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1 
Physics and Measurement 

 

CHAPTER OUTLINE 
 

1.1 Standards of Length, Mass, and Time 

1.2 Matter and Model Building 

1.3 Dimensional Analysis 

1.4 Conversion of Units 

1.5 Estimates and Order-of-Magnitude Calculations 

1.6 Significant Figures 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ1.1 The meterstick measurement, (a), and (b) can all be 4.31 cm. The 
meterstick measurement and (c) can both be 4.24 cm. Only (d) does not 
overlap. Thus (a), (b), and (c) all agree with the meterstick 
measurement. 

OQ1.2 Answer (d). Using the relation 
  

 
1 ft = 12 in

2.54 cm
1 in

⎛
⎝⎜

⎞
⎠⎟

1 m
100 cm

⎛
⎝⎜

⎞
⎠⎟ = 0.304 8 m

 

 we find that 
  

 
1 420 ft2 0.304 8 m

1 ft
⎛
⎝⎜

⎞
⎠⎟

2

= 132 m2
 

OQ1.3 The answer is yes for (a), (c), and (e). You cannot add or subtract a 
number of apples and a number of jokes. The answer is no for (b) and 
(d). Consider the gauge of a sausage, 4 kg/2 m, or the volume of a 
cube, (2 m)3. Thus we have (a) yes; (b) no; (c) yes; (d) no; and (e) yes. 
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OQ1.4 41 € ≈ 41 € (1 L/1.3 €)(1 qt/1 L)(1 gal/4 qt) ≈ (10/1.3) gal ≈ 8 gallons, 
answer (c). 

OQ1.6 The number of decimal places in a sum of numbers should be the same 
as the smallest number of decimal places in the numbers summed. 

 

 

21.4 s
15 s
17.17 s
 4.003 s
57.573 s = 58 s, answer (d).

 

OQ1.7 The population is about 6 billion = 6 × 109. Assuming about 100 lb per 
person = about 50 kg per person (1 kg has the weight of about 2.2 lb), 
the total mass is about (6 × 109)(50 kg) = 3 × 1011 kg, answer (d). 

OQ1.8 No: A dimensionally correct equation need not be true. Example: 1 
chimpanzee = 2 chimpanzee is dimensionally correct. 

 Yes: If an equation is not dimensionally correct, it cannot be correct. 

OQ1.9 Mass is measured in kg; acceleration is measured in m/s2. Force = 
mass × acceleration, so the units of force are answer (a) kg⋅m/s2. 

OQ1.10 0.02(1.365) = 0.03. The result is (1.37 ± 0.03) × 107 kg. So (d) 3 digits are 
significant. 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ1.1 Density varies with temperature and pressure. It would be necessary 
to measure both mass and volume very accurately in order to use the 
density of water as a standard. 

CQ1.2 The metric system is considered superior because units larger and 
smaller than the basic units are simply related by multiples of 10. 
Examples:  1 km = 103 m, 1 mg = 10–3 g = 10–6 kg, 1 ns = 10–9 s. 

CQ1.3 A unit of time should be based on a reproducible standard so it can be 
used everywhere. The more accuracy required of the standard, the less 
the standard should change with time. The current, very accurate 
standard is the period of vibration of light emitted by a cesium atom. 
Depending on the accuracy required, other standards could be: the 
period of light emitted by a different atom, the period of the swing of a 
pendulum at a certain place on Earth, the period of vibration of a 
sound wave produced by a string of a specific length, density, and 
tension, and the time interval from full Moon to full Moon. 

CQ1.4 (a) 0.3 millimeters; (b) 50 microseconds; (c) 7.2 kilograms 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 1.1 Standards of Length, Mass, and Time	  
P1.1 (a) Modeling the Earth as a sphere, we find its volume as 
   

  

4
3
πr3 =

4
3
π 6.37 × 106  m( )3

= 1.08 × 1021  m3
 

  Its density is then 
   

  
ρ =

m
V

=
5.98 × 1024  kg
1.08 × 1021  m3 = 5.52 × 103  kg/m3

 

(b) This value is intermediate between the tabulated densities of 
aluminum and iron. Typical rocks have densities around 2000 to 
3000 kg/m3. The average density of the Earth is significantly 
higher, so higher-density material must be down below the 
surface. 

P1.2 With V = (base area)(height),   V = πr2( )h  and 
  
ρ =

m
V

,  we have 

   

  

ρ = m
πr2h

= 1 kg
π 19.5 mm( )2 39.0 mm( )

109  mm3

1 m3

⎛
⎝⎜

⎞
⎠⎟

ρ = 2.15× 104  kg/m3

 

P1.3 Let V represent the volume of the model, the same in 
  
ρ =

m
V

,  for both. 

Then   ρiron = 9.35 kg/V  and 
  
ρgold =

mgold

V
.  

 Next,  
  

ρgold

ρiron

=
mgold

9.35 kg
  

 and  
  
mgold = 9.35 kg( ) 19.3 × 103  kg/m3

7.87 × 103  kg/m3

⎛
⎝⎜

⎞
⎠⎟

= 22.9 kg  

P1.4 (a)   ρ = m/V and V = 4/3( )πr3 = 4/3( )π d/2( )3 = πd3/6,  where d is the 
diameter. 

  Then 
  
ρ = 6m/πd3 =

6 1.67 × 10−27 kg( )
π 2.4× 10−15 m( )3 = 2.3× 1017 kg/m3  

 (b) 
 

2.3× 1017  kg/m3

22.6× 103  kg/m3 = 1.0× 1013  times the density of osmium   
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P1.5 For either sphere the volume is 
  
V =

4
3
πr3  and the mass is 

  
m = ρV = ρ 4

3
πr3.  We divide this equation for the larger sphere by the 

same equation for the smaller: 
  

   

m
ms

= ρ 4/3( )πr
3

ρ 4/3( )πrs
3 = r

3

rs
3 = 5

 

 Then    r = rs 53 = 4.50 cm( ) 53 = 7.69 cm  

*P1.6 The volume of a spherical shell can be calculated from  

   
  
V = Vo −Vi = 4

3
π r2

3 − r1
3( )  

 From the definition of density, 
 
ρ = m

V
, so  

  
  
m = ρV = ρ 4

3
π( ) r2

3 − r1
3( ) =

4π ρ r2
3 − r1

3( )
3

 

 
 

 

Section 1.2 Matter and Model Building	  
P1.7 From the figure, we may see that the spacing between diagonal planes 

is half the distance between diagonally adjacent atoms on a flat plane. 
This diagonal distance may be obtained from the Pythagorean 

theorem,   Ldiag = L2 + L2 .  Thus, since the atoms are separated by a 
distance L = 0.200 nm, the diagonal planes are separated by 

  

1
2

L2 + L2 = 0.141 nm .  

P1.8 (a) Treat this as a conversion of units using  
1 Cu-atom = 1.06 × 10–25 kg, and 1 cm = 10–2 m: 

   

 

density = 8 920
kg
m3

⎛
⎝⎜

⎞
⎠⎟

10−2  m
1 cm

⎛
⎝⎜

⎞
⎠⎟

3
Cu-atom

1.06× 10−25  kg
⎛
⎝⎜

⎞
⎠⎟

= 8.42 × 1022  
Cu-atom

cm3
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 (b) Thinking in terms of units, invert answer (a): 
   

 

density( )−1 = 1 cm3

8.42 × 1022  Cu-atoms
⎛
⎝⎜

⎞
⎠⎟

= 1.19× 10−23  cm3/Cu-atom

 

 (c) For a cube of side L, 
   

  L
3 = 1.19× 10−23  cm3 → L = 2.28× 10−8 cm

 

 
 

 

Section 1.3 Dimensional Analysis	  
P1.9 (a) Write out dimensions for each quantity in the equation  

   vf = vi + ax 

  The variables vf and vi are expressed in units of m/s, so  

   [vf] = [vi] = LT –1 

  The variable a is expressed in units of m/s2; [a] = LT –2  

  The variable x is expressed in meters. Therefore, [ax] = L2 T –2 

  Consider the right-hand member (RHM) of equation (a): 

   [RHM] = LT –1+L2 T –2 

  Quantities to be added must have the same dimensions. 
Therefore, 

  
equation (a) is not dimensionally correct.    

 (b) Write out dimensions for each quantity in the equation  

   y = (2 m) cos (kx) 

  For y, [y] = L 

  for 2 m,  [2 m] = L  

  and for (kx), 
  
[kx] = 2 m–1( )x⎡

⎣
⎤
⎦ = L–1L  

   Therefore we can think of the quantity kx as an angle in radians, 
and we can take its cosine. The cosine itself will be a pure number 
with no dimensions. For the left-hand member (LHM) and the 
right-hand member (RHM) of the equation we have 

     [LHM] = [y] = L    [RHM] = [2m][cos (kx)] = L  

   These are the same, so 
  
equation (b) is dimensionally correct.  
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P1.10 Circumference has dimensions L, area has dimensions L2, and volume 
has dimensions L3. Expression (a) has dimensions L(L2)1/2 = L2, 
expression (b) has dimensions L, and expression (c) has dimensions 
L(L2) = L3. 

 
The matches are: (a) and (f), (b) and (d), and (c) and (e).  

P1.11 (a) Consider dimensions in terms of their mks units. For kinetic 
energy K: 

   

  
K[ ] = p2

2m
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

p[ ]2

kg
= kg ⋅m2

s2

 

  Solving for [p2] and [p] then gives 
   

  
p[ ]2 = kg2 ⋅m2

s2      →      p[ ] = kg ⋅m
s

 

  
 
The units of momentum are kg ⋅m/s.

 

 (b) Momentum is to be expressed as the product of force (in N) and 
some other quantity X. Considering dimensions in terms of their 
mks units, 

   

  

N[ ]⋅ X[ ] = p[ ]
kg ⋅m

s2 ⋅ X[ ] = kg ⋅m
s

X[ ] = s

 

  Therefore, the units of momentum are  N ⋅s .  

P1.12 We substitute 
  
kg[ ] = [M],  m[ ] = [L],  and F[ ] = kg ⋅m

s2
⎡
⎣⎢

⎤
⎦⎥

= M[ ] L[ ]
T[ ]2  into 

Newton’s law of universal gravitation to obtain 
   

  

M[ ] L[ ]
T[ ]2 = G[ ] M[ ]2

L[ ]2

  

 Solving for [G] then gives 
   

  
G[ ] = L[ ]3

M[ ] T[ ]2 = m3

kg ⋅s2

 

*P1.13 The term x has dimensions of L, a has dimensions of  LT−2 ,  and t has 
dimensions of T. Therefore, the equation  x = kamtn  has dimensions of  

   
  L = LT−2( )m T( )n    or   L1T0 = LmTn−2m  

 The powers of L and T must be the same on each side of the equation. 
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Therefore,  

     L1 = Lm  and   m = 1  

 Likewise, equating terms in T, we see that n – 2m must equal 0. Thus, 

  n = 2 . The value of k, a dimensionless constant, 

 
cannot be obtained by dimensional analysis . 

P1.14 Summed terms must have the same dimensions. 

 (a) [X] = [At3] + [Bt] 
  

  
L = A[ ]T3 + B[ ]T → A[ ] = L/T3 ,  and B[ ] = L/T .

 

 (b)   dx/dt[ ] = 3At2⎡⎣ ⎤⎦ + B[ ] = L/T .  

 
 

 

Section 1.4 Conversion of Units	  
P1.15 From Table 14.1, the density of lead is 1.13 × 104 kg/m3, so we should 

expect our calculated value to be close to this value. The density of 
water is 1.00 × 103 kg/m3, so we see that lead is about 11 times denser 
than water, which agrees with our experience that lead sinks. 

 Density is defined as   ρ = m/V.  We must convert to SI units in the 
calculation. 

  

 

ρ = 23.94 g
2.10 cm3

⎛
⎝⎜

⎞
⎠⎟

1 kg
1 000 g

⎛
⎝⎜

⎞
⎠⎟

100 cm
1 m( )3

  =  
23.94 g

2.10 cm3
⎛
⎝⎜

⎞
⎠⎟

1 kg
1 000 g

⎛
⎝⎜

⎞
⎠⎟

1 000 000 cm3

1 m3( )
   = 1.14  × 104  kg/m3

  

 Observe how we set up the unit conversion fractions to divide out the 
units of grams and cubic centimeters, and to make the answer come 
out in kilograms per cubic meter. At one step in the calculation, we 
note that one million cubic centimeters make one cubic meter. Our 
result is indeed close to the expected value. Since the last reported 
significant digit is not certain, the difference from the tabulated values 
is possibly due to measurement uncertainty and does not indicate a 
discrepancy. 
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P1.16 The weight flow rate is  
  

 
1 200

ton
h

⎛
⎝⎜

⎞
⎠⎟

2000 lb
ton

⎛
⎝⎜

⎞
⎠⎟

1 h
60 min

⎛
⎝⎜

⎞
⎠⎟

1 min
60 s

⎛
⎝⎜

⎞
⎠⎟ = 667  lb/s

 

P1.17 For a rectangle, Area = Length × Width. We use the conversion  
1 m = 3.281 ft. The area of the lot is then 

   

  
A = LW = 75.0 ft( ) 1 m

3.281 ft
⎛
⎝⎜

⎞
⎠⎟ 125 ft( ) 1 m

3.281 ft
⎛
⎝⎜

⎞
⎠⎟ = 871 m2

 

P1.18 Apply the following conversion factors: 1 in = 2.54 cm, 1 d = 86 400 s, 
100 cm = 1m, and 109 nm = 1 m.  Then, the rate of hair growth per 
second is  

  

 

rate = 1
32

 in/day⎛
⎝⎜

⎞
⎠⎟

2.54 cm/in( ) 10−2  m/cm( ) 109  nm/m( )
86 400 s/day

= 9.19 nm/s

 

 This means the proteins are assembled at a rate of many layers of 
atoms each second! 

P1.19 The area of the four walls is (3.6 + 3.8 + 3.6 + 3.8) m × (2.5 m) = 37 m2. 
Each sheet in the book has area (0.21 m)(0.28 m) = 0.059 m2. The 
number of sheets required for wallpaper is 37 m2/0.059 m2 = 629 sheets 
= 629 sheets(2 pages/1 sheet) = 1260 pages. 

 
 
The number of pages in Volume 1 are insufficient.

 

P1.20 We use the formula for the volume of a pyramid 
given in the problem and the conversion 43 560 ft2 
= 1 acre. Then, 

   

  

V = Bh

= 1
3

13.0 acres( ) 43 560 ft2/acre( )⎡⎣ ⎤⎦

                                               × 481 ft( )
= 9.08× 107  ft3

 

 or 
   

  

V = 9.08× 107  ft3( ) 2.83× 10−2  m3

1 ft3

⎛
⎝⎜

⎞
⎠⎟

   = 2.57 × 106  m3

 

 

ANS FIG. P1.20 
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P1.21 To find the weight of the pyramid, we use the conversion  
1 ton = 2 000 lbs: 

   

  

Fg = 2.50 tons/block( ) 2.00× 106  blocks( ) 2 000 lb/ton( )
= 1.00× 1010  lbs

 

P1.22 (a) 
 
rate =

30.0 gal
7.00 min

⎛
⎝⎜

⎞
⎠⎟

1 mi
60 s

⎛
⎝⎜

⎞
⎠⎟ = 7.14 × 10−2 gal

s
 

 (b) 

 

rate = 7.14 × 10−2 gal
s

231 in3

1 gal
⎛
⎝⎜

⎞
⎠⎟

2.54 cm
1 in

⎛
⎝⎜

⎞
⎠⎟

3 1 m
100 cm

⎛
⎝⎜

⎞
⎠⎟

3

= 2.70 × 10−4 m3

s

 

 (c) To find the time to fill a 1.00-m3 tank, find the rate time/volume: 

    
 
2.70 × 10−4 m3

s
=

2.70 × 10−4  m3

1 s
⎛
⎝⎜

⎞
⎠⎟

 

  or   
 

2.70 × 10−4  m3

1 s
⎛
⎝⎜

⎞
⎠⎟

−1

=
1 s

2.70 × 10−4  m3
⎛
⎝⎜

⎞
⎠⎟ = 3.70 × 103 s

m3  

  and so:  
 
3.70 × 103  s

1 h
3 600 s

⎛
⎝⎜

⎞
⎠⎟ = 1.03 h  

*P1.23 It is often useful to remember that the 1 600-m race at track and field 
events is approximately 1 mile in length. To be precise, there are 1 609 
meters in a mile. Thus, 1 acre is equal in area to 

   
 
1 acre( ) 1 mi2

640 acres
⎛
⎝⎜

⎞
⎠⎟

1 609 m
mi

⎛
⎝

⎞
⎠

2

= 4.05 × 103  m2  

*P1.24 The volume of the interior of the house is the product of its length, 
width, and height. We use the conversion 1 ft = 0.304 8 m and  
100 cm = 1 m. 

   

  

V = LWH

= 50.0 ft( ) 0.304 8 m
1 ft

⎛
⎝⎜

⎞
⎠⎟ × 26 ft( ) 0.304 8 m

1 ft
⎛
⎝⎜

⎞
⎠⎟

                                           × 8.0 ft( ) 0.304 8 m
1 ft

⎛
⎝⎜

⎞
⎠⎟

= 294.5 m3 = 290 m3

= 294.5 m3( ) 100 cm
1 m

⎛
⎝⎜

⎞
⎠⎟

3

= 2.9× 108  cm3
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 Both the 26-ft width and 8.0-ft height of the house have two significant 
figures, which is why our answer was rounded to 290 m3. 

P1.25 The aluminum sphere must be larger in volume to compensate for its 
lower density. We require equal masses:  

   
  mA1 = mFe or ρA1VA1 = ρFeVFe

 

 then use the volume of a sphere. By substitution, 

   
  
ρA1

4
3
πrA1

3⎛
⎝⎜

⎞
⎠⎟

= ρFe

4
3
π(2.00 cm)3⎛

⎝⎜
⎞
⎠⎟

 

 Now solving for the unknown, 
   

  

rA1
3 = ρFe

ρA1

⎛
⎝⎜

⎞
⎠⎟

2.00 cm( )3 = 7.86× 103  kg/m3

2.70× 103  kg/m3

⎛
⎝⎜

⎞
⎠⎟

2.00 cm( )3

= 23.3 cm3

 

 Taking the cube root, 
  
rAl = 2.86 cm .   

 The aluminum sphere is 43% larger than the iron one in radius, 
diameter, and circumference. Volume is proportional to the cube of the 
linear dimension, so this excess in linear size gives it the 
(1.43)(1.43)(1.43) = 2.92 times larger volume it needs for equal mass. 

P1.26 The mass of each sphere is 
  
mAl = ρAlVAl =

4πρAlrAl
3

3
 

 and 
  
mFe = ρFeVFe =

4πρFerFe
3

3
.  Setting these masses equal, 

  

  

4
3
πρAlrAl

3 = 4
3
πρFerFe

3 → rAl = rFe
ρFe

ρAl

3

rAl = rFe
7.86
2.70

3 = rFe(1.43)

 

 The resulting expression shows that the radius of the aluminum sphere 
is directly proportional to the radius of the balancing iron sphere. The 
aluminum sphere is 43% larger than the iron one in radius, diameter, 
and circumference. Volume is proportional to the cube of the linear 
dimension, so this excess in linear size gives it the (1.43)3 = 2.92 times 
larger volume it needs for equal mass. 
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P1.27 We assume the paint keeps the same volume in the can and on the 
wall, and model the film on the wall as a rectangular solid, with its 
volume given by its “footprint” area, which is the area of the wall, 
multiplied by its thickness t perpendicular to this area and assumed to 
be uniform. Then, 

    

  
V = At gives t = V

A = 3.78 × 10–3  m3

25.0 m2 = 1.51 × 10–4  m  
 

 The thickness of 1.5 tenths of a millimeter is comparable to the 
thickness of a sheet of paper, so this answer is reasonable. The film is 
many molecules thick. 

P1.28 (a) To obtain the volume, we multiply the length, width, and height 
of the room, and use the conversion 1 m = 3.281 ft. 

    

  

V = (40.0 m) 20.0 m( ) 12.0 m( )

= 9.60× 103  m3( ) 3.281 ft
1 m

⎛
⎝⎜

⎞
⎠⎟

3

= 3.39× 105  ft3

 

 (b) The mass of the air is 

   
  m = ρairV = 1.20 kg/m3( ) 9.60× 103  m3( ) = 1.15× 104  kg

 

  The student must look up the definition of weight in the index to 
find 

    
  Fg = mg = 1.15× 104 kg( ) 9.80 m/s2( ) = 1.13× 105 N

 

  where the unit of N of force (weight) is newtons. 

  Converting newtons to pounds, 
   

  
Fg = (1.13× 105  N)

1 lb
4.448 N

⎛
⎝⎜

⎞
⎠⎟ = 2.54× 104  lb

 

P1.29 (a) The time interval required to repay the debt will be calculated by 
dividing the total debt by the rate at which it is repaid. 

    
T = $16 trillion

$1000 / s = $16 × 1012

($1000 / s) 3.156 × 107  s/yr( ) = 507 yr  
 

 (b) The number of bills is the distance to the Moon divided by the 
length of a dollar. 

    

   
N = D


= 3.84× 108  m

0.155 m
= 2.48× 109  bills

 

  Sixteen trillion dollars is larger than this two-and-a-half billion 
dollars by more than six thousand times. The ribbon of bills 



12     Physics and Measurement 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

comprising the debt reaches across the cosmic gulf thousands of 
times. Similar calculations show that the bills could span the 
distance between the Earth and the Sun sixteen times. The strip 
could encircle the Earth’s equator nearly 62 000 times. With 
successive turns wound edge to edge without overlapping, the 
dollars would cover a zone centered on the equator and about  
4.2 km wide. 

P1.30 (a) To find the scale size of the nucleus, we multiply by the scaling 
factor 

   

  

dnucleus, scale = dnucleus, real

datom, scale

datom, real

⎛

⎝⎜
⎞

⎠⎟

= 2.40× 10−15 m( ) 300 ft
1.06× 10−10 m

⎛
⎝⎜

⎞
⎠⎟

= 6.79× 10−3  ft

  

  or 
   

  
dnucleus, scale = 6.79× 10−3  ft( ) 304.8 mm

1 ft
⎛
⎝⎜

⎞
⎠⎟ = 2.07  mm

 

 (b) The ratio of volumes is simply the ratio of the cubes of the radii: 
   

  

Vatom

Vnucleus

= 4πratom
3 /3

4πrnucleus
3 /3

= ratom

rnucleus

⎛
⎝⎜

⎞
⎠⎟

3

= datom

dnucleus

⎛
⎝⎜

⎞
⎠⎟

3

= 1.06× 10−10  m
2.40× 10−15  m

⎛
⎝⎜

⎞
⎠⎟

3

= 8.62 × 1013  times as large

 

 
 

 

Section 1.5 Estimates and Order-of-Magnitude Calculations	  
P1.31 Since we are only asked to find an estimate, we do not need to be too 

concerned about how the balls are arranged. Therefore, to find the 
number of balls we can simply divide the volume of an average-size 
living room (perhaps 15 ft × 20 ft × 8 ft) by the volume of an 
individual Ping-Pong ball. Using the approximate conversion 1 ft =  
30 cm, we find 

   VRoom = (15 ft)(20 ft)(8 ft)(30 cm/ft)3 ≈  6 × 107 cm3 

 A Ping-Pong ball has a diameter of about 3 cm, so we can estimate its 
volume as a cube:  

   Vball = (3 cm)(3 cm)(3 cm) ≈  30 cm3 
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 The number of Ping-Pong balls that can fill the room is 
   

  
N  ≈ VRoom  

Vball
≈ 2 × 106  balls ∼ 106  balls

 

 So a typical room can hold on the order of a million Ping-Pong balls. 
As an aside, the actual number is smaller than this because there will 
be a lot of space in the room that cannot be covered by balls. In fact, 
even in the best arrangement, the so-called “best packing fraction” is 

 

1
6
π 2 = 0.74,  so that at least 26% of the space will be empty. 

P1.32 (a) We estimate the mass of the water in the bathtub. Assume the tub 
measures 1.3 m by 0.5 m by 0.3 m. One-half of its volume is then 

   V = (0.5)(1.3)(0.5)(0.3) = 0.10 m3 

  The mass of this volume of water is 
   

   
mwater = ρwaterV = 1 000 kg/m3( ) 0.10 m3( ) = 100 kg  102  kg

 

 (b) Pennies are now mostly zinc, but consider copper pennies filling 
50% of the volume of the tub. The mass of copper required is 

   
  
mcopper = ρcopperV = 8 920 kg/m3( ) 0.10 m3( ) = 892 kg ~ 103  kg

 

P1.33 Don’t reach for the telephone book or do a Google search! Think. Each 
full-time piano tuner must keep busy enough to earn a living. Assume 
a total population of 107 people. Also, let us estimate that one person in 
one hundred owns a piano. Assume that in one year a single piano 
tuner can service about 1 000 pianos (about 4 per day for 250 
weekdays), and that each piano is tuned once per year. 

 Therefore, the number of tuners 
   

 
= 1 tuner 

1 000 pianos
⎛
⎝⎜

⎞
⎠⎟

1 piano 
100 people

⎛
⎝⎜

⎞
⎠⎟ 107  people( ) ∼ 100 tuners

 

 If you did reach for an Internet directory, you would have to count. 
Instead, have faith in your estimate. Fermi’s own ability in making an 
order-of-magnitude estimate is exemplified by his measurement of the 
energy output of the first nuclear bomb (the Trinity test at 
Alamogordo, New Mexico) by observing the fall of bits of paper as the 
blast wave swept past his station, 14 km away from ground zero. 

P1.34 A reasonable guess for the diameter of a tire might be 2.5 ft, with a 
circumference of about 8 ft. Thus, the tire would make 

  
 50 000 mi( ) 5 280 ft/mi( ) 1 rev/8 ft( ) = 3 × 107  rev ~ 107  rev
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Section 1.6 Significant Figures	  
P1.35 We will use two different methods to determine the area of the plate 

and the uncertainty in our answer. 

 METHOD ONE: We treat the best value with its uncertainty as a 
binomial, (21.3 ± 0.2) cm × (9.8 ± 0.1) cm, and obtain the area by 
expanding: 
 

  A = 21.3 9.8( ) ± 21.3 0.1( ) ± 0.2 9.8( ) ± 0.2( ) 0.1( )[ ]cm2  

 The first term gives the best value of the area. The cross terms add 
together to give the uncertainty and the fourth term is negligible. 

   
  
A = 209  cm2 ± 4 cm2

 

 METHOD TWO: We add the fractional uncertainties in the data. 

   

  

A = 21.3 cm( ) 9.8 cm( ) ± 0.2
21.3

+ 0.1
9.8

⎛
⎝⎜

⎞
⎠⎟

= 209 cm2 ± 2% = 209 cm2 ± 4 cm2

 

P1.36 (a) The ± 0.2 following the 78.9 expresses uncertainty in the last digit. 
Therefore, there are  three  significant figures in 78.9 ± 0.2.   

 (b) Scientific notation is often used to remove the ambiguity of the 
number of significant figures in a number. Therefore, all the digits 
in 3.788 are significant, and 3.788 × 109 has  four significant 
figures.   

 (c) Similarly, 2.46 has three significant figures, therefore 2.46 × 10–6 
has  three  significant figures.   

 (d) Zeros used to position the decimal point are not significant. 
Therefore 0.005 3 has  two significant figures.   

  Uncertainty in a measurement can be the result of a number of 
factors, including the skill of the person doing the measurements, 
the precision and the quality of the instrument used, and the 
number of measurements made. 

P1.37 We work to nine significant digits: 
  

 

1 yr = 1 yr
365. 242 199 d

1 yr
⎛
⎝⎜

⎞
⎠⎟

24 h
1 d

⎛
⎝⎜

⎞
⎠⎟

60 min
1 h

⎛
⎝⎜

⎞
⎠⎟

60 s
1 min

⎛
⎝⎜

⎞
⎠⎟

= 315 569 26.0 s

 

P1.38 (a)  756 + 37.2 + 0.83 + 2 = 796.03→ 796 ,  since the number with the 
fewest decimal places is 2. 
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 (b)  0.003 2( ) 2 s.f.{ }× 356.3( ) 4 s.f.{ } = 1.140 16 = 2 s.f.{ }   1.1  

 (c)  5.620 4 s.f.{ }×π > 4 s.f.{ } = 17.656 = 4 s.f.{ } 17.66  

P1.39 Let o represent the number of ordinary cars and s the number of sport 
utility vehicles. We know o = s + 0.947s = 1.947s, and o = s + 18. 

 We eliminate o by substitution: 

     s + 18 = 1.947s → 0.947s = 18→ s = 18/ 0.947 = 19  

P1.40 “One and one-third months” = 4/3 months. Treat this problem as a 
conversion: 

   

 

1 bar
4/3 months

⎛
⎝⎜

⎞
⎠⎟

12 months
1 year

⎛
⎝⎜

⎞
⎠⎟

= 9 bars/year
 

P1.41 The tax amount is $1.36 – $1.25 = $0.11. The tax rate is  
   

 $0.11/$1.25 = 0.0880 = 8.80%  

P1.42 We are given the ratio of the masses and radii of the planets Uranus 
and Neptune: 

   
  

MN

MU

= 1.19, and
rN

rU

= 0.969  

 The definition of density is 
  
ρ = mass

volume
= M

V
,  where V = 4

3
πr3  for a 

sphere, and we assume the planets have a spherical shape. 

 We know  ρU = 1.27 × 103 kg/m3.  Compare densities: 
   

  

ρN

ρU

= MN /VN

MU /VU

= MN

MU

⎛
⎝⎜

⎞
⎠⎟

VU

VN

⎛
⎝⎜

⎞
⎠⎟

= MN

MU

⎛
⎝⎜

⎞
⎠⎟

rU

rN

⎛
⎝⎜

⎞
⎠⎟

3

= 1.19( ) 1
0.969

⎛
⎝⎜

⎞
⎠⎟

3

= 1.307 9

 

 which gives 
   

 
ρN = 1.3079( ) 1.27 × 103  kg/m3( ) = 1.66× 103  kg/m3

 

P1.43 Let s represent the number of sparrows and m the number of more 
interesting birds. We know s/m = 2.25 and s + m = 91. 

 We eliminate m by substitution: 
   

  m = s/2.25→ s + s/2.25 = 91→ 1.444s = 91  

   
  → s = 91/1.444 = 63  
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P1.44 We require  
  

 
sin θ = −3cos θ , or 

sin θ
cos θ

= tan θ = −3
 

 For tan–1(–3) = arctan(–3), your calculator 
may return –71.6°, but this angle is not 
between 0° and 360° as the problem  
requires. The tangent function is negative  
in the second quadrant (between 90° and 180°) and in the fourth 
quadrant (from 270° to 360°). The solutions to the equation are then 

    360° − 71.6° = 288°  and 180° − 71.6 = 108°  

*P1.45 (a) ANS. FIG. P1.45 shows that the hypotenuse  
of the right triangle has a length of 9.00 m 
and the unknown side is opposite the angle 

 φ.  Since the two angles in the triangle are 
not known, we can obtain the length of the 
unknown side, which we will represent as 
s, using the Pythagorean Theorem: 

    

  

s2 + 6.00 m( )2 = 9.00 m( )2

s2 = 9.00 m( )2 − 6.00 m( )2 = 45

  

  which gives   s = 6.71 m .  We express all of our answers in three 
significant figures since the lengths of the two known sides of the 
triangle are given with three significant figures. 

 (b) From ANS. FIG. P1.45, the tangent of θ  is equal to ratio of the 
side opposite the angle, 6.00 m in length, and the side adjacent to 
the angle, s = 6.71 m, and is given by  

    

  
tanθ = 6.00 m

s
= 6.00 m

6.71 m
= 0.894

  

 (c) From ANS. FIG. P1.45, the sine of φ  is equal to ratio of the side 
opposite the angle, s = 6.71 m, and the hypotenuse of the triangle, 
9.00 m in length, and is given by  

    

  
sinφ = s

9.00 m
= 6.71 m

9.00 m
= 0.745

 

P1.46 For those who are not familiar with solving 
equations numerically, we provide a detailed 
solution. It goes beyond proving that the 
suggested answer works. 

 The equation 2x4 – 3x3 + 5x – 70 = 0 is quartic, so 

ANS. FIG. P1.44 

ANS. FIG. P1.45 

θ  

φ  

s 

ANS. FIG. P1.46 
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we do not attempt to solve it with algebra. To find how many real 
solutions the equation has and to estimate them, we graph the 
expression: 

x –3 –2 –1 0 1 2 3 4 

y = 2x4 – 3x3 + 5x – 70 158 –24 –70 –70 –66 –52 26 270 

 We see that the equation y = 0 has two roots, one around x = –2.2 and 
the other near x = +2.7. To home in on the first of these solutions we 
compute in sequence:  

 When x = –2.2, y = –2.20. The root must be between x = –2.2 and x = –3. 
When x = –2.3, y = 11.0. The root is between x = –2.2 and x = –2.3. 
When x = –2.23, y = 1.58. The root is between x = –2.20 and x = –2.23. 
When x = –2.22, y = 0.301. The root is between x = –2.20 and –2.22. 
When x = –2.215, y = –0.331. The root is between x = –2.215 and –2.22. 
We could next try x = –2.218, but we already know to three-digit 
precision that the root is x = –2.22. 

P1.47 When the length changes by 15.8%, the mass changes by a much larger 
percentage. We will write each of the sentences in the problem as a 
mathematical equation. 

  Mass is proportional to length cubed: m = kℓ3, where k is a constant. 
This model of growth is reasonable because the lamb gets thicker as it 
gets longer, growing in three-dimensional space. 

 At the initial and final points, 
   
mi = k i

3 and mf = k f
3  

  Length changes by 15.8%: 15.8% of ℓ means 0.158 times ℓ. 

 Thus  ℓi + 0.158 ℓi = ℓf and ℓf = 1.158 ℓi 

  Mass increases by 17.3 kg: mi + 17.3 kg = mf 

  Now we combine the equations using algebra, eliminating the 
unknowns ℓi, ℓf, k, and mi by substitution: 

 From ℓf = 1.158 ℓi,  we have 3 3 3 31.158 1.553f i i= =    

 Then 

  ( )3 3 31.553 1.553 1.553 and    /1.553f f i i i i fm k k k m m m= = = = =    

 Next,  

  mi + 17.3 kg = mf   becomes   mf /1.553 + 17.3 kg = mf 

 Solving, 17.3 kg = mf – mf /1.553 = mf (1 – 1/1.553) = 0.356 mf  
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 and 
  
mf = 17.3 kg

0.356
= 48.6 kg .   

P1.48 We draw the radius to the initial point and the 
radius to the final point. The angle θ between these 
two radii has its sides perpendicular, right side to 
right side and left side to left side, to the 35° angle 
between the original and final tangential directions 
of travel. A most useful theorem from geometry then 
identifies these angles as equal: θ = 35°. The whole 
circumference of a 360° circle of the same radius is 
2πR. By proportion, then 

   

  

2πR
360°

=
840 m

35°

 

   

  
R = 360°

2π
⎛
⎝⎜

⎞
⎠⎟

840 m
35°

⎛
⎝⎜

⎞
⎠⎟ = 840 m

0.611
= 1.38× 103  m

 

 We could equally well say that the measure of the angle in radians is 
   

  
θ = 35° = 35°

2π  radians
360°

⎛
⎝⎜

⎞
⎠⎟ = 0.611 rad =

840 m
R

 

 Solving yields R = 1.38 km. 

P1.49 Use substitution to solve simultaneous equations. We substitute p = 3q 
into each of the other two equations to eliminate p: 

   

  

3qr = qs
1
2

3qr2 +
1
2

qs2 =
1
2

qt2

⎧
⎨
⎪

⎩⎪
 

 These simplify to 
  

3r = s

3r2 + s2 = t2

⎧
⎨
⎩

, assuming q ≠ 0.  

 We substitute the upper relation into the lower equation to eliminate s: 

   
  
3r2 + 3r( )2 = t2 → 12r2 = t2 →

t2

r2 = 12  

 We now have the ratio of t to 
  
r: 

t
r

= ± 12 = ±3.46  

P1.50 First, solve the given equation for   Δt:  
  

  
Δt = 4QL

kπd2 Th −Tc( ) = 4QL
kπ Th −Tc( )

⎡

⎣
⎢

⎤

⎦
⎥

1
d2

⎡
⎣⎢

⎤
⎦⎥

 

ANS. FIG. P1.48 
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 (a) Making d three times larger with d2 in the bottom of the fraction 
makes   Δt nine times smaller .  

 (b) 
  
Δt is inversely proportional to the square of d.  

 (c)   Plot Δt on the vertical axis and 1/d2  on the horizontal axis.  

 (d) From the last version of the equation, the slope is 

  
4QL / kπ Th −Tc( ) .  Note that this quantity is constant as both ∆t 

and d vary. 

P1.51 (a) The fourth experimental point from the top is a circle: this point 
lies just above the best-fit curve that passes through the point  
(400 cm2, 0.20 g). The interval between horizontal grid lines is  
1 space = 0.05 g. We estimate from the graph that the circle has a 
vertical separation of 0.3 spaces = 

 
0.015 g  above the best-fit 

curve. 

 (b) The best-fit curve passes through 0.20 g: 
   

 

0.015 g
0.20 g

⎛
⎝⎜

⎞
⎠⎟
× 100 = 8%

 

 (c) The best-fit curve passes through the origin and the point  
(600 cm3, 3.1 g). Therefore, the slope of the best-fit curve is 

   
 
slope =

3.1 g
600 cm3

⎛
⎝⎜

⎞
⎠⎟ = 5.2 × 10−3 g

cm3
 

 (d) 

 

For shapes cut from this copy paper, the mass of the cutout 
is proportional to its area. The proportionality constant is 

5.2 g/m2 ± 8%, where the uncertainty is estimated.

  

 (e) 

 

This result is to be expected if the paper has thickness and 
density that are uniform within the experimental uncertainty.

  

 (f) 
 
The slope is the areal density of the paper, its mass per unit area.   

P1.52   r = 6.50 ± 0.20( )  cm = 6.50 ± 0.20( )× 10−2  m  

     m = 1.85 + 0.02( )kg  

   
  
ρ =

m
4
3( )πr3  
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ANS. FIG. P1.53 

 also,  
  

δρ
ρ

=
δm
m

+
3δr

r
 

 In other words, the percentages of uncertainty are cumulative. 
Therefore, 

   

 

δρ
ρ

=
0.02
1.85

+
3 0.20( )

6.50
= 0.103,

ρ =
1.85

4
3( )π 6.5 × 10−2 m( )3 = 1.61× 103 kg/m3

 

 then 
 
δρ = 0.103ρ = 0.166 × 103 kg/m3  

 and 
 
ρ ± δρ = 1.61 ± 0.17( ) × 103 kg/m3 = 1.6 ± 0.2( ) × 103 kg/m3.  

*P1.53 The volume of concrete needed is the sum of the  
four sides of sidewalk, or  

  
  V = 2V1 + 2V2 = 2 V1 + V2( )

  The figure on the right gives the dimensions 
needed to determine the volume of each portion of 
sidewalk: 

  

  

V1 = 17.0 m + 1.0 m + 1.0 m( ) 1.0 m( ) 0.09 m( ) = 1.70 m3

V2 = 10.0 m( ) 1.0 m( ) 0.090 m( ) = 0.900 m3

V = 2 1.70 m3 + 0.900 m3( ) = 5.2 m3

 

 The uncertainty in the volume is the sum of the uncertainties in each 
dimension: 

 

   

δ 1

1

= 0.12 m
19.0 m

= 0.0063

δ w1

w1

= 0.01 m
1.0 m

= 0.010

δ t1

t1

= 0.1 cm
9.0 cm

= 0.011

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

δV
V

= 0.006 + 0.010 + 0.011 = 0.027 = 3%
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Additional Problems	  
P1.54 (a) Let d represent the diameter of the coin and h its thickness. The 

gold plating is a layer of thickness t on the surface of the coin; so, 
the mass of the gold is 

    

  

m = ρV = ρ 2π d2

4
+πdh

⎡
⎣⎢

⎤
⎦⎥
t

= 19.3
g

cm3
⎛
⎝⎜

⎞
⎠⎟ 2π 2.41 cm( )2

4
+π 2.41 cm( ) 0.178 cm( )⎡

⎣
⎢

⎤

⎦
⎥

                                         × 1.8× 10−7  m( ) 102  cm
 1 m

⎛
⎝⎜

⎞
⎠⎟

= 0.003 64 g

  

  and the cost of the gold added to the coin is 
   

 
cost = 0.003 64 g( ) $10

1 g
⎛
⎝⎜

⎞
⎠⎟

= $0.036 4 = 3.64 cents
 

 (b) 
 
The cost is negligible compared to $4.98.  

P1.55 It is desired to find the distance x such that 
   

  

x
100 m

=
1 000 m

x

 

 (i.e., such that x is the same multiple of 100 m as the multiple that  
1 000 m is of x). Thus, it is seen that 

   x2 = (100 m)(1 000 m) = 1.00 × 105 m2 

 and therefore 
   

  x = 1.00× 105  m2 = 316 m
 

P1.56 (a) A Google search yields the following dimensions of the intestinal 
tract: 

   small intestines: length ≅ 20 ft ≅ 6 m, diameter ≅ 1.5 in ≅ 4 cm 

   large intestines: length ≅ 5 ft ≅ 1.5 m, diameter ≅ 2.5 in ≅ 6 cm 

  Treat the intestines as two cylinders: the volume of a cylinder of 

diameter d and length L is 
  
V =

π
4

d2L.  
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  The volume of the intestinal tract is 
   

  

V = Vsmall + Vlarge

V = π
4

0.04m( )2 6m( ) + π
4

0.06m( )2 1.5m( )
= 0.0117 m3 ≅ 10−2 m3

 

  Assuming 1% of this volume is occupied by bacteria, the volume 
of bacteria is 

   
  Vbac = 10−2  m3( ) 0.01( ) = 10−4  m3  

  Treating a bacterium as a cube of side L = 10–6 m, the volume of 
one bacterium is about L3 = 10–18 m3. The number of bacteria in the 
intestinal tract is about 

 
10−4  m3( ) 1 bacterium

10−18  m3
⎛
⎝⎜

⎞
⎠⎟ = 1014  bacteria!

 

 (b) The large number of bacteria suggests they must be  beneficial ,  
otherwise the body would have developed methods a long time 
ago to reduce their number. It is well known that certain types of  
bacteria in the intestinal tract are beneficial: they aid digestion, as 
well as prevent dangerous bacteria from flourishing in the 
intestines. 

P1.57 We simply multiply the distance between the two galaxies by the scale 
factor used for the dinner plates. The scale factor used in the “dinner 
plate” model is 

   

  
S = 0.25 m

1.0× 105  light-years
⎛
⎝⎜

⎞
⎠⎟

= 2.5× 10−6  m/ly
 

 The distance to Andromeda in the scale model will be 
   

  Dscale = DactualS = 2.0× 106  ly( ) 2.5× 10−6  m/ly( ) = 5.0 m
 

P1.58 Assume the winner counts one dollar per second, and the winner tries 
to maintain the count without stopping. The time interval required for 
the task would be 

   
 
$106 1 s

$1
⎛
⎝⎜

⎞
⎠⎟

1 hour
3600 s

⎛
⎝⎜

⎞
⎠⎟

1 work week
40 hours

⎛
⎝⎜

⎞
⎠⎟ = 6.9 work weeks.  

 

 

The scenario has the contestants succeeding on the whole. But the
calculation shows that is impossible. It just takes too long!
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P1.59 We imagine a top view to figure 
the radius of the pool from its 
circumference. We imagine a 
straight-on side view to use 
trigonometry to find the height. 

 Define a right triangle whose legs 
represent the height and radius of 
the fountain. From the dimensions 
of the fountain and the triangle, 
the circumference is   C = 2πr  and 
the angle satisfies   tanφ = h/r.   

 Then by substitution 

   
  
h = r tanφ =

C
2π

⎛
⎝⎜

⎞
⎠⎟

tanφ  

 Evaluating, 
    

  
h = 15.0 m

2π
⎛
⎝⎜

⎞
⎠⎟ tan 55.0° = 3.41 m

 

 When we look at a three-dimensional system from a particular 
direction, we may discover a view to which simple mathematics 
applies. 

P1.60 The fountain has height h; the pool has circumference C with radius r. 
The figure shows the geometry of the problem: a right triangle has 
base r, height h, and angle φ. From the triangle, 

   tan φ = h/r 

 We can find the radius of the circle from its 
circumference,   C = 2πr,  and then solve for the height 
using 

   
  
h = r tanφ = tanφ( )C/2π

 

P1.61 The density of each material is 
  
ρ =

m
v

=
m

πr2h
=

4m
πD2h

.  

 Al: 
 
ρ =

4(51.5 g)
π 2.52 cm( )2 3.75 cm( )

= 2.75
g

cm3 ; this is 2% larger  

than the tabulated value, 2.70 g/cm3.  

 Cu: 
 
ρ =

4(56.3 g)
π 1.23 cm( )2 5.06 cm( )

= 9.36
g

cm3 ; this is 5% larger  

than the tabulated value, 8.92 g/cm3. 

 

ANS. FIG. P1.59 

h 

r 
φ 

ANS. FIG. P1.60 
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 brass: 
 
ρ =

4(94.4 g)
π 1.54 cm( )2 5.69 cm( )

= 8.91
g

cm3 ; this is 5% larger  

than the tabulated value, 8.47 g/cm3. 

 Sn: 
 
ρ =

4(69.1 g)
π 1.75 cm( )2 3.74 cm( )

= 7.68
g

cm3 ; this is 5% larger  

than the tabulated value, 7.31 g/cm3. 

 Fe: 
 
ρ =

4(216.1 g)
π 1.89 cm( )2 9.77 cm( )

= 7.88
g

cm3 ; this is 0.3% larger  

than the tabulated value, 7.86 g/cm3.  

P1.62 The volume of the galaxy is 
   

  πr2t = π 1021  m( )2
1019  m( ) ~ 1061  m3  

 If the distance between stars is 4 × 1016, then there is one star in a 
volume on the order of 

   
 4 × 1016  m( )3

~ 1050  m3  

 The number of stars is about 
 

1061  m3

1050  m3/star
~ 1011  stars .  

P1.63 We define an average national fuel consumption rate based upon the 
total miles driven by all cars combined. In symbols, 

   
 
fuel consumed = total miles driven

average fuel consumption rate
 

 or 

   
  
f  =  s

c
 

 For the current rate of 20 mi/gallon we have 
   

  
f  = 

100 × 106  cars( ) 104  (mi/yr)/car( )
20 mi/gal = 5 × 1010  gal/yr

 

 Since we consider the same total number of miles driven in each case, 
at 25 mi/gal we have 

   

  
f  = 

100 × 106  cars( ) 104  (mi/yr)/car( )
25 mi/gal = 4 × 1010  gal/yr

 

 Thus we estimate a change in fuel consumption of    
   

  
Δf = 4× 1010  gal/yr − 5× 1010  gal/yr = −1× 1010  gal/yr
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 The negative sign indicates that the change is a reduction. It is a fuel 
savings of ten billion gallons each year. 

P1.64 (a) The mass is equal to the mass of a sphere of radius 2.6 cm and 
density 4.7 g/cm3, minus the mass of a sphere of radius a and 
density 4.7 g/cm3, plus the mass of a sphere of radius a and 
density 1.23 g/cm3. 

   

  

m = ρ1
4
3
πr3⎛

⎝⎜
⎞
⎠⎟ − ρ1

4
3
π a3⎛

⎝⎜
⎞
⎠⎟ + ρ2

4
3
π a3⎛

⎝⎜
⎞
⎠⎟

= 4
3
π⎛

⎝⎜
⎞
⎠⎟ 4.7 g/cm3( ) 2.6  cm( )3 − 4.7 g/cm3( )a3⎡
⎣

                                                       + 1.23 g/cm3( )a3 ⎤⎦

m = 346 g − 14.5 g/cm3( )a3

 

 (b) The mass is maximum for   a = 0 .  

 (c) 
 
346 g .   

 (d)  Yes . This is the mass of the uniform sphere we considered in the 
first term of the calculation. 

 (e) 
 
No change, so long as the wall of the shell is unbroken.  

P1.65 Answers may vary depending on assumptions: 

  typical length of bacterium: L = 10–6 m 

  typical volume of bacterium: L3 = 10–18 m3 

  surface area of Earth:   A = 4πr2 = 4π 6.38 × 106 m( )2
= 5.12 × 1014 m2  

 (a) If we assume the bacteria are found to a depth d = 1000 m below 
Earth’s surface, the volume of Earth containing bacteria is about 

   
  V = 4πr2( )d = 5.12 × 1017  m3  

  If we assume an average of 1000 bacteria in every 1 mm3 of 
volume, then the number of bacteria is 

  

 

1000 bacteria
1 mm3

⎛
⎝⎜

⎞
⎠⎟

103  mm
1 m

⎛
⎝⎜

⎞
⎠⎟

3

(5.12 × 1017  m3) ≈ 5.12 × 1029  bacteria
 

 (b) Assuming a bacterium is basically composed of water, the total 
mass is 

   

 
1029  bacteria( ) 10−18  m3

1 bacterium
⎛
⎝⎜

⎞
⎠⎟

103  kg
1 m3

⎛
⎝⎜

⎞
⎠⎟

= 1014  kg
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P1.66 The rate of volume increase is 
   

  

dV
dt

= d
dt

4
3
πr3⎛

⎝⎜
⎞
⎠⎟ = 4

3
π 3r2( ) dr

dt
= 4πr2( ) dr

dt

 

 (a) 
  

dV
dt

= 4π (6.5 cm)2(0.9 cm/s) = 478 cm3/s  

 (b) The rate of increase of the balloon’s radius is  
   

  

dr
dt

= dV/dt
4πr2 = 478 cm3/s

4π (13 cm)2 = 0.225 cm/s
 

 (c) 

 

When the balloon radius is twice as large, its surface area is
four times larger. The new volume added in one second in
the inflation process is equal to this larger area times an extra
radial thickness that is one-fourth as large as it was when the
 balloon was smaller.

 

P1.67 (a) We have B + C(0) = 2.70 g/cm3 and B + C(14 cm) = 19.3 g/cm3. 

  We know 
  
B = 2.70g/cm3 , and we solve for C by subtracting: 

  C(14 cm) = 19.3 g/cm3 – B = 16.6 g/cm3, so 
  
C = 1.19 g/cm4  

 (b) The integral is 
   

  

m = (9.00 cm2 ) (B + Cx)dx
0

14 cm
∫

= (9.00 cm2 ) Bx + C
2

x2⎛
⎝⎜

⎞
⎠⎟

0

14 cm

 

   

  

m = (9.00 cm2 ) 2.70 g/cm3( )(14 cm − 0){
                 + 1.19 g/cm4 /2( ) (14 cm)2 − 0⎡⎣ ⎤⎦}

= 340 g + 1046 g = 1390 g = 1.39 kg
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P1.68 The table below shows α in degrees, α in radians, tan(α), and sin(α) for 
angles from 15.0° to 31.1°: 

α′ (deg) α (rad) tan(α) sin(α) 

difference between 

α and tan α 

15.0 0.262 0.268 0.259 2.30% 

20.0 0.349 0.364 0.342 4.09% 

30.0 0.524 0.577 0.500 9.32% 

33.0 0.576 0.649 0.545 11.3% 

31.0 0.541 0.601 0.515 9.95% 

31.1 0.543 0.603 0.516 10.02% 

 We see that α in radians, tan(α), and sin(α) start out together from zero 
and diverge only slightly in value for small angles. Thus  31.0°  is the 

largest angle for which 
 

tanα −α
tanα

< 0.1.  

P1.69 We write “millions of cubic feet” as 106 ft3, and use the given units of 
time and volume to assign units to the equation. 

     V = (1.50 × 106 ft3/mo)t+(0.00800 × 106 ft3/mo2 )t2  

  To convert the units to seconds, use  
   

 
1 month = 30.0 d( ) 24 h

1 d
⎛
⎝⎜

⎞
⎠⎟

3600 s
1 h

⎛
⎝⎜

⎞
⎠⎟ = 2.59× 106 s

 

 to obtain 

 

  

V = 1.50× 106  
ft3

mo
⎛
⎝⎜

⎞
⎠⎟

1 mo
2.59× 106  s

⎛
⎝⎜

⎞
⎠⎟ t

           + 0.008 00× 106  
ft3

mo2

⎛
⎝⎜

⎞
⎠⎟

1 mo
2.59× 106  s

⎛
⎝⎜

⎞
⎠⎟

2

t2

= (0.579 ft3/s)t+(1.19× 10−9  ft3/s2 )t2

 

  or 
   

  V = 0.579t + 1.19× 10−9t2  

  where V is in cubic feet and t is in seconds. The coefficient of the first 
term is the volume rate of flow of gas at the beginning of the month. 
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The second term’s coefficient is related to how much the rate of flow 
increases every second. 

P1.70 (a) and (b), the two triangles are shown. 

 

 

    ANS. FIG. P1.70(a) ANS. FIG. P1.70(b) 

 (c) From the triangles, 
    

  
tan12.0° = y

x
→ y = x tan12.0°

 

  and 
  
tan14.0° = y

(x − 1.00 km)
→ y = (x − 1.00 km)tan14.0° .  

(d) Equating the two expressions for y, we solve to find 
  
y  = 1.44 km.  

P1.71 Observe in Fig. 1.71 that the radius of the horizontal cross section of 
the bottle is a relative maximum or minimum at the two radii cited in 
the problem; thus, we recognize that as the liquid level rises, the time 
rate of change of the diameter of the cross section will be zero at these 
positions. 

 The volume of a particular thin cross section of the shampoo of 
thickness h and area A is V = Ah, where   A = πr2 = πD2/4.  Differentiate 
the volume with respect to time: 

   
  

dV
dt

= A
dh
dt

+ h
dA
dt

= A
dh
dt

+ h
d
dt

(πr2 ) = A
dh
dt

+ 2πhr
dr
dt

 

 Because the radii given are a maximum and a minimum value,  
dr/dt = 0, so 

   
  

dV
dt

+ A
dh
dt

= Av → v =
1
A

dV
dt

=
1

πD2/4
dV
dt

=
4

πD2

dV
dt

 

 where v = dh/dt is the speed with which the level of the fluid rises. 

 (a) For D = 6.30 cm, 
   

  
v =

4
π(6.30 cm)2 (16.5 cm3/s) = 0.529 cm/s
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 (b) For D = 1.35 cm, 
   

  
v =

4
π(1.35 cm)2 (16.5 cm3/s) = 11.5 cm/s

 

 
 

 

Challenge Problems 
P1.72 The geometry of the problem is shown below. 

 

ANS. FIG. P1.72 

 From the triangles in ANS. FIG. P1.72, 
   

  
tanθ = y

x
→ y = x tanθ

 

 and 
   

  
tanφ = y

x − d
→ y = (x − d)tanφ

 

 Equate these two expressions for y and solve for x: 
   

  

x tanθ = (x − d)tanφ → d tanφ = x(tanφ − tanθ)

→ x = d tanφ
tanφ − tanθ

 

 Take the expression for x and substitute it into either expression for y: 
   

  
y = x tanθ = d tanφ tanθ

tanφ − tanθ
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ANS. FIG. P1.73 

P1.73 The geometry of the problem suggests we 
use the law of cosines to relate known sides 
and angles of a triangle to the unknown 
sides and angles. Recall that the sides a, b, 
and c with opposite angles A, B, and C have 
the following relationships: 

     a
2 = b2 + c2 − 2bc cos A  

     b
2 = c2 + a2 − 2cacosB  

     c
2 = a2 + b2 − 2abcosC  

 For the cows in the meadow, the triangle has 
sides a = 25.0 m and  
b = 15.0 m, and angle C = 20.0°, where object A = cow A,  
object B = cow B, and object C = you. 

 (a) Find side c: 
   

  

c2 = a2 + b2 − 2abcosC

c2 = (25.0 m)2 + (15.0 m)2

        − 2(25.0 m)(15.0 m) cos (20.0°)

c = 12.1 m

 

 (b) Find angle A: 

   

  

a2 = b2 + c2 − 2bc cos A →

cos A =
a2 − b2 − c2

2bc
=

(25.0 m)2 − (15.0 m)2 − (12.1 m)2

2(15.0 m)(12.1 m)

→ A = 134.8° = 135°

 

 (c) Find angle B: 

   

  

b2 = c2 + a2 − 2cacosB→

cosB =
b2 − c2 − a2

2ca
=

(15.0 m)2 − (25.0 m)2 − (12.1 m)2

2(25.0 m)(12.1 m)

→ B = 25.2°

 

 (d) For the situation, object A = star A, object B = star B, and object  
C = our Sun (or Earth); so, the triangle has sides a = 25.0 ly,  
b = 15.0 ly, and angle C = 20.0°. The numbers are the same, except 

for units, as in part (b); thus, 
   
angle A = 135.  
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P1.2 2.15 × 104 kg/m3 

P1.4 (a) 2.3 × 1017 kg/m3; (b) 1.0 × 1013 times the density of osmium 

P1.6 
  

4π ρ r2
3 − r1

3( )
3

 

P1.8 (a) 
 
8.42 × 1022  

Cu-atom
cm3 ;  (b)  1.19× 10−23  cm3/Cu-atom;   

(c) 2.28 × 10–8 cm 

P1.10 (a) and (f); (b) and (d); (c) and (e) 

P1.12 
 

m3

kg ⋅ s2  

P1.14 (a) [A] = L/T3 and [B] = L/T; (b) L/T 

P1.16 667 lb/s 

P1.18 9.19 nm/s 

P1.20 2.57 × 106 m3 

P1.22 (a) 
 
7.14 × 10–2 gal

s
;  (b) 

 
2.70 × 10–4 m3

s
;  (c) 1.03 h 

P1.24 290 m3, 2.9 × 108 cm3 

P1.26 rFe(1.43) 

P1.28 (a) 3.39 × 105 ft3; (b) 2.54 × 104 lb 

P1.30 (a) 2.07 mm; (b) 8.62 × 1013 times as large 

P1.32 (a) ~ 102 kg; (b) ~ 103 kg 

P1.34 107 rev 

P1.36 (a) 3; (b) 4; (c) 3; (d) 2 

P1.38 (a) 796; (b) 1.1; (c) 17.66 

P1.40 9 bars / year 

P1.42 1.66 × 103 kg/m3 

P1.44 288°; 108° 

P1.46 See P1.46 for complete description. 

