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Preface

Reintoreed concrete design 1s both an art and a science. Since the 1960s. the emphasis on
the science has increased as codes became more complex and as computers came 1o be
used to design and detail concreie members. Today, contractors complain that current de-
signs are difficult 1o build. Designers. faced with the myriad of rules, code clauses, and
equations, teel that reinforced concrete design is a mystical science that few understand.
This book presents the theory of reinforced concrete as a direct application of the laws of
statics and the behavior of reinforced concerete. In addition, it emphasizes that a successful
design not only satisfies the design equations. but atso is capable of being built at a reason-
able price.

The varions lopics-—flexure, shear. columns, and so on—are presented at two levels
in this book. Each subjeet starts with a basic presentation suitable for undergraduate uni-
versity courses on reinforeed concrete. It then moves to more advanced topics not normally
found in American textbooks. including, for example. unsymmetrical beams and columns,
strain compatibility solutions of beams, P-A analyses of frames. and the design of deep
beams and column-beam joints. The latter concepts make this book @ useful reference vol-
ume in design oftices and a suitable text for graduate courses,

Particular emphasis has been placed on the logical order and completeness of the de-
sign examples. The examples are done in a step-by-step order and every step is worked out
completely from first principles, at least once. Designers used o using design aids will rec-
ugnize places where they can shuricn the caleulations, The examples have beea chosen w
illustrate the effects of unequal spans and other situations normally encountered in design
but not in texthooks. Guidance is given in the text and in the examples to help students to
make the many judgment decisions required in reinforced concrete design.

Chapter | sets the stage for the volume by providing definitions and giving illustra-
tions of the various types of members built from reinforced concrete. A brief history of con-
crete. reinforced concrete. and codes for reinforced concrete is included.

Chapter 2 continues the introductory material with a discussion of the goals of struc-
tural design based. in part. on the limit states design concept. Linit states design is simply
the traditional engineering approach of anticipating all of the ways that things can go wrong

Xi



Xii

and taking steps to ensure that they don't. Considerable emiphasis is placed on this through-
out the book because. since the introduction of strength design in the 1963 ACI Code.
concrele structures have become more and more slender and more apt to exhibit excessive
cracking. deflections. or vibrations. Chapter 2 alse contains a brief introduction to safety
theory. a brief review of the loads considersd in design. and a discussion of design for
£CONOMY.

The significant properties of concrete and reinforcement are presented in Chapter 3
as a basis for developing the flexural theory. discussing time-dependent deflections. and so
on. This chapter is also intended to serve as a ready reference source for information on the
structural aspects of concrete technology.

Chapters 4 through 8§ and 11 through 13 deal with the theory and design for various
ultimate limit states. such as Aexure. shear. anchorage, and so on. In each case, the discus-
sion starts with a review of the behavior of concrete members and uses statics and me-
chanics to explain this behavior. Practical aspects of design and construction are introduced
to explain code limitations and detailing rules. Appendix B of the 1995 ACI Code intro-
duced a new method of setting an upper limit cn the reinforcement in beams. This proce-
dure has been used rather than the balanced reinforcement ratio because itis easier to apply.

Chapter 7 on torsion has been extensively revised to incorporate the 1995 ACI Code
revisions to torsion design.

Chapter 8 on development has been revised extensively to incorporate the new de-
velopment and detailing requirements of the 1995 ACI Code. A systematic method of car-
rying out the development caiculations has been used in the examples.

The serviceability limit states, particularly deflection and crack control, are the sub-
Ject of Chapter 9. The discussion includes the ealculation procedures for checking deflec-
tions and crack widths, the limits that should be placed on these values, and why.

Chapters 10 and 13 and through 135 deal with the design of continuous slabs and
beams, and two-way slabs. Chapter 13 starts with an overview of moments in slabs and the
shear strength of two-way slabs and then goes on to present the direct design method with
examples. Section 13-12 deals with the caleulation of slab deflections. Chapter 14 covers
the equivalent frame method. Elastic analysis of slabs, yield line theory, the strip method,
and a simplified presentation of the advanced strip method are presented in Chapter 15 with
examples.

Chapter 11 discusses the behavior and design of columns. The caleulation of ¢ for
tension failures is based on Appendix B of the 1995 ACI Code. Chapter 12 on slender
columns has been revised in light of the extensive revisions of the slenderrcss provisions
in the 1995 ACI Code.

Footings are discussed in Chapter 16. Chapter 17 presents shear friction. horizontal
shear transfer and a new section on concrete composite beams.

The concept of D-regions, regions adjacent to discontinuities, is introduced in sey-
eral places. Chapter 18 is devoted entirely 1o a detailed presentation of the theory and de-
sign of D-regions and contains several new exampiles.

Design for carthquake effects is presented in Chapter 19 which has been enlarged to
include comprehensive examples of the design of a beam. a column. and o joint in g build-
ing in 2 high seismic region.

Appendix A presents 34 design tables and 14 design charts referred to throughout the
book. These are gathered together for easy reference and make it possible to use the text in
courses or in a design oftice without the need for a handbook. Ten tables in SI units have
been added. The column interaction diagrams have been redrawn with ¢ based on ACI
Code Appendix B.

A one-semester undergraduate course on reinforced concrete might cover Secs. 2-1
to 2-4 and 2-6 to 2-8 on the basis for design, safety factors. loads, and design for economy;
Secs. 3-2. 3-3, and 3-9 on material properties: Chap. 4 and Secs. 5-1 through 5-3 on flex-
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ure: Secs. 6-1 o 6-3 and 6-3 on shear; Chap. 8 on anchorage: Secs. 9-1 10 9-5 on service-
ability: Chap. 10 on continuous slabs and beams: Secs. 11-110 11-5 on columns and Secs.
16-1 to 16-5 on footings. A subsequent course might cover Chap. 7 oa torsion, Secs. 12-1
10 12-4 on slender columns. Chap. 13 on two-way slabs, and Sec. 17-2 on shear friction.
Chapters 18 and 19 would be optional. The prerequisites for these courses are a course in
statics and 2 course in mechanics of matarials.

A one-quarter undergraduate course on reinforced concrete might cover Secs. 2-1 10
3.4 and 2-6 to 2-8 on the bases for design: Secs, 3-2, 3-3, and 3-9 on material properties;
Chap. 4 and Secs. 5-1 to 5-3 on flexure: Secs. 6-1 to 6-3 and 6-5 on shear; Secs. 8-1 to 8-7
on anchorage: Secs. 10-3 and 10-4 on one-way slabs. and Secs. 1 1-1 to 11-5 on columns. A
subsequent one-quarter course might cover Secs. 9-1 to 9-5 on serviceability; the rest of
Chap. 10; Secs. 16-1 to 16-5 on footings: Chap. 7 on torsion; Secs. 12-1 and 12-2 on slen-
der columns and Secs. 13-3 to 13-10 on two-way slabs.

The text makes frequent reference to the 1995 ACI Code and assumes that the reader
will have a copy of this code.

Although the foot-pound-second system of units is the main system of units through-
out the book, eight examples in basic topics are repeated completely in SI (metric) units.
Four of these are new in this edition. A number of metric design charts are given in
Appendix A.

My sincere thanks to my friends, colleagues, and reviewers of the text for their sug-
gestions for improvement, discussions of general approach, and the other assistance. In
particular I wish to thank C. P. Siess; J. E. Breen, who initiated the idea of this book and
had many helpful suggestions: R. Green, and J. K. Wight, whose comments and critiques
of the first edition were invaluable; D. J. MacGregor, who drew many of the figures; and to
my wife, Barb, whose continuing support, help, and encouragement have made all three
editions possible.

| urge readers who have guestions, suggestions for improvements, or clarifications,
or who find errors, to write to me. [ thank you in advance for taking the time and interest to
do so.

1 dedicate this book to the memory of my son, Robert J. G. MacGregor, PhD, PE.
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REINFORCED CONCRETE STRUCTURES

Concrete and reinforced concrete are used as building materials in every country. In many.
including the United States and Canada, reinforced concrete is o dominant structural mate-
rial in enginecred construction. The universal nature of reinforced concrete construction
stems trom the wide availability of reinforcing bars and the constituents of concrete,
gravel, sand, and cement, the relatively simple skills required in concrete construction. and
the economy of reinforced conerete compared to other forms of construction. Concrete and
reinforced conerete are used in bridges. buildings of all sorts (Fig. 1--1), underground struc-
tures, water tanks, television towers. offshore oil exploration and production structures
(Fig. 1-2), dams, and even in ships.

1-2 MECHANICS OF REINFORCED CONCRETE

Conerete is strong in compression but weak in tension. As a result. cracks develop when-
ever loads. or restrained shrinkage or temperature changes. give rise to tensile stresses in
excess of the tensile strength of the concrele. In the plain concrete beam shown in Fig. 1-3b,
the moments about ¢ dug to applicd loads are resisted by an internal tensmnwcompresxmn
couple invelving teasion in the concrete. Such a beam fails very suddenly and completely
when the first Ll’dL]\ forms. In a reinforced concrete beam (Fig. 1-3¢), steel bars are em-
bedded in the concrete in such a way that the tension forces needed for moment equilibrium
after the concrete cracks can be developed in the bars.

Alternatively, the reinforcement could be placed in a longitudinal duct near the bot-
tom of the beam, as shown in Fig. -4, and stretched or prestressed, reacting on the con-
crete in the beam. This would put the reinforcement into tension and the concrete in
compression. This compression would delay cracking of the beam. Such a member is said



Fig, 1-1
City Hall, Toronto. Canada.

/

The Toronto City Hall consists of two towers, 20 and 27 storfes in height, witha circular council
chamber cradled between them. These structures and the surrounding terraces, pools, and plaza
itlustrate the degree 1o which architecture and structural engineering can combine to create a liv-
ing sculpture. This complex has become the trademark and soctal hub of the city of Toronto. The
council chamber consists of 4 reinforced concrete bow! containing seating for the council, press,
andd viitzens. This is coverad by o concrete dotne. The wind resistance of the two towers resulis
largely from the two vertical curved walls forming the backs of the towers, The architectural con- ;
cept was by Viljo Revell. of Finland. winner of an internationat design competition. Mr, Revell
entered into an asseciation with John B. Parkin Associates, who developed the design and also
carried out the structural design. The structural design is described in Ref. 1-1. (Photograph used
with permission of Neish Owen Rowlund & Roy. Architects Engincers. Toronto.)
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Fig. 1-2

Glomar Beaufort Sea 1
(CIDS) being towed through
the Bering Straits o the
Beaufort Sea, Alaska.

Fig. 1-3
Plain and reinforced concrete
beams

This concrete island oil drilling structure consists of a steel mud base, a 230-ft-square cellular
concrete segment, and a deck assembly with drilling rig, quarters for 80 workers, and supplies for
10 months. The structure is designed to operate in 35 to 60 ft of water in the Arctic Ocean. Forces
from the polar sea ice are resisted by the thick walls of the concrete segment. Design was carried
out by Global Marine Development Inc, Engineering and construction support to Global Marine
was provided by A. A. Yee Inc. and ABAM Engineers Inc. {Photograph courtesy of Global
Marine Development Inc.)

(R )

A

{a) Beam and lcads.

'

Compressive stresses

Tensile stresses

{b) Stresses in a plain concrete beam.

B T

Comerassive 5iress
in cancrele

:'——-'- Tensile stress

in steel

{c) Stresses in a reinforced concrete beam.
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Fig. i—4
Prestressed concrete beam.

o be a prestressed concrete beam. The reinforcement in such a beam is referred 1o as pre-
stressing tendons and must be high-strength steel.

The construction of a reinforced concrete member involves building a form or mold in
the shape of the member being built. The form must be strong enough to support the weight
and hydrostatic pressure of the wet concrete. and any forces applied to it by workers, con-
crete buggies. wind. and so on. The reinforcement is placed in this form and held in place
during the concreting operation. Afier the concrete has hardened, the forms are removed.

o] | He

1-3 REINFORCED CONCRETE MEMBERS

Reinforced concrete structures consist of a series of individual “members™ that interact to
support the Joads placed on the structure. The second floor of the building in Fig. 1-5 is
built of concrete joist—slab construction. Here a series of parallel ribs or joists support the
load from the top slab. The reactions supporting the joists apply loads to the beams, which
in turn are supported by columns. In such a floor, the top slab has two functions: (1) it trans-
fers load laterally to the joists, and (2) it serves as the top flange of the joists, which act as
'T-shaped beams that transmit the load to the beams running at right angles to the joists. The
first floor of the building in Figure 1-5 has a slab-and-beam design in which the slab spans
between beams, which in turn apply loads to the columns. The column loads are applied to
spread footings, which distribute the load over a sufficient area of soil to prevent overload-
ing of the soil. Some soil conditions may require the use of pile foundations or other deep
foundations. At the perimeter of the building, the floor loads are supported either directly
on the walls as shown in Figure 1-5, or on exterior columns as shown in Fig. 1-6. The
walls or columns, in turn, are supported by a basement wall and wali footings.

The slabs in Figure 1-5 are assumed to carry the loads in a north—south direction (see
direction arrow}) to the joists or beams, which carry the loads in an east-west direction to
other beams, girders, columns, or walls. This is referred to as one-way slab action and is
analogous to a wooden floor in a house, in which the floor decking transmits loads to per-
pendicular floor joists, which carry the loads to supporting beams, and so on,
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Reinforced concrete building
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The ability to form and construct concrete slabs makes possible the slab or plate type of
structure shown in Fig, 1-6. Here the foads applied to the roof and the floor are transmitted in
two directions to the columns by plate action. Such slabs are referred to as nvo-way slabs.

The first floor in Fig. 1-6 is a flat slab with thickened areas called drop panels at the
columns. In addition. the tops of the columns are enlarged in the form of capitals or brack-
ets. The thickening provides exira depth for moment and shear resistance adjacent to the
columns. They aiso tend to reduce the slab deflections.

The roof of the building shown in Fig. 1-6 is of uniform thickness throughout with-
out drop panels or columns capitals. Such a floor is a special type of flar sTab referred to as
a flar plate. Flat-plate floors are widely used in apartments because the underside of the slab
is flat and hence can be used as the ceiling of the room below. Of equal importance, the
forming for a flat plate is generally cheaper than that for flat slabs with drop panels or for
one-way slab-and-beam floors.

1-4 FACTORS AFFECTING CHOICE OF CONCRETE
FOR-A STRUCTURE

The choice of whether a structure should be built of concrete, steel, masonry, or timber de-
pends on the availability of materials and on a number of vaiue decisions.

1. Economy. Frequently, the foremost consideration is the overall cost of the struc-
ture. This is, of course, a function of the costs of the materials and the labor and the time
necessary to erect them. Concrete floor systems tend to be thinner than structural steel sys-
tems because the girders and beams or joists all fit within the same depth, as shown in the
second floor in Fig. 1-5, or the floors are flat plates, as shown in Fig. 1-6. This produces
an overall reduction in the height of a building compared to a steel building, which leads
to (a) lower wind loads because there is less area exposed to wind, and (b) savings in
cladding and mechanical and electrical risers.

Frequently, however, the overall cost is affected as much or more by the overall con-
struction time since the contractor and the owner must allocate money to carry out the con-
struction and will not receive a return on their investrent until the building is ready for
occupancy. As a result, financial savings due to rapid construction may more than offset in-
creased material and forming costs. The materials for reinforced concrete structures are
widely available and can be produced as they are needed in the construction, as opposed to
structural steel, which must be ordered and partially paid for in advance to schedule the job
in a steel fabricating yard.

Any measures the designer can take to standardize the design and forming will gen-
erally pay off in reduced overall costs. For example, column sizes may be kept the same for
several floors to save money in form costs, while changing the concrete strength or per-
centage of reinfarcement to allow for changes in column loads.

2. Sauitability of material for architectural and structural function. A rein-
forced concrete system frequently allows the designer to combine the architectural and
siruciurai functions. Concrete has the advantage that it 1s placed in a plastic condition and
is given the desired shape and texture by means of the forms and the finishing techniques.
This aliows such elements as flat plates or other types of slabs to serve as load-bearing el-
ements while providing the finished floor and ceiling surfaces. Similarly, reinforced con-
crete walls can provide architecturally attractive surfaces in addition to having the ability
to resist gravity, wind, or seismic loads. Finaily, the choice of size or shape is governed by
the destgner and not by the availability of standard manufactured members.

3. Fire resistance. The structure in a building must withstand the effects of a fire
and remain standing while the butlding is evacuated and the fire is extinguished. A concrete
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building inherently has a 1- 1o 3-hour fire rating without special fireproofing or other de-
1ails. Structura) steel or timber buildings must be fireproofed to attain similar fire ratings.

4. Rigidity. The occupants of a building may be disturbed it their building oscil-
lates in the wind or the floors vibrate as people walk by. Due to the greater stiffness and
mass of & concrete structure. vibrations are seldom a problem.

5. Low maintenance. Concrete members inherently require less maintenance than
do structural steel or timber members. This is particulariy true if dense. air-entrained con-
crete has been used for surfaces exposed to the atmosphere. and if care has been taken in
the design to provide adequate drainage off and away from the structure.

6. Availability of materials. Sand. gravel. cement, and concrete mixing facilities are
very widely available. and reinforcing steel can be transported to most job sites more easily
than can structural steel. As a result. reinforced concrete is frequently used in remote areas.

On the other hand, there are a number of factors that may cause one to select a mate-
rial other than reinforced concrete. These include:

1. Low tensile strength. As stated earlier. the tensile strength of concrete is much

' lower than its compressive strength {about ﬁ)‘ and hence concrete is subject to cracking. In
l structural uses this is overcome by using reinforcement. as shown in Fig. 1-3c. to carry ten-
sile forces and limit crack widths to within acceptable values. Unless care is taken in design

and construction. however. these cracks may be unsightly or may allow penetration of water.

i 2. Forms and shoring. The construction of a cast-in-place structure involves three
i steps not encountered in the construction of steel or timber structures. These are (a) the
construction of the forms. (b) the removal of these forms, and (¢} propping or shoring the
new concrete to support its weight until its strength is adequate. Each of these steps in-
volves labor and/or materials which are not necessary with other forms of construction,

3. Relatively low strength per unit of weight or volume. The compressive
strength of concrete is roughly 5 to 10% that of steel, while its unit density is roughly 30%
that of steel. As a result, a concrete structure requires a larger volume and a greater weight
of material than does a comparable steel structure. As a result, long-span structures are
often built from steel.

4. Time-dependent volume changes. Both concrete and steel undergo approxi-
| mately the same amount of thermal expansion and contraction. Because there is less mass
of steel to be heated or cooted. and because steel is a better conductor than concrete, 4 steed
structure is generally affected by temperature changes to a greater extent than is a concrele
structure. On the other hand, concrete undergoes drying shrinkage, which, if restrained,
may cause deflections or cracking. Furthermore. deflections will tend to increase with time,
possibly doubling, due o creep of the concrete under sustained loads.

f 1-5 HISTORICAL DEVELOPMENT OF CONCRETE AND REINFORCED
‘ CONCRETE AS STRUCTURAL MATERIALS

Cement and Concrete

Lime mortar was first used in structures in the Minoan civilization in Crete about 2000 e.C.
and is still used in some areas, This type of mortar had the disadvantage of gradually dissolv-
ing when immersed in water and hence could not be used for exposed joints or underwater
joints. About the third century B.C. the Romans discovered a fine sandy volcanic ash which.
when mixed with lime mortar. gave a much stronger mortar that could be used under water.
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The most remarkable concrete structure buiit by the Romans was the dome of the
Pantheon in Rome. completed in a.n. 126. This dome has a span of {44 fL. a span not ex-
ceeded until the nineteenth century. The fowest part of the dome was concrete with aggre-
gate consisting of broken bricks. As the builders approached the iop of the dome they used
iighter and lighter aggregates. using pumice at the top to reduce the dead-load moments.
Although the outside of the dome was. and still is. covered with decorations, the marks of
the forms are still visible on the inside.'

While designing the Eddystone Lighthouse off the south coast of England just before
A.D. 1800, the English engineer John Smeaton discovered that & mixture of burned iime-
stone and clay could be used to muke a cement that would set under water and be water re-
sistant. Owing to the exposed nature of this lighthouse. however, Smeaton reverted to the
tried-and-true Roman cement and mortised stonework.

In the ensuing years a number of people used Smeaton’s material, but the difficulty
of finding limestone and clay in the same quarry greatly restricted its use. In 1824, Joseph
Aspdin mixed ground limestone and clay from different quarries and heated them in a kiln
to make cement. Aspdin named his product Portland cement because concrete made from
it resembled Portland stone, a high-grade limestone from the isle of Portland in the south
of England. This cement was used by Brunel in 1828 for the mortar used in the masonry
liner of a tunnel under the Thames River and in 1835 for mass concrete piers for a bridge.
Occasionally in the production of cement the mixture would be overheated. forming a hard
clinker which was considered to be spoiled and was discarded. In 1845, 1. C. Johnson found
that the best cement resulted from grinding this clinker. This is the material now known as
portland cement. Portland cement was produced in Pennsylvania in 1871 by D. O. Saylor
and about the same time in Indiana by T. Milien of South Bend, but it was not until the early
1880s that significant amounts were produced in the United States.

Reinforced Concrete

W. B. Wilkinsen of Newcastle-upon-Tyne obtained a patent in 1854 for a reinforced con-
crete floor system that used hollow plaster domes as forms. The ribs between the forms
were filled with concrete and were reinforced with discarded steel mine-hoist ropes in the
center of the ribs. In France, Lambot built a rowboat of concrete reinforced with wire in
1848 and patented it in 1855, His patent included drawings of a reinforced concrete beam
and a column reinforced with four round iron bars. In 1861, another Frenchman, Coignet,
published a book illustrating uses of reinforced concrete.

The American tawyer and engineer Thaddeus Hyatt experimented with reinforced
concrete beams in the 1850s. His bewns had longitudinal bars in the tension zone and ver-
tica! stirrups for shear, Unfortunateiy, Hyatt’s work was not known until he privately pub-
lished a book describing his tests and building system in 1877,

Perhaps the greatest incentive to the early development of the scientific knowledge
of reinforced concrete came trons the work of Joseph Monier, owner of a French nursery
garden. Monier began experimenting about 1850 with concrete tubs reinforced with iron
for planting trees. He patented his idea in 1867. This patent was rapidly followed by patents
for reinforced pipes and tanks (1868), flat plates { 1869). bridges (1873). and stairs {1875).
In 1880-1881. Monier received German patents for many of the same applications. These
were licensed to the construction firm Wayss and Freitag, which commissioned Professors
Morsch and Bach of the University of Stuttgart 1o test the strength of reinforced concrete
and commissioned Mr. Koenen, chiet building inspector for Prussia, to develop a method
of computing the strength of reinforced concrete. Koenen's book, published in 1886, pre-
sented an analysis which assumed that the neutral axis was at the midheight of the member.

The first reinforced concrete buitding in the United States was a house built on Long
Island in 1875 by W. E. Ward, a mechanical engineer. E. .. Ransome of California experi-
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mented with reinforced concrete in the 1870s and patented a twisted steel reinforcing bar in
1884. In the same year. Ransome independently developed his own set of design procedures.
In 1888 he constructed a building having cast-iron columns and a reinforced concrete floor
systemn consisting of beams and a siab made from flat metal arches covered with concrete. In
1890. Ransome built the Leland Stanford, Jr. Museum: in San Francisco. This two-story
building used discarded cable car rope as beam reinforcement. In 1903 in Pennsylvania he
built the first building in the United States compietely framed with reinforced concrete.

In the period from 1875 to 1900, the science of reinforced concrete developed
through a series of patents. An English textbook published in 1904 listed 43 patented sys-
tems. 15 in France, 14 in Germany or Austria~Hungary, 8 in the United States, 3 in the
United Kingdom, and 3 elsewhere. Most of these differed in the shape of the bars and the
manner in which the bars were bent.

From 1890 to 1920, practicing engineers gradually gained a knowledge of the me-
chanics of reinforced concrete, as books, technical artictes, and codes presented the theo-
ries. In an 1894 paper to the French Society of Civil Engineers, Coignet {son of the earlier
Coignet) and de Tedeskko extended Koenen's theories to develop the working stress design
method for flexure, which was used universally from 1900 to 1950. During the past seven
decades extensive research has been carried out on various aspects of reinforced concrete
behavior, resulting in the current design procedures.

Prestressed concrete was pioneered by E. Freyssinet. who in 1928 concluded that it
was necessary to use high-strength steel wire for prestressing because the creep of concrete
dissipated most of the prestress force if normal reinforcing bars were used to develop the
prestressing force. Freyssinet developed anchorages for the tendons and designed and built
a number of pioneering bridges and structures,

Design Specifications for Reinforced Concrete

The first set of building regulations for reinforced concrete were drafted under the leader-
ship of Professor Morsch of the University of Stuttgart and were issued in Prussia in 1904,
Design regulations were issued in Britain, France, Austria, and Switzerland between 1907
and 1909.

The American Railway Engincering Association appointed a Committee on Masonry
in 1890. In 1903 this committee presented specifications for portland cement concrete.
Between 1908 and 1910 a series of commitiee reports led 1o the Srandard Building
Regulations for the Use of Reinforced Concrete published in 1910' “ by the National
Association of Cement Users which subsequently became the American Concrete Institute.

A Joint Committee on Concrete and Reinforced Concrete was established in 1904 by
the American Society of Civil Engineers, American Society for Testing and Materials, the
American Railway Engineering Association. and the Association of American Portland
Cement Manufacturers. This group was later joined by the American Concrete Institute.
Between 1904 and 1910 the Joint Committee carried out research. A preliminary report is-
sued in 1913'~ lists the more important papers and books on reinforced concrete published
between 1898 and 1911. The final report of this committee was published in 1916.'~ The
history of reinlorced conerete building codes in the Uniled Slates was reviewed in 1954 by

Kerekes and Reid.'”’

1-6 BUILDING CODES AND THE ACI CODE

The design and construction of buildings is regulated by municipal bylaws called building
codes. These exist o protect the public’s health and safety. Each city and town is free 1o
write or adopt its own building code, and in that city or town. only that particular code has
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legal status. Because of the complexity of building code writing. cities in the United States
generally base their building codes on one of three model codes: the Uniform Building
Code,"® the Standard Building Code,'™ or the Basic Building Code."'° These codes cover
such things as use and occupancy requirements, fire requirements, heating and ventilating
requirements, and structural design.

The definitive design specification for reinforced concrete buildings in North
America is the Building Code Reguirements for Reinforced Concrete (ACI-318-95),'™"
which is explained in a Commentary.'™

This code, generally referred to as the ACI Code, has been incorporated in most
building codes in the United States and serves as the basis for comparable codes in Canada,
New Zealand. Australia, and parts of Latin America. The ACI Code has legal status only if
adopted in a local building code.

The ACI Code undergoes a major revision every six years. ACI-318-95 is the revi-
sion published in 1995. An interim revision or supplement is published halfway between
the major revisions. This book refers extensively to the 1995 ACI Code. It is recommended
that the reader have a copy available.

The term structural concrete is used to refer to the entire range of concrete structures
from plain concrete without any reinforcement; through ordinary reinforced concrete, re-
inforced with normal reinforcing bars; through partially prestressed concrete, generally
containing both reinforcing bars and prestressing tendons: to fully prestressed concrete,
with enough prestress to prevent cracking in everyday service. In 1993 the title of the ACI
Code was changed from Building Code Requirements for Reinforced Concrete to Building
Code Requirements for Structural Concrete to emphasize that the code deals with the en-
tire spectrum of structural concrete.

The rules for the design of concrete highway bridges are specified in the Standard
Specifications for Highway Bridges, American Association of State Highway and
Transportation Officials, Washington, D.C.»™"?

Each nation or group of nations in Europe has its own building code for reinforced
concrete. The CEB-FIP Model Code for Concrete Structures,""* published in 1978 and re-
vised in 1990 by the Comité Euro-International du Béton, Lausanne, is intended to serve as
the basis for future attempts to unify European codes. This code and the ACI Code are sim-
ilar in many ways.
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‘The Design
Process

2-1 OBJECTIVES OF DESIGN

The structural engineer is @ member of a team whose members work together to design a
building. bridge. or other structure. In the case of a building. an architect generally pro-
vides the overali layoul, and mechanical, electrical. and structural engineers design indi-
vidual systems within the building.

The structure should satisty four major criteria:

1. Appropriateness. The arrangement of spaces, spans, ceiling heights, access,
and traffic flow must complement the inteaded use. The structure should fit its environment
and be aesthetically pleasing.

2. Economy. The overall cost of the structure should not exceed the client’s bud-
get. Freguently. teamwork in design will lead to overall economies,

3. Structural adequacy. Structural adequucy involves two major aspects,

{a) A structure must be strong enough to sately support all anticipated loadings.
(b) A structure must not deflect. tilt. vibrate. or crack in a manner that impairs
its usefulness.

4. Maintainability. A structure should be designed to require a minimum of main-
tenance and to be able to be maintained in a stmple fashion,

2-2  DESIGN PROCESS

The design process is a sequential and iterative decision making process. The three major
phases are:

1. Definition of the client’s needs and priorities. All buildings or other structures
are built to fulfill a need. It is important that the owner or user be involved in determining
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the attributes of the proposed building. These include functional requirements, aesthetic re-
quirements, and budgetary requirements. The latter include first cost, rapid construction to
allow early occupancy. minirnum upkeep. and other factors.

2. Development of concept of project. Based on the client’s needs and priorities,
a number of possible layouts are developed. Preliminary cost estimates are made and the
final choice of the system to be used is based on how well the overall design satisfies the
prioritized needs within the budget available.

During this stage the overall structural concept is selected. Based on approximate
analyses of the moments, shears, and axial forces, preliminary member sizes are seiected
for each potential scheme. Once this is done, it is possible to estimate costs and select the
most desirable structural system.

The overall thrust in this stage of the structural design is to satisfy the design criteria
dealing with appropriateness, economy, and to some extent, maintainability.

3. Design of individual systems. Once the overall layout and general structural
concept have been selected, the structural system can be designed. Structural design in-
volves three main steps. Based on the preliminary design selected in phase 2, a structural
analysis is carried out to determine the moments, shears, and axial forces in the structure.
The individual members are then proportioned to resist these forces. The proportioning,
sometimes referred to as member design, must also consider overall acsthetics, the con-
structability of the design, and the maintainability of the final structure. The final stage in
the design process is to prepare construction drawings and specifications.

2-3 LIMIT STATES AND THE DESIGN OF REINFORCED CONCRETE
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Limit States

When a structure or structural element becomes unfit for its intended use, it is said to have
reached a limif stare. The limit states for reinforced concrete structures can be divided into
three basic groups:

1. Ultimate limit states. These involve a structural collapse of part or all of the
structure. Such a limit state should have a very low probability of occurrence since it may
lead to loss of life and major financial losses. The major ultimate states are:

(a) Loss of equilibrium of a part or all of the structure as a rigid body. Such a
failure would generally involve tipping or sliding of the entire structure and would
occur if the reactions necessary for equilibrium could not be developed.

(b) Rupture of criticai parts of the structure, leading to partial or complete col-
lapse. The majority of this book deals with this limit state. Chapters 4 and 5 consider
flexural failures; Chap. 6, shear failures; and so on.

(c) Progressive collapse. In some cases a minor localized failure may cause
adjacent members to be overloaded and fail, until the entire structure has collapsed.
Progressive collapse is prevented or slowed by correct structural detailing to tie the
structure together and to provide alternative load paths in case of a locaiized fail-
ure.”"** Since such failures may occur during construction, the designer should be

aware of construction loads and procedures. A structure is said to have general
structural integrity if it is resistant to progressive collapse. Ways of providing struc-
tural integrity are discussed in Sec. 1.4 of the Commentary of Ref. 2-2.

(d) Formation of a plastic mechanism. A mechanism is formed when the rein-
forcement yields to form plastic hinges at enough sections to make the structure unstable.

The Design Process




(e) Instability due to deformations of the structure. This tvpe of failure involves
buckling and is discussed mere fully in Chap. 12.

(f) Fatigue. Fracture of members due to repeaied stress cyeles of service loads
may cause collapse.

2. Serviceability limit states. These involve distuption of the functional use of the
structure but not collapse per se. Since there is less danger of loss of life. a higher proba-
bility of occurrence can generally be tolerated than in the case of an ultimate limit state.
The major serviceability limit states include:

(a) Excessive deflections for normal service. Excessive deflections may cause
machinery to malfunction, may be visually unacceptable, and may lead to damage to
nonstructural elements or to changes in the distribution of forces. In the case of very
flexible roofs, the deflections due to the weight of water on the roof may lead to in-
creased deflections, increased depth of water. and so on. until the capacity of the roof
is exceeded. This is a ponding failure and in essence is a collapse brought about by a
lack of serviceability.

(b) Excessive crack width. Although reinforced concrete must crack before the
reinforcement can act, it is possible to detail the reinforcement to minimize the crack
widths. Excessive crack widths lead to leakage through the cracks, corrosion of the
reinforcement, and gradual deterioration of the concrete.

(c) Undesirable vibrations. Vertical vibrations of fioors or bridges and lateral
and torsional vibrations of tall buildings may disturb the users. Vibration has rarely
been a problem in reinforced concrete buildings.

Design for serviceability is discussed in Chap. 9.

3. Special limit states. This class of limit states involves damage or failure due to
abnormal conditions or abnormal loadings and includes:

(a) Damage or collapse in extreme earthquakes

(b) Structural effects of fire, explosions. or vehicular collisions

(¢} Structural effects of corrosion or deterioration

(d) Long-term physicai or chemical instability (normally not a problem with
concrete structures).

Limit States Design

Limit states design is a process that involves:

1. Identification of all potential modes of failure (i.c., identitication of the significant
limit states)

2. Determination of acceptable levels of safety against occurrence of each limit state

For normal structures this step is carried out by the building code authorities, who
specify the load combinations and check factors to be used. For unusual structures the en-
gineer may need o check whether the normal levels of safety are adequate,

3. Consideration by the designer of the significant limit states

Frequently, for buildings, a limit states design is carried out starting by propor-
tioning for the ultimate limit states followed by a check of whether the structure will ex-
ceed any of the serviceability limit states. This sequence is followed since the major
function of structural members in buildings is to resist loads without endangering the oc-
cupants. For a water tank, however, the limit state of excessive crack width is of equal
importance to any of the ultimate limit states if the structure is to remain watertight. In
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Fig. 2-1
Loads and load effects.
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such a structure the design might start with a consideration of the limit state of crack
width, followed by a check of the ultimate limit states. In the design of support beams for
an elevated menorail. the smoothness of the ride is extremely important, and the limit
state of defiection may govern the design.

Basic Design Relationship

Figure 2-1a shows a beam that supports its own dead weight, w, plus some applied
loads. Py. P.. and P. These cause bending moments, distributed as shown in Fig. 2-1b. The
bending moments are obtained directly from the loads using the laws of statics, and for a
given span and combination of loads w, P, P,, and P, the moment diagram is independent
of the composition or size of the beam. The bending moment is referred to as a load effect.
Other load effects inciude shear force, axial force, torque, deflection, and vibration.

Figure 2—2a shows flexural stresses acting on a beam cross section. The compressive
stresses and fensile stresses in Fig. 2-2a can be replaced by their resultants, C and T, as
shown in Fig. 2-2b. The resulting couple is called an internal resisting moment. The inter-
nal resisting moment when the cross section fails is referred to as the moment capacity or
moment resistance, The word “resistance” can also be used to describe shear resistance or
axial load resistance.

The beam shown in Fig. 2-2 will safely support the loads if at every section the re-
sistance of the member exceeds the effects of the loads:

resistances = load effects -1

To allow for the possibility that the resistances may be less than computed, and the
load effects may be larger than computed, strength reduction factors, ¢, less than 1, and
{oad fuctors, o, greater than 1, are introduced:

R, = a§| + af; + - (2-2)

where K, stands for nominal resistance and § stands for load effects based on the specified
loads. Written in terms of moments, Eq. 2-2 becomes

(beMu = aDMD + aLML + (2‘33.)

A TR LU T T S N R A
N

{a) Beam

(b) Load effect — bending moment
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Fig. 2-2
Internal resisting moment.

VAN

{(a) Stresses acting on a cross section.

NAN

(b) Internal couple.

where M, is the nominal moment resistance. The word “rominal’” implies that this resis-
tance is a computed value based on the specified concrete and steel strengths and the di-
mensions shown on the drawings. M, and M, are the bending moments (load effects} due
to the specified dead load and specified live load, respectively; ¢, is a strength reduction
factor for moment; and o, and o are toad factors for dead and live load, respectively. The
strength reduction factors are sometimes referred to as resistance factors.

Similar equations can be written for shear, V, or axial force, P:

WV, = apVy + vV + (2-3b)

$pP, = apPy + o Py + (2-3¢)

Equation 2-1 is the basic limit states design equation. Equations 2-3 are special
forms of this basic equation. Equation 11-1 of the ACI Code, for example, is the same as
Eq. 2-3b except that in that equation, the group of terms (a,V, + oV, + = ) is ex-
pressed as V,, which is defined as the facrored shear force. Throughout the ACI Code, the
symbol I is used to refer to the combination (a, D + o, L + - ). This combination is re-
ferred to as the reguired strength or the factored loads. The symbols M, V,, T, and so on,
refer o factored load effects calculated from the factored loads, U, hence the subscript u.

2-4 STRUCTURAL SAFETY

There are three main reasons why some sort of safety tactors, such as load and resistance
factors, are necessary in structural design:

1. Variability in resistance. The actual strengths (resistances) of beams, columns,
or other structural members will almost always differ from the values calculated by the de-
signer. The main reasons for this are:*™

{a) Variability of the strengths of concrete and reinforcement

{(b) Differences between the as-built dimensions and those shown on the struc-
tural drawings

2-4 Structural Safety 15



Fig. 2-3

Comparison of measured and
computed failure moments
based on all data for rein-
forced concrete beams with
Sz > 2000 psi, Ref. 2-4.
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{c) Effects of simplifying assumptions made in deriving the equations for mem-
ber resistance

A histogram of the ratio of beam moment capacities observed in tests, M, to the
nominal strengths computed by the designer, M,, is plotted in Fig. 2-3. Although the mean
strength is roughly 1.05 times the nominal strength in this sample, there is a definite chance
that some beam cross sections will have a lower capacity than computed. The variability
shown here is due largely to the simplifying assumptions made in computing the resisting
moment, ..

2. Variability in loadings. All loadings are variable, especially live loads and en-
vironmental loads due to snow, wind, or earthquakes. Figure Z—4a compares the sustained
component of live loads measured in a family of 151-ft” areas in offices. Although the av-
erage sustained live load was 13 psf in this sample, 1% of the measured loads exceeded
44 psf. For this type of occupancy and area, building codes specify live loads of 50 psf.
For larger areas the mean sustained live load remains close to 13 psf but the variability de-
creases, as shown in Fig. 2-4b. A transient live load representing unusual loadings due to
parties, temporary storage, and so on, must be added to get the total live load. As a result,
the maximum live load on a given office will generally exceed the 13 to 44 psf quoted
above.

In addition to actual variations in the loads themselves, the assumptions and approx-
imations made in carrying out structural analyses lead to differences between the actual
forces and moments and those computed by the designer.”* Due to the variabilities of re-
sistances and load effects, there is a definite chance that a weaker-than-average structure
may be subjected to a higher-than-average load. In extreme cases failure may occur. The

X = 1.05

50
oy = 0.105

40 |

112 Tests

No. of tests
(]
o
T

20

10

0.8 1.0 1.2 1.4
X = Mest/Mp

The Design Process




Fig. 24

Frequency distribution of sus-
tained component of live
loads in offices. (From Ref.
2-5.)
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load factors and resistance factors in Egs. 2-2 and 2-3 are selected to reduce the probabil-
ity of failure to a very small level.

A third factor that must be considered in establishing the tevel of safety required ina
particular structure is:

3. Consequences of failure. A number of subjective factors must be considered in
determining an acceptable level of safety for a particular class of structure. These include
such things as:

(a) Cost of clearing the debris and replacing the structure and its contents.

{(b) Potential loss of life. It may be desirable to have a higher factor of safety for
an auditorium than for a storage building.

(¢) Cost o society in lost time, tost revenue or indirect loss of life or property
due 1o a failure. For example, the failure of a bridge may result in intan gible costs due
to traffic jams, and so on, which could approach the cost of the damage.

(d) Type of failure, warning of failure, existence of alternative load paths. If the
failure of 2 member is preceded by excessive deflections, as in the case of a flexural
failure of a reinforced concrete beam, the persons endangered by the impending col-
lapse will be warned and will have a chance to leave the building prior to failure. This
may not be possible if a member fails suddenly without warning, as may be the case
with a tied column. Thus the required level of safety may not need to be as high for
2 beamn as for a column. In some structures, the yielding or fuilure of one memnber
causes a redistribution of load to adjucent members. In other structures, the failure of
one member causes complete collapse. If no redistribution is possible, a higher level
of safety is required.

2.5 PROBABILISTIC CALCULATION OF SAFETY FACTORS

The distribution of a pupulation of resistances, K, of s group of simikar structures is ploited
on the horizontal axis in Fig. 2-3. This is compared to the distribution of the maximum load
effects, S, expected to occur on those structures during their lifetimes, plotted on the verti-
cal axis in the same figure. For consistency, both the resistances and the load effects are ex-
pressed in terms of a quantity such as bending moment. The 45° line in this figure
corresponds to a load effect equal to the resistance. Combinations of § and R falling above
this line correspond to § > R and, hence, failure. Thus load effect S, acting on a structure
having strength R, would cause failure, whereas joad effect S, acting on a structure having
resistance R» represents a safe combination.

2.5 Probabilistic Calculation of Safety Factors 17



Fig. 2-5

Safe and unsafe combinations
of loads and resistances.
(From Ref. 2-6.)

Fig. 2-6

Safety margin, probability of
failure, safety index. (From
Ref. 2-6.)
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Load effect, 5

R2

A1

Resistance, R

For a given distribution of load effects, the probability of failure can be reduced by
increasing the resistances. This would correspond 1o shifting the distribution of resistances
to the right in Fig. 2-5. The probability of failure could also be reduced by reducing the dis-
persion of the resistances.

Theterm ¥ = R — §is called the safety margin. By definition, failure will occur if ¥
is negative, shown shaded in Fig. 2-6. The probability of failure, Py, is the chance that a
particular combination of R and § will give a negative value of Y. This probability is equal
to the ratio of the shaded area to the total area under the curve in Fig. 2-6. This can be ex-
pressed as

P, = probability that [¥ < 0] -9

The function Y has a mean value ¥ and a standard deviation ¢y. From Fig. 2-6 it can
be seen that ¥ = 0 + Boy, where B = Y/oy. If the distribution is shifted to the right by
making Y larger, 8 will increase, and the shaded area, Py, will decrease. Thus P;is a func-
tion of B. The factor 8 is called the safety index.

If ¥ follows a standard statistical distribution, and if ¥ and o are known, the proba-
bility of failure can be calculated or obtained from statistical tables as a function of the type
of distribution and the value of 8. Thus if Y follows a normal distribution and 8 s 3.5, then
Y = 3.50y and from tables of the normal distribution, P,is 1/9091 or 1.1 X 104 This
suggests that roughly | in every 10,000 structural members designed on the basis of
B = 3.5 will fail due to excessive load or understrength sometime during its lifetime.

Bﬂ'y

=<

Frequency

0 Y=R-§
PHR — 5) < 0] = shaded area = P; Satety margin
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The appropriate values of P, and hence 8 are chosen bearing in mind the conse-
quences of failure. Based on current design praciice. 3 is taken berween 3 and 3.5 for duc-
tile failures with average consequences of failure and between 3.5 and 4 for sudden failures
or failures having serious consequences of failure. ™ ¥

Because the strengths and loads vary independently. it is desirable to have one fac-
tor or series of factors to account for the variability in resistances. and a second series of
factors to account for the variability in load effects. These are referred 1o. respectively, as
resistance factors, ¢. and load factors. a. The resulting design equations are Egs. 2-2
and 2-3. )

The derivation of probabilistic equations for calcuiating values of  and w is sum-
marized and applied in Refs. 26, 2-7. and 2-8.

The resistance and load factors in the ACI Code were based on a statistical model
which assumed that if there were a | - 1000 chance of an "overload”and a 1 100 chance of
“understrength,” the chance that an “overload™ and an “understrength™ would occur simul-
taneously is 171000 X 1:100or 1 X 107°. Thus the ¢ factors were originally derived so
that a strength of @R, would be exceeded 95 out of 100 times. The ¢ factors for columns
were then divided by 1.1 since the failure of a column has serious consequences. The ¢ fac-
tors for tied columns that fail in a brittle manner were divided by 1.1 a second time to re-
flect the consequences of the mode of failure. The original derivation is summarized in the
appendix to Ref. 2-6.

26 DESIGN PROCEDURES SPECIFIED IN THE ACI BUILDING CODE

The 1995 ACI Building Code allows two alternative design procedures. The one most com-
monly used involves load and resistance factors and is referred to as strength design. This
procedure is essentially limit states design except that primary attention is always placed on
the ultimate limit states with the serviceability limit states being ¢hecked after the original
design is completed.

ACI Secs. 9.1.1 and 9.1.2 present the basic limit states design philosophy of that code.

9.1.1-—Structures and structural members shall be designed o have design strength at all sec-
tions at least equal to the required strengths calculated for the factored fouds and forces in such
combinations as are stipulated in this code.

The term design strength refers to R, and the term required strength refers to the load ef-
fects calculated from factored loads, a; D + e L +

9.1.2—Members also shall meet all other requirements of this code 10 insure adeguate perfor-
mance at service load levels.

This clause refers primarily to control of deflections and excessive crack width.

Altematively, working stress design can be used. Here design s based on working
loads, also referred to as service foads or unfactored loads. In flexure, the maximum elas-
tically computed stresses cannot exceed allowahle stresses or working stresses of 0.4 t0 0.5
times the concrete and steel strengths. The 1995 ACI Code refers to this procedure as the
alternate design procedure. It is permitted in ACT Sec. 8.1.2. and details are given in ACI
Appendix A.

The working stress design method assumes that the ultimate limit states will auto-
matically be satisfied by the use of allowable stresses. Depending on the variubility of the
materials and loads, this is not necessarily so. ACT Sec. A_1.4 requires the designer to con-
sider the deflection limit state and the crack-width limit state.

2-6 Design Procedures Specified in the ACI Building Code 19



The drawbacks of working stress design are discussed in Refs. 2-6 and 2--7. The
mest serious drawbacks stem from its inability to account properly for the variability of the
resistances and loads: lack of any knowledge of the level of safety: and its inability to deal
with groups of loads where one load increases at a different rate than the others. This last
criticism is especially serious when a relatively constant load such as dead load counteracts
the effects of a highly variable load such as wind. as illustrated in Fig. 2-7, Here a 20% in-
crease in the wind causes a 209 increase in the maximum flexural stresses (from 500 psi
to 600 psi) as expected. but causes a 100% increase in the stresses at point A in Fig. 2-7d. :

Plastic design. also referred to as limit design (not to be confused with limit states de- p
sign) or capacity design. is a design process that considers the redistribution of moments as :
successive cross sections yield. forming plastic hinges which lead to a plastic mechanism.
These concepts are of considerable importance in seismic design, where the ductility of the
structure leads to a decrease in the forces that must be resisted by the structure.

) — Dead ;
Wind load !
load

{a) Structure.

}
o= 5 = 400 psi
{p) Dead load stresses.
™
o = Mw',‘ 14
\ N 500 psi
600 psi
() Wind load stresses.
200 psi
100 psi po o
Fig. 2-7 N
Stresses due to counteracting \4
loads. (From Ref. 2-7.) {d) Combined load stresses.
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Factored Loads, Required Strength

The ACT Code presents two different sets of load factors and load combinations. The load
factors and combinations introduced in the 1963 ACI Code and amended in the 1971 ACI
Code are presented in the body of the code in ACI Secs. 9.2.1 t¢ 9.2.7. In 1982, the
American National Standards Institute published Minimum Design Loads for Buildings
and Other Structures. ANST AS8.1-1982 (recently issued as ASCE 7-93), which contained
a unified set of load factors and load combinations, developed in Ref. 2-7, for use in the de-
sign of steel, timber, brick, and concrete structures. These load factors and load combina-
tions differ trom those in the ACI Code. Appendix C of ACI 318-93 presents the ASCE
7-95 load factors and load combinations in ACI Commentary Sec. RC.1 and presents com-
patible resistance factors in ACl Code Sec. C.1. The use of these is permitted when the
structure has mixed construction, such as steel frames and concrete shear walls, for exam-
ple. Design is to be based entirely on the load and resistance factors in ACI Chap. @ or en-
tirely on those in ACI Appendix C. When the load factors from ACI Appendix C are used.
the resistance factors, ¢, in ACI Appendix C must be used. In this book, the load factors in
ACI Chap. 9 will be used throughout.

ACI Secs. 9.2.1 10 9.2.7 present a series of load factors and combinations of factored
loads to be used in calculating the load effects. In the code the symbol U refers to a combi-
nation of factored loads; and the symbols M, V,. T,. and so on, refer to factored load ef-
fects (moments, shears, torques) calculated from U. The subscript u is reserved for load
effects calculated from the factored loads, U. The ACI Code uses the term required strength
to refer to factored load effects.

In the design of buildings that are not subjected to significant wind or earthquake
forces, or for members unaffected by wind or earthquakes, the factored loads are com-
puted from

U=14D + V7L (2-5)
{ACI Eq. 9-1)
where D and L are the specified dead and live loads.
If wind loads do affect the design, ACI Sec. 9.2.2 requires that three combinations of
loads be considered and the design based on the largest values of U of either sign at each
critical section:

1. Where the load effects due to wind add to those due to dead or live loads:

U=075(14D + 1.7L + 1.7W) {2-6)

(ACI Eq. 9-2)

U=07514D + 17W) (2-7)

2. Where the effects of dead louds stabilize the structure against wind loads, as in
Fig. 2-7:

U=09D + 1.3W (2--8)

{ACI Eq. 9-3)

But for any combination of 2, L, and W, the required strength shall pot be less than

as given by Eq. 2-3 (ACI Eq. 9-1).

Similar Joad combinations are given in ACI Sec. 9.2.3 for earthquake loadings, Sec.
9.2.4 for lateral earth pressure, Sec. 9.2.5 for fluid pressures (in tanks, etc.), Sec. 9.2.6 for
impact loads, and Sec. 9.2.7 for differential settlement, creep, shrinkage, and temperature
change.

Equation 2-8 would be used to compute the stresses at point 4 in Fig. 2-7. At point
A the most severe of Eqs. 2--5 to 2-7 would apply.
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In the analysis of a building frame, it is frequently best to elastically analyze the
structure three times, once each for 1.0D, 1.0L, and 1.0W and to combine the resulting mo-
ments, shears, and so on, for each member according to Egs. 2-5 to 2-8. (Exceptions to this
are analyses of cases in which linear superposition does not apply, such as second-order
analyses of frames. These must be carried out at the factored load level.) The procedure
used is illustrated in Example 2-1.

EXAMPLE 2-1 Computation of Factored Load Effects

Figure 2-8 shows a beam and column from a concrete building frame. The loads per foot on
the beam are dead load, D = 1.58 kips ft, and live load, L = 0.75 kip ft. The moments and shears
in a beam and the columns over and under the beam due to 1.00, 1.0L, and 1.0W are shown in Fig.

2-8bto d.
Compute the required strengths using Eq. 2-5 through 2-8. For the moment at section A:

(@ U=14D + 1.7L
= 1.4(—-39) + 1.7(—19) = —86.9 fr-kips
b U=0.75014D + 1.7L = 1.7TW)
’ = 1.05(--39) + 1.275(—19} = 1.275(84)
= —172.3 ft-kips and +41.9 ft-kips

2 kips
—
1 kip | m
—a i
12 ft WD = 1.58 kipS / f
A w, = 0.75 kip / f1 B
N | v 44 I
= -—]—P 1 1 jr 9.5
i I
12 ft A B
1 kip Lb-[ (c} Moments due to 1.0L, ft-kips.
«— 5 Kips 201t
le |
_| i ™ ’—
(a) Frame.

19.5

. 19.5 45
Fig. 2-8
Moment diagrams—Example {by Moments due to 1.0D, ft-kips. 84

2-1. {(d} Moments due to 1.0W, ft-kips.
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The positive and negative values of wind load moments are due to winds alternatively from the
two sides of the building.

075140 = L7W)
1.03 X 39 = 1,275 X 84
— 148.1 ft-kips and + 66.2 fi-Kips

(c) U

It is not necessary 1o check the fourth load case because this probiem dees not involve up-
lift or overturning. Thus the required strengtis, M,. at secticn A-A are ~66.2 ft-kips and — 172.3
fr-kips. a

This computation is repeated for a sufficient number of sections to make it possible
to draw shearing force and bending moment envelopes for the beam. (Bending moment en-
velopes are discussed in Sec. 10-3.) The solution of the four equations given above can
easily be programmed for a programmable calculator with D, L. and W as input values and
the seven values of U and/or the maximum positive and negative values of the factored
load effect as output.

Factored Resistance, Design Strength

In the basic limit states design equations 2-2 and 2-3, the left-hand side (bR, &M, etc.) is
referred to as the factored resistance. ACI Sec. 9.3 uses the term design strength to refer to
factored resistance. The resistance factors, ¢, are given in ACI Sec. 9.3.2, where they are
called strength reduction factors. The following values are specified:

1. Flexure, with or without axial tension ¢ = 0.90
2. Axial tension 0.90
3, Axial compression, with or without flexure:
(&) Members with spiral reinforcement conform-
ing to ACI Sec. 10.9.3 0.75
(b} Other reinforced members 0.70
Note that ¢p may be increased for very small axial
forces as explained and illustrated in Scc. 1 1-4.
4.  Shear and torsion 0.85
Bearing on concrete 0.70

Lh

Although not explained above, ACI Sec. 9.3.2.2 specifics a transition from ¢ = 0.90
for flexure or axial tension to ¢ = 0.75 or 0.70 for axial compression with or without flex-
ure. Appendix B of ACI 318-95 presents 2 different definition of this transition than ACI
Sec. 9.3.2.2. The method in Appendix B unifies the concepls used in making this Lransition
for reinforced and prestressed concrete. and for beams and columns. For this reason ACI
‘Appendix B will be used to define the ¢ factors in this book. The concepts will be dis-
cussed and illustrated in Secs. 43 and 11-4. It should be noted that if any part of ACI
Appendix B is used, all of it must be used.

