load value in stair beam.....	144
Figure 8.7: Prokon moment and shear in stair beam	144
Figure 8.8: Prokon reinforcement moment in stair beam	144
Figure 8.9: Prokon reinforcement Shear in stair beam.....	145
Figure 8.10: Section of Stair beam	145
Figure 8.11: entrance stairs.....	145
Figure 8.12: AutoCAD Clarification for first flight in first floor stairs	145
Table 8.3: Summary of reinforcement	146

Figure 8.13: Roof cross section for Stairs	146
Table 9.1: weight of rebar in ton.	147
Table 9.2: Offer prices of Concrete by local suppliers.....	148
Table 9.3: Offer prices of Rebar by local suppliers.....	148
Figure 9.1: Detailed of ground tie beams.....	149
Figure 9.2: Detailed of roof beams.....	149
Figure 9.3: Detailed of typical beams.....	149
Figure 4: beams dimension and section of stirrups in beams.....	149
Table 9.4: Quantity and cost of Rebar for beams	150
Table 9.5: Quantity and Cost of Concrete for beams.....	155
Figure 9.5: top view of slab in typical and roof.....	156
Table 9.6: Quantity and Cost of Concrete for slabs	156
Table 9.7: Quantity and Cost of Rebar for slabs.....	157
Figure 9.6: Structure columns and shear walls in typical.....	158
Figure 9.7: Structure columns and shear walls in roof	158
Figure 9.8: column Ties (6 legged Ties)	158
Figure 9.9: column Ties (Standard Ties)	158
Table 9.8: Quantities and Cost of Concrete and Rebar for columns and shear walls.....	159
Table 9.9: Quantity and Cost of Concrete for foundation	163
Table 9.10: Quantity and Cost of Rebar for foundation.....	163
Figure 9.10: staircase modeling using ETABS 1	164
Figure 9.11: staircase modeling using ETABS 2.....	164
Figure 9.12: roof stair section	164
Table 9.11: Quantity and Cost of concrete for staircases	165
Table 9.12: Quantity and Cost of Rebar for staircases.....	165
Table 9.13: Final Cost and Quantities.....	166
Figure A.1: Structure Plans 1	166
Figure A.2: Structure Plans 2	166
Figure A.3: Structure Plans 3	167
Figure A.4: Structure Plans 4	167
Figure A.5: Structure Plans roof	168
Figure A.6: Structure Plans tie beam.....	168

LIST OF SYMBOLS AND ABBREVIATIONS

- A_g = gross area of section, mm².
- A_s = area of non-prestressed tension reinforcement, mm².
- A_s' = area of compression reinforcement, mm².
- A_v = area of shear reinforcement within a distance s , mm².
- b = width of compression face of member, effective compressive flange width of a T beam, mm.
- b_w = web width, or diameter of circular section, in.
- b_o = perimeter of critical section for two-way shear in slabs and footings, mm.
- d = effective depth, mm.
- d' = distance from extreme-compression fiber to centroid of compression reinforcement, mm.
- d_b = nominal diameter of a bar, mm.
- DL = dead loads.
- f'_c = compressive strength of a concrete, MPa.
- f_y = yield strength of a non prestressed reinforcement, MPa.
- h = thickness of a member, overall height, mm.
- j_d = distance between the resultant of the internal compressive and tensile forces on a cross section, mm.
- L_n = clear span measured face to face of supports, mm.
- LL = live loads.
- S = spacing of shear reinforcement, mm.
- n = number of bars in a layer being spliced or developed at a critical section.
- P_u = axial force due to factored loads.
- q_u = factored load per unit area.
- R = flexural resistance factor.
- t = thickness of wall in hollow section, mm.
- V_s = nominal shear strength provided by shear reinforcement, KN.
- V_u = factored shear force at section, KN.
- W_u = total factored load per unit length of beam or one-way slab.
- α_s = coefficient used to compute V_c in slabs and footings.
- β = ratio of clear spans in long to short direction of two-way slabs.
- β = ratio of long side to short side of footing.
- β = ratio of long side to short side of column or concentrated load.
- γ = ratio of the distance between the outer layers of reinforcement in a column to the overall depth of the column.

- ϵ = strain.
- ρ = ratio of non-prestressed tension reinforcement.
- Φ = strength-reduction factor.
- M_n = total factored static moment, kN.m.
- M_u = moment due to factored loads.
- c = distance from extreme-compression fiber to neutral axis, mm.
- C_c = clear cover from the nearest surface in tension to the surface of the flexural tension reinforcement, mm.
- c_1 = size of rectangular or equivalent rectangular column, capital, or bracket, measured parallel to the span L_1 , mm.
- c_2 = size of rectangular or equivalent rectangular column, capital, or bracket, measured parallel to L_2 , mm.
- L_d = development length, mm.
- L_{dh} = development length of standard hook in tension, measured from critical section to outside end of hook, mm.

Chapter 1 : Introduction

1.1 General Information

Steel, Aggregate and Cement paste are the main ingredients of Concrete, the main building material.

Concrete is strong in both compression and tension (Thanks to the steel bars inside), durable and cost effective, that's why it is considered number 1 when it comes to building materials.

Concrete strength varies because of the different mixes and ratios between the materials used, and can be measured by using either cylindrical or cubic specimen (Depends upon the code adapted by the country). The strength of concrete should be much higher than the service loads applied to assure safety of the building.

- The Resident-Comm Building consists of 5 Floors divided as the following:
 - The Ground floor, has a resident-commercial area of (520m²), includes 7 shops, a studio, electricity controlling devices, pump room and security housing areas.
 - First to third floor are symmetric, each has a residential area of 558.45m², each consists of 6 small studios and 2 master rooms
 - Roof, includes 2 stores with total area of 275m²

- The building was built in UAE
- Flooring is designed on flat slab system
- As overall, the design included the following structural components:
(Flat slabs, beams, stairs, shear walls and footings)
- All structural elements will be designed based on the maximum values of the ultimate loads resulted from load combinations specified by the ACI code.

1.2 Objectives

The main idea of this project is to design all the structural elements of a Residential-Commercial building located in the UAE.

Table 1.1: Different areas of the building

Ground Floor	$452.58m^2$
First Floor	$522m^2$
Second Floor	$522m^2$
Third Floor	$522m^2$
Roof	$275m^2$
Staircases	$25m^2$

1.3 Motivations and Importance

Flat Slab system is a unique designing system is an R.C slab built monolithically with the supporting columns and reinforced in two or more directions. the following are the main advantages of flat slab construction:

- 1.the floor system requires lesser depth and thus there will be a reduction in storey height
- 2.there is a reduction in the dead load and foundation loads since the overall weight and storey height are decreased.
- 3.flat slab construction has improved fire resistance as compared to other types of floor systems
4. it is better able to withstand concentrated loads.

We think it will teach us useful experience and techniques.

1.4 Methodology and Implementation

- Analysis by the ETABS, SAFE and Prokon programs to obtain design moments and shear and torsion on each element of the project
- Implement the engineering techniques and approaches to determine the required dimensions of the elements, as well as the reinforcement needed.
- Design was done considering the maximum moment along the element.

1.5 Codes, books, and programs

1. Building Code Requirements for Structural Concrete and Commentary ((ACI 318M05)).
2. The Jordanian's Forces and Loads Code.
3. Reinforced concrete Mechanics and Design-by JAMES MACGREGOR.
4. AUTOCAD.
5. SAFE (design of slab and foundation).
6. ETABS (Modeling & design of column and shear wall).
7. Prokon (design of beams).

Chapter 2 : Structure Description and Analysis

In this chapter we will discuss some elements of our project and how it behaves when it loaded and in the end of chapter a modeling of our project by ETABS program and will be added here.

2.1 Structural System Components

Each chapter will usually be broken down into major sections. Each section should have its own header as shown here.

2.2 Structural Elements

All structural systems are composed of elements.

The following are considered to be the primary elements in a structure:

1- **truss:**

is a structure that consists of two-force members only, where the members are organized so that the assemblage as a whole behaves as a single object. A "two-force member" is a structural component where force is applied to only two points. Although this rigorous definition allows to have any shape connected in any stable configuration, trusses typically comprise five or more triangular units constructed with straight members whose ends are connected at joints referred to as nodes.

Fig.2.1: Truss

2- Beam:

those members that are primarily subjected to flexural forces. They usually are thought of as being horizontal members that are primarily subjected to gravity forces.

3- Column:

those members that are primarily subjected to axial compression forces. A column may be subjected to flexural forces also. Columns usually are thought of as being vertical members, but they may also be inclined.

4- foundation:

is the element of a structure which connects it to the ground, and transfers loads from the structure to the ground .Foundations provide the structure's stability from the ground:

To distribute the weight of the structure over a large area in order to avoid overloading the underlying soil, to anchor the structure against natural forces including earthquakes, floods, frost heaves, tornadoes and wind. To provide a level surface for construction. To anchor the structure deeply into the ground, increasing its stability and preventing overloading.

5- concrete slab:

It is an essential structural element in concrete buildings, consisting of a flat, horizontal surface made of cast concrete. Steel-reinforced slabs, typically between 100 and 500 mm thick, are most often used to construct floors and ceilings.

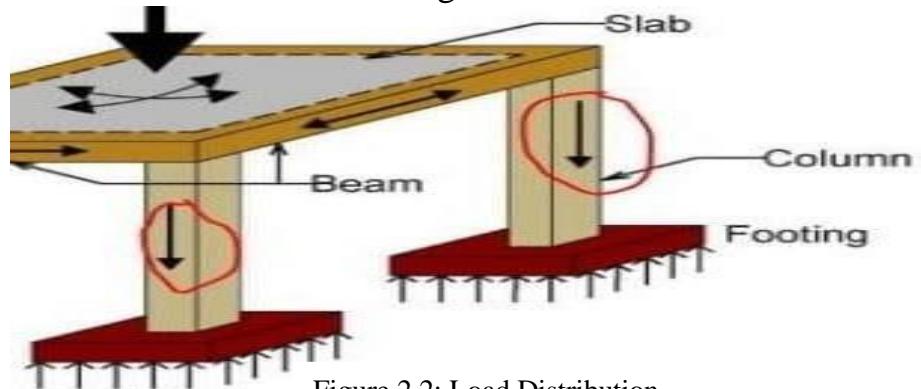


Figure 2.2: Load Distribution

6- shear wall:

is a vertical element of a seismic force resisting system that is designed to resist in-plane lateral forces, typically wind and seismic loads. in many countries, the Building Code and Residential Code govern the design of shear walls.

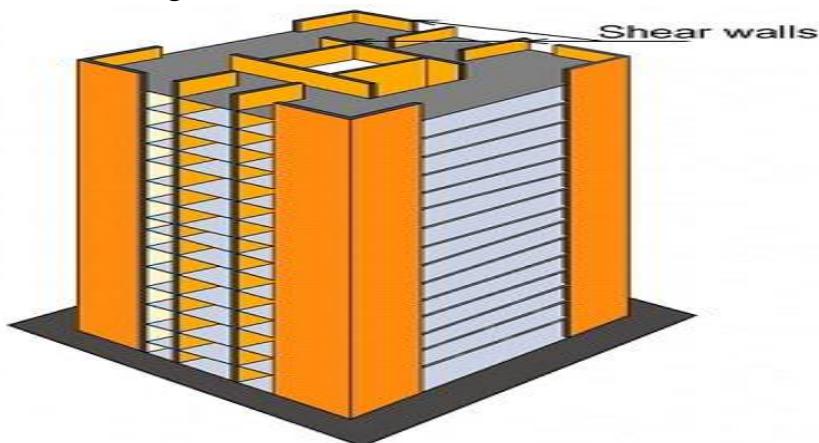


Figure 2.3: Shear Wall

7- stair:

is a construction designed to bridge a large vertical distance by dividing it into smaller vertical distances, called steps (used for leading from one floor to another). Stairs may be straight, round, or may consist of two or more straight pieces connected at angles.

Figure 2.4: Stair

2.3 Modeling

We Make modeling using ETABS program.

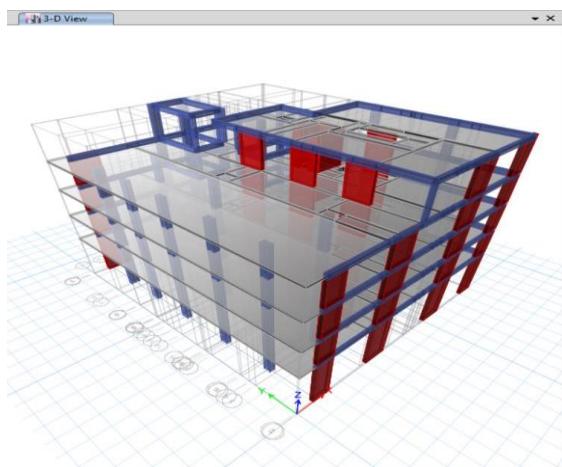


Figure 2.5: ETABS 3D Modeling 1

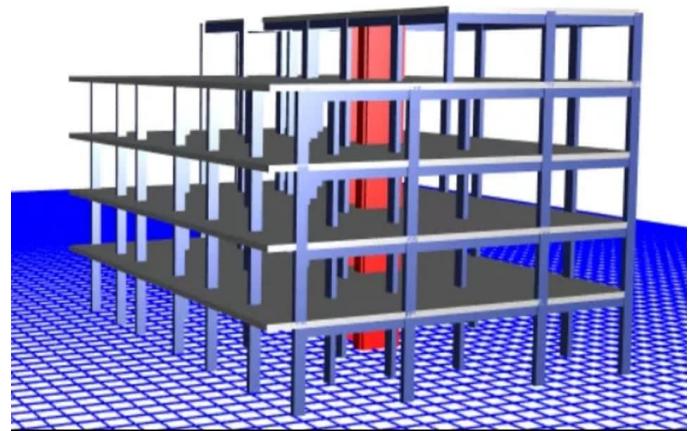


Figure 2.6: ETABS 3D Modeling 2

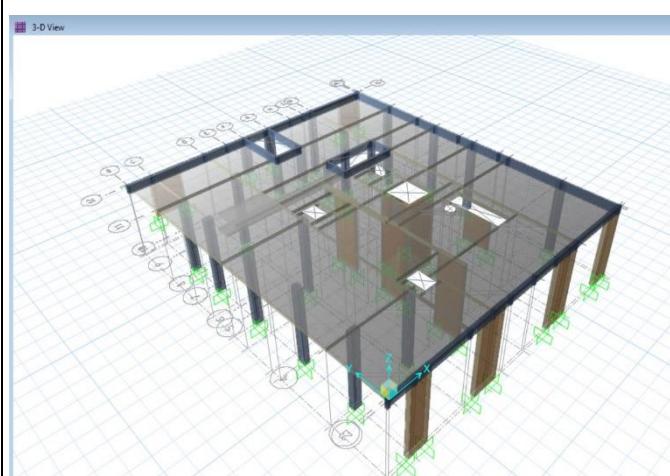


Figure 2.7: SAFE Typical Slab Modeling

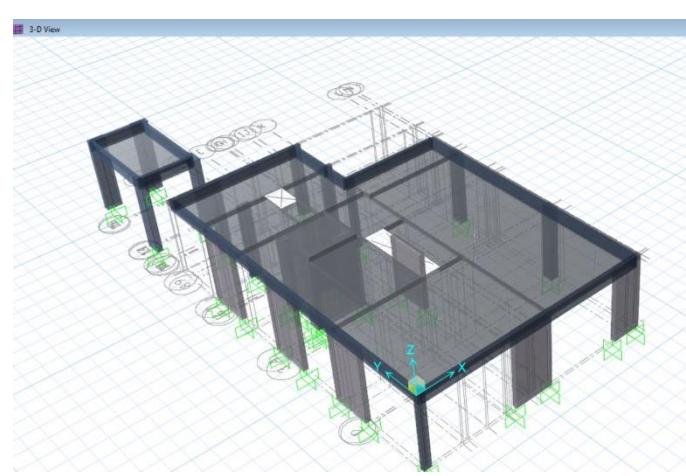


Figure 2.8: SAFE Roof Slab Modeling

Chapter 3 : Slabs

In this chapter we will analyze and design the slab, finding needed area of steel to resist the moment and load and needed steel to resist shear and we will check the deflection and punching shear and solve any problem.

3.1 Slab type

Flat Slab: -

It is a type of slabs that is spread in building systems around the world, usually in halls and large rooms. The most important advantage is that it provides large distances between the columns to the next room and the adjustment inside the building because there are no beams.

The flat slabs are slabs that rest directly on columns.

Architecturally, it is better because there are no beams, and it is preferable to use it in the case of a large area, and it is also used in the case of large loads. The wooden tension is easier to implement because it is horizontal and there are no beams. The thickness of the tile is relatively large, due to its resistance the(-ve) moment and punching shear. The amount of reinforcement steel is relatively large in comparison with Solid slab.

Figure 3.1: Real flat slab with drop panels

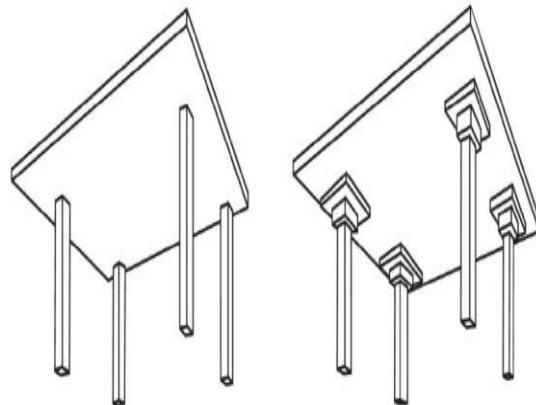


Figure 3.2: Flat Slab

Figure 3.3: construction of Flat Slab

In our project we used this type of slab for several things; -

- 1) The building contains civil defense services, and therefore it is forbidden to have a drop beam in the center because it will affect the services on the roof.
- 2) Having the beam will reduce the net floor height
- 3) There is central air conditioning inside the building which will also reduce the floor height.
For example, if we assume that the height of the floor is 4 meters and the beam is 60 cm, the central air conditioning system will be done under the beam, and thus there will be only about 3 meters of net floor height remaining.
- 4) The distribution of the columns is irregular and thus it is difficult to use the beam between rooms.

3.2 Loading

Type of load in our project:

In the typical floor we have five type of load:

1 - Dead load

2- live load

3- super imposed dead load

4- wall load (partition allowance)

5- snow load

In the roof floor we have four loads

1 - Dead load

2- live load

3- super imposed dead

4- isolation system load

1. Dead load:

The dead load calculated by safe program internally.

2. Live load:

Suggestion live load
where taken from the
Jordanian code.

figure 3.4: Live Load from Jordanian code

3. Wall load (partition allowance):

- Partitions allowance Calculations:

There are 200m of block (25cm) (IN THE TYPICAL FLOOR)

There are 205m of block (25cm) (Ground Floor)

Height of walls=3.5m

Total area of floor= 520m²

$$\text{Load (m}^2\text{)} = \frac{(3.5 * 14 * 0.25) * 200}{520} = 4.7 \text{ KN/m}^2 \text{ so use } 5 \text{ kN/m}^2$$

Wall load = 5 kN/m²

As we see we have different value of loads, thus we divided the slab according to the loads.

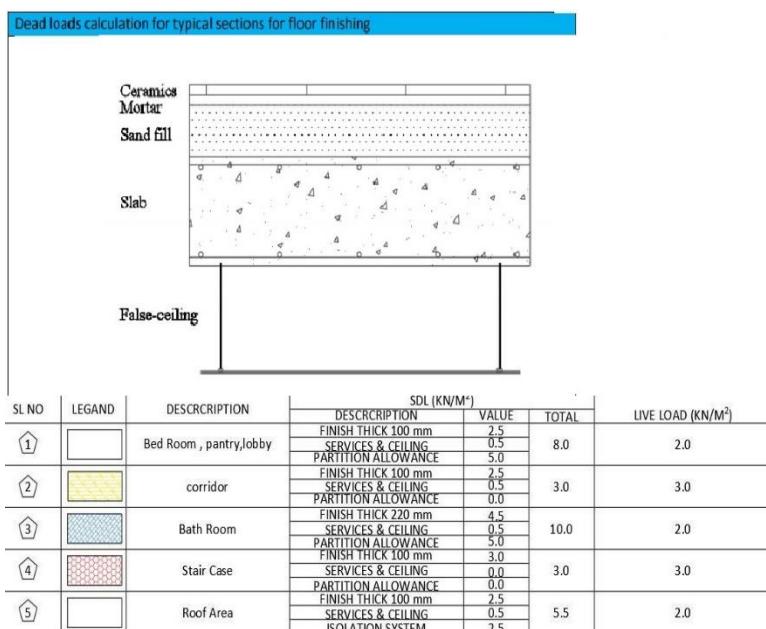


Figure 3.5: Load distribution table

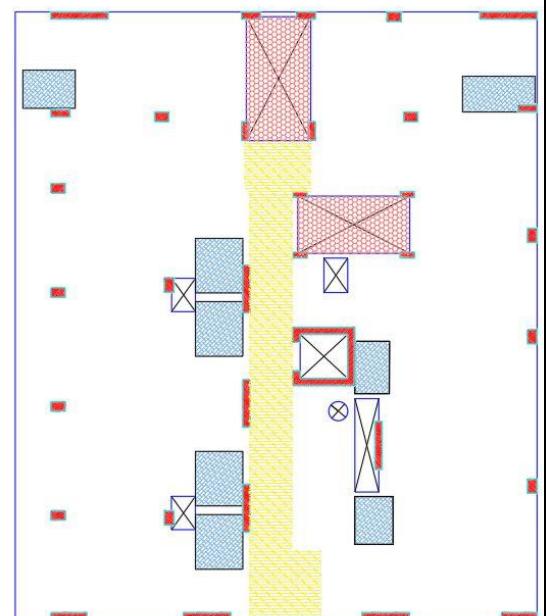


Figure 3.6: Load distribution on slab

Putting loads and dividing them on the slab using "Safe" program:

1. All slab:

The wall load is similar for all slab is:

Wall load = 5 kN/m^2

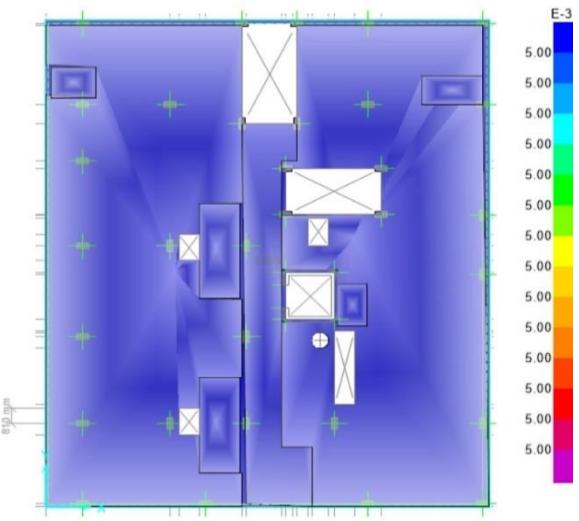


Figure 3.7: Safe Load distribution in all slab

2. Corridor:

In the below we see the photo assigned load on corridor.

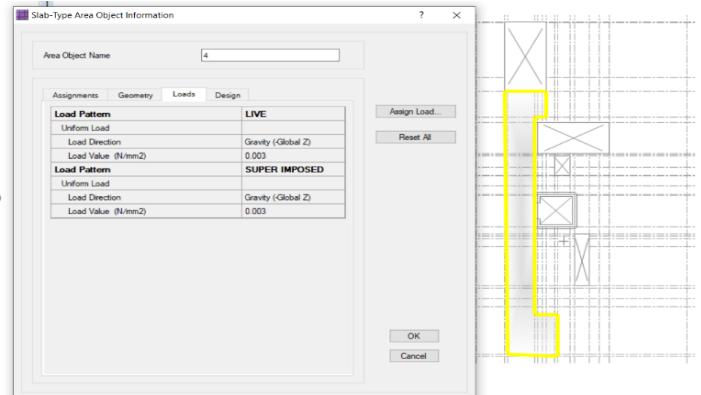


Figure 3.8: Safe Load distribution in corridor

Live load = 3 kN/m^2

Super imposed = 3 kN/m^2

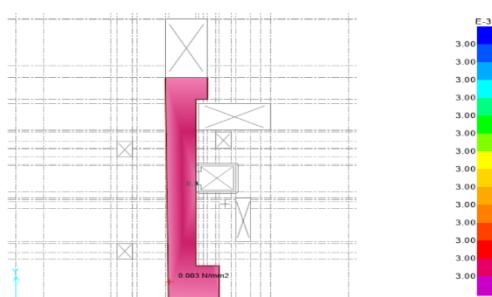


Figure 3.9: Safe live Load in corridor

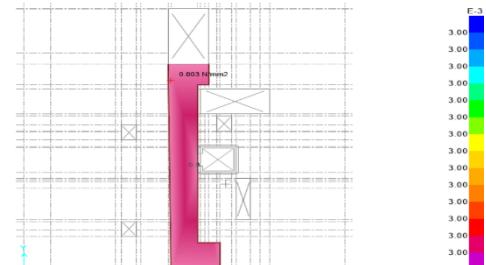


Figure 3.10: Safe super imposed Dead Load in corridor

3. Bedroom, pantry and lobby:

All the load on lobby, pantry and bedroom shown in the photo.

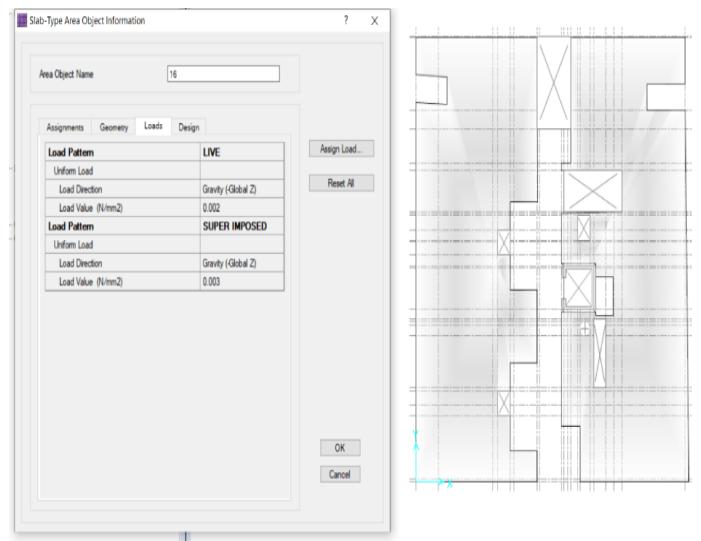


Figure 3.11: Safe Bed room load distribution

Live load = $2 \text{ kN}/\text{m}^2$

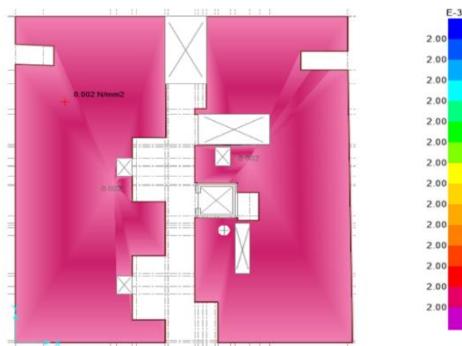


Figure 3.12: Safe Live load in bed room

Super imposed = $3 \text{ kN}/\text{m}^2$

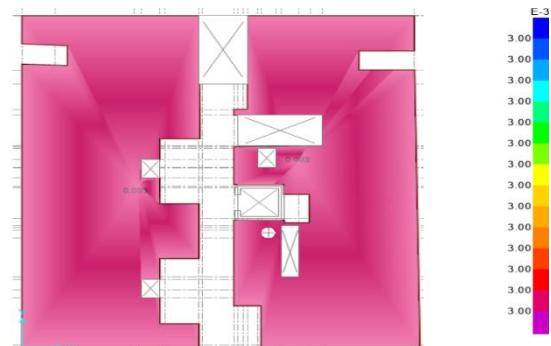


Figure 3.13: Safe super imposed Dead Load in bed room

4. Bath room:

All load on bathroom shown in this photo.

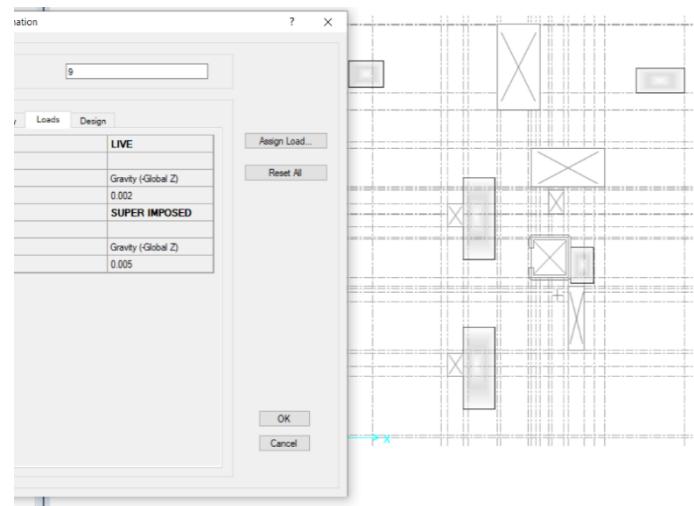


Figure 3.14: Safe Bath room load distribution

Live load = $2 \text{ kN}/\text{m}^2$

Super imposed = $5 \text{ kN}/\text{m}^2$

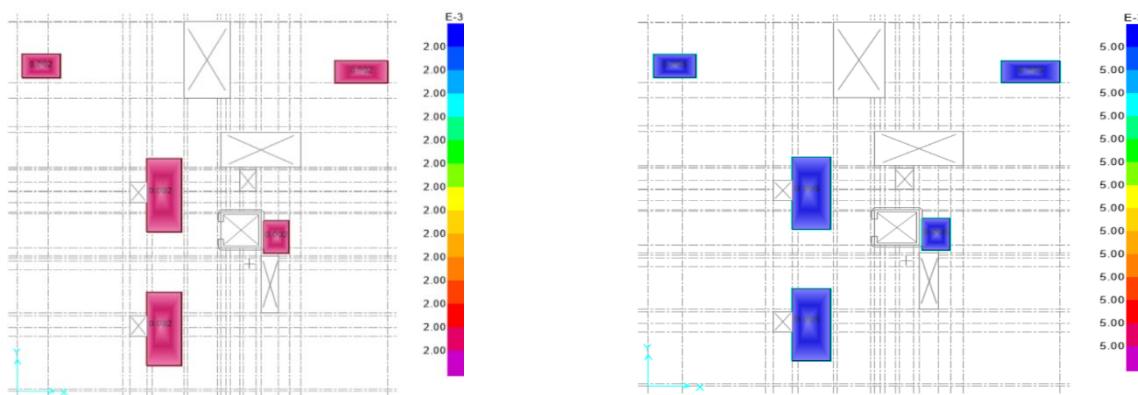


Figure 3.15: Safe Live load and super imposed Dead Load in bath room

SL NO	LEGAND	DESCRSCRIPTION	SDL (KN/M ²)			LIVE LOAD (KN/M ²)
			DESCRSCRIPTION	VALUE	TOTAL	
1		Bed Room , pantry,lobby	FINISH THICK 100 mm	2.5	8.0	2.0
			SERVICES & CEILING	0.5		
			PARTITION ALLOWANCE	5.0		
2		corridor	FINISH THICK 100 mm	2.5	3.0	3.0
			SERVICES & CEILING	0.5		
			PARTITION ALLOWANCE	0.0		
3		Bath Room	FINISH THICK 220 mm	4.5	10.0	2.0
			SERVICES & CEILING	0.5		
			PARTITION ALLOWANCE	5.0		
4		Stair Case	FINISH THICK 100 mm	3.0	3.0	3.0
			SERVICES & CEILING	0.0		
			PARTITION ALLOWANCE	0.0		
5		Roof Area	FINISH THICK 100 mm	2.5	5.5	2.0
			SERVICES & CEILING	0.5		
			ISOLATION SYSTEM	2.5		

Figure 3.16: Summary of all load on whole slab

3.3 Calculations and Part Selections:

Importance Note: we use "direct design method" but actually this method is invalid because its didn't fulfill the requirements.(more than in Appendix B)

For manual calculation, we choose **second floor** slab to design it
The slab has exterior panel (edge beam).

We want to design column strip and middle strip between column K4 and I4 in W – E direction.

Some information about slab:

Thickness 250mm = 25 cm $F'c=28 \text{ MPa}$

$F_y=460 \text{ MPa}$ Edge beam 20 X 60 cm

All column 60 X 30 cm

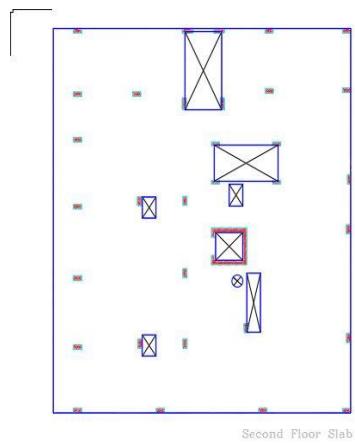


Figure 3.17: Slab section

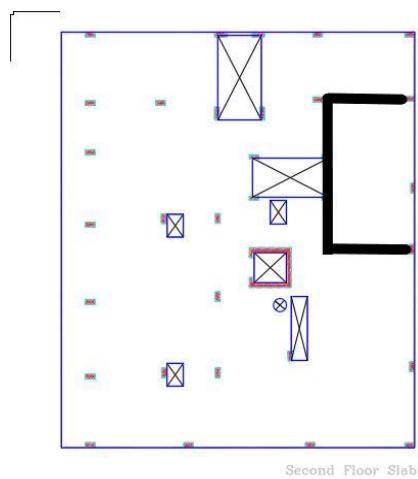


Figure 3.18: slab section with black corner

According to table 9.5 c in ACI code

we assume slabs do **not** have drop panels and only have edge beam.

Minimum thickness of two way slabs to control deflection

TABLE 9.5(c)—MINIMUM THICKNESS OF SLABS WITHOUT INTERIOR BEAMS*

f_y , MPa†	Without drop panels‡		With drop panels‡	
	Exterior panels		Interior panels	
	Without edge beams	With edge beams§	Without edge beams	With edge beams§
280	$\ell_n/33$	$\ell_n/36$	$\ell_n/36$	$\ell_n/40$
420	$\ell_n/30$	$\ell_n/33$	$\ell_n/33$	$\ell_n/36$
520	$\ell_n/28$	$\ell_n/31$	$\ell_n/31$	$\ell_n/34$

*For two-way construction, ℓ_n is the length of clear span in the long direction, measured face-to-face of supports in slabs without beams and face-to-face of beams or other supports in other cases.
 †For f_y between the values given in the table, minimum thickness shall be determined by linear interpolation.
 ‡Drop panels as defined in 13.2.5.
 §Slabs with beams between columns along exterior edges. The value of α_f for the edge beam shall not be less than 0.8.

17

Figure 3.19: Table 9.5 (c)

$$h_{min} = \frac{483}{33} = 14.69 \text{ cm}$$

$$h_{min} = \frac{335}{33} = 10.152 \text{ cm}$$

$$h_{min} = \frac{504}{36} = 14 \text{ cm}$$

$$h_{min} = \frac{400}{36} = 11.11 \text{ cm}$$

$$h_{min} = \frac{776}{36} = 21.56 \text{ cm}$$

$$h_{min} = \frac{180}{36} = 5 \text{ cm}$$

$h_{min} = 21.56$ then we take it = 25 cm

$$\text{S.D.L} = 8 \text{ KN}/m^2, \text{L.L} = 2 \text{ KN}/m^2, \gamma_{concrete} = 24 \text{ KN}/m^2$$

$$W_u = 1.2(0.25 \times 24 + 8) + 1.6 \times 2 = 20 \text{ KN}/m^2$$

$$d (\text{effective depth}) = 250 - 20 - 12 = 218 \text{ mm}$$

Check #1: one-way shear

we make all shear test in column K4

$$V_{u1} = \left(\frac{4.83}{2} + \frac{1.15 \times 3.35}{2} \right) \times \left(\frac{1.15 \times 5.04}{20} - \frac{0.3}{2} - 0.218 \right) \times 20$$

$$V_{u1} = 219.667 \text{ KN}$$

$$\Phi V_c = 0.75 \left(\frac{1}{6} \times \sqrt{28} \times (4.83 \times \frac{1000}{2} + 1.15 \times 3.35 \times \frac{1000}{2}) \right) \times 0.218$$

$$\Phi V_c = 663.17 \text{ KN}$$

$$\Phi V_c > V_u \Rightarrow \text{OK}$$

Check #2: two-way shear

$$0.6 + 0.218 = 0.818$$

$$0.3 + 0.218 = 0.518$$

$$V_u = 20 * ((4.83 + 1.15 * 3.35 * 5.04 / 4) - (0.818 * 0.518)) \\ = 210.32 \text{ KN}$$

$$\beta = \frac{0.6}{0.3} = 2, b_o = 2(818 + 518) = 2672 \text{ mm}$$

V_c is taken as the smallest of (a), (b) and (c) where

$$(a) \quad V_c = \left(2 + \frac{4}{\beta_c} \right) \frac{\sqrt{f_c} b_o d}{12}$$

$$(b) \quad V_c = \left(\frac{\alpha_s d}{b_o} + 2 \right) \frac{\sqrt{f_c} b_o d}{12}$$

$$(c) \quad V_c = \frac{1}{3} \sqrt{f_c} b_o d$$

- a) $V_c = 1148.7 \text{ KN}$
- b) $V_c = 1511.5$
- c) $V_c = 1148.7 \text{ KN} \text{ min (we use it)}$

$$\Phi V_c = 0.75 * 1148.7 = 861.5 \text{ KN}$$

$$\Phi V_c > V_u \quad \text{SAFE punching shear}$$

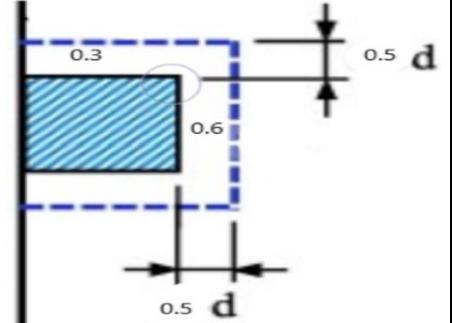


Figure 3.20: column two way shear section

****Static Moment**

$$M. = \frac{W_u L_2 L n^2}{8} = 20 * (4.83/2 + 3.352) * 5.04^2 / 8$$

$$M. = 259.73 \text{ KN}$$

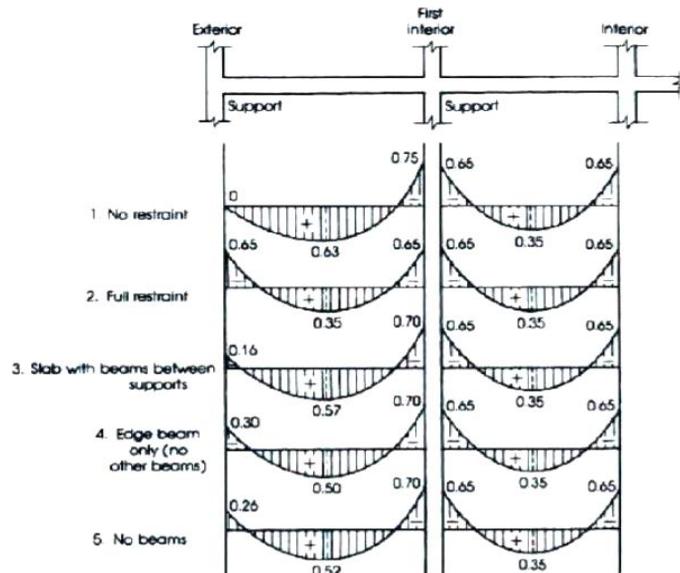


Figure 3.21: moment distribution for beams

Num 4 edge beam only

$$\text{Interior negative} = 0.65 \times 259.73 = 168.82 \text{ KN.m}$$

$$\text{Interior positive} = 0.35 \times 259.73 = 90.91 \text{ KN.m}$$

$$\text{Negative moment for column strip} = 0.75 \times 168.82 = 126.62 \text{ KN.m}$$

$$\text{Negative moment for middle strip} = (1-0.75) \times 168.82 = 42.205 \text{ KN.m}$$

$$\text{Positive moment for column strip} = 0.6 \times 90.91 = 54.55 \text{ KN.m}$$

positive moment for middle strip = $(1-0.6) \times 90.91 = 36.36 \text{ KN.m}$

			Aspect Ratio l_2/l_1		
$\alpha_{f_1} l_2/l_1$		β_t	0.5	1.0	2.0
Negative moment at exterior support	0	0	100	100	100
		≥ 2.5	75	75	75
	≥ 1.0	0	100	100	100
Positive moment near midspan		≥ 2.5	90	75	45
	0		60	60	50
Negative moment at interior support	≥ 1.0		90	75	45
	0		75	75	75
	≥ 1.0		90	75	45

Figure 3.22: longitudinal moment in column strip ACI section 13.6.4

**Design for column strip

* positive moment 54.55 KN

$$A_s = \frac{Mu \times 10^6}{\Phi f_y \times j \times d} = \frac{54.55 \times 10^6}{0.9 \times 0.95 \times 460 \times 218} = 636.23 \text{ mm}^2$$

$$a = 636.23 \times 460 / 0.85 \times 28 \times 840 = 14.64 \text{ mm}$$

$$A_s = 54.55 \times 10^6 / 0.9 \times 460 \times (218 - 14.64/2) = 625.42 \text{ mm}^2$$

$$A_{s\min} = 0.0018bh = 0.0018 \times 840 \times 250 = 378 \text{ mm}^2$$

$$A_s > A_{s\min} \text{ OK}$$

From table steel we will choose 12 mm bar diameter

Number of bars 6 and A_s provided = 679 mm^2

$$\Phi M_n = \Phi A_s f_y (d - a/2) = 0.9 \times 679 \times 460 \times (218 - 11.71/2)$$

$$= 59.64 \text{ KN.m} > 54.55 \text{ OK}$$

* negative moment 126.62 KN.m

$$A_s = 1476.8 \text{ mm}^2, a = 27.2, A_s = 1496.31, A_s > A_{s\min}$$

From table steel we will choose 12 mm bar diameter

Number of bars 14 and A_s provided = 1583.363 mm^2

**Design for middle strip

*positive moment 36.36 KN.m

$A_s = 424.1 \text{ mm}^2$, $a = 7.01 \text{ mm}$, $A_s = 409.5 \text{ mm}^2$

$A_{s\min} = 420.75 \text{ mm}^2$

$A_{s\min} > A_s$ not ok

We take $A_s \min = A_s = 420.75 \text{ mm}^2$

From table steel we will choose 12 mm bar diameter,

Number of bars 4 and $A_s \text{ provided} = 452 \text{ mm}^2$

*Negative moment

$A_s = 114.77 \text{ mm}^2$, $a = 1.9 \text{ mm}$, $A_s = 469.68 \text{ mm}^2$

$A_s > A_{s\min}$

From table steel we will choose 12 mm bar diameter,

Number of bars 4 and $A_s \text{ provided} = 452 \text{ mm}^2$

3.4 Slab analysis and Final Design

Design of slab:

Related to choose the flat slab system, we need to check the deflection, Punching Shear then we will find the suitable design for the Slab.

⇒ Typical slab (From First Slab –Fourth Slab)

-Deflection

- Deflection checked on long term deflection
- From ACI CODE table 9.5 (b)

Allowable Deflections

- ACI Table 9.5(b) = max. permissible computed deflection

TABLE 9.5(b) — MAXIMUM PERMISSIBLE COMPUTED DEFLECTIONS

Type of member	Deflection to be considered	Deflection limitation
Flat roofs not supporting or attached to nonstructural elements likely to be damaged by large deflections	Immediate deflection due to live load L	$L/180^*$
Floors not supporting or attached to nonstructural elements likely to be damaged by large deflections	Immediate deflection due to live load L	$L/360$
Roof or floor construction supporting or attached to nonstructural elements likely to be damaged by large deflections	That part of the total deflection occurring after attachment of nonstructural elements (sum of the long-term deflection due to all sustained loads and the immediate deflection due to any additional live load) [†]	$L/480^{\ddagger}$
Roof or floor construction supporting or attached to nonstructural elements not likely to be damaged by large deflections		$L/240^{\ddagger}$

*Limit not intended to safeguard against ponding. Ponding should be checked by suitable calculations of deflection, including added deflections due to ponded water, and considering long-term effects of all sustained loads, camber, construction tolerances, and reliability of provisions for drainage.

†Long-term deflection shall be determined in accordance with 9.5.2.5 or 9.5.4.3, but may be reduced by amount of deflection calculated to occur before attachment of nonstructural elements. This amount shall be determined on basis of accepted engineering data relating to time-deflection characteristics of members similar to those being considered.

[‡]Limit may be exceeded if adequate measures are taken to prevent damage to supported or attached elements.

[§]Limit shall not be greater than tolerance provided for nonstructural elements. Limit may be exceeded if camber is provided so that total deflection minus camber does not exceed limit.

Figure 3.23: ACI Table 9.5 (b)

- The longest Span From Project $L=15.2$ m
So to the case 3 from above table,

$$\text{permissible deflection} = \frac{L}{480} = \frac{15.2}{480} = 0.032\text{m}$$

- From “SAFE” program the value of long-term deflection shown in the picture.

long term deflection = 6 cm
 $6 \text{ cm} > 3.2 \text{ cm} \Rightarrow \text{so, it's not safe}$

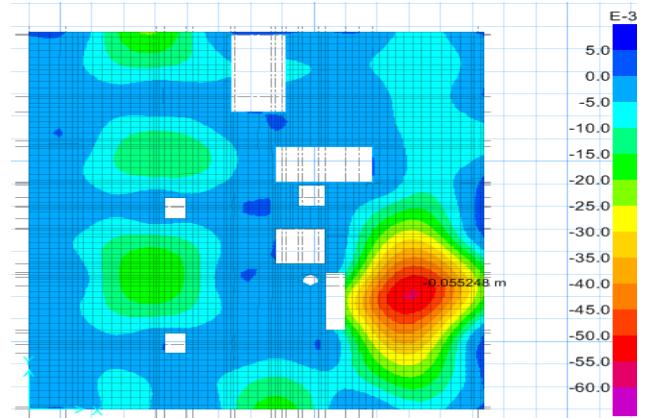


Figure 3.24: SAFE longterm deflection before add column

- So we can **solve this problem** by many ways but, finally we find the best way by adding new Shear Wall (we checked to ensure that's identical with architectural drawing)
- (before)

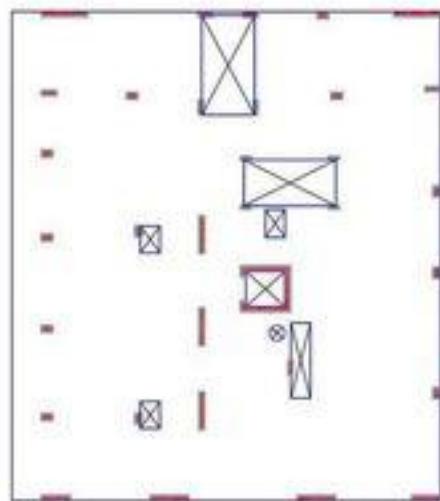


Figure 3.25: section of slab before add column

(after)

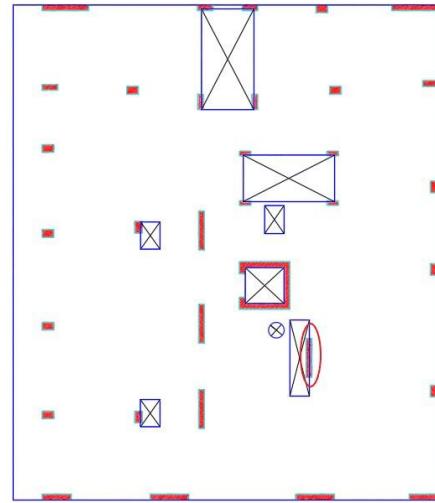


Figure 3.26: section of slab after add shear wall

- After that we checked the deflection again and we found that:
deflection = 1.74 cm = permissible deflection



Figure 3.27: SAFE longterm deflection after add shear wall

-Punching shear

- The results of Punching Shear are shown in the figure below, and we notice that the columns which circled have the biggest value of punching shear.

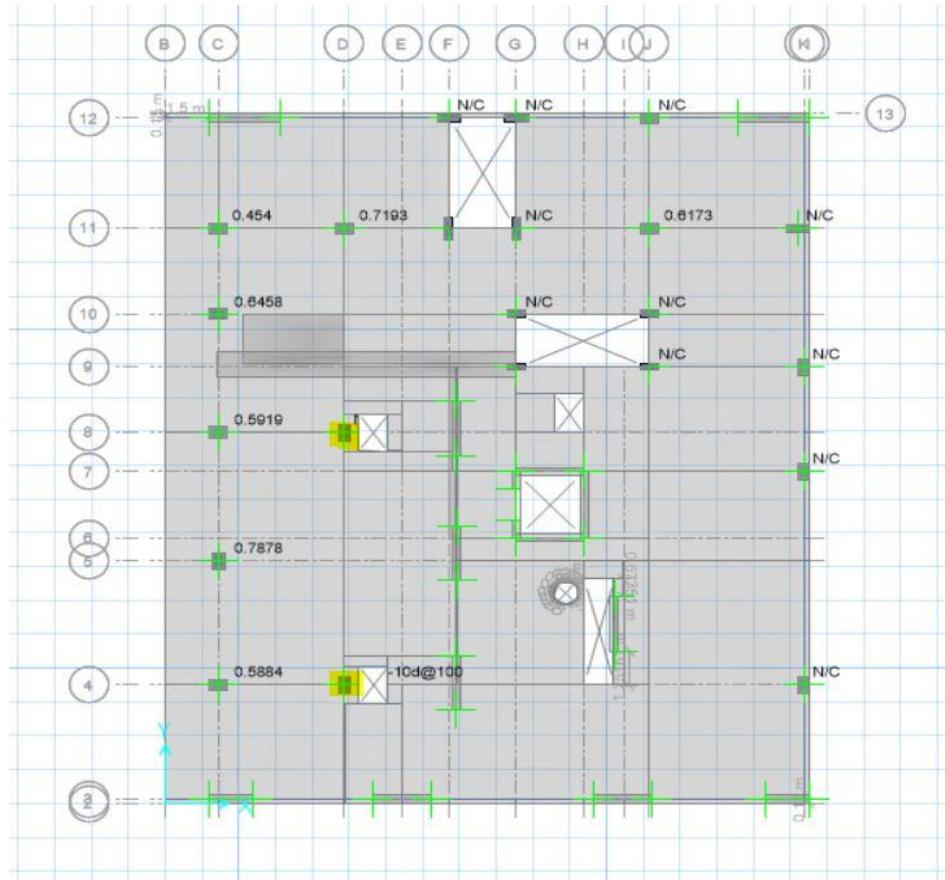
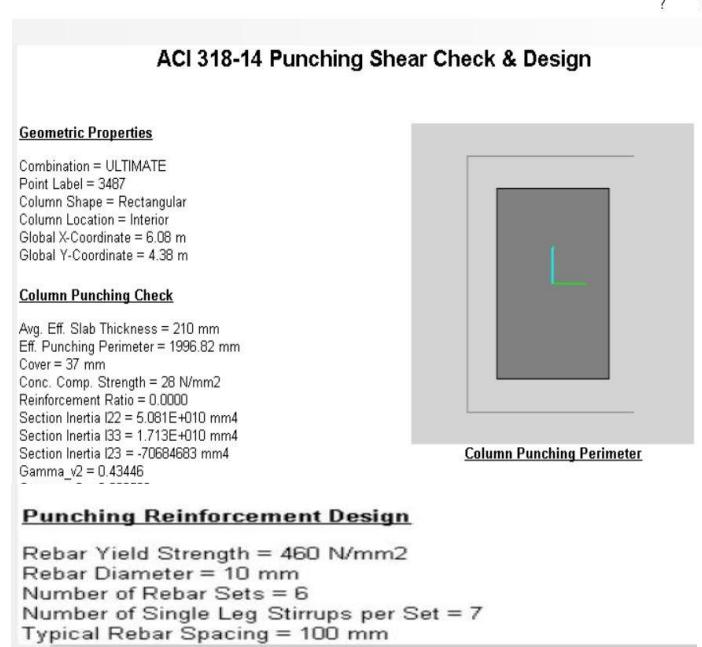


Figure 3.28: punching shear column

- To overcome of checking the punching shear is a failure problem, there are many ways to increase the capacity of column to resist the punching shear of concrete slabs:

Solution 1 increasing slab thickness: we refuge to this solution as a last one because we have five slabs with large area, and increasing the thick 1 cm will cost a lot.


Solution 2 Providing drop panel and/or column capital: may it will be economical, but we can't provide it because it would be against the Architectural restrictions.

Solution 3 Using shear studs:

This system consists of double-headed studs welded or spliced to flat rails, positioned around the head of column or the base. The studs are welded to the rail at centers. its designed and determined by using Safe program, its suitable for all column shapes and its

installed by specialists sub-contractor, but this solution the most suitable alternative with our situation, Due to that, shear stud will be used.

- ☒ From 8 columns that have punching shear we take the most critical column, and we design shear stud related to this column, the remaining columns will be reinforced like selected column to ensure more safety.
- ☒ From the Fig, we have 7 legs every leg has 6 studs with 10 cm as spacing (stud diameter = 10 mm).

- ☒ But we will use 10 leg to get most uniform distribution on every edge.
- ☒ The design of shear stud Is shown in the Fig.