P1.48 1.38 × 103 m 
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P1.50 (a) nine times smaller; (b) Δt is inversely proportional to the square of 
d; (c) Plot Δt on the vertical axis and 1/d2 on the horizontal axis;  
(d)   4QL/kπ Th −Tc( )  

P1.52  1.61× 103  kg/m3 ,  0.166× 103  kg/m3 ,  1.61 ± 0.17( )× 103  kg/m3  

P1.54 3.64 cents; the cost is negligible compared to $4.98. 

P1.56 (a) 1014 bacteria; (b) beneficial 

P1.58 The scenario has the contestants succeeding on the whole. But the 
calculation shows that is impossible. It just takes too long! 

P1.60   h = r tanφ = tanθ( )C/2π  

P1.62 1011 stars 

P1.64 (a) m = 346 g − (14.5 g/cm3)a3; (b) a = 0; (c) 346 g; (d) yes; (e) no change 

P1.66 (a) 478 cm3/s; (b) 0.225 cm/s; (c) When the balloon radius is twice 
as large, its surface area is four times larger. The new volume 
added in one second in the inflation process is equal to this larger 
area times an extra radial thickness that is one-fourth as large as it 
was when the balloon was smaller. 

P1.68 31.0° 

P1.70 (a-b) see ANS. FIG. P1.70(a) and P1.70(b); (c) y = x tan12.0° and  
y = (x − 1.00 km) tan14.0°; (d) y = 1.44 km 

P1.72 
  

d tanφ tanθ
tanφ − tanθ
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2 
Motion in One Dimension 

 

CHAPTER OUTLINE 
 

2.1 Position, Velocity, and Speed 

2.2 Instantaneous Velocity and Speed 

2.3 Analysis Model: Particle Under Constant Velocity 

2.4 Acceleration 

2.5 Motion Diagrams 

2.6 Analysis Model: Particle Under Constant Acceleration 

2.7 Freely Falling Objects 

2.8 Kinematic Equations Derived from Calculus 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ2.1 Count spaces (intervals), not dots. Count 5, not 6. The first drop falls at 
time zero and the last drop at 5 × 5 s = 25 s. The average speed is  
600 m/25 s = 24 m/s, answer (b). 

OQ2.2 The initial velocity of the car is v0 = 0 and the velocity at time t is v. The 
constant acceleration is therefore given by  

   

  
a = Δv

Δt
= v − v0

t − 0
= v − 0

t
= v

t

  

 and the average velocity of the car is  
   

  
v =

v + v0( )
2

= v + 0( )
2

= v
2

 

 The distance traveled in time t is   Δx = vt = vt/2.  In the special case 
where a = 0 (and hence v = v0 = 0), we see that statements (a), (b), (c), 
and (d) are all correct. However, in the general case (a ≠ 0, and hence  
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v ≠ 0) only statements (b) and (c) are true. Statement (e) is not true in 
either case. 

OQ2.3 The bowling pin has a constant downward acceleration while in flight. 
The velocity of the pin is directed upward on the ascending part of its 
flight and is directed downward on the descending part of its flight. 
Thus, only (d) is a true statement. 

OQ2.4 The derivation of the equations of kinematics for an object moving in 
one dimension was based on the assumption that the object had a 
constant acceleration. Thus, (b) is the correct answer. An object would 
have constant velocity if its acceleration were zero, so (a) applies to 
cases of zero acceleration only. The speed (magnitude of the velocity) 
will increase in time only in cases when the velocity is in the same 
direction as the constant acceleration, so (c) is not a correct response. 
An object projected straight upward into the air has a constant 
downward acceleration, yet its position (altitude) does not always 
increase in time (it eventually starts to fall back downward) nor is its 
velocity always directed downward (the direction of the constant 
acceleration). Thus, neither (d) nor (e) can be correct. 

OQ2.5 The maximum height (where v = 0) reached by a freely falling object 
shot upward with an initial velocity v0 = +225 m/s is found from 

  v f
2 = vi

2 + 2a(y f − yi) = vi
2 + 2aΔy,  where we replace a with –g, the 

downward acceleration due to gravity. Solving for  Δy  then gives 

   
  
Δy =

v f
2 − vi

2( )
2a

=
−v0

2

2 −g( ) =
− 225 m/s( )2

2 −9.80 m/s2( ) = 2.58 × 103  m  

 Thus, the projectile will be at the  Δy = 6.20 × 102 m level twice, once on 
the way upward and once coming back down. 

 The elapsed time when it passes this level coming downward can be 
found by using   v f

2 = vi
2 + 2aΔy  again by substituting a = –g and solving 

for the velocity of the object at height (displacement from original 
position)  Δy = +6.20 × 102 m. 

   

  

v f
2 = vi

2 + 2aΔy

v2 = 225 m/s( )2 + 2 −9.80 m/s2( ) 6.20 × 102  m( )
v = ±196 m/s
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The velocity coming down is −196 m/s. Using vf = vi + at, we can solve 
for the time the velocity takes to change from +225 m/s to −196 m/s: 

   
  
t =

v f − vi( )
a

=
−196 m/s − 225 m/s( )

−9.80 m/s2( ) = 43.0 s.  

 The correct choice is (e). 

OQ2.6 Once the arrow has left the bow, it has a constant downward 
acceleration equal to the free-fall acceleration, g. Taking upward as the 
positive direction, the elapsed time required for the velocity to change 
from an initial value of 15.0 m/s upward (v0 = +15.0 m/s) to a value of 
8.00 m/s downward (vf = −8.00 m/s) is given by 

   
  
Δt =

Δv
a

=
v f − v0

−g
=
−8.00 m/s − +15.0 m/s( )

−9.80 m/s2 = 2.35 s  

 Thus, the correct choice is (d). 

OQ2.7 (c) The object has an initial positive (northward) velocity and a 
negative (southward) acceleration; so, a graph of velocity versus time 
slopes down steadily from an original positive velocity. Eventually, the 
graph cuts through zero and goes through increasing-magnitude-
negative values. 

OQ2.8 (b) Using   v f
2 = vi

2 + 2aΔy,  with vi = −12 m/s and  Δy  = −40 m: 

   

  

v f
2 = vi

2 + 2aΔy

v2 = −12 m/s( )2 + 2 −9.80 m/s2( ) −40 m( )
v = −30 m/s

 

OQ2.9 With original velocity zero, displacement is proportional to the square 
of time in (1/2)at2. Making the time one-third as large makes the 
displacement one-ninth as large, answer (c). 

OQ2.10 We take downward as the positive direction with y = 0 and t = 0 at the 
top of the cliff. The freely falling marble then has v0 = 0 and its 
displacement at t = 1.00 s is  Δy  = 4.00 m. To find its acceleration, we 
use 

     

  

y = y0 + v0t + 1
2

at2 → y − y0( ) = Δy = 1
2

at2 → a = 2Δy
t2

a =
2 4.00 m( )

1.00 s( )2 = 8.00 m/s2
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 The displacement of the marble (from its initial position) at t = 2.00 s is 
found from 

  

  

Δy =
1
2

at2

Δy =
1
2

8.00 m/s2( ) 2.00 s( )2 = 16.0 m.
 

 The distance the marble has fallen in the 1.00 s interval from t = 1.00 s 
to t = 2.00 s is then 

   ∆y = 16.0 m − 4.0 m = 12.0 m. 

 and the answer is (c). 

OQ2.11 In a position vs. time graph, the velocity of the object at any point in 
time is the slope of the line tangent to the graph at that instant in time. 
The speed of the particle at this point in time is simply the magnitude 
(or absolute value) of the velocity at this instant in time. The 
displacement occurring during a time interval is equal to the difference 
in x coordinates at the final and initial times of the interval,  
 Δx  = xf − xi. 

 The average velocity during a time interval is the slope of the straight 
line connecting the points on the curve corresponding to the initial and 
final times of the interval, 

    v = Δx Δt  

 Thus, we see how the quantities in choices (a), (e), (c), and (d) can all 
be obtained from the graph. Only the acceleration, choice (b), cannot be 
obtained from the position vs. time graph. 

OQ2.12 We take downward as the positive direction with y = 0 and t = 0 at the 
top of the cliff. The freely falling pebble then has v0 = 0 and a = g =  
+9.8 m/s2. The displacement of the pebble at t = 1.0 s is given: y1 =  
4.9 m. The displacement of the pebble at t = 3.0 s is found from 

   
  
y3 = v0t +

1
2

at2 = 0 +
1
2

9.8 m/s2( ) 3.0 s( )2 = 44 m  

 The distance fallen in the 2.0-s interval from t = 1.0 s to t = 3.0 s is then 

    Δy = y3 − y1 = 44 m − 4.9 m = 39 m 

 and choice (c) is seen to be the correct answer. 

OQ2.13 (c) They are the same. After the first ball reaches its apex and falls back 
downward past the student, it will have a downward velocity of 
magnitude vi. This velocity is the same as the velocity of the second 
ball, so after they fall through equal heights their impact speeds will 
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also be the same. 

OQ2.14 (b) Above. Your ball has zero initial speed and smaller average speed 
during the time of flight to the passing point. So your ball must travel a 
smaller distance to the passing point than the ball your friend throws. 

OQ2.15 Take down as the positive direction. Since the pebble is released from 
rest,   v f

2 = vi
2 + 2aΔy  becomes 

  
  v f

2 = (4 m/s)2 = 02 + 2gh.  

 Next, when the pebble is thrown with speed 3.0 m/s from the same 
height h, we have 

     
  v f

2 = 3 m/s( )2 + 2gh = 3 m/s( )2 + 4 m/s( )2 → v f = 5 m/s
 

 and the answer is (b). Note that we have used the result from the first 
equation above and replaced 2gh with (4 m/s)2 in the second equation. 

OQ2.16 Once the ball has left the thrower’s hand, it is a freely falling body with 
a constant, nonzero, acceleration of a = −g. Since the acceleration of the 
ball is not zero at any point on its trajectory, choices (a) through (d) are 
all false and the correct response is (e). 

OQ2.17 (a) Its speed is zero at points B and D where the ball is reversing its 
direction of motion. Its speed is the same at A, C, and E because these 
points are at the same height. The assembled answer is A = C = E > B = 
D. 

 (b) The acceleration has a very large positive (upward) value at D. At 
all the other points it is −9.8 m/s2. The answer is D > A = B = C = E. 

OQ2.18 (i) (b) shows equal spacing, meaning constant nonzero velocity and 
constant zero acceleration. (ii) (c) shows positive acceleration 
throughout. (iii) (a) shows negative (leftward) acceleration in the first 
four images. 

 
 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ2.1 The net displacement must be zero. The object could have moved 
away from its starting point and back again, but it is at its initial 
position again at the end of the time interval. 

CQ2.2 Tramping hard on the brake at zero speed on a level road, you do not 
feel pushed around inside the car. The forces of rolling resistance and 
air resistance have dropped to zero as the car coasted to a stop, so the 
car’s acceleration is zero at this moment and afterward. 

 Tramping hard on the brake at zero speed on an uphill slope, you feel 
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thrown backward against your seat. Before, during, and after the zero-
speed moment, the car is moving with a downhill acceleration if you 
do not tramp on the brake. 

CQ2.3 Yes. If a car is travelling eastward and slowing down, its acceleration is 
opposite to the direction of travel: its acceleration is westward. 

CQ2.4 Yes. Acceleration is the time rate of change of the velocity of a particle. 
If the velocity of a particle is zero at a given moment, and if the particle 
is not accelerating, the velocity will remain zero; if the particle is 
accelerating, the velocity will change from zero—the particle will begin 
to move. Velocity and acceleration are independent of each other. 

CQ2.5 Yes. Acceleration is the time rate of change of the velocity of a particle. 
If the velocity of a particle is nonzero at a given moment, and the 
particle is not accelerating, the velocity will remain the same; if the 
particle is accelerating, the velocity will change. The velocity of a 
particle at a given moment and how the velocity is changing at that 
moment are independent of each other. 

CQ2.6 Assuming no air resistance: (a) The ball reverses direction at its 
maximum altitude. For an object traveling along a straight line, its 
velocity is zero at the point of reversal. (b) Its acceleration is that of 
gravity: −9.80 m/s2 (9.80 m/s2, downward). (c) The velocity is  
−5.00 m/s2. (d) The acceleration of the ball remains −9.80 m/s2 as long 
as it does not touch anything. Its acceleration changes when the ball 
encounters the ground. 

CQ2.7 (a) No. Constant acceleration only: the derivation of the equations 
assumes that d2x/dt2 is constant. (b) Yes. Zero is a constant. 

CQ2.8 Yes. If the speed of the object varies at all over the interval, the 
instantaneous velocity will sometimes be greater than the average 
velocity and will sometimes be less. 

CQ2.9 No: Car A might have greater acceleration than B, but they might both 
have zero acceleration, or otherwise equal accelerations; or the driver 
of B might have tramped hard on the gas pedal in the recent past to 
give car B greater acceleration just then. 

 

 

 

 
 

 



Chapter 2     39 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 2.1 Position, Velocity, and Speed	  
P2.1 The average velocity is the slope, not necessarily of the graph line 

itself, but of a secant line cutting across the graph between specified 
points. The slope of the graph line itself is the instantaneous velocity, 
found, for example, in Problem 6 part (b). On this graph, we can tell 
positions to two significant figures:  

  (a) x = 0   at t = 0   and   x = 10 m   at  t = 2 s: 
   

  
vx,avg = Δx

Δt = 10 m – 0
2 s – 0 = 5.0 m/s

 

  (b) x = 5.0 m   at   t = 4 s: 
   

  
vx,avg = Δx

Δt = 5.0 m – 0
4 s – 0 = 1.2 m/s

  

  (c) 
  
vx,avg = Δx

Δt = 5.0 m – 10 m
4 s – 2 s = –2.5 m/s    

  (d) 
  
vx ,avg = Δx

Δt = –5.0 m – 5.0 m
7  s – 4 s = –3.3 m/s    

  (e) 
  
vx ,avg = Δx

Δt  = 
0.0 m – 0.0 m

8 s – 0 s  =  0 m/s    

P2.2 We assume that you are approximately 2 m tall and that the nerve 
impulse travels at uniform speed. The elapsed time is then 

  
  
Δt =

Δx
v

=
2 m

100 m/s
= 2 × 10−2  s = 0.02 s  

P2.3 Speed is positive whenever motion occurs, so the average speed must 
be positive. For the velocity, we take as positive for motion to the right 
and negative for motion to the left, so its average value can be positive, 
negative, or zero.  

  (a) The average speed during any time interval is equal to the total 
distance of travel divided by the total time: 

   
  
average speed = total distance

total time
=

dAB + dBA

tAB + tBA

 

  But   dAB = dBA ,  tAB = d vAB ,   and  tBA = d vBA   
  

  
so     average speed = d + d

 d/vAB( ) + d/vBA( ) =
2 vAB( ) vBA( )

vAB + vBA
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   and  
    

 
average speed = 2

(5.00 m/s)(3.00 m/s)
5.00 m/s + 3.00 m/s

⎡
⎣⎢

⎤
⎦⎥

= 3.75 m/s
 

  (b) The average velocity during any time interval equals total 
displacement divided by elapsed time. 

    

  
vx,avg = Δx

Δt  
 

   Since the walker returns to the starting point,   Δx = 0  and 

  
vx ,avg = 0 .

  

P2.4 We substitute for t in x = 10t2, then use the definition of average 
velocity: 

 

 

 
 

 (a) 
  
vavg = Δx

Δt
= 90.0 m − 40.0 m

1.00 s
= 50.0 m

1.00 s
= 50.0 m/s  

 (b) 
  
vavg = Δx

Δt
= 44.1 m − 40.0 m

0.100 s
= 4.10 m

0.100 s
= 41.0 m/s  

*P2.5 We read the data from the table provided, assume three significant 
figures of precision for all the numbers, and use Equation 2.2 for the 
definition of average velocity. 

 (a) 
  
vx ,avg = Δx

Δt
=

2.30 m − 0 m
1.00 s

= 2.30 m s  

 (b) 
  
vx ,avg =

Δx
Δt

=
57.5 m − 9.20 m

3.00 s
= 16.1 m s  

 (c) 
  
vx ,avg = Δx

Δt
= 57.5 m − 0 m

5.00 s
= 11.5 m s  

 
 

 

t (s) 2.00 2.10 3.00 

x (m) 40.0 44.1 90.0 
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Section 2.2 Instantaneous Velocity and Speed	  
P2.6 (a) At any time, t, the position is given by x = (3.00 m/s2)t2. 

  Thus, at ti = 3.00 s: xi = (3.00 m/s2)(3.00 s)2 =  27.0 m .  

 (b) At tf = 3.00 s +  Δt: : xf = (3.00 m/s2)(3.00 s +  Δt )2, or 
   

  
x f = 27.0 m + 18.0 m/s( )Δt + 3.00 m/s2( ) Δt( )2  

 (c) The instantaneous velocity at t = 3.00 s is: 

   

  

lim
Δt→0

Δx
Δt

= lim
Δt→0

18.0 m/s( )Δt + 3.00 m/s2( ) Δt( )2

Δt
= lim

Δt→0
18.0 m/s( ) + 3.00 m/s2( ) Δt( ) = 18.0 m/s

 

P2.7 For average velocity, we find the slope of a 
secant line running across the graph between 
the 1.5-s and 4-s points. Then for 
instantaneous velocities we think of slopes of 
tangent lines, which means the slope of the 
graph itself at a point. 

 We place two points on the curve: Point A, at  
t = 1.5 s, and Point B, at t = 4.0 s, and read the 
corresponding values of x. 

 (a) At ti = 1.5 s, xi = 8.0 m (Point A) 

  At tf = 4.0 s, xf = 2.0 m (Point B) 
   

  

vavg =
x f − xi

t f − ti

= 2.0− 8.0( )  m
4.0− 1.5( )  s

= − 6.0 m
2.5 s

= −2.4 m/s

 

 (b) The slope of the tangent line can be found from points C and D. 
(tC = 1.0 s, xC = 9.5 m) and (tD = 3.5 s, xD = 0), 

   
  v ≈ −3.8 m/s  

  The negative sign shows that the direction of vx is along the 
negative x direction. 

 (c) The velocity will be zero when the slope of the tangent line is 
zero. This occurs for the point on the graph where x has its 
minimum value. This is at   t ≈ 4.0 s . 

ANS. FIG. P2.7 
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P2.8 We use the definition of average velocity. 

 (a) 
  
v1,x ,ave =

Δx( )1

Δt( )1

= L− 0
t1

= +L/t1  

 (b) 
  
v2,x ,ave =

Δx( )2

Δt( )2

= 0− L
t2

= −L/t2  

 (c) To find the average velocity for the round trip, we add the 
displacement and time for each of the two halves of the swim: 

   

  
vx ,ave,total =

Δx( )total

Δt( )total

=
Δx( )1 + Δx( )2

t1 + t2

= +L− L
t1 + t2

= 0
t1 + t2

= 0
 

 (d) The average speed of the round trip is the total distance the 
athlete travels divided by the total time for the trip: 

   

  

vave,trip = total distance traveled
Δt( )total

=
Δx( )1 + Δx( )2

t1 + t2

= +L + −L
t1 + t2

= 2L
t1 + t2

 

P2.9 The instantaneous velocity is found by 
evaluating the slope of the x – t curve at the 
indicated time. To find the slope, we choose 
two points for each of the times below. 

 (a) 
  
v =

5 − 0( )  m
1− 0( )  s

= 5 m/s  

 (b) 
  
v =

5 − 10( )  m
4 − 2( )  s

= −2.5 m/s  

 (c) 
  
v =

5 − 5( )  m
5 s − 4 s( ) = 0  

 (d) 
  
v =

0 − −5 m( )
8 s − 7 s( ) = +5 m/s  

 
 

 

ANS. FIG. P2.9 
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Section 2.3 Analysis Model: Particle Under Constant Velocity	  
P2.10 The plates spread apart distance d of 2.9 × 103 mi in the time interval 

 Δt  at the rate of 25 mm/year. Converting units:  
   

 
2.9× 103  mi( ) 1609 m

1 mi
⎛
⎝⎜

⎞
⎠⎟

103  mm
1 m

⎛
⎝⎜

⎞
⎠⎟

= 4.7 × 109  mm
 

 Use   d = vΔt,  and solve for   Δt:  

  

  

d = vΔt → Δt =
d
v

Δt =
4.7 × 109  mm
25 mm/year

= 1.9 × 108  years
 

P2.11 (a) The tortoise crawls through a distance D before the rabbit 
resumes the race. When the rabbit resumes the race, the rabbit 
must run through 200 m at 8.00 m/s while the tortoise crawls 
through the distance (1 000 m – D) at 0.200 m/s. Each takes the 
same time interval to finish the race: 

   

  
Δt = 200 m

8.00 m/s
⎛
⎝⎜

⎞
⎠⎟

= 1 000 m − D
0.200 m/s

⎛
⎝⎜

⎞
⎠⎟

 

  Solving,  
   

  → 0.200 m/s( ) 200 m( ) = 8.00 m/s( ) 1 000 m − D( )  

   

  

1 000 m − D = 0.200 m/s( ) 200 m( )
8.00 m/s

                   → D = 995 m

 

So, the tortoise is 1 000 m – D =  5.00 m  from the finish line when 
the rabbit resumes running. 

 (b) Both begin the race at the same time: t = 0. The rabbit reaches the 
800-m position at time t = 800 m/(8.00 m/s) = 100 s. The tortoise 
has crawled through 995 m when t = 995 m/(0.200 m/s) = 4 975 s. 
The rabbit has waited for the time interval  Δt  = 4 975 s – 100 s = 

 4 875 s .  

P2.12 The trip has two parts: first the car travels at constant speed v1 for 
distance d, then it travels at constant speed v2 for distance d. The first 
part takes the time interval   Δt1  = d/v1, and the second part takes the 
time interval ∆t2 = d/v2. 

 (a) By definition, the average velocity for the entire trip is 

  vavg = Δx/Δt,  where   Δx = Δx1 + Δx2 = 2d,  and  
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  Δt = Δt1 + Δt2 = d/ v1 + d/ v2.  Putting these together, we have 
   

  
vavg = Δd

Δt
⎛
⎝⎜

⎞
⎠⎟ = Δx1 + Δx2

Δt1 + Δt2

⎛
⎝⎜

⎞
⎠⎟

= 2d
d/v1 + d/v2

⎛
⎝⎜

⎞
⎠⎟

= 2v1v2

v1 + v2

⎛
⎝⎜

⎞
⎠⎟

 

  We know vavg = 30 mi/h and v1 = 60 mi/h. 

  Solving for v2 gives 

   

  

v1 + v2( )vavg = 2v1v2 → v2 =
v1vavg

2v1 − vavg

⎛

⎝
⎜

⎞

⎠
⎟ .

v2 =
30 mi/h( ) 60 mi/h( )

2 60 mi/h( ) − 30 mi/h( )
⎡

⎣
⎢

⎤

⎦
⎥ = 20 mi/h

 

 (b) The average velocity for this trip is   vavg = Δx/Δt,  where  

  Δx = Δx1 + Δx2 = d + −d( ) = 0;  so, vavg =  0 .  

 (c) The average speed for this trip is  vavg = d/Δt,  where d = d1 + d2 =  
d + d = 2d and   Δt = Δt1 + Δt2 = d/ v1 + d/ v2 ;  so, the average speed 
is the same as in part (a): vavg =  30 mi/h.  

*2.13 (a) The total time for the trip is ttotal = t1 + 22.0 min = t1 + 0.367 h, 
where t1 is the time spent traveling at v1 = 89.5 km/h. Thus, the 
distance traveled is   Δx = v1t1 = vavgttotal ,  which gives 

   

  

89.5 km/h( )t1 = 77.8 km/h( ) t1 + 0.367 h( )
= 77.8 km/h( )t1 + 28.5 km

 

  or   89.5 km/h − 77.8 km/h( )t1 = 28.5 km   

  from which, t1= 2.44 h, for a total time of  
   

  ttotal = t1 + 0.367 h = 2.81 h   

 (b) The distance traveled during the trip is   Δx = v1t1 = vavgttotal ,  giving  
   

  Δx = vavgttotal = 77.8 km/h( ) 2.81 h( ) = 219 km
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Section 2.4 Acceleration	  
P2.14 The ball’s motion is entirely in the horizontal direction. We choose the 

positive direction to be the outward direction, perpendicular to the 
wall. With outward positive,   vi = −25.0 m/s and v f = 22.0 m/s.  We use 
Equation 2.13 for one-dimensional motion with constant acceleration, 

   v f = vi + at,  and solve for the acceleration to obtain 

   

  
 a = Δv

Δt
= 22.0 m/s − −25.0 m/s( )

3.50× 10−3  s
= 1.34× 104  m/s2

 

P2.15 (a) Acceleration is the slope of the graph of v versus t. 

  For 0 < t < 5.00 s, a = 0. 

  For 15.0 s < t < 20.0 s, a = 0. 

  For 5.0 s < t < 15.0 s, 
  
a =

v f − vi

t f − ti

.  

    

  
a = 8.00 m/s − −8.00 m/s( )

15.0 s − 5.00 s
= 1.60 m/s2

 

  We can plot a(t) as shown in ANS. FIG. P2.15 below. 

 

ANS. FIG. P2.15 

 For (b) and (c) we use 
  
a =

v f − vi

t f − ti

.  

 (b) For 5.00 s < t < 15.0 s, ti = 5.00 s, vi = −8.00 m/s, tf = 15.0 s, and  
vf = 8.00 m/s: 

   

  
a =

v f − vi

t f − ti

= 8.00 m/s − −8.00 m/s( )
15.0 s − 5.00 s

= 1.60 m/s2
 

 (c) We use ti = 0, vi = −8.00 m/s, tf = 20.0 s, and vf = 8.00 m/s: 
    

  
a =

v f − vi

t f − ti

= 8.00 m/s − −8.00 m/s( )
20.0 s − 0

= 0.800 m/s2
 



46     Motion in One Dimension 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

P2.16 The acceleration is zero whenever the marble is on a horizontal 
section. The acceleration has a constant positive value when the 
marble is rolling on the 20-to-40-cm section and has a constant 
negative value when it is rolling on the second sloping section.  
The position graph is a straight sloping line whenever the speed is 
constant and a section of a parabola when the speed changes. 
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P2.17 (a) In the interval ti = 0 s and tf = 6.00 s, the motorcyclist’s velocity 
changes from vi = 0 to vf = 8.00 m/s. Then,  

   

  
a = Δv

Δt
=

v f − vi

t f − ti

= 8.0 m/s − 0
6.0 s − 0

= 1.3 m/s2
 

 (b) Maximum positive acceleration occurs when the slope of the 
velocity-time curve is greatest, at t = 3 s, and is equal to the slope 
of the graph, approximately (6 m/s – 2 m/s)/(4 s − 2 s) = 

 
2 m/s2 .  

 (c) The acceleration a = 0 when the slope of the velocity-time graph is 
zero, which occurs at 

  
t = 6 s , and also for 

  
t > 10 s .  

 (d) Maximum negative acceleration occurs when the velocity-time 
graph has its maximum negative slope, at t = 8 s, and is equal to 

the slope of the graph, approximately 
 
–1.5 m/s2 .  

*P2.18 (a) The graph is shown in ANS. FIG. P2.18 below. 

 

 

 

 

 

ANS. FIG. P2.18 

 (b) At t = 5.0 s, the slope is 
  
v ≈ 58 m

2.5 s
≈ 23 m s . 

  At t = 4.0 s, the slope is 
  
v ≈ 54 m

3 s
≈ 18 m s . 

  At t = 3.0 s, the slope is 
  
v ≈ 49 m

3.4 s
≈ 14 m s . 

  At t = 2.0 s, the slope is 
  
v ≈ 36 m

4.0 s
≈ 9.0 m s . 

 (c) 
  
a = Δv

Δt
≈ 23 m s

5.0 s
≈ 4.6 m s2  
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 (d) The initial velocity of the car was  zero . 

P2.19 (a) The area under a graph of a vs. t is equal to the change in velocity, 
∆v. We can use Figure P2.19 to find the change in velocity during 
specific time intervals. 

  The area under the curve for the time interval 0 to 10 s has the 
shape of a rectangle. Its area is 

    Δv  = (2 m/s2)(10 s) = 20 m/s 

  The particle starts from rest, v0 = 0, so its velocity at the end of the 
10-s time interval is 

   v = v0 +  Δv  = 0 + 20 m/s = 
 20 m/s  

  Between t = 10 s and t = 15 s, the area is zero:  Δv  = 0 m/s. 

  Between t = 15 s and t = 20 s, the area is a rectangle:  Δv  =  
(−3 m/s2)(5 s) = −15 m/s. 

  So, between t = 0 s and t = 20 s, the total area is  Δv  = (20 m/s) +  
(0 m/s) + (−15 m/s) = 5 m/s, and the velocity at t = 20 s is 

 5 m/s.  

 (b) We can use the information we derived in part (a) to construct a 
graph of x vs. t; the area under such a graph is equal to the 
displacement,   Δx,  of the particle. 

  From (a), we have these points (t, v) = (0 s, 0 m/s), (10 s, 20 m/s), 
(15 s, 20 m/s), and (20 s, 5 m/s). The graph appears below. 

 

  The displacements are: 

  0 to 10 s (area of triangle):  Δx  = (1/2)(20 m/s)(10 s) = 100 m 

  10 to 15 s (area of rectangle):  Δx  = (20 m/s)(5 s) = 100 m 

  15 to 20 s (area of triangle and rectangle):   

    Δx  = (1/2)[(20 – 5) m/s](5 s) + (5 m/s)(5 s)  

    = 37.5 m + 25 m = 62.5 m 

  Total displacement over the first 20.0 s:  

    Δx  = 100 m + 100 m + 62.5 m = 262.5 m =  263 m  
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P2.20 (a) The average velocity is the change in position divided by the 
length of the time interval. We plug in to the given equation. 

  At t = 2.00 s, x = [3.00(2.00)2 – 2.00(2.00) + 3.00] m = 11.0 m. 

  At t = 3.00 s, x = [3.00(3.00)2 – 2.00(3.00) + 3.00] m = 24.0 m 

  so 
   

  
vavg = Δx

Δt
= 24.0 m − 11.0 m

3.00 s − 2.00 s
= 13.0 m/s

 

 (b) At all times the instantaneous velocity is 

   
  
v =

d
dt

3.00t2 − 2.00t + 3.00( ) = 6.00t − 2.00( )  m/s  

  At t = 2.00 s, v = [6.00(2.00) – 2.00] m/s =  10.0 m/s .  

  At t = 3.00 s, v = [6.00(3.00) – 2.00] m/s = 
 
16.0 m/s .  

 (c) 
  
aavg = Δv

Δt
= 16.0 m/s − 10.0 m/s

3.00 s − 2.00 s
= 6.00 m/s2  

 (d) At all times 
  
a =

d
dt

6.00t − 2.00( ) = 6.00 m/s2 . This includes both  

t = 2.00 s and t = 3.00 s. 

 (e) From (b), v = (6.00t – 2.00) = 0 → t = (2.00)/(6.00) =  0.333 s.  

P2.21 To find position we simply evaluate the given expression. To find 
velocity we differentiate it. To find acceleration we take a second 
derivative. 

 With the position given by x = 2.00 + 3.00t − t2, we can use the rules for 
differentiation to write expressions for the velocity and acceleration as 
functions of time: 

 

  
vx = dx

dt = d
dt 2 + 3t − t2( ) = 3 – 2t  and  ax = dv

dt = d
dt

(3 − 2t) = – 2
 

 Now we can evaluate x, v, and a at t = 3.00 s. 

 (a) x = (2.00 + 9.00 – 9.00) m = 
 
2.00 m  

 (b) v = (3.00 – 6.00) m/s =  –3.00 m/s  

 (c) a =  –2.00 m/s2  
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Section 2.5 Motion Diagrams	  
P2.22  (a)  

 (b)  

 (c)  

 (d)  

 (e)  

 

 (f) One way of phrasing the answer: The spacing of the successive 
positions would change with 

 
less regularity.  

  Another way: The object would move with some combination of 
the kinds of motion shown in (a) through (e). Within one 
drawing, the acceleration vectors would vary in magnitude and 
direction. 

P2.23 (a) The motion is fast at first but slowing until the speed is constant. 
We assume the acceleration is constant as the object slows. 
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 (b) The motion is constant in speed. 

 

 (c) The motion is speeding up, and we suppose the acceleration is 
constant. 

 

 
 

Section 2.6 Analysis Model: Particle Under Constant 
Acceleration	  

*P2.24 Method One 

 Suppose the unknown acceleration is constant as a car moving at 

  vi1 = 35.0 mi h  comes to a stop,   v f = 0  in   x f 1 − xi = 40.0 ft.  We find its 

acceleration from   v f 1
2 = vi1

2 + 2a x f 1 − xi( ):  
  

  
a =

v f 1
2 − vi

2

2 x f 1 − xi( ) = 0 − (35.0 mi h)2

2 40.0 ft( )
5 280 ft

mi( )2 1 h
3 600 s( )2

= −32.9 ft s2

 

 Now consider a car moving at   vi2 = 70.0 mi h  and stopping,   v f = 0,  

with   a = −32.9 ft s2 .  From the same equation, its stopping distance is 
  

  

x f 2 − xi =
v f 2

2 − vi
2

2a
= 0 − 70.0 mi/h( )2

2 −32.9 ft s2( )
5 280 ft

1 mi( )2 1 h
3 600 s( )2

= 160 ft

 

 Method Two 

 For the process of stopping from the lower speed   vi1  we have 

  v f
2 = vi1

2 + 2a x f 1 − xi( ) ,   0 = vi1
2 + 2ax f 1 , and   vi1

2 = −2ax f 1 . For stopping 
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from   vi2 = 2vi1 , similarly   0 = vi2
2 + 2ax f 2 ,  and   vi2

2 = −2ax f 2 . Dividing 
gives  

  
  

vi2
2

vi1
2 =

x f 2

x f 1

; 
  x f 2 = 40 ft × 22 = 160 ft  

*P2.25 We have   vi = 2.00 × 104 m/s,    v f = 6.00 × 106  m/s,  and 

  x f − xi = 1.50× 10−2  m.  

 (a) 
  
x f − xi = 1

2
vi + v f( )t:  

   

  

t =
2 x f − xi( )

vi + v f

=
2 1.50 × 10−2  m( )

2.00 × 104  m s + 6.00 × 106  m s

= 4.98 × 10−9  s

 

 (b)   v f
2 = vi

2 + 2ax x f − xi( ) : 

   

  

ax =
v f

2 − vi
2

2(x f − xi )
=

6.00 × 106  m s( )2 − 2.00 × 104  m s( )2

2(1.50 × 10−2
 m)

= 1.20 × 1015  m s2

 

*P2.26 (a) Choose the initial point where the pilot reduces the throttle and 
the final point where the boat passes the buoy:   xi = 0,   x f = 100 m,  

  vxi = 30 m/s,   vxf = ?,    ax = −3.5 m/s2 ,  and   t = ?  

   
  
x f = xi + vxit + 1

2
axt

2 :  

   
  
100 m = 0 + 30 m s( )t + 1

2
−3.5 m s2( )t2  

     1.75 m s2( )t2 − 30 m s( )t + 100 m = 0  

  We use the quadratic formula: 

   
  
t = −b ± b2 − 4ac

2a
 

 

  

t =
30 m s ± 900 m2 s2 − 4 1.75 m s2( ) 100 m( )

2 1.75 m s2( )
= 30 m s ± 14.1 m s

3.5 m s2 = 12.6 s   or    4.53 s
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  The smaller value is the physical answer. If the boat kept moving 
with the same acceleration, it would stop and move backward, 
then gain speed, and pass the buoy again at 12.6 s. 

 (b) 
  
vxf = vxi + axt = 30 m s − 3.5 m s2( )4.53 s = 14.1 m s  

P2.27 In parts (a) – (c), we use Equation 2.13 to determine the velocity at the 
times indicated. 

 (a) The time given is 1.00 s after 10:05:00 a.m., so  

   vf = vi + at = 13.0 m/s + (–4.00 m/s2)(1.00 s) = 
 
9.00 m/s  

 (b) The time given is 4.00 s after 10:05:00 a.m., so  

   vf = vi + at = 13.0 m/s + (–4.00 m/s2)(4.00 s) = 
 
–3.00 m/s  

 (c) The time given is 1.00 s before 10:05:00 a.m., so  

   vf = vi + at = 13.0 m/s + (–4.00 m/s2)(–1.00 s) = 
 
17.0 m/s  

 (d) 

 

The graph of velocity versus time is a slanting straight line, 
having the value 13.0 m/s at 10:05:00 a.m. on the certain date, 
and sloping down by 4.00 m/s for every second thereafter.

 

 (e) 

 

If we also know the velocity at any one instant, then knowing the
value of the constant acceleration tells us the velocity at all other
instants

 

P2.28 (a) We use Equation 2.15: 
  

  
x f − xi = 1

2
vi + v f( )t becomes 40.0 m = 1

2
vi + 2.80 m/s( ) 8.50 s( ),

 

which yields 
  
vi = 6.61 m/s .  

 (b) From Equation 2.13,  

   
  
a =

v f − vi

t
=

2.80 m/s − 6.61 m/s
8.50 s

= −0.448 m/s2  

P2.29 The velocity is always changing; there is always nonzero acceleration 
and the problem says it is constant. So we can use one of the set of 
equations describing constant-acceleration motion. Take the initial 
point to be the moment when  xi = 3.00 cm and vxi = 12.0 cm/s. Also, at 
t = 2.00 s, xf = –5.00 cm. 

  Once you have classified the object as a particle moving with constant 
acceleration and have the standard set of four equations in front of 
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you, how do you choose which equation to use? Make a list of all of 
the six symbols in the equations: xi , xf, vxi , vxf, ax, and t. On the list fill in 
values as above, showing that xi, xf, vxi, and t are known. Identify ax as 
the unknown. Choose an equation involving only one unknown and 
the knowns. That is, choose an equation not involving vxf. Thus we 
choose the kinematic equation 

  

  
x f = xi + vxit + 1

2
axt2

 

 and solve for ax: 

  
  
ax =

2 x f – xi – vxit⎡⎣ ⎤⎦
t2

 

 We substitute:   
  

 

ax = 2[−5.00 cm − 3.00 cm −(12.0 cm/s)(2.00 s)]
(2.00 s)2

= −16.0 cm/s2

 

P2.30 We think of the plane moving with maximum-size backward 
acceleration throughout the landing, so the acceleration is constant, the 
stopping time a minimum, and the stopping distance as short as it can 
be. The negative acceleration of the plane as it lands can be called 
deceleration, but it is simpler to use the single general term acceleration 
for all rates of velocity change.  

 (a) The plane can be modeled as a particle under constant 
acceleration, with   ax = −5.00 m/s2.  Given   vxi = 100 m/s  

  and vxf = 0,  we use the equation  vxf = vxi + axt  and solve for t:  
   

  
t =

vx f – vxi

ax
= 0 – 100 m/s

–5.00 m/s2 = 20.0 s
  

 (b) Find the required stopping distance and compare this to the 
length of the runway. Taking xi to be zero, we get  

   
  
vxf

2 = vxi
2 + 2ax x f – xi( )  

   or 
  
Δx = x f – xi =

vx f
2 – vxi

2

2ax
=

0 – 100 m/s( )2

2 –5.00 m/s2( ) = 1 000 m  

 (c) The stopping distance is greater than the length of the runway; 

 
the plane cannot land .
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P2.31 We assume the acceleration is constant. We choose the initial and final 
points 1.40 s apart, bracketing the slowing-down process. Then we 
have a straightforward problem about a particle under constant 
acceleration. The initial velocity is 

   
  
vxi = 632 mi/h = 632 mi/h

1 609 m
1 mi

⎛
⎝⎜

⎞
⎠⎟

1 h
3 600 s

⎛
⎝⎜

⎞
⎠⎟

= 282 m/s  

 (a) Taking  vx f = vxi + axt  with   vx f = 0,  

  

  
ax =

vx f − vxi

t
= 0− 282 m/s

1.40 s
= − 202 m/s2

 

 This has a magnitude of approximately 20g. 

 (b) From Equation 2.15,  
   

  
x f − xi = 1

2
(vxi + vx f )t = 1

2
(282 m/s + 0)(1.40 s) = 198 m

 

P2.32 As in the algebraic solution to Example 2.8, we let t represent the time 
the trooper has been moving. We graph 

   xcar = 45+ 45t 

 and   xtrooper = 1.5t2 

 They intersect at 
  
t = 31 s .  

 

ANS. FIG. P2.32 

*P2.33 (a) The time it takes the truck to reach 20.0 m/s is found from 

  v f = vi + at.  Solving for t yields 

    
  
t =

v f − vi

a
= 20.0 m s − 0 m s

2.00 m s2 = 10.0 s  

  The total time is thus  10.0 s + 20.0 s + 5.00 s = 35.0 s .  
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 (b) The average velocity is the total distance traveled divided by the 
total time taken. The distance traveled during the first 10.0 s is 

    
  
x1 = vt = 0 + 20.0

2( ) 10.0( ) = 100 m  

  With a = 0 for this interval, the distance traveled during the next 
20.0 s is 

    
  
x2 = vit + 1

2
at2 = 20.0( ) 20.0( ) + 0 = 400 m  

  The distance traveled in the last 5.00 s is 

    
  
x3 = vt = 20.0 + 0

2( ) 5.00( ) = 50.0 m  

  The total distance   x = x1 + x2 + x3 = 100 + 400 + 50 = 550 m,  and the 

average velocity is given by 
  
v = x

t
= 550

35.0
= 15.7 m s . 

P2.34 We ask whether the constant acceleration of the rhinoceros from rest 
over a period of 10.0 s can result in a final velocity of 8.00 m/s and a 
displacement of 50.0 m? To check, we solve for the acceleration in two 
ways. 

 1) ti = 0, vi = 0; t = 10.0 s, vf = 8.00 m/s: 

   

  

v f = vi + at → a =
v f

t

a =
8.00 m/s

10.0 s
= 0.800 m/s2

 

 2) ti = 0, xi = 0, vi = 0; t = 10.0 s, xf = 50.0 m: 

   

  

x f = xi + vit +
1
2

at2 → x f =
1
2

at2

a =
2x f

t2 =
2 50.0 m( )

10.0 s( )2 = 1.00 m/s2
 

 
 
The accelerations do not match, therefore the situation is impossible.  

P2.35 Since we don’t know the initial and final velocities of the car, we will 
need to use two equations simultaneously to find the speed with 
which the car strikes the tree. From Equation 2.13, we have 

  
  vx f = vxi + axt = vxi + (−5.60 m/s2 )(4.20 s)  

    vxi = vx f + (5.60 m/s2 )(4.20 s)  [1] 
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 and from Equation 2.15, 

   

  

x f − xi = 1
2

vxi + vxf( )t

 62.4 m = 1
2

vxi + vxf( ) 4.20 s( )
 

[2]
 

 Substituting for vxi in [2] from [1] gives 

  
62.4 m =

1
2

vxf + 5.60 m/s2( ) 4.20 s( ) + vxf⎡⎣ ⎤⎦ 4.20 s( )  

   
  
14.9 m/s = vxf +

1
2

5.60 m/s2( ) 4.20 s( )  

 Thus ,   vxf = 3.10 m/s  

P2.36 (a) Take any two of the standard four equations, such as  
   

  

vxf = vxi + axt

x f − xi = 1
2

vxi + vxf( )t

 

  Solve one for vxi, and substitute into the other:  

   vxi = vxf – axt 
   

  
x f − xi =

1
2

vxf − axt + vxf( )t
 

  Thus 
   

  
x f − xi = vxf t −

1
2

axt
2

 

We note that the equation is dimensionally correct. The units are 
units of length in each term. Like the standard equation 

  
x f − xi = vxit +

1
2

axt
2 ,  this equation represents that displacement is 

a quadratic function of time. 

 (b) Our newly derived equation gives us for the situation back in 
problem 35, 

   

  

62.4 m = vxf 4.20 s( ) − 1
2

−5.60 m/s2( ) 4.20 s( )2

vxf =
62.4 m − 49.4 m

4.20 s
= 3.10 m/s
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P2.37 (a) We choose a coordinate system 
with the x axis positive to the right, 
in the direction of motion of the 
speedboat, as shown on the right. 

 (b) Since the speedboat is increasing its speed, the particle under 
constant acceleration model should be used here. 

 (c) Since the initial and final velocities are given along with the 
displacement of the speedboat, we use 

      vxf
2 = vxi

2 + 2aΔx  

 (d) Solving for the acceleration of the speedboat gives 

    
  
a =

vxf
2 − vxi

2

2Δx
 

 (e) We have vi = 20.0 m/s, vf = 30.0 m/s, and xf  – xi =  Δx = 200 m: 
    

  
a =

vxf
2 − vxi

2

2Δx
=

(30.0 m/s)2 − (20.0 m/s)2

2(200 m)
= 1.25 m/s2

 

 (f) To find the time interval, we use vf = vi + at, which gives  

    
  
t =

v f − vi

a
=

30.0 m/s − 20.0 m/s
1.25 m/s2 = 8.00 s  

P2.38 (a) Compare the position equation x = 2.00+ 3.00t – 4.00t2 to the 
general form 

    
  
x f = xi + vit +

1
2

at2  

  to recognize that xi = 2.00 m, vi = 3.00 m/s, and a = –8.00 m/s2. 
The velocity equation, vf = vi + at, is then 

   vf = 3.00 m/s – (8.00 m/s2)t 

  The particle changes direction when vf = 0, which occurs at 

  
t =

3
8

 s.  The position at this time is 

    

  

x = 2.00 m + 3.00 m/s( ) 3
8

 s⎛
⎝⎜

⎞
⎠⎟ − 4.00 m/s2( ) 3

8
 s⎛

⎝⎜
⎞
⎠⎟

2

= 2.56 m
 

 (b) From 
  
x f = xi + vit +

1
2

at2 ,  observe that when xf = xi , the time is 

ANS. FIG. P2.37 
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given by 
  
t = −

2vi

a
.  Thus, when the particle returns to its initial 

position, the time is 

   
  
t =

−2 3.00 m/s( )
−8.00 m/s2 =

3
4

 s  

  and the velocity is  
   

  
v f = 3.00 m/s − 8.00 m/s2( ) 3

4
 s⎛

⎝⎜
⎞
⎠⎟ = −3.00 m/s

 

P2.39 Let the glider enter the photogate with velocity vi and move with 
constant acceleration a. For its motion from entry to exit, 

   

   

x f = xi + vxit +
1
2

axt
2

 = 0 + viΔtd +
1
2

aΔtd
2 = vdΔtd

vd = vi +
1
2

aΔtd

 

 (a) The speed halfway through the photogate in space is given by 
   

   
vhs

2 = vi
2 + 2a


2

⎛
⎝⎜

⎞
⎠⎟ = vi

2 + avdΔtd

 

     vhs = vi
2 + avdΔtd  and this is 

  
not equal to vd unless a = 0 .  

 (b) The speed halfway through the photogate in time is given by 

  
vht = vi + a

Δtd

2
⎛
⎝⎜

⎞
⎠⎟

 and this is 
  
equal to vd  as determined above. 

P2.40 (a) Let a stopwatch start from t = 0 as the front end of the glider 
passes point A. The average speed of the glider over the interval 
between t = 0 and t = 0.628 s is 12.4 cm/(0.628 s) = 

 
19.7 cm/s , 

and this is the instantaneous speed halfway through the time 
interval, at t = 0.314 s. 

 (b) The average speed of the glider over the time interval between 
0.628 + 1.39 = 2.02 s and 0.628 + 1.39 + 0.431 = 2.45 s is  
12.4 cm/(0.431 s) = 28.8 cm/s and this is the instantaneous speed 
at the instant t = (2.02 + 2.45)/2 = 2.23 s. 

  Now we know the velocities at two instants, so the acceleration is 
found from  

   
 

28.8− 19.7( )  cm/s[ ]/ 2.23− 0.314( )  s[ ] = 4.70 cm/s2
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 (c) 

 

The distance between A and B is not used, but the length of 
the glider is used to find the average velocity during a known
time interval.

 

P2.41 (a) What we know about the motion of an object is as follows:  
a = 4.00 m/s2, vi = 6.00 m/s, and vf = 12.0 m/s. 

    

  

v f
2 = vi

2 + 2a x f − xi( ) = vi
2 + 2aΔx

Δx =
v f

2 − vi
2( )

2a

Δx =
12.0 m/s( )2 − 6.00 m/s( )2⎡⎣ ⎤⎦

2 4.00 m/s2( ) = 13.5 m

 

 (b) From (a), the acceleration and velocity of the object are in the 
same (positive) direction, so the object speeds up. The distance is 

 13.5 m  because the object always travels in the same direction. 

 (c) Given a = 4.00 m/s2, vi = –6.00 m/s, and vf = 12.0 m/s. Following 
steps similar to those in (a) above, we will find the displacement 
to be the same:   Δx = 13.5 m.  In this case, the object initially is 
moving in the negative direction but its acceleration is in the 
positive direction, so the object slows down, reverses direction, 
and then speeds up as it travels in the positive direction. 

 (d) We consider the motion in two parts. 

  (1) Calculate the displacement of the object as it slows down:  
a = 4.00 m/s2, vi = –6.00 m/s, and vf = 0 m/s. 

     

  

Δx =
v f

2 − vi
2( )

2a

Δx =
0 m/s( )2 − −6.00 m/s( )2⎡⎣ ⎤⎦

2 4.00 m/s2( ) = −4.50 m

 

   The object travels 4.50 m in the negative direction. 

  (2) Calculate the displacement of the object after it has reversed 
direction: a = 4.00 m/s2, vi = 0 m/s, vf = 12.0 m/s. 

    

  
Δx =

v f
2 − vi

2( )
2a
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Δx =

12.0 m/s( )2 − 0 m/s( )2⎡⎣ ⎤⎦
2 4.00 m/s2( ) = 18.0 m

 

   The object travels 18.0 m in the positive direction. 

   Total distance traveled: 4.5 m + 18.0 m =  22.5 m.  

P2.42 (a) For the first car, the speed as a function of time is 
   

  v1 = v1i + a1t = −3.50 cm/s + 2.40 cm/s2( )t
  

  For the second car, the speed is 
  

  v2 = v2 i + a2t = +5.5 cm/s + 0   

  Setting the two expressions equal gives 
  

  −3.50 cm/s + 2.40 cm/s2( )t = 5.5 cm/s
  

  Solving for t gives 
   

  
t = 9.00 cm/s

2.40 cm/s2 = 3.75 s
  

 (b) The first car then has speed 
   

  v1 = v1i + a1t = −3.50 cm/s + 2.40 cm/s2( ) 3.75 s( ) = 5.50 cm/s
 

  and this is also the constant speed of the second car. 

 (c) For the first car, the position as a function of time is 
   

  

x1 = x1i + v1it + 1
2

a1t
2

= 15.0 cm − 3.50 cm/s( )t + 1
2

2.40 cm/s2( )t2

  

  For the second car, the position is 
   

  x2 = 10.0 cm + 5.50 cm/s( )t  

  At the point where the cars pass one another, their positions are 
equal: 

   

  

15.0 cm − 3.50 cm/s( )t + 1
2

2.40 cm/s2( )t2

                                            = 10.0 cm + 5.50 cm/s( )t

  

  rearranging gives 
   

  1.20 cm/s2( )t2 − 9.00 cm/s( )t + 5.00 cm = 0
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  We solve this with the quadratic formula. Suppressing units, 
   

  
t =

9 ± 9( )2 − 4 1.2( ) 5( )
2 1.2( ) = 9 ± 57

2.4
= 6.90 s, or 0.604 s

 

 (d) At t = 0.604 s, the second and also the first car’s position is  
   

  x1,2 = 10.0 cm + 5.50 cm/s( )(0.604 s) = 13.3 cm
 

  At t = 6.90 s, both are at position  
   

  x1,2 = 10.0 cm + 5.50 cm/s( )(6.90 s) = 47.9 cm
 

 (e) 

  

The cars are initially moving toward each other, so they soon
arrive at the same position x when their speeds are quite 
different, giving one answer to (c) that is not an answer to (a). 
The first car slows down in its motion to the left, turns around, 
and starts to move toward the right, slowly at first and gaining 
speed steadily. At a particular moment its speed will be equal 
to the constant rightward speed of the second car, but at this 
time the accelerating car is far behind the steadily moving car; 
thus, the answer to (a) is not an answer to (c). Eventually the 
accelerating car will catch up to the steadily-coasting car, but 
passing it at higher speed, and giving another answer to (c) 
that is not an answer to (a).

 

P2.43 (a) Total displacement = area under the (v, t) curve from t = 0 to 50 s. 
Here, distance is the same as displacement because the motion is 
in one direction. 

   

  

Δx =
1
2

50 m/s( ) 15 s( ) + 50 m/s( ) 40 − 15( )  s

        + 
1
2

50 m/s( ) 10 s( )

Δx = 1875 m = 1.88 km

 

 (b) From t = 10 s to t = 40 s, displacement is 
   

  
Δx = 1

2
50 m/s + 33 m/s( ) 5 s( )+ 50 m/s( ) 25 s( ) = 1.46 km
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 (c) We compute the acceleration for each of the three segments of the 
car’s motion: 

   

  

0 ≤ t ≤ 15 s:    a1 = Δv
Δt

= 50− 0( )  m/s
15 s − 0

= 3.3 m/s2

15 s < t < 40 s:        a2 = 0

40 s ≤ t ≤ 50 s:    a3 = Δv
Δt

= 0− 50( )  m/s
50 s − 40 s

= −5.0 m/s2

 

  ANS. FIG. P2.43 shows the graph of the acceleration during this 
interval. 

 

ANS FIG. P2.43 

 (d) For segment 0a, 

   
  
x1 = 0 +

1
2

a1t
2 =

1
2

3.3 m/s2( )t2  or x1 = 1.67 m/s2( )t2  

   For segment ab, 
    

  
x2 = 1

2
15s( ) 50 m/s − 0[ ]+ 50 m/s( ) t − 15 s( )

 

   or 
  
x2 = 50 m/s( )t − 375 m  

  For segment bc,  
   

  
x3 =

area under v vs. t
from t = 0 to 40 s

⎛

⎝
⎜

⎞

⎠
⎟ + 1

2 a3(t – 40 s)2 + (50 m/s)(t – 40 s)
 

  or 
   

  

x3 = 375 m + 1250 m + 1
2

(–5.0 m/s2 )(t – 40 s)2

                                                 + (50 m/s)(t – 40 s)

 

  which reduces to 
   

  
x3 = 250 m/s( )t − 2.5 m/s2( )t2 − 4 375 m
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 (e) 
  
v =

total displacement
total elapsed time

=
1 875 m

50 s
= 37.5 m/s  

2.44 (a) Take t = 0 at the time when the player starts to chase his 
opponent. At this time, the opponent is a distance 

  d = 12.0 m/s( ) 3.00 s( ) = 36.0 m  in front of the player. At time t > 0, 
the displacements of the players from their initial positions are 

    
  
Δxplayer = vi ,playert + 1

2
aplayert

2 = 0 + 1
2

4.00 m/s2( )t2   [1] 

  and 

   
  
Δxopponent = vi ,opponentt + 1

2
aopponentt

2 = 12.0 m/s( )t + 0   [2] 

   When the players are side-by-side,   Δxplayer = Δxopponent + 36.0 m.  [3] 

   Substituting equations [1] and [2] into equation [3] gives 
   

  

1
2

4.00 m/s2( )t2 = 12.0 m/s( )t + 36.0 m
  

  or   t
2 + −6.00 s( )t + −18.0 s2( ) = 0  

   Applying the quadratic formula to this equation gives 
   

  
t =

− −6.00 s( ) ± −6.00 s( )2 − 4(1) −18.0 s2( )
2(1)

  

   which has solutions of t = –2.20 s and t = +8.20 s. Since the time 
must be greater than zero, we must choose   t = 8.20 s  as the 
proper answer. 

