#سيفلتيي العز

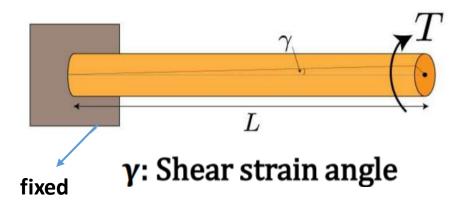
#سيفلتيي العز

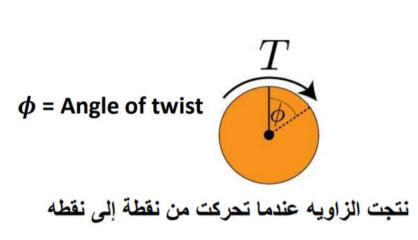
ملخص لاب المقاومة الجديد والذي قمت بإعداد الملخص من البداية بحيث تعديل كافة الأخطاء و إضافة أسئلة السنوات وفي حال وجود خطأ ي حبذا إبلاغي به وجل من لا يسهو .

يشمل هذا الملخص : شرح التجربة ب إختصار وعدد صفحات قليل إضافة إلى ملحق سنوات بعد كل تجربة وسيتم تحديث الملخص باستمرار لكي نضيف كامل السنوات إن شاء الله وسأضع تقارير محلولة , أي يعني بعد كل تجربة سيكون التقرير مرفق بها

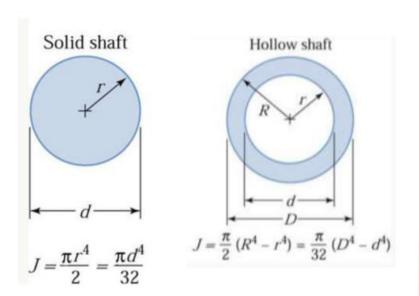
هذا الملخص سيكون متوفر اعلى موقع لجنة الهندسة المدنية – سيفلتيي إن شاء الله .

وما قبل البدء ب الملخص هذا , هذا العمل صدقة جارية على روح كل من فقدناهم من أحباء أصدقاء ونسأل الله القبول ولا تنسوني من صالح الدعاء .


Ехр	Slides	Years
Torsion test	(4-6)	(7-15)
Strain Measurement with Strain Gauges	(16-18)	(19-20)
Hardness Test	(21-24)	(25-27)
Compression test	(28-30)	(31-32)
Tensile Test	(33-38)	(39-58)
Thin Wall Cylinder	(59-61)	(62-67)
Stability Of Columns	(68-72)	(73-82)
Deflection of Beams	(83-86)	(87-95) 2


Ехр	Slides	Years
Impact Test	(96-98)	(99-104)
Fatigue Test	(105-107)	(108-117)
Creep Test of Metallic Materials	(118-120)	(121-125) 3

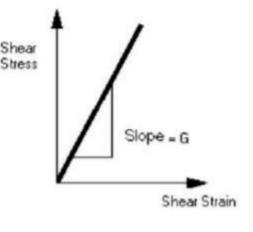
إعداد : محمد السفاريني



 $\tau_{max} = \frac{Tr}{J}$

τ : Shear stress
T: Torque (N.m)
r: Radius of shaft (m)
J: Polar moment of inertia


$$\gamma = \frac{Tr}{GJ}$$
 γ : Shear strain
 $\gamma = \frac{r\phi}{L}$ $\phi = \frac{TL}{GJ}$


γ: Shear strain angle (Rad)
r: Radius of shaft (m)
φ: Angle of twist (degree)
L: length of shaft (m)

• The Modulus of Rigidity(G) :

Slope of the $\tau - \gamma$ curve in the elastic range $\tau = G^* \gamma \gamma$ (Rad)

- The Modulus of Resilience : Area under the <u>elastic</u> portion <u>represent</u> the **energy** absorbed by the material in the elastic region $=\frac{1}{2}\tau_{y}\gamma_{y}$
- The Modulus of Rupture (Toughness) : Total area represents the total energy absorbed by the material before fracture = $\frac{2}{3} \tau_u \gamma_{Max}$.

Q1(Years). Two steel shafts with modulus of rigidity G=80GPa , diameters D1=20mm , D2=10mm for the <u>same torque</u> applied , the <u>ratio of shear angle</u> of the first to the second is $\frac{\gamma_1}{\gamma_2}$?

$$\gamma_1 = \frac{T_1 r_1}{G_1 J_1}$$
 $\gamma_2 = \frac{T_2 r_2}{G_2 J_2}$ $\gamma_1 = \frac{r_1}{J_1}$ $\gamma_2 = \frac{r_2}{J_2}$

$$\gamma_1 = \frac{0.01}{\frac{\pi * (0.02)^4}{32}}$$

$$\gamma_2 = \frac{0.005}{\frac{\pi * (0.01)^4}{32}}$$

$$\frac{\gamma_1}{\gamma_2} = 0.125$$

Q2(Years). An aluminum bar of solid circular cross section of **diameter** of 30mm is subjected to torque T=1.5N.m , the length of the bar is 1.2m and its shear modulus of elasticity is 28GPa , Find :

- 1- The maximum <u>shear stress</u> in the bar .
- 2- The maximum <u>shear strain</u> in the bar .

$$\tau_{max} = \frac{Tr}{J} = \frac{1.5 * 0.015}{\frac{\pi * (0.03)^4}{32}} = 283kPa$$

$$\gamma = \frac{Tr}{GJ} = \frac{1.5 * 0.015}{28 * \frac{\pi * (0.03)^4}{32}} = 10.1 * 10^{-6}$$

Q3(Years).

- 1- Ductile material in torsion test fail due to (shear stress)
- 2- Brittle material in torsion test will fail at angle of (45°)
- 3- The elastic modulus calculated from shear stress strain diagram is called modulus of <u>(rigidity)</u>
- 4- The modulus of resilience can be defined as the amount of energy per unit volume absorbed during <u>(elastic)</u> deformation of the material.
- 5- Failure due to shear stress is characterized by (smooth shiny)

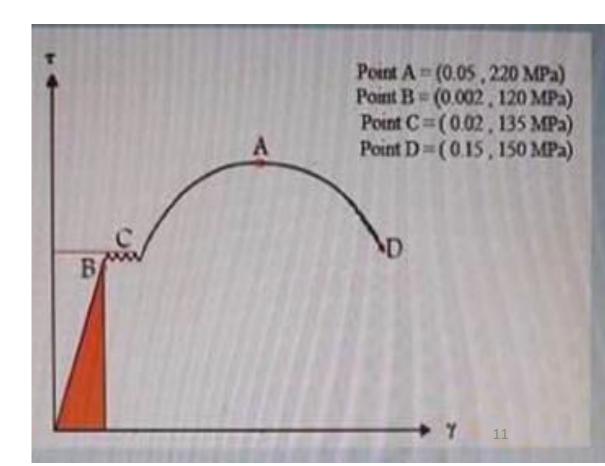
Q4(Years). In torsion test , we use τ , γ , G respectively to represent ? **Ans.** Shear stress , shear strain , modulus of rigidity

Q5(Years). Find :

- 1- Polar moment of inertia
- 2- modulus of **<u>rigidity</u>**

$$1 - J = \frac{\pi * (0.02)^4}{32} = 1.57 * 10^{-8}$$
$$\gamma = \frac{0.003 * 0.01}{250 * 10^{-3}} = 1.2 * 10^{-4}$$
$$7.5 \div 0.01$$

$$\tau = \frac{7.3 * 0.01}{1.57 * 10^{-8}} = 4.77MPa$$


$$G = \frac{4.77 * 10^6}{1.2 * 10^{-4}} = 3.975 * 10^{10}$$

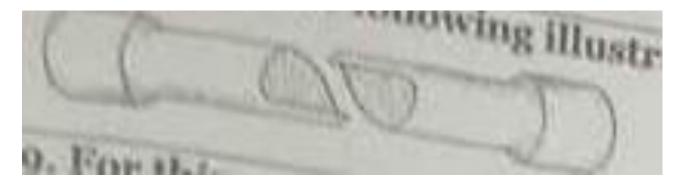
d = 20mm, length = 250mm

φ(Rad)	T (N . m)
0	0
0.003	7.5
0.006	15
0.009	22.5
0.0135	33.75
0.018	45
0.0203	50.75
0.03	62
0.046	62
0.068	62
0.123	70
0.197	75

□Q6(Years). A torsion experiment is performed on the circular specimen with diameter 8 mm and gauge length of 150 mm, the resulting Shear –Strain diagram is shown below ?

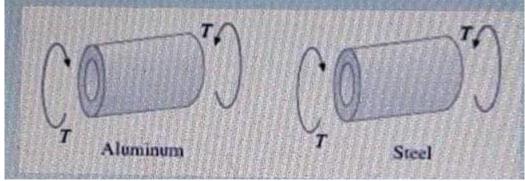
- Find :
- 1- Applied Torque at the yield point
 2- The modulus of rigidity
 3- The modulus of resilience
- 4- Total angle of twist

Ans. 1 - T =
$$\frac{\tau * J}{r} = \frac{\tau * D^3 * \pi}{16} = \frac{120 * 10^6 * 3.14 * 0.008^3}{16} = 12.06$$

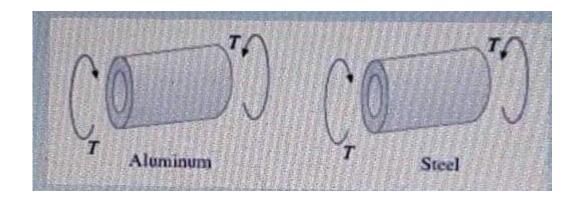

$$2 - G = \frac{\tau}{\gamma} = \frac{120 * 10^6}{0.002} = 6 * 10^{10} = 60GPa$$

$$3 - \frac{1}{2} * \gamma * \tau_y = \frac{1}{2} * 120 * 10^6 * 0.002 = 0.12$$

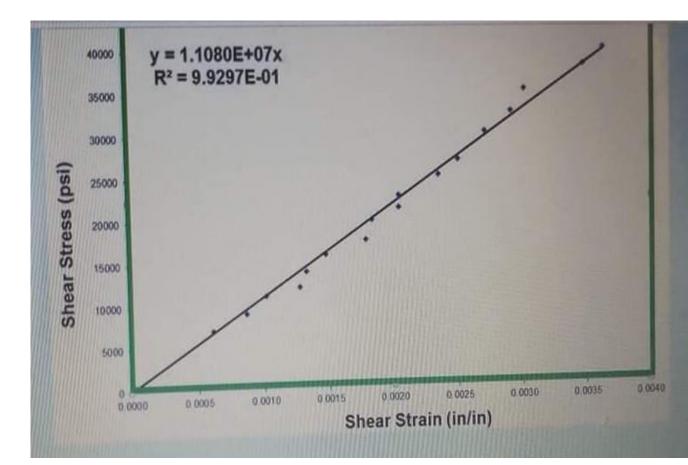
$$4 - \phi = \frac{\gamma L}{r} = \frac{0.15 * 150}{4} = 5.625$$


Q7(Years). Which of the following illustrations represents brittle failure under **torsional load** ?

Ans.

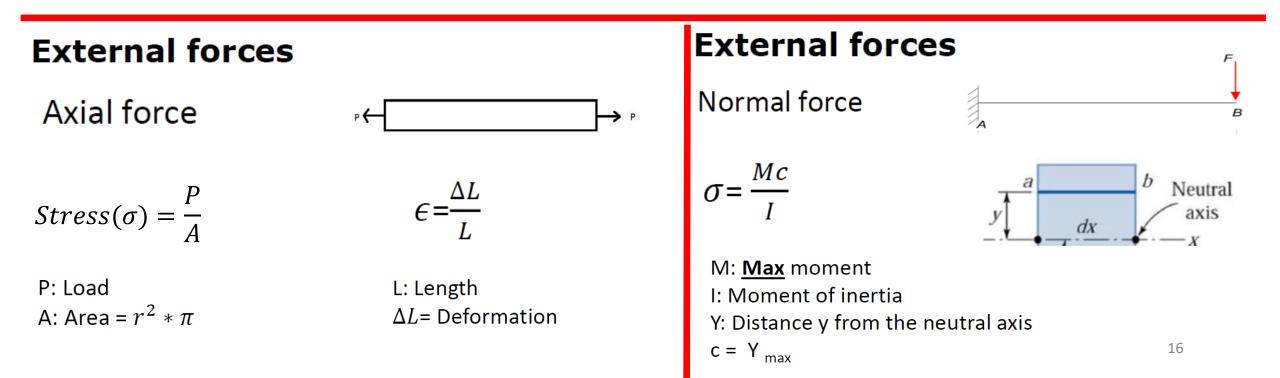

Q8(Years). The Shafts shown below differ only in regards to the material from which they were made . If the same torque is applied to each , the **maximum shear stress** is ?