In regions of high scismic activity, lower strength reduction factors are used tor shear
in some cases: see ACI Sec. 9.3.4 and Sec. 19-5 of thic book.

2-7 LOADINGS AND ACTIONS

Direct and Indirect Actions
An action is anything that gives rise to stresses in a structure. The term load or direct ac-
tion refers to concentrated or distributed forces resulting from the weight of the structure

and its contents, or pressures due to wind. water. or earth. An indirect action or imposed
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Fig. 2-9
Self equilibrating stresses due
to shrinkage.
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deformation is 2 movement or deformation which does not result from applied loads, but
which causes stresses in a structure. Examples are uneven support settlements of continu-
ous beams, and shrinkage of concrete if it is not free to shorten.

Because the stresses due to imposed deformations do not resist an applied load, they
are generally self-equilibrating. Consider, for example, a prism of concrete with a rein-
forcing bar along its axis. As the concrete shrinks, its shortening is resisted by the rein-
forcement. As a result, a compressive force develops in the steel and an equal and opposite
tensile force develops in the concrete, as shown in Fig, 2-9. If the conerete cracks due to
this tension, the tensile force in the concrete at the crack is zero and for equilibrium, the
steel force must also disappear at the cracked section.

Classifications of Loads

Loads may be described by their variability with respect to time and location. A permanent
load remains roughly constant once the structure is completed. Examples are the self-
weight of the structure, and soil pressure against foundations. Variable loads such as occu-
pancy loads and wind loads change from time to time. Variable loads may be sustained
loads of long duratton, such as the weight of filing cabinets in an office, or loads of short
duration, such as weight of people in the same office. Creep deformations of concrete
structures result from the permanent loads and the sustained portion of the variable loads.
A third category is accidental loads, which include vehicular collisions, and explosions.

Variable loads may be fixed or free in location. Thus the loading in an office building
is free since it can occur at any point in the loaded area. A train load on a bridge is not fixed
longitudinally but is fixed laterally by the rails.

Loads are frequently classed as sratic loads if they do not cause any appreciable ac-
celeration or vibration of the structure or structural elements, and as dynamic loads if they
do. Small accelerations are often taken into account by increasing the specified static loads
to account for the increase in stresses due to such accelerations and vibrations. Larger ac-
celerations such as those that might occur in highway bridges, crane rails, or elevator sup-
ports are accounted for by multiplying the live load by impact factors, or dynamic analyses
may be used. _

Three levels of live load or wind load may be of importance. The load used in calcu-
lations involving the ultimate limit states should represent the maximum load on the struc-
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ture in its lifetime. Wherever possible. therefore. the specified live. snow. and wind load-
ings should represent the mean value of the maximum lifetime load. In checking the ser-
viceability limit states, it may be desirable to use a frequent live load. which is some
fraction of the mean maximuim lifetime load (generally, 30 to 60% } and for estimating sus-
tained load deflections it may be desirable to consider a sustained or quasi-permanent live
load, which is generally between 20 and 30% of the specified live load. This differentiation
is not made in the ACI Code, which assumes that the entire specified load will be the load
present in service. As a resuli, service load deflections and creep deflections of slender
columns tend to be overestimated.

Loading Specifications

Cities in the United States generally base their building code on one of three model codes:
the Uniform Building Code,” the Standard Building Code.*™"" or the Basic Building
Code.r"* These three codes tend to be similar in many aspects of live loadings but differ
considerably in the area of wind loadings. The loadings specified in the three model codes
are based in large part on the loads recommended in ASCE Minimum Design Loads for
Buildings and Other Structures (ASCE 7-95), formerly ANSI AS8.1.

It should be emphasized that the basic structural design equation 2-2 implies that if
the loads 5, §;, and so on, differ from code to code, then the load factors « |, &, and so on,
must also differ.

In the following sections, the types of loadings presented in ASCE 7-95 will be re-
viewed very briefly. This review is intended to describe the characteristics of the various
loads. For specific values, the reader should consult the code in effect in his or her own lo-
cality.

Dead Loads

The dead load on a structural element s the weight of the member itself, plus the weights
of all materials permanently incorporated into the structure and supported by the member
in question. This includes the weights of permanent partitions or walls, the weights of
plumbing stacks, electrical feeders, permanent mechanical equipment, and so on, Tables of
dead loads are given in ASCE 7-95.~

In the design of a reinforced concrete member, it is necessary initially to estimate the
weight of the member. Methods of making this estimate are given in Chaps. 4 and 10. Once
the member size has been computed. its weight is calculated by multiplying the volume by
the density of concrete, taken as 145 Ib/ft* for plain concrete and 130 1b/ft* for reinforced
concrete. (3 1b/ft” is added to account for reinforcement.) For lightweight concrete members,
the density of the concrete must be determined from trial batches or as specitied by the pro-
ducer. In heavily reinforced members, the density of the reinforced concrete may exceed 150
1b/ft> when the weight of stirrups and longitudinal steef are included. In extreme cases de-
sign should be based on an estimate of the density for the members in question.

When working with SI units (metric units} the weight of a member 15 calculated by
multiplying the volume by the mass densily of concrete and the gravitational constant, 9.8}
N/kg. In this calculation it is customary to take the mass density of normal density concrete
containing an average amount of reinforcement (roughly, 2% by volume) as 2450 kg/m®,
made up of 2300 kg/m® for the concrete and 150 kg/m' for the reinforcement. The weight
of a cubic meter of reinforced concrete is thus | m* X 2430 kg/m’ < 9.81 N/kg/1000 =
24.0 kN and its weight density would be 24 kN/m".

The dead load referred to in Eqs. 2-5 to 2-8 is the load computed from the dimen-
sions shown on drawings and the assumed densities. It is therefore close to the mean value
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of this load. Actual dead leads will vary from the calculated values because the actual di-
mensions and densities may differ from those used in the calculations. Sometimes the ma-
teriais for the roof, partitions. or walls are chosen on the basis of a low bid, and their actual
weighis may be unknown at the time of the design. Tabulated densities of materials fre-
guently tend to underestimate the actual dead loads of the material in place in a structure.

Some types of dead load tend to be highly uncertain. These include pavement on
bridges, which may be paved several times over a period of time, or where a greater thick-
ness of pavement may be applied to correct sag or alignment problems. Similarly, earth fill
over an underground structure may be up to several feet thicker than assumed and may or
may not be saturated with water. In the construction of thin curved shell roofs or other
lightweight roofs, the concrete thickness may exceed the design values and the roofing may
be heavier than assumed, leading to overloads.

If dead load moments. forces, or stresses tend to counteract those due to live loads or
wind loads, the designer should carefully examine whether the counteracting dead load
will always exist. Thus dead loads due to soil or machinery may not be applied evenly to
all parts of the structure at the same time, leading to a critical set of moments, forces, or
stresses under partial loads.

It is generally not necessary to checkerboard the self-weight of the structure by using
dead-load factors of a;, = 0.9 and 1.4 in successive spans because the dead loads in suc-
cessive spans tend to be highly correlated. On the other hand, it may be necessary to
checkerboard the superimposed dead load using load factors of «p = 0 or 1.4 in cases
where counteraciing dead load may be absent at some stages of construction or use.

Live Loads Due to Use and Occupancy

Most building codes contain a table of design or specified live loads. To simplify the calcula-
tions, these are expressed as uniform loads on the floor area. In general, a building live load
consists of a sustained portion due to day-to-day use (see Fig. 2-4), and a variable portion
generated by unusual events. The sustained portion changes a number of times during the life
of the building when tenants change, the offices are rearranged, and so on. Occasionally, high
concentrations of live loading may occur during periods when adjacent spaces are remodeled,
office parties, temporary storage, and so on. The loading given in building codes is intended
to represent the maximum sum of these loads that will occur on a small area during the life of
the building. Typical specified live loads are given in Table 2-1.

In buildings where nonpermanent partitions might be erected or rearranged during
the life of the building, allowance should be made for the weight of these partitions.
ASCE 7-935 specifies that provision for partition weight should be made whether or not
partitions are shown on the plans, unless the specified live load exceeds 80 psf. It is cus-
tomary to represent the partition weight with a uniform load of 20 psf, or a uniform load
determined from the actual or anticipated weights of the partitions placed in any proba-
ble position. ASCE 7-95 considers this as a live load because it may or may not be pre-
sent in a given case.

As the loaded area increases, the average maximum lifetime load decreases because,
alihough it is quite possible to have a heavy load on a small area, it is unlikely that this
would occur in a large area (Fig. 2—4). This is taken into account by multiplying the speci-
fied live loads by a live-load reduction factor. In the 1988 edition of ASCE 7-95, this fac-
tor is based on the influence area, A,, for the member being designed. To determine the
influence area of a given member, one imagines that the member in question is raised by a
vnit amount, say | in. The portion of the loaded area that is raised when this is done is
called the influence area, since loads acting anywhere in this area will have a significant ef-
fect on the load effects in the member in question. This concept is illustrated in Fig. 2-10
for an interior floor beam and an edge column. For the beam A, is twice the tributary area
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TABLE 2-1 Typical Live Loads Specified in ASCE 7-395

Apartment buildings

Residential areas and corridors serving them 40 psf

Public rooms and corridors serving thermn 100 psf
Office buildings

Lobbies ard first-floor corridors 100 psf

Offices 50 psf

Corridors above first floor 80 psf

File and computer rooms shall be designed
for heavier loads based on anticipated

occupancy
Schools
Classrooms 40 psf
Corridors above first ficor 80 psf
First-floor corridors 100 psf
Stairs and exitways 100 psf
Storage warchouses
Light 125 psf
Heavy 250 psf
Stores
Retail
Ground floor 100 pst
Upper floors 75 psf
Wholesale. al! floors 125 psf

Source: Based on Minimum Design Loads for Buildings and Other Structures, ASCE Standard
ASCE 7-95, with the permission of the publisher, the American Society of Civil Engineers.

of the beam. For a column it is four times. Since two-way slab design is based on the total
moments in one slab panel, the influence area for such a slab is defined by ASCE 7-95 as
the panel area.

ASCE 7-95 allows reduced live loads, L, to be used in the design of members with
an influence area, A, of 400 fi* or more, given by

15
L LO(O.ZS + VK;) {2-9)
where L, is the unreduced live load.

The tive-load reduction applies only to live loads due to use and occupancy (not for
snow, etc.). No reduction is made for areas used as places of public assembly, for garages,
or for roofs. In ASCE 7-95, the reduced live load cannot be less than 50% of the unreduced
live load for columns supporting one floor or for flexural members, and not less than 40%
for other members.

For live loads exceeding 100 psf, no reduction is allowed by ASCE 7-95 except that
the design live load on columns supporting more than one floor can be reduced by 20%.

The reduced uniform live loads are then applied to those spans or parts of spans that
will give the maximum shears, moments, and so on, at each critical section. This is illus-
trated in Chap. 10.

The ASCE document requires that office and garage floors and sidewalks be de-
signed to safely support either the reduced uniform design loads, or a concenirated load of
2000 to 8000 Ib depending on occupancy, spread over an area of 30 in. by 30 in., whichever
causes the worst effect. The concentrated loads are intended to represent heavy items such
as office safes, pianos, car wheels, and so on.

The live loads are assumed to be large enough to account for the impact effects of
normal use and traffic. Special impact factors are given in the loading specifications for
supports of elevator machinery, large reciprocating or rotating machines, and cranes.
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Fig. 2-10
Influence areas.
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(a) interior floor beam.

(b) Edge column.

Classification of Buildings for Wind, Snow, and
Earthquake Loads

The ASCE 7-95 requirements for design for wind, snow and earthquake get progressively
more restrictive as the level of risk to human life in the event of a collapse increases. These
are referred to as use categories, and are:

I. Buildings and other structures that represent a low hazard to human life in the
event of failure, such as agrcultural facilities.

II. Buildings and other structures that do not fall into categories I, IIT, or IV.

I11. Buildings or other structures that represent a substantial hazard to human life in
the event of failure, such as assembly occupancies, schools, colleges, jails, and build-
ings containing significant quantities of toxic or explosive substances,

IV. Buildings and other structures designated as essential facilities, such as hospi-
tals, fire and police stations, communication centers, and power-generating stations
and facilities.

Snow Loads

Snow accumulation on roofs is influenced by climatic factors, roof geometry, and the expo-
sure of the roof to the wind. Unbalanced snow loads are very common due to drifting or slid-
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ing of snow or due 10 uneven removal of snow by workers. Large accumulations of snow will
often occur adjacent to parapets or points where root heights change. ASCE 7-95 gives de-
tatled rules for calculating snow loads to account for the effects of snow drifts. It is necessary
to design for either a uniform or an unbalanced snow load, whichever gives the worst effect.

Snow load is considerad to be a live load when applving the ACI load factors. A live-
load reduction factor is not applied to snow loads.

Roof Loads

In addition to snow loads. roofs should be designed for certain minimum loads to account
for workers or construction materials on the roof during erection or when repairs are made.
Consideration must also be given to loads due to rainwater. Since roof drains are rarely in-
spected to remove leaves or other debnis, ASCE 7-95 requires that roofs be able to support
the load of all rainwater that could accumulate on a particular portion of a roof if the pri-
mary roof drains were blocked.

If the design snow load is small and the roof span is longer than about 25 ft, rainwa-
ter will tend to form ponds in the areas of maximum deflection. The weight of the water in
these regions will cause an increase in the deflections, allowing more water to collect, and
so on. If the roof is not sufficiently stiff, a ponding failure will occur when the weight of

-

ponded water reaches the capacity of the roof members.”™"

Construction Loads

During the construction of concrete buildings, the weight of the fresh concrete is supported by
formwork which frequently rests on floors lower down in the structure. In addition, construc-
tion materials are often piled on floors or roofs during construction. ACI Sec. 6.2.2 states that:

No construction loads exceeding the combination of superimposed dead load plus specified
live load shall be supported on any unshored portion of the structure under construction, un-
less analysis indicates adequate strength to support such additional loads.

Wind Loads

The pressure exerted by the wind is related to the square of its velocity. Due to the rough-
ness of the earth’s surface, the wind velocity at any particular instant consists of an aver-
age velocity plus superimposed turbulence, referred to as gusts. As a result, a structure
subjected to wind loads assumes a basic deflected position due to the average velocity
pressure and vibrates from this position due to the gust pressure. In addition, there will
generally be deflections transverse to the wind due to vortex shedding as the wind passes
the building. The vibrations due to the wind gusts are a function of (1} the relationship be-
tween the natural energy of the wind gusts and the energy necessary to displace the build-
ing, (2) the relationship between the gust frequencies and the natural frequency of the
buiiding, and (3) the damping of the building.” **

Three procedures are specified in ASCE 7-95 for the calculation of wind pressures on
buildings. These include the normal “analytical™ calculation based on tabulated coeffi-
cients, a detailed calculation for tall slender buildings or flexible buildings based on the nat-
ural frequency and size of the building. and finally, a recommendation that in unusual cases,
a more detailed analysis be carried out, possibly including a wind tunnel investigation.

In the analytical procedure the basic equation for computing the wind pressure on a
building is

p = ¢GC, (2-10)
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where g is either the pressure g at height - above ground on the windward wall, or the pres-
sure g, at the mean roof height & on the roof. wide walls, and leeward wall. Sometimes it is
necessary to allow for the effects of internal pressures. This is not generally the case when
considering the main wind-resisting systern in multistory buildings,

1. Design pressure, p. The design pressure is an equivalent static pressure or suc-
tion in psf assumed to act perpendicular to the surface in question. On some surfaces it
varies over the height; on others it is assumed to be constant.

2. Velocity pressure, g. The wind velocity pressure, g psf, is the pressure exerted
by the wind on a flat plate suspended in the wind stream. It is calculated as

g. = 0.00256K.K_ V4 (2-11)
where

V = basic 3-sec gust wind speed in miles per hour at a height of 33 ft (10 m) above
the ground in open terrain

K. = velocity pressure exposure coefficient, which increases with height above the
surface and reflects the roughness on the surface terrain

K, = allows for wind speed up over hills
[ = importance factor, which is a function of the building category

The constant 0.00256 reflects the mass density of the air and accounts for the mixture of
units in Eq. 2-11.

Prior to 1995, V was based on the “‘fastest mile wind,” which had a chance of 1 in 530 of
being exceeded in any one year. This was the velocity corresponding to the time it took for a -
mile-long piece of air to pass the wind gauge. In ASCE 7-95 the definition of V was changed to
the velocity of a 3-sec gust, which has a 1 in 50 chance of being exceeded in any one year. The
1995 definition gives a much higher value of ¥ than the earlier definition. However, since the
gust effect has largely been accounted for by using the 3-sec gust speed, the gust factor, G, in
Eq. 2-10 is close to 1.0). The overall result is refatively little change in the design pressure, p.

Maps and tables of V are given in the standard. Special attention must be given to
mountainous ferrain, gorges, and promontories subject to unusual wind conditions and re-
gions subject to tornadoes. The importance factor, /, ranges from 0.87 for building use cat-
egory 1, 1.0 for normal buildings (building use category II}, to 1.15 for building use
categories IIT and IV. These values correspond to mean recurrence intervals of | in 25 years
for use category 1 buildings, 1 in 50 for use I1 buildings, and 1 in 100 years for use category
II1 and IV buildings. :

At any location, the mean wind velocity is affected by the roughness of the terrain
upwind from the structure in question. At a height of 700 to 1500 ft, the wind reaches a
steady velocity as shown by the plots of K, in Fig. 2-11. Below this height, the velocity de-
creases and the turbulence, or gusliness, increases as one approaches the surface. These ef-
fects are greater in urban areas than in rural areas, due to the greater surface roughness in
built-up areas. The factor K. in Eq. 2—11 relates the wind pressure at any elevation z feet to
that at 33 ft (10 m) above the surface for open exposure. ASCE 7-95 gives tables and equa-
tions for K. as a function of the type of exposure (urban, country, etc.) and the height above
the surface.

3. Gaust response, factor, G. The gust factor, G, in Eq. 2-10 relates the dynamic prop-
erties of the wind and the structure. For flexible buildings it is calculated. For most buildings,
which tend to be stiff, it is equal to 0.8 for exposures A and B. and 0.85 for exposures C and I

4. External pressure coefficient, C,,. When wind blows past a structure, it exerts a
positive pressure on the windward wall and a negative pressure (suction) on the leeward
wall, side walls and roof as shown in Fig. 2-12. The overall pressures to be used in the de-
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sign of a structural frame are computed using Eq. 2-10, where C, is the sum of the pressure
coefficients for the windward and leeward walis. Values of the pressure coefficients are
given in the loading standard. Typical vatues are shown in Fig. 2--12 for a building having
the shape and proportions shown.

Earthquake Loads
Earthquake loads and design for earthquakes are discussed in Chap. 19.

QOther Loads

ASCE 7-95 also gives soil loads on basement walls. loads due to floods. and loads due to
ice accretion.
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A major aim of structural design is economy. The overall cost of a building project is
strongly affected by both the cost of the structure and the financing charges, which are a
function of the rate of construction.

In a cast-in-place building, the costs of the floor and roof systems make up roughly
90% of the total structural costs. The cost of a floor system is divided between the costs of
building and stripping the forms; providing. bending, and placing the reinforcement; and
providing. placing. and finishing the concrete. Table 2-2 lists typical relarive costs per
square foot for several floor framing systems. The floor systems are listed in order of in-
creasing complexity of form construction. Two things are noticeable: (1) the amount of ma-
terials goes up as the column spacing increases and as a result the cost increases, and (2)
the cost of the forms is the biggest single item in the total costs, comprising 40 to 60% of
the total. The major differences between the systems then come from increased amounts of
materials as spans increase. and increased costs of forming as the complexity of the forms
increases. In the case of the one-way joist floor, a portion of the form cost was for rental of
prefabricated forms.

The cost data given in Table 2-2 suggest that floor forming costs should be a major con-
sideration in the layout of the structural system. Formwork costs can be reduced by reusing the
forms from area to area or floor to floor. Beam, slab, and column sizes should be chosen to
allow the maximum reuse of the forms. It is generally uneconomical to try to save concrete and
steel by meticulously calculating the size of every beam and column to fit the loads exactly, be-
cause although this may save cents in materials, it may cost dollars in forming costs.

Furthermore, changing section sizes often leads to increased design complexity,
which in turn leads to a greater chance of design error and a greater chance of construction
error. A simple design that achieves all the critical requirements saves design and con-
struction time and generally gives an economical structure.

Wherever possible. haunched beams should be avoided. If practical, beams should
be the same width as the columns into which they frame. Deep spandrel beams make it dif-
ficult to move forms from floor to floor and should be avoided if possible. In one-way joist
floors it is advisable to use the same depth of joist throughout rather than switching from
deep joists for long spans to shallow joists for short spans. The saving in concrete due to
such a change is negligible and generally is more than offset by the extra labor of materi-
als required, plus the need to rent and schedule two different sizes of joist forms. In joist
floors, the beams should be the same depth as the joists.

If possible, a few standard column sizes should be chosen, with the same column size
being used for three or four stories or the entire building. The amount of reinforcement and
the concrete strength used can vary as the load varies. Columns should be alighed on a reg-
ular grid if possible and constant story heights should be maintained.

Economies are also possible in reinforcement placing. Complex or congested rein-
forcement will lead to higher per pound charges for placement of the bars. I is frequently
best, therefore, to design columns for 1.5 to 2% reinforcement and beams for no more than
one-half to two-thirds of the maximum allowable reinforcement ratios, Grade 60 rein-
forcement is almost universally used for column reinforcement and flexural reinforcement
in beams. In slabs where reinforcement quantities are controlled by minimum reinforce-
ment ratios, there may be a slight advantage in using grade 40 reinforcement. The same
may be true for stirrups in beams if the stirrup spacings tend to be governed by the maxi-
mum spacings. However. before specifying grade 40 steel the designer should check
whether it is gvailable locally in the sizes needed.

Since the flexural strength of a floor is relatively insensitive to concrete strength,
there is no major advantage in using high-strength concrete in floor systems. An exception
to this would be a flat-plate systemn where the shear capacity may govern the thickness. On
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TABLE 2-2 Breskdown of Floor Construction Costs?®

20 ft X 20 ft Panel 25 ft X 25 ft Panel
Relative Relative
Cost/ft? Percent Cost/ft? Percent
Flat plate
Forms 0.43 43 0.44 38
Congcrete 0.32 32 0.38 33
Reinforcement 0.25 25 0.33 29
1.00 1.15
One-way joists”
Forms 0.62 58 0.61 54
Concrete .27 25 0.29 26
Reinforcement 0.19 17 0.23 20
1.08 1.13
One-way slab and beams
Forms 0.58 48 0.62 45
Concrete 0.29 25 0.33 24
Reinforcement 0.32 17 042 31
1.19 1.37

*The costs of the various floor systems are expressed relative to the cost of a 20 ft X 20 ft panel
flat plate. These cost ratios are based on a particular set of tesigns®~** for a common live load
and a given set of costs.?8

®The panel sizes considered are 20 ft X 20 ft and 20 ft X 30 ft.

the other hand, column strengths are directly related to concrete strength, and the most eco-
nomical columns tend to result from the use of high-strength concrete.

2-9 HANDBOOKS AND DESIGN AIDS

Since a great many repetitive computations are necessary to propertion reinforced concrete
members, handbooks containing tables or graphs of the more common quantities are avail-
able from several sources. The American Concrete Institute publishes its Design Handbook
in several volumes, ' #1727 anqd the Concrete Reinforcing Steel Institute publishes the
CRSI Handbook.™ "

Once a design has been completed, it is necessary for the details to be communicated
to the reinforcing bar suppliers and placers and the construction crew. The ACT Detailing
Manual®? presents detailing drafting standards and is an excellent guide to field practice.
ACI Standard 301, Specifications for Structural Concrete for Buildings,”™' indicates the
items to be included in construction specifications. Finally, the ACI publication Formwork
for Concrete®™ gives guidance for form design.

The ACI Manual of Concrete Practice®™ collects together most of the ACI commit-
tee reports on concrete and structural concrete and is an invaluable reference on all aspects
of concrete technology. It is published annually in hard copy and on a CD-ROM. The 1994
edition included 154 committee reports.

2-10 CUSTOMARY DIMENSIONS AND CONSTRUCTION TOLERANCES

The selection of dimensions for reinforced concrete members is based on the required size
for strength, plus other aspects arising from construction considerations. Beam widths and
depths and column sizes are generally varied in increments of 1, 2, 3, or 4 in. and slab
thicknesses in %-in. increments.
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The actual as-built dimensions will differ slightly from those shown on the drawings,
due to construction inaccuracies. ACI Standard 347° on formwork gives the accepted tol-
erances on cross-sectional dimensions of concrete columns and beams as < 7 in. and on
the thickness 1of slabs and walls as in = ﬁ in. For footings they recommend tolerances of
+2 in. and —3 in. on plan dimensions and —5% of the specified thickness.

The lengths of reinforcing bars are generally given in 2-in. increments. The toler-

ances for reinforcement placing concern the variation in the depth, d, of beams, the mini- .

mum cover and the longitudinal location of bends and ends of bars. These are specified in
ACI Secs. 7.5.2.1 and 7.5.2.2. ACI Committee 117 has published a comprehensive list of
tolerances for concrete construction and materials.* >

2-11 ACCURACY OF CALCULATIONS

In structural design, the loads, with the exception of dead load or fluid loads in a tank, are
rarely known to more than two significant figures. Thus, although calculations should in-
clude three significant figures, it is seldom necessary to record more than this. Care should
be taken in problems where load, forces, or stresses offset each other since the final value
may be the difference of two large similar numbers.

Most mistakes in structural design arise from three sources: errors in looking up or
writing down numbers, errors due to unit conversions, and failure to understand fully the
statics or behavior of the structure being analyzed and designed. The latter type of mistake
is especially serious since failure to consider a particular type of loading or the use of the
wrong statical model may lead to serious maintenance problems or collapse. For this rea-
son, designers are urged to use the limit states design process to consider all possible
modes of failure and to use free-body diagrams to study the equilibrium of parts or all of
the structure.

2-12 SHALL BE PERMITTED

34

Throughout the ACI Code, the word “may” has been replaced with the phrase “shall be
permitted” or something equivalent, at the request of the three model codes. The phrase
“shall be permitted” irnplies that the designer is permitted to use the alternative material or
design method mentioned in the section in question.
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3-1 CONCRETE

Concrete is a composite material composed of aggregate, generally sand and gravel, chem-
ically bound together by hydrated portland cement. The aggregate generally is graded in
size from sand to gravel, with the maximum gravel size in structural concrete commonly
being % in., although %-in. or 1%-in. aggregate may be used.

3-2 STRENGTH OF CONCRETE

Mechanism of Cracking and Failure in Concrete Loaded
in Compression

Concrete is a mixture of cement paste and aggregate, each of which has an essentially lin-
ear and brittle stress—strain relationship in compression. Brittle materials tend to develop
tensile fractures perpendicular to the direction of the largest tensile strain. Thus when con-
crete i1s subjected to uniaxial compressive loading, cracks tend to develop parallel to the
maximum compressive stress. In a cylinder test the friction between the heads of the test-
ing machine and the ends of the cylinder prevents lateral expansion of the ends of the cylin-
der and in doing so restrains the vertical cracking in those regions. This strengthens conical
regions at each end of the cylinder. The vertical cracks that cccur at midheight of the cylin-
der do not enter these conical regions and the failure surface appears to consist of two
cones,

Although concrete is made up of essentially elastic, brittle materials, its stress—strain
corve is nonlinear and appears to be somewhat ductile. This can be explained by the gradual
development of microcracking within the concrete and the resulting redistribution of stress
from element to element in the concrete.’™" Microcracks are internal cracks % to % in. in length.
Microcracks that occur along the interface between paste and aggregate are called bond
cracks; those that cross the mortar between pieces of aggregate are known as mortar cracks.
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There are four major stages in the development of microcracking and failure in con-
crete subjected to uniaxial compressive loading:

1. Shrinkage of the paste during hydration and drying of the concrete is restrained
by the aggregate. The resulting tensile stresses lead to ne-load bond cracks, before the con-
crete is loaded. These cracks have little effect on the concrete at low loads and the
stress—strain curve remains linear up to 30% of the compressive strength of the concrete, as
shown by the solid line in Fig. 3-1.

2. When concrete is subjected to stresses greater than 30 to 40% of its compressive
strength, the stresses on the inclined surfaces of the aggregate particles will exceed the ten-
sile and shear strengths of the paste—aggregate interfaces and new cracks known as bond
cracks will develop. These cracks are stable and propagate only if the load is increased.
Once such a crack has formed, however, any additional load that would have been trans-
ferred across the cracked interface is redistributed to the remaining unbroken interfaces and
to the mortar. This redistribution of load causes a gradual curving of the stress—strain curve
for stresses above 40% of the short-time strength. The loss of bond leads to a wedging ac-
tion, causing transverse tensions above and below the piece of aggregate.

3. As the load is increased beyond 50 or 60% of ultimate, localized mortar cracks
develop between bond cracks. These cracks develop parallel to the compressive loading,
due to the transverse tensile strains. During this stage, there is stable crack propagation;
cracking increases with increasing load but does not increase under constant load. The
onset of this stage of loading is called the discontinuity limit >~

4, At 75 to 80% of the ultimate load, the number of mortar cracks begins to in-
crease and a continuous pattern of microcracks begins to form. As a result, there are fewer
undamaged portions to carry the load and the stress—longitudinal strain curve becomes
even more nonlinear. The onset of this stage of cracking is called the critical stress.>

If the lateral strains, €, are plotted against the longitudinal compressive stress, the
dashed curve in Fig. 3-1 results. The lateral strains are tensile and initially increase as ex-
pected from Poisson’s ratio. As microcracking becomes more extensive, these cracks con-
tribute to the apparent lateral strains. As the load exceeds 75 to 80% of the ultimate
compressive strength, the cracks and lateral strains increase rapidly, and the volumetric
strain (relative increase in volume), €,, begins to increase as shown by the broken line in
Fig. 3-1.

The critical stress is significant for several reasons. The ensuing increase in volume
causes an outward pressure on ties, spirals, or other confining reinforcement, and these in
turn act to restrain the lateral expansion of the concrete, thus delaying its disintegration.

Equally important is the fact that the structure of the concrete tends to become un-
stable at loads greater than the critical load. Under stresses greater than about 75% of the
short-time strength, the strains increase more and more rapidly until failure occurs,
Figure 3—2a shows the stress—strain—time response of concrete loaded rapidly to various
fractions of its short-time strength, with this load being sustained for a long period of time
or until failure occurred. As shown in Fig. 3-2b, concrete subjected to a sustained axial
load greater than the critical load will eventually fail under that load. The critical stress is
between 0.75 and 0.80f"..

Under cyclic compressive loads, axially loaded concrete has a shake-down limit ap-
proximately equal to the onset of significant mortar cracking at the critical stress. Cyclic
axial stresses higher than the critical stress will eventually cause failure.

As mortar cracking extends through the concrete, less and less of the structure re-
mains. Eventually, the load-carrying capacity of the uncracked portions of the concrete
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Siress—strain curves for con-
crete loaded in uniaxial com-
pression. (From Ref. 3-2.}
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reaches a maximum value referred to as the compressive strength (Fig. 3—1). Further strain-
ing is accompanied by a drop in the stress that the concrete can resist, as shown by the dot-
ted portion of the line for ¢ in Fig. 3-1.

When concrete is subjected to compression with a strain gradient, as would occur in
the compression zone of a beam, the effect of the unstable crack propagation stage shown
in Fig. 3-1 is reduced because as mortar cracking softens the highly strained concrete, the
load is transferred to the stiffer, more stable concrete at points of lower strain nearer
the neutral axis. In addition, continued straining and the associated mortar cracking of the
highly stressed regions is prevented by the stable state of strain in the concrete closer to the
neutral axis. As a result, the stable crack propagation stage extends almost up to the ulti-
mate strength of the concrete.

Tests>™ suggests that there is no significant difference between the stress—strain
curves of concrete loaded with or without a strain gradient up to the point of maximum
stress. The presence of a strain gradient does appear to inctease the maximum strains that
can be attained in the member, however.

The dashed line in Fig. 3-2c represents the gain in short-time compressive strength
with time. The dipping solid lines are the failure limit line from Fig. 3-2b plotted against a
log time scale. These lines indicate that there is a permanent reduction in strength due to
sustained high loads. For concrete loaded at a young age the minimum strength is reached
after a few hours. If the concrete does not fail at this time, it can sustain the load indefi-
nitely. For concrete loaded at an advanced age the decrease in strength due to sustained
high loads may not be recovered.

The CEB-FIP Model Code 1990°° gives equaitions for both the dashed curve and the
solid curves in Fig. 3-2¢. The dashed curve {short-timme compressive strength with time)
can also be represented by Eq. 3-5, presented later in this chapter.

Under uniaxial tensile loadings, small localized cracks are initiated at tensile strain
concentrations and relieve these strain coucentrations. This initial stage of loading results
in an essentially linear stress—strain curve during the stage of stable crack initiation.
Following a very brief interval of stable crack propagation, unstable crack propagation
and fracture occur. The direction of cracking is perpendicular to the principal tensile stress
and strain.
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Fig. 3-2

Effect of sustained loads on
behavior ot concreie in ini-
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Compressive Strength of Concrete
Generally. the term concrete strength is taken to refer 1o the uniaxial compressive

strength as measured by a compression test ot a standard test cylinder, because this test is
used to monitor the concrete strength for quality control or acceptance purposes. For con-
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strengths.

venience, other strength parameters, such as tensile or bond strength, are related to the
compressive strength.

Standard Compressive Strength Tests

The standard acceptance test for measuring the strength of concrete involves short-time
compression tests on cylinders 6 in. in diameter by 12 in. high made, cured, and tested in
accordance with ASTM Standards C31 and C39.

The test cylinders for an acceptance test must be allowed to harden int their molds for
24 hours at the job site at 60 to 80°F, protected from Joss of moisture and excessive heat,
and then must be cured at 73°F in a moist room or immersed in water saturated with lime.
The standard acceptance test is carried out when the concrete is 28 days old.

Field-cured test cylinders are frequently used to determine when the forms may be
removed or when the structure may be used. These should be stored as near the location of
that concrete in the structure as practicable, and should be cured as closely as possible to
the same manner as that of the concrete in the structure.

The standard strength “test” is the average of the strengths of two cylinders from the
same sample lested at 28 days or an earlier age if specified. These are tested at a loading rate
of about 35 psi per second, producing failure of the cylinder at 1% to 3 minutes. For high-
strength concrete, acceptance tests are frequently carried out at 56 or 90 days because some
high-strength concretes take longer than normal concretes to reach their design strength,

Statistical Variations in Concrete Strength

Concrete is a mixture of water, cement, aggregate, and air. Variations in the properties or
proportions of these constituents, as well as variations in transporting, placing, and com-
paction of the concrete, lead to variations in the strength of the finished concrete. In addi-
tion, discrepancies in the tests will lead to apparent differences in strength, The shaded area
in Fig. 3-3 shows the distribution of strengths of a sample of 176 concrete strength tests.
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Fig. 3-4

Nermal frequency curves for
coefficients of variation of
10, 15, and 20 percent. (From
Ref. 3-7.)
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The mean or average strength is 3940 psi, but one test has a strength as low as 2020 psi and
one is as high as 6090 psi.

If more than about 30 tests are available, the strengths will generally approximate a
normal distribution. The normal distribution curve, shown by the curved line in Fig. 3-3, is
symmetrical about the mean value, x, of the data. The dispersion of the data can be mea-
sured by the sample standard deviation, s, which is the root-mean-square deviation of the
strengths from their mean value:

tT \/(XI ) Bl Bt el e ) AR i G St S W)
n—1
The standard deviation divided by the mean value is called the coefficient of variation, V:

V= (3-2)

|

This makes it possible to express the degree of dispersion on a fractional or percentage
basis rather than an absolute basis. The concrete test data in Fig. 3-3 have a standard devi-
ation of 615 psi and a coefficient of variation of 615/3940 = 0.156 or 15.6%.

If the data correspond to a normal distribution, their distribution can be predicted
from the properties of such a curve. Thus 68.3% of the data will lie within 1 standard devi-
ation above or below the mean. Alternatively, 15.9% of the data will have values less than
(X — ). Similarly, for a normal distribution, 10% of the data, or 1 test in 10, will have val-
ues less than (1 — aV), where @ = 1.282. Values of a corresponding to other probabili-
ties can be found in statistics texts.

Figure 3—4 shows the mean concrete strength, f,., required for various values of the
cocfficient of variation if no more than 1 test in 10 is to have a strength less than 3000 psi.
As shown in this figure, as the coefficient of variation is reduced, the value of the mean
strength, f,,, required to satisfy this requirement can also be reduced.

Based on the experience of the 1).S. Burcau of Reclamation on large projects, ACI
Committee 214 *7 has defined various standards of control for moderate-strength con-
cretes. A coefficient of variation of 15% represents average control (see Fig. 3—4). About
one-tenth of the projects studied had coefficients of variation less than 10%, which was
termed excellent control, and another tenth had values greater than about 20%, which was
termed poor control. For low-strength concrete, the coefficient of variation corresponding
to average control has a value of V = 0.15f. Above a mean strength of about 4000 psi, the
standard deviation tends to be independent of the mean strength, and for average control s
is about 600 psi.*®
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Building Code Definition of Compressive Strength

The specified compressive strength, f., is measured by compression tests on 6 in. X 12 in.
cylinders tested after 28 days of moist curing. This is the strength specified on the con-
struction drawings and used in the calculations. As shown in Fig. 3—4, the specified
strength is less than the average strength. The required mean strength of the concrete, £,
must be at least (ACI Sec. 5.3.2)

fr=ft+ 1345 (3-3)
or
Jor = fe + 2.33s — 500psi (3-4)

where s is the standard deviation determined in accordance with ACI Sec. 5.3.1. Special
rules are given if the standard deviation is not known.

Equation 3-3 gives the lowest average strength required to ensure a probability of
not more than 1 in 100 that the average of any three consecutive strength tests will be
below the specified strength. Alternatively, it ensures a probability of not mote than 1 in
11 that any test will fall below f*.. Equation 3—4 gives the lowest mean strength to ensure
a probability of not more than 1 in 100 that any individual strength test will be more than
500 psi below the specified strength. Lines indicating the corresponding required aver-
age strengths, f,,, are plotted in Fig. 3—4. In these definitions, a test is the average of two
cylinder tests.

Factors Affecting Concrete Compressive Strength

Among the large number of factors affecting the compressive strength of concrete, the fol-
lowing are probably the most important for concretes used in structures.

1. Water/cement ratio. The strength of concrete is governed in large part by the
ratio of the weight of the water to the weight of the cement for a given volume of concrete.
A lower water/cement ratio reduces the porosity of the hardened concrete and thus in-
creases the number of interlocking solids. Air voids introduced by air entrainment tend to
reduce the strength. Voids due to improper compaction will tend to reduce the strength
below that corresponding to the water/cement ratio. A water/cement ratio of (.45 cotre-
sponds to 28 day strengths of 4000 to 3000 psi for air-entrained concrete and 5000 to 6500
psi for non-air-entrained concrete. For a water/cement ratio of 0.65, the correspouding
ranges are 2500 to 3300 psi and 3300 to 4500 psi.

2. Type of cement. Five basic types of cements are produced:

Normal, Type I: used in ordinary construction where special properties are not required
Modified, Type II: lower heat of hydration than Type I; used where moderate expo-
sure to sulfate attack exists or where moderate heat of hydration is desirable

High early strength, Type I1I: used when high early strength is desired; has consider-
ably higher heat of hydration than Type I cement

Low heat, Type TV: used in mass concrate dams and other structures where heat of
hydration is dissipated slowly

Sulfate resisting, Type V: used in footings, basement walls, sewers, and so on, ex-
posed to soils containing sulfates

Figure 3-5 illustrates the rate of strength gain with different cements. Concrete made
with Type I, high early strength cement gains strength more rapidly than does concrete
made with Type I, normal cement, reaching about the same strength at 7 days as a corre-
sponding mix containing Type I cement would reach at 28 days. All five types tend to ap-
proach the same strength after a long period of time, however.
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Fig.3-5

Effect of type of cement on
strength gain of concrete
(moist cured, water—cement
ratic = 0.49). (From Ref.
3-9 copyright ASTM;
reprinted with permission.)
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3. Supplementary cementitious materials. Sometimes a portion of the cement is
replaced by materials such as fly ash, ground granulated blast furnace slag, or silica fume
to achieve economy, reduction of heat of hydration, and depending on the materials, im-
proved workability. Such materials are referred to as pozzolans, which are defined as
siliceous, or siliceous and aluminous materials, which in themselves possess little or no ce-
mentitious properties, but which will, in the presence of moisture, react with calcium hy-
droxide to form compounds with such properties. When supplementary cementitious
materials are used in mix design, the water/cement ratio, w/c, is restated in terms of the
water/cementitious materials ratio, wicm where cm represents the total weight of the ce-
ment and the supplementary cementitious materials, as defined in ACI Sec. 4.1.1. Upper
limits on the amounts of fly ash, slag, or silica fume are given in ACI Sec. 4.2.3 for con-
cretes exposed to freeze~thaw conditions. The design of concrete mixes containing sup-
plementary cementitious materials is explained in Ref. 3—-10.

Fly ash, precipitated from the chimney gases from coal-fired power plants, fre-
guently leads to improved workability of the fresh concrete. It may slow the rate of strength
gain of concrete but generally not the final strength, and, depending on composition of the
fly ash, may reduce the durability of the hardened concrete.”"'

Ground granulated blast furnace slag tends to depress the early age strength and heat
of hydration of concrete. Strengths at older ages will generally exceed those for normal
concretes with similar w/cm ratios. Slag tends to reduce the permeability of concrete and
its resistance to certain chemicals.>">

Silica jume consists of very fine spherical particles of silica produced as a by-product
in the manufacture of ferrosilicon alloys. The extreme fineness and high silica content of
the silica fume make it a highly effective pozzolanic material. It is used to produce low-
permeability concrete with enhanced durability and/or high-strength concrete.>°

4, Aggregate, The strength of concrete is affected by the strength of the aggregate,
its surface texture, its grading, and to a lesser extent by the maximum size of the aggregate.
Strong aggregates such as felsite, traprock, or quartzite are needed to make very high
strength concretes. Weak aggregates include sandstone, marble, and some metamorphic
rocks, while limestone and granite aggregates have intermediate strength. Normal-strength
concrete made with high-strength aggregates fails due to mortar cracking with very little
aggregate failure. The stress—strain curves of such concretes tend to have an appreciable
declining branch after reaching the maximum stress. On the other hand, if aggregate fail-
ure precedes mortar cracking, failure tends to occur abruptly with a very steep declining
branch. This occurs in very high strength concretes (see Fig. 3-17) and in some lightweight
concretes (see Fig. 3-25).
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Fig. 3-6

Effect of moist—curing condi-
tions at 70°F and moisture
content of concrete at time of
test on compressive strength
of concrete. (From Ref. 3-13.)

Fig. 3-7

Effect of temperature during
the first 28 days on the
strength of concrete (water/
cement ratio = 0.41, air con-
tent = 4.5 percent, Type I
cement, specimens cast and
moist-cured at temperatore
indicated for first 28 days. All
motist-cured at 73 °F there-
after). (From Ref. 3-14.)

Concrete strength is affected by the bond between the aggregaie and the cement
paste. The bond tends to be better with crushed, angular pieces of aggregate.

A well-graded aggregate produces a concrete that is less porous. Such a concrete
tends 1o be stronger. The strength of concrete tends to decrease as the maximum aggregate
size increases. This appears to result from higher stresses at the paste—-aggregate interface.

Some aggregates react with alkali in cement, causing a long-term expansion of the
concrete that destroys the structure of the concrete. Unwashed marine aggregates also lead
to a breakdown of the structure with time.

5. Moisture conditions during curing. The development of the compressive
strength of concrete is strongly affected by the moisture conditions during curing.
Prolonged moist curing leads to the highest concrete strength, as shown in Fig. 3-6.

6. Temperature conditions during curing. The effect of curing temperature on
strength gain is shown in Fig. 3-7 for specimens placed and moist cured for 28 days under the
constant temperatures shown in the figure, and then moist cured at 73°F. The 7- and 28-day
strengths are reduced by cold curing temperatures, although the long-term strength tends to
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Fig. 3-8

Normalized compressive
strength versus maturity.
{From Ref. 3-17.)

a4

be enhanced. On the other hand. high wemperatures during the first month increase the 1- and
3-dayv strengths but tend to reduce the one-year strength. The temperature during the setiing
period is especially important. Concrete placed and allowed to set at temperatures greater
than 80°F will never reach the 28-day strength of concrete placed at lower temperatures.

Cccasionally. control cylinders are left in closed boxes at the job site for the first 24
hours. If the temperature is higher than ambient inside these boxes. the strength of the con-
trol cylinders may be affected.

7. Age of concrete. Concrete gains strength with age, as shown in Figs. 3-5to 3-7.
Prior to 1975, the 7-day strength of concrete made with Type [ cement was generally 65 to
70% of the 28-day strength. Changes in cement production since then have resulted in a
more rapid early strength gain and less long-term strength gain. ACI Committee 209
has proposed the following equation to represent the rate of strength gain for concrete
made from type | cement and moist cured at 70°F.

' t
fon = Fres () (3-3)
NI s
where fi, is the compressive strength at age 7. For Type Il cement the coefficients 4 and
0.85 become 2.3 and 0.92.
Concrete cured under temperatures other than 70°F may set faster or slower than in-
dicated by these equations, as shown in Fig. 3-7.

8. Maturity of concrete. The summation of the product of the curing temperature

and the time the concrete has cured at that termperature is called the maturiry *'® of the con-
crete as defined by
N
maturity = M = E(T, — 10)(1;) (3-6)
i=1
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where 7, is the temperature in Fahrenheit during the ith interval and ¢, is the number of days
curing at that temperature. Figure 3-8 shows the form of the relationship between maturity
and compressive strength of concrete. Although no unigue relationship exists, Fig. 3-8 can
be used for guidance in determining when forms can be removed.

9. Rate of loading. The standard cylinder test is carried out at a loading rate of
roughly 35 psi per second and the maximum lcad is reached in 1% to 2 minutes, corre-
sponding to a strain rate of about 10 microstrain/sec. Under very slow rates of loading,
the axial compressive strength is reduced to about 75% of the standard test strength, as
shown in Fig. 3-2. A portion of this reduction is offset by continued maturing of the con-
crete during the loading period.*™ At high rates of loading the strength increases, reach-
ing 115% of the standard test strength when tested at a rate of 30,000 psi/sec (strain rate
of 20,000 microstain/sec). This corresponds to loading a cylinder to failure in roughly
0.10 to 0.15 second and would approximate the rate of loading experienced in a severe
earthguake.

Core Tests

The strength of concrete in a structure (in-situ strength) is frequently measured using
cores drilled from the structure. These are capped and tested in the same manner as cylin-
ders. AS'TM C42-90 Standard Method of Obtaining and Testing Drilled Cores and
Sawed Beams of Concrete specifies how such tests should be carried out. Core test
strengths show a great amount of scatter because core strengths are affected by a wide
range of variables.

Core tests have two main uses. The most frequent use of core tests is to assess
whether concrete in a new structure is acceptable. ACI Sec. 5.6.4.2 permits the use of core
tests in such cases and requires three cores for each strength test more than 500 psi below
the specified value of f_. If the structure is dry in service, the cores are air dried for 7 days
before testing and are tested dry. If the structure is wet in service, the cores are immersed
in water for at least 40 hours before testing and are tested wet. ACI Sec. 5.6.4.4 states that
concrete evaluated using cores has adequate strength if the average strength of the cores is
at least 85% of the specified strength and no single core shows a strength of less than 75%
of f.. This is just an acceptance rule. Because the 85% value tends to be less than the ac-
tual ratio of core strength to cylinder strength, taking the in-situ strength equal to (core
strength)/0.85 overestimates the in-situ strength.

The second use of core test data is to determine the in-situ strength of concrete which
is equivalent to the f used in the design equations given in the code. This is referred to as
the equivalent specified strength and is used when evaluating the strength of an existing
member or structure. Bartlett and MacGregor > suggest the following procedure for esti-
mating the equivalent specified strength of concrete in a structure using core tests,

1. Plan the scope of the investigation. The regions that are cored must be consistent
with the information sought. That is, either the member in question should be cored, or, if this
is impractical, the regions that are cored sheuld contain the same type of concrete, of about
the same age, and cured in the same way as the suspect region. The number of cores taken de-
pends, on one hand, on the cost and the hazard from taking cores out of critical parts of the
structure, and on the other hand, the desired accuracy of the strength estimate. If possible, at
least six cores should be taken from a given grade of concrete in question. It is not possible to
detect outliers (spurious values} in smaller samples and the penalty for small sample sizes
(given by k| in Eq. 3-8) is significant. The diameter of the core should not be less than 3 times
the nominal maximum size of the coarse aggregate and the length of the core shoutd be be-
tween 1 and 2 times the diameter. If possible, the core diameter should not be less than 4 in.
because the variability of the core strengths increases significantly for smaller diameters.
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2. Obtain and test the cores. Use standard methods to cbtain and test the cores as
given in ASTM C 42-20. Carefully record the location in the structure of each core, the con-
dition of the cores before testing, and the mode of failure. This information may be useful in
explaining individual low core strengths. A load-stroke plot from the core test may be useful
in this regard. It is particularly important that the moisture condition of the core correspond
1o one of the two standard conditions prescribed in ASTM C 42-90 and be recorded.

3. Convert the core strengths, f., .., to equivalent in-situ strengths, f;.. This
is done using

f::is :f;:ore(Ff o X Fdia X Fr)(ch X Fd) (3"7)

where the factors in the first set of parentheses correct the core strength to that of a standard
4-in. diameter core, with length/diameter ratio equal to 2, not containing reinforcement.
F¢ 4 = correction for length/diameter ratio as given in ASTM C 42-87
= 0.87,0.93,0.96, 0.98, and 1.00 for £/4 = 1.0, 1.25, 1.50, 1.75, and 2.0, respec-
tively
F4. = correction for diameter of core
1.06 for 2-in. cores, 1.00 for 4-in. cores, and 0.98 for 6-in. cores

F, = correction for the presence of reinforcing bars
1.00 for no bars, 1.08 for one bar, and 1.13 for two

The factors in the second set of parentheses account for differences between the condition
of the core and that of the concrete in the structure.

F,. = accounts for the effect of the moisture condition of the core at the time of the
core test
1.09 if the core was soaked before testing, and 0.96 if the core was air dried at
the time of the test
F, = accounts for damage to the surface of the core due to drilling
= 1.06
4, Check for low outliers in the set of equivalent in-situ strengths. Reference

3-18 gives a technique for doing this. If an outlier is detected using a statistical test, one
should try to determine a physical reason for the low strength.

5. Compute the equivalent specified strength from the in-situ strengths. The
equivalent specified strength, f., is the strength that should be used in design equations
when checking the capacity of the member in question. To calculate it, one first computes
the mean, f., and sample standard deviation, s, of the set of equivalent in-situ strengths,
f.i, which remains after any outliers have been removed. Bartlett and MacGregor *'® pre-
sent the following equation for /7. It uses the core test data to obtain a lower bound esti-

mate of the 10% fractile of the in-situ strength.

- (k scis)z -
feeq = kz[fcis - 1-282\/ l + (Ve + Vg + VA + V0 + de)] (3-8)
n

where
k, = a factor dependent on the number of core tests, equal to 2.40 for 2 tests, 1.47 for
3 tests, 1.20 for 5 tests, 1.10 for 8 tests, 1.05 for 16 tests, and 1.03 for 25 tests

k, = a factor dependent on the number of batches of concrete in the member or struc-
ture being evaluated, equal to 0.90 and 0.85, respectively, for a cast-in-place
member or structure that contains one batch or many batches; and 0.90 for a pre-
cast member or structure

rn = number of cores after removal of outliers
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Ve 4 = coefiicient of variation due to length/diameter correction, equai to 0.025 for
£d= 1,0006for€/d=15,andzeroforé,;d =2

Vi, = coefficient of variation due to diameter correction, equal to 0.12 for 2-in-
diameter cores, zero for 4-in. cores, and .02 for 6-in. cores

V, = coefiicient of variation due to presence of reinforcing bars in the core, equal

to zero if none of the cores contained bars, and to 0.03 if more than a third of
them did

Vo = coefficient of variation due to correction for moisture condition of core at
time of testing, equal to 0.025
V4 = coefficient of variation due to damage to core during drilling, equal to 0.025

The individual coefficients of variation in the second term of Eq. 3-8 are taken equal
to zero if the corresponding correction factor, F, is taken equal to 1.0 in Eq. 3-8.

EXAMPLE 3-1 Computation of an Equivalent Specified Strength
from Core Tests.

As a part of an evaluation of an existing structure, it is necessary to compute the strength of a
6-in.-thick slab. To do so it is necessary to have an equivalent specified compressive strength, Seeny tO
use in place of ff in the design equations. Several batches of concrete were placed in the slab.

1. Plan the scope of the investigation. From a site visit it is determined that five cores can
be taken. These are 4-in.-diameter cores drilled vertically through the slab, giving cores that are 6 in.
long. They are taken from randomly selected locations around the entire floor in question.

2. Obtain and test the cores. The cores were tested in an air-dried condition. None of them
contained reinforcing bars. The individual core strengths were 5950, 5850, 5740, 5420, and 4830 psi.

3. Convert the core strengths to equivalent in-situ strengths. From Eq. 3-7
Jois = feorelFeta X Faw X F,)F,. X Fy)
The €/d of the cores was 6 in./4 in. = 1.50. From ASTM C42-90, Fery = 0.96,
Suis = fore(0.96 X 1.0 X 1.0)(0.96 X 1.06)
= f X 0977
The individual strengths, f;., are 5812, 5715, 5607, 5295, and 4720 psi.