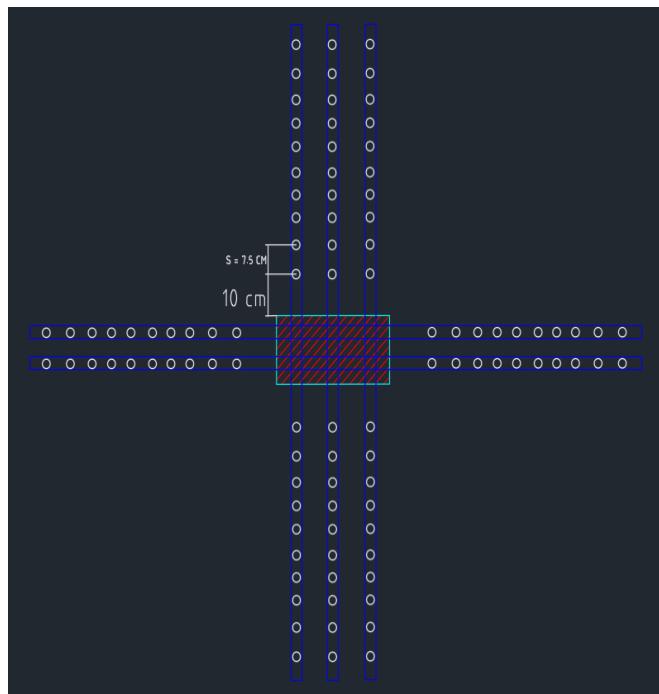


Figure 3.30: Design of Shear stud

- Steel Reinforcement

The value of moment at:

a) X- direction on all slab and every strip

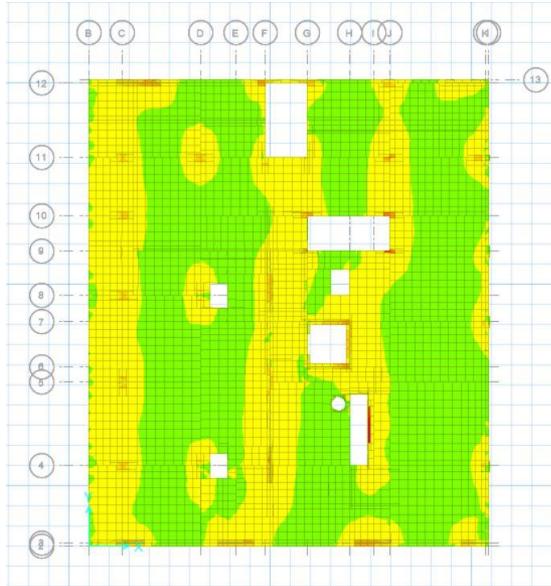


Figure 3.31: Value of moment in X axis

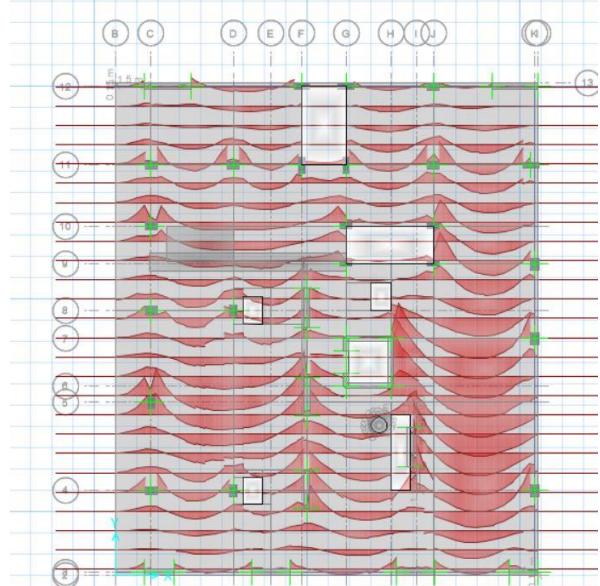


Figure 3.32: moment diagram in X axis

b) Y – direction on all slab and every strip

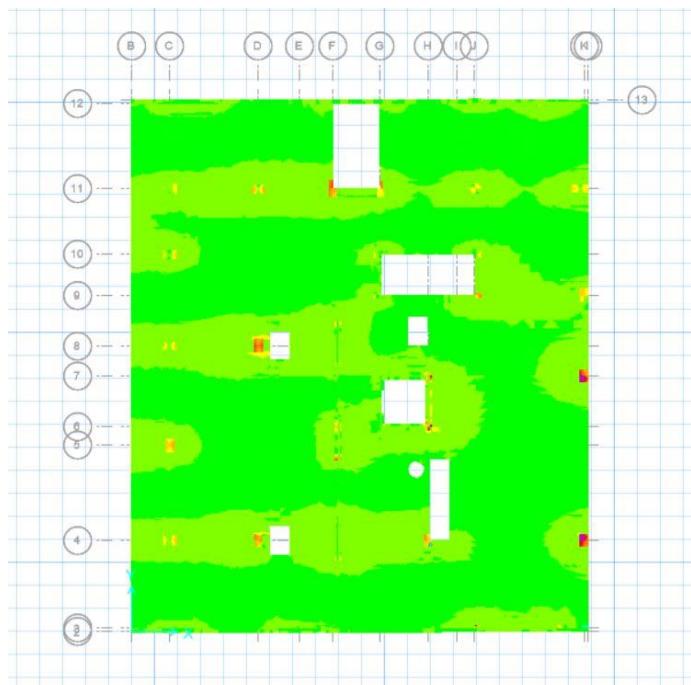


Figure 3.33: Value of moment in Y axis

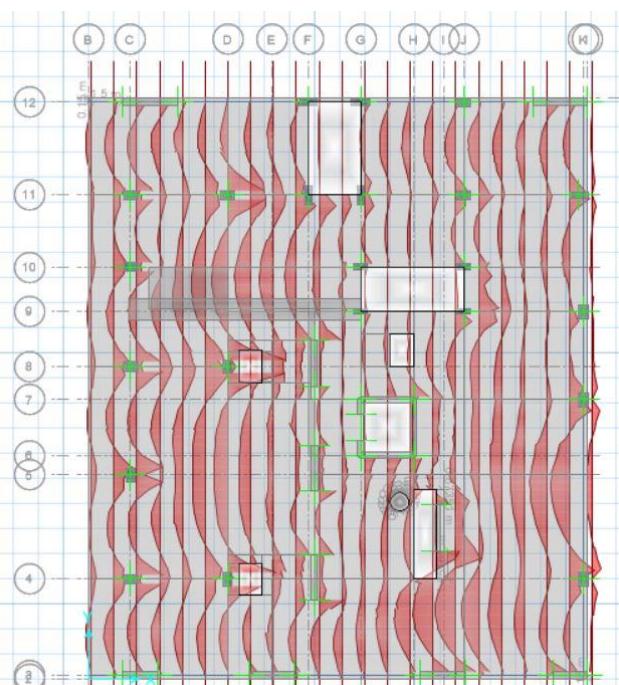


Figure 3.34: moment diagram in Y axis

⇒ Needed area of steel to resist the moment

Positive moment and Negative moment (at mid span)

Use $\Phi 12$, $A = 113 \text{ mm}^2$

- Min area of steel (As_{min})

$$As_{min} = 0.0018bh = 0.0018 \times 250 \times 1000$$

$$As_{min} = 450 \text{ mm}^2$$

- Number of steel bar = $\frac{450}{113} = 3.9$

- So we try 4 $\Phi 12$

$$As = \frac{M_u}{0.9 \times F_y \times J_d} \Rightarrow 0.45 = \frac{M_u}{0.9 \times 460 \times 0.95 \times 0.25}$$

$$M_u = 40 \text{ KN.m}$$

we use the safe program to introducing the Moment as shown:

X – direction

as we see in picture 4 $\Phi 12$ Not enough

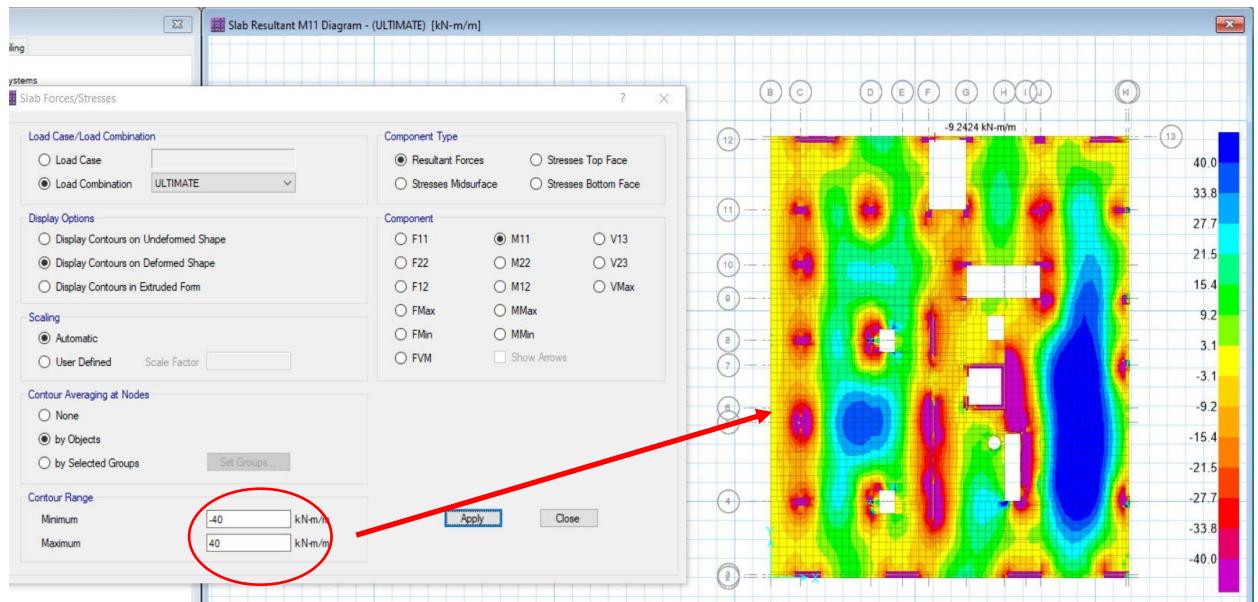


Figure 3.35: reinforcement Steel in X axis not enough

Y – direction

from picture 4Φ12 is not enough

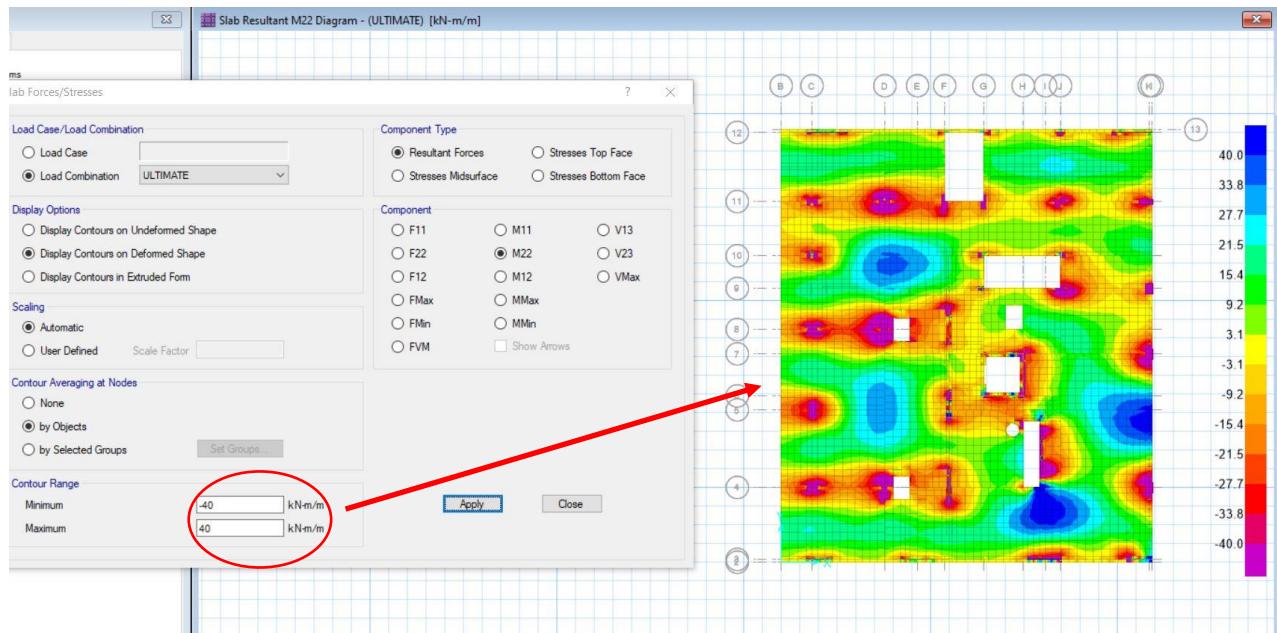


Figure 3.36: reinforcement Steel in Y axis not enough

The iterations for suitable area of steel:

2.try 5 Φ 12

$$A=5413, As=565 \text{ mm}^2$$

$$0.565 = \frac{M_u}{0.9*460*0.95*0.25}$$
$$M_u = 50 \text{ KN.m.}$$

X – direction

From picture 5 $\Phi 12$ not enough

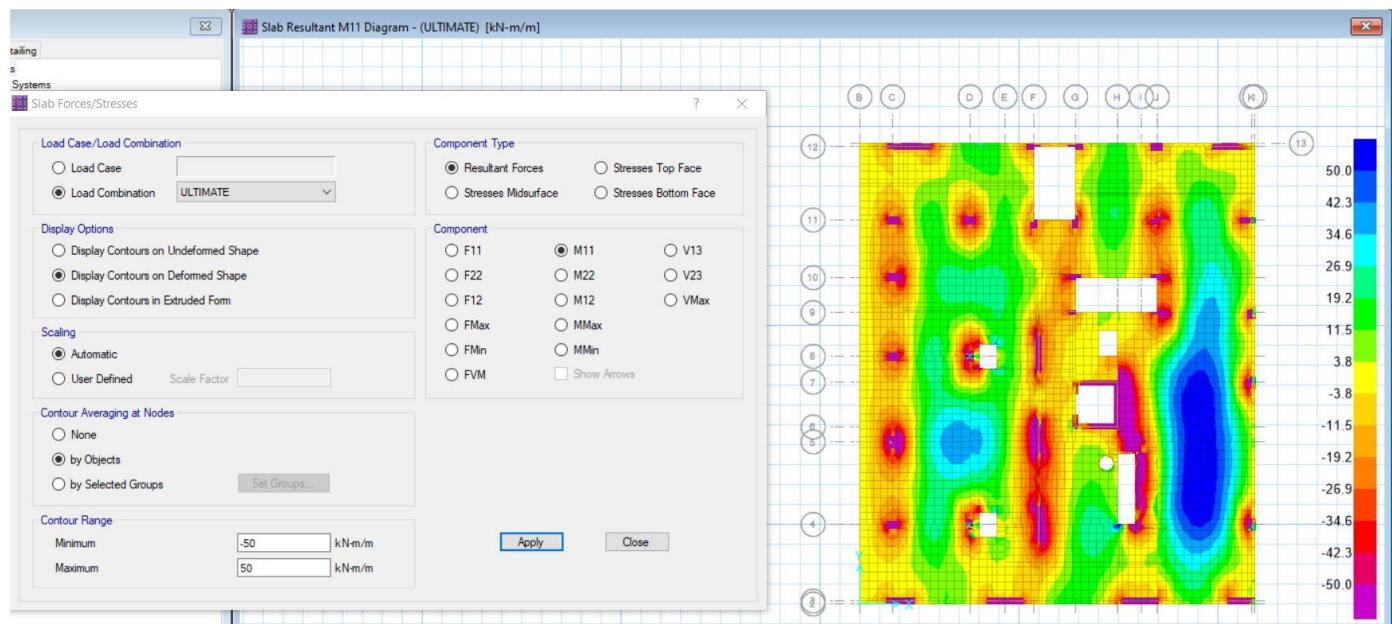


Figure 3.37: reinforcement Steel in X axis not enough around column

Y – direction

From picture 5 $\Phi 12$ not enough.

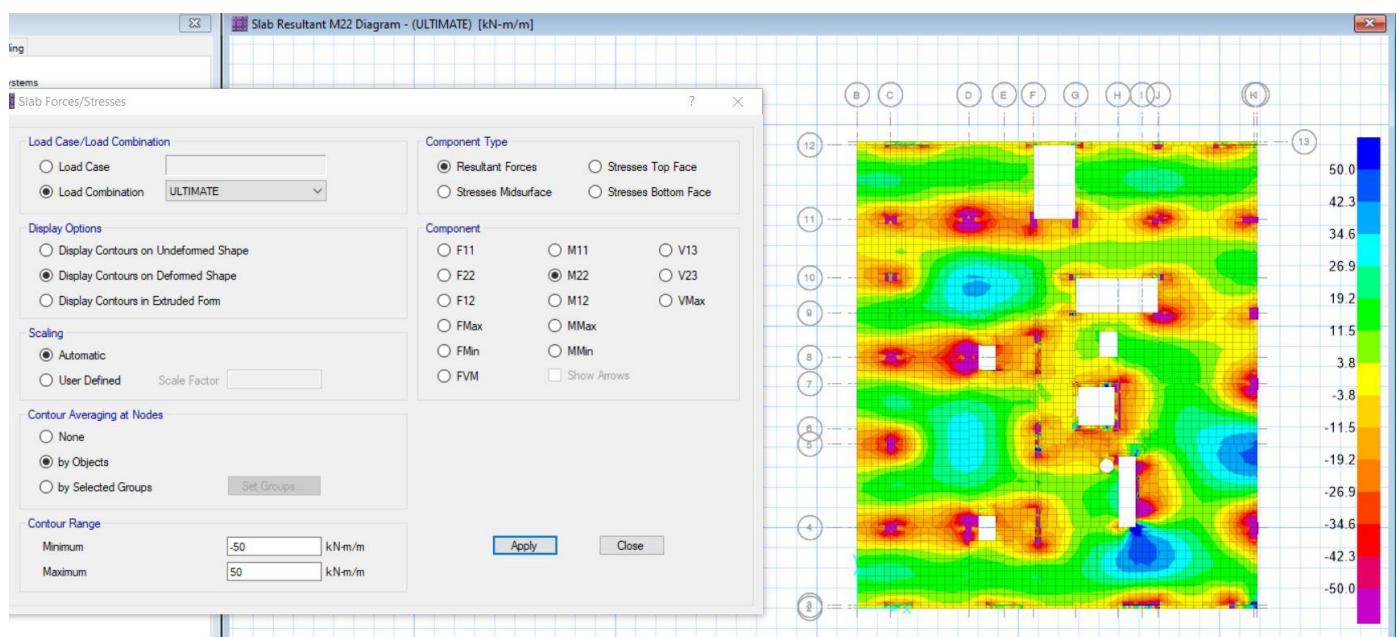


Figure 3.38: reinforcement Steel in Y axis not enough around column

3. try 6 Φ12

$$A = 6 * 113 \Rightarrow A = 678 \text{ mm}^2$$

$$0.678 = \frac{M_u}{0.9 * 460 * 0.95 * 0.25}$$

$$M_u = 60 \text{ KN.m}$$

X-direction

6Φ12 \Rightarrow enough

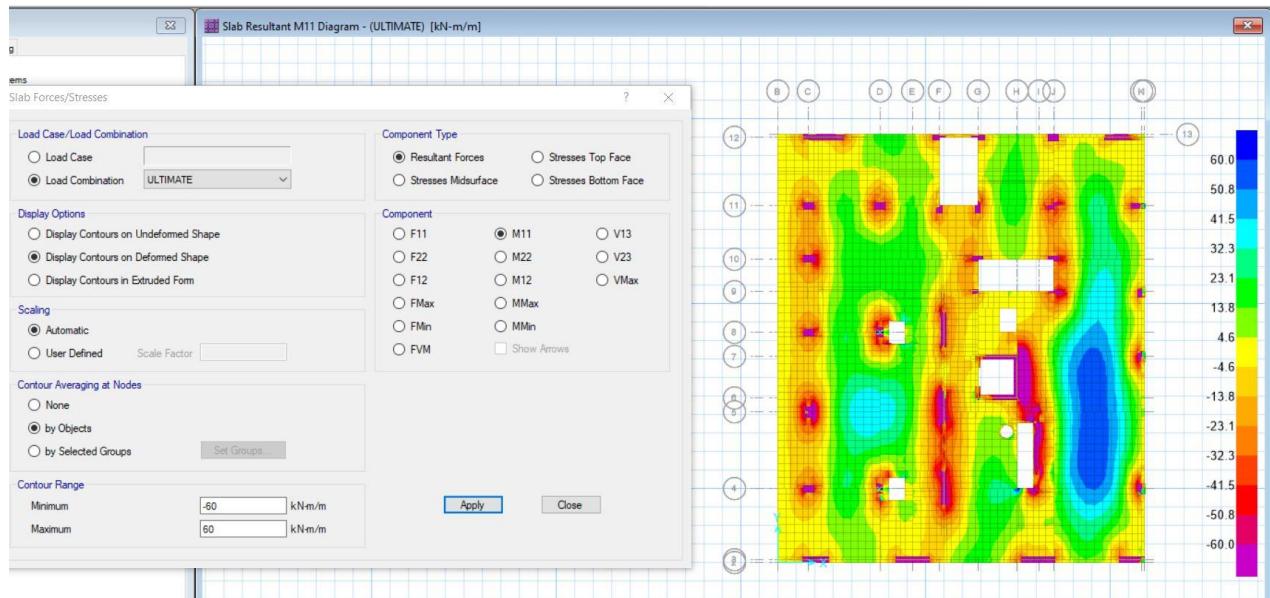


Figure 3.39: reinforcement Steel in X axis enough

Y-direction

6Φ12 \Rightarrow enough in the all slab

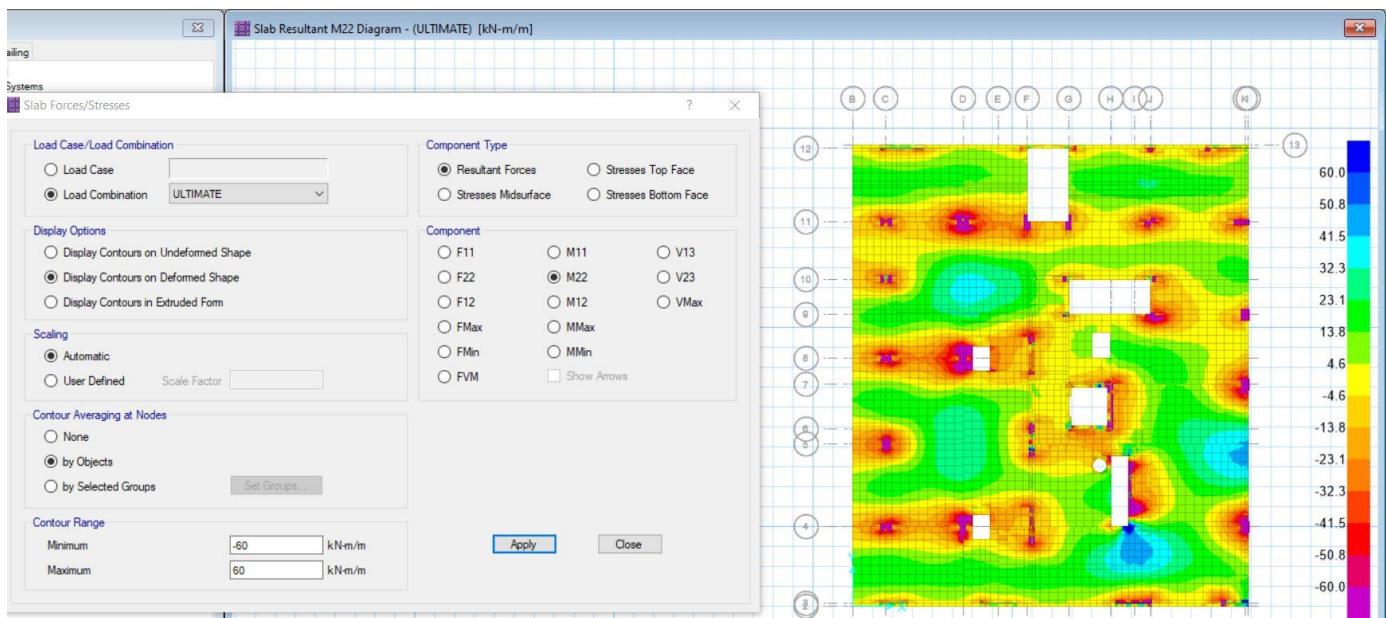


Figure 3.40: reinforcement Steel in Y axis enough

Around Columns (negative Moment):

Around the column we use $\Phi 14$ to decrease the number of steel bar in 1 m (strip).

Try $9\Phi 14$

$$A = 9 * 154 = 1380 \text{ mm}^2$$

$$1.380 = \frac{M_u}{0.9 * 460 * 0.95 * 0.25}$$

$$M_u = 120 \text{ KN.m}$$

X – direction

$9\Phi 14 \Rightarrow$ enough

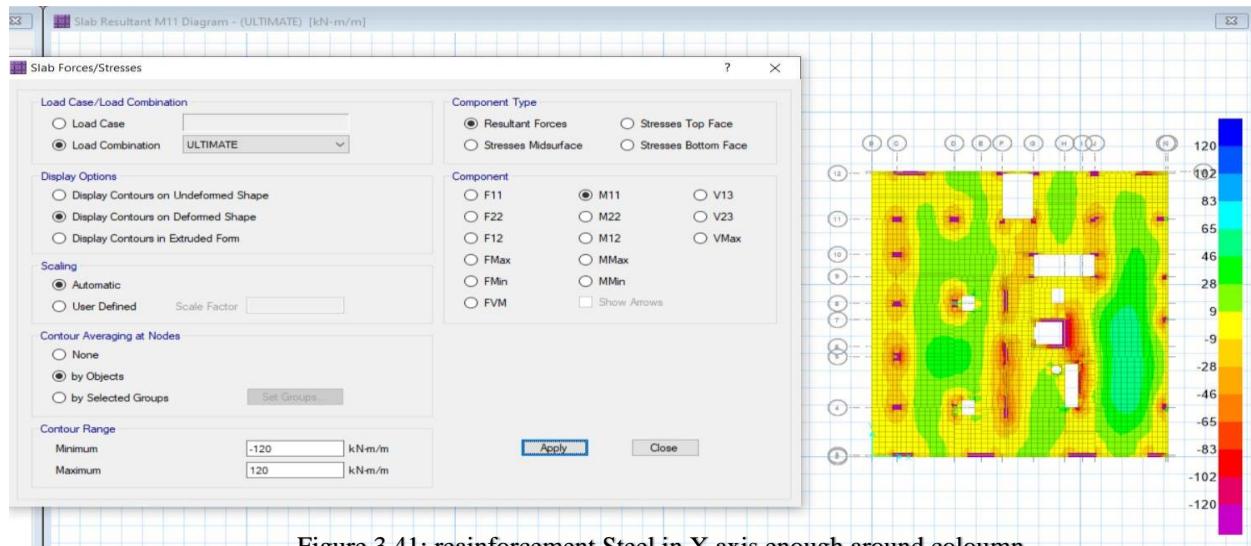


Figure 3.41: reinforcement Steel in X axis enough around column

Y – direction

$9\Phi 14 \Rightarrow$ enough

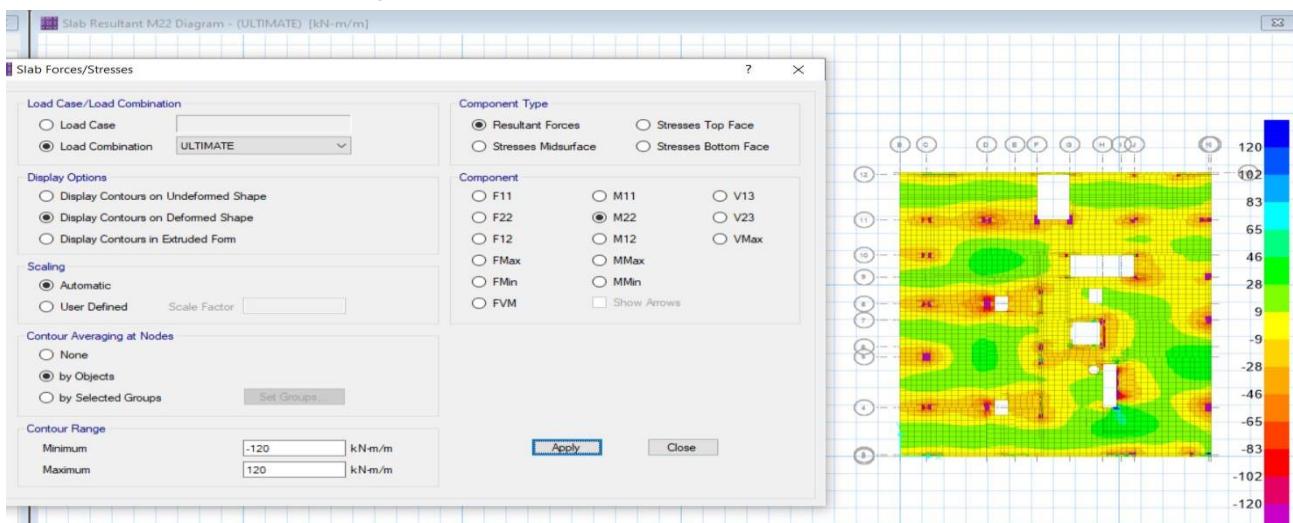


Figure 3.42: reinforcement Steel in Y axis enough around column

Check S_{max}

$$S_{max} = \text{smaller of } \begin{cases} 2h = 2 * 250 = 500 \text{ mm} \\ 500 \text{ mm} \end{cases}$$

actual spacing for 7 bar = 14 cm < S_{max} (50 cm) OK

actual spacing for 6 bar = 17 cm < S_{max} (50 cm) OK

actual spacing for 9 bar = 11 cm < S_{max} (50 cm) OK

Check S_{min}

$$S_{min} = \max \text{ of } \begin{cases} \text{Bar diameter} & = 14 \text{ mm} \\ 25 \text{ mm} & = 25 \text{ mm} \\ \text{diameter of vibrator} & (\text{unknown}) \\ 1.33 \text{ max C.A size} & (\text{unknown}) \end{cases}$$

Actual spacing for 6 bars = 160mm > 25mm (OK)

Actual spacing for 7 bars = 140mm > 25mm (OK)

Actual spacing for 9 bars = 110mm > 25mm (OK)

Check As_{max}

$$As_{max} = 0.319\beta \frac{f'c}{Fy} bd = 5317 \text{ mm}$$

For 6 Φ 12

As = 678 mm < 5317 (OK)

For 7 Φ 12

As = 791 mm < 5317 (OK)

For 9 Φ 14

As = 1385 mm < 5317 (OK)

⇒ Roof

1. Deflection

Permissible deflection = 3.2 cm

From “SAFE” program
actual deflection = 1.74 cm
1.74 < 3.2 \Rightarrow its OK

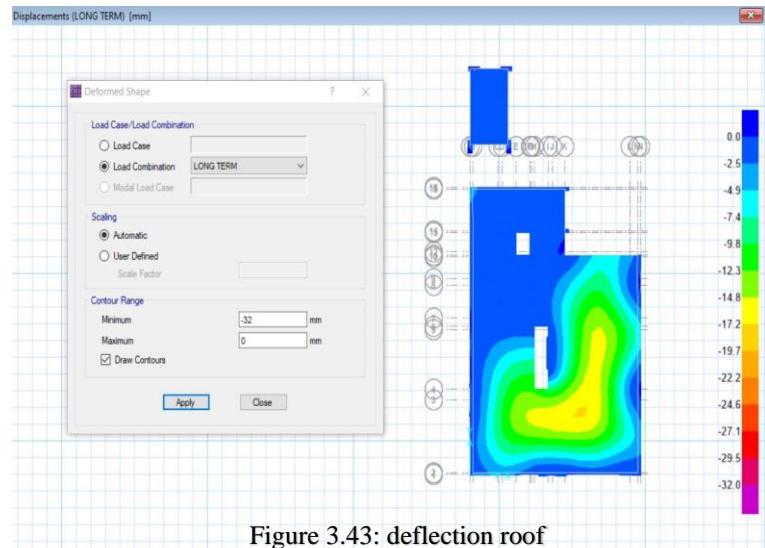


Figure 3.43: deflection roof

2. Punching Shear

all columns good & don't have
punching shear.

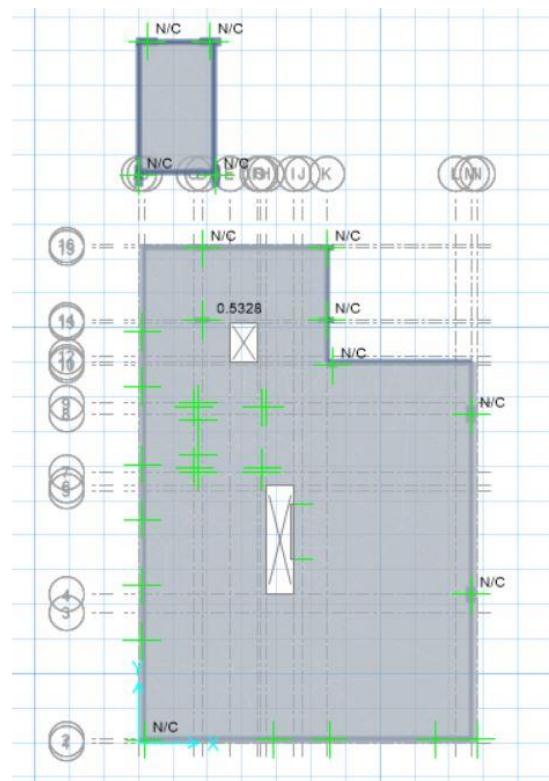


Figure 3.44: punching shear roof

3. Steel reinforcement

The value of moment:

X – direction: on all slab and on every strip

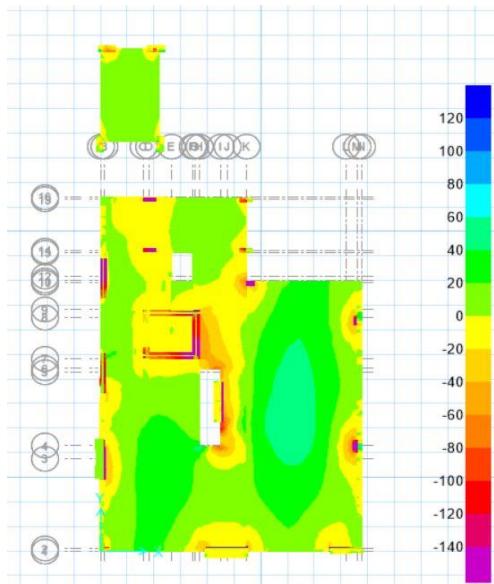


Figure 3.45: moment value in X axis roof

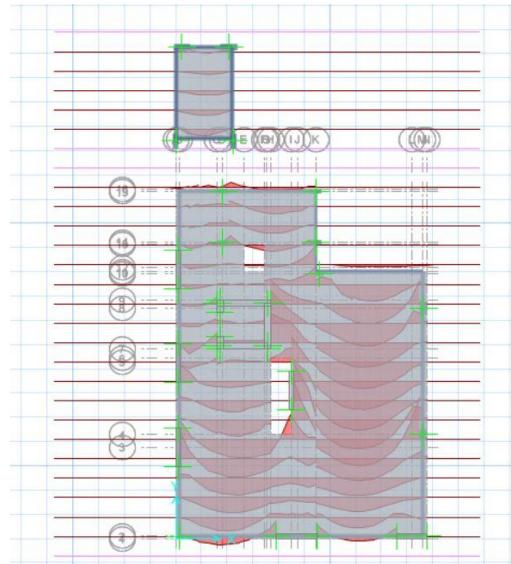


Figure 3.46: moment diagram in X axis roof

Y – direction: on all slab and on every strip

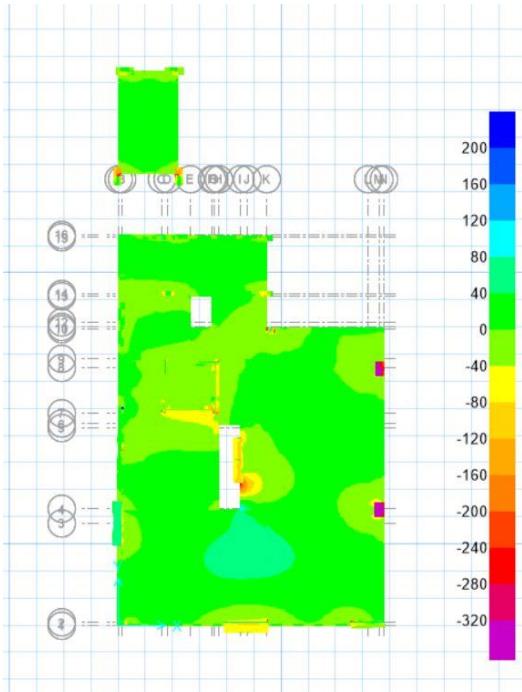


Figure 3.47: moment value in Y axis roof

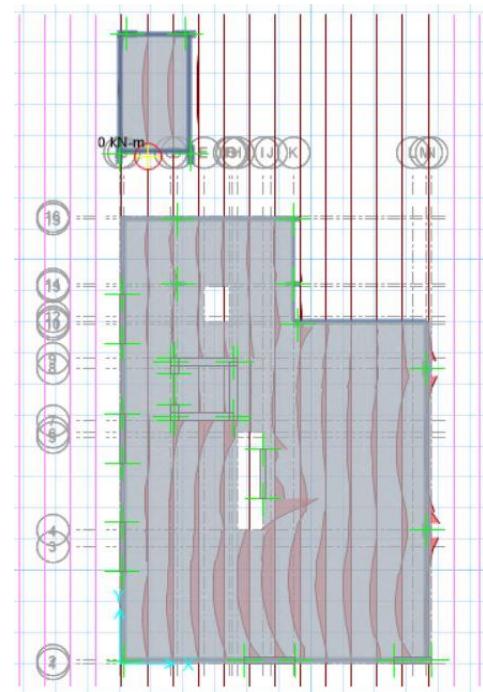
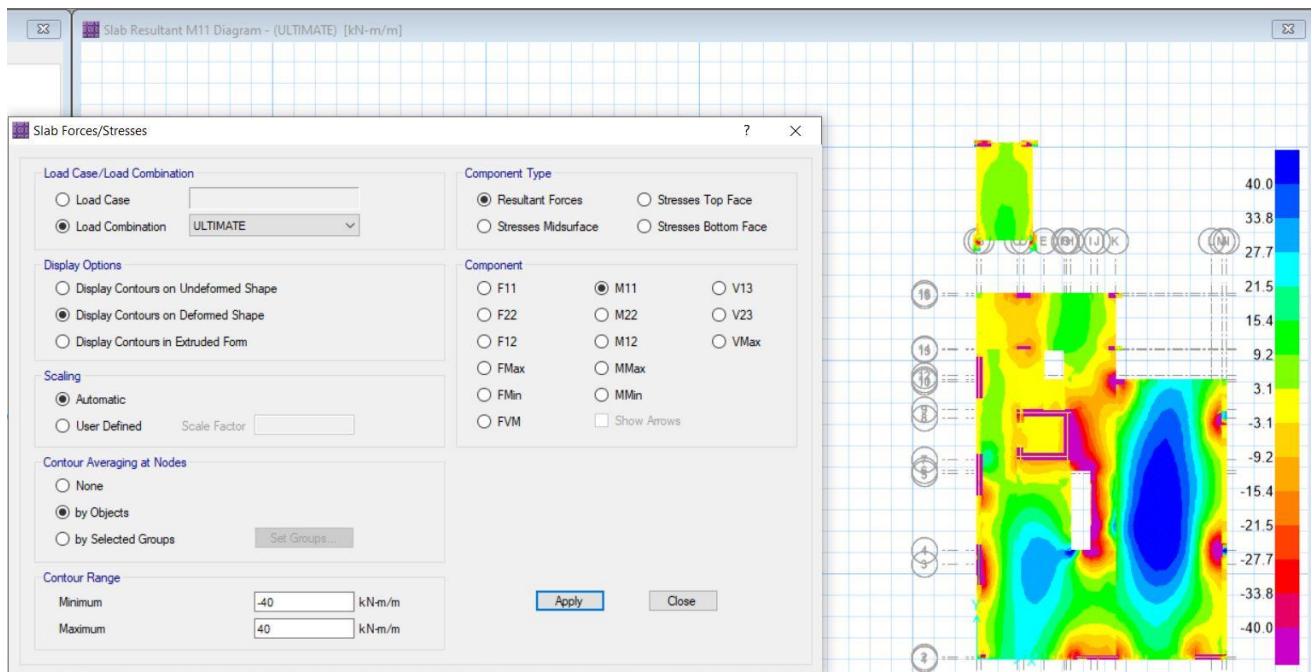


Figure 3.48: moment diagram Y axis roof

⇒ Needed area of steel to resist the moment


▪ Positive moment + Negative moment (at mid span)

Try 4Φ12

$$M_u = 40 \text{ KN.m}$$

- X – direction

4 Φ 12 not enough

Y – direction

Figure 3.49: reinforcement Steel in X axis1

• 4 Φ 12 not enough

Figure 3.50: reinforcement Steel in Y axis1

Try 5 Φ 12

$$M_u = 50 \text{ KN.m}$$

X – direction

5 Φ 12 not enough

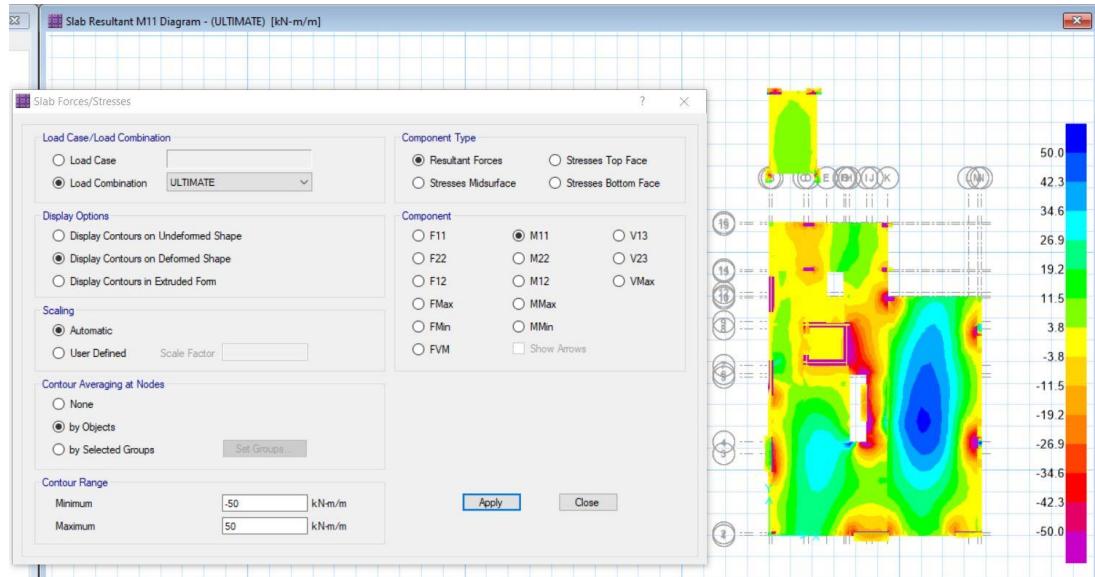


Figure 3.51: reinforcement Steel in X axis2

Y – direction

5 Φ 12 not enough

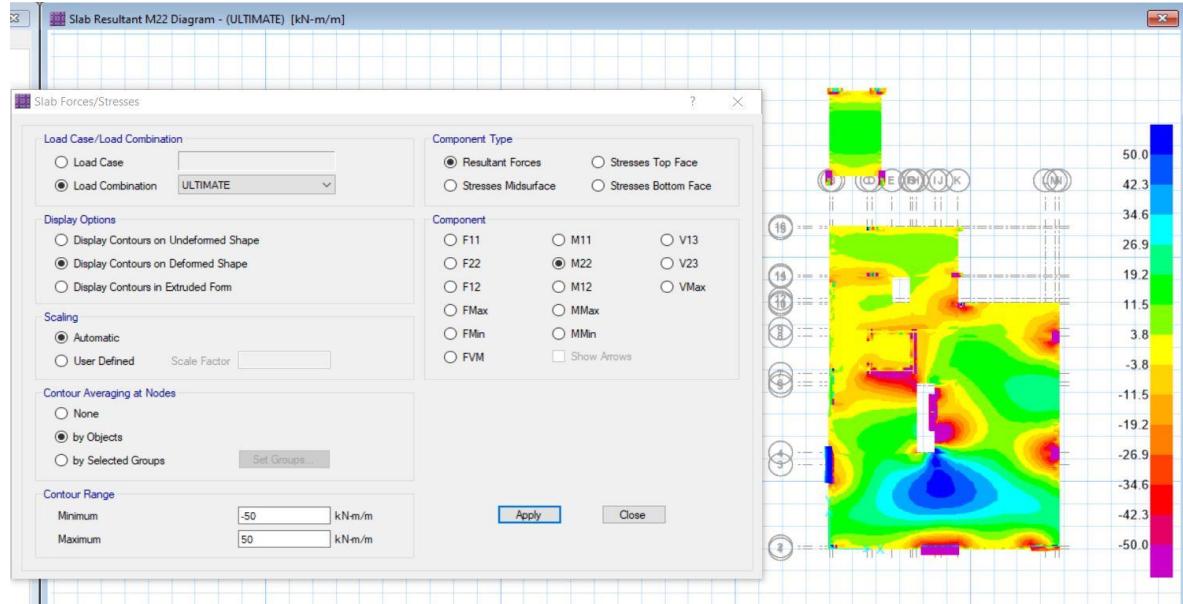


Figure 3.52: reinforcement Steel in Y axis2

Try 6 Φ 12

$$M_u = 60 \text{ kN.m}$$

X – direction

6 Φ 12 enough

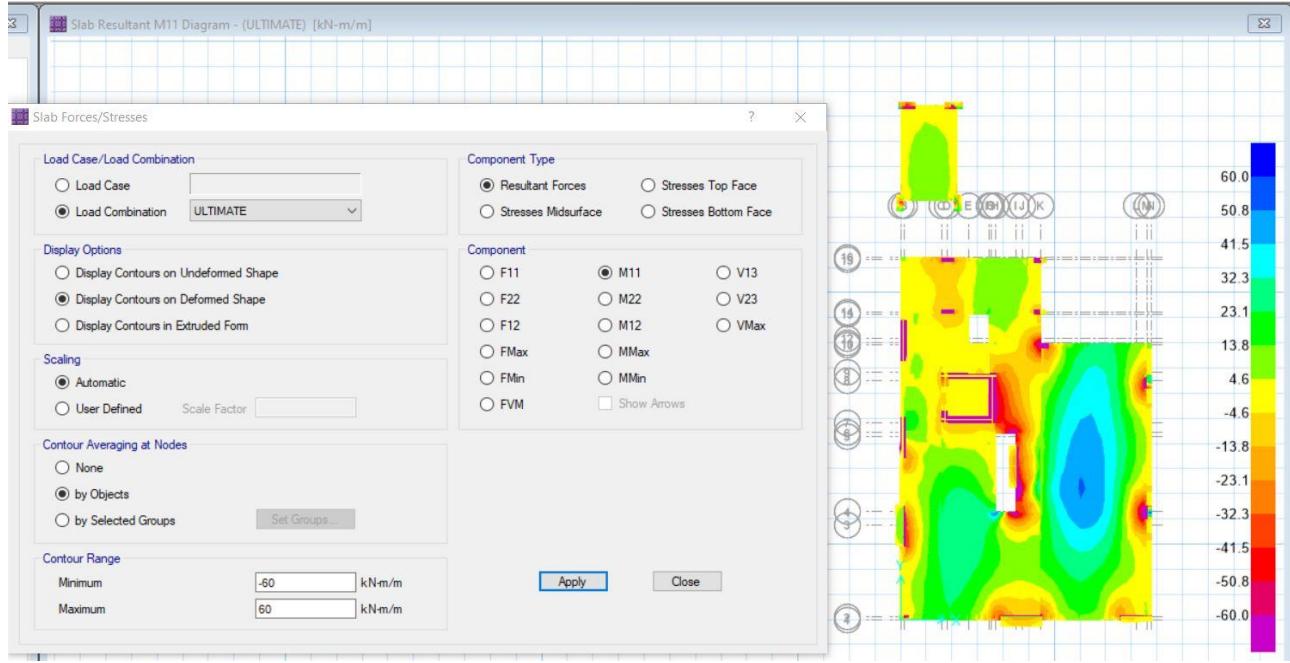


Figure 3.53: reinforcement Steel in X axis3

Y – direction

6 Φ 12 enough

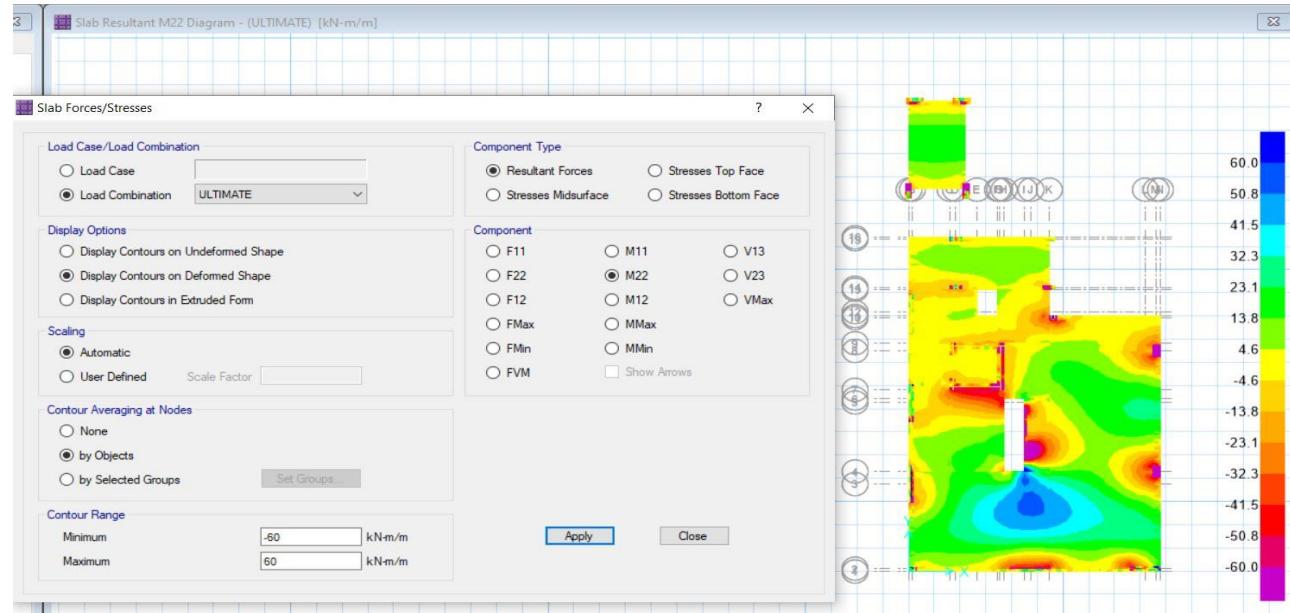


Figure 3.54: reinforcement Steel in Y axis3

Under column (negative Moment)

as typical slabs we use $9\Phi 14$, it's enough

$$A = 9 * 154 = 1380 \text{ mm}^2$$

$$1.380 = \frac{M_u}{0.9 * 460 * 0.95 * 0.25}$$

$$M_u = 120 \text{ KN.m}$$

X – direction

$9\Phi 14 \Rightarrow$ enough

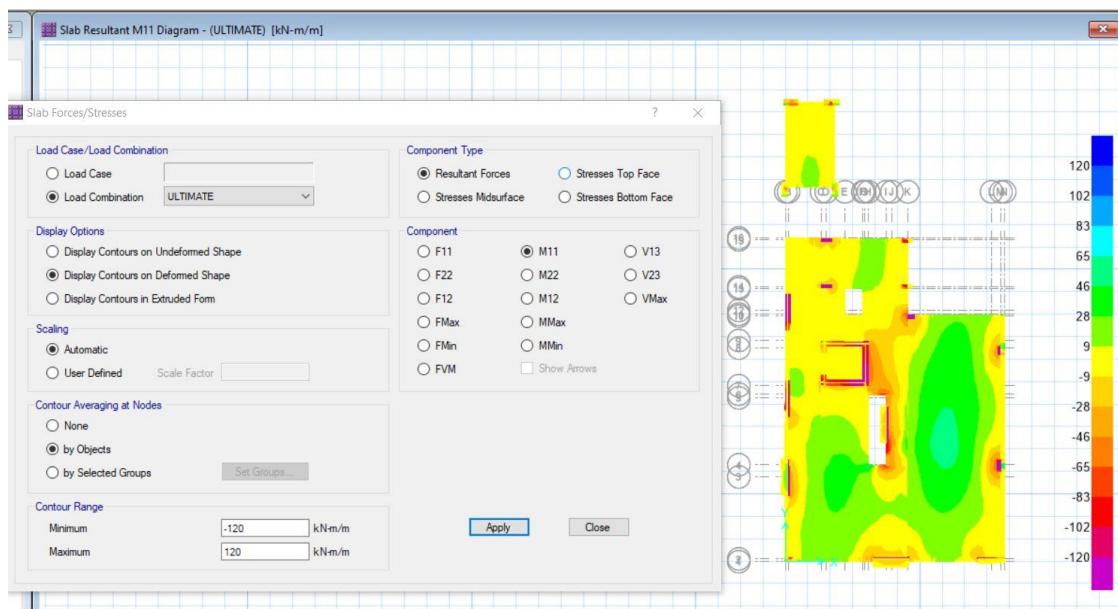


Figure 3.55: reinforcement Steel at X axis

Y – direction

$9\Phi 14 \Rightarrow$ enough

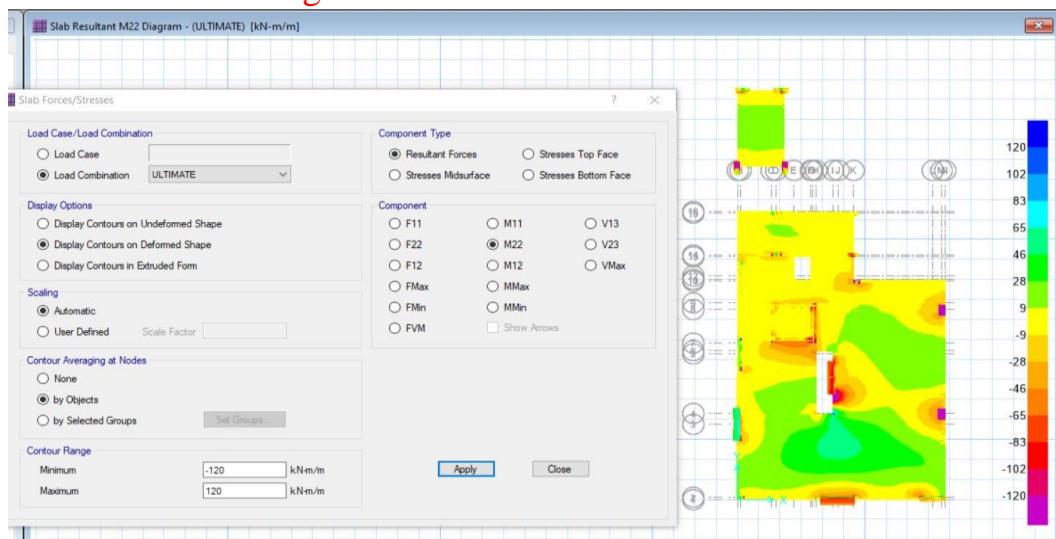


Figure 3.56: reinforcement Steel at Y axis

⊕ Check S_{max}

$$S_{max} = \text{smaller of } \begin{cases} 2 h = 2 * 250 = 500 \text{ mm} \\ 500 \text{ mm} \end{cases}$$

actual spacing for 5 bar = 20 cm < S_{max} (50 cm) OK

actual spacing for 6 bar = 16 cm < S_{max} (50 cm) OK

actual spacing for 9 bar = 11 cm < S_{max} (50 cm) OK

⊕ Check S_{min}

$$S_{min} = \max \text{ of } \begin{cases} \text{Bar diameter} & = 14 \text{ mm} \\ 25 \text{ mm} & = 25 \text{ mm} \\ \text{diameter of vibrator} & (\text{unknown}) \\ 1.33 \text{ max C.A size} & (\text{unknown}) \end{cases}$$

Actual spacing for 5 bars = 200mm > 25mm (OK)

Actual spacing for 6bars = 160mm > 25mm (OK)

Actual spacing for 9 bars = 110mm > 25mm (OK)

⊕ Check As_{max}

$$As_{max} = 0.319 \beta \frac{f'c}{Fy} bd = 5317 \text{ mm}$$

For 5 Φ 12

As = 565 mm < 5317 (OK)

For 6 Φ 12

As = 678 mm < 5317 (OK)

For 9 Φ 14

As = 1385 mm < 5317 (OK)

☒ Summary of reinforcement:

Table 3-1: Summary of reinforcement

		X-direction		Y-direction	
		Positive steel	Negative steel	Positive steel	Negative steel
Typical	slab	6 Φ 12	6 Φ 12	6 Φ 12	6 Φ 12
	Columns	6 Φ 12	9 Φ 14	6 Φ 12	9 Φ 14
	slab	5 Φ 12	5 Φ 12	5 Φ 12	5 Φ 12
Roof	Columns	5 Φ 12	9 Φ 14	5 Φ 12	9 Φ 14

☒ Around opening we add (5 Φ 20) for every edge, it will be shown in structural plans on "AutoCAD".