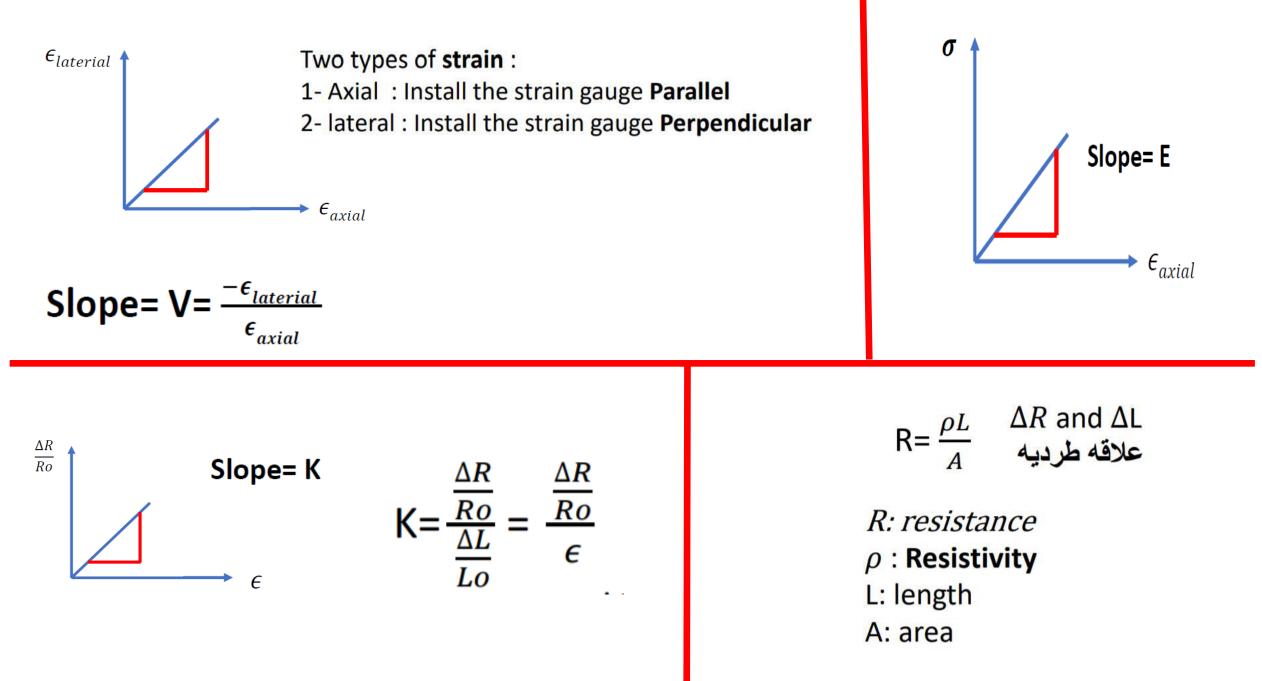
Ans. Equal in both Shafts

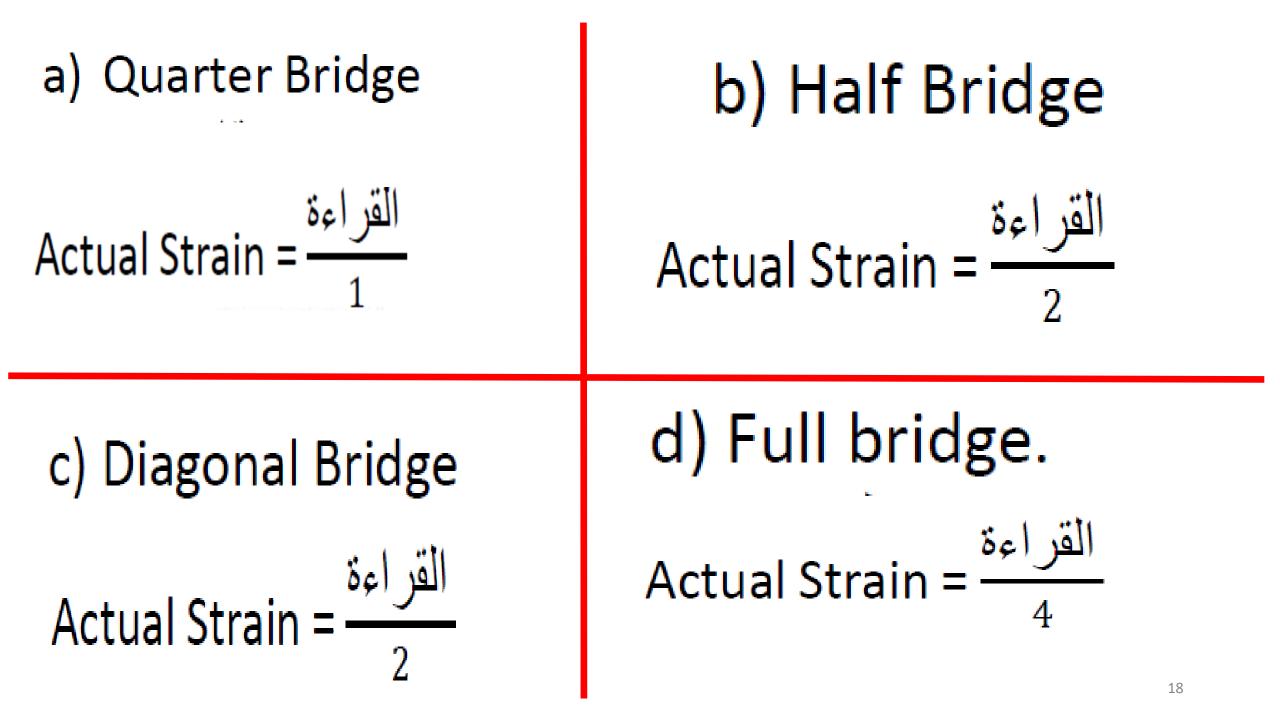

Q9(Years). The angle of twist ?

Ans. Greater in Aluminum shaft than that in steel one

□Q10(Years). If the below figure shows an elastic shearing stress – strain curve for torsion test , the modulus of rigidity (Shear modulus of elasticity) is equal to ?


$$G = \frac{(20000 - 5500)}{(0.00185 - 0.0006)} = 1.11 * 10^7$$




DExp: Strain Measurement with Strain Gauges

Give accurate measurements of strain.

□Strain Gauges: Sensor whose <u>resistance</u> varies with applied force; It converts force, into a change in electrical resistance which can then be measured .

Q1(Years). A strain gauge is ?

Ans. Resistance

□Q2(Years). For measuring strains using the Wheatstone bridge , which of the following is directly measured from the bridge ?

Ans. Voltage

Q3(Years). In strain gauge , a small change in dimensions is translated into equivalent change in ?

Ans. Resistance

Q4(Years). The material type usually used for strain gauges is ?

Ans. Piezoelectric

□Q5(Years). For full a whetstone's bridge , the actual strain on the beam is the reading of the bridge multiply by ?

Ans. 0.25

Q6(Years). For strain gauges measurements to obtain the actual strain , the indicator reading of the <u>full bridge</u> should be ?
 Ans. Divided by 4

□Q7(Years). Which of the following configurations is <u>Not used</u> for strain measurements using the Wheatstone bridge ?

Ans. Three quarter Bridge

Q8(Years). In the strain gauge experiment both axially and laterally oriented strain gauges were attached to simply supported beam to be experimentally estimate ?

Ans. Poisson's ratio

DExp: Hardness Test

إعداد : محمد السفاريني

> Hardness of any metal is : Its resistance to surface indentation under standard test conditions and its Non Destructive test.

We measure the diameter by **microscope**

Three main test methods are used:

Brinell harness number = $\frac{P(kgf)}{\frac{1}{2}\pi D(D-\sqrt{D^2-d^2})(mm^2)}$

- Note : indenter is a ball of steel
- Don't use Brinell tests if BHN ≥ 450 why?

ball maybe easily deformed and this will introduce errors.

kgf=kg

P: Force applied (kg)

D: Diameter of indenter (mm)

d: Diameter indentation(mm)

Depth of indentation independent with BHN.

• Hardness ball \geq 1.7 Hardness of specimen . $T \ge 4D$ Specimen

If several readings must be taken on the **same specimen**, they should be **spaced away** from each other and away from the edges of the work piece $\geq 4D$.

```
Values of \frac{T}{t}: For soft materials \ge 15
For hard materials = \ge 7
```

Distance from edge and specimen should be \geq 3D

$$2 - Vickers(HV) = \frac{P}{\frac{D^2}{2} * \sin\frac{1}{2}(136^\circ)} = \frac{1.854P}{D^2}$$

Depth of indentation independent with VHN

Hardness number of \geq 300 the Brinell and Vickers Hardness values <u>are same</u>

Square based diamond pyramid indenter

$$D = \frac{d_1 + d_2}{2}$$

- Main Load = 10 for smooth material
- Main Load= 30 for hard material
- Hardness scale range from very soft to very hard

3-Rockwell (HRC/HRB)

<u>Cant</u> be used for soft material

HRC :Rockwell test Type C

 $Main \ load = 150N$

Indenter : diamond cone

HRB :Rockwell test Type B
Main load = 100N
Indenter : steel ball (1/16")

Note:
 σ = (3.45 - 3.5)BHN

Q1(Years). Indicate the name of the hardness test ?

- 1- Pyramid indenter made of diamond (Vickers test)
- 2- Conical indenter made of diamond (Rockwell C test)
- 3- Spherical indenter of diameter D made of steel (Brinell test)

Q2(Years). In the **Vickers test** , which of the following is **correct ? Ans.** The diamond produces square indentation area

□Q3(Years). Brinell test is not suitable for testing() material. Ans. Hard or very soft material

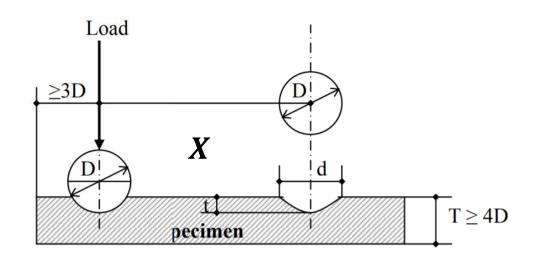
□Q4(Years). The Brinell hardness number for a metal is 150, then the ultimate strength in Mpa for this metal is ?

Ans. 3.5*150=525

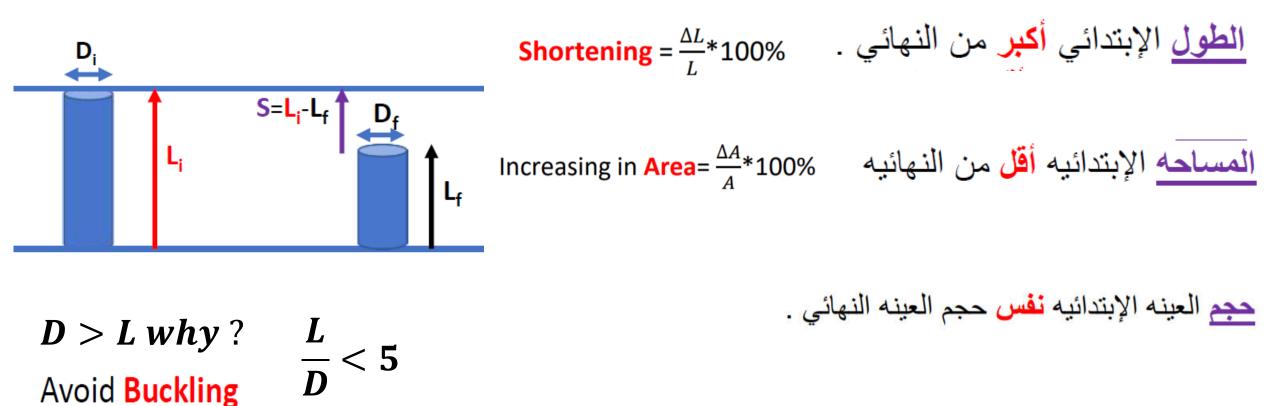
□Q5(Years). Hardness is defined as the resistance of the material against plastic deformation ?

Ans. True

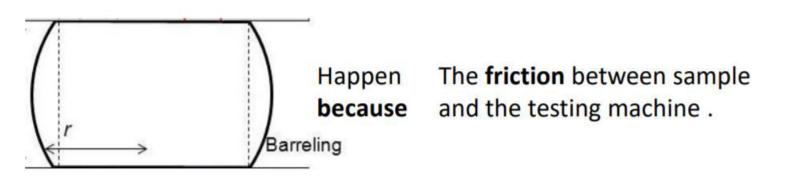
Q6(Years). The indentation depth in the hardness test is directly indicated as hardness value in ?


Ans. Rockwell scale

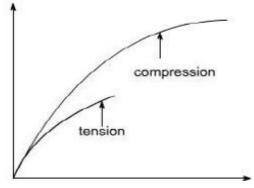
Q7(Years). If material B scratches material C but not A then ?


Ans. A > B > C

□Q8(Years). For a correct hardness reading in Brinell Hardness test , the dimension marked by X on the shown figure must be ?


Ans. $\geq 4D$

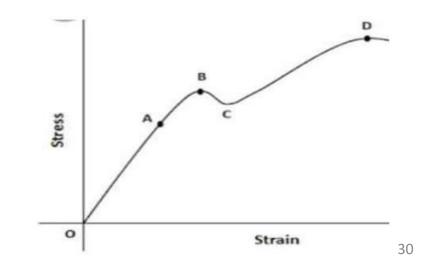
✓ Universal Testing Machine (UTM) : The machine is Capable doing the Compression test .


□ Brittle material :

سنوات [°] Fracture at angle 45

<u>Caused by : Normal stress</u>

Ductile material :


يحدث فقط تشو هات No Fracture

Yield=Ultimate=fracture

Compression higher than tension?

Atoms and cracks will **be close** to each other

□Q1(Years). When calculating the actual stress strain diagram, the material was assumed to have constant (cross section).