 (b) 
  
Δxplayer = vi ,playert + 1

2
aplayert

2 = 0 + 1
2

4.00 m/s2( ) 8.20 s( )2 = 134 m   

 
 

 

Section 2.7 Freely Falling Objects	  
P2.45 This is motion with constant acceleration, in this case the acceleration 

of gravity. The equation of position as a function of time is 
   

  
y f = yi + vit + 1

2
at2

 

 Taking the positve y direction as up, the acceleration is a = (9.80 m/s2, 
downward) = –g; we also know that yi = 0 and vi = 2.80 m/s. The above 
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equation becomes 

   

  

y f = vit −
1
2

gt2

y f = 2.80 m/s( )t −
1
2

9.80 m/s2( )t2

 

 (a) At t = 0.100 s, yf =  0.231 m  

 (b) At t = 0.200 s,  yf =  0.364 m  

 (c) At t = 0.300 s, yf =  0.399 m  

 (d) At t = 0.500 s, yf =  0.175 m  

P2.46 We can solve (a) and (b) at the same time by assuming the rock passes 
the top of the wall and finding its speed there. If the speed comes out 
imaginary, the rock will not reach this elevation. 

   

  

v f
2 = vi

2 + 2a y f − yi( )
= 7.40 m/s( )2 − 2 9.80 m/s2( ) 3.65 m − 1.55 m( )
= 13.6 m2/s2

 

 which gives   v f = 3.69 m/s.  

 
  
So the rock does reach the top of the wall with v f = 3.69 m/s . 

 (c) The rock travels from yi = 3.65 m to yf = 1.55 m. We find the final 
speed of the rock thrown down: 

   

  

v f
2 = vi

2 + 2a y f − yi( )
= −7.40 m/s( )2 − 2 9.80 m/s2( ) 1.55m − 3.65 m( )

  =95.9 m2/s2

 

  which gives   v f = −9.79 m/s.  

  The change in speed of the rock thrown down is  
   

 9.79 m/s − 7.40 m/s = 2.39 m/s
 

 (d) The magnitude of the speed change of the rock thrown up is 

 7.40 m/s − 3.69 m/s = 3.71 m/s.  This 
 
does not agree  with  

2.39 m/s. 
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 (e) 

 

The upward-moving rock spends more time in flight because its
average speed is smaller than the downward-moving rock, so the
rock has more time to change its speed.

 

P2.47 The bill starts from rest, vi = 0, and falls with a downward acceleration 
of 9.80 m/s2 (due to gravity). For an average human reaction time of 
about 0.20 s, we can find the distance the bill will fall: 

   

  

y f = yi + vit +
1
2

at2 → Δy = vit −
1
2

gt2

Δy = 0 −
1
2

9.80 m/s2( )(0.20 s)2 = −0.20 m

 

 The bill falls about 20 cm—this distance is about twice the distance 
between the center of the bill and its top edge, about 8 cm. Thus 

 
David could not respond fast enough to catch the bill.  

P2.48 Since the ball’s motion is entirely vertical, we can use the equations for 
free fall to find the initial velocity and maximum height from the 
elapsed time. After leaving the bat, the ball is in free fall for t = 3.00 s 
and has constant acceleration ay = −g = −9.80 m/s2. 

 (a) The initial speed of the ball can be found from 

   

  

v f = vi + at

0 = vi − gt → vi = gt

vi = 9.80 m/s2( ) 3.00 s( ) = 29.4 m/s

 

 (b) Find the vertical displacement   Δy:  

   

  

Δy = y f − yi =
1
2

vi + v f( )t

Δy =
1
2

29.4 m/s + 0( ) 3.00 s( )

Δy = 44.1 m

 

*P2.49 (a) Consider the upward flight of the arrow. 

   

  

vyf
2 = vyi

2 + 2ay y f − yi( )
0 = 100 m s( )2 + 2 −9.80 m s2( )Δy

Δy = 10 000 m2 s2

19.6 m s2 = 510 m
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 (b) Consider the whole flight of the arrow. 

   

  

y f = yi + vyit + 1
2

ayt
2

0 = 0 + 100 m s( )t + 1
2

−9.80 m s2( )t2
 

  The root t = 0 refers to the starting point. The time of flight is 
given by 

   
  
t = 100 m s

4.90 m s2 = 20.4 s  

P2.50 We are given the height of the helicopter: y = h = 3.00t3. 

 At t = 2.00 s, y = 3.00(2.00 s)3 = 24.0 m and 
   

  
vy = dy

dt
= 9.00t2 = 36.0 m/s ↑

 

 If the helicopter releases a small mailbag at this time, the mailbag starts 
its free fall with velocity 36.0 m/s upward. The equation of motion of 
the mailbag is 

   

  

y f = yi + vit +
1
2

at2

y f = 24.0 m( ) + 36.0 m/s( )t − 4.90 m/s2( )t2

 

 Setting yf = 0, dropping units, and rearranging the equation, we have 

   4.90t2 – 36.0t – 24.0 = 0 

 We solve for t using the quadratic formula: 
   

  
t =

36.0 ± −36.0( )2 − 4(4.90) −24.0( )
2(4.90)

 

 Since only positive values of t count, we find   t = 7.96 s .  

P2.51 The equation for the height of the ball as a function of time is 

   

  

y f = yi + vit −
1
2

gt2

0 = 30 m + −8.00 m/s( )t − 4.90 m/s2( )t2
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 Solving for t, 

   

  

t =
+8.00 ± −8.00( )2 − 4 −4.90( ) 30( )

2 −4.90( ) =
+8.00 ± 64 + 588

−9.80

t = 1.79 s

 

*P2.52 The falling ball moves a distance of (15 m – h) before they meet, where 
h is the height above the ground where they meet. We apply  

   

  
y f = yi + vit −

1
2

gt2
 

 to the falling ball to obtain 
   

  
−(15.0 m − h) = − 1

2
gt2

 

 or  
  
h = 15.0 m − 1

2
gt2   [1] 

 Applying  
  
y f = yi + vit −

1
2

gt2  to the rising ball gives 

   
  
h = 25 m/s( )t − 1

2
gt2  [2] 

 Combining equations [1] and [2] gives 
   

  
25 m/s( )t − 1

2
gt2 = 15.0 m − 1

2
gt2

  

 or  
  
t = 15 m

25 m/s
= 0.60 s   

P2.53 We model the keys as a particle under the constant free-fall 
acceleration. Take the first student’s position to be   yi = 0  and the 
second student’s position to be   y f = 4.00 m.  We are given that the time 
of flight of the keys is t = 1.50 s, and   ay = −9.80 m/s2 . 

 (a) We choose the equation 
  
y f = yi + vyit +

1
2

ayt
2  to connect the data 

and the unknown. 

  We solve:  

   

  
vyi = 

y f – yi – 1
2

ayt
2

t
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   and substitute:  

     

  
vyi = 

4.00 m – 1
2

–9.80 m/s2( )(1.50 s)2

1.50 s = 10.0 m/s
 

 (b) The velocity at any time t > 0 is given by vyf = vyi + ayt. 

   Therefore, at t = 1.50 s, 
    

  vyf = 10.0 m s − 9.80 m/s2( ) 1.50 s( ) = −4.68 m/s
  

  The negative sign means that the keys are moving downward just 
before they are caught. 

P2.54 (a) The keys, moving freely under the influence of gravity (a = −g), 
undergo a vertical displacement of ∆y = +h in time t. We use 

  Δy = vit + 1
2 at2  to find the initial velocity as 

   

  

Δy = vit + 1
2

at2 = h

→ h = vit −
1
2

gt2

vi =
h + 1

2
gt2

t
= h

t
+ gt

2

 

 (b) We find the velocity of the keys just before they were caught (at 
time t) using v = vi + at: 

   

  

v = vi + at

v =
h
t

+
gt
2

⎛
⎝⎜

⎞
⎠⎟ − gt

v =
h
t
−

gt
2

 

P2.55 Both horse and man have constant accelerations: they are g downward 
for the man and 0 for the horse. We choose to do part (b) first. 

 (b) Consider the vertical motion of the man after leaving the limb 
(with vi = 0 at yi = 3.00 m) until reaching the saddle (at yf = 0). 

   Modeling the man as a particle under constant acceleration, we 
find his time of fall from   y f = yi + vyit + 1

2 ayt
2.  

   When vi = 0,  

    

  
t =

2 y f – yi( )
ay

= 2(0 – 3.00 m)
–9.80 m/s2 = 0.782 s
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 (a) During this time interval, the horse is modeled as a particle under 
constant velocity in the horizontal direction. 

   
  vxi = vxf = 10.0 m/s   

   
  x f − xi = vxit = (10.0 m s)(0.782 s) = 7.82 m

  

  and the ranch hand must let go when the horse is 7.82 m from the 
tree. 

P2.56 (a) Let t = 0 be the instant the package leaves the helicopter. The 
package and the helicopter have a common initial velocity of –vi 
(choosing upward as positive). The helicopter has zero 
acceleration, and the package (in free-fall) has constant 
acceleration ay = –g. 

  At times t > 0, the velocity of the package is 
    

  vp = vyi + ayt→ vp = –vi – gt = – vi + gt( )  

  so its speed is 
  
vp = vi + gt .  

 (b) Assume the helicopter is at height H when the package is 
released. Setting our clock to t = 0 at the moment the package is 
released, the position of the helicopter is 

    

  

yhel = yi + vyit +
1
2

ayt
2

yhel = H + −vi( )t
 

  and the position of the package is 

    

  

yp = yi + vyit +
1
2

ayt
2

yp = H + −vi( )t −
1
2

gt2

 

  The vertical distance, d, between the helicopter and the package is 

    

  

yhel − yp = H + −vi( )t⎡⎣ ⎤⎦ − H + −vi( )t −
1
2

gt2⎡
⎣⎢

⎤
⎦⎥

d =
1
2

gt2

 

  The distance is independent of their common initial speed. 

 (c) Now, the package and the helicopter have a common initial 
velocity of +vi (choosing upward as positive). The helicopter has 
zero acceleration, and the package (in free-fall) has constant 
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acceleration ay = –g. 

  At times t > 0, the velocity of the package is 
    

  vP = vyi + ayt→ vp = +vi – gt  

  Therefore, the speed of the package at time t is 
  
vp = vi − gt .  

  The position of the helicopter is 

    

  

yhel = yi + vyit +
1
2

ayt
2

yhel = H + +vi( )t
 

  and the position of the package is 
    

  

yp = yi + vyit + 1
2

ayt
2

yp = H + +vi( )t − 1
2

gt2

 

  The vertical distance, d, between the helicopter and the package is 

    

  

yhel − yp = H + +vi( )t⎡⎣ ⎤⎦ − H + +vi( )t −
1
2

gt2⎡
⎣⎢

⎤
⎦⎥

d =
1
2

gt2

 

  As above, the distance is independent of their common initial 
speed. 

 
 

 

Section 2.8 Kinematic Equations Derived from Calculus	  
P2.57 This is a derivation problem. We start from basic definitions. We are 

given J = dax/dt = constant, so we know that dax = Jdt. 

 (a) Integrating from the ‘initial’ moment when we know the 
acceleration to any later moment, 

   
  

da = J dt    →      
0

t
∫aix

ax∫ ax − aix = J(t − 0)
 

    Therefore, 
  
ax = Jt + axi .   

    From ax = dvx/dt, dvx = ax dt. 
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    Integration between the same two points tells us the velocity as a 
function of time: 

    
   

dvx = ax dt =
0

t
∫vxi

vx∫ (axi + Jt)dt
0

t
∫

 

    

  
vx – vxi = axit + 1

2
Jt2  or  vx = vxi + axit + 1

2
Jt2

  

    From vx = dx/dt, dx = vxdt. Integrating a third time gives us x(t): 
    

  
dx = vx dt =

0

t
∫xi

x
∫ (vxi + axit + 1

2
Jt2 ) dt

0

t
∫

 

    

  
x − xi = vxit + 1

2
axit

2 + 1
6

Jt3
 

   and 
  
x = 1

6
Jt3 + 1

2
axit

2 + vxit + xi .  

 (b) Squaring the acceleration,   

     ax
2 = (Jt + axi )

2 = J 2t2 + axi
2 + 2Jaxit  

   Rearranging,  

    
  
ax

2 = axi
2 + 2J

1
2

Jt2 + axit
⎛
⎝⎜

⎞
⎠⎟  

   The expression for vx was 

    
  
vx = 1

2
Jt2 + axit + vxi   

   So 
  
(vx − vxi) = 1

2
Jt2 + axit  

   and by substitution  
    

  
ax

2 = axi
2 + 2J(vx − vxi)

 

P2.58 (a) See the x vs. t graph on the top panel of ANS. FIG. P2.58, on the 
next page.  Choose x = 0 at t = 0. 

  

  

At t = 3 s, x = 1
2

8 m/s( ) 3 s( ) = 12 m.

At t = 5 s, x = 12 m + 8 m/s( ) 2 s( ) = 28 m.

At t = 7 s, x = 28 m + 1
2

8 m/s( ) 2 s( )

= 36 m
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 (b) See the a vs. t graph at the bottom right. 
  

  
For 0 < t < 3 s, a = 8 m/s

3 s
= 2.67 m/s2.

 

  For 3 < t < 5 s, a = 0. 

At the points of inflection, t = 3 and 5 s, 
the slope of the velocity curve changes 
abruptly, so the acceleration is not 
defined. 

 (c) For 5 s < t < 9 s, 
   

  
a = − 16 m/s

4 s
= −4 m/s2

 

 (d) The average velocity between t = 5 and 
7 s is 

   vavg = (8 m/s +0)/2 = 4 m/s 

  At   t = 6 s, x = 28 m + 4 m/s( ) 1 s( ) = 32 m  

 (e) The average velocity between t = 5 and 9 s is 

   vavg = [(8 m/s) + (−8 m/s)]/2 = 0 m/s 

  At t = 9 s, x = 28 m + (0 m/s)(1 s) =  28 m  

P2.59 (a) To find the acceleration, we differentiate the velocity equation 
with respect to time: 

    

  

a =
dv
dt

=
d
dt

−5.00 × 107( )t2 + 3.00 × 105( )t⎡⎣ ⎤⎦

a = − 10.0 × 107( )t + 3.00 × 105

 

  where a is in m/s2 and t is in seconds. 

  To find the position, take xi = 0 at t = 0. Then, from 
  
v = dx

dt
,  

    

  

x − 0 = vdt
0

t

∫ = −5.00× 107 t2 + 3.00× 105t( )dt
0

t

∫

      x = −5.00× 107 t3

3
+ 3.00× 105 t2

2

  

  which gives 
    

  
x = − 1.67 × 107( )t3 + 1.50× 105( )t2

 

ANS. FIG. P2.58 
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  where x is in meters and t is in seconds. 

 (b) The bullet escapes when a = 0: 

   

  

a = − 10.0 × 107( )t + 3.00 × 105 = 0

t =
3.00 × 105 s
10.0 × 107 = 3.00 × 10−3  s = 3.00 ms

 

 (c) Evaluate v when t = 3.00 × 10–3 s: 

   

  

v = −5.00 × 107( ) 3.00 × 10−3( )2
+ 3.00 × 105( ) 3.00 × 10−3( )

v = −450 + 900 = 450 m/s
 

 (d) Evaluate x when t = 3.00 × 10–3 s: 

   

  

x = − 1.67 × 107( ) 3.00 × 10−3( )3
+ 1.50 × 105( ) 3.00 × 10−3( )2

x = −0.450 + 1.35 = 0.900 m
 

 
 

 

Additional Problems	  
*P2.60 (a) Assuming a constant acceleration:

 
  
a =

v f − vi

t
= 42.0 m s

8.00 s
= 5.25 m s2  

 (b) Taking the origin at the original position of the car, 

   
  
x f = 1

2
vi + v f( )t = 1

2
42.0 m s( ) 8.00 s( ) = 168 m  

 (c) From   v f = vi + at,  the velocity 10.0 s after the car starts from rest 
is: 

   
  
v f = 0 + 5.25 m s2( ) 10.0 s( ) = 52.5 m s  

P2.61 (a) From   v
2 = vi

2 + 2aΔy,  the insect’s velocity after straightening its 
legs is 

   

  

v = v0
2 + 2a Δy( )

= 0 + 2 4 000 m/s2( ) 2.00× 10−3  m( ) = 4.00 m/s

 

 (b) The time to reach this velocity is 

   
  
t =

v − v0

a
=

4.00 m/s − 0
4 000 m/s2 = 1.00 × 10−3  s = 1.00 ms  
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 (c) The upward displacement of the insect between when its feet 
leave the ground and its speed is momentarily zero is 

   

  

Δy =
v f

2 − vi
2

2a

Δy = 0− 4.00 m/s( )2

2 −9.80 m/s2( ) = 0.816 m

 

P2.62 (a) The velocity is constant between ti = 0 and t = 4 s. Its acceleration 

is  0 . 

 (b) a = (v9 − v4)/(9 s − 4 s) = (18 − [−12]) (m/s)/5 s = 
 
6.0 m/s2  

 (c) a = (v18 − v13)/(18 s − 13 s) = (0 − 18) (m/s)/5 s = 
 
–3.6 m/s2  

 (d) We read from the graph that the speed is zero 

  
at t = 6 s and at 18s . 

 (e) and (f) The object moves away from x = 0 into negative coordinates 
from t = 0 to t = 6 s, but then comes back again, crosses the origin 
and moves farther into positive coordinates until 

  
t = 18 s , then 

attaining its maximum distance, which is the cumulative distance 
under the graph line: 

   

  

Δx = −12 m/s( ) 4 s( )+ 1
2

−12 m/s( ) 2 s( )+ 1
2

18 m/s( ) 3 s( )

+ 18 m/s( ) 4 s( ) 1
2

18 m/s( ) 5 s( )

= 84 m

  

 (g) We consider the total distance, rather than the resultant 
displacement, by counting the contributions computed in part (f) 
as all positive: 

   d = +60 m + 144 m =  204 m  

P2.63 We set yi = 0 at the top of the cliff, and find the time interval required 
for the first stone to reach the water using the particle under constant 
acceleration model: 

  

  
y f = yi + vyit + 1

2
ayt

2
  

 or in quadratic form,   

  
  
− 1

2
ayt

2 − vyit + y f − yi = 0   
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  (a) If we take the direction downward to be negative, 
    

  
y f = −50.0 m, vyi = −2.00 m s, and ay = −9.80 m s2

 

   Substituting these values into the equation, we find 

     (4.90 m s2 )t2 + (2.00 m s)t − 50.0 m = 0  

  We now use the quadratic formula. The stone reaches the pool 
after it is thrown, so time must be positive and only the positive 
root describes the physical situation: 

   

  

t = 
–2.00 m/s ± (2.00 m/s)2 – 4 4.90 m/s2( )(–50.0 m)

2 4.90 m/s2( )  

= 3.00 s

  

  where we have taken the positive root. 

 (b) For the second stone, the time of travel is  

   t = 3.00 s − 1.00 s = 2.00 s 

   Since 
  
y f = yi + vyit + 1

2
ayt

2 ,  

   

  

vyi =
y f – yi( ) – 1

2
ayt

2

t

=
–50.0 m – 1

2
–9.80 m/s2( )(2.00 s)2

2.00 s
= –15.3 m/s

  

  The negative value indicates the downward direction of the initial 
velocity of the second stone.  

 (c) For the first stone, 
   

  

v1 f = v1i + a1t1 = −2.00 m/s + (−9.80 m/s2 )(3.00 s)

v1 f = −31.4 m s

  

  For the second stone, 
   

  

v2 f = v2 i + a2t2 = −15.3 m/s + (−9.80 m/s2 )(2.00 s)

v2 f = −34.8 m/s
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P2.64 (a) Area A1 is a rectangle. Thus, A1 = hw = vxit. 

  Area A2 is triangular. Therefore, 
  
A2 =

1
2

bh =
1
2

t vx − vxi( ).  

  The total area under the curve is 

   
  
A = A1 + A2 = vxit +

vx − vxi( )t
2

 

  and since vx – vxi = axt, 
   

  
A = vxit + 1

2
axt

2
 

 (b) 

  

The displacement given by the equation is: x = vxit +
1
2

axt
2 , the

same result as above for the total area.

 

*P2.65 (a) Take initial and final points at top and bottom of the first incline, 
respectively. If the ball starts from rest,   vi = 0 , a = 0.500 m/s2, and 
xf – xi = 9.00 m. Then 

   
  

v f
2 = vi

2 + 2a x f − xi( ) = 02 + 2 0.500 m/s2( ) 9.00 m( )

v f = 3.00 m/s
 

 (b) To find the time interval, we use  

   
  
x f − xi = vit + 1

2
at2  

  Plugging in, 

   

  

9.00 = 0 + 1
2

0.500 m s2( )t2

t = 6.00 s
 

 (c) Take initial and final points at the bottom of the first plane and 
the top of the second plane, respectively: vi = 3.00 m/s, vf = 0, and 
xf – xi = 15.0 m. We use 

     v f
2 = vi

2 + 2a x f − xi( )   

  which gives 

 
  
a =

v f
2 − vi

2

2 x f − xi( ) = 0 − 3.00 m/s( )2

2 15.0 m( )
= −0.300 m/s2  
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 (d) Take the initial point at the bottom of the first plane and the final 
point 8.00 m along the second plane:  

   vi = 3.00 m/s, xf – xi = 8.00 m, a = –0.300 m/s2 

   

  

v f
2 = vi

2 + 2a x f − xi( ) = 3.00 m/s( )2 + 2 −0.300 m/s2( ) 8.00 m( )

= 4.20 m2/s2

v f = 2.05 m/s

 

*P2.66 Take downward as the positive y direction. 

 (a) While the woman was in free fall,   Δy = 144 ft,    vi = 0,  and we take 

  a = g = 32.0 ft s2 .  Thus,  

   
  
Δy = vit + 1

2
at2 → 144 ft = 0 + 16.0 ft s2( )t2   

  giving   tfall = 3.00 s.  Her velocity just before impact is: 

   
  
v f = vi + gt = 0 + 32.0 ft s2( ) 3.00 s( ) = 96.0 ft s  

 (b) While crushing the box,   vi = 96.0 ft s ,   v f = 0 , and 

  Δy = 18.0 in. = 1.50 ft.  Therefore,  

   
  
a =

v f
2 − vi

2

2 Δy( ) = 0 − 96.0 ft s( )2

2 1.50 ft( )
= −3.07 × 103  ft s2   

  or  
  

a = 3.07 × 103  ft s2  upward = 96.0g.  

 (c) Time to crush box:  

   
  
Δt = Δy

v
= Δy

v f + vi

2

= 2 1.50 ft( )
0 + 96.0 ft s

 

  or    Δt = 3.13× 10−2  s   

P2.67 (a) The elevator, moving downward at the constant speed of  
5.00 m/s has moved   d = vΔt = 5.00 m/s( ) 5.00 s( ) = 25.0 m  below 
the position from which the bolt drops. Taking the positive 
direction to be downward, the initial position of the bolt to be xB = 
0, and setting t = 0 when the bolt drops, the position of the top of 
the elevator is 

   

  

yE = yEi + vEit +
1
2

aEt2

yE = 25.0 m + 5.00 m/s( )t
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  and the position of the bolt is 
   

  

yB = yBi + vBit + 1
2

aBt2

yB = 1
2

9.80 m/s2( )t2

 

  Setting these expressions equal to each other gives 
   

  

yE = yB

25.0 m + 5.00 m/s( )t = 1
2

9.80 m/s2( )t2  

4.90t2 − 5.00t − 25.0 = 0

 

  The (positive) solution to this is   t = 2.83 s .  

 (b) 

 

Both problems have an object traveling at constant velocity being
overtaken by an object starting from rest traveling in the same
direction at a constant acceleration.

 

 (c) 

  

The top of the elevator travels a total distance 
d = (5.00 m/s)(5.00 s + 2.83 s) = 39.1 m 

from where the bolt drops to where the bolt strikes the top of 
the elevator. Assuming 1 floor ≅ 3 m, this distance is about 

(39.1 m)(1 floor/3 m) ≅ 13 floors.

 

P2.68 For the collision not to occur, the front of the passenger train must not 
have a position that is equal to or greater than the position of the back 
of the freight train at any time.  We can write expressions of position to 
see whether the front of the passenger car (P) meets the back of the 
freight car (F) at some time.  

 Assume at t = 0, the coordinate of the front of the passenger car is  
xPi = 0; and the coordinate of the back of the freight car is xFi = 58.5 m. 
At later time t, the coordinate of the front of the passenger car is  

   

  

xP = xPi + vPit +
1
2

aPt2

xP = 40.0 m/s( )t +
1
2

−3.00 m/s2( )t2

 

 and the coordinate of the back of the freight car is 
   

  

xF = xFi + vFit +
1
2

aFt2

xF = 58.5 m + 16.0 m/s( )t
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 Setting these expression equal to each other gives 
   

  

xP = xF

40.0 m/s( )t +
1
2

−3.00 m/s2( )t2 = 58.5 m + 16.0 m/s( )t

 

 or     1.50( )t2 + −24.0( )t + 58.5 = 0  

 after simplifying and suppressing units.  

 We do not have to solve this equation, we just want to check if a 
solution exists; if a solution does exist, then the trains collide. A 
solution does exist: 

   

  

t =
− −24.0( ) ± −24.0( )2 − 4 1.50( ) 58.5( )

2 1.50( )

t =
24.0 ± 576 − 351

3.00
→ t =

24.0 ± 225
3.00

=
24.0 ± 15

3.00

 

 

 

The situation is impossible since there is a finite time
for which the front of the passenger train and the 
back of the freight train are at the same location.

  

P2.69 (a) As we see from the graph, from 
about –50 s to 50 s Acela is cruising 
at a constant positive velocity in the 
+x direction. From 50 s to 200 s, 
Acela accelerates in the +x direction 
reaching a top speed of about  
170 mi/h. Around 200 s, the 
engineer applies the brakes, and the 
train, still traveling in the +x direction, 
slows down and then stops at 350 s. Just after 350 s, Acela 
reverses direction (v becomes negative) and steadily gains speed 
in the –x direction. 

 (b) The peak acceleration between 45 and 170 mi/h is given by the 
slope of the steepest tangent to the v versus t curve in this 
interval. From the tangent line shown, we find 

   

  

a = slope =
Δv
Δt

=
155 − 45( )  mi/h

100 − 50( )  s

= 2.2 mi/h( )/s = 0.98 m/s2

 

ANS. FIG. P2.69(a) 
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 (c) Let us use the fact that the area 
under the v versus t curve equals the 
displacement. The train’s 
displacement between 0 and 200 s is 
equal to the area of the gray shaded 
region, which we have approximated 
with a series of triangles and 
rectangles. 

   

  

Δx0→200 s = area1 + area2 + area3 + area4 + area5

≈ 50 mi/h( ) 50 s( ) + 50 mi/h( ) 50 s( )
+ 160 mi/h( ) 100 s( )

+
1
2

50 s( ) 100 mi/h( )

+
1
2

100 s( ) 170 mi/h − 160 mi/h( )
= 24 000 mi/h( ) s( )

 

  Now, at the end of our calculation, we can find the displacement 
in miles by converting hours to seconds. As 1 h = 3 600 s, 

   

  
Δx0→200 s = 24 000 mi

3 600 s
⎛
⎝⎜

⎞
⎠⎟ s( ) = 6.7 mi

 

P2.70 We use the relation   v f
2 = vi

2 + 2a(x f – xi ),  where vi = –8.00 m/s and  
vf = 16.0 m/s. 

 (a) The displacement of the first object is  Δx  = +20.0 m. Solving the 
above equation for the acceleration a, we obtain 

   

  

a =
v f

2 − vi
2

2Δx

a = 16.0 m/s( )2 − −8.00 m/s( )2

2 20.0 m( )
a = +4.80 m/s2

 

 (b) Here, the total distance d = 22.0 m. The initial negative velocity 
and final positive velocity indicate that first the object travels 
through a negative displacement, slowing down until it reverses 
direction (where v = 0), then it returns to, and passes, its starting 
point, continuing to speed up until it reaches a speed of 16.0 m/s. 
We must consider the motion as comprising three displacements; 
the total distance d is the sum of the lengths of these 
displacements. 

ANS. FIG. P2.69(c) 
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  We split the motion into three displacements in which the 
acceleration remains constant throughout. We can find each 
displacement using 

    

  
Δx =

v f
2 − vi

2

2a

 

  Displacement   Δx1  = –d1 for velocity change  –8.00 → 0 m/s: 
    

  
Δx1 =

v f
2 − vi

2

2a
= 0− −8.00 m/s( )2

2a
= −8( )2

2a
→ d1 = 82

2a

 

  Displacement   Δx2 = +d1 for velocity change  0 → +8.00 m/s: 
    

  
Δx2 =

v f
2 − vi

2

2a
= 8.00 m/s( )2 − 0

2a
= 82

2a
→ d2 = 82

2a

 

  Displacement   Δx3 = +d2 for velocity change  +8.00 → +16.0 m/s: 
    

  

Δx3 =
v f

2 − vi
2

2a
= 16.0 m/s( )2 − 8.00 m/s( )2

2a
= 162 − 82

2a

→ d3 = 162 − 82

2a

 

  Suppressing units, the total distance is d = d1 + d2 + d3, or  
    

  
d = d1 + d2 + d3 = 2

82

2a
⎛
⎝⎜

⎞
⎠⎟

+ 162 − 82

2a
= 162 + 82

2a

 

  Solving for the acceleration gives 
    

  

a =
v f

2 − vi
2

2d
= 16 m/s( )2 + 8 m/s( )2

2d
= 16 m/s( )2 + 8 m/s( )2

2 22.0 m( )
a = 7.27 m/s2

 

P2.71 (a) In order for the trailing athlete to be able to catch the leader, his 
speed (v1) must be greater than that of the leading athlete (v2), and 
the distance between the leading athlete and the finish line must 
be great enough to give the trailing athlete sufficient time to make 
up the deficient distance, d. 

 (b) During a time interval t the leading athlete will travel a distance 
d2 = v2t and the trailing athlete will travel a distance d1 = v1t. Only 
when d1 = d2 + d (where d is the initial distance the trailing athlete 
was behind the leader) will the trailing athlete have caught the 
leader. Requiring that this condition be satisfied gives the elapsed 
time required for the second athlete to overtake the first: 

   d1 = d2 + d     or      v1t = v2t + d 
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  giving 

   
  
v1t − v2t = d     or     t =

d
v1 − v2( )  

 (c) In order for the trailing athlete to be able to at least tie for first 
place, the initial distance D between the leader and the finish line 
must be greater than or equal to the distance the leader can travel 
in the time t calculated above (i.e., the time required to overtake 
the leader). That is, we must require that 

   
  
D ≥ d2 = v2t = v2  

d
v1 − v2( )

⎡

⎣
⎢

⎤

⎦
⎥       or      d2 =

v2d
v1 − v2

 

 

P2.72 Let point 0 be at ground level and point 1 be at the end 
of the engine burn. Let point 2 be the highest point the 
rocket reaches and point 3 be just before impact. The 
data in the table below are found for each phase of the 
rocket’s motion. 

 (0 to 1):   v f
2 – (80.0 m/s)2 = 2(4.00 m/s2 )(1 000 m)   

   so vf = 120 m/s.  Then, 120 m/s = 80.0 m/s + (4.00 m/s2)t  

   giving t = 10.0 s. 

 (1 to 2) 0 – (120 m/s)2 = 2(–9.80 m/s2)(yf – yi)  

   giving  yf – yi = 735 m, 

   0 – 120 m/s = ( –9.80 m/s2)t 

   giving  t = 12.2 s. 

   This is the time of maximum height of the rocket. 

 (2 to 3)   v f
2 – 0 = 2(–9.80 m/s2 )(–1 735 m)  or vf = –184 m/s 

   Then vf = –184 m/s = (–9.80 m/s2)t  

   giving t = 18.8 s. 

 (a)   ttotal = 10 s + 12.2 s + 18.8 s = 41.0 s  

 (b) 
  

y f − yi( )
total

= 1.73 km  

 (c) 
  vfinal = −184 m/s  

 

ANS. FIG. P2.72 
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  t x v a 

  0 Launch  0.0 0  80 +4.00 

#1 End Thrust 10.0 1 000 120 +4.00 

#2 Rise Upwards 22.2 1 735     0 –9.80 

#3 Fall to Earth 41.0 0 –184 –9.80 
 

P2.73 We have constant-acceleration equations to apply to the two cars 
separately. 

 (a) Let the times of travel for Kathy and Stan be tK and tS, where  
 tS = tK + 1.00 s 

   Both start from rest (vxi,K = vxi,S = 0), so the expressions for the 
distances traveled are  

    

  
xK = 1

2
ax,KtK

2 = 1
2

(4.90 m/s2 )tK
2

  

   and 
  
xS = 1

2
ax ,StS

2 = 1
2

(3.50 m s2 )(tK + 1.00 s)2  

   When Kathy overtakes Stan, the two distances will be equal. 
Setting xK = xS gives 

    

  

1
2

(4.90 m s2 )tK
2 = 1

2
(3.50 m s2 )(tK + 1.00 s)2

 

   This we simplify and write in the standard form of a quadratic as  
    

  tK
2 − 5.00 tK( )s − 2.50 s2 = 0  

   We solve using the quadratic formula 
  
t =

−b ± b2 − 4ac
2a

, 

suppressing units, to find 
    

  
tK =

5 ± 52 − 4(1)(−2.5)
2(1)

= 5 + 35
2

= 5.46 s
 

   Only the positive root makes sense physically, because the 
overtake point must be after the starting point in time. 

  (b) Use the equation from part (a) for distance of travel, 
    

  
xK = 1

2
ax ,KtK

2 = 1
2

(4.90 m s2 )(5.46 s)2 = 73.0 m
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  (c) Remembering that vxi,K = vxi,S = 0, the final velocities will be: 
    

  
vxf ,K = ax ,KtK = (4.90 m s2 )(5.46 s) = 26.7 m s

  

    
  
vxf ,S = ax ,StS = (3.50 m s2 )(6.46 s) = 22.6 m s

  

P2.74 (a) While in the air, both balls have acceleration a1 = a2 = −g (where 
upward is taken as positive). Ball 1 (thrown downward) has 
initial velocity v01 = −v0, while ball 2 (thrown upward) has initial 
velocity v02 = v0. Taking y = 0 at ground level, the initial y 
coordinate of each ball is y01 = y02 = +h. Applying 

  
Δy = y − yi = vit + 1

2
at2  to each ball gives their y coordinates at 

time t as 
   

  

Ball 1:  y1 − h = −v0t + 1
2

−g( )t2 or y1 = h− v0t −
1
2

gt2

Ball 2:  y2 − h = +v0t + 1
2

−g( )t2 or y2 = h + v0t −
1
2

gt2

 

  At ground level, y = 0. Thus, we equate each of the equations 
found above to zero and use the quadratic formula to solve for 
the times when each ball reaches the ground. This gives the 
following: 

  
  
Ball 1:  0 = h − v0t1 −

1
2

gt1
2 → gt1

2 + 2v0( )t1 + −2h( ) = 0  

  so  
  
t1 =

−2v0 ± 2v0( )2 − 4 g( ) −2h( )
2g

= −
v0

g
±

v0

g
⎛
⎝⎜

⎞
⎠⎟

2

+
2h
g

 

  Using only the positive solution gives 

    

  
t1 = −

v0

g
+

v0

g
⎛
⎝⎜

⎞
⎠⎟

2

+
2h
g

 

  

  
Ball 2:  0 = h + v0t2 −

1
2

gt2
2 → gt2

2 + −2v0( )t2 + −2h( ) = 0
 

  and 
  
t2 =

− −2v0( ) ± −2v0( )2 − 4 g( ) −2h( )
2g

= + v0

g
± v0

g
⎛
⎝⎜

⎞
⎠⎟

2

+ 2h
g

 

  Again, using only the positive solution, 

    

  
t2 =

v0

g
+

v0

g
⎛
⎝⎜

⎞
⎠⎟

2

+
2h
g
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  Thus, the difference in the times of flight of the two balls is 
    

  

Δt = t2 − t1

= v0

g
+ v0

g
⎛
⎝⎜

⎞
⎠⎟

2

+ 2h
g

− − v0

g
+ v0

g
⎛
⎝⎜

⎞
⎠⎟

2

+ 2h
g

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= 2v0

g

 

 (b) Realizing that the balls are going downward (v < 0) as they near 
the ground, we use vf

2 = vi
2 + 2a( Δy ) with  Δy = –h to find the 

velocity of each ball just before it strikes the ground: 
  Ball 1: 
    

  
v1 f = − v1i

2 + 2a1 −h( ) = − −v0( )2 + 2 −g( ) −h( ) = − v0
2 + 2gh

 

  Ball 2: 
    

  
v2 f = − v2 i

2 + 2a2 −h( ) = − +v0( )2 + 2 −g( ) −h( ) = − v0
2 + 2gh

 

 (c) While both balls are still in the air, the distance separating them is 

    
  
d = y2 − y1 = h + v0t −

1
2

gt2⎛
⎝⎜

⎞
⎠⎟ − h − v0t −

1
2

gt2⎛
⎝⎜

⎞
⎠⎟ = 2v0t  

P2.75 We translate from a pictorial representation through a geometric 
model to a mathematical representation by observing that the 
distances x and y are always related by x2+ y2 = L2 . 

 (a) Differentiating this equation with respect to time, we have 

   
  
2x

dx
dt

+ 2y
dy
dt

= 0  

   Now the unknown velocity of B is 
 
dy
dt = vB  and 

  
dx
dt = – v,  

   so the differentiated equation becomes  
   

  

dy
dt = – x

y
dx
dt

⎛
⎝⎜

⎞
⎠⎟ = –

x
y

⎛
⎝⎜

⎞
⎠⎟ (–v) = vB

 

   But 
  
y
x = tanθ ,  so 

  
vB = 1

tanθ
⎛
⎝⎜

⎞
⎠⎟ v    

 (b) 

  

We assume that θ  starts from zero. At this instant 1/tanθ  is infinite, 
and the velocity of B is infinitely larger than that of A. As θ  increases, 
the velocity of object B decreases, becoming equal to v when θ  = 45°. 
After that instant, B continues to slow down with non-constant 
acceleration, coming to rest as θ  goes to 90°.
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P2.76  

Time 
t (s) 

Height 
h (m) 

 Δh  
(m) 

 Δt  
(s) 

 v  
(m/s) 

midpoint 
time t (s) 

0.00 5.00 0.75 0.25 3.00 0.13 

0.25 5.75 0.65 0.25 2.60 0.38 

0.50 6.40 0.54 0.25 2.16 0.63 

0.75 6.94 0.44 0.25 1.76 0.88 

1.00 7.38 0.34 0.25 1.36 1.13 

1.25 7.72 0.24 0.25 0.96 1.38 

1.50 7.96 0.14 0.25 0.56 1.63 

1.75 8.10 0.03 0.25 0.12 1.88 

2.00 8.13 –0.06 0.25 –0.24 2.13 

2.25 8.07 –0.17 0.25 –0.68 2.38 

2.50 7.90 –0.28 0.25 –1.12 2.63 

2.75 7.62 –0.37 0.25 –1.48 2.88 

3.00 7.25 –0.48 0.25 –1.92 3.13 

3.25 6.77 –0.57 0.25 –2.28 3.38 

3.50 6.20 –0.68 0.25 –2.72 3.63 

3.75 5.52 –0.79 0.25 –3.16 3.88 

4.00 4.73 –0.88 0.25 –3.52 4.13 

4.25 3.85 –0.99 0.25 –3.96 4.38 

4.50 2.86 –1.09 0.25 –4.36 4.63 

4.75 1.77 –1.19 0.25 –4.76 4.88 

5.00 0.58     

TABLE P2.76 
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 The very convincing fit of a single straight line to the points in the 
graph of velocity versus time indicates that the rock does fall with 
constant acceleration. The acceleration is the slope of line: 

  
  aavg = –1.63 m/s2 = 1.63 m/s2  downward  

 

 

 

*P2.77 Distance traveled by motorist = (15.0 m/s)t 

 Distance traveled by policeman 
  
= 1

2
2.00 m/s2( )t2  

 (a) Intercept occurs when   15.0t = t2 ,  or   t = 15.0 s . 

 (b) 
  
v officer( ) = 2.00 m s2( )t = 30.0 m s  

 (c) 
  
x officer( ) = 1

2
2.00 m s2( )t2 = 225 m  

*P2.78 The train accelerates with a1 = 0.100 m/s2 then decelerates with  
a2 = –0.500 m/s2. We can write the 1.00-km displacement of the train as  

   

  
x = 1 000 m = 1

2
a1Δt1

2 + v1 fΔt2 + 1
2

a2Δt2
2
  

 with t = t1 + t2. Now,   v1 f = a1Δt1 = −a2Δt2 ;  therefore 

   

  
1 000 m = 1

2
a1Δt1

2 + a1Δt1 − a1Δt1

a2

⎛
⎝⎜

⎞
⎠⎟

+ 1
2

a2
a1Δt1

a2

⎛
⎝⎜

⎞
⎠⎟

2  

 
  

  
1 000 m = 1

2
a1 1− a1

a2

⎛
⎝⎜

⎞
⎠⎟
Δt1

2
 

   

  
1 000 m = 1

2
0.100 m/s2( ) 1− 0.100 m/s2

−0.500 m/s2
⎛
⎝⎜

⎞
⎠⎟
Δt1

2
 

   

  
Δt1 = 20 000

1.20
 s = 129 s

 

   

  
Δt2 = a1Δt1

−a2

= 12.9
0.500

 s ≈ 26 s
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 Total time   = Δt = Δt1 + Δt2 = 129 s + 26 s = 155 s  

*P2.79 The average speed of every point on the train as the first car passes Liz 
is given by: 

   
  

Δx
Δt

= 8.60 m
1.50 s

= 5.73 m s  

 The train has this as its instantaneous speed halfway through the 1.50-s 
time. Similarly, halfway through the next 1.10 s, the speed of the train 

is 
 

8.60 m
1.10 s

= 7.82 m s . The time required for the speed to change from 

5.73 m/s to 7.82 m/s is 

   
 
1
2

1.50 s( ) + 1
2

1.10 s( ) = 1.30 s  

 so the acceleration is: 
  
ax = Δvx

Δt
= 7.82 m s − 5.73 m s

1.30 s
= 1.60 m s2  

P2.80 Let the ball fall freely for 1.50 m after starting from rest. It strikes at 
speed given by  

   
  
vxf

2 = vxi
2 + 2a x f − xi( )  

   
  vxf

2 = 0 + 2 −9.80 m/s2( ) −1.50 m( )  

     vxf = −5.42 m/s  

 If its acceleration were constant, its stopping would be described by 

   

  

vxf
2 = vxi

2 + 2ax x f − xi( )
0 = −5.42 m/s( )2 + 2ax −10−2  m( )

ax =
−29.4 m2/s2

−2.00 × 10−2  m
= +1.47 × 103  m/s2

 

 Upward acceleration of this same order of magnitude will continue for 
some additional time after the dent is at its maximum depth, to give 
the ball the speed with which it rebounds from the pavement. The 
ball’s maximum acceleration will be larger than the average 
acceleration we estimate by imagining constant acceleration, but will 

still be of order of magnitude  ∼ 103 m/s2 .  
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Challenge Problems	  
P2.81 (a) From the information in the problem, we model the blue car as a 

particle under constant acceleration. The important “particle” for 
this part of the problem is the nose of the car. We use the position 
equation from the particle under constant acceleration model to 
find the velocity v0 of the particle as it enters the intersection 

   

  

x = x0 + v0t + 1
2

at2

→ 28.0 m = 0 + v0 3.10 s( )+ 1
2

−2.10 m/s2( ) 3.10 s( )2

→ v0 = 12.3 m/s

 

  Now we use the velocity-position equation in the particle under 
constant acceleration model to find the displacement of the 
particle from the first edge of the intersection when the blue car 
stops: 

   
  v

2 = v0
2 + 2a x − x0( )  

  or  
  
x − x0 = Δx = v2 − v0

2

2a
= 0− 12.3 m/s( )2

2 −2.10 m/s2( ) = 35.9 m  

 (b) The time interval during which any part of the blue car is in the 
intersection is that time interval between the instant at which the 
nose enters the intersection and the instant when the tail leaves 
the intersection. Thus, the change in position of the nose of the 
blue car is 4.52 m + 28.0 m = 32.52 m. We find the time at which 
the car is at position x = 32.52 m if it is at x = 0 and moving at  
12.3 m/s at t = 0: 

   

  

x = x0 + v0t + 1
2

at2

→ 32.52 m = 0 + 12.3 m/s( )t + 1
2

−2.10 m/s2( )t2

→−1.05t2 + 12.3t − 32.52 = 0

 

  The solutions to this quadratic equation are t = 4.04 s and 7.66 s. 
Our desired solution is the lower of two, so 

  
t = 4.04s ,  (The later 

time corresponds to the blue car stopping and reversing, which it 
must do if the acceleration truly remains constant, and arriving 
again at the position x = 32.52 m.) 

 (c) We again define t = 0 as the time at which the nose of the blue car 
enters the intersection. Then at time t = 4.04 s, the tail of the blue 
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car leaves the intersection. Therefore, to find the minimum 
distance from the intersection for the silver car, its nose must 
enter the intersection at t = 4.04 s. We calculate this distance from 
the position equation: 

   
  
x − x0 + v0t +

1
2

at2 = 0 + 0 +
1
2

5.60 m/s2( ) 4.04 s( )2 = 45.8 m  

 (d) We use the velocity equation: 

   
  v = v0 + at = 0 + 5.60 m/s2( ) 4.04 s( ) = 22.6 m/s  

P2.82 (a) Starting from rest and accelerating at ab = 13.0 mi/h · s, the bicycle 
reaches its maximum speed of vb,max = 20.0 mi/h in a time 

   
  
tb ,1 =

vb ,max − 0
ab

=
20.0 mi/h

13.0 mi/h ⋅ s
= 1.54 s  

  Since the acceleration ac of the car is less than that of the bicycle, 
the car cannot catch the bicycle until some time t > tb,1 (that is, 
until the bicycle is at its maximum speed and coasting). The total 
displacement of the bicycle at time t is 

   

  

Δxb =
1
2

abtb ,1
2 + vb ,max t − tb ,1( )

=
1.47 ft/s
1 mi/h

⎛
⎝⎜

⎞
⎠⎟
×

     
1
2

13.0
mi/h

s
⎛
⎝⎜

⎞
⎠⎟ 1.54 s( )2 + 20.0 mi/h( ) t − 1.54 s( )⎡

⎣⎢
⎤
⎦⎥

= 29.4 ft/s( )t − 22.6 ft

 

  The total displacement of the car at this time is 
   

  
Δxc = 1

2
act

2 = 1.47 ft/s
1 mi/h

⎛
⎝⎜

⎞
⎠⎟

1
2

9.00
mi/h

s
⎛
⎝⎜

⎞
⎠⎟ t2⎡

⎣⎢
⎤
⎦⎥

= 6.62 ft/s2( )t2
 

  At the time the car catches the bicycle,   Δxc = Δxb .  This gives 

   
  6.62 ft/s2( )t2 = 29.4 ft/s( )t − 22.6 ft   

  or   t
2 − 4.44 s( )t + 3.42 s2 = 0  

  that has only one physically meaningful solution t > tb,1. This 
solution gives the total time the bicycle leads the car and is 

  
t = 3.45 s .  

 (b) The lead the bicycle has over the car continues to increase as long 
as the bicycle is moving faster than the car. This means until the 
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car attains a speed of vc = vb,max = 20.0 mi/h. Thus, the elapsed 
time when the bicycle’s lead ceases to increase is 

   
  
t =

vb ,max

ac

=
20.0 mi/h

9.00 mi/h ⋅ s
= 2.22 s  

  At this time, the lead is 
   

  

Δxb − Δxc( )max
= Δxb − Δxc( ) t=2.22  s

= 29.4 ft/s( ) 2.22 s( ) − 22.6 ft[ ]
                                  − 6.62 ft/s2( ) 2.22 s( )2⎡⎣ ⎤⎦

 

  or   Δxb − Δxc( )max
= 10.0 ft  

P2.83 Consider the runners in general. Each completes the race in a total time 
interval T. Each runs at constant acceleration a for a time interval   Δt,  

so each covers a distance (displacement) 
  
Δxa = 1

2
aΔt2  where they 

eventually reach a final speed (velocity)   v = aΔt,  after which they run 
at this constant speed for the remaining time  T − Δt( )  until the end of 
the race, covering distance   Δxv = v T − Δt( ) = aΔt T − Δt( ).  The total 
distance (displacement) each covers is the same: 

   

  

Δx = Δxa + Δxv

= 1
2

aΔt2 + aΔt T − Δt( )

= a
1
2
Δt2 + Δt T − Δt( )⎡

⎣⎢
⎤
⎦⎥

  

 so  

  

a =
Δx

1
2
Δt2 + Δt T − Δt( )

 

 where   Δx = 100 m  and T = 10.4 s.  

 (a) For Laura (runner 1),   Δt1  = 2.00 s:    

   a1 = (100 m)/(18.8 s2) =  5.32 m/s2  

  For Healan (runner 2),   Δt2  = 3.00 s:  

   a2 = (100 m)/(26.7 s2) =  3.75 m/s2  

 (b) Laura (runner 1): v1 = a1  Δt1  =  10.6 m/s  

  Healan (runner 2): v2 = a2  Δt2  =  11.2 m/s  
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 (c) The 6.00-s mark occurs after either time interval   Δt.  From the 
reasoning above, each has covered the distance 

   

  
Δx = a

1
2
Δt2 + Δt t − Δt( )⎡

⎣⎢
⎤
⎦⎥

  

  where t = 6.00 s.  

  Laura (runner 1):   Δx1  = 53.19 m 

  Healan (runner 2):   Δx2 = 50.56 m 

  
 
So, Laura is ahead by (53.19 m − 50.56 m) = 2.63 m.  

 (d) Laura accelerates at the greater rate, so she will be ahead of 
Healen at, and immediately after, the 2.00-s mark. After the 3.00-s 
mark, Healan is travelling faster than Laura, so the distance 
between them will shrink. In the time interval 

 

from the 2.00-s mark to the 3.00-s mark, the distance between 
them will be the greatest.

  

  During that time interval, the distance between them (the position 
of Laura relative to Healan) is  

   

  
D = Δx1 − Δx2 = a1

1
2
Δt1

2 + Δt1 t − Δt1( )⎡
⎣⎢

⎤
⎦⎥
− 1

2
a2t

2
 

  because Laura has ceased to accelerate but Healan is still 
accelerating. Differentiating with respect to time, (and doing 
some simplification), we can solve for the time t when D is an 
maximum: 

   

  

dD
dt

= a1Δt1 − a2t = 0
 

  which gives 
   

  
t = Δt1

a1

a2

⎛
⎝⎜

⎞
⎠⎟

= 2.00 s( ) 5.32 m/s2

3.75 m/s2

⎛
⎝⎜

⎞
⎠⎟

= 2.84 s
 

  Substituting this time back into the expression for D, we find that 
D = 4.47 m, that is, Laura ahead of Healan by  4.47 m.  
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P2.84 (a) The factors to consider are as follows. The red bead falls through 
a greater distance with a downward acceleration of g. The blue 
bead travels a shorter distance, but with acceleration of   g sinθ .  A 
first guess would be that the blue bead “wins,” but not by much.  
We do note, however, that points   A ,   B , and   C  are the 

vertices of a right triangle with   A   C  as the hypotenuse. 

 (b) The red bead is a particle under constant acceleration. Taking 
downward as the positive direction, we can write  

   

  
Δy = y0 + vy0t + 1

2
ayt

2
  

  as 
  
D = 1

2
gtR

2   

  which gives 
  
tR = 2D

g
.   

 (c) The blue bead is a particle under constant acceleration, with 

  a = g sinθ .  Taking the direction along L as the positive direction, 
we can write  

   

  
Δy = y0 + vy0t + 1

2
ayt

2
  

  as 
  
L = 1

2
g sinθ( )tB

2   

  which gives 
  
tB = 2L

g sinθ
.   

 (d) For the two beads to reach point   C  simultaneously, tR = tB. Then, 
   

  

2D
g

= 2L
g sinθ

  

  Squaring both sides and cross-multiplying gives 
   

  2gDsinθ = 2gL   

  or 
  
sinθ = L

D
.  

  We note that the angle between chords   A   C  and   B   C  is 

 90°−θ ,  so that the angle between chords    A   C   and   A   B  is 



Chapter 2     95 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 θ .  Then, 
  
sinθ = L

D
,  and the beads arrive at point   C  

simultaneously. 

 (e) Once we recognize that the two rods form one side and the 
hypotenuse of a right triangle with θ  as its smallest angle, then 
the result becomes obvious. 

P2.85 The rock falls a distance d for a time interval   Δt1  and the sound of the 
splash travels upward through the same distance d for a time interval 

  Δt2  before the man hears it. The total time interval 

  Δt = Δt1 + Δt2 = 2.40 s.  

 (a) Relationship between distance the rock falls and time interval 

  Δt1:   
   

  
d = 1

2
gΔt1

2
 

  Relationship between distance the sound travels and time interval 

  Δt2:  d = vsΔt2 ,  where vs = 336 m/s. 
   

  
d = vsΔt2 =

1
2

gΔt1
2
 

  Substituting   Δt1 = Δt − Δt2  gives 

   
  
2

vsΔt2

g
= Δt − Δt2( )2

 

   
  
Δt2( )2 − 2 Δt +

vs

g
⎛
⎝⎜

⎞
⎠⎟
Δt2 + Δt2 = 0  

   

  

Δt2( )2 − 2 2.40 s + 336 m/s
9.80 m/s2

⎛
⎝⎜

⎞
⎠⎟
Δt2 + 2.40 s( )2 = 0

Δt2( )2 − 73.37( )Δt2 + 5.76 = 0

 

  Solving the quadratic equation gives  
   

  Δt2 = 0.078 6 s   →   d = vsΔt2 = 26.4 m  

 (b) Ignoring the sound travel time, 

  
d =

1
2

9.80 m/s2( ) 2.40 s( )2 = 28.2 m,  an error of  6.82% .  
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P2.2 0.02 s 

P2.4 (a) 50.0 m/s; (b) 41.0 m/s 

P2.6 (a) 27.0 m; (b) 27.0 m + (18.0 m/s) Δt  + (3.00 m/s2)(  Δt2 ); (c) 18.0 m/s 

P2.8 (a) +L/t1; (b) –L/t2; (c) 0; (d) 2L/t1+ t2 

P2.10 1.9 × 108 years 

P2.12 (a) 20 mi/h; (b) 0; (c) 30 mi/h 

P2.14 1.34 × 104 m/s2 

P2.16 See graphs in P2.16. 

P2.18 (a) See ANS. FIG. P2.18; (b) 23 m/s, 18 m/s, 14 m/s, and 9.0 m/s;  
(c) 4.6 m/s2; (d) zero  

P2.20 (a) 13.0 m/s; (b) 10.0 m/s, 16.0 m/s; (c) 6.00 m/s2; (d) 6.00 m/s2;  
(e) 0.333 s 

P2.22 (a–e) See graphs in P2.22; (f) with less regularity 

P2.24 160 ft. 

P2.26 4.53 s 

P2.28 (a) 6.61 m/s; (b) −0.448 m/s2 

P2.30 (a) 20.0 s; (b) No; (c) The plane would overshoot the runway. 

P2.32 31 s 

P2.34 The accelerations do not match. 

P2.36 (a) 
  
x f − xi = vxf t −

1
2

axt
2 ; (b) 3.10 m/s 

P2.38 (a) 2.56 m; (b) −3.00 m/s 

P2.40 19.7 cm/s; (b) 4.70 cm/s2; (c) The length of the glider is used to find the 
average velocity during a known time interval. 

P2.42 (a) 3.75 s; (b) 5.50 cm/s; (c) 0.604 s; (d) 13.3 cm, 47.9 cm; (e) See P2.42 
part (e) for full explanation. 

P2.44 (a) 8.20 s; (b) 134 m 

P2.46 (a and b) The rock does not reach the top of the wall with vf = 3.69 m/s; 
(c) 2.39 m/s; (d) does not agree; (e) The average speed of the upward-
moving rock is smaller than the downward moving rock. 

P2.48 (a) 29.4 m/s; (b) 44.1 m 
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P2.50 7.96 s 

P2.52 0.60 s 

P2.54 (a) 
  

h
t

+
gt
2

;  (b) 
  

h
t
−

gt
2

 

P2.56 (a) (vi + gt); (b) 
  

1
2

gt2 ;  (c)   vi − gt ;  (d) 
  

1
2

gt2  

P2.58 (a) See graphs in P2.58; (b) See graph in P2.58; (c) −4 m/s2; (d) 32 m;  
(e) 28 m 

P2.60 (a) 5.25 m/s2; (b) 168 m; (c) 52.5 m/s 

P2.62 (a) 0; (b) 6.0 m/s2; (c) −3.6 m/s2; (d) at t = 6 s and at 18 s;  
(e and f) t = 18 s; (g) 204 m 

P2.64 (a) 
  
A = vxit +

1
2

axt
2 ;  (b) The displacement is the same result for the total 

area. 

P2.66 (a) 96.0 ft/s; (b)  3.07 × 103  ft s2  upward ; (c)  3.13 × 10−2  s  

P2.68 The trains do collide. 

P2.70 (a) +4.8 m/s2; (b) 7.27 m/s2 

P2.72 (a) 41.0 s; (b) 1.73 km; (c) −184 m/s 

P2.74 (a) Ball 1: 
  
y1 = h − v0t −

1
2

gt2 ,  Ball 2: 
  
y2 = h + v0t −

1
2

gt2 ,
2v0

g
;  (b) Ball 1: 

  − v0
2 + 2gh ,  Ball 2:   − v0

2 + 2gh ;  (c) 2v0t 

P2.76 (a and b) See TABLE P2.76; (c) 1.63 m/s2 downward and see graph in 
P2.76 

P2.78 155 s 

P2.80 ~103 m/s2 

P2.82 (a) 3.45 s; (b) 10.0 ft. 