(Detailed Drawing in appendix A)

Try 5 Φ 20

$$1.575 = \frac{M_u}{0.9*460*0.95*0.25}$$

$$M_u = 140 \text{ KN.m}$$

TYPICAL X – AXIS 5 Φ 20 enough

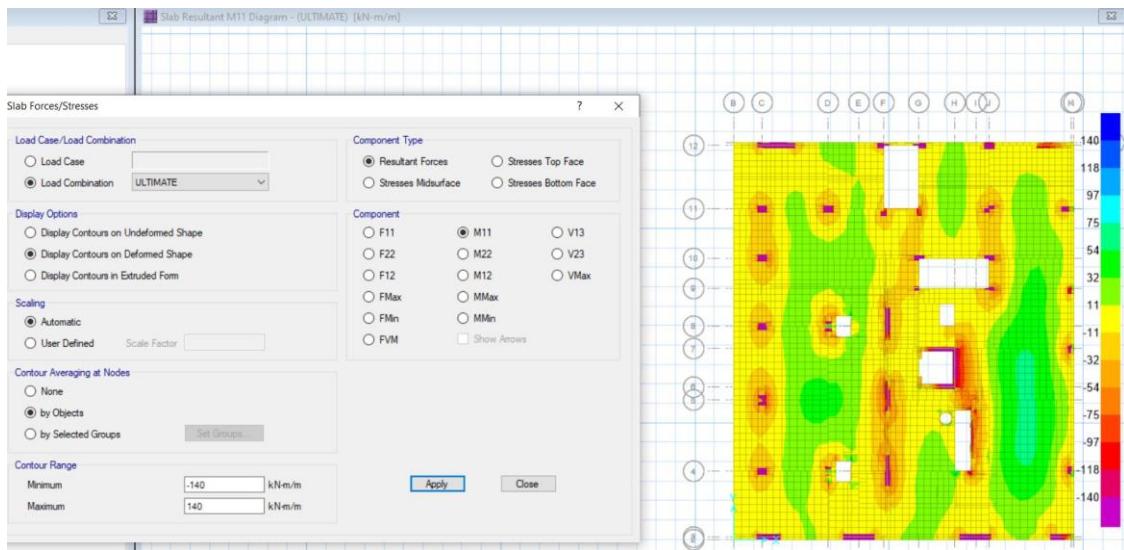


Figure 3.57: reinforcement Steel in typical x – axis around oppening

TYPICAL Y – AXIS 5 Φ 20 enough

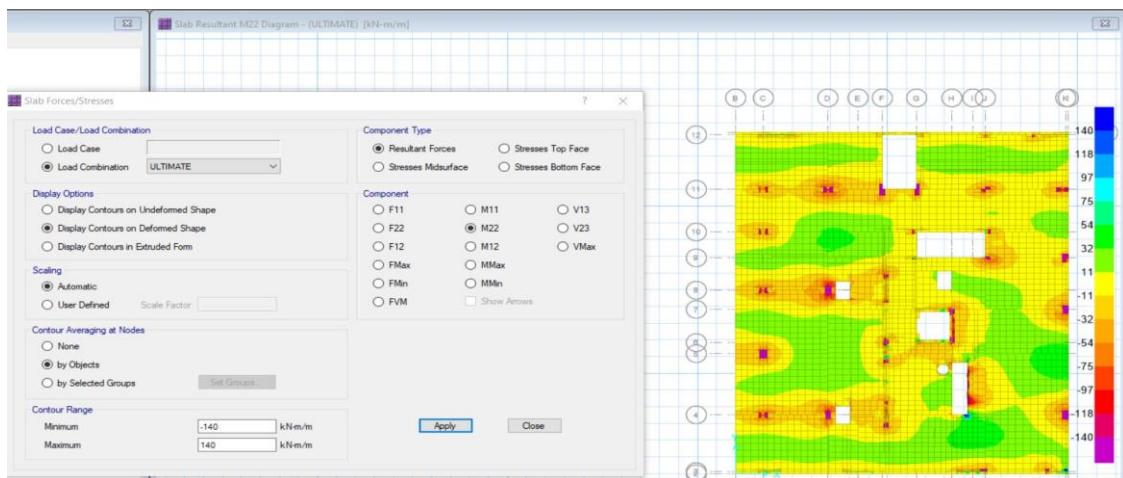


Figure 3.58: reinforcement Steel in typical y – axis around oppening

ROOF X – AXIS 5 Φ 20 enough

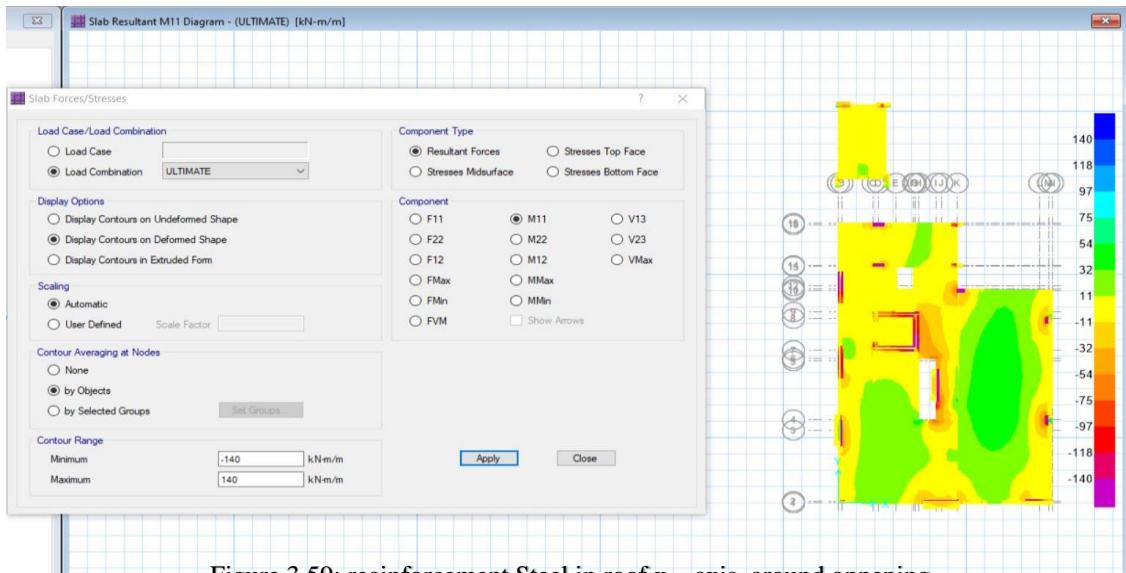


Figure 3.59: reinforcement Steel in roof x – axis around oppening

ROOF Y – AXIS 5 Φ 20 enough

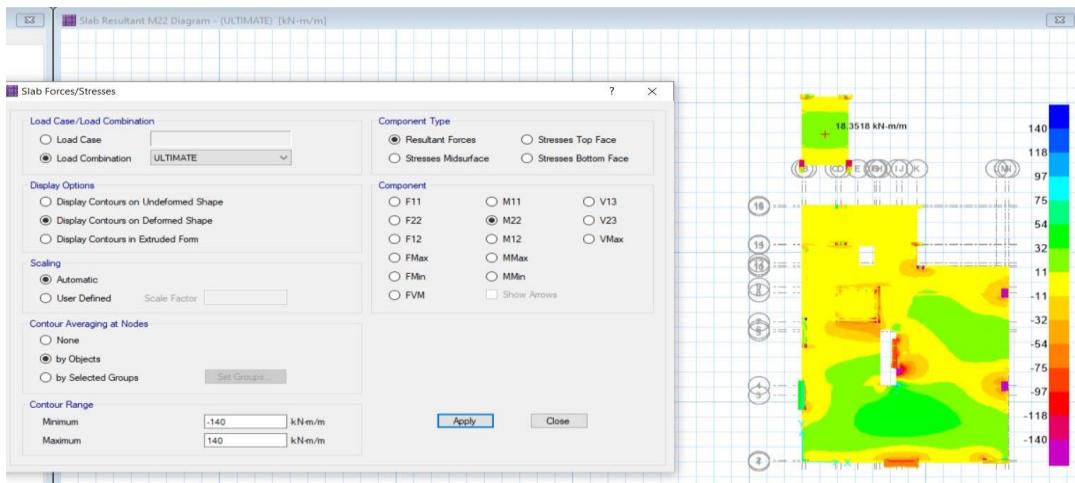


Figure 3.60: reinforcement Steel in roof y – axis around oppening

Chapter 4 : Beams

4.1 Beams Distribution

4.1.1 Load calculations

$f'c=28\text{MPa}$, $f_y=420\text{MPa}$, $\beta=0.85$, $j_d=0.9$, cover=40mm, stirrups $\Phi 10$

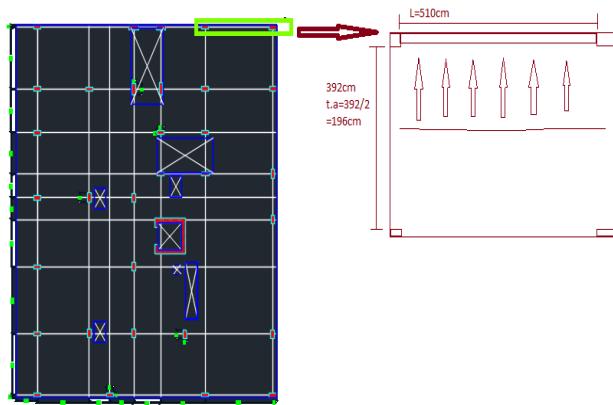


Figure 4.1: beam selection in manual calculation

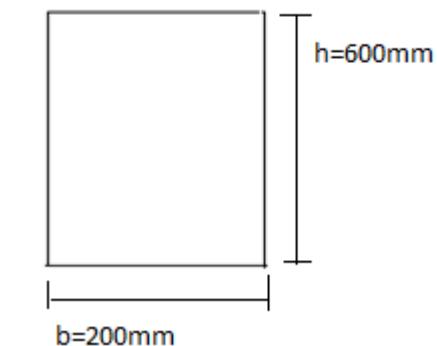


Figure 4.2: beam section

$$\text{L.L from slab} = 2 \times 1.96 = 3.92 \text{ KN/m}$$

$$\text{Load from S.D.L} = 8 \times 1.96 = 15.68 \text{ KN/m}$$

$$\text{Load from S.W slab} = \gamma \times \text{Thickness} \times \text{T.A} = 24 \times 0.25 \times 1.96 = 11.76 \text{ KN/m}$$

$$\text{Load from S.W beam} = \gamma \times h \times b = 24 \times 0.6 \times 0.2 = 2.88 \text{ KN/m}$$

$$\text{wall Load} = \gamma_{\text{wall}} \times \text{Thic.wall} \times \text{height.wall} = 14 \times 0.25 \times 3.5 = 12.25 \text{ KN/m}$$

$$\text{Total D.L} = 15.68 + 11.76 + 2.88 + 12.25 = 42.57 \text{ KN/m}$$

$$\text{Total L.L} = 3.92 \text{ KN/m}$$

$$W_u = 1.2 \times \text{D.L} + 1.6 \times \text{L.L} = 1.2 \times 42.57 + 1.6 \times 3.92 = 57.4 \text{ KN/m}$$

4.1.2 Calculations and Part selection

$$Mu = \frac{w_u L^2}{8}$$

$$Mu = 186.6 \text{ KN.m}$$

h_{min} from table 9.5(a)

**TABLE 9.5(a)—MINIMUM THICKNESS OF
NONPRESTRESSED BEAMS OR ONE-WAY SLABS
UNLESS DEFLECTIONS ARE COMPUTED**

Member	Minimum thickness, h			Cantilever
	Simply supported	One end continuous	Both ends continuous	
Members not supporting or attached to partitions or other construction likely to be damaged by large deflections.				
Solid one-way slabs	$\ell/20$	$\ell/24$	$\ell/28$	$\ell/10$
Beams or ribbed one-way slabs	$\ell/16$	$\ell/18.5$	$\ell/21$	$\ell/8$

Notes:
Values given shall be used directly for members with normalweight concrete and Grade 60 reinforcement. For other conditions, the values shall be modified as follows:
a) For lightweight concrete having equilibrium density, w_c , in the range of 90 to 115 lb/ft³, the values shall be multiplied by $(1.65 - 0.005w_c)$ but not less than 1.09.
b) For f_y other than 60,000 psi, the values shall be multiplied by $(0.4 + f_y/100,000)$.

Figure 4.3: Table 9.5 (a)

$$h_{min} = \frac{L}{16} = \frac{5100}{16} = 318.75 \text{ mm}$$

$$h_{min} = 318.75 \text{ mm} < h = 600 \text{ mm} \quad \text{OK}$$

assume two Layer:

$$d = h - 90 = 600 - 90 \Rightarrow d = 510 \text{ mm}$$

$$As = \frac{Mu}{\Phi f_y j_d}, \Phi = 0.9$$

$$As = 1075.5 \text{ mm}^2$$

iteration:

$$a = \frac{A_s f_y}{0.85 f'_c b} \quad A_s = \frac{M_u}{\Phi f_y (d - 0.5a)}$$

$$a = 94.9 \text{ mm} \quad As = 1067.7 \text{ mm}^2$$

$$a = 94.2 \text{ mm} \quad As = 1066 \text{ mm}^2$$

then $As_{required} = 1066 \text{ mm}^2$

-From steel table

USE 6 bars $\Phi 16 \text{ mm}$

$$As_{provided} = 1206 \text{ mm}^2$$

check As_{min}

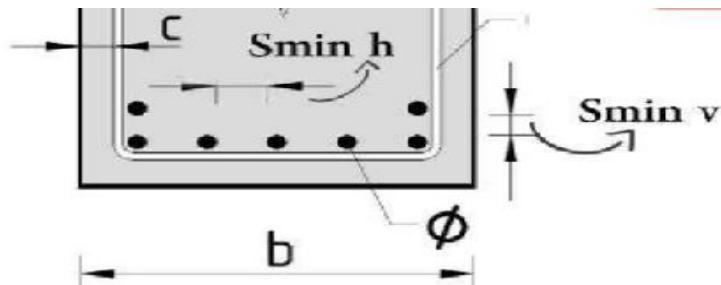
$$As_{min} = \xi \frac{0.25\sqrt{f'}c}{1.4bd} bd = 321$$

$$\xi = \frac{340}{f_y} = 340$$

$$As_{min} = 340 \text{ mm}^2 < As = 1206 \text{ mm}^2 \text{ OK}$$

$$S_{min}(H) = \max \text{ of } \begin{cases} \text{Bar diameter} \\ 25 \text{ mm} \\ \text{diameter of vibrator (no data)} \\ 1.33 \max C.A \text{ size (no data)} \end{cases}$$

$$S_{min}(H) = \max \text{ of } \begin{cases} 16 \text{ mm} \\ 25 \text{ mm} \\ - \\ - \end{cases}$$


$$S_{min}(H) = 25 \text{ mm}$$

$$b_{min} = 2 \times \text{cover} + 2 \times \text{sirrups diameter} + n (\text{No. Of bars}) \times \text{diameter of bar} + (n-1) \times SH(\text{min.}) + 2(2ds - 0.5db)$$

$$b_{min} = 2 \times 40 + 2 \times 10 + 4 \times 16 + 3 \times 25 + 2(2 \times 10 - 0.5 \times 16)$$

$$b_{min} = 272 \text{ mm}$$

$b_{min} > b$ then assumption **OK (two layer)**

$$S_{\min} v \rightarrow 25 \text{ mm}$$

$$\text{larger of } \rightarrow 1.33 \text{ max coarse aggregate size}$$

Figure 4.4: S_{\min}

use $S_{\min}(V) = 25 \text{ mm}$

$$S_{\min}(H) = 200 - 2 \times 40 - 2 \times 19 - 2 \times 10 - 2(2 \times 10 - 0.5 \times 19)$$

$$S_{\min}(H) = 41 \text{ mm}$$

- check $A_{s_{\max}}$:

$$A_{s_{\max}} = 0.319 \beta \frac{f'_c}{f_y} bd$$

$$A_{s_{\max}} = 1843 \text{ mm}^2 > A_s = 1206 \text{ mm}^2$$

analysis:

$$T = C_c$$

$$A_s \times f_y = 0.85 f'_c a b$$

$$1140 \times 420 = 0.85 \times 28 \times a \times 200$$

$$a = 100.6 \text{ mm}$$

$$c = \frac{a}{\beta} = 118.3 \text{ mm}$$

$$\Sigma s = 0.003 \left(\frac{d - c}{c} \right) = 0.0099$$

$$\Sigma s = 0.0099 > 0.005 \text{ ok tension control}$$

$$\text{in tension control } \Phi = 0.9$$

$$\Phi M_n = \Phi \times T \times \left(d - \frac{a}{2} \right) = 0.9 \times 1140 \times 420 \left(510 - \frac{100.6}{2} \right)$$

$$\Phi M_n = 198 \text{ MPa}$$

$$\Phi M_n > M_u \text{ OK}$$

- shear in beam:

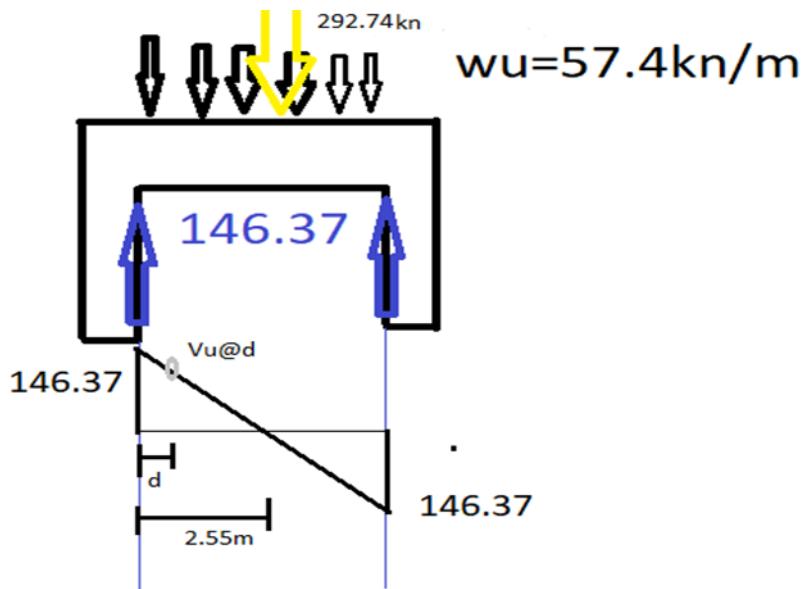


Figure 4.5: shear in beam

$$\frac{146.37}{2.55} = \frac{v_u @ d}{(2.55 - 0.51)} \Rightarrow \underline{V_u @ d = 117.1 \text{ KN}}$$

$$v_c = \frac{\sqrt{f'_c}}{6} bd \Rightarrow v_c = \frac{\sqrt{28}}{6} \times 200 \times 510 = 89.96 \text{ KN}$$

$$V_{u_{max}} = 5\Phi V_c = 5 \times 0.75 \times 89.96 = 337.3 \text{ KN}$$

$$V_{u_{max}} > V_u @ d \quad \text{OK}$$

$$\Phi V_c = 0.75 \times 89.96 = 67.47 \text{ KN}$$

$$\Phi V_{c2} = \frac{\Phi V_c}{2} = 33.735 \text{ KN}$$

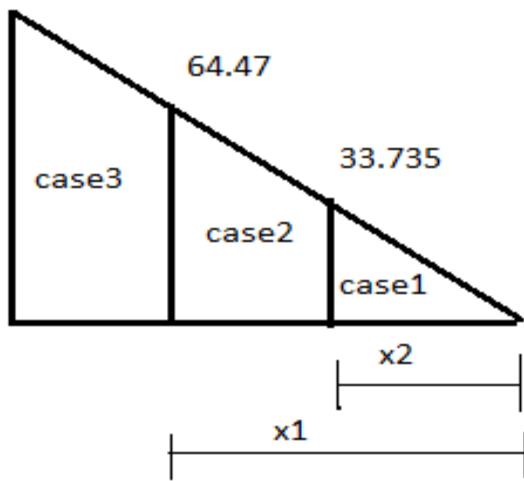


Figure 4.6: shear cases

- $\frac{146.37}{2.59} = \frac{67.47}{x_1} = \frac{33.735}{x_2}$

$$x_1 = 1.175 \text{m} \quad x_2 = 0.5877 \text{m}$$

\Rightarrow case 1:

$$V_u \leq \frac{\Phi V_c}{2}$$

no need to shear reinforcement

\Rightarrow case 2:

$$\frac{\Phi V_c}{2} < V_u < \Phi V_c$$

required stirrup spacing

$$S_{max.} = \begin{cases} 600 \text{ mm} \\ d/2 \quad 255 \text{ mm} \\ \frac{A_v f_y}{0.33 b_w} \quad 999.6 \text{ mm} \\ \frac{16 A_v f_y}{b_w \sqrt{f'_c}} \quad 997.43 \text{ mm} \end{cases}$$

$$A_{v1} = \frac{\pi}{4} (10)^2 = 78.5$$

$$A_v = 2A_{v1} = 157.08$$

$$S_{max} = 255 \text{ mm}$$

\Rightarrow case3: ($V_u > \Phi V_c$) and ($V_s \leq 4V_c$)
required stirrup spacing

$$S_{max.} = \begin{cases} 600 \text{ mm or } \frac{d}{2}; \text{ if } V_s \leq 2V_c & 600 \text{ mm} \\ 300 \text{ mm or } \frac{d}{4}; \text{ if } V_s > 2V_c & 255 \text{ mm} \\ \frac{A_v f_y}{0.33 b_w} & 999.6 \text{ mm} \\ \frac{16 A_v f_y}{b_w \sqrt{f'_c}} & 997.4 \text{ mm} \\ \frac{A_v f_y d}{V_s} & 508486 \text{ mm} \end{cases}$$

$$V_s = \frac{v_u @ d}{\emptyset} - V_c$$

$$V_s = \frac{117.1}{0.75} - 89.96 = 66.17 \text{ KN}$$

$$V_s < 2V_c$$

$$S_{max} = 255 \text{ mm}$$

4.2 Design

☒ Design of beams:

- ✓ We use "Prokon" program in the analysis and design.

☒ Typical Floor:

- 3 strip (side view) will be analyzed and designed.

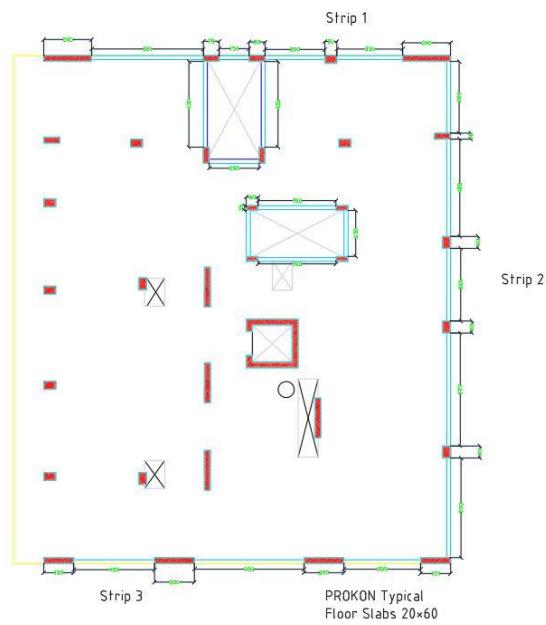


Figure 4.7: Design of beam strip

✓ Strip 1:

✓ Deflection:

- Using ACI-Code, Table 9.5 → (b) Case 4.
- Impmissible deflection = $8.1/240$
 $= 3.375 \text{ cm}$

Actual deflection = $2.652 \text{ cm} < 3.375$ (Okay)

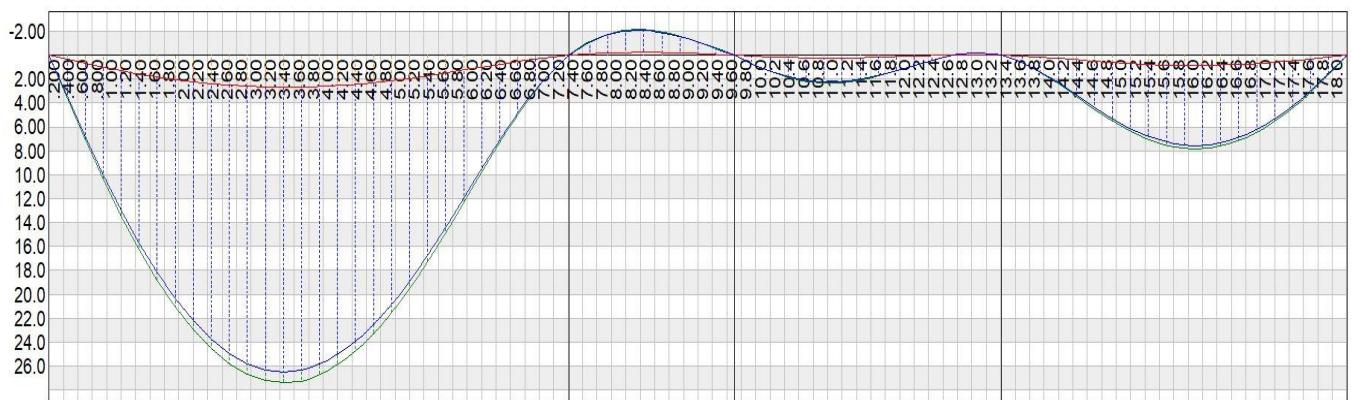


Figure 4.8: Prokon deflection typical slab

✓ Load value:

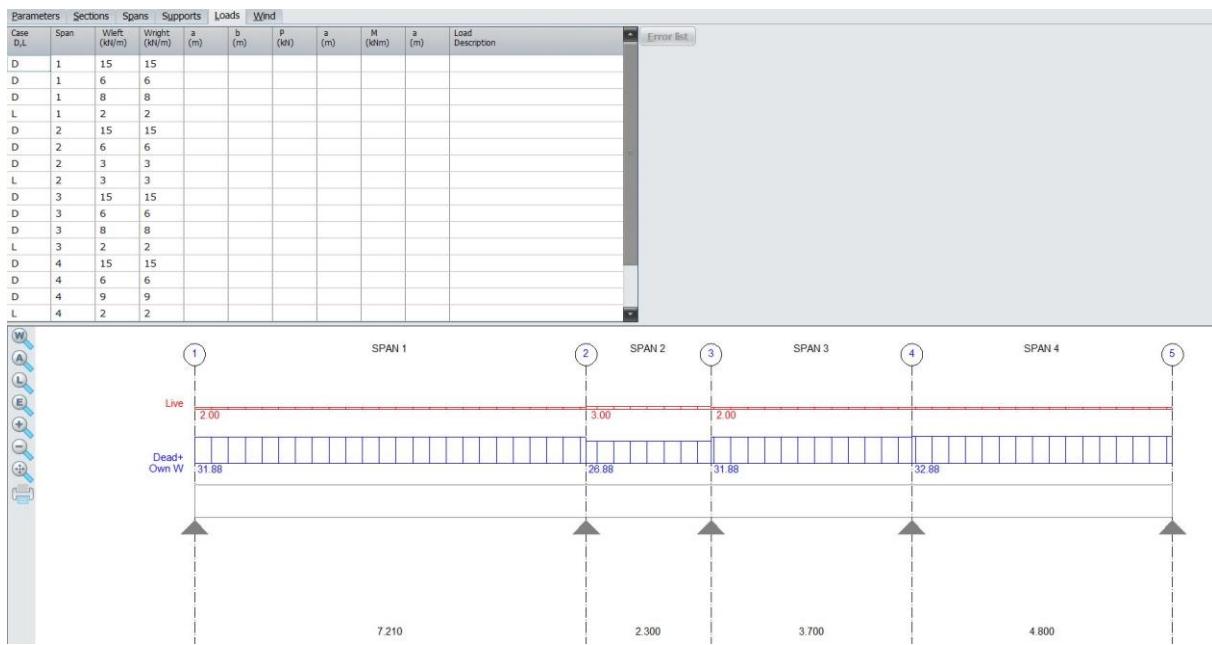


Figure 4.9: Prokon load value1

✓ Moment +Shear value:

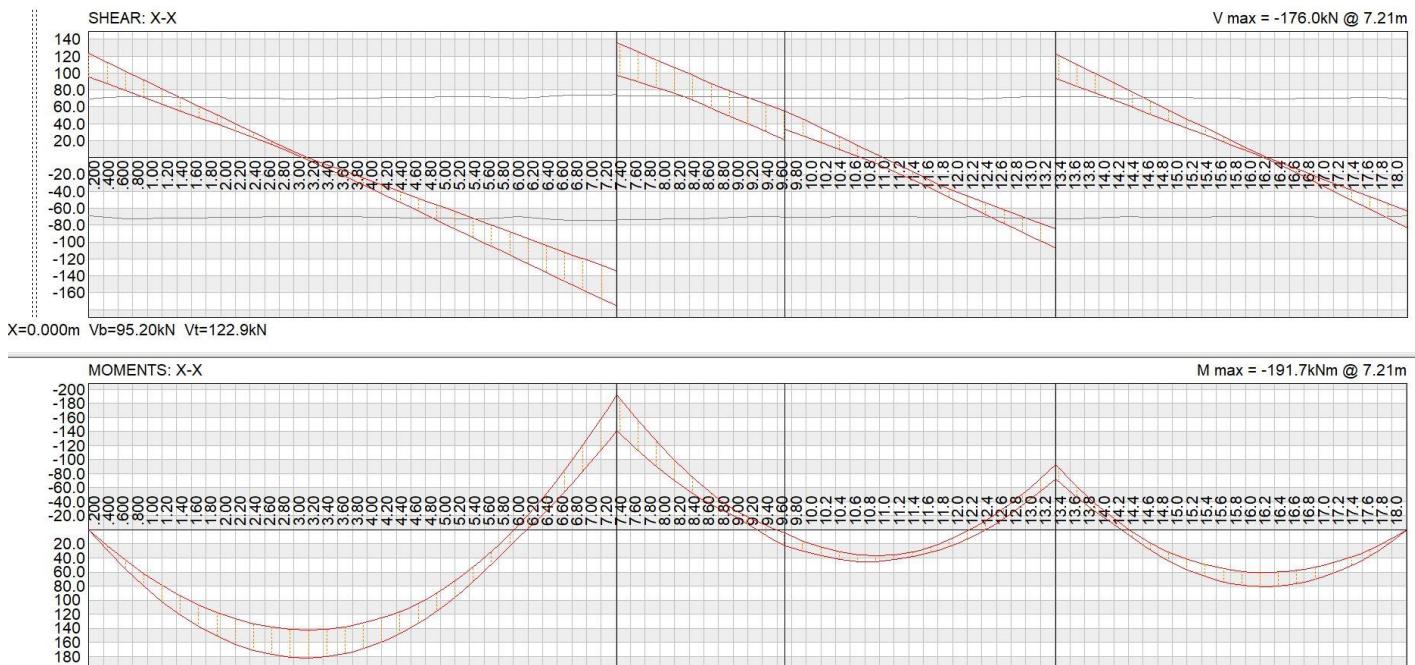


Figure 4.10: Prokon moment shear 1

✓ Section of Strip:

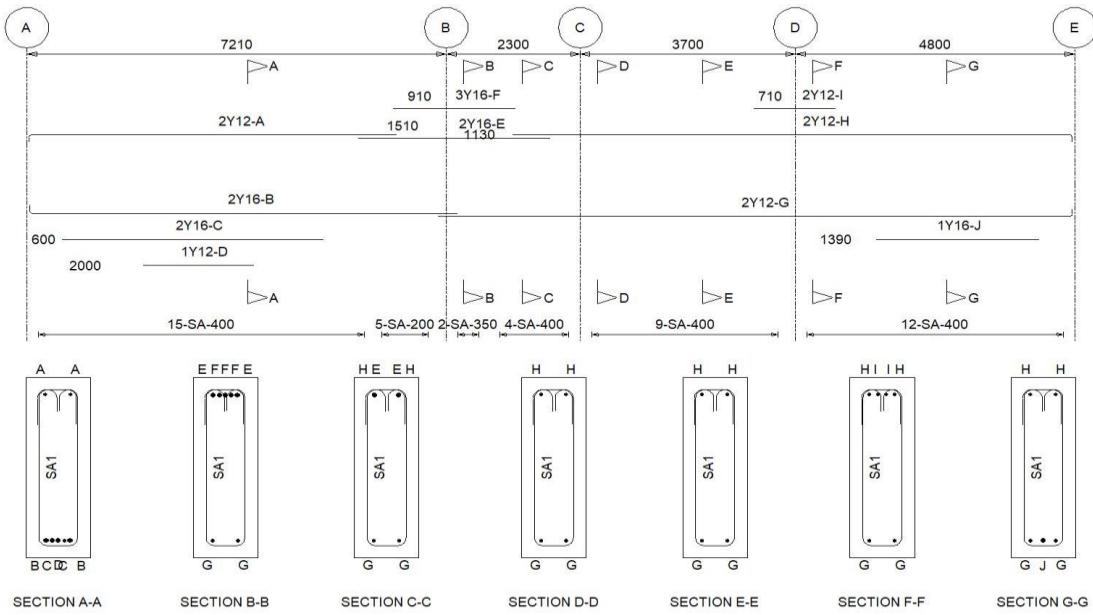


Figure 4.13: Section of Strip1

✓ Strip 2:

✓ Deflection:

Using ACI-Code, Table 9.5 (b) → Case 4.

Permissible deflection = $7.85/240$

= 3.2 cm

Actual deflection = 1.085 cm < 3.2 (okay)

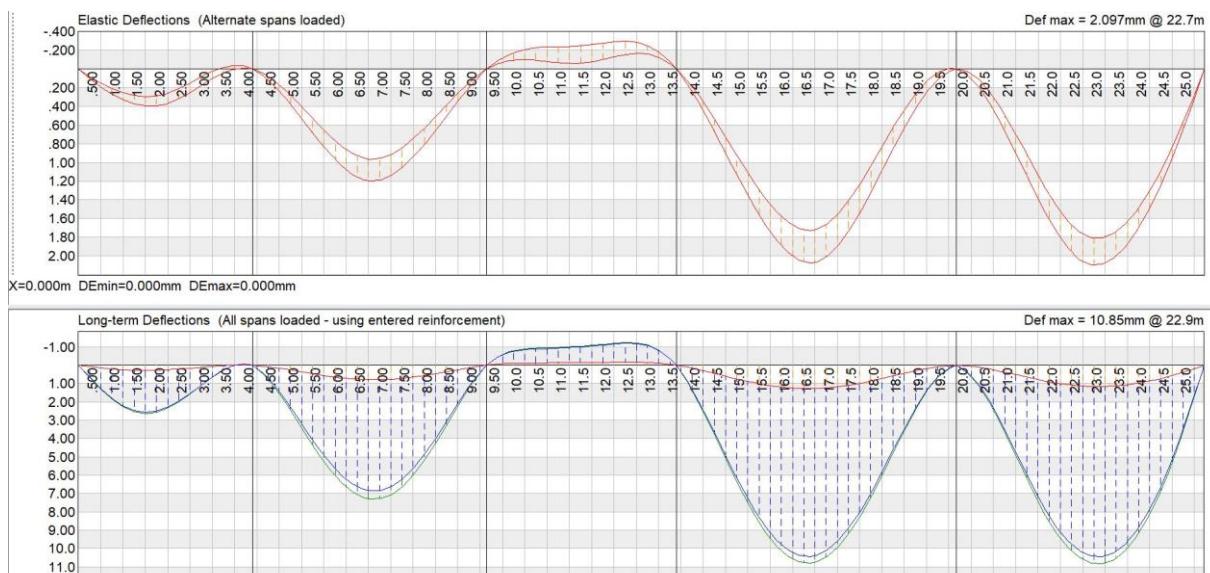


Figure 4.14: Prokon deflection2

✓ Load value:

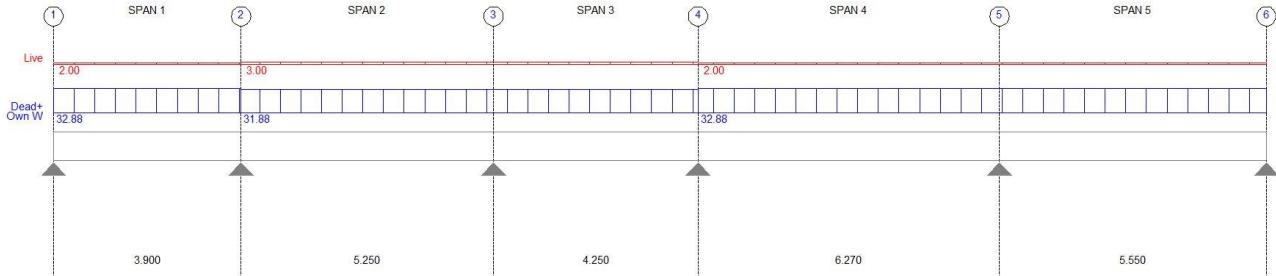


Figure 4.15: Prokon load value2

✓ Moment & Shear value:

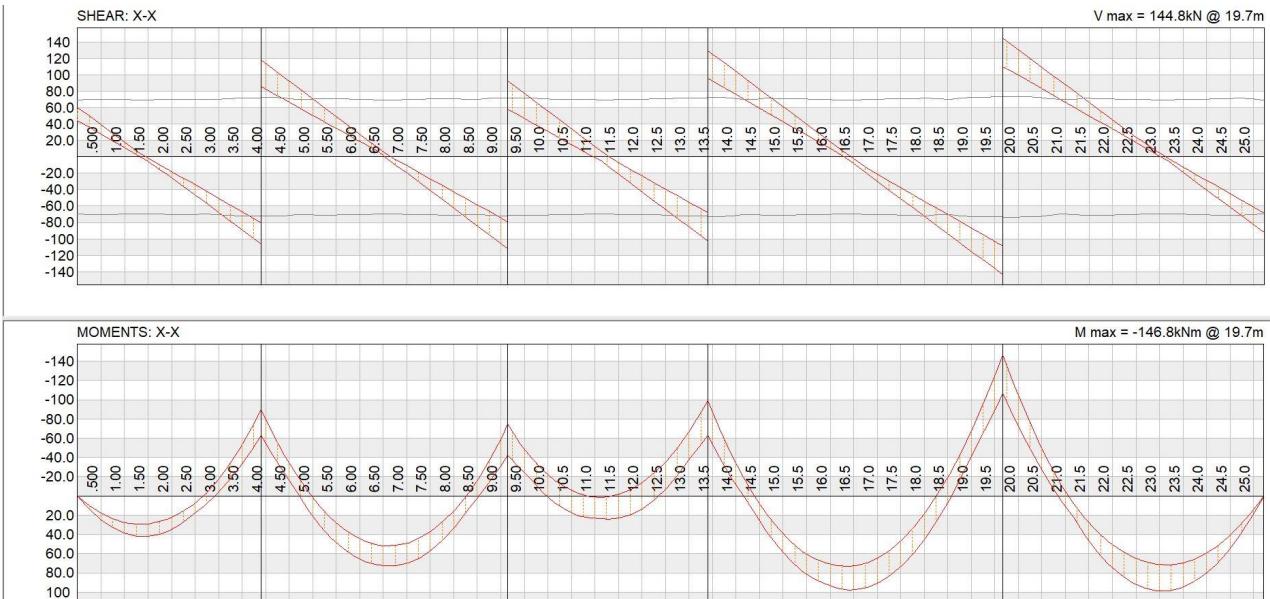


Figure 4.16: Prokon moment shear 2

✓ Section of Strip:

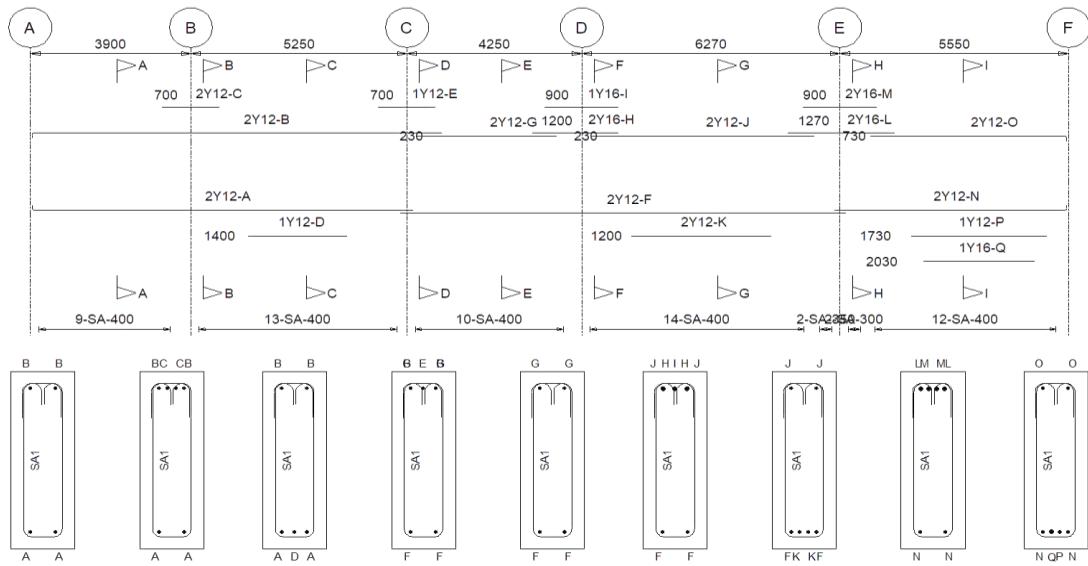


Fig.4.19: Section of Strip2

✓ Strip 3:

✓ Deflection:

Using ACI-Code, Table 9.5 \rightarrow (b) Case 4.

Permissible deflection = $8/240$

= 3.333 cm

Actual deflection = 2.1 cm < 3.333 (okay)

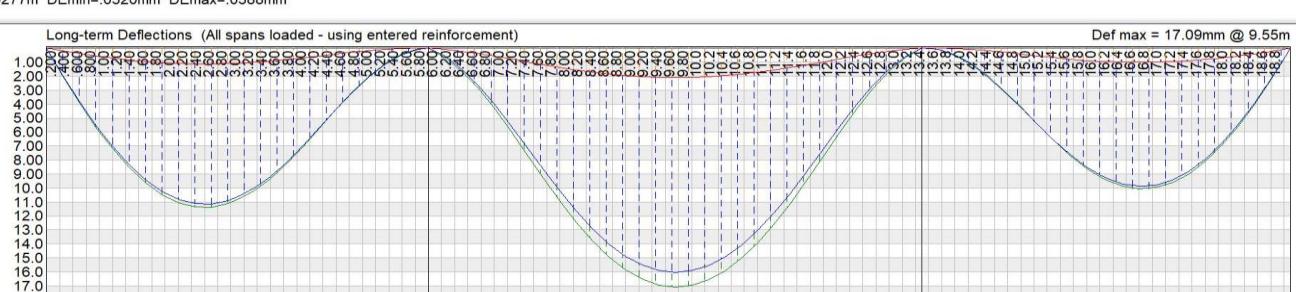
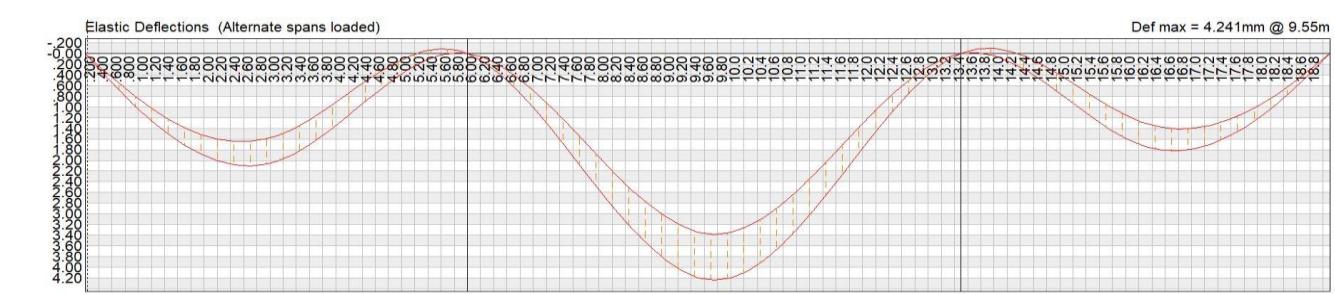



Figure 4.20: Prokon deflection3

✓ Load value:

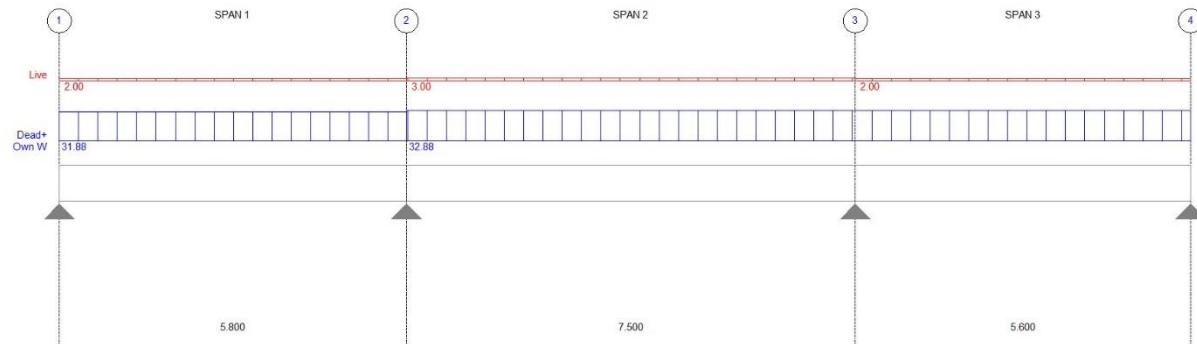


Figure 4.21: Prokon load value3

✓ Moment & shear value:

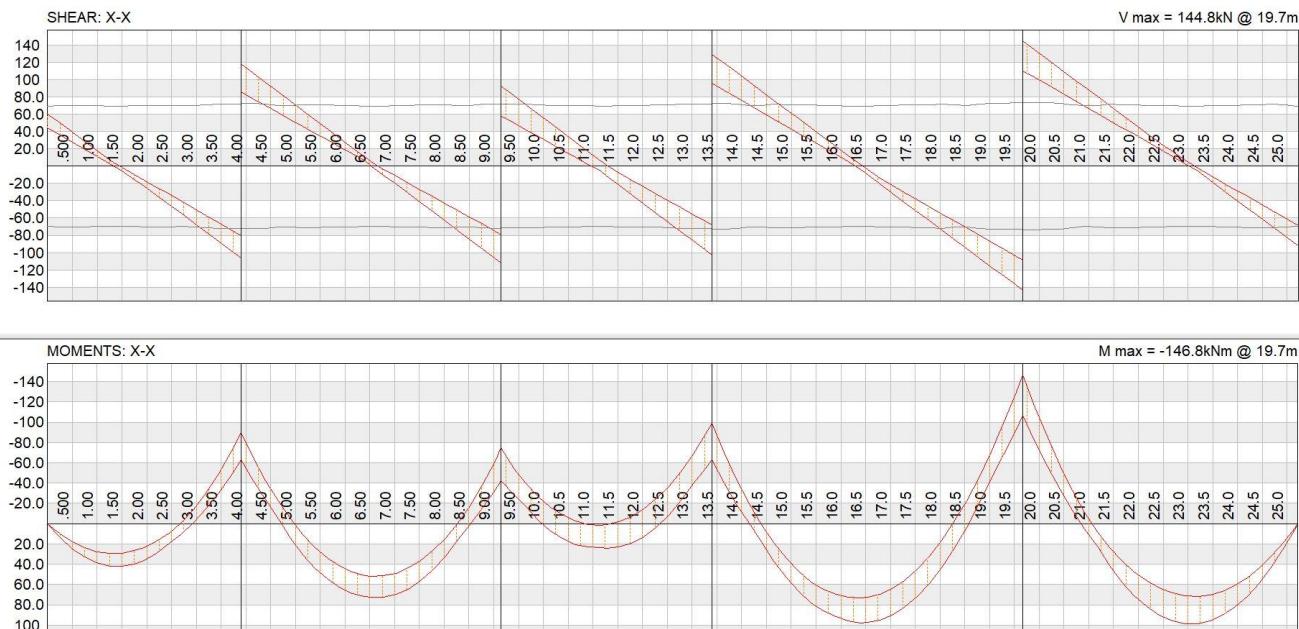


Figure 4.22: Prokon moment shear 3

✓ Section of Strip:

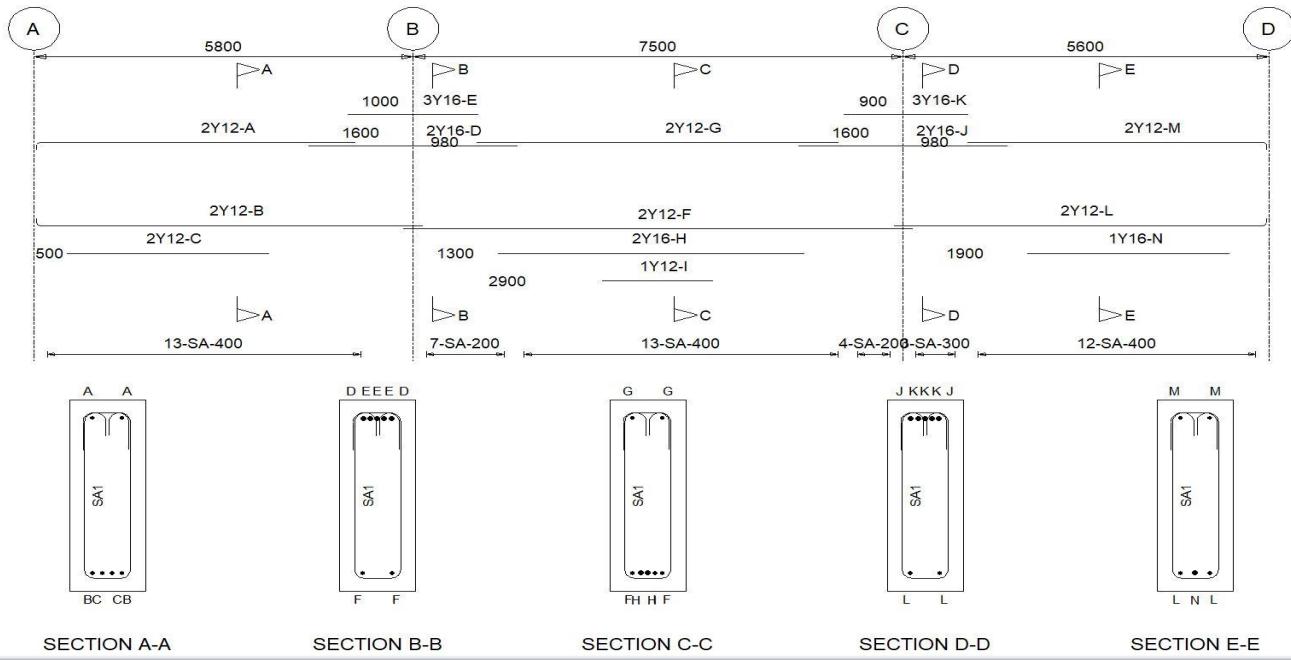


Fig.4.25: Section of Strip3

❖ Strip 1 (first span) will be checked as sample of calculation:

✓ Check As_{min} :

$$As_{min} = \begin{cases} 0.25\sqrt{f'c} \cdot bd & = 325 \\ \frac{1.4 \cdot bd}{Fy} & = 340 \text{ control} \end{cases}$$

As=1260 mm > 340 (Ok)

✓ Check As_{max}

$$As_{max} = 0.319\beta \frac{f'c}{Fy} \cdot bd = 2169.2 \text{ mm}$$

As=1260 mm < 2169.2 (OK)

✓ Check S_{max} :

$$S_{max} = \left\{ \begin{array}{l} 600 \text{ mm} = 600 \text{ mm} \\ 300 \text{ mm} = 300 \text{ mm} \\ \frac{Av Fy}{0.33bw} = 1000 \text{ mm} \\ \frac{16 Av Fy}{bw \sqrt{f'c}} = 1000 \text{ mm} \\ \frac{Av Fy d}{Vs} = 650 \text{ mm} \end{array} \right.$$

Actual Spacing = 40 mm < 300 (OK)

✓ Check S_{min}

$$S_{min} = \left\{ \begin{array}{l} \text{Bar dia} = 16 \text{ mm} \\ 25 \text{ mm} = 25 \text{ mm} \\ \text{dia. of vibrator} \text{ (unknown)} \\ 1.33 \text{ c. a size} \text{ (unknown)} \end{array} \right.$$

Actual Spacing = 40 mm > 25 (OK)

"All spans in every strip checked and its OK "

Roof Floor:

- 6 strip (side view) will be analyzed and designed.

