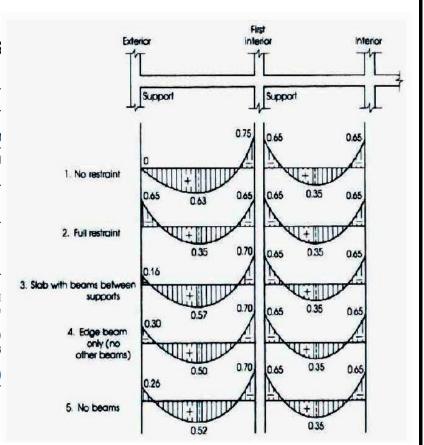
REINFORCED CONCRETE II 1st EXAM TABLES SHEET


TABLE 9.5(a) — MINIMUM THICKNESS OF NONPRESTRESSED BEAMS OR ONE-WAY SLABS UNLESS DEFLECTIONS ARE CALCULATED

	Minimum thickness, h				
	Simply supported	One end continuous	Both ends continuous	Cantileve	
Member	Members not supporting or attached to partitions or othe construction likely to be damaged by large deflections				
Solid one- way slabs	<i>ℓ</i> /20	ℓ/24	ℓ/28	ℓ/10	
Beams or ribbed one-way slabs	<i>U</i> 16	<i>ℓ</i> /18.5	<i>ℓ</i> /21	<i>l</i> /8	

Notes

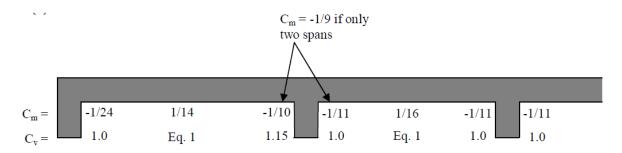
Values given shall be used directly for members with normalweight concret and Grade 60 reinforcement. For other conditions, the values shall be modifie as follows:

- a) For lightweight concrete having equilibrium density, w_c , in the range of 9 to 115 lb/ft³, the values shall be multiplied by $(1.65 0.005w_c)$ but not les than 1.09.
- b) For f_v other than 60,000 psi, the values shall be multiplied by $(0.4 + f_v/100,000)$

CODE

TABLE 9.5(c)—MINIMUM THICKNESS OF SLABS WITHOUT INTERIOR BEAMS*

	Without drop panels [‡]			With drop panels [‡]			
	Exterior panels		Interior panels	Exterior panels		Interior panels	
f _y , MPa [†]	Without edge beams	With edge beams [§]		Without With edge beams beams			
280	$\ell_n/33$	ℓ _n /36	ℓ _n /36	ℓ _n /36	<i>ℓ_n</i> /40	$\ell_n/40$	
420	$\ell_n/30$	$\ell_n/33$	$\ell_n/33$	$\ell_n/33$	ℓ_n /36	ℓ_n /36	
520	ℓ _n /28	$\ell_n/31$	ℓ _n /31	ℓ _n /31	$\ell_n/34$	$\ell_n/34$	


*For two-way construction, ℓ_n is the length of clear span in the long direction, measured face-to-face of supports in slabs without beams and face-to-face of beams or other supports in other cases.

[‡]Drop panels as defined in 13.2.5.

 § Slabs with beams between columns along exterior edges. The value of $lpha_{\!f}$ for the edge beam shall not be less than 0.8.

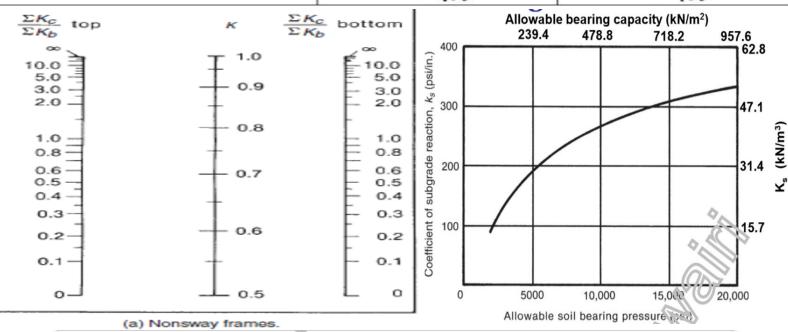
 $^{^\}dagger \mbox{For } f_y$ between the values given in the table, minimum thickness shall be determined by linear interpolation.