P2.84 (a) The red bead falls through a greater distance with a downward 
acceleration of g. The blue bead travels a shorter distance, but with 
acceleration of   g sinθ .  A first guess would be that the blue bead 

“wins,” but not by much. (b) 
  

2D
g

;  (c)  
  

2L
g sinθ

;  (d) the beads arrive 

at point   C  simultaneously; (e) Once we recognize that the two rods 
form one side and the hypotenuse of a right triangle with θ  as its 
smallest angle, then the result becomes obvious. 
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3 
Vectors 

 

CHAPTER OUTLINE 
 

3.1 Coordinate Systems 

3.2 Vector and Scalar Quantities 

3.3 Some Properties of Vectors 

3.4 Components of a Vector and Unit Vectors 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ3.1 Answer (e). The magnitude is   102 + 102  m/s.  

OQ3.2 Answer (e). If the quantities x and y are positive, a vector with 
components (−x, y) or (x, −y) would lie in the second or fourth 
quadrant, respectively.  

*OQ3.3 Answer (a). The vector    −2

D1  will be twice as long as   


D1  and in the 

opposite direction, namely northeast. Adding   

D2 , which is about 

equally long and southwest, we get a sum that is still longer and due 
east. 

OQ3.4 The ranking is c = e > a > d > b. The magnitudes of the vectors being 
added are constant, and we are considering the magnitude only—not 
the direction—of the resultant. So we need look only at the angle 
between the vectors being added in each case. The smaller this angle, 
the larger the resultant magnitude. 

OQ3.5 Answers (a), (b), and (c). The magnitude can range from the sum of the 
individual magnitudes, 8 + 6 = 14, to the difference of the individual 
magnitudes, 8 − 6 = 2. Because magnitude is the “length” of a vector, it 
is always positive. 
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OQ3.6 Answer (d). If we write vector   

A  as  

   
  

Ax , Ay( ) = − Ax , Ay( )   

and vector   

B  as  

   
  
Bx ,By( ) = Bx ,− By( )   

 then  
   

    


B−

A = Bx − − Ax( ) ,− By − Ay( ) = Bx + Ax ,− By − Ay( )  

which would be in the fourth quadrant.  

OQ3.7 The answers are (a) yes (b) no (c) no (d) no (e) no (f) yes (g) no. Only 
force and velocity are vectors. None of the other quantities requires a 
direction to be described. 

OQ3.8 Answer (c). The vector has no y component given. It is therefore 0. 

OQ3.9 Answer (d). Take the difference of the x coordinates of the ends of the 
vector, head minus tail: –4 – 2 = –6 cm. 

OQ3.10 Answer (a).  Take the difference of the y coordinates of the ends of the 
vector, head minus tail: 1 − (−2) = 3 cm.  

OQ3.11 Answer (c). The signs of the components of a vector are the same as the 
signs of the points in the quadrant into which it points. If a vector 
arrow is drawn to scale, the coordinates of the point of the arrow equal 
the components of the vector. All x and y values in the third quadrant 
are negative.  

OQ3.12 Answer (c). The vertical component is opposite the 30° angle, so  
sin 30° = (vertical component)/50 m. 

OQ3.13 Answer (c). A vector in the second quadrant has a negative x 
component and a positive y component. 

 
 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ3.1 Addition of a vector to a scalar is not defined. Try adding the speed 
and velocity, 8.0 m/s +    (15.0 m/s î) : Should you consider the sum to 
be a vector or a scalar? What meaning would it have?  

CQ3.2 No, the magnitude of a vector is always positive. A minus sign in a 
vector only indicates direction, not magnitude. 

CQ3.3 (a) The book’s displacement is zero, as it ends up at the point from 
which it started. (b) The distance traveled is 6.0 meters. 
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CQ3.4 Vectors   

A  and   


B  are perpendicular to each other. 

CQ3.5 The inverse tangent function gives the correct angle, relative to the +x 
axis, for vectors in the first or fourth quadrant, and it gives an incorrect 
answer for vectors in the second or third quadrant. If the x and y 
components are both positive, their ratio y/x is positive and the vector 
lies in the first quadrant; if the x component is positive and the y 
component negative, their ratio y/x is negative and the vector lies in 
the fourth quadrant. If the x and y components are both negative, their 
ratio y/x is positive but the vector lies in the third quadrant; if the x 
component is negative and the y component positive, their ratio y/x is 
negative but the vector lies in the second quadrant. 

 

 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 3.1 Coordinate Systems 
P3.1 ANS. FIG. P3.1 helps to visualize the x and y 

coordinates, and trigonometric functions will 
tell us the coordinates directly. When the polar 
coordinates (r, θ) of a point P are known, the 
Cartesian coordinates are found as 

    x = r cosθ and y = r sinθ  

 Then, 
  

  

x = r cosθ = 5.50 m( )cos240°

= 5.50 m( ) −0.5( ) = −2.75 m

y = r sinθ = 5.50 m( )sin 240°

= 5.50 m( ) −0.866( ) = −4.76 m

 

P3.2 (a) We use   x = r cosθ .  Substituting, we have 2.00 = r cos 30.0°, so 

  
r =

2.00
cos30.0°

= 2.31  

 (b) From   y = r sinθ ,  we have   y = r sin 30.0° = 2.31sin 30.0° = 1.15 .  

*P3.3 (a) The distance between the points is given by 

   

  

d = x2 − x1( )2 + y2 − y1( )2

= 2.00 − −3.00[ ]( )2 + −4.00 − 3.00( )2
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     d = 25.0 + 49.0 = 8.60 m  

 (b) To find the polar coordinates of each point, we measure the radial 
distance to that point and the angle it makes with the +x axis: 

     r1 = 2.00( )2 + −4.00( )2 = 20.0 = 4.47 m  

   
 
θ1 = tan−1 − 4.00

2.00( ) = −63.4°  

     r2 = −3.00( )2 + 3.00( )2 = 18.0 = 4.24 m  

    θ2 = 135°  measured from the +x axis. 

P3.4 (a)   x = r cosθ  and y = r sinθ ,  therefore, 

   x1 = (2.50 m) cos 30.0°, y1 = (2.50 m) sin 30.0°, and 

   
  
(x1 , y1) = (2.17, 1.25) m  

   x2 = (3.80 m) cos 120°, y2 = (3.80 m) sin 120°, and 

   
  
(x2 , y2 ) = (−1.90, 3.29) m  

 (b) 
  
d = (Δ x)2 + (Δ y)2 = 4.072 + 2.042 m = 4.55 m  

P3.5 For polar coordinates (r, θ), the Cartesian coordinates are (x = r cosθ,  
y = r sinθ), if the angle is measured relative to the +x axis. 

 (a) 
 
(–3.56 cm, – 2.40 cm)  

 (b) 
 
(+3.56 cm, – 2.40 cm)→ (4.30 cm, – 34.0°)  

 (c) 
 
(7.12 cm, 4.80 cm)→ (8.60 cm, 34.0°)  

 (d) 
 
(–10.7 cm, 7.21 cm)→ (12.9 cm, 146°)  

P3.6 We have 
  
r = x2 + y2 and θ = tan−1 y

x
⎛
⎝⎜

⎞
⎠⎟ .  

 (a) The radius for this new point is 

   
  (−x)2 + y2 = x2 + y2 = r  

  and its angle is 
   

  
tan−1 y

−x
⎛
⎝⎜

⎞
⎠⎟ = 180° −θ
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 (b)   (−2x)2 + (−2y)2 = 2r .  This point is in the third quadrant if (x, y) 
is in the first quadrant or in the fourth quadrant if (x, y) is in the 
second quadrant. It is at an angle of  180° +θ . 

 (c)   (3x)2 + (−3y)2 = 3r .  This point is in the fourth quadrant if (x, y) 
is in the first quadrant or in the third quadrant if (x, y) is in the 
second quadrant. It is at an angle of  −θ  or  360 −θ . 

 
 

 

Section 3.2 Vector and Scalar Quantities 

Section 3.3 Some Properties of Vectors 
P3.7 Figure P3.7 suggests a right triangle where, relative to angle θ, its 

adjacent side has length d and its opposite side is equal to width of the 
river, y; thus, 

  
  
tanθ =

y
d
→ y = d tanθ  

  y = (100 m)tan(35.0°) = 70.0 m 

 The width of the river is 
 
70.0 m . 

P3.8 We are given   

R =

A +

B . When two vectors are 

added graphically, the second vector is positioned 
with its tail at the tip of the first vector. The resultant 
then runs from the tail of the first vector to the tip of 
the second vector. In this case, vector   


A  will be 

positioned with its tail at the origin and its tip at the 
point (0, 29). The resultant is then drawn, starting at 
the origin (tail of first vector) and going 14 units in 
the negative y direction to the point (0, −14). The 
second vector,   


B , must then start from the tip of   


A  

at point (0, 29) and end on the tip of   

R   at point  

(0, −14) as shown in the sketch at the right. From 
this, it is seen that 

 

     

B is 43 units in the negative y  direction

 

ANS. FIG. P3.8 
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P3.9 In solving this problem we must contrast 
displacement with distance traveled. We draw a 
diagram of the skater’s path in ANS. FIG. P3.9, 
which is the view from a hovering helicopter so 
that we can see the circular path as circular in 
shape. To start with a concrete example, we have 
chosen to draw motion ABC around one half of a 
circle of radius 5 m. 

 The displacement, shown as   

d  in the diagram, is the straight-line 

change in position from starting point A to finish C. In the specific case 
we have chosen to draw, it lies along a diameter of the circle. Its 
magnitude is 

   

d = –10.0 î = 10.0 m.  

  The distance skated is greater than the straight-line displacement. The 
distance follows the curved path of the semicircle (ABC). Its length is 

half of the circumference: 
  
s = 1

2
(2πr) = 5.00π  m = 15.7  m.  

 A straight line is the shortest distance between two points. For any 
nonzero displacement, less or more than across a semicircle, the 
distance along the path will be greater than the displacement 
magnitude.  Therefore: 

 

 

The situation can never be true because the distance is 
an arc of a circle between two points, whereas the 
magnitude of the displacement vector is a straight-line 
cord of the circle between the same points.

 

P3.10 We find the resultant   

F1 +

F2  graphically by 

placing the tail of    

F2  at the head of    


F1 . The 

resultant force vector   

F1 +

F2  is of magnitude 

 
9.5 N  and at an angle of 

  57° above the x axis .  

 
 
 

 

 

 

 

 
ANS. FIG. P3.9 

ANS. FIG. P3.10 
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P3.11 To find these vector expressions 
graphically, we draw each set of 
vectors. Measurements of the 
results are taken using a ruler 
and protractor. (Scale: 1 unit = 
0.5 m) 

 (a)    

A +

B = 5.2 m at 60o  

 (b)    

A −

B = 3.0 m at 330o  

 (c)    

B −

A = 3.0 m at 150o  

 (d)    

A − 2B = 5.2 m at 300o  

 
 
 

 
 

P3.12 (a) The three diagrams are shown in ANS. FIG. P3.12a below. 

  

ANS. FIG. P3.12a 

 (b)  The diagrams in ANS. FIG. P3.12a represent the graphical 
solutions for the three vector sums:    


R1 =


A +

B +

C,

R2 =


B +

C +

A,  

and    

R3 =


C +

B +

A.  

P3.13 The scale drawing for the 
graphical solution should be 
similar to the figure to the 
right. The magnitude and  
direction of the final  
displacement from the  
starting point are obtained 
by measuring d and θ on the 
drawing and applying the scale factor used in making the drawing. 
The results should be   d = 420 ft and θ = –3° .  

ANS. FIG. P3.13 

ANS. FIG. P3.11 
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ANS. FIG. P3.14 

*P3.14 ANS. FIG. P3.14 shows the graphical 
addition of the vector from the base camp to 
lake A to the vector connecting lakes A and 
B, with a scale of 1 unit = 20 km. The 
distance from lake B to base camp is then 
the negative of this resultant vector, or 

   −

R = 310 km at 57° S of W .  

 
 
 

 

 

Section 3.4 Components of a Vector  
and Unit Vectors 

P3.15 First we should visualize the vector either in our 
mind or with a sketch, as shown in ANS. FIG. 
P3.15. The magnitude of the vector can be found 
by the Pythagorean theorem: 

   Ax = –25.0 

   Ay = 40.0 
  

  

A = Ax
2 + Ay

2 = (−25.0)2 + (40.0)2

= 47.2 units

 

 We observe that  
    

  
tanφ =

Ay

Ax

 

 so 
    

  
φ = tan−1 Ay

Ax

⎛

⎝⎜
⎞

⎠⎟
= tan−1 40.0

25.0
⎛
⎝⎜

⎞
⎠⎟ = tan−1(1.60) = 58.0°

 

 The diagram shows that the angle from the +x axis can be found by 
subtracting from 180°:  θ = 180° − 58° = 122°  

P3.16 We can calculate the components of the vector A using (Ax, Ay) =  
(A cos θ, A sin θ) if the angle θ is measured from the +x axis, which is 
true here. For A = 35.0 units and θ = 325°,  

   

  
Ax = 28.7 units, Ay = –20.1 units

 

ANS. FIG. P3.15 
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P3.17 (a)  Yes .  

 (b) Let v represent the speed of the camper. The northward 
component of its velocity is v cos 8.50°. To avoid crowding the 
minivan we require v cos 8.50° ≥ 28 m/s. 

  

  

We can satisfy this requirement simply by taking 
v ≥ (28.0 m/s)/cos8.50° = 28.3 m/s.

 

P3.18 The person would have to walk  
   

 3.10 km( )sin 25.0° = 1.31 km north   

 and   3.10 km( )cos25.0° = 2.81 km east   

P3.19 Do not think of sin θ = opposite/hypotenuse, but jump right to y =  
R sin θ. The angle does not need to fit inside a triangle. We find the x 
and y components of each vector using x = r cos θ  and y = r sin θ. In 
unit vector notation,     


R = Rx î + Ry ĵ.  

 (a) x = 12.8 cos 150°, y = 12.8 sin 150°, and 
   
(x, y) = (−11.1î + 6.40ĵ) m  

 (b) x = 3.30 cos 60.0°, y = 3.30 sin 60.0°, and 
   
(x, y) = (1.65î + 2.86ĵ) cm  

 (c) x = 22.0 cos 215°, y = 22.0 sin 215°, and 
   
(x, y) = (−18.0î − 12.6ĵ) in  

P3.20 (a) Her net x (east-west) displacement is –3.00 + 0 + 6.00 = +3.00 
blocks, while her net y (north-south) displacement is 0 + 4.00 + 0 = 
+4.00 blocks. The magnitude of the resultant displacement is  

    
  R = (xnet )

2 + (ynet )
2 = (3.00)2 + (4.00)2 = 5.00 blocks  

  and the angle the resultant makes with the x axis (eastward 
direction) is 

    
 
θ = tan−1 4.00

3.00
⎛
⎝⎜

⎞
⎠⎟ = tan−1(1.33) = 53.1°.  

  The resultant displacement is then  5.00 blocks at 53.1° N of E .  

 (b) The total distance traveled is 3.00 + 4.00 + 6.00 =  13.00 blocks .  

P3.21 Let +x be East and +y be North. We can sum the total x and y 
displacements of the spelunker as 

  

  

x = 250 m +∑ 125 m( )cos 30° = 358 m
y = 75 m +∑ 125 m( )sin 30°− 150 m = −12.5 m
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 the total displacement is then 
  

  
d = x∑( )2 + y∑( )2 = (358 m)2 + (−12.5 m)2 = 358 m

  

 at an angle of  
  

  
θ = tan−1 y∑

x∑
⎛
⎝⎜

⎞
⎠⎟

= tan−1 − 12.5 m
358 m

⎛
⎝⎜

⎞
⎠⎟ = −2.00°

  

 or     

d = 358 m at 2.00° S of E   

P3.22 We use the numbers given in Problem 3.11: 

       

A = 3.00 m,  θA = 30.0°  

   Ax = A cos θA = 3.00 cos 30.0° = 2.60 m,  

   Ay = A sin θA = 3.00 sin 30.0° = 1.50 m  

 So   
    

A = Ax î + Ay ĵ = (2.60î + 1.50 ĵ) m  

       

B = 3.00 m, θB = 90.0°  

   
    Bx = 0, By = 3.00 m →


B = 3.00 ĵ m  

 then  
   


A +

B = 2.60î + 1.50 ĵ( ) + 3.00 ĵ = 2.60î + 4.50 ĵ( )m  

P3.23 We can get answers in unit-vector form just by doing calculations with 
each term labeled with an   î or a ĵ.  There are, in a sense, only two 
vectors to calculate, since parts (c), (d), and (e) just ask about the 
magnitudes and directions of the answers to (a) and (b). Note that 
the whole numbers appearing in the problem statement are assumed 
to have three significant figures. 

 We use the property of vector addition that states that the components 
of   

R =

A +

B  are computed as   Rx = Ax + Bx  and Ry = Ay + By .  

 (a) 
   


A +

B( ) = 3î − 2 ĵ( ) + − î − 4 ĵ( ) = 2î − 6 ĵ  

 (b) 
   


A −

B( ) = 3î − 2 ĵ( ) − − î − 4 ĵ( ) = 4î + 2 ĵ  

 (c) 
   

A +

B = 22 + 62 = 6.32  

 (d) 
   

A −

B = 42 + 22 = 4.47  
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 (e) 

  

θ A+B = tan−1 −
6
2

⎛
⎝⎜

⎞
⎠⎟ = −71.6° = 288°

θ A−B = tan−1 2
4

⎛
⎝⎜

⎞
⎠⎟ = 26.6°

 

P3.24 The east and north components of the displacement from Dallas (D) to 
Chicago (C) are the sums of the east and north components of the 
displacements from Dallas to Atlanta (A) and from Atlanta to Chicago. 
In equation form: 

   

  

dDC east = dDA east + dAC east

= 730 mi( )cos5.00°− 560 mi( )sin 21.0° = 527 miles

  

   

  

dDC north = dDA north + dAC north

= 730 mi( )sin 5.00° + 560 mi( )cos21.0° = 586 miles

  

 By the Pythagorean theorem,  
   

  d = (dDC east )
2 + (dDC north )2 = 788 mi

 

 Then, 
  
θ = tan−1 dDC north

dDC east

⎛
⎝⎜

⎞
⎠⎟

= 48.0°  

 Thus, Chicago is  788 miles at 48.0° northeast of Dallas .  

P3.25 We use the unit-vector addition method. It is just as easy to add three 
displacements as to add two. We take the direction east to be along   + î.  
The three displacements can be written as: 

   

   


d1 = −3.50 m( ) ĵ

d2 = 8.20 m( )cos 45.0°î + 8.20 m( )sin 45.0° ĵ

= 5.80 m( ) î + 5.80 m( ) ĵ

d3 = −15.0 m( ) î

  

 The resultant is 
   

   


R =

d1 +

d2 +

d3 = (−15.0 m + 5.80 m)î + (5.80 m − 3.50 m)ĵ

= −9.20 m( ) î + 2.30 m( ) ĵ

 

 (or 9.20 m west and 2.30 m north). 

 The magnitude of the resultant displacement is 
   

    

R = Rx

2 + Ry
2 = −9.20 m( )2 + 2.30 m( )2 = 9.48 m
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 The direction of the resultant vector is given by 
   

  
θ = tan−1 Ry

Rx

⎛
⎝⎜

⎞
⎠⎟

= tan−1 2.30 m
−9.20 m

⎛
⎝⎜

⎞
⎠⎟ = 166°

 

P3.26 (a) See figure to the right.	  

 (b) 

   


C =

A +

B = 2.00î + 6.00 ĵ + 3.00î − 2.00 ĵ

= 5.00î + 4.00 ĵ

D =


A −

B = 2.00î + 6.00 ĵ − 3.00î + 2.00 ĵ

= −1.00î + 8.00 ĵ

	  

 (c) 

   


C = 25.0 + 16.0  at tan−1 4

5
⎛
⎝⎜

⎞
⎠⎟ = 6.40 at 38.7°


D = −1.00( )2 + 8.00( )2  at tan−1 8.00

−1.00
⎛
⎝⎜

⎞
⎠⎟


D = 8.06 at  180° − 82.9°( ) = 8.06 at 97.2°

	  

P3.27 We first tabulate the three strokes of the novice golfer, with the x 
direction corresponding to East and the y direction corresponding to 
North. The sum of the displacement in each of the directions is shown 
as the last row of the table. 

  

East North 

x (m) y (m) 

0 4.00 

1.41 1.41 

−0.500 −0.866 

+0.914 4.55 

 

 The “hole-in-one” single displacement is then  
   

    

R = x 2 + y

2 = 0.914 m( )2 + 4.55 m( )2 = 4.64 m
 

 The angle of the displacement with the horizontal is 
   

  
θ = tan−1 y

x
⎛
⎝⎜

⎞
⎠⎟ = tan−1 4.55 m

0.914 m
⎛
⎝⎜

⎞
⎠⎟ = 78.6°

 

ANS. FIG. P3.26 
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 The expert golfer would accomplish the hole in one with the 
displacement  4.64 m at 78.6° N of E .  

P3.28 We take the x axis along the slope downhill. (Students, get used to this 
choice!) The y axis is perpendicular to the slope, at 35.0° to the vertical. 
Then the displacement of the snow makes an angle of 90.0° + 35.0° + 
16.0° = 141° with the x axis.  

 

ANS. FIG. P3.28 

 (a) 

 

Its component parallel to the surface is 
(1.50 m) cos141° = –1.17 m,
or 1.17 m toward the top of the hill.

  

 (b) 

 

Its component perpendicular to the surface is 
(1.50 m)sin141° = 0.944 m, or 0.944 m away 
from the snow.

  

P3.29 (a) The single force is obtained by summing the two forces: 

   

   


F =

F1 +

F2


F = 120 cos (60.0°)î + 120 sin (60.0°)ĵ

                       − 80.0 cos (75.0°)î + 80.0 sin (75.0°)ĵ

F = 60.0î + 104 ĵ − 20.7 î + 77.3 ĵ = 39.3î + 181ĵ( )  N

	  

  We can also express this force in terms of its magnitude and 
direction: 

   

   


F = 39.32 + 1812  N = 185 N

θ = tan−1 181
39.3

⎛
⎝⎜

⎞
⎠⎟ = 77.8°

	  

 (b) A force equal and opposite the resultant force from part (a) is 
required for the total force to equal zero:  

   
   


F3 = −


F = −39.3î − 181ĵ( )  N 	  
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P3.30 ANS. FIG. P3.30 is a graphical depiction of the three displacements 
the football undergoes, with   


A  corresponding to the 10.0-yard 

backward run,   

B  corresponding to the 15.0-yard sideways run, and 

  

C   corresponding to the 50.0-yard downfield pass.  The resultant 
vector is then 

     


R =

A +

B+

C = −10.0î − 15.0 ĵ + 50.0î

= 40.0î − 15.0 ĵ

R = (40.0)2 + (−15.0)2⎡⎣ ⎤⎦

1/2
= 42.7 yards

 

 

 

ANS. FIG. P3.30 

P3.31 (a) We add the components of the three vectors: 

   

   


D =


A +

B +

C = 6î − 2 ĵ


D = 62 + 22 = 6.32 m at θ = 342°

	  

 (b) Again, using the components of the three vectors, 

   

   


E = −


A −

B +

C = −2î + 12 ĵ


E = 22 + 122 = 12.2 m at θ = 99.5°

	  

P3.32 We are given     

A = −8.70î + 15.0 ĵ,  and 


B = 13.2î − 6.60 ĵ,  and 

   

A −

B + 3


C = 0.  Solving for   


C  gives 

       

3

C =

B−

A = 21.9î − 21.6 ĵ


C = 7.30î − 7.20 ĵ  or    Cx = 7.30 cm ; Cy = −7.20 cm

 

P3.33 Hold your fingertip at the center of the front edge of your study desk, 
defined as point O. Move your finger 8 cm to the right, then 12 cm 
vertically up, and then 4 cm horizontally away from you. Its location 
relative to the starting point represents position vector   


A.  Move three-

fourths of the way straight back toward O. Now your fingertip is at the 
location of   


B.  Now move your finger 50 cm straight through O, 

through your left thigh, and down toward the floor. Its position vector 
now is   


C.  
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  We use unit-vector notation throughout. There is no adding to do here, 
but just multiplication of a vector by two different scalars. 

  (a) 
   

A = 8.00î + 12.0 ĵ − 4.00k̂ 	  

 (b) 
   


B =

A
4

= 2.00î + 3.00 ĵ − 1.00k̂ 	  

 (c) 
   

C = −3


A = −24.0î − 36.0 ĵ + 12.0k̂ 	  

P3.34 We are given     

B = Bx î + By ĵ + Bzk̂ = 4.00î + 6.00 ĵ + 3.00k̂.  The magnitude 

of the vector is therefore  
  

   

B = 4.002 + 6.002 + 3.002 = 7.81

 

 And the angle of the vector with the three coordinate axes is 
  

  

α = cos−1 4.00
7.81

⎛
⎝⎜

⎞
⎠⎟ = 59.2°  is the angle with the x axis

β = cos−1 6.00
7.81

⎛
⎝⎜

⎞
⎠⎟ = 39.8°  is the angle with the y  axis

γ = cos−1 3.00
7.81

⎛
⎝⎜

⎞
⎠⎟ = 67.4°  is the angle with the z axis

  

P3.35 The component description of  

A  is just restated to constitute the 

answer to part (a): Ax= −3.00, Ay = 2.00. 

 (a) 
    

A = Ax î + Ay ĵ = −3.00î + 2.00 ĵ  

 (b) 
    

A = Ax

2 + Ay
2 = −3.00( )2 + 2.00( )2 = 3.61  

  

  
θ = tan−1 Ay

Ax

⎛
⎝⎜

⎞
⎠⎟

= tan−1 2.00
−3.00

⎛
⎝⎜

⎞
⎠⎟ = −33.7°

 

  θ is in the second quadrant, so  θ = 180° + −33.7°( ) = 146° .  

 (c) 
    Rx = 0, Ry = −4.00,  and 


R =

A +

B, thus 


B =

R −

A and  

  Bx = Rx – Ax = 0 – (–3.00) = 3.00, By = Ry – Ay= –4.00 – 2.00 = –6.00. 

  Therefore, 
   


B = 3.00î − 6.00 ĵ .  
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ANS. FIG. P3.38 

P3.36 We carry out the prescribed mathematical operations using unit 
vectors. 

 (a) 

   


C =

A +

B = 5.00î − 1.00 ĵ− 3.00k̂( )  m


C = 5.00 m( )2 + 1.00 m( )2 + 3.00 m( )2 = 5.92 m

 

 (b) 

   


D = 2


A −

B = 4.00î − 11.0 ĵ + 15.0k̂( ) m


D = (4.00 m)2 + (11.0 m)2 + (15.0 m)2 = 19.0 m

 

P3.37 (a) Taking components along   ̂i  and   ĵ,  we get two equations:	  

   6.00a – 8.00b +26.0 = 0 

  and	  
   –8.00a + 3.00b + 19.0 = 0	  

  Substituting a = 1.33b – 4.33 into the second equation, we find 	  
  

  −8 1.33b − 4.33( ) + 3b + 19 = 0→ 7.67b = 53.67 → b = 7.00 	  

  and so a = 1.33(7.00) – 4.33 = 5.00.	  

  Thus   a = 5.00,  b = 7.00 .  Therefore,    5.00

A + 7.00


B +

C = 0. 	  

 (b) 

 

In order for vectors to be equal, all of their components must be
equal. A vector equation contains more information than a
scalar equation, as each component gives us one equation.

	  

P3.38 The given diagram shows the vectors individually, 
but not their addition. The second diagram 
represents a map view of the motion of the ball. 
According to the definition of a displacement, we 
ignore any departure from straightness of the actual 
path of the ball. We model each of the three motions 
as straight. The simplified problem is solved by 
straightforward application of the component 
 method of vector addition. It works for  
adding two, three, or any number of vectors. 

 (a) We find the two components of each of  
the three vectors 

     Ax = (20.0 units)cos90° = 0   

  and 
  
Ay = (20.0units)sin 90° = 20.0 units  
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ANS. FIG. P3.39 

    
  Bx = (40.0units)cos 45° = 28.3 units  

   and   By = (40.0units)sin 45° = 28.3 units  
    

  Cx = (30.0units)cos315° = 21.2 units    

   and   Cy = (30.0units)sin 315° = −21.2 units  

  Now adding,  

     Rx = Ax + Bx + Cx = (0 + 28.3 + 21.2) units = 49.5 units  

  and 
  
Ry = Ay + By + Cy = (20 + 28.3 − 21.2) units = 27.1 units  

  so 
   


R = 49.5î + 27.1ĵ 	  

 (b) 

    


R = 49.5( )2 + 27.1( )2 = 56.4

θ = tan−1 Ry

Rx

⎛
⎝⎜

⎞
⎠⎟

= tan−1 27.1
49.5

⎛
⎝⎜

⎞
⎠⎟ = 28.7°

	  

P3.39 We will use the component method for a precise 
answer. We already know the total displacement, 
so the algebra of solving a vector equation will 
guide us to do a subtraction. 

 We have    

B =

R −

A : 	  

   Ax = 150 cos 120° = −75.0 cm 

   Ay = 150 sin 120° = 130 cm 

   Rx = 140 cos 35.0° = 115 cm 

   Ry = 140 sin 35.0° = 80.3 cm 

 Therefore, 	  
   

   


B = [115 − (−75)î + [80.3 − 130]ĵ = 190î − 49.7 ĵ( )  cm

B = 1902 + 49.72 = 196 cm

θ = tan−1 −
49.7
190

⎛
⎝⎜

⎞
⎠⎟ = −14.7°
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ANS. FIG. P3.41 

P3.40 First, we sum the components of the two vectors for the male: 

  

  

d3mx = d1mx + d2mx = 0 + 100 cm( )cos23.0° = 92.1 cm
d3my = d1my + d2my = 104 cm + 100 cm( )sin 23.0° = 143.1 cm

magnitude: d3m = 92.1 cm( )2 + 143.1 cm( )2 = 170.1 cm

direction: tan−1 143.1/92.1( ) = 57.2° above +x axis first quadrant( )

 

 followed by the components of the two vectors for the female: 

  

  

d3fx = d1fx + d2fx = 0 + 86.0 cm( )cos28.0° = 75.9 cm
d3fy = d1fy + d2fy = 84.0 cm + 86.0 cm( )sin 28.0° = 124.4 cm

magnitude: d3f = 75.9 cm( )2 + 124.4 cm( )2 = 145.7 cm

direction: tan−1 124.4/75.9( ) = 58.6° above +x axis first quadrant( )

 

P3.41 (a) 

   


E = (17.0 cm) cos 27.0°( ) î

                      + (17.0 cm) sin 27.0°( ) ĵ

E = (15.1î + 7.72 ĵ) cm

	  

 (b) 

   


F = (17.0 cm) cos 117.0°( ) î

                        + (17.0 cm) sin 117.0°( ) ĵ

	  

  
   


F = −7.72î + 15.1ĵ( )  cm   

  Note that we did not need to explicitly identify the angle with the 
positive x axis, but by doing so, we don’t have to keep track of 
minus signs for the components.	  

 (c) 

   


G = (−17.0 cm) cos 243.0°( )[ ] î + (−17.0 cm) sin 243.0°( )[ ] ĵ

G = −7.72î − 15.1ĵ( )  cm

 

P3.42 The position vector from radar station to ship is 
   

   


S = 17.3sin136°î + 17.3cos136° ĵ( )  km = 12.0î − 12.4 ĵ( )  km

 

 From station to plane, the position vector is 
   

   


P = 19.6sin153°î + 19.6cos153° ĵ + 2.20k̂( )  km

 

 or 
   

   


P = 8.90î − 17.5 ĵ + 2.20k̂( )  km
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 (a) To fly to the ship, the plane must undergo displacement 
   

   


D =

S−

P = 3.12î + 5.02 ĵ− 2.20k̂( )  km

 

 (b) The distance the plane must travel is 
   

    
D =


D = 3.12( )2 + 5.02( )2 + 2.20( )2  km = 6.31 km

 

P3.43 The hurricane’s first displacement is  
   

 41.0 km/h( ) 3.00 h( )  at 60.0° N of W  

 and its second displacement is  
   

 25.0 km/h( ) 1.50 h( )  due North  

 With   ̂i  representing east and   ĵ  representing north, its total 
displacement is: 

   

  

41.0 km/h( )cos60.0°[ ] 3.00 h( ) − î( )
                    + 41.0 km/h( )sin60.0°[ ] 3.00 h( ) ĵ

                    + 25.0 km/h( ) 1.50 h( ) ĵ

= 61.5 km − î( ) + 144 km ĵ

 

 with magnitude  61.5 km( )2 + 144 km( )2 = 157 km .  

P3.44 Note that each shopper must make a choice whether to turn 90° to the 
left or right, each time he or she makes a turn. One set of such choices, 
following the rules in the problem, results in the shopper heading in 
the positive y direction and then again in the positive x direction. 

 Find the magnitude of the sum of the displacements: 

   

   


d = (8.00 m)î + (3.00 m)ĵ + (4.00 m)î = (12.00 m)î + (3.00 m)ĵ

magnitude: d = (12.00 m)2 + (3.00 m)2 = 12.4 m

Impossible because 12.4 m is greater than 5.00 m.

 

P3.45 The y coordinate of the airplane is constant and equal to 7.60 × 103 m 
whereas the x coordinate is given by x = vit, where vi is the constant 
speed in the horizontal direction. 

 At t = 30.0 s we have x = 8.04 × 103, so vi = 8 040 m/30 s = 268 m/s. The 
position vector as a function of time is  

   
    

P = (268 m/s)tî + (7.60× 103 m)ĵ  
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 At 
    
t = 45.0 s,


P = 1.21× 104 î + 7.60 × 103 ĵ⎡⎣ ⎤⎦ m.  The magnitude is 

   
   

P = 1.21× 104( )2

+ 7.60 × 103( )2
 m = 1.43 × 104  m  

 and the direction is  
   

 
θ = tan−1 7.60× 103

1.21× 104

⎛
⎝⎜

⎞
⎠⎟

= 32.2° above the horizontal
 

P3.46 The displacement from the start to the finish is  

     16î + 12 ĵ − (5î + 3 ĵ) = (11î + 9 ĵ)  

 The displacement from the starting point to A is 
   
f 11î + 9 ĵ( )  meters.  

(a) The position vector of point A is  
  

   
5î + 3 ĵ + f 11î + 9 ĵ( ) = (5 + 11 f )î + (3 + 9 f )ĵ⎡⎣ ⎤⎦  m

 

 (b) For f = 0 we have the position vector 
  
(5 + 0)î + (3 + 0)ĵ meters.  

 (c) 

  

This is reasonable because it is the location of the starting point,

5î + 3 ĵ meters.

 

 (d) For f = 1 = 100%, we have position vector 

  
(5 + 11)î + (3 + 9)ĵ meters = 16î + 12 ĵ meters .  

 (e) 

 

This is reasonable because we have completed the trip, and this is
the position vector of the endpoint.

 

P3.47 Let the positive x direction be eastward, the positive y direction be 
vertically upward, and the positive z direction be southward. The total 
displacement is then	  

   

   


d = 4.80î + 4.80 ĵ( )  cm + 3.70 ĵ − 3.70k̂( )  cm

= 4.80î + 8.50 ĵ − 3.70k̂( )  cm

 

 (a) The magnitude is   d = 4.80( )2 + 8.50( )2 + −3.70( )2  cm = 10.4 cm . 	  

 (b) Its angle with the y axis follows from  

 
cosθ = 8.50

10.4
,  giving θ = 35.5° .
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ANS. FIG. P3.49 

Additional Problems 
P3.48 The Pythagorean theorem and the definition of the tangent will be the 

starting points for our calculation.  

 (a) Take the wall as the xy plane so that the coordinates are x = 2.00 m 
and y = 1.00 m; and the fly is located at point P. The distance 
between two points in the xy plane is 

   
  
d =  x2 – x1( )2

+  y2 – y1( )2  

  so here   d =  (2.00 m – 0)2 + (1.00 m – 0)2 = 2.24 m   

 (b) 
      
θ = tan–1 y

x
⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟= tan–1 1.00 m

2.00 m
⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟= 26.6° ,  so 


r = 2.24 m, 26.6°    

P3.49 We note that   − î  = west and   − ĵ  = south. The given 
mathematical representation of the trip can be 
written as 6.30 b west + 4.00 b at 40° south of west 
+3.00 b at 50° south of east +5.00 b south.	  

 (a) The figure on the right shows a map of the  
successive displacements that the bus 
undergoes.	  

 (b) The total odometer distance is the sum of the magnitudes of the 
four displacements: 	  

   6.30 b + 4.00 b + 3.00 b + 5.00 b =  18.3 b 	  

 (c) 

   


R = (−6.30 − 3.06 + 1.93) b î + (−2.57 − 2.30 − 5.00) b ĵ

= −7.44 b î − 9.87 b ĵ

= (7.44 b)2 + (9.87 b)2  at tan−1 9.87
7.44

⎛
⎝⎜

⎞
⎠⎟  south of west

= 12.4 b at 53.0° south of west
= 12.4 b at 233° counterclockwise from east

	  

P3.50 To find the new speed and direction of the aircraft, we add the 
vector components of the wind to the vector velocity of the aircraft: 

  

    


v = vx î + vy ĵ = 300 + 100cos30.0°( ) î + 100sin 30.0°( ) ĵ

v = 387 î + 50.0 ĵ( )  mi/h

v = 390 mi/h at 7.37° N of E
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P3.51 On our version of the diagram we have 
drawn in the resultant from the tail of the 
first arrow to the head of the last arrow.  
The resultant displacement   


R  is equal to 

the sum of the four individual 
displacements,    


R =

d1 +

d2 +

d3 +

d4.  We 

translate from the pictorial representation 
to a mathematical representation by 
writing the individual displacements in 
unit-vector notation: 

  
   

d1 = 100i m  

  
    

d2 = −300j m  

     

d3 = (−150 cos  30°)î m + ( − 150 sin 30°)̂j m = –130î m − 75 ĵ m  

  
   

d4 = (− 200 cos60°)î m + (200 sin60°)ĵ m =− 100î m + 173ĵ m  

 Summing the components together, we find 
  

  Rx = d1x + d2x + d3x + d4x = (100 + 0− 130− 100) m = − 130 m  

  
  Ry = d1y + d2y + d3y + d4y = (0− 300− 75 + 173) m = –202 m  

 so altogether  
  

   


R =

d1 +

d2 +

d3 +

d4 = −130î − 202 ĵ( )m

 

 Its magnitude is  
   

   


R = −130( )2 + −202( )2 = 240 m

 

 We calculate the angle 
  
φ = tan−1 Ry

Rx

⎛
⎝⎜

⎞
⎠⎟

= tan−1 −202
−130

⎛
⎝⎜

⎞
⎠⎟ = 57.2°.  

 The resultant points into the third quadrant instead of the first 
quadrant. The angle counterclockwise from the +x axis is  

   
 θ = 180 +φ = 237°  

*P3.52 The superhero follows a straight-line path at 
30.0° below the horizontal. If his 
displacement is 100 m, then the coordinates 
of the superhero are:  

   
  

x = 100 m( )cos −30.0°( ) = 86.6 m

y = 100 m( )sin −30.0°( ) = −50.0 m
 

 

 

ANS. FIG. P3.51 

ANS. FIG. P3.52 
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P3.53 (a) Take the x axis along the tail section of the snake. The 
displacement from tail to head is 

   

  

240 m( ) î + (420− 240) m[ ]cos(180°− 105°)î

                        − 180 m( )sin75° ĵ = 287 mî − 174 mĵ

 

  Its magnitude is  287( )2 + 174( )2  m = 335 m.  

  From 
  
v =

distance
Δt

,  the time for each child’s run is  

   

  

Inge: Δt = distance
v

= 335 m h( ) 1 km( ) 3600 s( )
12 km( ) 1000 m( ) 1 h( ) = 101 s

Olaf: Δt = 420 m ⋅s
3.33 m

= 126 s

 

  Inge wins by  126 − 101 = 25.4 s .  

 (b) Olaf must run the race in the same time: 

   
  
v =

d
Δt

=
420 m
101 s

3600 s
1 h

⎛
⎝⎜

⎞
⎠⎟

km
103  m

⎛
⎝⎜

⎞
⎠⎟ = 15.0 km/h  

 

P3.54 The position vector from the ground under the controller of the first 
airplane is 

   

   


r1 = (19.2 km)(cos25°)î + (19.2 km)(sin 25°)ĵ + (0.8 km)k̂

= 17.4î + 8.11ĵ + 0.8k̂( )  km

  

 The second is at  
   

   


r2 = (17.6 km)(cos20°)î + (17.6 km)(sin 20°)ĵ + (1.1 km)k̂

= 16.5î + 6.02 ĵ + 1.1k̂( )  km

 	  

 Now the displacement from the first plane to the second is 	  
   

   

r2 −

r1 = −0.863î − 2.09 ĵ + 0.3k̂( )  km

 

 with magnitude	  
   

 0.863( )2 + 2.09( )2 + 0.3( )2  km = 2.29 km
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P3.55 (a) The tensions Tx and Ty act as an equivalent tension T (see ANS. 
FIG. P3.55) which supports the downward weight; thus, the 
combination is equivalent to 0.150 N, upward. We know that Tx = 
0.127 N, and the tensions are perpendicular to each other, so their 
combined magnitude is 

    

  

T = Tx
2 + Ty

2 = 0.150 N→Ty
2 = 0.150 N( )2 −Tx

2

Ty
2 = 0.150 N( )2 − 0.127 N( )2 →Ty = 0.078 N

 

 

ANS. FIG. P3.55 

 (b) From the figure, 
  
θ = tan−1 Ty Tx( ) = 32.1°.  The angle the x axis 

makes with the horizontal axis is  90° −θ = 57.9° .  

 (c) From the figure, the angle the y axis makes with the horizontal 
axis is  θ = 32.1° .  

P3.56 (a) Consider the rectangle in the figure to have height H and width 
W. The vectors   


A  and   


B  are related by    


A + ab
 

+ bc
 

=

B,  where  

    

   


A = 10.0 m( ) cos50.0°( ) î + 10.0 m( ) sin 50.0°( ) ĵ

A = 6.42î + 7.66 ĵ( )  m

B = 12.0 m( ) cos30.0°( ) î + 12.0 m( ) sin 30.0°( ) ĵ

B = 10.4î + 6.00 ĵ( )  m

ab
 

= −Hĵ and bc
 

= Wî

 

 

ANS. FIG. P3.56 
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  Therefore,  
    

   


B−

A = ab
 

+ bc
 

3.96î − 1.66 ĵ( )  m = Wî − Hĵ→ W = 3.96 m and H = 1.66 m

 

  
 
The perimeter measures 2(H + W) = 11.24 m.  

 (b) The vector from the origin to the upper-right corner of the 
rectangle (point d) is 

  

    


B + Hĵ = 10.4 mî + 6.00 m + 1.66 m( ) ĵ = 10.4 mî + 7.66 mĵ

magnitude: 10.4 m( )2 + 7.66 m( )2 = 12.9 m

direction: tan−1 7.66/10.4( ) = 36.4° above + x axis first quadrant( )
 

P3.57 (a) 
  Rx = 2.00 , Ry = 1.00 , Rz = 3.00  

 (b) 
    

R = Rx

2 + Ry
2 + Rz

2 = 4.00 + 1.00 + 9.00 = 14.0 = 3.74  

 (c) 

    

cosθx =
Rx
R

⇒θx = cos−1 Rx
R

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= 57.7° from + x

cosθy =
Ry
R

⇒θy = cos−1 Ry
R

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= 74.5° from + y

cosθz =
Rz
R

⇒θz = cos−1 Rz
R

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= 36.7° from + z

 

P3.58 Let A represent the distance from island 2 to 
island 3. The displacement is     


A = A at 159°.  

Represent the displacement from 3 to 1 as 

    

B = B at 298°.  We have 4.76 km at    37° +


A +

B = 0.  

 For the x components: 
   

  

4.76 km( )cos37° + Acos159°
+Bcos298° = 0

3.80 km − 0.934A + 0.470B = 0

 

     B = −8.10 km + 1.99A  

 For the y components: 

   
  

4.76 km( )sin 37° + Asin 159° + Bsin 298° = 0
2.86 km + 0.358A − 0.883B = 0

 

ANS. FIG. P3.58 



Chapter 3     123 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

ANS. FIG. P3.59 

ANS. FIG. P3.60 

 (a) We solve by eliminating B by substitution: 
   

  

2.86 km + 0.358A− 0.883 −8.10 km + 1.99A( ) = 0
2.86 km + 0.358A + 7.15 km − 1.76A = 0

 

  

  

10.0 km = 1.40A

A = 7.17 km

 

 (b)   B = −8.10 km + 1.99 7.17 km( ) = 6.15 km  

P3.59 Let θ  represent the angle between the 
directions of   


A  and   


B . Since   


A  and   


B  have 

the same magnitudes,   

A ,   

B , and   


R =

A +

B  

form an isosceles triangle in which the angles 

are 
 
180° −θ , 

θ
2

,  and 
θ
2

.  The magnitude of   

R  

is then 
  
R = 2Acos

θ
2

⎛
⎝⎜

⎞
⎠⎟ .  This can be seen from 

applying the law of cosines to the isosceles triangle and using the fact 
that B = A.	  

 Again,   

A ,   −


B , and   


D =


A −

B  form an isosceles triangle with apex 

angle θ. Applying the law of cosines and the identity 	  
   

 
1− cosθ = 2sin2 θ

2
⎛
⎝⎜

⎞
⎠⎟

 

 gives the magnitude of   

D  as 

  
D = 2Asin

θ
2

⎛
⎝⎜

⎞
⎠⎟ . 	  

 The problem requires that R = 100D. 	  

 Thus, 
  
2Acos

θ
2

⎛
⎝⎜

⎞
⎠⎟ = 200Asin

θ
2

⎛
⎝⎜

⎞
⎠⎟ .  This gives  

   

 
tan

θ
2

⎛
⎝⎜

⎞
⎠⎟ = 0.010 and θ = 1.15°

	  

P3.60 Let θ  represent the angle between the directions 
of   

A  and  


B . Since   


A  and   


B  have the same 

magnitudes,   

A ,   

B , and   


R =

A +

B  form an 

isosceles triangle in which the angles are 

 
180° −θ , 

θ
2

,  and 
θ
2

.  The magnitude of   

R  is then 

  
R = 2Acos

θ
2

⎛
⎝⎜

⎞
⎠⎟ .  This can be seen by applying the 
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law of cosines to the isosceles triangle and using the fact that B = A. 
Again,   


A ,   −


B , and   


D =


A −

B  form an isosceles triangle with apex 

angle θ. Applying the law of cosines and the identity 	  
   

 
1− cosθ = 2sin2 θ

2
⎛
⎝⎜

⎞
⎠⎟

 

 gives the magnitude of   

D  as 

  
D = 2Asin

θ
2

⎛
⎝⎜

⎞
⎠⎟ . 	  

 The problem requires that R = nD or 	  

    
  
cos

θ
2

⎛
⎝⎜

⎞
⎠⎟ = nsin

θ
2

⎛
⎝⎜

⎞
⎠⎟  giving θ = 2 tan−1 1

n
⎛
⎝⎜

⎞
⎠⎟ .  	  

 The larger R is to be compared to D, the smaller the angle between   

A  

and   

B  becomes.	  

P3.61 (a) We write   

B  in terms of the sine and cosine of the angle  θ ,  and 

add the two vectors: 

   

   


A +

B = −60 cmĵ( ) + 80 cm cosθ( ) î + 80 cm sinθ( ) ĵ


A +

B = 80 cm cosθ( ) î + 80 cm sinθ − 60 cm( ) ĵ

 

  Dropping units (cm), the magnitude is  
   

   


A +

B = 80 cosθ( )2 + 80 sinθ − 60( )2⎡⎣ ⎤⎦

1/2

= 80( )2 cos2θ + sin2θ( )− 2 80( ) 60( )sinθ + 60( )2⎡⎣ ⎤⎦
1/2


A +

B = 80( )2 + 60( )2 − 2 80( ) 60( )sinθ⎡⎣ ⎤⎦

1/2


A +

B = 10,000− 9600( )sinθ[ ]1/2  cm

 

 (b) For 
   
θ = 270°,  sinθ = −1,  and 


A +

B = 140 cm .  

 (c) For 
   
θ = 90°,  sinθ = 1,  and 


A +

B = 20.0 cm .  

 (d) 

   

They do make sense. The maximum value is attained when 

A

and 

B are in the same direction, and it is 60 cm + 80 cm. The 

minimum value is attained when 

A and 


B are in opposite 

directions, and it is 80 cm – 60 cm.
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P3.62 We perform the integration: 
  

    

Δr = 
v dt =

0

0.380 s
∫ 1.2î m/s − 9.8tĵ m/s2( )dt

0

0.380 s
∫

= 1.2t î m/s
0

0.380 s
− 9.8 ĵ m/s2( ) t2

2 0

0.380 s

= 1.2î m/s( ) 0.38 s − 0( )− 9.8 ĵ m/s2( ) 0.38 s( )2 − 0
2

⎛
⎝⎜

⎞
⎠⎟

= 0.456î m − 0.708 ĵ m

 

P3.63 (a) 
    

d

r

dt
=

d 4î + 3 ĵ− 2tk̂( )
dt

= −2k̂ = − 2.00 m/s( )k̂  

 (b) The position vector at t = 0 is   4î + 3 ĵ.  At t = 1 s, the position is 

  4î + 3 ĵ − 2k̂,  and so on. The object is moving straight downward 

at 2 m/s, so 
    

d

r

dt
 represents its velocity vector .  

P3.64 (a) The very small differences 
between the angles suggests 
we may consider this region of 
Earth to be small enough so 
that we may consider it to be 
flat (a plane); therefore, we 
may consider the lines of 
latitude and longitude to be 
parallel and perpendicular, so 
that we can use them as an xy 
coordinate system. Values of 
latitude, θ, increase as we 
travel north, so differences 
between latitudes can give the y coordinate. Values of longitude, 
φ, increase as we travel west, so differences between longitudes 
can give the x coordinate. Therefore, our coordinate system will 
have +y to the north and +x to the west.  

  Since we are near the equator, each line of latitude and longitude 
may be considered to form a circle with a radius equal to the 
radius of Earth, R = 6.36 × 106 m. Recall the length s of an arc of a 
circle of radius R that subtends an angle (in radians) Δθ (or Δφ) is 
given by   s = RΔθ  (or s = RΔφ).  We can use this equation to find 
the components of the displacement from the starting point to the 
tree—these are parallel to the x and y coordinates axes. Therefore, 

ANS. FIG. P3.64 
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ANS. FIG. P3.65 

we can regard the origin to be the starting point and the 
displacements as the x and y coordinates of the tree.  

  The angular difference Δφ for longitude values is (west being 
positive) 

   

 

Δφ = 75.64426°− 75.64238°[ ]
= 0.00188°( ) π  rad/180°( )
= 3.28× 10−5  rad

 

  corresponding to the x coordinate (displacement west) 
   

  x = RΔφ = 6.36× 106  m( ) 3.28× 10−5  rad( ) = 209 m
  

  The angular difference Δθ for latitude values is (north being 
positive)  

   

 

Δθ = 0.00162°− −0.00243°( )[ ]
= 0.00405°( ) π  rad/180°( )
= 7.07 × 10−5  rad

 

  corresponding to the y coordinate (displacement north) 
   

  y = RΔθ = 6.36× 106  m( ) 7.07 × 10−5  rad( ) = 450 m
 

  The distance to the tree is  
   

  d = x2 + y2 = 209 m( )2 + 450 m( )2 = 496 m
 

  The direction to the tree is  
   

  
tan−1 y

x
⎛
⎝⎜

⎞
⎠⎟ = tan−1 450 m

209 m
⎛
⎝⎜

⎞
⎠⎟ = 65.1° = 65.1° N of W

 

 (b) 

 

Refer to the arguments above. They are justified because the 
distances involved are small relative to the radius of Earth.

 

P3.65 (a) From the picture, 
    


R1 = aî + bĵ. 	  

 (b) 
  
R1 = a2 + b2 	  

 (c) 
    


R2 =


R1 + ck̂ = aî + bĵ + ck̂ 	  
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P3.66 Since 	  

      

A +

B = 6.00 ĵ, 	  

 we have 	  

   
   

Ax + Bx( ) î + Ay + By( ) ĵ = 0î + 6.00 ĵ 	  

 giving   Ax + Bx = 0→ Ax = −Bx . 	  

 Because the vectors have the same magnitude and x components of 
equal magnitude but of opposite sign, the vectors are reflections of 
each other in the y axis, as shown in the diagram. Therefore, the two 
vectors have the same y components: 	  

   Ay = By = (1/2)(6.00) = 3.00	  

 Defining θ as the angle between either   

A  or   


B  and the y axis, it is seen 

that 	  
   

  
cosθ =

Ay

A
=

By

B
=

3.00
5.00

= 0.600 →θ = 53.1°
	  

 The angle between   

A  and   


B  is then 

 
φ = 2θ = 106° . 	  

 
 

 

Challenge Problem 

P3.67 (a) You start at point 
    
A: 

r1 = rA = 30.0î − 20.0 ĵ( )  m. 	  

  The displacement to B is 	  
   

    

rB −

rA = 60.0î + 80.0 ĵ − 30.0î + 20.0 ĵ = 30.0î + 100 ĵ 	  

  You cover half of this, 
  
15.0î + 50.0 ĵ( ) ,  to move to	  

   
   

r2 = 30.0î − 20.0 ĵ + 15.0î + 50.0 ĵ = 45.0î + 30.0 ĵ 	  

  Now the displacement from your current position to C is 	  
   

    

rC − r2 = −10.0î − 10.0 ĵ − 45.0î − 30.0 ĵ = −55.0î − 40.0 ĵ 	  

  You cover one-third, moving to	  
    

   


r3 = r2 + Δr23 = 45.0î + 30.0 ĵ +

1
3

−55.0î − 40.0 ĵ( ) = 26.7 î + 16.7 ĵ
	  

ANS. FIG. P3.66 
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 The displacement from where you are to D is	  
    

    

rD − r3 = 40.0î − 30.0 ĵ − 26.7 î − 16.7 ĵ = 13.3î − 46.7 ĵ 	  

  You traverse one-quarter of it, moving to	  
   

    


r4 = r3 +

1
4

rD − r3( ) = 26.7 î + 16.7 ĵ +

1
4

13.3î − 46.7 ĵ( )
= 30.0î + 5.00 ĵ

	  

  The displacement from your new location to E is	  

       

rE −

r4 = −70.0î + 60.0 ĵ − 30.0î − 5.00 ĵ = −100î + 55.0 ĵ 	  

of which you cover one-fifth the distance,   −20.0î + 11.0 ĵ,   
moving to	  

   
   

r4 + Δr45 = 30.0î + 5.00 ĵ − 20.0î + 11.0 ĵ = 10.0î + 16.0 ĵ 	  

  The treasure is at 
 

10.0 m, 16.0 m( ) . 	  

 (b) Following the directions brings you to the average position of the 
trees. The steps we took numerically in part (a) bring you to	  

   
    


rA +

1
2

rB −

rA( ) =


rA + rB

2
⎛
⎝⎜

⎞
⎠⎟ 	  

  then to	  

   
    


rA + rB( )

2
+

rC − rA + rB( )/ 2

3
=

rA + rB + rC

3
	  

  then to	  
   

    


rA + rB + rC( )

3
+

rD − rA + rB + rC( )/ 3

4
=

rA + rB + rC + rD

4

	  

  and last to	  

   

    


rA + rB + rC + rD( )

4
+

rE −


rA + rB + rC + rD( )/ 4

5

                                                  =

rA + rB + rC + rD + rE

5

	  

  
 

This center of mass of the tree distribution is the same location
whatever order we take the trees in.
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P3.2 (a) 2.31; (b) 1.15 

P3.4 (a) (2.17, 1.25) m, (−1.90, 3.29) m; (b) 4.55m 

P3.6 (a) r, 180° – θ; (b) 180° + θ ; (c) –θ 

P3.8   

B  is 43 units in the negative y direction 

P3.10 9.5 N, 57° above the x axis 

P3.12 (a) See ANS. FIG. P3.12; (b) The sum of a set of vectors is not affected 
by the order in which the vectors are added. 

P3.14 310 km at 57° S of W 

P3.16 Ax = 28.7 units, Ay = –20.1 units 

P3.18 1.31 km north and 2.81 km east 

P3.20 (a) 5.00 blocks at 53.1° N of E; (b) 13.00 blocks 

P3.22 
  
2.60î + 4.50 ĵ( )  m  

P3.24 788 miles at 48.0° northeast of Dallas 

P3.26 (a) See ANS. FIG. P3.24; (b)  5.00î + 4.00 ĵ,−1.00î + 8.00 ĵ;  (c) 6.40 at 38.7°, 
8.06 at 97.2° 

P3.28 (a) Its component parallel to the surface is (1.50 m) cos 141° = −1.17 m, 
or 1.17 m toward the top of the hill; (b) Its component perpendicular to 
the surface is (1.50 m) sin 141° = 0.944 m, or 0.944 m away from the 
snow. 