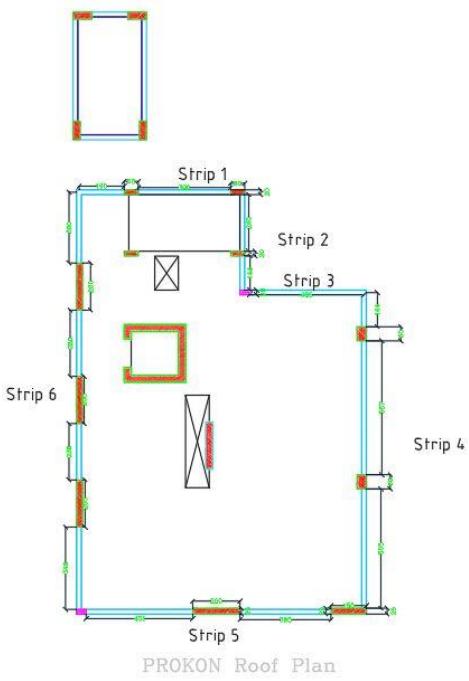


Figure 4.26: Design of roof strip

1- Strip 1:

✓ Deflection:

- Using ACI-Code, Table 9.5 (b) → Case 4.
- Permissible deflection = $4.8/240$
 $= 2 \text{ cm}$

Actual deflection = 0.6945 cm < 2 (okay)

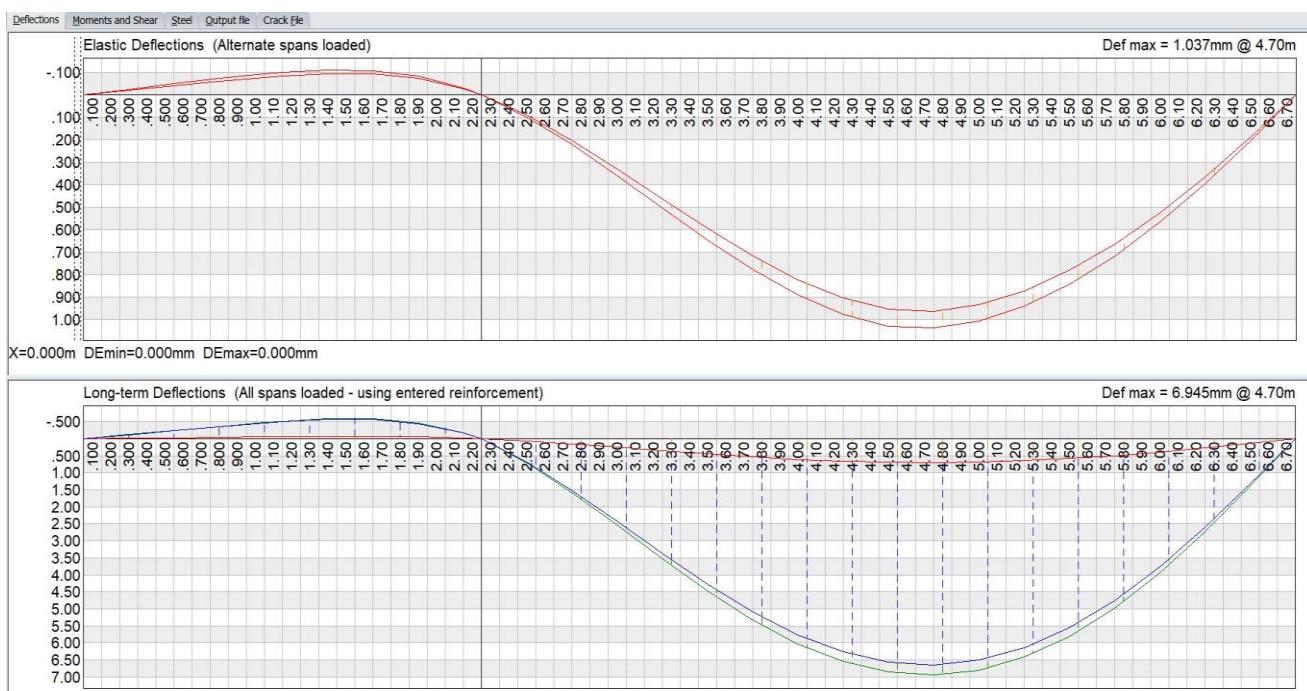


Figure 4.27: Prokon Deflection roof value

✓ Load value:

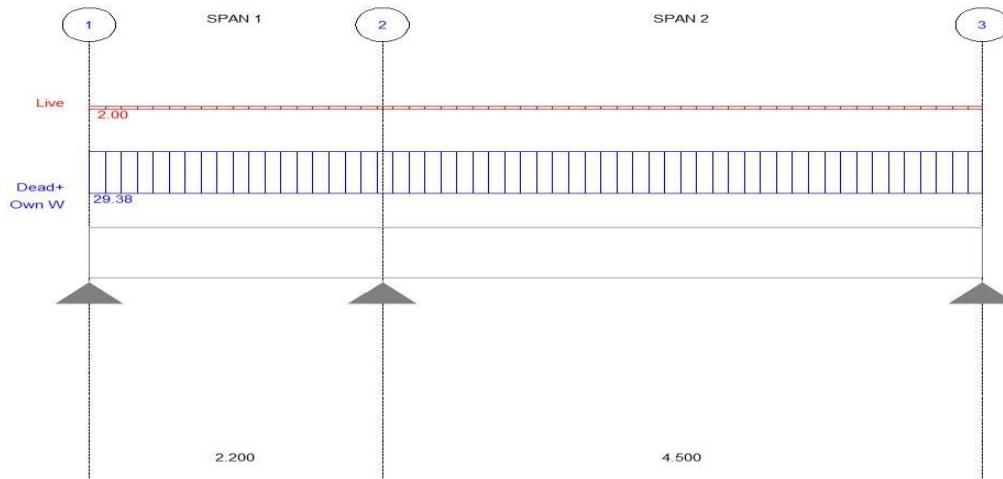


Figure 4.28: Prokon load value 1

✓ Moment & Shear value:

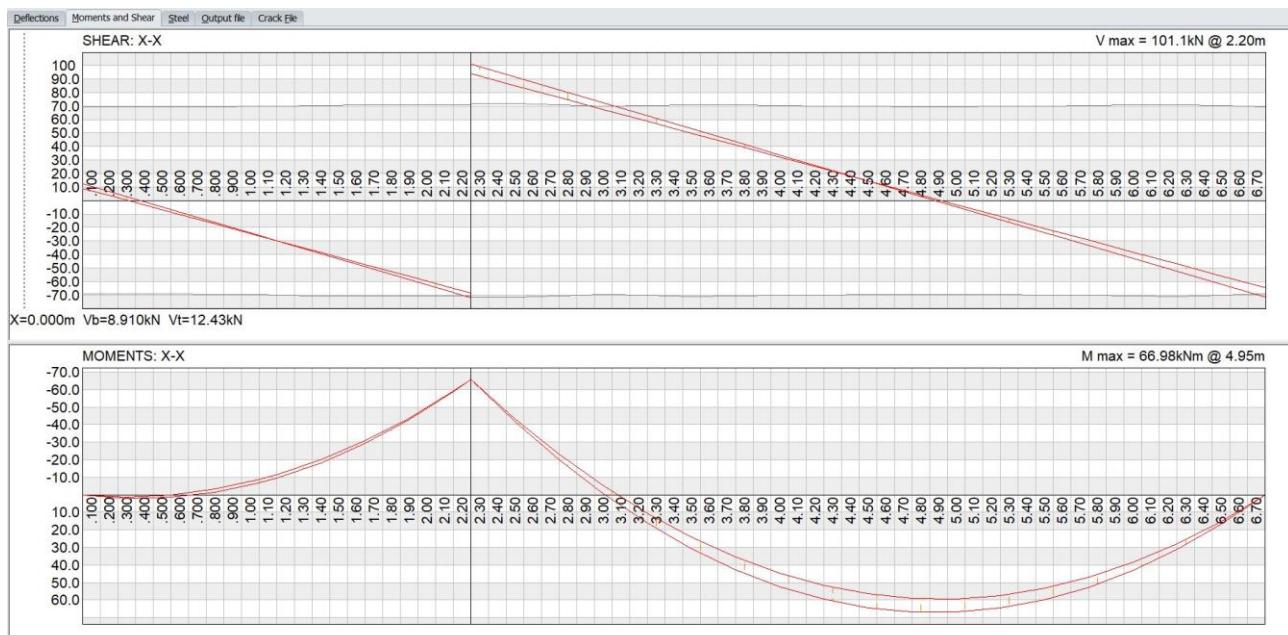


Figure 4.29: Prokon roof moment and shear 1

✓ Section of Strip:

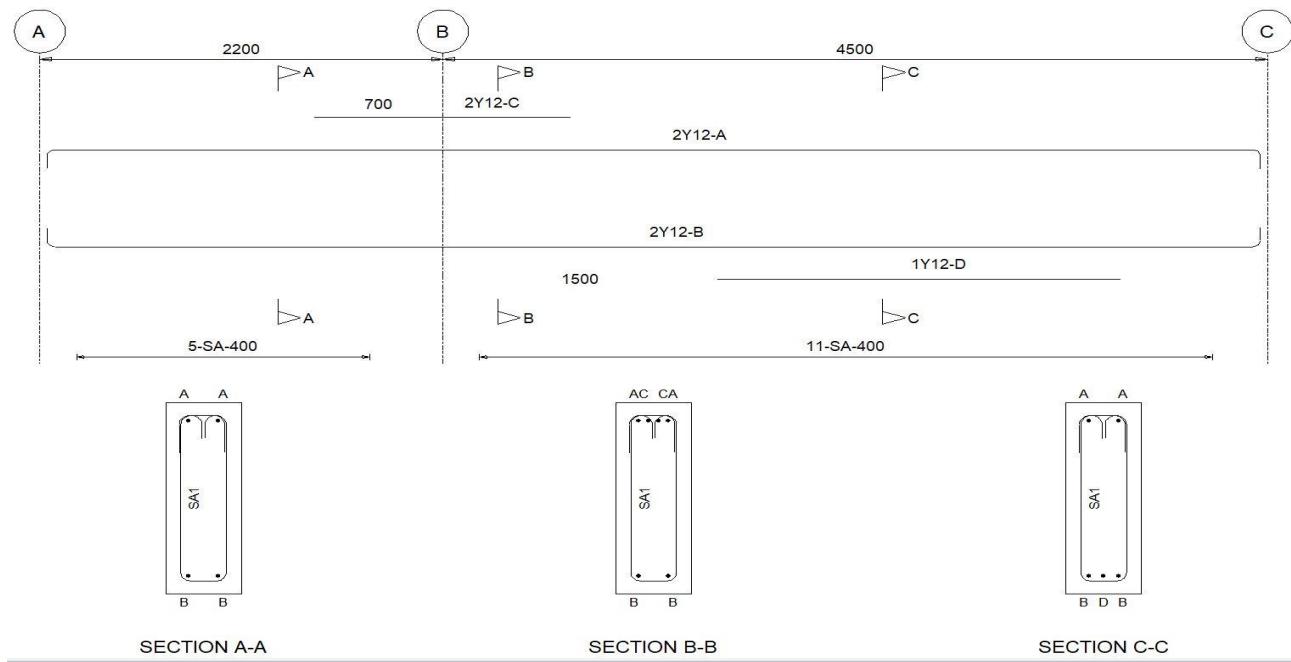


Fig.4.32: Section of Strip1

2- Strip 2:

✓ Deflection:

Using ACI-Code, Table 9.5 (b) Case 4.

Permissible deflection = $4.5/240$

$$= 1.875 \text{ cm}$$

Actual deflection = $0.03956 \text{ cm} < 1.875 \text{ (okay)}$

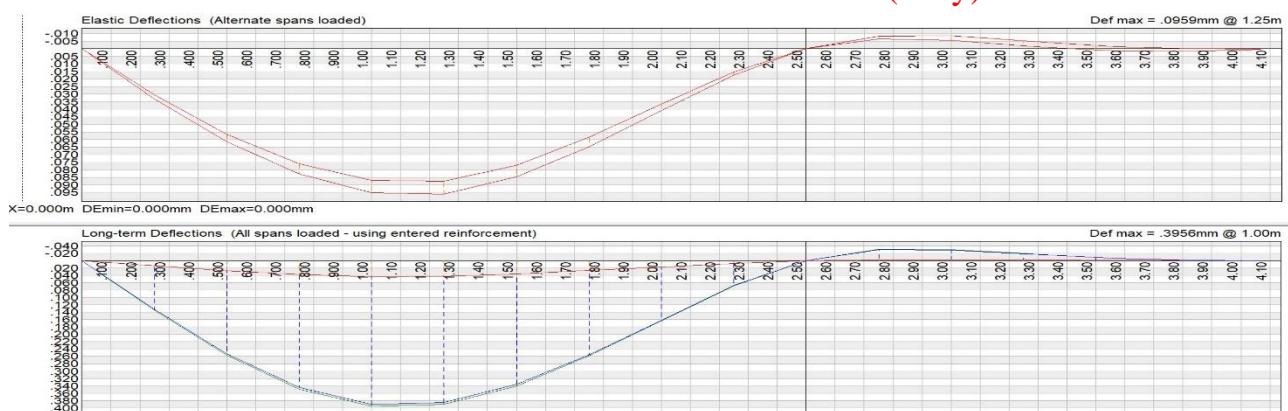


Figure 4.33: Prokon Deflection2

✓ Load value:

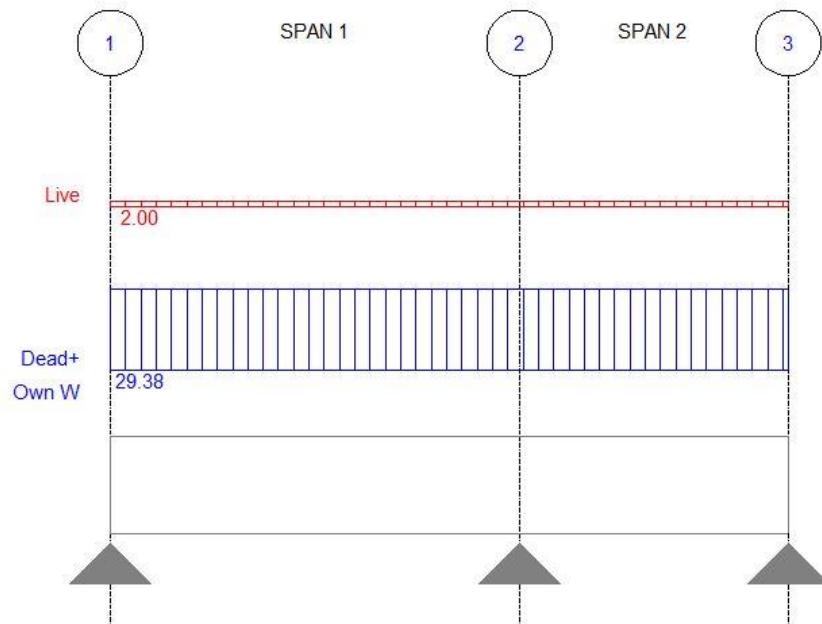


Figure 4.34: Prokon load value 2

✓ Moment & Shear value:

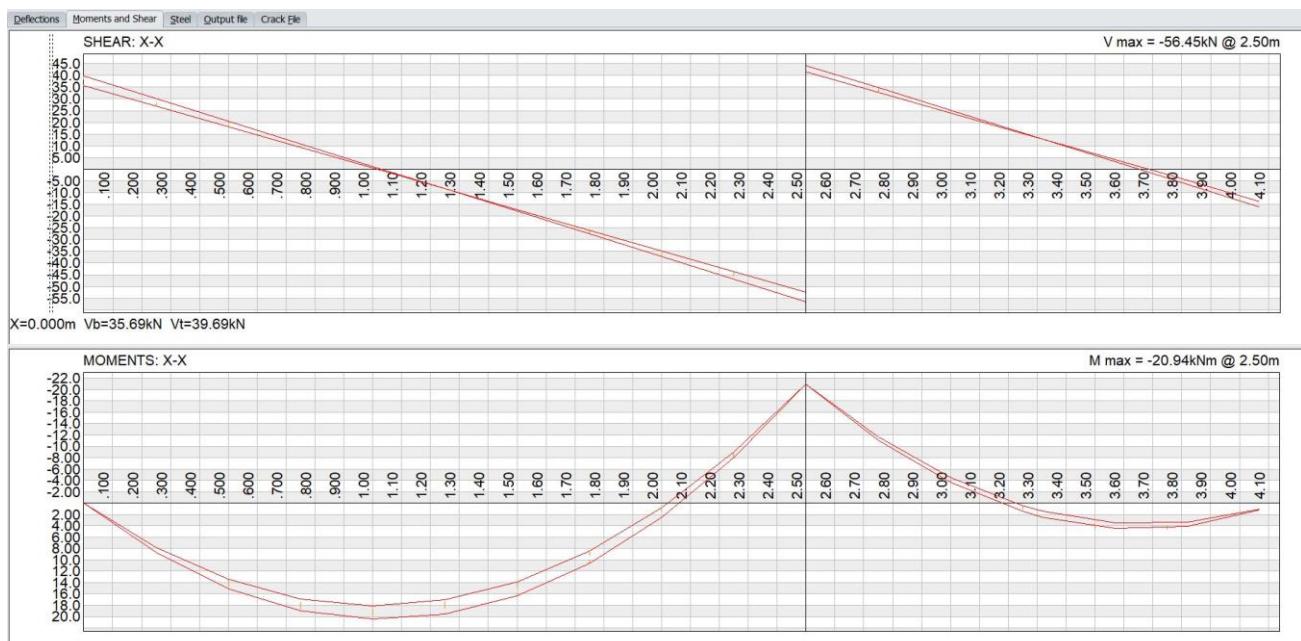


Figure 4.35: Prokon roof moment and shear 2

✓ Section of Strip:

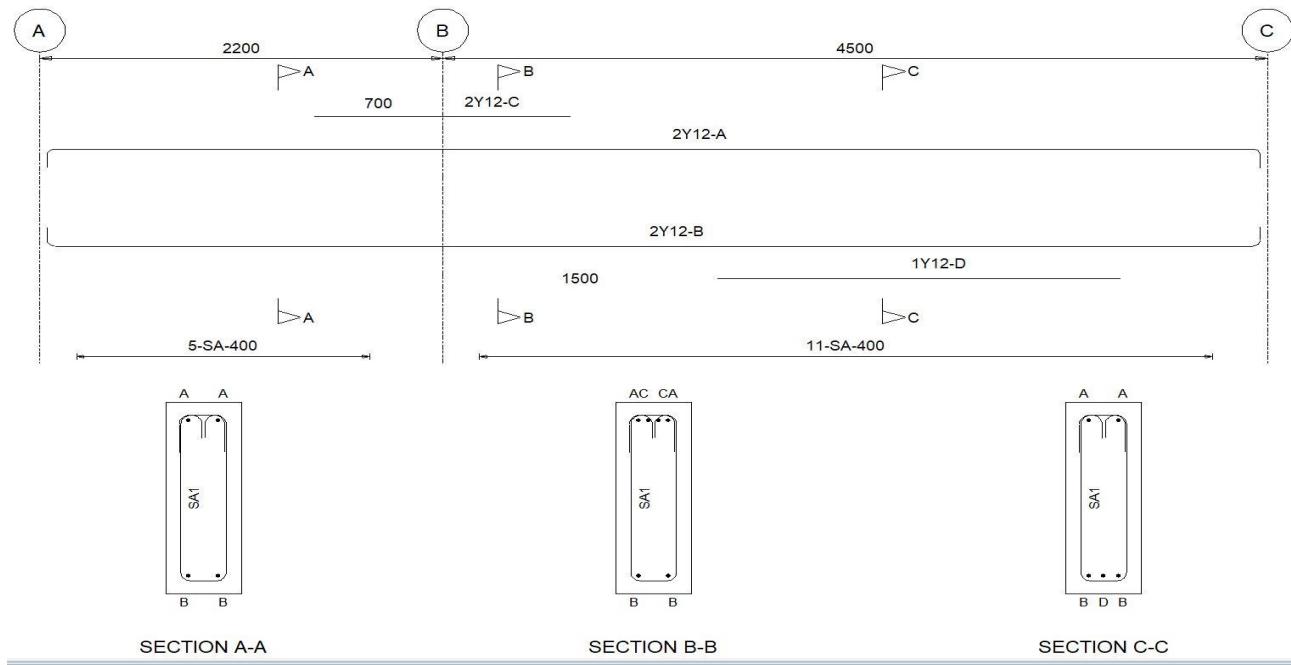


Fig.4.38: Section of Strip2

3- Strip 3:

✓ Deflection:

Using ACI-Code, Table 9.5 (b) → Case 4.

Permissible deflection = $6.2/240$

$$= 2.6 \text{ cm}$$

Actual deflection = $1.431 \text{ cm} < 2.6 \text{ (okay)}$

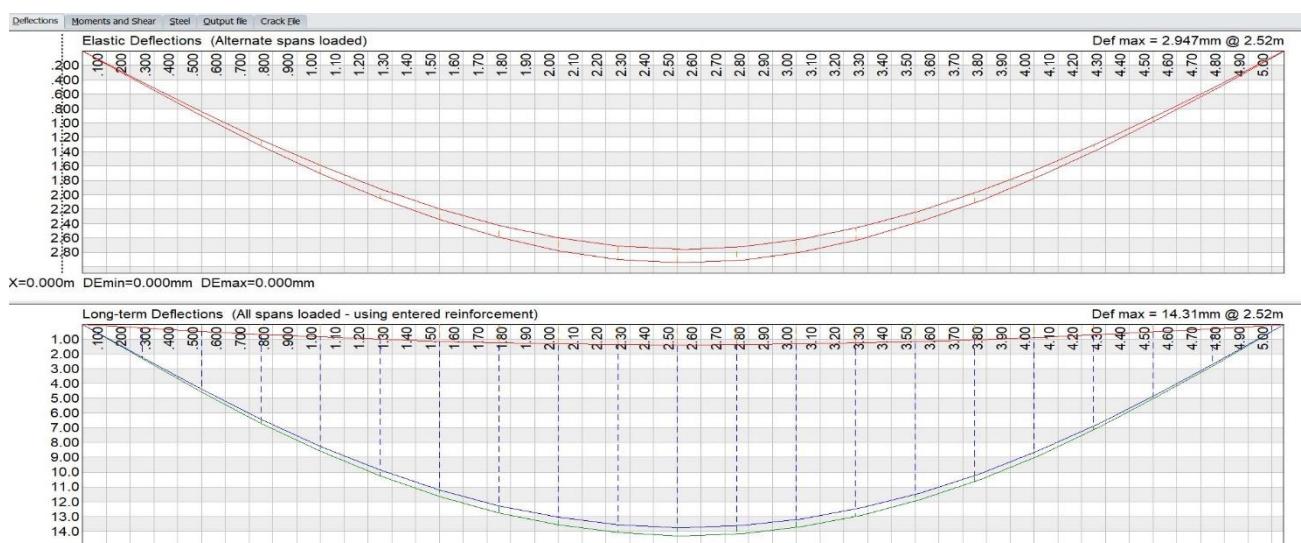


Figure 4.39: Prokon Deflection3

✓ Load value:

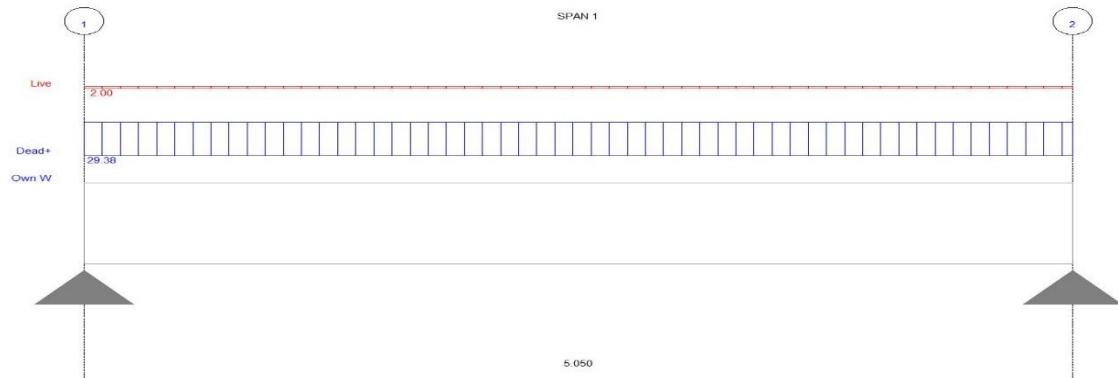


Figure 4.40: Prokon load value 3

Moment & Shear value

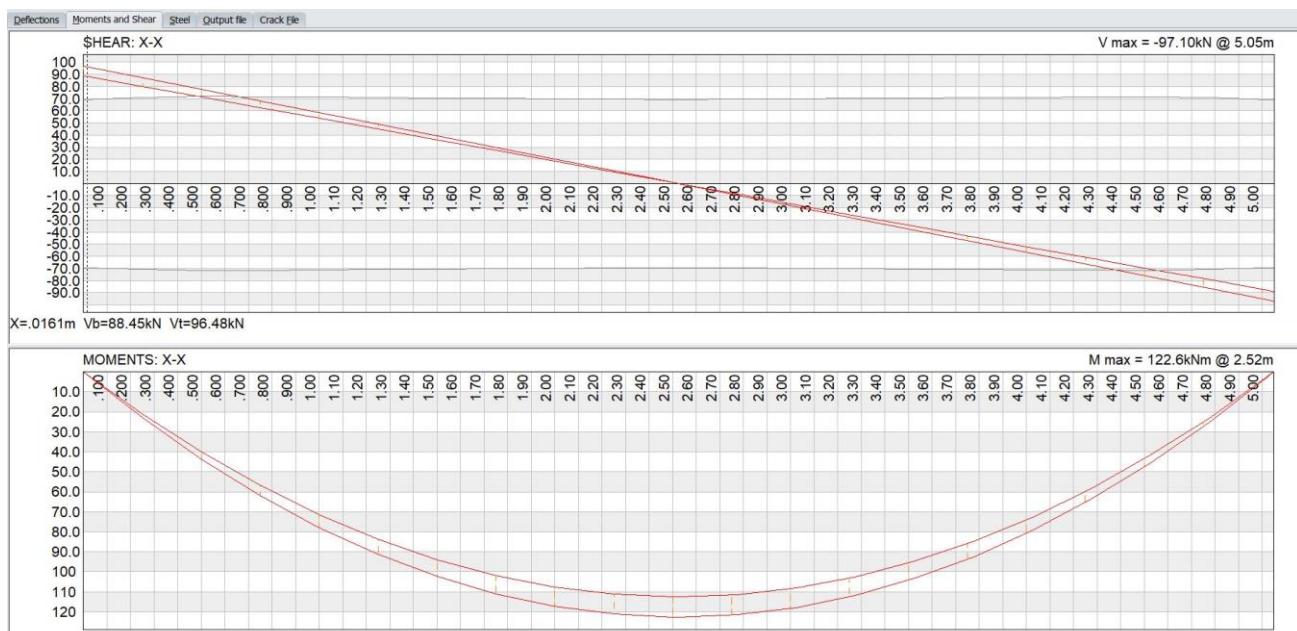


Figure 4.41: Prokon roof moment and shear 3

✓ Section of Strip:

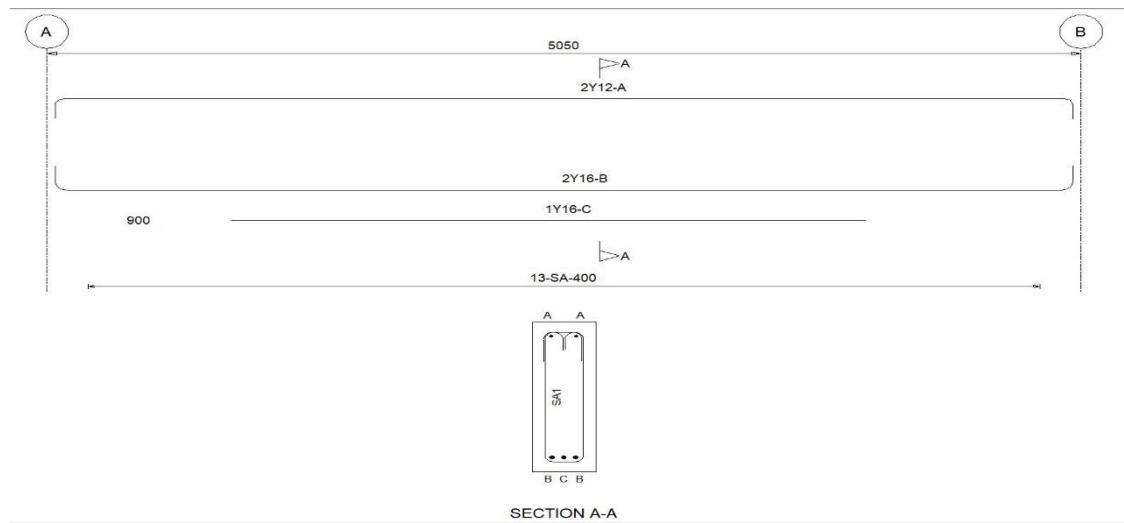


Figure 4.44: Section of Strip3

4- Strip 4:

✓ Load value:

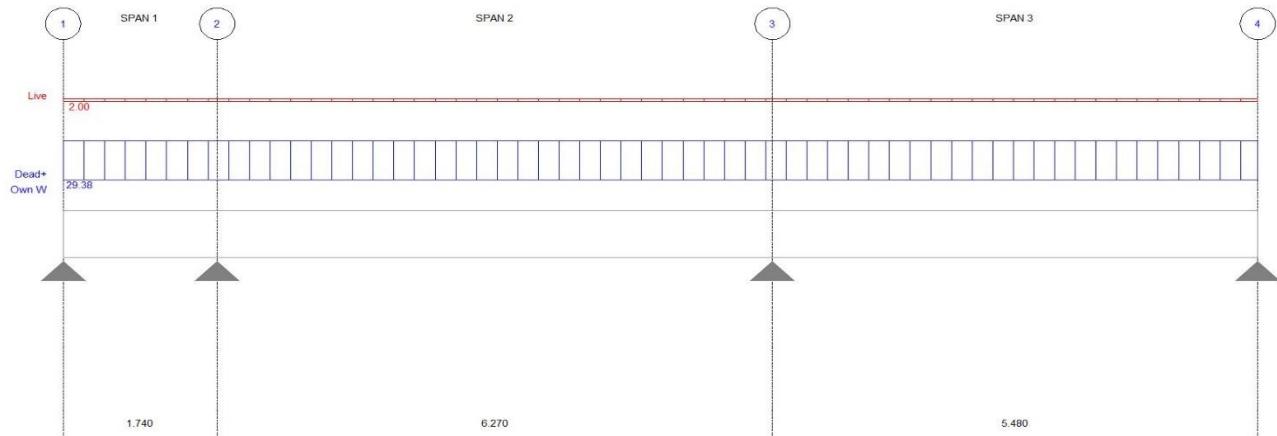


Figure 4.45: Prokon load value 4

✓ Deflection:

Using ACI-Code, Table 9.5 (b) Case 4.

Permissible deflection = $4.25/240$

$$= 1.77 \text{ cm}$$

Actual deflection = $1.021 \text{ cm} < 1.77 \text{ (okay)}$

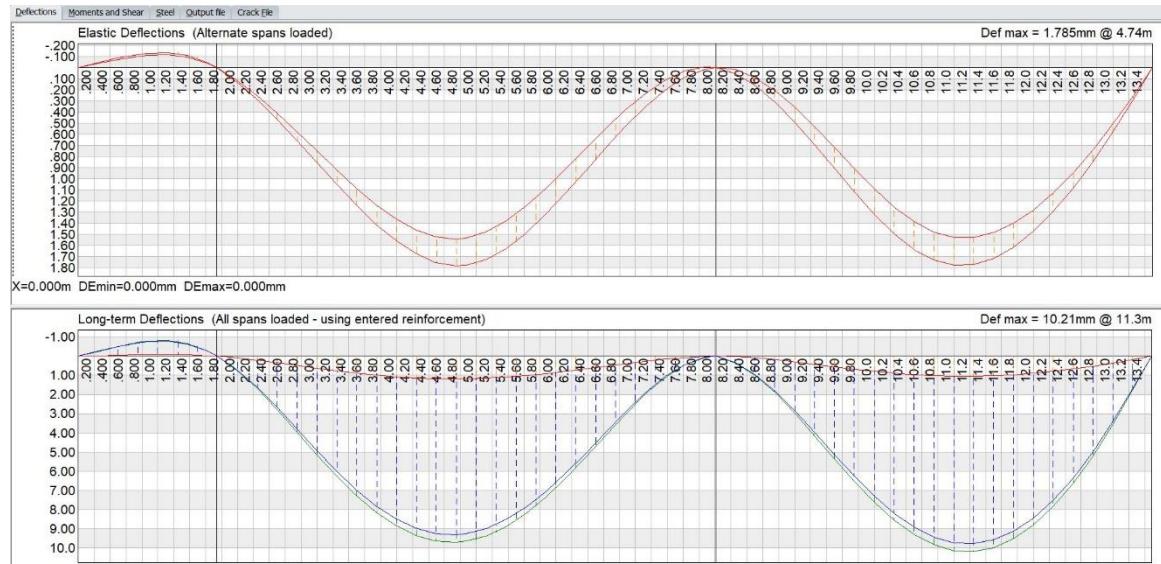


Figure 4.46: Prokon Deflection 4

✓ Moment & Shear value:

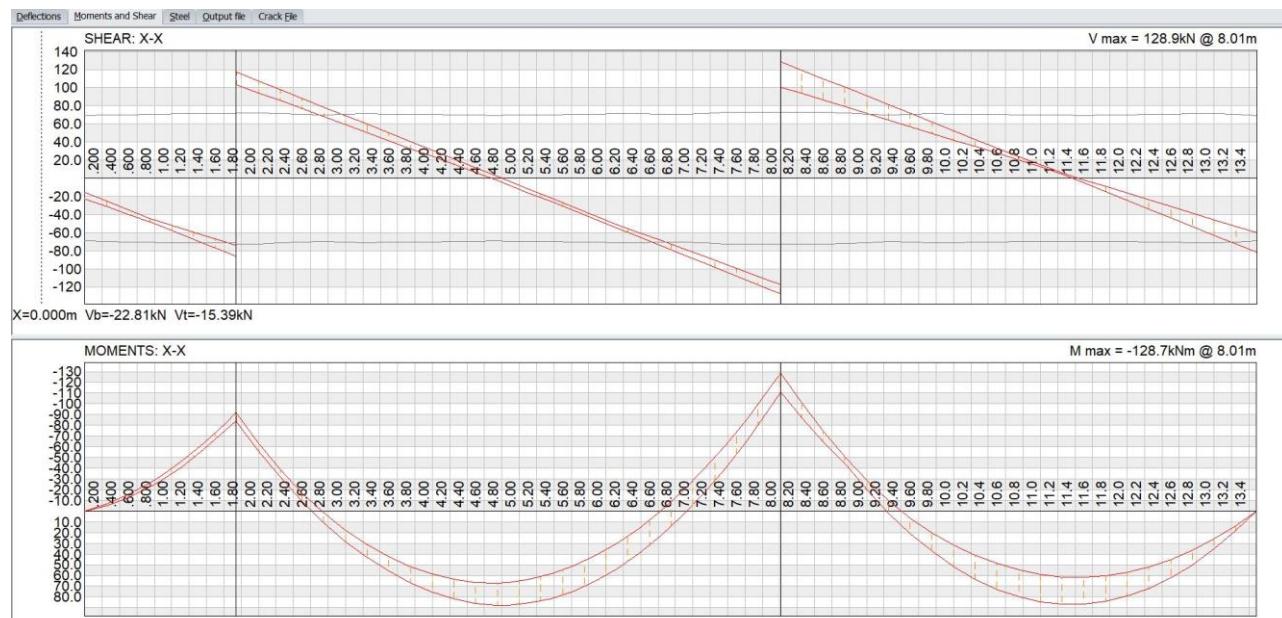


Figure 4.47: Prokon roof moment and shear 4

✓ Section of Strip:

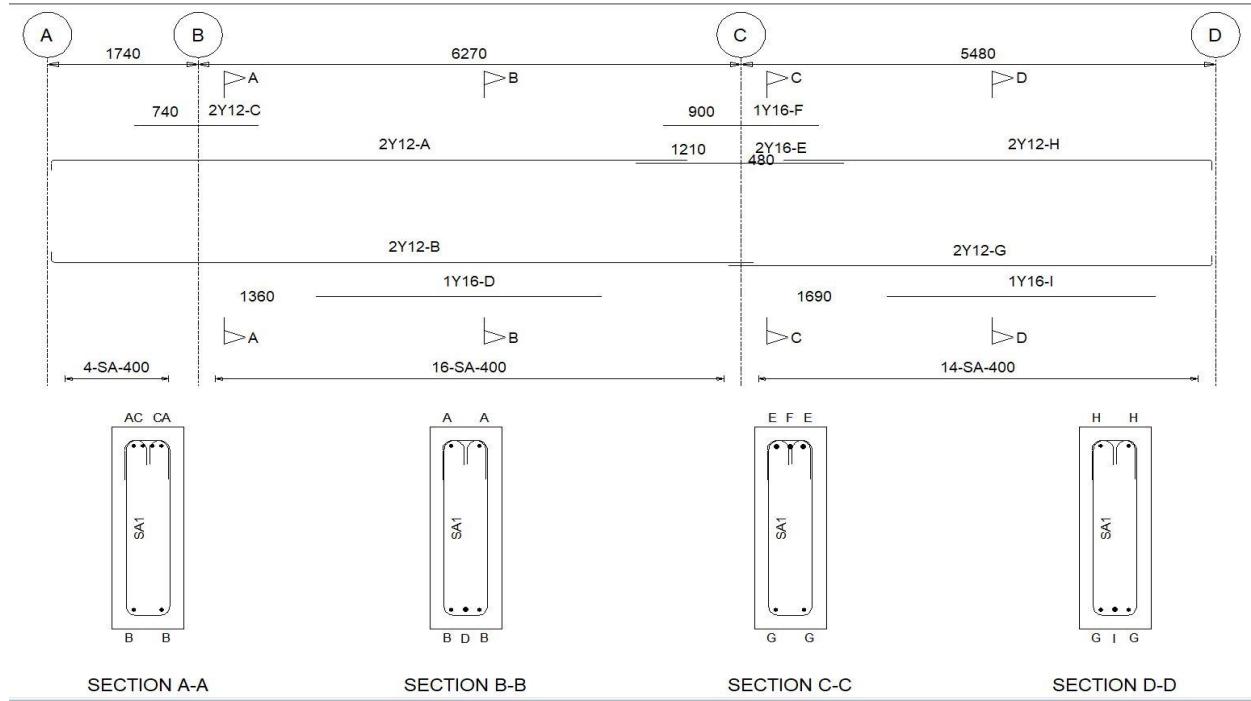


Figure 4.50: Section of Strip4

5- Strip 5:

✓ Load value:

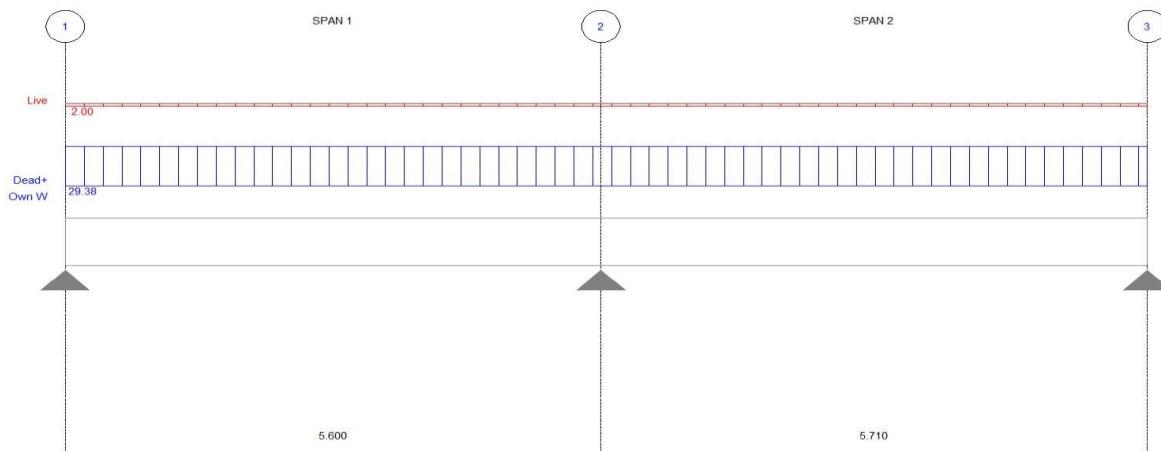


Figure 4.51: Prokon load value 5

✓ Deflection:

Using ACI-Code, Table 9.5 (b) Case 4.

Permissible deflection = $5.15/240$

$$= 2.14 \text{ cm}$$

Actual deflection = $1.164\text{cm} < 2.14$ (okay)

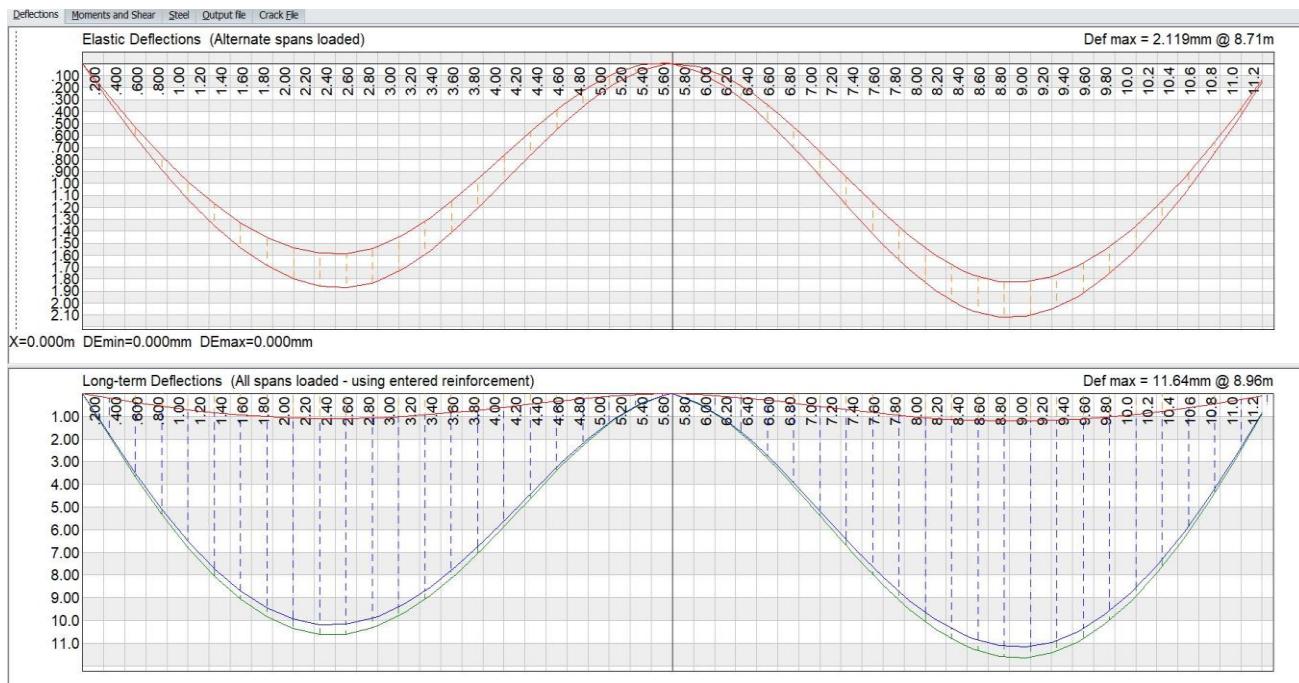


Figure 4.52: Prokon Deflection 5

✓ Moment & Shear value:

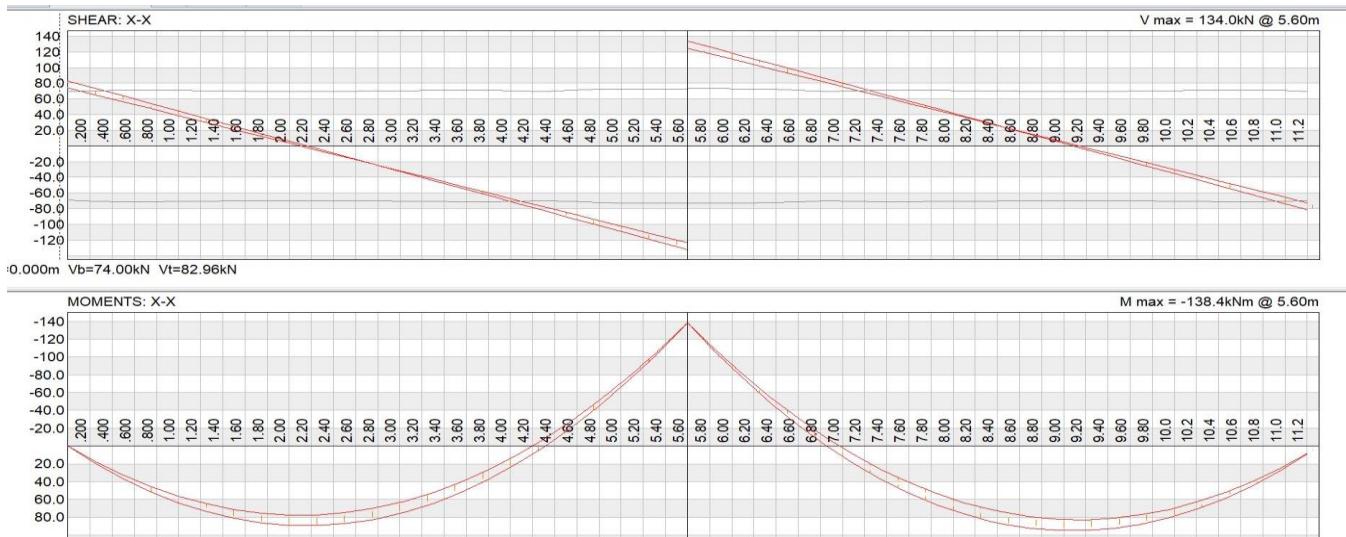


Figure 4.53: Prokon roof moment and shear 5

✓ Section of Strip:

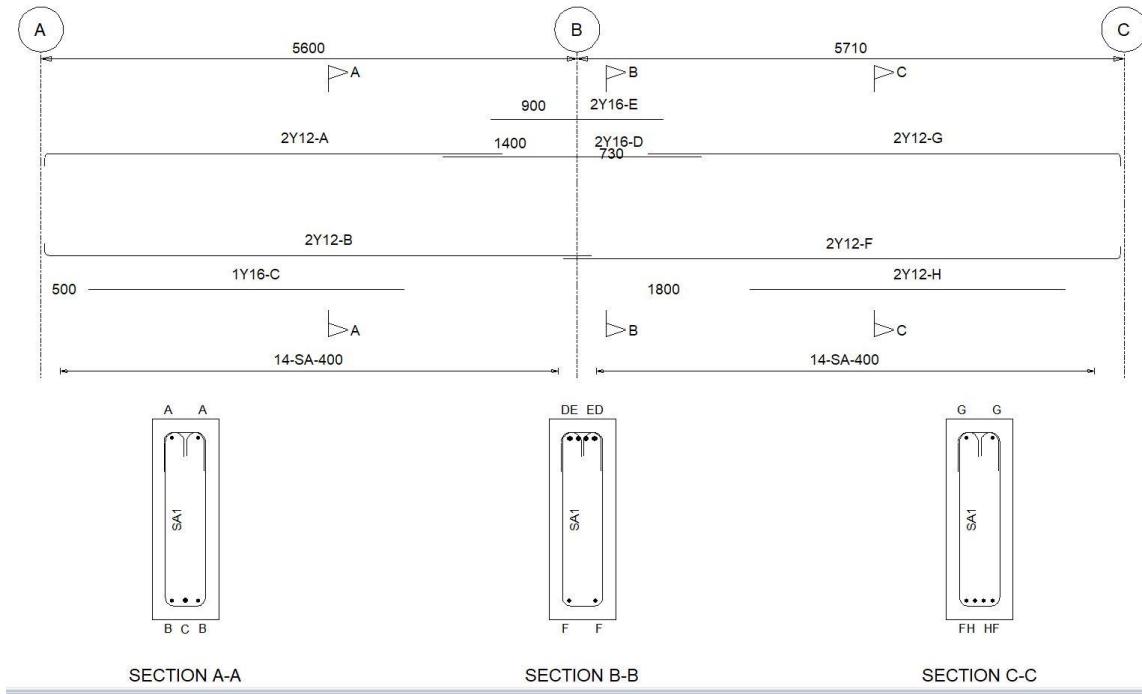


Figure 4.56: Section of Strip5

6- Strip 6:

✓ Load value:

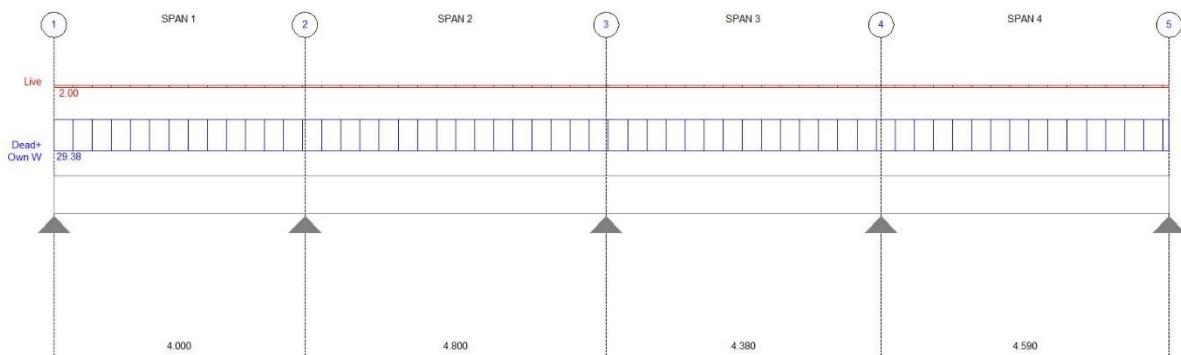


Figure 4.57: Prokon load value 6

✓ Deflection:

Using ACI-Code, Table 9.5 (b) → Case 4.