4. Check for low outliers. Although there is quite a difference between the lowest and sec-
ond-lowest values, we shall assume that all five tests are valid.

5. Compute the equivalent specified strength.

_ )2 _
fleq = kz[ﬁ:ss - 1-232\/ (Y +fisVos + Vet + VE+ V2 + de)J (3-8)
n

The mean and sample standard deviation of the f;, values are f;, = 5430 psi and 5,,, = 422

psi, respectively. Other terms in Eq. 3-8 are k; = 1.20 for 5 tests, k; = 0.85 for several batches, n
= 5 tests. Because no correction was made in step 3 for the effects of core diameter or reinforcement
in the core (Fj; and F, = 1.0}, V5, and V, are equal to zero. The terms under the square-root sign in

Eq. 3-8 are
(ks ) (120 X 442)?
= = 56,265
n 5
Ja(Ved + Vad + V2 + V.2 + V2) = 5430(0.006% + 0.0% + 0.0° + 0.025 + 0.025?)
= 37,918
fog = 0.85(5430 — 1.282V/56,265 + 37,918)
= 4281 psi
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The concrete strength in the slab should be taken as 4281 psi when caleulating the ca-
pacity of the slab. n

Strength of Concrete in a Structure

The strength of concrete in a structure tends to be somewhat lower than the strength of con-
trol cylinders made from the same concrete. This difference is due to the effects of differ-
ent placing, compaction, and curing procedures; the effects of vertical migration of water
during the placing of the concrete in deep members; the effects of difference in size and
shape; and the effects of different stress regimes in the structurz and the specimens.

The concrete near the top of deep members tends to be weaker than the concrete
lower down, probably due to the increased water/cement ratio at the top due to upward
water migration after the concrete is placed and by the greater compaction of the concrate
near the bottom due 1o the weight of the concrete higher in the form.*'?

Tensile Strength of Concrete

The tensile strength of concrete varies between 8 and 15% of the compressive strength. The
actual value is strongly affected by the type of test carried out to determine the tensile
strength, the type of aggregate, the compressive strength of the concrete, and the presence
of a compressive stress transverse to the tensile stress.”

Standard Tension Tests

Two types of tests are widely used. The first of these is the modulus of rupture or flexural
test (ASTM C78 or C293), in which a plain concrete beam, generally 6 in. X 6in. X 30
in. long, is loaded in flexure at the third points of a 24-in. span until it fails due to crack-
ing on the tension face. The flexural tensile strength or modulus of rupture, f,, from a mod-
ulus of rupture test is calculated using the following equation, assuming the concrete is
linearly elastic:

oM

= o (3-9)

ff

where

M = moment
b = width of specimen
k= overall depth of specimen

The second common tensile test is the splir cylinder test (ASTM C496), in which a
standard 6 in. X 12 in. compression test cylinder is placed on its side and lcaded in com-
pression along a diameter as shown in Fig. 3-%a.

In a split cylinder test, an element on the vertical diameter of the specimen is stressed
in biaxial tension and compression, as shown in Fig. 3-9¢. The stresses acting across the
vertical diameter range from high transverse compressions at the top and bottom to a nearly
uniform tension across the rest of the diameter. as shown in Fig. 3-9d. The spiitting tensile
strength, f,,, from a split cylinder test is computed as

2P

= — (3-10
ld )

far

where

P = maximum applied load in the test
£ = length of specimen
d = diameter of specimen
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Fig. 3-9

Split cylinder test.
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Various types of tension tests give different strengths. In general, the strength de-
creases as the volume of concrete that is highly stressed in tension is increased. A third-
poinl loaded modulus of rupture test on a 6-in.-square beam gives a modulus of rupture
strength f, that averages 1.5f,,, while a 6-in.-square prism tested in pure tension gives a di-
rect tensile strength that averages about 86% of £,,.> !

Relationship between Compressive and Tensile Strengths of
Concrete

Although the tensile strength of concrete increases with an increase in the compressive
strength, the ratio of tensile strength to the compressive strength decreases as the compres-
sion strength increases, Thus the tensile strength is approximately proportional to the
square root of the compressive strength. The mean split cylinder strength, f,,, from a large
number of tests of concrete from various localities has been found to be*™*

fu = 6.AVF. (3=11)

where f,,, f. and \/E are all in psi. Equation 3—11 i3 compared to split cylinder test data
in Fig. 3—10. It is important to note the wide scatter in the test data. The ratio of measured
to computed splitting strength is essentially normally distributed.

Similarly, the mean modulus of rupture, £, can be expressed as*™*

f = 8.3VFL (3-12a)

Again there is scatter in the modulus of rupture. Raphael’* discusses the reasons for this.
The distribution of the ratio of measured to computed moduius of rupture strength ap-
proaches a log-normal distribution.
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Fig. 3-10

Relationship between split-
ting tensile strengths and
compression strengths. (From
Ref. 3-8.)
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ACI Sec. 9.5.2.3 defines the modulus of rupture for use in calculating deflections as

£=15V1 (3-12b)
A lower value is used in strength calculations (ACT Sec. 11.4.2.1):
=6V (3-120)

Factors Affecting the Tensile Strength of Concrete

The tensile strength of concrete is affected by the same factors as the compressive
strength. In addition, the tensile strength of concrete made from crushed rock may be up
to 20% greater than that from rounded gravels. The tensile strength of concrete made
from lightweight aggregate tends to be iess than for normal sand and gravel concrete, al-
though this varies widely depending on the properties of the particular aggregate under
consideration.

The tensile strength of concrete develops more quickly than the compressive
strength. As a result, such things as shear strength and bond strength, which are strongly af-
fected by the tensile strength of concrete, tend to develop more quickly than the compres-
sive strength. At the same time, however, the tensile strength increases more slowly than
would be suggested by the square root of the compressive strength at the age in question.
Thus, concrete having a 28-day compressive strength of 3000 psi would have a splitting
tensile strength of about 6.4Vf: = 350 psi. At 7 days this concrete would have compres-
sive strength of about 2100 psi (.70 times 3000 psi) and a tensile strength of about 260 psi
(0.75 times 350 psi). This is less than the tensile strength of 6.4V2100 = 293 psi that ope

would compute from the 7-day compressive strength. This is of importance in choosing
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Fig. 3-11
Biaxial stresses.

form removal times for flat slab floors, which tend to be governed by the shear strength of
the column-slab connections.”*

Strength under Biaxial and Triaxial Loadings

Biaxial Loadings

Concrete is said to be loaded biaxially when it is loaded in two mutually perpendicular di-
rections with essentially no stress or restraint of deformation in the third direction as shown
in Fig. 3—11a. A common example is shown in Fig. 3-11b.

The strength and mode of failure of concrete subjected to biaxial states of stress
varies as a function of the combination of stresses as shown in Fig. 3-12. The pear-shaped
line in Fig. 3-12a represents the combinations of the biaxial stresses, o, and o, which
cause failure of the concrete. This line passes through the uniaxial compressive strength,
fwatAand A’ and the uniaxial tensile strength, f], at Band B .

Under biaxial tension () and o, both tensile stresses) the strength is close to that in
uniaxial tension, as shown by the region B—D-B’ (zone 1) in Fig. 3—12a. Here failure oc-
curs by tensile fracture perpendicular to the maximum principal tensile stress as shown in
Fig. 3—12b, which corresponds to point B in Fig. 3—12a.

When one principal stress in tensile and the other is compressive, as shown in Fig.
3-11a, the concrete fails at lower stresses than it would if stressed uniaxiafly in tension or com-
pression.* This is shown by regions A-B and A ’—B " in Fig. 3—12a. In this region, zone 2 in
Fig. 3-12a, failure occurs due to tensile fractures on planes perpendicular to the principal ten-
sile stresses. The lower strengths in this region suggest that failure may be governed by a lim-
iting tensile strain rather than a limiting tensile stress.

Under uniaxial compression (points A and A ' and zone 3 in Fig. 3~12a), failure is ini-
tiated by the formation of tensile cracks on planes parallel to the direction of the compres-
sive stresses. These planes are planes of maximum principal tensile strain.

o

O e} -~ 02

l

o

(a} Biaxial state of stress.

T

(b) Biaxial state of stress in the web of a beam.
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Fig. 3-12

Strength and modes of failure
of concrete subjected to biax-
ial stresses, (From Ref, 3-2.)
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Under biaxial compression (region A—C-A ’ and zone 4 in Fig. 3-12a) the failure pat-
tern changes to a series of parallel fracture surfaces on planes parallel to the unloaded sides
of the member as shown. Such planes are acted on by the maximum tensile strains. Biaxial
and triaxial compression loads delay the formation of bond cracks and mortar cracks. As a
result, the period of stable crack propagation is longer and the concrete is more ductile, As
shown in Fig. 3-12, the strength of concrete under biaxial compression is greater than the
uniaxial compressive strength. Under equal biaxial compressive stresses, the strength is
about 167% of f., as shown by point C.

In the webs of beams, the principal tensile and principal compressive stresses lead to
a biaxial tension—compression state of stress as shown in Fig. 3—11b. Under such a {ovading
the tensile and compressive strengths are less than they would be under uniaxial stress, as
shown by the quadrant AB or A'B’ in Fig. 3-12a. A similar biaxial stress state exists in a
split cylinder test as shown in Fig. 3-9¢. This explains in part why the splitting tensile
strength is less than the flexural tensile strength.

In zones 1 and 2 in Fig. 3-12, failure occurred when the concrete cracked, and in
zones 3 and 4, failure occurred when the concrete crushed. In a reinforced concrete mem-
ber with sufficient reinforcement parallel to the tensile stresses, cracking does not represent
failure of the member because the reinforcement resists the tensile forces after cracking.
The biaxial load strength of cracked reinforced concrete is discussed in the next subsection.

Compressive Strenigth of Cracked Reinforced Concrete

If cracking occurs in reinforced concrete under a biaxial tension—compression loading and
there is reinforcement across the cracks, the strength and stiffness of the concrete under com-
pression parallel to the cracks is reduced. Figure 3—13a shows a concrete element which has
been cracked due to horizontal tensile stresses. The natural irregularity of the shape of the
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Fig. 3-13
Stresses in a cracked concrete
element.
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cracks leads to vartations in the width of a piece between two cracks, as shown. The com-
pressive stress acting on the top of the shaded portion is equilibrated by compressive stresses
on the bottom and by shearing stresses along the edges, as shown in Fig. 3-13b. When the
crack widths are small, the shearing stresses transfer sufficient load across the cracks that the
compressive stress on the bottom of the shaded portion is not significantly larger than that on
the top, and the strength is unaffected by the cracks. As the crack widths increase, the abil-
ity to transfer shear across them decreases. For equilibrium, the compressive stress on the
bottom of the shaded portion must then increase. Failure occurs when the highest stress in
the element reaches the uniaxial compressive strength of the concrete.

Tests of concrete panels loaded in in-plane shear, carried out by Vecchio and
Collins,*?* have shown a relationship between the transverse tensile strain, €, and the
compressive strength parallel to the cracks, f5,..

r 0.8 + 170¢,
where ¢, is the average transverse strain measured on a gauge length that includes one or
more cracks. Equation 3-13 is plotted in Fig. 3-14. An increase in the strain €, leads to a de-
crease in strength. The same authors® ™ have suggested a stress—strain relationship, f,—e,, for

iransversely cracked concrete:
€ €12
f2 = frmm| 2 R U (3-14)
€ €/

-

where f,.... is given by Eq. 3-13, and €/ is the strain at the highest point in the compressive
stress—strain curve, which the authors took as 0.002. The term in brackets describes a para-
bolic stress—strain curve with apex at €, and a peak stress that decreases as ¢, increases.
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Effect of transverse tensile
strains on the compressive
strength of cracked concrete.

Triaxial Loadings
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Under triaxial compressive stresses, the mode of failure involves either tensile fracture par-
allel to the maximum compressive stress and thus orthogonal to the maximum tensile strain
if such exists, or a shearing mode of failure, The strength and ductility of concrete under tri-
axial compression exceed those under uniaxial compression, as shown in Fig. 3-15. This
figure presents the stress—longitudinal strain curves for cylinders subjected to a constant lat-
eral fluid pressure ¢ = a3, while the longitudinal stress, o, was increased to failure, These
tests suggested that the longitudinal stress at failure was

o =f + 410y 3-15)
20000
|
// a5 = 4090 psi
16000 v 3
< 12000 Pl _
o A oy = 2010 psi
@
£ / / . a3 3
= 8000 |/
) v .
3 Lt | a3 = 1090 psi
. o
Fig. 3-15 _ ™~ oy = 550 psi
Axial stress—strain curves 4000 7
from triaxial compression ™oy =0
tests on concrete cylinders,
unconfined compressive 0
strength, f¢ = 3600 psi. 0 0.01 002 003 004 005 006 007

(From Ref. 3-3.)
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Fig. 3-i6
Mohr rupture envelope for
concrete tests from Fig. 3-15

Shear stress, - (psi)

1

— Mohr rupture
envelope

o3 = 0,01 = 15 = 3600 psi

6000 16800 14000

| | ] ] {

|
\ T TNe = 4080 psi oy = 12,100 psi /
o3 = 2010 psi ay = 18,700 psi

Tension -

Pl By

Tests of lightweight and high-strength concretes,>?* >27 suggest that their compres-
sive strengths are less influenced by the confining pressure, with the result that the coeffi-
cient 4.1 in Eq.3-15 drops to about 2.0.

The strength of concrete under combined stresses can also be expressed using a Mohr
rupture envelope. The Mohr’s circles plotted in Fig. 3—16 correspond to three of the cases
plotted in Fig. 3-15. The Mohr’s circles are tangent to the Mohr rupture envelope shown
with the outer line.

In concrete columns or in beam—column joints, concrete in compression is some-
times enclosed by closely spaced hoops or spirals. When the width of the concrete element
increases due to Poisson’s ratio and microcracking, these hoops or spirals are stressed in
tension, causing an offsetting compressive stress in the enclosed concrete, The resulting tri-
axial state of stress in the concrete enclosed or confined by the hoops or spirals increases
the ductility and strength of the confined concrete. This is discussed in Chap. 11.

3-3 MECHANICAL PROPERTIES OF CONCRETE

The behavior and strength of reinforced concrete members is controlted by the size and
shape of the members and the stress—strain properties of the concrete and the reinforce-
ment. The stress—strain behavior discussed in this section will be used in subsequent chap-
ters to develop relationships for the strength and behavior of reinforced concrete beams
and columns,

Stress-Strain Curve for Normal-Weight Concrete in

Compression

Typical stress—strain curves for concretes of varicus strengths are shown in Fig. 3—17.
These curves were obtained in tests lasting about 15 minutes on specimens resembling the
compression zone of a beam.

The stress—strain curves in Fig. 3—17 all rise to a maximum stress, reached at a strain
of between 0.0015 and 0.003, followed by a descending branch. The shape of this curve re-
suits from the gradual formation of microcracks within the structure of the concrete, as dis-
cussed earlier in this chapter.

The length of the descending branch of the curve is strongly affected by the test con-
ditions. Frequently, an axiaily loaded concrete test cylinder will fail explosively at the point

3-3 Mechanical Properties of Concrate A 55



Fig. 3-17

Typical concrete stress—strain
curves in compression. (From
Refs. 3-28 and 3-29.)

Fig. 3-18

Analytical approximations to
the compressive stress—strain
curve for concrete.
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of maximun stress. This will occur in axially flexible testing muchines if the sirain energy
released by the testing machine as the load drops exceeds the energy that the specimen can
absorb. If a member loaded in bending. or bending plus axial load. the descending branch
will exist since. as the stress drops in the most highly strained fibers. other less highly
strained fibers can resist the load. thus delaving the failure of the highly strained fibers.
The stress—strain curves in Fig. 3-17 show five properties used in establishing the
mathematical models shown in Fig. 3-18 for stress—strain curve of concrate in compression:

1. The initial slope of the curves (initial tangent modulus of elasticity) increases with
an increase in compressive strength.

The modulus of elasticity of the concrete, E.. is affected by the modulus of elasticity
of the cement paste and that of the aggregate. An increase in the water—cement ratio in-
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creases the porosity of the paste. reducing its modulus of elasticity and strength. This is ac-
counted for in design by expressing E,. as a function of £,

Of equal importance is the modulus of elasticity of the aggregate. Normal-weight ag-
gregates have modulus of elasticity values ranging from 1.5 to 5 times that of the cement
paste. Because of this, the fraction of the total mix that is aggregate atso affects E.
Lightweight aggregates have modulus of elasticity values comparable to the paste. and
hence the aggregate fraction has little effect on E, for lightweight concrete.

The modulus of elasticity of concrete is frequently taken as given in ACI Sec. 8.5.1:

E. = 33(w5)VF psi (3-16)

where w is the weight of the concrete in 1b/ft°. This equation was derived from short-time
tests on concretes with densities ranging from 90 to 155 1b/ft’ and corresponds to the secant
modulus of elasticity at approximately 0.50f ..>*° The initial tangent modulus is about 10%
greater. Because this equation ignores the type of aggregate, the scatter of data is very
wide. Equation 3-16 systematically overestimates E, in regions where low-modulus ag-
gregates are prevalent. If deflections or vibration characteristics are critical in a design, F,
should be measured for the concrete to be nsed.

For normal-weight concrete with a density of 145 Ib/ft’, ACI Sec. 8.5.1 gives the
modulus of elasticity as

E. = 57,000V¥.psi (3-17)

2. The rising portion of the stress-strain curve resembles a parabola with its vertex
at the maximum stress.

For computational purposes the rising portion of the curves is frequently approxi-
mated by a parabola.’' This curve tends to become straighter as the concrete strength
increases.””

3. The strain, g, at maximum stress increases as the concrete strength increases.

4. The slope of the descending branch of the stress—sirain curve tends to be less than
that of the ascending branch for moderate strength concretes. This siope increases
with an increase in compressive strength.

5. The maximum strain reached, €, decreases with an increase in concrete strength.

The descending portion of the stress—strain curve after the maximum stress has been
reached is highly variable and is strongly dependent on the testing procedure. Similarly, the
maximum or limiting strain, €, is very strongly dependent on the type of specimen, type
of loading, and rate of testing. The limiting strain tends to be higher if there is a possibility
of load redistribution at high loads. In flexural tests values from 0.0025 to 0.006 have been
measured (see Sec. 4-1).

The two most common representations of the stress—strain curve consist of a
parabola followed by the sloping line shown in Fig. 3-18a, terminating at a limiting strain
of 0.0038, or a parabola followed by a horizontal line terminating at a limiting strain of
0.003 or 0.0035, which is widely used in Europe.’ The stress—strain diagram in Fig. 3—18a
is referred to as a modified Hognestad stress—strain curve >

The stress—strain curve shown in Fig. 3-18b is convenient for use in analytical studies
because it is a continuous function. The highest point in the curve, /7, is taken to equal 0.9
to give stress block properties similar to the rectangular stress block of Sec. 4-2 when

€,;, = 0.003 for £ up to 5000 psi. The strain €, corresponding to maximum stress, is taken
as 1.71f./E,. For any given strain €, x = €/ . The stress corresponding to that strain is
2f".x
e = S (3-18)
Z 1T+ x?
3-3 Mechanical Properties of Concrete 57



Fig. 3-19

Compressive stress—strain
curves for cyclic loads.
(From Ref. 3-34.)
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The average siress under the stress block from € = O to €is 8", where

In{1 + x%)
Br=—" (3-19)
X
The center of gravity of the area of the stress—strain curve between € = 0 and € is at k€
from e, where
2(x — tan™'x)
=1 —-——""" (3-20)
X'y
where x is in radians when computing tan ~'x. The stress—strain curve is satisfactory for
concretes with stress—strain curves that display a gradually descending stress—strain curve
at strains greater than €, Hence it is applicable to f; up to about 5000 psi for normal-weight
concrete and about 4000 psi for lightweight concrete.

As shown in Fig. 3-13, a lateral confining pressure causes an increase in the com-
pressive strength of concrete, and a large increase in the strains at failure. The additicnal
strength and ductility of confined concrete are utilized in hinging regions in structures in
seismic regions. Stress—strain curves for confined concrete are described in Ref. 3-33.

When a compression specimen is loaded, unloaded, and reloaded it has the
stress—strain response shown in Fig. 3-19. The envelope to this curve is very close to the
stress—strain curve for a monotonic test. This, and the large residual strains that remain
after unloading, suggest that the inelastic response is due to damage to the internal struc-
ture of the concrete as suggested by the microcracking theory presented earlier.

Stress—Strain Curve for Normal-Weight Concrete in Tension

The stress—strain response of concrete loaded in axial tension can be divided into two
phases. Prior to the maximum stress, the stress—strain relationship is slightly curved. The
diagram is linear to roughly 50% of the tensile strength. The strain at peak stress is about
0.0001 in pure tension and 0.00014 to 0.0002 in flexure. The rising part of the stress—strain
curve may be approximated either as a straight line with slope E. and a maximum stress
equal to the tensile strength, f, or as a parabola with a maximum strain, €, = 1.8 /E,
and a maximum stress, /. The latter curve is illustrated in Fig. 3-20a with f; and E, based
on Egs. 3-11 and 3-17.

After the tensile strength is reached, microcracking occurs in a fracture process zone
adjacent to the point of highest tensile stress, and the tensile capacity of this concrete drops
very rapidly with increasing elongation. In this stage of behavior, elongations are concen-
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Stress—strain curve and
stress—crack opening curves
for concrete loaded in tension.

trated in the fracture process zone while the rest of the concrete is unloading elastically.
The unloading response is best described by a stress versus crack opening diagram as
shown in Fig. 3—20b. The crack widths shown in this figure are of the right magnitude. The
actual values depend on the situation. The tensile capacity drops to zero when the crack is
completely formed. This occurs at a very small crack width. A more detailed discussion is
given in Ref, 3-33,

Poisson’s Ratio

At stresses below the critical stress (sec Fig, 3-1) Poisson’s ratio for concrete varies from
about 0.11 to 0.21 and usually falls in the range 0.15 to 0.20. Bused on tests of biaxially
loaded concrete, Kupfer et al.*™* report values of Poisson’s ratio for 0.20 for concrete
loaded in compression in one or two directions, 0.18 for concrete loaded in tension in one
or two directions, and 0.18 to 0.20 for concrete loaded in tension and compression.
Poisson’s ratio remains approximately constant under sustained loads.

3-4 TIME-DEPENDENT VOLUME CHANGES

Concrete undergoes three main types of volume change which may cause stresses, crack-
ing, or deflections which afiect the m-service behavior of reinforced concrete structures.
These are shrinkage, creep, and thermal expansion.

Shrinkage

Shrinkage is the shortening of concrete during hardening and drying under constant tem-
perature. The amount of shrinkage increases with time as shown in Fig. 3-21a.

The primary type of shrinkage is called drying shrinkage or simply shrinkage. It oc-
curs due to the loss of a layer of adsorbed water from the surface of the gel particles. This
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Fig. 3-21
Time-dependent strains.
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layer is roughly one water molecule thick or about 1% of the size of the gel particles, The
loss of free unadsorbed water has little effect on the magnitude of the shrinkagé.

Shrinkage strains are dependent on the relative humidity and are largest for relative
humidities of 40% or less. They are partially recoverable on rewetting the concrete, and
structures exposed to seasonal changes in humidity may expand and contract slightly due
to changes in shrinkage strains.

The magnitude of shrinkage strains also depends on the composition of the concrete.
The hardened cement paste shrinks, whereas the aggregate does not. Thas the larger the frac-
tion of the total volume of the concrete that is made up of hydrated cement paste, the greater
the shrinkage. The aggregates act to restrain the shrinkage. There is less shrinkage with quartz
or granite aggregates than with sandstone aggregate, because the quartz has a higher modu-
lus of elasticity. The water—cement ratio affects the amount of shrinkage because high water
content reduces the volume of aggregate, thus reducing the restraint of the shrinkage by the
aggregate. The more finely a cement is ground, the more surface area it has, and as a result,
there is more adsorbed water to be lost during shrinkage and hence more shrinkage.

Drying shrinkage occurs as the moisture diffuses out of the concrete. As a result, the
exterior shrinks more rapidly than the interior. This leads to tensile stresses in the outer skin

Materials




of the concrete and compressive stresses in the interioz. For large members, the ratio of vol-
ume to surface area increases. resuiting in less shrinkage because there is more moist con-
crete to restrain the shrinkage. The shrinkage develops more slowly in large membaers.

A secondary form of shrinkage called carbonation shrinkage occurs in carbon
dioxide-rich atmospheres such as those found in parking garages, At 50% relative hu-
midity the amount of carbonation shrinkage can equal the drying shrinkage, effectively
doubling the total amount of shrinkage. At higher and lower humidities the carbonation
shrinkage decreases.

The ultimate drying shrinkage strain, €, fora 6 in. X 12 in. cylinder maintained for
a very long time at a relative humidity of 40% ranges from 0.000400 to 0.001100 (400 to
1100 X 10~¢ strain). with an average of about 0.000800. Thus, in a 25-ft bay in a build-
ing, the average shrinkage strain would cause a shortening of about % in. in unreinforced
conctete. In a structure, however, the shrinkage strains will tend to be less for the same con-
crete becanse:

1. The ratio of volume to surface area will generally be larger than for the cylinder,
and as a result, drying takes place much more slowly.

2. A structure is built in stages and some of the shrinkage is dissipated before adja-
cent stages are completed.

3. The reinforcement restrains the development of the shrinkage.

The Euro-International Concrete Committee (CEB)*® and the American Concrete
Institute®'* have both published procedures for estimating shrinkage strains. The CEB
method is more recent than the ACI procedure and accounts for member size in a better
fashion. It will be presented here. The equations that follow apply only to the longitudinal
shrinkage deformations of plain or lightly reinforced normal-weight concrete elements.

The axial shrinkage strains, €. occurring between times 7, at the start of shrinkage
and ¢ in plain concrete can be predicted using the formula

E(‘A'(IFt.\‘) = E(‘S(JBS(I’t\') (3_2])

where €, is the basic shrinkage strain for a particular concrete and relative humidity, given
by Eq. 3-22, and 8,(1.7,) is a cocfficient given by Eq. 3-25 to describe the development of
shrinkage between time ¢, and ¢ as a function of the effective thickness of the member.

[ 6.\(ﬁ'm)BRH (3—22)

where

€.s‘(ﬂ?n) = [160 + B\'('(g - .f;'m/ff;‘mr:)] X 10°° (3_23)

where f.... is the mean compressive strength at 28 days, psi. This can be taken equal to £, as
given by Eq. 3-3. For concrete with a standard deviation, s, equal to 0.15f%, £.., would be
1.20f .. We shall use this value. Shrinkage is not a function of compressive strength per se.
It decreases with decreasing water/cement ratio and decreasing cement content. The
strength £, in Eq. 3-23 is used as an empirical measure of these quantities.

Some = 1450 psi
B,. = coeffictent that depends on the type of cement
50 for Type I cement and 80 for Type III cement

I

Bru = coeflicient that accounts for the effect of relative humidity on shrinkage
For RH between 40 and 99%;
B 1 55[1 (RH )‘] 3-24
= —155| 1 - = -24)
RH RH, (
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Fig. 3-22
Effect of relative humidity on
shrinkage.
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For RH equal to or greater than 99%.
BRH = + 025
RH relaiive humidity of the ambient atmosphere in percent
RH, = 100%

The effect of relative humidity on the total shrinkage is illustrated in Fig. 3-22. More
shrinkage occurs in dry ambient conditions.
The development of shrinkage with time is given by

B (r—1)in 03
&&Q—{;m&ng+(t—gMn]

where h, is the effective thickness in inches to account for the volume/surface ratio and
is given by

(3-25)

h, = 2A./u (3-26)
and

A, is the area of the cross section, in.?

u is the perimeter of the cross section exposed to the atmosphere, in.

hy = 41in.

t is the age of the concrete, days

t, is the age of the concrete in days when shrinkage or swelling started, generally

taken as the age at the end of moist curing

t, = lday
The development of shrinkage with time predicted using Eq. 3-25 is shom in Fig. 3-23 for
effective thicknesses of 4 in. and 24 in. Shrinkage develops much more rapidly in thin
members because moisture diffuses out of the concrete more rapidly.

Because 8y is negative, the computed shrinkage strain is also negative, implying
that the concrete shortens due to shrinkage. In atmospheres with relative humidities greater
than 99%, Bry is positive, indicating the concrete swells in such environments.

The shrinkage predicted by Eq. 3-21 has a coefficient of variation of about 35%,
which means that 10% of the time the shrinkage will be less than 0.55 times the predicted
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Fig. 3-23

Effect of effective thickness,
h,. on the rate of develop-
ment of shrinkage.
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shrinkage and 10% of the time it will exceed 1.45 times the predicted value. This is a very
large spread. If shrinkage has a critical effect on a given structure, shrinkage tests should
be carried out using the concrete in question.

If a lower level of accuracy is acceptable, the following values are representative of
the shrinkage that would occur in 70 years in normal-weight structural concrete having
strengths between 3000 and 7500 psi.

Dry atmospheric conditions or inside, RH = 50%:
Effective thickness, h, = 6 in., €,(70y) = —0.000560 strain
Effective thickness = 24 in., €.,(70v) = —0.000470 strain
Humid atmospheric conditions, RH = 80%:
Effective thickness = 6 in., €.,(70y) = —0.000310 strain
Effective thickness = 24 in., €,(70v) = —0.000260 strain

EXAMPLE 3-2 Calculation of Shrinkage Strains

A lightly reinforced 6-in.-thick floor in an underground parking garage is supported around the
outside edge by a 16-in.-thick basement wall. Cracks have developed in the slab perpendicular to the
basement wall at roughly 6 ft on centers. The slab is 24 months old and the wall is 26 months old. The
concrete is 3000 psi, made from Type | cement, and was moist cured for 5 days in each case. The rel-
ative humidity is 50%. Compute the width of these cracks assuming that they result from the restraint
of the slab shrinkage paraliel to the wall by the basement wall.

FLOOR SLAB
1. Compute the basic shrinkage strain, €.
€cor = (o) Bt (3-22)
€(fin) = [160 + B9 — fu /foma)] X 1070 (3-23)
where

B . = 50 for Type I cement

Jfom = mean concrete strength == 1.20f",
3600 psi

1450 psi

.fcrnn
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& (L) = [160 + 50(9 — 3600/1430)] x 10-¢
= 486 X 107® = 0.000486 strain

RHY
Ben = 71.55[1 - (—)] (3-29)
RH,

where RH = 50%, RHy, = 100%, and
Ben = —1.55[1 — (50/100)%]
—1.356

Therefore, the basic shrinkage is:
€0 = 0.000486 X —1.356
—0.000659 strain

2. Compute the coefficient for the development of shrinkage with time.

(t—1)/y ]‘”
350k koY + (2 — 1)/ 4

Birz) = [ (3-25)

where &, is the effective thickness = 24, /u. Consider a 1-fi-wide strip of slab exposed to the air on
the top and bottom:

2 X (6 X 12)
h,=—————— =6in. hy = 4in.
2 X 12
t = 730 days t, = Sdays t; = lday
(730 - 5)/1 &3
Bnr) = [ }
350 % (6/4)? + (730 — 5)/1

= 0.692
This means that after two years 69% of the slab shrinkage will have occurred.

3. Compute the shrinkage strain, €,(1,7,).

&ns) = e.B{tL) (3-21)
—0.000659 X 0.692
€.,(t,1.) = —0.000456 strain

I

BASEMENT WALL

1. Compute the basic shrinkage strain, €. This will be the same as for the fioor slab since
S B> and RH are the same.

2. Compute the coefficient for the development of shrinkage with time. Compute the ef-
fective thickness, i, = 2A, /u. Again considering a 1-ft-wide strip of wall. It is exposed to air only on
the inside face.

2 x (16 x 12) )
= —TZ = 32in. hy = 4in.

(3

t = 791days t, = Sdays 1, = lday

(1) [ (791 — 5)/1 ]ﬂ-ﬁ
5 tltj‘ =
B 350 X (32/4)2 + (791 — 5)/1

=0.184
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3. Compute the shrinkage strain, €.,(¢.1,}

e lret = —0.000639 X< 0,184
= —0.000121 strain

RELATIVE SHRINKAGE AND CRACK WIDTH

Thus the relative shrinkage strain between the slab and the wall when the slab is one vear old is
—0.000456 — (—0.000121) = —0.000335. If the average crack spacing is 6 ft. the shortening be-
tween cracks will be about 6 X 12 X —{.000335 = —0.024 in. Hence the cracks will be about
0.024 in. wide on average.

This calculation does not allow for the effect of the reinforcement in restraining the shrinkage
strains. The actual shrinkage would be 75 to 100% of the calculated values. |

Creep

When concrete is loaded, an instantaneous elastic strain develops as shown in Fig. 3-21b.
If this load remains on the member, creep strains develop with time. These occur because
the adsorbed water layers tend to hecome thinner between gel particles which are trans-
mitting compressive stress. This change in thickness occurs rapidly at first, slowing down
with time. With time, bonds form between the gel particles in their new position. If the load
is eventually removed, a portion of the strain is recovered elastically and another portion
by creep, but a residual strain remains, as shown in Fig. 3-21b, due to the bonding of the
gel particles in the deformed position.

The creep strains, €., are on the order of one to three times the instantaneous elastic
strains. Creep strains lead to an increase in deflections with time; may lead to a redistribu-
tion of stresses within cross sections; cause a decrease in prestressing forces; and so on.

The ratio of creep strain after a very long time to elastic strain, €, / €;, is called the
creep coefficient, . The magnitude of the creep coefficient is affected by the ratio of the
sustained stress to the strength of the concrete, the humidity of the environment, the di-
mensions of the element, and the composition of the concrete, Creep is greatest in concretes
with a high cement paste content. Concretes containing a targe aggregate fraction creep less
because only the paste creeps, and that creep 1s restrained by the aggregate. The rate of de-
velopment of the creep strains is also affected by the temperature, reaching a plateau about
160°F. At the high temperatures encountered in fires, very large creep strains occur. The
type of cement (i.e., normal or high early strength cement) and the water—cement ratio are
important only in that they affect the strength at the time when the concrete is loaded.

For creep, as for shrinkage, several caiculation procedures exist.™ ® *~'* The method
given here is from the CEB-FIB Mode! Code 1990.7 1t is applicable for concretes up to
compressive strengths of about 10,000 psi subjected to a compressive loading up to about
0.40f at an age t,, exposed to relative humidities of 40% or higher and mean temperatures
between 40° and 90°F. For stresses less than 0.40f ., creep is assumed to be linearly re-
lated to stress. Beyond this stress, creep strains increase more rapidly and may lead to fail-
ure of the member at stresses greater than 0.75/7, as shown in Fig, 3-2a. Similarly, creep
increases signiftcantly at mean temperawres in excess of 90°F.

The total strain, €{#), at time ¢ in a concrete member uniaxially loaded with a con-
stant stress o.{f,) at time z, is

El‘(f) = E('i(rl)} -+ Ec'((t) + E_\_-L-(f) + e('T(E) (3_27)
where
€f) = initial strain at loading = a.{t,) "E(1,)

€.(r) = creep strain at time ¢ where ¢ is greater than 1,
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€.(r) = shrinkage strain at time ¢
€.r{t) = thermal strain at time ¢
E[1;) = modulus of elasticity at the age of loading

The stress-dependent strain at time ¢ is
Ec‘o‘(r) = Ea(fo) + Ecc(t) (3—28)

For a stress o, applied at time ¢, which remains constant until time ¢, the creep stain
£, between time t; and ¢ is

o.(t)
E(28)

where £, (28) is the modulus of elasticity at the age of 28 days, given by Eq. 3-16 or 3-17,
and @{1.1y) is the creep coefficient, given by

¢('t110) = %ﬁc(tvto) (3'—30)
where ¢ is the basic creep given by Eq. 3-31, and B,(1.t) is a coefficient to account for the
development of creep with time, given by Eq. 3-35.

Ecc(t:to) = d)(f,fg) (3_29)

o = ‘f’RHﬁ(ﬁm)B(fﬂ) (3-31)
where

14 LT RH/RH, 332
Pt a6 b -

53
) = (3-33)

B(f (f;:m/f;rmo)()'s

1

Bltg) = —————— (3-34)

0.1 + (tg/tl)o‘z

where £, iy, RH, RHy, ... [0, and ¢ are as defined in connection with Eqs. 3-21 to 3-26.
The basic creep coefficient, ¢y, is actually a function of the relative humidity, the
composition of the concrete, and the degree of hydration at the start of loading. The last
two of these are expressed empirically in Eqs. 3-33 and 3-34 as functions of the mean 28-
day strength, f,,,, and the age at loading, ¢,.
The development of creep with time is given by

(r - tg)/!] 0.3
Bc(f,fo)=|: Brt = )i /n] (3-35)
with
RH \'* ],
By = 150[1 + (I'ERH(,) Jho + 250 = 1500 (3-36)

The effects of the effective thickness and age at the time of loading on the creep co-
efficient ¢{r.1,) are illustrated in Fig. 3-24. The creep coefficient is about half as big for
concrete loaded at one year as it is for concrete loaded at 7 days. The effective thickness
has less effect than it did on shrinkage (Fig. 3-23), reducing the value of ¢(1,1)} by about
20% for the example shown.

When compared to creep test data, the creep coefficient ¢(z,%) computed in this way
has a coefficient of variation of about 20%.> Ten percent of the time the actual value of
(1,5 will be less than 75% of the computed value and 10% of the time it will exceed 125%
of the computed vaine. If creep deflections are a serious problem for a particular structure,
consideration should be given to carrying out creep tests on the concrete to be used.
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5.0
f. = 3000 psi
; 40
RH = 50%
) - 30 -
nool <
i =
; 20+ Ty
y |
10
7,
B Flg 3-24
» Effect of effective thickness, 0.0 L |
#,, and age at loading, t,, on 1 7 10 30 60 100days 1year 2 3 10 20 3
1 creep coefficient, ¢{z,2,) Age of concrete
b TABLE 3-1 Creep Coefficient, ¢{70y,1,} for Normal-Weight
Concrete after 70 Years of Loading
Dry Atmospheric Humid Atmospheric
2) Conditions (RH = 50%) Conditions (RH = 80%)
. i i , h, .3
Age at Loading, Effective Thickness, h, (Eq. 3-26)
)] 1, {days) 6in. 24in. 6 in. 241in.
1 4.8 39 34 30
1 7 3.3 2.7 2.4 2.1
6 28 2.6 2.1 1.3 1.6
e %0 21 1.7 I.5 1.3
st 365 1.6 1.3 1.1 1.0
3-
Source: Ref. 3-8,
5) In cases where a lower level of accuracy is acceptable, the creep coefficient at 70
years, ¢{70v,1;), can be taken from Table 3-1.
The total shortening of a plain concrete member at time 7 due to elastic and creep
strains resulting from a constant stress o, applied at time #, can be computed using Eq. 3-28,
which becomes
5
[ $lr.1y)
E('a(r) = Ur(tl)) ot (3737)
o~ Elt,)  EA28)
91: The term in brackets is the creep compliance function, J{1.1,), representing the total stress-
ss; dependent strain per unit stress.
n
13; EXAMPLE 3-3 Calculation of Unrestrained Creep Strains
i) :
%

A plain concrete pedestal 24 in. X 24in. X 10 ft high is subjected to an average stress of 1000
€, psi. Compute the total shortening in 5 years if the load is applied 2 weeks after the concrete is cast.
The properties of the concrete and the exposure are the same as in Example 3-2.
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1. Compute the basic creep coefficient, dy.

o = druB(fon) Blto)
| — RH.RH,

P = L 0.46(k, hp)'?
where
RH = 30% RH; = 100% ky = 4in.
h. =24, u=2X24 X 24:4 X 24 = 12in.
1 —350/100
dgy = 1 + —_—0.46(12;"4)‘ ;= 1754
Blfon) = (ﬂ”,n s
where
fom = 1.20f. = 3600psi  f.,, = 1450psi
Alfen) = (3600,1450)°5 3364
1
Bl = 0.1 + (/8,02
where
Iy = l4ddays 1 = 1day
1
Bli) = N 0.557
Thus

do = 1754 X 3.364 X 0.557 = 3.29
The basic creep coefficient is 3.29,
2. Compute the development of creep with time, 8.(z,7).
(r— to) /4 ]0'3

Bilt) = [;H(;_,)/,

where:

183p,
Bu = 150[1 + (1.2——) ]— + 250=1500

18
150[1 + (I_Z—) ]— + 250 = 700
100 4

.

[ (1825 — 14}/1
700 + (1825 — 14)/1
This indicates that 90.7% of the total creep has occurred at the end of 5 years.

0.1
B.(r.t0) ] = 0.907

3. Compate the creep coefficient, ¢(#,z,).
Hlty) = deBlete) = 3.29 X 0.907
= 2.98

Materials
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(3-35)
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52y

13)

i)

i5)

0y

4. Compute the total stress-dependent strain, €..(7.7,)

1 (..}
€odn) = J"(I"){E{}o) + £ } {3-37)
where
ety) = 1000psi
E, = 57,000Vf. (3-17)

E (1) is modulus of elasticity at 14 days, where the concrete strength at 14 days is given by Eq. 3-5
with 1 = 14 days:

fiule)y =f 1(23)(:;%8&)

14
= 3000(’--*) = 2830psi
4+ 085 % 14

E.(tp) = 57,000 X V2830 = 3,032,000psi
E_, is the modulus of elasticity at 28 days.
E. = 57,000/3000 = 3,122,000psi

1 2.98
€.4(5y) = z,ooo(a + )
3,032,000 3,122,000

= 0.000330 + (.000955 = 0.001285 strain
The creep strain is almost three times the instantaneous strain.

5. Compute the total shortening.

A€ = € X €,(5v) = 120 x 0.00128
= (.154 in.
The pedestal would shorten by 0.154 in. in 5 years. u

In an axially loaded reinforced concrete column, the creep shortening of the concrete
causes compressive strains in the longitudinal reinforcement, increasing the load in the
steel and reducing the load, and hence the stress, in the concrete. As a result, a portion of
the elastic strain in the concrete is recovered and, in addition, the creep strains are smaller
than they would be in a plain concrete column with the same initial concrete stress. A sim-
ilar redistribution occurs in the compression zone of a beam with compression steel.

This effect can be modeled vsing an age-adjusted effective modulus, E,, (t.1,), and an
age-adjusted transformed section in the calculations® ' **® where

E(to)

EL‘(MI(I’IO) - B i N (3—38)
I+ X(f»fu)[Ec(fn)/ E(28 )]‘f’(f’fu)
where y(t,1,} is an aging coefficient that can be approximated bv*
105
{t4) = ——— (3-39)
x{1.t0) 1+ 708
The axial strain at time ¢ in a column loaded at age ¢, with a constant load P is
P
eftty) = ————— (3-40)
A!rau X E(‘uu(tvr'))
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where A, 1s the age-adjusted transformed area of the column cross section. The concept
of the transformed sections is presented in Sec. 9-2. For more information on the use of the
age-adjusted effected modulus, see Ref. 3-37 and 3-38.

EXAMPLE 3-4 Computation of the Strains and Stresses in an Axially
Loaded Reinforced Concrete Column

A concrete column 24 in. X 24 in. X 10 ft high has 8 No. 8 longitudinal bars and is loaded
with a load of 630 kips at an age of 2 weeks. Compute the elastic stresses in the concrete and steel at
the time of loading and the stresses and strains at an age of 5 years. The properties of the concrete and
the exposure are the same as in Examples 3-2 and 3-3.

Steps 1, 2, and 3 are the same as in Example 3-3. The following quantities are computed:

£:(14) = 2830 psi £(28) = 3000 psi
E(14) = 3,032,000 psi  E.(28) = 3,122,000 psi
Bt} = 2.98

4, Compute the transformed area at the instant of loading, 4 ,,. (Transformed sections are
discussed in Sec. 9-2.)

E, 29,000,000
E(14) 3,032,000

Elastic modular ratic = n =

= 9.56

The steel will be “transformed” into concrete, giving the transformed area
A, =A + (n— 1)A; = 576in? + (9.56 — 1} X 6.32in’
= 630in.?
The stress in the concrete is 630,000 16/630 in.> = 1000 psi. The stress in the steel is n times the
stress in the concrete = 9.56 X 1000 psi = 9560 psi.

5. Compute the age adjusted effective modulus, E_, (¢}, and the age-adjusted modu- :
lar ratio, 1,

Ec(t())

Ema(r’tﬂ) = - (3_38)
1+ x(t0o) Ero}/ E28) ] (110)
where

105 1405
tiy) = = 3-39
xitio) = 7 (05 1+ 1403 =9

= (.789
3,032,000
Eﬂm(rarﬂ) =

i

3,032,000
1+ 0789 X ———— X 2958
3,122,000

= 923,400 psi
E, 29,000,000

E_(ut) 923400
=314

Age-adjusted modular ratio, n,, =

6. Compute the age-adjusted transformed area, A,,,,, stresses in concrete and steel, and
shortening. Again the steel will be transformed to concrete.
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Apue = A, — (e — 1)A, =376In"+ (314 — 1) X 6.321n"

= 768 in.”
F 630.000 1b

Stressinconcrete = f, = — = - —
A 768107

= 8§20 psi

Stress in steel n,, X f. = 31.4 X 820 psi

= 25.750 psi
yé 220
Strain = =
E.. 923400

= (L.O00OBES strain
Shortening € X € = (L.O008R88 X 120 in.
= (0.107 in.

The creep has reduced the stress in the concrete from 1000 psi at the time of loading to 820 psi
at 5 years. During the same period. the steel stress has increased from 9560 psi to 25,750 psi. A col-
umn with less reinforcement would experience a larger increase in the reinforcement stress. To pre-
vent yielding of the steel under sustained loads, ACI Sec. 10.5.1 sets a lower limit of 1% on the
reinforcement ratio in columns.

The plain concrete column in Example 3-3, which had a constant concrete stress of 1000 psi
throughout the 5-year period, shortened .154 in. The column in this example, which had an initial
concrete stress of 1000 psi, shortened two-thirds as much, |

Thermal Expansion

The coeflicient of thermal cxpansion or contraction, «. is affected by such factors as com-
position of the concrete, moisture content of the concrete, and age of the concrete. Ranges
from normal-weight concretes are 5 to 7 X 1070 strain / °F for those made with siliceous
aggregates, and 3.5 to 5 X 107%/°F for concretes made from limestone or calcareous ag-
gregates. Approximate values for lightweight concrete are 3.6 to 6.2 ~ 1079/ °F. An all-
around value of 5.5 X 107%/°F may be used. The coefficient of thermal expansion for
reinforcing steel is 6 X 107¢/°F. In calculations of thermal effects it is necessary to allow
for the time lag between air temperatures and concrete temperatures.

As the temperature rises, so does the coefficient of expansion and at the temperatures
experienced in building fires, it may be several times the value at normal operating tem-
peratures.” ™ The thermal expansion of a fioor slab in a fire may be large enough to exert
large shear forces on the supporting columns.

3-S5 HIGH-STRENGTH CONCRETE

Concretes with strengths in excess of 6000 psi are referred to as high-srrength concretes.
Strengths of up to 18,000 psi have been used in buildings. Reference 3-27 presents the
state of the art of the production and use of high-strength concrete.

Admixtures such as superplasticizers, silica fume, and supplementary cementing
materials such as certain fly ashes improve the dispersion of cement in the mix and pro-
duce workable concretes with much lower water—cement ratios than possible previously.
The resulting concrete has a lower void ratio and is stronger than normal concretes.
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Coarse aggregates should consist of strong fine-grained gravel with a rough surface,
Smooth river gravels give a lower paste—aggregate bond strength and a weaker concrete.

Mechanical Properties

As shown in Fig. 3-17, the stress—strain curves for higher-strength concretes tend to have
a more linear loading branch and a steep descending branch. High-strength concrete ex-
hibits less internal microcracking for a given strain than does normal concrete. In normal
concrete, unstable microcracking starts to develop at a compressive stress of about 0.75f%,
referred to as the critical stress (see Sec. 3-2). In high-strength concrete the critical stress
is about 0.90f",. Failure occurs by fracture of the aggregate on relatively smooth planes par-
allel to the direction of the applied stress. The lateral strains tend to be considerably smaller
than for lower-strength concrete. One implication of this is that spiral and confining rein-
forcement may be less effective in increasing the strength and ductility of high-strength
concrete column cores.

Equations 3-16 and 3-17 overestimate the modulus of elasticity of concretes with
strengths in excess of about 6000 psi. Reference 3-27 proposes that

E. = 40,000V, + 1.0 X 10° (341
As noted ealier, £, varies as a function of the modulus of the coarse aggregate.

The modulus of rupture of high-strength concretes ranges from 7.5 to 12Vf'.. A
lower bound to the splil-cylinder tensile test data is given by 6V/f,

Shrinkage and Creep

Shrinkage of concrete is approximately proportional to the percentage of water by volume
in the concrete. High-strength concrete has a higher paste content, but the paste has a lower
water/cement ratio. As a result, the shrinkage of high-strength concrete is about the same
as that of normal concrete.

Test data suggest that the creep coefficient, ¢, for high-strength concrete is consider-
ably less than that for normal concrete.

3-6 LIGHTWEIGHT CONCRETE

72

Structural lightweight concrete is concrete having a density between 90 and 120 Ib/ft’ con-
taining naturally occurring lightweight aggregates such as pumice; artificial aggregates
made from shales, slates, or clays which have been expanded by heating; or of sintered
blast furnace slag or cinders. Such concrete is used when a saving in dead load is impor-
tant. Lightweight concrete costs about 20% more than normal concrete. The terms “all-
lightweight concrete” and *sand-lightweight concrete™ refer to mixes having lightweight
sand or natural sand, respectively.

The modulus of elasticity of lightweight concrete is less than that of normal concrete
and can be computed from Eq. 3—16.

The stress—strain curve of lightweight concrete is affected by the lower modulus of
elasticity and relative strength of the aggregates and cement paste. If the aggregate is the
weaker of the two, failure tends to occur suddenly in the aggregate and the descending
branch of the stress—strain curve is very short or nonexistent, as shown by the upper solid line
in Fig. 3-25. On the other hand, if the aggregate does not fail, the stress—strain curve will
have a well-defined descending branch, as shown by the curved lower solid line in this fig-
ure. As aresult of the lower modulus of elasticity of lightweight concrete, the strain at which
the maximum compressive stress is reached is higher than for normal-weight concrete.
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Fig. 3-25

Compressive stress—strain
curves for normal-weight and
lightweight concretes,

f = 3000 and 5000 psi.

{From Ref. 3-41.)
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The tensile strength of all-lightweight concrete is 70 to 100% of that of normal-
weight concrete. Sand-lightweight concrete has tensile strengths in the range of 80 to 100%
of those of normal-weight concrete. The fracture surface of lightweight concrete tends to
be smoother than for normal concrete because the aggregate fractures,

The shrinkage and creep of lightweight concrete are similar or slightly greater than
those for normal concrete. The creep coefficients computed using Eq. 3-30 can be used for
lightweight concrete.

3-7 DURABILITY OF CONCRETE

The durability of concrete structures is discussed in Ref. 3-42. The three most common
durability problems in concrete structures are:

1. Corrosion of steel in the conerete. Corrosion involves oxidation of the rein-
forcement. For corrosion to occur there must be a source of oxygen and moisture, both of
which diffuse through the concrete. Typically, the pH value of new concrete is on the order
of 13. The alkaline nature of concrete tends to prevent corrosion from occurring. If there is
a source of chloride ions, these also diffuse through the concrete, decreasing the pH of the
part the chloride ions have penetrated. When the pH of the concrete adjacent to the bars
drops below about 10 or 11, corrosion can start. The thicker and less permeable the cover
concrete is, the longer it takes for moisture, oxygen, and chloride ions to reach the bars.
Shrinkage or flexural cracks penetrating the cover allow these agents to reach the bars more
rapidly. The rust proeducts that are formed when reinforcement corrodes are several times the
volume of the metal that has corroded. This increase in volume causes cracking and spalling
of the concrete adjucent to the bars. Factors affecting corrosion are discussed in Ref. 343,

ACI Sec. 4.4 attempts to control corrosion of steel in concrete by requiring a mini-
mum strength and a maximum water to cementitious materials ratio to reduce the perme-
ability of the concrete and by requiring at least a minimum cover to the reinforcing bars.
The amount of chlorides in the mix is also limited. Epoxy-coated bars are sometimes used
to delay or prevent corrosion,

Corrosion is most serious under conditions of intermittent wetting and drying.
Adequate drainage should be provided to allow water to drain off structures. Corrosion is
seldom a problem for permanently submerged portions of structures.
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2. Breakdown of the structure of the concrete due to freezing and thawing.
When concrete freezes, pressures develop in the water in the pores, leading to a breakdown
of the structure of the concrete. Entrained air provides closely spaced microscopic voids,
which relieve these pressures. ACI Sec. 4.2.1 requires minimum air contents to reduce the
effects of freezing and thawing exposures. The spacing of the air voids is also important
and some specifications specify spacing factors. ACI Sec. 4.2.2 sets maximum water/ce-
mentitious materials ratios of 0.40 to 0.50 and minimum concrete strengths of 4000 to 5000
psi for concretes, depending on the severity of the exposure. These may give strengths
higher than would otherwise be used in structural design. Thus a water/cement ratio of 0.40
will generaily correspond to a strength of 4500 to 5000 psi for air-entrained concrete. This
additional strength can be utilized in computing the strength of the structure.

Again, drainage should be provided so that water does not collect on the surface of
the concrete. Concrete should not be allowed to freeze at a very young age and should be
allowed to dry out before severe freezing.

3. Breakdown of the structure of the concrete due to chemical attack.
Sulfates cause disintegration of concrete unless special cements are used. ACI Sec. 4.3.1
specifies cement type, minimum water/cementitious materials ratios, and minimum
compressive strengths for various sulfate exposures. Geotechnical reports will generally
give sulfate levels.

Some aggregates containing silica react with the alkalies in the cement, causing a
disruptive expansion of the concrete, leading to severe random cracking. This alkali sil-
ica reaction is counteracted by changing the source of the aggregate or by using low-
alkali cements. ™ It is most serious if the concrete is warm in service and if there is a
source of moisture.