□Q2(Years). To reduce or eliminate barreling in compression test , we must to <u>(decrease the friction)</u>

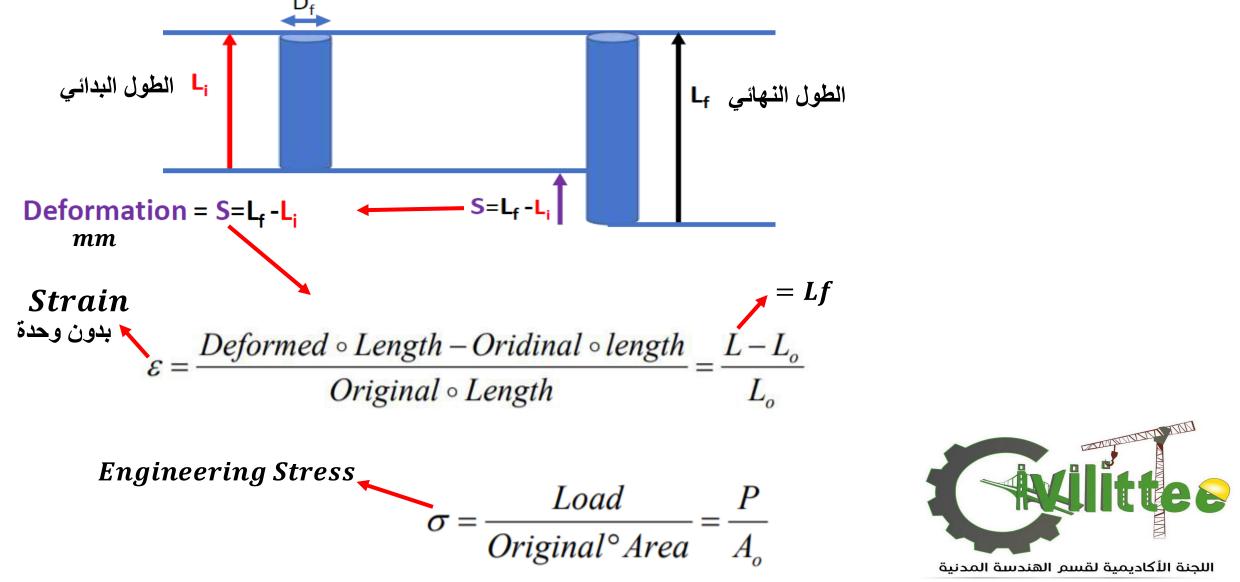
- **Q3(Years).** For a compression test of a ductile material , which of the following statements is true?
- Ans. Barreling will occur .
- **Q4(Years).** Which of the following is <u>true</u> regarding ductile material ?
- Ans. No fracture occurs for the material under compression .
- □Q5(Years). For the same specimen size , compression test usually requires (More) energy from the test machine than tensile test .

Q6(Years). For brittle materials under compression loads ?

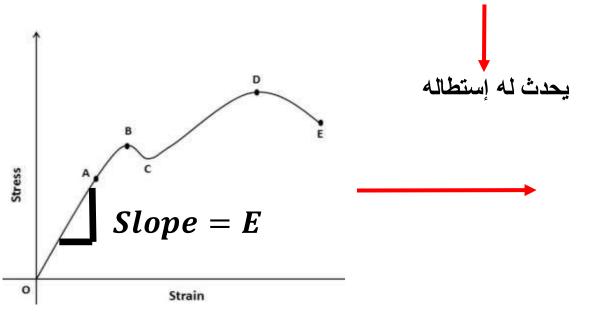
Ans. The modulus of toughness will be much higher than the value under tension

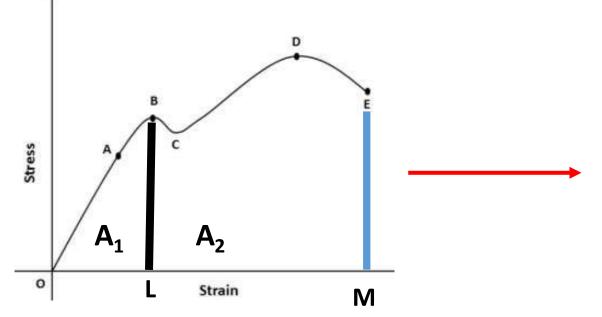
Q7(Years). For most brittle materials , the ultimate strength in compression in much large then the ultimate strength in tension , this is mainly due to ?

Ans . Presence of flaws and microscopies cracks or cavities


Q8(Years). In compression test to avoid buckling $\frac{L}{D}$ ratio was chosen to be ? **Ans.** < 5

Q9(Years). For brittle materials used in compression test , the values of ultimate stress are expected to be ?


Ans. Much higher than the values obtained in the tensile test .



✓ Universal Testing Machine (UTM) : The machine is Capable doing the tensile test

□ Stress-Strain Diagram for **Ductile Material** :

النقاط) Points	(المتعريف) Definition	(الرمز) Symbol
Yield Stress (σ_{y})	النقطة التي تفصل بين المرحلتين	В
Ultimate stress(σ _{υτs})	النقطة التي تكون في أعلى المنحنى	D
Rupture or fracture stress	اخر نقطة في المنحنى	E

Stage (المراحل)	Definition (التعريف)	(الرمز) Symbol
Proportional limit	نهاية الخط المستقيم	OA
Elastic	في حال إزلنا الحمل ترجع إلى شكلها الأصلي	OL
Plastic	في حال أزلنا الحمل لا ترجع العنية إلى شكلها الأصلي	LM
Necking	المنطقة الواقعة بين أقصى قيمة إجهاد وبين قيمة فشل العينة	Between D and E 35

- > Elastic limit: Maximum load that can be applied to the specimen without permanently deforming it.
- Plastic region : The part of the stress-strain diagram after the yielding point. <u>the plastic deformation</u> <u>starts</u>. Plastic deformation is <u>permanent</u>.
- □ The Modulus of Elasticity (E) : Shows the <u>Elastic resistance</u> to an applied load that causes deformation. It is a measure of the stiffness of materials .
- $E = \frac{\sigma}{\epsilon}$ so $\sigma = E^* \epsilon$ just in **Elastic and called Hock's Law**

The Modulus of Resilience (UR): Amount of energy stored in stressing the material to the <u>elastic limit</u>. $U_R = A_1 = \frac{1}{2} \epsilon_y \sigma_y$

> This quantity is important in selecting materials for energy storage such as springs .

The Modulus of Toughness (UT): Total energy absorption capabilities of the materials to failure .

$$U_T = A_1 + A_2 = \frac{2}{3} \epsilon_{\mathsf{U}} \ast \sigma_{\mathsf{Max}}$$

This quantity is important in selecting materials for applications where high overloads are likely to occur and large amounts of energy must be absorbed.

□The ductility of material: is ability of material to deform under load.
 ويمكننا تحديدها عن طريق حساب الإستطالة ونقصان المساحه
 ➢ Elongation%= ^{L_F-LO}/_{L_o} * 100%
 ➢ Reduction Of Area % = ^{A_i-A_F}/_{A_F} * 100%
 ✓ If the Percentage of elongation and reduction of cross-sectional are large, the material is said to be <u>ductile</u>.

 \checkmark when they are **low**, the material is said to be <u>brittle</u>.

$$V_{i}=V_{f}$$

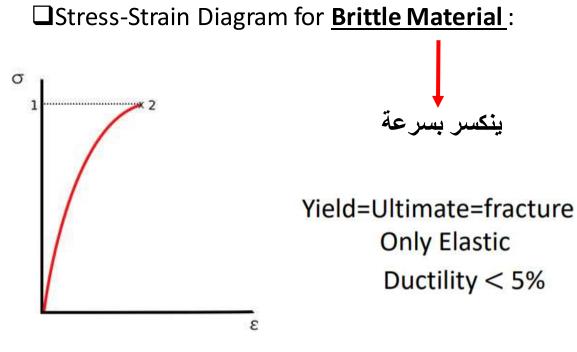
$$A_{i}*L_{i}=A_{f}*L_{f}$$

$$A_{f}=\frac{Ai*Li}{Lf}$$

$$Discrete True Values$$

$$\frac{\Box}{2(1+V)}$$

$$\frac{\Box}{2(1+V)}$$


$$\sigma_{T}=\sigma(1+\epsilon)$$

$$\epsilon_{T}=Ln(1+\epsilon)$$

$$F=\frac{E}{C_{Laterial}}$$

$$\sigma_{T}=\sigma(1+\epsilon)$$

$$\sigma_{T}=Ln(1+\epsilon)$$

Happen because Normal stress

Fracture at angle <u>90</u>

High carbonic steel

Shape: Flat

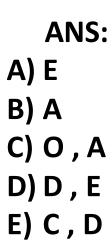
بعض الخصائص التي تكون متختصة في المواد المرنه وهى مهمة جدا وحفظ _

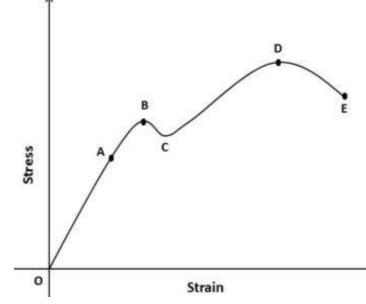
Ductile Material


Happen because Shear stress

Shape : Cup and Cone

Fracture at angle 45


Low carbonic steel


Ductility > 5%

□Q1(Years). Consider the Stress- strain diagram for a typical structural steel in tension shown below .

- A) Rupture stress is at point ?
- B) proportional limit is at point ?
- C) Elastic deformation occurs between points ?
- D) Necking occurs between points ?
- E) Strain hardening occurs between points ?

□Q2(Years). A 500 mm long cylindrical bar with 10mm diameter is subjected to axial loading (P=20kN) as shown in figure , the bar is made of a material with E=90GPa and v=0.3 knowing that the stress in the bar did not reach the yield strength of the material.

≻Find :

- 1- The stress in the bar ?
- 2- the **length** of the bar under the effect of the applied load ?
- 3- the **diameter** of the bar under the effect of the applied load ?

$$\sigma = \frac{Load}{Original^{\circ}Area} = \frac{P}{A_o} = \frac{20 * 10^3}{\frac{\pi}{4}(0.01)^2} = 254777070.1Pa = 254.7MPa$$

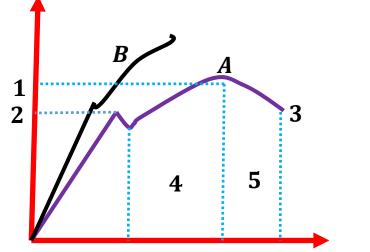
D

Ρ

- □Q3(Years). This figure shows stress-strain diagrams , please answer questions below by writing the correct letter or number .
- 1- Rupture stress
- 2- True stress-strain diagram
- 3-Engineering stress-strain diagram

4-UTS

5-Yield region


6-Necking region

Ans.

- 1-3
- 2- B
- 3- A

4- 1

5-2 6-5

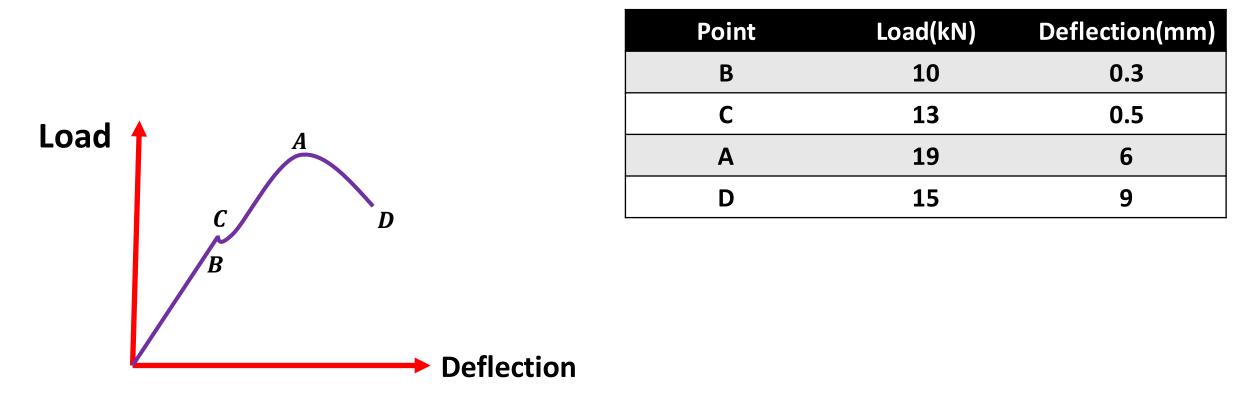
اللجنة الأكاديمية لقسم الهندسة المدنية

□Q4(Years). A force of 20000 N will cause 1 cm* 1cm bar of magnesium to stretch from 10 cm to 10.045 cm , calculate the modulus of elasticity in GPa ?

Ans.

$$Stress = \frac{20000}{(1*10^{-2})^2} = 200MPa \qquad Strain = \frac{10.045 - 10}{10} = 4.5 \times 10^{-3}$$

$$E = \frac{200}{4.5 * 10^{-3}} = 44444.44MPa = 44.4GPa$$

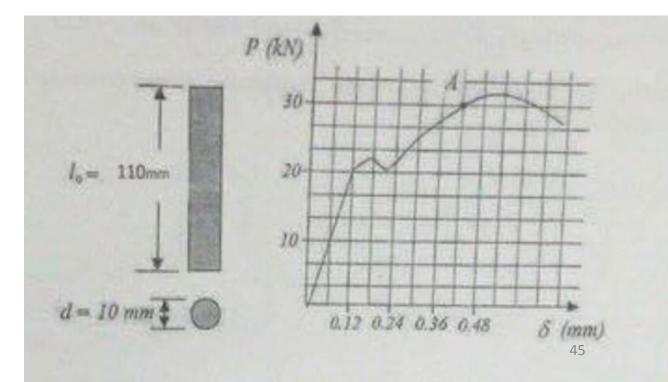

Q5(Years). In the tension test, the property which is an indication of the <u>stiffness of a</u> <u>material</u>? Ans. **Modulus of Elasticity**

Q6(Years). In tensile test , modulus of resilience represent ?

Ans. The Amount of energy absorbed (stored) during elastic limit .

□Q7(Years). The tensile strength –strain curve for steel shown below , the specimen original length is 100mm and has a diameter of 10mm , using the data in the table , answer the following .