P3.30 42.7 yards 

P3.32   Cx = 7.30 cm; Cy = −7.20 cm  

P3.34 59.2° with the x axis, 39.8° with the y axis, 67.4° with the z axis 

P3.36 (a)   5.00î − 1.00 ĵ− 3.00k̂, 5.92 m; (b)   (4.00î − 11.0 ĵ + 15.0k̂) m, 19.0) m  

P3.38 (a)   49.5î + 27.1ĵ; (b) 56.4, 28.7° 

P3.40 magnitude: 170.1 cm, direction: 57.2° above +x axis (first quadrant); 
magnitude: 145.7 cm, direction: 58.6° above +x axis (first quadrant) 

P3.42 (a) 
  
3.12î+ 5.02 ĵ −2.20k̂( )km;  (b) 6.31 km 

P3.44 Impossible because 12.4 m is greater than 5.00 m 
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P3.46 (a)    5 = 11 f( ) î + 3 + 9 f( ) ĵ  meters; (b)   5 + 0( ) î + 3 + 0( ) ĵ  meters; (c) This 

is reasonable because it is the location of the starting point,   5î + 3 ĵ  

meters. (d)   16î + 12 ĵ  meters; (e) This is reasonable because we have 
completed the trip, and this is the position vector of the endpoint. 

P3.48 2.24 m, 26.6° 

P3.50 390 mi/h at 7.37° N of E 

P3.52 86.6 m, –50.0 m 

P3.54 2.29 km 

P3.56 (a) The perimeter measures 2(H + W) = 11.24 m; (b) magnitude: 12.9 m, 
direction: 36.4° above +x axis (first quadrant) 

P3.58 (a) 7.17 km; (b) 6.15 km 

P3.60 
  
θ = 2 tan−1 1

n
⎛
⎝⎜

⎞
⎠⎟

 

P3.62   0.456î m − 0.708 ĵ m  

P3.64 (a) 496 m, 65.1° N of W; (b) The arguments are justified because the 
distances involved are small relative to the radius of the Earth. 

P3.66  φ = 2θ = 106°  
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4 
Motion in Two Dimensions 

 

CHAPTER OUTLINE 
 

4.1 The Position, Velocity, and Acceleration Vectors 

4.2 Two-Dimensional Motion with Constant Acceleration 

4.3 Projectile Motion 

4.4 Analysis Model: Particle in Uniform Circular Motion 

4.5 Tangential and Radial Acceleration 

4.6 Relative Velocity and Relative Acceleration 

 

 * An asterisk indicates an item new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ4.1 The car’s acceleration must have an inward component and a forward 
component: answer (e). Another argument: Draw a final velocity 
vector of two units west. Add to it a vector of one unit south. This 
represents subtracting the initial velocity from the final velocity, on the 
way to finding the acceleration. The direction of the resultant is that of 
vector (e). 

OQ4.2 (i) The 45° angle means that at point A the horizontal and vertical 
velocity components are equal. The horizontal velocity component is 
the same at A, B, and C. The vertical velocity component is zero at B 
and negative at C. The assembled answer is a = b = c > d = 0 > e. 

 (ii) The x component of acceleration is everywhere zero and the y 
component is everywhere −9.80 m/s2. Then we have a = c = 0 > b = d = e. 

OQ4.3 Because gravity pulls downward, the horizontal and vertical motions 
of a projectile are independent of each other. Both balls have zero 
initial vertical components of velocity, and both have the same vertical 
accelerations, –g; therefore, both balls will have identical vertical 
motions: they will reach the ground at the same time. Answer (b). 
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OQ4.4 The projectile on the moon is in flight for a time interval six times 
larger, with the same range of vertical speeds and with the same 
constant horizontal speed as on Earth. Then its maximum altitude is 
(d) six times larger. 

OQ4.5 The acceleration of a car traveling at constant speed in a circular path 
is directed toward the center of the circle. Answer (d). 

OQ4.6 The acceleration of gravity near the surface of the Moon acts the same 
way as on Earth, it is constant and it changes only the vertical 
component of velocity. Answers (b) and (c).  

OQ4.7 The projectile on the Moon is in flight for a time interval six times 
larger, with the same range of vertical speeds and with the same 
constant horizontal speed as on Earth. Then its range is (d) six times 
larger.  

OQ4.8 Let the positive x direction be that of the girl’s motion. The x 
component of the velocity of the ball relative to the ground is (+5 – 12) 
m/s = −7 m/s. The x-velocity of the ball relative to the girl is (−7 – 8) 
m/s = −15 m/s. The relative speed of the ball is +15 m/s, answer (d). 

OQ4.9 Both wrench and boat have identical horizontal motions because 
gravity influences the vertical motion of the wrench only. Assuming 
neither air resistance nor the wind influences the horizontal motion of 
the wrench, the wrench will land at the base of the mast. Answer (b). 

OQ4.10 While in the air, the baseball is a projectile whose velocity always has a 
constant horizontal component (vx = vxi) and a vertical component that 
changes at a constant rate (  Δvy /Δt = ay = −g ).  At the highest point on 
the path, the vertical velocity of the ball is momentarily zero. Thus, at 
this point, the resultant velocity of the ball is horizontal and its 
acceleration continues to be directed downward (ax = 0, ay = –g). The 
only correct choice given for this question is (c). 

OQ4.11 The period T = 2π r/v changes by a factor of 4/4 = 1. The answer is (a). 

OQ4.12 The centripetal acceleration a = v2/r becomes (3v)2/(3r) = 3v2/r, so it is 
3 times larger. The answer is (b). 

OQ4.13 (a) Yes (b) No: The escaping jet exhaust exerts an extra force on the 
plane. (c) No (d) Yes (e) No: The stone is only a few times more dense 
than water, so friction is a significant force on the stone. The answer is 
(a) and (d). 

OQ4.14 With radius half as large, speed should be smaller by a factor of  1 2 ,  

so that a = v2/r can be the same. The answer is (d). 
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ4.1 A parabola results, because the originally forward velocity component 
stays constant and the rocket motor gives the spacecraft constant 
acceleration in a perpendicular direction. These are the same 
conditions for a projectile, for which the velocity is constant in the 
horizontal direction and there is a constant acceleration in the 
perpendicular direction. Therefore, a curve of the same shape is the 
result.  

CQ4.2 The skater starts at the center of the eight, goes clockwise around the 
left circle and then counterclockwise around the right circle. 

 

CQ4.3 No, you cannot determine the instantaneous velocity because the 
points could be separated by a finite displacement, but you can 
determine the average velocity. Recall the definition of average 
velocity: 

  
    


vavg =

Δx
Δt

 

CQ4.4 (a) On a straight and level road that does not curve to left or right. 
(b) Either in a circle or straight ahead on a level road. The acceleration 
magnitude can be constant either with a nonzero or with a zero value. 

CQ4.5 (a) Yes, the projectile is in free fall. (b) Its vertical component of 
acceleration is the downward acceleration of gravity. (c) Its horizontal 
component of acceleration is zero. 

CQ4.6 (a)  

 (b)  

CQ4.7 (a) No. Its velocity is constant in magnitude and direction. (b) Yes. The 
particle is continuously changing the direction of its velocity vector. 

 



134     Motion in Two Dimensions 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

ANS. FIG. P4.1 

 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 4.1 The Position, Velocity, and Acceleration Vectors	  
P4.1 We must use the method of vector addition and 

the definitions of average velocity and of average 
speed.  

 (a) For each segment of the motion we model 
the car as a particle under constant velocity. 
Her displacements are 

   

   


R =  (20.0 m/s)(180 s) south

+ (25.0 m/s)(120 s) west
+ (30.0 m/s)(60.0 s) northwest

 

   Choosing  î = east and ̂j = north,  we have  

   

   


R = (3.60 km)(− ĵ) + (3.00 km)(− î) + (1.80 km)cos 45°(− î)

                                  + (1.80 km)sin 45°( ĵ)

 

   

   


R = (3.00 + 1.27) km(– î) + (1.27 − 3.60) km( ĵ)

= (–4.27 î – 2.33 ĵ) km

 

  The answer can also be written as 
  

   

R = (−4.27 km)2 + (−2.33 km)2 = 4.87 km

  

  

 
at tan−1 2.33

4.27
⎛
⎝⎜

⎞
⎠⎟ = 28.6°

 

  or 
 
4.87 km at 28.6° S of W  

 (b) The total distance or path length traveled is  
(3.60 + 3.00 + 1.80) km = 8.40 km, so 

   

 
average speed = 8.40 km

6.00 min
⎛
⎝⎜

⎞
⎠⎟

1.00 min
60.0 s

⎛
⎝⎜

⎞
⎠⎟

1 000 m
km

⎛
⎝⎜

⎞
⎠⎟ = 23.3 m/s

 

 (c) 
   
Average velocity =

4.87 × 103 m
360 s

= 13.5 m/s along

R  

P4.2 The sun projects onto the ground the x component of the hawk’s 
velocity: 

   
 5.00 m/s( )cos −60.0°( ) = 2.50 m/s
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*P4.3 (a) For the average velocity, we have 

   

    


vavg = x 4.00( ) − x 2.00( )

4.00 s − 2.00 s( ) î + y 4.00( ) − y 2.00( )
4.00 s − 2.00 s

⎛
⎝

⎞
⎠ ĵ

= 5.00 m − 3.00 m
2.00 s( ) î + 3.00 m − 1.50 m

2.00 s( ) ĵ
  

   
   


vavg = 1.00î + 0.750 ĵ( )  m/s  

 (b) For the velocity components, we have  

   
  
vx = dx

dt
= a = 1.00 m/s  

  and 
  
vy = dy

dt
= 2ct = 0.250 m/s2( )t  

  Therefore,  

       

v = vx î + vy ĵ = 1.00 m/s( ) î + 0.250 m/s2( )t ĵ  

   
    

v t = 2.00 s( ) = 1.00 m/s( ) î + 0.500 m/s( ) ĵ  

  and the speed is 

   
    

v t = 2.00 s( ) = 1.00 m/s( )2 + 0.500 m/s( )2 = 1.12 m/s  

P4.4 (a) From   x = −5.00sinωt,  we determine the components of the 
velocity by taking the time derivatives of x and y: 

    
  
vx =

dx
dt

=
d
dt

⎛
⎝⎜

⎞
⎠⎟ (−5.00sinωt) = −5.00ω cosωt  

  and 
  
vy = dy

dt
= d

dt
⎛
⎝⎜

⎞
⎠⎟ (4.00− 5.00 cosωt) = 0 + 5.00ω sinωt  

  At t = 0, 
    

   

v = –5.00ω cos0( ) î + 5.00ω sin 0( ) ĵ = −5.00ω î m/s

 

 (b) Acceleration is the time derivative of the velocity, so  
    

  
ax = dvx

dt
= d

dt
−5.00ω cosωt( ) = +5.00ω 2 sinωt

 

  and 
  
ay =

dvy

dt
= d

dt
⎛
⎝⎜

⎞
⎠⎟ (5.00ω sinωt) = 5.00ω 2 cosωt  

  At t = 0, 
    

   

a = 5.00ω 2 sin 0( ) î + 5.00ω 2 cos0( ) ĵ = 5.00ω 2 ĵ m/s2
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 (c) 
    

r = xî + yĵ = (4.00 m)ĵ + (5.00 m)(− sinωtî − cosωtĵ)  

  
    


v = 5.00 m( )ω − cosω t î + sinω t ĵ⎡⎣ ⎤⎦  

  
    


a = (5.00 m)ω 2 sinωtî + cosωtĵ⎡⎣ ⎤⎦  

 (d) 

 

the object moves in a circle of radius 5.00 m 
centered at (0, 4.00 m)

 

P4.5 (a) The x and y equations combine to give us the expression for    

r :   

   

    


r = 18.0tî + 4.00t − 4.90t2( ) ĵ,  where 


r  is in meters 

and t is in seconds.

 

 (b) We differentiate the expression for   

r  with respect to time: 

   

    


v = d


r

dt
= d

dt
18.0tî + 4.00t − 4.90t2( ) ĵ⎡⎣ ⎤⎦

= d
dt

18.0t( ) î + d
dt

4.00t − 4.90t2( ) ĵ

  

   

    


v = 18.0î + 4.00− (9.80)t[ ] ĵ,  where 


v  is in meters per second

and t is in seconds.

 

 (c) We differentiate the expression for   

v  with respect to time: 

   

    


a = d


v

dt
= d

dt
18.0î + 4.00− (9.80)t[ ] ĵ{ }

= d
dt

18.0( ) î + d
dt

4.00− (9.80)t[ ] ĵ

  

   
   

a = −9.80 ĵ m/s2  

 (d) By substitution,  

   
   

r(3.00 s) = (54.0 m)î − (32.l m)ĵ  

   
   

v(3.00 s) = (18.0 m/s)î − (25.4 m/s)ĵ  

   
   

a(3.00s) = (−9.80 m/s2 )ĵ  
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Section 4.2 Two-Dimensional Motion with Constant 

 Acceleration	  
P4.6 We use the vector versions of the kinematic equations for motion in 

two dimensions. We write the initial position, initial velocity, and 
acceleration of the particle in vector form: 

       

a = 3.00 ĵ m/s2 ;


v i = 5.00î m/s;


ri = 0î + 0 ĵ  

 (a) The position of the particle is given by Equation 4.9: 

   

    


rf = ri + v it + 1

2

at2 = 5.00 m/s( )tî + 1

2
(3.00 m/s2 )t2 ĵ

= 5.00tî + 1.50t2 ĵ

 

  where r is in m and t in s. 

 (b) The velocity of the particle is given by Equation 4.8: 

   
    

v f = v ii + at = 5.00î + 3.00t ĵ  

  where v is in m/s and t in s.  

 (c) To obtain the particle’s position at t = 2.00 s, we plug into the 
equation obtained in part (a): 

   

    


rf = 5.00 m/s( )(2.00 s)î + 1.50 m/s2( )(2.00 s)2 ĵ

= 10.0î + 6.00 ĵ( )  m

 

  so   x f = 10.0 m , y f = 6.00 m  

 (d) To obtain the particle’s speed at t = 2.00 s, we plug into the 
equation obtained in part (b): 

   

    


v f = v i + at = 5.00 m/s( ) î + 3.00 m/s2( )(2.00 s) ĵ

= 5.00 î + 6.00 ĵ( )  m/s

 

   
  
v f = vxf

2 + vyf
2 = (5.00 m/s)2 + (6.00 m/s)2 = 7.81 m/s

 

P4.7 (a) We differentiate the equation for the vector position of the 
particle with respect to time to obtain its velocity: 

   
    


v =

d

r

dt
=

d
dt

⎛
⎝⎜

⎞
⎠⎟ 3.00î − 6.00t2 ĵ( ) = −12.0t ĵ m/s  
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 (b) Differentiating the expression for velocity with respect to time 
gives the particle’s acceleration: 

   
    


a =

d

v

dt
=

d
dt

⎛
⎝⎜

⎞
⎠⎟ −12.0t ĵ( ) = −12.0 ĵ m/s2  

 (c) By substitution, when t = 1.00 s,  

   
   

r = 3.00î − 6.00 ĵ( )m; 


v = −12.0 ĵ m/s  

*P4.8 (a) For the x component of the motion we have 
  
x f = xi + vxit + 1

2
axt

2 .  

   

  

0.01 m = 0 + 1.80 × 107  m/s( )t + 1
2

8 × 1014  m/s2( )t2

4 × 1014  m/s2( )t2 + 1.80 × 107  m/s( )t − 10−2  m = 0
 

   

  

t = 1
2 4× 1014 m s2( )

⎛
⎝⎜

⎞
⎠⎟

−1.80× 107  m/s⎡
⎣⎢

        ± 1.8× 107  m/s( )2 − 4 4× 1014  m/s2( ) −10−2 m( ) ⎤
⎦⎥

= −1.8× 107 ± 1.84× 107  m/s
8× 1014  m/s2

 

  We choose the + sign to represent the physical situation: 

   
  
t = 4.39 × 105  m/s

8 × 1014  m/s2 = 5.49 × 10−10  s  

  Here 

   

  

y f = yi + vyit + 1
2

ayt
2

= 0 + 0 + 1
2

1.6 × 1015 m s2( ) 5.49 × 10−10  s( )2

= 2.41× 10−4  m

 

  So, 
    


rf = 10.0 î + 0.241 ĵ( )  mm  

 (b) 

    


v f = v i + at

= 1.80× 107 î m/s

           + 8× 1014 î m/s2 + 1.6× 1015 ĵ m/s2( ) 5.49× 10−10  s( )
= 1.80× 107  m/s( ) î + 4.39× 105  m/s( ) î + 8.78× 105  m/s( ) ĵ

= 1.84× 107  m/s( ) î + 8.78× 105  m/s( ) ĵ
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 (c) 
    

v f = 1.84 × 107  m/s( )2 + 8.78 × 105  m/s( )2 = 1.85 × 107  m/s  

 (d) 
  
θ = tan−1 vy

vx

⎛
⎝⎜

⎞
⎠⎟

= tan−1 8.78 × 105

1.84 × 107
⎛
⎝⎜

⎞
⎠⎟

= 2.73°  

P4.9 Model the fish as a particle under constant acceleration. We use our 
old standard equations for constant-acceleration straight-line motion, 
with x and y subscripts to make them apply to parts of the whole 
motion. At t = 0, 

   
    

v i = 4.00î + 1.00 ĵ( )  m/s and r̂ i = (10.00î − 4.00 ĵ) m

 

 At the first “final” point we consider, 20.0 s later,  

       

v f = (20.0î − 5.00 ĵ) m/s  

 (a) 
  
ax =

Δvx

Δt
=

20.0 m/s − 4.00 m/s
20.0 s

= 0.800 m/s2  

  

  
ay =

Δvy

Δt
=
−5.00 m/s − 1.00 m/s

20.0 s
= −0.300 m/s2

 

 (b) 
  
θ = tan−1 −0.300 m/s2

0.800 m/s2

⎛
⎝⎜

⎞
⎠⎟

= −20.6° = 339° from + x axis  

 (c) At t = 25.0 s the fish’s position is specified by its coordinates and 
the direction of its motion is specified by the direction angle of its 
velocity: 

   

  

x f = xi + vxit +
1
2

axt
2

= 10.0 m + 4.00 m/s( )(25.0 s) +
1
2

(0.800 m/s2 )(25.0 s)2

= 360 m

 

   

  

y f = yi + vyit +
1
2

ayt
2

= −4.00 m + 1.00 m/s( )(25.0 s) +
1
2

(−0.300 m/s2 )(25.0 s)2

= −72.7 m

 

   

  

vxf = vxi + axt = 4.00 m/s + 0.800 m/s2( )(25.0 s) = 24 m/s

vyf = vyi + ayt = 1.00 m/s − 0.300 m/s2( )(25.0 s) = −6.50 m/s

θ = tan−1 vy

vx

⎛
⎝⎜

⎞
⎠⎟

= tan−1 −6.50 m/s
24.0 m/s

⎛
⎝⎜

⎞
⎠⎟

= −15.2°
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P4.10 The directions of the position, velocity, and acceleration vectors are 
given with respect to the x axis, and we know that the components of a 
vector with magnitude A and direction θ are given by Ax = A cosθ and 
Ay = A sinθ ; thus we have 

   
    

ri = 29.0 cos 95.0° î + 29.0 sin 95.0° ĵ = –2.53 î + 28.9 ĵ  

   
    

v i = 4.50 cos 40.0° î + 4.50 sin 40.0° ĵ = 3.45 î + 2.89 ĵ  

      

a = 1.90 cos 200° î + 1.90 sin 200° ĵ = –1.79 î + –0.650 ĵ  

 where   

r  is in m,   


v  in m/s,   


a  in m/s2, and t in s. 

 (a) From     

v f = v i + at,  

   
    

v f = 3.45 − 1.79t( ) î + 2.89 − 0.650t( ) ĵ  

  where   

v  in m/s and t in s. 

 (b) The car’s position vector is given by 
   

    


rf = ri + v it + 1

2

at2

= (–2.53 + 3.45t + 1
2

(–1.79)t2 )î + (28.9 + 2.89t + 1
2

(–0.650)t2 )ĵ

 

   

    

rf = (−2.53 + 3.45t − 0.893t2 )î + (28.9 + 2.89t − 0.325t2 )ĵ

 

  where   

r  is in m and t in s. 

 
 

 

Section 4.3 Projectile Motion	  
P4.11 At the maximum height   vy = 0,  and the time to reach this height is 

found from 

    vyf = vyi + ayt  as 
  
t =

vyf − vyi

ay

=
0 − vyi

−g
=

vyi

g
. 

 The vertical displacement that has occurred during this time is 

   
  
Δy( )max = vy ,avgt =

vyf + vyi

2
⎛
⎝⎜

⎞
⎠⎟

t =
0 + vyi

2
⎛
⎝⎜

⎞
⎠⎟

vyi

g
⎛
⎝⎜

⎞
⎠⎟

=
vyi

2

2g
 

 Thus, if 
  
Δy( )max = 12 ft

1 m
3.281 ft( ) = 3.66 m,  then 

   
  vyi = 2g Δy( )max = 2 9.80 m/s2( ) 3.66 m( ) = 8.47 m/s
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 and if the angle of projection is  θ = 45° , the launch speed is 
   

  
vi =

vyi

sinθ
= 8.47 m/s

sin 45°
= 12.0 m/s

 

*P4.12 From Equation 4.13 with R = 15.0 m, vi = 3.00 m/s, and  θmax = 45.0°:  
   

  
gplanet = vi

2 sin 2θ
R

= vi
2 sin 90°

R
= 9.00 m2/s2

15.0 m
= 0.600 m/s2

 

P4.13 (a) The mug leaves the counter horizontally with a velocity vxi (say). 
If t is the time at which it hits the ground, then since there is no 
horizontal acceleration, 

     x f = vxit → t = x f /vxi → t = (1.40 m/vxi )  

  At time t, it has fallen a distance of 1.22 m with a downward 
acceleration of 9.80 m/s2. Then 

   

  

y f = yi + vyit + 1
2

ayt
2

0 = 1.22 m− (4.90 m/s2 )(1.40 m/vxi)
2

 

  Thus, 
   

  
vxi =

4.90 m/s2( )(1.40 m)2

1.22 m
= 2.81 m/s

 

 (b) The vertical velocity component with which it hits the floor is 

   
  

vyf = vyi + ayt → vyf = vyi + (−g)(1.40 m/vxi )

vyf = 0 + (−9.80 m/s2 )(1.40 m/2.81 m/s) = −4.89 m/s
 

  Hence, the angle θ at which the mug strikes the floor is given by 
   

  
θ = tan−1 vyf

vxf

⎛

⎝
⎜

⎞

⎠
⎟ = tan−1 −4.89 m/s

2.81 m/s
⎛
⎝⎜

⎞
⎠⎟

= −60.2°
 

  
  

The mug’s velocity is 60.2° below the horizontal when it strikes
the ground.

 

P4.14 The mug is a projectile from just after leaving the counter until just 
before it reaches the floor. Taking the origin at the point where the 
mug leaves the bar, the coordinates of the mug at any time t are 

   

  
x f = xi + vxit +

1
2

axt
2 → x f = 0 + vxit → x f = vxit
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 and 
   

  
y f = yi + vyit +

1
2

at2 → y f = −0 + 0 −
1
2

gt2 → y f = −
1
2

gt2
 

 (a) When the mug reaches the floor, yf = h and xf = d, so  
   

  
−h = −

1
2

gt2 → h =
1
2

gt2 → t =
2h
g

 

  is the time of impact, and 

   
 
x f = vxit → d = vxit → vxi =

d
t

 

   
  
vxi = d

g
2h

 

 (b) Just before impact, the x component of velocity is still  

   vxf = vxi 

  while the y component is 

   
  
vyf = vyi + at → vyf = 0 − gt = −g

2h
g

= − 2gh  

  Then the direction of motion just before impact is below the 
horizontal at an angle of  

   

  

θ = tan−1 vyf

vxf

= tan−1 − 2gh

d
g

2h

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

 

   
  
θ = tan−1 −2h

d
⎛
⎝⎜

⎞
⎠⎟ = − tan−1 2h

d
⎛
⎝⎜

⎞
⎠⎟

  

  because the x component of velocity is positive (forward) and the 
y component is negative (downward). 

  
  

The direction of the mug’s velocity is tan−1(2h/d) below the
horizontal.

 

P4.15 We ignore the trivial case where the angle of projection equals zero 
degrees. 

   
  
h =

vi
2 sin2θi

2g
; R =

vi
2 sin 2θi( )

g
; 3h = R  
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 so  
  
 
3vi

2 sin2θi

2g
=

vi
2(sin 2θi )

g
 

 or  
  

2
3

= sin2θ i

sin 2θ i

= tanθ i

2
 

 thus,  
  
θ i = tan−1 4

3
⎛
⎝⎜

⎞
⎠⎟ = 53.1°  

P4.16 The horizontal range of the projectile is found from   x = vxit = vi cosθ it.  
Plugging in numbers, 

   x = (300 m/s)(cos 55.0°)(42.0 s) 

   
  x = 7.23 × 103  m  

 The vertical position of the projectile is found from 

   
  
y = vyit −

1
2

gt2 = vi sinθit −
1
2

gt2  

 Plugging in numbers, 
   

  

y = (300 m/s)(sin 55.0°)(42.0 s)− 1
2

(9.80 m/s2 )(42.0 s)2

= 1.68× 103 m

 

P4.17 (a) The vertical component of the salmon’s velocity as it leaves the 
water is 

      vyi = +vi sinθ = +(6.26 m/s) sin 45.0°  +4.43 m/s  

  When the salmon returns to water level at the end of the leap, the 
vertical component of velocity will be 

      vyf = −vyi  −4.43 m/s  

  If the salmon jumps out of the water at t = 0, the time interval 
required for it to return to the water is  

   
   
Δt1 =

vyf − vyi

ay

=
−4.43 m/s − 4.43 m/s

−9.80 m/s2  0.903 s  

  The horizontal distance traveled during the leap is 
   

  

L = vxiΔti = vi cosθ( )Δti

= 6.26 m/s( )cos 45.0° 0.903 s( ) = 4.00 m
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To travel this same distance underwater, at speed v = 3.58 m/s, 
requires a time interval of 

   
   
Δt2 =

L
v

=
4.00 m

3.58 m/s
 1.12 s  

  The average horizontal speed for the full porpoising maneuver is 
then 

   
  
vavg =

Δx
Δt

=
2L

Δt1 + Δt2

=
2(4.00 m)

0.903 s + 1.12 s
= 3.96 m/s  

 (b) From (a), the total time interval for the porpoising maneuver is 
     Δt = 0.903 s + 1.12 s = 2.02 s   

  Without porpoising, the time interval to travel distance 2L is 

   
   
Δt2 =

2L
v

=
8.00 m

3.58 m/s
 2.23 s  

  The percentage difference is 

   
  

Δt1 − Δt2

Δt2

× 100% = −9.6%  

  
 
Porpoising reduces the time interval by 9.6%.  

P4.18 (a) We ignore the trivial case where the angle of projection equals 
zero degrees. Because the projectile motion takes place over level 
ground, we can use Equations 4.12 and 4.13: 

   
  
R = h→

vi
2 sin 2θi

g
=

vi
2 sin2θi

2g
 

  Expanding, 
   

  

2sin 2θ i = sin2θ i

4sinθ i cosθ i = sin2θ i

tanθ i = 4

θ i = tan−1(4) = 76.0°

  

 (b) The maximum range is attained for θi = 45°: 
   

  
R =

vi
2 sin 2(76.0°)[ ]

g
 and Rmax =

vi
2 sin 2(45.0°)[ ]

g
= vi

2

g
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  then  
   

  

Rmax =
vi

2 sin 2(76.0°)[ ]
g  sin 2(76.0°)[ ] = R

sin 2(76.0°)[ ]
Rmax = 2.13R

 

 (c) 

  

Since g  divides out, the answer is the same on 
every planet.

 

*P4.19 Consider the motion from original zero height to maximum height h: 

     vyf
2 = vyi

2 + 2ay y f − yi( )  gives   0 = vyi
2 − 2g h − 0( )  

 or    vyi = 2gh  

 Now consider the motion from the original point to half the maximum 
height: 

     vyf
2 = vyi

2 + 2ay y f − yi( )  gives 
  
vyh

2 = 2gh + 2 −g( ) 1
2

h − 0( )   

 so  
 vyh = gh  

 At maximum height, the speed is 
  
vx = 1

2
vx

2 + vyh
2 = 1

2
vx

2 + gh  

 Solving,  

   
  
vx = gh

3
 

 Now the projection angle is    

   
  
θi = tan−1 vyi

vx

= tan−1 2gh
gh/3

= tan−1 6 = 67.8°  

P4.20 (a) xf = vxit = (8.00 m/s) cos 20.0° (3.00 s) =  22.6 m  

 (b) Taking y positive downwards, 

   

  

y f = vyit +
1
2

gt2

y f =  8.00 m/s( )sin 20.0°(3.00 s) +
1
2

(9.80 m/s2 )(3.00 s)2

= 52.3 m

 

 (c) 
  
10.0 m = 8.00 m/s( )(sin 20.0°)t +

1
2

(9.80 m/s2 )t2
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  Suppressing units,  

     4.90t2 + 2.74t − 10.0 = 0  

   
  
t =

−2.74 ± 2.74( )2 + 196
9.80

= 1.18 s  

P4.21 The horizontal component of displacement is xf = vxit = (vi cosθi)t. 
Therefore, the time required to reach the building a distance d away is 

  
t =

d
vi cosθi

. At this time, the altitude of the water is  

   
  
y f = vyit +

1
2

ayt
2 = vi  sinθi

d
vi cosθi

⎛
⎝⎜

⎞
⎠⎟
−

g
2

d
vi cosθi

⎛
⎝⎜

⎞
⎠⎟

2

 

 Therefore, the water strikes the building at a height h above ground 
level of  

   
  
h = y f = d tanθi −

gd2

2vi
2 cos2θi

 

P4.22 (a) The time of flight of a water drop is given by 

   yf = yi + vyit + 
 

1
2

ayt
2 

   0 = y1 –
 

1
2

gt2 

  For t1 > 0, the root is 
  
t1 =

2y1

g
=

2(2.35 m)
9.8 m s2 = 0.693 s.  

  The horizontal range of a water drop is  

   

  

x f 1 =  xi + vxit +
1
2

axt
2

=  0 + 1.70 m/s (0.693 s) + 0 = 1.18 m
 

This is about the width of a town sidewalk, so  there is  space for 
a walkway behind the waterfall. Unless the lip of the channel is 
well designed, water may drip on the visitors. A tall or inattentive 
person may get his or her head wet. 

 (b) Now the flight time t2 is given by  
   

  
0 = y2 + 0− 1

2
gt2

2 ,  where y2 = y1

12
:
 

   
  
t2 =

2y2

g
=

2y1

g(12)
=

1
12

×
2y1

g
=

t1

12
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  From the same equation as in part (a) for horizontal range,  
x2 = v2t2, where x2 = x1/12: 

  

x2 = v2t2 →
x1

12
= v2

t1

12

v2 =
x1

t1 12
=

v1

12
=

1.70 m/s
12

= 0.491 m/s

 

  The rule that the scale factor for speed is the square root of the 
scale factor for distance is Froude’s law, published in 1870. 

P4.23 (a) From the particle under constant velocity model in the x 
direction, find the time at which the ball arrives at the goal: 

   
  
x f = xi + vit → t =

x f − xi

vxi

=
36.0 m − 0

(20 m/s) cos  53.0°
= 2.99 s  

  From the particle under constant acceleration model in the y 
direction, find the height of the ball at this time: 

   

  
y f = yi + vyit +

1
2

ayt
2

 

   yf = 0 + (20.0 m/s) sin 53.0°(2.99 s) – 
 

1
2

(9.80 m/s2)(2.99 s)2 

   yf = 3.94 m 

  Therefore, the ball clears the crossbar by  
   

 3.94 m − 3.05 m = 0.89 m  

 (b) Use the particle under constant acceleration model to find the 
time at which the ball is at its highest point in its trajectory:  

   

  
vyf = vyi − gt→ t =

vyf − vyi

g
= (20.0 m/s)sin 53.0°− 0

9.80 m s2 = 1.63 s
 

  

 

Because this is earlier than the time at which the ball reaches the
goal, the ball clears the goal on its way down.

 

P4.24 From the instant he leaves the floor until just before he lands, the 
basketball star is a projectile. His vertical velocity and vertical 
displacement are related by the equation 

  
vyf

2 = vyi
2 + 2ay y f − yi( ).  

Applying this to the upward part of his flight gives 

  0 = vyi
2 + 2 −9.80m s2( )(1.85 − 1.02) m.  From this, vyi = 4.03 m/s. [Note 

that this is the answer to part (c) of this problem.] 
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 For the downward part of the flight, the equation gives 

  vyf
2 = 0 + 2 −9.80m s2( )(0.900 − 1.85) m.  Thus, the vertical velocity just 

before he lands is vyf = –4.32 m/s. 

 (a) His hang time may then be found from vyf = vyi + ayt: 

   –4.32 m/s = 4.03 m/s + (–9.80 m/s2)t 

  or   t = 0.852 s .  

 (b) Looking at the total horizontal displacement during the leap, x = 
vxit becomes 

   2.80 m = vxi (0.852 s) 

  which yields   vxi = 3.29 m/s .  

 (c)   vyi = 4.03 m/s .  See above for proof. 

 (d) The takeoff angle is: 
  
θ = tan−1 vyi

vxi

= tan−1 4.03 m/s
3.29 m/s

⎛
⎝⎜

⎞
⎠⎟

= 50.8°  

 (e) Similarly for the deer, the upward part of the flight gives  

   
  
vyf

2 = vyi
2 + 2ay y f − yi( )  

   
  0 = vyi

2 + 2 −9.80 m s2( )(2.50 − 1.20) m  

  so vyi = 5.04 m/s 

  For the downward part,   vyf
2 = vyi

2 + 2ay(y f − yi )  yields 

   
  vyf

2 = 0 + 2 −9.80m s2( )(0.700 − 2.50) m and vyf = −5.94 m/s.  

  The hang time is then found as   vyf = vyi + ayt:   

     –5.94 m/s = 5.04 m/s + (–9.80 m/s2 )t  and 
   

  t = 1.12 s  

P4.25 (a) For the horizontal motion, we have xf = d = 24 m: 

   

  

x f = xi + vxit +
1
2

axt
2

24 m = 0 + vi cos53°( ) 2.2 s( ) + 0

vi = 18.1 m/s
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 (b) As it passes over the wall, the ball is above the street by  

   
  
y f = yi + vyit +

1
2

ayt
2  

   

  

y f = 0 + 18.1 m s( ) sin  53°( ) 2.2 s( )

                 +
1
2

−9.8 m s2( ) 2.2 s( )2 = 8.13 m

 

  So it clears the parapet by 8.13 m – 7 m =  1.13 m .  

 (c) Note that the highest point of the ball’s trajectory is not directly 
above the wall. For the whole flight, we have from the trajectory 
equation: 

   
  
y f = tanθi( )x f −

g
2vi

2 cos2θi

⎛
⎝⎜

⎞
⎠⎟

x f
2  

  or 
  
6 m = (tan 53°)x f −

9.8m s2

2(18.1 m/s)2 cos2 53°
⎛
⎝⎜

⎞
⎠⎟

x f
2  

  Solving, 
   

  0.041 2 m−1( )x f
2 − 1.33x f + 6 m = 0

 

  and, suppressing units, 
   

  
x f =

1.33 ± 1.332 − 4(0.041 2)(6)
2 0.041 2( )

 

  This yields two results: 

   xf = 26.8 m or 5.44 m 

  The ball passes twice through the level of the roof.  

  It hits the roof at distance from the wall  

   26.8 m – 24 m =  2.79 m  

P4.26 We match the given equations: 
   

  

x f = 0 + (11.2 m/s) cos  18.5°( )t

0.360 m = 0.840 m + (11.2 m/s) sin  18.5°( )t − 1
2

9.80 m s2( )t2

 

 to the equations for the coordinates of the final position of a projectile: 

   

  

x f = xi + vxit

y f = yi + vyit −
1
2

gt2
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 For the equations to represent the same functions of time, all 
coefficients must agree: xi = 0, yi = 0.840 m, vxi = (11.2 m/s) cos 18.5°,  
vyi = (11.2 m/s) sin 18.5°, and g = 9.80 m/s2. 

 (a) Then the original position of the athlete’s center of mass is the 
point with coordinates 

  
xi ,  yi( ) = (0, 0.840 m) .  That is, his original 

position has position vector    

r = 0î + 0.840 ĵ m.  

 (b) His original velocity is     

v i = (11.2 m/s) cos18.5°( ) î +  

  
(11.2 m/s) sin18.5°( ) ĵ = 11.2 m/s at 18.5°  above the x axis. 

 (c) From (4.90 m/s2) t2 – (3.55 m/s) t – 0.48 m = 0, we find the time of 
flight, which must be positive. Suppressing units,  

   
  
t =

−(−3.55) + (−3.55)2 − 4(4.90)(−0.48)
2(4.90)

= 0.841 s  

  Then xf = (11.2 m/s) cos 18.5°(0.841 s) =  8.94 m .  

P4.27 Model the rock as a projectile, moving with constant horizontal 
velocity, zero initial vertical velocity, and with constant vertical 
acceleration. Note that the sound waves from the splash travel in a 
straight line to the soccer player’s ears. The time of flight of the rock 
follows from 

   

  

y f = yi + vyit + 1
2

ayt
2

−40.0 m = 0 + 0 + 1
2

−9.80 m s2( )t2

t = 2.86 s

 

 The extra time 3.00 s – 2.86 s = 0.140 s is the time required for the 
sound she hears to travel straight back to the player. It covers distance 

    
  (343 m/s) 0.143 s = 49.0 m = x2 + (40.0 m)2  

 where x represents the horizontal distance the rock travels. Solving for 
x gives x = 28.3 m. Since the rock moves with constant speed in the x 
direction and travels horizontally during the 2.86 s that it is in flight,  

  

  

x = 28.3 m = vxit + 0t2

∴vxi =
28.3 m
2.86 s

= 9.91 m/s
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P4.28 The initial velocity components of the projectile are 

   xi = 0   and   yi = h 

   vxi = vi cosθ   and   vyi = vi sinθ 

 while the constant acceleration components are 

   ax = 0   and   ay = –g 

 The coordinates of the projectile are 
   

  

x f = xi + vxit + 1
2

axt
2 = (vi cosθ)t and

y f = yi + vyit + 1
2

ayt
2 = h + (vi sinθ)t –

1
2

gt2

 

 and the components of velocity are 

   
  

vxf = vxi + axt = vi cosθ and

vyf = vyi + ayt = vi sinθ – gt
 

 (a) We know that when the projectile reaches its maximum height,  
vyf = 0: 

   

  
vyf = vi sinθ − gt = 0→ t = vi sinθ

g

 

 (b) At the maximum height, y = hmax: 
   

  

hmax = h + vi sinθ( )t − 1
2

gt2

hmax = h + vi sinθ vi sinθ
g

− 1
2

g
vi sinθ

g
⎛
⎝⎜

⎞
⎠⎟

2

hmax = h +
vi sinθ( )2

2g

 

P4.29 (a) Initial coordinates: 
  
xi = 0.00 m, yi = 0.00 m  

 (b) Components of initial velocity: 
  
vxi = 18.0 m/s,  vyi = 0  

 (c) 

  

Free fall motion, with constant downward acceleration 

g = 9.80 m/s2.

 

 (d) 
 
Constant velocity motion in the horizontal direction.  There is no 

horizontal acceleration from gravity. 
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 (e) 
  
vxf = vxi + axt    →     vxf = vxi  

  
  
vyf = vyi + ayt    →     vyf = −gt  

 (f) 
  
x f = xi + vxit +

1
2

axt
2     →     x f = vxit  

  
  
y f = yi + vyit +

1
2

ayt
2     →     y f = −

1
2

gt2  

 (g) We find the time of impact:  
   

  

y f = − 1
2

gt2

−h = − 1
2

gt2     →     t = 2h
g

= 2(50.0 m)
9.80 m/s2 = 3.19 s

 

 (h) At impact, vxf = vxi = 18.0 m/s, and the vertical component is 

   

  

vyf = −gt

= −g
2h
g

= − 2gh = − 2(9.80 m/s2 )(50.0 m) = −31.3 m/s
 

  Thus, 

   
  
v f = vxf

2 + vyf
2 = (18.0 m/s)2 + (−31.3 m/s)2 = 36.1 m/s  

  and 
   

  
θ f = tan−1 vyf

vxf

⎛

⎝
⎜

⎞

⎠
⎟ = tan−1 −31.3

18.0
⎛
⎝⎜

⎞
⎠⎟ = −60.1°

 

  which in this case means the velocity points into the fourth 
quadrant because its y component is negative. 

P4.30 (a) When a projectile is launched with speed vi at angle θi above the 
horizontal, the initial velocity components are vxi = vi cos θi and vyi 
= vi sin θi. Neglecting air resistance, the vertical velocity when the 
projectile returns to the level from which it was launched (in this 
case, the ground) will be vy = –vyi. From this information, the total 
time of flight is found from vyf = vyi + ayt to be 

   
  
ttotal =

vyf − vyi

ay

=
−vyi − vyi

−g
=

2vyi

g
  or   ttotal =

2vi sinθi

g
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  Since the horizontal velocity of a projectile with no air resistance 
is constant, the horizontal distance it will travel in this time (i.e., 
its range) is given by 

   

  

R = vxittotal = vi cosθ i( ) 2vi sinθ i

g
⎛
⎝⎜

⎞
⎠⎟

= vi
2

g
2sinθ i cosθ i( )

=
vi

2 sin 2θ i( )
g

 

  Thus, if the projectile is to have a range of R = 81.1 m when 
launched at an angle of θi = 45.0°, the required initial speed is 

   
  
vi =

Rg
sin 2θi( ) =

81.1 m( ) 9.80m s2( )
sin 90.0°( ) = 28.2 m s  

 (b) With vi = 28.2 m/s and θi = 45.0° the total time of flight (as found 
above) will be 

   
  
ttotal =

2vi sinθi

g
=

2 28.2m s( )sin 45.0°( )
9.80m s2 = 4.07 s  

 (c) Note that at θi = 45.0°, and that sin (2θi) will decrease as θi is 
increased above this optimum launch angle. Thus, if the range is 
to be kept constant while the launch angle is increased above 

45.0°, we see from   vi = Rg sin 2θi( )  that 

 
the required initial velocity will increase .  

  Observe that for θi < 90°, the function sinθi increases as θi is 
increased. Thus, increasing the launch angle above 45.0° while 
keeping the range constant means that both vi and sinθi will 
increase. Considering the expression for ttotal given above, we see 

that 
 
the total time of flight will increase .   

P4.31 We first consider the vertical motion of the stone as it falls toward the 
water. The initial y velocity component of the stone is 

     vyi = vi sinθ = –(4.00 m/s)sin 60.0° = –3.46 m/s  

 and its y coordinate is 
   

  

y f = yi + vyit + 1
2

ayt
2 = h + (vi sinθ)t –

1
2

gt2

y f = 2.50 – 3.46t – 4.90t2
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 where y is in m and t in s. We have taken the water’s surface to be at  
y = 0. At the water,  

   4.90t2 + 3.46t – 2.50 = 0 

 Solving for the positive root of the equation, we get 

   

  

t =
−3.46 + 3.46( )2 − 4 4.90( ) −2.50( )

2 4.90( )

t =
−3.46 + 7.81

9.80
t = 0.443 s

 

 The y component of velocity of the stone when it reaches the water at 
this time t is 

     vyf = vyi + ayt = –3.46– gt = –7.81 m/s  

 After the stone enters to water, its speed, and therefore the magnitude 
of each velocity component, is reduced by one-half. Thus, the y 
component of the velocity of the stone in the water is  

     vyi = (–7.81 m/s)/2 = –3.91 m/s,  

 and this component remains constant until the stone reaches the 
bottom. As the stone moves through the water, its y coordinate is  

   

  

y f = yi + vyit + 1
2

ayt
2

y f = –3.91t

 

 The stone reaches the bottom of the pool when yf = –3.00 m: 

     y f = –3.91t = –3.00 → t = 0.767 s  

 The total time interval the stone takes to reach the bottom of the pool is 

     Δt = 0.443 s + 0.767 s = 1.21 s  

*P4.32 (a)  The time for the ball to reach the fence is 
    

  
t = Δx

vxi

= 130 m
vi cos35.0°

= 159 m
vi

  

  At this time, the ball must be   Δy = 21.0 m − 1.00 m = 20.0 m  above 
its launch position, so 

    

  
Δy = vyit + 1

2
ayt

2
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  gives 
    

  
20.0 m = vi sin 35.0°( ) 159 m

vi

⎛
⎝⎜

⎞
⎠⎟
− 1

2
9.80 m/s2( ) 159 m

vi

⎛
⎝⎜

⎞
⎠⎟

2   

  or 
    

  
159 m( )sin 35.0°− 20.0 m =

4.90 m/s2( ) 159 m( )2

vi
2

  

  from which we obtain 
    

  
vi =

4.90 m/s2( ) 159 m( )2

159 m( )sin 35.0°− 20.0 m
= 41.7 m/s

  

 (b)  From our equation for the time of flight above,  

     
  
t = 159 m

vi

= 159 m
41.7 m/s

= 3.81 s  

 (c) When the ball reaches the wall (at t = 3.81 s), 
    

  

vx = vi cos35.0° = 41.7 m/s( )cos35.0° = 34.1 m/s

vy = vi sin 35.0° + ayt

= 41.7 m/s( )sin 35.0°− 9.80 m/s2( ) 3.81 s( )
= −13.4 m/s

  

   and 
  
v = vx

2 + vy
2 = 34.1 m/s( )2 + −13.4 m/s( )2 = 36.7 m/s    

 
 

 

Section 4.4 Analysis Model: Particle in Uniform Circular 
Motion 

P4.33 Model the discus as a particle in uniform circular motion. We evaluate 
its centripetal acceleration from the standard equation proved in the 
text. 

   
  
ac =

v2

r
=

20.0 m/s( )2

1.06 m
= 377 m/s2  

 The mass is unnecessary information. 
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P4.34 Centripetal acceleration is given by 
  
a = v2

R
.  To find the velocity of a 

point at the equator, we note that this point travels through   2πRE  
(where   RE = 6.37 × 106  m  is Earth’s radius) in 24.0 hours. Then, 

   

  
v = 2πRE

T
=

2π 6.37 × 106 m( )
24 h( ) 3 600 s h( ) = 463 m s

  

 and, 

   
  

a = v2

R
=

463  m s( )2

6.37 × 106 m

= 0.033 7 m/s2  directed toward the center of Earth

 

*P4.35 Centripetal acceleration is given by 
  
ac = v2

r
.  Let f represent the rotation 

rate. Each revolution carries each bit of metal through distance   2πr,  so 

  v = 2πrf  and  

   

  
ac = v2

r
= 4π 2rf 2 = 100g

 

 A smaller radius implies smaller acceleration. To meet the criterion for 
each bit of metal we consider the minimum radius: 

   

  

f = 100g
4π 2r

⎛
⎝

⎞
⎠

1 2

= 100 ⋅9.8 m/s2

4π 2 0.021 m( )
⎛
⎝⎜

⎞
⎠⎟

1 2

= 34.4 
1
s

60 s
1 min( ) = 2.06 × 103  rev min

 

*P4.36 The radius of the tire is r = 0.500 m. The speed of the stone on its outer 
edge is  

   

  
vt = 2π r

T
= 2π 0.500 m( )

60.0 s/200 rev( )
= 10.5 m/s

 

 and its acceleration is 
   

  
a = v2

R
= 10.5 m/s( )2

0.500 m
= 219 m/s2  inward

 

P4.37 Centripetal acceleration is 
  
ac =

v2

r
→ v = acr ,  where ac = 20.0g, and 

speed v is in meters per second if r is in meters. 
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 We can convert the speed into a rotation rate, in rev/min, by using the 
relations 1 revolution = 2πr, and 1 min = 60 s: 

   

  

v = acr = acr
1 rev
2πr

⎛
⎝⎜

⎞
⎠⎟ = 1 rev

2π
ac

r

= 1 rev
2π

20.0 9.80 m/s2( )
29.0 ft

3.281 ft
1 m

⎛
⎝⎜

⎞
⎠⎟

60 s
1 min

⎛
⎝⎜

⎞
⎠⎟

= 45.0 rev/min

 

P4.38 (a) Using the definition of speed and noting that the ball travels in a 
circular path, 

   
  
v =

d
Δt

=
2πR

T
 

  where R is the radius of the circle and T is the period, that is, the 
time interval required for the ball to go around once. For the 
periods given in the problem, 

   

  

8.00 rev s → T =
1

8.00 rev s
= 0.125 s

6.00 rev s → T =
1

6.00 rev s
= 0.167 s

 

  Therefore, the speeds in the two cases are: 

   

  

8.00 rev s → v =
2π 0.600 m( )

0.125 s
= 30.2m s

6.00 rev s → v =
2π 0.900 m( )

0.167 s
= 33.9m s

 

  Therefore, 
 6.00 rev/s  gives the greater speed of the ball. 

 (b) 
  
Acceleration =

v2

r
=

9.60π  m/s( )2

0.600 m
= 1.52 × 103 m/s2 .  

 (c) At 6.00 rev/s, acceleration 
 
=

10.8π  m/s( )2

0.900 m
= 1.28 × 103  m/s2 .  So 

8 rev/s gives the higher acceleration. 

*P4.39 The satellite is in free fall. Its acceleration is due to gravity and is by 
effect a centripetal acceleration: ac = g. So  

   
  
v2

r
= g  
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ANS. FIG. P4.40 

 Solving for the velocity,  
   

  

v = rg = 6, 400 + 600( ) 103  m( ) 8.21 m/s2( )
= 7.58× 103  m/s

 

   
  
v = 2πr

T
 

 and 

   

  

T = 2π r
v

=
2π 7,000 × 103  m( )

7.58 × 103  m/s
= 5.80 × 103  s

T = 5.80 × 103  s
1 min
60 s( ) = 96.7 min

 

 
 

 

Section 4.5 Tangential and Radial Acceleration	  
P4.40 From the given magnitude and direction of the 

acceleration we can find both the centripetal 
and the tangential components. From the 
centripetal acceleration and radius we can find 
the speed in part (b). r = 2.50 m, a = 15.0 m/s2. 

 (a) The acceleration has an inward radial 
component: 

   

  

ac = a cos 30.0° = 15.0 m s2( ) cos 30°( )
= 13.0 m s2

 

 (b) The speed at the instant shown can be found by using

  
   

  

ac = v2

r
v2 = rac = 2.50 m 13.0 m/s( )

= 32.5 m2 s2

v = 32.5  m/s = 5.70 m/s

 

 (c) 

  

a2 = at
2 + ar

2

so at = a2 − ar
2 = 15.0  m s2( )2

− 13.0  m s2( )2
= 7.50 m s2
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P4.41 Since the train is changing both its speed and 
direction, the acceleration vector will be the 
vector sum of the tangential and radial 
acceleration components. The tangential 
acceleration can be found from the changing 
speed and elapsed time, while the radial 
acceleration can be found from the radius of 
curvature and the train’s speed. 

  First, let’s convert the speed units from km/h 
to m/s: 

    

  

vi = 90.0 km/h = (90.0 km/h)(103  m/km)(1 h/3600 s)
= 25.0 m/s

 

   

  

v f = 50.0 km/h = (50.0 km/h)(103  m/km)(1 h/3600 s)

= 13.9 m/s

 

  The tangential acceleration and radial acceleration are, respectively, 
     

  
at = Δv

Δt = 13.9 m/s – 25.0 m/s
15.0 s = – 0.741 m/s2     (backward)

  

  and   
  
ar = v2

r = (13.9 m/s)2

150 m = 1.29 m/s    (inward)  

 so  
  
a = ac

2 + at
2 = 1.29 m/s2( )2

+ −0.741 m/s2( )2
= 1.48 m/s2  

 at an angle of  
   

  
tan−1 at

ac

⎛
⎝⎜

⎞
⎠⎟

= tan−1 0.741 m/s2

1.29 m/s2

⎛
⎝⎜

⎞
⎠⎟

= 29.9°
 

 therefore, 
   

a = 1.48 m/s2 inward and 29.9° backward  

P4.42 (a) See ANS. FIG. P4.42. 

 (b) The components of the 20.2 m/s2 and the  
22.5 m/s2 accelerations along the rope together  
constitute the centripetal acceleration: 

   

  

ac = 22.5 m s2( ) cos 90.0° − 36.9°( )
          + 20.2 m s2( ) cos 36.9° = 29.7  m s2

 

 (c) 
  
ac =

v2

r
so v = acr = 29.7 m/s2 (1.50 m) = 6.67 m/s  tangent to 

the circle. 

ANS. FIG. P4.41 

ANS. FIG. P4.42 
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P4.43 The particle’s centripetal acceleration is v2/r = (3 m/s)2/2 m =  
4.50 m/s2. The total acceleration magnitude can be larger than or equal 
to this, but not smaller. 

 (a) 

 

Yes. The particle can be either speeding up or slowing down,
with a tangential component of acceleration of magnitude

62 − 4.52 = 3.97 m/s.

 

 (b) 

  

No. The magnitude of the acceleration cannot be less than

v2/r = 4.5 m/s2.

 

 
 

 

Section 4.6 Relative Velocity and Relative Acceleration	  
*P4.44 The westward speed of the airplane is the horizontal component of its 

velocity vector, and the northward speed of the wind is the vertical 
component of its velocity vector, which has magnitude and direction 
given by 

    
v = 150 km/h( )2 + 30.0 km/h( )2 = 153 km/h  

  

 
θ = tan−1 30.0 km/h

150 km/h
⎛
⎝

⎞
⎠ = 11.3° north of west

 

P4.45 The airplane (AP) travels through the air (W) that can move relative to 
the ground (G). The airplane is to make a displacement of 750 km 
north. Treat north as positive y and west as positive x.  

 (a) The wind (W) is blowing at 35.0 km/h, south. The northern 
component of the airplane’s velocity relative to the ground is  

   

  

(vAP,G)y = (vAP,W )y + (vW,G)y = 630 km/h− 35.0 km/h

= 595 km/h

 

  We can find the time interval the airplane takes to travel 750 km 
north: 

   

  

Δy = vAP,G( )
y
Δt →

Δt =
Δy

vAP,G( )
y

=
750 km

595km h
= 1.26 h
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 (b) The wind (W) is blowing at 35.0 km/h, north. The northern 
component of the airplane’s velocity relative to the ground is  

   

  

(vAP,G)y = (vAP,W )y + (vW,G)y = 630 km/h + 35.0 km/h

= 665 km/h

 

  We can find the time interval the airplane takes to travel 750 km 
north:  

   

  

Δt =
Δy

vAP,G( )
y

=
750 km

665km h
= 1.13 h  

 (c) Now, the wind (W) is blowing at 35.0 km/h, east. The airplane 
must travel directly north to reach its destination, so it must head 
somewhat west and north so that the east component of the 
wind’s velocity is cancelled by the airplane’s west component of 
velocity. If the airplane heads at an angle θ  measured west of 
north, then  

   

  

(vAP,G)x = (vAP,W )x + (vW,G)x

= (630 km/h)sinθ + (− 35.0 km/h) = 0

 

   
 sinθ = 35.0/630→θ = 3.18°  

  The northern component of the airplane’s velocity relative to the 
ground is  

   

  

(vAP,G)y = (vAP,W )y + (vW,G)y = (630 km/h)cos3.18° + 0

= 629 km/h

 

  We can find the time interval the airplane takes to travel 750 km 
north:  

   

  

Δt =
Δy

vAP,G( )
y

=
750 km

629km h
= 1.19 h  

P4.46 Consider the direction the first beltway (B1) moves to be the positive 
direction. The first beltway moves relative to the ground (G) with 
velocity vB1,G = v1. 

 (a) The woman’s velocity relative to the ground is vWG = vW,B1 + vB1,G = 
v1 + 0 = v1. The time interval required for the woman to travel 
distance L relative to the ground is  

   
  
Δtwoman =

L
v1
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 (b) The man’s (M) velocity relative to the ground is vMG = vM,B1 + vB1,G 
= v2 + v1. The time interval required for the man to travel distance 
L relative to the ground is 

   
  
Δtman =

L
v1 + v2

 

 (c) The second beltway (B2) moves in the negative direction; its 
velocity is vB2,G = –v1, and the child (C) rides on the second 
beltway; his velocity relative to the ground is 

   
  vCG = vC,B2 + vB2,G = 0− v1 = −v1

 

  The man’s velocity relative to the child is 

   

  

vMC = vM,B1 + vB1,G + vG,B2 + vB2,C

vMC = vM,B1 + vB1,G − vB2,G − vC,B2

vMC = v2 + v1 − (−v1) + 0 = v1 + 2 v2

 

  so, the time interval required for the man to travel distance L 
relative to the child is 

   
  
Δtman =

L
v1 + 2v2

 

P4.47 Both police car (P) and motorist (M) move relative to the ground (G). 
Treating west as the positive direction, the components of their 
velocities (in km/h) are: 

   
  vPG = 95.0 km/h (west) vPG = 80 km/h (west)  

 (a) 

  

vMP = vMG + vGP = vMG − vPG = 80.0 km/h − 95.0 km/h = −15.0

= 15.0 km/h, east

 

 (b) 
  
vPM = −vMP +  15.0 km/h, west  

 (c) Relative to the motorist, the police car approaches at 15.0 km/h: 
   

  

d = vΔt

→ Δt = d
v

= 0.250 km
15.0 km h

= 1.67 × 10−2  h( ) 3600 s
1 h

⎛
⎝⎜

⎞
⎠⎟ = 60.0 s
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ANS. FIG. P4.48 

 We define the following velocity vectors: 

     

v ce  = the velocity of the car relative  

to the Earth 

     

vwc  = the velocity of the water relative  

to the car 

     

vwe  = the velocity of the water relative  

to the Earth 

 These velocities are related as shown in ANS. FIG. P4.48 

 (a) Since    

vwe  is vertical, vwc sin 60.0° = vce = 50.0 km/h or 

    

vwc = 57.7 km/h at 60.0° west of vertical

 

 (b) Since    

v ce  has zero vertical component, 

   

  

vwe = vwc  cos  60.0° = 57.7 km/h( )cos  60.0°

= 28.9 km/h downward

 

P4.49 (a) To an observer at rest in the train car, the bolt accelerates 
downward and toward the rear of the train. 