Reference 3—45 lists a number of chemicals that attack concretes.

ACI Chap. 4 presents requirements for concrete that is exposed to freezing and thaw-
ing, deicing chemicals, sulfates, and chlorides. Examples are pavements, bridge decks,
parking garages, water tanks, and foundations in sulfate-rich soils.

Sulfates cause disintegration of concrete unless special cements are used. ACI
Table 4.3.1 gives special requirements for concrete in contact with sulfates in soils or in
water. In many areas in the western U.S, soils contain sulfates.

3-8 BEHAVIOR OF CONCRETE EXPOSED TO HIGH AND LOW

TEMPERATURES
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When a concrete mernber is exposed to high temperatures such as occur in a building fire,
for example, it will behave satisfactorily for a considerable period of time. During a fire,
high thermal gradients are established, however, and as a result the surface layers expand
and eventually crack or spall off the cooler, interior part of the concrete. The spalling is ag-
gravated if water from fire hoses suddenly cools the sarface.

The modulus of elasticity and the strength of concrete decrease at high temperatures,
whereas the coefficient of thermal expansion increases. The type of aggregate affects the
strength reduction, as shown in Fig. 3-26. Most structural concretes can be classified into
one of three aggregate types: carbonate, siliceous, or lightweight. Concretes made with car-
bonate aggregates, such as limestone and dolomite, are relatively unaffected by tempera-
ture untif they reach about 1200 to 1300°F, at which time they undergo a chemical change
and rapidly lose strength. The quartz in siliceous aggregates, such as quartzite, granite,
sandstones, and schists, undergoes a phase change at about 800 to 1000°F, which causes
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ly
‘2 an abrupt change in volume and spalling of the surface. Lightweight aggregates gradually
'1. I lose their strength at temperatures above 1200°F.
- The reduction in strength and the extent of spalling due to heat are most pronounced
‘a in wet concrete and, as a result, fire is most critical with young concrete. The teasile
strength tends to be affected more by temperature than does the compressive strength,

Concretes made with limestone and siliceous aggregates tend to change color when
- heated, as indicated in Fig. 3-26, and the color of the concrete after a fire can be used as a
s, rough guide to the temperature reached by the concrete. As a general rule, concrete whose

color has changed beyond pink is suspect. Concrete that has passed the pink stage and gone
CI into the gray stage is probably badly damaged. Such concrete should be chipped away and
in replaced with a layer of new concrete or shotcrete.

In cold temperatures, the strength of hardened concrete tends to increase, the in-

crease being greatest for moist concrete.
3-9 REINFORCEMENT
— Because concrete is weak in tension, it is used together with steel bars or wires that resist
re, the tensile stresses. The most common types of reinforcement for nonprestressed members
re, are hot-rolled deformed bars and wire fabric. In this book only the former will be used in
nd examples, although the design principles apply with very few exceptions to members rein-
ig- forced with welded wire mesh or cold-worked deformed bars.

The ACI code requires that reinforcement be steel bars or steel wires. Significant
es, modifications to the design process are required if materials such as fiber-reinforced-
the plastic rods are used for reinforcement, because such materials are brittle and do not have
1o the ductility assumed in the derivation of design procedures.
ar-
ra- Hot-Rolled Deformed Bars
ige
ite, Steel reinforcing bars are basically round in cross section with lugs or deformations rolled
ses into the surface to aid in anchoring the bars in the concrete (Fig. 3-27). They are produced
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Fig. 3-27

Standard reinforcing bar
markings. (Courtesy of
Congrete Reinforcing Steel
Institute.)
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Main ribs

First mark is initial
of preducing mill

Second mark is bar size

Third mark is type of steel:
S asts
R Raii, as18

A Axle, AB17
W Low alloy, A708

Grade marking
for Grade 60

{a) Grade 40 or 50 {b) Grade 60

according to the following ASTM specifications, which specify certain dimensions and
certain chemical and mechanical properties:

1. ASTM A 615: Swandard Specification for Deformed and Plain Billet-Steel Bars
Jor Concrete Reinforcement, This specification covers the most commonly used reinforc-
ing bars. They are available in sizes 3 to 18 in Grade 60 (yield strength 60 ksi) plus sizes 3
to 6 in Grade 40 and sizes 6 to 18 in Grade 75. The specified mechanical properties are
summarized in Table 3-2. The diameters, areas, and weights are listed in Table A-1 in
Appendix A. The phosphorus content is limited to = 0.06%.

2. ASTM A 616: Standard Specification for Rail-Steel Deformed and Plain Bars
Jor Concrete Reinforcement. This specifies bars rolled from discarded railroad rails. This
type of steel is less ductile and less bendable than A 615. A 616 steel is not widely avail-
able. It is rolled in sizes 3 to 11 in Grade 60.

3. ASTM A 617: Standard Specification for Axle-Steel Deformed and Plain Bars
for Concrete Reinforcement, This covers bars rolled from discarded train car axles. It is
produced in sizes 3 to 1 in Grades 40 and 60 and is less ductile than A 615 steel. Tt is not
widely available.

4. ASTM A 706: Standard Specification for Low-Alloy-Steel Deformed Bars for
Concrete Reinforcement. This specification covers bars intended for special applications
where weldability, bendability, or ductility is important. As indicated in Table 3-2, A 706
requires a larger elongation at failure and a more stringent bend test than A 615. ACI Sec.
21.2.5.1 requires the use of A 706 bars or A 615 bars meeting special requirements in seis-
mic applications. A 706 limits the amounts of carbon, manganese, phosphorus, sulfur, and
silicon and limits the carbon equivalent to = 0.55%. These bars are availabie in sizes 3
through 18 in Grade 60. There are both a lower and an upper limit on the yield strength.

Reinforcing bars are available in four grades, with yield strengths of 40, 50, 60, and
75 ksi, referred to as Grades 40, 50, 60, and 75, respectively. Grade 60 is the steel most
commonly used in buildings and bridges. Other grades may not be available in some areas.
Grade 75 is used in large columns. Grade 40 is the most ductile, followed by Grades 60, 75.
and 50, in that order.
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TABLE 3-2 Summary of Mechanical Properties of Reinforc-
ing Bars from ASTM A 615 and ASTM A 706

AB15 A 7086
Grade 40 Grade 60 Grade 75 Grade 80
Minimum tensile strength, psi 70.000 90,000 100.060 80.000
Minimum yield strength. psi 40.000 60.000 75,000 60.000
Maximum yield strength, psi — — — 78.000
Minimum elongation in & in.
gauge lengih, %

No. 3 1 9 — 14

No. 4 and 5 12 9 — 14

No. 6 12 9 7 14

No. 7and 8 — 8 7 12

No. 9, 10, and 11 — 7 6 10

No. {4 and 18 — 7 6 10
Pin diameter for bend test,

where d = nominal diameter

No.3.4,and 5 3.5d 3.5d — 3d

No. 6 54 5d — 4d

No. 7and 8 — S5d 5d 4

No. 9, 10, and 11 — Td 7d G

No. 14 and 18 — 9 9d 8d

Grade 60 deformed reinforcing bars are available in the 11 sizes listed in Table A1,
The sizes are referred to by their nominal diameter expressed in eighths of an inch. Thus a
No. 4 bar has a diameter of § in. or § in. The nominal cross-sectional area can be computed
directly from the nominal diameter except for the No. 10 and larger bars, which have di-
ameters slightly larger than '3? in., ]*81' in., and so on. Size and grade marks are rolled into the
bars for identification purposes, as shown in Fig. 3-27. Grade 40 bars are available only in
sizes No. 3 through No. 6. Grade 75 steel is only available in sizes 6 to 18,

ASTM A 615 and A 706 also specify metric (S1) bar sizes. These are sized so that the
areas are even multiples of 100 mm? and the bars are referred to using nominal bar size num-
bers equai to their theoretical diameter rounded off to the nearest 3 mm, Thus a No, 10M bar
has an area of 100 mm”, corresponding to a theoretical diameter of [1.3 mm, while a No.
20M bar has an area of 300 mm®, corresponding to a theoretical diameter of 19.5 mm. The
diameters, areas, and weights of SI bar sizes are listed in Table A-1M in Appendix A.

ASTM A 615 defines three grades of metnic reinforcing bars, Grades 300, 460, and
500, having specified yield strengths of 300, 400, and 500 MPa, respectively.

When this book was in press, the Concrete Reinforcing Steel Institute announced that
it was reconsidering the metric bar sizes and may ask ASTM to revise its reinforcing bar
standards. Two changes were contemplated: (1) the existing inch bar sizes would be re-
tained, designated by a bar number equal to the diameter taken 10 the nearest whole mil-
limeter. and (2) yield strengths of 300, 420, and 520 MPa are being considered. Because
the change has still to be agreed to, the tables and examples in this book are all based on
the reinforcing bars defined in the ASTM standards in existence at the end of 1995.
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Fig. 3-28
Stress—strain curves for rein-
forcement.

Fig. 3-29

Distribution of mill test yield
strengths for Grade 60 steel.
(From Ref. 3-46.)
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Mechanical Properties

Idealized stress—strain relationships are given in Fig. 3-28 for Grade 40 and Grade 60 re-
inforcing bars, a representative high-strength bar, and welded-wire fabric. The initial tan-
gent modulus of elasticity, E,, for all reinforcing bars can be taken as 29 X 10° psi. Grade
40 bars display a pronounced yield plateau, as shown in Fig. 3-28. Although this plateau is
generally present for Grade 60 bars, it is typically much shorter. High-strength bars gener-
ally do not have a well-defined yield point.

Figure 3-29 is a histogram of mill test yield strengths of Grade 60 reinforcement
with a nominal yield strength of 60 ksi. As shown in this figure, there is a considerable vari-
ation in vield strength, with about 10% of the tests having a yield strength equal to or
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Fig. 3-30

Test data on fatigue of de-
formed bars from a single
U.S. manufacturer. (From
Ref. 3-47.)

greater than 80 ksi, 1335 of the nominal yield strength. The coefficient of variation of the
yield sirengths plotted in Fig. 3-29 15 9.3%.

ASTM Specifications base the yield strength on sl resis which are carried out at a
high rate of loading. For the slow loading rates associated with dead loads or many live
loads, the static yield strength is applicable. This 1s roughly 4 ksi less than the mill test
yield strength *~°

Fatigue Strength

Some reinforced concrete elements, such as bridge decks, may be subjected to a large num-
ber of loading cycles. In such cases, the reinforcement may fail in fatigue. Fatigue failures
of the reinforcement will occur only if one or both of the exireme stresses in the stress cycle
is tensile. The relationship between the range of stress, S,. and the number of cycles is
shown in Fig. 3-30. For practical purposes there is a fatigue threshold or endurance limit
below which fatigue failures will normally not occur. For straight ASTM A 615 bars this is
about 24 ksi and is essentially the same for Grade 40 and Grade 60 bars.

The fatigue strength of deformed bars decreases as the stress range (the maximum
stress in a cycle minus the minimum stress) increases, as the [evel of the lower (less tensile)
stress in the cycle is reduced, and as the ratio of the radius of the fillet at the base of the de-
formation lugs to the height of the lugs is decreased. The fatigue strength is essentially in-
dependent of the yield strength.

The fatigue strength is strongly reduced by bends or tack welds in the region of max-
imum stress. These will reduce the fatigue strength by about 50%.

For design, the following rules can be applied. If the deformed reinforcement in a
particular member is subjected to 1 million or more cycles involving tensile stresses, or a
combination of tension and compression stresses, fatigue failures may occur if the differ-
ence between the maximum and minimum stresses under the repeated loading exceeds 20
ksi. In the vicinity of bends or in locations where auxiliary reinforcement has been tack
welded to the main reinforcement, fatigue failures may occur if the stress range exceeds 10

T T T ] T T
80 b -]
50 - -
log N = 6.969 — 0.03835,
1 Tolerance
= 40 limits ]
© [ ]
) Finite lite
&
HEERS P, . -
o
{ ~
& : Nt fmagt talrg
Long life Ten "y .
20 |~ —
S, = 24.0 ksi
10 =
The tolerance limits include, at 95% probability,
85% of a population of fatigue lives represented
by the tested bars.
0 | I 1 ] l 1
o] 0.05 0.10 0.50 100 5.00 10.00
Cycles to failure, N {millions)
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Fig. 3-31

Strength of reinforcing steels
at high temperatures. (From
Ref. 3-40.)

80

ksi. Further guidance is given in Refs. 3—47 and 3-48. Design of reinforced concrete for fa-
tigue is discussed in Sec. 9-8.

Strength at High Temperatures

Deformed reinforcement subjected to high temperatures in fires tends to lose some of its
strength as shown in Fig. 3-31. When the temperature of the reinforcement exceeds about
850°F, the yield and ultimate strengths drop both significantly. One of the functions of con-
crete cover on reinforcement is to prevent the reinforcement from getting hot enough to
lose strength.

Welded-Wire Fabric

Welded-wire fabric is a prefabricated reinforcement consisting of smooth or deformed
wires welded together in square or rectangular grids. Sheets of wires are welded in electric-
resistance welding machines, in a production line. This type of reinforcement is used in
walls or slabs where relatively regular reinforcement patterns are possible. The ability to
place a large amount of reinforcement with a minimum of work frequently makes welded-
wire fabric economical.

The wire for welded-wire fabric is produced in accordance with the following speci-
fications: ASTM A 82 Standard Specification for Steel Wire, Plain, for Concrete
Reinforcement, and ASTM A 496 Standard Specification for Steel Wire, Deformed, for
Concrete Reinforcement. The deformations are typically two or more lines of indentations
of aboul 4 to 5% of the bar diameter rolled into the wire surface. Wire sizes range from about
0.123 in. diameter to 0.625 in. diameter and are referred to as W or D, for plain or deformed
wires, respectively, followed by a number that corresponds to the cross-sectional area of the
wire in 0.01-in.? increments. Thus a W2 wire is a smooth wire with a cross-sectional area of
0.02 in.” Diameters and areas of typical wire sizes are given in Table A-2a.

Welded-wire fabric corresponds to the following specifications: ASTM A 185 Standard
Specification for Steel Wire Fabric, Plain, for Concrete Reinforcement, and ASTM A 497
Standard Specification for Steel Wire Fabric, Deformed, for Concrete Reinforcement.

Temperature (°F)

32 400 800 1200
100 = T T T
Hot-rolled
deformed bars
80 — {yield) -
=
E Cold-drawn /
= 60 - wire or strand -
e {ultimate)
=
<
g 40 =
& High-strength
alloy bars
(ultimate)
20
0 | ] [ | l ] |
0 200 400 600
Temperature (°C}
Materials

PR(

3-2

3-4

3-3 -

ti
{:
(t



for fa-

of its
about
fcon-
igh to

yrmed
wctric-
sed in
lity to
:lded-

speci-
wrelte
d, for
ations
about
wmed
of the
rea of

ndard
A 497

ment.

Deformed welded-wire fabric may contain some smooth wires in either direction. Welded-
wire fabric is available in standard or custom patterns referred to using a style designation
such as 6 X 6 -W4 X W4, The numbers in the style designation refer to: (spacing of iongi-
tudinal wires X spacing of transverse wires—size of longitudinal wires X size of transverse
wires). Thus a 6 X 6-W4 X W4 fabric has W4 wires at 6 in. on centers each way. Areas and
weights of common welded-wire fabric patterns are given in Table A—2b.

Welded smooth wire fabric depends on the cross-wires to provide a mechanical an-
chorage with the concrete, while welded deformed wire fabric utilizes both the wire defor-
mations and cross-wires for bond and anchorage. In smooth wires, two cross-wires are
needed to mechanically anchor the bar for its yield strength.

Smooth and deformed fabric are made from wires ranging from about 0.125 in. to
0.625 in. in diameter. The minimum yield and tensile strength of smooth wire for wire fab-
ric is 65 ksi and 75 kst. For deformed wires, the minimum yield and tensile strengths are 70
ksi and 80 ksi. According to ASTM A 497, these yield strengths are measured at a strain of
0.5%. ACI Secs. 3.5.3.5 and 3.5.3.6 define the yield strength of both smooth and deformed
wires as 60 ksi except that if the yield strength at a strain of 0.35% has been measured, that

value can be used.

One problem with welded-wire fabric is the ductility of the wires. Frequently, such
materials break at elongations of 1 to 3%, considerably less than required by the ASTM
Specifications for reinforcing bars (see Fig. 3-28). The cold-working process used in draw-
ing the small-diameter wires causes strain hardering of the steel. This eliminates the yield
plateau of the stress-strain curve. The smaller the diameter of the wire, the more brittle the

wire tends to be.

PROBLEMS

3-1

3-2

3-3

What is the significance of the “critical stress”
(a) with respect to the structure of the concrete?
(b) with respect to spiral reinforcement?

(c) with respect to strength under sustained loads?

A group of 43 tests on a given type of concrete had
a mean strength of 3622 psi and a standard devia-
tion of 421 psi. Does this concrete satisfy the re-
quirements of ACI Sec. 5.3.2 for 3000-psi
concrete?

The concrete containing Type I cement in a struc-
ture is cured for 3 days at 70°F followed by 6 days
at 40°F. Use the maturity concept to estimate its
strength as a fraction of the 28-day strength under
standard curing.

Use Fig. 3-12a to estimate the compressive
strength a; for biaxially loaded concrete subjected
to

(a) ap = 0.

(b) oy = 0.75 times the tensile strength, in tension.

3-9 Reinforcement
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(c) oy = 0.5 times the compressive strength, in
compression.

The conerete in the core of a spiral column is sub-
jected to a uniform confining stress o3 of 800 psi.
What will the compressive strength oy be? The
uniaxial compressive strength is 4000 psi.

What factors affect the shrinkage of concrete?
What factors affect the creep of concrete?

A structure is made from concrete containing Type
[ cement. The average ambient relative humidity is
70%. The concrete was moist cured for 4 days.
& = 4000 psi.

(a) Compute the unresirained shrinkage strain of a
rectangular beam with cross-sectional dimen-
sions 8 in. X 20 in. at 3 years after the concrete
was placed.

(b) Compute the stress dependent strain in the con-
creteina20in. X 20 in. plain concrete column
at an age of 2 years. A load of 400 kips was ap-
plied to the column at an age of 60 days,
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4-1 INTRODUCTION

In this chapter the stress—strain curves for concrete and reinforcement from Chap. 3 are
used to develop a theory for flexure. This theory is applied to rectangular beam cross sec-
tions, and examples of the design of beam cross sections are given. In Chap. 5 this is ex-
tended to T beams and beams with compressive steel.

Because the complete design of a beam requires an understanding of shear, bond, and
other aspects, a complete design example is deferred until Chap. 10, where all these aspects
are considered. In Chap. 11 the flexure theory is extended to combined bending and axial
load, to permit the design of columns.

Most reinforced concrete structures can be subdivided into beams and slabs sub-
jected primarily to flexure (bending), and columns subjected to axial compression accom-
panied in most cases by flexure. Typical examples of flexural members are the slab and
beams shown in Fig. 4 —1. The load, P, applied at point A is carried by the strip of slab
shown shaded. The end reactions from this slab strip load the beams at B and C. The beams,
in turn, carry the slab reactions to the columns at D, £, F, and G. The beam reactions cause
axial loads in the columns.

The slab in Fig. 4 —1 is assumed to transfer loads in one direction and hence is called
a one-way slab, If there were no beams, the slab would carry the load in two directions.
Such a slab 1s referred to as a rwo-way sfab (see Chaps. 13 to 13).

B-Regions and D-Regions

Through most of the length of a beam or column, a straight-line distribution of strains will
exist and the normal flexure theory can be applied. Such regions are referred to as B-regions,
where the B stands for beam or for Bernoulli, who first postulated the straight-line strain dis-
tribution. Adjacent to discontinuities, concentrated loads, holes, or changes in cross section,
the strain distribution is not linear and different types of analyses must be used. Such regions
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Fig. 4 -1
One-way flexure, P

are referred to as D-regions, where the D stands for discontinuity or for disturbed. Chapters
4 to 15 deal primarily with B-regions. D-regions are discussed in Chap. 18.

Analysis versus Design

Two different types of problems arise in the study of reinforced concrete:

L. Analysis. Given a cross section, concrete strength, reinforcement size, location,
and yield strength, compute the resistance or capacity.

2. Design. Given a factored load effect such as M,, select a suitable cross section, in-
cluding dimensions, concrete strength, reinforcement, and so on.

Although both types of problems utilize the same principles, the procedure is differ-
ent in each case. Analysis is easier since all the decisions concerning reinforcement, beam
size, and so on, have been made and it is only necessary to apply the strength calculation
principles to determine the capacity. Design, on the other hand, involves the choice of
beam sizes, material strengths, and reinforcement to produce a cross section that can resist
the loads and moments. Because the analysis problem is easier, most sections in this and
other chapters start with the analysis to develop the fundamental concepts and then move
to consider design.

Required Strength and Design Strength

The basic safety equation for flexure is:
factored resistance = factored load effects (4 -1a)

or
M, = M, (4 -1b)

where M, is the moment due to the factored loads, which the ACI Code refers to as the re-
quired ultimate moment. This is a load effect computed by structural analysis from the gov-
erning combination of factored loads given in ACI Sec. 9.2. The term M, refers to the
nominal moment capacity of a cross section computed using the nominal dimensions and
specified material strengths. The factor ¢ is a strength reduction Jactor (ACT Sec. 9.3) 1o
account for possible variations in dimensions and material strengths and possible inaccu-
racies in the strength equations. For flexure without axial load, ACI Sec. 9.3.2.1 sets
¢ = 0.90, and ACI Sec. B9.3.2 sets ¢ = 0.90 for “tension-controlled sections.” Almost all
practical beams will be tension-controlled sections and ¢ will be equal to 0.90. The con-
cept of tension-controtled sections will be discussed later in the chapter. The product, ¢M,,
is referred to as the design moment, design strength, or factored moment resistance.
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Positive and Negative Moments

A moment that causes compression on the top surface of a beam and tension on the bottom
surface will be called a positive moment. The compression zones for positive and negative
moments are shown shaded in Fig. 4 -2. Bending moment diagrams will be plotted on the
compression side of the member.

Symbols and Abbreviations

Although symbols are defined as they are first used and are summarized in Appendix B,
several must be understood completely if one is to understand the theory developed in this
book. These include the terms M, and M, defined earlier and the cross-sectional dimen-
sions illustrated in Fig. 4 -2.

The prime symbol (') generally refers to compressions, as in A; and 4°.

A, is the area of reinforcement on the tension face of the beam, tension reinforcement, in.%.
A/ is the area of reinforcement on the compression side of the beam, compression re-
inforcement, in.2

b is the width of the compression face of the beam. This is illustrated in Fig. 4 -2 for
positive and negative moment regions, in.

by, is the width of the web of the beam and may or may not be the same as b, in.

d is the distance from the extreme fiber in compression to the centroid of the steel on the
tension side of the member. In the positive moment region (Fig. 42a) the tension steel
is near the bottom of the beam while in the negative moment region it is near the top, in.

d, is the distance from the extreme compression fiber to the farthest layer of tension
steel, .

£ is the specified 28-day compressive strength of the concrete, psi.

f; is the stress in the tension reinforcement, psi.

f, is the specified yield strength of the reinforcement, psi.

jd is the lever arm, the distance between the resultant compressive force and the re-
sultant tensile force, in.

Jjis a dimensionless ratio used to define the lever arm, jd. j varies during the life of the beam.
€, 18 the assumed concrete strain on the compression face of the beam at flexural failure.
€, is the strain in the tension reinforcement.

p is the longitudinal tension reinforcement ratio, p = A, /bd.

Compression zone
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{a) Positive moment (compression on top).
{b) Negative moment (compression on bottom).

Fig. 4-2
Cross-sectional dimensions.
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4-2 FLEXURE THEORY

Fig. 4-3
Internal forces in a beam.

Statics of Beam Action

A beam s a structural member that supports applied loads and its own weight primarily by
internal moments and shears. Figure 4 —3a shows a simple beam that supports its own dead
weight, w per unit length, plus an applied load, P. If the axial applied load, ¥, is equal to
zero as shown, the member is referred to as a beam. If Nis a compressive force, the mem-
ber is called a beam-column. If it were tensile, the member would be a tension tie. Chapter
4 will be restricted to the very commeon case where N = 0.

The loads, w and P, cause bending moments distributed as shown in Fig. 4 -3b. The
bending moment is a load effect determined from the loads using the laws of statics. For a
simply supported beam of a given span and a given set of loads, w and P, the moments are
independent of the composition and size of the beam.

At any section within the beam, the internal resisting moment, M, shown in
Fig. 4 —3c is necessary to equilibrate the bending moment. An internal resisting shear, V, is
also required as shown.

wiunit length

I TR T B A N A
N o= 0 'SectionA

[ r‘—N=D

(a) Beam.

Moment on section A

(b} Bending moment diagrarm.

/¢ —

(c) Free body diagrams showing internal moment and shear forge.

f+— C
{

= T

1

(dy Free body diagrams showing internal moment as a
compression-tension force couple.
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The internal resisting moment, A, results from an internal compressive force, C, and
an internal tensile force, T, separated by a lever arm, jd, as shown in Fig. 4-3d. Since there
are no external axial loads, &, summation of the horizontal forces gives

C-T=0 or c=T (4 -2}

If moments are summed about an axis through the point of application of the compressive
force, C, the moment equilibrium of the free body gives

M=Tid (4-3a)
Similarly, if moments are summed about the point of application of the tensile force, T,
M = Cjd (4-3b)

Since C = T, these two equations arc identical. Equations 4 —2 and 43 come directly from
statics and are equally applicable to beams made of steel, timber, or reinforced concrete.
The conventional elastic beam theory results in the equation & = My /1, which for an
uncracked, homogeneous rectangular beam without reinforcement gives the distribution of
stresses shown in Fig. 4 ~4. The stress diagram shown in Fig. 4—4c and d may be visualized
as having z “volume,” and hence one frequently refers to the compressive stress block and
the tensile stress block. The resultant of the compressive stresses is the force C given by

U max) E
C = __L—Z (b 2) (4—4)

This is equal to the volume of the compressive stress block shown in Fig. 4 -4d. In a simi-
lar manner one could compute the force T from the tensile stress block. The forces, C and
T, act through the centroids of the volumes of the respective stress blocks. In the elastic
case these forces act at A/3 above or below the neutral axis, so that jd = 2k /3. From Eqs.
4-3b and 4 -4 and Fig. 4-4 we can write

M= Cjd (4-5a)
M= bh(%) {4—5b)
Uc(max} 4\ 3
br /12
M= 0 4-s
T {max) L2 ( c)
or
m= (4-5d)
¥
My

D >

hi2

c ,
(& '

Fig. 4—4 i
|
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Elastic beam stresses and
stress blocks
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Thus for the elastic case, identical answers are obtained from the traditional beam stress
equation 4-5d, and from Eqs. 43 using the stress block concept.

The elastic beam theory (Eq. 4-5d) is not used in the design of reinforced concrete
beams: first, because the compressive stress—strain curve of concrete is nonlinear, as
shown in Fig. 3-15 and, even more important, because the concrete cracks at low tensile
stresses, making it necessary to provide steel reinforcement to transfer the tensile force, T.
These two factors are easily handled by the stress block concept, combined with Eqgs. 4-2
and 4-3.

Flexure Theory for Reinforced Concrete

The theory of flexure for reinforced concrete is based on three basic assumptions, which
are sufficient to allow one to calculate the moment resistance of a beam. These are pre-
sented first and used to illustrate the behavior of a beam cross section under increasing mo-
ment. Following this, four additional simplifying assumptions from the ACI Code are
presented to simplify the analysis for practical application.

Flexural Behavior

The cracking pattern and strains measured in a laboratory test of a reinforced concrete
beam are shown in Fig. 4-5. The cracks are indicated by the short vertical and inclined
lines in Fig. 4-5b and c. A photograph of the beam after failure is shown in Fig. 4-6. The
cracks have been marked with black ink so that they show in the photograph.

The strains plotted in Fig. 4-5 were measured on a 16-in. gauge length extending
8 in. on either side of the midspan of the beam. This region is shown shaded in Fig. 4-5a
and, as shown in Figs. 4—5c and 4-6, there were two cracks in this region at failure.

'The measured strains were used to compute the curvature corresponding to each load
level. Curvature, ¢, is defined as the angle change over a known length and, as shown in
the inset of Fig. 4-7, is computed as

¢ == (4-6)
¥
where € is the strain at a distance y from the axis of zero strain at the load stage in question.
Figure 4-7 relates the bending moment, M, at midspan of the beam to the curvatures at the
same location. This is a moment—curvature diagram.

Initially, the beam was uncracked, as shown in Fig. 4-5a. The strains at this stage
were very small and the stress distribution was essentiaily linear. The moment and curva-
ture are shown by point A in Fig. 4-7. The moment-curvature diagram for this stage (seg-
ment O-B in Fig. 4-7) was linear.

When the stresses at the bottom of the beam reached the tensile strength of the con-
crete, cracking occurred. After cracking, the tensile force in the concrete was transferred to
the steel. As a result, less of the concrete section was effective in resisting moments, as
shown by the distribution of stresses in Fig. 4-5b and the stiffness of the beam decreased.
Thus the slope of the moment—urvature diagram (shown by B-C-D in Fig. 4-7} also de-
creased. The crack pattern and strains in Fig. 4-5b correspond io the behavior expected
under the loads applied in everyday service (stage C in Fig. 4-5 and point C in Fig. 4-7).
The stress distribution in the concrete is still close to linear at this stage. The largest crack
had a width of 0.006 in. at this stage. Such a crack is entirely acceptable, as discussed in
Chap. 9.

Eventually, the reinforcement reached the yield point shown by point D in Fig, 4-7. The
compressive stresses were still close to being linear at this stage. Once yielding had occurred,
the curvatures increased rapidly with very little increase in moment, as shown in Fig.4-7. The
increase in curvature can also be seen from the difference between the strain diagrams in Fig.
4-5b and ¢. The beam failed due to crushing of the concrete at the top of the beam.
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Fig. 4-7

Moment—curvature diagram for test beam.
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It is worth noting that although concrete itself is not a very ductile material (see the
stress—strain curves in Fig. 3-17) reinforced concrete beams can exhibit large ductilities, as
shown by the long, almost flat post yield portion of the moment—curvature diagram. At service
load (stage (), the midspan deflection of the beam was (.31 in. or 1/383 of the span. At ulti-
mate, this had increased to 2 in. or 1/60 of the span, showing the great ductility of this beam.

In practice, reinforced concrete design has been carried out in one of two ways.
Until the mid—1960s, designers considered the loads expected in service and carried out
calculations assuming a linear stress distribution for concrete in compression. This was
called working stress design and corresponded to the load stage plotted in Fig. 4-5b and
point C in Fig. 4-7. Since then, calculations have been carried out at the failure state (Fig.
4-5c and point F in Fig. 4-7) for loads larger than those expected in service (factored
loads), and checks are made of the deflections and cracking at service load levels. This is
called limit states design or strength design, as explained in Sec. 2-3. In this book we con-
centrate on limit states design. Working stress design principles are used to calculate the
deflections and steel stresses at service loads, however, and are explained in Chap. 9.

Basic Assumptions in Flexure Theory
Three basic assumptions are made:

1. Sections perpendicular to the axis of bending which are plane before bending re-
main plane after bending.

2. The strain in the reinforcement is equal to the strain in the concrete at the same level.
3. The stresses in the concrete and reinforcement can be computed from the strains
using stress—strain curves for concrete and steel.
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The first of these is the traditional “plane sections remain plane™ assumption made in
the development of bearn theory. Figure 4-8b is an enlargement of the strain distribution
plotted in Fig. 4-5b. The dots represent strains measured on the 16-in. gauge lines shown
in Fig. 4-8a. The measured strains are seen to be linear. Figure 4-9 shows a strain distrib-
ution measured in tests of two columns subjected to combined axial load and moment.
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{a) Tied column C-8a.

Fig. 4-9

{b} Spiral column B-17a.

Strains measured in tests of eccentrically loaded columns. (From Ref. 4-1.)
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Again the distributions are linear as assumed. This assumption does not hold for so-called
“deep beams” with spans shorter than about four times their depths because such members
tend 1o zct as tied arches rather than beams (see Chap. 18).

The second assumption is necessary because the concrete and the reinforcement
must act together to carry load. This assumption implies perfect bond between the concrete
and the sicel. The agreement between the strains measured in the steel, plotted with a tri-
angle in Fig. 4-8b, and the line through the dots representing the measured concrete strains
show that the steel and concrete do act together as postulated in this assumption. The ACI
code combines these first two assumptions as follows:

10.2,2-Strain in reinforcement and concrete shall be assumed directly proportional to the dis-
tance from the neutral axis. . . .

The stress diagram in Fig. 4 8¢ was obtained from the strain distribution using the
theoretical stress—strain curve for concrete presented in Fig. 3—-18b. The moment computed
using this stress distribution balances the load on the beam.

Additional Assumptions in Flexure Theory for Design

The three assumptions already made are sufficient to allow calculation of the strength and
behavior of reinforced concrete elements. For design purposes, however, the following ad-
ditional assumptions are introduced to simplify the problem with little loss in accuracy.

4. The tensile strength of concrete is neglected in flexural strength calculations
(ACI Sec. 10.2.5).

The strength of concrete in tension is roughly one-tenth of the compressive sirength
and the tensile force in the concrete below the zero strain axis is small compared to the ten-
sile force in the sieel. Hence the contribution of the tensile stresses in the concrete to the
flexural capacity of the beam is small and can be neglected. It should be noted that this as-
sumption is made primarily to simplify Aexural calculations. In some instances, particularly
shear, bond, deflection, and service load calculations for prestressed concrete, the tensile re-
sistance of concrete is utilized.

5. Concrete is assumed to fail when the compressive strain reaches a limiting value.

Strictly speaking, there is no such thing as a limiting compressive strain for concrete.
As shown in Fig. 47, a simply supported reinforced concrete beam reaches its maximum
capacity when the slope, dM /d¢. of the moment—curvature diagram equals zero (point E).
Failure occurs when dM/d¢ becomes negative, corresponding to an unstable situation in
which further deformations occur at decreasing loads.* 2 Design calculations are very
much simplified, however, if a limiting strain is assumed. Since the moment and curvature
at the maximum moment point on the moment—curvature diagram correspond to one par-
ticular value of the extreme compressive strain, the moments corresponding to any other
strain at the extreme fiber will be smaller. As a result, this assumption wilt always give con-
servative estimates of the strength.

The maximum compressive strains, €., from tests of reinforced concrete beams. ec-
centrically loaded columns and eccentrically loaded piain concreie prisms are reproduced
in Fig. 4-10. ACI Sec. 10.2.3 specifies a limiting compressive strain equal to 0.003. This
compares closely to the lower bound of the test data in Fig. 4-10. In Europe, the CEB
Model Code uses a limiting strain of 0.002 for columns under concentric axial load, corre-
sponding to the peak of the stress—strain curve in Fig. 3-17 and 0.0035 for beams and ec-
centrically loaded columns.* ™ It should be noted that much higher timiting strains have
been measured in members with a significant moment gradient and members in which the
concrete is confined by spirals or closely spaced hoops.* ™ *~° Throughout this book the
limiting compressive strain will be assumed constant and equal to 0.003.
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Limiting compressive strain,
(Ref. 4-3.)
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(b) Ultimate strain from tests of plain concrete specimens,

6. The compressive stress—strain relationship for concrete may be assumed to be
rectangular, trapezoidal, parabolic, or any other shape that results in prediction of
strength in substantial agreement with the results of comprehensive tests (ACI Sec.
10.2.6).

Thus rather than using a representative stress—strain curve such as that given in Fig,
3-18b, other diagrams which are easier to use in computations are acceptable, provided
that they adequately predict test results. As illustrated in Fig. 411, the shape of the stress
block in a beam at the vitimate moment can be expressed mathematically in terms of three
constants:

ky

ky

4-2 Flexure Theory

ratio of the maximum stress f7, in the compression zone of a beam to the
cylinder strength, f.

ratio of the average compressive stress to the maximum stress {this is equal to
the ratio of the shaded area in Fig. 4—12 to the area of the rectangle ck; £ )
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Fig. 4-11

Mathematical description of

compression stress block.

Fig. 4-12
Values of k; and &, for vari-
ous stress distributions.
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REC

C = k ksf be

Neutral axis

Shaded area

ky =
1= Area of rectangle

(b) Triangle {c) Parabola

{a) Concrete

k» = ratio of the distance between the extreme compression fiber and the resultant
of the compressive force to the depth of the neutral axis, ¢

For a rectangular compression zone of width, b, and depth to the neutral axis, ¢, the resul-
tant compressive force is

C = kik; fobe 4-7

Values of &, and k, are given in Fig. 4-12 for various assumed compressive
stress—strain diagrams or “stress blocks.” Tests of plain concrete prisms have yielded the

values of kjksf' ¢ shown in Fig. 4-13.
As a further simplification, ACI Sec. 10.2.7 permits the use of the equivalent rectan-

gular concrete stress distribution shown in Fig. 414 for ultimate strength calculations. The
rectangular distribution is defined by the following:
1. A uniform compressive stress of a; f; shall be assumed distributed over an equiv-
alent compression zone bounded by the edges of the cross section and a straight line
located parallel to the neutral axis at a distance ¢ = ;¢ from the fiber of maximum
compressive strain, where a; = 0.85.
2. The distance ¢ from the fiber of maximum strain to the neutral axis is measured
perpendicular to that axis.
3. The factor 8, shall be taken as:
(a) For concrete strengths f, up to and including 4000 psi,

B, =085 4-8
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Fig. 4-14
Equivalent rectangular stress
block.
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(b)  Forf: between 4000 and 8000 psi, '
fe
= 1.05 - 005~ -
Bl 1.05 U 1000 {4-8b)
(¢) Forf. greater than 8000 psi,

By = 0.65 (4-8¢)

The symbols a; and 8, used to describe the rectangular stress block are different
from the symbols &, k,, and k; used to describe the stress block from tests because the rec-
tangular stress block is described by two symbols, whereas three are needed to describe the
stress block from tests.

Studies of the effects of sustained loads on the strength of concrete® 2 and tests of
columns*~' suggest that a, can be taken equal to 0.85 for commonly occurring concrete

\
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strengths. The dashed line in Fig. 4-13 is a lower bound line corresponding to
k; = a; = 0.85 and B, given by Eq. 4-8.
When working in the SI systern of units, the factor 8, is taken as

Bi = 1.09 — 0.008f, (4-8M)

but not more than 0.85 nor less than 0.65.
The equivalent rectangular stress block with a; = 0.85 and B, from Eq. 4-8 has been

shown®* to give very good agreement with test data for beams (see Fig. 2-3). For columns,
the agreement is good up to a concrete strength of about 6000 psi. For columns loaded with
small eccentricities and having strengths greater than this, the moment capacity is overesti-
mated by the ACI code stress block. This is because 3, was chosen as a lower bound on the
test data, as suggested by Fig. 4—13. The internal moment arm of the compression force in
the concrete about the centroidal axis of a rectangular column is {#/2 — B,¢/2), where ¢ is
the depth to the neuiral axis (axis of zero strain). If 3, is too small, the moment arm will be
too large and the moment capacity will be overestimated. The following equations have

been proposed for @ and B;:

a; = 0.85 for f, = 8000 psi (4-9a)
f. — 8000 , ,
a, = 0.85 — W = (.73 for f, > 8000 psi (4-9b)
B = 0.85 for f, = 4000 psi {4—10a)
f. — 4000) , ]
= 0.85 — 0.15(———|=0. > 4-1
B, = 0.85 5( 10,000 0.70 for f, > 4000 psi (4--10b)

4 -3 ANALYSIS OF REINFORCED CONCRETE BEAMS

Example 4-1
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Stress and Strain Compatibility and Equilibrium

Two requirements are satisfied throughout the analysis and design of reinforced concrete
beams and columns. These are:
1. Stress and strain compatibility. The siress at any point in a member must corre-
spond to the strain at that point. Except for short, deep beams, the distribution of
strains over the depth of the member must be linear to satisfy assumptions 1 and 2
presented earlier in this chapter.
2. Equilibrium. The internal forces must balance the external load effects, as illus-
trated in Fig. 4-3 and Eqgs. 4 -2 and 4 -3.

Analysis of the Flexural Capacity of a General
Cross Section

The use of equilibrium and strain compatibility in the computation of the capacity of an ar-
bitrary cross section such as the one shown in Fig. 415 involves four steps and will be il-
lustrated with an example.

Caiculation of the Moment Capacity of a Beam

The beam shown in Fig. 4-15 is made of concrete with a compressive strength, f;, of 3000 psi and
has three No. 8 bars with a yield strength, £, of 60,000 psi.
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Analysis of arbitrary cross section—Example 4-1

1. Initially assume that the stress f, in the tension reinforcement equals the yield
strength, f and compute the tension force T = A S

= 3No.8bars =3 X 079in? = 2.37in.2
fi = 60,000 psi for Grade 60 bars
T=A,f,=237in? x 60,000 psi = 142,200 1b

The assumption that f; = f, will be checked in step 3. If the steel has yielded, a simple solution
exists; if not, a more complex solution must be used. This assumption will generally be true since the
ACT Code requires that the steel percentage be small enough that the steel will yield.

2. Compute the area of the compression block so that C = T. This is done using the
equivalent rectangular stress block shown in Fig. 4-15b. The stress block consists of a uniform stress
of 0.85f; distributed over a depth @ = B,c measured from the exireme compression fiber. The mag-
nitude of the compression force is obtained from equilibrium:

C=7T=1422001b

where T was computed in step 1.
By the geometry of this particular triangular beam, shown in Fig. 4—15a, if the depth of the
compression zone is 4, the width is also g, and the area is @ /2. This is, of course, true only for a beam
of this particular shape.
Therefore, C = (0.85f, }(a*/2) and
_ ‘/142,200 b X 2

085 x 3000 _ \06in

3. Check whether f, = f.
This is done using strain cornpatlblhtv The strain distribution at ultimate is shown in Fig. 4—15c.
To plot this it is necessary to know €, and ¢:

€, = 0.003 (assumption 3, Sec. 4-2)
=2
T a
For f. = 3000 psi, Bi = 0.85 (from Egs. 4--8). Therefore, ¢ = 10.56/0.85 = 12.42in,
By similar triangles as shown in Fig. 4-15¢,

& 0003
d—c¢ 4
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or

2 12.42)
c= 0003 ——— ] = 0.0023]
e, =10 ( E¥E 0

[Cn]

)

For Grade 60 reinforcement,

60,000 psi
& 7 25,000,000 psi

Therefore, € > & and f; = f,. Thus the assumption made in step 1 is satisfied.

4. Compute ¢Mp.

= 0.00207

M, = Cid = Tjd

where jd is the lever arm, the distance from the resultant tensile force (at the centroid of the rein-
forcement) to the resultant compressive force C, Because the area on which the compression stress
block acts is triangular in this example. C acts at 2a/3 from top of the beam. Therefore,

gea_
! 3
and
2
o fusfe- )
2 X 10.56
= 0.9[2.37in.1 60,000 psi(22 - )in.]
= 1.92 X 10%in.-1b
1.92 x 10
= ?Oa— ft-kips = 160 ft-kips
Thus the design moment capacity of this beam cross section is 160 ft-kips. ||

This general analysis procedure can be used to compute the moment capacity for
beams of any shape. It should be noted that the equations used to compute a, jd.and M, in
Example 4—1 were specifically derived for a beam with a trigngular section and apply only
to such a beam. Since beams are frequently rectangular in cross section, the analysis of rec-
tangular beams is considered later,

Tension, Compression, and Balanced Failures

Depending on the properties of a beam, flexural failures may occur in three different ways:

1. Tension Failure. Reinforcement yields before concrete crushes (reaches its limit-
ing compressive strain). Such a beam is said to be under-reinforced.

2. Compression failure. Concrete crushes before steel yields. Such a beam is said to
be over-reinforced.

3. Balaiced failure. Concrete crushes and stee! yislds simultaneously. Such a beam
has balanced reinforcement.

In the test specimen shown in Figs. 4-5 to 4-7, the reinforcement yielded before
failure occurred and hence the beam developed a tension failure. At failure (point E in Fig.
4.7) the curvature at the section of maximum moment was roughly four times that at yield-
ing (point D). As a result, the beam deflected extensively and developed wide cracks in the
final loading stages. This type of behavior is said to be ducrile since the moment-curvature
or the load—deflection diagram has a long plastic region (D-E in Fig. 4-7). Il a beam in a
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{b) Beam B—Compression failure.

building fails in a ductile manner, the occupants of the building have warning of the im-
pending failure and hence have an opportunity to leave the building before the final col-
lapse, thus reducing the consequences of collapse.

Moment—curvature diagrams are presented in Fig. 4—16d for threc beams shown in
Fig. 4—-16a, b, and ¢. The beams diifer only in the amount of reinforcement. At failure, the
reinforcement in beam A has yielded, as shown by the strain diagram. This beam develops
a tension failure and has a ductile moment—curvature response as shown in Fig. 4-16d. As
will be seen later in this section, tension failures occur when the mechanical reinforcement
ratic w = pf,/f is small.

In the case of beam B in Fig. 4-16, the concrete in the extreme compression fiber
reaches the assumed crushing strain of 0.003 before the steel starts to yield. This is called
a compression failure. The moment—curvature diagram for such a beam does not have the
ductile postyielding response displayed by beam A. If overloaded, this beam may fail sud-
denly in a brittle manner without warning to the occupants of the building, and as a result,
such a failure may have serious consequences. Compression failures occur for high values
of the mechanical reinforcement ratio w.
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Fig. 4-16
{continued)
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{d} Moment-curvature diagram

In the case of beam C, the strain distribution at failure, shown in Fig. 4--16c¢, involves
simultaneous crushing of the concrete and yielding of the steel. This case, which also ex-
hibits a brittle failure as shown in Fig. 4—16d, marks the boundary between ductile tension
and brittle compression failures—hence the name balanced failure.

Appendix B of ACI 318-95 has introduced the terminology compression-controlled
sections for sections in which the strain at ultimate in the extreme tension steel layer is less
than or equal to the yield strain, €, = f,/E,, in tension. Such sections develop compression
failures or balanced failures. Sections having a strain at ultimate in the extreme tension
steel layer equal to or greater than 0.005 in tension are referred to as fension-controlled sec-
tions. Sections falling between these two limits are referred to as transition sections.

To reduce the chance that brittle failures will occur, ACI Sec. 10.3.3 requires that
beams nominally have properties which ensure that tension failures with £, = 7, would
occur. Alternatively, ACI Sec. B9.3.2 (in ACI Appendix B) allows beams with f, less than

Jf; at failure (compression-controlled sections) but for such beams, it requires the lower
strength reduction factors, ¢, used for columns. For beams falling in the transition range, it
requires a Lransition between the ¢ factors for columns and those for beams.

This is discussed more fully later in this chapter.
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Stresses and forces in a rectangular beam.

Analysis of Rectangular Beams with Tension
Reinforcement Only

Equations for M, and ¢M,: Tension Steel Yielding

In the preceding section, equilibrium and strain compatibility were used to compute the mo-

ment capacity of a particular beam cross section. For the particular case of a rectangular beam

the same procedure can be used to derive equations for cornputing the moment capacity.
Consider the beam shown in Fig. 4-17. The compressive force, C, in the concrete is

C = (0.85f, }ba
Then tension force, T, in the steel is
T = A,f,

and for equilibrium, C = T. Therefore, the depth, a, of the equivalent rectangular stress
block is

__AS
47 0851
If f;, = f, as assumed in step 1 of Example 4—1, this becomes
o=ty @-11)
0.85f,b
It is possible to express the equations of M, and ¢M, in several ways based on

M, = Tid, M, = Cjd, or in a nondimensionalized fashion. These three are considered in
turn in the following paragraphs.

- Equation for M, Based on M, = Tjd. Summing moments about the line of ac-
tion of the compressive force, C in Fig. 4—17¢ gives

M, = Tid
Substituting T = A, f, where f; is equal to f, and jd = {d — a/2), gives

M, = A, ﬁ.(d - g) (4—12a)

and
oM, = qb[AS f_.,.(d - g)} (4-12b)
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This is the basic equation for the flexural capacity of beams.

Equation for M, Based on M, = Cjd. Alternatively, one could sum moiments
about the line of action of the tensile force, T. Thus

M, = Cid
Substituting C = (0.85£)ba and jd = (d — a‘2) gives

M, = (O.SSﬂ)ba(d - ;) (4-13a)
and
oM, = ¢[(o.85f;)ba(d - gﬂ (4-13b)
Nondimensionalized Equations for M,. If we substitute A, = pbd into Eq.
4-11, we get
=24 140

where pf, /f: = w and is referred to as the mechanical reinforcement ratio. The term w is
frequently used as a measure of the behavior of a beam since it incorporates the three major
variables affecting that behavior (p.f, and f. ). Thus

wd
= — 4-14b
“ 7 085 (*-140)
Substituting Eq. 4-14b into Eq. 4-13 gives
M, = | fbd? (1 - “’)}
¢ d’[f T 2x085
or
oM, = ¢[fc'bd1m(l - 0.590)] (4-15)
This is frequently expressed as
bd?
M, = ¢l ———-k 4-16
o, = of 2 @-16)
or, since the most economical design corresponds to ¢M, = M,
M bd?
— = 4-17
bk, 12,000
where M, and M, are in ft-kips and b and d are in inches. In SI units these equations become
oM, = (EQ- k ) (4-16M)
n (}b 106 " -
or
M, bd?
= 4-17TM
bk, 108 ¢ )

where M, and M, are in kN-m, and & and d are in mm,
In Egs. 4-16 and 417 the term ¢k, is

ok, = [ feo(l — 0.59w)] (4-18)

with f. in psi or MPa. Values of ¢, are given in Table A-3 (see Appendix A) for.various
concrete and steel strengths and reinforcement ratios.
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Determination of Whether f; = f,

In the derivation of Egs. 4-11 to 418 it was assumed that the steel yielded and £, = f..
It is necessary to check whether this is true whenever a beam is analyzed or designed.
Figure 4 -18a shows a beam cross section with two layers of tension reinforcement. The ef-
fective depth to the centroid of the reinforcement is . Consider a beam developing a bal-
anced failure with the concrete starting to crush just as the steel starts to yield. The strain
distribution for such a beam is shown in Fig. 4—18b. The depth to the neutral axis at bal-
anced failure is ¢,. From similar triangles we can say that

ﬂ _ €

4-19
d GCu + E_\‘ ( )
Substituting €, = 0.003 and multiplying above and below by E, = 29,000,000 psi gives
y 87,000
b R (4-20)
d 87,000 + £

where £, is in psi. If a beam has a neutral axis depth ¢ less than c,, the steel strains will ex-
ceed €,, and vice versa. Thus, if ¢ = ¢, at failure, f, = f,.

Equations 4-12 and 4-13 include @ = B¢, rather than ¢, where g is the depth of the
equivalent rectangular stress block. Substituting into Eq. 4-20 gives

a, 87,000
— =Bl 4-21)
d 87,000 + f,
where £, is in psi.
In 51 units, £y = 200,000 MPa and Eq. 4-21 becomes
% _ g (ﬁ) (4-21M)
d  "N\e00 + f, B

where f, is in MPa.

To check whether f; = £, in design, we shall check whether a/d = @, /d. Table A-4
gives values of a, /d for various concrete and steel strengths.

During design, the exact location of the centroid of the steel is not known until the final
reinforcement is chosen. For this reason, it is easier to define strain distributions in terms of
depth, d,, to the layer of steel farthest from the compression face. The net tensile strain in the
layer of steel farthest from the compression face is €. The words net tensile strain refer to the
steel strain at nominal strength, exclusive of strains due to effective prestress. creep, shrink-
age, or temperature. In other words, for a reinforced concrete beam, the net tensile strain is
the strain, &, due to the factored live and dead loads on the beam. ACI Sec. B10.3.3 defines a
section as being compression-controlled if the net tensile strain, €, is less than or equal to the
yield strain in tension, €,. The strain distribution corresponding to the compression-controfled
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fimit is shown in Fig. 4—18c. Here the neatral axis depth is c,.¢ and the sirain €, occurs in the
extreme tension layer at a depth 4.

Derived ir a similar fashion to Eq. 4-21. the depth of the rectangular stress block at
failure at the compression-coniroiled limit, ¢ .. i8

ect _ (87000) @
d, 87.0006 + f.
where f, is in psi, and
Bet o ;31(600> (4-22M)
d, 600 + f.

where f, is in MPa.

ACI Sec. B10.3.3 defines a section as being rension-controlled if the net tensile strain
in the layer of steel farthest from the compression face of the beam equals or exceeds 0.005
in tension. The strain distribution corresponding to the rension-controlled limir is shown in
Fig. 4 -18d. Here the neutral axis depth is ¢,... From Fig. 4-18d using similar triangles,

cor 0003
d, 0.003 + 0.005

or
Cree
Lt 0375
d,
and
Gt _ 03758, (4-23)

The ratios ¢,/ d, and a,./d, are independent of the system of units. Values of a,.,/d, and
¢/ d, are given in Table A-4.

Alternative Determination of Whether f, = f,

Equation 420 gives a relationship for ¢, /d, where ¢, is the neutral axis depth at balanced
failure. But ¢ = a/ B and from Eq. 4-14a,

a = ,P”:f-‘f,,d
0.85f,
Therefore, at balanced failure,
S _mkhy (4-24)
d 08358,/.

where ¢, and p, are the neutral-axis depth and steel ratio corresponding to a balanced fail-
ure. From Eqs. 4-19 and 4-24,

0.858.f.[ e )
Py = B

j_ ¥ \E«:u + Ey
If we substitute €., = 0.003 and multiply above and below by E; = 29,000,000 psi, we
obtain

(4-25)

0.858, [ 87,000 )
Py =

£ \87,000 +

where £, and f. are in psi.
In ST units, E;, = 200,000 MPa and Eq. 4-25 becomes
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P
where f, and f+ are in MPa.
Equation 4-25 can be used to determine whether a beam will fail in tension or com-
pression. If p is less than p,, the tensile force T is smaller than that at balanced, and as a result,
the compressive force C is also smaller, requiring less compressive area. As a result, the neu-
tral axis rises in the beam as shown in 4—19e. For such a case, ¢, is greater than €, and the steel
will have yielded at failure. This beam is said to be under-reinforced since p is less than . On
the other hand, if p is greater than p,, €, will be less than €, and the depth to the neutral axis
must increase as shown in Fig. 4-19¢. Such a beam is said to be over-reinforced.