REINFORCED CONCRETE II 1st EXAM TABLES SHEET

Percentage of longitudinal moment in column strip, Interior panels

		Aspect Ratio L ₂ /L ₁ 0.5 1.0 2.0		
	$\alpha_{f1}l_2/l_1$			
Negative moment at interior support	0	75 75 7		75
	≥1.0	90	75	45
positive moment near mid span	0	60	60	60
	≥1.0	90	75	45

Percentage of longitudinal moment in column strip, Exterior panels						
				Aspect Ratio L ₂ /L ₁		
	0.50	1.0	2.0			
Negative moment at exterior support	0	0	100	100	100	
		≥2.5	75	75	75	
	≥ 1.0	0	100	100	100	
		≥2.5	90	75	45	
Positive moment near mid span	0		60	60	60	
	≥ 1.0		90	75	45	
Negative moment at interior	0		75	75	75	
	≥1.0		90	75	45	


TABLE 6.1 Maximum Permissible Computed Deflections

Flat roofs not supporting or attached to nonstructural elements likely to be damaged by large deflections		Immediate deflection due to live load L			Deflection Limitation \[\frac{\ell^*}{180} \]	
Roof or floor construction supporting or attached to nonstructural elements likely to be damaged by large deflections		That part of the total deflection occurring after attachment of nonstructural elements (sum of the long-term deflection due to all sustained loads and			480	
or attack	por construction su hed to nonstructur ts not likely to be d deflections	al	the immediate of additional live to		due to any	<u>ℓ</u> § 240
Case 1	w/ft ($\Delta_{\text{mid}} = \frac{5}{384} \cdot$	$\frac{w\ell^4}{EI} = \frac{5}{48} \cdot \frac{M_{\text{pos}}\ell^2}{EI}$	Case 5	19 1P 19 19 19 19 19 19 19 19 19 19 19 19 19	$\Delta_{\text{mid}} = \frac{5}{684} \cdot \frac{P\ell^3}{EI} = \frac{5}{72} \cdot \frac{M_{\text{pos}}\ell^2}{EI}$
Case 2		$\Delta_{\rm mid} = \frac{1}{192}$.	$\frac{w\ell^4}{EI} = \frac{128}{1728} \cdot \frac{M_{\text{pos}}\ell^2}{EI}$	Case 6	• • • • •	$\Delta_{tip} = \frac{1}{8} \cdot \frac{w\ell^4}{\mathit{EI}} = \frac{1}{4} \cdot \frac{\mathit{M}_{neg}\ell^2}{\mathit{EI}}$
Case 3	++++	$\Delta_{mid} = \frac{1}{384}$ •	$\frac{w\ell^4}{EI} = \frac{1}{16} \cdot \frac{M_{\text{pos}}\ell^2}{EI}$	Case 7	18	$\Delta_{tip} = \frac{1}{3} \bullet \frac{P\ell^3}{EI} = \frac{1}{3} \bullet \frac{M_{nog}\ell^2}{EI}$
Case 4	112 P	$\Delta_{\text{mid}} = \frac{1}{192}$ •	$\frac{P\ell^3}{EI} = \frac{1}{24} \cdot \frac{M_{\text{pos}}\ell^2}{EI}$	Case 8	M T	$\Delta_{mid} = \frac{1}{32} \cdot \frac{M\ell^2}{EI}$

Table 7.3: Time-dependent factors

Period (months)	5
3	1.0
6	1.2
12	1.4
60	2.0

Case	≤ ф 20	> \phi20
Case 1: Clear spacing of bars being developed not less than db, clear cover not less than db, and stirrups throughout ld not less than code minimum or	$l_d = \frac{12 f_y \psi_t \psi_s \lambda}{25 \sqrt{f_c}} d_b$	$l_{d} = \frac{12 f_{y} \psi_{i} \psi_{o} \lambda}{20 \sqrt{f_{c}}} d_{b}$
Case 2: Clear spacing of bars being developed not less than 2db and clear cover not less than db		
Other cases	$l_d = \frac{18 f_y \psi_i \psi_e \lambda}{25 \sqrt{f_e}} d_b$	$l_d = \frac{18 f_y \psi_i \psi_a \lambda}{20 \sqrt{f_c'}} d_b$

(a) Nonsway	2 10 0						
Тор		k					
Hinged ///	0.70	0.81	0.91	0.95	1.00		
Elastic $\psi = 3.1$	0.67	0.77	0.86	0.90	0.95		
Elastic, Flexible	0.65	0.74	0.83	0.86	0.91		
Stiff	0.58	0.67	0.74	0.77	0.81		
Fixed	0.50	0.58	0.65	0.67	0.70		
	7177	上	7	-	777		
	Fixed	Stiff	Elastic, Flexible	Elastic	Hinged		
		Bottom					