   

  

a = 2.50 m s( )2 + 9.80 m s( )2 = 10.1 m s2

tanθ = 2.50  m s2

9.80  m s2 = 0.255

θ = 14.3° to the south from the vertical

 

  To this observer, the bolt moves as if it were in a gravitational 
field of 9.80 m/s2 down + 2.50 m/s2 south. 

 (b) 
  
a = 9.80 m s2  vertically downward  

 (c) 

 

If it is at rest relative to the ceiling at release, the bolt moves 
on a straight line download and southward at 14.3 degrees 
from the vertical. 

 

 (d) 
 
The bolt moves on a parabola with a vertical axis.  

P4.50 The total time interval in the river is the longer time spent swimming 
upstream (against the current) plus the shorter time swimming 
downstream (with the current). For each part, we will use the basic 
equation t = d/v, where v is the speed of the student relative to the 
shore. 
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 (a) Total time = time upstream plus time downstream: 
   

  

tup =
1 000 m

1.20 m/s − 0.500 m/s
= 1.43 × 103 s

tdown =
1 000 m

1.20 m/s + 0.500 m/s
= 588 s

 

  Therefore,   ttotal = 1.43 × 103  s + 588 s = 2.02 × 103  s .  

 (b) Total time in still water 
  
t = d

v
= 2 000

1.20
= 1.67 × 103 s .  

 (c) 

 

Swimming with the current does not compensate for the
time lost swimming against the current.

 

P4.51 The student must swim faster than the current to travel upstream. 

 (a) The speed of the student relative to shore is vup = c – v while 
swimming upstream (against the current), and vdown = c + v while 
swimming downstream (with the current). 

  Note, The student must swim faster than the current to travel 
upstream. The time interval required to travel distance d 
upstream is then 

   
  
Δtup =

d
vup

=
d

c − v
 

  and the time interval required to swim the same distance d 
downstream is 

   
  
Δtdown =

d
vdown

=
d

c + v
 

  The time interval for the round trip is therefore 

   

  

Δt = Δtup + Δtdown =
d

c − v
+

d
c + v

= d
c + v( ) + c − v( )
c − v( ) c + v( )

Δt =
2dc

c2 − v2

 

 (b) In still water, v = 0, so vup = vdown = c; the equation for the time 
interval for the complete trip reduces to  

   
  
Δt =

2d
c
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 (c) The equation for the time interval for the complete trip can be 
written as  

    

  

Δt =
2dc

c2 − v2 =
2d

c 1− v2

c2

⎛
⎝⎜

⎞
⎠⎟

 

  Because the denominator is always smaller than c, swimming 
with and against the current is always longer than in still water. 

P4.52 Choose the x axis along the 20-km 
distance. The y components of the 
displacements of the ship and the 
speedboat must agree: 

  

  

26 km/h( )tsin 40.0°− 15.0°( )
               = 50 km/h( )tsinα

 

  

 

α = sin−1 11.0 km/h
50 km/h

⎛
⎝⎜

⎞
⎠⎟

= 12.7°

 

 The speedboat should head 
  

 15.0° + 12.7° = 27.7° E of N  

P4.53 Identify the student as the S′ 
observer and the professor as the S 
observer. For the initial motion in 
S′, we have  

  
  

v′y
v′x

= tan 60.0° = 3  

 Let u represent the speed of S′ 
relative to S. Then because there is 
no x motion in S, we can write  
vx = v′x + u = 0 so that  
v′x = –u = –10.0 m/s. Hence the ball 
is thrown backwards in S′. Then, 

  
  v′y = v′y = 3 v′x = 10.0 3 m s  

 Using   vy
2 = 2gh  we find 

  

  
h =

10.0 3 m s( )2

2 9.80m s2( ) = 15.3 m  

ANS. FIG. P4.52 

ANS. FIG. P4.53 
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 The motion of the ball as seen by the student in S′ is shown in ANS. 
FIG. P4.53(b). The view of the professor in S is shown in ANS. FIG. 
P4.53(c). 

P4.54 (a) For the boy to catch the can at the same location on the truck bed, 
he must throw it 

 
straight up, at 0° to the vertical .  

 (b) We find the time of flight of the can by considering its horizontal 
motion:  

    16.0 m = (9.50 m/s)t + 0 → t = 1.68 s 

  For the free fall of the can, 
  
y f = yi + vyit −

1
2

ayt
2 :   

    

  
0 = 0 + vyi 1.68 s( )− 1

2
9.80 m/s2( ) 1.68 s( )2

  

  which gives   vyi = 8.25 m/s .   

 (c) The boy sees the can always over his head, traveling in 

 
a straight up and down line .  

 (d) The ground observer sees the can move as a projectile traveling in 

 
a symmetric parabola opening downward .  

 (e) Its initial velocity is  
   

 9.50 m/s( )2 + 8.25 m/s( )2 = 12.6 m/s north
  

  at an angle of  
   

 
tan−1 8.25 m/s

9.50 m/s
⎛
⎝⎜

⎞
⎠⎟

= 41.0° above the horizontal
 

 
 

 

Additional Problems	  
*P4.55 After the string breaks the ball is a projectile, and reaches the ground 

at time t:  

   
  
y f = vyit + 1

2
ayt

2  

   
  
−1.20 m = 0 + 1

2
−9.80 m/s2( )t2  
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 so t = 0.495 s. Its constant horizontal speed is  

   
  
vx = x

t
= 2.00 m

0.495 s
= 4.04 m/s  

 so before the string breaks 

   
  
ac = vx

2

r
= 4.04 m/s( )2

0.300 m
= 54.4 m/s2  

*P4.56 The maximum height of the ball is given by Equation 4.12: 

   
  
h = vi

2 sin2θi

2g
 

 Equation 4.13 then gives the horizontal range of the ball: 

   
  
R = vi

2 sin 2θi

g
= 2vi

2 sinθi cosθi

g
 

 If 
  
h = R

6
, Equation 4.12 yields 

   
  
vi sinθi = gR

3
 [1] 

 Substituting equation [1] above into Equation 4.13 gives 

   
  
R =

2 gR 3( )vi cosθi

g
 

 which reduces to 

   
  
vi cosθi = 1

2
3gR  [2] 

 (a) From   vyf = vyi + ayt,  the time to reach the peak of the path  

  where vyf = 0( )  is found to be 

    tpeak = vi sinθi g  

  Using equation [1], this gives  

  
  
tpeak = R

3g
 

  The total time of the ball’s flight is then  

  
  

t flight = 2tpeak = 2
R
3g
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 (b) At the path’s peak, the ball moves horizontally with speed 

     vpeak = vxi = vi cosθi  

  Using equation [2], this becomes 

   
  
vpeak = 1

2
3gR  

 (c) The initial vertical component of velocity is   vyi = vi sinθi . From 
equation [1],  

   
  
vyi = gR

3
 

 (d) Squaring equations [1] and [2] and adding the results, 

   
  
vi

2 sin2θi + cos2θi( ) = gR
3

+ 3gR
4

= 13gR
12

 

  Thus, the initial speed is 

   
  
vi = 13gR

12
 

 (e) Dividing equation [1] by [2] yields 

   

  

tanθ i = vi sinθ i

vi cosθ i

=
gR 3( )

1
2

3gR( )
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= 2
3

 

  Therefore,  

   
  
θi = tan−1 2

3( ) = 33.7°  

 (f) For a given initial speed, the projection angle yielding maximum 
peak height is   θi = 90.0° . With the speed found in (d), Equation 
4.12 then yields 

   
  
hmax = 13gR 12( )sin2 90.0°

2g
= 13

24
R  

 (g) For a given initial speed, the projection angle yielding maximum 
range is   θi = 45.0° . With the speed found in (d), Equation 4.13 
then gives 

   
  
Rmax = 13gR 12( )sin 90.0°

g
= 13

12
R  
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P4.57 We choose positive y to be in the downward direction. The ball when 
released has velocity components vxi = v and vyi = 0, where v is the 
speed of the man. We can find the length of the time interval the ball 
takes to fall the distance h using 

   

  
Δy = 1

2
ay Δt( )2 = 1

2
g Δt( )2 → Δt = 2h

g

 

 The horizontal displacement of the ball during this time interval is 

   
  
Δx = vxi Δt = v

2h
g

= 7.00h  

 Solve for the speed: 
   

  
v =

49.0gh
2

=
49.0 9.80 m/s2( )h

2
= 15.5 h

 

 where h is in m and v in m/s.  

 If we express the height as a function of speed, we have 
   

  h = (4.16 × 10–2 )v2  

 where h is in m and v is in m/s. 
 

  

For a normally proportioned adult, h is about 0.50 m, which would

mean that v = 15.5 0.50 = 11 m/s, which is about 39 km/h; no 
normal adult could walk “briskly” at that speed. If the speed were a 
realistic typical speed of 4 km/h, from our equation for h, we find 
that the height would be about 4 cm, much too low for a normal adult.

 

P4.58 (a) From     

a = d


v/dt, we have  

   
   d

v

i

f
∫ = 

a
i

f
∫ dt = Δv

 

  Then 
    

    


v − 5 î m/s = 6

0

t
∫ t1/2dt ĵ = 6

t3/2

3/2 0

t

ĵ = 4 t3/2 ĵ  m/s
 

  so 
    


v = 5 î + 4 t3/2 ĵ( )  m/s .  

 (b) From     

v = d


r/dt, we have  

   
   d

i

f
∫

r = 

v
i

f
∫ dt = Δr
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  Then  
   

    


r − 0 = 5 î + 4 t3/2 ĵ( )0

t
∫ dt = 5t î + 4

t5/2

5/2
ĵ

⎛
⎝⎜

⎞
⎠⎟

0

t

= 5t î + 1.6 t5/2 ĵ( )  m

 

P4.59 (a) The speed at the top is  
   

  vx = vi cosθi = 143 m/s( )cos 45° = 101 m/s
 

 (b) In free fall the plane reaches altitude given by  
   

  

vyf
2 = vyi

2 + 2ay y f − yi( )
0 = 143  m s sin 45°( )2 + 2 −9.80  m s2( ) y f − 31 000 ft( )

y f = 31 000 ft + 522 m
3.28 ft

1 m
⎛
⎝⎜

⎞
⎠⎟ = 3.27 × 104  ft

 

 (c) For the whole free-fall motion vyf = vyi + ayt: 
   

  

−101 m/s = +101 m/s − 9.80 m/s2( )t

t = 20.6 s

 

P4.60 (a) The acceleration is that of gravity:  9.80 m/s2 , downward.  

 (b) The horizontal component of the initial velocity is vxi = vi cos 40.0° 
= 0.766vi, and the time required for the ball to move 10.0 m 
horizontally is 

   
  
t =

Δx
vxi

=
10.0 m
0.766 vi

=
13.1 m

vi

 

  At this time, the vertical displacement of the ball must be 

     Δy = y f − yi = 3.05 m − 2.00 m = 1.05 m  

  Thus, 
  
Δy = vyit +

1
2

ayt
2  becomes 

   
  
1.05 m = vi  sin 40.0°( ) 13.1 m

vi

+
1
2

−9.80  m s2( ) 13.1 m( )
vi

2

2

 

  or 
  
1.05 m = 8.39 m −

835  m3 s2

vi
2  
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  which yields 

   
  
vi =

835  m3 s2

8.39 m − 1.05 m
= 10.7 m s  

P4.61 Both Lisa and Jill start from rest. Their accelerations are  
   

   

aL = (3.00 î− 2.00 ĵ) m/s2  

   
   

aJ = (1.00 î + 3.00 ĵ) m/s2   

 Integrating these, and knowing that they start from rest, we find their 
velocities: 

   
    

vL = (3.00t î− 2.00t ĵ) m/s  

   
    

v J = (1.00t î + 3.00t ĵ) m/s

  

 Integrating again, and knowing that they start from the origin, we find 
their positions: 

   
    

rL = (1.50t2 î− 1.00t2 ĵ) m   

   
    

rJ = (0.50 t2 î + 1.50t2 ĵ) m

  

 All of the above are with respect to the ground (G).  

 (a) In general, Lisa’s velocity with respect to Jill is 

   

    


vLJ = vLG + vGJ = vLG −


v JG


vLJ = vL −


v J = (3.00t î − 2.00t ĵ) − (1.00t î + 3.00t ĵ)


vLJ = (2.00t î − 5.00t ĵ)

 

  When 
    t = 5.00 s,


v LJ = (10.0 î− 25.0 ĵ) m/s,  so the speed 

(magnitude) is 

   
  
v = 10.0( )2 + 25.0( )2 = 26.9  m s  

 (b) In general, Lisa’s position with respect to Jill is  

   

    


rLJ = rL −


rJ = (1.50t2 î − 1.00t2 ĵ) − (0.50t2 î + 1.50t2 ĵ)


rLJ = (1.00t2 î − 2.50t2 ĵ)

 

  When     t = 5.00 s,

rLJ = (25.0 î− 62.5 ĵ) m,  and their distance apart is 

   

  
d = 25.0 m( )2 + 62.5 m( )2 = 67.3 m

 



172     Motion in Two Dimensions 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (c) In general, Lisa’s acceleration with respect to Jill is 
   

   


aLJ = aL −


aJ = (3.00 î − 2.00 ĵ)− (1.00 î + 3.00 ĵ)


aLJ = (2.00 î − 5.00 ĵ) m/s2

 

P4.62 (a) The stone’s initial velocity components (at t = 0) are vxi and vyi = 0, 
and the stone falls through a vertical displacement ∆y = –h. We 
find the time t when the stone strikes the ground using  

   

  
Δy = vyit + 1

2
ayt

2 →−h = 0− 1
2

gt2 → t = 2h
g

 

 (b) To find the stone’s initial horizontal component of velocity, we 
know at the above time t, the stone’s horizontal displacement is 
∆x = d: 

   

  
Δx = vxit + 1

2
axt

2 → d = vxit→ vox = d
t
→ vxi = d

g
2h

 

 (c) The vertical component of velocity at time t is 
   

  
vyf = vyi + ayt = 0− gt→ vyf = −g

2h
g

→ vyf = − 2gh
 

  and the horizontal component does not change; therefore, the 
speed of the stone as it reaches the ocean is 

   

  
v f = vxf

2 + vyf
2 =

d2 g
2h

⎛
⎝⎜

⎞
⎠⎟

+ 2gh( )  

 (d) From above,  

   

  

θ f = tan−1 vyf

vxf

⎛

⎝
⎜

⎞

⎠
⎟ = tan−1 − 2gh

d
g

2h

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

θ f = − tan−1 2h
d

⎛
⎝⎜

⎞
⎠⎟

 

  which means the velocity points below the horizontal by angle 

   
  
θ f = tan−1 2h

d
⎛
⎝⎜

⎞
⎠⎟

 



Chapter 4     173 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

P4.63 We use a fixed coordinate system that, viewed from above, has its 
positive x axis passing through point A when the flea jumps, and its 
positive y axis 90° counterclockwise from its x axis. Its positive z axis is 
upward. The turntable rotates clockwise. At t = 0, the flea jumps 
straight up relative to the turntable, but the turntable is spinning, so 
the flea has both horizontal and vertical components of velocity 
relative to the fixed coordinate axes. Because the turntable is spinning 
clockwise, the horizontal velocity of the flea is in the negative y 
directon: 

   

  
vy = –33.3

 rev
min

⎛
⎝⎜

⎞
⎠⎟

2π 10.0 cm( )
1 rev

⎛
⎝⎜

⎞
⎠⎟

1 min
60 s

⎛
⎝⎜

⎞
⎠⎟ = –34.9 cm/s

 

 The vertical motion of the flea is independent of its horizontal motion. 
The time interval the flea takes to rise to a height h of 5.00 cm is the 
same time interval the flea takes to drop back to the turntable. We find 
the interval to drop using  

   

  
z f = zi + vzit + 1

2
azt

2 → 0 = h –
1
2

gt2 → t = 2h
g

  

 where h is in m and t in s. Substituting, we find 
   

  
t = 2(0.050 0 m)

9.80 m/s2 = 0.101 s
 

 The total time interval for the flea to leave the surface of the turntable 
and return is twice this: ∆t = 0.202 s.  

 (a) Find the clockwise angle the turntable rotates through in the time 
interval ∆t:  

   

 

Δθ = 33.3 rev
min

⎛
⎝⎜

⎞
⎠⎟ 0.202 s( )

= 33.3 rev
min

⎛
⎝⎜

⎞
⎠⎟

360°
1 rev

⎛
⎝⎜

⎞
⎠⎟

1 min
60 s

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

0.202 s( )

= 40.4°

  

  Point A lies 10.0 cm from the origin. When the flea jumps, the line 
passing from the origin to point A coincides with the positive x 
axis, but when the flea lands, the line makes an angle of –40.4° 
with the positive x axis: 

   

   


rA = [10.0cos(−40.4°)]î + [10.0sin(−40.4°)]ĵ

rA = (7.61î − 6.48 ĵ)cm
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 (b) During this time interval, the flea goes through a horizontal y 
displacement  

     Δy = vyΔt = (−34.9 cm/s)(0.202 s) = −7.05 cm.  

  The flea has no motion parallel to the x axis; therefore, the 
position of point B where the flea lands is 

   

   

rB = (10.0î − 7.05 ĵ) cm

 

*P4.64 ANS. FIG. P4.64 shows the triangles ALB and ALD. 
To find the length   AL,  we write 

   
  AL = v1t = 90.0 km/h( ) 2.50 h( ) = 225 km   

 To find the distance travelled by the second couple, 
we need to determine the length  BD : 

   

  

BD = AD− AB

= ALcos 40.0°− 80.0 km = 92.4 km

  

 Then, from the triangle BLD in ANS. FIG. P4.64, 
    

  

BL = BD( )2
+ DL( )2

= 92.4 km( )2 + ALsin 40.0°( )2
= 172 km

  

 Note that the law of cosines can also be used for the triangle ABL to 
solve for the length BD. Since Car 2 travels this distance in 2.50 h, its 
constant speed is 

    
  
v2 = 172 km

2.5 h
= 68.8 km/h   

*P4.65 Consider the rocket’s trajectory in 3 
parts as shown in the diagram on the 
right. Our initial conditions give: 

 
  ay = 30.0 m/s2( )sin 53.0° = 24.0 m/s2  

 
  ax = 30.0 m/s2( )cos53.0° = 18.1 m/s2  

 
  vyi = 100 m/s( )sin 53.0° = 79.9 m/s  

 
  vxi = 100 m/s( )cos53.0° = 60.2 m/s  

 The distances traveled during each phase of the motion are given in 
Table P4.65 below. 

ANS. FIG. P4.64 

ANS. FIG. P4.65 
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 Path Part #1: 
  

  

vyf = vyi + ayt

= 79.9 m/s + 24.0 m/s2( ) 3.00 s( )
= 152 m/s

  

  

  

vxf = vxi + axt

= 60.2 m/s + 18.1 m/s2( ) 3.00 s( )
= 114 m/s

 

  

  

Δy = vyit + 1
2

ayt
2

= 79.9 m/s( ) 3.00 s( ) + 1
2

24.0 m/s2( ) 3.00 s( )2

= 347 m

 

  

  

Δx = vxit + 1
2

axt
2

= 60.2 m/s( ) 3.00 s( ) + 1
2

18.1 m/s2( ) 3.00 s( )2

= 262 m

 

 Path Part #2:  

  Now ax = 0, ay = –9.80 m/s2, vxf = vxi = 114 m/s, vyi = 152 m/s, and 
vyf = 0, so 

   

  

vyf = vyi + ayt

0 = 152 m/s − 9.80 m/s2( )t

 

  which gives t = 15.5 s 
  

  Δx = vxf t = 114 m/s( ) 15.5 s( ) = 1.77 × 103  m  

  

  
Δy = 152 m/s( ) 15.5 s( ) − 1

2
9.80 m/s2( ) 15.5 s( )2 = 1.17 × 103  m

 

 Path Path #3:  

  With vyi = 0, ax = 0, ay = –9.80 m/s2, and vxf = vxi = 114 m/s, then 
   

  

vyf( )2
− vyi( )2

= 2aΔy

vyf( )2
− 0 = 2 −9.80 m/s2( ) −1.52 × 103  m( )

  

  which gives   vyf = −173 m s  
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  We find the time from   vyf = vyi − gt,  which gives 

    −173 m/s − 0 = − 9.80 m/s2( )t,  or t = 17.6 s 

    Δx = vxf t = 114 17.6( ) = 2.02 × 103  m  

  (a) 
  
Δy max( ) = 1.52 × 103  m  

 (b)   t net( ) = 3.00 s + 15.5 s + 17.6 s = 36.1 s  

 (c)   Δx net( ) = 262 m + 1.77 × 103  m + 2.02 × 103  m  

  
  Δx net( ) = 4.05 × 103  m  

 

  
   Path Part  

  
  #1 #2 #3 

  
 ay 24.0 –9.80 –9.80 

  
 ax 18.1 0.0 0.0 

  
 vyf 152 0.0 –173 

  
 vxf 114 114 114 

  
 vyi 79.9 152 0.0 

  
 vxi 60.2 114 114 

  
 
 Δy  347 1.17×103 –1.52×103 

  
  Δx  262 1.77×103 2.02×103 

  
 t 3.00 15.5 17.6 

 Table P4.65 

*P4.66 Take the origin at the mouth of the cannon. We have   x f = vxi t,  which 
gives  

   
  2 000 m = 1 000 m s( )cosθit
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 Therefore, 
   

  
t = 2.00 s

cos θi

 

 From 
  
y f = vyi t + 1

2
ay t2 :   

   

  

800 m = 1 000 m s( )sinθ i t + 1
2

−9.80 m s2( )t2

800 m = 1 000 m/s( )sinθ i
2.00 s
cosθ i

⎛
⎝⎜

⎞
⎠⎟
− 1

2
9.80 m/s2( ) 2.00 s

cos θ i

⎛
⎝⎜

⎞
⎠⎟

2

800 m cos2θ i( ) = 2 000 m sinθ i cosθ i( )− 19.6 m

 

   

  

19.6 m + 800 m cos2θ i( ) = 2 000 m 1− cos2θ i cosθ i( )
384 + (31 360)cos2θ i + (640 000)cos4θ i

                = (4 000 000) cos2 θ i − (4 000 000)cos4 θ i

4 640 000cos4 θ i − 3 968 640cos2 θ i + 384 = 0

cos2θ i = 3 968 640 ± (3 968 640)2 − 4(4 640 000)(384)
9 280 000

 

     cos θi = 0.925  or   cos θi = 0.009 84  

     θi = 22.4° or 89.4°  (Both solutions are valid.) 

P4.67 Given the initial velocity, we can calculate the height change of the ball 
as it moves 130 m horizontally. So this is what we do, expecting the 
answer to be inconsistent with grazing the top of the bleachers. We 
assume the ball field is horizontal. We think of the ball as a particle in 
free fall (moving with constant acceleration) between the point just 
after it leaves the bat until it crosses above the cheap seats. 

 The initial components of velocity are 

   
  

vxi = vi cosθ = 41.7 cos 35.0° = 34.2 m/s
vyi = vi sinθ = 41.7 sin 35.0° = 23.9 m/s

 

 We find the time when the ball has traveled through a horizontal 
displacement of 130 m: 

   

  
x f = xi + vxit +

1
2

axt
2 → x f = xi + vxit → t = (x f – xi )/vxi

 

   

  
t =

130 m − 0
34.2 m/s

= 3.80 s
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 Now we find the vertical position of the ball at this time: 
   

  

y f = yi + vyit +
1
2

at2 = 0 + vyit −
1
2

t2

y f = (23.9 m/s)(3.80 s) − (4.90 m/s2 )(3.80 s)2 = 20.1 m

 

 
 

The ball would not be high enough to have cleared the
24.0-m-high bleachers.

 

P4.68 At any time t, the two drops have identical y coordinates. The distance 
between the two drops is then just twice the magnitude of the 
horizontal displacement either drop has undergone. Therefore, 

   
  
d = 2 x t( ) = 2 vxit( ) = 2 vi  cosθi( )t = 2vit cosθi  

P4.69 (a) The Moon’s gravitational acceleration is the probe’s centripetal 
acceleration: (For the Moon’s radius, see end papers of text.) 

   

  

a =
v2

r
1
6

9.80  m s2( ) =
v2

1.74 × 106  m

v = 2.84 × 106  m2 s2 = 1.69  km s

 

 (b) The time interval can be found from 

   

  

v =
2πr
T

T =
2πr

v
=

2π 1.74 × 106  m( )
1.69 × 103  m s

= 6.47 × 103  s = 1.80 h

 

P4.70 (a) The length of the cord is given as r = 1.00 m. At the positions with 
 θ = 90.0° and 270°,   

   
  
ac =

v2

r
=

5.00 m s( )2

1.00 m
= 25.0m s2  

 (b) The tangential acceleration is only the 
acceleration due to gravity, 
 

  
at = g = 9.80 m s2  

 (c) See ANS. FIG. P4.70. 

ANS. FIG. P4.70 
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 (d) The magnitude and direction of the total acceleration at these 
positions is given by 

    

  

a = ac
2 + at

2 = 25.0  m s2( )2
+ 9.80  m s2( )2

= 26.8  m s2

φ = tan−1 at

ac

⎛
⎝⎜

⎞
⎠⎟

= tan−1 9.80  m s2

25.0  m s2

⎛
⎝⎜

⎞
⎠⎟

= 21.4°

 

P4.71 We know the distance that the 
mouse and hawk move down, 
but to find the diving speed of 
the hawk, we must know the 
time interval of descent, so we 
will solve part (c) first. If the 
hawk and mouse both 
maintain their original 
horizontal velocity of 10 m/s 
(as the mouse should without 
air resistance), then the hawk 
only needs to think about 
diving straight down, but to a 
ground-based observer, the path will appear to be a straight line 
angled less than 90° below horizontal. 

 We begin with the simple calculation of the free-fall time interval for 
the mouse. 

 (c) The mouse falls a total vertical distance y = 200 m – 3.00 m =  
197 m. The time interval of fall is found from (with vyi = 0) 

   

  
y = vyit −

1
2

gt2      →      t = 2(197 m)
9.80 m/s2 = 6.34 s

  

 (a) To find the diving speed of the hawk, we must first calculate the 
total distance covered from the vertical and horizontal 
components. We already know the vertical distance y; we just 
need the horizontal distance during the same time interval (minus 
the 2.00-s late start). 

     x = vxi(t − 2.00 s) = (10.0 m/s)(6.34 s − 2.00 s) = 43.4 m  

  The total distance is  

   
  d = x2 + y2 = (43.4 m)2 + (197  m)2 = 202 m  

  So the hawk’s diving speed is  
   

  
v = Δd

Δt
=

197 m( )2 + 43.4 m( )2

4.34 s
= 46.5 m/s

 

 

ANS. FIG. P4.71 
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 (b) at an angle below the horizontal of  
   

  
θ = tan–1 y

x
⎛
⎝⎜

⎞
⎠⎟ = tan–1 197  m

43.4 m( ) = 77.6°
 

P4.72 (a) We find the x coordinate from x = 12t. We find the y coordinate 
from 49t − 4.9t2. Then we find the projectile’s distance from the 
origin as (x2 + y2)½, with these results: 

t (s) 0 1 2 3 4 5 6 7 8 9 10 

r (m) 0 45.7 82.0 109 127 136 138 133 124 117 120 

 (b) From the table, it looks like the magnitude of r is largest at a bit 
less than 6 s.  

  The vector   

v  tells how   


r  is changing. If   


v  at a particular point 

has a component along    

r ,  then   


r  will be increasing in magnitude 

(if   

v  is at an angle less than 90° from   


r ) or decreasing (if the 

angle between   

v  and   


r  is more than 90°). To be at a maximum, 

the distance from the origin must be momentarily staying 
constant, and the only way this can happen is for the angle 
between velocity and displacement to be a right angle. Then   


r  

will be changing in direction at that point, but not in magnitude.  

 (c) When t = 5.70 s, r =  138 m.  

 (d) 

  

We can require dr2/dt = 0 = (d/dt)[(12t)2 + (49t − 4.9t2 )2 ], which
results in the solution.

 

P4.73 (a) The time of flight must be positive. It is determined by  

      y f = yi + vyit + (1/2)ayt
2 → 0 = 1.20 + vi sin 35.0°t − 4.90t2  

  From the quadratic formula, and suppressing units, we find  
    

  
t =

0.574vi + 0.329vi
2 + 23.52

9.80

 

  Then the range follows from x = vxit + 0 = v0t as  
    

  
x vi( ) = vi 0.164 3 + 0.002 299vi

2 + 0.047 94vi
2

 

  where x is in meters and vi is in meters per second. 

 (b) Substituting   vi = 0.100 gives x vi = 0.100( ) = 0.041 0 m  

 (c) Substituting   vi = 100 gives x vi = 100( ) = 961 m  
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 (d) When vi is small, vi
2 becomes negligible. The expression x(vi) 

simplifies to 
  
vi 0.164 3 + 0 + 0 = 0.405 vi .  Note that this gives 

nearly the answer to part (b). 

 (e) When vi is large, vi is negligible in comparison to vi
2. Then x(vi) 

simplifies to 
    

  
x vi( ) ≅ vi 0 + 0.002 299 vi

2 + 0.047 94 vi
2 = 0.0959 vi

2
  

  This nearly gives the answer to part (c). 

 (f) 

  

The graph of x versus vi  starts from the origin as a straight
line with slope 0.405 s. Then it curves upward above this
tangent line, getting closer and closer to the parabola

x = (0.095 9 s2/m)vi
2 .

 

P4.74 The special conditions allowing use of the horizontal range equation 
applies. For the ball thrown at 45°,  

   
  
D = R45 =

vi
2 sin 90°

g
 

 

 

ANS. FIG. P4.74 

 For the bouncing ball,  

   
  
D = R1 + R2 =

vi
2 sin 2θ

g
+

vi 2( )2 sin 2θ
g

 

 where θ is the angle it makes with the ground when thrown and when 
bouncing. 

 (a) We require: 

   

  

vi
2

g
=

vi
2 sin 2θ

g
+

vi
2 sin 2θ

4g

sin 2θ =
4
5

θ = 26.6°
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ANS. FIG. P4.75 

 (b) The time for any symmetric parabolic flight is given by 
   

  

y f = vyit −
1
2

gt2

0 = vi sinθ it −
1
2

gt2

 

If t = 0 is the time the ball is thrown, then 
  
t =

2vi sinθi

g
 is the time 

at landing. So for the ball thrown at 45.0°: 

   
  
t45 =

2vi sin 45.0°
g

 

  For the bouncing ball, 

   
  
t = t1 + t2 =

2vi sin 26.6°
g

+
2 vi 2( )sin 26.6°

g
=

3vi sin 26.6°
g

 

  The ratio of this time to that for no bounce is 

   
  

3vi sin 26.6° g
2vi sin 45.0° g

=
1.34
1.41

= 0.949  

P4.75 We model the bomb as a particle with 
constant acceleration, equal to the 
downward free-fall acceleration, from 
the moment after release until the 
moment before impact. After we find 
its range it will be a right-triangle 
problem to find the bombsight angle. 

 (a) We take the origin at the point 
under the plane at bomb release. 
In its horizontal flight, the bomb has 
vyi = 0 and vxi = 275 m/s. We represent the height of the plane as y. 

Then, 
  
Δy = −

1
2

gt2 ;   Δx = vit  

  Combining the equations to eliminate t gives: 

    
  
Δy = −

1
2

g
Δx
vi

⎛
⎝⎜

⎞
⎠⎟

2
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From this, Δx( )2 =

−2Δy
g

⎛
⎝⎜

⎞
⎠⎟

vi
2 . Thus  

    

  

Δx = vi

−2Δy
g

= 275 m/s( ) −2 −3 000 m( )
9.80 m/s2

= 6.80 × 103  m = 6.80 km

 

 (b) The plane has the same velocity as the bomb in the x direction. 
Therefore, the plane will be 

 
3 000 m directly above the bomb  

when it hits the ground. 

 (c) When φ is measured from the vertical, 
  
tanφ = Δx

Δy
;  

  therefore, 
  
φ = tan−1 =

Δx
Δy

⎛
⎝⎜

⎞
⎠⎟

= tan−1 6 800 m
3 000 m

⎛
⎝⎜

⎞
⎠⎟

= 66.2° . 

P4.76 Equation of bank:   y 
2 = 16x [1] 

 Equations of motion:   x = vi t [2] 

     
  
y = −

1
2

gt2  [3] 

 Substitute for t from [2] into [3]: 
  
y = −

1
2

g
x2

vi
2

⎛
⎝⎜

⎞
⎠⎟

.  Equate y from the bank 

equation to y from the equations of motion: 

   
  
16x = −

1
2

g
x2

vi
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

2

⇒
g2x4

4vi
4 − 16x = x

g2x3

4vi
4 − 16

⎛
⎝⎜

⎞
⎠⎟

= 0  

 

  

From this, x = 0 or x3 = 64vi
4

g2  and x = 4
104

9.802

⎛
⎝⎜

⎞
⎠⎟

1
3

 m = 18.8 m . 

Also, y = − 1
2

g
x2

vi
2

⎛
⎝⎜

⎞
⎠⎟

= − 1
2

9.80 m/s2( ) 18.8 m( )2

10.0 m/s( )2 = −17.3 m
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P4.77 The car has one acceleration while it is on 
the slope and a different acceleration 
when it is falling, so we must take the 
motion apart into two different sections. 
Our standard equations only describe a 
chunk of motion during which 
acceleration stays constant. We imagine 
the acceleration to change 
instantaneously at the brink of the cliff, 
but the velocity and the position must be 
the same just before point B and just after 
point B. 

 (a) From point A to point B (along the incline), the car can be 
modeled as a particle under constant acceleration in one 
dimension, starting from rest (vi = 0). Therefore, taking  Δx  to be 
the position along the incline, 

   

  

v f
2 − vi

2 = 2aΔx

v f
2 − 0 = 2(4.00 m/s2 )(50.0 m)

v f = 20.0 m/s

 

 (b) We can find the elapsed time interval from  

   

  

v f = vi + at

20.0 m/s = 0 + 4.00 m/s2( )t

t = 5.00 s

 

 (c) Initial free-fall conditions give us vxi = 20.0 cos 37.0° = 16.0 m/s 
and vyi = –20.0 sin 37.0° = –12.0 m/s.  Since ax = 0, vxf = vxi and  

   

  

vyf = − 2ayΔy + vyi
2

= − 2 −9.80 m/s2( ) −30.0 m( ) + −12.0 m/s( )2

= −27.1 m/s

v f = vxf
2 + vyf

2 = 16.0 m/s( )2 + −27.1 m/s( )2

= 31.5 m/s at 59.4° below the horizontal

 

 (d) From point B to C, the time is
  

   

  
t1 = 5 s;  t2 =  

vyf − vyi

ay

= −27.1 m/s + 12.0 m/s
−9.80 m/s2 = 1.53 s  

ANS. FIG. P4.77 



Chapter 4     185 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  
The total elapsed time interval is 

  
   t = t1 + t2 = 6.53 s  

 (e) The horizontal distance covered is  

     Δx = vxit2 = 16.0 m/s( )(1.53 s) = 24.5 m  

P4.78 (a) Coyote: 
  
Δx =

1
2

at2 → 70.0 m =
1
2

(15.0 m/s2 ) t2  

  Roadrunner:   Δx = vxit → 70.0 m = vxit  

  Solving the above, we get  
   

  vxi = 22.9 m/s  and t = 3.06 s
 

 (b) At the edge of the cliff, vxi = at = (15.0 m/s2)(3.06 s) = 45.8 m/s 

  Substituting 
  
Δy = –100 m into Δy =

1
2

ayt
2 ,  we find 

   

  

−100 m =
1
2

−9.80 m/s2( )t2

t = 4.52 s

Δx = vxit +
1
2

axt
2

= 45.8 m/s( ) 4.52 s( ) +
1
2

15.0 m/s2( ) 4.52 s( )2

 

  Solving,   Δx = 360 m .  

 (c) For the Coyote’s motion through the air, 
   

  

vxf = vxi + axt = 45.8 m/s + 15 m/s2( )(4.52 s) = 114 m/s

vyf = vyi + ayt = 0 − 9.80 m/s2( )(4.52 s) = −44.3 m/s

 

P4.79 (a) Reference frame: Earth 

  The ice chest floats downstream 2 km in time interval ∆t, so  

   2 km = vow∆t → ∆t = 2 km/vow 

  The upstream motion of the boat is described by  

   d = (v – vow)(15 min) 

  and the downstream motion is described by  

   d + 2 km = (v – vow)(∆t – 15 min) 
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  We substitute the above expressions for ∆t and d:  
   

  
v − vow( ) 15 min( ) + 2 km = v + vow( ) 2 km

vow

− 15 min
⎛
⎝⎜

⎞
⎠⎟

 

   

  

v 15 min( )− vow 15 min( )+ 2 km

                    = v
vow

2 km( ) + 2 km − v 15 min( )− vow 15 min( )

v 30 min( ) = v
vow

2 km( )

vow = 4.00 km h

 

 (b) Reference frame: water  

  After the boat travels so that it and its starting point are 2 km 
apart, the chest enters the water, where, in the frame of the water, 
it is motionless. The boat then travels upstream for 15 min at 
speed v, and then downstream at the same speed, to return to the 
same point where the chest is at rest in the water. Thus, the boat 
travels for a total time interval of 30 min. During this same time 
interval, the starting point approaches the chest at speed vow, 
traveling 2 km. Thus,  

   
  
vow =

Δx
Δttotal

=
2 km

30 min
= 4.00 km h  

P4.80 Think of shaking down the mercury in an old fever thermometer. 
Swing your hand through a circular arc, quickly reversing direction at 
the bottom end. Suppose your hand moves through one-quarter of a 
circle of radius 60 cm in 0.1 s. Its speed is 

   

 

1
4

2π( ) 0.6 m( )
0.1 s

≈ 9  m s

 

 and its centripetal acceleration is 
  

v2

r
≈

9 m/s( )2

0.6 m
~ 102 m/s2 .  

 The tangential acceleration of stopping and reversing the motion will 
make the total acceleration somewhat larger, but will not affect its 
order of magnitude. 
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ANS. FIG. P4.81 

Challenge Problems 
P4.81 ANS. FIG. P4.81 indicates that a line 

extending along the slope will past through 
the end of the ramp, so we may take the  
position of the skier as she leaves the ramp 
to be the origin of our coordinate system.  

 (a) Measured from the end of the ramp, 
the skier lands a distance d down the 
slope at time t: 

   

  

Δx = vxit
→ dcos50.0° = (10.0 m/s)(cos15.0°)t

 

  and 
 

  

Δy = vyit +
1
2

gt2 →

−d sin 50.0° = (10.0 m/s)(sin 15.0°)t +
1
2

(−9.80 m/s2 )t2

 

  Solving,   d = 43.2 m  and t = 2.88 s. 

 (b) Since ax = 0,  
   

  

vxf = vxi = 10.0 m/s( )cos15.0° = 9.66 m/s

vyf = vyi + ayt = 10.0 m/s( )sin 15.0° − 9.80 m/s2( )(2.88 s)

= −25.6 m s

 

 (c) 

 

Air resistance would ordinarily decrease the values of the range
and landing speed. As an airfoil, she can deflect air downward
so that the air deflects her upward. This means she can get some
lift and increase her distance.

 

P4.82 (a) For Chris, his speed downstream is c + v, 
while his speed upstream is c – v. 

  Therefore, the total time for Chris is  

   
  
Δt1 =

L
c + v

+
L

c − v
=

2 L c
1− v2 c2  

 (b) Sarah must swim somewhat upstream to counteract the effect 
from the current. As is shown in the diagram, the magnitude of 

her cross-stream velocity is   c2 − v2 . 

ANS. FIG. P4.82 
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  Thus, the total time for Sarah is 

   
  

Δt2 =
2L

c2 − v2
=

2 L c

1− v2 c2  

 (c) 

  

Since the term 1− v2/c2( ) < 1,Δt1 > Δt2 ,  so Sarah, who swims

cross-stream, returns first.

 

*P4.83 Let the river flow in the x direction. 

 (a) To minimize time, 
 

swim perpendicular to the banks  in the y 

direction. You are in the water for time t in   Δ y = vyt,   

   
  
t = 80 m

1.5 m s
= 53.3 s  

 (b) The water carries you downstream by  

     Δ x = vxt = 2.50 m s( )53.3 s = 133 m  

 (c) To minimize downstream drift, you should swim so that your 
resultant velocity    

v s + vw  is perpendicular to your swimming 
velocity    

v s  relative to the water. This is shown graphically in the 
upper row of ANS. FIG. P4.83. Unlike the situations shown in 
ANS. FIG. P4.83(a) and ANS. FIG. P4.83(b), this condition (shown 
in ANS. FIG. P4.83(b)) maximizes the angle between the resultant 
velocity and the shore. The angle between    

v s  and the shore is 

given by 
 
cosθ = 1.5 m s

2.5 m s
,  θ = 53.1° . 

 

 

 

 

 

 

 
 
 
 

vvs

vvw

vvs
vvw+
vvs

vvw

vvs
vvw+

vvs

vvw

vvs
vvw+

vvs

vvw

vvs
vvw+

= 2.5 m/s$i

ANS. FIG. P4.83 

(a) (b) (c) 

(d) 



Chapter 4     189 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (d) See ANS. FIG. P4.83(d). Now, 

  vy = vs sinθ = 1.5 m/s( )sin 53.1° = 1.20 m/s  

   

  

t = Δ y
vy

= 80 m
1.2 m s

= 66.7 s

Δ x = vxt = 2.5 m/s − 1.5 m/s( )cos53.1°[ ] 66.7 s( ) = 107 m
 

P4.84 Measure heights above the level ground. The elevation yb of the ball 
follows 

   
  
yb = R + 0 −

1
2

gt2  

 with  
  
x = vit    so    yb = R −

gx2

2vi
2 .  

 (a) The elevation yr of points on the rock is described by 

     yr
2 + x2 = R2  

  We will have yb = yr at x = 0, but for all other x we require the ball 
to be above the rock’s surface as in yb > yr. Then   yb

2 + x2 > R2 :  

   

  

R −
gx2

2vi
2

⎛
⎝⎜

⎞
⎠⎟

2

+ x2 > R2

R2 −
gx2R

vi
2 +

g2x4

4vi
4 + x2 > R2

g2x4

4vi
4 + x2 >

gx2R
vi

2

 

  If this inequality is satisfied for x approaching zero, it will be true 
for all x. If the ball’s parabolic trajectory has large enough radius 
of curvature at the start, the ball will clear the whole rock: 

  
1 >

gR
vi

2 ,  so 

   
 
vi > gR  

 (b) With 
  
vi = gR  and yb = 0,  we have 0 = R −

gx2

2gR
 

  or   x = R 2.  The distance from the rock’s base is 

   
  
x − R = 2 − 1( )R  
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P4.85 When the bomb has fallen a vertical distance 2.15 km, it has traveled a 
horizontal distance xf given by 

   
  x f = 3.25 km( )2 − 2.15 km( )2 = 2.437 km

  

 The vertical displacement of the bomb is 
   

  
y f = x f tanθ i −

gx f
2

2vi
2 cos2θ i

  

 Substituting, 
   

  
−2 150 m = 2 437 m( )tanθ i −

9.8 m s2( ) 2 437 m( )2

2 280 m s( )2 cos2θ i

  

 or   

   
  −2 150 m = 2 437 m( )tanθ i − 371.19 m( ) 1+ tan2θ i( )  

   

  

∴tan2θ i − 6.565tanθ i − 4.792 = 0

∴tanθ i = 1
2

6.565 ± 6.565( )2 − 4 1( ) −4.792( )( ) = 3.283 ± 3.945

 

 We select the negative solution, since θi is below the horizontal. 

   
  
∴ tanθi = −0.662, θi = −33.5°  

P4.86 (a) The horizontal distance traveled by 
the projectile is given by  

   

  

x f = vxit = vi cosθi( )t

→ t =
x f

vi cosθi

 

  We substitute this into the equation  
for the displacement in y:  

 
  
y f = vyit −

1
2

gt2 = tanθi( ) x f( ) − g
2vi

2 cos2θi

x f
2  

  Now setting   x f = dcosφ  and   y f = dsinφ , we have 

   
  
dsinφ = tanθi( ) dcosφ( ) − g

2vi
2 cos2θi

dcosφ( )2  

  Solving for d yields  

   
  
d = 2vi

2 cosθi sinθi cosφ − sinφ cosθi[ ]
g cos2φ

 

rvi

ANS. FIG. P4.86 



Chapter 4     191 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

ANS. FIG. P4.87 

  or 
  
d = 2vi

2 cosθi sin θi −φ( )
g cos2φ

 

 (b) Setting 
  

d
dθi

d( ) = 0  leads to  

   
  
θi = 45° + φ

2
 and 

  
dmax = vi

2 1− sinφ( )
g cos2φ

 

P4.87 For the smallest impact angle 

   
  
θ = tan−1 vyf

vxf

⎛

⎝
⎜

⎞

⎠
⎟  

 we want to minimize vyf and maximize vxf = vxi.  
The final y component of velocity is related to  
vyi  by   vyf

2 = vyi
2 + 2gh,  so we want to minimize vyi  

and maximize vxi. Both are accomplished by  
making the initial velocity horizontal. Then vxi = v, vyi = 0, and 

  vyf = 2gh.  At last, the impact angle is 

  

  

θ = tan−1 vyf

vxf

⎛

⎝
⎜

⎞

⎠
⎟ = tan−1 2gh

v

⎛

⎝
⎜

⎞

⎠
⎟  

P4.88 We follow the steps outlined in Example 4.5, eliminating 
  
t =

dcosφ
vi cosθ

 to 

find  

   
  

vi sinθ dcosφ
vi cosθ

−
gd2 cos2φ
2vi

2 cos2θ
= −dsinφ  

 Clearing the fractions gives 

     2vi
2 cosθ sinθ cosφ − gdcos2φ = −2vi

2 cos2θ sinφ  

 To maximize d as a function of θ, we differentiate through with respect 

to θ and set 
  

d
dθ

d( ) = 0:  

   

  

2vi
2 cosθ cosθ cosφ + 2vi

2 sinθ − sinθ( )cosφ

                                − g
d

dθ
d( )⎡

⎣⎢
⎤
⎦⎥
cos2φ = −2vi

2 2cosθ − sinθ( )sinφ
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 We use the trigonometric identities from Appendix B4:  
   

 cos2θ = cos2θ − sin2θ   and  sin 2θ = 2sinθ cosθ  

 to find  
   

 cosφ cos2θ = sin 2θ sinφ  

 Next, 
 

sinφ
cosφ

= tanφ  and 
 
cot 2θ =

1
tan 2θ

 give cot 2θ = tan φ so 

    φ = 90° − 2θ  and 
 
θ = 45° −

φ
2

 

P4.89 Find the highest firing angle  θH  for which the projectile will clear the 
mountain peak; this will yield the range of the closest point of 
bombardment. Next find the lowest firing angle; this will yield the 
maximum range under these conditions if both  θH  and  θL  are > 45°,  
x = 2 500 m, y = 1 800 m, and vi = 250 m/s. 

   

  

y f = vyit −
1
2

gt2 = vi  (sinθ)t −
1
2

gt2

x f = vxit = vi  (cosθ)t
 

 Thus, 

   
  
t =

x f

vi cosθ
 

 Substitute into the expression for yf : 

   
  
y f = vi sinθ( )

x f

vi cosθ
−

1
2

g
x f

vi cosθ
⎛
⎝⎜

⎞
⎠⎟

2

= x f tanθ −
gx f

2

2vi
2 cos2θ

 

 but 
 

1
cos2θ

= tan2θ + 1,  so 
  
y f = x f tanθ −

gx f
2

2vi
2 tan2θ + 1( )  and 

   
  
0 =

gx f
2

2vi
2 tan2θ − x f tanθ +

gx f
2

2vi
2 + y f  

 Substitute values, use the quadratic formula, and find 

  tanθ = 3.905 or 1.197 , which gives   θH = 75.6°  and   θL = 50.1°.  

 Range 
  
at θH( ) =

vi
2 sin 2θH

g
= 3.07 × 103  m  from enemy ship 

    3.07 × 103  m − 2 500 m − 300 m = 270 m  from shore 
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 Range 
  
at θL( ) =

vi
2 sin 2θL

g
= 6.28 × 103  m  from enemy ship 

    6.28 × 103  m − 2 500 m − 300 m = 3.48 × 103  m  from shore 

 Therefore, the safe distance is 
 

< 270 m  or 
 

> 3.48 × 103  m  from the 

shore. 

 

 

ANS. FIG. P4.89 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P4.2 2.50 m/s 

P4.4 (a)   −5.00ω  î m/s ; (b)  −5.00ω 2  ĵ m/s ;  

(c) 
   
4.00 m( ) ĵ+ 5.00 m( ) − sinωtî − cosωtĵ( ) ,  

   
5.00 m( )ω −cosω î + sinωtĵ⎡⎣ ⎤⎦ ,  5.00 m( )ω 2 sinωtî + cosω ĵ⎡⎣ ⎤⎦ ;  (d) a circle 

of radius 5.00 m centered at (0, 4.00 m) 

P4.6 (a)    5.00tî + 1.50t2 ĵ ; (b)    5.00î + 3.00t ĵ ; (c) 10.0 m, 6.00 m; (d) 7.81 m/s 

P4.8 (a) 
  
10.0 î + 0.241 ĵ( )  mm ; (b)   1.84 × 107  m/s( ) î + 8.78 × 105  m/s( ) ĵ ;  

(c) 1.85 × 107 m/s; (d) 2.73° 

P4.10 (a)     

v f = (3.45 − 1.79t)î + 2.89 − 0.650t( ) ĵ ;  

(b)     

rf = (−25.3 + 3.45t − 0.893t2 )î + 28.9 + 2.89t − 0.325t2( ) ĵ    

P4.12 0.600 m/s2 

P4.14 (a) 
  
vxi = d

g
2h

, (b) The direction of the mug’s velocity is tan−1(2h/d) 

below the horizontal. 

P4.16 x = 7.23 × 103 m, y = 1.68 × 103 m 

P4.18 (a) 76.0°, (b) Rmax = 2.13R, (c) the same on every planet 

P4.20 (a) 22.6 m; (b) 52.3 m; (c) 1.18 s 

P4.22 (a) there is; (b) 0.491 m/s 

P4.24 (a) 0.852 s; (b) 3.29 m/s; (c) 4.03 m/s; (d) 50.8°; (e) t = 1.12 s 

P4.26 (a) (0, 0.840 m); (b) 11.2 m/s at 18.5°; (c) 8.94 m 

P4.28 (a) t = vi sinθ/g; (b)
  
hmax = h +

vi sinθ( )2

2g
 

P4.30 (a) 28.2 m/s; (b) 4.07 s; (c) the required initial velocity will increase, the 
total time of flight will increase 

P4.32 (a) 41.7 m/s; (b) 3.81 s; (c)   vx = 34.1 m/s, vy = −13.4 m/s, v = 36.7 m/s   

P4.24 0.033 7 m/s2 directed toward the center of Earth 

P4.36 10.5 m/s, 219 m/s2 inward 

P4.38 (a) 6.00 rev/s; (b) 1.52 × 103 m/s2; (c) 1.28 × 103 m/s2 



Chapter 4     195 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

P4.40 (a) 13.0 m/s2; (b) 5.70 m/s; (c) 7.50 m/s2 

P4.42 (a) See ANS. FIG. P4.42; (b) 29.7 m/s2; (c) 6.67 m/s tangent to the circle 

P4.44 153 km/h at 11.3° north of west 

P4.46 (a) 
  
Δtwoman =

L
v1

; (b) 
  
Δtman =

L
v1 + v2

; (c) 
  
Δtman =

L
v1 + 2v2

  

P4.48 (a) 57.7 km/h at 60.0° west of vertical; (b) 28.9 km/h downward 

P4.50 (a) 2.02 × 103 s; (b) 1.67 × 103 s; (c) Swimming with the current does not 
compensate for the time lost swimming against the current. 

P4.52 27.7° E of N 

P4.54 (a) straight up, at 0° to the vertical; (b) 8.25 m/s; (c) a straight up and 
down line; (d) a symmetric parabola opening downward; (e) 12.6 m/s 
north at tan−1(8.25/9.5) = 41.0° above the horizontal 

P4.56 (a) 
  
2

R
3g

; (b) 
  
1
2

3gR ; (c) 
  

gR
3

; (d) 
  

13gR
12

; (e) 33.7°; (f) 
  
13
24

R ;  

(g) 
  
13
12

R  

P4.58 (a)    5î + 4t3/2 ĵ ; (b)    5tî + 1.6t5/2 ĵ   

P4.60 (a) 9.80 m/s2, downward; (b) 10.7 m/s 

P4.62 (a) 
  
t =

2h
g

; (b) 
  
vxi = d

g
2h

; (c) 
   
v f = vxf

2 + vyf
2 =

d2 g
2h

⎛
⎝⎜

⎞
⎠⎟

+ 2gh( ) ; 

(d) 
  
θ f = tan−1 2h

d
⎛
⎝⎜

⎞
⎠⎟

 

P4.64 68.8 km/h 

P4.66 22.4° or 89.4° 

P4.68   2vitcosθi  

P4.70 (a) 25.0 m/s2; (b) 9.80 m/s2; (c) See ANS. FIG. P4.70; (d) 26.8 m/s2, 21.4° 

P4.72 (a) See table in P4.72(a); (b) From the table, it looks like the magnitude 
of r is largest at a bit less than 6 s; (c) 138 m; (d) We can require 

  dr2/dt = 0 = (d/dt)[(12t)2 + (49t − 4.9t2 )2 ] , which results in the solution. 

P4.74 (a)  θ = 26.6° ; (b) 0.949 

P4.76 18.8 m, −17.3 m 

P4.78 (a) 22.9 m/s and 3.06 s; (b) 360 m; (c) 114 m/s, −44.3 m/s 
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P4.80 ~102 m/s2 

P4.82 (a) 
  
Δt1 =

L
c + v

+
L

c − v
=

2L / c
1− v2 / c2 ; (b)

  
Δt2 =

2L

c2 − v2
=

2L / c

1− v2 / c2
;  

(c) Sarah, who swims cross-stream, returns first 

P4.84 (a)  vi > gR ; (b) 
  
x − R = 2 − 1( )R  

P4.86 (a) See P4.86a for derivation; (b) 
  
dmax = 45° + φ

2
,  θ i = vi

2 1− sinφ( )
g cos2φ

  

P4.88 See P4.88 for complete derivation. 
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5 

The Laws of Motion  
 

CHAPTER OUTLINE 
 

5.1 The Concept of Force 

5.2 Newton’s First Law and Inertial Frames 

5.3 Mass 

5.4 Newton’s Second Law 

5.5 The Gravitational Force and Weight 

5.6 Newton’s Third Law 

5.7 Analysis Models Using Newton’s Second Law 

5.8 Forces of Friction  

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ5.1 Answer (d). The stopping distance will be the same if the mass of the 
truck is doubled. The normal force and the friction force both double, 
so the backward acceleration remains the same as without the load.  

OQ5.2 Answer (b). Newton’s 3rd law describes all objects, breaking or whole. 
The force that the locomotive exerted on the wall is the same as that 
exerted by the wall on the locomotive. The framing around the wall 
could not exert so strong a force on the section of the wall that broke 
out.  

OQ5.3 Since they are on the order of a thousand times denser than the 
surrounding air, we assume the snowballs are in free fall. The net force 
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on each is the gravitational force exerted by the Earth, which does not 
depend on their speed or direction of motion but only on the snowball 
mass. Thus we can rank the missiles just by mass: d > a = e > b > c. 

OQ5.4 Answer (e). The stopping distance will decrease by a factor of four if 
the initial speed is cut in half. 

OQ5.5 Answer (b). An air track or air table is a wonderful thing. It exactly 
cancels out the force of the Earth’s gravity on the gliding object, to 
display free motion and to imitate the effect of being far away in space. 

OQ5.6 Answer (b). 200 N must be greater than the force of friction for the 
box’s acceleration to be forward. 

OQ5.7 Answer (a). Assuming that the cord connecting m1 and m2 has constant 
length, the two masses are a fixed distance (measured along the cord) 
apart. Thus, their speeds must always be the same, which means that 
their accelerations must have equal magnitudes. The magnitude of the 
downward acceleration of m2 is given by Newton’s second law as 

   

  
a2 =

Fy∑
m2

= m2 g −T
m2

= g − T
m2

⎛
⎝⎜

⎞
⎠⎟

< g
 

 where T is the tension in the cord, and downward has been chosen as 
the positive direction.  