Permissible deflection = $7.75/240$

$$= 3.22 \text{ cm}$$

Actual deflection = 0.716 cm < 3.22 (okay)

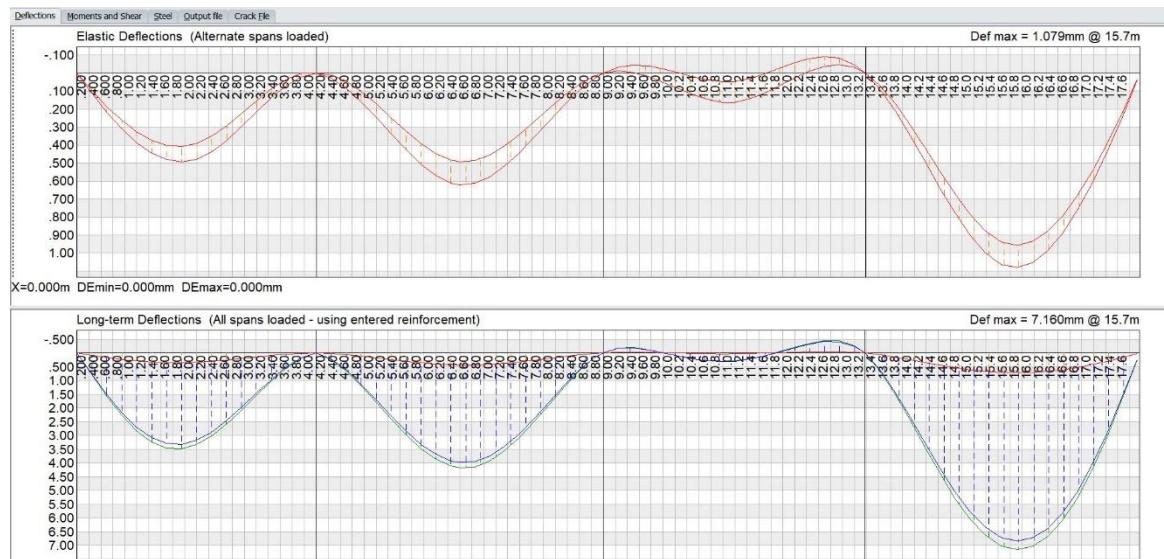


Figure 4.58: Prokon Deflection 6

✓ Moment & Shear value:

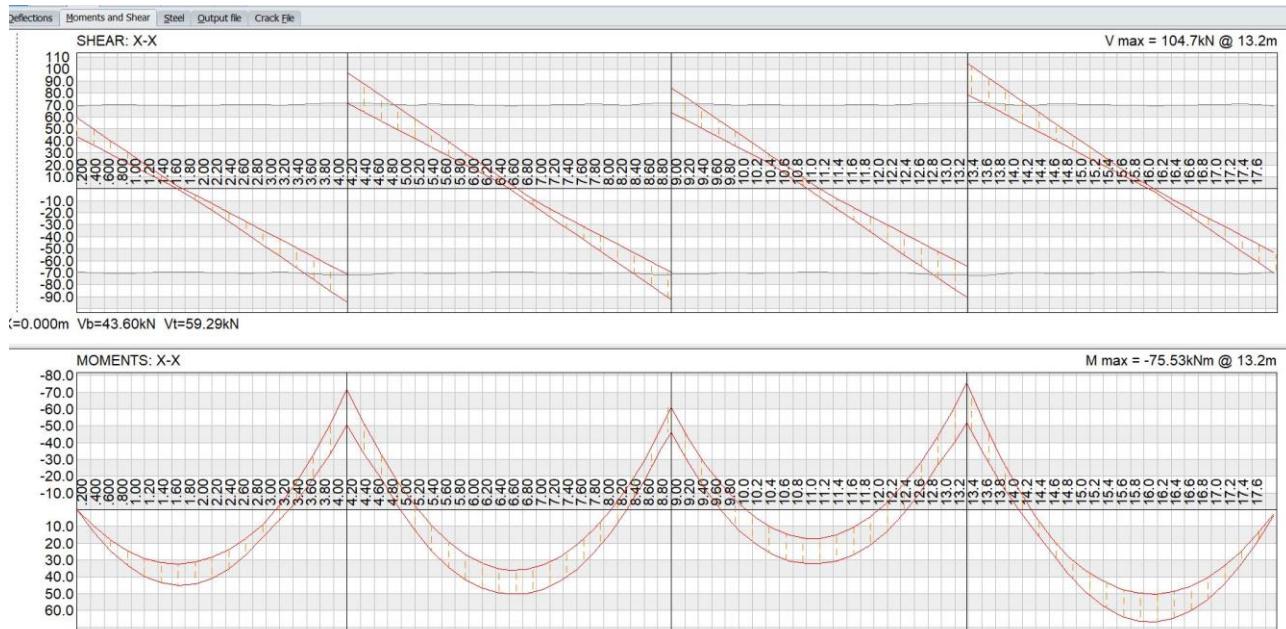


Figure 4.59: Prokon roof moment and shear 6

✓ Section of Strip:

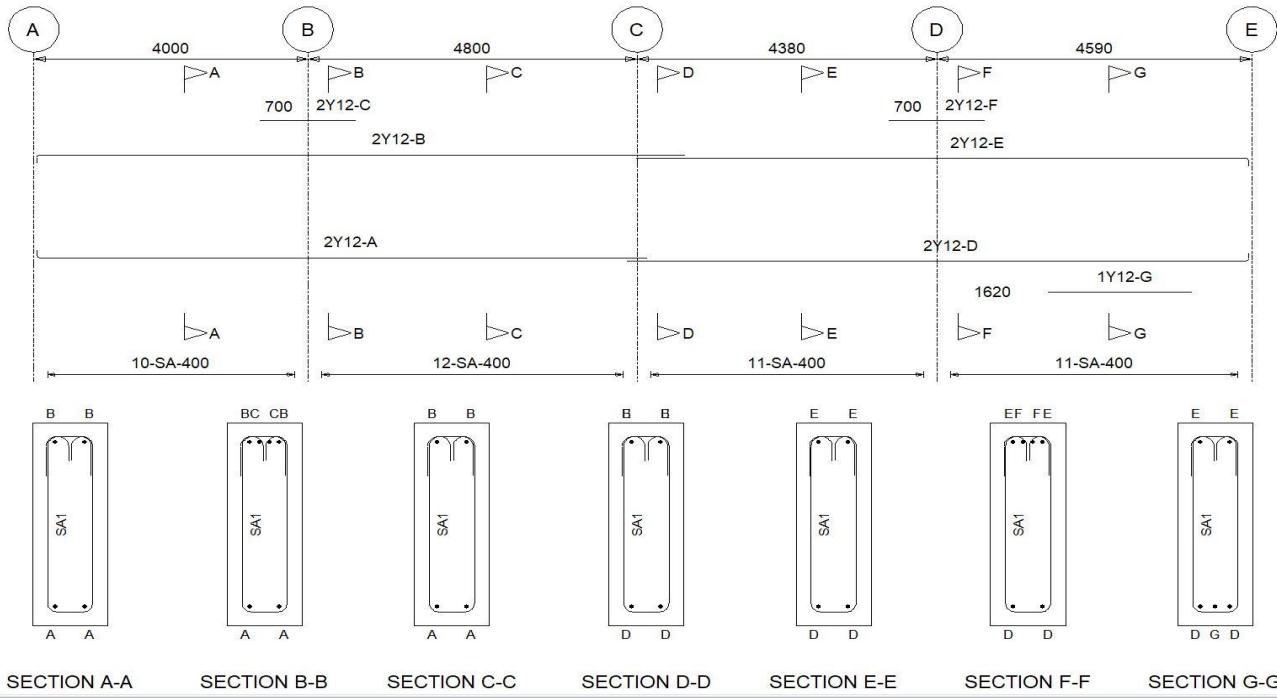
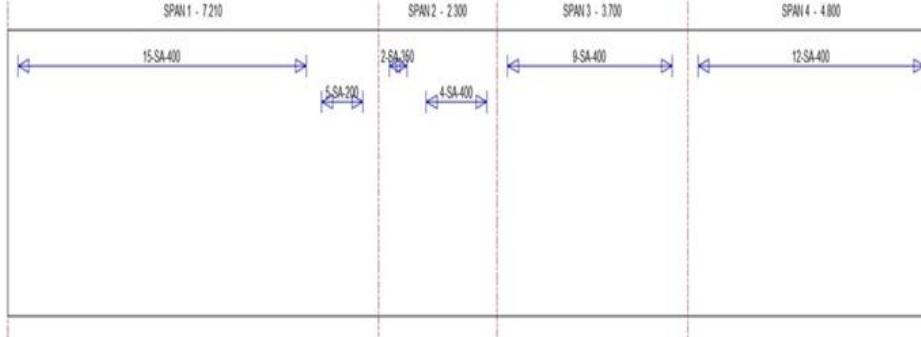



Figure 4.62: Section of Strip 6

❖ Summary of Reinforcement:

Table 4-1: Summary of reinforcement by prokon for typical slab

Floor	Strip 1
Typical	<p>✓ Main Reinforcement:</p> <p>Figure 4.11: Prokon typical reinforcement moment 1</p> <p>✓ Shear Reinforcement:</p> <p>Figure 4.12: Prokon typical reinforcement shear 1</p>

Strip 2

✓ Reinforcement (Moment):

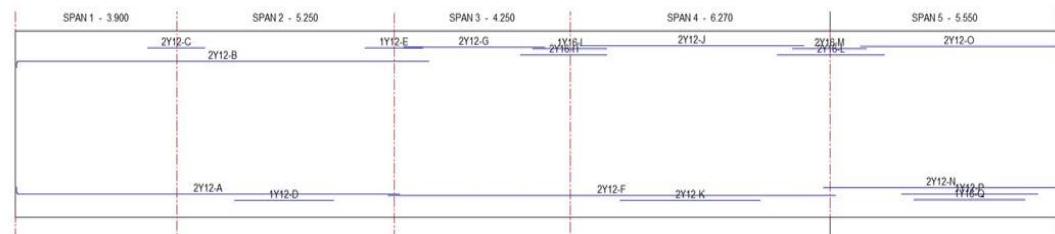


Figure 4.17: Prokon typical reinforcement moment 2

✓ Reinforcement (Shear):

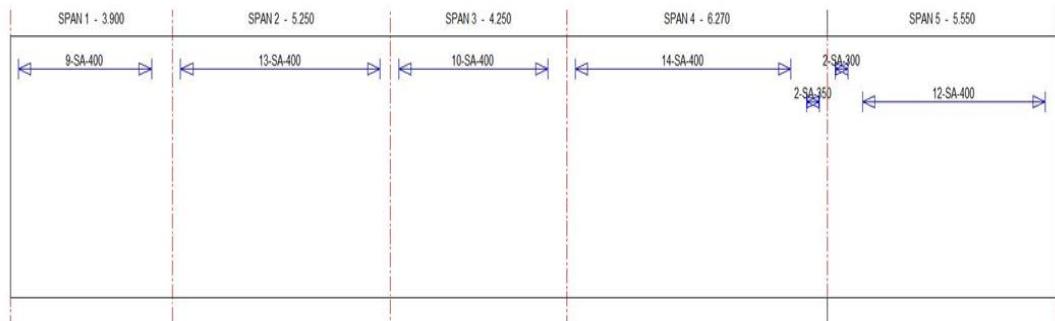


Figure 4.18: Prokon typical reinforcement shear 2

Strip 3

✓ Reinforcement (Moment):

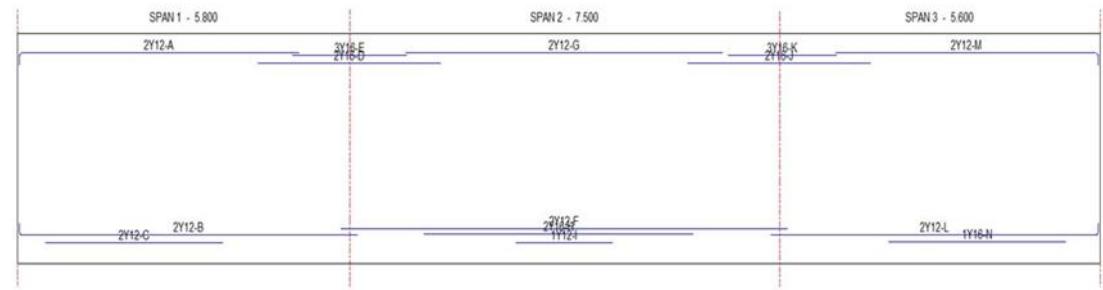


Figure 4.23: Prokon typical reinforcement moment 3

Reinforcement (shear):

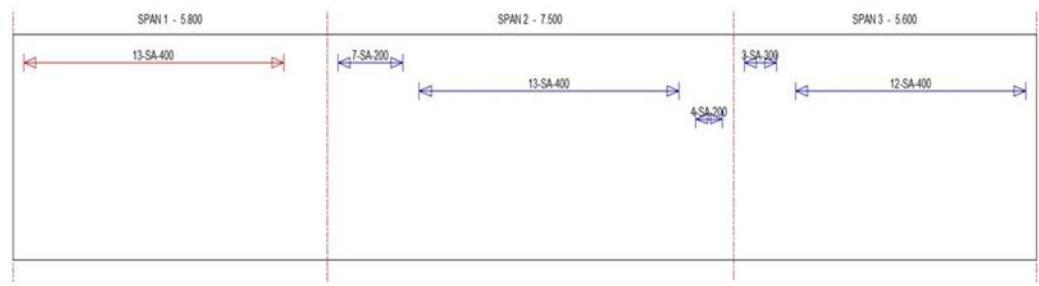


Figure 4.24: Prokon typical reinforcement shear 3

Table 4-2: Summary of reinforcement by prokon for roof slab

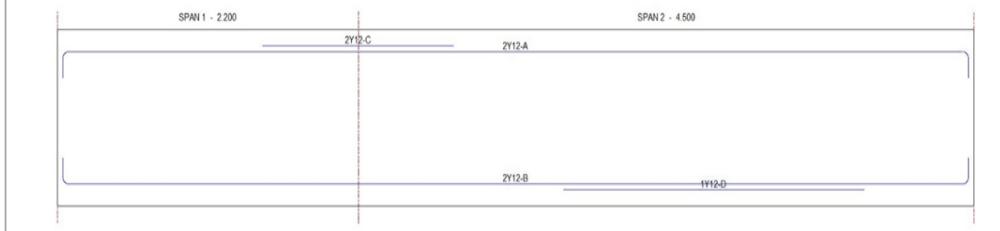
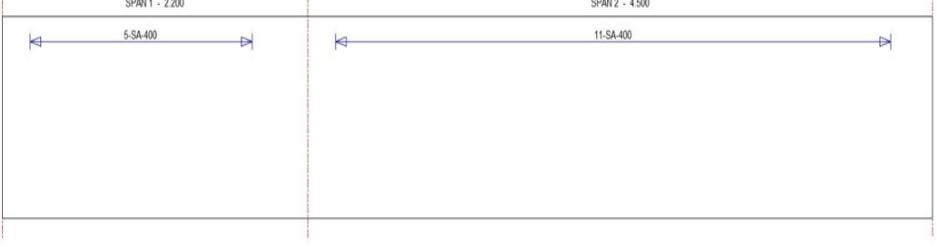
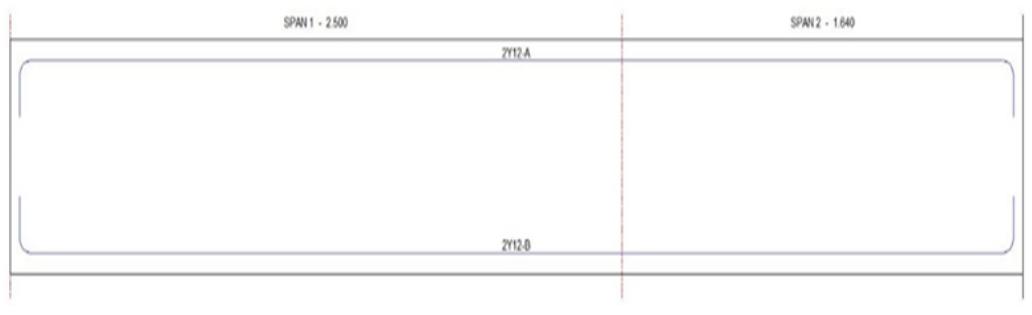



Floor	Strip 1
	<p>✓ Reinforcement (Moment):</p>
Roof	<p>Reinforcement (Shear):</p>
	<p>Strip 2</p> <p>✓ Reinforcement (Moment):</p>

Figure 4.30: Prokon roof reinforcement moment1

Figure 4.31: Prokon roof reinforcement shear1

Reinforcement (Shear):

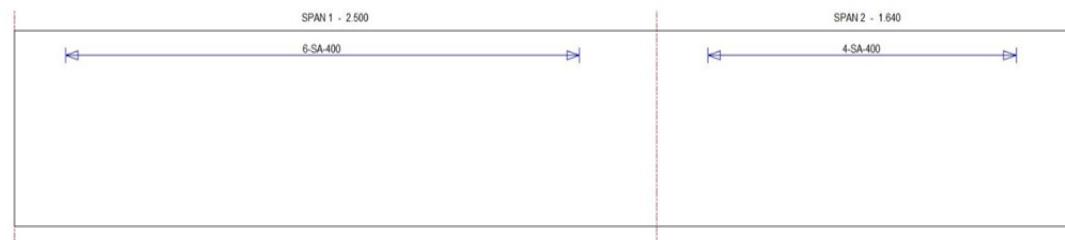


Figure 4.37: Prokon roof reinforcement shear 2

Strip 3

✓ Reinforcement (Moment):

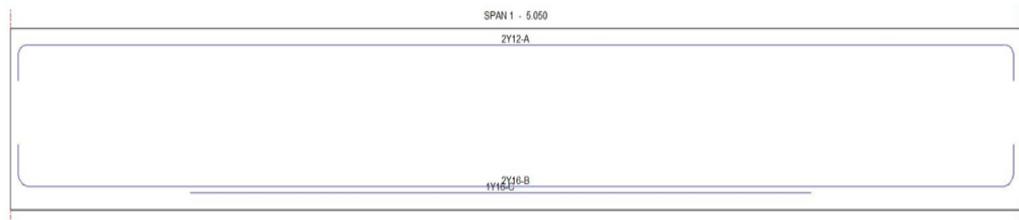


Figure 4.42: Prokon roof reinforcement moment 3

✓ Reinforcement (Shear):

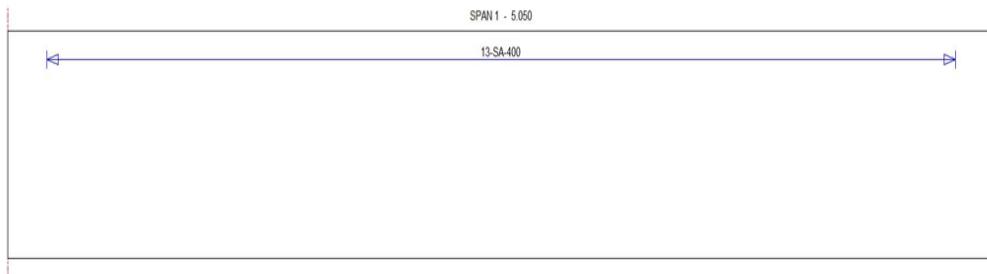


Figure 4.43: Prokon roof reinforcement shear 3

Strip 4

✓ Reinforcement (Moment):

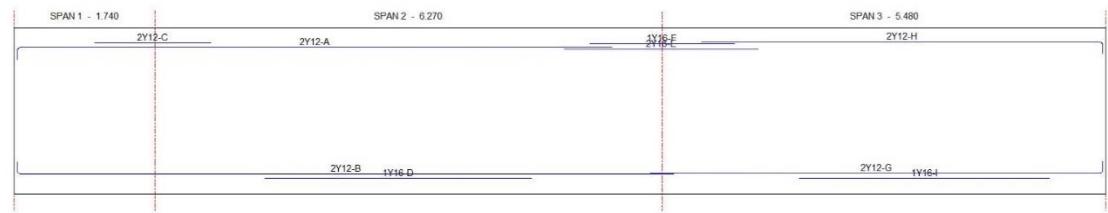


Figure 4.48: Prokon roof reinforcement moment 4

✓ Reinforcement (Shear):

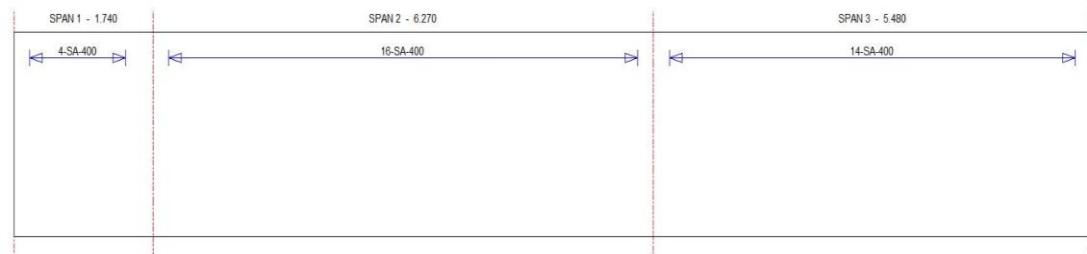


Figure 4.49: Prokon roof reinforcement shear 4

Strip 5

✓ Reinforcement (Moment):

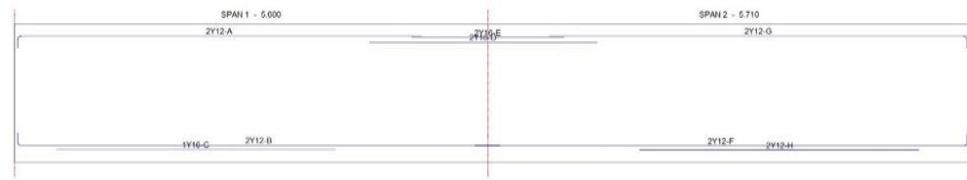


Figure 4.54: Prokon roof reinforcement moment 5

✓ Reinforcement (Shear):

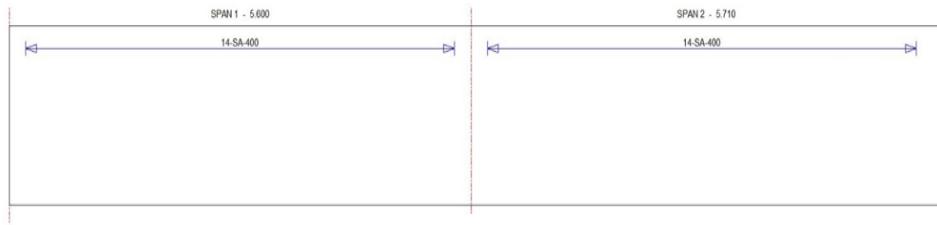


Figure 4.55: Prokon roof reinforcement shear 5

Strip 6

✓ Reinforcement (Moment):

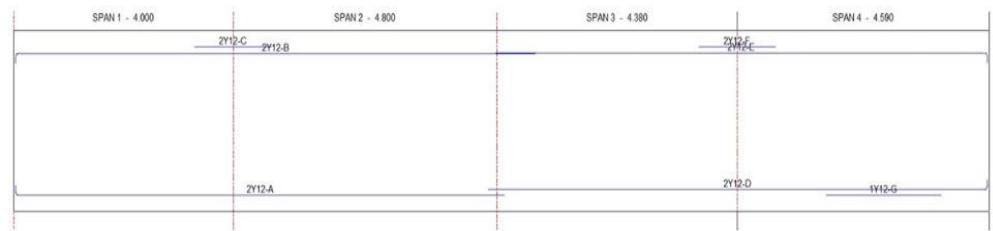


Figure 4.60: Prokon roof reinforcement moment 6

✓ Reinforcement (Shear):

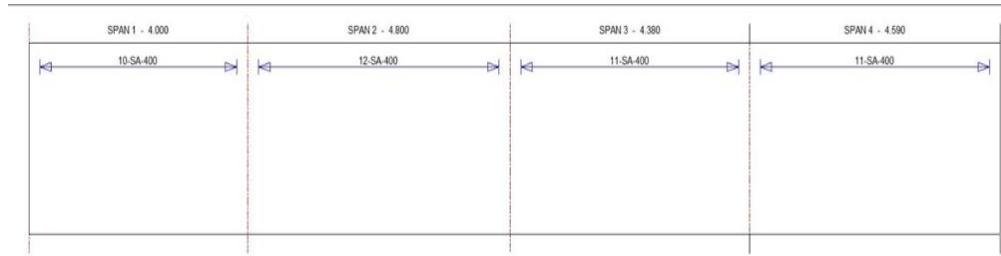


Figure 4.61: Prokon roof reinforcement shear 6

☒ Roof checks:

❖ Strip 2 (first span) will be checked as sample of calculation:

✓ Check $A_{s\min}$:

$$A_{s\min} = \begin{cases} 0.25\sqrt{f'c} \cdot bd & = 325 \\ \frac{1.4 \cdot bd}{F_y} & = 340 \text{ control} \end{cases}$$

As=2310mm > 340 (OK)

✓ Check $A_{s\max}$

$$A_{s\max} = 0.319\beta \frac{f'c}{F_y} \cdot bd = 2169.2 \text{ mm}$$

As=2310 mm < 2169.2 (OK)

✓ Check S_{\max} :

$$S_{\max} = \begin{cases} 600 \text{ mm} & = 600\text{mm} \\ 300 \text{ mm} & = 300\text{mm} \\ \frac{Av \cdot F_y}{0.33bw} & = 1000\text{mm} \\ \frac{16 \cdot Av \cdot F_y}{bw \cdot \sqrt{f'c}} & = 1000\text{mm} \\ \frac{Av \cdot F_y \cdot d}{V_s} & = 650\text{mm} \end{cases}$$

Actual Spacing = 25 mm < 300 (OK)

✓ Check S_{\min}

$$S_{\min} = \begin{cases} Bar \text{ dia} & = 16 \text{ mm} \\ 25\text{mm} & = 25\text{mm} \\ dia. \text{ of vibrator} & (\text{unkown}) \\ 1.33 \text{ c. a size} & (\text{unkown}) \end{cases}$$

Actual Spacing = 25 mm = 25 (OK)

" All spans in every strip checked and its OK "

❖ Tie beams:

- Tie beams establish in the ground floor under every wall.
- 6 strip (side view) will be analyzed and designed.
- As a sample of calculation Strip 1 will be shown.

Figure 4.63: Tie beams strip

❖ Strip 1: ✓ Load value:

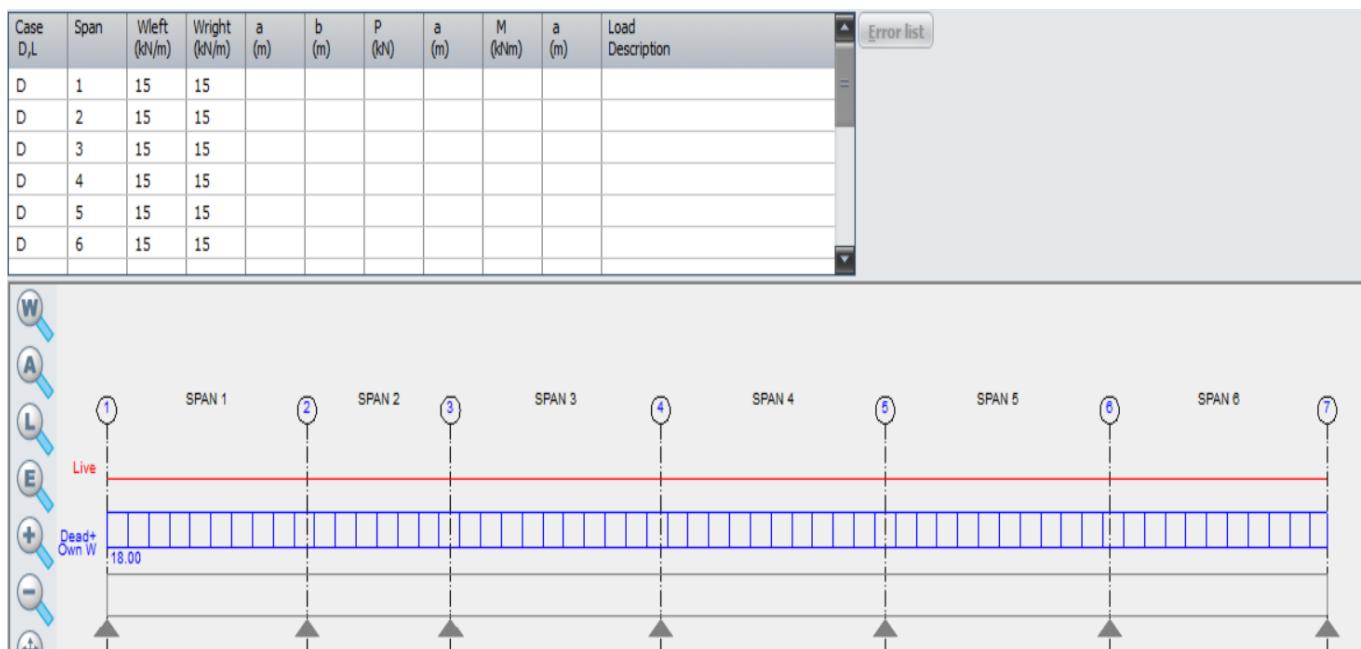


Figure 4.64: Prokon TB load 1

✓ Deflection:

Using ACI-Code, Table 9.5 (b) Case 4.

Permissible deflection = $4.7/240$

$$= 1.95 \text{ cm}$$

Actual deflection = $0.2886 \text{ cm} < 1.95 \text{ (okay)}$

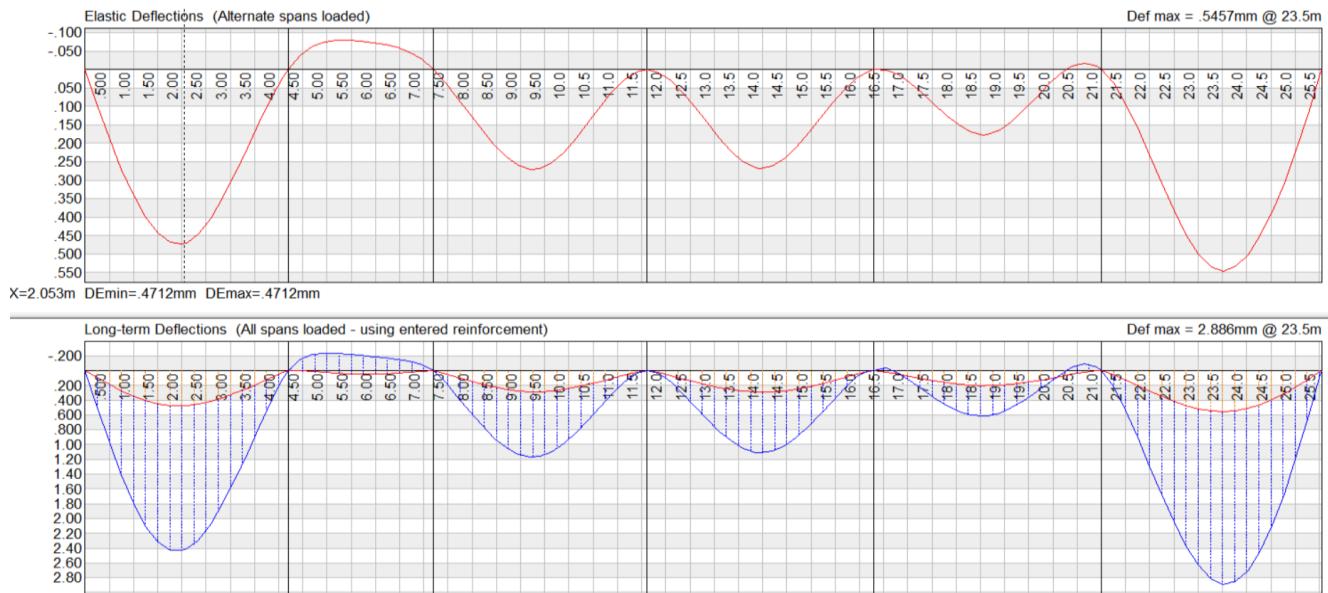


Figure 4.65: Prokon TB deflection 1

✓ Moment & Shear value:

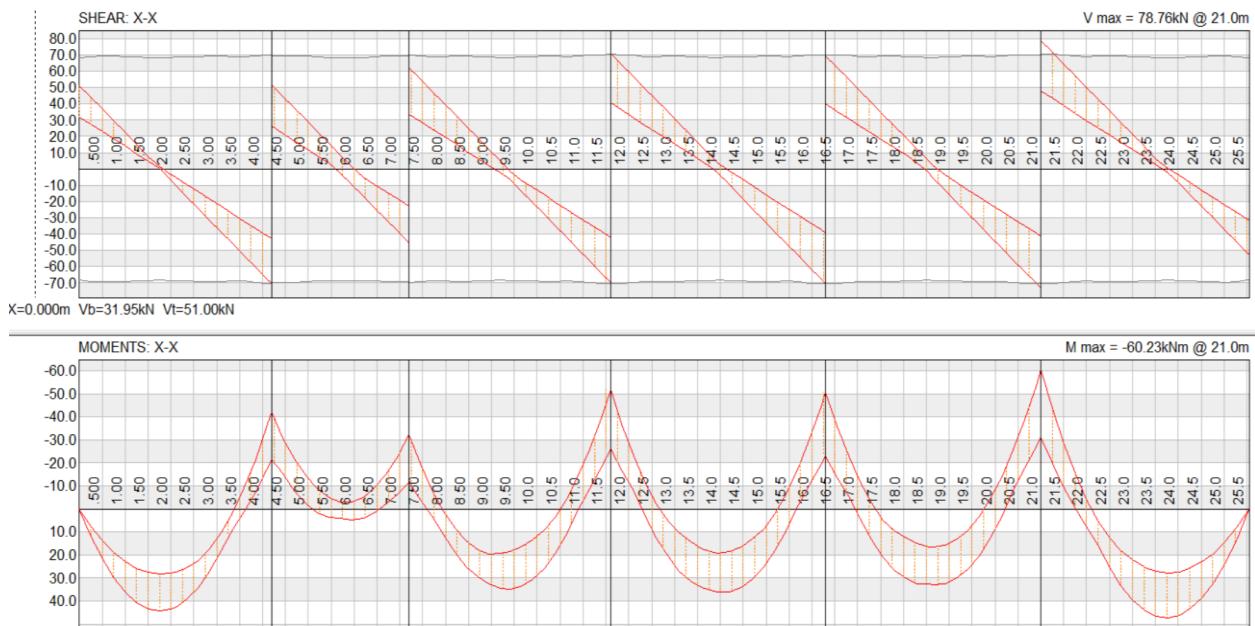


Figure 4.66: Prokon TB moment and shear 1

✓ Reinforcement (Moment):

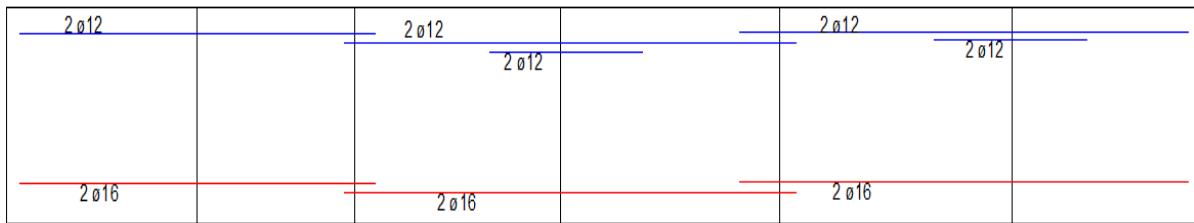
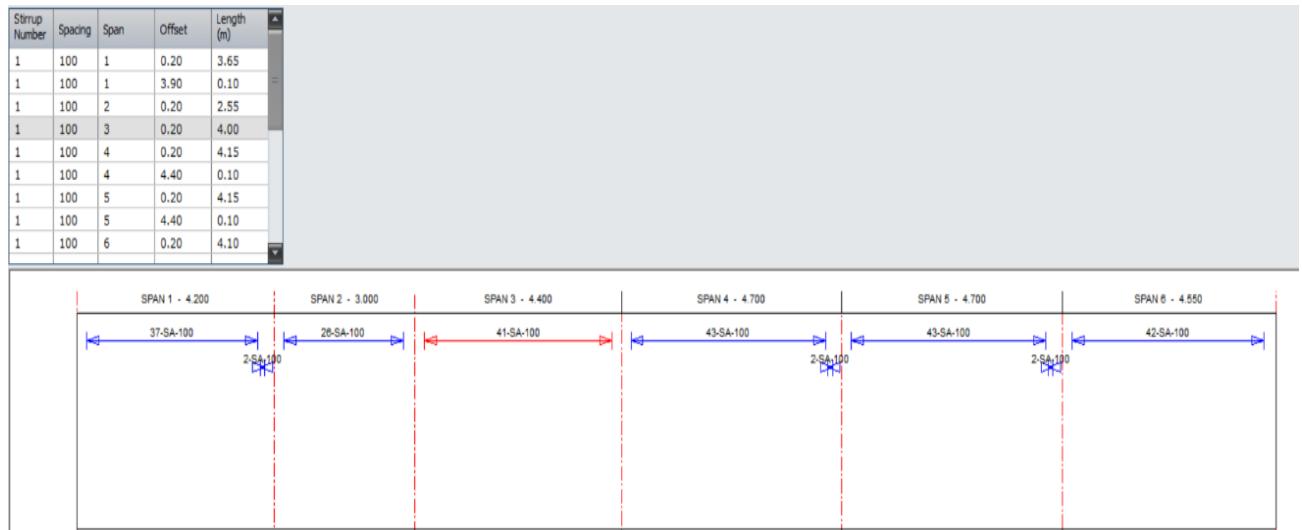
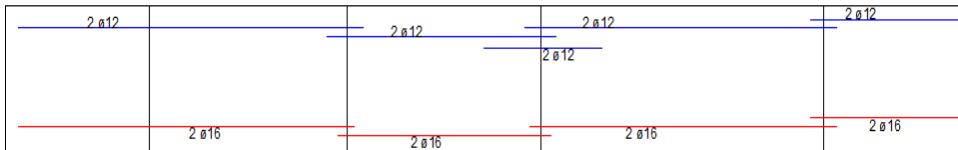


Figure 4.67: Prokon TB reinforcement moment 1

✓ Reinforcement (Shear):





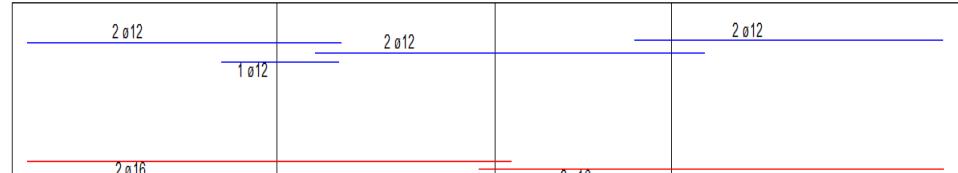
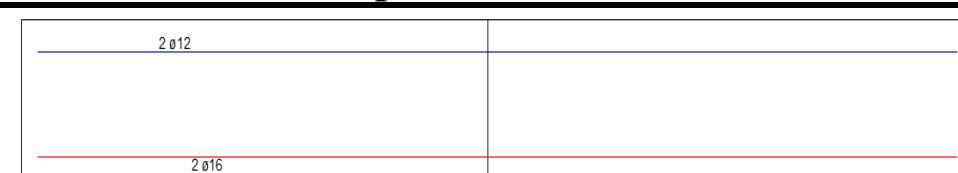
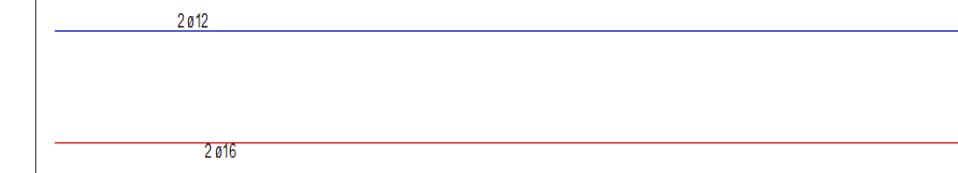




Figure 4.68: Prokon TB reinforcement shear 1

⇒ As our studying for all strip we found these results:

Table 4-3: Summary of reinforcement by prokon for

Floor	Strip 1
(Ground) Tie Beams	

☒ Ground floor (Tie beams) checks:

❖ Strip 3 (first span) will be checked as sample of calculation:

✓ Check A_s min :

$$A_s \text{ min} = \begin{cases} 0.25\sqrt{f'c} bd & = 325 \\ \frac{1.4 bd}{F_y} & = 340 \text{ control} \end{cases}$$

As=630 mm > 340 (Ok)

✓ Check A_s max

$$A_s \text{ max} = 0.319\beta \frac{f'c}{F_y} bd = 2169.2 \text{ mm}$$

As=630 mm < 2169.2 (OK)

✓ Check S max :

$$S_{\text{max}} = \begin{cases} 600 \text{ mm} & = 600 \text{ mm} \\ 300 \text{ mm} & = 300 \text{ mm} \\ Av F_y & = 1000 \text{ mm} \\ \frac{0.33bw}{0.33bw} & = 1000 \text{ mm} \\ \frac{16 Av F_y}{bw \sqrt{f'c}} & = 1000 \text{ mm} \\ \frac{Av F_y d}{Vs} & = 650 \text{ mm} \end{cases}$$

Actual Spacing = 66 mm < 300 (OK)

✓ Check S min

$$S_{\text{min}} = \begin{cases} Bar dia & = 16 \text{ mm} \\ 25 \text{ mm} & = 25 \text{ mm} \\ dia. of vibrator & (unknown) \\ 1.33 c. a size & (unknown) \end{cases}$$

Actual Spacing = 66 mm > 25 (OK)

" All spans in every strip checked and its OK "

Chapter 5: columns

Columns are defined as vertical structural members subjected not only to compression force but also to bending moment about one or both axes of the section, and with a height at least three times its least lateral dimension. They collect loads from the different floors and then transfer it to the soil through the foundation.

5.1 Type of columns

Columns may be classified based on the following different categories:

1. Based on the position of the load on the cross section:
 - a. Axially loaded columns.
 - b. Eccentrically loaded columns.
 - c. Biaxial loaded columns.

2. Based on the length of the column in relation to its lateral dimensions:
 - a. Short columns.
 - b. Slender columns.

3. Based on shape and its arrangement of the reinforcement:
 - a. Tied columns.
 - b. Spiral column.
 - c. Composite column

5.2 Design

In this project, columns are subjected only to axial load (neglected effect of bending moment min eccentricity).

Design of Tied Reinforced Concrete Columns i.e. Axial force read from ETABS for col.(3).

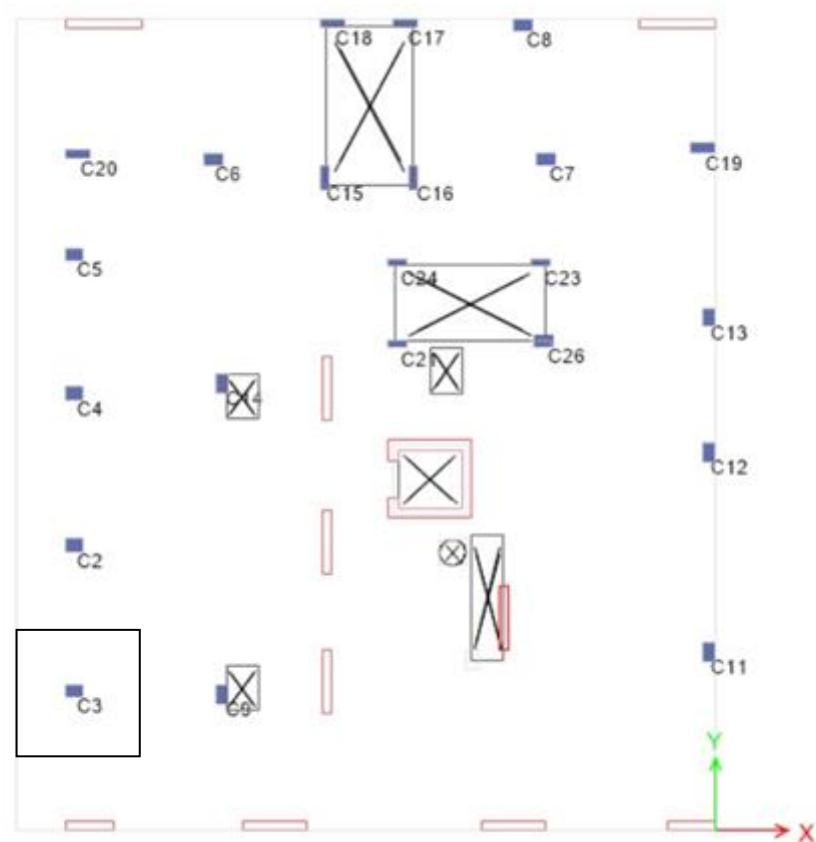


Figure 5.1: column selection in manual calculation



Figure 5.2: PU on the column (#3) from ETABS program

Using ETABS program, PU on the Column is 1954.22Kn

Rectangular column

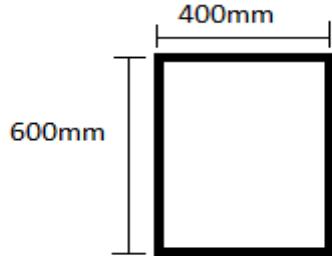


Figure 5.3: column section

$$A_g = 600 \times 400$$

$$A_g = 240000 \text{ mm}^2$$

$$\gamma = \frac{h-2x}{h}$$

Where $x = \text{cover} + ds + db/2$

Assume Bar Diameter = 16mm

$$X = 40 + 10 + \frac{16}{2} = 58 \text{ mm}$$

$$\gamma = \frac{600 - 2*58}{600} = 0.806$$

Also from ETABS

$M_u = 12 \text{ Kn.m}$

- Reinforcement Ratio (ρ_g)
 - Minimum = 1% of the column gross area
 - Maximum = 8% of the column gross area
 - In practice, limit $\rho_{g,max}$ to 4% of gross area
 - For architectural reasons $\rho_g = 0.5\%$ is allowed
- Clear distance between bars $> 1.5d_b$ or 40mm

$$S_{\max} = \text{the smallest of} \begin{cases} 16d_b \\ 48d_i \\ b \end{cases}$$

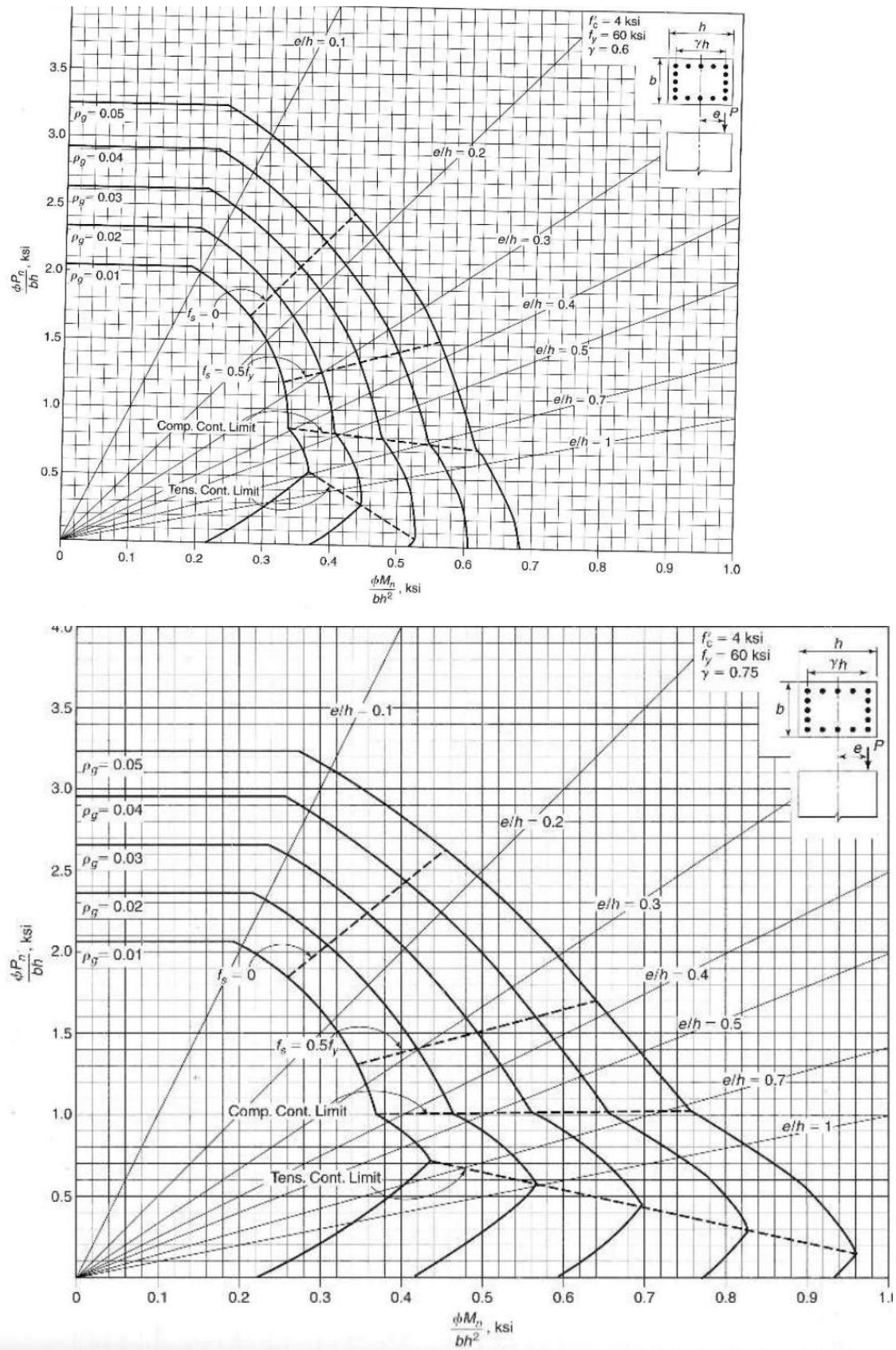


Figure 5.4: non dimensional interaction diagram for rectangular tied column

$$\frac{\Phi P_n}{b h} = \frac{1954 \times 10^3}{240000} = 8.15 \text{ MPa} = 1.18 \text{ ksi}$$

$$\frac{\Phi M_n}{b h^2} = \frac{12.16 \times 10^6}{400 \times 600^2} = 0.025 \text{ ksi}$$

The value of ($\rho = 0.01$)

Value of reinforcement required:

$$A_s = 0.01 \times A_g = 0.01 \times 400 \times 600 = 2400 \text{ mm}^2$$

$$\text{Try } 12\phi 16 = 2400 \text{ mm}^2$$

- Check on:

$$1. A_s(\text{max}) = 0.04 \times A_g = 0.04 \times 400 \times 600 = 9600 \text{ mm}^2 > A_s(\text{use}) \sim \text{Ok}$$

$$2. \text{ Spacing between bar} = \text{largest of } \left\{ \begin{array}{l} 1.5db = 1.5 \times 16 = 24 \\ 40 \text{ mm} \end{array} \right\}$$

Then $S = 40 \text{ mm (min)}$

$$3. \text{ Ties spacing} = \text{smallest of } \left\{ \begin{array}{l} 16db = 256 \text{ mm} \\ 48dt = 48 \times 10 = 480 \text{ mm} \\ b = 400 \text{ mm} \end{array} \right\}$$

S of ties = 256 = ~250 mm ((min)).

$$4. \phi P_n = 0.8(0.85 \times f'_c \times (A_c - A_s) + (f_y \times A_s))$$

$$\phi P_n = 0.8 \{ 0.85 \times 28 \times (400 \times 600 - 2400) + (460 \times 2400) \}$$

$$\phi P_n = 5627.91 \text{ KN} > P_u = 1954.22 \text{ KN} \sim \text{Ok}$$

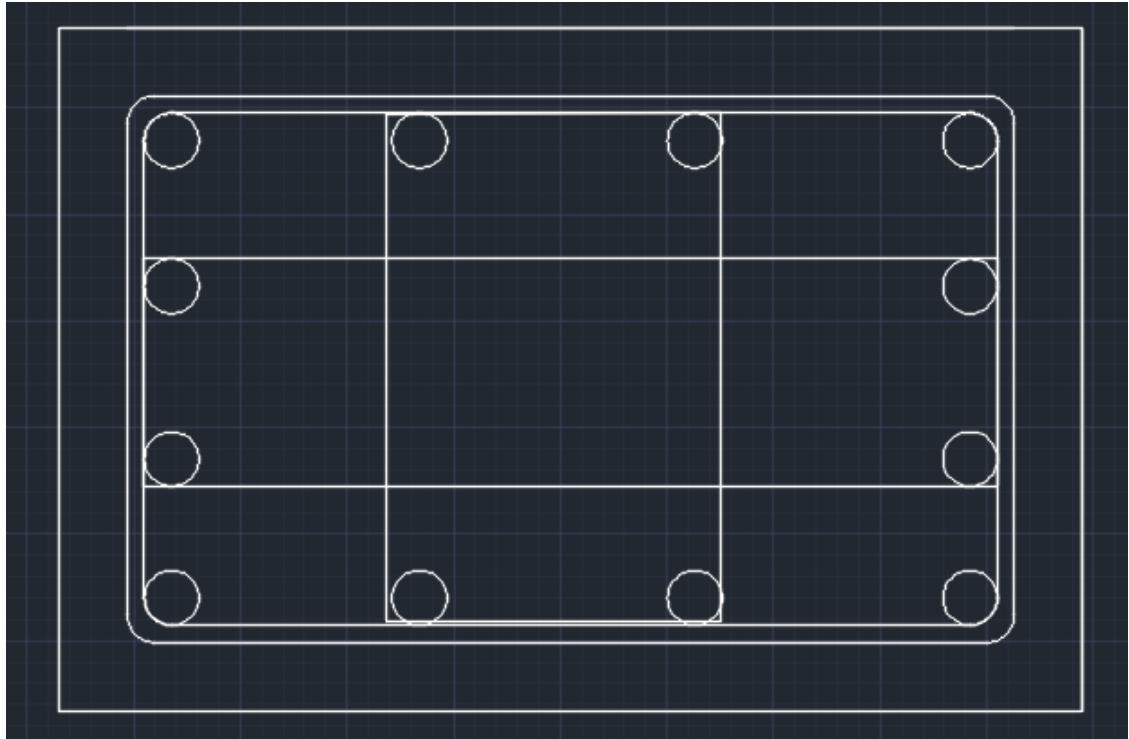


Figure (5.5): Cross section for column ((#3))

- Assumptions:

1. The section is symmetrically reinforced.
2. The specified design axial loads include the self-weight of the column.
3. The design axial loads are taken constant over the height of the column.

--- Design of Column-Footing Joint (Dowels)

12.3 — Development of deformed bars and deformed wire in compression

12.3.1 — Development length for deformed bars and deformed wire in compression, l_{de} , shall be determined from 12.3.2 and applicable modification factors of 12.3.3, but l_{de} shall not be less than 200 mm.

12.3.2 — For deformed bars and deformed wire, l_{de} shall be taken as the larger of $(0.24f_y/\lambda\sqrt{f'_c})d_b$ and $(0.043f_y)d_b$, with λ as given in 12.2.4(d) and the constant 0.0003 carries the unit of mm^2/N .

12.3.3 — Length l_{de} in 12.3.2 shall be permitted to be multiplied by the applicable factors for:

$$l_{dh} = \frac{0.24f_y\psi_e\lambda}{\sqrt{f'_c}}d_b \geq \text{larger of } \begin{cases} 8d_b \\ 150\text{mm} \end{cases}$$

12.16.1 — Compression lap splice length shall be $0.071f_yd_b$ for f_y of 420 MPa or less, or $(0.13f_y - 24)d_b$ for f_y greater than 420 MPa, but not less than 300 mm. For f'_c less than 21 MPa, length of lap shall be increased by one-third.

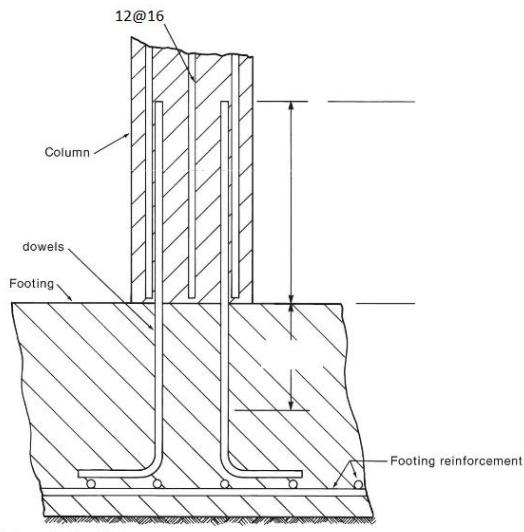


Figure (5.6): development length from ACI code

Figure (5.7): cross section of dowels details

As Dowels = $0.005A_1 = 0.005*600*400$

$$= 1200\text{m}^2 \Rightarrow 6\Phi 16$$

12.16.1 — Compression lap splice length shall be $0.071f_yd_b$ for f_y of 420 MPa or less, or $(0.13f_y - 24)d_b$ for f_y greater than 420 MPa, but not less than 300 mm. For f'_c less than 21 MPa, length of lap shall be increased by one-third.

-- Compression lap splice length = $0.071f_yd_b = 478\text{mm}$

~ Extend dowels 500m in column

$$l_{dh} = \frac{0.24f_y\psi_e\lambda}{\sqrt{f'_c}}d_b \geq \text{larger of } \begin{cases} 8d_b \\ 150\text{mm} \end{cases}$$

$L_{dh} = 305\text{ mm} < 500\text{mm}$ (footing height) No need for hooks

5.3Final results

All Columns are Tied Rectangular Columns

Summary for all columns

Table 5.1: Summary for all columns

<u>Section</u>	<u>Col. No</u>	<u>As</u>	<u>Bars</u>
<u>C400*600</u>	<u>C2</u>	<u>2400</u>	<u>12Φ16</u>
<u>C400*600</u>	<u>C3</u>	<u>2400</u>	<u>12Φ16</u>
<u>C400*600</u>	<u>C4</u>	<u>2400</u>	<u>12Φ16</u>
<u>C400*600</u>	<u>C5</u>	<u>2400</u>	<u>12Φ16</u>
<u>C400*600</u>	<u>C6</u>	<u>2400</u>	<u>12Φ16</u>
<u>C400*600</u>	<u>C7</u>	<u>2400</u>	<u>12Φ16</u>
<u>C400*600</u>	<u>C8</u>	<u>2400</u>	<u>12Φ16</u>
<u>C400*600</u>	<u>C9</u>	<u>2400</u>	<u>12Φ16</u>
<u>C400*600</u>	<u>C11</u>	<u>2400</u>	<u>12Φ16</u>
<u>C400*600</u>	<u>C12</u>	<u>2400</u>	<u>12Φ16</u>
<u>C400*600</u>	<u>C13</u>	<u>2400</u>	<u>12Φ16</u>
<u>C400*600</u>	<u>C14</u>	<u>2400</u>	<u>12Φ16</u>
<u>C300*800</u>	<u>C15</u>	<u>2400</u>	<u>12Φ16</u>
<u>C300*800</u>	<u>C16</u>	<u>2400</u>	<u>12Φ16</u>
<u>C300*800</u>	<u>C17</u>	<u>2400</u>	<u>12Φ16</u>
<u>C300*800</u>	<u>C18</u>	<u>2400</u>	<u>12Φ16</u>
<u>C300*800</u>	<u>C19</u>	<u>2400</u>	<u>12Φ16</u>
<u>C300*800</u>	<u>C20</u>	<u>2400</u>	<u>12Φ16</u>
<u>C250*600</u>	<u>C21</u>	<u>1600</u>	<u>8Φ16</u>
<u>C250*600</u>	<u>C23</u>	<u>1600</u>	<u>8Φ16</u>
<u>C250*600</u>	<u>C24</u>	<u>1600</u>	<u>8Φ16</u>
<u>C400*600</u>	<u>C26</u>	<u>2400</u>	<u>12Φ16</u>

Chapter 6: Shear Walls

6.1 Introduction

Shear walls are vertical elements designed to resist axial load, lateral load, or both, with a horizontal length – to thickness ratio greater than 3 , used to enclose or separate spaces.-Two frequent characteristics of walls are their slenderness, height to thickness ratio, which is generally higher than for columns, and the reinforcement ratios, generally about a fifth to a tenth of those in columns.

-Major factors that affect the design of structural walls include the following:

- (a) The structural function of the wall.
 - a. Bearing wall.
 - b. Non-Bearing wall.
- (b) The types of loads the wall resists.
 - a. Ordinary wall for resist wind load.
 - b. Special wall for resist earthquakes load.
- (c) The location and amount of reinforcement

6.2 Types of Walls

Structural walls can be classified as:

- (a) Bearing walls—walls that are laterally supported and braced by the rest of the structure that resist primarily in-plane vertical loads acting downward on the top of the wall . The vertical load may act eccentrically with respect to the wall thickness, causing weak-axis bending

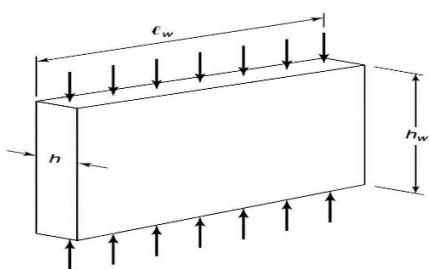


Figure 6.1: Bearing wall

- b) Shear walls—walls that primarily resist lateral loads due to wind or earthquakes acting on the building are called shear walls or structural walls. These walls often provide lateral bracing for the rest of the structure. They resist gravity loads transferred to the wall by the parts of the

structure tributary to the wall, plus, lateral-loads (lateral shears) and moments about the strong axis of the wall.

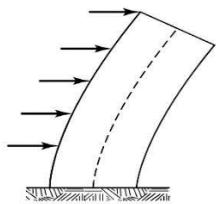


Figure 6.2: Shear wall

(c) Nonbearing walls—walls that do not support gravity in-plane loads other than their own weight. These walls may resist shears and moments due to pressures or loads acting on one or both sides of the wall. Examples are basement walls and retaining walls used to resist lateral soil pressures.

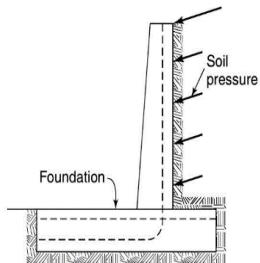


Figure 6.3: Cantilever retaining wall

(d) Tilt-up walls—are very slender walls that are cast in a horizontal position adjacent to the structure. They are then tilted into their intended vertical position and fastened to the foundation, to the roof or floor diaphragm, and to the adjacent panels .They are designed to resist vertical and lateral loads.

Figure 6.4: Compression panel in a bridge deck

6.3 Design Response Spectra

for determining the design response spectra, we must define the soil type of site that our building will be constructed on.


Table 6.1: Site Class Definitions from ASCE 7-02 and ASCE 7-05

Table 1 – Site Class Definitions from ASCE 7-02 and ASCE 7-05

Site Class	Site Profile Name	Soil Shear Wave Velocity, v_s (ft/sec)	Standard Penetration Resistance, N or N _{ch}	Undrained Shear Strength, S_u (psf)
A	Hard rock	$\bar{v}_s > 5,000$	NA	NA
B	Rock	$2,500 < \bar{v}_s \leq 5,000$	NA	NA
C	Very dense soil and soft rock	$1,200 < \bar{v}_s \leq 2,500$	> 50	> 2,000 psf
D	Stiff soil	$600 < \bar{v}_s \leq 1,200$	15 to 20	1,000 to 2,000 psf
		$\bar{v}_s \leq 600$	< 15	< 1,000 psf
E	Soft clay soil	Any profile with more than 10 ft of soil having the following characteristics:		
		<ul style="list-style-type: none"> • Plasticity index PI > 20 • Moisture content $w \geq 40\%$, and • Undrained shear strength $S_u < 500$ psf 		
F	Soil requires site response analysis	Liquefiable soils, peat, high plasticity clay		

We will consider site **class D (stiff soil)**.