Upper Limit on Reinforcement in Beams

In the 1995 ACI Code there are two different approaches to setting an upper limit on the
amount of reinforcement which is permitted in a beam. One is given in ACI Sec. 10.3.3, the
other in ACI Sec. B10.3.3, located in ACI Appendix B. Appendix B consists of a series of
sections that replace sections in the body of the code. If any part of Appendix B is used, all
of it must be used in place of the corresponding code sections.

The method presented in ACT Sec. B10.3.3 will be discussed first, followed by a dis-
cussion of the method in ACI Sec. 10.3.3. Appendix B will be used in the examples because
it is a more universal procedure that is applicable to beams, T beams, columns, and pre-
stressed concrete beams,

Upper Limit on Reinforcement—ACI Sec. B10.3.3. ACI Appendix B does
not put an upper limit on the amount of reinforcement in a beam. Instead, ACI Sec. B9.3.2
defines ¢ = 0.9 for tension-controlled sections, ¢ = 0.70 for compression-controlled sec-
tions with normal stirrups or ties, or ¢ = .75 for members {columns) with the reinforce-
ment enclosed in a closely spaced spiral. Since spirals would not be used in a beam,
¢ = 0.70 for a compression-controlled beam section. For beams between the limits, ACI
Sec. B9.3.2.2 specifies a linear transition from ¢ = 0.90 to ¢ = 0.70 given by

0.204
¢ = 0356 + ——— (4-26a)
c/d,
or
0.204
= 0.356 + — (4-26b
¢ a,"‘ (Bld() )
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Appendix B was introduced to allow a uniform transition in the strength reduction
factor, ¢, as more and more steel was added to a section.

In this book, Appendix B will be used because it is more rational and more univer-
sally applicable*~® In beam design, reinforcement will be chosen so that ¢ = 0.90. This re-
guires that @ ' d, not exceed the tension-controlled limit in Eq. 4-23. Table A-4 gives a /'d,
values corresponding to the tension- and compression-controlled limits.

Upper Limit on Reinforcement—ACI Sec. 10.3.3. Since an under-rein-
forced beam fails in a ductile manner and an over-reinforced beam in a brittle manner, ACI
Sec. 10.3.3 attempts to prevent nonductile failures by limiting the reinforcement ratio, p, to

= 0.75p,. This is roughly equivalent to requiring that € be 1.8 to 2.0 times &, at failure.

Due to the variability of the actual strengths of concrete and steel (understrength con-
crete and overstrength steel) and the variability of dimensions such as the effective depth,
a beam that nominally satisfied p = 0.75p, may develop a compression failure. In addition,
it is generally difficult to place the reinforcement and the concrete in a beam if p exceeds
about 0.5p,, and such beams tend to deflect and crack excessively. For all these reasons it
is good practice to limit the maximum steel percentage to p = 0.4 to 0.5p;. Values of py,
0.75ps, and 0.5p, are listed in Table A-5 (see Appendix A).

For rectangular beams it is much easier to base the check of whether p =< 0.75p, on
the neutral axis depth ratio ¢/d or the ratio, a/d, of the depth of the equivalent rectangular
stress block, a, to the effective depth of the beam, 4. Rearranging Eq. 4-25 and expressing
a using Eq. 4-14a gives

@ _ ﬂ?&)
d ﬁ‘(87,000 +f, “-=20)
where f, is in psi and

a _ 600 )

d Bl(r{] 7 {4-21M)

where f, is in MPa.

In Eq. 4-21, a, is the depih of the equivalent rectangular compressive stress block
corresponding to a balanced failure {see Fig. 4 —19¢). To limit p to 0.75p, or 0.5p,, the com-
puted a/d for a given beam should be less than 0.75(a, /d) or 0.5(a;/ d), respectively. Table
A~ 4 gives values of a/d ratios corresponding to p,, 0.75p,, and 0.5p,.

The tension-controlled limit in ACI Appendix B corresponds to p = 0.563 g, for a
rectangular beam with only tension reinforcement.

EXAMPLE 4-2 Analysis of Singly Reinforced Beams: Tension Steel Yielding

106

Compute the nominal moment capacities, M, of three beams, each with b = 10in.,d = 20in. and
3 No. 8 bars giving A, = 3 X 0.79 = 2.37in2 and p = A,/bd = 2.37/(10 X 20} = 0.0119. The
beam cross section is shown in Fig. 4-20a.

BEAM 1: f, = 3000 psi AND f, = 60,000 psi

1. Compute a. Assume that steel stress, f,. equals f, (which corresponds to p = ). This will
be checked in step 2. From Eq. 4-11, the depth, a, of the equivalent rectangular stress block is

AL
7 085fb
_237in2 X 60,000 psi
0.85 X 3000 psi X 10 in.
Therefore, a = 5.58 in. (Fig. 4-20a)

2. Checkif f5 = fy and whether the section is tension-controlled. If a/d =< a, /d, f, will
be equal o f,, where 4,/ d is given by Eq. 4-21.

Flexure: Basic Concepts, Rectangular Beams
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Fig. 4-20
Beams—Examples 4-2 and
4-2M.
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{b) Example 4-2M,

a 558in

- = =0.279

4~ 20m O
From Eq. 4-21,

a _ B( 87,000 )

d  7'\87,000 + f,

From Eq. 4-8a, 8, = 0.85 for f, = 3000 psi and

ay 87,000 )
=085 ———| = 0.503
d 0 85(87,000 + 60,000 0

Since the actual a/d = 0.279 is Jess than a,/d = 0.503,f; = f,.

To check whether the section is tension-controlled, check whether a /d; = aye/d. Note that
this check is made in terms of a/d, rather than a/d. For this beam d, and d are the same. If the steel

were in several layers, this would not be true. From Eq. 4-23,

aejdy = 03758, = 0.375 X 0.85 = 0.319

Since a,/d = 0.279 is less than 0.319, the section is tension-controlled and ¢ = 0.90. Note that val-

ues of a, /d and a,.,/ d; are given in Table A~4.

3. Compute the nominal moment capacity, M,. Summing moements about the resultant
compressive force, C, the moment capacity is M, = Tjd, where the tension force is T = A, f, and the

lever arm jd = (d — a/2), giving
a
=Afld - <
M, ,ﬂ(a‘ 2)

4-3 Analysis of Reinforced Concrete Beams
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Thus
5.58 in.
M, = 2.37in X 60.000 psi(ZO - 32 m)
2,447,000 . .
= 2447000 in-db = 2 R g
n 12,000 | OPS

The nominal moment capacity of beam 1 is M, = 204 ft-kips.
Since the section is tension-controlled, ACI Sec. B9.3.2.1 gives ¢ = (.90. The design or fac-
tored moment capacity of this beam is

M, = 0.9 X 204 fkips = 184 ft-kips

BEAM 2: SAME AS BEAM 1 EXCEPT THAT f! = 6000 psi
1. Compute a.

237 X 60,000
2= 0.85 X 6000 X 10

2, Check if f; = fy and whether the section is tension-centrolled. Again we will base the
check of f, = f, on a,/d, where

= 2.7%9in,

a 279
E = —i)* = (.139
From Eq. 4-21,
a ( 87,000 )
4~ Plgr000 + £
where, from Eg. 4 -8b,
B, =105 — n.os(j""—) =0.75
1000
a 87,000
e 0'75(87,000 + 60,000) =044
Since a/d = 0.139 is less than &, /d = 0.444,f, = f,.
%‘f = 0.3758, = 0.281

Again d, = d. Since a/d, = 0.139 is less than a,../d, = 0.281 the section is tension controlied and
¢ = 0.90.

3. Compute My.

4 = 237 X 60.000(20-2.79/2)
" 12,000

oM, = 0.9 X 220 ft-kips = 198 ft-kips
Note that doubling the concrete strength increased M, by only 8%.
BEAM 3: SAME AS BEAM 1 EXCEPT THAT Jf, = 40,000 psi

L. Compute a.

= 220 ft-kips

2.37 X 40,000

=————=372in
“~ 0.85 X 3000 X 10 -
2. Check if fy = fy and whether the section is tension-controlled.

a 372
S=2Z=01
p 0 0.186
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ay _ 87.000 _) s
@ 08 (87,000 + 40,000/ ~ 3%
% = 03758, = 0.319

Thus f; = £, and the section is ténsion-conu-olled. ¢ = 0.90.
3. Compute My and ¢My.

_ 2.37 X 40,000(20 — 3.72/2)
12,000

oM, = 0.9 X 143 ft-kips = 129 ft-kips
Note that reducing £, by 33% compared to beam [, reduced M, by 30%. a

M, = 143 ft-kips

EXAMPLE 4-2M  Analysis of Singly Reinforced Beams: Tension Stee!
Yielding—SI Units

Compute the nominal moment capacity, M,, of a beam with f7 = 20 MPa, f, =400 MPa, b = 250
mm, d = 500 mm, and 3 No. 25 bars giving A, = 3 X 500 = 1500 mm? and p=A/bd =
1500/(250 X 500) = 0.0120. See Fig. 4-20b.

1. Compute 2,
0.857. b
1500 mm? X 400 MPa
.85 X 20 Mpa X 250 mm

= 141 mm
Therefore, ¢ = 141 mm.

2. Checkiffy = fy and whether the section is tension-controlled. If a /d=a,jd,f,=F,
where a; /d is given by Eq. 4-21M.

a _ 141 mm
d 500 mm

= 0.282

From Eq. 4-21M,

ol
d  T\600 +
From Eq. 4-8M, 8, = 0.85 for f = 20 MPa and

ay 600 )
= =085 ———) = 0510
d 0 85(600 + 400 0

Since the actval a /4 = 0.282 is less than g, /d = 0.510,f, = J5 To check whether the section is ten-
sion-controlled, check whether g, /d, = a/d, Note that this check is in terms of @ /d.. For this beam
d, and d are the same. If the steel were in several layers, this would not be true. From Eq. 4-23,

Ayt
d;

Since a/d, = 0.282 is less than 0.319, the section is tension-controlled and ¢ = 0.90.

= 0.3758, = 0.375 X 0.85 = 0.319

3. Compute the nominal moment capacity, M. From Eq. 4-12a, M, is

a
M, = AJy(d ~ 5)

141
= 1500 mm’® X 400 N /mm? (500 - T) mm

(where 1 MPa = 1 N/mm?). Therefore,
M, = 258 X 10° N-mm = 258 kN-m
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The nominal moment capacity of the beam is M, = 238 kN - m. The design or factored moment ca-
pacity. &M, of this beam is 0.9 X 258 = 232 kN ~ m. |

Equations for M, and &M,: Tension Steel Elastic at Failure
From statics we once again find that

c=T
and

0.85fba = A.f,
= pE.ebd

From strain compatibility (see Fig. 4-15c),

(d . C)
€ = €y
C

Solving these together and observing that a = B¢ gives
O'Sszaz = pEséﬂrlBldl - pEsEcuad

or

(O'Ssﬁ)a2 + (d)a— Bd*=" (4-27
pEGGL'll
This can be solved for @ and from Eqs. 4-13, M, or ¢M,, can be computed.

Beams with g > p, are not allowed by ACI Sec. 10.3.3 but are allowed by ACI Sec.
BI10.3.3.If p is found to be greater than p, (f; < f,) when checking an existing beam, or
when designing a new beam, ACI Sec. B10.3.3 requires that ¢ be taken equal to 0.70. The
ACI Code gives no guidance as what value of ¢ to use if an existing beain is found to have
p = p,. It is the author’s opinion that the design capacity, ¢M,, should be calculated using
¢requal to 0.7 rather than the 0.9 usually used for flexure, due to the brittle nature of a com-
pression failure. (Some authors use ¢ = 0.9 but limit the moment capacity, ¢M,, to that
corresponding to p = 0.75p;.)

When p is greater than p;, the value of M, is relatively insensitive to changes in p.
This is because both f, and jd decrease as A, increases. In 1937, Whitney*® used a semiem-
pirical analysis to determine that the moment capacity for compression failures was

M, = 0.333fbd? (4-28)

Using the correct solution (Eqgs. 427 and 4—13a}, the constant in Eq. 4--28 is found to range
from 0.29 to 0.35 for beams with p = p,, increasing by roughly 10% for beams with p = 2p,.

EXAMPLE 4-3 Analysis of Singly Reinforced Beam: Tension Steel Elastic

110

Compute the nominal moment capacity, M,, of a beam having b = 10in., d = 20in., A, = 4.74 in.?
{6 No. 8 bars), f = 3000 psi, and £, = 60,000 psi.

1. Compute 4. When analyzing the capacity of 2 beam one does not know at the start
whether the steel will yield or not. Because f, = f, in most beams encountered in practice, we will
make this assumption and correct it later if necessary. From Eq. 4-11,

Afy
0.857.b

474 X 60,000
0.85 X 3000 X 10

trial @ =

Therefore, rmal e = 11.3 in.
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2. Check if fs = fy and whether the section is tension-controlled. These checks will be
based on Eq. 4-21.

@112 _ 558 (based on trial a)
4 = 20 = U.53 asec oninal a
as 87,000
2Bl =05

d 1(87!000 + ;g) 03

Since a *d = 0.558 is greater than @, 4 = 0.503. this beam will fail in compression with f; less than
[ As aresult, the value of @ computed in step 1 is incorrect and we must start again. Because f; is less
than ., the section is compression-controlled.

3. Recompute 4 using Eq. 4-27.

( 0.85f

ELe )a2 + {dla — Bd? =0

ot

Where p = A /bd = (.0237,

( 0.85 X 3000 psi
0.0237 X 26 X 10°psi X 0.003

Therefore, 1.237a% + 20a - 340 = 0 and

L= T20= V20 — (4 X —340 X 1237)
2 X 1.237

)a3 + 20a — 085 X 20°=0

= 10.36 in.

This computed value of g is less than the 11.2 in. computed in step 1 because the actual steel stress is
less than f,.

4. Compute M, using Eq. 4-13a. Because the steel stress J. is not known, it is necessary
to use Eq. 4-13a to compute M, rather than Eq. 4-12a.

M, = O.SSﬂab(d - ‘2’)

700

I
600 /F

500

400 /

. |
=3 Iy = 60 ksi / | Exampie 4-3 I
= :
: N
3 el — I
= 300 Exampie ] ai
Beam 1 7 | b b = 10in.
Beam 2 " >
Beam I T
200 p— ] . ; 1+
f, = 6000 T iy =40ksi £
. e ]
psi L c;
100 —
/X f; = 3000 psi |
/ ! L X N ]
. 1
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Agfin.?)
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_ 0.85 X 3000 X 10.36 X 10{20 — 10.36.2)
12,000
Thus M, = 326 fi-kips. Since the section is compression-controlled and does noi contain spiral rein-
forcement, ACT Sec. B9.3.2.2(b) gives ¢ = 0.70 and M, = 228 fi-Kips.
Whitney’s equation for M,, Eq. 4-28, gives M, = 333 ft-kips. For this example this is essen-
tially the same as the M,, = 326 ft-kips computed from the exact equation, |

Effect of Variables on M, for Singly Reinforced Beams

Figure 4-21 compares the moment capacities of a rectangular cross section with varying
material strengths and amounts of reinforcement. The upper and lower solid lines are plot-
ted for f, = 60,000 psi and concrete strengths, f. = 6000 and 3000 psi, respectively. The
dashed curve is for f, = 40,000 psi and fc' = 3000 psi. Each curve consists of two parts, a
steep portion to the left of point B for p less than p; (tension failures) and a fiatter portion
to the right of point B for compression failures when p is greater than p,.

The major difference between the two solid curves is the bending moment at which
the change from tension to compression failures occurs. This is almost directly propor-
tional to the concrete strength. For values A, less than about 3 in.?, however, the two solid
curves in Fig. 4-21 are very close to one another, indicating that the 100% difference be-
tween their concrete strengths has relatively little effect on their flexural capacities in this
range. This can be seen from Eq. 4-12a, which rearranged slightly is

_ A, )

M, = Asfyd(l 17f.bd

The three main variables in this equation are A, f,, and 4 and the moment capacity varies
almost linearly with these three. Thus the moment capacities plotted in Fig. 4-21 increase
almost linearly with p = A,/bd until p, is reached. On the other hand, the concrete
strength, -, has a much smaller effect on the strength of under-reinforced beams (p < p,),
acting only to change the depth of the compression zone, a, and hence to change the lever
arm, jd = (d — a/2). The points labeled beams 1 and 2 in this figure refer to the strengths
computed for these beams in Example 4-2. Here a 100% change in concrete strength, from
3000 psi to 6000 psi, increased the moment capacity by only 8%.

The effect of the yield strength, f,, can be seen by comparing the dashed curve and
the lower solid curve, both of which are plotted for the same concrete strength. The ratio of
the ordinates of these two curves is roughly 40/60 for values of p less than p,. For example,
beam 3 (from Example 4-2) had a capacity of 70% of that of beam 1.

In summary, for steel ratios up to 0.015 or so, the value of M, is affected almost lin-
early by A, f,. and although not shown in Fig. 4-21, by d. In this range, M,, is roughly pro-
portional to f,. The value of M, at which the behavior changes from tension failures to
compression failures and the value of M, for compression failures are roughly proportional
to f. and are essentially independent of f,. Thus the most effective ways to increase the
strength of a beam while maintaining a tension failure mode are to increase A,, f,, or d.
Increasing f. is effective only if it allows higher steel percentages to be used.

4 -4 DESIGN OF RECTANGULAR BEAMS
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General Factors Affecting the Design of Rectangular Beans

Location of Reinforcement

Concrete cracks due to tension and as a result, reinforcement is required where flexure,
axial loads, or shrinkage effects cause tensile stresses.

Flexure: Basic Concepts, Rectangular Beams
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Fig. 4-22
Simply supported beam.

Fig. 4-23
Cantilever beam.
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Cracks
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—J (a) Deflected shape.

{b) Moment diagram.

{c) Reinforcement location.

(a) Deflected shape.

Cracks

{b) Moment diagram.

[

(c} Reinforcement location.

Auniformly loaded, simply supported beam deflects as shown in Fig. 4~22a and has the
moment diagram shown in Fig. 4~22b. Because this beam is in positive moment throughout,
tensile flexural stresses and cracks are developed along the bottom of the beam., Longitudinal
reinforcement is required to resist these tensile stresses and is placed close to the bottom side
of the beam as shown in Fig. 4-22c. Since the moments are greatest at midspan, more rein-
forcement is required at the midspan than at the ends and it may not be necessary to extend all
the bars into the supports. In Fig, 4~22¢, some of the bars are cut off within the span.

A cantilever beam develops negative moment throughout and deflects as shown in
Fig. 4-23, the concave surface downward, so that flexural tensions and cracks develop on
the top surface. In this case the reinforcement is placed near the top surface as shown in
Fig. 4-23c. Since the moments are largest at the fixed end, more reinforcement is required
here than at any other point. In some cases some of the bars may be terminated before the
free end of the beam. Note that the bars must be anchored into the support.

Commonly, reinforced concrete beams are continuous over several supports, and
under gravity loads they develop the moment diagram and deflected shape shown in Fig.
4-24. Again, reinforcement is needed on the tensile face of the beam, which is at the top of
the beam in the negative moment regions at the supports, and at the bottom in the positive
moment regions at the midspans. Two possible arrangements of this reinforcement are
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shown in Fig. 4 -24c and d. Today, the straight bar arrangement shown in Fig. 4-24c¢ is used
almost exclusively. In some cases a portion of the positive moment or negative moment re-
inforcement is terminated or cut off when no longer needed. Note, however. that a portion
of the steel is extended past the points of inflection. as shown. This is done primarily to ac-
count for shifts in the points of inflection due to shear cracking and to allow for changes in
loadings and loading patterns. The calculation of bar cutoff points is discussed in Chap. 8.

In addition to longitudinal reinforcement, additional bars, referred to as stirrups, are pro-
vided to resist shear forces and to hold the various layers of bars in place during construction.
These are shown in the cross section in Fig. 4-24. The design of stirrups is discussed in Chap. 6.

Prior to 1963 it was common practice to bend the bottom reinforcement up to the top
of the beam when it was no longer required at the bottom. In this way a bent-up or truss bar
could serve as negative and positive reinforcement in the same beam. Such a system is 1l-
lustrated in Fig. 4-24d.

In conclusion, it is important that designers be able to visualize the deflected shape
of a structure. The reinforcing bars for flexure are placed on the tensile face of the member.
This is the convex side of the deflected shape.

Construction of Reinforced Concrete Beams and Slabs

The simplest concrete flexural member is the one-way slab shown in Fig. 41, The form
for such a slab consists of a flat surface, generally built of plywood supported on wooden
or steel joists. Whenever possible, the forms are constructed in such & way that they can be
reused on several floors. The forms must be strong encugh to support the weight of the wet
concrete plus construction loads such as workers, concrete buggies, and so on. In addition,
the forms must be aligned correctly and cambered (arched upward), if necessary, so that the
finished floor is flat after the forms are removed.

The reinforcement is supported in the form on wire supports referred to as bolsters or
chairs, which holds the bars at the correct distance above the forms until the concreie has
hardened. If the finished slab is expected to be exposed to moisture, wire bolsters may rust,
staining the surface. In such a case, small precast concrete blocks or plastic bar chairs may
be used instead. Wire bolsters can be seen in the photograph in Fig. 4-25.

Beam forms are most often buiit of plywood. The size of beamn forms is generally
chosen to allow maximum reuse of the forms, since the cost of building the forms is a sig-
nificant part of the total cost of a concrete floor system, as discussed in Sec. 2-8. Some de-
signers prefer to choose 12- or 16-in. beam widths since these widths fit evenly into the
width of a standard 4 ft X 8 ft sheet of plywood.

Reinforcement for two beams and some slabs is shown in Fig. 425, Here, closed stirrups
have been used and the top bars are supported by the top of the closed stirrups. The negative mo-
ment bars in the slabs still must be placed. Frequently, the positive moment steel, stirrups, and
stirrup support bars for a beam are preassembled into a cage that is dropped into the form.

Relationship between Beam Depth and Deflections

The deflections of a beam can be calculated from equations of the form

Ciwd?
Apey = = 4-2
I {4-29a)

Rearranging this and making assumptions concerning steel strains and neutral-axis depth
eventually gives an equation of the form

A 4

- = 4-29b

¢ y ( )
Thus for any acceptable ratio of deflection to span lengths, A /£, it should be possible to spec-
ify span-to-depth ratios, £ /d, which, if exceeded, may result in unacceptable deflections. ACI

4-4 Design of Rectangular Beams 115



Fig. 4-25

Intersection of column and
two beams. (Photograph
courtesy of J.G. MacGregor.,)
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Table 9.5(a) gives minimum thicknesses computed in this way for members not supporting
partitions or other construction which are liable to be damaged by deflection (see Table A-14
of this book). These minimurm thicknesses are frequently used in selecting the overall depths
of beams or slabs. Deflections are discussed in Chap. 9.

Concrete Cover and Bar Spacing

It is necessary to have concrete cover between the surface of the slab or beam and the re-
inforcing bars for four primary reasons:

1. Fo bond the reinforcement to the concrete so that the two elements act together.
The efficicncy of the hond increases as the cover increases. A cover of at least one bar di-
amicicr s required for this purpose in beams and columps (see Chap. 8).

2. To protect the reinforcement against corrosion. Depending on the environment and
the type of member, varying amounts of cover from% to 3 in. are required (ACI Sec. 7.7). In
highly corrosive environments such as slabs or driveways exposed to deicing salts or
ocean spray, the cover should be increased. ACI Commentary Sec. R7.7 allows alternative
methods of satisfying the increased cover requirements for elements exposed to the
weather. An example of an alternative method might be a waterproof membrane on the ex-
posed surface.

Flexure: Basic Concepts, Rectangular Beams
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3. To protect the reinforcement from strength loss due to overheating in the case of
fire. The cover for fire protection is specified in the local building code. Generally speak-
ing, % in. cover to the reinforcement in a structural slab will provide a 1-hour fire rating.
while a 1%~in. cover to the stirrups or ties of beams corresponds to a 2-hour fire rating.

4. Addiiional cover is sometimes provided on the top of slabs, particularly in
garages and factories. so that abrasion and wear due to traffic will not reduce the cover
below that required for other purposes.

In this book, the amounts of clear cover will be based on ACI Sec. 7.7.1 unless spec-
ified otherwise.

The arrangement of bars within a beam must allow sufficient concrete on ali sides of
each bar to transfer forces into or out of the bars; sufficient space so that the fresh concrete
can be placed or compacted around all the bars; and sufficient space to allow a vibrator to
reach through to the bottom of the beam. Figure 425 shows the reinforcement at an inter-
section of two beams and a column. The longitudinal steel in the beams is at the top of the
beams because this is a negative moment region. Although this region looks congested,
there are adequate openings to place and vibrate the concrete.

ACI Secs. 3.3.2, 7.6.1, and 7.6.2 specify the spacings and arrangements shown in
Fig. 4-26. When bars are placed in two or more layers the bars in the top layer must be
directly over those in the other layers, to allow the concrete and vibrators to pass through
the layers, Conflicts between bars in the columns and other beams should be considered
(Figs. 425 and 4-27).

Calculation of Effective Depth and Minimum Web Width
for a Given Bar Arrangement

The effective depth, d, of a beam is defined as the distance from the extreme compression
fiber to the centroid of the longitudinal tensile reinforcement as shown in Fig. 4-2.

EXAMPLE 4-4 Calculation of d and Minimum b

Compute 4 and the minimum value of & for a beam having bars arranged as shown in Fig. 4-28. The
maximuem size coarse aggregate is specified as 7 in. The overall depth of the beam is 24 in.

This beam has two different bar sizes. The largest bars are in the bottom layer, to maximize the
effective depth and hence the lever arm. Note also that the bars are symmetrically arranged about the
centerline of the beam. The bars in the upper layer are directly above those in the lower layer. By
placing them on the outside of the section, the top layer of bars can be supported by tying them di-
rectly to the stirrups.

From ACI Sec. 7.7.1, the clear cover to the stirrups is 1.5 in. (Fig. 4-26b). From ACI Secs.
7.6.2 and 3.3.2, the minimum distance between layers of bars is the larger of 1 in. or l% times the ag-
gregate size, which in this case gives l% x 3 = .

1. Compute the centroid of bars.

Layer Area, A (in.2) Distance from Bottom, y(in,} Ay in?

Bottom 3 X 1.00 = 3.00 15+ 3+ xg) =244 7.31

Top 2X079=158 244+ GxDH+1+(x¥H =45 7.1t
Total A = 4.58 Total Ay = 14.42

The centroid is located at Ay /A = 3 = 14.42/4.58 = 3.15 in. from the bottom of the bean. The ef-
fective depthd = 24 ~ 3.15in. = 20.85 in—say, d = 20.8 in.

2. Compute the minimum web width. This is computed by summing the widths along the
most congested layer. The minimum inside radius of a stirrup bend is two times the stirrup diameter,
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Fig. 4-28
Example 44

-
ds—»] |38 in.
2 No. 8 bars
@/ 7 T 12 x 88
2d; { - 05in.
0.5, 1in,
{2ds — 0.5dp) —w 3-No. 9 bars
¥ 12 x o8
(: ) \ / i/ = 056 in,
a8
"~ — ¥ - 0.38in.
15 in,
15 ) J|gminl - lemin] - jemin|| | 150
38in.” No.1gin. 0.19in. ” a8 in.

 *Not less than 1 in. nor dp = 978 in,

d,, which for 2 No. 3 stirrup is % in. (ACT Sec. 7.2.3). For No. 11 or smaller bars there will be a space
between the bar and the tie as shown in Fig. 4-28:

space = 2d; — (.54,
=2X3-05%% =019

The minimum horizontal distance between bars is the largest of 1 in,, 1% times the aggregate size, or
the bar diameter (see Fig. 4—26b). In this case it is g in. Summing the
widths along A-A gives

Bmig = 1.5 + 3 + 0.19 + 5(%) +019+3+15
= 9.76 in.
Thus the minimum width is 10 in. and design should be based on 4 = 20.8 in. |

It is generally satisfactory to estimate the effective depth of a beam using
For beams with one layer of reinforcement,
d=h—25in. {4-30a)

For beams with two layers of reinforcement,

d=h~35in, (4—30b)

(The value 3.5 in. given by Eq. 4-30b corresponds to the 3.15 in. computed in Example
4-4.) The value of d should not be overestimated because normal construction practice
tends to result in smaller s than shown on the construction drawings.

For reinforced concrete slabs the minimum clear cover is % in. rather than 1% in., and
only one layer of reinforcement is used. This will generally be No. 3, 4, or 5 bars. For this
case, Egs. 4-30a and 4-30b can be rewritten as:

One-way slab spans up to 12 fi:
d=Fh— lin. (4-30c)
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One-way slab spans over 12 fu:

d=h~-111n. (4-30d)
In ST units, Egs. 4-30 become:

For beams with one layer of reinforcement,

d=h— 65mm (4-30aM)
For beams with two layers of reinforcement,

d=h — 90 mm {4-30bM)
For one-way slabs with spans up to 3.5 m,

d=h— 25 mm (4-30cM)
For one-way slabs with spans over 3.5 m,

d=h - 30mm (4-30dM)

It is important not to overestimate d because normal construction practices lead to
smaller values of d than shown on the drawings. Studies of construction accuracy show that
on the average, the effective depth of the negative moment reinforcement in slabs is 0.75 in.
less than specified.*"" In a 5-in.-thick slab, an error of 0.75 in. in the steel placement will
reduce the flexural capacity by 19%.

Generally speaking, b should not be less than 10 in. and preferably not less than 12 in.
for beams, although with two bars, beam widths as low as 7 in. can be used in extreme
cases. The use of a layer of closely spaced bars may lead to a splitting failure along the plane
of the bars as explained in Chap. 8. Since such a failure may lead to a loss of bar anchorage
as well as corrosion, care should be taken to have at least the minimum bar spacings. (A hot-
izontal crack of this sort can be seen at midspan of the beam shown in Fig. 4—6.) Where
there are several layers of bars, a space large enough for the concrete vibrator to pass
through should be left between two of the rows. Minimum web widths for various arrange-
ments are given in Table A6 (see Appendix A). This does not allow extra space for a vi-
brator to be inserted.

Minimum Reinforcement

If the cracking moment of a beam exceeds the strength of the beam after cracking, a sud-
den failure could occur with little or no warning when the beam cracks. For this reason ACI
Sec. 10.5 requires a minimum amount of flexural reinforcement equal to

3V 2000,

A = 4-31
. 5 3 ( )

(ACI Eq. 10-3)
where f, and f, are in psi. In SI units this becomes
V! 4= LAbd
4f, L £

Asmin = 4-31M)

(ACIEq. 10-3M)
where f. andf, are in MPa.
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For statically determinate T beams with the flange in tension. the minimum rein-
forcement is equal to the smaller of
6V,
As.min = ff b‘.l'd (4—32)

(ACI Eq. 10-4)

or the value given by Eq. 4-31 with b, taken equal to the width of the flange, where £, and
f, are in psi. In ST units Eq. 4-32 becomes

\A
b (4-32M)

As.min =

(ACI Eq. 10—4M)

The requirements of Eqs. 4-31 and 4-32 need not be applied if the area of rein-
forcement provided is at least one-third greater than required to provide the required mo-
ment capacity.

Design of Rectangular Beams with Tension Reinforcement

In the analysis of beam cross sections, Eqs. 41 and 4-15 were presented:
¢MR = Mu (4_1b)

where M, represented factored moments due to loads, which for gravity loads equals (ACI
Sec.9.2.1)

Mu = ]4MD + 17ML

where Mp and M; are the moments due to the unfactored dead and live loads, respectively.
The factored resisting moment, ¢M,, is the couple formed by the internal tensile and com-
pressive forces and can be calculated from

&M, = O£/ bd (1 — 0.5%)] (4-15)

where w = pf,/f..

In the design, the problem to be solved involves the selection of a beam cross section
to support a given value of the live-load moment, M, plus its own dead-load moment and
moments due to other loads it may be required to support. In this calculation there are six
unknowns: b, d, p, f,, .’ and the beam’s own dead-load moment; but only rwe independent
equations, Eq. 4-12a (or 4—15) and the relationship between the beam size and the beam’s
dead-load moment. As a result, it is not possibie to design a beam uniquely. The design pro-
cedure is thus an iterative process in which four assumptions must be made. Although this
requires some intuition and understanding of the construction process, the resulting design
freedom makes reinforced concrete the universal and valuable material it is.

The value of £, to be used in the design is chosen at the start of the design and used
throughout the project. The choice of concrete strength is based on durability considera-
tions if the member is exposed to freezing and thawing. deicing salts, or other aggressive
environments. ACI Chapier 4, “Durability Requirements,” particularly ACI Table 4.2.2,
specifies minimum concrete strengths ranging from 4000 to 5000 psi for various expo-
sures. The strength chosen for durability reasons may be utilized in the design for strength.
If durability is not a problem, reinforced concrete beams and slabs are generally con-
structed of 3000-, 3750-, or 4000-pst concrete, with 3000-psi being the most common. The
strength of the concrete in columns may be higher, as discussed in Chap. 11,

The yield strength most commonly used in the United States is 60,000 psi. Steel with
a yield strength of 40,000 psi is occasionally used for flexural reinforcement. Only No. 3 to
No. 6 bars are available in Grade 40 steel.
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Once /. and £, have been chosen for the beam or slab in quastion, three major inde-
pendant variables remain: the width, b; the depth, 4 (or the overall height, 4); and the rein-
forcement ratio. p. If & and d are known, it is possible to go direcily to the computation of
pand A, = pbd. If not. the follewing equation is used to arrive at b and d:

M,  bd
&k, 12,000

where ¢k, = dlf wll — 0.59w)] and M, is in ft-kips. To solve for b and d, it is necessary
to assume a value of w or p. compute ¢k,. and compute bd? 12,000 and eventually b and
d. Table A-3. which lists &#,,. and Table A-7, which lists bd* /12,000, may be used 10 aid
in this calculation. A value of p equal to 0.01 (corresponding to @ = 0,12 t0 0.24 or
p = 0.30 to 0.50p,. depending on the concrete sirength) is generally used to get the first
value of ¢k, Also, p = 0.010 will correspond to a tension-controlled section that will have
¢ = 0.90. Tt is possible to round off the values of b and d to practical sizes at this stage
since the values of b and d chosen in this step are then used in a recomputation of pand A,
in the next stage.

When designing in metric (SI) units, reinforced concrete beams and slabs are gener-
ally constructed of 20, 25, or 30 MPa concrete, with 20 MPa being the most common. In
locations where durability is important, ACI Sec. 4.2.2 requires the use of air-entrained
concrete having specified maximurmn water/cementitious materials ratios and minimum
strengths ranging from 28 to 35 MPa. The most common yield strength is 400 MPa. Grade
300 reinforcement is only available in sizes 10, 15, and 20.

If &# and d are not known, the following equation is used to arrive at & and d when
working in S units:

4-17)

M, X 108
———— = pg? 4-17M
o @-1m
where ¢k, = @[ frew(l — 0.59w)] in metric units, M, is in kN-m and & and d are in mm.

To solve for £ and d it is necessary to assume a value of w or p, compute ¢k,,, and com-
pute bd* and eventually b and d. A value of p equal to 0.01 is generally used to get the first
value of ¢k,

Two different procedures exist for calculating the area of reinforcement, A,. If the
values of b and d chosen for the beam are close to the calculated values, the steel area can
be calculated directly from p using

A, = pbd

The resulting A, should not be less than A, (BEq. 4-31) and p should not exceed 0.75p,
(Eqg. 425 and Table A-5). [t is then necessary to check whether this amount of reinforce-
ment is adequale to resist M. This is done using Eq. 4—-12a as in Example 4-2.

In most cases it is much better, however, to calculate the area of reinforcement using

oM, = cb[A..-ﬂ.(d - ;H (4-12b)

where (¢~ o 2} is referred Lo as jd. A, and « are unknown in this equation. It is necessary
to assume j. compute A,, recompute « and {d — a /2) using this value of A,, and recompute
A, until convergence is obtained. For beams with grade 60 reinforcement, j can range from
about 0.95 for minimum reinforcement to about 0.80 for p = 0.75p, (see Table A-3). For
the most usual steel percentages in beams, j is generally between (.87 and 0.90. For one-
way slabs. which generally have a lower reinforcement ratio than beams, j will generaily
vary between 0.90 and 0.95. Tn design problems in this book j will initially be assumed
equal to 0.875 for rectangular beams and 0.925 for slabs. Thus, for the initial trial, A, can
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be computed from Eq. 4~12b replacing {(d — a /2) with jd, where j = 0.875 for beams and
J == 0.925 for slabs, and replacing M, with M, . ¢

M.

A, = 4-33
T i {4-33)

Since this computed value of A; is based on an estimate of j, it is necessary to check
the accuracy of the estimate by using the A; selected to compute ¢M, using Eq. 4-12b. If
&M, is not close enough, iterations may be needed. Three general types of design problems
exist. These will be discussed in the next three subsections.

Design of Reinforcement When b and h are Known

The first type of design problem is the case in which the dimensions of the concrete section
have been established by nonstructural reasons such as architectural appearance, reuse of
standard forms, fire resistance, and so on. In this case, b and d (or h) are known and it is
only necessary to compute A,

EXAMPLE 4-5 Design of Reinforcement When b and h are Known

Fig. 4-29
Beam designed in Example
4-5.

For architectural reasons it is necessary that the beam shown in Fig. 4-29 be 24 in. wide by 24 in.
deep. The strengths of the concrete and steel are 3000 psi and 60,000 psi, respectively. In addition to
its own dead load, this beam carries a superimposed service (unfactored) dead load of 1.0 kip/ft and
a service live load of 2.45 kips/ft.

Compute the area of reinforcement required at midspan and select the reinforcement.

1. Compute the factored moment, M,.

(2X2X 1) X150 b /ff
1 ft of length

Weight/ft of beam = = 600 1b/ft = 0.60 kip/ft

The factored load is
U=14D + 1.7L (ACIEq. 9.1)

or

Superimposed dead load = 1.0 kipift
Service live load = 2.45 kips/it

B B S TN T S S SN B B 2 |

t
T T

26 ftGin.

T |

h = 24in. d=215In

: sevese . .

b =24in. l 25in.
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w, = 1.4(0.6 + 1.0Kkip ft) + 1.7(2.45 kips 'ft}
6.40 kips ft

I

The factored load effect (factored ultimeate moment) is

w, o
i
_ 6.40kips ft X 26* f
8
It is necessary, therefore, to provide ¢M, = M, or M, = 541 ft-kips.

2. Compute the effective depth, d. Because the beam is quite wide, assume that all the bars
will be in one layer. From Eq. 4-30a, d can be estimated as

= 541 fr-kips

d=h—25in
=24 — 2.5in.
Therefore, try d = 21.5 in.

3. Compute the area of reinforcement, A ;. Assume that

jd=d- ;—1 = (.875d (this is equivalent to assuming that a = 0.25d)
= (0.875 X 21.5in. = 18.8 in.
From Eq. 4-33,
M,
Ay=——
&fjd

_ 541 fi-kips X 12 in. /ft
0.9 X 60 ksi X 188 in.

= 6.3%in.?

Possible choices are (Table A—8):

11 No. 7 bars, A, = 6.60 in.?
7 Na. 9 bars, A, = 7.00 in.2
4 No. 9 bars plus 3 No. 8 bars, 4, = 6.37 in.?

A check of the required web width as per Exampie 4 -3 (or Table A-6) shows that all of these
choices are acceptable. Try 4 No. 9 bars plus 3 No. 8 bars, A; = 6.37 in.2.

4. Check whether A, = A, .. FromEq.4-31,
VR 2006,,d

A.\.l]’liﬂ - de =

5 i
3v3000 200 X 24 X 21.5
Sl 24 X 215 = T
60,000 psi 60,000

= 14lin?2 = 1.72 in%
Since 6.37 in.2 exceeds 1.72 in2, A, > A, . (If not OK, increase A, to A, p;, or satisfy ACI
Sec. 10.5.3.)

5. Compute a, check if fg = fy, and whether the section is tension-controlled. From
Eq. 4-9,

_ AL
0.85%. b

_ 6.37in.2 X 60,000 psi
0.85 X 3000 psi X 24 in.

a

=6.25in.
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a _ 625in,

d  215in.
to check if £, = f, we shall check whether a ¢ is less than a, 'd. From Eq. 4-21,

= (.290

87,000

a 8 | + ) see al I A
l( -000 60,000/ ( S0 lable )

Since a /d = 0.290is less than a, ‘d = 0.503,f, = f.
To check whether the section is tension-controlied, we shall check whether a/d,1s less than or
equal 1o a,/d,. Since all the steel is in one layer, d = d, and a’d, = 0.290.

EC;L( = 0.3758, = 0.375 X 0.85
= 0319 “-23)

Since a/d, = 0.290 is less than a¢/d; = 0.319, the section is tension-controlled and from
ACI Sec. B9.3.2.1, ¢ = 0.90. I the section was compression-centrolled or transitional, a lower value
of ¢ would be required. Such a beam would be less ductile than a tension-controlled section. If this
was not considered acceptable, the section should be enlarged or compression steel added.
Compression steel is discussed in Chap. 5.

6. Compute M, and ®M,.. Because A, was calculated using an estimated value of jd, it is
necessary to check whether the reinforcement selected provides adequate moment capacity. It may
also be desirable to recompute 4. From Eq. 4-12a,

a
M,, = A,-ﬁ(d - "2')

6.
= 6.371in2 X 60 ksi(Zl.S in. — —223)

= 7620 in.-kips = 585 ft-kips
&M, = 0.9 X 585 ft-kips = 527 ft-kips
Since this is less than the factored ultimate moment, M, = 541 ft-kips, A, is too small. This is

because the assumed value of jd = 0.875d is greater than the value of jd = 0.8554 corresponding to
A, = 6.37in.2. It is therefore necessary to increase the area of steel.

7. Recompute the area of steel required. To do so, recompute the area of steel using the
lever arm (d — a /2) based on the value of g computed in Step 5:
Ao M
&d — a/2)
- ixia
09 x 60(21.5»6.25/’2}

= 6.54in.?

Possible choices are:
11 No. 7 bars, A4, = 6.60 in.2
7 No. 9 bars, A, = 7.00 in.?
5 No. 9 bars and 2 No. § bars, A, = 658in2?

Again, all of these will fii inio the web widih of 24 in. Try 5 No. 9 bars and 2 No. & bars,
A, = 6.58in.2. This exceeds A, in = 1.72 in2

Ady .

== a5
¢ Dgspp - O
2=030  whichis less than % = 0.503
d d

At
and less than ﬂd_ = 0.319
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Therefore, f; = £, and the section is tension-controlled, ¢ = 0.50.
Finally,

0.96.58 X 60{21.5 — 645 2
oM, = |: (]2 )]

= 541ft-kips

since M, = M, A, is OK. Therefore, use S No. 9 hars and 2 No. 8bars. N

Design of Beams when b and h are Not Known

The second type of design problem involves finding b, d, and A,. Three sets of decisions not
encountered in Example 4—5 must be made here. These are a preliminary estimate of the
dead load of the beam, selection of a trial steel percentage, and the final selection of the
beam dimensions b and 4.

Although no dependable rule of thumb exists for guessing the weight of beams, the
weight of a rectangular beam will be roughly 10 to 20% of the loads it must carry.
Alternatively, one can estimate £ as being roughly 8 to 10% of the span (1 in. deep per foot
of span), estimate b as 0.54, and use these dimensions to compute a trial weight. These two
procedures frequently give quite different values and an intermediate value can be chosen,
The dead load guessed at this stage is corrected when the dimensions are finally chosen.

It is then necessary to select a trial steel ratio p which is used to calculate ¢k, to enter
Eq. 4-16 to get b and d. This choice is affected by economic considerations; generally,
p = 0.01 is an economical choice; by ductility, generally p = 0.35p, to p = 0.4p, gives a
desirable level of ductility; and by placing considerations since it may be hard to place the
reinforcement if p exceeds 0.015. For Grade 60 reinforcement, 0.4p, is 0.0086 for 3000 pst,
0.0114 for 4000 psi, and 0.0134 for 5000 psi. For this reason we start our design assuming
that p = 0.010 at the point of maximum moment in all cases.

Factors to be considered in choosing the beam dimensions b and £ are;

1. A deeper beam requires less reinforcement. The savings here are offset by in-
creased forming costs and either reduced headroom in the story below, or an increase
in the overall height of the building.

2. Longer development lengths for closely spaced bars. This is normally not a prob-
lem except for top bars in short rectangular beams.

3. It may be possible to avoid deflection calculations if the overall height of the
beam exceeds the values given in ACI Table 9.5(a} (see Table A—14 of this book).
4. For rectangular beams it is common practice to select sections with d/b between 1.5
and 2.

The beam size chosen at this stage is rounded off to fit convenient form sizes as dis-
cussed earlier. A considerable amount of rounding can be carried out at this stage because
the final stage in the design is to compute the required area of steel corresponding to the &
and o selected at this stage.

EXAMPLE 4-8 Design of a Beam for which b and d Are Not Known

126

Abeam is to carry its own dead load plus a uniform service live load of 1.75 kips/ft and a uni-
form superimposed service dead load of | kip/ft on a 33-ft span. Select b, 4, and A, if £, is 3500 psi
and f, is 60,000 pst.

1. Estimate the dead load of the beam. Estimate the weight of a rectangular beam as 10 to
20% of the loads it must carry. This range corresponds to 0.3 to 0.6 kip/ft. Alternatively, estimate /2
as being roughly 8 to 10% of the span, and b as 0.5k, and compute the weight. This gives & = 2.6 to
3.3 ft, and following the procedure in step | of Example 4-4, these correspond to weights equal to
0.52 to 0.82 kip/ft. Based on these four values estimate the beam weight at 0.5 kip/ft.

Fiexure: Basic Concepts, Rectanguiar Beams
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2. Compute the factored moment, A,

w, = 1.4(1 +0.5) + 1.7{(1.75) = 5.08 kips ft

R
w,{;

81" = 691 fi-kips

3. Compute b and d. From Eq. 4-17,

M, =

M, bd?
bk, 12,000

where k, =fr:‘w(1 - 0.5%), w = pf; 'fc", and M, is in fi-kips. To start this calculation as-
stume either p or w. We shall try p = 0.010. The value of w for p = 0.01 is

60,000
w =001 X% =00 - 0171
Therefore,
k, = 3500 X 0.171{(1 — 039 X 0.171) = 538
From Eq. 4-17,
bd® _ M,
12,000 ¢k,
I
= 52—5—3—8 = 1.427

orbd? = 17,1201in.%.

Possibie choices (with 4 calculated using Eqs. 4-30 assuming two layers of reinforcement for
the narrower beams and one layer in the 18-in.-wide beam) are

b=12in.byd = 378in.andh = 37.8 + 3.5 = 41.3in.

b=16in.byd = 32.7in. and & = 37.2in.

b=18in.byd = 30.8in.and A = 30.8 + 2.5 = 33.3in.

Minimum overall depth to avoid deflection calculations if beam is not supporting brittle parti-
tions [from ACI Table 9.5(a)} for a simple beam is £/ 16, which in this case is 24.75 in. All the choices
listed exceed this, so deflection should not be a problem.

Try d/b between 1.5 and 2. On this basis we choose b = 16 in. and # = 36 in. The size chosen

has been rounded off to aid in construction of forms, and so on. Assuming two layers of reinforce-
ment,d =36 — 35 =325in. Useb = 16in,,h = 36in., and d = 32. in.

4. Check the dead load and revise M,.. For b = 16 in. and # = 36 in., the self-weight per
foot is

(133 X 3 X Df/ft X 0.15 kip/fe = 0.600 kip/ft

Therefore, the total factored moment, M, becomes 710 fi-kips compared to the original esti-
mate of 691 fi-kips. If the moment, M, increased by more than about [0%, it may be desirable to re-
peat steps 3 and 4.

5. Compute the area of reinforcement A,. Assume that
(4]
jd = (d - 5) = (.875d

= 284in.
From Eq. 4-33,
- M
~ #fid
710 f-kips X 12in./ft
0.9 X 60 ksi X 28.4in.

A;

= 5.56in.?
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Fig. 4-30
Reinforcement location—
Example 4-6.

128

| —No. 3 stirrup

\\FN__’///\ ﬂ/
—

@ @ 2 No. 8 bars
\MM 4 No. 9 bars

From Eq. 4-31
= " = 173 in?
o 60,000
Since A, required > A, ., Use A, required.

Possible choices are:

6 No. 9 bars, A, = 6,00 in.?

7 No. 8 bars. A, = 5.53 in.2

10 No. 7 bars, A, = 600 in.?

4 No. 9 bars plus 2 No. 8 bars, A, = 5.58 in.?
4 No. 8 bars ptus 4 No. 7 bars, A, = 5.56 in.2

Ali of these will fit into two layers in b = 16 in. if the maximum size aggregate is 3/4 in.
{Table A-6). We shall try 4 No. 9 bars plus 2 No. 8 bars arranged as shown in Fig. 4-30, to reduce
the number of bars to be placed. The larger bars are placed in the bottom row to give the largest pos-
sible lever arm.

If the values of b and d chosen in step 3 are close to the computed ones, A, could theoretically
be computed directly from the value of p chosen in step 3 since A, = pbd. Generally, however, the
rounding of # and d makes it necessary to compute A, as done in this example.

6. Compute d. For the steel placement in Fig. 4-30, 4 can be computed using the technique
given in Example 4-4, This gives ¢ = 33 in. In most cases, this step can be omitted since d = 32.5
in. from Eq. 4-30b is close enough.

7. Compute a, check if fg = fy, and whether the section is tension-controlled. From
Eg.4-11,

AL
4 085 b

5.58 X 60,000
a 703
a_ "0 g2
4" 339 0213

From Eq. 4-21 or Table A-4, a,/d is 0.503. Since o/d is less than a,/d, f, = f.. d is 33 in,,
d, = 36in. -~ (1.50 + (.375 + 1.125/2}in. = 33.5 in. Thus

2_ T8 a0 %

= = 319
4, 335 d,

since «/d, is less than a,; / d,, the section is tension-controlled and ¢ = 0.90.

8. Compute M, and ¢ M,. Because the area of steel calculated in step 5 was based on an
estimate of jd, it is necessary to check whether the reinforcement chosen provides the required mo-
ment resistance. From Eqs. 4-12,

a
M, = Aif‘.(d - 5)

Flexure: Basic Concepts, Rectangular Beams
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_5.58 X 60,000(33.0 — 7.03/2)
12,000

= 823 fr-kips

$M, = 0.9 X 823 fi-kips = 740 ft-Kips

Since &M, = M, the design is OK. Therefore, use & = 16 in., h = 36 in., with f;= 3500
psi, f. = 60,000 psi, and reinforcement as shown in Fig. 4-30. If M, were less than M, or if oM,
were much greater than M., it would be necessary to recompute the area of steel required (see step 7
of Example 4-5). N

EXAMPLE 4-6M Design of a Beam for Which b and h Are Not Known—
Sl Units

A beam is to carry its own dead load plus a uniform service live load of 25.5 kN/m and a uni-
form superimposed service dead load of 14.5 kKN/m on a 10-m span. Select b, d, and A, if £ is 25 MPa
and f, is 400 MPa.

1. Estimate the dead load of the beam. Estimate the weight of a rectangular beam as 10 to
20% of the loads it must carry. This range corresponds to 4 to 8 kN/m. Alternatively, estimate / as being
roughly 8 to 10% of the span, and b as 0.5k, and compute the weight. This gives h = 0.8 to 1.0 m,
and the tria] weight as

weight of beam = (0.8 X 0.4 X I)m* X 2450 kg/m’ X (9.81/1000)N/kg
= 7.69kN/mforh = 0.8 m

t0 12.0 kN/m for # = 1.0 m. Based on these four values (4, 7.69, 8, and 12 kN/m), estimate the
beam weight at 8 kN/m.

2. Compute the factored moment, M,.
w, = 14145 + 8) + 1.7(25.5) = 749kN/m

w, i,

M, =
8

= 936 kN-m

3. Compute b and d. From Eq. 4-17M,

M, _bd?
k., 10°

where Pkn, = ¢ f0(l — 0.590)] @ = oh/f., and M, is in kN-m. To start this calculation,
assume either p or . We shall assume that p = 0.01. For flexure ¢ = 0.9, except when using the ¢
values from B9.3.2, when it is 0.9 for tension-controlled sections. As we will see later, p = 0.01 will
always give a tension-controlled beam section. ‘The value for w for p=001is

400
=001 X—=0.
w=0 25 160

Therefore,
Sk = 0.925 X 0.160(1 — 0.59 X 0.160)] = 3.26

From Eq. 4-17M,

_ 936 x 10°

a? — =287.1 X 10°mm’
b 326 87.1 X 10°mm

Possible choices (with 4 calculated using Eq. 4—-30M assuming two layers of reinforcement
for the narrower beams and one layer in the 450-mm-wide beam) are

b =300mmbyd = 987 mm and & = 978 + 90 = 1068 mm
b =400 mmbyd = 847 mmand 4 = 847 + 90 = 937 mm
b =450mmbyd = 799 mmand h = 799 + 65 = 864 mm
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Minimum overall depth to avoid deflection calculations if the beam is not supporting brittle
partitions [from ACI Table 9.5(a}] for a simple beam is £ 16, which in this case is 625 mm. Since all
the choices listed above exceed this, deflections should not be a problem.

Try d/b between 1.5 and 2. On this basis we shall chocse b = 400 mm and 2 = 900 mm. The
size chosen was rounded off to aid in the censtruction of forms, and so on. Assuming two layers of
steel, d = 900 — 90 = 8§10 mm. Use » = 400 mm, & = 900 mm, and 4 = 810 mm.