OQ5.8 Answer (d). Formulas a, b, and e have the wrong units for speed. 
Formulas a and c would give an imaginary answer.  

OQ5.9 Answer (b). As the trailer leaks sand at a constant rate, the total mass 
of the vehicle (truck, trailer, and remaining sand) decreases at a steady 
rate. Then, with a constant net force present, Newton’s second law 
states that the magnitude of the vehicle’s acceleration (a = Fnet/m) will 
steadily increase.  

OQ5.10 Answer (c). When the truck accelerates forward, the crate has the 
natural tendency to remain at rest, so the truck tends to slip under the 
crate, leaving it behind. However, friction between the crate and the 
bed of the truck acts in such a manner as to oppose this relative motion 
between truck and crate. Thus, the friction force acting on the crate will 
be in the forward horizontal direction and tend to accelerate the crate 
forward. The crate will slide only when the coefficient of static friction 
is inadequate to prevent slipping.  
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OQ5.11 Both answers (d) and (e) are not true: (d) is not true because the value 
of the velocity’s constant magnitude need not be zero, and (e) is not 
true because there may be no force acting on the object. An object in 
equilibrium has zero acceleration    (


a = 0) , so both the magnitude and 

direction of the object’s velocity must be constant. Also, Newton’s 
second law states that the net force acting on an object in equilibrium is 
zero.  

OQ5.12 Answer (d). All the other possibilities would make the total force on 
the crate be different from zero. 

OQ5.13 Answers (a), (c), and (d). A free-body diagram shows the forces 
exerted on the object by other objects, and the net force is the sum of 
those forces.  

 
ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ5.1 A portion of each leaf of grass extends above the metal bar. This 
portion must accelerate in order for the leaf to bend out of the way. If 
the bar moves fast enough, the grass will not have time to increase its 
speed to match the speed of the bar. The leaf’s mass is small, but when 
its acceleration is very large, the force exerted by the bar on the leaf 
puts the leaf under tension large enough to shear it off. 

CQ5.2 When the hands are shaken, there is a large acceleration of the surfaces 
of the hands. If the water drops were to stay on the hands, they must 
accelerate along with the hands. The only force that can provide this 
acceleration is the friction force between the water and the hands. 
(There are adhesive forces also, but let’s not worry about those.) The 
static friction force is not large enough to keep the water stationary 
with respect to the skin at this large acceleration. Therefore, the water 
breaks free and slides along the skin surface. Eventually, the water 
reaches the end of a finger and then slides off into the air. This is an 
example of Newton’s first law in action in that the drops continue in 
motion while the hand is stopped. 

CQ5.3 When the bus starts moving, the mass of Claudette is accelerated by 
the force of the back of the seat on her body. Clark is standing, 
however, and the only force on him is the friction between his shoes 
and the floor of the bus. Thus, when the bus starts moving, his feet 
start accelerating forward, but the rest of his body experiences almost 
no accelerating force (only that due to his being attached to his 
accelerating feet!). As a consequence, his body tends to stay almost at 
rest, according to Newton’s first law, relative to the ground. Relative to 
Claudette, however, he is moving toward her and falls into her lap. 
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CQ5.4 The resultant force is zero, as the acceleration is zero. 

CQ5.5 First ask, “Was the bus moving forward or backing up?” If it was 
moving forward, the passenger is lying. A fast stop would make the 
suitcase fly toward the front of the bus, not toward the rear. If the bus 
was backing up at any reasonable speed, a sudden stop could not 
make a suitcase fly far. Fine her for malicious litigiousness.  

CQ5.6 Many individuals have a misconception that throwing a ball in the air 
gives the ball some kind of a “force of motion” that the ball carries 
after it leaves the hand. This is the “force of the throw” that is 
mentioned in the problem. The upward motion of the ball is explained 
by saying that the “force of the throw” exceeds the gravitational 
force—of course, this explanation confuses upward velocity with 
downward acceleration—the hand applies a force on the ball only 
while they are in contact; once the ball leaves the hand, the hand no 
longer has any influence on the ball’s motion. The only property of the 
ball that it carries from its interaction with the hand is the initial 
upward velocity imparted to it by the thrower. Once the ball leaves the 
hand, the only force on the ball is the gravitational force. (a) If there 
were a “force of the throw” felt by the ball after it leaves the hand and 
the force exceeded the gravitational force, the ball would accelerate 
upward, not downward! (b) If the “force of the throw” equaled the 
gravitational force, the ball would move upward with a constant 
velocity, rather than slowing down and coming back down! (c) The 
magnitude is zero because there is no “force of the throw.” (d) The ball 
moves away from the hand because the hand imparts a velocity to the 
ball and then the hand stops moving. 

CQ5.7 (a) force: The Earth attracts the ball downward with the force of 
gravity—reaction force: the ball attracts the Earth upward with the 
force of gravity; force: the hand pushes up on the ball—reaction force: 
the ball pushes down on the hand. 

 (b) force: The Earth attracts the ball downward with the force of 
gravity—reaction force: the ball attracts the Earth upward with the 
force of gravity. 

CQ5.8 (a) The air inside pushes outward on each patch of rubber, exerting a 
force perpendicular to that section of area. The air outside pushes 
perpendicularly inward, but not quite so strongly. (b) As the balloon 
takes off, all of the sections of rubber feel essentially the same outward 
forces as before, but the now-open hole at the opening on the west side 
feels no force – except for a small amount of drag to the west from the 
escaping air. The vector sum of the forces on the rubber is to the east. 
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The small-mass balloon moves east with a large acceleration. (c) Hot 
combustion products in the combustion chamber push outward on all 
the walls of the chamber, but there is nothing for them to push on at 
the open rocket nozzle. The net force exerted by the gases on the 
chamber is up if the nozzle is pointing down. This force is larger than 
the gravitational force on the rocket body, and makes it accelerate 
upward. 

CQ5.9 The molecules of the floor resist the ball on impact and push the ball 
back, upward. The actual force acting is due to the forces between 
molecules that allow the floor to keep its integrity and to prevent the 
ball from passing through. Notice that for a ball passing through a 
window, the molecular forces weren’t strong enough. 

CQ5.10 The tension in the rope when pulling the car is twice that in the tug-of-
war. One could consider the car as behaving like another team of 
twenty more people. 

CQ5.11 An object cannot exert a force on itself, so as to cause acceleration. If it 
could, then objects would be able to accelerate themselves, without 
interacting with the environment. You cannot lift yourself by tugging 
on your bootstraps.  

CQ5.12 Yes. The table bends down more to exert a larger upward force. The 
deformation is easy to see for a block of foam plastic. The sag of a table 
can be displayed with, for example, an optical lever. 

CQ5.13 As the barbell goes through the bottom of a cycle, the lifter exerts an 
upward force on it, and the scale reads the larger upward force that the 
floor exerts on them together. Around the top of the weight’s motion, 
the scale reads less than average. If the weightlifter throws the barbell 
upward so that it loses contact with his hands, the reading on the scale 
will return to normal, reading just the weight of the weightlifter, until 
the barbell lands back in his hands, at which time the reading will 
jump upward. 

CQ5.14 The sack of sand moves up with the athlete, regardless of how quickly 
the athlete climbs. Since the athlete and the sack of sand have the same 
weight, the acceleration of the system must be zero. 

CQ5.15 If you slam on the brakes, your tires will skid on the road. The force of 
kinetic friction between the tires and the road is less than the 
maximum static friction force. Antilock brakes work by “pumping” the 
brakes (much more rapidly than you can) to minimize skidding of the 
tires on the road. 
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CQ5.16 (a) Larger: the tension in A must accelerate two blocks and not just 
one. (b) Equal. Whenever A moves by 1 cm, B moves by 1 cm. The two 
blocks have equal speeds at every instant and have equal accelerations. 
(c) Yes, backward, equal. The force of cord B on block 1 is the tension 
in the cord. 

CQ5.17 As you pull away from a stoplight, friction exerted by the ground on 
the tires of the car accelerates the car forward. As you begin running 
forward from rest, friction exerted by the floor on your shoes causes 
your acceleration. 

CQ5.18 It is impossible to string a horizontal cable without its sagging a bit. 
Since the cable has a mass, gravity pulls it downward. A vertical 
component of the tension must balance the weight for the cable to be in 
equilibrium. If the cable were completely horizontal, then there would 
be no vertical component of the tension to balance the weight. If a 
physicist would testify in court, the city employees would win. 

CQ5.19 (a) Yes, as exerted by a vertical wall on a ladder leaning against it. (b) 
Yes, as exerted by a hammer driving a tent stake into the ground. (c) 
Yes, as the ball accelerates upward in bouncing from the floor. (d) No; 
the two forces describe the same interaction. 

CQ5.20 The clever boy bends his knees to lower his body, then starts to 
straighten his knees to push his body up—that is when the branch 
breaks. In order to give himself an upward acceleration, he must push 
down on the branch with a force greater than his weight so that the 
branch pushes up on him with a force greater than his weight. 

CQ5.21 (a) As a man takes a step, the action is the force his foot exerts on the 
Earth; the reaction is the force of the Earth on his foot. (b) The action is 
the force exerted on the girl’s back by the snowball; the reaction is the 
force exerted on the snowball by the girl’s back. (c) The action is the 
force of the glove on the ball; the reaction is the force of the ball on the 
glove. (d) The action is the force exerted on the window by the air 
molecules; the reaction is the force on the air molecules exerted by the 
window. We could in each case interchange the terms “action” and 
“reaction.” 

CQ5.22 (a) Both students slide toward each other. When student A pulls on 
the rope, the rope pulls back, causing her to slide toward Student B. 
The rope also pulls on the pulley, so Student B slides because he is 
gripping a rope attached to the pulley. (b) Both chairs slide because 
there is tension in the rope that pulls on both Student A and the pulley 
connected to Student B. (c) Both chairs slide because when Student B 
pulls on his rope, he pulls the pulley which puts tension into the rope 
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passing over the pulley to Student A. (d) Both chairs slide because 
when Student A pulls on the rope, it pulls on her and also pulls on the 
pulley. 

CQ5.23 If you have ever seen a car stuck on an icy road, with its wheels 
spinning wildly, you know the car has great difficulty moving forward 
until it “catches” on a rough patch. (a) Friction exerted by the road is 
the force making the car accelerate forward. Burning gasoline can 
provide energy for the motion, but only external forces—forces exerted 
by objects outside—can accelerate the car. (b) If the car moves forward 
slowly as it speeds up, then its tires do not slip on the surface. The 
rubber contacting the road moves toward the rear of the car, and static 
friction opposes relative sliding motion by exerting a force on the 
rubber toward the front of the car. If the car is under control (and not 
skidding), the relative speed is zero along the lines where the rubber 
meets the road, and static friction acts rather than kinetic friction.  

 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 5.1 The Concept of Force 
Section 5.2 Newton’s First Law and Inertial Frames 
Section 5.3 Mass 
Section 5.4 Newton’s Second Law 
Section 5.5 The Gravitational Force and Weight 
Section 5.6 Newton’s Third Law 

*P5.1 (a) The woman’s weight is the magnitude of the gravitational force 
acting on her, given by 

     Fg = mg = 120 lb = 4.448 N lb( ) 120 lb( ) = 534 N  

(b) Her mass is 
  
m =

Fg

g
= 534 N

9.80 m s2 = 54.5 kg  

*P5.2 We are given  Fg = mg = 900 N , from which we can find the man’s mass, 

  
  
m = 900 N

9.80 m s2 = 91.8 kg  

 Then, his weight on Jupiter is given by 

  
  

Fg( )on Jupiter
= 91.8 kg 25.9 m s2( ) = 2.38 kN  
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P5.3 We use Newton’s second law to find the force as a vector and then the 
Pythagorean theorem to find its magnitude. The givens are m = 3.00 kg 
and 

   

a = 2.00î + 5.00 ĵ( )  m s2 .  

 (a) The total vector force is 

   
    
∑

F = m


a = (3.00 kg)(2.00 î + 5.00 ĵ) m/s2 = (6.00 î + 15.0 ĵ) N  

 (b) Its magnitude is  

   
   

F = Fx( )2 + Fy( )2

= (6.00 N)2 + (15.0 N)2 = 16.2 N   

P5.4 Using the reference axes shown in Figure P5.4, we see that 

   
  Fx∑ = T cos14.0°−T cos14.0° = 0  

 and 

   
  Fy∑ = −T sin14.0°−T sin14.0° = −2T sin14.0°  

 Thus, the magnitude of the resultant force exerted on the tooth by the 
wire brace is 

   

  
R = Fx∑( )2 + Fy∑( )2

= 0 + −2T sin14.0°( )2 = 2T sin14.0°
 

 or 

     R = 2 18.0 N( )sin 14.0° = 8.71 N  

P5.5 We use the particle under constant acceleration and particle under a 
net force models. We first calculate the acceleration of the puck: 

   

      

a =
Δv
Δt =

8.00 î +10.0 ĵ( )m/s – 3.00 î m/s 
8.00 s

= 0.625 î  m/s2 + 1.25 ĵ m/s2

 

  In     

F∑ = m


a,  the only horizontal force is the thrust   


F  of the rocket: 

  (a) 
   


F = (4.00 kg) 0.625 î  m/s2 + 1.25 ĵ m/s2( ) = 2.50 î + 5.00 ĵ( )  N  

 (b) Its magnitude is   |

F|= (2.50 N)2 + (5.00 N)2 = 5.59 N  
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P5.6 (a) Let the x axis be in the original direction of the molecule’s motion. 
Then, from   v f = vi + at,  we have  

    

  
a =

v f − vi

t
= −670 m/s − 670 m/s

3.00× 10−13  s
= −4.47 × 1015  m/s2

  

 (b) For the molecule,     

F = m


a∑ .  Its weight is negligible. 

    

   


Fwall on molecule = 4.68× 10−26  kg( ) −4.47 × 1015  m s2( )

= −2.09× 10−10  N

Fmolecule on wall = +2.09× 10−10  N

 

*P5.7 Imagine a quick trip by jet, on which you do not visit the rest room and 
your perspiration is just canceled out by a glass of tomato juice. By 
subtraction, 

 
Fg( )p

= mgp  and 
 

Fg( )C
= mgC  give  

   
 ΔFg = m gp − gC( )  

 For a person whose mass is 90.0 kg, the change in weight is  

   
  ΔFg = 90.0 kg 9.809 5 − 9.780 8( ) = 2.58 N  

A precise balance scale, as in a doctor’s office, reads the same in 
different locations because it compares you with the standard masses 
on its beams. A typical bathroom scale is not precise enough to reveal 
this difference. 

P5.8 The force on the car is given by     

F = m


a∑ ,  or, in one dimension, 

  F∑ = ma.  Whether the car is moving to the left or the right, since it’s 
moving at constant speed, a = 0 and therefore   F∑ = 0  for both parts 
(a) and (b). 

P5.9 We find the mass of the baseball from its weight: w = mg, so m = w/g = 
2.21 N/9.80 m/s2 = 0.226 kg.  

 (a) We use 
  
x f = xi +

1
2

(vi + v f )t  and   x f − xi = Δx,  with vi = 0,  

vf = 18.0 m/s, and   Δt = t = 170 ms = 0.170 s:   

    

  

Δx = 1
2

(vi + v f )Δt

Δx = 1
2

(0 + 18.0 m/s)(0.170 s) = 1.53 m
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 (b) We solve for acceleration using   vxf = vxi + axt,  which gives 

    
 
ax =

vxf − vxi

t
 

  where a is in m/s2, v is in m/s, and t in s. Substituting gives 

   

  
ax = 18.0 m/s − 0

0.170 s
= 106 m/s2

 

  Call   

F1  = force of pitcher on ball, and   


F2  = force of Earth on ball 

(weight). We know that 

   
   

F∑ =

F1 +

F2 = m


a  

  Writing this equation in terms of its components gives 

    
  Fx∑ = F1x + F2x = max

 
  Fy∑ = F1y + F2y = may

 

    
  Fx∑ = F1x + 0 = max

 
  Fy∑ = F1y − 2.21 N = 0  

  Solving, 

    
  F1x = 0.226 kg( ) 106 m/s2( ) = 23.9 N  and  F1y = 2.21 N

  

  Then, 
    

  

F1 = F1x( )2 + F1y( )2

= 23.9 N( )2 + 2.21 N( )2 = 24.0 N

 

  and 
 
θ = tan−1 2.21 N

23.9 N
⎛
⎝⎜

⎞
⎠⎟ = 5.29°  

  

 

The pitcher exerts a force of 24.0 N forward at 5.29° above
the horizontal.

 

P5.10 (a) Use 
  
Δx =

1
2

(vi + v f )Δt,  where vi = 0, vf = v, and   Δt = t:   

   
  
Δx =

1
2

(vi + v f )Δt =
1
2

vt  
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 (b) Use vxf = vxi + axt: 

   
  
vxf = vxi + axt → ax =

vxf − vxi

t
→ ax =

v − 0
t

=
v
t

 

  Call   

F1  = force of pitcher on ball, and    


F2 = −Fg = −mg = 

gravitational force on ball. We know that 

   
   

F∑ =

F1 +

F2 = m


a  

  writing this equation in terms of its components gives 

   
  Fx∑ = F1x + F2x = max

 
  Fy∑ = F1y + F2y = may

 

   
  Fx∑ = F1x + 0 = max

 
  Fy∑ = F1y − mg = 0  

  Solving and substituting from above, 

   F1x = mv/t F1y = mg 

  then the magnitude of F1 is 

   

  

F1 = F1x( )2 + F1y( )2

= mv/t( )2 + mg( )2 = m v/t( )2 + g2

 

  and its direction is  

   

  
θ = tan−1 mg

mv/t
⎛
⎝⎜

⎞
⎠⎟

= tan−1 gt
v

⎛
⎝⎜

⎞
⎠⎟

 

P5.11 Since this is a linear acceleration problem, we can use Newton’s second 
law to find the force as long as the electron does not approach 
relativistic speeds (as long as its speed is much less than 3 × 108 m/s), 
which is certainly the case for this problem. We know the initial and 
final velocities, and the distance involved, so from these we can find 
the acceleration needed to determine the force. 

 (a) From   v f
2 = vi

2 + 2ax  and  F∑ = ma,  we can solve for the 

acceleration and then the force: 
  
a =

v f
2 – vi

2

2x  
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  Substituting to eliminate a, 
  
F∑ =

m v f
2 – vi

2( )
2x  

  Substituting the given information, 

  

 
F∑ =

9.11 × 10–31  kg( ) 7.00 × 105  m/s( )2
– 3.00 × 105  m/s( )2⎡

⎣⎢
⎤
⎦⎥

2(0.050 0 m)
 

   
 
F∑ = 3.64 × 10–18  N  

  (b) The Earth exerts on the electron the force called weight, 

   
  
Fg = mg = (9.11 × 10–31kg)(9.80 m/s2 ) = 8.93 × 10–30 N  

  The accelerating force is  

  
 

4.08 × 1011  times the weight of the electron.  

P5.12 We first find the acceleration of the object: 

   

    


rf −

ri = v it + 1

2

at2

4.20 mî − 3.30 mĵ = 0 + 1
2

a 1.20 s( )2 = 0.720 s2( )a


a = 5.83î − 4.58 ĵ( )  m s2

 

 Now    

F∑ = m


a  becomes 

   

    


Fg +

F2 = m


a


F2 = 2.80 kg 5.83î − 4.58ĵ( )  m s2 + 2.80 kg( ) 9.80 m s2( ) ĵ

F2 = 16.3î + 14.6 ĵ( )  N

 

P5.13 (a) 

 

Force exerted by spring on hand, to the left; force exerted by
spring on wall, to the right.
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 (b) 

 

Force exerted by wagon on handle, downward to the left. Force 
exerted by wagon on planet, upward. Force exerted by wagon on
ground, downward.

 

 (c) 

 

Force exerted by football on player, downward to the right. Force
exerted by football on planet, upward.

 

 (d) 

 

Force exerted by small-mass object on large-mass object, 
to the left.

 

 (e) 
 
Force exerted by negative charge on positive charge, to the left.  

 (f) 
 
Force exerted by iron on magnet, to the left.  

P5.14 The free-body diagrams are shown in ANS. FIG. P5.14 below. 

 (a) 

   


ncb = normal force of cushion on brick
mb

g = gravitational force on brick

 

 (b) 

   


npc = normal force of pavement on cushion

mb

g = gravitational force on cushion


Fbc = force of brick on cushion

 

       

   brick cushion 
   (a) (b) 

ANS. FIG.P5.14 
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 (c) 

   

force: normal force of cushion on brick (

ncb)→ reaction force:

force of brick on cushion (

Fbc )

force: gravitational force of Earth on brick (mb

g)→ reaction

force: gravitational force of brick on Earth 
force: normal force of pavement on cushion (


npc )→ reaction

force: force of cushion on pavement
force: gravitational force of Earth on cushion (mc


g)→ reaction

force: gravitational force of cushion on Earth

 

*P5.15 (a) We start from the sum of the two forces: 

   

   


F∑ =

F1 +

F2 = −6.00î − 4.00 ĵ( ) + −3.00î + 7.00 ĵ( )

= −9.00î + 3.00 ĵ( )  N
 

  The acceleration is then:  

   

    


a = ax î + ay ĵ =


F∑

m
=

−9.00î + 3.00 ĵ( )  N
2.00 kg

= −4.50î + 1.50 ĵ( )  m s2

 

 and the velocity is found from  

      

v f = vx î + vy ĵ = v i + at = at  

 

    


v f = −4.50î + 1.50 ĵ( )  m/s2⎡⎣ ⎤⎦ 10.0 s( )

= −45.0î + 15.0 ĵ( )  m/s
 

(b) The direction of motion makes angle θ with the x direction. 

  
  
θ = tan−1 vy

vx

⎛
⎝⎜

⎞
⎠⎟

= tan−1 − 15.0 m s
45.0 m s

⎛
⎝⎜

⎞
⎠⎟

 

  
  
θ = −18.4° + 180° = 162° from the + x axis  
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(c) Displacement:  

 x-displacement 

  

= x f − xi = vxit + 1
2

axt
2

= 1
2

−4.50 m s2( ) 10.0 s( )2 = −225 m

 

 y-displacement 

  

= y f − yi = vyit + 1
2

ayt
2

= 1
2

+1.50 m s2( ) 10.0 s( )2 = +75.0 m

 

 
   
Δr = −225î + 75.0 ĵ( )  m  

(d) Position:    

rf = ri + Δr  

 
    

rf = −2.00î + 4.00 ĵ( ) + −225î + 75.0 ĵ( ) = −227 î + 79.0 ĵ( )  m  

*P5.16 Since the two forces are perpendicular to each other, their resultant is 

   
  FR = 180 N( )2 + 390 N( )2 = 430 N

  

 at an angle of  

   

 
θ = tan−1 390 N

180 N
⎛
⎝⎜

⎞
⎠⎟ = 65.2° N of E

  

 From Newton’s second law, 

   

  
a = FR

m
= 430 N

270 kg
= 1.59 m/s2

  

 or 

   
   

a = 1.59 m/s2  at 65.2° N of E

  

P5.17 (a) With the wind force being horizontal, the only vertical force 
acting on the object is its own weight, mg. This gives the object a 
downward acceleration of 

   

 
ay =

Fy∑
m

= −mg
m

= −g
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  The time required to undergo a vertical displacement   Δy = −h,  
starting with initial vertical velocity   v0y = 0,  is found from 

  
Δy = v0yt + 1

2
ayt

2  as 

   
  
−h = 0 −

g
2

t2        or       t =
2h
g

 

 (b) The only horizontal force acting on the object is that due to the 
wind, so  Fx∑ = F  and the horizontal acceleration will be  

   

 
ax = Fx∑

m
= F

m

 

 (c) With   v0x = 0,  the horizontal displacement the object undergoes 

while falling a vertical distance h is given by 
  
Δx = voxt + 1

2
axt

2  as 

   
  
Δx = 0 +

1
2

F
m

⎛
⎝⎜

⎞
⎠⎟

2h
g

⎛

⎝⎜
⎞

⎠⎟

2

=
Fh
mg

 

 (d) The total acceleration of this object while it is falling will be 

   
  
a = ax

2 + ay
2 = F m( )2 + −g( )2 = F m( )2 + g2  

P5.18 For the same force F, acting on different masses F = m1a1 and F = m2a2. 
Setting these expressions for F equal to one another gives: 

 (a) 
  

m1

m2

=
a2

a1

=
1
3

 

 (b) The acceleration of the combined object is found from 

  
  F = m1 + m2( )a = 4m1a

 

  or 
  
a = F

4m1

= 1
4

3.00 m/s2( ) = 0.750 m/s2  
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ANS. FIG. P5.19 

 

P5.19 We use the particle under a net force model and add the forces as 
vectors. Then Newton’s second law tells us the acceleration. 

  (a)    

F∑ =

F1 +

F2 = (20.0î + 15.0 ĵ) N  

    Newton’s second law gives, with m = 5.00 kg, 

   
    
a =


F∑

m = 4.00 î +3.00 ĵ( )  m/s2   

  or  
  

a = 5.00 m s2  at θ = 36.9°  

 (b) In this configuration, 
   

    

F2x = 15.0cos60.0° = 7.50 N
F2y = 15.0sin60.0° = 13.0 N

F2 = 7.50î + 13.0 ĵ( )  N

  

  Then, 

   

   


F∑ =

F1 +

F2 = 20.0 î + 7.50 î + 13.0 ĵ( )⎡

⎣
⎤
⎦  N

= (27.5î + 13.0 ĵ) N

 

  and 
    
a =


F∑

m = 5.50 î + 2.60 ĵ( )  m/s2 = 6.08 m/s2  at 25.3°  

P5.20 (a) You and the Earth exert equal forces on each other: my g = ME aE. If 
your mass is 70.0 kg, 

   
  
aE =

70.0 kg( ) 9.80 m s2( )
5.98 × 1024  kg

= ~ 10−22  m s2  [1] 

 (b) You and the planet move for equal time intervals  Δt  according to 

  
Δx =

1
2

a(Δt)2 . If the seat is 50.0 cm high, 

   

  

2Δxy

ay

= 2ΔxE

aE

 

   
 
ΔxE =

aE

ay

Δxy  
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  We substitute for 
 

aE

ay
 from [1] to obtain 

   
  
ΔxE =

70.0 kg(0.500 m)
5.98 × 1024  kg

 

   
   
ΔxE  10−23  m  

P5.21 (a) 
 

15.0 lb up,  to counterbalance the Earth’s force on the block. 

 (b) 
 

5.00 lb up,  the forces on the block are now the Earth pulling 

down with 15.0 lb and the rope pulling up with 10.0 lb. The forces 
from the floor and rope together balance the weight.  

 (c) 
 

0,  the block now accelerates up away from the floor. 

P5.22    

F∑ = m


a  reads 

  
   
−2.00î + 2.00 ĵ + 5.00î − 3.00 ĵ − 45.0î( )  N = m 3.75 m s2( )â  

 where   ̂a  represents the direction of    

a:  

  
   
−42.0î − 1.00 ĵ( )  N = m 3.75 m s2( )â  

  
   

F∑ = 42.0( )2 + 1.00( )2  N  at 

 
tan−1 1.00

42.0
⎛
⎝⎜

⎞
⎠⎟

 below the –x axis 

  
    

F∑ = 42.0 N at 181° = m 3.75 m s2( )â  

 For the vectors to be equal, their magnitudes and their directions must 
be equal. 

 (a) Therefore 
  

â is at 181°  counter-clockwise from the x axis 

 (b) 
  
m =

42.0 N
3.75 m s2 = 11.2 kg  

 (c) 
    v =|


v|= 0 + a t = (3.75 m/s2 )(10.00 s) = 37.5 m/s  
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 (d) 
    


v = v i +|


a|t = 0 +


F
m

t  

  

   


v =

−42.0î − 1.00 ĵ( )  N

11.2 kg
10.0 s( ) = −37.5î − 0.893 ĵ( )  m/s

 

  So, 
    


v f = −37.5î − 0.893 ĵ( )  m s  

* Choose the +x 
direction to be 
horizontal and 
forward with 
the +y vertical 
and upward. 
The common 
acceleration of the car and trailer then has components of 

  ax = +2.15 m s2  and   ay = 0.  

 (a) The net force on the car is horizontal and given by 

     

Fx∑( )car = F −T = mcarax = 1 000 kg( ) 2.15 m s2( )
= 2.15 × 103  N forward  

 (b) The net force on the trailer is also horizontal and given by  

    

Fx∑( )trailer = +T = mtrailerax = 300 kg( ) 2.15 m s2( )
= 645 N forward  

(c) Consider the free-body diagrams of the car and trailer. The only 
horizontal force acting on the trailer is T = 645 N forward, exerted 
on the trailer by the car. Newton’s third law then states that the 
force the trailer exerts on the car is  645 N toward the rear . 

(d) The road exerts two forces on the car. These are F and  nc  shown 
in the free-body diagram of the car. From part (a), 

  F = T + 2.15 × 103  N = +2.80 × 103  N.  Also, 

  
Fy∑( )car

= nc − Fgc = mcaray = 0 , so   nc = Fgc = mcar g = 9.80 × 103  N.  
The resultant force exerted on the car by the road is then  

  

Rcar = F2 + nc
2 = 2.80 × 103  N( )2 + 9.80 × 103  N( )2

= 1.02 × 104  N  

T
nT FgT

T F 
nc Fgc

Trailer 
300 kg 

Car 
1 000 kg 

ncRcar

F
?

ANS. FIG. P5.23  
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 at 
  
θ = tan−1 nc

F( ) = tan−1 3.51( ) = 74.1°  above the horizontal and 

forward. Newton’s third law then states that the resultant force 
exerted on the road by the car is 

 1.02 × 104  N at 74.1° below the horizontal and rearward . 

P5.24  v = vi − kx  implies the acceleration is given by  

   
  
a = dv

dt
= 0 − k

dx
dt

= −kv  

 Then the total force is  

    F∑ = ma = m −kv( )  

 The resistive force is opposite to the velocity:  

   

   


F∑ = −km


v

 

 
 

 

Section 5.7 Analysis Models Using Newton’s Second Law 

P5.25 As the worker through the pole 
exerts on the lake bottom a force of 
240 N downward at 35° behind the 
vertical, the lake bottom through 
the pole exerts a force of 240 N 
upward at 35° ahead of the 
vertical. With the x axis horizontally 
forward, the pole force on the boat is  

   
  
240cos35° ĵ + 240sin 35°î( )  N = 138î + 197 ĵ( )  N

 

 The gravitational force of the whole Earth on boat and worker is Fg = 
mg = 370 kg (9.8 m/s2) = 3 630 N down. The acceleration of the boat is 
purely horizontal, so 

    Fy∑ = may  gives +B + 197 N – 3 630 N = 0 

 (a) The buoyant force is 
  
B = 3.43 × 103  N . 

ANS. FIG. P5.25 
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 (b) The acceleration is given by  

   
  Fx∑ = max :     + 138 N − 47.5 N = 370 kg( )a  

 

  
a =

90.2 N
370 kg

= 0.244 m/s2
 

According to the constant-acceleration model,  

 

    

vx  f = vxi + axt

= 0.857 m/s + (0.244 m/s2 )(0.450 s)
= 0.967 m/s


v f = 0.967 î m/s

 

P5.26 (a) The left-hand diagram in 
ANS. FIG. P5.26(a) shows 
the geometry of the situation 
and lets us find the angle of 
the string with the 
horizontal:  

   cosθ = 28/35.7 = 0.784  

  or θ = 38.3° 

  The right-hand diagram in ANS. FIG. P5.26(a) is the free-body 
diagram. The weight of the bolt is  

   w = mg = (0.065 kg)(9.80 m/s2) = 0.637 N 

 (b) To find the tension in the string, we apply Newton’s second law 
in the x and y directions: 

      Fx∑ = max : −T cos 38.3° + Fmagnetic = 0  [1] 

      Fy∑ = may : + T sin 38.3° − 0.637 N = 0   [2] 

  from equation [2],  

    

  
T = 0.637 N

sin 38.3°
= 1.03 N

  

 (c) Now, from equation [1], 

    
  
Fmagnetic = T cos38.3° = 1.03 N( )cos38.3° = 0.805 N to the right   

ANS. FIG. P5.26(a) 
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P5.27 (a) 

  

P cos 40.0°− n = 0  and P sin 40.0°− 220 N = 0
P = 342 N and n = 262 N

 

 (b) 

  

P − n cos 40.0°− 220 N sin 40.0° = 0
and n sin 40.0°− 220 N cos 40.0° = 0
n = 262 N and P = 342 N.

 

 (c) 

  

The results agree. The methods are basically of the same level
of difficulty. Each involves one equation in one unknown and
one equation in two unknowns. If we are interested in n 
without finding P, method (b) is simpler.

 

P5.28 (a) Isolate either mass:  

   
  

T + mg = ma = 0

T = mg
 

  The scale reads the tension T, so 
   

  T = mg = 5.00 kg( ) 9.80 m s2( ) = 49.0 N
  

(b) The solution to part (a) is also the solution  
to (b). 

 (c) Isolate the pulley:  

   
    


T2 + 2


T1 = 0

T2 = 2 T1 = 2mg = 98.0 N
 

 (d)     

F∑ = n +


T + m


g = 0  

  Take the component along the incline, 

     nx + Tx + mgx = 0  

  or   0 + T − mg sin 30.0° = 0  

   

  

T = mg sin 30.0° = mg
2

=
5.00 kg( ) 9.80 m/s2( )

2
= 24.5 N

 

ANS. FIG. P5.28 
(a) and (b) 

ANS. FIG. P5.28(c) 

ANS. FIG. P5.28(d) 
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*P5.29 (a) The resultant external force acting on this system, consisting of all 
three blocks having a total mass of 6.0 kg, is 42 N directed 
horizontally toward the right. Thus, the acceleration produced is 

   

  
a = F∑

m
= 42 N

6.0 kg
= 7.0 m/s2  horizontally to the right

  

 (b) Draw a free-body diagram of the 3.0-kg block and apply 
Newton’s second law to the horizontal forces acting on this block: 

   
  Fx = max∑ :   

    
  42 N −T = 3.0 kg( ) 7.0 m/s2( )     →     T = 21 N

  

 (c) The force accelerating the 2.0-kg block is the force exerted on it by 
the 1.0-kg block. Therefore, this force is given by 

    
  F = ma = 2.0 kg( ) 7.0 m/s2( ) = 14 N   

   or 
   


F = 14 N horizontally to the right   

P5.30 (a) ANS. FIG. P5.30 shows the forces on the  
object. The two forces acting on the block are  
the normal force, n, and the weight, mg. If  
the block is considered to be a point mass  
and the x axis is chosen to be parallel to the  
plane, then the free-body diagram will be as  
shown in the figure to the right. The angle  
θ is the angle of inclination of the plane.  
Applying Newton’s second law for the  
accelerating system (and taking the direction up the plane as the 
positive x direction), we have 

     Fy∑ = n − mg cosθ = 0 :  n = mg cosθ 

     Fx∑ = −mg sinθ = ma :  a = –g sinθ 

 (b) When  θ = 15.0°,  

   
  
a = −2.54 m s2  

ANS. FIG. P5.30(a) 
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 (c) Starting from rest, 

  

  

v f
2 = vi

2 + 2a x f − xi( ) = 2aΔx

v f = 2 a Δx = 2 −2.54 m/s2 2.00 m( ) = 3.19 m/s

 

P5.31 We use Newton’s second law with the forces in the x and y directions 
in equilibrium. 

 (a) At the point where the bird is perched, the wire’s midpoint, the 
forces acting on the wire are the tension forces and the force of 
gravity acting on the bird. These forces are shown in ANS. FIG. 
P5.31(a) below.  

 

ANS. FIG. P5.31(a) 

 (b) The mass of the bird is m = 1.00 kg, so the force of gravity on the 
bird, its weight, is mg = (1.00 kg)(9.80 m/s2) = 9.80 N. To calculate 
the angle α  in the free-body diagram, we note that the base of the 
triangle is 25.0 m, so that  

    

 
tanα = 0.200 m

25.0 m
     →      α = 0.458°

  

  Each of the tension forces has x and y components given by  

    
  Tx = T cosα    and    Ty = T sinα   

  The x components of the two tension forces cancel out. In the y 
direction,  

    
  Fy∑ = 2T sinα − mg = 0

 

  which gives 

   

  
T = mg

2sinα
= 9.80 N

2sin 0.458°
= 613 N  
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ANS. FIG. P5.33 

P5.32 To find the net force, we differentiate the equations for the position of 
the particle once with respect to time to obtain the velocity, and once 
again to obtain the acceleration: 

  
  
vx =

dx
dt

=
d
dt

5t2 − 1( ) = 10t,  
  
vy =

dy
dt

=
d
dt

3t3 + 2( ) = 9t2  

  
  
ax =

dvx

dt
= 10,  

  
ay =

dvy

dt
= 18t  

 Then, at t = 2.00 s, ax = 10.0 m/s2, ay = 36.0 m/s2, and Newton’s second 
law gives us 

    Fx∑ = max :   3.00 kg(10.0 m/s2) = 30.0 N 

    Fy∑ = may :   3.00 kg(36.0 m/s2) = 108 N 

  
  

F∑ = Fx
2 + Fy

2 = 112 N  

P5.33 From equilibrium of the sack:  

  T3 = Fg [1] 

 From   ∑Fy = 0  for the knot:  

    T1 sinθ1 + T2 sinθ2 = Fg  [2] 

 From   ∑Fx = 0  for the knot:  

    T1 cosθ1 = T2 cosθ2  [3] 

 Eliminate T2 by using   T2 = T1 cosθ1 / cosθ2   
and solve for T1: 

  

  

T1 =
Fg cosθ2

sinθ1 cosθ2 + cosθ1 sinθ2( ) =
Fg cosθ2

sin θ1 +θ2( )
T3 = Fg = 325 N

T1 = Fg
cos 40.0°
sin 100.0°

⎛
⎝⎜

⎞
⎠⎟ = 253 N

T2 = T1
cosθ1

cosθ2

⎛
⎝⎜

⎞
⎠⎟

= 253 N( ) cos60.0°
cos 40.0°

⎛
⎝⎜

⎞
⎠⎟ = 165 N
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P5.34 See the solution for T1 in Problem 5.33. The equations indicate that the 
tension is directly proportional to Fg.  

*P5.35 Let us call the forces exerted by each person   F1  and   F2 . Thus, for 
pulling in the same direction, Newton’s second law becomes  

  
  F1 + F2 = 200 kg( ) 1.52 m/s2( )  

 or   F1 + F2 = 304 N  [1] 

 When pulling in opposite directions,  

  
  F1 − F2 = 200 kg( ) −0.518 m/s2( )  

 or   F1 − F2 = −104 N  [2] 

 Solving [1] and [2] simultaneously, we find  

   F1 = 100 N  and   F2 = 204 N  

*P5.36 (a) First construct a free-body 
diagram for the 5.00-kg mass as 
shown in the Figure 5.36a. Since 
the mass is in equilibrium, we 
can require   T3 − 49.0 N = 0  or 

  T3 = 49.0 N.  Next, construct a 
free-body diagram for the knot 
as shown in ANS. FIG. P5.36(a). 

  Again, since the system is 
moving at constant velocity,  
a = 0, and applying Newton’s 
second law in component form 
gives 

 

  

Fx∑ = T2 cos50.0°−T1 cos 40.0° = 0
Fy∑ = T2 sin 50.0° + T1 sin 40.0°− 49.0 N = 0

 

 Solving the above equations simultaneously for   T1  and   T2  gives 

  
T1 = 31.5 N  and 

  
T2 = 37.5 N  and above we found 

  
T3 = 49.0 N . 

5 kg

49 N

40° 50°

r
T3

r
T1

r
T2

r
T3

ANS. FIG. 5.36(a) 

10 kg

98 N
r
T3

r
T1

r
T2

r
T3

= 98 N

ANS. FIG. 5.36(b) 

60.0° 
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ANS. FIG. P5.37  

(b) Proceed as in part (a) and construct a free-body diagram for the 
mass and for the knot as shown in ANS. FIG. P5.36(b). Applying 
Newton’s second law in each case (for a constant-velocity 
system), we find: 

  

  

T3 − 98.0 N = 0
T2 −T1 cos60.0° = 0
T1 sin60.0°−T3 = 0

 

 Solving this set of equations we find: 

  
T1 = 113 N,  T2 = 56.6 N,  and T3 = 98.0 N   

P5.37 Choose a coordinate system with   ̂i  East and   ĵ  
North. The acceleration is 

  
   


a = [(10.0 cos 30.0°)î + (10.0 sin 30.0°)ĵ] m/s2

= (8.66 î + 5.00 ĵ) m/s2  

  From Newton’s second law, 
   

    


F∑ = m


a = (1.00 kg)(8.66î m/s2 + 5.00 ĵ m/s2 )

= (8.66î + 5.00 ĵ) N  

 

  and     

F∑  = 

F1 + 


F2  

  So the force we want is  

  
   


F1  = 


F∑ − 

F2 = (8.66î + 5.00 ĵ − 5.00 ĵ) N

= 8.66î N = 8.66 N east
 

P5.38 (a) Assuming frictionless pulleys, the 
tension is uniform through the entire 
length of the rope. Thus, the tension at 
the point where the rope attaches to the 
leg is the same as that at the 8.00-kg 
block. ANS. FIG. P5.38(a) gives a free-
body diagram of the suspended block. 
Recognizing that the block has zero 
acceleration, Newton’s second law 
gives 

   
  Fy∑ = T − mg = 0  

ANS. FIG. P5.38 
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  or 

  T = mg = 8.00 kg( ) 9.80 m s2( ) = 78.4 N  

 (b) ANS. FIG. P5.38(b) gives a free-body diagram of the pulley near 
the foot. Here, F is the magnitude of the force the foot exerts on 
the pulley. By Newton’s third law, this is the same as the 
magnitude of the force the pulley exerts on the foot. Applying the 
second law gives 

   
  Fx∑ = T + T cos70.0°− F = max = 0  

  or 

     F = T 1 + cos70.0°( ) = 78.4 N( ) 1 + cos70.0°( ) = 105 N  

*P5.39 (a) Assume the car and mass accelerate 
horizontally. We consider the forces 
on the suspended object. 

     Fy∑ = may :    +T cosθ − mg = 0  

     Fx∑ = max :    +T sinθ = ma  

  Substitute 
  
T = mg

cosθ
 from the first 

equation into the second, 

   
  

mg sinθ
cosθ

= mg tanθ = ma  

    
  

a = g tanθ  

 (b) 
  
a = 9.80 m s2( )tan 23.0° = 4.16 m s2   

P5.40 (a) The forces on the objects are shown 
in ANS. FIG. P5.40. 

(b) and (c) First, consider m1, the block 
moving along the horizontal. The 
only force in the direction of 
movement is T. Thus,  

    Fx∑ = ma  

mrg

r
T ra

ANS. FIG. P5.39 

ANS. FIG. P5.40 
(a) 
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  or T = (5.00 kg)a  [1] 

Next consider m2, the block that moves vertically. The forces on it 
are the tension T and its weight, 88.2 N. 

  We have   Fy∑ = ma:  

   88.2 N – T = (9.00 kg)a [2] 

Note that both blocks must have the same magnitude of 
acceleration. Equations [1] and [2] can be added to give 88.2 N = 
(14.0 kg)a. Then 

   
  

a = 6.30 m s2  and T = 31.5 N  

P5.41 (a) and (b) The slope of the graph of upward velocity versus time is the 
acceleration of the person’s body. At both time 0 and time 0.5 s, 
this slope is (18 cm/s)/0.6 s = 30 cm/s2. 

  For the person’s body, 

    

  

Fy∑ = may :

          + Fbar − 64.0 kg( ) 9.80 m/s2( ) = 64.0 kg( ) 0.3 m/s2( )
 

  Note that there is no floor touching the person to exert a normal 
force, and that he does not exert any extra force “on himself.” 
Solving, 

  
Fbar = 646 N up .  

 (c) ay = slope of vy versus t graph = 0 at t = 1.1 s. The person is 
moving with maximum speed and is momentarily in equilibrium:  

    

  

Fy∑ = may :

          + Fbar − 64.0 kg( ) 9.80 m/s2( ) = 0

 

    
  
Fbar = 627 N up

 

 (d) ay = slope of vy versus t graph = (0 – 24 cm/s)/(1.7 s – 1.3 s) = 
 –60 cm/s2 

    

  

Fy∑ = may :

          + Fbar − 64.0 kg( ) 9.80 m/s2( ) = 64.0 kg( ) −0.6 m/s2( )
 

  
  
Fbar = 589 N up  
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ANS. FIG. P5.42 

P5.42 m1 = 2.00 kg, m2 = 6.00 kg, θ = 55.0° 

(a) The forces on the objects are  
shown in ANS. FIG. P5.42. 

 (b)   Fx∑ = m2 g sinθ −T = m2a  and  

  

  

T − m1g = m1a

a = m2 g sinθ − m1g
m1 + m2

=
6.00 kg( ) 9.80 m/s2( )sin 55.0°− 2.00 kg( ) 9.80 m/s2( )

2.00 kg + 6.00 kg

= 3.57 m s2

  

 (c)   T = m1 a + g( ) = 2.00 kg( ) 3.57 m/s2 + 9.80 m/s2( ) = 26.7 N  

 (d) Since   vi = 0 , 
  
v f = at = 3.57 m s2( ) 2.00 s( ) = 7.14 m s . 

P5.43 (a) Free-body diagrams of the two blocks 
are shown in ANS. FIG. P5.43. Note 
that each block experiences a 
downward gravitational force 

  
  Fg = 3.50 kg( ) 9.80 m s2( ) = 34.3 N  

Also, each has the same upward 
acceleration as the elevator, in this case 
ay = +1.60 m/s2. 

  Applying Newton’s second law to the lower block: 
   

  Fy∑ = may      ⇒      T2 − Fg = may
 

  or  

 
  T2 = Fg + may = 34.3 N + 3.50 kg( ) 1.60 m s2( ) = 39.9 N  

  Next, applying Newton’s second law to the upper block: 
   

  Fy∑ = may      ⇒      T1 −T2 − Fg = may
 

  or 

  

  

T1 = T2 + Fg + may = 39.9 N + 34.3 N + 3.50 kg( ) 1.60 m s2( )
= 79.8  N

 

ANS. FIG. P5.43  
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(b) Note that the tension is greater in the upper string, and this string 
will break first as the acceleration of the system increases. Thus, 
we wish to find the value of ay when T1 = 85.0. Making use of the 
general relationships derived in (a) above gives: 

 
  
T1 = T2 + Fg + may = Fg + may( ) + Fg + may = 2Fg + 2may  

  or 

   
  
ay =

T1 − 2Fg

2m
=

85.0 N − 2 34.3 N( )
2 3.50 kg( ) = 2.34 m s2  

P5.44 (a) Free-body diagrams of the two blocks 
are shown in ANS. FIG. P5.44. Note 
that each block experiences a 
downward gravitational force Fg = mg. 

 Also, each has the same upward 
acceleration as the elevator, ay = +a. 

 Applying Newton’s second law to the 
lower block: 

   
  Fy∑ = may      ⇒      T2 − Fg = may

 

  or   
  
T2 = mg + ma = m g + a( )  

  Next, applying Newton’s second law to the upper block: 

   
  Fy∑ = may      ⇒      T1 −T2 − Fg = may

 

  or 

 

  

T1 = T2 + Fg + may = mg + ma( ) + mg + ma = 2 mg + ma( )
= 2m(g + a) = 2T2

 

(b) Note that 
  
T1 = 2T2 , so the upper string breaks first  as the 

acceleration of the system increases. 

 (c) When the upper string breaks, both blocks will be in free fall with 
a = –g. Then, using the results of part (a), T2 = m (g + a) = m (g – g) 

=  0  and T1 = 2T2 =  0 . 

ANS. FIG. P5.44  
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P5.45 Forces acting on m1 = 2.00-kg block: 

   T – m1g = m1a [1] 

 Forces acting on m2 = 8.00-kg block: 

   Fx – T = m2a [2] 

 (a) Eliminate T and solve for a: 

   
  
a =

Fx − m1g
m1 + m2

 

   
  

a > 0 for Fx > m1g = 19.6 N  

 (b) Eliminate a and solve for T: 

   
  
T =

m1

m1 + m2

Fx + m2 g( )  

   
  

T = 0 for Fx ≤ −m2 g = −78.4 N  

 Note that if Fx < –m2g, the cord is loose, so mass m2 is in free fall 
and mass m1 accelerates under the action of Fx only.  

 (c) See ANS. FIG. P5.45. 

   

 

P5.46 (a) Pulley P2 has acceleration a1. 

Since m2 moves twice the distance P2 moves 
in the same time, m2 has twice the 

acceleration of P2, i.e., 
  

a2 = 2a1 . 

 (b) From the figure, and using  

  

   

F∑ = ma: m1g −T1 = m1a1 [1]
T2 = m2a2 = 2m2a1 [2]

T1 − 2T2 = 0 [3]

 

Fx, N –100 –78.4 –50.0 0 50.0 100 
ax, m/s2 –12.5 –9.80 –6.96 –1.96 3.04 8.04 

ANS. FIG. P5.45  

ANS. FIG. P5.46  
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Equation [1] becomes m1g – 2T2 = m1a1. This equation combined 
with equation [2] yields  

   
  

T2

m2

2m2 +
m2

2
⎛
⎝⎜

⎞
⎠⎟ = m1g  

   
  

T2 =
m1m2

2m2 + 1
2 m1

g  and 
  

T2 =
m1m2

m2 + 1
4 m1

g  

 (c) From the values of T2 and T1, we find that 

   
  
a2 =

T2

m2

=
m1g

2m2 + 1
2 m1

 and 
  
a1 =

1
2

a2 =
m1g

4m2 + m1

 

*P5.47 We use the particle under constant 
acceleration and particle under a net force 
models. Newton’s law applies for each 
axis. After it leaves your hand, the block’s 
speed changes only because of one 
component of its weight: 

  
  

Fx∑ = max                
−mg sin 20.0° = ma

 

  
  v f

2 = vi
2 + 2a x f − xi( )  

 Taking   v f = 0 ,   vi = 5.00 m/s,  and 

  a = −g sin 20.0°( )  gives, suppressing units, 

  
  0 = 5.00( )2 − 2 9.80( )sin 20.0°( ) x f − 0( )  

 or 

  
  
x f = 25.0

2 9.80( )sin 20.0°( )
= 3.73 m  

*P5.48 We assume the vertical bar is in 
compression, pushing up on the pin 
with force A, and the tilted bar is in 
tension, exerting force B on the pin 
at –50.0°. 

r
Fg

ra

rn

rvi

rn

 
ANS. FIG. P5.47  

30° 50°

2 500 N

2 500 N cos30°

2 500 N sin30° sin50°B

cos50°B

A

r
B

r
A

ANS. FIG. P5.48  
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  Fx∑ = 0:     

    −2 500 N cos30° + Bcos50° = 0  

  
  B = 3.37 × 103  N  

 
  Fy∑ = 0:  

    −2 500 N sin 30° + A − 3.37 × 103  N sin 50° = 0  

  
  A = 3.83 × 103  N  

 Positive answers confirm that  

	   	   	  
  

B is in tension and A is in compression.  

P5.49 Since it has a larger mass, we expect the 
8.00-kg block to move down the plane. 
The acceleration for both blocks should 
have the same magnitude since they are 
joined together by a non-stretching 
string. Define up the left-hand plane as  
positive for the 3.50-kg object and down  
the right-hand plane as positive for the 8.00-kg object. 

   

  

F1∑ = m1a1:     − m1g sin 35.0° + T = m1a

F2∑ = m2a2:       m2 g sin 35.0°−T = m2a

  

 and, suppressing units, 

  
  

− 3.50( ) 9.80( )sin 35.0° + T = 3.50a
8.00( ) 9.80( )sin 35.0° −T = 8.00a .

 

 Adding, we obtain   +45.0 N − 19.7 N = 11.5 kg( )a.  

(a) Thus the acceleration is 
  

a = 2.20 m s2 . By substitution, 

    −19.7 N + T = 3.50 kg( ) 2.20 m s2( ) = 7.70 N  

(b) The tension is   T = 27.4 N  

ANS. FIG. P5.49 
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P5.50 Both blocks move with acceleration 
  
a =

m2 − m1

m2 + m1

⎛
⎝⎜

⎞
⎠⎟

g:  

   

  
a =

7 kg − 2 kg
7 kg + 2 kg

⎛
⎝⎜

⎞
⎠⎟

9.80 m/s2( ) = 5.44 m/s2
 

 (a) Take the upward direction as positive for m1. 

   
  
vyf

2 = vyi
2 + 2ax y f − yi( )  

   
  
0 = −2.4 m s( )2 + 2 5.44 m s2( ) y f − 0( )  

   

  

y f = −
5.76 m2 s2

2 5.44 m s2( ) = −0.529 m

y f = 0.529 m below its initial level

 

 (b) 

  

vyf = vyi + ayt: vyf = −2.40 m/s + 5.44 m/s2( ) 1.80 s( )

vyf = 7.40 m/s upward

 

P5.51 We draw a force diagram and apply Newton’s 
second law for each part of the elevator trip to find 
the scale force. The acceleration can be found from 
the change in speed divided by the elapsed time. 

 Consider the force diagram of the man shown as 
two arrows. The force F is the upward force exerted 
on the man by the scale, and his weight is 

   Fg = mg = (72.0 kg)(9.80 m/s2) = 706 N 

With +y defined to be upwards, Newton’s  
second law gives 

   
 

F∑ y = +Fs − Fg = ma  

  Thus, we calculate the upward scale force to be  

     Fs = 706 N + (72.0 kg)a  [1] 

 where a is the acceleration the man experiences as the elevator changes 
speed. 

ANS. FIG. P5.51 
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 (a) Before the elevator starts moving, the elevator’s acceleration is 
zero (a = 0). Therefore, equation [1] gives the force exerted by the 
scale on the man as 706 N upward, and the man exerts a 
downward force of  706 N  on the scale.  

 (b) During the first 0.800 s of motion, the man accelerates at a rate of 

    
  
ax =

Δv
Δt =

1.20 m/s – 0
0.800 s = 1.50 m s2  

   Substituting a into equation [1] then gives 

    F = 706 N + (72.0 kg)(1.50 m/s2) = 
 814 N  

 (c) While the elevator is traveling upward at constant speed, the 
acceleration is zero and equation [1] again gives a scale force 

  F = 706 N .
  

 (d) During the last 1.50 s, the elevator first has an upward velocity of 
1.20 m/s, and then comes to rest with an acceleration of 

    
  
a =

Δv
Δt =

0 – 1.20 m/s
1.50 s = – 0.800 m s2  

   Thus, the force of the man on the scale is 

   F = 706 N + (72.0 kg)(−0.800 m/s2) =  648 N  

 
 

 

Section 5.8 Forces of Friction 

*P5.52 If the load is on the point of sliding  
forward on the bed of the slowing  
truck, static friction acts backward  
on the load with its maximum value,  
to give it the same acceleration as the  
truck: 

     ΣFx = max :    − fs = mloadax  

     ΣFy = may :    n − mload g = 0  

ANS. FIG. P5.52 

r

r
r
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 Solving for the normal force and substituting into the x equation gives: 

     −µsmload g = mloadax     or  ax = −µs g  

 We can then use  

   
  vxf

2 = vxi
2 + 2ax x f − xi( )   

 Which becomes 

   
  0 = vxi

2 + 2 −µs g( ) x f − 0( )  

 (a) 
  
x f = vxi

2

2µsg
= 12.0 m s( )2

2 0.500( ) 9.80 m s2( ) = 14.7 m  

 (b) From the expression 
  
x f = vxi

2

2µs g
,  

   neither mass affects the answer  

P5.53 Using m = 12.0 × 10–3 kg, vi = 260 m/s, vf = 0, ∆x = (xf – xi) = 0.230 m, 
and vf

2 = vi
2 + 2a(xf – xi), we find the acceleration of the bullet:  

a = –1.47 × 105 m/s2.  Newton’s second law then gives 

   
 Fx∑ = max

 

   fk = ma =  –1.76 × 105 N 

 The (kinetic) friction force is 
  
1.76 ×  105  N in the negative x direction .  

P5.54 We apply Newton’s second law to the car to determine the maximum 
static friction force acting on the car: 

   

  

Fy∑ = may : +n − mg = 0

fs ≤µsn = µsmg

 

 This maximum magnitude of static friction acts so long as the tires roll 
without skidding. 

   
 Fx∑ = max →− fs = ma  
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 The maximum acceleration is  

    a = −µs g  

 The initial and final conditions are: xi = 0, vi = 50.0 mi/h = 22.4 m/s, 
and vf = 0. Then, 

     v f
2 = vi

2 + 2a(x f − xi )→ vi
2 = 2µs gx f  

 (a) 
  
x f =

vi
2

2µs g
 

  
  
x f =

22.4 m s( )2

2 0.100( ) 9.80 m s2( ) = 256 m  

 (b) 
  
x f =

vi
2

2µs g
 

  
  
x f =

22.4 m s( )2

2 0.600( ) 9.80 m s2( ) = 42.7 m  

P5.55 For equilibrium: f = F and n = Fg. Also,   f = µn,  i.e.,  

   

 
µ = f

n
= F

Fg

 

 In parts (a) and (b), we replace F with the 
magnitude of the applied force and µ  with the 
appropriate coefficient of friction. 