- 1- The modulus of elasticity
- 2- Fracture stress


Stress at
$$B = \frac{10 * 10^3}{\frac{\pi}{4} (0.01)^2} = 127.38MPa$$

Strain at $B = \frac{0.3}{100}$

$$1 - E = \frac{127.38}{0.003} = 42.46GPa$$

$$2 - Stress \ at \ D = \frac{15 * 10^3}{\frac{\pi}{4} (0.01)^2} = 191.08 \ MPa$$

- □Q8(Years). The figure shown below represents a Load Deflection curve of a tensile test .
- Find :
- **1- Modulus of elasticity**
- 2- Engineering stress and strain for **point A**
- 3- The ultimate strength
- 4- The total length of the specimen at fracture
- 5- The modulus of **resilience**

Ρδ Ρδ (0,0), (20,0.12) $Stress = \frac{20}{\frac{\pi}{4}(0.01)^2} = 254MPa$ $Strain = \frac{0.12}{110} = 1.09 * 10^{-3}$ 3 $E = \frac{254.6 * 10^6}{1.09 * 10^{-3}} = 233.57GPa$

1 – *E* from Slope

$$P \quad \delta$$

$$2 - (30,0.42)$$

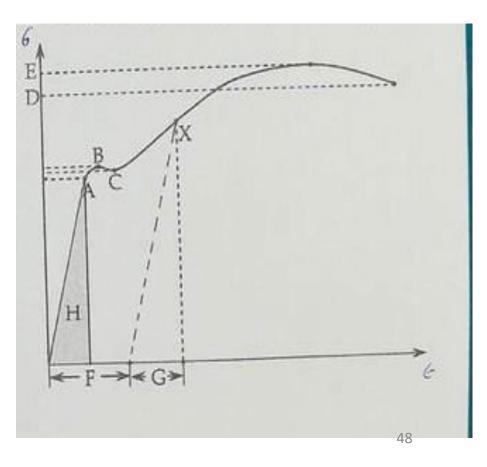
$$Stress = \frac{30}{\frac{\pi}{4}(0.01)^2} = 382.165MPa$$

$$Strain = \frac{0.42}{110} = 3.81 * 10^{-3}$$

$$Stress = \frac{31.5 * 10^3}{\frac{\pi}{4} * (0.01)^2} = 401.07MPa$$

$$4 - lf - li = \delta$$

 $l_f - 110 = 0.7$


 $l_f = 110.7$

$$5 - UR = \frac{1}{2} \epsilon_y \sigma_y$$
$$\frac{1}{2} 1.09 * 10^{-3} 254 * 10^6 = 138.75$$

Q9(Years) Find :

- 1- Total strain if loaded to point X and released
- 2- Proportional limit
- 3- Upper yield strength
- 4- Lower yielding strength
- 5- Modulus of resilience

Ans:
 1- G
 2- A
 3- B
 4- C
 5- H

Q10(Years). Which of the following is a proper sequence ?

Ans. Proportional limit **then** Elastic limit **then** yielding **then** failure .

□Q11(Years). The specimens used in compression tests are shorter than those used in tensile tests , this can be expected to ?

Ans. To avoid buckling (None of the above in the years)

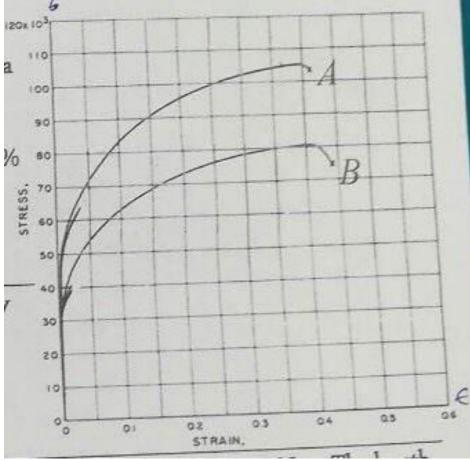
□Q12(Years). During tensile- testing of a specimen using universal testing machine , the parameters actually measured include ?

Ans. Load and elongation

□Q13(Years). A rod of length L and diameter D is subjected to tensile Load P , which of the following is sufficient to calculate the resulting change in diameter ?

Ans. Both Young's modulus and shear modulus .

Q14(Years). If fracture occurs before much plastic deformation occurs , we say that the material is brittle ?


Ans. True

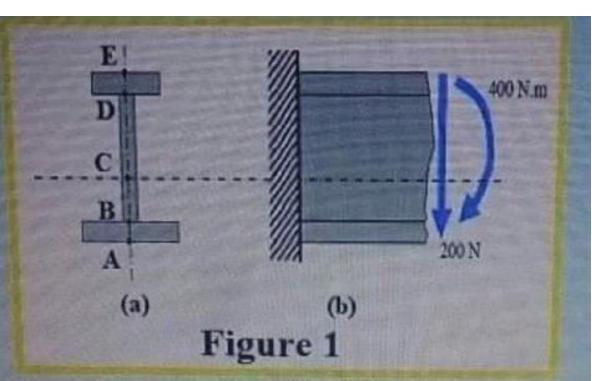
Q15(Years). For the uniaxial stress- strain curve shown below , the modulus of elasticity ?

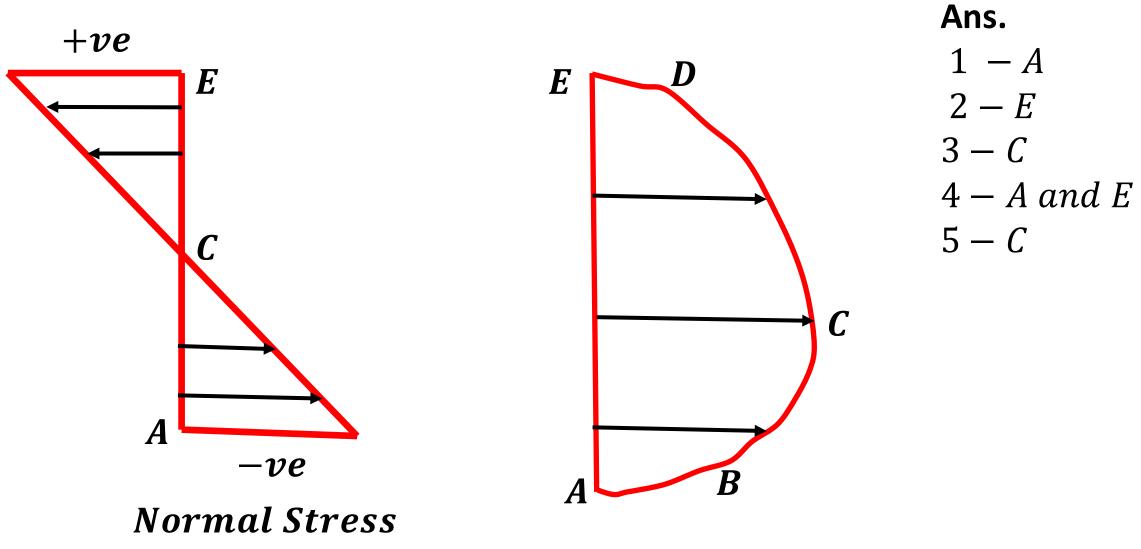
$$E = \frac{\sigma}{\varepsilon} = \frac{6.67}{0.00067} = 10000$$

Q16(Years). For the shown curve the modulus of rupture for <u>material A</u> approximately equals (Stress in kPa)?

Ans.

 $\frac{105 * 1000}{0.42 * 10^{-2}} = 25Mpa (in the years 27Mpa)$


□Q17(Years). A 95 mm specimen with 12 mm diameter is used in tensile test , if the specimen yielded and the test was continued till it reached a final length of 102.3 mm , calculate the actual diameter of the specimen at this point ?


Ans.
$$\frac{\pi}{4} * Li * D_0^2 = \frac{\pi}{4} * Lf * D_f^2$$

 $\frac{\pi}{4} * 95 * 12^2 = \frac{\pi}{4} * 102.3 * Df^2$
 $Df = 11.563$

□Q18(Years). When comparing engineering stress – strain curves with actual stress – strain curve , the engineering stress- strain curve will have ?
 Ans. Lower values of stress after yielding point .

Q19(Years). Find :

- 1- Maximum compressive stress occurs at point ?
- 2- Maximum tensile stress occurs at point ?
- 3- Maximum Shear stress occurs at point ?
- 4- Zero shear stress occurs at point ?
- 5- Zero normal stress occurs at point ?

Shear Stress

Q20(Years). For a specimen under axial loading with E = 84GPa and $\nu = 0.28$ if the lateral strain was measured and found to be equal to $54 * 10^{-5}$, the applied longitudinal stress is equal to ?

$$V = poissons \ ratio = \frac{-\epsilon_{Laterial}}{\epsilon_{Axial}} \qquad \qquad 0.28 = \frac{-54 * 10^{-5}}{\epsilon_{Axial}}$$

 $\epsilon_{Axial} = -192.85 * 10^{-5}$

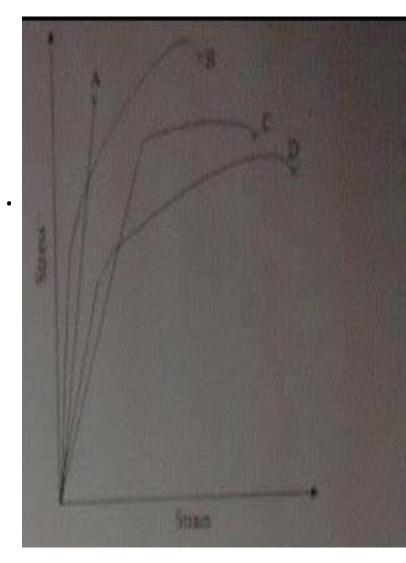
Longitudinal stress = $-192.85 * 10^{-5} * 84 * 1000 = -162Mpa$

Q21(Years). The fracture surfaces will be oriented at 45° with respect to the specimen axis for the following test material combinations ?
 Ans. Tensile-ductile , compression – brittle , torsion-brittle

Q22(Years). Relative to the axis of the specimen , the orientation of fracture surface of a brittle material during tension , compression and torsion test will be ?
 Ans. 90°, 45° and 45°

 Q23(Years). The strain energy density is equal to the area under the load deformation diagram ?
 Ans. False **Q24(Years).** If both material shown below are failed under tensile load , the <u>ductile</u> material ?

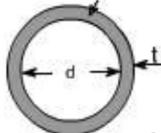
Ans. 1



Q25(Years). Three identical beams with the same boundary conditions and subjected to the same loading are made of steel , brass and aluminum , the smallest stress will occur in the beam made of ?
 Ans. Stress are equal in the three beams

□Q26(Years). The figure below shows the stress-strain curves for four different material , all curves are drawn to the same scale .

Find :


- 1- Material (\underline{C}) has the highest yield strength .
- 2- Material (B) has the highest ultimate strength .
- 3- Material (A) did not show any necking before fracture .
- 4- Material (D) is the most ductile .
- 5- Material (A) is the most brittle .

DExp: THIN WALL CYLINDER

إعداد : محمد السفاريني

Thickness (t) Diameter (D) $\frac{t}{D} < \frac{1}{20}$ يجب تحقق هذا الشرط

We put water , oil in the cylinder <u>so</u> we get stress and strain .

Stress Types:

$$1 - Hoop Stress(\sigma_{H}) = \frac{PD}{2t}$$

$$\sigma_{H} = 2\sigma_{L} \qquad P = Pressure$$

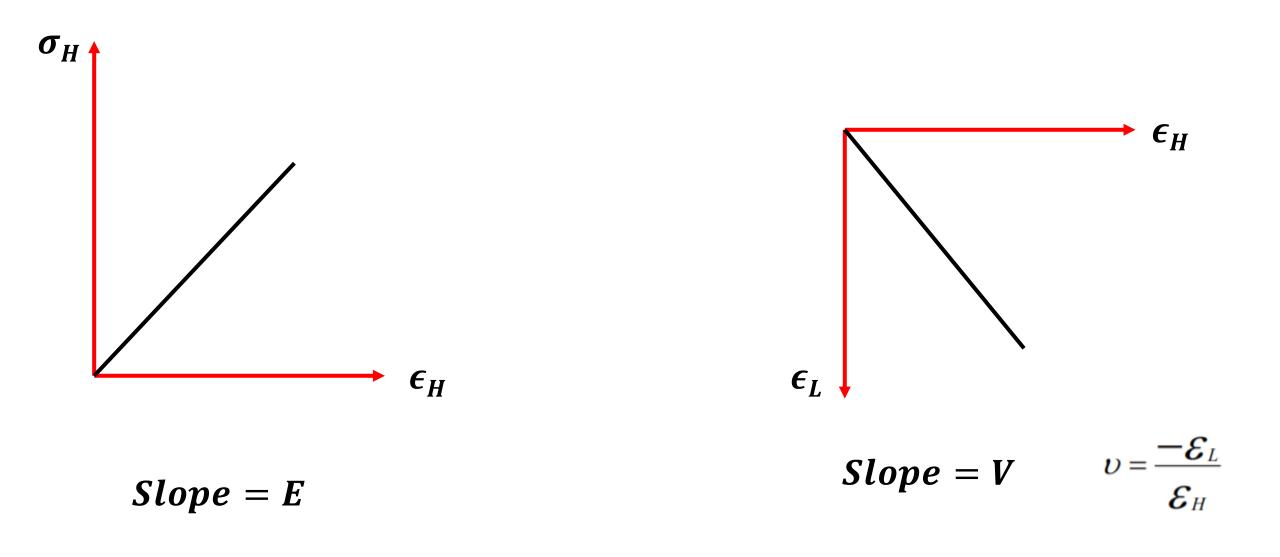
Pressing in the <u>inner</u> wall

2 – Longitudinal stress(
$$\sigma_L$$
)

 $= \frac{PD}{4t}$ Pressing in the <u>ends</u> of the cylinder

 $\sigma_L = 0$ (Spherical or open cylinder)

□ Strain Types :


$$1 - Hoop Strain(\epsilon_H) = \frac{\sigma_H}{E} - V \frac{\sigma_L}{E}$$

E = Modulus of ElasticityV = Poison's ratio

 $v = \frac{-\varepsilon_L}{\varepsilon_H}$

2 – Longitudinal Strain(
$$\epsilon_L$$
)

$$=\frac{\sigma_L}{E}-V\frac{\sigma_H}{E}$$

Q1(Years). In thin wall cylinder experiment , you expect the strain to be negative ?