4. Check the dead load and revise M,,.
For b = 400 mm and A = 900 mm, the self-weight per meter is
(0.40 % 0.90 X 1.0)m® m X 2450 % (9.81 1000)kN m?® = 8.65 kN m

Therefore, the total factored moment, M,. becomes 946 kN-m compared to the original esti-
mate of 936 kN-m. If the moment, M,, is increased by more than about 10%, it may be desirable to
repeat steps 3 and 4.

5. Compute the area of reinforcement, A .
Assume that

id = (a’ - g) = 0.875d

= 709 mm
From Eq. 4-33,
M,
&f.jd
3 947 X 10¢ N-mm
" 0.9 x 400 MPa X 709 mm

required A, =

= 3710 mm?

From Eq. 4-31M,

A,s‘.min = \/j:bwd = M
4f, 5
V25

=— X » 810 = 1012 2
4% 400 400 x 8 min

but not tess than
1.4 % 400 x B10
400

= 1134 mm?

Since 3710 mm? exceeds 1134 mm?, use the required A,
Possible choices are:

6 No. 30 bars, A, = 4200 mm?
8 No. 23 bars, A, = 4000 mm?
4 No. 30 bars plus 2 No. 25 bars, A; = 3300 mm?

All of these will fit into two layers in & = 400 mm if the maximum size aggregate is 20 mm.
We shall try 4 No. 30 bars plus 2 No, 25 bars arranged as shown in Fig. 4-30 with the 4 No. 30
bars in the bottom layer. The larger bars are placed in the bottom layer to give the largest possible
lever arm.

If the values of b and d chosen in step 3 are close o the computed ones, A; could theoretically
be calcutated directly from the value of p chosen in step 3 since A, = pbd. Generally, however, the
rounding of b and ¢ makes it necessary to compute A, as done in this example.

6. Computed. For steel placed in the manner chosen, d can be computed in the manner given
in Example 4-4. This gives ¢ = 820 mm. In most cases, this step can be omitted since & = 810 mm
(from Eq. 4--30bM) is close enough.

7. Compute g and check if the section is tension-controlled.
Adfv
a=
0.857.b
3800 X 400

= 0.85 X 25 x 400

= 179 mim

Flexure: Basic Concepts, Rectangular Beams
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rittle ‘_ a 179

ceal 480 0.218
.The From Eq. 4-23, the section will be tension-controlied if @ 4, is less than or equal to
15 0f a

f‘ = 0.3758, = 0.319

where d, is the distance from the extreme compression fiber to the centroid of the farthest layer of ten-
sion steel = 900 — (40 + 10 + 30 "2) = 835 mm. The actual a ‘d, is

a 179
—=—=10214
. d, 835
esfi-
e to : Since 0.214 is less than 0.319, the sectton is tension-controlled and ¢ = 0.90.

8. Compute M, and ¢ M,. Because the area of steel calculated in step 5 was based on an es-
timate of jd, it is necessary to check whether the reinforcement chosen provides the required moment
resistance. From Eqs. 4-12,

a
=Afld -2
M, J_Z( 2)

_ 3800 X 400(820 ~ 179/2)
108
&M, = 0.90 X 1110 kN-m = 999 kN-m
Since ¢M, = M,, the design is OK. Therefore, use b = 400 mm, & = 900 mim, with
fo = 25 MPa and Jy = 400 MPa, and 4 No, 30 bars and 2 No. 25 bars in two layers in the fash-

ion shown in Fig. 4-30. If $M, were less than M,, or if ¢M, were much greater than M., it would be
necessary to recompute the area of steel required (see step 7 of Example 4-5). |

= 1110 kN-m

The third type of rectangular beam design problem occurs when the overall heighe,
#, of the member is predetermined, either 1o maintain the desired floor to floor clearance or
to limit deflections. In this case, the design procedure is identical to Example 4-6 except
that in the choice of the concrete section, the value of h, and hence d, is known and b4d? is
solved to find b.

| Use of Design Aids in Rectangular Beamn Design

The examples solved to date have involved a longhand calculation of all terms.
Considerable effort can be saved by using tables available from the American Concrete
Institute®~'* and Concrete Reinforcing Steel Institute,’~'? among others. Representative
tables are presented in Appendix A. To illustrate the use of such tables, Example 46 is

mgno repeated in Example 4-7.
1R
sible .

EXAMPLE 4-7 Use of Design Aids to Design Rectangular Beam When b
mally and d Are Not Known
, the

The loadings and material strengths are given in Example 46,

iven 3 1. Estimate the dead load of the beam. Choose the self-weight of the beam equal to 0.5 kip/ft,
mm as outlined in Example 46,

2. Compute the factored moment, M. Using the assumed self-weight, M, = 691 ft-kips.

3. Compute b and d.

M, _ ba?
Sk, 12,000
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Assume that p = 0.4p,. From Table A-3, k, = 338. Therefore,

bd* 691
=__——= 128
12,060 538

From Table A—7 chocse & and 4 to give this value. Choose » = 16 in. and & = 36 in. to give
d=325in.

4. Recompute the weight and M,. As per Example 4-6, M, = 710 ft-kips.
5. Compute the area of reinforcement, A,. From Table A-3, for p = 0.4p,, j = 0.899,,

LM
T ohid
710 X 12
T 0.9 X 60 X 0.899 X 32.5

= 540in?

From Table A-8 we find that 4 No. § bars plus 2 No. 8 bars give A, = 5.58 in.%.

A
== = 0,0107
P b

From Table A-3 it can be seen that this falls between the p corresponding to the tension-con-
trolied limit (bottom of each column) and py,, (top of table)—therefore OK. At this stage it is optional
whether it is necessary to recompute d or use the assumed value. If the bar distribution is markediy
different from equal numbers of same-sized bars in each layer, it may be desirable to do so. If not, the
values of 4 from Eq. 4--30 may be used.

6. Computea and ¢ M,

5.58 X 60,000

= 202N g 03in.
0.85 % 3500 X 16 '“

o

&M, (based on original assumed 4 = 32.5 in.)

0.9 X 5.58 X 60,000(32.5 — 7.03/2)
12,000

= 728 ft-kips

This exceeds M,—therefore OK. Use » = 16 in., k = 36 in., and a beam with 4 No. 9 bars
and 2 No. 8 bars, as shown in Fig. 4-29. n

Direct Solution of Required Area of Steel

An alternative method of solving for the required area of steel can be obtained from Eqs.

4-1,4-11, and 4-12. From Eq. 4-1 the smallest acceptable value of ¢M, is i
Mlt = ¢Mﬂ

Substituting this and Eq. 4—11 into Eq. 4-12a gives

= [ ( — Acf;\

M. r’bi_'di"'ﬁ’\tlr l.7f€'b,f}

Rearranging gives
( ¢, )A2 — (gfd)A, + M, = 0 (4-34)
L7/ e e

This is a quadratic equation in x of the type

A+ Bx+C=0

Fiexure: Basic Concepts, Rectangular Beams
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where ¥ = 4. Cnce S fi. b, and d have been chosen, Eq. 4-34 can be solved for a value
of A;. This replaces the iterative calculation used in Examples 45 and 4—6 and is useful if
programmabie calculators are used.

Use Eqg. 4-34 to Solve for A,

The loadings, material strengths, and dimensicns are as in Example 4 -5, Thus
S, = 60000 psi [ = 3000 psi
b= 24in. d=12151in.
M, = 541 ft-kips
= 6.492 X 10° in.-kips
1. Compute the terms in Eq. 4-34.

_ o
1.7fb

_ 0.9 X 60,000°
1.7 X 3000 X 24

B= — ¢fd
= -0.9 X 60,000 X 21.5 = ~1.16 X 10°
C = 6.49 X 106
2. Solve Eq.4-34 for 4,

=265 X 10°

116 X 10° = V(= 1.16 X 10° - 4(26.5 X 10° X 649 X 10%)
2(26.5 x 10%)

A=

= 6.58in.2 or 837.28 in.?

The higher root is several times the balanced steel ratio and will be discarded. Thus the required
A, =658in2
3. Select the reinforcement and compute ¢ M, as a check.
Choose 5 No. 9 bars and 2 No. 8 bars, A, = 6.58 in.2.
Ay )
=—" = 645 in.
“ 7 08spb n

a/d = 0.30is less than a0/ d, = 0.319 (Table A—4); therefore, ¢ =009
Finally, it is good practice to compute ¢M, to cheek if the A, is adequate. This guards against
errors in solving Eq. 4-34.

9[6.58 X 60(21.5 — 6.45/2
oM, = 0.9[6.58 (]221 - 6.45/2)]

Since ¢M,, = M,, A, is OK. Therefore, use 5 No. 9 and 2 No. 8 bars. |

= 541 ft-kips

34) 4 -1 Figure P4-1 shows a simply supported beam and vice (unfactored) live load of 1.5 kips/ft. the con-

the cross section at midspan. The beam supports a crete strength is 3000 psi and the yield strength of
uniform service (unfactored) dead load consisting the reinforcement is 60,000 psi. The concrete is nor-
of its own weight plus 1.4 kips/ft and a uniform ser- mal-weight concrete.
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i
bt
21.50n. 24 in.
(by 3 No.@bars {908 ‘
Fig, P4-1 12in.
{a) Compute the weight/ft of the beam, the fac- {c) Draw the cross section at midspan showing

v
4 ¢+ F v by F b
@
g St } 1t
ENc.Bbars e e o0 @ @ ?
185 in, 181N
) | |
30 in. l
Fig. P4-2. t
4 -2 Repeat Problem 4-1 for the cantilever beam £ = 4000 psi and the steel is Grade 60. Draw the

134

wp = 1.4 kipsffl ptus weight of beam
wy = 1.5 kips/tt

S T O T Y I

i s s e— —— — — —

tored load per foot, w,, and the moment due to
the factored loads, M, and sketch the bending
moment diagram.

{b) Compute ¢M,, for the cross section shown. Is
the beam safe?

wp = 1 kip/ft + weight of beam

{1} the lccation of the compression zone.
{2} the dimensions of b, d, k, a.

Live load,
P; = 12 kips

shown in Fig. P4-2. The beam supports a uniform
service (unfactored) dead load of 1 kip/tt plus its

own dead Joad and it supports a concentrated ser- 4 ~3 Assuming that the maximum concrete compressive
vice (unfactored) live load of 12 kips as shown. strain is 0.003, compute the steel strain correspond-

The concrete is normal-weight concrete with

Filexure: Basic Concepts, Rectangular Beams
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ing to the moment M, for the beam shown in Fig. (¢) Show on an elevation view of the beam the lo-
P4 -1.1sf, = £, in this beam? cation of flexural reinforcement for the final
' ) ) moment diagram from part (b).
: 4-4 {a) Compare dM, for singly reinforced rectangu- )
lar beams having the following properties: 4-6 A 16.-fi-span simply supported beam has a rec-
tangular cross section with & = 14 in., d = 19.5
Beam b d £ £ in., and A = 22 in, The beam is made from nor-
No. (in.) {in.) Bars (psi} {psi) mal-weight 3500-psi concrete and has 6 No. 6
1 12 22 3No.7 3,000 60,000 Grade 40 bars. This beam supports its own dead
2 12 22 2No.9plusiNo. & 3000 60.000 load plus a uniform service (unfactored) addi-
i 1§ ;g g ﬁﬂ- :’] iggg ggggg tional dead load of 1.0 kip/ft. Compute the maxi-
1 o. : \ : T
5 B 33 3 No. 7 3000 60,000 mum nniform service live load that the beam can
support.
4 -7 A 12-ft-long cantilever supports its own dead load
{b) Taking beam 1 as the reference point, discuss plus an additional uniform service (unfactored)
the effects of changing A, 7, £, , and d on ¢M,,. dead load of 0.5 kip/ft. The beam is made from
{Note that each beam has the same properties normal-weight 4000-psi concrete and has b = 16
. , as beam 1 except for the italicized quantity.) in., d = 155 in., and £ = 18 in. It is reinforced
; (c) Whatis th fecti £ . with 4 No. 7 grade 60 bars. Compute the maximum
¢ Ma't?lVSVhe r‘no;t el ectlv:fwgy N 1nc;‘easmg service (unfactored) concentrated live load that
GM,? What is the least effective way? can be applied at ! ft from the free end of the can-
4-5 For each of the beams shown in Fig. P45 and tilever.
without doing any calculations: 4 -8 Explain why a rectangular stress block with a max-
(a} Draw the deflected shape. imum stress of 0.8/ and a depth @ = B¢ is used
in design.
(b} Sketch 1 design
. . 4 -9 Explain the meaning of “over-reinforced beam”
{n thc- bending moment diagram due to the and “under-reinforced beam.”
weight of the beam.
; {2} the bending moment diagram for the other 4 -10 Either explain why p is limited to 0.75p, {why a
loads shown. is limited to 0.75a,) or, explain why a/d, is limited
{3} the sum of the two diagrams. t0 Gy / d,.
| ¢
- | ] @
s Jron
§ ! |
3 (b)
3
the

sive * t (c}
nd- ) l ]
Fig. P4-5 pras Y ot
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No. 3 stirrup —_—

2No. 7 — |

4 No. 8—__|

Fig. P4-11

4-11(a) Compute the effective depth, 4, and the mini-
mum allowable web width, b, of the beam
shown in Fig. P4-11. Use the minimum bar
spacings allowed by the ACI Code for con-
crete with 3/4—in. coarse aggregate. Select the
cover for concrete not exposed to weather or
in contact with the ground.

{b) Compare the computed depth to that given by
the approximate Eqgs. 4 -30.

{c} Check the minimum web width using Table
A6,

4-12 Give three reasons for the minimum cover require-
ments in the ACI Code. Under what circumstances
are greater covers used?

4—13 Give two reasons for the minimum bar spacing re-
quirements in the ACI Code,

4 ~14A rectangular beam has b = 12in., 2 = 20 in., and
8 No. 8 bars in two layers of four bars. fo = 3750
psi and f, = 60000 psi. Compute $M,,.

h = 24in.

4 —158elect reinforcement for a 20-ft-span rectangular

beam with » = 16 in. and # = 21 in. The beam
supports its own weight plus a superimposed ser-
vice (unfactored) uniform dead load of 0.6 kip/ft
and a uniform service live load of 2 kips/ft. Use
f+ = 3750 psi and f, = 60,000 psi.

4 -168elect b, d, h, and the reinforcement for a 24—

ft-span simply supported rectangular beam that sup-
ports its own dead load plus an additional service
dead load of 1.5 kips/ft plus a service live load
which consists of two concentrated loads of 10 kips,
each located at the third points of the span. Use
f = 3000 psi and f, = 60,000 psi.

4-17Select b, 4, k. and the reinforcement for a 22-

ft-span simply supported rectangular beam which
supports its own dead load plus a superimposed
service dead load of 1.25 kips/ft plus a uniform ser-
vice load of 2 kips/ft. Use f. = 3000 psi and
£, = 60,000 psi.

4 —18The beam shown in Fig. P4—18 carries its own dead

load plus an additional uniform service dead load

Service live load = 1.5 kips/ft

Additional service
1 .~ dead load = 0.50 kip/ft
(a)
v
24 ft 9t |
i
_ Live load
s Dead load
(5} i |
s Live load
Dead load
| IR IR 1
{c)
Fig. P4-18 pLom
136 Flexure: Basic Concepts, Rectangular Beams




wlar
eam
ser-
ip/ft
Use

24—
sup-
vice
load
<ps,
Use

22-
hich
ased

ser-

and

lead
load

of 0.5 kip/ft and a uniform service live load of 1.5
kips/ft. The dead load acts on the entire beam, of
course, but the live load can act on parts of the
span. Three possible loading cases are shown 1n
Fig. P4--18.

{a) Draw factored bending moment diagrams for
the three loading cases shown and superimpose
them to draw a bending moment envelope.

(b} Design the beam, selecting b, d, h, and the re-
inforcing bars. Use f. = 3750 psi and
S = 60,000 psi.

{c} Draw an elevation of the beam showing the
reinforcement. Estimate the lengths of the top
and bottom bars from the bending moment
envelope.

Problems

{d) Draw cross sections at the points of maxi-
mum positive and negative moment,

4-19, 4-20, and 4-217 Use design tables to design the
beams described in Problems 416, 4-17, and
4-18.

4 -22'Write a computer or calculator program to solve for
the area of steel, A,, directly using Eq. 4-34.

4 -23Select the largest possible b and d and the corre-
sponding A, (based on ACI Sec. 10.5) and the
smallest allowable & and 4 and the corresponding
A, (based on ACI Sec. 10.3.3) to give a resisting
moment of M, = 250 ft-kips. In both cases select
a section with » = 0.5d. Use f: = 3000 psi and
f; = 60,000 psi.
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5-1 INTRODUCTION

5-2 T BEAMS

In Chap. 4 the theory of flexure for reinforced concrete was developed and applied to rec-
tangular beams with flexural reinforcement in the tension zone. Frequently, concrete beams
are T or I shaped and sometimes they have reinforcement in both the tension and compres-
sion zones. In this chapter the theory of flexure is extended to cover these types of problems.

Beams whose cross sections are not symmetrical about the loading axis, or beams
bent about two axes require special treatment because the axis of zere strain (neutral axis)
generally is not parallel to the axis about which the resultant moment acts. The analysis of
such beams is discussed in Sec. 5-4.

‘When beams have tension reinforcement in several layers spread over the depth of the
beam, or are built of two types of concrete, or contain reinforcement that is not elastic—
plastic, strain compatibility must be considered in the calculations. This is discussed in
Sec. 5-5.

138

Practical Applications of T Beams

In the floor system shown in Fig. 5-1, the slab is assumed to carry the loads in one di-
rection to beams that carry them in the perpendicular direction. During construction, the
concrete in the columns is placed and allowed to harden before the concrete in the floor
is placed (ACI Sec. 6.4.5). In the next operation, concrete is placed in the slab and
beams in a monolithic pour (ACI Sec. 6.4.6). As a result, the slab serves as the top
flange of the beams as indicated by the shading in Fig. 5-1. Such a beam is referred to as
a T beam. The interior beam, AB, has a flange on both sides. The spandrel beam, CD, with
a flange on one side only, is also referred to as a T beam.

Fig. 5-;
T beam:
and slat

Fig. 5-2
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Fig. 5-1
T heams in a one-way beam
and slab floor.

Fig. 5-2
Positive and negative mo-
ment regions in a T beam.

T beams

An exaggerated deflected view of the interior beam is shown in Fig. 5-2. This
beam develops positive moments at midspan (section A—-A) and negative moments over
the supports (section B—R). A photograph of the region between A—A and the left end of
such a beam is shown in Fig. 5-3. At midspan the compression zone is in the flange as
shown in Fig. 5-2b and d. Generally, it is rectangular as shown in b, although in a few
cases, the neotral axis may shift down into the web, giving a T-shaped compression zone
as shown in Fig. 5-2d. At the support, the compression zone is at the bottom of the beam
and is rectangular, as shown in Fig. 5-2c¢. For computational purposes, these beams will be
classed as a “rectangular beam” if the compression zone is rectanguiar (Fig. 5-2b and c),
and as a “T beam” if T-shaped (Fig. 5-2d).

Web or stem I Cracks
A

{a) Deflected beam,

b
I~ 1
LN V23" A7 272
\ A
Compression zone —___ Tensicn reinforcement
-

{b) Section A-A {¢} Section B-B (d) Section A-A

{rectangular (negative moment). (T-shaped

compression zone), COMpression zone).
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Frequenily, 2 beam-and-slab fioor involves slabs supported by beams which, in turn,
are supported by other beams referred to as girders (Fig. 5-4). Again, all the concrete
above the 1op of the column is placed at one time. Note that the slab acts as a flange for both
the beams and girders.

Effective Flange Width and Transverse Reinforcement

The forces acting on the flange of a simply supported T beam are illustrated in Fig. 5-5. At
the support there are no compressive stresses in the flange, while at midspan the full width
is stressed in compression. The transition requires horizontal shear stresses on the
web—flange interface. As a result there is a “shear-lag” effect and the portions of the flange
closest to the web are more highly stressed than those portions farther away, as shown in
Figs. 5-5 and 5-6.

Figure 5—6 shows the distribution of the flexural compressive stresses in a slab which
forms the flanges of a series of parallel beams ai a point of maximum positive moment. The
compressive siress is a maximum over the web, dropping between the webs. Toward the sup-
ports, the variation from maximum to minimum becomes more pronounced.

When proportioning the section for positive moments, an “effective width” is used
(Fig. 5-6b). This is the width, b, which when stressed uniformly to f(m.x), gives the same
compression force as is actually developed in the real compression zone of width b;.

A number of elastic solutions have been used to estimate the cffective flange
width.*% > These solutions suggest that this width is affected by the type of loading (uni-
form, concentrated), the type of supports, the spacing of the beams, and the relative stiff-
ness of the slabs and beams. However, it must be noted that all such studies have ignored
the cracking of the flange observed in tests.

ACI Sec. 8.10 presents rules for estimating this width for design purposes. For an in-
terior beam, ACI Sec. §.10.2 states that

1. The width of slab effective as a T-beam flange shall not exceed one-fourth the
span length of the beam.

2. The effective overhanging slab width on each side of the web shall not exceed the
smaller of eight times the slab thickness, or one-half the clear distance to the next
beam web.

ACI Secs. 8.10.3 and 8.10.4 give considerably more stringent rules for beams with slabs on
one side only and for isolated T beams. In general, the Code rules are a conservative ap-
proximation to the elastic solutions for effective width.

The spread of the compression force across the width of the left-hand proportion of
the flange in Fig. 5-5 can be idealized by a truss mechanism within the plane of the flange
conststing of a series of compression struts, shown by dashed lines in Fig. 5--5b, and trans-
verse tension ties shown by solid lines. The resultant compression force in the overhanging
flange at midspan is represented by the force at K. The horizontal shear force applied to the
flange at A is transferred out into the flange by the compression strut A-B. At B the longi-
tudinal force in this strut is transferred to the strut B—-E. The transverse component of the
force in the strut must be resisted by the transverse tension tie 5—C, and so on. The ACI
Code does not give rules for the design of this transverse steel in the flanges. This is dis-
cussed more fully in Sec. 18-9 for both compression and tension flanges. Significant
amounts of transverse steel may be needed in tension flanges. The arrangement of this steel
may control the effectiveness of the longitudinal tension reinforcement placed in the
flanges.

Loads applied to the flange will cause negative moments in the flange where it joins
the web. If the slab is continuous and spans perpendicular to the beam as in Fig. 5-1 or per-
pendicular to the “beams” in Fig. 5-4, the slab reinforcement will be adequate to resist
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Fig. 5-3

Photograph of a test specimen representing half of the beam shown in Fig. 5-2a. (Photograph
courtesy of J. G. MacGregor.)

Spandrefor -~ Slab s Direction of slab span
edge beam \ ———— =

Fig. 54 Construction
Slab, beam, and girder floor. iofnt
(From Ref. 5-1.)

Transverse
tensicn

Flaxural
compression

Midspan

A

Fig. 5-5
Forces on a T-beam flange.
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Fig. 5-6
Effective width of T beams.
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(b} Flexural compressive stress distribution assumed in design

these moments. If, however, the slab is not continuous (in an isolated T beam) or if the slab
reinforcement is parallel to the beam, as is the case of the “girders” in Fig. 5-4, additional
reinforcement is required at the top of the slab, perpendicutar to the beam (ACI Sec.
8.10.5). This reinforcement is designed assuming that the flange acts as a cantilever loaded
with the factored dead and live loads. For an isolated T beam the full overhanging flange
width is considered. For a girder in a monolithic floor system (Fig. 5-4), the overhanging
part of the effective width is used in this calculation (see Sec. 10-0).

Analysis of T Beams

Generaily, the compression zone of a T beam is rectangular, as shown in Fig. 5-2b or c,
These may be analyzed as “rectangular beams” with a width, &, as shown. In the unusual
case in which the compression zone is T shaped, as shown in Fig. 5-2d, the analysis sepa-
rated considers the resistance provided by the overhanging flanges and that provided by the
remaining rectangular beam.

Consider the beam shown in Fig. 5-7a, with the depth of the stress block, a, greater
than the flange thickness, ki The internal forces in this beam consist of a compressive force
C at the centroid of the compression zone (centroid of shaded area in Fig. 5-7a) and a ten-
sile force T = A_,f,, assuming that the steel yields. These form a resisting moment,
M,=Cjidor M, = Tjd.

To avoid the need for iocating the centroid of the shaded area (where 4 is not yet
known), it is convenient to consider two hypothetical beams:

1. Beam F (Fig. 5-7Tc), with a compression zone consisting of the overhanging
flanges, area A, stressed to 0.85 f,, giving a compressive force, C;, which acts at the
centroid of the area of the overhanging Alanges. For equilibrium, beam F has a tensile
steel area A, chosen such that C; = Ty or A,f, = C,. This area of steel, A, is a por-
tion of the total A, and is assumned to have the same centroid as A,. The moment ca-
pacity of this beam, M, , is the moment of C,about the tension steel.

+
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2. Beam W (Fig. 5-7d), which is a rectangular beam of width b,,, having a compres-
sion zone of area b,a and utilizing the remaining tensile steel (4, — 4,) = A,,. The
compressive force in this beam, C,,, acts through the centroid of its compression area.
The moment capacity of this beam, M, ,, is the moment of C,, about the tensile steel.

The total moment capacity of the T beam is the sum of the moment capacities of the
two individual beams, M, = M,, + M, caiculated as follows:

Beam F
Area of compression zone = (b — b, )k,
Force in compression zone C; = (O.SSf;)(b — by
To compute the area of reinforcement required in beam F, set 7; = C;, assuming that f, = f;:
Agf, = 0857, (b — b,y (5-1a)

or
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_ 0856 (b — bk

Ay I3

(5-1bj

The lever arm is (d ~ by 2).
Summing the moments about the centroid of the tension reinforcement gives

: h
M, = 085 (b — bk ,(d - Ef) (5-2a)
Alternatively, summing the moments about the line of action of C; gives
by
My = Afld -~ (5-2b)

Beam W
Area of tension steel A, = A, — Ay

Compression force C,, = O.SSfC'bwa

or
__Ank

= 0ssfb, &3

The lever arm is d — a/2.
M, = o.ssf;bwa(d = g) (5—4a)

or
a

M, = Amf“(d - 5) (5-4b)

T Beam = Beam F + Beam W. The nominal moment capacity of the T beam is the
sum of the nominal moment capacities of beam F and beam W:

M, =M+ M,
giving

M, = [o.ssﬁ b — bk ,(d - %f)] + [o.ssfg’bwa(d - g)] (5-54)

M, = [AWC_V(J - %f)] + [A,w f,(d - g)] (5-5b)

Finally, the factored moment capacity is ¢pM,,.
Occasionally, a will turn out to be equal to A This may be considered to be a “rec-
tangular beam” for calculation purposes.

or

Determination of Whether f, = f,

In the derivation of Eqgs. 5-5a and b, it was assumed that f; = f,. As discussed in Sec.
4-3, this can be checked by comparing the computed ¢/d or a/d ratios to ¢, /d or a,,/d,
given by

Cp 87,000

G 8L000 -20
d 87,000 + f, “-20)
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87,000 ) 4o
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- B'(Eﬁﬁ?ﬁ
where £, is in psi. If £, is in MPa, 87.000 becomes 600 in both equations. If the computed
c.dora dratios are Jess than those given by Egs. 4-20 and 4-21. f, = = f, at failure.

Alternative Determination of Whether f, = §,

The steel stress f, will equal £, if a tension failure or a balanced failure occurs, that is, if
p = py. The value of p, corresponds to the strain distribution with €, = 0.003 at the ex-
treme compresston fiber and €, at the tension steel. For a given [t this corresponds to a par-
ticular value of the ratioc of the depth of the compression zone to the effective depth, a /d.
The ratio of a,/d corresponding to p, is given by Eq. 4-20. This equation is mdependem
of section shape and hence applies to T beams. It should be noted that Eq. 4-19 for p, was
derived for a rectangular section and does not apply to a T section.

Upper Limit on Reinforcement in T Beams—ACI Appendix B

No upper limit on the amouat of tension reinforcement in beams is given in ACI Appendix B.
Instead, the value of ¢ is set at 0.90 for tension-controlled sections and 0.70 for compression-
controlled sections without spiral reinforcement in the compression zone. {Spiral reinforce-
ment is described in Sec. 11-2. It is not normally used in beams.) In the transition zone
between tension-controlled sections and compression-controlled sections, ¢ varies from 0.90
to 0.70. The resulting penalty in strength due to ¢ being less than 0.90, in effect, limits the
practical range of reinforcement to the tension-controlled range. Tension- and compression-
controlled sections are defined in ACI Sec. B10.3.3 and Sec. 4-3 of this book.

A tension-controlled failure will occur if the ratio, ¢ /d., of the neutral axis depth, c,
to the depth from the extreme compression fiber to the farthest layer of tension reinforce-
ment, d,, is less than or equal to the tension-controlled limit given by

Cret

= 0375
d

This can also be expressed in terms of the ratio of the depth, a, of the rectangular stress
block to d, at the tension-controlled limit

— = 03758, {4-23)
4,

AT beam with the flange in compression is almost aiways a tension-controlled section.
A compression-controlled failure with f, = £, will occur if the ratio a/d, is greater
than or equal to that at the compression-controlled limit

y 87,000
st ( \ (4-22)

d, '8\8,'0001-]/

ACI Sec. B9.3.2 sets ¢ = 0.70 for compression-controtled sections without spiral rein-
forcement in the compression zone.

A transition failure will occur if the ratio a / d, at ultimate is between the compression-
controlled limit and the tension-controlied limit. Thus ifa/d, is between a. /d, and a,. /d,
at failure, ¢ is between 0.70 and 0.90 as given by

0.204

¢ = 0.356 + a_CBTF) (4-26b)
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Upper Limit on Reinforcement in T Bearns—ACI Sec. 10.3.3

To ensure ductile behavior, ACI Sec. 10.3.3 requires that p = 0.75p,. This can be checked
in one of three ways:

1. If the compression zone is rectangular as shown in Fig. 5-2b, f, = f if
ad<a, dandp = 0.75p,ifa d = 0.75a, d. Values of g, dand0.75a, dare givenby
Eq. 4-20 or Table A-5. If the compression zone is T-shaped., this calculation cannot be used
and it is necessary to make these checks according to method 2 or 3.

2, The area of tension steel corresponding to a balanced failure is

o
Ap =7 (5-6)
where Cj is the compression force resulting from a compressive stress block with a depth
a,, where a, is from Eq. 4-21 or Table A-5. The maximum area of steel permitted by ACI

Sec. 10.3.3is then 0.75A -

3. Altematively, the check of £, = f, and p = 0.75p;, can be based on a modified p,
for T beams given by

b“' —
pir = {ou + pr) (5-7)

where p; is the balanced steel ratio for a rectangular beam given by Fq. 4-25, based on
b = b, and py = A,;/(b,d), where A, is given by Eq. 5-1b. Of these, method 2 is preferred
for T-shaped compression zones.

Minimum Reinforcement

It is necessary to have sufficient tension reinforcement so that the moment capacity after
cracking exceeds the cracking moment. For a T beam with its flange in compression and for
negative moment regions of continuous T beams where the flange is in tension, this is done
according to ACI Sec. 10.5.1, by checking whether A, = A, + A, exceeds A, ., given by

3V, 2006,
A.\'.mm = f ‘b“.d = 00[}“(1 (4_3[)
5 5
(ACI Eq. 10-3)
where f', and f, are in psi or
VT, 1.4b.d
Avpin = 7 byd = o—— (4-31M)
a f

where f’, and f, are in MPa.
When a statically determinate T beam, such as a cantilever with a T-shaped cross sec-
tion, has its flange in tension, ACI Sec. 10.5.2 gives A, i, as

S
A.\'JIHH = V-f lbll’d (4_32)
fs (ACI Eq. 10-4)
where f'. are f, are in psi or
A.urihz - Nj:ugbu‘d

2. {4-32M)

where f', and f, are in MPa. The amount of minimum reinforcing in a statically determinate
T beam with the flange in tension need not exceed the amount given by Egs. 4-31 and
4-32M, with b, set equal to the width of the flange. .
Flexure: T Bearns, Beams with Compression Reinforcernent, and Special Cases
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Alternatively. ACI Sec. 10.5.3 allows Eqgs. 4-31 and 4-32 to be waived at sections
where the reinforcement provided is at least 1.33 times that required by analysis.

EXAMPLE 5-1 Analysis of the Positive Moment Capacity of a T Beam:
aless Than hy
An interior T beam in floor systern has a clear span, from face to face of the columns, of 18 ft
and the cross section shown in Fig. 5-8. The concrete and steel strengths are 3000 psi and 40,000 psi,
respectively. Compute the design moment capacity of this beam in the positive moment region.

1. Compute the effective width of the flange, 4. From ACI Sec. 8.10.2,

(a) & shall not exceed one-fourth of the span length = 18/4 = 4.5 ft = 54 in.

{b) The effective overhanging slab width on cach side of the web shall not exceed eight
times the stab thickness = 8 X 5in, = 40in., which gives b = 40 + 12 + 40 = 92in_, or

(¢} half the clear distance to the next beam web on each side. This gives b = 108/2
+ 12 + 130/2 = 131 in.

The smallest of these is b. Therefore, b = 34 in.

2, Compate d. For two layers of sieel

d =} — 3.5in. = 16.5in (4-30b)
[ 10 ft 12 ft
/ VZZ7777 7 7 7 A% \
ﬁ n=20in. {n = sin,
|| — ¥
9ft = 108 in. | 10 ft 10 in. = 130 in.
12 in. 12 in. 16 in.

(a)} Section through beams and slab.

) -\I ./SNo.Gbars m
JITT TTITI0L. yeveees  JTITITT
_JL & = 20 ft L__J

I

(b} Elevation of beam.

b = 54in,

[ v ¢

\ 7 € P o Vil Ll rr s .
AN $a =077 3N \
— 185 in. \ No.3 stirrup (@~ 3) = 16.12in. \ Compression |
\ support bar Zone
No. 3 stirrup —L —

6-No. 6 bars
{c} Reinforcement at midspan. {d) Compression zone and lever arm.

Fig. 5-8
Beam—Examples 5-1 and 5-2,
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3. Compuie a. Since aimost all T beams will have the depth of compression stress block, a,
less than the flange thickness, /. we shall assume “rectangular beam action™ as shown in Fig, 5-2b,
If the resulting value of a is less than or equal to the flange thickness, /i, we will continue. If @ > A5,
it is necessary to analyze the beam fer a “T-beam action™ as done in Example 5--3.

_ AL
‘T 085

2.64 % 40,000

= 085 % 3000 x 54 767 in-

Since this is less than 4y = 5 in. as shown in Fig. 5-8d, the beam has “rectangular beam action™ and
@M, can be computed using the basic procedure for rectangular beams (Egs. 4-12).
4. Checkif A, = A, np,. Since the flange is In compression, A, ., 18 given by
NF 200b,.d
Asmin = h_fibwd = — (4_31)
5 5

X x 16.
L3V, g5 20X 12265
40,000 40,000

= 0.813 = 0.990 in.?
Since A, = 2.64 in.2 exceeds 0.99 in.2, A, > A, nin.
5. Cheek if f5 = fy and whether the section is tension-controlled.
2 _ 0787 _ 0432
d 16.5

From Eq. 4-21,

a _ ( 87.000

d ~ T\87,000 + £,

Since 0.0432 is less than 0.582, f, = f, at ultimate.
=20 — (1.5 + 0375 + 0.72/2) = 17.75 in.

4, 1775

) = (0.582

This is much less than a,.;/d, at the tension-controlled limit:

et

" = 0.3758, = 0.319 (4-23)
¢

Thus the section is tension-controlled. As a result, ¢ = 0.90.

Design has been carried out using ACI Appendix B. Alternatively, design could be carried out
by ACI Sec. 10.3.3, which limits p < 0.75p,. Since @ < A, the compression zone is rectangular and
this check can be made by checking if a/d exceeds the value of a /d for 0.75p,, as was done for rec-
tangular beams,

0.
4 _ 0767 _ bo47
d 165
From Eq. 4-21 (or Table A-5),
a, 87,000 )
2= —--| = 0.582
d '8'(87,000 + 7,

The value of a/d for 0.75p, is 0.75 X 0.582 = 0.437. Since 0.0470 < 0.437, p < 0.75p,~there-
fore OK.

If a > hyadifferent procedure would be needed to check that p = 0.75p,. This is illustrated in
Example 5-3. Design would either be carried out using ACY Appendix B or by ACI Sec. 10.3.3. Both
have been illustrated for completeness,
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The limits in steps 4 and 5 are very seldom reached in the case of a T beam with the flange in
compression. In the event they were, however, it would be necessary to revise the cross section,

6. Compute oM,
oM, = d)[A, Jg.(d - g)]

_ 0.9[2.64 x 40,000(16.5-0.767/2)]
12,000

128 ft-kips
The positive design noment capacity of the beam shown in Fig. 5-8 is 128 fi-kips. ]

EXAMPLE 5-2 Analysis of the Negative Moment Capacity of a T Beam

Compute the design negative moment capacity of the T beam shown in Fig. 5-8. The arrangement
of the negative moment reinforcement is shown in Fig. 5-9. The concrete and steel strengths are
3000 psi and 40,000 psi, as before.

Because this section is subjected to a negative moment, cracking develops in the top flange
(Fig. 5-2) and the compressive zone is at the bortom of the bearn, as shown in Figs. 5-2¢ and 5-9. Note
that ACT Sec. 16.6.6 requires that a portion of the tension reinforcement be in the flange, allowing all
of this reinforcement to be placed in one layer. Two bars are shown in the lower comers of the stirrups.
These are there because it is customary to extend some of the positive moment reinforcement into the
support. Unless these bars are adequately anchored to develop compressive stresses, which would not
be true if the bottom bars were interrupted at the supports as shown in Fig. 5-8b, they should not be
included in the calculations.

1. Compute b. Since the compression zone is at the bottom of the beam, & = 12 in.

2. Compute d. Since the tension reinforcement is in one layer,

d = h-2.5in. = 17.51n. (4-30a)
3. Compute a.
Asfy
= sy -1
“ T 085£b “-11)
3.52 % 40,000

= 2t 2N 460in.
0.85 X 3000 X 12 "

4. Checkif A; = A, .. ACI Sec. 10.5.2 applies to statically determinate T beams with the
tlange in tension. ACT Sec. 10.5.1 applies to “every section of a flexural member where tensile rein-
forcement is required by analysis except as provided in 10.5.2.” Since the beam is continuous, ACI
Sec. 10.5.1 applies and

_ 3V3000 200 X 12 X 17.5

Agmin = 22X 175=
e 40,000 3 40,000

= 0.863in2= 1.05in’

8-No. 6 bars
/ As = 382in?
s

T \ - ® ® s @ . » /
h=20In. 1~ No. 3 stirrup
d=175in.
Fig. 5-9 ! E = 4.60in.
Negative moment section of ™ .
beam shown in Fig. 5-8— Compression zone
Example 5-2. b= 12in.
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Since 3.52 in.2 exceeds 1.03 in.%, A, = A, ;,—therefore OK.

5. Checkiff, = f, and if the section is tension-controiled.

a 460
— - 0263 421
d 115 (4-21)
&g 85(——‘Lm0—~) = 0.582
g UT\R7,000 + 40,000 e

Since a disless than @, d, f; = f..
d, = 175in. d3= 0.263

Urcé

= 0.3758, = 0.319 (4-23)

1

Since 0.263 is less than (.319, the section is tension-controlied and ¢ = 0.90.
6. Compute ¢ M.

- foale- 3]
_ 09[3.52 x 40,000(17.5-4.60/2)] — 161 fikios
12,000 P
Therefore, the design negative moment is $M,, = 161 ft-kips. n

EXAMPLE 85-3 Analysis of a T Beam with the Neutral Axis in the Web

Compute the positive design moment capacity of the beam shown in Fig. 5-10. The concrete
and steel strengths are 3000 psi and 60,000 psi, respectively. Although not shown in Fig. 5-10, the
beam contains No. 3 stirrups.

1. Compute b. This beam is an isolated T beam in which a T-shaped flange is used to in-
crease the area of the compression zone, For such a beam, ACI Sec. 8.10.4 states that the flange thick-
ness shall not be less than one-half the width of web and the effective flange width shall not exceed
four times the width of the web. By observation, the flange dimensions satisfy this. Thus » = 18 in.

Fig. 5~
Beam—

2. Compute d. d = 24.5 in. as shown in Fig. 5-10a.

3. Compute a. Assume that the compression zone will be rectangular. Accordingly,

a= LAS
0.85f. b
_ 474 X 60,000
0.85 X 3000 x 18
As shown in Fig. 5-10b, @ = 6.20 in. is greater than the thickness of the flange, & = 5 in. This im-
plies that compressive stresses exist in the shaded regions below the flanges. This cannot occur.

Because @ > Ay, our assumption that the compression zone is rectangular is wrong, and our calcu-
lated value of @ is incorrect. It is therefore necessary to analyze this beam as a “T beam.”

= 6.20in.

4. Divide the beam into “beam F” and “beam W Beam F consists of the overhanging
portions of the flanges plus an area of steel, Ay, such that Af, balances the compression in the over-
hanging flanges (Fig. 5-10c).

(a) Beam F. The compression force, C, in the overhanging flanges is
Cr= (0857} (b — b, )i
= (0.85 X 3000)(18-10) x 5 = 102,000 b
The area of steel in beam F is
Ayl =G (5-1a)

.
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Beam—Example 5-3.

18 in.
YoV
f 5in, 27 6.2? in. /
- =
Coempression block /
deeper than flange
24.5in.
28in.
LY (®8 8 |;no sbars LA
oee e |A =474in? eeoe
1000,
(a) Beam cross section. (b) Compression zone—Step 3.

T m7Z BN

@ — hyt2)

d — ar
= 22 in. ¢ )

= 20.93 in,

|
|
|
|
j

Agw = 3.04in? ~1

Agt = 170 in.z/‘:__

{c} Beam F, {d) Beam W.

102000
7T 0000 T

Beam £ is shown in Fig. 5-10c. Summing the moments about the centroid of the tensile steel gives us

M, = cf( — %’) (5-2)

102,000(24.5 — 5/2
= 102,000(24.5 - 5/2) = |§7 ft-kips
12,000

(b) Beam W. Beam W consists of the concrete in the web plus the remainder of the ten-
sile reinforcement, as shown in Fig. 5-10d.

A.nr = A.\' - A.\f
=474 — 1.70 = 3.04 in.2
For beam W, b = b, and

A)"Mﬂ
_ v 53
4T 0857 b, (5-3)
304 X 60000
= 085 x 3000 X 10 i
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Thus the depth of the compression stress block is actuzlly 7.13 in. rather than the 6.20 in. computed
in step 3 assuming “rectangular beam action.” For beam W. the design moment capacity is

Mo = Af(d = ) (b
3.04 X 60.000{245 — 7.15 2
= ( ) = 318 ft-kips
12,000

The total positive nominal moement capacity is thus
M, = M, + M, = 187 + 318 ft-kips
= 505 fr—kips

5. CheckifA, = A,y From Eq. 431,

A _ 3\/3000]0 X 245 = 200 X 10 X 24.5
60,000 T 60.000

= (0671 in° = 0.817in’
Since A, = 4.74 in.? exceeds this, A, = A, i, therefore OK.

6. Checkif f, = f, and whether the section is tension-controlled.

a _717in.
L= 2 = 0293
d 245in.

a §7,000

= 0.85(- ) = 0.503 421y

d 87,000 + 60,000

Since 0.293 is less than 0.503, f, = f,.
a _ 117in.

= = {(1L.280
d,  25.621in.

d =28 — (1.5 + 0375 + 1.0/2) = 2562 in.

Fet . 085 % 0.375 = 0.319 (4-23)

1

Since 0.280 is less than 0.319, the section is tension-controlled and ¢ = 0.90.
7. Compute My
M, = 0.90 X 505 — 455 ft-kips [ ]

EXAMPLE 5-3M Analysis of a T Beam with the Neutra!l Axis in the Web—-
S1 Units

Compute the positive design moment capacity of the beam shown in Fig. 5-11. The concrete
and steel strengths are 20 MPa and 400 MPa, respectively. Although they are not shown in Fig. 5-11,
the beam contains No. 10 stimmups.

1. Compaute b. This beam is an isolated T beam in which a T-shaped fange is used to in-
crease the area of the compression zone. For such a beam, ACI Sec. 8.10.4 states that the flange
thickness shall not be less than one-half the width of web and the effective flange width shall not ex-
ceed four times the width of the web. By observation, the flange dimensicns satisfy this. Thus
b = 500 mm.

2. Computed. d = 610 mm, as shown in Fig. 5-1ia.

3. Compute a. Assume that the compression zone will be rectangular. Accordingly,

A

“T 085 b

3000 X 400

= RN 4
0.85 X 20 X 500 mm

152 Flexure: T Beams, Beams with Compression Reinforcement, and Special Cases
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Beam—Example 5-3M.

L 50C mm 4= 141
[ = mm
1\/
125 mm /
3 [ //_;/
Compression black /
610 mm deeper than flange
700 mm
_J___ ® ® 8 |5No 25bars s e
i ® 8 o | As = 3000 mm? cee
250 mm
(a) Beam cross section. {b) Compression zone—Step 3.
2 7 1T
[ —d
/ \
[ I a = 157 mm
(d — hid2) I I {d - am
= 547 mm I I = 531 mm
K o
Asr = 1330 mm? Asw = 1670 mm?
{c) Beam F. (d) Beam W.

As shown in Fig. 5-11b, @ = 141 mm is greater than the thickness of the flange. This implies that
compression stresses exist in the shaded regions below the flanges. This cannot occur. Because
@ > hy, our assumption that the compression zone is rectangular is wrong and our calculated value
of a is incorrect. It is therefore necessary to analyze this beam as a “T beam.”

4. Divide the beam into “beam F* and “beam W.” Beam F is shown in Fig. 5-11¢,
{(a) Beam F. The compression force, Cy, in overhanging flanges is
G = (085£)(b — bk
= .85 %X 20(500-250)125

= 531,000 N
The area of steel in beam F is
Ayf, =G (5-1a)
and
531,000 N
= ——— =133 2
7= GoMpa oM

Thus beam F consists of the overhanging flanges plus tension reinforcement with an area of 1330
mm” as shown in Fig. 5-11c. To calculate the moment capacity of beam F, sum moments about the
centroid of the tension steel:
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hy

lev =d-
EVET arm 2
= 610 — % = 547 mm
531,000 X 547 -
My = 2220 = 290 KN-m (5-2a)

108

(b) Beam W. Beam W consists of the concrete in the web plus the remainder of the ten-
sion reinforcement, A, as shown in Fig. 5-11d.
Ane = 3000-1330 = 1670 mm?
For beam W, » = b,. and
Aol
= — 5-3
4= 085 b, (5-3)

1670 X 400

0.85 X 20 X 250 e

Thus the depth of the compression stress block is actually 157 mm rather than the 141 mm computed
in step 3 assuming “rectanguolar beam action.” For beam W the design moment capacity is

M, = Amf,(d - g) (5-4b)

X /
_ 1670 40%66[0_157 2) — 355 KN.m

The total positive nominal moment capacity is thus
M, = M;+ M, =290 + 355
= 645 kN-m

5. Checkif A, > A, . From Eq. 4-31M,

VF 1.4b,
As.mi.n = fL b, d = __d
4 f
V20 1.4 X 250 X 610
= 250X 610 =2 ——
4 X 400 400

= 426 mm?® = 534 mm?

Since A, = 3000 mm?’ exceeds this, A, > A, n, — therefore, A, is OK.
6. Checkiff, = f, and whether the section is tension-controlled.

a 157 mm

2 = 0.257

d 610 mm

a _ (&) _

| =085 S0 40 0510 (4-21M)

Since 0.257 is less than 0.510, f, = f..

a _ 157mm - 0246

d =700 — (40 + 10 + 25/2) = 637.5 ~ 2 am
' ( /2) B T 6375 mm

-‘1d‘°—" = 03758, = 0319 (4-23)

(]

Since 0.246 is less than 0.319, the section is tension-controlled and ¢ = 0.90.
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7. Compute bM,,.
@M, = 0.90 X 645 = 581 kN—m |

Design of T Beams

The design of a T beam involves the choice of the cross section and the reinforcement required.
The flange thickness and width are usually established during the design of the floor slab. The
size of the beam stem is influenced by the same factors that affect the size of a rectangular
beamn. In the case of a continuous T beam, the concrete compressive stresses are most critical
i the negative moment regions where the compression zone is in the beam stem. Frequently,
the stem size is chosen so that p = 0.5p, at the point of maximum negative moment.

Once the size of the cross section has been determined, it is possible to compute the
area of reinforcement required using Eq. 4-33. This calculation is similar to Example 4-5.
In the negative moment region assume that j = 0.875 as a first trial value as done in
Example 4--5. The large flange width in the positive moment region results in a small value
of a (see Fig. 5-8d, for example) and hence a larger value of j. As a first trial value, assume
that j = 0.95 when designing the positive moment reinforcement. This is equivalent to as-
suming thata = 0.14d.

EXAMPLE 5-4 Design Reinforcementin a T Beam

ATbeam with the averall dimensions shown in Fig. 5-8 is subjected to a factored positive mo-
ment, M,, of 230 ft-kips. Using f, = 3000 psiand f, = 60,000 psi, design the required reinforcement.

1. Compute the effective flange width. Following the computations in Example 5-1, & is 60 in.

2. Compute d. Assuming that there will be two layers of reinforcement, use d = & — 3.5
in.ord = 16.5in,

3. Compute the area of reinforcement, A,. From Eq. 4-33,
Mu
Ay =
&, jd
Since this is a positive moment region in a T beam, assume that j = (.95,

A = 230X 12,000
0.9 % 60,000 x (0.95 X 16.5)

= 3261in2

Possible choices from Table A-8:

4 No. 8 bars in one layer, A, = 3.16 in.?
2 No. 9 bars plus 2 No. 8 bars, A, = 3.58 in.*
6 No. 7 bars, 4 in one layer, A, = 3.60 in.2

A check of the web width shows that these will fit into a 12-in. web. Although 4 No. 8 bars give a lit-
tle less area than required, try this combination since it can go in one layer rather than two. This will
increase 4 from the 16.5 in. estimated in step 2 to 17.5 in. Try 4 No. § bars, A, = 3.16 in.2

4, CheckifA, = A, in- From Eq. 4-31,

Vf, 20056
As.min = 2 .f;bwd = 4 Wd
I £
3v3000 200 % 12 X 16.5
= X12X 1652 ——— —
60,000 60,000

= 0.542in.? = 0.66in.’
Therefore, A; > A; pii—OK.
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5. Compute ¢ and check if f; = f; and whether the section is tension-controlled.
Assuming rectangular beam action,

A
“ T 085D

3.16 X 60,000

- 0 X O 12390n.
0.85 X 3000 X 60 n

Since this is less than the flange thickness, rectangular beam action exists.

a 1239

- = = 0.07

d 16.5 0.075
This is much less than

ay _ 87,000 ) :
d 0'85(87,000 + 60,000 0.503
Therefore, f; = f,.
a 1239
= 20in. — (1.5 + 0.375-1.00/2) = 17.62in. ~ — ="~ =0.
d, = 20in. — (1.5 + 0.375-1.00/2) = 17.62 in 41762 0.0703
This is very much less than
Qyep = _
4 = 0.3758, = 0.319 (4-23)

!

Therefore, the section is tension controlled and ¢ = 0.90.
6. Compute dpM,.
a
o fusfe-2]
09316 X S5 —1.24
_ 093 6(0,000(17.5 /2)] — 240 fkips

12,000

Since ¢M, > M, this is OK. Use 4 No. 8§ Grade 60 bars in one layer. The lever arm
(d — a/2) = jd was 0.965d in this case. The value of 0.95d assumed in step 3 normally gives a sat-
isfactory first trial. |

A complete design of a continuous T beam, including calculation of moment dia-
grams and proportioning for flexure, shear, and anchorage is carried out in Chap. 10.

5-3 BEAMS WITH COMPRESSION REINFORCEMENT
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Occasionally, beams are built with both tension reinforcement and compression reinforce-
ment. The effect of compression reinforcement on the behavior of beams and the reasons
why it is used are discussed in the following sections, followed by methods of analyzing
such beams.

Effect of Compression Reinforcement on Strength and
Behavior

The resultant internal forces at ultimate load, in beams with and without compression rein-
forcement, are compared in Fig. 5-12. The beam in Fig. 5-12b has compression steel of
area A, located at ¢’ from the extreme compression fiber. The area of the tension rein-
forcement, A,, is the same in both beams. In both beams, the total compressive force C = T

i
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two beams with the same area of tension reinforcement.

where T = A,f,. In the beam without compression reinforcement (Fig. 5-12a), this com-
pressive force, C, is entirely resisted by concrete. In the other case, C is the sum of C, pro-
vided by the concrete and C, provided by the steel. Because some of the compression is
resisted by compression reinforcement, C, will be less than C, with the result that the depth
of the cornpression zone, a, , in Fig. 5-12b is less than g, in Fig. 5-12a.

Summing moments about the resultant compressive force C gives:

Beamn without compression steel:

Mn = Asﬁ'(.hd)
Beam with compression steel:
Mu = A\.f\(.lZd)

where j»d is the distance from the tensile force to the resultant of C,and C..

The only difference between these two expressions is that j» is a little larger than j,
because a, is smaller than a,. Thus for a given amount of tension reinforcement, the addi-
tion of compression steel has little effect on the usable ultimate moment capacity, provided

5-3 Beams with Compression Reinforcement 157



»

Fig. 5-13

Increase in moment capacity
due to compresston reinforce-
ment.

Fig. 5-14

Effect of compression rein-
forcement on sustained load
deflections. (Adapted from

Ref 54

158

1.3 - T 7 T

12

o =075 pg = 0.021
| d

a = 0.015

/ | drie = 0.10

p = 0015

L aid = 0.20

1.0

My with compression steel
Mp without compression steal

f., = 4000 psi
fy = 60000 psi

09 F

0.0 D.2 0.4 0.6 1.0

that the tension steel yields in the beam without compression reinforcement. This is illus-
trated in Fig. 5-13. For normal ratios of tension reinforcement (p = 0.015) the increase in
moment is generally less than 5%.

