

► Rectangular section:
$$A_c = ab$$
; so find 'a'
 $a = \frac{A_s f_y}{0.85 f_c b}$; $c = a/\beta_1$
• Compatibility: Check strain in tension steel
 $\frac{\varepsilon_{su}}{d-c} = \frac{\varepsilon_{cu}}{c} \implies \varepsilon_{su} = (\frac{d-c}{c})(\varepsilon_{cu}) > \varepsilon_y$?
• Nominal and Design Moment Capacity
 $M_n = A_s f_y (d - y_c) = 0.85 f_c A_c (d - y_c)$
 $\phi M_n = \phi A_s f_y (d - y_c) = \phi 0.85 f_c A_c (d - y_c)$
 y_c = centroid of compression force = a/2 for
rectangular sections
Dr. Hazin Dwait The Hashemite University Flycural Behavior

	Live Load Reduction factor (ACSE 7 – 98): If area A > 400 ft ² or 37 m ² (excluding snow load areas) Then reduce live load by reduction factor:				
	$Factor = 0.25 + \frac{15}{\sqrt{A}}$				
Typical live load:					
	Apartment	Residential	2 kN/m ²		
		Public	5 kN/m ²		
	Schools	Classrooms	2 kN/m ²		
		Corridors	5 kN/m ²		
	Stairs and exit		5 kN/m ²		
	ways				
Dr. Hazim Dwairi The Hashemite University					

		Uniform, psf	Concentration, Ib
	Apartment buildings		
	Private rooms and corridors serving them	40	
	Public rooms and corridors serving them	100	
	Office buildings		
	Lobbies and first-floor corridors	100	2000
	Offices	50	2000
	Corridors above first floor	80	2000
	File and computer rooms shall be designed		2000
	for heavier loads based on anticipated		
	occupancy		
	Schools		
	Classrooms	40	1000
	Corridors above first floor	80	1000
	First-floor corridors	100	1000
	Stairs and exitways	100	1000
	Storage warehouses		
	Light	125	
	Heavy	250	•
	Stores	200	
	Retail		÷
$\langle \rangle$	Ground floor	100	1000
	Upper floors	75	1000
	Wholesale, all floors	125	1000
		125	1000

Co	ncrete Minimum Cover 7.7—Concrete protection for reinforcement			
	7.7.1 — Cast-in-place concrete (nonprestressed)			
	The following minimum concrete cover shall be pro- vided for reinforcement, but shall not be less than required by 7.7.5 and 7.7.7:			
	Minimum			
	cover, mm			
	(a) Concrete cast against and permanently exposed to earth			
	(b) Concrete exposed to earth or weather:			
	No. 19 through No. 57 bars			
Dr. Hazim Dwairi	Slabs, walls, joists: No. 43 and No. 57 bars 40 No. 36 bar and smaller 20			

Reinforced Concrete Design Design Aids

	、 ,							
Size of		Number of bars						
bars (mm)	1	2	3	4	5	6	7	8
8	50	101	151	201	251	302	352	402
10	79	157	236	314	393	471	550	628
12	113	226	339	452	566	679	792	905
14	154	308	462	616	770	924	1078	1232
16	201	402	603	804	1005	1206	1407	1609
18	255	509	763	1018	1272	1527	1781	2036
20	314	628	943	1257	1571	1885	2199	2513
22	380	760	1140	1521	1901	2281	2661	3041
25	491	982	1473	1964	2454	2945	3436	3927
28	616	1232	1847	2463	3079	3695	4310	4926
32	804	1609	2413	3217	4021	4826	5630	6434
50^{*}	1964	3927	5891	7854	9818	11781	13745	15708

AREA OF BARS (mm²)

• Available through special request. Rarely used in beams.

MINIMUM BEAM WIDTH (mm) ACCORDING TO THE ACI CODE

Size of			Num	ber of bar	S			Add for each
Bars (mm)	2	3	4	5	6	7	8	added bar
10	175	211	246	282	317	352	388	35
12	177	215	252	290	327	364	402	37
14	179	219	258	298	337	376	416	39
16	181	223	264	306	347	388	430	41
18	183	227	270	314	357	400	444	43
20	185	231	276	322	367	412	458	45
22	187	235	282	330	377	424	472	47
25	190	241	291	342	392	442	493	50
28	196	252	308	364	420	476	532	56
32	204	268	332	396	460	524	588	64
50	240	340	440	540	640	740	840	100

• Table shows minimum beam widths when $\phi 10$ stirrups are used.