Ans. In the <u>axial</u> direction for <u>closed</u> end cylinder test .

Q2(Years). If the <u>Longitudinal stress</u> in the thin wall cylinder is equal to 150MPa , the **hoop stress** is Mpa is ?

Ans. $\sigma_H = 2 \sigma_L = 150 * 2 = 300 \text{MPa}$

Q3(Years). For a thin walled cylinders with **open end condition**?

Ans. $\sigma_L = 0$

Q4(Years). For a thin wall cylinder , if the pressure is increased above certain limit then?

Ans. The cylinder usually cracks along the *Longitudinal* direction first .

Q5(Years). Poisson's ratio is defined as ?

Ans. The ratio of lateral strain to axial strain when the material is loaded along one axis .

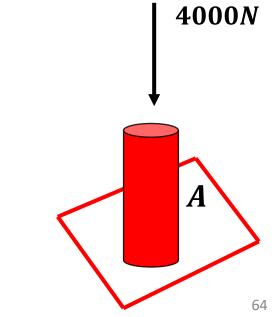
Q6(Years). The hoop stress of spherical thin-walled pressure vessels is twice as large as the *Longitudinal* stress ?

Ans. True

Q7(Years). A strain gauge placed on the <u>longitudinal direction</u> of a thin walled cylinder with <u>closed end</u> condition if the strain gauge **reported a reading of 146** μ – strain , the value of the <u>pressure</u> inside the vessel is equal to ?

 $\epsilon_L = \frac{\sigma_L}{F} - V \frac{\sigma_H}{F}$

D=4m , t=1.25cm , E=70GPa , v=0.33


$$146 * 10^{-6} = \frac{\sigma_L}{70 * 10^9} - 0.33 * \frac{2 * \sigma_L}{70 * 10^9} \qquad \sigma_L = 30058823.53 Pa$$

$$P = 376000Pa = 376kPa$$

□Q8(Years). The air inside a thin walled cylinder is pressurized using a loaded piston as shown in the figure , the cylinder is made of Aluminum (E=70GPa) and it has a diameter of 60mm and wall thickness of 2mm.

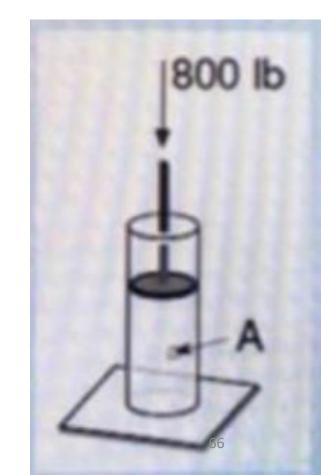
≻Find :

- 1- The *Longitudinal* stress at point A on the cylinder wall .
- 2- The hoop stress at Point A on the cylinder wall .
- 3- If two strain gauges were placed side by side at point A along the hoop direction, what will be the strain reading if the strain gauges were connected using double quarter bridge.

 $1 - \sigma_L = 0$ (Spherical or open cylinder)

$$2 - Hoop Stress(\sigma_{H}) = \frac{PD}{2t} = \frac{4000}{\frac{\pi}{4} * (\frac{60}{1000})^{2}} * 60$$
$$\frac{2 * 2}{2 * 2} = 21.2MPa$$

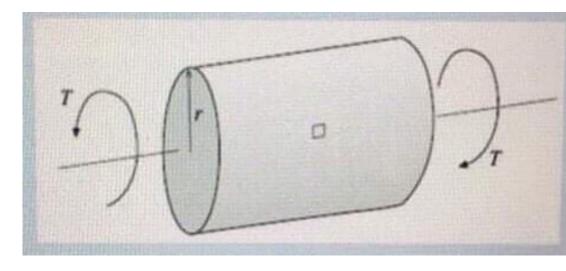
$$3 - Hoop \ Strain(\epsilon_{H}) = \frac{\sigma_{H}}{E} - V \frac{\sigma_{L}}{E}$$
$$\epsilon_{H} = \frac{\sigma_{H}}{E} = \frac{21.2 * 10^{6}}{70 * 10^{9}} = 3.02 * 10^{-4}$$

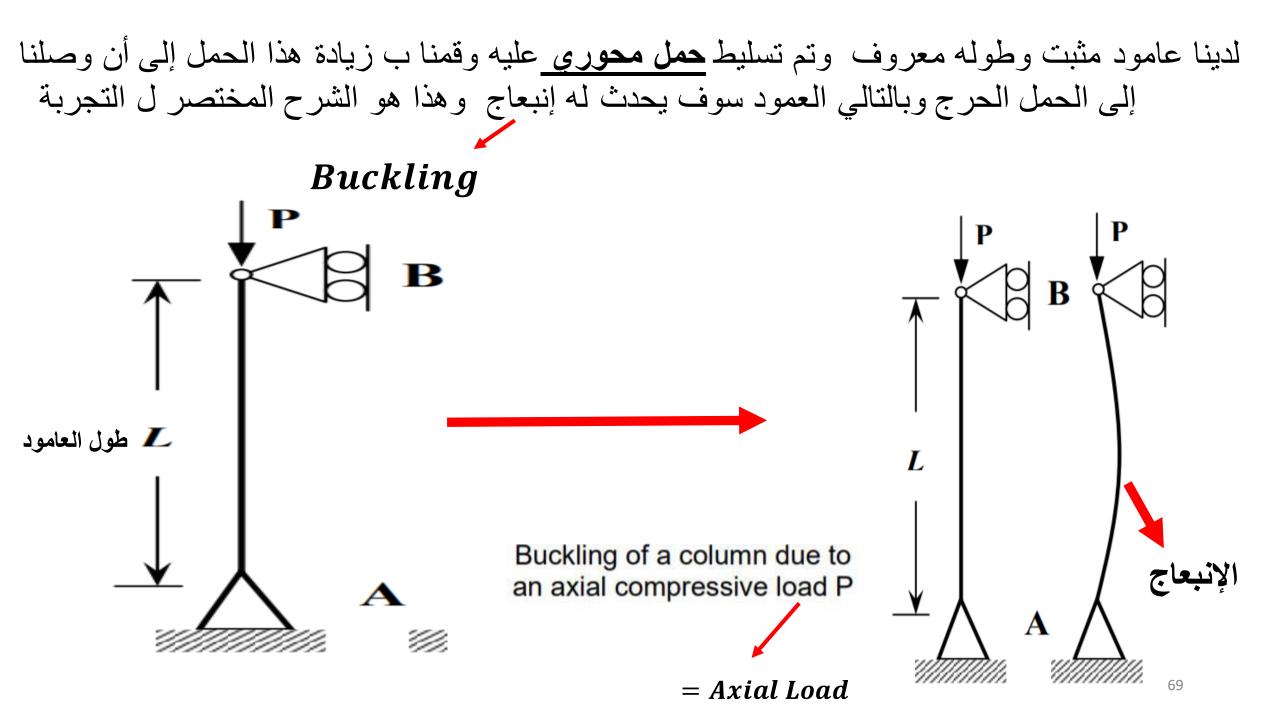

 $\mathbf{2} * 3.02 * 10^{-4} = 6.057 * 10^{-4}$

Q9(Years). The air pressure in a cylinder is increased by a loaded piston as shown below, the cross sectional area of the piston face is $18.1in^2$, the thickness of the cylinder wall is 0.125 inches and the radius of the cylinder is 2.4 inches, the stress in the cylinder wall at point A are ?

$$P = \frac{F}{A} = \frac{800}{18.1} = 44.19$$

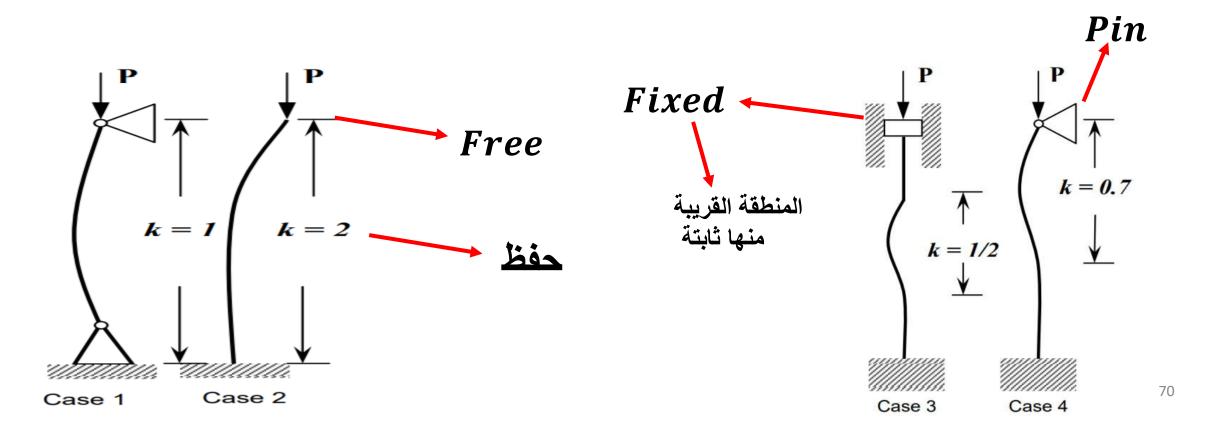
Hoop Stress(
$$\sigma_H$$
) = $\frac{PD}{2t} = \frac{44.19 * 2.4 * 2}{2 * 0.125} = 848.448$


Longitudinal stress(
$$\sigma_L$$
) = $\frac{PD}{4t} = \frac{44.19 * 2.4 * 2}{4 * 0.125} = 424.224$


□Q10(Years). The thin walled cylinder shown is loaded both by an internal pressure p=20 psi and an applied torque T=4000, the radius of the cylinder is r =4 inch and the wall thickness is t =0.125 inch, the tangential and longitudinal stress ?

Hoop Stress(
$$\sigma_H$$
) = $\frac{PD}{2t} = \frac{20 * 8}{2 * 0.125} = 640$

Longitudinal stress(
$$\sigma_L$$
) = $\frac{PD}{4t} = \frac{20 * 8}{4 * 0.125} = 320$



□End condition of columns(<u>K</u> values) :

Case 1 : (Pin - Pin) : <u>Max Deflection</u> in the <u>middle</u> of column .

- **Case 2** : (Fixed Free) : <u>Max Deflection</u> in the <u>top</u> of column .
- Case 3 : (Fixed Fixed): <u>Max Deflection</u> in the <u>middle</u> of column .
 Case 4 : (Fixed-Pined)

P_{cr} = <u>Critical</u> Load "<u>Theoretical</u> value " : The Load at which the <u>buckling</u>(lateral deflection) <u>will occur</u>.

$$P_{cr} = \frac{n^{2} * \pi^{2} * E * I}{(Leff)^{2}} \qquad n = 1$$

$$KL \qquad P_{cr} = \frac{\pi^{2} * E * I}{(KL)^{2}}$$

P ≥ Pcr Failure , Unstable , Buckling happened

Symbol	Mean	
E	Modulus of Elasticity	1 .
Ι	Moment of inertia	$I = \frac{1}{12}bh^3$
K	Depends on <u>type</u> <u>End condition</u>	الرقم الأكبر :b
L	Length	
L _{eff}	Length of column <u>affected</u> by axial load	72

 $P \leq Pcr$

No failure ,Stable

□Q1(Years) . A 500mm long column has a <u>square</u> cross section (6mm*6mm) , the column has fixed- free ends and is made of steel (E=210GPa) , Find the <u>critical buckling load</u> ?

$$I = \frac{b^4}{12} = \frac{(0.006)^4}{12} = 1.08 \times 10^{-10}$$
$$P_{cr} = \frac{\pi^2 \times 210 \times 10^9 \times 1.08 \times 10^{-10}}{(2 \times 0.5)^2} = 223.84 N$$

Q2(Years). if the column is to be <u>replaced</u> by another column having a rectangular cross-section (4mm*10mm), what should <u>be the length</u> of the column such that it will have the <u>same critical buckling load</u>?

$$I = \frac{1}{12} * 0.01 * 0.004^3 = 5.33 * 10^{-11}$$

$$223.84 = \frac{\pi^2 * 210 * 10^9 * 5.33 * 10^{-11}}{(2 * L)^2}$$

$$L = 0.351m = 351.5mm$$

Q3(Years). To find the critical force experimentally in the stability of columns experiment, the relationship between $\frac{P}{Y}$ and P is drawn and the intersection of the line with P-axis is taken as the critical force because that point represents the ?

Ans . Load value at which deflection is very high .

- □Q4(Years). <u>Buckling</u> always occurs in the direction with the (<u>minimum</u>) second moment of Area .
- **Q5(Years).** Buckling is **affected by** ?

Ans. Elasticity of the material

□Q6(Years). A beam with fixed- pinned end condition loaded in the middle is expected to have the maximum deflection at a point ?

Ans. Closer to the pinned end

□Q7(Years). A beam with pinned- pinned end condition loaded in the middle is expected to have the maximum deflection at a point ?

Ans. Loaded directly below the applied load .

Q8(Years). For a column of length L is subjected to a compressive load and having a critical load P_{cr} , if the <u>length</u> of the column was changed to $\frac{L}{2}$ then the critical buckling load will be ?