Now we should know zone factor from map zone:

The most Dangerous Category in Jordan is zone 3

Zone	1	2A	2B	3	4
Z	0.075	0.15	0.2	0.3	0.4

So $Z=0.3$

Now we will determine C_a and C_v

Table 6.2: Seismic coefficient C_a

SOIL PROFILE TYPE	SEISMIC ZONE FACTOR, Z				
	$Z = 0.075$	$Z = 0.15$	$Z = 0.2$	$Z = 0.3$	$Z = 0.4$
S_A	0.06	0.12	0.16	0.24	$0.32N_a$
S_B	0.08	0.15	0.20	0.30	$0.40N_a$
S_C	0.09	0.18	0.24	0.33	$0.40N_a$
S_D	0.12	0.22	0.28	0.36	$0.44N_a$
S_E	0.19	0.30	0.34	0.36	$0.36N_a$
S_F				See Footnote 1	

Table 6.3: Seismic coefficient C_v

SOIL PROFILE TYPE	SEISMIC ZONE FACTOR, Z				
	$Z = 0.075$	$Z = 0.15$	$Z = 0.2$	$Z = 0.3$	$Z = 0.4$
S_A	0.06	0.12	0.16	0.24	$0.32N_v$
S_B	0.08	0.15	0.20	0.30	$0.40N_v$
S_C	0.13	0.25	0.32	0.45	$0.56N_v$
S_D	0.18	0.32	0.40	0.54	$0.64N_v$
S_E	0.26	0.50	0.64	0.84	$0.96N_v$
S_F				See Footnote 1	

From tables we found

$C_a=0.36$

$C_v=0.54$

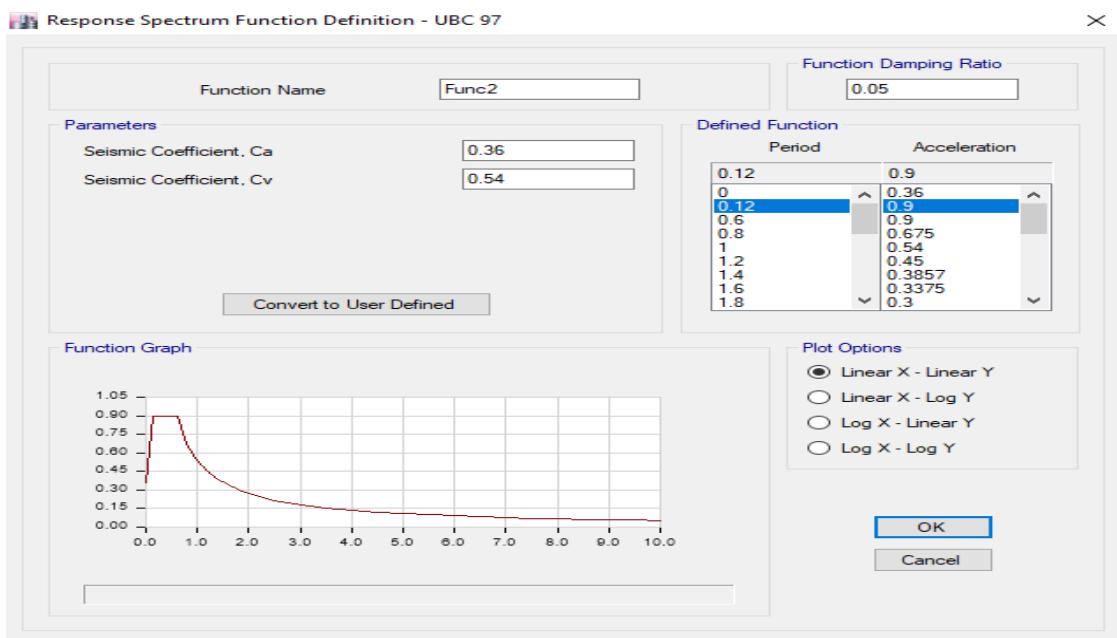


Figure 6.5: Response spectrum for our building

$$T_s = C_v / 2.5 C_a$$

$$= 0.54 / 2.5 * 0.36 = 0.6 \text{ sec}$$

$$T_0 = 0.2 T_s$$

$$= 0.12 \text{ sec}$$

Peak ground acceleration = $C_a = 0.36$

6.4 Design

Shear wall Design in ETABS

First: Define

- 1) the diaphragms for each story

Diaphragms are a roof, floor or other system transferring lateral forces applied to a building to the vertical elements, such as the shear walls.

*There is two type of Diaphragms Rigid and Flexible,

We used rigid type.

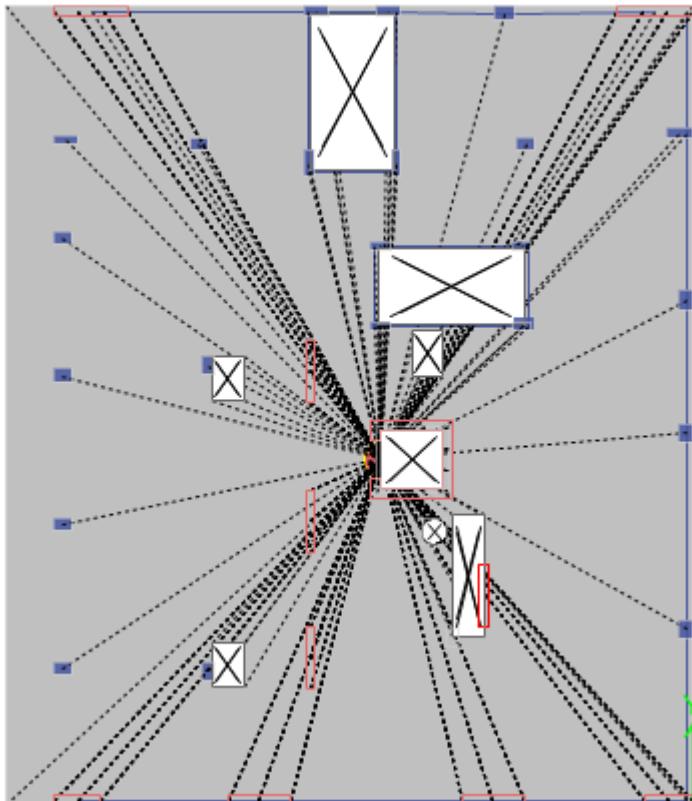


Figure 6.6: Rigid diaphragms

- 2) Mass Source: specified load pattern

for our building we multiply dead load by 1 because it is a residential building.

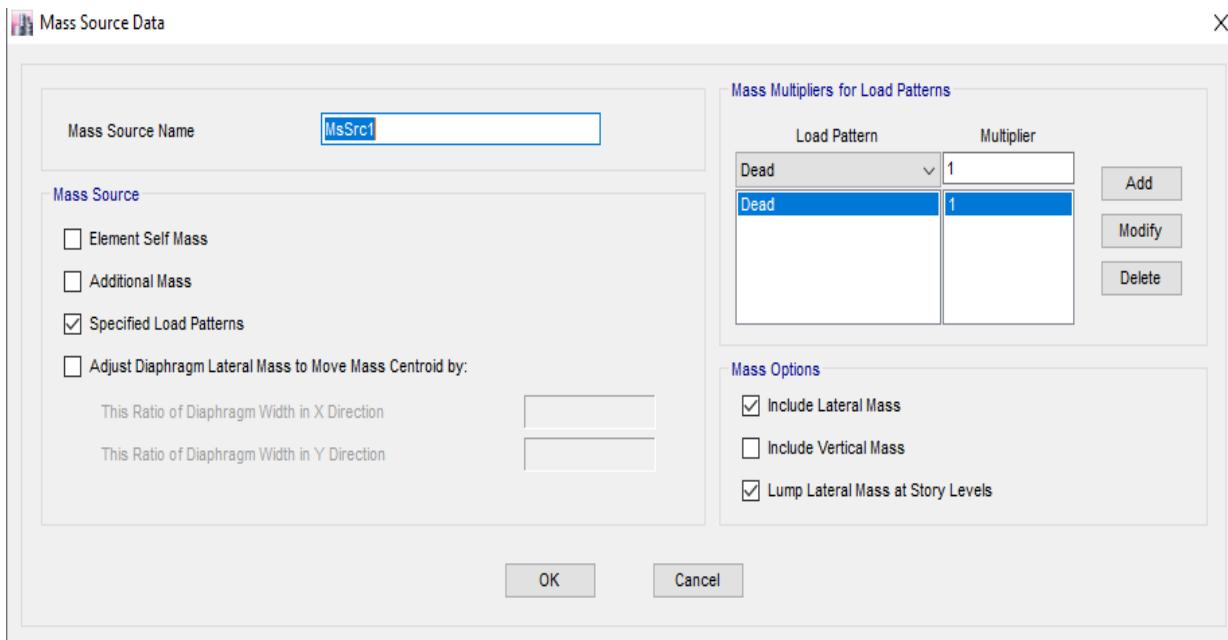


Figure 6.7: mass source

3) lateral Load Patterns

Seismic loads: EX1, EX2, EY1, EY2

EX1:

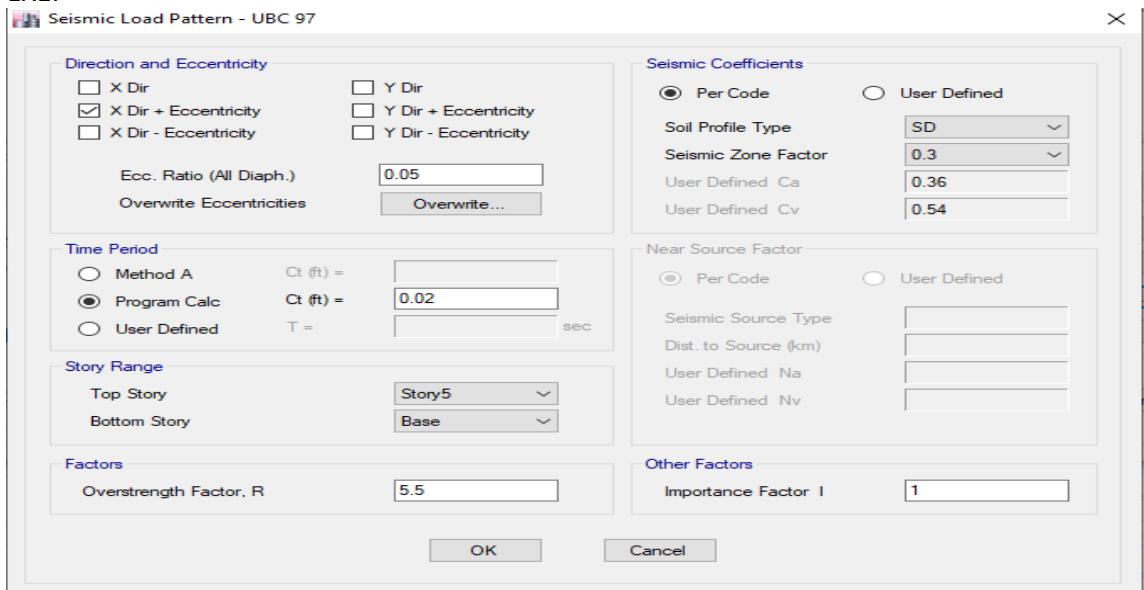


Figure 6.8: Seismic load For EX1

Wind Load: Design wind speed in Jordan=120Km/h

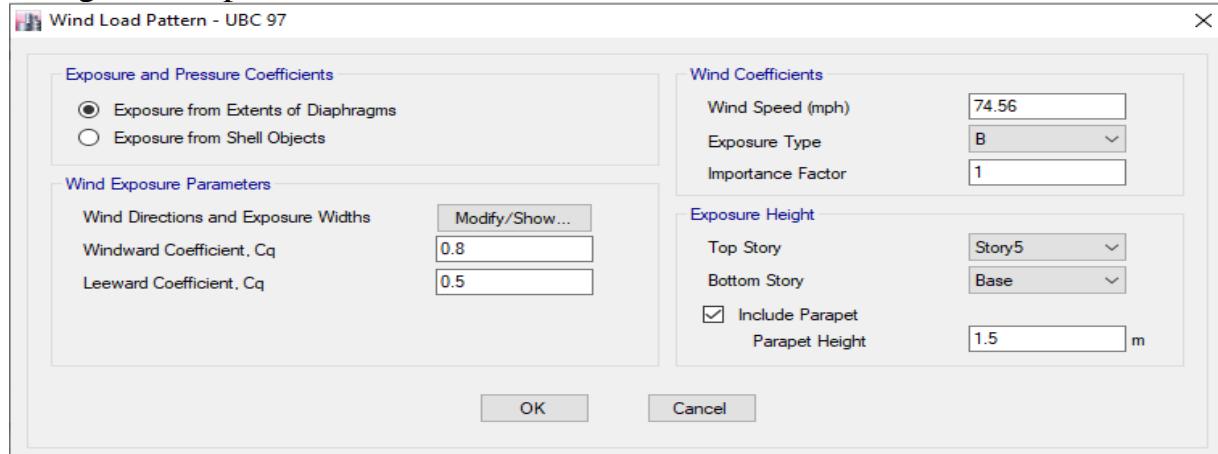


Figure 6.9: wind load

4) lateral Load Combinations Load Combinations:

Based on section 1612 of UBC, structures are to resist the most critical effects from the following combinations of factored loads:

$$1.4D + 1.7L \quad (A-9)$$

$$0.75(1.4D + 1.7L + 1.7W) \quad (A-10)$$

$$0.9D + 1.3W \quad (A-11)$$

$$1.32D + 1.1f_1L + 1.1E \quad (A-12)$$

$$0.99D + 1.1E \quad (A-13)$$

Where

$f_1 = 1.0$ for floors in public assembly, live loads in excess of 500 kg/m² and for garage live loads

$f_1 = 0.5$ for other live loads

$$E = \rho E_h + E_v \quad (A-14)$$

E_h = the earthquake load due to the base shear, V

E_v = the load effects resulting from the vertical component of the earthquake ground motion and is equal to the addition of $0.50 C_a I D$ to the dead load effects D

ρ = redundancy factor, to increase the effects of earthquake loads on structures with few lateral force resisting elements, given by

$$\rho = 2 - \frac{6.10}{r_{\max} \sqrt{A_g}} \quad (A-16)$$

Major seismic combinations:

$$U = 1.518 + 0.55 + 1.1Eh$$

$$1. 1.518DL + 0.55LL + 1.1EX1$$

2. $1.518DL+0.55LL+1.1EX2$
3. $1.518DL+0.55LL+1.1EY1$
4. $1.518DL+0.55LL+1.1EY2$
5. $1.518DL+0.55LL-1.1EX1$
6. $1.518DL+0.55LL-1.1EX2$
7. $1.518DL+0.55LL-1.1EY1$
8. $1.518DL+0.55LL-1.1EY2$

Secondary seismic combinations:

$U=0.792+-1.1Eh$

9. $0.792DL+1.1EX1$
10. $0.792DL+1.1EX2$
11. $0.792DL+1.1EY1$
12. $0.792DL+1.1EY2$
13. $0.792DL-1.1EX1$
14. $0.792DL-1.1EX2$
15. $0.792DL-1.1EY1$
16. $0.792DL-1.1EY2$

Wind combinations:

17. $1.2DL+0.5LL+1.3Wind$
18. $1.2DL+0.5LL-1.3Wind$
19. $0.9DL+1.3Wind$
20. $0.9DL-1.3Wind$

Second: Assign Stiffness Modifiers

- Stiffness modifiers are the factors to increase or decrease some properties of the cross section like area, inertia, torsional constant etc. Generally, they are used to reduce stiffness of concrete sections to model cracked behavior of concrete. They are only applied to concrete members because it cracks under loading.
- Cracking reduces area of the cross section and reduces stiffness of the structure which effects the deflection and forces. So we need to assign stiffness modifier to use reduced stiffness which defines structural members as cracked sections. By considering cracked sections in analysis we can ensure safer/larger (than regular sections having 100% stiffness) structural sections to keep the structure safe in terms of serviceability under cracking condition.

Table 6.4: Stiffness factor

Member and condition	Moment of Inertia	Cross-sectional area
Columns	$0.70I_g$	$1.0A_g$
Walls	Uncracked	
	Cracked	
Beams	$0.35I_g$	
Flat plates and flat slabs	$0.25I_g$	

For shear Wall:

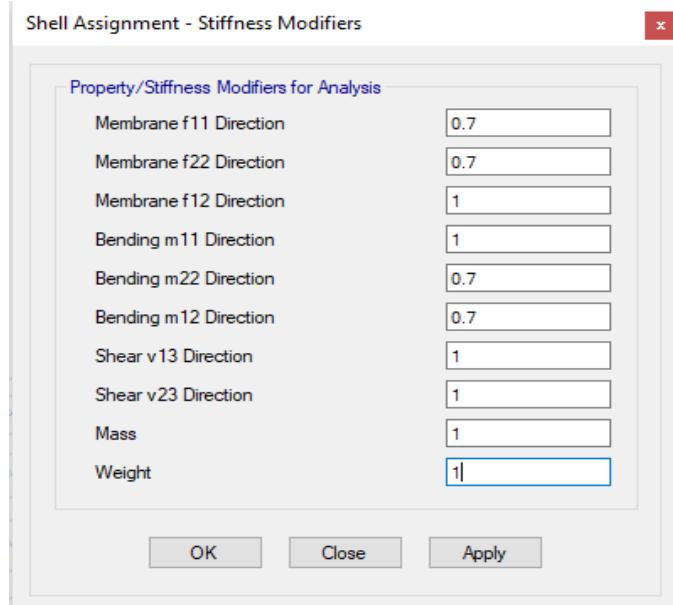
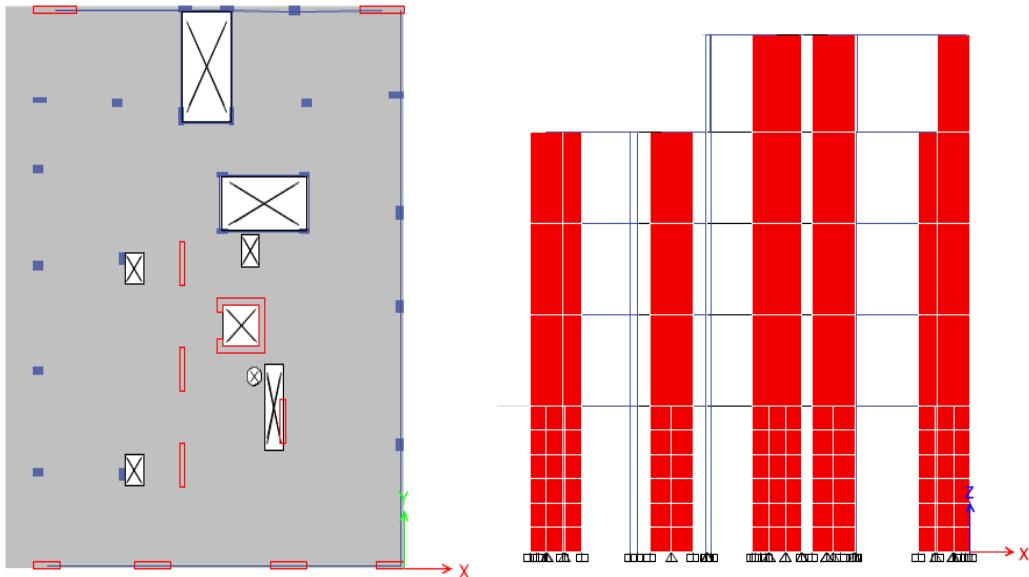
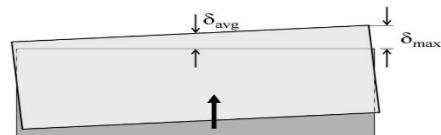



Figure 6.10: Stiffness modifiers for shear wall

Third: Check for irregularities

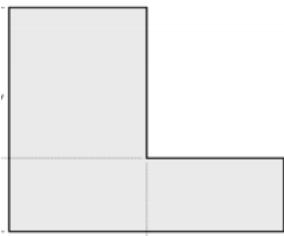


Horizontal Irregularity:

Torsional Irregularity:

Horizontal Structural Irregularities

1a) and 1b) Torsional Irregularity


$\delta_{max} < 1.2\delta_{avg}$ No irregularity

$1.2\delta_{avg} \leq \delta_{max} \leq 1.4\delta_{avg}$ Irregularity

$\delta_{max} > 1.4\delta_{avg}$ Extreme irregularity

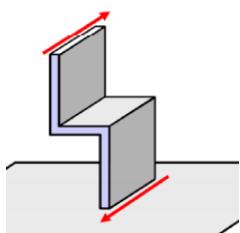
- After we checked displacement in ETABS for all stories we found the ratio was less than 1.2 Then there is Torsional Irregularity doesn't exist.

Corner irregularity:

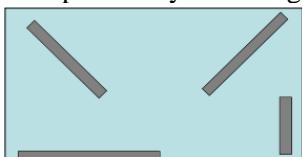
- The building is a rectangular plane shaped building so the corner irregularity doesn't exist.

Diaphragm Irregularity Discontinuity:

Horizontal Structural Irregularities


3) Diaphragm Discontinuity Irregularity

Irregularity exists if open area > 0.5 times floor area
OR if effective diaphragm stiffness varies by more than 50% from one story to the next.


- Total Area=520m²
Opening Area= 45m²<0.5 Total Area
so, Diaphragm Irregularity Discontinuity doesn't exist.

Out of plane offsets

Out of plane offsets doesn't exist.

Non-parallel system irregularity

- Non-parallel system irregularity doesn't exist.

Vertical Irregularity:

- Shear walls and columns are continuous from bottom of the building to the top, so stiffness irregularity doesn't exist.
- The masses are equally distributed along the stories so the vertical mass irregularity of the stories doesn't exist.

Additional check

Overturning:

Overturning moment should be less than resisting moment.

Overturning moment from Etabs:

Base Reactions							
	Load Case/Combo	FX kN	FY kN	FZ kN	MX kN-m	MY kN-m	MZ kN-m
►	EX1	-3621.7867	0	0	59.8422	-9563.2415	43873.8029
	EX2	-3621.7867	0	0	77.0073	-9548.5884	41982.609
	EY1	0	-3595.8414	0	12124.2079	-58.6181	34502.8466
	EY2	0	-3595.8414	0	12110.6008	-68.5944	35979.9099

Figure 6.11: Base reaction

Resisting Moment=258460 KN-m > all overturning moment OK

Finally: Design shear Wall

Wall#4 in story 2

	Item	Value
01	Design this Pier?	Yes
02	LL Reduction Factor	0.744081
03	Design is Seismic?	Yes
04	Pier Section Type	Uniform Reinforcing
05	End/Comer Bar Name	16
06	Edge Bar Name	16
07	Edge Bar Spacing	150
08	Clear Cover	40
09	Material	Concrete 28MPA
10	Check/Design Reinforcing	Check
11	Check Compression Block Depth for BZ?	No

Figure 6.12: Detail (1) of wall#4 in story2

ETABS Shear Wall Design

ACI 318-14 Pier Design

Pier Details

Story ID	Pier ID	Centroid X (mm)	Centroid Y (mm)	Length (mm)	Thickness (mm)	LLRF
Story2	P4	-13846	150	2000	300	0.744

Material Properties

E _c (MPa)	f' _c (MPa)	Lt.Wt Factor (Unitless)	f _y (MPa)	f _{ya} (MPa)
30161.56	28	1	460	460

Design Code Parameters

Φ _T	Φ _C	Φ _v	Φ _v (Seismic)	IP _{MAX}	IP _{MIN}	P _{MAX}
0.9	0.65	0.75	0.6	0.04	0.0025	0.8

Pier Leg Location, Length and Thickness

Station Location	ID	Left X ₁ mm	Left Y ₁ mm	Right X ₂ mm	Right Y ₂ mm	Length mm	Thickness mm
Top	Leg 1	-14846	150	-12846	150	2000	300
Bottom	Leg 1	-14846	150	-12846	150	2000	300

Flexural Design for P, M_{u2} and M_{u3}

Station	D/C	Flexural	P _u kN	M _{u2} kN-m	M _{u3} kN-m
Top	0.255	ULT1.2+1.6	2061.8657	58.4473	132.2961
Bottom	0.934	SX2N	434.578	-8.4667	-2109.3119

Shear Design

Station Location	ID	Rebar mm ² /m	Shear Combo	P _u kN	M _u kN-m	V _u kN	ΦV _c kN	ΦV _n kN
Top	Leg 1	750	EX2N	838.6321	-526.6593	418.9003	355.8964	728.2133
Bottom	Leg 1	750	EX2N	934.2661	-2108.5485	425.3073	251.4773	623.7942

Boundary Element Check (ACI 21.9.6.3, 21.9.6.4)

Station Location	ID	Edge Length (mm)	Governing Combo	P _u kN	M _u kN-m	Stress Comp MPa	Stress Limit MPa	C Depth mm	C Limit mm
Top-Left	Leg 1	Not Required	EX1N	843.0901	-498.6124	3.9	5.6	389.8	395.6
Top-Right	Leg 1	199.4	EX1N	909.9719	645.6532	4.74	5.6	398.9	376.3
Bottom-Left	Leg 1	202.8	EX1N	938.7241	-2005.3024	11.59	5.6	402.8	395.6
Bottom-Right	Leg 1	211.8	EX1N	1005.6059	2114.8608	12.25	5.6	411.8	376.3

Figure 6.12: Detail (2) of wall#4 in story2

Flexural Design for P_u, M_{u2} and M_{u3}

Station Location	Required Rebar Area (mm ²)	Required Reinf Ratio	Current Reinf Ratio	Flexural Combo	P _u kN	M _{u2} kN-m	M _{u3} kN-m	Pier A _g mm ²
Top	1500	0.0025	0.0101	SWIND-N	492.9745	16.5987	-13.3184	600000
Bottom	6115	0.0102	0.0101	SX2N	434.578	-8.4667	-2109.3119	600000

Figure 6.13: Detail (3) of wall#4 in story2

(D/C) = 0.934 < 1 OK

Reinforcement Ratio = 0.0101 > 0.0025 OK

So,

VERTICAL STEEL For Wall# 4 in story 2 is Ø16@15cm c/c.

HORIZONTAL STEEL is Ø12@15cm c/c.

6.5 Final results

Table 6.5: Final results

SCHEDULE OF SHEAR WALL					
TYPE	LOCATION	UP TO 1ST FLOOR	2ND & 3RD FLOOR	4th & TOP ROOF FLOOR	REMARK
SW1	THICKNESS	30CM	30CM	30CM	
	HORIZONTAL STEEL	$\varnothing 10 @ 15\text{cm c/c}$	$\varnothing 10 @ 15\text{cm c/c}$	$\varnothing 10 @ 20\text{cm c/c}$	
	VERTICAL STEEL	$\varnothing 20 @ 15\text{cm c/c}$	$\varnothing 16 @ 15\text{cm c/c}$	$\varnothing 14 @ 15\text{cm c/c}$	
SW2	THICKNESS	30CM	30CM	30CM	
	HORIZONTAL STEEL	$\varnothing 12 @ 15\text{cm c/c}$	$\varnothing 12 @ 15\text{cm c/c}$	$\varnothing 12 @ 20\text{cm c/c}$	
	VERTICAL STEEL	$\varnothing 20 @ 15\text{cm c/c}$	$\varnothing 16 @ 15\text{cm c/c}$	$\varnothing 14 @ 15\text{cm c/c}$	
SW3	THICKNESS	30CM	30CM	30CM	
	HORIZONTAL STEEL	$\varnothing 12 @ 15\text{cm c/c}$	$\varnothing 12 @ 15\text{cm c/c}$	$\varnothing 12 @ 20\text{cm c/c}$	
	VERTICAL STEEL	$\varnothing 20 @ 15\text{cm c/c}$	$\varnothing 16 @ 15\text{cm c/c}$	$\varnothing 16 @ 15\text{cm c/c}$	
SW4	THICKNESS	30CM	30CM	30CM	
	HORIZONTAL STEEL	$\varnothing 12 @ 15\text{cm c/c}$	$\varnothing 12 @ 15\text{cm c/c}$	$\varnothing 12 @ 20\text{cm c/c}$	
	VERTICAL STEEL	$\varnothing 20 @ 15\text{cm c/c}$	$\varnothing 16 @ 15\text{cm c/c}$	$\varnothing 16 @ 15\text{cm c/c}$	
SW5	THICKNESS	30CM	30CM	30CM	
	HORIZONTAL STEEL	$\varnothing 12 @ 15\text{cm c/c}$	$\varnothing 12 @ 15\text{cm c/c}$	$\varnothing 12 @ 20\text{cm c/c}$	
	VERTICAL STEEL	$\varnothing 20 @ 15\text{cm c/c}$	$\varnothing 18 @ 15\text{cm c/c}$	$\varnothing 14 @ 15\text{cm c/c}$	
SW6	THICKNESS	30CM	30CM	30CM	
	HORIZONTAL STEEL	$\varnothing 12 @ 15\text{cm c/c}$	$\varnothing 12 @ 15\text{cm c/c}$	$\varnothing 12 @ 20\text{cm c/c}$	
	VERTICAL STEEL	$\varnothing 16 @ 15\text{cm c/c}$	$\varnothing 16 @ 15\text{cm c/c}$	$\varnothing 14 @ 15\text{cm c/c}$	
SW7	THICKNESS	30CM	30CM	30CM	
	HORIZONTAL STEEL	$\varnothing 12 @ 15\text{cm c/c}$	$\varnothing 12 @ 15\text{cm c/c}$	$\varnothing 12 @ 20\text{cm c/c}$	
	VERTICAL STEEL	$\varnothing 20 @ 15\text{cm c/c}$	$\varnothing 18 @ 15\text{cm c/c}$	$\varnothing 14 @ 15\text{cm c/c}$	

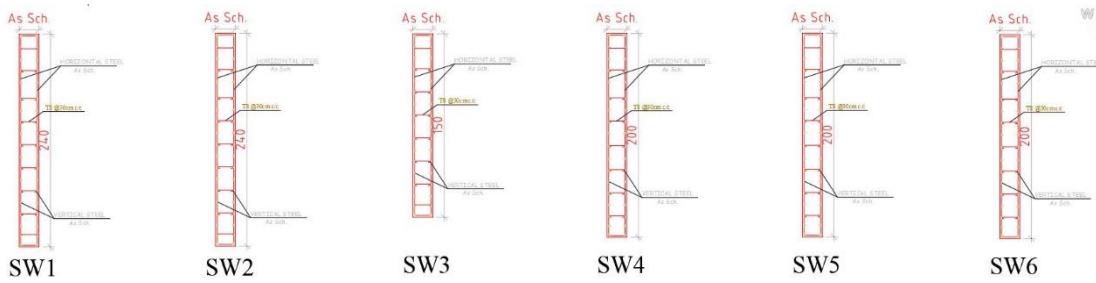


Figure 6.14: cross section of shear wall reinforcement

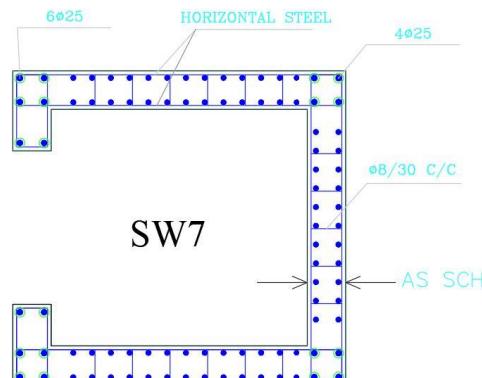


Figure 6.15: cross section of lift reinforcement

Chapter 7: Foundation

7.1 Foundation Types

- ❖ In this project we use Raft foundation for many reasons; is often used when the soil is weak (Bearing capacity= 1700 Kn/m^2) and when we have a high building.

NOW: What is Raft foundation?

- ❖ Raft foundations (sometimes referred to as raft footing or mat foundations) are formed by reinforced concrete slab of uniform thickness that cover a wide area, often the entire footprint of a building. They spread the load imposed by several columns or walls over the area of foundation and can be considered to ‘float’ on the ground as a raft floats on water, The Fig show simple vision about raft foundation.

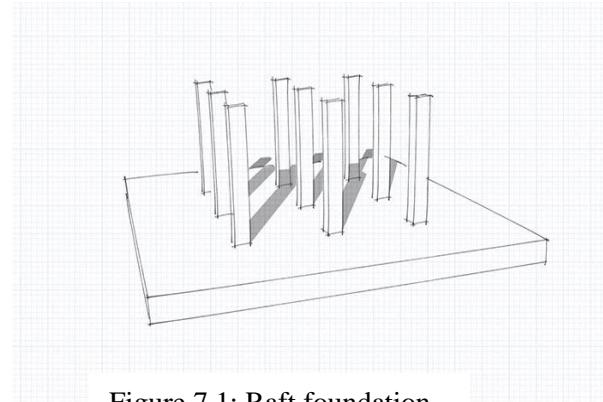


Figure 7.1: Raft foundation

- ❖ The reinforcement of raft footing is two mesh; top and bottom mesh (positive and negative moment), the picture shows the cross section of raft foundation.

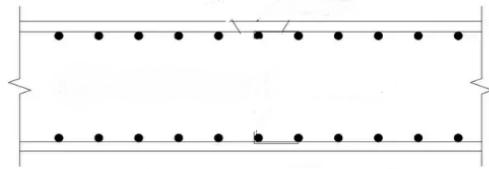


Figure 7.2: Typical section for raft foundation

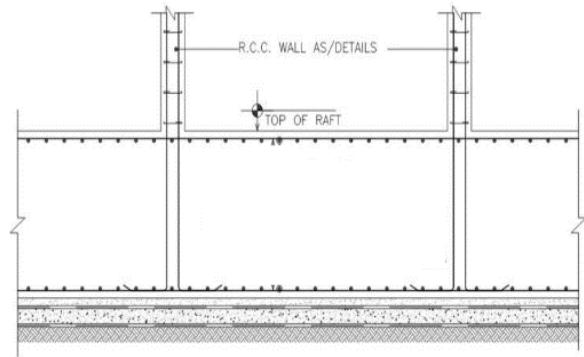


Figure 7.3: Typical Raft Section

- ❖ Under columns there is extra reinforcement to meet the high value of positive moment.
(Red color in the shown Fig).

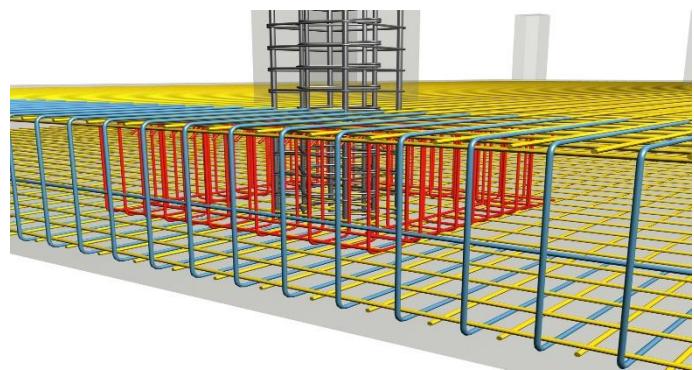


Figure 7.4: reinforcement in raft foundation under columns

- ❖ At the end of foundation (edge) the steel should be bent as the Fig shown.

Figure 7.5: bent the steel at the end of foundation

- ❖ Always the main Reinforcement in raft foundation on the top face of footing depending on the profile of moment.

7.2 Loading and Size Selection

- The **Safe program** will be used in the design of Raft foundation.
- The base floor of whole building model exported from **Etabs** to **Safe** with the reaction centers and all loads (**load cases**).
- The combinations load of lateral loads (Earth quick and wind load) entered manually in safe.
- The $f_y = 420 \text{ Mpa}$, $f'_c = 30 \text{ Mpa}$
- The thickness of footing is assumed depending on the this formula:
$$\begin{aligned}\text{Thick} &= \# \text{ of store} * 10 \text{ cm} \pm 10 \text{ cm} \\ &= 5 * 10 \pm 10 \Rightarrow (40 \text{ cm} - 50 \text{ cm}) \\ \text{Foundation thick} &= 50 \text{ cm} \Rightarrow \text{more conservative}\end{aligned}$$

⊕ On Safe program the spring support type is **Elastic support**.

⊕ Depending in our searching on suitable value of bearing capacity, we found a site investigation paper with value of bearing capacity = **1.7 Kg/cm²**

Site Investigation
For
Hamad Hassan Mohamed Abu Rukib
Majid / Jordan
Taqribi رقم 01-219/C20
عمان 29/12/2017
S2017/C20-01

الاستنتاجات والتوصيات:

1. نوع الأساسات وعمق التأسيس:
تم تحويل المنشآت القائم في الموقع على أساسات سطحية على شكل قواعد للأعمدة بالأبعاد التالية (2م * 2.5م * 0.5 عمق)، وضفت الأساسات ضمن حفرات متوردة داخل التربة الطينية المسليمة على عمق حوالي (2) متر من منسوب النسوبية.

يجب أن لا يكون هذا العمق أقل من (2) متر تحت المنسوب النهائي للأرض المحاطة بالمبني.

2. قوة التحمل المسموحة بها:
قدرة تحمل التربة على الأساسات الموضوحة على الأعمدة المسليمة أعلاه، متساوية (1.7) كغم/سم².

•

Figure 7.6: bearing capacity of soil

⊕ Soil subgrade property data:

Value of Subgrade modulus (K)

$$K = \frac{\text{Bearing capacity } (\frac{Kn}{m^2})}{\text{Impressible deflection } (m)}$$

$$B.C = 1700 \text{ KN/m}^2$$

The permissible Def = 2.5 cm

$$\Rightarrow K = \frac{1700}{0.025} = 68000 \text{ Kn/m}^3$$

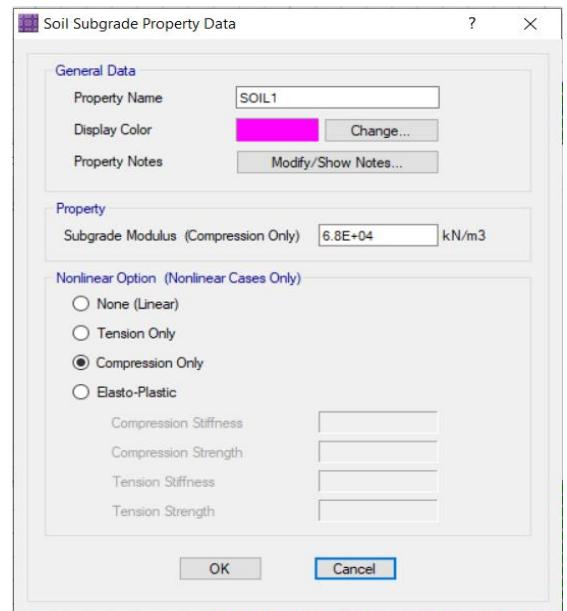


Figure 7.7: soil subgrade property date

❖ The combination load here added manually; and we add many types of combination load:

1. Working combination

$$\text{Working} = 1.2 \text{ DL} + 1.6 \text{ LL}$$

2. Earth quick Combination load

☒ Major seismic Comb

$$EX1P=1.518DL+0.55LL+1.1EX1$$

$$EX2P=1.518DL+0.55LL+1.1EX2$$

$$EY1P= 1.518DL+0.55LL+1.1EY1$$

$$EY2P=1.518DL+0.55LL+1.1EY2$$

$$EX1N=1.518DL+0.55LL-1.1EX1$$

$$EX2N=1.518DL+0.55LL-1.1EX2$$

$$EY1N=1.518DL+0.55LL-1.1EY1$$

$$EY2N=1.518DL+0.55LL-1.1EY$$

☒ Secondary seismic combinations:

$$SX1P= 0.792DL+1.1EX1$$

$$SX2P=0.792DL+1.1EX2$$

$$SY1P=0.792DL+1.1EY1$$

$$SY2P=0.792DL+1.1EY2$$

$$SX1N= 0.792DL-1.1EX1$$

$$SX2N=0.792DL-1.1EX2$$

$$SY1N=0.792DL-1.1EY1$$

$$SY2N=0.792DL-1.1EY2$$

3. Wind combinations:

$$WIND-P=1.2DL+0.5LL+1.3Wind$$

$$WIND-N=1.2DL+0.5LL-1.3Wind$$

$$S WIND-P=0.9DL+1.3Wind$$

$$S WIND-N=0.9DL-1.3Wind$$

IMPORTANCE:

- ❖ We have now large number of combination load, but we need to do our design one Comb (**the large one**), but here with this large number of Comb it is impossible. So, we need combination load give me the highest term from every comb; for that we define new comb (**Max-Max**).
- ❖ All the previous combination load used for lateral load formed the terms in this Max-Max combination load.
- ❖ Every term in this combination given **Factor = 1**.
- ❖ As the following Fig shown, all the previous combination load (lateral load combination) multiply with Factor = 1.

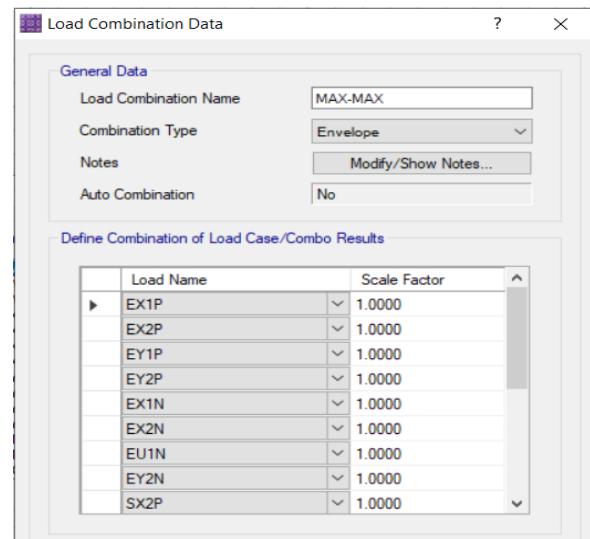


Figure 7.8: Factor of Max-Max combination

So:

Max-Max=1 Working+1 EX1P +1 EX2P +1 EY1P+1 S WIND-N

NOTE: All our design mainly depends on this load combination.

7.3 Design Procedure

❖ Design of footing:

- Related to choose the Raft foundation system, we need to check the deflection, Punching Shear and stress under footing then we will find the suitable design for the footing.

1. Deflection

- Deflection checked on **Max-Max** combination load on **Min** case.
- The permissible deflection that allowed to happen in all type of footing is **2.5 cm**.
- Using **Safe program**, the actual deflection in footing depending on the load transfer from all stores to the foundation shown in this picture.

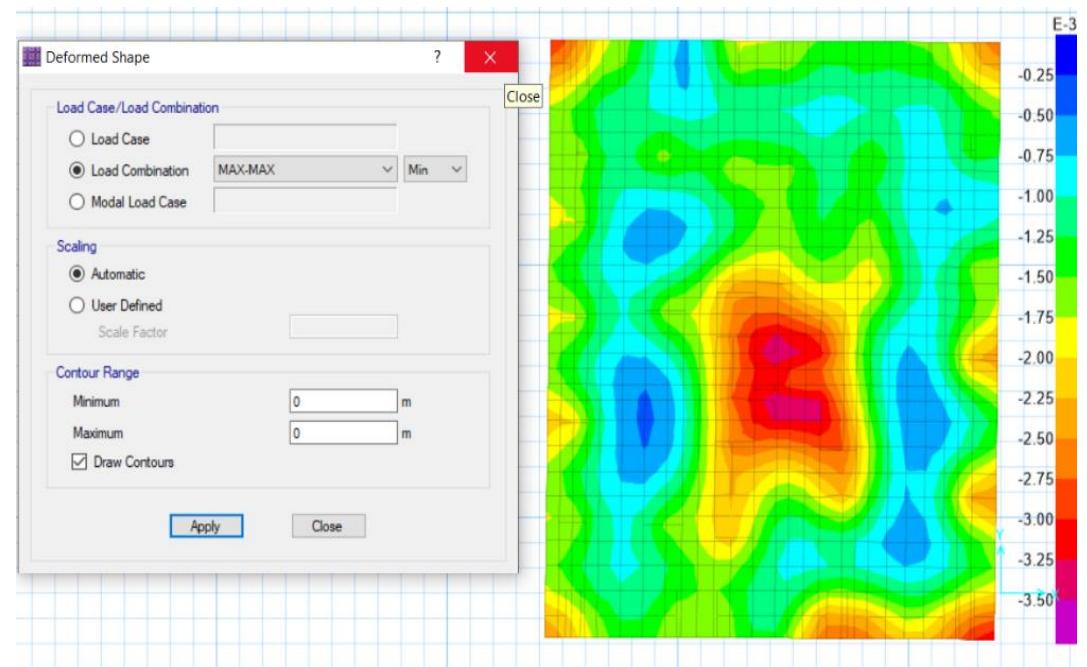


Figure 7.9: actual deflection in footing

- From picture as we see the max value of actual deflection = **0.35 cm**
 $0.35\text{cm} < 2.5\text{ cm} \Rightarrow \text{OK}$

2. Punching shear

- The results of Punching Shear are shown in the figure below, and we notice all the columns is **OK** so **No Need** of shear reinforcement.

- As noticed:

All factor < 1

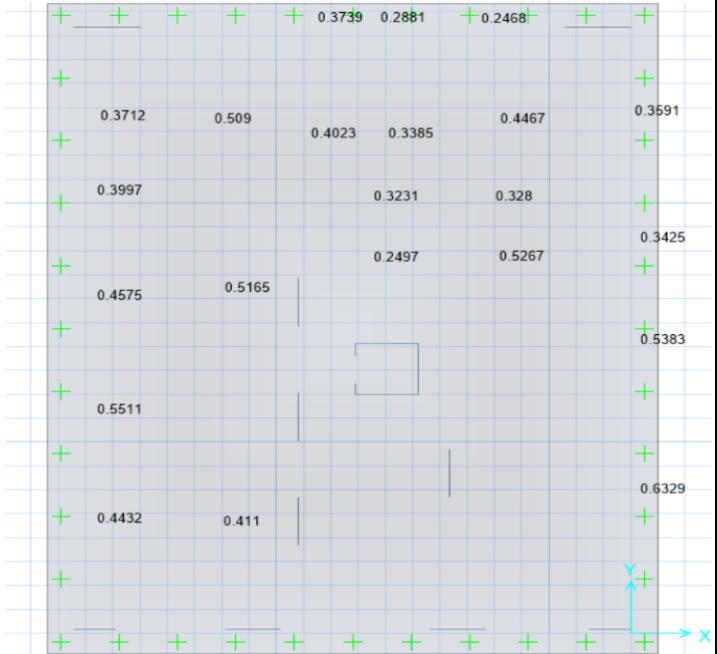


Figure 7.10: Punching Shear

3. Soil pressure (stress)

- All value of stress under the footing must be less than the value of **bearing capacity (1700Kn/m²)**

Stress value < B.C (1700)

- The value of stress and soil pressure under footing In the attached Excel sheet file

All stress value < 1700 \Rightarrow OK

SOIL PRESSURE.xlsx

- If the stress value more than the value of bearing capacity; in this case you should do one of:

- ⇒ Increasing the foundation thickness.
- ⇒ Replacing the soil with another one that have grater B.C value.
- ⇒ Using Pile foundation.

4. Steel Reinforcement

➤ The value of moment:

A) Positive moment:

X-direction:

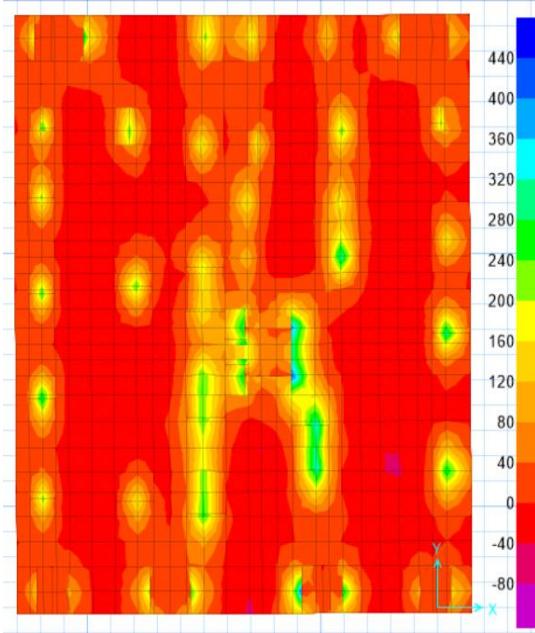


Figure 7.11: Value of moment (positive) in X axis

Y-direction:

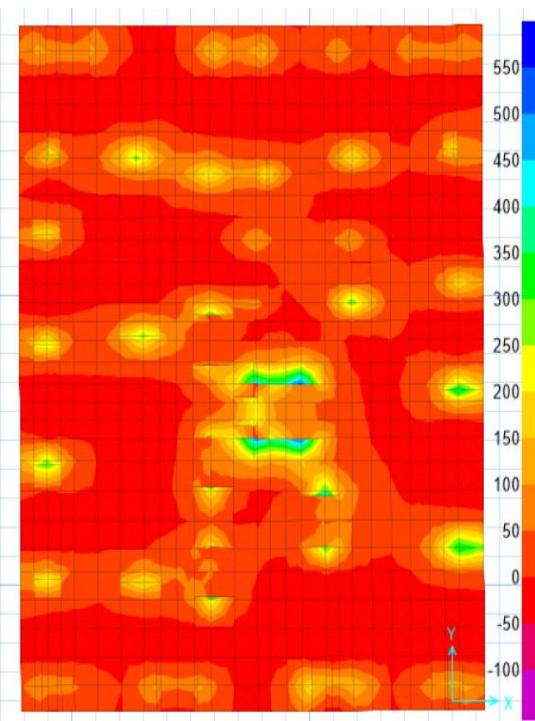


Figure 7.13: Value of moment (positive) in Y axis

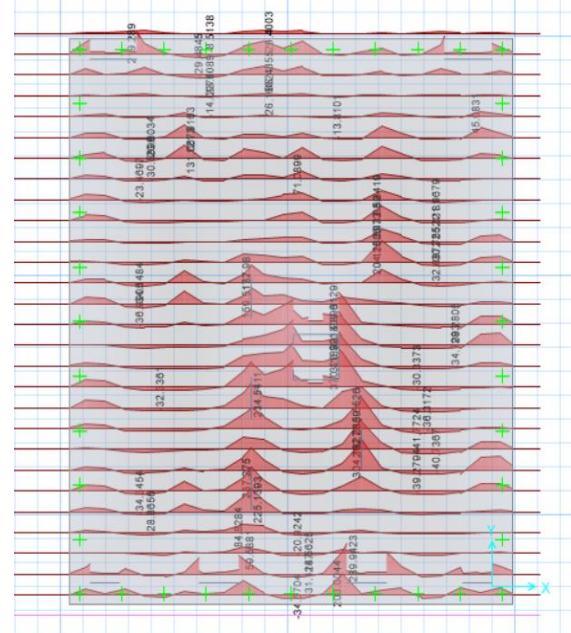


Figure 7.12: positive moment diagram in X axis

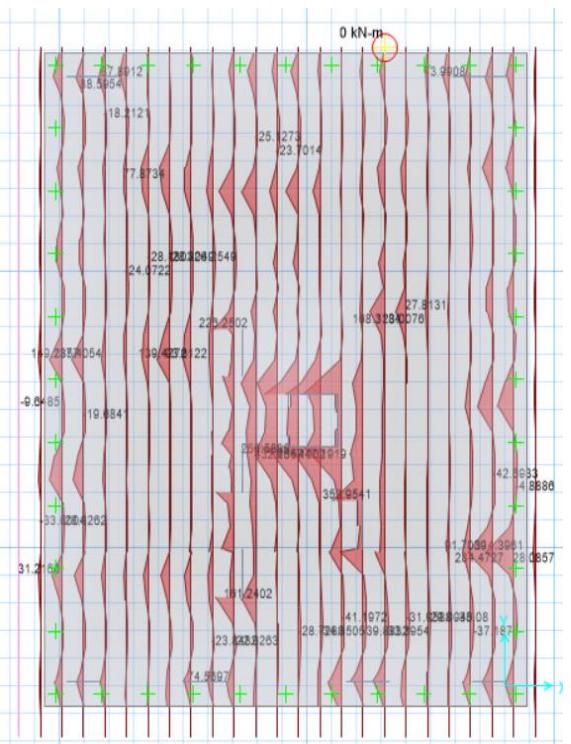


Figure 7.14: positive moment diagram in Y axis

B) Negative Moment:

X-direction:



Figure 7.15: Value of moment (Negative) in X axis

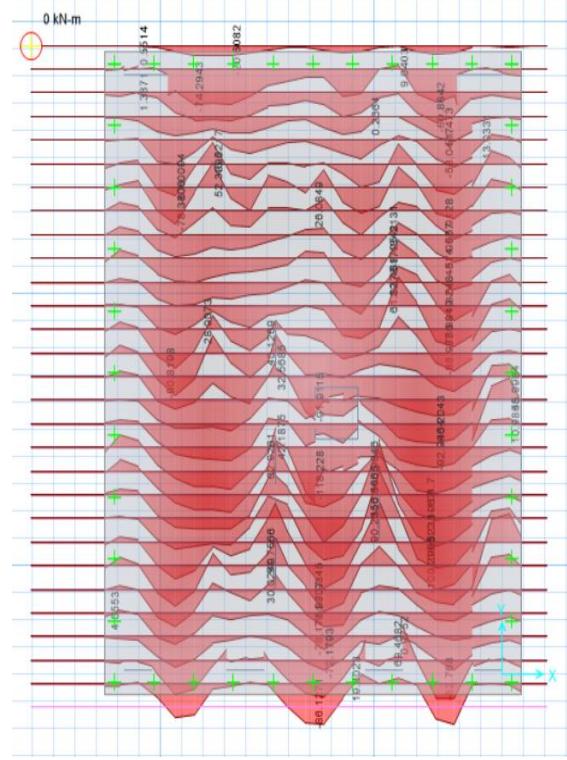


Figure 7.16: Negative moment diagram in X axis

Y-direction:

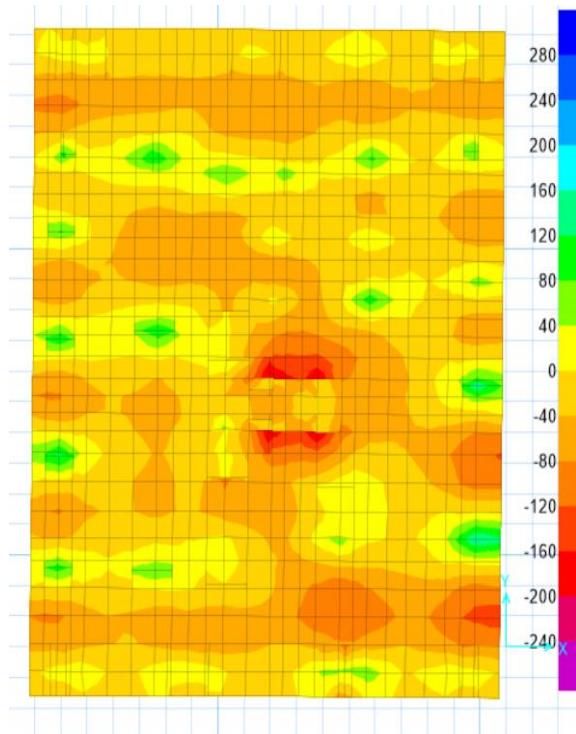


Figure 7.17: Value of moment (Negative) in Y axis

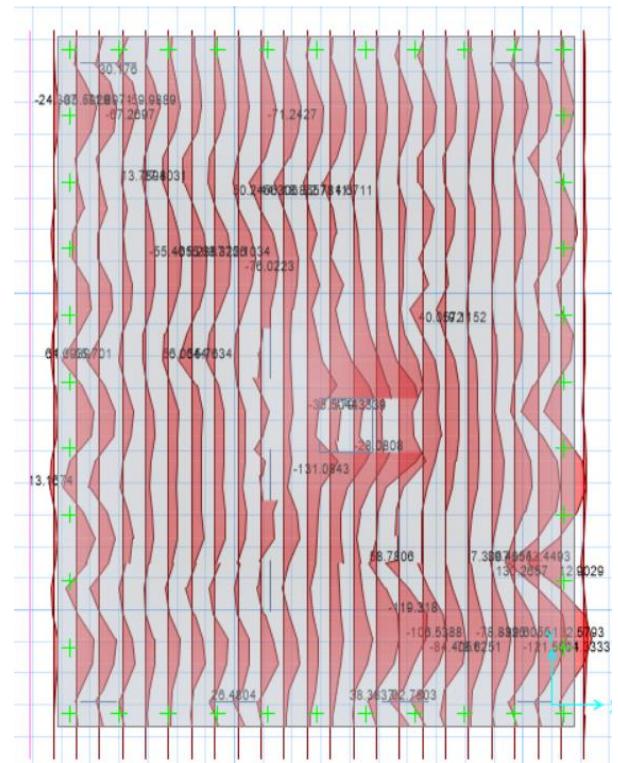


Figure 7.18: Negative moment diagram in Y axis

⇒ Needed area of steel to resist the moment.