- For additional bars, add dimension in last column for each added bar.
- For bars of different sizes, determine from the table the beam width for smaller size bars and then add last column figure for each larger bar used.
- Assume maximum aggregate size does not exceed three-forth of the clear space between bars (ACI-3-3.3). Table computation procedure is in agreement with the ACI code interpretation of the ACI Committee 340.

A = 40 mm clear cover to stirrups

- B = 10 mm stirrup bar diameter
- C = use twice the diameter of $\phi 10$ stirrups.

D = clear distance between bars = d_b or 25.4 mm, whichever is greater (where d_b is the diameter of the larger adjacent longitudinal bar)

Practical Issues:

For Beam Sizes:

- 1. Use whole centimeters for overall beam dimensions, multiples of 50 mm would be better (i.e., 300mm, 350mm, 400mm...etc.), except slabs may be in 10 mm increments (i.e., 120mm, 130mm, 140mm...etc.)
- 2. Beam stem or web widths are also multiples of 50 mm.
- 3. Minimum specified clear cover is measured from the outside of the stirrup or tie to the face of the concrete. (Thus beam effective depth 'd' has rarely, if ever, a dimension to the whole centimeter)
- 4. An economical rectangular beam proportion is one in which the overall depth-towidth ration is between about 1.5 and 2.0.
- 5. For T-shaped beams, typically the flange thickness represents about 20% of overall depth.

For Reinforcing Bars:

- 6. Maintain bar symmetry about the centroidal axis which lies at right angles to the bending axis (i.e., symmetry about the vertical axis in usual situations)
- 7. Use at least two bars wherever flexural reinforcement is required.
- 8. Use $\phi 25$ bars and smaller for usual sized beams.
- use no more than two bar sizes and no more than three standard sizes apart for steel in one face at a given location in the span (i.e., φ25 and φ20 may be acceptable, but φ25 and φ16 would not)
- 10. Place bars in one layer if practical. Try to select bar sizes so that no less than two and no more than five or six bars are put in one layer.
- 11. Follow requirements of ACI-7.6.1 and 7.6.2 for clear distance between bars and between layers.
- 12. When different sizes of bars are used in several layers at a location, place the largest bars in the layer nearest the face of the beam.

7.7 — Concrete protection for reinforcement

7.7.1 — Cast-in-place concrete (nonprestressed)

The following minimum concrete cover shall be provided for reinforcement, but shall not be less than required by 7.7.5 and 7.7.7:

Minin cover,	num mm
(a) Concrete cast against and permanently exposed to earth	75
(b) Concrete exposed to earth or weather:	
No. 19 through No. 57 bars No. 16 bar, MW 200 or MD 200 wire, and smaller (c) Concrete not exposed to weather or in contact with ground:	50 40
Slabs, walls, joists: No. 43 and No. 57 bars No. 36 bar and smaller	40 . 20
Beams, columns: Primary reinforcement, ties, stirrups, spirals40	
Shells, folded plate members: No. 19 bar and larger	

9.5.2 — One-way construction (nonprestressed)

9.5.2.1 — Minimum thickness stipulated in Table 9.5(a) shall apply for one-way construction not supporting or attached to partitions or other construction likely to be damaged by large deflections, unless computation of deflection indicates a lesser thickness can be used without adverse effects.

TABLE 9.5(a)—MINIMUM THICKNESS OF NONPRESTRESSED BEAMS OR ONE-WAY SLABS UNLESS DEFLECTIONS ARE CALCULATED

	Minimum thickness, <i>h</i>							
	Simply supported	Cantilever						
Member	Members no other constru deflections.	Members not supporting or attached to partitio other construction likely to be damaged by larg deflections.						
Solid one- way slabs	ℓ/20	ℓ/24	ℓ/28	ℓ/10				
Beams or ribbed one- way slabs	ℓ/16	ℓ /18.5	ℓ/21	l /8				

Notes:

Values given shall be used directly for members with normalweight concrete (density $w_c = 2320 \text{ kg/m}^3$) and Grade 420 reinforcement. For other conditions, the values shall be modified as follows:

a) For structural lightweight concrete having unit density, w_c , in the range 1440-1920 kg/m³, the values shall be multiplied by (1.65 – 0.003 w_c) but not less than 1.09

b) For f_{ν} other than 420 MPa, the values shall be multiplied by (0.4 + $f_{\nu}/700$).