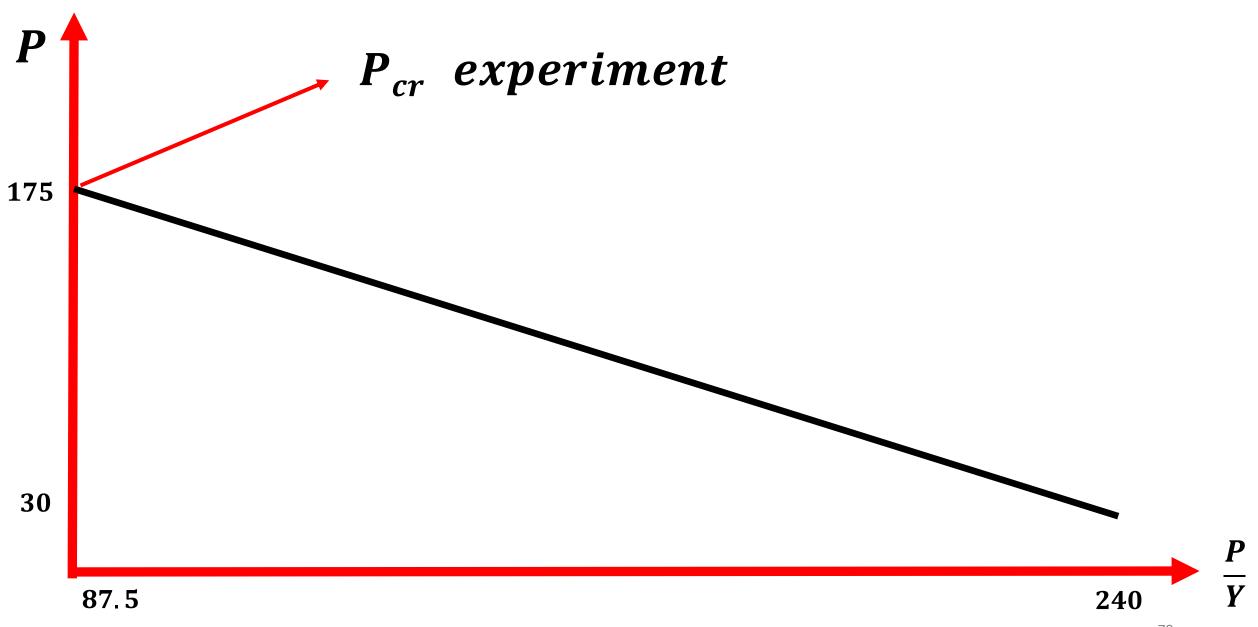
$$P_{cr} = \frac{4 * \pi^2 * E * I}{K^2 L^2} \quad \div \quad P_{cr} = \frac{\pi^2 * E * I}{K^2 L^2}$$

Ans. Increase 4 times

Q9(Years). In stability of columns test the rod , if rod material is steel (E=210GPa) , The **cross section** with dimensions of 0.5*2 cm and length 90 cm , if the data given in **table** are for **pinned-pinned end condition**

Find :

- 1- Experimental critical load .
- 2- Theoretical critical load .
- 3- Percentage error .


اللحنة الأكاديمية لقسم الهندسة المدنية

Р	Y(mm)
30	0.125
50	0.250
75	0.500
100	0.750
125	1
137.5	1.25
150	1.50
162.5	1.75
175	2

Ans:

نجدها لكي نرسم الرسمة ومن ثم إيجاد الحمل الحرج

Р	Y(mm)	$\frac{P}{Y}$
		Y
30	0.125	240
50	0.250	200
75	0.500	150
100	0.750	133.33
125	1	125
137.5	1.25	110
150	1.50	100
162.5	1.75	92.85
175	2	87.5

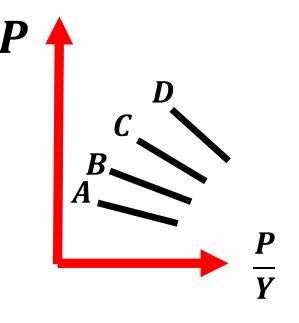
$$P_{cr} = \frac{\pi^2 * E * I}{(KL)^2} \qquad I = \frac{1}{12} * 0.02 * 0.005^3 = 2.08 * 10^{-10}$$

$$P_{cr} = \frac{\pi^2 * 210 * 10^9 * 2.08 * 10^{-10}}{(1 * 0.9)^2} = 531.68 N$$

$$Error\% = \left(\frac{P_{cr} - P}{P_{cr}}\right) * 100\%$$

$$Error\% = \left(\frac{531.68 - 175}{531.68}\right) * 100\% = 67\%$$

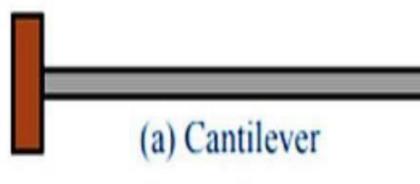
اللجنة الأكاديمية لقسم الهندسة المدنية

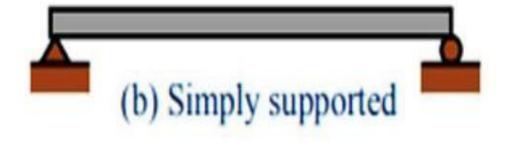

Q10(Years). Four specimens (A,B,C,D) of the <u>same</u> material length and cross section but with <u>different</u> end conditions are tested for buckling , the load P is plotted against $\frac{P}{V}$ where y is the lateral deflection as shown .

- 1- The specimen with **Fixed-Free** end conditions is ?
- 2- The specimen with **Pinned-Fixed** end conditions is ?

1- Fixed –free : K=2 So P_{cr} is <u>lowest</u> so the Ans (A)

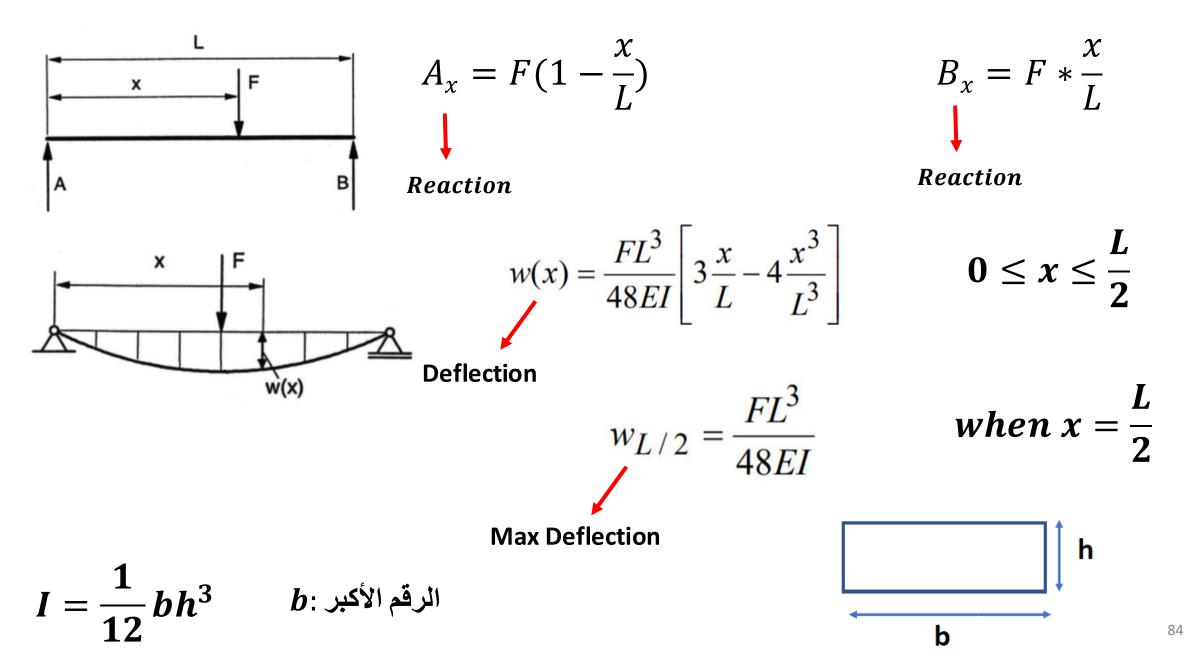
2- Pinned –fixed : K=0.7

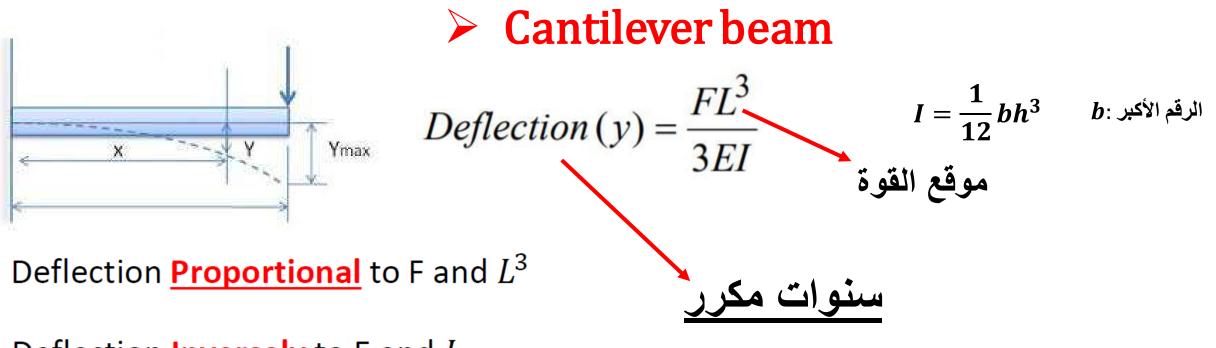

So P_{cr} is higher so the Ans (C) <u>not (D)</u> because (D) k=0.5 so its has the highest P_{cr} .



- **Q11(Years).** One of the following is an example for buckling of column ?
- A- Column in a building
- B- a beam loaded by an axial compressive force only
- C- Walking stick
- **D- All of the above**

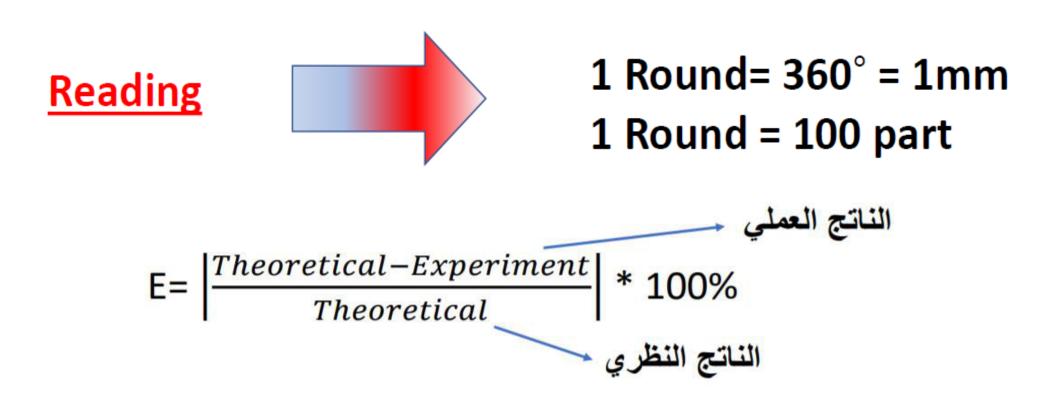
Exp: Deflection of Beams


Types of Beams



Simply supported beam

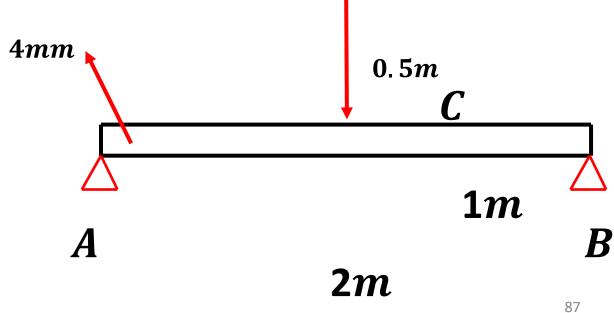
Deflection Inversely to E and I


S or **Deformation** at point **A** = Zero

S or **Deformation** at point **B** = Max

Measurement of the **Deflection**: By **<u>Dial gauge</u>** and the units in (mm).

Measurement of the Reaction : By Dynamometer and the units in (N) .


Q1(Years). For a **simply supported** beam with loading shown , if it has **cross section** of (20mm*4mm) :

- <u>Find :</u>
- 1- Reaction at A and B

P = 30

- 2- Maximum deflection occurs at ?
- 3- Moment at point C

$$1 - Ax = 30\left(1 - \frac{1}{2}\right) \qquad \qquad B_x = 30 * \frac{1}{2} = 15N$$
$$= 15N$$

2 – Max at the centre of the beam

$$3 - \Sigma M_c = 15 * 0.5 = 7.5$$
 إعمل سكشن

$$4 - \frac{Mc}{I} = \frac{7.5 \times 2 \times 10^{-3}}{\frac{1}{12} \times 0.02 \times 0.004^3} = 140.63Mpa$$

□Q2(Years). If the beam is <u>replaced</u> by another one of same material, same length and same loading but with <u>circular sectional area</u> of diameter 10 mm then ?

$$w(x) = \frac{FL^3}{48EI} \left[3\frac{x}{L} - 4\frac{x^3}{L^3} \right]$$
$$I = \frac{\pi d^4}{64} = \frac{\pi (0.01)^4}{64} = 4.90 \times 10^{-10}$$
$$I = \frac{1}{12}bh^3 = \frac{1}{12} \times 0.02 \times 0.004^3 = 1.06 \times 10^{-10}$$

Ans. Beam of rectangular cross section will deflect more than circular one because moment of inertia is higher than circular cross section

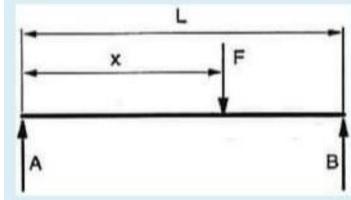
□Q3(Years). A cantilever beam of rectangular cross-section is subjected to a load W at its free end , if the <u>depth</u> of the beam is doubled and the <u>load</u> is halved , the deflection of the free end as compared to original deflection will be ?

$$Deflection(y) = \frac{FL^{3}}{3EI}$$

$$S_{1} = \frac{4F_{1}L_{1}^{3}}{Eb_{1}h_{1}^{3}} \qquad S_{2} = \frac{F_{2}L_{2}^{3}}{4Eb_{2}h_{2}^{3}} \qquad S_{2} \div S_{1} = \frac{1}{16}$$

$$F_{2} = \frac{1}{2}F_{1}$$

$$h_{2} = 2h_{1}$$

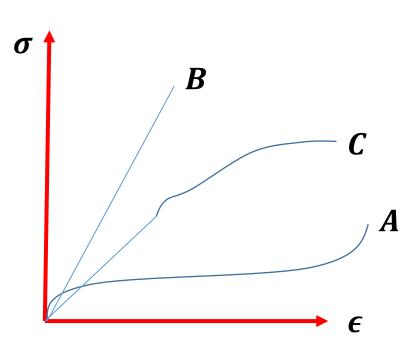

Q4(Years). A 1.75 m beam subjected to a load at point x if the <u>reactions</u> found at A and B are 1245N and 1975N respectively , the load F and its location are ?

$$A_x = F(1 - \frac{x}{L})$$
 1245 = $F(1 - \frac{x}{1.75})$

$$B_x = F * \frac{x}{L}$$
 1975 = $F * \frac{x}{1.75}$ 3456.25 = $F * x$

$$1245 = (F - \frac{F * x}{1.75}) \qquad 1245 = (F - \frac{3456.25}{1.75}) \qquad 3220 = F$$

 $1245 = 3220(1 - \frac{x}{1.75}) \qquad 1.07 = X$


 $\Box Q5(Years).$

1- The material that has the <u>highest</u> ductility ? Ans. A

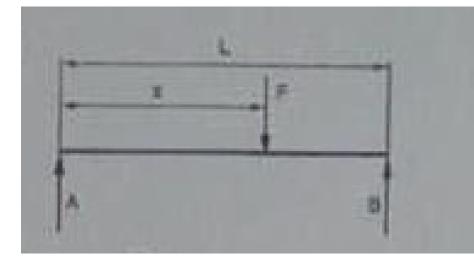
2- The material that has the <u>largest</u> elastic modulus ? Ans. C

3- The material that has the <u>highest</u> toughness ? Ans. C

Q6(Years).