The effectiveness of compressioﬁ steel decreases as it is moved away from the com-
pression face. As shown in Fig. 5-12¢, if the distance d' from the extreme compression
fiber to the compression steel is increased, the strain €, in the compression steel is de-
creased. As a result, the stress in this steel may be reduced below the yield stress. The ef-
fect of increasing d' /d from 0.1 to 0.2 can be seen in Fig. 5-13.

Reasons for Providing Compression Reinforcement

There are four primary reasons for using compression reinforcement in beams.

1. Reduced sustained load deflections. First and most important, the addition of
compression reinforcement reduces the long-term deflections of a beam subjected to sus-
tained loads. Figure 5-14 presents deflection-time diagrams for beams with and without

¥ ¥t v v ¥y
L. ¥ ]

T~ — 8- Fr
T
< ,
<6 o' =0
= .
9 /-— i
T 4 P
= s [
4]
‘; 5 Sustained load deflection p'=p
o T b
a ' | Initial elastic defiection
s |
0 120 cays 240 days 2 years

Time
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compression reinforcement. The beams were loaded. in a period of several hours, to the
service load level. This load was then maintained for 2 years. At the time of loading
(time = 0 in Fig. 5-14), the three beams deflected between 1.6 and 1.9 in.. or approxi-
mately the same amount. As time passed, the deflections of all three beams increased. The
additional defiection with time is 193% of the initial deflection for the beam without com-
pression steel (p' = (), but only 99% of the initial deflection for the beam with compres-
sion steel equal to the tension steel {p’ = p). The ACI Code accounts for this in the
defiection calculation procedures as outiined in Chap. 9.

Creep of the concrete in the compression zone transfers load from the concrete to the
compression steel, reducing the stress in the concrete as occurred in Example 3—4. Because
of the lower compression stress in the concrete, it creeps less, leading to a reduction in sus-
tained load deflections.

2. Increased dactility. The addition of compression reinforcement causes a reduc-
tion in the depth of the compression stress block, a. Thus, as shown in Fig. 5-12, a; is
smaller than g, . As g decreases, the strain in the tension reinforcement at failure increases
as shown in Fig. 5-12¢, resulting in more ductile behavior. Figure 515 compares moment-
curvature dlagrams for three beams with p < p, and varying amounts of compression re-
inforcement, p’, where p’ = A, /bd. The moment at first yielding of the tension
reinforcement is seen to change very little when compression steel is added to these beams.
The increase in moment after yielding is largely due to strain hardening of the reinforce-
ment. Because this occurs at very high curvatures and deflections, it is ignored in design.
On the other hand, the ductility increases significantly, as shown in Fig. 5-15. This is par-
ticularly important in seismic regions or if moment redistribution is desired.

3. Change of mode of failure from compression to tension. When p > p;, a beam
fails in a brittle manner due to crushing of the compression zone before the steel yields. The
moment—curvature diagram for such a beam is shown in Fig. 5-16 (p’ = 0). When enough
compression steel is added to such a beam, the compression zone is strengthened suffi-
ciently to allow the tension steel to yield before the concrete crushes. The beam then dis-
plays a ductile mode of failure as shown in Fig. 5-16. If the compression sieel yields, the
strain distributions and curvatures at failure in a beam with compression reinforcement will
be essentially the same as those in a singly reinforced beam (tension steel only) having a re-
inforcement ratio of (p — p’). The term (p — p') is referred to as the effective reinforce-
ment ratio. Frequently, designers will add compression steel so that (p—p')=05p,

Two cases where compression steel is frequently used are the negative moment re-
gion of continuous T beams and midspan regions of the inverted T beams used to support
precast floor panels.

4. Fabrication ease. When assembling the reinforcing cage for a beam, it is cus-
tomary to provide bars in the corners of the stirrups to hold the stirrups in place in the form

0.2 T
| I
] i g = 08;
pr =0
Mn
0.1 N— +
£:bh? \ |
. Yield moment
Fig. 5-15 - 0.01
Effect of compression rein- b=
forcement on strength and
ductility of under-reinforced c
beams. p << p,. (From Ref. 2.0 4.0 6.0 8.0
5-5.) #h (%)
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Fig. 5-16
Moment-curvature diagrams
for beams with p > p,, with
and without compression re-
inforcement. (Adapted from
Ref. 5-5.)

160

0.4 - =
03
Mn ™
t:bh?
b 0.2 -
f, = 4000 psi
fy = 60000 psi
0.1 o = Aglbd = 0.03
py = 0.0285
0 1 1 | 1
1 2 3 4 5

$h (%}

and also 1o help anchor the stirrups. If developed properly, these bars in effect are com-
pression reinforcement, although they are generally disregarded in design since they have
a smal!l effect on the moment capacity.

Analysis of Beams with Tension and Compression
Reinforcement

In the analysis of T beams in the preceding section, the cross section was hypothetically di-
vided into two beams. A similar procedure will be used for a beam with compression rein-
forcement (Fig. 5-17a). The strain distribution, stresses, and internal forces in this beam
are shown in Fig. 5-17b to d. For analysis, we will imagine that this beam is divided into
beam 1, consisting of the compression reinforcement at the top and sufficient steel at the
bottom so that T, = C,, and beam 2, consisting of the concrete web and the remaining ten-
sile reinforcement, as shown in Fig. 5-17e and f.

The stress in the compression reinforcement has been shown as f;. Figure 5-17b
shows a strain distribution for a beam with compression steel. From similar triangles,

e = (C —d )0.003

iy
[

If €; = ¢, then f; = f,. Replacing ¢ with ¢ = a/B, gives
d’
€ = (l - '811)0.003 (5-8)

Setting €; = ¢, and ¢, = f,/E,, where E, = 29 X 10° psi, we can solve for the limiting
value of d’ /a for which the compression reinforcement will yield

r\ l ; i Ay
(£ ~5 -
a im B 87,000
wherte f, is in psi, or in 8] units with f, in MPa:
(d_) _ L( -4 5o
ajim B 600

If the value of d' / a is greater than this value, the compression steel will not yield at ul-
timate (i.e., f; = f,onlyifd’/a = {d'/a)y,). Values of (d’ /@)y, are given in Table A-10.
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Strains, stresses, and forces in a beam with compression reinforcement.

The procedure follewed in computing the moment capacity of a beam with compres-
sion reinforcement differs depending on whether the reinforcement yields or not. These
twa cases are discussed separately.

Case 1: Compression Steel Yields

If the compression steel yields in a particular beam, the analysis is straightforward. It is as-
sumed that the beam can be divided into two imaginary beams, each with ¢ = T.

Beam 1 consists of reinforcement in tension and compression and resists moment
as a steel force couple. The area of tension steel in this beam is obtained by setting
C,=T,or

Ady = A,
which gives A, = A_; - From Fig. 5-17e the nominal moment capacity of this beam is
My = A,f(d—d') (5-10)
Beam 2 consists of the concrete plus the remaining steel:
Ap = A, — Ay

Iff; = f,. then A,} = A;. The compression force in the concrete is
C. = 0.85f ba

Since C = T for beam 2, where T = (A, — A;)f,, the depth of the compression stress
block, a, is
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A, — Al M
_ A=A (5-lia)
0.85f1b
From Fig. 5-171 the nominal moment capacity of beam 2 is
and the total nominal moment capacity of a beam with compression steel is
M, =Af{d—d') + (A, — A )Jg.(d - 521-) (5~13a)

In the derivation of Eq. 5~13 the compression in the concrete, C,, was computed
using the full rectangular compression zone, ab (Fig. 5-17f), including the area displaced
by the compression steel, A, As a result the steel is stressed to 0.85f7, in beam 2 and the
additional stress needed to yield it in beam I 1s (ﬁ,—O.SSf; ). To correct for this we have

0.85f;)
A, = A;(l -
1 5
and
M, = A;(l — O‘sz‘)fy(a! —d'") (5-13b)
5
{, _ 085f a
oo afi- Pl -5)

where

(A -4 - ossp/p)ly, (G—i1b)
0.85£b
The main effect of (I — 0.85f1/f,) is to reduce the first term in Eq. 5-13b and increase the
second term compared to Eq. 5-13a. These largely offset each other, with the result that for
beams with Grade 60 reinforcement, Eq. 5-13a will overestimate M, by up to 0.3% and
normally less. For Grade 40 stee] the increase will be about twice as much. Because this in-
crease is so small, the term (1 — 0.85f;/f,) will be ignored for simplicity.

Determination of Whether f; = fy im Tension Reinforcement. The de-
rivation of Eq. 5-13a assumed that both the compression steel and the tension steel yielded.
It is necessary to check whether this is true. If d’ /a is less than or equal to the limiting
value given in Eq. 59 or 5-9M, the compression steel will yield. The tension steel will
yield if a tension failure or a balanced failure occurs. Thus the tension steel will yield if
a/d = a,/d, where a, /d is given by Eq. 4-21.

Alternative Determination of Whether f;=f;, in Tension
Reinforcement. The tension steel will yield if a tension or balanced failure occurs. A
balanced failure corresponds to a strain distribution with €,, = 0.003 at the extreme com-
pression fiber and ¢, at the centroid of the tension steel. Assuming that both the compres-
sion steel and the tension steel yield, and substituting ¢ = a/B; and a from Eq. 5-11a into
Eq. 4-17, the balanced condition is defined as

(A, — A)f, 87,000

(5-14a)
0.858/bd 87,000 + f,
where f; and f, are in psi. Substituting p = A,/bdand p’ = A;/bd gives
0.858.f:f 87,000 )
—p' )= 5-15a)
=0 =" 57000 + £, G-

In ST units 87,000 becomes 600 and f¢ and f, are in MPa.
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Equation 5~15a is similar to Eq. 4-19 for p,. Note that the effect of compression re-
inforcement is to reduce the effective value of pto {(p — p'}. Equation 5-15a applies only
if f, = f.. A similar equation will be derived later for the case when f, < f.

Case 2: Compression Steel Does Not Yield

If the compression reinforcement does not yield, f, is not known, and a different solution
is required. Assuming that the tensile steel yields, the internal forces in the beam (Fig. 5-17)
are

T=AF,
C. = 0.85f:ba (5-16a)

1gnoring the correction to the compressive stresses in the steel incorperated into Eq. 5-13b,
we have

C, = (E&; )As (5-16b)
where €, is given by Eq. 5-8. From equilibrium,
C.+C =T
or
: d’
0.85f/ba + EIA_,(I -~ &“)0.003 = A fy
2 L
This can be reduced to the quadratic equation in a, given by

(0.85f,b)a? + (0.003E,A; — Af,)a — (0.003E,A;B,d") = 0 (5-17)

Once the depth of the stress block, a, is known, the nominal moment capacity of the section is
M, = Cc(d - g) + Cfd — d") (5-18)

where C, and C, are defined by Egs. 5-16a and b. Note that Eq. 5-17 applies only if f; = f,.

Determination of Whether f, =/, in the Tension Reinforcement. The
derivation of Eq. 5--17 assumed that the tension steel yielded. It is necessary to check
whether this is true. The tension steel will yield if a tension failure or a balanced failure oc-
curs. Thus the tension steel will yield if a /d = a,/d, where a,/d is given by Eq. 4-21.

Alternative Determination of Whether f =f, in the Tension
Reinforcement. The tension steel will yield if a tension or balanced failure occurs.
Equation 5-15a gives the value of {(p — p') corresponding to a balanced failure provided
that f; = f,. If this is not true, Eq. 5-14a becomes

(A — AJf /), 87,000

= 5-id4b
0.858,f. bd 87,000 + f, ( )
and Eq. 5—15a becomes
F . ! L0000
(p _pk )b _0 85_§;ﬁ(8700 ) (5-15b)
5 A 87,000 + £/

In SI units replace 87,000 with 600 in these equations.
, If {p — pf; /£) is less than or equal to (o — p'f /f. ) then f, = £, for the tension
steel.

Upper Limit on Tension Reinforcement in Beams with Compression
Steel—ACI Appendix B. No upper limit on the amount of tension reinforcement is
given in ACT Appendix B. Instead, the value of ¢ is set at 0.90 for tension-controlled sections
and 0.70 for compression-controlled sections without spiral reinforcement in the compres-
sion zone, Enough compression steel would generally be used to ensure a tension-controlled
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section Lo take advantage of the higher value of ¢. A section will be tension-controlled if the
a o ratio at ultimate is less than or equal to

Qe .
= 0.37553, {(4-23)
d,

Upper Limit on Tension Reinforcement in Beams with Compression
Steel—ACI Sec. 10.3.3 ACI Sec. 10.3.3 limits the amount of tension steel in beams to
0.73 times that corresponding to a balanced failure, that is, to 0.75 times the amount given
by Eqs. 5-15a and 3-15b. The code goes on to say that the portion of p, equalized by com-
pression steel need not be reduced by the 0.73 factor.

Minimum Tension Reinforcement

Minimum tension reinforcement should correspond to Eq. 4-31.

Ties for Compression Reinforcement

As the ultimate load is approached the compression steel in a beam may buckle, causing
the surface layer of concrete to spall off, possibly leading to failure. For this reason it is
necessary to enclose compression reinforcement with closed stirrups or ties. The design of
these ties is covered in ACI Sec. 7.11. The spacing and size of the ties is similar to that of
column ties (see Chap. 11).

Examples of the Analysis of Beams with Compression and
Tension Reinforcement

Two examples are presented, one for each of the two cases given above. In each example
the solution starts by assuming that | = f, and f, = f, since this is the easiest solution. As
soon as @ has been computed, the assumptions are checked. If this check shows that f_; <[
it is necessary to change the solution and base the calculations on Eq. 5-17.If f, << f,, more
compression steel should be added.

EXAMPLE 5-5 Analysis of a Beam with Compression Reinforcement:
Compression Reinforcement Yields

164

The beam shown in Fig, 5-18 has /; = 3000 psi and f, = 60,000 psi. For this beam, based on
the tension steel onlv.ar = 10.14.in,, d, = 23.63 in., giving a/d, = 0.429, which exceeds the tension-
controlled limit a,.; “ef, = 0.319. As a result, ¢ would be less than 0.90. To allow the use of ¢ = 0.9
and to give more ductility, 2 No. 7 bars have been added as compression steel. Compute the design
moment capacity.

L. Assume thatf, = f, and f, = f,, and divide the beam into two components. The beam
s dividqd info beam | and beam 2 (Fig. 5-18b and c). Since the steel is all assumed to yield,
Ay = Ay The area ot steel inbeam 2 is

ASZ = AJ - Asl
= 474120 = 3.54in}?

2. Compuie «a for beam 2.

A AN
a = W (5—113)

.
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if the C = 25in. l b=111in.
a=757in
Iy F — —
~ /—ﬁ 2 No.7 bars [— \ // //
123 "T_‘ o W) |a;=1200n. I Af_ 20 in.z—l——r ) :
=1 .
sion = I I & . / E
ns to < 8 l I & ::‘;
iiven @ é | I 2 I
com- 1 E —_
& l \ %
| z As, = As — As, |
— i 2 _ i 2 o
| As, = 1.20in. = 354 in. =
p o j SNo.Ebar_sz I ® ] » e .
Ag = 4.74in. ;—|—_ ® °
, L - —
{a) Beam, (b) Beam 1—Steel only. {c) Beam 2.
Fig. 5-18
Example 5-3.
1sing
Vit is o 354 X000 _ 5 57in
an of 0.85 X 3000 X 11
1at of
3. Check if compression steel yields, In step 1 we assumed that fv = [ It is necessary to
check this assumption.
d’' =25in
d' 25
— =—=10330
a 1.57
mple
n. As From Eq. 5-9 or Table A-10,
;f; £ -30- ok
a /lim B] 87,000
1 60,000
= —( - ) = 0.365
0.85 87,000
Since d’ /a = 0.330 is Jess than the limiting value of 0.363, the compression steel yields andf, = f,.
od on 4. Checkiff, = f, for the tension steel and whether the section is tension-controlled.
1sion- a=757mn.
=09
lesign and
.57
2_ 20 - 0336
beam d 225
ield, . . . .
yie From Table A—4. 4, /d = 0.503. Since 0.336 is less than 0.503, the tension steel yields.
d, =7260— 15— 0375 - 1.0/2 = 23.63 in.
a 7.57
— = —=0320
d, 2363
The tension-centrolled limit is
-11a) ) fdl = 03758, = 0.319
!
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Since 0.320 is larger than 0.319, the section is a transition section and ¢ will be less than 0.90. From
Eq. 4-26b,
0.204 0.204

= 0356 + = 0356 + -
¢= 0356+ ) = 0P S5y (085 x 23.63)

= (.897

Alternatively, if design was carried out by ACI Sec. 10.3.3, the upper limit on the steel would be such
that p — p’ = 0.75p,. To check this, compute the compression forces €, and C, in the concrete and
the compression steel for the balanced condition with @ = a,. Then compute the area of steel needed

to balance these compressions:
C.+C
Ash = .
5

This comes out to 6.49 in.2 and 0.754,, = 4.87 in.2, which is a little more than A, = 4.74 in.2, Thus the

beam satisfies the upper limit on steel in ACI Sec. 10.3.3. For design by 10.3.3, ¢ = 0.90.
Which of these two checks needs to be made depends on whether design is by ACI Appendix
B or ACI Sec. 10.3.3. We shall assume that design was being carried out by ACI Appendix B and will

use ¢ = (.897.
5. Checkif A, = A, ;. From Egq. 4-31,

3000 200 X 11 X 22.5
L= T XW5z—
Asinin 60,000 X X225 60,000

= (.68 = 0.83 in.2

Thus A, = 4.74 in.? exceeds A, ., This should have been obvious since the reinforcement exceaded
the tension-controlled limit.

6. Compute ¢ M.

{a) Beam1:
oM, = A1 (d - 4] (5-10)
1.20 X 60,000(22.5—2.5):| .
= = 107.6 ft-
0 897[ 12,000 6 ft-kips
(b) Beam 2:
M, = d)[(A, - A,) y(d - g)} 5-12)
3.54 X 60,000(22.5-7.57 /2)] _
= 0. = 297.1 ft-
897[ 12,000 97.1 fe-kips

The total moment capacity is
M, = ¢M,,, + oM, = 405 fi-kips

The design moment capacity of the beam shown in Fig. 5-18 is 405 ft-kips. -

EXAMPLE 5-5M Analysis of a Beam with Compression Reinforcement:
Compression Reinforcement Yields-S| Units

166

The beam shown in Fig. 5-19 has £, = 20 MPa and f, = 400 MPa. For this beam, based on the tension
steel only, @ = 257 mm, d, = 538 mm, giving a /d, = 0.478, which exceeds the tension-controlled
limit a,.¢/d, = 0.319. As a result, ¢ would be less than 0.90. To allow the use of ¢ = 0.90 and to in-
crease the ductility, 2 No. 25 bars have been added as compression steel. Compute the design moment
capacity.

1. Assumethatf, = f,and f, = f;. and divide the beam into two components. The beam
is divided into beam 1 and beam 2 (Fig. 5~19b and c). Since the steel is all assumed to yield,
A = A, . The area of steel in beam 2 is
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{2) Beam. (b) Beam 1—Steel only. {c} Beam 2.
Fig. 5-19
Example 5-5M.
A.cZ = As - A.rl
= 3000 — 1000
= 2000 mm’
2. Compute a for beam 2.
(As - A,)f'
= s 5-11
0.857.b )
2000 X 400
=-——————= |71 mm
0.85 X 20 X 275
3, Check if compression steel yields.
d = 65 mm
d 65
— = —-- = .380
a 171
From Eq. 5-9M,
' 1
(d—) -f(l — fL) (5-9M)
a Jlim B[ 600
1 400
=-—f1—-—]=039
0.85( 600) 2

Since d' /a = 0.380 is less than the limiting value of 0.392, the compression reinforcement yields.
4, Check if f, = f, for the tension steel and whether the section is tension-controiled.

a_171_ 435
4 510

a=171mm and
From Table A-4M, 4, /d = 0.510. Since 0.335 is less than 0.510, the tension steel yields.
d, = 600 — 40 — 10—%:537mm

a 171
2= —=03184
o "5 %
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The tension-controlled limit is

12151
4

Since 0.3184 is less than 1.3188, the section is tension-controlled and ¢ = 0.90.

Alternatively, if design was carried out by ACI Sec. 10.3.3, the upper limit on the steel would
bethatp — p' = 0.75p,. To check this, compute the compression forces C, and C, in the concrete and
the compression steel for the balanced condition with @ = a,. Then compute the area of steel needed
to balance these compresstons:

= 0.3758, = 0.3188

C. +C
Ap ==
£

This comes out to 4040 mm?® and 0.754,, = 3030 mm?, which is a little more than A, = 3000 mm2,
Thus the beam satisfies the upper limii on stee! in 10.3.3. For design by 10.3.3, ¢ = 0.90.

Which of these two checks needs to be made depends on whether design is by ACI Appendix
B or ACI Sec. 10.3.3. We shall assume that design was being carried out by ACI Appendix B.

5. CheckifA; = A, ., From Eq. 4-31,
Agmin = (392 = 491) mm?
= 491 mm?

Thus A; = 3000 mm? exceeds A, ;.. This shoutd have been obvious since the reinforcement ex-
ceeded the tension-controlled limit.

5. Compute ¢ M,.

(a) Beam 1:
M,y = BlAf(d — d')] (5-10)
_ 091000 X 400(510 — 65)] _ 160 KN
108
(b) Beam 2:
oM,y = ¢[(A., - A;)fy(d - g)} (5-12)
_ 09[{3000 - 1000) x 400(510 - 171/2)]
108
= 306 kN-m

The total moment capacity is
oM, = ¢M, + $M,; = 466 kN-m
Therefore, the design moment capacity of the beam shown in Fig. 5-19is 466 kN-m. |

EXAMPLE 5-6 Analysis of a Beam with Compression Reinforcement:
Compression Reinforcement Does Not Yield

168

The beam shown in Fig. 5-20 has £ = 3000 psi and f, = 60,000 psi. It is similar to the beam

considered in Example 5-5 except that there is more compression steel. Compute the design moment
capacity, ¢M,. The solution will start in the same way as Example 5-5. If the assumptions made in

step | prove to be incorrect, a different solution must be used.

1. Assume that f = f and f, = f, and divide the beam into two components. Beam 1

i

has 3 No. 8 bars as compression reinforcement and an arez of tension reinforcement, A, equaltod .

No. 8 hars concentrated at 4 below the top of the beam.
A:2 = As - Asl
=474 — 237 = 2.37 in.
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d' = 25in. 11 in.

3 No. 8 bars _
Ay =2371in°

ﬂ
J

d=225In,

6 No. B bars
As = 4.74 in2

4

2. Compute a for beam 2.
(A, — A,
= . 5-
4= Tossfb (3-1a)

237 X 60,000

- - =5, in.
085 X 3000 x 11 07®
3. Check if compression steel yields. From Fig. 5-20,d" = 2.5 in.
d' 25
— ===
a 5.07 493

But this exceeds the limiting vatue of d/a = 0.365 from Eq. 5-9 or Table A—10. Therefore, the
compression steel does not yield. As a result, a from step 2 is incorrect and @ must be reevaluated
using Eq. 5-19, assuming that the compression steel is elastic.

4. Solve Eq. 5-19 for a.
(0.85f:b)a* + (0.003E.A, — A.f)a — (0.003E,A,Bd") =0

or 28,050a? — 78,210a — 438,200 = 0 and

g = 18210 % V782107 — (4 X 28,050 X —438,200)
2 X 28,050

= 5.59 in.

Note that this is larger than the @ = 5.07 in. computed in step 2. This is to be expected since the sfress
in the compression steel is lower than assumed in step 2, and as a result there is a larger compression
force in the concrete.

5. Check if f; = f, for the tension steel and whether the sectien is tension-controlled.

—550in. and &= 220 = 0248
a . in. al d 22.5 .

From Table A4, a,/d = 0.503. Since 0.248 is less than 0.503, the tension steel yields.

1.0
d=26—15-0375 — EY = 23.63in.

a 5.59
S = 2= 0237
d 2363
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The tension-controlied limit is

s

= (.3758, = 0.319
d.

Thus the section is wension-controlled and & = 0.90.
6. Checkif A, = A__ ;.. By inspection. A, exceeds A ;-
7. Compute & M,

\
dM, = dJ[C((d - g) + Cld ~ a”)} (5-18)
where
C. = 0.85f ba (5-16a)
0.85 X 3000 X 11 X 5,59 .
= - 1000 = 157 kips
. C, = (Ee)A,; (5-16b)
where
. d’
€, = (1 - EL)O.O@ (5-10)
a
Thus
: d’
C, = E_,.A,.(l - B'—)0.003
a
0.85 x 2.
29 x 108 x 2.37( ] - = 5)0.003
5.59
a 1000
= 128 kips
and
. 0.9[157(22.5 — 5.59/2) + 128(22.5 — 2.5)]

12
= 423 ft-kips

Thus the design moment capacity of the beam shown in Fig, 5-20 is 423 ft-kips.

A worthwhile partial check on the calculations can be obtained by comparing
T.=AS, =474 X 60 = 2844 kipsand C, + C, = 156.8 + 127.8 = 284.5 kips. These should be
the same since C = T and are within the accuracy of the calculations. ]

A comparison of the strengths of the beams considered in Examples 5-5 and 5-6
shows that almost doubling the area of compression steel, resulting in an increase of 20%
in the total area of steel in the beam, increased the moment capacity by only 4%. This il-
lustrates the tact that additional compression reinforcement is generally not an effective
method of increasing the moment capacity of a beam.

54 UNSYMMETRICAL BEAM SECTIONS OR BEAMS BENT ABOUT
TWO AXES

Figure 5-21 shows one half of a simply supported beam with an unsymmetrical cross sec-
tion, The loads lie in a plane referred 10 as the plane of loading and it is assumed that this
passes through the shear center of the unsymmetrical section. This beam is free to deftect
vertically and laterally between its supports. The applied loads cause moments that must b

%
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location of C and T forces in unsymmetrical beam.

resisted by an internal resisting moment about a horizontal axis, shown by the moment vec-
tor in Fig. 5-21a. This internal resisting moment results from compressive and tensile
forces C and T as shown in Fig. 5-21b. Because the applied loads do not cause a moment
about an axis parallel to the plane of loading (such as A-A), the internal force resultants C
and T cannot do so either. As a result, C and T must both lic in the plane of loading or in a
plane parallel to it. Both distances z in Fig. 5-21b must be equal.

Figure 5-22 shows a cross section of an inverted L-shaped beam loaded with gravity
loads. Because this beam is loaded with vertical loads, leading to moments about a horizon-
tal axis, the line joining the centroids of the compressive and tensile forces must be vertical
as shown (both are a distance f from the side of the beam). As a result, the compression zone
must be triangular and the neutral axis inclined as shown in Fig. 5-22.

Since C = T, and assuming that f, = f,,

1(3£x g X 0.858) = A%

Since the moment is about a horizontal axis, the lever arm must be vertical. Therefore, the
case shown in Fig. 5-22,

. g
d=d-%
/ 3
and
e
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Fig, 5-22
Unsymmetrical beam.
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f
4 |epe

Centroid of / o

tensile force

These equations apply only to the beam geometry shown in Fig. 5-22. Different equations
or a trial-and-error selution will generally be necessary for other shapes.

The checks of whether f; = £, and whether the section is tension-controlled are done
by checking whether ;/d; and a;/ d,;, measured perpendicular to the neutrai axis, are less
than the appropriate values from Table A—4. The check of whether p = p, will require cal-
culation of C,;,, A, and 0.75 A,,.

The discussion to this point has dealt with isolated beams which are free to deflect
both vertically and laterally. Such a beam would deflect perpendicular to the axis of bend-
ing, that is, both vertically and laterally. If the beam in Fig. 5-22 were the edge beam for a
continuous slab that exiended to the left to other beams, this slab would prevent lateral de-
flections. As a result, the neutral axis would be forced to be very close to horizontal and the
beam could be designed in the normal fashion.

EXAMPLE 5-7 Analysis of an Unsymmetrical Beam
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The beam shown in Fig. 5-23 has an unsymmetrical cross section and an unsymmetrical
arrangement of reinforcement. This beam is subjected to vertical loads only. Compute the design mo-
ment capacity of this cross section if f, = 3000 psi and f, = 60,000 psi.

1. Assume thatf, = f, and compute the size of the compression zone. The centroid of the
three bars is computed to lie at 6.27 in. from the right side of the web. The centroid of the compres-
sion zone must also be located this distance from the side of the web, Thus the width of the com-
pression zone is 3 X 627 = 18 8 in.

Singce C =T,

1(18.8 X g x 0.85f) = A,f,

or

_ 2.58 X 60,000 X 2
18.8 X 0.85 X 3000

6.46 in.
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i 18.81 in.
|y
4 in, | I f
g = 646 in
515 |
15in 24in
2 Ne. 8 bars
1 No. 9 bar ddeoe
As = 258 in?
6827 in.
12 in.
(a) Geometry and stress block.
I: \% a; = 6.11 in.
d; = 2237 in.
/

Centroid of steel /
{b) Values of a; and ¢; measured perpendicular to the neuliral axis.

‘The compression zone is shown shaded in Fig. 5-23. The entire area lies within the concrete section,
and hence this compression zone can be used for the analysis. If the compression zone were deeper than
shown and cut across the reentrant corner, a more complex trial-and-error solution would be required.

2. Check if f; = f, and whether the section is temsion-controlled, From Fig. 5-23b,
a, = 6.11in. and d; = 22.37 in,, giving a;/d; = 0.273. Since a;/d; is less than a,/d = 0.503,f, = f.
d,; is the inclined depth from the extreme compression fiber to the extreme tension steel, in this
case the No. 9 bar. From the geometry of the section, d; = 2344 in. and a,/ d,; = 0.261. Since this is
less than a,.¢/d, = 0.319, the section i3 tension-con-
trolled and ¢ = 0.90.

3. Check if A, = A,mm Since A, = 2.58in* exceeds Agmia = (0.71 = 0.86) in.”
As > A.r‘min-

4. Compute & M,,.

o= 3]

092,58 x 60,000021.5 — 6.46/3)]

12,000
= 225 ft-kips
Thus the design moment capacity of the section shown in Fig. 5-23 is 225 fi-kips. Note that the moment
caleulation is based on the lever arm measured vertically (parallel to the plane of loading). |
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5-5 ANALYSIS OF MOMENT CAPACITY BASED ON STRAIN

COMPATIBILITY

The analysis procedures presented so far in this chapter and Chap. 4 have baen restricted o
problems involving:

L. Elastic—plastic reinforcement with a constant yield strength

2. Tension reinforcement and compression reinforcement in two groups of bars
that can be represented by compact layers at the centroids of the respective groups
3. All concrete of the same strength

4. Arectangular, T, or other easily definable cross-sectional shape

If any of these restrictions do not apply, a trial-and-error solution based on strain
compatibility must be used. The following steps are required in such a solution:

1. Assume a strain distribution defined by a strain, e,,, of 0.003 in the extreme com-
pressive fiber and an assumed value of the depth, ¢, to the neutral axis.

2. Compute the depth of the rectangular stress block, a = B,c.

3. Compute the strains in each layer of reinforcement from the assumed strain
distribution.

4. From the stress—strain curve for the reinforcement and the strains from step 3,
determine the stress in each layer of reinforcement.

5. Compute the force in the compression zone and in each Iayer of reinforcement,
6. Compute P = C — T. For a beam without axial force, P equals zero. If the calcu-
lated value of P is not equal to zero, adjust the strain distribution and repeat steps 1 to 6
until P is as close to zero as desired. The imbalance should not exceed 0.1 to 0.5% of C.
7. Sum the moments of the internal forces. If P = 0, this can be about any conve-
nient axis. We shall sum the moments about the centroid of the cross section. This
axis is normally used in columns where P is not zero, as explained in Chap. 11.

EXAMPLE 5-8 Strain Compatibility Analysis of Moment Capacity
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Compute the design moment capacity, ¢M,, of the cross section shown in Fig. 5-24a. The con-
crete strength is 3500 psi. The reinforcement has the stress—strain curve shown in Fig. 5-24b.

In this sclution, compressive strains and stresses are taken as positive, tensile strains and siresses
as negative. As a result, the stress—strain curve for the reinforcement in tension has the equations:

Part O-A, € = —0.002:
£ = (29 X 10%) ksi (5-19a)

Part A-B, € < —0.002;
fi = (=55 + 1.5 X 10%) ksi (5-19b)

Similar equations can be derived for the compressive branch.

L. Assume a strain distribution. The first trial strain distribution in Fig. 5-24c¢ is defined by
€, =0003andc = 8in.

2. Compute the depth of the equivalent rectangular stress block.
a = ﬂ|C

=085x8
Therefore, @ = 6.8 in. for first trial.

3. Compute the strains in each layer of reinforcement.

Fiexure: T Beams, Beams with Compression Reinforcement, and Special Cases
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tion—Example 5-8.

{e) Straln distribution—Second trial.

4. Compute stress in each layer of reinforcement.

(f} Forces and moment lever arms—Second trial.

5. Compute forces in the compression zone and in each layer of reinforcement.

6. Compute

P=C-T.

Steps 3 to 6 are carried out in Table 5-1. For a bar located at distance y below the top of the

beam, the strain is

55 Analysis of Moment Capacity Based on Strain Compatibility
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TABLE 5-1 Calculation of Internal Forces—Example 5-8°
Layer ¥ (in.) € f. {ksi) Adin®) F, (kips) C, (kips}
First triaf: Assume that ¢ = 8in., @ == B,c = 6.8in,
Compression — — — — — 6.8 X IB X 0.85
zone %X 35 = +364.1
A, 25 ~0.00206 58.1 — 0.83 1.20 +66.1 -
X 3.5 = 331

Apn 12 —0.00150 —43.5 1.20 —52.2 _—

Ag 22 —0.00525 ~52.9 1.20 -75.5 —

A 315 —0.00881 —68.2 3.16 —215.6 —

A 335 —0.00936 —69.3 3.16 —219.1 —

T F, = 4963 kips X C.= +364.1 kips
. Y FAYCo= —132.2 kips
Second triaf: Assume thate == 9.751n., a = 8.29 in.
Compression — — — — — 8.29 X 18 X (.85
zone X 35=4439
A 25 +(.00223 383 — 0.85 1.20 +66.4 —
X 35=1554

A 12 —0.00069 —-20.1 1.20 - 24.1 —

Ag 22 —0.00377 —060.7 1.20 ~72.8 —

A, 3L —0.00660 —65.0 316 —205.5 —

Ass 33.5 —0.00731 —66.0 316 —208.4

IF, = —4444kips I F. = +443.9 kips
XF. + XC, = —0.5kips
*e, f,, and F, are positive in compression,
€= 0003 - (0.003{ ) (5-20)

176

For A,y. v is less than . As a result this layer of steel displaces concrete assumed to be stressed
in compression. [y << a,

£, = (f, from Eq. 5-19) — 0.85f,

The strains and forces in the various layers are illustrated in Fig. 5-24¢ and d. The sum of the forces
in the bars and the concrete is 130.2 kips tension. Since there is no axial force in this member, the sum
should be zero, Thus the assumed compressed zone is too small.

Asaseeond trial. try © = 9.75 in., which results ina = 8.29 in. Steps 3 1o 6 of the second wial
are also given in Table 5-1. At the end of the second triaf the forces have converged to within 1 kip.
Since this is less than G.1% of the force in the compression zone, it will be assumed to be close
enough. It is sometimes useful to plot P = € — T versus ¢ to help in the choice of ¢ for future trials-

7. Checkiff, = f, and whether the section is tension-controlled. The stresses in each layer
of steel have been computed in Table 5-1 and no further check of f, is needed.
a-dy = 975 36 = 0.271. Since this is less than a,../d, = 0.319, the section is tension-controlled and
& = 0.90.

If the design were carried out according to ACI Sec. 10.3.3, it would be neeessary to check if
p = 0.75 p,. To do so. compute 4, d for the balanced case, compute {(C,;, + ¥ F i) for bars in com-
pression) = (A,.f, + * Fy, for bars in tension), and finally check if A, = 0.754,.

Flexure: T Beams, Beams with Compression Reinforcement, and Speciat Cases
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8. Compute the moments about midheight. Once P has converged to zero, the MOMEnts
can be computed. The forces from the second trial are shown in Fig. 5-24f. The distances from the
midheight are taken positive upward. negative downward. A counterciockwise moment is taken as
positive.

3 29"
M, = 443.9(76 - %—) + 66.4(18 — 2.5)
+[=241018 - 12)] + [-72.8(18 - 22)]

+ (—205.5(18 — 31.5)] + [—208.4(18 — 33.5)]

= 13,330 in.-kips

Thus the nominal moment capacity of the section shown in Fig. 5-24is M, = 13,330 in.-kips and the
design moment capacity oM, = 999 ft-kips. ]

This type of problem is ideally suited for solution using a spreadsheet.

PROBLEMS 5-3 Compute the negative moment capacity, ¢M,, for
the beam shown in Fig. P5-3. Use f, = 3000 psi
5-1 and 5-2 Compute ¢M, for the beams shown in and f, = 40,000 psi.

Fig. P5—1 and P5-2. Use f, = 3750 psi for 5-1 and
3000 psi for 5-2 and f; = 60,000 psi.

o |
| a8 | ‘ l 6 No. 6 bars I
& L o csee & 1
| ' T A
L | t 1 | }

. { l 127

6 No. 8 bats H o8

127

Fig. P5-3

Fig. P5-1 ' .
8 54 For the beam shown in Fig. P54, f. = 3000 psi

and f, = 60,000 psi.

200, (a) Compute the effective flange width at midspan.
y {(b) Compute M, for the positive and negative mo-

J T T ment regions. Check if f, = f, at ultimate. At the
185in, | supports the bars are in one layer, at midspan the
l"' No. 8 bars are in the bottom layer, the No. 7 bars

6 No. 8bars | o

(K ]

in a second layer. (Note that the bottom rein-
forcement is not adequately anchored in the sup-
port to serve as compression reinforcement at the
face of the support. Therefore, it can be ignored.)

101in.

Fig. P5-2
. 5-5 The beam shown in Fig. P5-5 carries its own dead
load plus an additional service (unfactored) dead load

of 1.5 kips/ft plus a service live load of 3.5 kips/ft.

.
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12" 5-7 Compute ¢M, for the beam shown in Fig. P5-7.
Use f. = 4000 pst and f, = 60,000 psi.
Fig P5-S

(a) Draw bending moment diagrams for the three
loading cases shown in Fig. P4-18 and superim-
pose them to get 2 bending moment envelope,

(b} Select reinforcement at the negative and positive
moment regions. Use f = 4000 psi and f, =
60,000 psi.

5-6 Compute ¢M, for the beam shown in Fig. P5-6.
Use f. = 3000 psi and £, = 60,000 psi and

(a) the reinforcement is 6 No. 8 bars.

(b) the reinforcement is 9 No. 8 bars.

R 1
20-
‘ -+

>
\8 No. 7 bars 1

Fig P5-7

5-8 Give three reasons why compression reinforcement
is used in beams.
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5-9 (a) Compute ¢pM, for the three beams shown tn Fig.
P5-9. In each case £, = 3000 psi, £, = 60,000
psi, b = 12in.,d = 32.5in.and & = 36in.

{(b) From the results of part (a) comment on
whether adding compression reinforcement is
a cost-effective way of increasing the strength,
¢M_, of a beam.

5-10 Compute ¢M, for the beam shown in Fig. P5-10.
Use f. = 2500 psi and f, = 60,000 psi. Does the
steel yield in this beam at uitimate?

10"

—nd K" 57 el

4
-2-13—"-—-— L] \' 5

2 No. 7 bars

20"
2.5
—L L N N N X
. .
I 6 No. 8 bars
Fig P5-10

5-11 Compute @M, for the beam shown in Fig. P5-11.
Use f. = 3000 psi and f, = 60,000 psi. Check if
the steel yields.

5-12 The beam shown in Fig. P5-12 has elastic—plastic
reinforcement (f, = f, when €, = €,) with a yield
strength of 60,000 psi. The concrete has
fi7 = 4000 psi. Compute ¢M, using a strain com-
patibility solution.
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6-1

INTRODUCTION
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A beam resists loads primarily by means of internal moments, M, and shears, V, as shown
in Fig. 6-1. In the design of a reinforced concrete member, flexure is usually considered
first, leading to the size of the section and the arrangement of reinforcement to provide the
necessary moment resistance. Limits are placed on the amounts of flexural reinforcement
which can be used, to ensure that if failure were ever to occur, it would develop gradually,
giving warning to the occupants, The beam is then proportioned for shear. Because a shear
failure is frequently sudden and brittle, as saggested by the damage sustained by the build-
ing in Fig. 6-2,%" the design for shear must ensure that the shear strength equals or exceeds
the flexural strength at all points in the beam.

The manner in which shear failures can occur varies widely depending on the di-
mensions, geometry, loading, and properties of the members. For this reason there is no
unique way to design for shear. In this chapter we deal with the internal shear force, V,
in relatively slender beams and the effect of the shear on the behavior and strength of
beams. Examples of the design of such beams for shear are given in this chapter.
Footings and two-way slabs supported on isolated columns develop shearing stresses on
sections around the circumference of the columns, leading to failures in which the col-
umn and a conical piece of the slab punch through the slab {Chap. 13). Shert deep mem-
bers such as brackets, corbels, deep beams, and so on, transfer shear to the support by the
compressive stresses rather than shear stresses. Such members are considered in Chap.
18.

Chapter 21 of the ACI Code gives special rules for shear reinforcement in members
resisting seismic loads. These are reviewed in Chap. 19.

Fig. 6-1
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6-2 BASIC THEORY
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Stresses in an Uncracked Elastic Beam

From the free-body diagram in Fig. 6—Ic it can be seen that dM dr = V. Thus shear forces
and shear stresses will exist in those parts of a beam where the moment changes from sec-
tion to section. By the traditional theory for homogeneous. elastic, uncracked beams, we can
catculate the shear stresses, y, on elements cut out of a beam (Fig. 6—3a) using the equation

_ve
V= (6-1)

where

V = shear force on the cross section
I = moment of inertia of the cross section

@ = first moment about the neutral axis of the part of the cross-sectional area lying
farther from the neutral axis than the point where the shear stresses are being
calculated

b = width of the member where the stresses are being calculated

It should be noted that equal shearing stresses exist on both the horizontal and verti-
cal planes through an eiement, as shown in Fig. 6-3a. The horizontal shear stresses are im-
portant in the design of construction joints, web-to-flange joints, or regions adjacent to
holes in beams. For an uncracked rectangular beam, Eq. 61 gives the distribution of shear
stresses shown in Fig. 6-3b.

The elements in Fig. 6 -3a are subjected to combined normal stresses due to flexure,
J. and shearing stresses, v. The largest and smallest normal stresses acting on such an ele-
ment are referred to as principal stresses. The principal stresses and the planes they act on
are found using a Mohr’s circle for stress, as explained in any mechanics of materials text-
book. The orientations of the principal stresses on the elements in Fig. 6-3a are shown in
Fig. 6-3c.

The surfaces on which principal tension stresses act in the uncracked beam are plotted
in Fig. 6-4a. These surfaces or stress trajectories are steep near the bottom of the beam and
flatter near the top. This corresponds with the orientation of the elements shown in Fig. 6-3c.
Since concrete cracks when the principal tensile stresses exceed the tensile strength of the con-
crete, the initial cracking pattern should resemble the network of lines shown in Fig. 6—4a.

The cracking pattern int a test beam is shown in Fig. 6—4b. Two types of cracks can
be seen. The vertical cracks occurred first, due to flexural stresses. These start at the bottom
of the beam where the flexural stresses are the largest. The inclined cracks at the ends of the
beam are due to combined shear and flexure. These are commonly referred to as inclined
cracks, shear cracks, or diagonal tension cracks. Such a crack must exist before a beam can
fail in shear. Several of the inclined cracks have extended along the reinforcement toward
the support. weakening the anchorage of the reinforcement.

Although there is a similarity between the planes of maximum principal tensile stress
and the cracking pattern, it is by no means perfect. In reinforced concrete beams, flexural
cracks generally occur before the principal tensile stresses at midheight become critical.
Once such a crack has occurred, the tensile stress across the crack drops to zero. To main-
tain equilibrium, a major redistribution of stresses is necessary. As a result, the onset of in-
clined cracking in a beam cannot be predicted from the principal stresses unless shear
cracking precedes flexural cracking. This very rarely happens in reinforced concrete but
does occur in some prestressed beams.

Shear in Beams
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Normal, shear, and principal stresses in homogeneous uncracked beam.
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{a) Principal compressive stress trajectories in an uncracked beam.

{b) Photograph of half of a cracked reinforced concrete beam.
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Fig. 6-5
Calculation of average shear stress between cracks.

Average Shear Stress between Cracks
The initial stage of cracking generally results in vertical cracks which, with increasing

load, extend in a diagonal manner, as shown in Fig. 6-4b. The equilibrium of the section
of beam between two such cracks (Fig. 6-5b) can be written as

M M+ AM
T = and T+ AT =
jd Jd
or
A
ar = &M
jd
where jd is the lever arm. which is assumed to be constant. For moment equilibrium of the
element,
AM = VAx {6-2)
and
VA
. AT = _’( (6-3) -
Jd

184 Shear in Beams




ing
10on

the

If the shaded portion of Fig. 6-5b is isolated as shown in Fig. 6-5c. the force AT must be
transferred by horizontal shear stresses on the top of the element. The average value of
these stresses below the top of the crack is

AT
v =
b, Ax
or
Vv
= 6-4
VS hid (o4

where jd = 0.875d and b, is the thickness of the web. The distribution of average hori-
zontal shear stresses is shown in Fig. 6-5d. Since the vertical shear stresses on an element
are equal to the horizontal shear stresses on the same element, the distribution of vertical
shear stresses will be as shown in Fig. 6-5d. This assumes that about 30% of the shear is
transferred in the compression zone. The balance of the shear is transferred across the
cracks. In 1970, Taylor® reported tests of beams without web reinforcement in which he
found that about a quarter of the shear was transferred by the compression zone, a quarter
by doweling action of the flexural reinforcement, and about half by aggregate interlock
along the cracks (see Fig. 613, discussed later). Modern shear failure theories assume that
a significant amount of the shear is transferred in the web, some of this across inclined
cracks.

The ACI design procedure approximates Eq. 6—4 with Eq. 6-5, which does not re-
quire the computation of j.

v=—" (6-5)

Beam Action and Arch Action

In the derivation of Eq. 6—4 it was assumed that the beam was prismatic and the tever arm jd
was constant. The relationship between shear and bar force (Eq. 6--3) can be rewritten as 6-3

d
V=-—(Tid 6-6
- (Tid) (6-6)
which can be expanded as
d(T) d(jd)
=Cjd + ~—~—T 6-7
V== (6-7)

Two extreme cases can be identified. If the lever arm, jd, remains constant as assumed in
normal elastic beam theory,

d(jd) d(T)

—— =0 and V=——jd

dx de
where d(T) /dx is the shear flow across any horizontal plane between the reinforcement
and the compression zone as shown in Fig. 6-5c. For beam action to exist, this shear flow
must exist.
The other extreme occurs if the shear flow, d(7) / dx, equals zero, giving

_pdia)
dx

Vv
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Fig. 6-6
Arch action in a beam.

-

Fig. 6-7
Inclined cracks and shear re-
inforcement.
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This occurs if the shear flow cannot be transmitted due to the steel being unbonded, or if
the transfer of shear flow is prevented by an inclined crack extending from the load to the
reacrions. In such a case the shear is transferred by arch acrion rather than beam action, as
ilustrated in Fig. 6—6. In this member the compression force C in the inclined strut and the
tension force T in the reinforcement are constant over the length of the shear span.

fd (varies)
T = Tension

Shear Reinforcement

In Chap. 4 we saw that horizontal reinforcement was required to restrain the opening of a
vertical flexural crack as shown in Fig. 6-7a. An inclined crack opens approximately per-
pendicular to itself, as shown in Fig. 6-7b, and either a combination of horizontal flexural
reinforcement and inclined reinforcement (Fig. 6—7c) or a combination of horizontal and
vertical reinforcement (Fig. 6—7d) is required to restrain it from opening. The inclined or
vertical reinforcement is referred to as shear reinforcement or web reinforcement and may
be provided by inclined or vertical stirrups, as shown in Fig. 6-27 or 6--28. Most often,
vertical stirrups are used in North America. The arrangement of stirrups in a beam is illus-
trated in Fig. 4-24. Inclined stirrups cannot be used in beams resisting shear reversals, such
as buildings resisting seismic loads.

Splitting crack
{(a) Flexural crack. (b} Inclined crack.

(e} Inclined shear reinforcement. (d) Verticai shear reinforcement.

Shear in Beams

Fig. 6-8
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6-3 BEHAVIOR OF BEAMS FAILING IN SHEAR

Fig. 6-8

Effect of a /d ratio on shear
strength of beams without
stirmups.

The behavior of beams failing in shear varies widely depending on the relative contribu-

tions of beam action and arch action and the amount of web reinforcement.

Behavior of Beams without Web Reinforcement

The moments and shears at inclined cracking and failure of rectangular beams without web
reinforcement are plotted in Fig. 6-8b and ¢ as a function of the ratio of the shear span, .
to the depth 4 (see Fig. 6-8a). The beam cross section remains constant as the span is var-
ied. The maximum moment and shear that can be developed correspond to the nominal mo-
ment capacity, M, , of the cross section plotted as a horizontal line in Fig. 6—8b. The shaded

v v
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(a) Beam,
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n
g // ™ Flexural capacity
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cracking
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{b) Moments at cracking and failure.

Snear failure
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Inclined cracking and failure
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{c) Shear at cracking and failure.
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Fig. 6-9

Modes of failure of deep
beams, ¢/d = 0.5 10 2.0,
(Adapted from Ref. 6-4.)

Fig. 6-10

Modes of failure of short
shear spans, a/'d = [.5to
2.5. (Adapted from Ref. 6-4.)
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areas in this figure show the reduction in strength due to shear. Web reinforcement is pro-
vided to ensure that the beam reaches the full fiexural capacity, M,,.

Figure 6-8b suggests that the shear spans can be divided into four types: very short,
short, slender, and very slender. The term deep beam is also used to describe beams with
very short and short shear spans. Very short shear spans, witha 4 from 0 to 1, develop in-
clined cracks joining the load and the support. These cracks. it effect. destroy the horizon-
tal shear flow from the longitudinal steel to the compression zone and the behavior changes
from beam action to arch action, as shown in Fig. 6—6 or 6—-9. Here the reinforcement
serves as the tension tie of a tied arch and has a uniform tensile force from support to sup-
port. The most common mode of failure in such a beam is an anchorage failure at the ends
of the tension tie.

Short shear spans, a. d from 1 to 2.5, develop inclined cracks and, after a redistribu-
tion of intermal forces, are able to carry additional load, in part by arch action. The final fail-
ure of such beams will be caused by a bond failure, a splitting failure, or a dowel failure
along the tension reinforcement, as shown in Fig. 6-10a, or by crushing of the compres-
sion zone over the crack, as shown in Fig. 6-10b. The latter is referred to as a shear com-
pression failure. Because the inclined crack generally extends higher into the beam than a
flexural crack, failure occurs at less than the flexural moment capacity.

In slender shear spans, a/d from about 2.5 to about 6, the inclined cracks disrupts
equilibrium to such an extent that the beam fails at the inclined cracking load as shown in

Compression
struat

// lj \l

Tension tie

Types of failure:

1 Anchorage failure

2 Bearing failure

3 Flexural failure

4,5 Failure of compression strut

;
/1

LY
T \ Loss of bond due to
splitting crack.

(a) Shear-tension failure.

Crushing

7

{b) Shear compression faiture.
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Fig. 6-8b. Very slender beams with @ d greater than about 6 will fail in flexure prior to the
formation of inclined cracks.

Figures 6--% and 6-10 come from Ref. 6—4, which presents an excellent discussion
of the behavior of beams failing in shear and the factors affecting their strengths. It is im-
portant to note that for short and very short beams, a major portion of the load capacity
after inclined cracking is due to load transfer by the compression struts shown in Fig. 6-9.
If the beam is not loaded on the top and supported on the bottom in the manner shown in
Fig. 6-9, these compression struts are not effective and failure occurs at, or close to, the in-
clined cracking load.

Because the moment at the point where the load is applied is M = Va for a beam
loaded with concentrated loads, as shown in Fig. 6-8a, Fig. 6-8b can be replotted in terms
of shear capacity, as shown in Fig. 6—8c. The shear corresponding to a flexural failure is the
upper curved line. If stirrups are not provided, the beam will fail at the shear given by the
“shear failure” line. This is roughly constant for a /d greater than about 2. Again the shaded
area indicates the loss in capacity due to shear. Note that the inclined cracking loads of the
short sirear spans and slender shear spans are roughly constant. This is recognized in design
by ignoring @ /d in the equations for the shear at inclined cracking. In the case of slender
beams, inclined cracking causes immediate failure if no web reinforcement is provided. For
very slender beams, the shear required to form an inclined crack exceeds the shear corre-
sponding to flexural failure and the beam will fail in flexure before inclined cracking occurs.

B-Regions and D-Regions

Figure 68 indicates that there is a major change in behavior at a shear span ratio, a/d,
of about 2 to 2.5. Longer shear spans carry load by beam action and are referred to as
B-regions, where the B stands for beam or for Bernoulli, who postulated the linear strain
distribution in beams. Shorter shear spans carry load primarily by arch action involving in-
plane forces. Such regions are referred to as D-regions, where the D stands for discontinu-
ity or disturbed.®

St. Venant’s principle suggests that a local disturbance such as a concentrated load or
reaction will dissipate within about one beam depth from the point at which it is applied.
Based on this, it is customary to assume that D-regions extend about one member depth each
way from concentrated loads, reactions, or abrupt changes in section or direction as shown
in Fig. 6-11. The regions between D-regions can be treated as B-regions.

In general, arch action enhances the strength of a section. As a result, B-regions tend
to be weaker than corresponding D-regions, as shown by the lower line in Fig. 6-8c for
a/d greater than 2 to 2.5. If a shear span consists entirely of D-regions that meet or over-
lap, as shown by the left end of Fig. 6—11a, its behavior will be governed by arch action.
This accounts for the increase in shear strength when a/d is less than 2.