9.5.2.2 — Where deflections are to be computed, deflections that occur immediately on application of load shall be computed by usual methods or formulas for elastic deflections, considering effects of cracking and reinforcement on member stiffness.

TABLE 9.5(b) — MAXIMUM PERMISSIBLE COMPUTED DEFLECTIONS

Tune of member	Deflection to be considered	Deflection limitation
Type of member	Deflection to be considered	Deflection limitation
Flat roofs not supporting or attached to non- structural elements likely to be damaged by large deflections	Immediate deflection due to live load L	$\ell/180^{*}$
Floors not supporting or attached to nonstruc- tural elements likely to be damaged by large deflections	Immediate deflection due to live load L	<i>l,</i> 360
Roof or floor construction supporting or attached to nonstructural elements likely to be damaged by large deflections	That part of the total deflection occurring after attachment of nonstructural elements (sum of the long-term deflection due to all sustained	$\ell/480^{\ddagger}$
Roof or floor construction supporting or attached to nonstructural elements not likely to be damaged by large deflections	additional live load) [†]	ℓ/240 [§]

* Limit not intended to safeguard against ponding. Ponding should be checked by suitable calculations of deflection, including added deflections due to ponded water, and considering long-term effects of all sustained loads, camber, construction tolerances, and reliability of provisions for drainage.

* Long-term deflection shall be determined in accordance with 9.5.2.5 or 9.5.4.3, but may be reduced by amount of deflection calculated to occur before attachment of nonstructural elements. This amount shall be determined on basis of accepted engineering data relating to time-deflection characteristics of members similar to those being considered.

[‡] Limit may be exceeded if adequate measures are taken to prevent damage to supported or attached elements.

[§] Limit shall not be greater than tolerance provided for nonstructural elements. Limit may be exceeded if camber is provided so that total deflection minus camber does not exceed limit.

Slab and Beam Standard Bolsters

ADAPIE	D FROM REF. 17 OF CHAP	7.2)	
SYMBOL	BAR SUPPORT ILLUSTRATION	TYPE OF SUPPORT	STANDARD SIZES
SB	T_5"	Slab Bolster	1, 1, 11, and 2 in. heights in 5- ft and 10-ft lengths
SBU	********	Slab Bolster Upper	Same as SB
BB	<u>ूरि</u> रिटि 21/2	Beam Bolster	1, 1 ¹ / ₂ , 2, over 2 to 5 in. heights in increments of ¹ / ₄ in. in lengths of 5 ft
BBU		Beam Bolster Upper	Same as BB
BC	M	Individual Bar Chair	1, 1, 11, and 11 in. heights
нс	M	Individual High Chair	2 to 15 in. heights in increments of $\frac{1}{2}$ in.
СНС	A A	Continuous High Chair	Same as HC in 5-ft and 10-ft lengths
CHCU		Continuous High Chair Upper	Same as CHC

Table 3.9.3 STANDARD TYPES AND SIZES OF BAR SUPPORTS (ADAPTED FROM REF. 17 OF CHAP. 2)

Development Length of Straight Bars and Standard Hooks

For deformed bars, ACI318-05 Section 12.2.2 defines the development length *la* given in the table below. Note that *la* shall not be less than 300 mm.