1- The shear strain in a rod is the deformation per unit length ? Ans. F

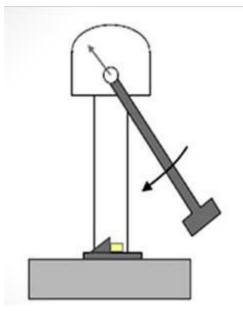
2-Buckling is a mode of failure that does not depend on stress or strength but rather than on structural stiffness ?


Ans. T

3- Horizontal equilibrium is used to determine that the neutral axis of an elastically deforming beam is located at the centroid of the cross – section

Ans. T

Q7(Years). A 800mm beam is used in deflection of beams test , if the load of 4 kg is applied at point 650 mm from A , the reaction at B will be equal to ? If you know E = 190GPa and $A = 18 * 6 mm^2$


$$B_x = F * \frac{x}{L}$$

$$B_x = 4 * 9.807 * 10^{-3} * \frac{650}{800} = 0.0318kN = 31.872N$$

□Q8(Years). For the <u>same data in previous question</u>, if the load is applied at the center of the beam, the expected deflection at x=650mm from A equal to ?

$$I = \frac{1}{12} * 18 * 6^3 = 324mm^4$$

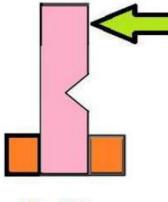
$$S = \frac{4 * 9.807 * 10^{-3} * 800^3}{48 * 324 * 190 * 1000000} \left[\frac{3 * 150}{800} - \frac{4 * 150^3}{800^3} \right] = 3.64$$

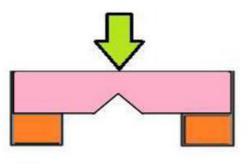
DExp: Impact test

إعداد : محمد السفارية (🧲

- Toughness: The energy required to fracture a material and it depends on geometry (strength) and ductility or Total strain energy per unit volume of a metal.
- Impact is a shock load which is applied for a very short time <u>under</u> <u>consideration</u>.

Consideration : $t < \frac{1}{3}W_n$


t: time of application of load on specimen $W_{n:}$ natural period of vibration of structure(natural frequency)


Toughness and ductility Toughness and Temperature علاقة طردية

Туре	V	U
Toughness	Low	Hight
Stress concentration	Hight	Low

Types of impact tests

1. Charpy test 2. Izod test

(b) Charpy Test

(a) Izod Test

Charpy test

1-Notch opposes the hammer
2-Specimen is simply supported
3-Simple and fast
4- Low Toughness
(Brittle example : steel)
5- Two shearing Area
6- E Charpy =2 E Izod
7- التدريج الخارجى - 1

Izod test

1-Notch **faces** the hammer 2-Cantilever type specimen (clamped) 3-More complicated and slower 4- Hight Toughness (Ductile example : Aluminum) 5- One shear Area 6- E Izod = $\frac{1}{2}$ E Charpy التدريج الداخلى -7

U= mg(h_1 - h_2)- friction U= mgL(cos θ_1 -cos θ_2) - friction

Max velocity so h1= zero then
$$h_2 = \frac{v^2}{2g}$$

Q1(Years). Four different samples were used in impact test for the same material , the order of samples based on the amount of energy absorbed from Low to high ?

Ans.

(V notch charpy) – (U notch charpy) – (V notch Izod) – (U notch Izod)

Q2(Years). In the impact test , the pendulum load was released before installing the test specimen to ?

Ans. Measure the friction energy loss

□Q3(Years). Impact test use the principle of () the material ? Ans. Conservation of energy to find the toughness **Q4(Years).** In Izod test , the specimen is kept as ?

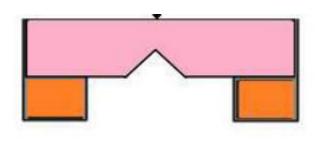
Ans. Cantilever Beam

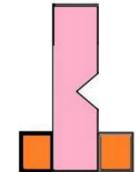
Q5(Years). In Charpy test , the specimen is kept as ?

Ans. Simply supported Beam

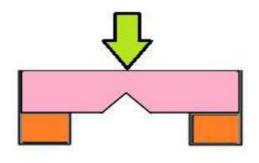
Q6(Years). A loads acts on a structure for period of time , this izod can be considered impact if ?

Ans. Its application time is less than one third of the first natural frequency of the structure .

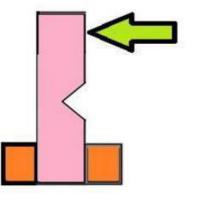

Q7(Years). Charpy testing determines the yield strength as a function of temperature ?


Ans. False

Q8(Years). The energy per unit volume required to cause fracture in the charpy specimens is called ?

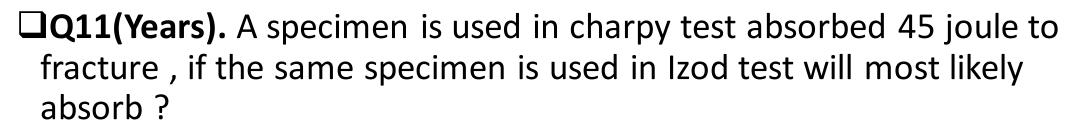

• Ans. Modulus of toughness

Q9(Years). Write Down the name of each test in the provided box and draw an arrow showing the direction and location where the hammer hits the specimen ?

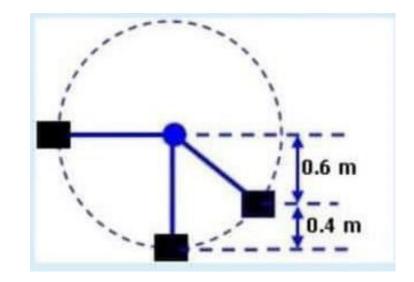


Ans.

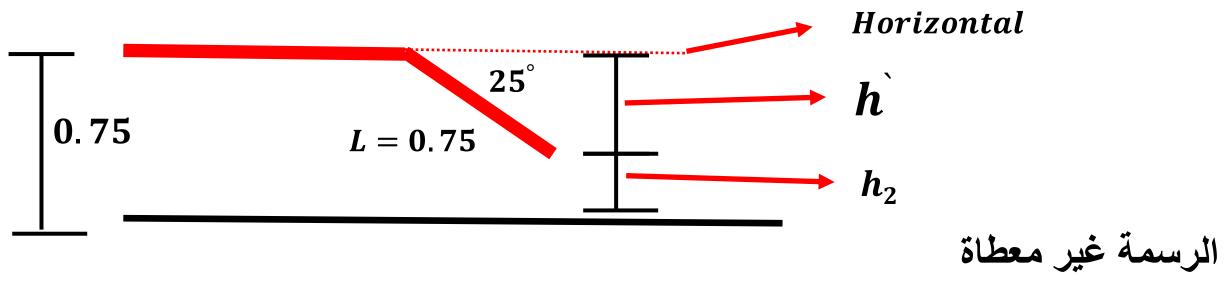
(b) Charpy Test



101


Q10(Years). Using the figure shown , the energy absorbed through the impact test is ? If you know the mass is 1 kg and g = $9.81 \frac{m}{s^2}$

 $U = mg(h_1 - h_2)$


9.81 * (1 - 0.4) = 5.9 N.m

Ans.
$$\frac{1}{2} * 45 = 22.5$$
 joule

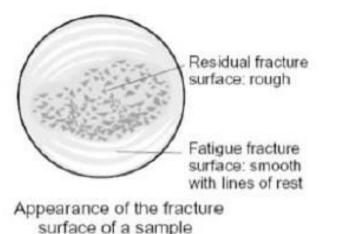
□Q12(Years). A 4 kg hammer is used to construct a pendulum for impact test with L=0.75m, the pendulum was initially held at 0° angle with the horizontal line and used in charpy impact test, if the final pendulum position was at angle 25° with the horizon, what the expected value of the energy absorbed by the specimen ?

 $\dot{h} = 0.75 * \sin 25^{\circ} = 0.43$ U= mg(h₁-h₂)

4 * 9.81 * (0.75 - 0.43) = 12.44

Q13(Years). In impact test experiment , a hammer with mass 50 kg is released from rest . The maximum velocity was measured to be $5\frac{m}{s}$, the resistance energy loss coming from air just before impact is 5 joule , after hammer had strike the specimen , the maximum elevation of the hummer on the opposite side is 0.4 m , estimate the energy absorbed by the specimen ?

Ans.

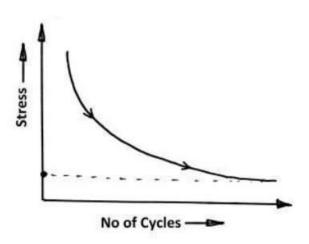

$$\Delta u = \left[\frac{1}{2}m * v^2 - (mgh)\right] - 5$$
$$\Delta u = \left[\frac{1}{2}50 * 5^2 - (50 * 9.81 * 0.4)\right] - 5 = 423.8$$

Exp: Fatigue Test

So , Fracture happen at a stress less than yield stress or $\sigma < \sigma_{ult}$ Ultimate stress $\sigma < \sigma_y$

Form of Fracture at angle 90°

Fatigue Life: It is the <u>number of cycles</u> to cause failure at a specific stress taken from S-N curve


S: stress

N: # of cycles

Fatigue strength: It is the <u>stress</u> at which failure will occur for a specified number of cycles.

$$\sigma = \frac{Mc}{I}$$

M: Bending Moment = F*L $c = centroud = \frac{d}{2}$ I: Moment of Inertia= $\frac{\pi d^4}{64}$

Endurance : the number N of load cycles until rupture at a certain load.

#of cycles = ∞ then No failure #of cycles = Zero then $\sigma = \sigma_{ult}$

Relation between Stress and #of cycles is inverse

Fatigue Endurance Limit: It is the stress level at which fatigue will <u>never occur</u>, that is the largest value of fluctuating stress that will not cause failure for infinite number of cycles.

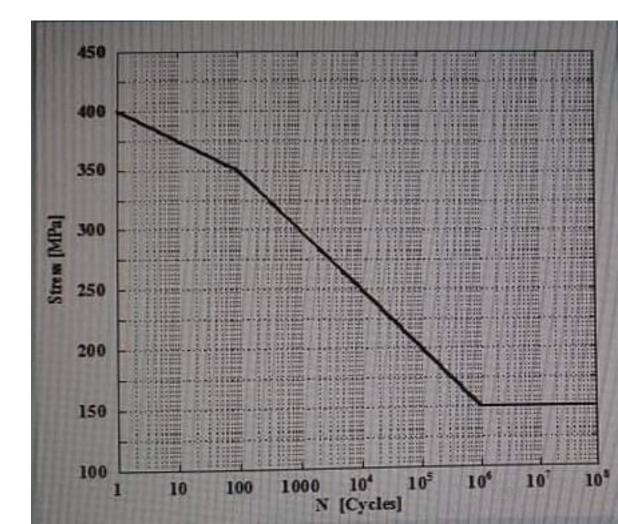
Q1(Years). In fatigue testing , a material with no clear endurance limit is typically ?

Ans. Non ferrous

Q2(Years). The stress level below the material can withstand an infinite number of Load cycles ?

Ans. Endurance Limit

Q3(Years). The laboratory instrument used to test the fatigue life of material has ?