For longer shear spans, such as the right-hand end of the beam in Fig. 6-11a, the shear
strength is governed by the B-region and is relatively constant, as shown in Fig. 6—-8c. This
type of member is discussed in this chapter. D-regions are discussed in Chap. 18.

Inciined Cracking

Inclined cracks must exist before a shear failure can occur. Inclined cracks form in the two
different ways shown in Fig. 6-12. In thin-walled I beams in which the a/d ratio is small,
the shear stresses in the web are high while the flexural stresses are low. In a few extreme
cases and in some prestressed beams, the principal tension stresses at the neutral axis may
exceed those at the bottom flange. In such a case a web-shear crack occurs (Fig. 6-12a).

6-3 Behavior of Beams Failing in Shear 189



Fig. 611
B-regions and D-regions.
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D-Regions

B-Region D-Regions
(c)

The inclined cracking shear can be calculated as the shear necessary to cause a principal
tensile stress equal to the tensile strength of the concrete at the centroid of the beam.

In most reinforced concrete beams, however, flexural cracks oceur first and extend
more or less vertically into the beam, as shown in Fig. 6—4b or 6--12b. These alter the state
of stress in the beam causing a stress concentration near the head of the crack. In time, the
flexural cracks extend to become flexure-shear cracks (Fig. 6—12b), or flaxure-shear cracks
develop in the uncracked region over the tiexural cracks (Fig. 6—-4b).

Flexure-shear cracking cannot be predicted by calculating the principal stresses in an
uncracked beam. For this reason empirical equations have been derived to calculate the
flexure-shear cracking load.

The inclined cracks in a T beam loaded to produce positive and negative moments
are shown in Fig. 5-3. The slope of the inclined cracks in the negative moment regions
changes directions over the support because the shear force changes sign here. All of the
inclined cracks in this beam are fiexure-shear cracks.

Internal Forces in a Beam without Stirrups

The forces transferring shear across an inclined crack in a beam without stirrups are illustrated
in Fig. 6 -13. Shear is transferred across line A-B—C by V.__. the shear in the compression zone;

Shear in Beams
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V... the vertical component of the shaar transferred across the crack by interlock of the aggre-
gate particles on the two faces of the crack; and V,, the dowel action of the longitudinal rein-
forcement. Immediately after inclined cracking. as much as 40 to 60% of the total shear may
be carried by V,and V.., together.

Considering the portion D—E£-F below the crack, and summing moments about the
reinforcement at point E shows that ¥, and V, cause a moment about £ which must be equi-
librated by a compression force C;. Horizontal force equilibiium on section A-B-D-E
shows that T) = C| + (. and finally, T, and C| + €, must equilibrate the external mo-
ment at this section.

As the crack widens. V, decreases, increasing the fraction of the shear resisted by V,
and V,. The dowe! shear, ¥,. leads to a splitting crack in the concrete along the reinforce-
ment (Fig. 6—10a). When this crack occurs, V, drops to zero. When V, and V,; disappear, so
do V.. and |, with the result that all the shear and compression are transmitted in the
width AB above the crack. This may cause crushing of this region,

It is important to note also that if C; = 0, T, = 7). and as artesult, T, = C;. In other
words, the inclined crack has made the tensile force at point € a function of the moment at
section A—-B-D—E. This shift in the tensile force must be considered when detailing the bar
cutoff peints and when anchoring the bars.

The shear failure of a slender beam without stirrups is sudden and dramatic. This is
evident from Fig. 6-2. Although this beam had stirrups (which have broken and are hang-
ing down from the upper part of the beam), they were so small as to be useless.

Factors affecting the Shear Strength of Beams without
Web Reinforcement :

Beams without web reinforcement will fail when inclined cracking occurs or shortly after-
wards. For this reason the shear capacity of such members is taken equal to the inclined
cracking shear. The inclined cracking load of a beam is affected by five principal variables,
some included in design equations and others not.

Tensile Strength of Concrete. The inclined cracking load is a function of the tensile
strength of the concrete. The stress state in the web of the beam involves biaxial principal
tension and the compression stresses as shown in Fig. 6=30 (see Sec. 3-2). A similar biax-
ial state of stress exists in a split cylinder tension test (Fig. 3-9), and the inclined cracking
load is frequently related to the strength from such a test. As discussed earlier, the flexural
cracking which precedes the inclined cracking disrupts the elastic stress field to such an ex-
tent that inclined cracking occurs at a principal tensile stress, based on the uncracked sec-
tion, of roughly a third of £,,.

Longitudinal Reinforcement Ratio, p,. Figure 6-14 presents the shear capacities
of simply supported beams without stirrups as a function of the steel ratio, p, = A,/b.4d.
The practical range of p,. for beams developing shear failures is about 0.0075 to 0.025. In
this range. the shear strength is approximately

V.= 2Vf bd b (6-8)
(ACI Eq. 11-3)

and m S] units

V,=—*"—- N (6—-8M)
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as indicated by the horizontal dashed line in Fig. 6-14. This equation tends to overestimate
V. for beams with small steel percentages.®™®

When the steel ratio, p,,., is small, flexural cracks extend higher into the beam and open
wider than would be the case for large values of p,.. As a result, inclined cracking occurs earlier.

Shear Span-to-Depth Ratio, 2/d. The shear span-to-depth ratio, a/d or M/ Vd, has
some effect on the inclined cracking shears and ultimate shears of shear spans with a/d less
than 2. as shown in Fig. 6-8c. Such shear spans are “deep” shear spans (D-regions) and are
discussed in Chap. 18. For longer shear spans where B-region behavior dominates, @/ d has
little effect on the inclined cracking shear (Fig. 6-8¢) and can be neglected.

Size of Beam. As the overall depth of a beam increases, the shear stress at inclined
cracking tends to decrease for a given f/.p,, and a/d.° * As the depth of the beam in-
creases, the crack widths at points above the main reinforcement tend to increase (sce Sec.,
9-2). This leads to a reduction in aggregate interlock across the crack, resulting in earlier
inclined cracking. Collins and Mitchell®” quote tests of geometrically similar uniformly
loaded beams withour web reinforcement made from concrete with constant aggregate
size. A beam with ¢ = 24 in. failed at a shear of approximately V., = 2\@[9“.(!, while
beams with effective depths of 79 and 118 in. failed at V, [ess than I\Ebwd. In beams
with web reinforcement, on the other hand, the web reinforcement holds the crack faces to-
gether so that the aggregate interlock is not lost and the reduction in shear strength due to
size is not believed to occur.

Axial Forces. Axial tensife forces tend to decrease the inclined cracking load, while
axial compressive forces tend to increase it (Fig. 6—15). As the axial compressive force is
increased. the onset of flexural cracking is delayed and the flexural cracks do not penctrate
as far into the beam. As a result, a larger shear is required to cause principal Lensile stresses
equal to the tensile strength of the concrete,

This is only partially true in a prestressed concrete beam. The onset of flexural crack-
ing is delayed by the prestress, but ence flexural cracking occurs, the cracks penetrate about
the same height as in a comparable reinforced concrete beam. This is because C = Tina
prestressed beam just as it is in a reinforced concrete beam. The increase in inclined crack-
ing load for a prestressed concrete beam is largely due to the delay of flexural cracking.
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Fig. 6-15
Effect of axial loads on in-
clined cracking shear.

Fig. 6-16
Internal forces in a cracked
beam with stirrups.
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Behavior of Beams with Web Reinforcement

Due to inclined cracking, the strength of beams drops below the flexural capacity as shown
in Fig. 6—8b and c. The purpose of web reinforcement is to ensure that the full flexural ca-
pacity can be developed.

Prior to inclined cracking, the strain in the stirrups is equal to the corresponding
strain of the concrete. Since concrete cracks at a very small strain, the stress in the stirrups
prior to inclined cracking will not exceed 3 to 6 ksi. Thus stirrups do not prevent inclined
cracks from forming; they come into play only after the cracks have formed.

The forces in a beam with stirrups and an inclined crack are shown in Fig. 6-16. The
terminology is the same as in Fig. 6-13. The shear transferred by tension in the stirrups is
V.. Since V, does not disappear when the crack opens, there will always be a compression
force C; and a shear force V,; acting on the part of the beam below the crack. As a result,
T, will be less than T, the difference depending on the amount of web reinforcement. The
force T, will, however, be larger than T = M /jd based on the moment at C.

The loading history of such a beam is shown qualitatively in Fig. 6-17. The compo-
nents of the internal shear resistance must equal the applied shear as indicated by the upper
45° line. Prior to flexural cracking, all the shear is carried by the uncracked concrete.
Between flexural and inclined cracking, the external shear is resisted by V_, V,,,, and V,,
Eventually, the stirrups crossing the crack yield, and V, stays constant for higher applied
shears. Once the stirrups yield, the inclined crack opens more rapidly. As the inclined crack

Eq. 6-17b
|~ (AGI Eq. 11-8)

1} (ACI EqQ. 11-4) .

1500 1000 500 0 —500
Cempression Tension
Axial stress, NJAg (psi)
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widens, V. decreases further, forcing V, and V,. to increase at an accelerated rate until ei-

ther a splitting (dowel) failure occurs, or the compression zone crushes due to combined
shear and compression.

Each of the compenents of this process except V, have a brittle load—deflection re-
sponse. As a result, it is difficult to quantify the contributions of V_, V,, and V.. In design
these are lumped together as V,, referred to somewhat incorrectly as “the shear carried by
the concrete.” Thus the nominal shear strength, V,, is assumed to be

Vn = Vc‘ + V.\' (6_9)

Traditionally in North America design practice, V, is taken equal to the failure capacity of
a beam without stirrups, which, in turn, is taken equal to the inclined cracking shear as
suggested by the line indicating inclined cracking and failure for a/d from 2.5 to 6.5 in
Fig. 6—8c. This is discussed more fully in Sec. 6-5.

6-4 TRUSS MODEL OF THE BEHAVIOR OF SLENDER BEAMS FAILING

IN SHEAR

The behavior of beams failing in shear must be expressed in terms of a mechanical-
mathematical mode! before designers can make use of this knowledge in design. The
best model for beams with web reinforcement is the truss model. This is applied to slen-
der beams in this chapter and to deep beams in Chap. 18.

In 1899 and 1902, respectively, the Swiss engineer Ritter and the German engineer
Mérsch, independently, published papers proposing the truss analogy for the design of re-
inforced concrete beams for shear. These procedures provide an excellent conceptual
model to show the forces that exist in a cracked concrete beam.
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Fig. 618
Truss analogy.
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id

{b} Pin-jointed truss.

As shown in Fig. 6-18a, a beam with inclined cracks develops compressive and tensile
forces, C and 7, in its top and bottom “flanges.” vertical tensions in the stirrups and inclined
compressive forces in the concrete “diagonals’™ between the inclined cracks. This highly in-
determinate system of forces is replaced by an analogous truss. The simplest truss is shown
in Fig. 6-18b; a more complicated truss is shown in Fig. 6-19h.

Several assumptions and simphifications are needed to derive the analogous truss. In
Fig. 6-18b the truss has been formed by lumping all of the stirrups cut by section A—A into
one vertical member b—c and all the diagonal concrete members cut by section 8-B into
one diagonal member ¢ This diagonal member is stressed in compression to resist the
shear on section 8—B. The compression chord along the top of the truss is actuaily a force
in the concrete but 1s shown as a truss member. The compressive members in the truss are
shown with dashed lines to imply that they are really forces in the concrete, not separate
truss members. The tensile members are shown with solid lines.

Figure 6—1%a shows a beam with inclined cracks. The left end of this beam can be re-
placed by the truss shown in Fig. 6 -19b. In design. the ideal distribution of stirrups would
correspend to all stirrups reaching yield by the time the failure load is reached. It will be
assumed. therefore. that all the stirrups have yielded and each transmits a force of A, f,
across the crack, where A, is the area of the stirrup legs. When this is done, the truss be-
comes statically determinate. The truss in Fig. 6-19b is referred to as the plastic truss
model since we are depending on plasticity in the stirrups to make it statically determinate.
The beam will be proporiioned se that the stirrups yield before the concrete crushes, so that
it will not depend on plastic action in the concrete.

This truss model ignores the shear components V... V., and V, in Fig. 6-16. Thus It
does not assign any shear “to the concrete.” A truss analogy that includes such a term will
be discussed briefly later.

Construction of a Plastic Truss Model

The construction of a plastic truss model is illustrated by example in Fig. 6-19. In drawing
this truss, it is assumed that:
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Fig. 6-19
Construction of a plastic truss analogy.

1. The cracks are at an angle 6 to the horizontal, where @ is between 25 and 65°.
2. All the shear is resisted by stirrups.

3. The beam is on the verge of a simultaneous shear and flexural failure. Thus it is

assumed that all of the stirrups have yielded, each carrying a vertical force of
A.f. = 24 kips.

For the beam in Fig. 6-19 the moment at midspan is 432 ft-kips. Assaming that
jd=1{d — a/2)is 2t the compression and tension forces C and 7 at midspan are 216 kips,
as shown in Fig. 6-19b.

The vertical applied load of 72 kips must be transmitted by diagenal compression
struts (shown by dashed inclined lines) to enough stirrups (shown by solid vertical lines) to
equilibrate this force. Since each stirrup can resist a vertical force of 24 kips, three stirrups
are required 1o transmit 72 kips. The vertical applied load of 72 kips will be transmitted by
the three diagonals AB, AD, and AF to joints B. D, and F at the bottom of the truss. The
right-hand diagram in Fig. 6—17¢ shows the equilibrium of joint B. The vertical force in the
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stirrup isA, £, = 24 kips. The vertical component of the force in the diagonal AE must be
24 kips for equilibrinm, From the slope of AB, we find it must have a horizontal componens
of 6 kips. At midspan. the tension force T in the reinforcement at the bottom of
M jd = 216 kips. as shown earlier. Summing the horizontal forces at point B, we find that
the tension force between B and D is 216 — 6 = 210 kips. Similar calculations are carried
out at joints D and F.

The stirrup BC transmits the vertical force of A, f; = 24 kips to the top of the truss
at joint C, where it is resisted by the vertical component of the force in diagonal CH,
and so on.

The compression diagonals originating at the load (AB, AD, and AF) are referred to
as a compression fan. The number of such diagonals in the fan must be such that the entire
vertical load at A is resisted by the vertical force components in the diagonals meeting at 4.
A similar compression fan exists at the support R (RN, RL, RJ). Between the compression
fans is a compression field consisting of the parallel diagonal struts CH, EK, and GM. The
angle 4 of the compression field is determined by the number of stirrups needed to equili-
brate the vertical loads in the fans.

Each of the compression fans occurs in a D-region (discontinuity region). The com-
pression field is a B-region (beam region).

Figure 6-20a shows the crack pattern in a two-span continuous beamn. The corre-
sponding truss model is shown in Fig. 6-20b. Figure 6-21 is a close-up of the compression
fan over the intenor support after failure. The radiating struts in the fan can be clearly seen. Fig. 6-
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(b) Truss model.

Fig. 6-20
Crack pattern and truss model for a two-span beam. (From Ref. 6-10.}
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Fig. 6-21

Compression fan at interior support of the beam shown in Fig, 6-20b. (Photograph courtesy of

1. G. MacGregor.)

Simplified Truss Analogy

A statically determinate truss analogy can be derived using the method suggested by
Marti.® *© " Figures 6-22a and b show a uniformly loaded beam with stirrups and a truss
model incorporating all the stirrups and representing the uniform load as a series of concen-
trated loads at the panel points. The truss in Fig. 6—22b is statically indeterminate but can be
solved if it is assumed that the forces in each stirrup cause that stirrup to just reach yield, as
was done in the preceding paragraphs. For design, it is easier to represent the truss as shown
in Fig. 6-22c, where the tension force in each vertical member represents the force in all the
stirrups within a length jd/tan . Similarly, each inclined compression strut represents a
width of web equal to jd cos 6. The uniform load has been idealized as concentrated loads
of w{jd "tan #) acting at the panel points. The truss in Fig. 6-22c is statically determinate.
To draw such a truss it is necessary to choose 6. This will be discussed later.

Internal Forces in the Plastic Truss Model

If we consider the free-body diagram cut by section A~A parallel to the diagonals in the
compression field region in Fig. 6—23a, the entire vertical component of the shear force is
resisted by tension forces in the stirrups crossing this section. The horizontal projection of
section A-A 15 jd cot # and the number of stirrups it cuts is jd cor 6 5. The force in one stir-
rup is A, f,, which can be calculated from
, Vs
Ak = jd cor 8 (6--10)
The free body shown in Fig. 6-23b is cut by a vertical section between & and J in Fig.
6—19b. Here the vertical force, V, acting on the section must be resisted by an inclined com-
pressive force D = V sin @ in the diagonals (Fig. 6—23c). The width of the diagonals is
(Jd cos 6) as shown in Fig, 6-23b, and the average compressive stress in the diagonals is

-
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(¢} Statically determinate truss
Fig, 6-22
Truss model for design. (From Collins/Mitchell, PRESTRESSED CONCRETE STRUC-

TURES, (¢) 1990, p. 339. Reprinted by permission of Prentice Hall, Upper Saddle
River, New Jersey.)

1%
g = - 611
7z b,.jd cos 6 sin § ¢ Y

Making use of trigonometric identities, this becomes

4 1
g = o -{tan @ + —— 6-11b
Jeu b, jd( tan e) (6-110)
where b,, is the thickness of the web. If the web is very thin, this stress may cause the web
to crush as shown in Fig. 6-24.

The shear V on section B—B has been replaced by the diagonal compression force D
and an axial tension force N,, as shown in Fig. 6-23c.

1
N, = —— 6-12)
tan @ (
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Fig. 6-23
Forces in
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Fig. 624

Web crushing
(Photograph
MacGregor.)
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Fig. 6-23
Forces in stirrups and com-
pression diagonals.

Fig. 6-24

Web crushing failure.
(Photograph courtesy of 1. G.
MacGngor.)
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{a} Calculation of forces in stirrups.
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6-4

Calculation of stress in compression
diagonals.

Truss Model of the Behavior of Slender
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(c) Replacement of Vwith D and N,,.
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f it is assumed that the shear stress is constant over the height of the beam. the resultants
of D and N, act at midheight. As a result, a tensiie force of N, 2 acts in each of the top and
bottom chords as shown in Fig. 6—23b. This reduces the force in the compression chord
and increases the force in the tension chord.

In the compression fan regions the angle § varies and hence N, varies, approaching
zero immediately under the load. The distribution of forces in the tension chord and com-
pression chord of the truss in Fig. 6-19 are shown in Fig. 6-25. The force distribution, C
or 7 = M jd, due to flexure is shown by the dashed lines.

In the compression field region (F to R on the lower chord and A to J on the upper
chord), the force in the tension chord halfway between each panel point is larger than
T = M jd by the amount N, 2, and the force in the compression chord is smaller than
C = M/jd by the same amount, as shown by the short dashed lines in Fig. 6-25. For this
truss, cot & = 1.5 and hence N,./2 = 0.75V, which, for V = 72 kips, is 54 kips. At the end
of the beam it is necessary to anchor the longitudinal bars for a tension force of N, /2 even
though the moment is zero.

In the compression fan region under the load, the value of N,/2 in the tension chord
gradually reduces to zero as shown in Fig. 6-25a, so that at the point of maximum moment,
the force in the reinforcement is 7' = M/ jd. The shift in the tension force diagram is equiv-
alent to computing T from a moment diagram which has been shifted away from the points
of maximum moment by an amount (jd cot 8)/2. This is discussed more fully in Chap. 8.

Force in lower chord:

Actual
From truss

210 kips 216 kips
-~

I"

4
-

= /

{a) Tension in longitudinal reinforcement.

216 kips

/ 50 klps’,“ c

Force in upper chord:  / [~ R
Actuat = \

From truss Sy c=M"~ \

{b) Compression in upper chord.

Fig. 6-25 -

Forces in lower and upper chords of truss in Fig. 6-19.
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Measured and computed
forces in the top and bottom
reinforcement of the portion
of the beam modeled in Fig.
6--20b. (From Ref. 6-10)
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{a) Top chord force.

Observed

400

200

Steel Force, kN

-200

(&) Bottom cherd force.

Figure 6-26 compares the measured and computed forces in the top and bottom bars
in the beam shown in Fig. 6-20. The diagrams correspond to portion A—-B—C-D of the
beam modeled in Fig. 6-20b. The truss modei accurately predicted the bar forces.

Value of 8 in Compression Field Region

When a reinforced concrete beam with stirrups is loaded to failure, inclined cracks
initially develop at an angle_of 35 to 45° with the horizontal. With further loading, the
angle of the compression stresses may cross some of the cracks.*~*~'% For this to occur,
aggregate interlock must exist.

The allowable range of # is expressed at 0.5 < cot 8 =< 2.0(# = 26 to 64°) in the
Swiss code.®'" This range was selected to limit crack widths. A more restricted range,
2 = cot 8= 3(8 = 31105%) is allowed in the European Concrete Committee’s Model
Code.*"* Based on a compatibility analysis, Collins and Mitchell® ' proposed limits
which can be simplified to

1%
Ooin = 10+ 110( 1 ) de (6-13a)
’ Sfibgd) ©F

Omax = 90 — By deg (6—-13b)

In design, the value of # should be in the range of 25° = 8 = 65°. The choice of a
small value of @reduces the number of stirrups required (Eq. 6-10), but increases the com-
pression stresses in the web (Eq. 6-11) and increases &, and hence the shift in the moment
diagram. The opposite is true for large angles.

In the analysis of a given beam, as done in Figs. 6—19, 6-23, and 6-25, the angle
is determined by the number of stirmips needed w0 equilibrate the applied loads and reac-
tions. The angle should be within the limits given except in compression tan regions,

Crushing Strength of Concrete in the Web

The web of the beam will crush if the inclined compressive stress, £, from Egs, 6-11, ex-
ceeds the strength of the concrete. The compressive strength, f... of the concrete in a web
which has previously been cracked and which contains stirrups stressed in tension at an
angle to the cracks will tend to be less than £ as explained in Sec. 3-2, A reasonabie limit
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is 0.25]i. for 8 = 30°, increasing to 0.45f(‘. for § = 45°. This problem is discussed more
fully in Ref. 6—13 and in Sec. 18-2.

Compression Field Theory and Modified Compression
Field Theory

The truss analogy represents the beam as & truss with individual stirrups or ties represent-
ing groups of stirrups, and individual compression struts, each of which represents a
length of web. In the compression field theory, originally presented by Collins and
Mitchell,'? the web of the beam is represented as a continuum consisting of diagonally
cracked concrete crossed by stirrups. The forces in the stirrups are given by Eq. 6-10. The
forces in the top and bottom chords are *= (M /jd) from fiexure plus N, /2 from Eq. 612,
The compressive stress in the web comes from Eq. 6-11. The web is assumed to crush
when these stresses reach the compressive strength of cracked concrete. The compressive
strength of concrete with cracks parallel to the direction of the compressive forces is dis-
cussed in Sec. 3-2, where it is shown to be a function of the width of the cracks, which,
in turn, is expressed in terms of the average strain perpendicular to the direction of the
cracks, €, taken over a gauge length which includes several cracks. When design is car-
ried out using the compression field theory, the crushing strength of the web is expressed
using Eq. 3-13, which is a function of €;. Methods of computing €, are given in Refs. 67,
6-13, and 6-14.

The modified compression field theory is similar to the compression field theory
except that a friction or aggregate interlock stress is transferred across the inclined
cracks in the web. The magnitude of these stresses is a function of the width of the
cracks, which in turn is a function of the crack spacing and reinforcement spacing. The
theory is explained in detail in Refs. 67 and 6—14. In addition to giving a realistic pre-
diction of the behavior and strength of beams failing in shear, the modified compression
field theory is important because it gives a physical explanation for the “shear carried by
the concrete,” V..

6-5 ANALYSIS AND DESIGN OF REINFORCED CONCRETE BEAMS
FOR SHEAR—ACI CODE

204

In the ACI Code, the basic design equation for the shear capacity of slender concrete beams
{beams with shear spans containing B-regions) is

d)vn = Vu (6_14)
(ACI Eq. 11-1)}

where V, is the shear force due to the factored loads, ¢ is a strength reduction factor, taken
equal to 0.85 for shear, and V,,, the nominal shear resistance, is

V.=V +V, (6-9)
(ACI Eq. 11-2)

where V, is the shear carried by the concrete and V| is the shear carried by the stirrups.

A shear failure is said to cccur when one of several shear limit states is reached. The
following paragraphs list the principal 1imit states and describe how these are accounted for
in the ACI Code.
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Shear Failure Limit State: Beams without Web
Reinforcement

Slender beams without web reinforcement will fail when inclined cracking occurs or
shortly afterward. For this reason, the shear strength of such members is taken equal to the
inclined cracking shear. The factors affecting the inclined cracking load were discussed in
Sec. 6-3.

Design Equations for the Shear Strength of Members without
Web Reinforcement

In 1962, the ACI-ASCE Committee on Shear and Diagonal Tension®'” presented the follow-

ing equation for calculating the shear at inclined cracking in beams without web reinforcement:
2500p,V,d

Vv, = (1.9\/E + Az”i-)b“d (6-15)

. (ACI Eq. 11-5)

The derivation of this equation followed two steps. First, a rudimentary analysis of the
stresses at the head of a flexural crack in a shear span was carried out to identify the sig-
nificant parameters. Then the existing test data were statistically analyzed to establish the
constants, 1.9 and 2500, and to drop other terms. The data used in the statistical analysis in-
cluded “short” and “slender” beams, thereby mixing data from two different behavior
types. In addition, most of the beams had high reinforcement ratios, p,.. More recent stud-
ies have suggested that Eq. 6—15 underestimates the effect of g,, for beams without web re-
inforcement and is not entirely correct in its treatment of the variable a /d, expressed as
V.d/M, in Eg. 6-15.

For the normal range of variables, the second term in the parentheses in Eq. 6-15
will be equal to about 0.1V/f? . If this is substituted into Eq. 6—15, Eq. 6-8 results:

V.=2Vf b.d (6-8)
(ACIEg. 11-3)

In 1977, the ACI-ASCE Committee on Shear and Diagonal Tension recommended
that Eq. 6-15 no longer be used.® For this reason it will not be used in this book.

Based on statistical studies of beam data for slender beams without web reinforce-
ment, Zsutty**® derived Eq. 6—16. This equation much more closely models the actual ef-
fects of £/, p,. and a/d than does Eq. 6-15.

13

d k
u = 59(f M p“.—-) psi (6-16)
a

For design, the ACI Code presents both Egs. 6-8 and 615 for computing V, (ACI
Secs. 11.3.1.1 and 11.3.2.1).
For axially loaded members, the ACI Code modifies Eq. 6-8 as follows:

Axial compression {ACI Sec. 11.3.1.2):

Nu ot
V., = 2(1 + ﬁ)vf{. b,d (6-17a)

20004, (ACI Eq. 11-4)

Axial tension (ACI Sec. 11.3.2.3):
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N
V.= 2(1 + 500‘:4)\/;? b.d (6—17b)
g (ACI Eg. 11-7)

In both of these equations, ¥, is positive in compression and V£, N, A4,, 500, and 2000
all have units of psi. Axially loaded members are discussed more fully in Sec. 6-8.
In 81 units. Eqgs. 6-8. 6—17a. and 6-17b become

VL
Ve = g‘ b,.d (6—8M)
For axial compression:
N, \(VE: )
V.=11+ ~ib.d 6-17
‘ ( 14Ag)( 6 ) (6-17aM)
For axial tension:
03N, \( V.
(i SVE)
A, 6

where N, is positive in compression and \/f_c',Nu/ A, 14, and 0.3 all have units of MPa.
Shear Failure Limit States: Beams with Web Reinforcement

1. Failure due to yielding of the stirrups. In Fig. 6-16 shear was transferred
across the surface A—B—C by shear in the compression zone, V,,, the vertical component of
the aggregate interlock, V., dowel action, V,, and stirrups, V,. In the ACI Code V, V,,
and V, are lumped together as V., which is referred to as the “shear camied by the con-
crete.” Thus the nominal shear strength, V,, is assumed to be

V.=V, +V, (6-9)
(ACI Eq. 11-2)

The ACI Code further assumes that V, is equal to the shear strength of a beam without
stirrups, which, in turn, is taken equal to the inclined cracking load as given by Eq. 68, 6-15,
or 6—17. It should be emphasized that taking V_equal to the shear at inclined cracking is an em-
pirical observation from tests, which is approximately true if it is assumed that the horizontal
projection of the inclined crack is d, as shown in Fig. 6-27. If a flatter crack is used so that (jd
cot 0) is greater than d. a smaller value of ¥, must be used. For the values of # approaching 30°
which are used in the plastic truss model, V, approaches zero, as assumed in that model.

Figure 6--27a shows a free body between the end of a beam and an inclined crack.
The horizontal projection of the crack is taken as , suggesting that the crack is slightly flat-
ter than 45°. If 5 is the stirrup spacing, the number of stirrups cut by the crack is d/s.
Assuming that all the stirrups yield at failure, the shear resisted by the stimmups is

Afyd (6-18)
3 (ACIEq. 11-15)

V, =

This is equivalent to Eq. 6-9 derived from the truss model if @ = 45° and jd is replaced by d.

If the stirrups are inclined at an angle, a, to the horizontal, as shown in Fig. 6-27h,
the number of stirrups crossing the crack is approximately d(1 + cot a)/s, where s is the
horizontal spacing of the cracks. The inclined force, F, is

Shear in Beams

Fig. 6-27
Shear resi.
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Shear resisted by stirrups.

(&) Vertical stirrups.

{t) Inclined stirrups.

d {1 + cot a)] (6-19)

5

F=Am[

The shear resisied by the stirrups, V., 1s the vertical component of F, which is F sin «,
so that

f
vV, = Aufy(sina + c'usa')( (620
s (ACI Eq. 11-16)

Figures 6-27 and 6-16 also show that the inclined crack affects the tension force, T,
making it larger than the moment diagram would suggest. This is immediately obvious
from the truss analogy, but is less obvious in the ACI design method.

If V, exceeds ¢V, stirrups must be provided so that

V., = ¢V, (6-14)
(ACI Eq. 11-1)

where V, is given by Eq. 6--9. In design this is generally rearranged to the form

V.
V.=V, — &V, or V,-Zg—‘vﬁ
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Introducing Eq. 6-18 and rearranging gives the stirrup spacing:

A fod
s Vb —V. (6-21)
This equation applies for vertical stirrups.

Stirrups are unable to resist shear unless they are crossed by an inclined crack. For
this reason, ACI Sec. 11.5.4.1 sets the maximum spacing of vertical stirrups as the smaller
of d:2 or 24 in., so that each 45° crack will be intercepted by at least one stirrup (Fig.
6—28a). The maximum spacing of inclined stirrups is such that a 45° crack extending from
midheight of the member to the tension reinforcement will intercept at least one stirrup, as
shown in Fig. 6--28b.

IfV, /¢ — V.=V, exceeds 4\/f_r’b“.d, the maximum allowable stirrup spacings are
reduced to half those just described. For vertical stirrups, the maximum is the smaller of
d /4 or 12 in. This is done for two reasons. Closer stirrup spacing leads to narrower inclined
cracks and also, the closer stirrup spacing provides better anchorage for the lower ends of

. the compression diagonals.

In a wide beam with stirrups around the perimeter the diagonal compression in the
web tends to be supported by the bars in the comers of the stirrups, as shown in Fig. 6-29a.
The situation is improved if there are more than two stirrup legs, as shown in Fig. 6-29h,
ACI Commentary Sec. R11.5.6 suggests that the transverse spacing of stirrup legs in wide
beams should be limited to a fraction of the width by placing several overlapping stirrups,
The CEB-FIB Model Code 1990°'* suggests that the maximurm transverse spacing of stir-
rup legs should be limited to 24/ 3 or 32 in., whichever is smaller.

2. Shear failure initiated by failure of the stirrup anchorages. Equations 6—13
and 6-21 are based on the assumption that the stirrups will yield at ultimate. This will be
true only if the stirrups are well anchored. Generally, the upper end of the inclined crack
approaches very close to the compression face of the beamn, as shown in Fig. 6—4 or 6-30.
At ultimate, the stress in the stirrups approaches or equals the yield strength, f,, at every
point where an inclined crack intercepts a stirrup. Thus the portions of the stirrups shown

Stirrup Crack
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L

{a) Vertical stirrups.

| Y

Fig. 6-28 ‘ Max s = d l
Maximum spacing of stir-

Tups. (t) Inclined stirrups.
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Flow of diagonal compression
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Fig. 6-30
Anchorage of stirrups.

{a) Widely-spaced stirrup legs (b} Closely-spaced stirrup legs
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shaded in Fig. 6-30 must be able to anchor f,. For this reason, ACI Sec. 12.13.1 requires
that the stirrups extend as close to the compression and tension faces as cover and bar spac-
ing requirements permit, and in addition, specifies certain types of hooks to anchor the stir-
rups. The ACI Code requirements for stirrup anchorage are illustrated in Fig. 6-31:

(a) ACI Sec. 12.13.3 requires that each bend away from the ends of a stirrup en-
close a longitudinal bar as shown in Fig. 6-31a.

{b) For No. 5 bar or D31 wire stirrups and smaller with any yield strength, ACI
Sec. 12.13.2.1 allows the use of a standard hook around longitudinal reinforcement
without any specified embedment length. The hooks may be 90°, 135°, or 180°, as
shown in Fig. 6-31b. Either 135° or 180° hooks are preferred.

{c) For No. 6,7, and 8 stirrups with f, of 40,000 psi, ACI Sec. 12.13.2.1 allows the
details shown in Fig. 6-31b.

(d) For No. 6,7, and 8 stirrups with f,, greater than 40,000 psi, ACI Sec. 12.13.2.2 re-
quires & standard hook around a longitudinal bar plus embedment between midheight
of the member and the outside of the hook of at least 0.014d, , / V..

(e) Requirements for welded-wire fabric stirrups formed of sheets bent in U shape
or vertical flat sheets are iilustrated in ACI Commentary Fig. 12.13.2.3.

(i} In deep members, particularly where the depth varies gradually, it is sometimes
advantageous to use lap spliced stirrups described in ACI Sec. 12.13.5 and shown
in Fiz. 6-31¢. This type of stirrup has proven unsuituble in seismic areas.

(g) ACI Sec. 7.11 requires closed stirrups in beams with compression reinforce-
ment, beams subjected to stress reversals, or beams subjected to torsion. ACI Sec.
7.13.2.2 requires closed stirrups in all perimeter or spandrel beams. Closed stirrups
may be constructed as shown in Fig. 6-31d. Such a stirrup would not fulfil the
force transfer intended in ACI Secs. 7.13.2.2 and 7.13.2.3.

Standard hooks and the development length €, are discussed in Chap. 8 of this book and
ACI Secs. 7.1.3 and 12.2.
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Fig. 6-31
Stirrup detailing require-
ments.
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R

T Stirrups as close t¢ compression and
tension faces as cover and spacing

requirements permit.

< I Not permitted
Since tension in the stirrup

Between anchored ends, each bend will straighten the bend
shall enclose a longitudinal bar. pulling the shaded piece off.

(U

{a) General reguirements.

Standard stirrup hook, ACI Sec. 7.1.3, Must enclose a bar, ACI Sec. 12.132.1

' i -/

{b) Stirrup ancherage requirements for No. 5 and smaller bars as per ACI| Secs.
7.1.3 and 12.13.2.1.

Not less than 1.3¢;

(c) Stirrup anchorage as (d) Two piece closed stirrup
per ACl Sec. 12.13.5. —Beams with torsion or compression
reinforcement. ACI Secs. 7.11 and 11.6.4.1

Standard stirrup hooks are bent around a smatler-diameter pin than normal bar bends.
Very high strength steels may develop small cracks during this bending operation. These
cracks may in turn lead to fracture of the bar before the yield strength can be developed. For
this reason, ACI Sec. 11.5.2 limits the yield strength used in design calculations to 60,000
psi, except for welded-wire fabric stirrups, for which the limit is 80,000 psi. This is justified
because the bend test for the wire used to make welded-wire fabric is more stringent than
that for bars. In addition, welded-wire stirrups tend to be more closely spaced than stirmups
made from reinforcing bars and give better control of inclined crack widths.
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Because the anchorage length available between the inclined crack and the end of
the bar is generally very short, the author recommends the use of Grade 40 steel in stirrups
except in very large beams. This has the additional advantage that the stirrup spacing may
be reduced somewhat, which, in turn, helps prevent excessively wide inclined cracks.

3. Serviceability failure due to excessive crack widths at service loads. Wide in-
clined cracks in beams are unsighily and may allow water to peretrate the beam, possibly
causing corrosion of the stirrups. In tests of three similar beams,* "’ the maximum service
ioad crack width in a beam with the shear reinforcement provided entirely by bent-up bars
was 150% of that in a beam with vertical stirrups. The maximum service load crack width
in a beam with inclined stirrups was only 80% of that in the bearn with vertical stirrups. In
addition, the crack widths were less with closely spaced small-diameter stirrups than with
widely spaced large-diameter stirrups.

ACI Sec. 11.5.6.8 attempts to guard against excessive crack widths by limiting the
maximum shear that can be transmitted by stimmups to V. = S\ffz.b,va‘. In a beam with
Vitmax)» the stirrap stress will be 34 ksi at service loads, corresponding to a maximum crack
width of about 0.014 in.** Although this limit generally gives satisfactory crack widths, the
use of closely spaced stirrups and horizontal steel near the faces of beamn webs is also ef-
fective in reducing crack widths.

4. Shear failare due to crushing of the web. As indicated in the discussion of the
truss analogy, compression stresses exist in the compression diagonals in the web of a
beam. In very thin-walled beams, these may lead to crushing of the web. Since the diago-
nal compression stress is related fo the shear stress, v, a number of codes limit the ultimate
shear stress to 0.2 to 0.25 times the compression sirength of the concrete. The ACI Code
limit on V, for crack control (V) = 8\/ij\,,0') provides adequate safety against web
crushing in reinforced concrete beams.

5. Shear failure initiated by failure of the tension chord. The truss analogy
shows that the force in the longitudinal tensile reinforcement at a given point in the shear
span is a function of the moment at a section located approximately & closer to the nearest
section of maximum moment. Partly for this reason, ACI Sec. 12.10.3 reguires that flexural
reinforcement extend the larger of 4 or 12 bar diameters past the point where it is no longer
needed (except at the supports of simple spans or at the ends of cantilevers).

Minimum Web Reinforcement

Because a shear failure of a beam without web reinforcement is sudden and brittle and
because shear failure loads vary widely about the values given by the design equations,
ACI Sec. 11.5.5.1 requires a minimum amount of web reinforcemeat to be provided if
the applied shear force, V,, exceeds half of the factored inclined cracking shear,
H(0.5V,), except in:

1. Slabs and footings
2. Congcrete joist construction

3. Beams with a total depth not greater than 10 in. (250 mm), 25' times the thickness
of the flange, or one-half the width of the web, whichever is greatest

The exceptions each represent a type of member in which load redistribution can occur
across the width of the member, or in the case of joist floors, to adjacent members.

ACI Sec. 7.13.2.2 requires closed stirrups or stirrups with a 135° bend around top
steel in all perimeter or spandrel beams. These, acting with the top and bottom reinforce-
ment in the perimeter beams, provide a tension tie around the building to limit the extent of
collapse arising from the failure of an interior beam.
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Where required. the minimum web reinforcement shall be at least (ACI Sec.
11.535.3)

506,
Au!’min) - f (6”22)

4 (ACIEqg. 11-13)

This is equivalent to providing web reinforcement to transmit a shear stress of 50 psi. For
Ji = 2500 psi, 50 psi is half of the shear stress at inclined cracking from Eq. 6-8.
In ST units, Eq. 6-22 becomes

bus
3f.

For beams with /! greater than 10,000 psi, \/E is limited to 100 psi unless the min-
imum web reinforcement provided satisfies Eq. 6-23 (ACI Sec. 11.1.2.1).

Au(min) = (6 _22M)

fi (50,5 _ 150b,s
Au(min) = \ =
5000\ f; £
In seismic regions web reinforcement is required in all beamns since V, is taken equal

to zero if earthquake-induced shear exceeds half the total shear (see Sec. 19-6 and ACI
Sec. 21.7.2.1).

{6-23)

Strength Reduction Factor for Shear

The strength reduction factor, ¢, for shear and torsion is 0.85 (ACI Sec. 9.3.2.3). This
is lower than for flexure because shear failure loads are more variable than flexure failure
loads. Special strength reduction factors are required for shear in some members subjected
to seismic loads (see Sec. 19-5 and ACI Sec. 9.3.4).

Location of Maximum Shear for the Design of Beams

In a beam loaded on the top flange and supported on the bottom as shown in Fig. 6-32a,
the closest inclined cracks that can occur adjacent to the supports will extend outward from
the supports at roughly 45°. Loads applied to the beam within a distance, 4, from the sup-
port in such a beam will be transmitied directly to the support by the compression fan
above the 45° cracks and will not affect the stresses in the stirrups crossing the cracks
shown In Fig. 6-32. As aresult, ACI Sec. 11.1.3.1 states that

For nonprestressed members sections located less than a distance  from the face of the sup-
port may be designed for the same shear, V,,, as that computed at a distance d.

This is permitted only when:

1. The support reaction, in the direction of the applied shear. introduces compression
into the end regions of a member.

2. No concentrated load cccurs within 4 from the face of the support.

Thus for the beam shown in Fig, 6-32a, the values of V, used in design are shown shaded
in the shear force diagram of Fig. 6-32b.

This allowance must be applied carefully since it is not applicable in all cases. Figure
6-33 shows five other typical cases that arise in design. If the beam shown in Fig. 6-32
were loaded on the fower flange as shown in Fig. 6-33a, the critical section for design
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ioad close to support.

Application of ACI Sec. 11.1.3.

would be at the face of the support, since loads applied within d of the support must be
transferred across the inclined crack before they reach the support.

A typical beam to column joint is shown in Fig. 6-33b. Here the critical section for
design is d away from the section as shown.

If the beam is supported by a girder of essentially the same depth as shown in Fig. 6-33c.
the compression fans that form in the supported beams will tend to push the bottom off the

6-5 Analysis/Design of Reinforced Concrete Beams for Shear/AC! Code 213



214

supporting beam. The critical sections in the supported beams can be taken at d from: the end
of the beam provided that “hanger reinforcement” is provided to support the reactions from
the compression fans. The design of hanger reinforcement is discussed in Sec. 6—6.

Generally. if the beam is supported by a tensile force rather than a compressive force,
the critical section will be at the face of the support and the joint must be carefully detailed
since the crack will extend into the joint as shown in Fig. 6-33d.

Occasionally, a significant part of the shear at the end of the beam wili be caused by
a concentrated load acting less than d from the face of the column as shown in Fig. 6-33e,
In such a case, the end portion of the beam should be considered to act as a deep beam with
respect to shear and flexure. and the concentrated load must be considered. The design of
deep beams is discussed in Chap. [8.

Shear at Midspan of Uniformly Loaded Beams

In a normal building, the dead and live loads are assumed to be uniform loads. Although
the dead load is always present over the full span, the live load may act over the full span,
as shown in Fig. 6-34c, or over part of the span, as shown in Fig. 6-34d. Full uniform load
over the full span gives the maximum shear at the ends of the beamn. Full uniform load over
half the span plus dead load on the remaining half gives the maximum shear at midspan.
The maximum shears at other points in the span are closely approximated by the shear
Jorce envelope resulting from these cases (Fig. 6-34e).
The shear at midspan due to a uniform live load on half the span is

Il€

Vu{midspan) = ——Ié— (6 724)

This can be positive or negative. Although this has been derived for a simple bearn, it is ac-
ceptable to apply Eq. 6-24 to continuous beams also.

High-Strength Concrete

Tests suggest that the inclined cracking load of beams increases less rapidly than \/j_":_.in—
creases for f) greater than about 8000 psi. This was offset by an increased effectiveness of
stirrups in high-strength concrete beams.™ "™ *'® Other tests suggest that the required amount
of minimum web reinforcement increases as f, increases. For these reasons ACI Sec. 11.1.2
limits \/f_: to 100 pst unless the amount of minimum web reinforcement satisfies Eq. 6-23.

Lightweight Concrete

The inclined cracking load of beams made of lightweight concrete is generally tess than
that of beams made of normal sand and gravel concrete. ACI Sec. 11.2 requires that the val-
ues of V, be reduced in either one of two ways:

1. Substitute £, /6.7 for Vf/ in Eqs. 6-8,6-15, and 617, where £, is the split cylin-
der tensile strength of the concrete and where £, /6.7 shall not exceed f:,.

2. Muitiply V, from Eqs. 6-8, 615, and 6-17 by 0.75 if the concrete is made with
lightweight sand and lightweight gravel, or by 0.85 if the concrete is made with nor-
mal sand and lightweight gravel.

Comparison of the Truss Model and the ACI Procedure

For beams with large amounts of web reinforcement and failing at high shear stresses, the
behavior closely approaches that predicted by the plastic truss model (see Fig. 6-26). On the
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other hand, the truss model predicts zero shear strength for beams without web reinforce-
ment, and tends to underestimate the shear capacity for beams with V, less than about V.,
Modifications of the plastic truss model that include a V, term that decreases from
V.= 2\/E forV, = 2\/ff 1o zero when V, = 6\/f('. are incorporated in some codes.*™"'
This empirical fix solves the problem mentioned in the preceding sentence.

The truss model emphasizes two aspects of shear behavior which are frequently
overlooked in the ACI procedure. These are the shift in the tensile force diagram, which is
of great importance in detailing the longitudinal steel as discussed in Chap. 8. and the need
for adequate anchorage of the stirrups in the top and bottem flanges.

Examples of the Design of a Beam for Shear

EXAMPLE 6-1 Design of Vertical Stirrups in a Simply Supported Beam

»

Figure 6-34b shows the cross section of a simply supported T beam. This beam supports a uni-
formly distributed service (unfactored) dead load of 1.3 kips/ft, including its own weight and a uni-
formly distributed service live load of 1.6 kips/ft. Design vertical stirrups for this beam. The concrete

\

6-5 Analysis/Desigr of Reinforced Concrete Beams for Shear/AC! Code 215



sirength is 4000 psi, the yield strength of flexural reinforcement is 60,000 psi, and that of the stirrups
is 40,000 psi. It is assumed that the longitudinal bars are properly detailed to prevent anchorage and
flexural failures. A complete design example including these aspects is presented in Chap. 10.

1. Compate the factored shear force diagram
Total factored load:
w, = 1.4 X 1.3 kips/ft + 1.7 X 1.6 kips/ft
= 4.54 kips/ft

Factored dead load:
wp, = L4 X 1.3 kips/ft = 1.82 kips/ft

Three loading cases should be considered: Fig. 6—-34c, Fig. 6-34d, and the mirror opposite of
Fig. 6-34d. The three shear force diagrams are superimposed in Fig. 6-34e. For simplicity we shall
approximate the shear force envelope with straight lines and design simply supported beams for
V, = w,£/2 at the ends and V, = w;,€/8 at midspan, where w, is the total factored live and dead
load and w,,, is the factored live load. From Eq. 6-14,

V. = ¢V,

Setting these equal, the smallest value of V, that satisfies Eq. 6-14 is

V, = —=
¢

This is plotted in Fig. 6-34f.
Since this beam is loaded on the top and supported on the bottor, the critical section for shear
is located at = 2 ft from the support. From Fig. 6-34f and similar triangles the shear at d from the

support is

V, ) 2ft ;
> at d = 80.1 kips — Bn (80.1 — 12.0) kips

= 71.0 kips

Therefore,

v,
:; atd = 71.0 kips and min. V, = 71.0 kips

2. Are stirrups required by ACI Sec. 11.5.5.1? No stirrups are required if V, = V,./2,

where
V.=2Vfbd (6-8)
R . 24 in.
=2v4000 psi X 12in. X 1000 (ACI Eq. 11-3)

= 36.4 kips
Since V, = 71.0 kips exceeds V./2 = 8.2 kips, stirrups are required.
3. Check the anchorage of stirrups and maxinum spacing, Try No. 3 double-leg stirrups,
f; = 40,000 psi:
A,=2x01lin" =0.22in?

(a) Check the anchorage of the stirrups. Since the diameter of the stirmups is less than
No. 6, ACI Sec. 12.13.2.1 states that the stirrups can be anchored by a 90° stirrup hook
around a bar. Provide a No. 4. bar in the upper corners of the stirrups to anchor them.
- (b) Determine the maximum spacing.
Based on the beam depth: ACI Sec. 11.5.4.1 sets the maximum spacing as the smaller of
0.5d = 12in. or 24 in. ACI Sec. 11.5.4.3 requires half this spacing if V, exceeds
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13,

V. + 4Vl b.d = 6Vf b,d = 109 kips
Since the maximum V,, is less thar 109 kips. the maximum spacing based on the beam depth
is 12 in.
Based on minimum A, (Eq. 6-22, ACI Eq. 11-14):

50,5

vimin) T
hS

Rearmranging gives
_ A
Smax 50b“

~ 0.221in. * X 40,000 pst
50psi X 12in.

= 14.7 in.

Therefore, the maximum spacing based on the beam depth governs. Maximum s = 12in.

4. Compute the stirrup spacing required to resist the shear forces. For vertical stirmups,
from Eq. 6-21,

Afrd

5 = -
Vi = V.

where V, = 36.4 kips,
At d from the support, V,,/ ¢ = 71.0 kips and

_ 0.224in.* % 40,000 psi % 24 in.
(71.0 — 36.4) X 1000 Ib

= 6.10in.

Use s = 6 in. at & from the support. Because this is a reasonable spacing, we can use No. 3
double-leg stirrups as assumed. The stirrup spacing will be changed to 8 in. at the point where this is
possible and then to the maximum spacing of 12 in. The intermediate spacings selected are up to the
designer. Generally, no more than three different spacings are used, and generally, spacings are var-
ied in multiples of 2 or 3 in.

Compute V, /¢ where s = 8 in. Rearranging Eq. 6-21 gives

Vo . At + Vv,
& §
022 X 40,000 X 24
8

+ 36,400 = 62.800 b (6-25)

= 62.8 kips
From Fig. 6-34f and similar triangles, this shear occurs at

_801-628
YT 801 - 120
= 3.8l ft = 45.7 in. from the end of the beam
Compute V, /¢ where s = 12 in. From Eq. 6-25,

V,  0.22 X 40,000 X 24
Vo 022 X 40,000 X 24 | 36 400 = 54,000 1o

¢ 12
= 54 kips
This occurs at
80.1 — 540
x=————15X
T 7801 - 120 12

= 69.0 in. from the end of the beam
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Fig. 6-35
Stirrups in beam—Example
6-1,

Stirrups must be continued to the point where V, /¢ = V-2 = 18.2 kips. This occurs at

801 — 182

TS X 12
g0.1 — 12,0

il

164 in. from the end of the beam

To summarize. s = 6 in. to 45.7 ir, from the support, s = 8 in. from that point to 69 in. from
the support, and s = 12 in. from that point to 164 in. from the support. In choosing the numbers of
stirrups at each spacing it is assumned that each stimup reinforces a length of web extending 5.2 on
each side of the stirrup. For this reason the first stirrup is placed at 5 *Z from the support. We shall se-
lect the foilowing spacings:

lat3in

7 at 6 in. {extending to 3 + 42 = 45 in. from the support)

3 at 8 in. (extending to 45 + 24 = 69 in. from the support)

8 at 12 in. (extending to 69 + 96 = 165 in. from the support)

This leaves a 30-in. length at the center without stirrups. Although not required by the Code,
we shall place an additional stirrup at each end. The final selection is: Use No. 3 Grade 4¢ double-
leg stirrups: 1 at 3 in., 7 at 6 in., 3 at 8 in,, and 9 at 12 jn., each end. The total number of stirrups
in half the beam is 20. Another 20 are required in the other half at similar spacings. The beam is
drawn to scale in Fig. 6--35. The cross section is shown in Fig. 6-34b.

2 No. 4 bars in
corners of stirrups

3in. 7@ 6 in. 3@ 8 in. 9@ 12 in, / ¢‘

2 rd

L

T No. 3 U, Grade 40 stirrups

EXAMPLE 6-1M Design of Vertical Stirrups in a Simply Supported Beam—

Sl Units
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Figure 636 shows the clevation and cross section of a simply supported T beam. This beam
supports a uniformly distributed service (unfactored) dead load of 20 kN/m, including its own
weight, and a uniformly distributed service live load of 24 kN/m. Design vertical stirrups for this
beam. The concrete strength is 25 MPa, the yield strength of the flexurat reinforcement is 400 MPa,
and the yield strength of the stirrups is 300 MPa.

1. Compute the design factored shear force diagram. Total factored load
w, = 14 X 20kN/m + 1.7 X 24 kN/m
= 068.8 kN/m

Factored dead load:
wp, = 1.4 X 20kN/m = 28.0kN/m

Three loading cases should be considered: Fig. 6-36¢, Fig. 6-36d, and the mirror opposite of
Fig. 6-36d. The three shear force diagrams are superimposed in Fig. 6—36e¢. For simplicity, we shall
approximate the shear force envelope with straight lines and design simply supported beams for
V, = w,£,2 at the ends and V, = w,;,£/8 at midspan, where w, is the total factored live and dead
load and wy,, is the factored live load, From Eq. 614,

V= ¢V,
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Seiting these equal, the smallest value of V, that satisfies Eq. 614 is

v Ve
H ¢
This is plotted in Fig. 6-36f,
Sinee this beam is loaded on the top flange and supported on the bottom fange, the critical sec-
tion 1s located at d = 0.61 m from the support. From Fig. 6-36{ and similar triangles, the shear at
from the support is

g 0.61
natd = 405 KN — ——- (405 — 60)
5m

1

= 363 kN
Therefore, V,/ ¢ at = 363 kN and min. V, = 363 kN.
2. Avre stirrups required by ACI Sec. 11.5.5.17 No stirrups are required if ¥V, = V.. 2, where

i

_ Viihd
<6
/25 MPa X X
_ V23 MPa X 300mm_X 610 mm (6-8M)
6 > 1000
= |53 kN
6-5 Analysis/Design of Reinforced Concrete Beams for 