Case	≤ φ 20	> \$ 20
Case 1: Clear spacing of bars being developed not less than db, clear cover not less than db, and stirrups throughout <i>ld</i> not less than code minimum or	$l_{d} = \frac{f_{y} \alpha \beta \lambda}{2.1 \sqrt{f_{c}}} d_{b}$	$l_{d} = \frac{f_{y} \alpha \beta \lambda}{1.7 \sqrt{f_{c}}} d_{b}$
Case 2: Clear spacing of bars being developed not less than 2db and clear cover not less than db		
Other cases	$l_{d} = \frac{f_{y} \alpha \beta \lambda}{1.4 \sqrt{f_{c}}} d_{b}$	$l_{d} = \frac{f_{y} \alpha \beta \lambda}{1.1 \sqrt{f_{c}}} d_{b}$

The terms in the foregoing equations are as follows:

α = reinforcement location factor

Horizontal reinforcement so placed that more than 300 mm of fresh c	oncrete is cast
in the member <i>below</i> the development length	1.3
Other reinforcement.	1.0
$\beta = coating factor$	

Epoxy-coated bars with cover less than 3db, or clear spacing less than 6db	1.5
All other epoxy-coated bars	1.2
Uncoated reinforcement	1.0

λ = lightweight aggregate concrete factor

When	lightw	eight	concrete is used.	 	
Norma	l weig	ht co	ncrete is used	 	

Reinforced Concrete Design Design Aids

			$l_d = \frac{l_{db}}{d_b} \times$	$\beta \lambda \times d_b,$	but not le	ess than 3	00 <i>mm</i>			
	$f_{c} = 2$	1 MPa	$f_c = 25 \text{ MPa}$		$f_c = 28 \text{ MPa}$		$f_c = 30 \text{ MPa}$		$f_c = 35 \text{ MPa}$	
	Bottom	Тор	Bottom	Тор	Bottom	Тор	Bottom	Тор	Bottom	Тор
Bar size	bar	bar	bar	bar	bar	bar	bar	bar	bar	bar
(mm)	Case 1: C	lear spacing	g of bars be	ing develo	ped not less	s than db, c	elear cover	not less tha	an db, and s	tirrups
(IIIII)	throughout	it ld not less	than code	minimum,	or					
	Case 2: C	lear spacing	g of bars be	ing develo	ped not less	s than 2db	and clear c	over not les	ss than db	
	$f_v = 420$ MPa, uncoated bars, normal weight concrete									
≤ ¢ 20	43.6	56.7	40.0	52.0	37.8	49.1	36.5	47.5	33.8	43.9
> \$ 20	53.9	70.1	49.4	64.2	46.7	60.7	45.1	58.6	41.8	54.3
		$f_v = 300$ MPa, uncoated bars, normal weight concrete								
≤ ¢ 20	31.2	40.5	28.6	37.1	27.0	35.1	26.1	33.9	24.1	31.4
	Other Ca	ses:								
≤ ¢ 20	64.5	83.9	59.1	76.9	55.9	72.7	54.0	70.2	50.0	65.0
> \$ 20	82.1	106.8	75.3	97.9	71.1	92.5	68.7	89.3	63.6	82.7
			$f_v = 3$	00 MPa, u	ncoated bar	rs, normal v	weight cond	crete		
≤ φ 20	46.8	60.8	42.9	55.7	40.5	52.6	39.1	50.9	36.2	47.1

Table 1: Basic tension development-length ratio, l_d/d_b (*mm/mm*)

• For top bars, more than 300 mm of fresh concrete is cast in the member (i.e. $\alpha = 1.3$)

• β is the coating factor, and λ is the lightweight concrete factor

When there is insufficient length available to develop a straight bar, standard hooks are used. The standard 90 degree hook is shown below:

The Hashemite University

The development length of a hook, *ldh*, is given by the following equation. Note that the development length shall not be less than 8db nor less than 150mm:

$$l_{dh} = \frac{0.24 f_y \beta \lambda}{\sqrt{f_c}} d_b \ge \text{larger of} \begin{vmatrix} 8d_b \\ 150mm \end{vmatrix}$$

where β = the coating factor = 1.2 for epoxy coated bars and 1.0 for uncoated reinforcement, and λ is the lightweight aggregate factor = 1.3 for lightweight aggregate concrete. For other cases β and λ , shall be taken as 1.0

Standard Hooks - ACI sections 7.1 and 7.2.1

Stirrups and tie hooks – ACI section 7.1.3

Reinforced Concrete Design Design Aids

ACI Moment and Shear Coefficients

The Hashemite University