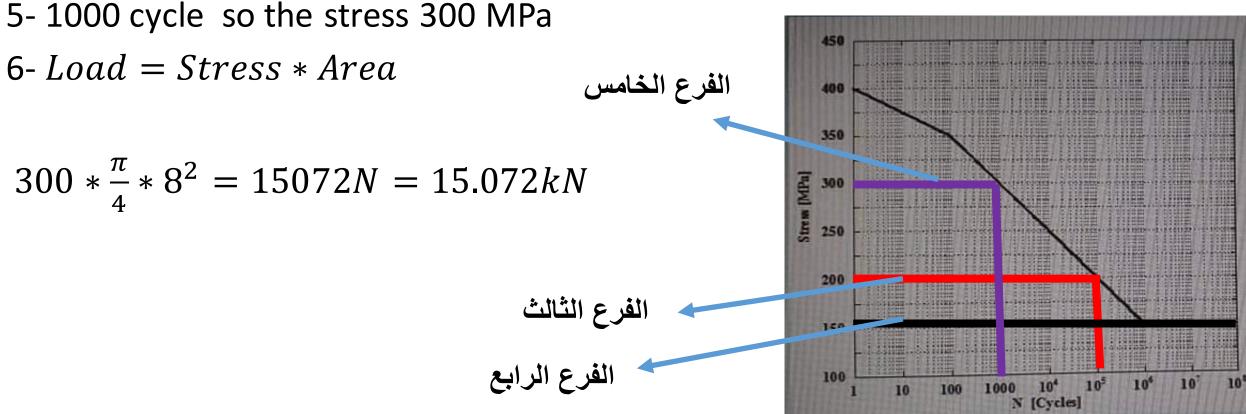

Ans. A rotating element with an applied bending Load.

Q4(Years). In fatigue test an alternating Load can be defined as a load that ?

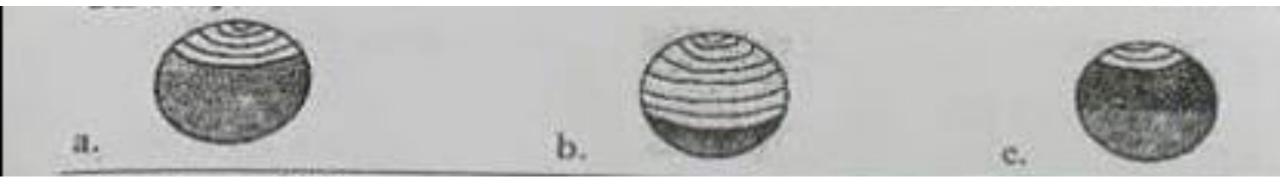
Ans. Changes periodically between tension and compression cycles

□Q5(Years). The figure below shows the results of the fatigue experiment , in this experiment a beam rotates with the motor and is subjected to a load F at the free hand . The beam is 100.5 mm long , 8mm diameter and the moment of inertia is $201mm^4$

- Find :
- 1- the ultimate strength for this material
- 2- The life at the ultimate strength
- 3- The life at a stress of 200 Mpa in cycles
- 4- the endurance limit
- 5- the fatigue strength that cause failure of this metal at 1000 cycles
- 6- the maximum load F that will cause failure in the previous question



Ans. 1-400 MPa when the number of cycles (N) is 1


2- One cycle

3- when the stress 200 MPa , the cycles is $10^5\,$

4- 150 MPa

□Q6(Years). Three different specimens of the same material were subjected to fatigue loads , the following illustrations represents the broken specimens , which one of them represents the one that had the least load (Lowest stress)?

Ans. C

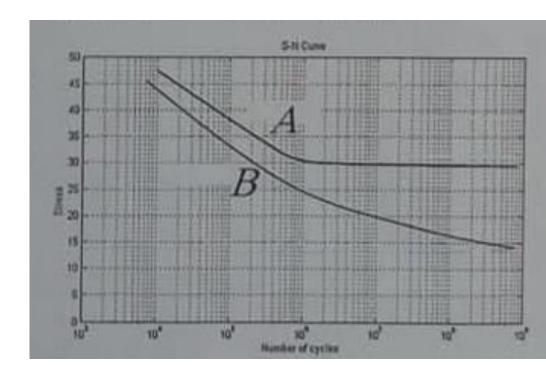
Q7(Years). In fatigue test if we reduce the magnitude of the cycle stress ?

Ans. The part would serve more cycles before breaking

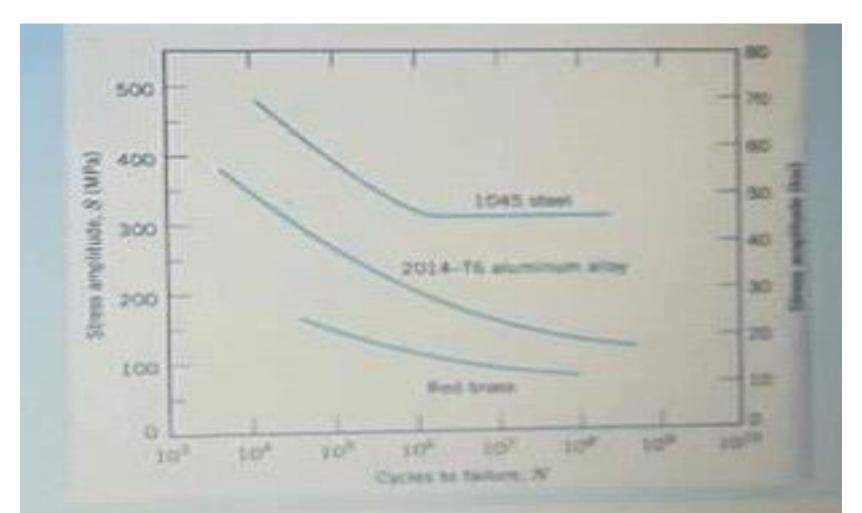
□Q8(Years). Fracture usually occurs as soon as critical stress has been reached , however repeated applications of somewhat lower stress my cause fracture , this is called fatigue ?

Ans. True

□Q9(Years). What is the relation between stress at the tension side and the diameter of the fatigue test specimen ?


Ans. Stress is proportional to $(diameter)^{-3}$

□ Q10(Years). In fatigue test if we increase the magnitude of the cycle stress ? Ans. The part would survive less cycles before breaking

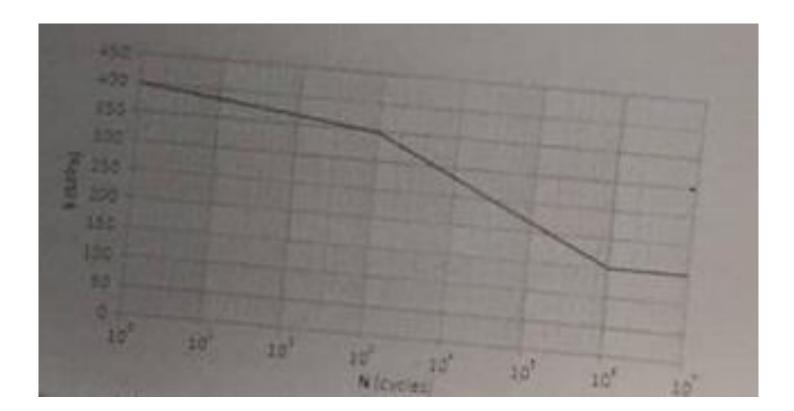

Q11(Years). The Shown curve represents fatigue test , results for aluminum and steel , refer to it answer . The endurance limit for Material B and represents what ?

Ans. Endurance limit cant be determined

and it represents Aluminum .

□Q12(Years). A cylinder of 2014 T6 aluminum is subjected to full reverse load cycle with a maximum load of 125000 N, using the fatigue data in the figure, the diameter of the cylinder of giving a lifetime to failure of 100 million cycles ?

$$\sigma = rac{P}{rac{\pi}{4} * D^2}$$
 $P = 125000N$ (معطى)

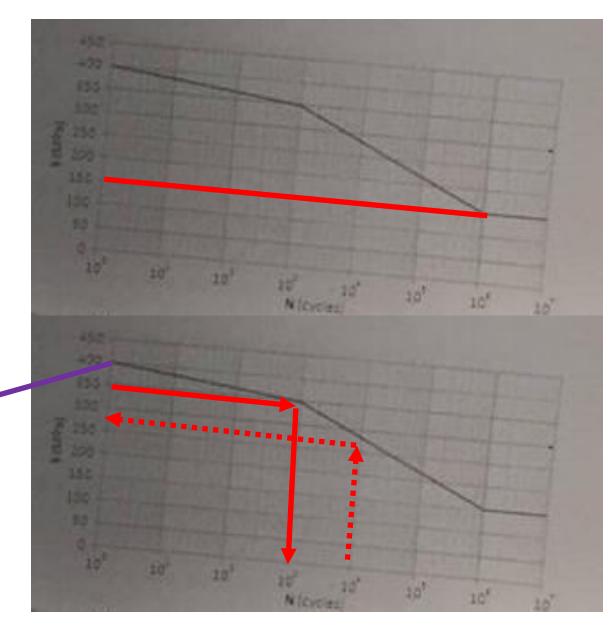

 $#of cycles = 10^8$

 $\sigma = 20ksi (From diagram) = 18 * 6.895 = 124.11 MPa$

$$124.11 = \frac{125000}{\frac{\pi}{4} * D^2} \qquad D = 35.8$$

Q13(Years). The S-N diagram from some steel alloy is shown , find :

- 1- The **<u>endurance limit</u>** of the material ?
- 2- The fatigue life corresponding to a stress level of 350MPa ?
- 3- The **<u>ultimate strength</u>** of the material ?
- 4- The fatigue strength corresponding to **<u>30000 load cycle</u>** is ?



Ans. 1- 150MPa 2- 1000

3-400

4-270

Ultimate strength

DExp: Creep Test of Metallic Materials

إعداد : محمد السفاريني اللجنة الأكاديمية لقسم الهندسة المدنية

Creep : A **consequence** of this is that steel under a **constant stress** at an elevated **temperature** will continuously **deform** with time .

- Rate of Strain (Creep) <u>depends</u> on :
- 1- Temperature 2- Stress

Creep occurs if :

T_m: **Absolute** melting Temperatu

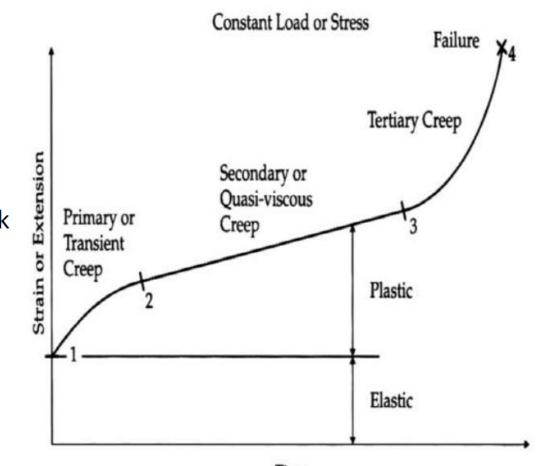
T_s: Surrounding Temperature

- $T_s \ge 0.4 T_m$
- $\sigma \geq \sigma_{v}$

Slope= Rate of strain Unit : $\frac{1}{sec}$ 1 to 2 **Primary** (Transient) Creep : Diminishing rate due to work hardening of the metal Work hardening > Annealing Rate of strain **decreases**

2 to 3 **Secondary Creep**(Quasi-viscous) :

Constant rate because a balance is achieved between the work Hardening and annealing (thermal softening) processes. Work hardening = Annealing Rate of strain constant Determines the life of a given component Needs more time , Most important stage Prime importance as a design criterion


3 to 4 Tertiary Creep :

The creep rate increases due to **necking** of the specimen and the associated increase in local stress.

Failure occurs at point 4.

Work hardening < annealing

Rate of strain increases

Time

Q1(Years). The creep rate is ?

Ans. Directly proportional to the metal temperature and applied Load

Q2(Years). Of the three stages of creep it is the second stage that shows a constant strain rate ?

Ans. True

Q3(Years). An elements which are subjected to creep spend most of their live in ?

Ans. Secondary Creep

Q4(Year). Plastic deformation and eventual failure at elevated temperature under static mechanical stress is called creep ?

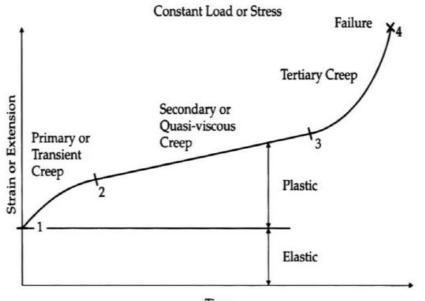
Ans . True


□Q5(Years). A good example of a material which has creep under loading at room temperature ?

Ans. Lead

Q6(Years). As the working temperature () the creep strain rate () ? **Ans.** Increased , Increased .

Q7(Years). Creep in metals occurs at significant rate when ? **Ans.** The stress **is higher than** the yield strength and the temperature is **higher than 40%** of the melting temperature . □ Q8(Years). In the creep experiment , a typical extension – time curve is shown below .


- Dimension of the specimen : Thickness 2mm , width 5 mm and gauge length 90 mm
- Find :
- 1- Design creep rate
- 2- Elastic region
- 3- Plastic region
- 4- Fracture strain

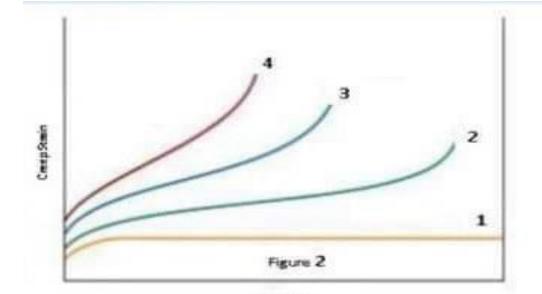
Ans. 1- Creep rate for stage (2-3) =
$$\frac{Elongation}{Time} = \frac{350-250}{35-10} = 4 \frac{mm}{min}$$

2- from 0 to 150

3- From 150 to 450

$$4 - \frac{Elongation}{Length} = \frac{450}{90} = 5$$

Time


Q9(Years). A material with **melting point** = $755C^{\circ}$ is subjected to stress at elevated temperature, the maximum temperature for this material to be used so it wont shown creep behavior is ?

```
Ans. Ts \ge 0.4 * (755 + 273.15)
Ts \ge 411.2C^{\circ}
```

 $Ts \ge 411.2 - 273.15 = 138C^{\circ}$

□Q10(Years). The figure bellow shows an actual results obtained from creep test for 4 different conditions of the same material , the longest time for rapture is for ?

Ans. Curve 2