☒ Design of negative moment (top reinforcement)

➤ The cover of foundation is 7cm so the effective depth=43cm

➤ Start from Min area of steel:

$$As_{min} = 0.0018bh$$

$$= 0.0018*1000*500$$

$$= 900 \text{ mm}^2$$

✓ Try 5 Ø 16:

$$As_{16} = 199$$

$$\text{So, Number needed steel bar} = \frac{900}{199} = 4.5$$

So, use 5#16 ⇒ A= 995 mm^2

$$As = \frac{M_u}{0.9*F_y*J_d} \Rightarrow 0.995 = \frac{M_u}{0.9*420*0.9*0.43}$$

$$M_u = 145 \text{ Kn.m}$$

X-direction:

From the picture 5Ø16 is enough

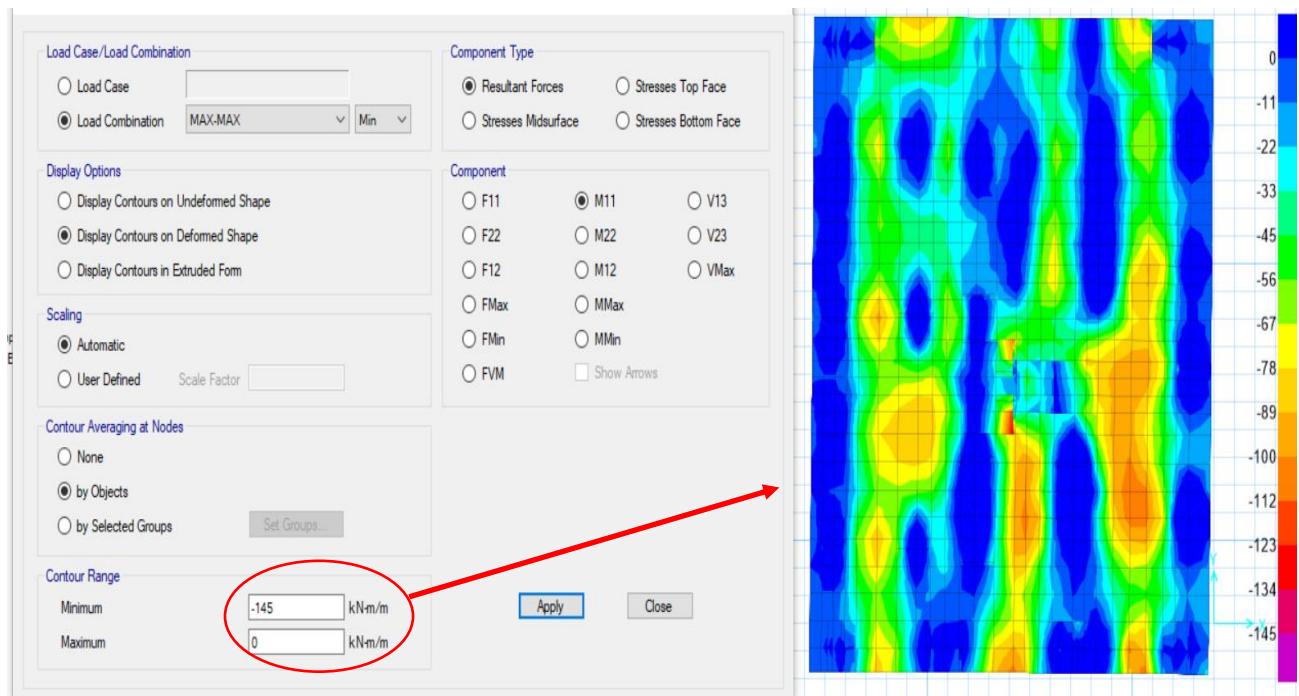


Figure 7.19: reinforcement Steel in X axis at the Negative moment

Y-direction

From the picture $5\phi 16$ enough

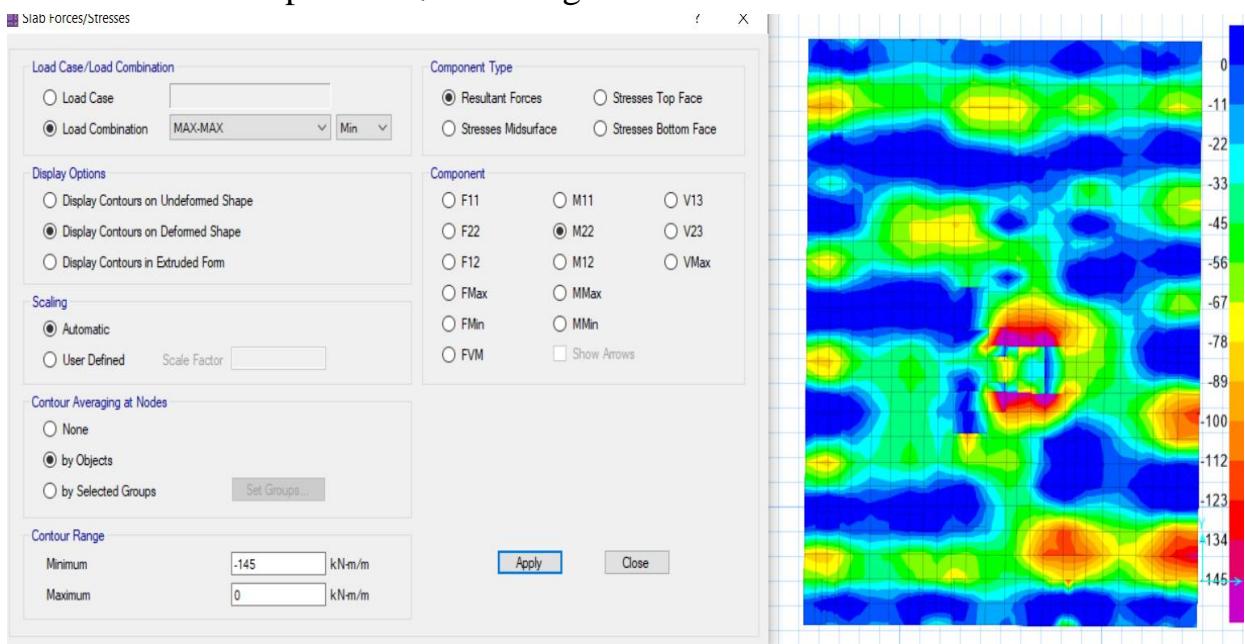


Figure 7.20: reinforcement Steel in Y axis at the Negative moment

⇒ So, the top reinforcement is:
 $5\phi 16 \Rightarrow \phi 16$ at 200 mm
 In X & Y direction (like a mesh).

☒ Design of positive moment (Bottom reinforcement)

➤ Let's start with 5 $\phi 16$ as the reinforcement of top

✓ Try 5 $\phi 16$:

$$As_{16} = 199$$

$$As = \frac{M_u}{0.9*F_y*J_d} \Rightarrow 0.995 = \frac{M_u}{0.9*420*0.9*0.43}$$

$$M_u = 145 \text{ Kn.m}$$

X-direction:

From the picture $5\text{Ø}16$ is enough

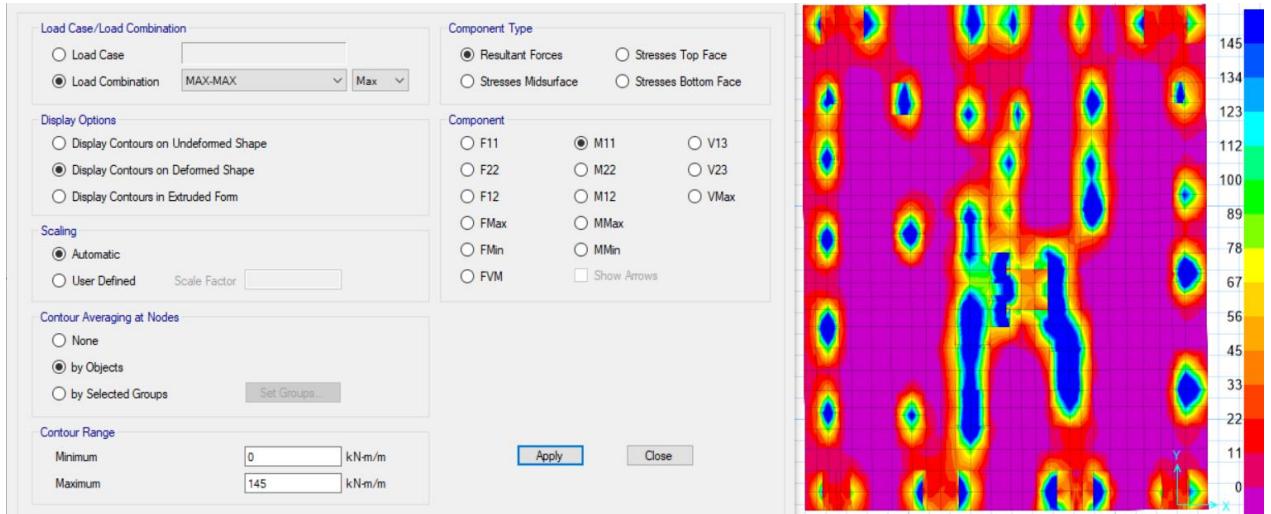


Figure 7.21: reinforcement Steel in X axis at the Positive moment

Y-direction

From the picture $5\text{Ø}16$ enough

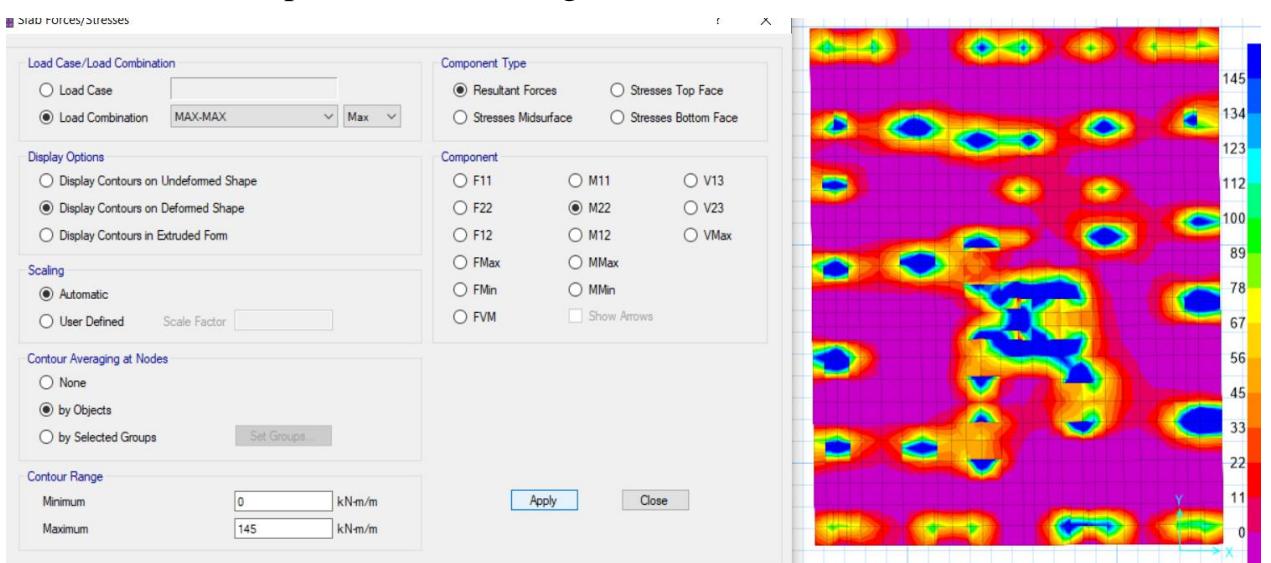


Figure 7.22: reinforcement Steel in Y axis at the Positive moment

⇒ So, the bottom reinforcement is:

$5\text{Ø}16 \Rightarrow \text{Ø}16$ at 200 mm

In X & Y direction (like a mesh).

☒ Design of positive moment (Under columns)

- There is a high value of positive moment under columns so we need to increase the number of steel bars or use another one with a larger diameter.
- After many iteration lets try 5 Ø22

A_s
✓ Try 5 Ø 22:

$$A_{s22} = 387$$

So, use 5Ø 22 $\Rightarrow A_s = 1935 \text{ mm}^2$

$$A_s = \frac{M_u}{0.9*F_y*J_d} \Rightarrow 1.935 = \frac{M_u}{0.9*420*0.9*0.43}$$

$$M_u = 280 \text{ Kn.m}$$

X-direction:

From the picture 5Ø22 is enough

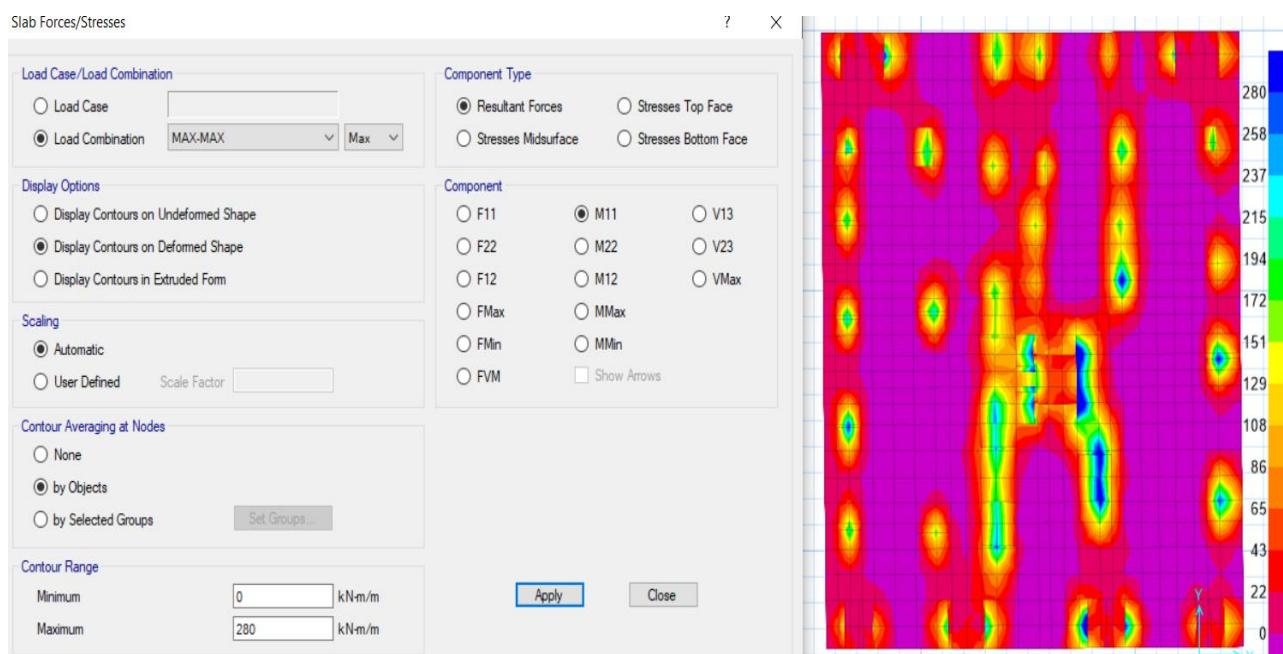


Figure 7.23: reinforcement Steel in X axis at the Positive moment (Under columns)

Y-direction

From the picture $5\phi 22$ enough

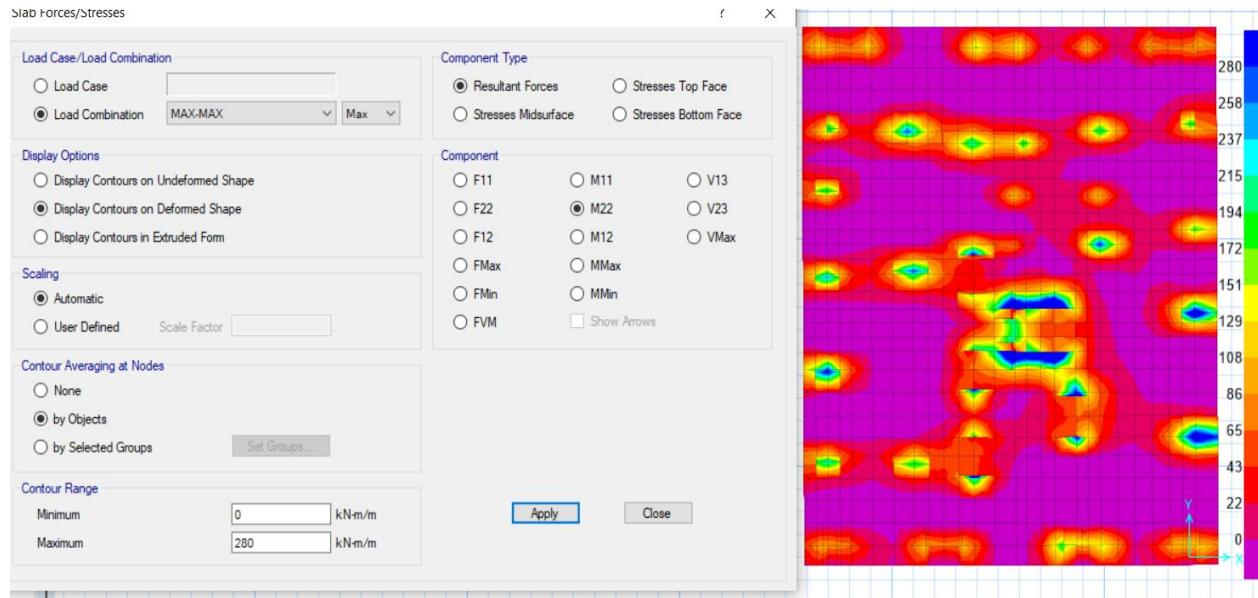


Figure 7.24: reinforcement Steel in Y axis at the Positive moment (Under columns)

⇒ So, the reinforcement under columns is:

$5\phi 22 \Rightarrow \phi 22$ at 200 mm

In X & Y direction (like a mesh).

⇒Check S_{max}

$$S_{max} = \text{smaller of } \begin{cases} 2h = 2 * 500 = 1000 \text{ mm} \\ 500 \text{ mm } \textcolor{red}{Control} \end{cases}$$

actual spacing for 5 bar = 20 cm < 50 cm (OK)

⇒Check S_{min}

$$S_{min} = \max \text{ of } \begin{cases} \text{Bar diameter} = 16 \text{ mm, } 22 \text{ mm} \\ 25 \text{ mm} = 25 \text{ mm } \textcolor{red}{Control} \\ \text{diameter of vibrator (unknown)} \\ 1.33 \text{ max C.A size (unknown)} \end{cases}$$

Actual spacing for 5 bars = 200mm > 25mm (OK)

⇒Check As_{max}

$$As_{max} = 0.319 \beta \frac{f'c}{Fy} bd = 5317 \text{ mm}^2$$

For 5 Φ 16

$$A_s = 565 \text{ mm}^2 < 5317 \text{ mm}^2 \text{ (OK)}$$

For 5 Φ 22

$$A_s = 1935 \text{ mm}^2 < 5317 \text{ mm}^2 \text{ (OK)}$$

➤ Therefore, and because all the checks are now OK and as we said previously that there is a bended

Cover = 7cm (top & bottom)

Length of bend:

$$50 - 2*7 = 36 \text{ cm}$$

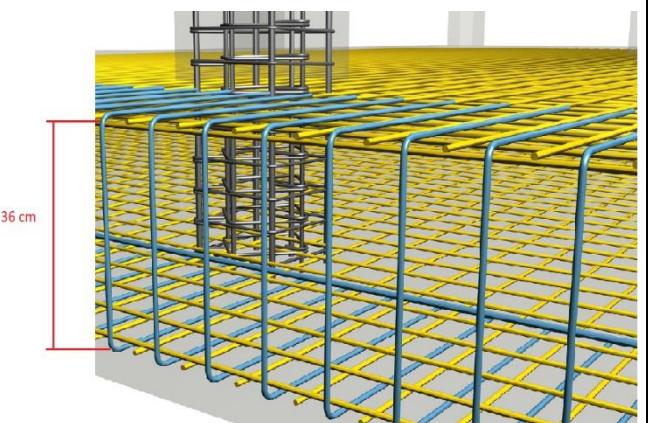


Figure 7.25: Length of bend steel in the foundation

☒ Summary of reinforcement (Positive & negative)

Table 7.1: Summary of reinforcement (Positive & negative)

	Design	X-direction		Y-direction	
		Positive steel	Negative steel	Positive steel	Negative steel
Steel	Foundation	5 Φ 16	5 Φ 16	5 Φ 16	5 Φ 16
	Columns	5 Φ 22	5 Φ 12	5 Φ 22	5 Φ 12

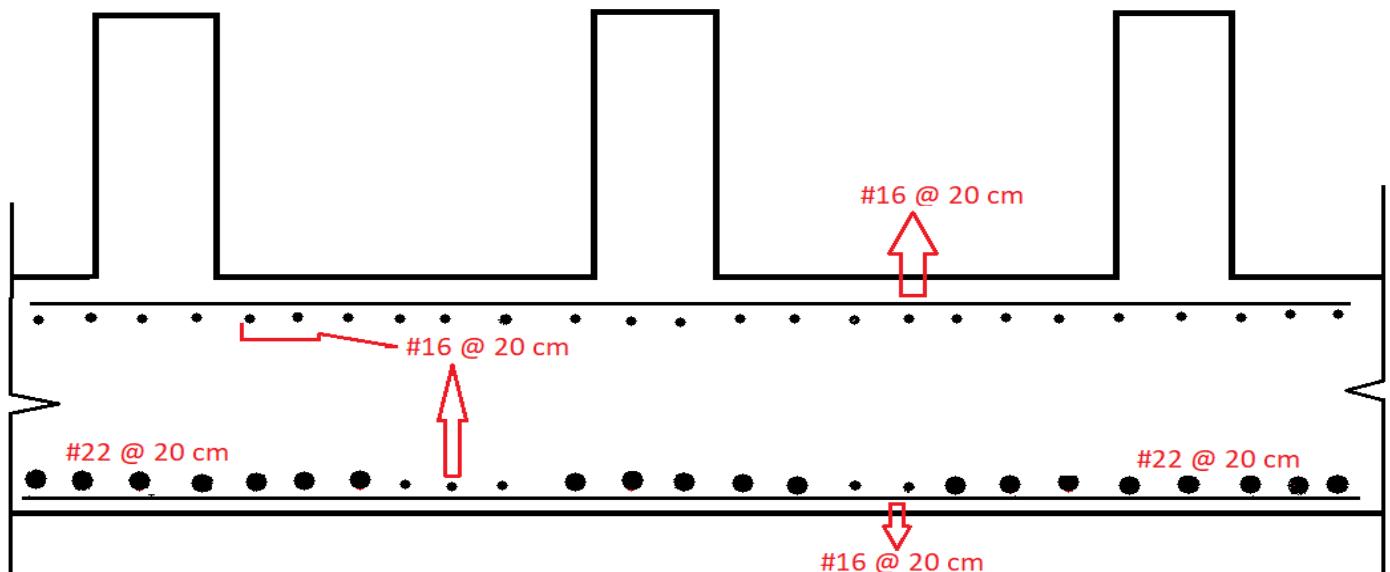


Figure 7.26: Summary of reinforcement (Positive & negative)

Chapter 8: Staircase

Stairs are constructed to provide access to different floor levels within buildings. They consist of several steps arranged in series. Most of stairs are designed as simply supported one-way solid slab.

The definition of some technical terms which are used in connection with the planning and design of stairs are shown in Figure

1. **Waist (h):** The thickness of the stair slab.
2. **Go (G):** The horizontal distance of the step.
3. **Rise (R):** The vertical distance between two consecutive horizontal steps.
4. **Landing:** The horizontal platform which is usually provided at the beginning and the end of the series of steps.
5. **Flight:** The vertical distance between two consecutive landing.

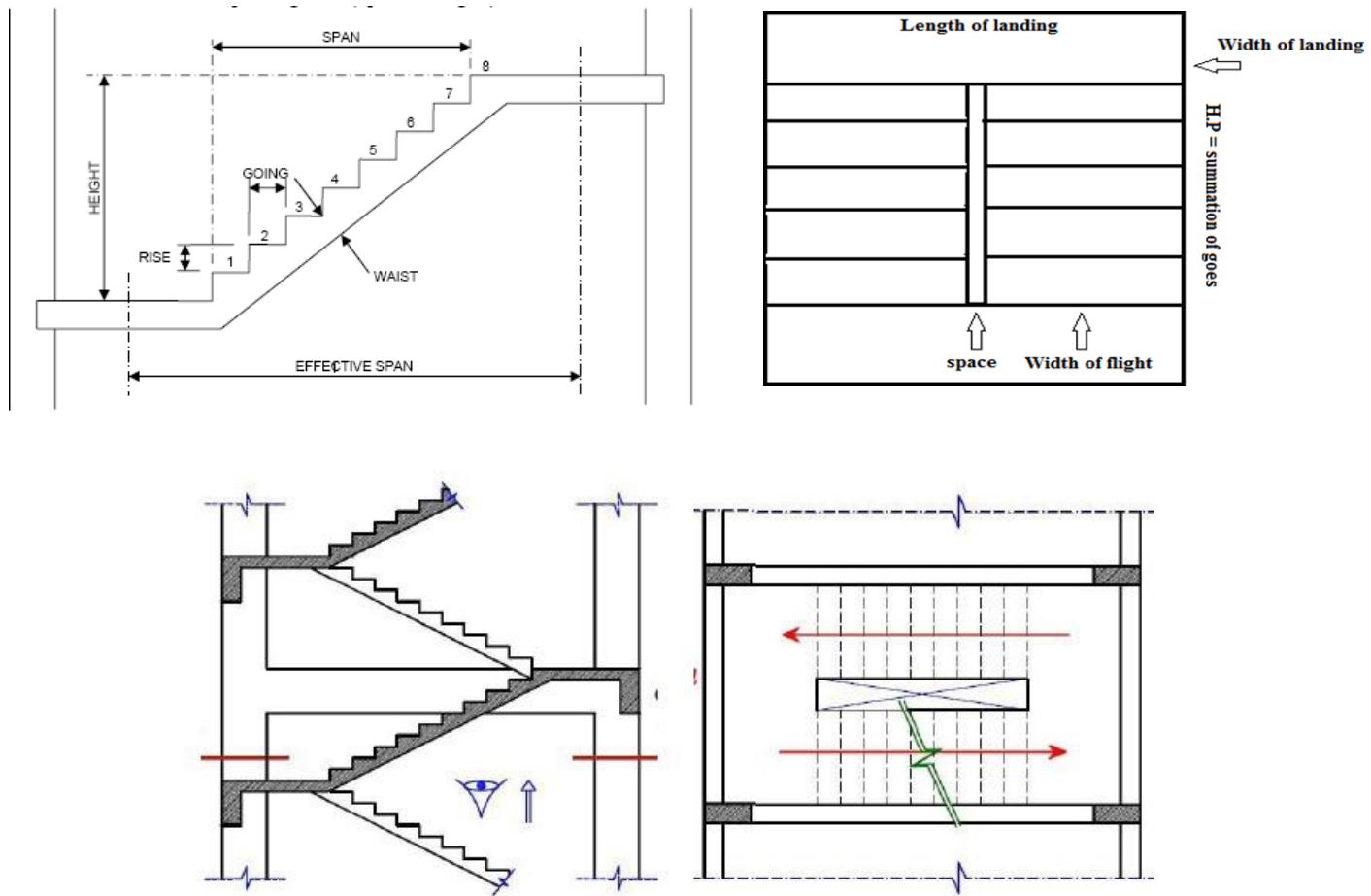


Figure8.1: some technical terms which are used in connection with the planning and design of stairs

8.1 Stair Design Procedure

The Stairway is designed by dividing it into 3 parts:(Flight and two Landings).

The Flight is simply supported while the Landings are Simply supported on beam.

Design of Flight and landing:

- Calculating (W_u) then (M_u) then get (R_n) and (ρ).
- Check if ($\rho_{min} < \rho < \rho_{max}$)
- Find ($A_s = \rho * b * d$)
- For other direction, use (Temperature and Shrinkage Steel Reinforcement, $A_s = 0.0018 * b * h$).

The following details will be used in the design:

- Goes length must be (27-30 cm), we take goes in all structure floors = 30cm.
- Rise height must be (15-17 cm), we take rises in all structure floors = 15cm.

⇒ In our project we have three different high typical stair 3.4m, roof stair 4m, and base floor stair 5.35m

In this section, we will show detailed calculation for roof floor stair

1. Dimension:

- **From architectural drawing, we got the stair component:**
 - Height of the floor = 4m.
 - Take Rise = 15 cm.
 - Take Go = 30 cm.
 - length of the landing = 2.7 m
 - Number of rises = $\frac{4}{0.15} = 27 \Rightarrow 14 \leq 14 \text{ OK}, 13 < 14 \text{ OK}$,
So use two flights, first flight has 14 rises and the second one has 13 rises.
 - Number of Go's = Number of rises - 1 = 14 - 1 = 13.
 - Horizontal Projection of each flight (H.P) = $13 \times 0.3 = 3.9$ m.
 - Space between two flight = 0.1m.
 - Length of the step = $\frac{2.7 - 0.1}{2} = 1.3$ m
 - Width of the landing = at least length of one step = 1.3 m.

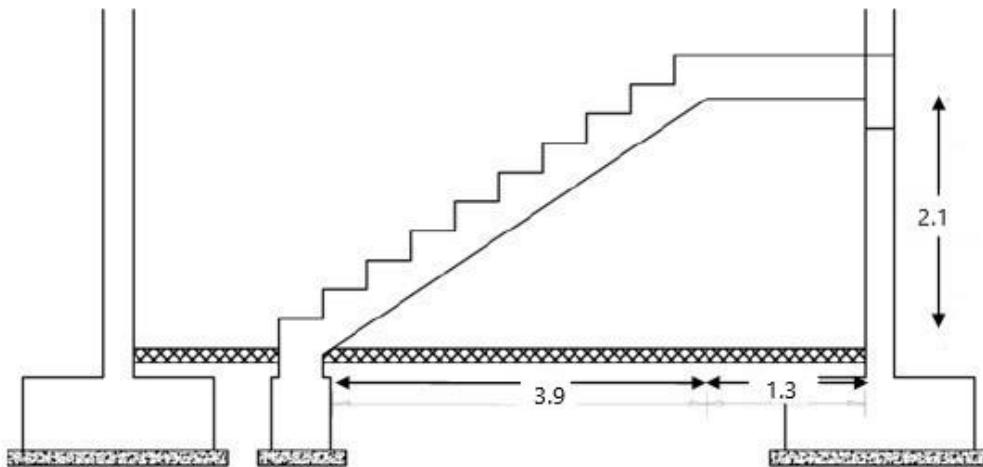


Figure 8.2: roof stair section

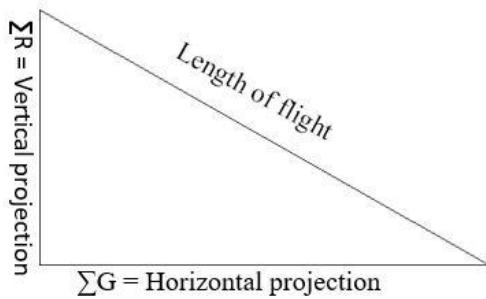


Figure 8.3: detailed stair section 1

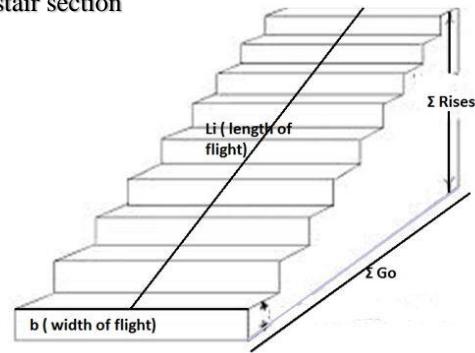


Figure 8.4: detailed stair section 2

- Length of flight = $\sqrt{3.9^2 + 2.1^2} = 4.43\text{m}$
- Thickness of stair:

For control the deflection (h). Using ACI Code Deflection Conditions.

Table 8.1: minimum thickness of solid one way slab, beams and ribbed slab

Member	Minimum Thickness h			
	Simply Supported	One End Continuous	Both Ends Continuous	Cantilever
Members Not Supporting or Attached to Partitions or Other Construction Likely to Be Damaged by Large Deflections				
Solid one-way slabs	$l/20$	$l/24$	$l/28$	$l/10$
Beams or ribbed one-way slabs	$l/16$	$l/18.5$	$l/21$	$l/8$

$$L_{min} = \frac{L}{24} = \frac{4430}{24} = 184.58 \text{ mm} \dots \text{Use } L_{min} = 0.185\text{m} \Rightarrow \text{thickness} = 0.185\text{m} = 185\text{mm}$$

Thickness of landing = thickness of stair = 185mm

8.2 Loads

✳ Load calculation:

* Load on the stair slab:

$$\text{- own weight of steps} = \frac{0.15 \times 0.3 \times 24 \times 14}{2} = 7.56 \text{KN/m}^2$$

- Finishing:

$$\text{Tiles} = \frac{30\text{mm}}{10\text{mm}} * 20 * 14 * \frac{1}{1000} = 0.84 \text{ KN/m}^2$$

$$\text{Cement mortar} = 0.03 \times 21 \times 1 = 0.63 \text{ KN/m}^2$$

$$\text{Plaster} = \frac{20\text{mm}}{10\text{mm}} * 21 * 14 * \frac{1}{1000} = 0.588 \text{ KN/m}^2$$

$$\Sigma \text{ DL} = 9.618 \text{ KN/m}^2$$

Σ LL= 3 KN/m² (Jordanian code)

- Design load:

$$W_s = 1.2 \text{DL} + 1.6 \text{ LL} = 16.342 \text{ KN/m}^2$$

* Load on stair landing:

$$\text{-own weight of landing} = 0.19 \times 24 = 4.56 \text{ kN/m}^2$$

- Additional load from flight = $\frac{36.2}{4.43} = 8.172 \text{ kN/m}^2$

- Finishing:

Tiles= 0.84 KN/m²

Cement mortar= 0.63 kN/m²

Plaster = 0.588 KN/m^2

$$\Sigma \text{DI} = 14.79 \text{ KN/m}^2$$

$$\Sigma L = 3KN/m^2 \text{ (Jordanian)}$$

code)

- Design load-

$$W_u = 1.2DL + 1.6 LL = 22.55 \text{ kN/m}^2$$

Table 8.2: Live Load from Jordanian code

الجدول (١-٣-ب) الأعمال الحية للأرضيات والعقدات

نوع المبني	الاستعمال	المعنى	المعنى
ع. م	خاص	الاشهاد	الماء
الماء	المعنى	المعنى	الماء
النماذج الخاصة والسكنية.	النوع الأول :	مباني الشقق السكنية التي لا يزيد ارتفاعها عن ثلاثة طوابق ولا يزيد عدد الشقق التي يمكن الوصول إليها من خلال درج مشترك عن أربع شقق المطابق الواحد.	جميع الغرف بما في ذلك غرف النوم والملحق بابغ وغرف الغسيل وما شابه ذلك (All Usages).
1.4	2.0		غرف النوم.
1.8	2.0		الحمامات.
-	2.0		الطعام وردهات الاستراحة والبلياردو.
2.7	2.0		المرeras وللداخل والأدراج و .. . سطات الأدراج وللمرeras المرتفعة الموصى به بين المباني.
4.5	3.0	المرeras وللداخل والأدراج و .. . سطات الأدراج وللمرeras المرتفعة الموصى به بين المباني.	المطابق وغرف الغسيل.
4.5	3.0		

8.3 Analysis and Reinforcements Design

* Stair Flight Analysis and Design:

$$M_u = \frac{W_u * L^2}{8} = \frac{16.342 * 4.43^2}{8} = 40.10 \text{ kN.m}$$

$$V_u = \frac{W_u * L}{2} = \frac{16.342 * 4.43}{2} = 36.20 \text{ kN}$$

* Design for main reinforcement

$$M_u = 40.10 \text{ kN.m}$$

$$b=1\text{m} = 1000\text{mm}$$

$$d = h - \text{cover} = 185 - 30 = 155\text{mm}$$

$$R_n = \frac{M_u}{\Phi * b * d^2} = \frac{40.10 * 10^6}{0.9 * 1000 * 155^2} = 1.85$$

Percentage of required tension reinforcement:

$$\rho = 0.85 * \frac{\sqrt{f'_c}}{f_y} \left(1 - \sqrt{1 - \frac{2.36 * R_n}{f'_c}} \right)$$

$$\rho = 0.85 * \frac{\sqrt{28}}{420} \left(1 - \sqrt{1 - \frac{2.36 * 1.85}{28}} \right) = 0.0009$$

$$\rho_{min} = \frac{0.25 * \sqrt{f'_c}}{f_y} > \frac{1.4}{f_y} = 0.00315 > 0.0033 \Rightarrow \rho_{min} = 0.0033$$

$$\rho_{max} = 0.85 * \beta * \frac{f'_c * \zeta}{f_y (\zeta + 0.005)} = 0.85 * 0.85 * \frac{28}{420} * \frac{0.003}{0.003 + 0.005} = 0.018$$

$$\rho < \rho_{min} < \rho_{max} \Rightarrow 0.0009 < 0.0033 < 0.018 \Rightarrow \text{use } \rho = 0.0033$$

$$As = \rho * b * d = 0.0033 * 1000 * 155 = 511.5 \text{ mm}^2$$

$$As_{min} = 0.0018 * b * h = 0.0018 * 1000 * 185 = 333 \text{ mm}^2$$

$$As > As_{min} \Rightarrow \text{OK}$$

Use ((φ16@150mm))

$$S_{max} = 3h = 555\text{mm} > S = 150 \text{ mm } ((\text{OK}))$$

* **Check Shear:**

$$\phi V_c = \phi * \frac{f'_c}{6} * b * d = 0.75 * \frac{28}{6} * 1000 * 155 = 54.25 \text{ kN}$$

$$\phi V_c > V_u \Rightarrow 54.25 > 36.2 \text{ ((OK))}$$

* **Landing Analysis and Design:**

$$-M_u = \frac{W_u * L^2}{12} = \frac{22.55 * 2.7^2}{12} = 13.7 \text{ kN.m}$$

$$+M_u = \frac{W_u * L}{24} = \frac{22.55 * 2.7^2}{24} = 6.85 \text{ kN.m}$$

$$V_u = \frac{W_u * L}{2} = \frac{22.55 * 2.7}{2} = 30.44 \text{ kN}$$

* **Design for main reinforcement**

- Negative moment:

$$M_u = 13.7 \text{ kN.m}$$

$$b=1 \text{ m} = 1000 \text{ mm}$$

$$d = h - \text{cover} = 185 - 30 = 155 \text{ mm}$$

$$R_n = \frac{M_u}{\phi * b * d^2} = \frac{13.7 * 10^6}{0.9 * 1000 * 155^2} = 0.634$$

Percentage of required tension reinforcement:

$$\rho = 0.85 * \frac{\sqrt{f'_c}}{f_y} \left(1 - \sqrt{1 - \frac{2.36 * R_n}{f'_c}} \right)$$

$$\rho = 0.85 * \frac{\sqrt{28}}{420} \left(1 - \sqrt{1 - \frac{2.36 * 0.634}{28}} \right) = 0.00029$$

$$\rho_{min} = \frac{0.25 * \sqrt{f'_c}}{f_y} > \frac{1.4}{f_y} = 0.00315 < 0.0033 \Rightarrow \rho_{min} = 0.0033$$

$$\rho_{max} = 0.85 * \beta * \frac{f'_c * \zeta}{f_y * (\zeta + 0.005)} = 0.85 * 0.85 * \frac{28}{420} * \frac{0.003}{0.003 + 0.005} = 0.018$$

$$\rho < \rho_{min} < \rho_{max} \Rightarrow 0.00029 < 0.0033 < 0.018 \Rightarrow \text{use } \rho = 0.0033$$

$$As = \rho * b * d = 0.0033 * 1000 * 155 = 511.5 \text{ mm}^2$$

$$As_{min} = 0.0018 * b * h = 0.0018 * 1000 * 185 = 333 \text{ mm}^2$$

$$As > As_{min} \Rightarrow \text{OK}$$

Use ((φ16@150mm))

$S_{max}=3h= 555\text{mm} > S=150 \text{ mm } ((\text{OK}))$

- Positive moment:

$$M_u = 6.85 \text{ kN.m}$$

$$b=1\text{m} = 1000\text{mm}$$

$$d = h - cover = 185 - 30 = 155\text{mm}$$

$$R_n = \frac{M_u}{\Phi * b * d^2} = \frac{6.85 * 10^6}{0.9 * 1000 * 155^2} = 0.318$$

Percentage of required tension reinforcement:

$$\rho = 0.85 * \frac{\sqrt{f'_c}}{f_y} \left(1 - \sqrt{1 - \frac{2.36 * R_n}{f'_c}} \right)$$

$$\rho = 0.85 * \frac{\sqrt{28}}{420} \left(1 - \sqrt{1 - \frac{2.36 * 0.318}{28}} \right) = 0.00014$$

$$\rho_{min} = \frac{0.25 * \sqrt{f'_c}}{f_y} > \frac{1.4}{f_y} = 0.00315 < 0.0033 \Rightarrow \rho_{min} = 0.0033$$

$$\rho_{max} = 0.85 * \beta * \frac{f'_c * \zeta}{f_y (\zeta + 0.005)} = 0.85 * 0.85 * \frac{28}{420} * \frac{0.003}{0.003 + 0.005} = 0.018$$

$$\rho < \rho_{min} < \rho_{max} \Rightarrow 0.00014 < 0.0033 < 0.018 \Rightarrow \text{use } \rho = 0.0033$$

$$As = \rho * b * d = 0.0033 * 1000 * 155 = 511.5 \text{ mm}^2$$

$$As_{min} = 0.0018 * b * h = 0.0018 * 1000 * 185 = 333 \text{ mm}^2$$

$$As > As_{min} \Rightarrow \text{OK}$$

Use ((φ16@150mm))

$S_{max}=3h= 555\text{mm} > S=150 \text{ mm } ((\text{OK}))$

* Additional reinforcement for Stair:

- Provide steel for shrinkage and temperature:

$$As = 0.0018 * b * h = 0.0018 \times 1000 \times 185 = 333 \text{ mm}^2$$

Use (($\phi 10$ @200mm))

$$S_{max} = 3h = 555 \text{ mm} > S = 150 \text{ mm } ((\text{OK}))$$

- Provide steel for step reinforcement (anti crack):

Use (($\phi 8$ @150mm)) in both direction

$$S_{max} = 3h = 555 \text{ mm} > S = 150 \text{ mm } ((\text{OK}))$$

And **Use (($\phi 8$ @ each step))**

* Beam with stair Design:

We use Prokon to design this beam

✓ Deflection:

Using ACI-Code, Table 9.5 (b) \rightarrow Case 4.

$$\text{Permissible deflection} = \frac{2.3}{240} = 0.96 \text{ cm}$$

Actual deflection = 0.069 cm < 0.96 (okay)

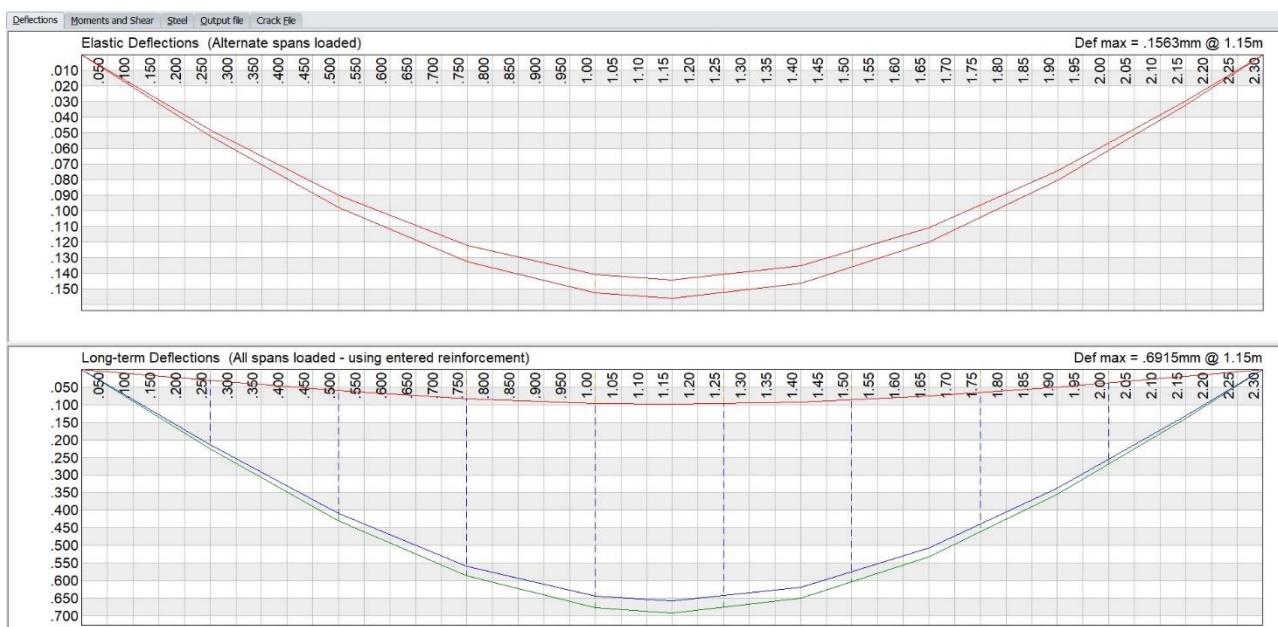


Figure 8.5: Prokon Deflection in stair beam

✓ Load value:

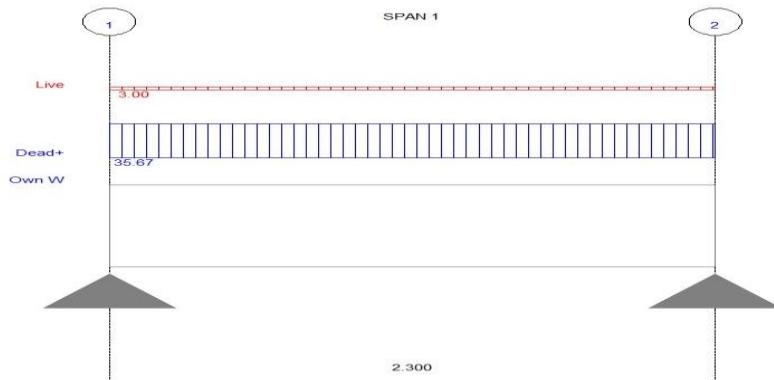


Figure 8.6: Prokon load value in stair beam

Moment & Shear value

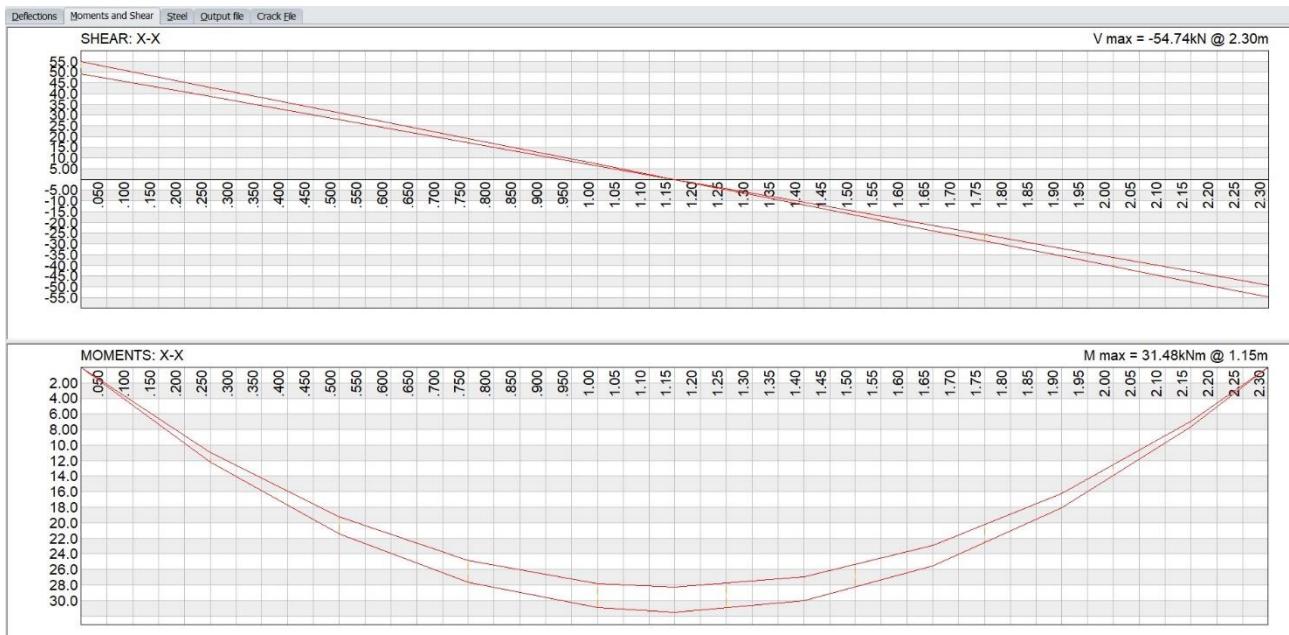


Figure 8.7: Prokon moment and shear in stair beam

✓ Reinforcement (Moment):



Figure 8.8: Prokon reinforcement moment in stair beam

✓ Reinforcement (Shear):

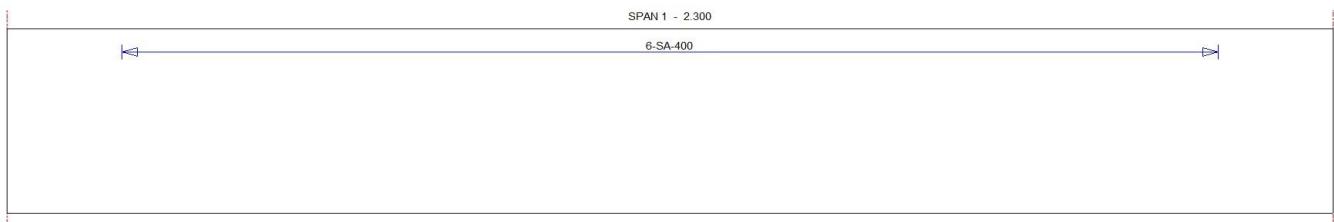


Figure 8.9: Prokon reinforcement Shear in stair beam

✓ Section of Stair Beam:

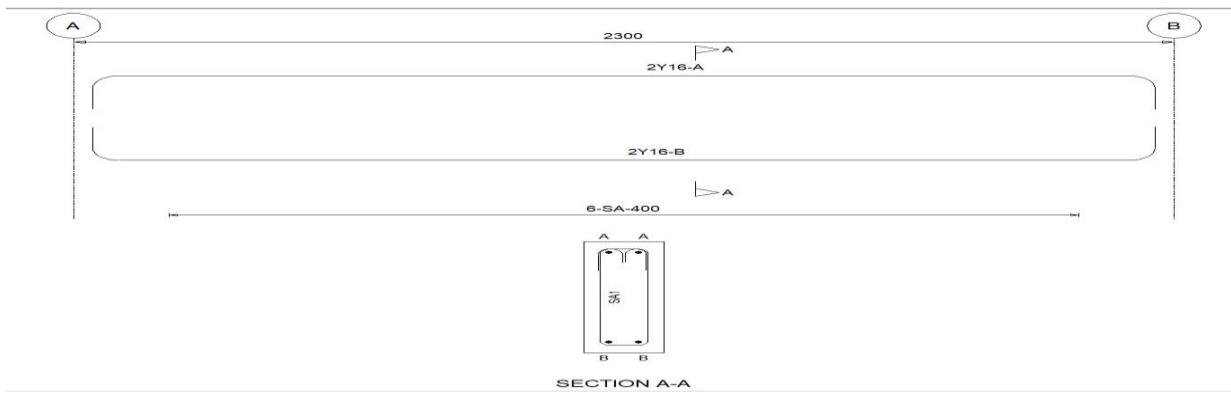


Figure 8.10: Section of Stair beam

First floor detailed

The height of the first floor is 6m, Height of the stair = 5.35m.

$$\text{Number of rises} = \frac{5.35 - (0.185 + 0.2 + 0.2 + 0.2)}{0.15} = 31 \Rightarrow 16 > 14 \text{ not OK.}$$

so, we use three flights, first flight has 3 rises, the second one has 14 rises and the third one has 14 rises.

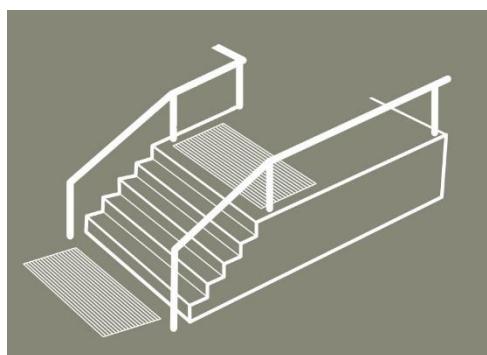


Figure 8.11: entrance stairs

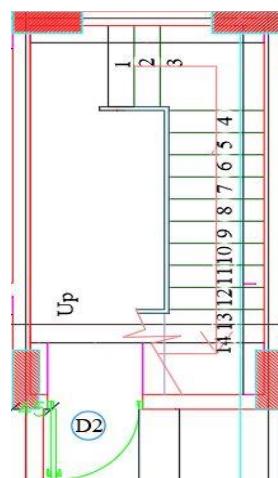


Figure 8.12: autocad Clarification for first flight in first floor stairs

Table 8.3: Summary of reinforcement

Floor Name	Height (m)	No of rises in first flight	No of rises in Second flight	No of rises in third flight	Main reinforcement	Landing negative moment reinforcement	Landing positive moment reinforcement	Additional reinforcement
First Floor	5.35	3	14	14	$\phi 16 @ 150 \text{mm}$	$\phi 16 @ 150 \text{mm}$	$\phi 16 @ 150 \text{mm}$	$\phi 10 @ 200 \text{mm}$ $\phi 8 @ 150 \text{mm}$ $\phi 8 @ \text{step}$
Typical	3.4	11	11	—	$\phi 16 @ 150 \text{mm}$	$\phi 16 @ 150 \text{mm}$	$\phi 16 @ 150 \text{mm}$	$\phi 10 @ 200 \text{mm}$ $\phi 8 @ 150 \text{mm}$ $\phi 8 @ \text{step}$
Roof	4	14	13	—	$\phi 16 @ 150 \text{mm}$	$\phi 16 @ 150 \text{mm}$	$\phi 16 @ 150 \text{mm}$	$\phi 10 @ 200 \text{mm}$ $\phi 8 @ 150 \text{mm}$ $\phi 8 @ \text{step}$
Entrance	0.45	3	—	—	$\phi 16 @ 150 \text{mm}$	$\phi 16 @ 150 \text{mm}$	$\phi 16 @ 150 \text{mm}$	$\phi 10 @ 200 \text{mm}$ $\phi 8 @ 150 \text{mm}$ $\phi 8 @ \text{step}$

* Roof cross section for Stairs:

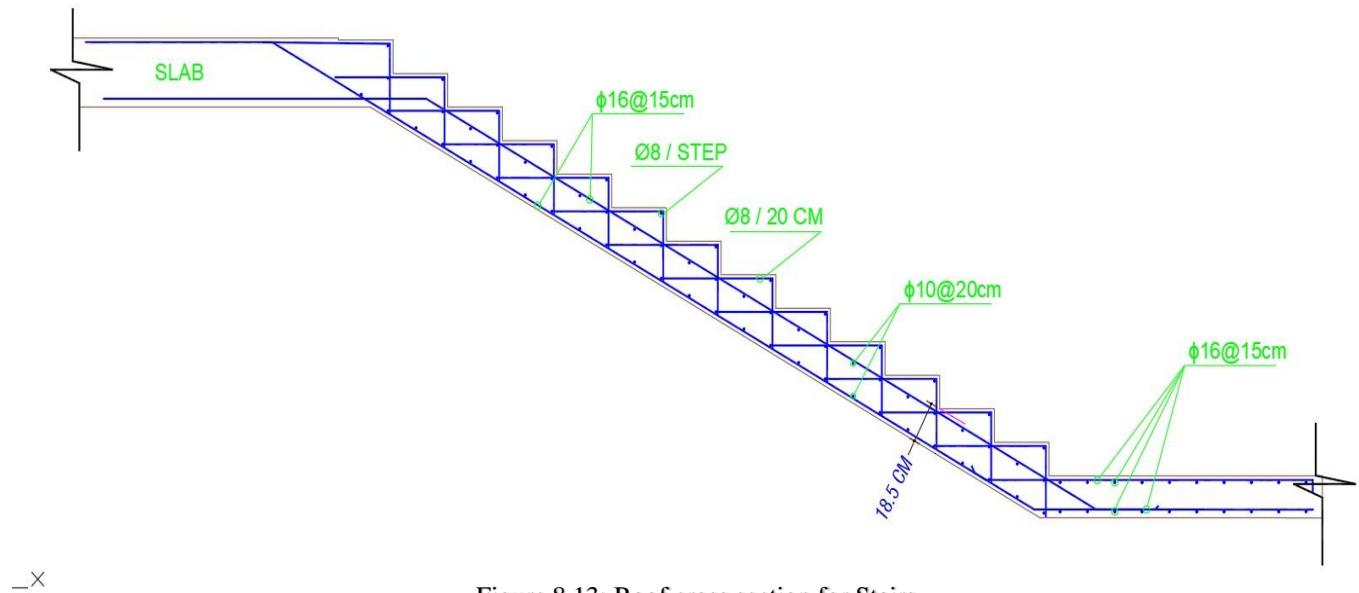


Figure 8.13: Roof cross section for Stairs

Chapter 9: QUANTITY SURVEY AND COST ESTIMATE

Quantity survey is essential to estimate before the construction starts the probable cost of construction for the complete work. The estimate is required in inviting tenders for the works and to arrange contract for a complete project.

Quantity survey is required to estimate the quantities of the various materials required and the labor involved for satisfactory completion of a construction project.

We use (Unit weight of standard reinforcing steel bars) table to determine weight of rebar in ton.

Table 9.1: Unit weight of standard reinforcing steel bars

Diameter (mm)	Cross Sectional Area (m ²)	Mass Per Meter (kg/m)	Mass Per 12 Meter (kg/12m)
6	28.3	0.222	2.664
9	63.6	0.499	5.988
10	78.5	0.616	7.392
12	113.1	0.888	10.656
13	132.7	1.042	12.504
14	153.9	1.208	14.496
16	201.1	1.579	18.948
18	254.5	1.998	23.976
20	314.2	2.466	29.592
22	380.1	2.984	35.808
25	490.9	3.854	46.248
28	615.8	4.834	53.008
32	804.2	6.313	75.755
35	962.1	7.553	90.636
38	1134.1	8.903	106.836

Prices applied are given by local suppliers

▲ CONCRETE

Table 9.2: Offer prices of Concrete by local suppliers

F'c , Supplier	Kingdom Concrete	Nuqlu Concrete	ARMCOO
28 MPa	52 JOD/ m^3	54 JOD/ m^3	53 JOD/ m^3
30 MPa	53 JOD/ m^3	56 JOD/ m^3	57 JOD/ m^3

Based on the prices provided for the project, we choose Kingdom Concrete As a Ready Mixed Concrete Supplier.

▲ REBAR

Table 9.3: Offer prices of Rebar by local suppliers

Φ , Supplier	Eamar Jordan for steel	Ali abu Shamaa steel and cement Est	Emirates Jordanian Company for steel
Φ8	630 JOD/ton	690 JOD/ton	610 JOD/ton
Φ10	620 JOD/ton	640 JOD/ton	618 JOD/ton
Φ12	600 JOD/ton	620 JOD/ton	590 JOD/ton
Φ14	600 JOD/ton	620 JOD/ton	590 JOD/ton
Φ16	600 JOD/ton	620 JOD/ton	590 JOD/ton
Φ18	600 JOD/ton	620 JOD/ton	590 JOD/ton
Φ20	600 JOD/ton	620 JOD/ton	590 JOD/ton
Φ22	600 JOD/ton	620 JOD/ton	590 JOD/ton
Φ25	600 JOD/ton	620 JOD/ton	600 JOD/ton

Based on the prices provided for the project, we choose Emirates Jordanian Company for steel as a Rebar Supplier.

9.1 Quantities and Costs of Beams

In this section, we will calculate the Quantities and Cost of Concrete and Rebar, that used in Beams.

Figure 9.1: Detailed of ground tie beams

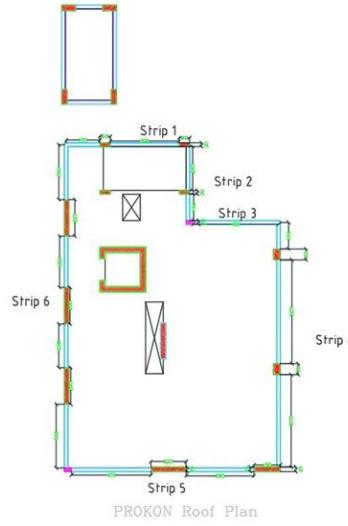


Figure 9.2: Detailed of roof beams

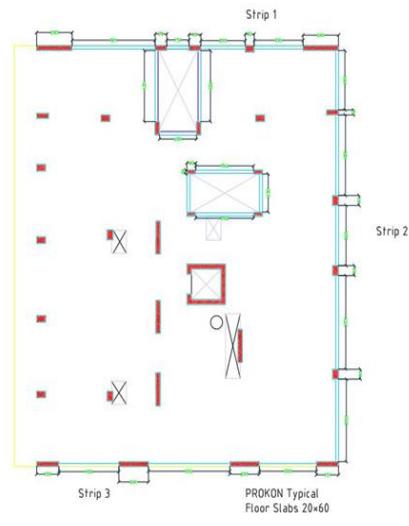


Figure 9.3: Detailed of typical beams

all beams in the project have same dimension and have same section of Stirrups

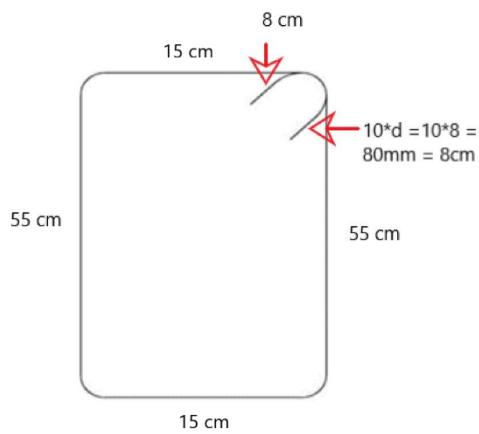


Figure 4: beams dimension and section of stirrups in beams

※ Quantity and cost of Rebar and Stirrups:

Table 9.4: Quantity and cost of Rebar for beams

Location	d(mm)	Number	Wt/m(kg/m)	Length (m)	Total weight (kg)
TYPICAL					
Strip 1	12	2	0.888	6.5	11.5
Strip 1	16	2	1.579	7.5	23.69
Strip 1	16	2	1.579	4.5	14.2
Strip 1	12	1	0.888	1.9	1.69
Strip 1	16	2	1.579	3.3	10.42
Strip 1	16	3	1.579	2.1	6.632
Strip 1	12	2	0.888	11	19.54
Strip 1	12	2	0.888	10	17.76
Strip 1	12	2	0.888	1.5	2.66
Strip 1	16	1	1.579	3	4.74
NUMBER OF STIRRUPS = 47					
Strip 2	12	2	0.888	9.5	30
Strip 2	12	2	0.888	10	17.76
Strip 2	12	4	0.888	1.5	5.33
Strip 2	12	1	0.888	2.5	2.22
Strip 2	12	2	0.888	11	19.54
Strip 2	12	5	0.888	3.5	15.54
Strip 2	16	2	1.579	2.1	6.63
Strip 2	16	3	1.579	2	9.47
Strip 2	12	2	0.888	5.5	9.77
Strip 2	16	2	1.579	2.6	8.21
Strip 2	12	2	0.888	6	10.66
Strip 2	12	2	0.888	5	8.88
Strip 2	16	1	1.579	3	4.74
NUMBER OF STIRRUPS = 62					
Strip 3	12	4	0.888	5	17.76
Strip 3	12	6	0.888	6	31.97

Strip 3	12	2	0.888	3.1	5.51
Strip 3	16	2	1.579	3.2	10.11
Strip 3	16	6	1.579	2	18.95
Strip 3	12	2	0.888	8	14.21
Strip 3	16	2	1.579	5	15.79
Strip 3	12	1	0.888	2	1.78
Strip 3	16	2	1.579	3.5	11.053
Strip 3	16	1	1.579	3.1	4.89
NUMBER OF STIRRUPS = 52					
ROOF					
Strip 1	12	4	0.888	6.5	23.088
Strip 1	12	2	0.888	1.5	2.66
Strip 1	12	1	0.888	2.5	2.22
NUMBER OF STIRRUPS = 16					
Strip 2	12	4	0.888	4.1	14.56
NUMBER OF STIRRUPS = 10					
Strip 3	12	4	0.888	5	17.76
Strip 3	16	1	1.579	3.1	4.89
NUMBER OF STIRRUPS = 13					
Strip 4	12	2	0.888	7.5	13.32
Strip 4	12	2	0.888	8.1	14.36
Strip 4	12	2	0.888	1.5	2.66
Strip 4	16	1	1.579	3.5	5.53
Strip 4	16	2	1.579	2.5	7.89
Strip 4	16	1	1.579	2	3.16
Strip 4	12	2	0.888	5.6	9.95
Strip 4	12	2	0.888	5	8.88
Strip 4	16	1	1.579	3.1	4.89
NUMBER OF STIRRUPS = 34					
Strip 5	12	4	0.888	5	17.76
Strip 5	12	4	0.888	6	21.31
Strip 5	16	1	1.579	3.5	5.53

Strip 5	16	2	1.579	3	4.74
Strip 5	16	2	1.579	2	6.32
Strip 5	12	2	0.888	3.5	6.22
NUMBER OF STIRRUPS =28					
Strip 6	12	6	0.888	9	47.95
Strip 6	12	2	0.888	9.5	16.87
Strip 6	12	4	0.888	1.5	5.33
Strip 6	12	1	0.888	2.1	1.86
NUMBER OF STIRRUPS =44					
STAIRS BEAMS					
Strip 1	16	4	1.579	2.3	14.53
NUMBER OF STIRRUPS =6					
Strip 2	12	2	0.888	5.2	9.24
Strip 2	16	2	1.579	5.2	16.42
Strip 2	12	1	0.888	4	3.55
Strip 2	16	1	1.579	3.5	5.53
NUMBER OF STIRRUPS =13					
Strip 3	16	4	1.579	2.3	14.53
NUMBER OF STIRRUPS =6					
Strip 4	12	2	0.888	5.2	9.24
Strip 4	16	2	1.579	5.2	16.42
Strip 4	12	1	0.888	4	3.55
Strip 4	16	1	1.579	3.5	5.53
NUMBER OF STIRRUPS =13					
GROUND TIE BEAMS					
Strip 1	12	2	0.888	8	14.21
Strip 1	12	2	0.888	9.5	16.87
Strip 1	12	2	0.888	4.6	8.17
Strip 1	12	2	0.888	9.7	17.23
Strip 1	12	2	0.888	4.8	8.52
Strip 1	16	2	1.579	8	25.26
Strip 1	16	2	1.579	9.5	30

Strip 1	16	2	1.579	9.7	30.63
NUMBER OF STIRRUPS = 70					
Strip 2	16	2	1.579	8	25.26
Strip 2	16	2	1.579	9.5	30
Strip 2	16	2	1.579	9.7	30.63
Strip 2	12	2	0.888	8	14.21
Strip 2	12	2	0.888	9.5	16.87
Strip 2	12	2	0.888	4.6	8.17
Strip 2	12	2	0.888	9.7	17.23
Strip 2	12	2	0.888	4.8	8.52
NUMBER OF STIRRUPS = 54					
Strip 3	16	2	1.579	7	22.11
Strip 3	16	2	1.579	6.5	20.53
Strip 3	16	2	1.579	5	15.79
Strip 3	12	2	0.888	9	15.98
Strip 3	12	2	0.888	4	7.10
Strip 3	12	2	0.888	6	10.66
Strip 3	12	2	0.888	9.5	16.87
Strip 3	16	2	1.579	7	22.11
NUMBER OF STIRRUPS = 44					
Strip 4	16	2	1.579	7	22.11
Strip 4	16	2	1.579	6.5	20.53
Strip 4	16	2	1.579	5	15.79
Strip 4	12	2	0.888	9	15.98
Strip 4	12	2	0.888	4	7.10
Strip 4	12	2	0.888	6	10.66
Strip 4	12	2	0.888	9.5	16.87
NUMBER OF STIRRUPS = 32					
Strip 5	16	2	1.579	6	18.95
Strip 5	12	2	0.888	6	10.66
NUMBER OF STIRRUPS = 24					

Strip 6	12	2	0.888	2	3.55
Strip 6	16	2	1.579	2	6.32
NUMBER OF STIRRUPS = 8					
TOTAL WEIGHT OF Φ 12 WITHOUT TIE GROUND BEAM (ONE STORY TYPICAL) =403.01 kg					
TOTAL WEIGHT OF Φ 16 WITHOUT TIE GROUND BEAM (ONE STORY TYPICAL) =193.43kg					
TOTAL WEIGHT OF Φ 12 FOR ROOF =281.48 kg					
TOTAL WEIGHT OF Φ 16 FOR ROOF =86.85 kg					
TOTAL WEIGHT OF Φ 12 TIE GROUND BEAMS =245.43 kg					
TOTAL WEIGHT OF Φ 16 (KG) TIE GROUND BEAM=336.02KG					
TOTAL NUMBER OF STIRRUPS Φ 8 WITHOUT TIE GROUND BEAM (ONE STORY TYPICAL) =211					
TOTAL NUMBER OF STIRRUPS Φ 8 ROOFS =183					
TOTAL NUMBER OF STIRRUPS Φ 8 TIE GROUND BEAMS=232					
TOTAL WEIGHT OF Φ 12 (KG) WITHOUT TIE GROUND BEAM (TYPICAL ALL BUILDING WITH STAIRS) =1612.04 kg = 1.61 ton					
TOTAL WEIGHT OF Φ 16 (KG) WITHOUT TIE GROUND BEAM (TYPICAL ALL BUILDING WITH STAIRS) =773.72 kg					
TOTAL NUMBER OF STIRRUPS Φ 8 WITHOUT TIE GROUND BEAM (TYPICAL ALL BUILDING WITH STAIRS) =844					
TOTAL WEIGHT OF Φ 16 FOR ALL BUILDING BEAMS=1109.74 kg = 1.11 ton					
TOTAL WEIGHT OF Φ 12 FOR ALL BUILDING BEAMS=1857.47 kg = 1.86 ton					
TOTAL NUMBER OF STIRRUPS Φ 8 FOR ALL BUILDING BEAMS=1076					
Length of the Stirrups (Φ 8) = 15+55+15+55+8+8= 156 cm = 1.56 m					
Wt/m (kg/m) for (Φ 8) = 0.395 kg/m, $0.395*1.56= 0.6162$ kg, $0.6162*1076 = 663.04$ kg					
TOTAL WEIGHT OF Φ 8 FOR ALL BUILDING BEAMS=663.04 kg					
COST OF Φ 16 FOR BEAMS = 1.1 *590 = 649 JOD					
COST OF Φ 12 FOR BEAMS =1.86*590 = 1097.4 JOD					
COST OF Φ 8 FOR BEAMS =0.66304*610 = 404.45 JOD					

※ Quantity and Cost of Concrete:

Table 9.5: Quantity and Cost of Concrete for beams

Strip	B_w (m)	D(m)	Length (m)	Volume of Concrete (m^3)
TYPICAL				
Strip 1	0.2	0.6	18	2.16
Strip 2	0.2	0.6	25.27	3.03
Strip 3	0.2	0.6	18.9	2.27
ROOF				
Strip 1	0.2	0.6	6.7	0.8
Strip 2	0.2	0.6	4.15	0.5
Strip 3	0.2	0.6	5.1	0.6
Strip 4	0.2	0.6	13.54	1.63
Strip 5	0.2	0.6	11.3	1.36
Strip 6	0.2	0.6	17.8	2.14
STAIRS BEAMS				
Strip 1	0.2	0.6	2.3	0.28
Strip 2	0.2	0.6	5.2	0.62
Strip 3	0.2	0.6	2.3	0.28
Strip 4	0.2	0.6	5.2	0.62
GROUND TIE BEAMS				
Strip 1	0.2	0.6	25.6	3.07
Strip 2	0.2	0.6	25.6	3.07
Strip 3	0.2	0.6	19	2.28
Strip 4	0.2	0.6	19	2.28
Strip 5	0.2	0.6	6	0.72
Strip 6	0.2	0.6	2	0.24
VOLUME OF CONCRETE FOR ALL TYPICAL AND STAIRS BEAMS = $29.28 m^3$				
VOLUME OF CONCRETE FOR ROOF BEAMS = $8.83 m^3$				
VOLUME OF CONCRETE FOR ALL GROUND TIE BEAMS = $21.4 m^3$				
VOLUME OF CONCRETE FOR ALL BUILDING BEAMS = $59.51 m^3$				
COST OF CONCRETE FOR BEAMS = $59.51 \times 52 = 3094.52$ JOD				

9.2 Quantities and Costs of Slabs

In this section, we will calculate the quantities and cost of concrete and Rebar, that used in Slabs.

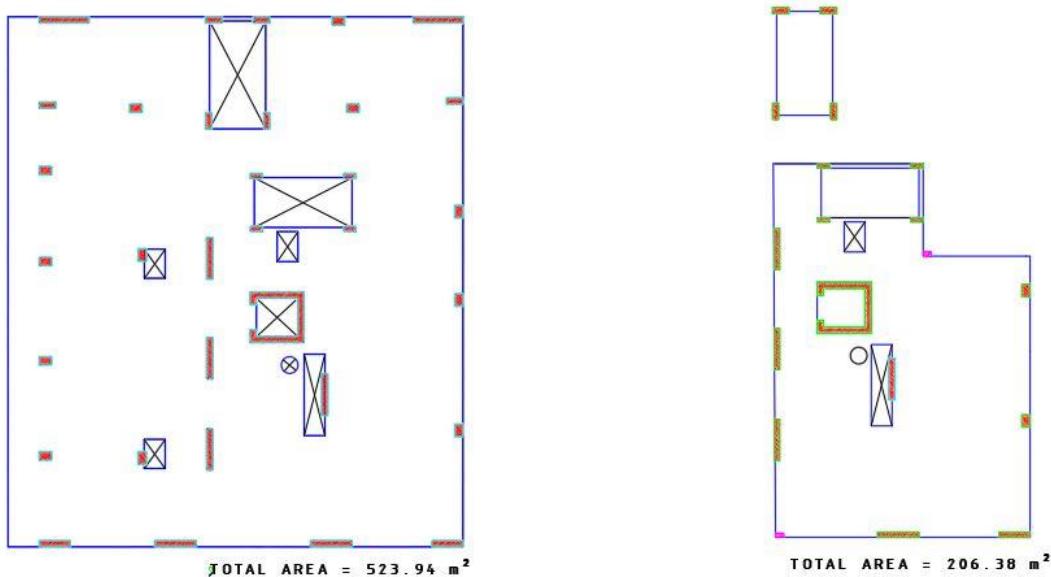


Figure 9.5: top view of slab in typical and roof

* Quantity and Cost of Concrete:

Table 9.6: Quantity and Cost of Concrete for slabs

NUMBER OF SLAB	TOTAL AREA (m^2)	THICKNESS	Volume of Concrete (m^3)
TYPICAL SLABS			
4	523.94	0.25	523.94
ROOF SLAB			
1	206.38	0.25	51.595
VOLUME OF CONCRETE FOR ALL BUILDING SLABS = 575.535 m^3			
COST OF CONCRETE FOR ALL BUILDING SLABS = 575.535*52=29927.82 JOD			

* Quantity and Cost of Rebar:

Table 9.7: Quantity and Cost of Rebar for slabs

SLAB	TOTAL AREA (m ²)	NO OF Bar/m	NUMBER	Wt/m(kg/m)	Total Weight (kg)
Top (-ve) Reinforcement					
TYPICAL	523.94	6Φ12	4	0.888	22332.419
ROOF	206.38	5Φ12	1	0.888	1832.655
Bottom (+ve) Reinforcement					
TYPICAL	523.94	6Φ12	4	0.888	22332.419
ROOF	206.38	5Φ12	1	0.888	1832.655
Around Columns, Top (-ve)					
ALL	6.25	9Φ14	37	1.208	2514.15
Around opening					
SLAB	LENGTH (m)	RINFORCMENT	NUMBER	Wt/m(kg/m)	Total Weight (kg)
ALL	3	40Φ20	4	2.466	1183.68
ALL	3	25Φ20	5	2.466	924.75
ALL	5.3	10Φ20	5	2.466	653.49
CHAIR REBAR					
SLAB	LENGTH (m)	RINFORCMENT	NUMBER	Wt/m(kg/m)	Total Weight (kg)
TYPICAL	0.75	524Φ12	4	0.888	1395.936
ROOF	0.75	207Φ12	1	0.888	137.862
TOTAL WEIGHT OF Φ 12 FOR ALL SLABS=49863.946 kg=49.87 ton					
TOTAL WEIGHT OF Φ 14 FOR ALL SLABS =2514.15kg=2.52 ton					
TOTAL WEIGHT OF Φ 20 FOR ALL SLABS =2762.92kg=2.77ton					
TOTAL COST OF Φ 12 FOR ALL SLABS= 49.87*590 = 29423.3 JOD					
TOTAL COST OF Φ 14 FOR ALL SLABS=2.52*590= 1486.8 JOD					
TOTAL COST OF Φ 20 FOR ALL SLABS = 2.77*590= 1634.3 JOD					

Length of chair rebar= 40cm + 2h

h= thickness of slab - 4d - cover -curve = 25-4*1.2-2-1 = 17.2 cm

Length of chair rebar= 40 + (2*17.2) = 74.4 cm \cong 75 cm

Length of chair rebar= 75 cm = 0.75 m

9.3 Quantities and Costs of Columns & Shear wall

In this section, we will calculate the Quantities and Cost of Concrete and Rebar, that used in Columns and shear wall.

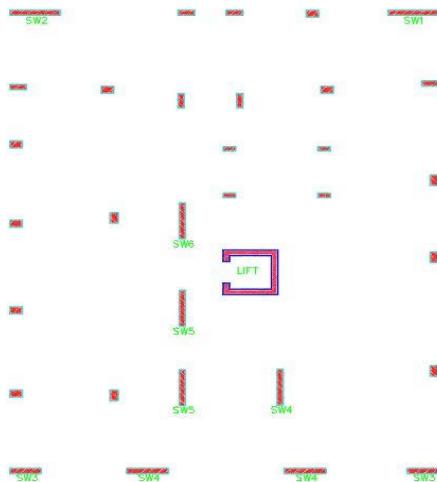


Figure 9.6: Structure columns and shear walls in typical



Figure 9.7: Structure columns and shear walls in roof

* Quantity and Cost of Concrete, Rebar & Stirrups:

⇒ There are two types of column Ties:

- 6 legged Ties

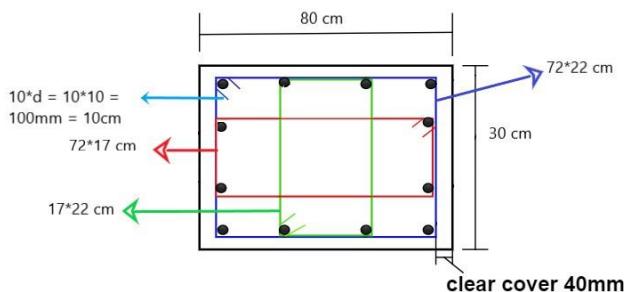


Figure 9.8: column Ties (6 legged Ties)

- Standard Ties

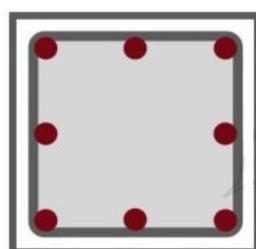


Figure 9.9: column Ties (Standard Ties)

Table 9.8: Quantities and Cost of Concrete and Rebar for columns and shear walls

CONCRETE				
COLUMNS				
STORY NAME: FIRST STORY				
COLUMN DIMENTION (cmXcm)	LENGTH (M)	NUMBER	CONCRETE VOLUM (m ³)	
80X30	6	6	8.64	
60X40	6	12	17.28	
60X25	6	4	3.6	
STORY NAME: TYPICAL STORIES				
80X30	3.5	18	15.12	
60X40	3.5	36	30.24	
60X25	3.5	12	6.3	
STORY NAME: FINAL STORY (ROOF)				
80X30	4	4	3.84	
60X20	4	4	1.92	
40X20	4	2	0.64	
60X40	4	2	1.92	
TOTAL CONCRETE VOLUM (m³) FOR ALL BILDUNG COLUMNS = 89.5 m³				
TOTAL COST OF CONCRETE FOR COLUMNS = 89.5*52 = 4654 JOD				
SHEAR WALL				
STORY NAME: FIRST STORY				
SHEAR WALL DIMENTION (cmXcm)	LENGTH (M)	NUMBER	CONCRETE VOLUM (m ³)	
240X30	6	2	8.64	
200X30	6	6	21.6	
150X30	6	4	10.8	
STORY NAME: TYPICAL STORIES				
240X30	3.5	6	15.12	
200X30	3.5	36	75.6	
150X30	3.5	16	25.2	
STORY NAME: FINAL STORY (ROOF)				
200X30	4	5	12	
150X30	4	1	1.8	
LIFT				
890X30	20.5	—	54.735	
TOTAL CONCRETE VOLUM (m³) FOR ALL BILDUNG SHEAR WALL = 225.495 m³				
TOTAL COST OF CONCRETE FOR SHEAR WALL = 225.495*52=11725.74 JOD				
REBAR				
COLUMNS				
REAINFORCMENT				
REAINFORCMENT FOR EACH COLOUMN	LENGTH(M)	NUMBER	Wt/m(kg/m)	
Total Weight (kg)				
12Φ16	20.5	45	1.579	17479.5
8Φ16	20.5	15	1.579	3884.34
12Φ16	16.5	40	1.579	12505.68
TOTAL WEIGHT OF Φ 16 FOR ALL BUILDING COLUMNS=33869.52kg=33.87ton				
TOTAL COST OF Φ 16 FOR ALL BUILDING COLUMNS =33.87*590=19983.3 JOD				

TIES					
TIES DIMENTION (cmXcm)	LENGTH(M)	NUMBER OF TIES	Wt/m(kg/m) (Φ10)	Total Weight (kg)	
6 LEGGED TIES					
STORY NAME: 1st STORY					
72X22	2.08	180	0.617	231	
52X32	1.88	360	0.617	417.5856	
52X17	1.58	120	0.617	116.9832	
STORY NAME: TYPICAL STORYES					
72X22	2.08	324	0.617	415.8086	
52X32	1.88	648	0.617	751.65	
52X17	1.58	216	0.617	134.852	
STORY NAME: FINAL STORY (ROOF)					
72X22	2.08	80	0.617	102.67	
52X12	1.48	80	0.617	73.053	
32X12	1.08	40	0.617	26.65	
52X32	1.88	40	0.617	26.65	
STORY NAME: 1st STORY					
72X17	1.78	180	0.617	197.687	
52X17	1.38	360	0.617	306.526	
STORY NAME: TYPICAL STORYES					
72X17	1.78	324	0.617	355.84	
52X17	1.38	648	0.617	551.77	
STORY NAME: FINAL STORY (ROOF)					
72X17	1.78	80	0.617	87.86	
52X17	1.38	40	0.617	34.06	
STORY NAME: 1st STORY					
22X17	0.78	180	0.617	86.627	
32X17	0.98	360	0.617	217.678	
STORY NAME: TYPICAL STORYES					
22X17	0.78	324	0.617	155.931	
32X17	0.98	648	0.617	391.82	
STORY NAME: FINAL STORY (ROOF)					
22X17	0.78	80	0.617	38.50	
32X17	0.98	40	0.617	24.187	
STANDARD TIES					
STORY NAME: 1st STORY					
52X17	1.38	120	0.617	102.18	
STORY NAME: TYPICAL STORYES					
52X17	1.38	216	0.617	183.92	
TOTAL WEIGHT OF Φ 10 FOR ALL BUILDING TIES FOR COLUMNS =5031.48 kg=5.04 ton					
COST OF Φ 10 FOR COLUMNS = 5.04*618 = 3109.46 JOD					
SHEAR WALL					
HORIZONTAL STEEL					
STORY NAME: 1st STORY					
NAME OF SHEAR WALL	REAINFORCMENT FOR EACH SHEAR WALL	LENGTH(M)	NUMBER	Wt/m(kg/m)	Total Weight (kg)
SW1	80Φ10	2.4	1	0.617	118.464

SW2	80Φ12	2.4	1	0.888	170.496
SW3	80Φ12	1.5	2	0.888	213.12
SW4	80Φ12	2	3	0.888	426.24
SW5	80Φ12	2	2	0.888	284.16
SW6	80Φ12	2	1	0.888	142.08

STORY NAME: 2nd & 3rd STORYES

SW1	47Φ10	2.4	1	0.617	69.598
SW2	47Φ12	2.4	1	0.888	100.167
SW3	47Φ12	1.5	2	0.888	125.208
SW4	47Φ12	2	3	0.888	250.416
SW5	47Φ12	2	2	0.888	166.944
SW6	47Φ12	2	1	0.888	83.472

STORY NAME: 4th STORY

SW1	35Φ10	2.4	1	0.617	51.828
SW2	35Φ12	2.4	1	0.888	74.592
SW3	35Φ12	1.5	2	0.888	93.24
SW4	35Φ12	2	3	0.888	186.48
SW5	35Φ12	2	2	0.888	124.32
SW6	35Φ12	2	1	0.888	62.16

ROOF STORY

SW3	40Φ12	1.5	1	0.888	53.28
SW4	40Φ12	2	2	0.888	142.08
SW5	40Φ12	2	2	0.888	142.08
SW6	40Φ12	2	1	0.888	71.04

LIFT

SW7	144Φ18	8.9	1	1.998	2560.64
-----	--------	-----	---	-------	---------

TOTAL WEIGHT OF Φ 10 FOR SHEAR WALL HORIZONTAL STEEL =239.89 kg

TOTAL WEIGHT OF Φ 12 FOR SHEAR WALL HORIZONTAL STEEL =2911.548 kg

TOTAL WEIGHT OF Φ 18 FOR SHEAR WALL HORIZONTAL STEEL =2560.64 kg

TOTAL COST OF Φ 10 FOR SHEAR WALL HORIZONTAL STEEL=148.252 JOD

TOTAL COST OF Φ 12 FOR SHEAR WALL HORIZONTAL STEEL =1717.814 JOD

TOTAL COST OF Φ 18 FOR SHEAR WALL HORIZONTAL STEEL =1510.778 JOD

VERTICAL STEEL

STORY NAME: 1st STORY

SW1	32Φ20	6	1	2.466	473.472
SW2	32Φ20	6	1	2.466	473.472
SW3	20Φ20	6	2	2.466	591.84
SW4	28Φ20	6	3	2.466	1242.864
SW5	28Φ20	6	2	2.466	828.576
SW6	28Φ20	6	1	2.466	414.288
SW7 (LIFT)	20Φ25	6	1	3.854	462.48
SW7 (LIFT)	70Φ20	6	1	2.466	1035.72

STORY NAME: 2nd & 3rd STORYES

SW1	32Φ16	3.5	2	1.579	353.696
SW2	32Φ16	3.5	2	1.579	353.696
SW3	20Φ16	3.5	4	1.579	442.12

SW4	28Φ18	3.5	9	1.998	1762.236
SW5	28Φ20	3.5	4	2.466	966.672
SW6	28Φ18	3.5	2	1.998	391.608
SW7 (LIFT)	20Φ25	3.5	2	3.854	539.56
SW7 (LIFT)	70Φ18	3.5	2	1.998	979.02
STORY NAME: 4th STORY					
SW1	32Φ14	3.5	1	1.208	135.296
SW2	32Φ16	3.5	1	1.579	176.848
SW3	20Φ16	3.5	2	1.579	221.06
SW4	28Φ14	3.5	3	1.208	355.152
SW5	28Φ14	3.5	2	1.208	236.768
SW6	28Φ14	3.5	1	1.208	118.384
SW7 (LIFT)	20Φ25	3.5	1	3.854	269.78
SW7 (LIFT)	70Φ14	3.5	1	1.208	295.96
ROOF STORY					
SW3	20Φ16	4	1	1.579	126.32
SW4	28Φ14	4	2	1.208	270.592
SW5	28Φ14	4	2	1.208	270.592
SW6	28Φ14	4	1	1.208	135.296
SW7 (LIFT)	20Φ25	4	1	3.854	308.32
SW7 (LIFT)	70Φ14	4	1	1.208	338.24
TOTAL WEIGHT OF Φ 14 FOR SHEAR WALL VERTICAL STEEL =2156.27 kg					
TOTAL WEIGHT OF Φ 16 FOR SHEAR WALL VERTICAL STEEL =1673.74 kg					
TOTAL WEIGHT OF Φ 20 FOR SHEAR WALL VERTICAL STEEL =6026.904 kg					
TOTAL WEIGHT OF Φ 25 FOR SHEAR WALL VERTICAL STEEL =1580.14 kg					
TOTAL COST OF Φ 14 FOR SHEAR WALL VERTICAL STEEL =1272.20 JOD					
TOTAL COST OF Φ 16 FOR SHEAR WALL VERTICAL STEEL =987.51 JOD					
TOTAL COST OF Φ 20 FOR SHEAR WALL VERTICAL STEEL =3555.88 JOD					
TOTAL COST OF Φ 25 FOR SHEAR WALL VERTICAL STEEL =948.24 JOD					

9.4 Quantities and Costs of Foundation

In this section, we will calculate the Quantities and Cost of Concrete and Rebar, that used in Foundation.

* Quantity and Cost of Concrete:

Table 9.9: Quantity and Cost of Concrete for foundation

TOTAL AREA (m^2)	THICKNESS	Volume of Concrete (m^3)
633.589	0.5	316.80
VOLUME OF CONCRETE FOR FOUNDATION = 316.80 m^3		
COST OF CONCRETE FOR FOUNDATION = 316.8*53 = 16790.4 JOD		

* Quantity and Cost of Rebar:

Table 9.10: Quantity and Cost of Rebar for foundation

(X/Y) Direction	Length	Reinforcement	Wt/m(kg/m)	Total weight (kg)		
Top (-ve) Reinforcement						
X	23.9	133Φ16	1.579	5019.17		
Y	26.51	120Φ16	1.579	5023.12		
Bottom (+ve) Reinforcement						
X	23.9	133Φ16	1.579	5019.17		
Y	26.51	120Φ16	1.579	5023.12		
UNDER THE COLOUMN						
X	1	150Φ22	2.984	447.6		
Y	1	150Φ22	2.984	447.6		
BEND						
LENGTH (m)	RINFORCMENT	Wt/m(kg/m)	Total weight (kg)			
0.72	948Φ16	1.579	1077.77			
TOTAL WEIGHT OF Φ 16 FOR FOUNDATION =21163kg=21.163ton						
TOTAL WEIGHT OF Φ 22 FOR FOUNDATION =895.2 kg						
TOTAL COST OF Φ 16 FOR FOUNDATION =21.163*590=12487 JOD						
TOTAL COST OF Φ 22 FOR FOUNDATION =0.8952*590=528.2 JOD						

9.5 Quantities and Costs of Stairs

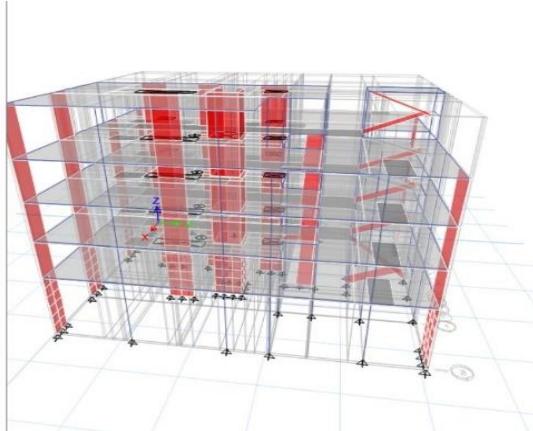


Figure 9.10: staircase modeling using ETABS 1

Figure 9.11: staircase modeling using ETABS 2

In this section, we will calculate the Quantities and Cost of Concrete and Rebar, that used in Stairs.

* Quantity and Cost of Concrete:

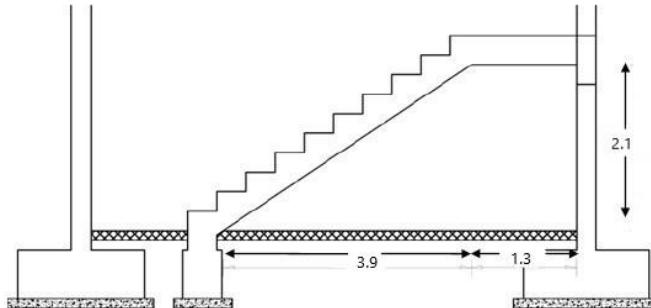


Figure 9.12: roof stair section

Sample of Calculation:

we will take a roof as a sample of calculation

- Waist Length = $\sqrt{3.9^2 + 2.1^2} = 4.43\text{m}$
- Thickness of Waist (we showed detailed of how to find thickness in stair section) = 0.185m
- Volume of concrete for Roof Waist = $b*L*h = 0.185*4.43*1.2 = 0.98\text{ m}^3$
- Volume of concrete for Typical Waist = $b*L*h = 0.185*3.11*1.2 = 0.69\text{ m}^3$
- Volume of concrete for first story, first flight Waist = $b*L*h = 0.185*0.45*1.2 = 0.1\text{ m}^3$
- Volume of concrete for First story Waist = $b*L*h = 0.185*3.04*1.2 = 0.67\text{ m}^3$
- Volume of concrete for entrance Waist = $b*L*h = 0.185*0.45*2.5 = 0.21\text{ m}^3$

- Volume of concrete for 1 step = $\frac{1}{2} * 0.30 * 0.15 * 1.2 = 0.027 m^3$
- volume of concrete for each flight = $11 * 0.027 = 0.297 m^3$
- volume of concrete for each landing = $0.96 * 1.2 * 0.185 = 0.213 m^3$

Table 9.11: Quantity and Cost of concrete for staircases

NUMBER IN ALL PROJECT	VOLUME OF ONE ELEMNT (m^3)	TOTAL VOLUME (m^3)
LANDING		
22	0.475	10.45
WAIST		
<i>ROOF</i>	4	0.98
<i>Typical</i>	12	0.69
<i>first flight</i>	2	0.1
<i>First story</i>	4	0.67
<i>Entrance</i>	1	0.21
STEPS		
<i>ROOF</i>	54	0.027
<i>Typical</i>	132	0.027
<i>First flight</i>	6	0.027
<i>First story</i>	56	0.027
<i>Entrance</i>	3	0.08
TOTAL VOLUME OF CONCRETE FOR STAIRS = 26.912 m^3		
TOTAL COST OF CONCRETE FOR STAIRS = 26.912*52= 1399.424 JOD		

* Quantity and Cost of Rebar

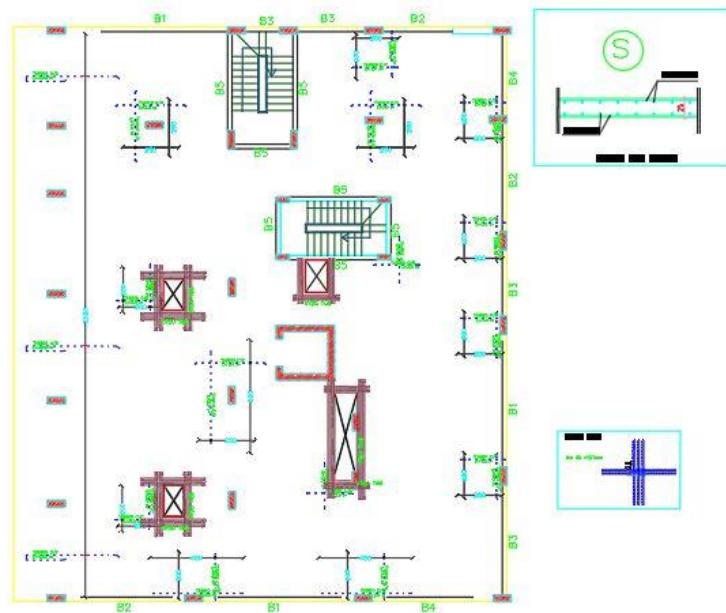
Table 9.12: Quantity and Cost of Rebar for staircases

REAINFORCMENT	LENGTH(m)	NUMBER	Wt/m(kg/m)	Total Weight (kg)
LANDING				
18Φ16	2.7	22	1.579	1688.27
7Φ16	0.96	22	1.579	233.44
WAIST & STEPS				
DISTRIBUTION REAINFORCMENT				
<i>ROOF</i>	22Φ10	1.2	0.617	65.16
<i>Typical</i>	16Φ10	1.2	0.617	142.16
<i>First flight</i>	3Φ10	1.2	0.617	4.44
<i>First story</i>	15Φ10	1.2	0.617	44.42
<i>Entrance</i>	3Φ10	2.5	0.617	4.63
ADDITIONAL REAINFORCMENT				
Φ8 FOR EACH STEP		1.2	251	0.395
Φ8 FOR EACH STEP		0.9	251*8= 2008	0.395
MAIN REAINFORCMENT				
<i>ROOF</i>	8Φ16	4.43	1.579	223.839
<i>Typical</i>	8Φ16	3.11	1.579	471.426
<i>First flight</i>	8Φ16	0.45	1.579	11.369
<i>First story</i>	8Φ16	3.04	1.579	153.605
<i>Entrance</i>	8Φ16	0.45	1.579	5.685

TOTAL WEIGHT OF Φ 16 FOR ALL STAIRCASE = 566.92 kg
TOTAL COST OF Φ 16 FOR ALL STAIRCASE = $0.56692 * 590 = 334.483$ JOD
TOTAL WEIGHT OF Φ 10 FOR ALL STAIRCASE = 514.59 kg
TOTAL COST OF Φ 10 FOR ALL STAIRCASE = $0.51459 * 618 = 318.02$ JOD
TOTAL WEIGHT OF Φ 8 FOR ALL STAIRCASE = 654.35 kg
TOTAL COST OF Φ 8 FOR ALL STAIRCASE = $0.65435 * 610 = 399.154$ JOD

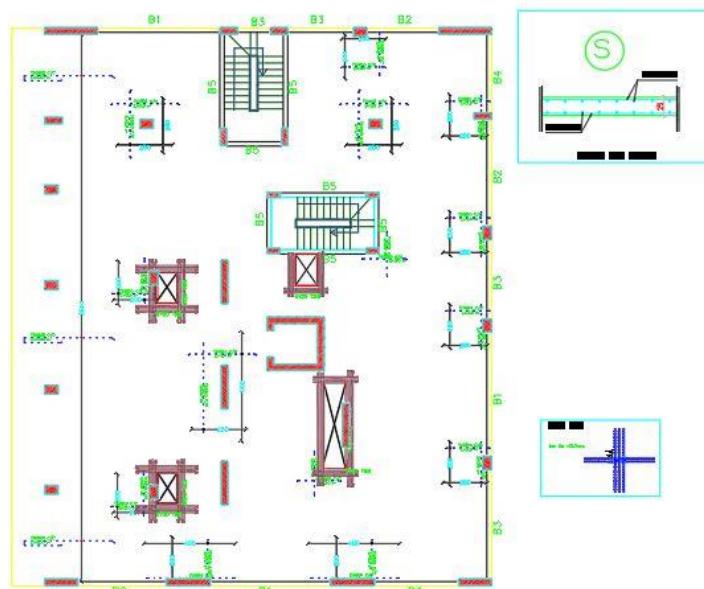
9.6 Final Cost and Quantities Estimating

Table 9.13: Final Cost and Quantities


Rebar (Φ)	Total Weight (ton)	TOTAL COST (JOD)
$\Phi 8$	1.32	805.2
$\Phi 10$	6.02	3719.94
$\Phi 12$	58.68	34640.29
$\Phi 14$	3.99	2354.758
$\Phi 16$	57.19	33732.173
$\Phi 18$	4.77	2814.552
$\Phi 20$	4.76	2812.23
$\Phi 22$	0.9	528.2
$\Phi 25$	1.58	948.084
TOTAL	139.21	<u>82355.427</u>
Concrete (F'c)	Total Volume (m^3)	TOTAL COST (JOD)
28	976.952	50801.504
30	316.8	16790.4
TOTAL	1293.752	<u>67591.904</u>
Total Estimate Cost of the Rebar & Concrete of the Project = 149947.331 JOD		

REFERENCES

- [1] James K; MacGregor, James G, “Reinforced Concrete: Mechanics and Design”
- [2] Jordan National Building Codes
- [3] ACI 318-14
- [4] Web sites:
 - a) www.picbasic.org/articles/ultrasonic/ultrasonic_experiments
 - b) <https://www.concrete.org/tools/318buildingcodeportal.aspx.aspx>
 - c) <https://www.jea.org.jo/portal/jordanian-national-building-codes/>
 - d) <https://www.azimuthbuilders.com/blog/flat-slab-construction>
 - e) <https://www.graitec.com/design-of-flat-slab-structures-advance-design/>
 - f) <http://www.jcca.org.jo/SiteContent.aspx?id=97>
 - g) <https://dailycivil.com/types-rcc-beam/>
 - h) <https://www.concretecentre.com/Codes/Eurocode-2/Punching-Shear.aspx>
 - i) <https://www.ancon.com.au/products/punching-shear-reinforcement>
 - j) <https://civildigital.com/punching-shear-punching-shear-flat-slabs/>
 - k) https://user.eng.umd.edu/~ccfu/ref/AISC_ExamI1&2&3.pdf
 - l) https://www.steelconstruction.info/Shear_connection_in_composite_bridge_beams
 - m) <https://smldtd.co.uk/shear-studs-and-composite-decking/>
 - n) <https://www.phd.eng.br/wp-content/uploads/2015/12/en.1992.1.1.2004.pdf>
 - o) http://www.zuj.edu.jo/portal/hesham-s-ahmad/wp-content/uploads/sites/308/QS_-_Civil-Engineering.pdf
 - p) <https://www.hkis.org.hk/ufiles/QS-costplans2016.pdf>
 - q) <https://theconstructor.org/geotechnical/methods-of-raft-footing-design/3747/>
 - r) <https://structurepoint.org/pdfs/Reinforced-Concrete-Shear-Wall-Analysis-Design-ACI318-14.pdf>


Appendix A : Detailed drawings

Structural Plan

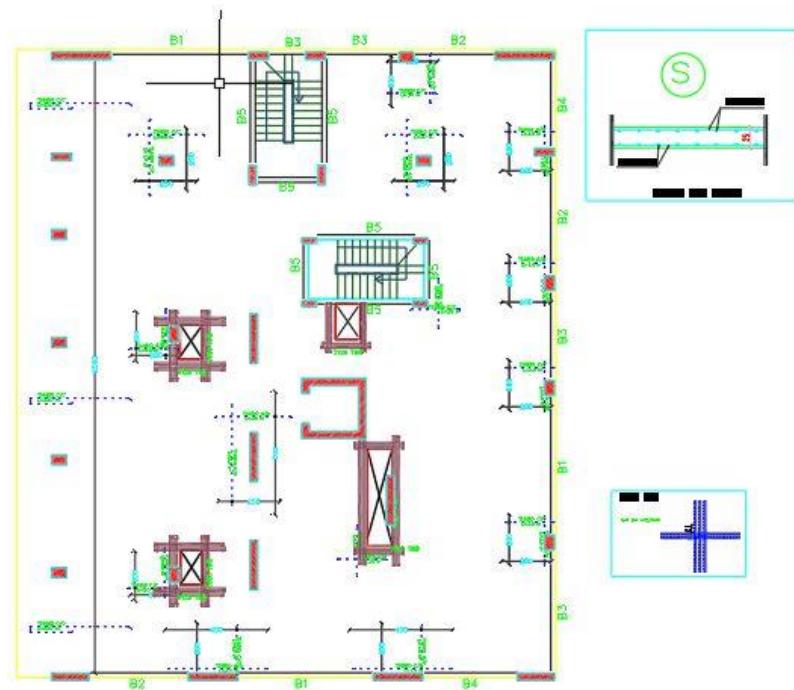

1ST FLOOR PLAN

Figure A.1: Structure Plans 1

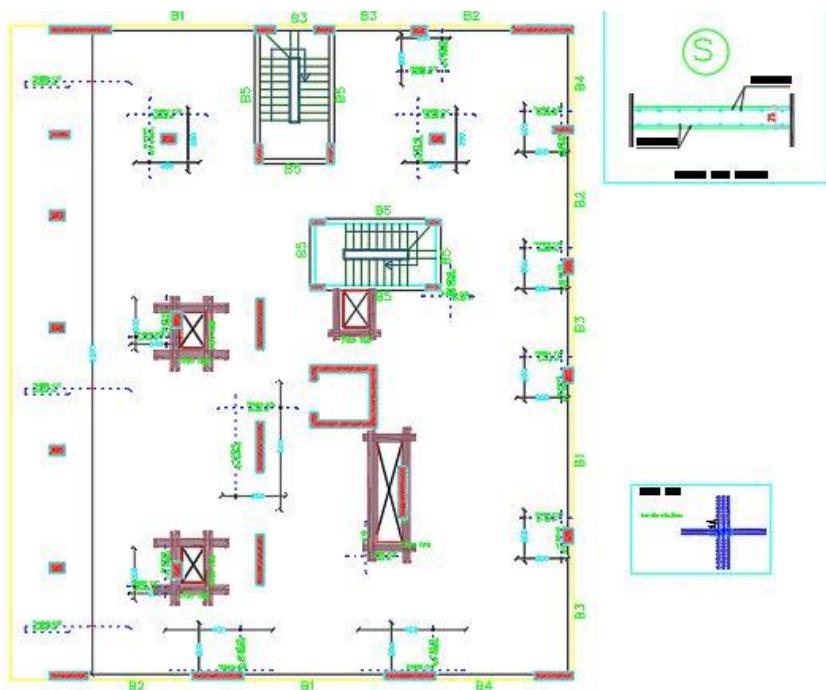

2nd FLOOR Plan

Figure A.2: Structure Plans 2

3rd FLOOR Plan

Figure A.3: Structure Plans 3

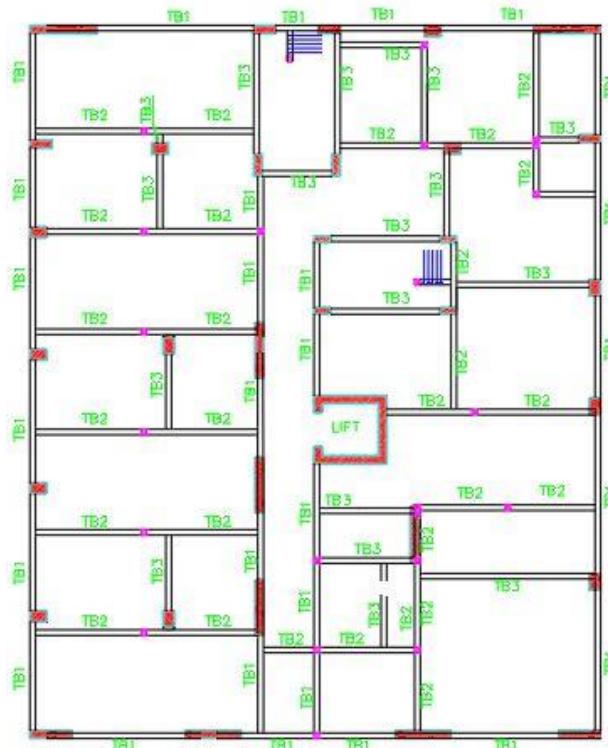

4th FLOOR Plan

Figure A.4: Structure Plans 4

ROOF FLOOR Plan

Figure A.5: Structure Plans roof

Tie Beams Plan

Figure A.6: Structure Plans tie beam

Appendix B : Design Aids

The **Direct Design method** is proposed by concrete institute for the analysis of design of one-way slab as well as two-way slabs. This technique uses various coefficients to determine the positive and negative moment acting on the slab. This method is analogous to the method that is used for the design of beams under loading.

* **The conditions that must be fulfilled before applying direct design method are as follows:**

- The shape of the panels must be rectangular,
- The dead load must be at least two times greater than the live load,
- The length of the consecutive span should be not vary more than the one third of the longest span amount, and The loading must be of uniformly distributed nature.

* **The direct design method has following limitations:**

- It is necessary to have minimum three continuous spans. In case of dissatisfaction of the conditions, the interior moment will tend to zero.
- Panels used must be rectangular in shape. The value of longer span divided by shorter span should not be more than 2.
- Successive span lengths should not reduce or increase, more than the value given by one third of the longest span.
- Column offset must not be more than 10% of the span.
- The direct design method is only implemented, when the gravity loads case are acting on the slab.