 (a) The coefficient of static friction is found from  

   
  
µs = F

Fg

= 75.0 N
25.0 kg( ) 9.80 m/s2( ) = 0.306

 

 (b) The coefficient of kinetic friction is found from 

   

  
µk = F

Fg

= 60.0 N
25.0 kg( ) 9.80 m/s2( ) = 0.245

 

ANS. FIG. P5.55 
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P5.56 Find the acceleration of the car, which is the same as the acceleration of 
the book because the book does not slide. 

 For the car: vi = 72.0 km/h = 20.0 m/s, vf = 0, ∆x = (xf  – xi) = 30.0 m. 
Using vf

2 = vi
2 + 2a(xf – xi), we find the acceleration of the car:  

   a = –6.67 m/s2 

 Now, find the maximum acceleration that friction can provide. Because 
the book does not slide, static friction provides the force that slows 
down the book. We have the coefficient of static friction, µs = 0.550, and 
we know fs ≤ µsn. The book is on a horizontal seat, so friction acts in the 
horizontal direction, and the vertical normal force that the seat exerts 
on the book is equal in magnitude to the force of gravity on the book:  
n = Fg = mg. For maximum acceleration, the static friction force will be 
a maximum, so fs = µsn = µsmg. Applying Newton’s second law, we 
find the acceleration that friction can provide for the book:  

   
  Fx∑ = max :  

    –fs = ma 

    –µsmg = ma  

 which gives a = –µs g = –(0.550)(9.80 m/s2) = –5.39 m/s2, which is 
too small for the stated conditions.  

 

 

The situation is impossible because maximum static friction 
cannot provide the acceleration necessary to keep the book 
stationary on the seat.

 

P5.57 The x and y components of Newton’s second law as the eraser begins 
to slip are 

     − f + mg sinθ = 0  and   +n − mg cosθ = 0   

 with   f = µs n or µk n,  these equations yield  

   
  µs = tanθc = tan 36.0° = 0.727

 

   
  µk = tanθc = tan 30.0° = 0.577
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P5.58 We assume that all the weight is on the rear wheels of the car. 

(a) We find the record time from  

 F = ma:   µsmg = ma    or  a = µsg  

  But  

   

  
Δx = at2

2
= µsgt2

2

 

  so 
  
µs =

2Δx
gt2  

   
  
µs =

2 0.250 mi( ) 1 609 m mi( )
9.80 m s2( ) 4.43 s( )2 = 4.18  

 (b) 

 

Time would increase, as the wheels would skid and only kinetic
friction would act; or perhaps the car would flip over.

 

P5.59 Maximum static friction provides the force that produces maximum 
acceleration, resulting in a minimum time interval to accelerate 
through  Δx  = 3.00 m. We know that the maximum force of static 
friction is fs = µsn. If the shoe is on a horizontal surface, friction acts in 
the horizontal direction. Assuming that the vertical normal force is 
maximal, equal in magnitude to the force of gravity on the person, we 
have n = Fg = mg; therefore, the maximum static friction force is 

   fs = µsn = µsmg 

 Applying Newton’s second law: 
   

  Fx∑ = max :  

    fs = ma 

    
  µsmg = ma   →    a = µsg

  

 We find the time interval  Δt  = t to accelerate from rest through  Δx = 

3.00 m using 
  
x f = xi + vxit + 1

2
axt

2:  

   
  
Δx =

1
2

ax(Δt)2 → Δt =
2Δx
ax

=
2Δx
µs g
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 (a) For µs = 0.500,  Δt =  1.11 s  

 (b) For µs = 0.800,  Δt =  0.875 s  

P5.60 (a) See the free-body diagram of the suitcase in 
ANS. FIG. P5.60(a).  

 (b) msuitcase = 20.0 kg, F = 35.0 N 

  
  

Fx∑ = max : −20.0 N + F cosθ = 0
Fy∑ = may : +n + F sinθ − Fg = 0

 

  

  

F cosθ = 20.0 N

cosθ =
20.0 N
35.0 N

= 0.571

θ = 55.2°

 

 (c) With Fg = (20.0 kg)(9.80 m/s2),  

   
  n = Fg − F sinθ = 196 N − 35.0 N( ) 0.821( )[ ]  

   
  

n = 167 N  

P5.61 We are given: m = 3.00 kg, θ = 30.0°, x = 2.00 m,  
t = 1.50 s 

 (a) At constant acceleration, 

   
  
x f = vit + 1

2 at2  

  Solving,  

   
  
a = 

2 x f – vit( )
t2  = 

2(2.00 m – 0)
(1.50 s)2  =  1.78 m/s2  

 From the acceleration, we can calculate the friction force, answer (c), 
next. 

 (c) Take the positive x axis down parallel to the incline, in the 
direction of the acceleration. We apply Newton’s second law: 

     Fx = mg  sin θ − f = ma∑  

ANS. FIG. P5.60(a)  

ANS. FIG. P5.61 
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  Solving, f = m(g sin  θ − a ) 

  Substituting,  

   f = (3.00 kg)[(9.80 m/s2)sin 30.0° − 1.78 m/s2] =  9.37 N  

 (b) Applying Newton’s law in the y direction (perpendicular to the 
incline), we have no burrowing-in or taking-off motion. Then the 
y component of acceleration is zero: 

    
  

Fy = n – mg  cos θ = 0∑  

  Thus  n = mg cos θ  

  Because  f =  µkn  

  we have 
   
µk =

f
mg  cosθ =

9.37 N
(3.00 kg) 9.80 m/s2( )cos 30.0

= 0.368  

 (d) 
  

v f = vi + at so v f = 0 + (1.78 m/s2 )(1.50 s) = 2.67 m/s  

*P5.62 The free-body diagrams for this problem are shown in ANS. FIG. 
P5.62.  

 

 

 

 

 

 

ANS. FIG. P5.62 

 From the free-body diagram for the person,  

     Fx∑ = F1 sin 22.0°( ) − F2 sin 22.0°( ) = 0  

 which gives   F1 = F2 = F.  Then,   Fy∑ = 2F cos22.0° + 85.0 lbs − 170 lbs = 0  
yields F = 45.8 lb. 

22.0° 22.0° 

+y +y

+x +x
f

F = 45.8 lb
22.0°

Fg = 170 lb

F2 F1

ntip
n Fgground  lb= =2 85 0.

Free-Body Diagram   Free-Body Diagram 
 of Person  of Crutch Tip 
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 (a) Now consider the free-body diagram of a crutch tip. 

     Fx∑ = f − 45.8 lb( )sin 22.0° = 0  

  or f = 17.2 lb.  

     Fy∑ = ntip − 45.8 lb( )cos22.0° = 0  

  which gives   ntip = 42.5 lb.  

For minimum coefficient of friction, the crutch tip will be on the 
verge of slipping, so   f = fs( )max = µsntip  and  

 
  
µs = f

ntip

= 17.2 lb
42.5 lb

= 0.404  

  (b) As found above, the compression force in each crutch is 

     F1 = F2 = F = 45.8 lb  

P5.63 Newton’s second law for the 5.00-kg mass gives  

  T – fk = (5.00 kg)a 

 Similarly, for the 9.00-kg mass, 

  (9.00 kg)g – T = (9.00 kg)a  

 Adding these two equations gives: 

  

  

9.00 kg( ) 9.80 m/s2( )
     − 0.200 5.00 kg( ) 9.80 m/s2( )
                                    = 14.0 kg( )a

 

 Which yields a = 5.60 m/s2. Plugging this into  
the first equation above gives  

  
  T = 5.00 kg( ) 5.60 m/s2( ) + 0.200 5.00 kg( ) 9.80 m/s2( ) = 37.8 N

  

ANS. FIG. P5.63 
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ANS. FIG. P5.64(a) 

P5.64 (a) The free-body diagrams for each object 
appear on the right. 

 (b) Let a represent the positive magnitude of 
the acceleration    −aĵ  of m1, of the 

acceleration    −aî  of m2, and of the 
acceleration    +aĵ  of m3. Call T12 the 
tension in the left cord and T23 the tension 
in the cord on the right. 

  For m1,   Fy∑ = may :  

       +T12 − m1g = −m1a  

  For m2,   Fx∑ = max :   

       −T12 + µkn + T23 = −m2a  

  and    Fy∑ = may , giving   n− m2 g = 0.   

  For m3,  Fy∑ = may , giving   T23 − m3g = +m3a.  

  We have three simultaneous equations: 

    

  

−T12 + 39.2 N = 4.00 kg( )a

+T12 − 0.350 9.80 N( ) −T23 = 1.00 kg( )a

+T23 − 19.6 N = 2.00 kg( )a

 

  Add them up (this cancels out the tensions): 

      +39.2 N − 3.43 N − 19.6 N = 7.00 kg( )a  

    
  
a = 2.31 m s2 , down for m1 , left for m2 ,  and up for m3  

 (c) Now 
  −T12 + 39.2 N = 4.00 kg( ) 2.31 m s2( )  

    
  

T12 = 30.0 N  

  and 
  T23 − 19.6 N = 2.00 kg( ) 2.31 m s2( )  

    
  

T23 = 24.2 N  
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 (d) If the tabletop were smooth, friction disappears (µk = 0), and so 
the acceleration would become larger. For a larger acceleration, 
according to the equations above, the tensions change: 

    
  
T12 = m1g − m1a → T12  decreases

 

    
  
T23 = m3g + m3a → T23 increases

 

P5.65 Because the cord has constant length, 
both blocks move the same number 
of centimeters in each second and so 
move with the same acceleration. To 
find just this acceleration, we could 
model the 30-kg system as a particle 
under a net force. That method 
would not help to finding the tension, 
so we treat the two blocks as separate 
accelerating particles. 

 (a) ANS. FIG. P5.65 shows the free-body diagrams for the two blocks. 
The tension force exerted by block 1 on block 2 is the same size as 
the tension force exerted by object 2 on object 1. The tension in a 
light string is a constant along its length, and tells how strongly 
the string pulls on objects at both ends. 

  (b) We use the free-body diagrams to apply Newton’s second law. 

   For m1:   Fx = T − f1 = m1a∑ or T = m1a + f1  [1] 

   And also 
  

Fy = n1 − m1g = 0∑ or n1 = m1g  

   Also, the definition of the coefficient of friction gives 

     f1 =   µn1
= (0.100)(12.0 kg)(9.80 m/s2) = 11.8 N 

   For m2:   Fx∑ = F – T – f2 = ma  [2] 

   Also from the y component,   n2 – m2 g = 0 or n2 = m2 g  

   And again f2 =   µn2
 = (0.100)(18.0 kg)(9.80 m/s2) = 17.6 N 

   Substituting T from equation [1] into [2], we get  

      F − m1a − f1 − f2 = m2a or F − f1 − f2 = m2a + m1a  

ANS. FIG. P5.65 



242     The Laws of Motion 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

   Solving for a,   

    

  
a = F – f1 – f2

m1 + m2
= (68.0 N –11.8 N–17.6 N)

(12.0 kg+18.0 kg) = 1.29 m s2
 

  (c) From equation [1],  

    T = m1a + f1 = (12.0 kg)(1.29 m/s2) + 11.8 N =  27.2 N  

P5.66 (a) To find the maximum possible value of P, 
imagine impending upward motion as 
case 1. Setting   Fx∑ = 0:  

      Pcos50.0° − n = 0  

  with   fs ,  max = µsn:  

    
  

fs ,  max = µsPcos50.0°

= 0.250 0.643( )P = 0.161P
 

  Setting   Fy∑ = 0:  

    

  

Psin 50.0° − 0.161P

         − 3.00 kg( ) 9.80 m/s2( ) = 0

Pmax = 48.6 N

   

  To find the minimum possible value of P, consider impending 
downward motion. As in case 1, 

      fs ,  max = 0.161P  

  Setting   Fy∑ = 0:  

    

  

Psin 50.0° + 0.161P − 3.00 kg( ) 9.80 m/s2( ) = 0

Pmin = 31.7 N

 

 (b) 

  

If P > 48.6 N, the block slides up the wall.  If P < 31.7 N, the block
slides down the wall.

 

ANS. FIG. P5.66 
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 (c) We repeat the calculation as in part (a) with the new angle. 

  Consider impending upward motion as case 1. Setting  

    

  

Fx∑ = 0: Pcos13° − n = 0
fs ,  max = µsn: fs ,  max = µsPcos13°

= 0.250 0.974( )P = 0.244P

 

  Setting  

    

  

Fy∑ = 0: Psin 13° − 0.244P − 3.00 kg( ) 9.80 m/s2( ) = 0

Pmax = −1 580 N

 

  The push cannot really be negative. However large or small it is, 
it cannot produce upward motion. To find the minimum possible 
value of P, consider impending downward motion. As in case 1, 

      fs ,  max = 0.244P  

  Setting 

    

  

Fy∑ = 0: Psin 13° + 0.244P − 3.00 kg( ) 9.80 m/s2( ) = 0

Pmin = 62.7 N

 

  
  

P ≥ 62.7 N. The block cannot slide up the wall. If P < 62.7 N, the
block slides down the wall.

 

P5.67 We must consider separately the rock when it is 
in contact with the roof and when it has gone 
over the top into free fall. In the first case, we take 
x and y as parallel and perpendicular to the 
surface of the roof: 

  
  

Fy∑ = may : +n − mg cosθ = 0
n = mg cosθ

 

 then friction is   fk = µkn = µkmg cosθ  

    Fx∑ = max : − fk − mg sinθ = max  

ANS. FIG. P5.67 
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ax = −µk g cosθ − g sinθ = −0.400cos37.0° − sin 37.0°( )(9.80 m s2 )

= −9.03 m s2
 

 The rock goes ballistic with speed given by 

 

  

vxf
2 = vxi

2 + 2ax x f − xi( ) = 15 m s( )2 + 2 −9.03 m s2( ) 10 m − 0( )
= 44.4 m2 s2

vxf = 6.67 m s

 

 For the free fall, we take x and y horizontal and vertical: 

  

  

vyf
2 = vyi

2 + 2ay y f − yi( )
y f =

vyf
2 − vyi

2

2ay

=
0 − 6.67 m s  sin 37°( )2

2 −9.8 m s2( ) = 0.822 m above the top of the roof

   

 Then   ytot = 10.0 m sin 37.0° + 0.822 m = 6.84 m .  

P5.68 The motion of the salmon as it breaks the surface of the water and 
eventually leaves must be modeled in two steps. The first is over a 
distance of 0.750 m, until half of the salmon is above the surface, while 
a constant force, P, is applied upward. In this motion, the initial 
velocity of the salmon as it nears the surface is 3.58 m/s and ends with 
the salmon having a velocity, v½, when it is half out of the water. This 
is then the initial velocity for the second motion, where gravity is a 
second force to be considered acting on the fish. This motion is again 
over a distance of 0.750 m, and results with the salmon having a final 
velocity of 6.26 m/s. 

 The vertical motion equations, in each case, would be 

   

  
a1y =

v1yf
2 − v1yi

2

2 Δy
=

v1 2
2 − 3.58 m s( )2

2 0.750 m( ) =
v1 2

2 − 12.8 m2 s2( )
1.50 m

 

 and 

   

  
a2y =

v2yf
2 − v2yi

2

2 Δy
=

6.26 m s( )2 − v1 2
2

2 0.750 m( ) =
39.2 m2 s2( )− v1 2

2

1.50 m
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 Solving for the square of the velocity in each case and equating the 
expressions, we find 

   
  v1 2

2 = 1.50 m( )a1y + 12.8 m2 s2( )  

   
  v1 2

2 = 39.2 m2 s2( ) − 1.50 m( )a2y  

   
  

1.50 m( )a1y + 12.8 m2 s2( ) = 39.2 m2 s2( ) − 1.50 m( )a2y

a1y = 17.6 m s2( ) − a2y

 

 In the first motion, the relationship between the net acceleration and 
the net force can be written as 

   
  

Fy = P = ma1y∑
P = 61.0 kg( )a1y

 

 Substituting from above, 

   

  

P = 61.0 kg( ) 17.6 m s2( )− a2y⎡⎣ ⎤⎦
P = 1 070 N − 61.0 kg( )a2y

 

 In the second motion, the relationship between the net acceleration and 
the net force can be written as 

   

  

Fy = P − mg = ma2y∑
P = mg + ma2y = 61.0 kg( ) 9.80 m s2( ) + 61.0 kg( )a2y

P = 598 N + 61.0 kg( )a2y

 

 Equating these two equations for, P, 

   

  

1 070 N − 61.0 kg( )a2y = 598 N + 61.0 kg( )a2y

− 122.0 kg( )a2y = −472 N

a2y = 3.87 m s2

 

 Plugging into either of the above, 

   

  

P = 598 N + 61.0 kg( ) 3.87 m s2( )
P = 834 N
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P5.69 Take +x in the direction of motion of the tablecloth. For the mug: 

   
  

Fx∑ = max : 0.1 N = 0.2 kg ax

ax = 0.5 m s2  

 Relative to the tablecloth, the acceleration of the mug is 0.500 m/s2 – 
3.00 m/s2 = –2.50 m/s2. The mug reaches the edge of the tablecloth 
after time given by 

   

  

Δ x = vxit + 1
2

axt
2

−0.300 m = 0 + 1
2

−2.50 m s2( )t2

t = 0.490 s

 

 The motion of the mug relative to tabletop is over distance 

   

  

1
2

axt
2 = 1

2
0.500 m s2( ) 0.490 s( )2 = 0.060 0 m

 

 The tablecloth slides 36 cm over the table in this process. 

*P5.70 (a) The free-body diagrams are shown in the figure below. 

r
r

r

r

r

r

r r

 

ANS. FIG. P5.70(a) 

  f1 and n1  appear in both diagrams as action-reaction pairs. 

 (b) For the 5.00-kg mass, Newton’s second law in the y direction 
gives:  

     n1 = m1g = 5.00 kg( ) 9.80 m/s2( ) = 49.0 N   

  In the x direction, 

     f1 −T = 0  
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     T = f1 = µ mg = 0.200 5.00 kg( ) 9.80 m/s2( ) = 9.80 N  

For the 10.0-kg mass, Newton’s second law in the x direction 
gives:  

     45.0 N − f1 − f2 = 10.0 kg( )a  

  In the y direction, 

     n2 − n1 − 98.0 N = 0  

     f2 = µ n2 = µ n1 + 98.0 N( ) = 0.20 49.0 N + 98.0 N( ) = 29.4 N  
 
     45.0 N − 9.80 N − 29.4 N = 10.0 kg( )a  

   
  
a = 0.580 m/s2  

*P5.71 For the right-hand block (m1),   F1∑ = m1a  
gives  

    −m1g sin 35.0° − fk ,1 + T = m1a  

 or 

  

  

− 3.50 kg( ) 9.80 m/s2( )sin 35.0°

              − µs 3.50 kg( ) 9.80 m/s2( )cos35.0° + T

                                                        = 3.50 kg( ) 1.50 m/s2( )

 

[1]

 

 For the left-hand block (m2),   F2∑ = m2a  gives 

  
  +m2 g sin 35.0° − fk ,2 −T = m2a  

  

  

+ 8.00 kg( ) 9.80 m/s2( )sin 35.0° −

    µs 8.00 kg( ) 9.80 m/s2( )cos35.0° −T = 8.00 kg( ) 1.50 m/s2( )  [2]

 

 Solving equations [1] and [2] simultaneously gives 

 (a) 
  

µk = 0.087 1  

 (b)   T = 27.4 N  

 
 

 

ANS. FIG. P5.71 
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Additional Problems 

P5.72 (a) Choose the black glider plus magnet as the system. 

   
  Fx∑ = max → +0.823 N = 0.24 kg( )a  

   
  
a = 3.43 m/s2  toward the scrap iron

 

 (b) The force of attraction the magnet exerts on the scrap iron is the 
same as in (a): 

   
  
ablack = 3.43 m/s2  toward the scrap iron  

  By Newton’s third law, the force the black glider exerts on the 
magnet is equal and opposite to the force exerted on the scrap 
iron: 

   
  Fx∑ = max →−0.823 N = − 0.12 kg( )  a  

   
  
a = −6.86 m/s2  toward the magnet

 

P5.73 Let situation 1 be the original situation, with 

  F1∑ = m1a1 = m1 8.40 mi h ⋅ s( ) . Let situation 2 be the case with larger 
force   F2∑ = 1 + 0.24( ) F1∑ = m1a2 = 1.24m1a1 , so   a2 = 1.24a1.  Let situation 
3 be the case with the original force but with smaller mass: 

   

  

F3∑ = F1∑ = m3a3 = 1− 0.24( )m1a3

a3 = F1∑
0.76m1

= 1.32a1

 

(a) With 1.32a greater than   1.24a1 ,  
 

reducing the mass  gives a 

larger increase in acceleration. 

(b) Now with both changes, 

    F4∑ = m4a4  

 

  

1.24 F1∑ = 0.76m1a4

a4 = 1.24
0.76

F1∑
m1

= 1.24
0.76

8.40 mi h ⋅ s( ) = 13.7 mi h ⋅ s
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P5.74 Find the acceleration of the block according to the kinematic equations. 
The book travels through a displacement of 1.00 m in a time interval of 

0.483 s. Use the equation 
  
x f = xi + vxit + 1

2
axt

2 ,  where 

  Δx = x f − xi = 1.00 m, Δt = t = 0.483 s, and vi = 0:  

   
  
x f = xi + vxit + 1

2
axt

2 → a = 2Δx
t2 = 8.57 m/s2  

 Now, find the acceleration of the block caused by the forces. See the 
free-body diagram below. We take the positive y axis is perpendicular 
to the incline; the positive x axis is parallel and down the incline. 

   
  ∑Fy = may :  

      n − mg cos θ = 0→ n = mg cos θ  

   
  ∑Fx = max :  

      mg sin θ − fk = ma   

 where   fk = µkn = µkmg cos θ  

 Substituting the express for kinetic friction into the 
x-component equation gives 

     mg sin θ − µkmg cos θ = ma → a = g(sin θ − µk cos θ)  

 For µk = 0.300, and  θ = 60.0°,  a = 7.02 m/s2. 

 
 

The situation is impossible because these forces on the book cannot 
produce the acceleration described.

 

P5.75 (a) Since the puck is on a horizontal surface, the normal force is 
vertical. With ay = 0, we see that 

     Fy∑ = may → n − mg = 0   or   n = mg  

  Once the puck leaves the stick, the only horizontal force is a 
friction force in the negative x direction (to oppose the motion of 
the puck). The acceleration of the puck is 

   
 
ax =

ΣFx

m
=
− fk

m
=
−µkn

m
=
−µk mg( )

m
= −µk g  

ANS. FIG. P5.74 
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 (b) Then   vxf
2 = vxi

2 + 2aΔx  gives the horizontal displacement of the 
puck before coming to rest as  

   
  
Δx =

vxf
2 − vxi

2

2ax

=
0 − vi

2

2 −µk g( ) =
vi

2

2µk g
 

*P5.76 (a) Let x represent the position of the glider along the air track. Then 

  z
2 = x2 + h0

2 ,   x = z2 − h0
2( )1 2 ,  and 

  
vx = dx

dt
= 1

2
z2 − h0

2( )−1 2 2z( ) dz
dt

. 

Now 
 

dz
dt

 is the rate at which the string passes over the pulley, so 

it is equal to  vy  of the counterweight. 

     vx = z z2 − h0
2( )−1 2 vy = uvy  

(b) 
 
ax = dvx

dt
= d

dt
uvy = u

dvy

dt
+ vy

du
dt

  

 At release from rest,   vy = 0  and  ax = uay . 

(c) 
  
sin 30.0° = 80.0 cm

z
,   z = 1.60 m,  

    u = z2 − h0
2( )−1 2 z = 1.6 m( )2 − 0.8 m( )2⎡⎣ ⎤⎦

−1 2
1.6 m( ) = 1.15 m  

  For the counterweight,   Fy∑ = may :   

     T − 0.5 kg( ) 9.80 m/s2( ) = − 0.5 kg( )ay  

     ay = −2 kg−1( )T + 9.80 m/s2( )  

  For the glider,   Fx∑ = max :  

   

  

T cos30° = 1.00 kg( )  ax = 1.15 kg( )ay

= 1.15 kg( ) −2 kg−1( )T + 9.80 m/s2[ ]
= −2.31T + 11.3 N

 

   
  

3.18T = 11.3 N

T = 3.56 N
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*P5.77 When an object of mass m is on this frictionless incline, the only force 
acting parallel to the incline is the parallel component of weight, 

  mg sinθ ,  directed down the incline. The acceleration is then 

   

  
a = mg sinθ

m
= g sinθ = 9.80 m/s2( )sin 35.0° = 5.62 m/s2

  

 directed down the incline.  

 (a) Taking up the incline as positive, the time for the sled projected 
up the incline to come to rest is given by 

   

  
t =

v f − vi

a
= 0− 5.00 m/s

−5.62 m/s2 = 0.890 s
  

  The distance the sled travels up the incline in this time is 

   

  
Δx = vavgt =

v f + vi

2
⎛
⎝⎜

⎞
⎠⎟

= 0 + 5.00 m/s
2

⎛
⎝⎜

⎞
⎠⎟ 0.890 s( ) = 2.23 m

  

(b) The time required for the first sled to return to the bottom of the 
incline is the same as the time needed to go up, that is, t = 0.890 s. 
In this time, the second sled must travel down the entire 10.0-m 
length of the incline. The needed initial velocity is found from  

 

  
Δx = vit + 1

2
at2

 

which gives 

 

  
vi = Δx

t
− at

2
= −10.0 m

0.890 s
−

−5.62 m/s2( ) 0.890 s( )
2

= −8.74 m/s
 

or  8.74 m/s down the incline   

P5.78 (a) free-body diagrams of block and rope are shown in ANS. FIG. 
P5.78(a): 

 

ANS. FIG. P5.78(a) 
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 (b) Applying Newton’s second law to the rope yields 

      Fx∑ = max      ⇒      F −T = mra     or     T = F − mra  [1] 

  Then, applying Newton’s second law to the block, we find 
    

  Fx∑ = max      ⇒T = mba     or     F − mra = mba
 

  which gives  

    
 
a =

F
mb + mr

 

 (c) Substituting the acceleration found above back into equation [1] 
gives the tension at the left end of the rope as 

 
 
T = F − mra = F − mr

F
mb + mr

⎛
⎝⎜

⎞
⎠⎟

= F
mb + mr − mr

mb + mr

⎛

⎝
⎜

⎞

⎠
⎟  

  or   
 
T =

mb

mb + mr

⎛
⎝⎜

⎞
⎠⎟

F  

 (d) From the result of (c) above, we see that as mr approaches zero, T 
approaches F. Thus, 

  
 

the tension in a cord of negligible mass is constant along 
its length.

 

P5.79 (a) The free-body diagrams of the two blocks shown in ANS. FIG. 
P5.79(a): 

 

ANS. FIG. P5.79(a) 

  Vertical forces sum to zero because the blocks move on a 
horizontal surface; therefore, ay = 0 for each block. 
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     ∑F1y = m1ay :    ∑F2y = m2ay :  

     −m1g + n1 = 0→ n1 = m1g    −m2 g + n2 = 0→ n2 = m2 g  

  Kinetic friction is: Kinetic friction is: 

     f1 = µ1n1 = µ1m1g    f2 = µ2n2 = µ2m2 g  

 (b) 

  

The net force on the system of the blocks would be equal to the
magnitude of the force, F, minus the friction force on each
block. The blocks will have the same acceleration.

 

 (c) 

  

The net force on the mass, m1 , would be equal to the force, F, 
minus the friction force on m1  and the force P 21 , as identified 
in the free-body diagram.

 

 (d) 

  

The net force on the mass, m2 , would be equal to the force, P12 , 
minus the friction force on m2 , as identified in the free-body 
diagram.

 

 (e) The blocks are pushed to the right by force    

F,  so kinetic friction   


f  

acts on each block to the left. Each block has the same horizontal 
acceleration, ax = a. Each block exerts an equal and opposite force 
on the other, so those forces have the same magnitude:  
P12 = P21 = P. 

   
  ∑F1x = m1ax :    ∑F2x = m2ax :  

   F – P –f1 = m1a P – f2 = m2a 

   
  
F − P − µ1m1g = m1a  

  
P − µ2m2 g = m2a  

 (f) Adding the above two equations of x components, we find 
   

  

F − P − µ1m1g + P − µ2m2 g = m1a + m2a
F − µ1m1g − µ2m2 g = (m1 + m2 )a→

a = F − µ1m1g − µ2m2 g
m1 + m2
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 (g) From the x component equation for block 2, we have 

   

  

P − µ2m2 g = m2a → P = µ2m2 g + m2a

P =
m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

F + µ2 − µ1( )m1g⎡⎣ ⎤⎦
 

  We see that when the coefficients of friction are equal, µ1 = µ2, the 
magnitude P is independent of friction. 

P5.80 (a) The cable does not stretch: Whenever one car moves 1 cm, the 
other moves 1 cm. 

  
 

At any instant they have the same velocity and at all instants they
have the same acceleration.

 

 (b) Consider the BMW as the object. 
   

  

Fy = may :∑
         + T − mg = ma

         +T – (1 461 kg)(9.80 m/s2 )= 1 461 kg( )(1.25 m/s2 )

 

  
  

T = 1.61× 104 N
 

 (c) Consider both cars as the object. 
   

  

Fy = may :∑
         + T − m + M( )g = m + M( )a

         +T – (1 461 kg + 1 207 kg)(9.80 m/s2 )

                                     = (1 461 kg + 1 207 kg)(1.25 m/s2 )

 

   
  Tabove = 2.95 × 104  N  

P5.81 (a) ANS. FIG. P5.81(a) shows the free-body diagrams for this 
problem. 

  Note that the same-size force n acts up on Nick and down on 
chair, and cancels out in the diagram. The same-size force T =  
250 N acts up on Nick and up on chair, and appears twice in the 
diagram. 
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ANS. FIG. P5.81(a) 

  (b) First consider Nick and the chair together as the system. Note that 
two ropes support the system, and T = 250 N in each rope. 

   Applying   F = ma,∑    2T − (160 N + 320 N) = ma  

   where   
  
m = 480 N

9.80 m s2 = 49.0 kg  

   Solving for a gives  
  
a = (500  –  480) N

49.0 kg = 0.408 m s2  

  (c) On Nick, we apply  

      F = ma:∑    n + T – 320 N = ma  

  where  
  
m = 320 N

9.80 m/s2 = 32.7  kg  

  The normal force is the one remaining unknown: 

     320 N –n ma T= +  

  Substituting, 
  
n = (32.7 kg) 0.408 m s2( ) + 320 N – 250 N  

  gives   n = 83.3 N  
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ANS. FIG. P5.82 

P5.82 See ANS. FIG. P5.82 showing the free-body  
diagrams. The rope has tension T. 

(a) As soon as Nick passes the rope to  
the other child, 

  

 

Nick and the seat, with total weight 
480 N, will accelerate down and the 
child, with smaller weight 440 N, will 
accelerate up.

 

 On Nick and the seat, 

  

  
Fy =∑ + 480 N −T = 480 N

9.80 m s2 a
 

 On the child, 

 

  
Fy∑ = +T − 440 N = 440 N

9.80 m s2 a
 

 Adding, 

  

  

+ 480 N −T + T − 440 N = 49.0 kg + 44.9 kg( )a

a =
40 N

93.9 kg
= 0.426 m s2 = a

 

 The rope tension is T = 440 N + (44.9 kg)(0.426 m/s2) = 459 N.  

(b) The rope must support Nick and the seat, so the rope tension is 
480 N. 

 

 

In problem 81, a rope tension of 250 N does not make the rope 
break. In part (a), the rope is strong enough to support tension 
459 N. But now the tension everywhere in the rope is 480 N, 
so it can exceed the breaking strength of the rope.

 

The tension in the chain supporting the pulley is 480 N + 480 N = 
960 N, so the chain may break first. 
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ANS. FIG. P5.84 

P5.83 (a) See free-body diagrams in ANS. FIG. P5.83. 

 (b) We write  Fx∑ = max  for each object. 

   

  

18 N − P = 2 kg( )a

P −Q = 3 kg( )a

Q = 4 kg( )a

 

  Adding gives 
   

  
18 N = 9 kg( )a→ a = 2.00 m s2

 

 (c) The resultant force on any object is    ∑

F = m


a:  All have the same 

acceleration: 
   

   


F∑ = (4 kg)(2 m/s2 ) = 8.00 N on the 4-kg object

F∑ = (3 kg)(2 m/s2 ) = 6.00 N on the 3-kg object

F∑ = (2 kg)(2 m/s2 ) = 2.00 N on the 2-kg object

 

 (d) From above, P = 18 N – (2 kg)a →   P = 14.0 N , and Q = (4 kg)a → 

  
Q = 8.00 N .  

 (e) 

  

Introducing the heavy block reduces the acceleration because
the mass of the system (plasterboard-heavy block-you) is greater.
The 3-kg block models the heavy block of wood. The contact
force on your back is represented by Q,  which is much less than
the force F. The difference between F  and Q is the net force
causing acceleration of the 5-kg pair of objects.

 

P5.84 (a) For the system to start 
to move when released,  
the force tending to move  
m2 down the incline,  
m2g sin θ, must exceed  
the maximum friction  
force which can retard  
the motion: 

   
  

fmax = f1,max + f2,max = µs ,1n1 + µs ,2n2

fmax = µs ,1m1g + µs ,2m2 g cosθ
 

ANS. FIG. P5.83 
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ANS. FIG. P5.47 

  From the table of coefficients of friction in the text, we take  
µs,1 = 0.610 (aluminum on steel) and µs,2 = 0.530 (copper on steel). 
With 

     m1 = 2.00 kg, m2 = 6.00 kg, θ = 30.0°  

  the maximum friction force is found to be fmax = 38.9 N. This 
exceeds the force tending to cause the system to move, 
 

  m2 g sinθ = 6.00 kg 9.80 m s2( )sin 30° = 29.4 N . Hence, 

  
 

the system will not start to move when released  

 (b) and (c)  No answer because the blocks do not move.  

 (d) The friction forces increase in magnitude until the total friction 
force retarding the motion, f = f1 + f2, equals the force tending to 
set the system in motion. That is, until 

   
  

f = m2 g sinθ = 29.4 N  

P5.85 (a) See ANS. FIG. P5.85 showing the 
forces. All forces are in the vertical 
direction. The lifting can be done at 
constant speed, with zero 
acceleration and total force zero on 
each object. 

 (b) For M,   F∑ = 0 = T5  – Mg  

  so  T5 = Mg 

Assume frictionless pulleys. The 
tension is constant throughout a light, 
continuous rope. Therefore, T1 = T2 = 
T3. 

For the bottom pulley, 
    

  F∑ = 0 = T2 + T3 – T5
 

so 2T2 = T5. Then 
  

T1 = T2 = T3 =
Mg
2

, 
  

T4 =
3Mg

2
, and 

  
T5 = Mg .  

ANS. FIG. 5.85  
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ANS. FIG. P5.86 

 (c) Since F = T1, we have 
  

F =
Mg
2

.  

*P5.86 (a) Consider forces on the midpoint of the 
rope. It is nearly in equilibrium just 
before the car begins to move. Take the y 
axis in the direction of the force you exert: 

    Fy∑ = may :      −T sinθ + f −T sinθ = 0  

  
  

T = f
2sinθ

 

 (b) 
  
T = 100 N

2sin 7°
= 410 N  

*P5.87 The acceleration of the system is found 
from 

   

  
Δy = vyit + 1

2
ayt

2
  

 since   vyi = 0,  we obtain 

   

  
a = 2Δy

t2 = 2 1.00 m( )
1.20 s( )2 = 1.39 m/s2

  

 Using the free-body diagram for m2, Newton’s second law gives 

   

  

Fy2 = m2∑ a:

m2 g −T = m2a

T = m2 g − a( )
= 5.00 kg( ) 9.80 m/s2 − 1.39 m/s2( )
= 42.1 N

   

 Then, applying Newton’s second law to the horizontal motion of m1,  

   

  

Fx1 = m1∑ a:
T − f = m1a
f = T − m1a

= 42.1 N − 10.0 kg( ) 1.39 m/s2( ) = 28.2 N

 

rr

r

ANS. FIG. 5.87  
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 Since n = m1g = 98.0 N, we have 

   

  
µk = f

n
= 28.2 N

98.0 N
= 0.288

  

*P5.88 Applying Newton’s second law to 
each object gives: 

    T1 = f1 + 2m g sinθ + a( )  [1] 

    T2 −T1 = f2 + m g sinθ + a( )  [2] 

    T2 = M g − a( )  [3] 

 (a), (b) Assuming that the system is 
in equilibrium (a = 0) and that 
the incline is frictionless, (f1 = 
f2 = 0), the equations reduce to 

   
  

T1 = 2mg sinθ  [1’] 

     T2 −T1 = mg sinθ  [2’] 

     T2 = Mg  [3’] 

  Substituting [1’] and [3’] into equation [2’] then gives   

   
  

M = 3msinθ
 

  so equation [3’] becomes 
  

T2 = 3mg sinθ  

 (c), (d)   M = 6msinθ  (double the value found above), and  f1 = f2 = 0. 
With these conditions present, the equations become 

  T1 = 2m g sinθ + a( ) ,   T2 −T1 = m g sinθ + a( )  and 

  T2 = 6msinθ g − a( ).  Solved simultaneously, these yield  

  
  

a = g sinθ
1 + 2sinθ

, 
  

T1 = 4mg sinθ 1 + sinθ
1 + 2sinθ

⎛
⎝⎜

⎞
⎠⎟

 and  

  
  

T2 = 6mg sinθ 1 + sinθ
1 + 2sinθ

⎛
⎝⎜

⎞
⎠⎟

 

r r
r

r

r

r

rr
r

r
r

r

ANS. FIG. P5.88 
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 (e) Equilibrium (a = 0) and impending motion up the incline, so 

  M = Mmax  while   f1 = 2µsmg cosθ  and   f2 = µsmg cosθ ,  both 
directed down the incline. Under these conditions, the equations 
become   T1 = 2mg sinθ + µs cosθ( ) ,   T2 −T1 = mg sinθ + µs cosθ( ) ,  

and   T2 = Mmax g,  which yield 
  

Mmax = 3m sinθ + µs cosθ( ) . 

 (f) Equilibrium (a = 0) and impending motion down the incline, so 

  M = Mmin , while   f1 = 2µsmg cosθ  and   f2 = µsmg cosθ ,  both 
directed up the incline. Under these conditions, the equations are 

  T1 = 2mg sinθ − µs cosθ( ) ,    T2 −T1 = mg sinθ − µs cosθ( ) ,  and 

  T2 = Mmin g,  which yield 
  

Mmin = 3m sinθ − µs cosθ( ) . When this 

expression gives a negative value, it corresponds physically to a 
mass M hanging from a cord over a pulley at the bottom end of 
the incline. 

 (g) 
  

T2,max −T2,min = Mmax g − Mmin g = 6µsmg cosθ  

P5.89 (a) The crate is in equilibrium, just before it starts to move. Let the 
normal force acting on it be n and the friction force, fs. 

  Resolving vertically:  ∑Fy = may  gives 

   
  n = Fg + Psin θ  

  Horizontally,  ∑Fx = max  gives 

   P cos θ = f 

  But, 

    fs ≤ µsn  

  i.e., 

   
  
Pcosθ ≤ µs Fg + Psinθ( )  

  or 

     P cosθ − µs sinθ( ) ≤ µsFg  

  Divide by cos θ : 

     P 1− µs tanθ( ) ≤ µsFg secθ  

ANS. FIG. P5.89 
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  Then 

   
  

Pminimum =
µsFg secθ

1− µs tanθ
 

 (b) 

  

To set the crate into motion, the x component (P cosθ) must
overcome friction fs = µsn:

P cosθ ≥ µsn = µs (Fg + P sin θ)

P cosθ − µs sin θ( ) ≥ µs Fg

For this condition to be satisfied, it must be true that

cosθ − µs sin θ( ) > 0→ µs tan θ < 1→ tanθ < 1
µs

If this condition is not met, no value of P can move the crate.

 

P5.90 (a) See table below and graph in ANS. FIG. P5.90(a). 

t(s) t2(s2) x(m) 

0 0 0 

1.02 1.04 0 0.100 

1.53 2.34 1 0.200 

2.01 4.04 0 0.350 

2.64 6.97 0 0.500 

3.30 10.89 0.750 

3.75 14.06 1.00 

 

   

 

  ANS. FIG. P5.90(a) 
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 (b) From 
  
x =

1
2

at2  the slope of a graph of x versus t2 is 
  

1
2

a,  and 

   
  
a = 2 × slope = 2 0.071 4 m s2( ) = 0.143 m s2  

 (c) From   ′a = g sinθ ,  

   
  
′a = 9.80 m s2 1.77 4

127.1
⎛
⎝⎜

⎞
⎠⎟ = 0.137 m s2 , different by 4%. 

  The difference is accounted for by the uncertainty in the data, 
which we may estimate from the third point as  

   
 

0.350 − 0.071 4( ) 4.04( )
0.350

= 18%  

   
 
Thus the acceleration values agree.  

P5.91 (a) The net force on the cushion is in a fixed direction, downward 
and forward making angle θ = tan−1(F/mg) with the vertical. 

  

  

Because the cushion starts from rest, the direction of its line of
motion will be the same as that of the net force.

We show the path is a straight line another way. In terms of a
standard coordinate system, the x and y  coordinates of the
cushion are

y = h− 1
2

gt2

x = 1
2

F/m( )t2 → t2 = 2m/F( )x

Substitution of t2  into the equation for y  gives

y = h− mg/f( )x

which is an equation for a straight line.

 

 (b) 

 

Because the cushion starts from rest, it will move in the direction
of the net force which is the direction of its acceleration; therefore,
it will move with increasing speed and its velocity changes
in magnitude.
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 (c) Since the line of motion is in the direction of the net force, they 
both make the same angle with the vertical. Refer to Figure P5.91 
in the textbook: in terms of a right triangle with angle θ, height h, 
and base x, 

   

  

tan θ = x/h = F/mg → x = hF/mg

x = (8.00 m)(2.40 N)
(1.20 kg)(9.80 m/s2 )

 

  and the cushion will land a distance  

   x = 
 
1.63 m from the base of the building .  

 (d) The cushion will move along a tilted parabola. If the cushion were 
experiencing a constant net force directed vertically downward 
(as is normal with gravity), and if its initial velocity were down 
and somewhat to the left, the trajectory would have the shape of a 
parabola that we would expect for projectile motion. Because the 
constant net force is “sideways”—at an angle θ counterclockwise 
from the vertical—the cushion would travel a similar trajectory as 
described above, but rotated counterclockwise by the angle θ so 
that the initial velocity is directed downward. See the figures. 

 

ANS. FIG. P5.91(d) 

P5.92 (a) When block 2 moves down 1 cm, block 1 moves 2 cm forward, so 
block 1 always has twice the speed of block 2, and 

  
a1 = 2a2  

relates the magnitudes of the accelerations. 

 (b) Let T represent the uniform tension in the cord.  

  For block 1 as object, 

   
  

Fx∑ = m1a1: T = m1a1 = m1 2a2( )
T = 2m1a2

 [1]
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  For block 2 as object,  

   
  

Fy∑ = m2a2 : T + T − m2 g = m2 −a2( )
2T − m2 g = −m2a2

 [2]
 

  To solve simultaneously we substitute equation [1] into equation 
[2]: 

   

  

2 2m1a2( ) − m2 g = −m2a2 → 4m1a2 + m2a2 = m2 g

a2 =
m2 g

4m1 + m2

 

  for m2 = 1.30 kg: 
  
a2 = 12.7 N (1.30 kg + 4 m1)−1  down  

 (c) If m1 is very much less than 1.30 kg, a2 approaches  

   12.7 N/1.30 kg =  9.80 m/s2  down  

 (d) If m1 approaches infinity, 
  
a2  approaches zero .  

 (e) From equation (2) above, 2T = m2g + m2a2 = 12.74 N + 0, 

  T = 6.37 N  

 (f) 

  

Yes. As m1  approaches zero, block 2 is essentially in free fall. As
m2  becomes negligible compared to m1 ,  m2  has very little weight,
so the system is nearly in equilibrium.

 

P5.93 We will use  F∑ = ma  on 
each object, so we draw 
force diagrams for the  
M + m1 + m2 system, and 
also for blocks m1 and m2. 
Remembering that 
normal forces are always 
perpendicular to the 
contacting surface, and 
always push on a body, 
draw n1 and n2 as shown. 
Note that m1 is in contact with the cart, and therefore feels a normal 
force exerted by the cart. Remembering that ropes always pull on 

ANS. FIG. P5.93 
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bodies toward the center of the rope, draw the tension force    

T.  Finally, 

draw the gravitational force on each block, which always points 
downwards. 

 Applying   F∑ = ma,  

 For m1:   T –m1g = 0 

 For m2:   T = m2a 

 Eliminating T, 

    
  
a =

m1g
m2

 

 For all three blocks: 

    
  
F = M + m1 + m2( ) m1g

m2

 

P5.94 (a)   Fy∑ = may :  

    n − mg cosθ = 0  

  or 

  

n = 8.40 kg( ) 9.80 m/s2( )cosθ

n = 82.3 N( )cosθ

 

 (b)   Fx∑ = max :  

    mg sinθ = ma  

  or 

  

  

a = g sinθ

a = 9.80 m s2( )sinθ
 

ANS. FIG. P5.94 
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 (c)  

θ, deg n, N a, m/s2 

0.00 82.3 0.00 

5.00 82.0 0.854 

10.0 81.1 1.70 

15.0 79.5 2.54 

20.0 77.4 3.35 

25.0 74.6 4.14 

30.0 71.3 4.90 

35.0 67.4 5.62 

40.0 63.1 6.30 

45.0 58.2 6.93 

50.0 52.9 7.51 

55.0 47.2 8.03 

60.0 41.2 8.49 

65.0 34.8 8.88 

70.0 28.2 9.21 

75.0 21.3 9.47 

80.0 14.3 9.65 

85.0 7.17 9.76 

90.0 0.00 9.80 

 

 (d) 

 

At 0°, the normal force is the full weight and the acceleration is
zero. At 90°, the mass is in free fall next to the vertical incline.
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ANS. FIG. P5.95 

P5.95 Refer to the free-body diagram in ANS. FIG. 
P5.95. Choose the x axis pointing down the 
slope so that the string makes the angle θ with 
the vertical. The acceleration is obtained from  
vf = vi + at: 

  
  

a = (v f – vi )/t = (30.0 m/s2 – 0)/6.00 s

a = 5.00 m/s2
 

Because the string stays perpendicular to the  
ceiling, we know that the toy moves with the  
same acceleration as the van, 5.00 m/s2 parallel  
to the hill. We take the x axis in this direction, so 

 
  
ax = 5.00 m/s2 and ay = 0  

The only forces on the toy are the string tension in the y direction and 
the planet’s gravitational force, as shown in the force diagram. The size 
of the latter is mg = (0.100 kg)(9.80 m/s2) = 0.980 N 

(a) Using  Fx∑ = max  gives (0.980 N) sinθ  = (0.100 kg)(5.00 m/s2) 

 Then  sinθ  = 0.510 and 
 θ = 30.7°  

(b) Using  Fy∑ = may  gives +T − (0.980 N) cosθ  = 0 

 T = (0.980 N) cos 30.7° =  0.843 N  

 
 

 

Challenge Problems 

P5.96   

F∑ = m


a  gives the object’s acceleration: 

    

    


a =


F∑

m
=

8.00î − 4.00tĵ( )  N

2.00 kg

a = 4.00 m s2( ) î − 2.00 m s3( )tĵ = d


v

dt
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 (a) To arrive at an equation for the instantaneous velocity of object, 
we must integrate the above equation. 

    

    

d

v = 4.00 m s2( )dtî − 2.00 m s3( )tdtĵ

d

v∫ = 4.00 m s2( )dtî∫ − 2.00 m s3( )tdtĵ∫

v = 4.00 m s2( )t + c1⎡⎣ ⎤⎦ î − 1.00 m s3( )t2 + c2⎡⎣ ⎤⎦ ĵ

 

  In order to evaluate the constants of integration, we observe that 
the object is at rest when t = 0 s. 

    
    

v t = 0( ) = 0 = 4.00 m s2( )0 + c1⎡⎣ ⎤⎦ î − 1.00 m s3( )02 + c2⎡⎣ ⎤⎦ ĵ

 

  or c1 = c2 = 0 

  and 

    
    

v = 4.00 m s2( )t⎡⎣ ⎤⎦ î − 1.00 m s3( )t2⎡⎣ ⎤⎦ ĵ

 

  Thus, when v = 15.0 m/s, 

    

    


v = 15.0 m s = 4.00 m s2( )t⎡⎣ ⎤⎦

2
+ 1.00 m s3( )t2⎡⎣ ⎤⎦

2

15.0 m s = 16.0 m2 s4( )t2⎡⎣ ⎤⎦ + 1.00 m2 s6( )t4⎡⎣ ⎤⎦

225 m2 s2 = 16.0 m2 s4( )t2⎡⎣ ⎤⎦ + 1.00 m2 s6( )t4⎡⎣ ⎤⎦
0 = 1.00 m2 s6( )t4 + 16.0 m2 s4( )t2 − 225 m2 s2

 

  We now need a solution to the above equation, in order to find t. 
The equation can be factored as, 

    
  0 = t2 − 9( ) t2 + 25( )  

  The solution for t, here, comes from the first factor: 

    

  

t2 − 9.00 = 0

t = ±3.00 s = 3.00 s

 



270     The Laws of Motion 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (b) In order to find the object’s position at this time, we need to 
integrate the velocity equation, using the assumption that the 
objects starts at the origin (the constants of integration will again 
be equal to 0, as before). 

    

    

d

r = 4.00 m s2( )tdtî − 1.00 m s3( )t2dtĵ

d

r∫ = 4.00 m s2( )tdtî∫ − 1.00 m s3( )t2 dtĵ∫

r = 2.00 m s2( )t2⎡⎣ ⎤⎦ î − 0.333 m s3( )t3⎡⎣ ⎤⎦ ĵ

 

  Now, using the time above and finding the magnitude of this 
displacement vector, 

    

   


r = 2.00 m s2( ) 3.00 s( )2⎡⎣ ⎤⎦

2
+ 0.333 m s3( ) 3.00 s( )3⎡⎣ ⎤⎦

2


r = 20.1 m

 

 (c) Using the displacement vector found in part (b), 

    

    


r = 2.00 m s2( )t2⎡⎣ ⎤⎦ î − 0.333 m s3( )t3⎡⎣ ⎤⎦ ĵ

r = 2.00 m s2( ) 3.00 s( )2⎡⎣ ⎤⎦ î − 0.333 m s3( ) 3.00 s( )3⎡⎣ ⎤⎦ ĵ


r = 18.0 m( ) î − 9.00 m( ) ĵ

 

P5.97 Since the board is in equilibrium,   ∑Fx = 0  and we see that the normal 
forces must be the same on both sides of the board. Also, if the 
minimum normal forces (compression forces) are being applied, the 
board is on the verge of slipping and the friction force on each side is  

     f = fs( )max
= µsn  

 

ANS. FIG. P5.97 
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 The board is also in equilibrium in the vertical direction, so 

     Fy∑ = 2 f − Fg = 0 , or 
  
f =

Fg

2
 

 The minimum compression force needed is then 

   
  
n =

f
µs

=
Fg

2µs

=
95.5 N

2 0.663( ) = 72.0 N  

*P5.98 We apply Newton’s second law to each of the three 
masses, reading the forces from ANS. FIG. P5.98:

 
  
m2 a − A( ) = T ⇒ a = T

m2

+ A  [1] 

  
 
MA = Rx = T ⇒ A = T

M
 [2] 

    m1a = m1g −T ⇒ T = m1 g − a( )  [3]  

(a) Substitute the value for a from [1] into [3] and solve for T: 

 
  
T = m1 g − T

m2

+ A⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

Substitute for A from [2]: 

 
  
T = m1 g − T

m2

+ T
M

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
⇒T = m2 g

m1M
m2M + m1 m2 + M( )

⎡
⎣⎢

⎤
⎦⎥

 

(b) Solve [3] for a and substitute value of T: 

  

  

a = g − T
m1

= g − m2 g
M

m2M + m1 m2 + M( )
⎡

⎣
⎢

⎤

⎦
⎥

= g 1− m2M
m2M + m1 m2 + M( )

⎡

⎣
⎢

⎤

⎦
⎥

=
gm1 m2 + M( )

m2M + m1 m2 + M( )
⎡

⎣
⎢

⎤

⎦
⎥

  

r r

r

r

r

r

ANS. FIG. P5.98 

  m2
 

  m1
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(c) From [2], 
  
A = T

M
.  Substitute the value of T: 

  
  
A = T

M
= m1m2 g

m2M + m1 m2 + M( )
⎡
⎣⎢

⎤
⎦⎥

 

(d) The acceleration of m1 is given by 

  
  
a − A = m1Mg

m2M + m1 m2 + M( )
⎡
⎣⎢

⎤
⎦⎥

 

P5.99 (a) The cord makes angle θ with the horizontal where  

   

 
θ = tan−1 0.100 m

0.400 m
⎛
⎝⎜

⎞
⎠⎟ = 14.0°

 

  Applying Newton’s second law in the y direction gives 

   

  

Fy∑ = may :

T sinθ − mg + n = 0

+10 N( )sin14.0°− 2.20 kg( ) 9.80 m/s2( ) + n = 0

  

  which gives n = 19.1 N. Applying Newton’s second law in the x 
direction then gives 

   

  

Fx∑ = max :
T cosθ − fk = ma
T cosθ − µkn = ma

+10 N( )cos14.0°− 0.400 19.1 N( ) = 2.20 kg( )  a

  

  which gives 

   
  a = 0.931 m/s2  
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 (b) 

  

When x is large we have n = 21.6 N, fk = 8.62 N, and 
a = (10 N – 8.62 N)/2.2 kg = 0.625 m/s2.

As x decreases, the acceleration increases gradually, passes
through a maximum, and then drops more rapidly, becoming
negative. At x = 0 it reaches the value a = [0 − 0.4(21.6 N − 10 N)]/

2.2 kg = −2.10 m/s2.

 

 (c) We carry through the same calculations as in part (a) for a 
variable angle, for which cosθ = x[x2 + (0.100 m)2]−1/2 and  
sinθ = (0.100 m)[x2 + (0.100 m)2]−1/2. We find 

   

  

a = 1
2.20 kg

⎛
⎝⎜

⎞
⎠⎟

10 N( )x x2 + 0.1002⎡⎣ ⎤⎦
−1/2

                     − 0.400 21.6 N − 10 N( ) 0.100( ) x2 + 0.1002⎡⎣ ⎤⎦
−1/2( )

a = 4.55x x2 + 0.1002⎡⎣ ⎤⎦
−1/2

− 3.92 + 0.182 x2 + 0.1002⎡⎣ ⎤⎦
−1/2

 

  Now to maximize a we take its derivative with respect to x and 
set it equal to zero: 

   

  

da
dx

= 4.55 x2 + 0.1002( )−1/2
+ 4.55x − 1

2
⎛
⎝⎜

⎞
⎠⎟ 2x x2 + 0.1002( )−3/2

                                             + 0.182 − 1
2

⎛
⎝⎜

⎞
⎠⎟ 2x x2 + 0.1002( )−3/2

= 0

 

  Solving, 

   
  4.55 x2 + 0.12( )− 4.55x2 − 0.182x = 0    

 

  or   x = 0.250 m  

  At this point, suppressing units, 

   

  

a = 4.55( ) 0.250( ) 0.2502 + 0.1002⎡⎣ ⎤⎦
−1/2

− 3.92

                                       + 0.182 0.2502 + 0.1002⎡⎣ ⎤⎦
−1/2

= 0.976 m/s2
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ANS. FIG. P5.100 

 (d) We solve, suppressing units, 

    

  

0 = 4.55x x2 + 0.1002⎡⎣ ⎤⎦
−1/2

− 3.92 + 0.182 x2 + 0.1002⎡⎣ ⎤⎦
−1/2

3.92 x2 + 0.1002⎡⎣ ⎤⎦
1/2

= 4.55x + 0.182

15.4 x2 + 0.1002⎡⎣ ⎤⎦ = 20.7x2 + 1.65x + 0.033 1

 

  which gives the quadratic equation 

    
  5.29x2 + 1.65x − 0.121 = 0  

  Only the positive root is directly meaningful, so 

      x = 0.0610 m  

P5.100 The force diagram is shown on the right. With motion impending,  

  

  

n + T sinθ − mg = 0

f = µs mg −T sinθ( )
 

 and 

    T cosθ − µsmg + µsT sinθ = 0  

 so 
  
T =

µsmg
cosθ + µs sinθ

 

 To minimize T, we maximize   cosθ + µs sinθ:  

  
  

d
dθ

cosθ + µs sinθ( ) = 0 = − sinθ + µs cosθ  

 Therefore, the angle where tension T is a minimum is  

    θ = tan−1 µs( ) = tan−1 0.350( ) = 19.3°  

 What is the tension at this angle? From above, 

  

   
T =

0.350 1.30 kg( ) 9.80 m/s2( )
cos19.3° + 0.350sin19.3°

= 4.21 N
 

 
 

The situation is impossible because at the angle of minimum tension,
the tension exceeds 4.00 N.
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P5.101 (a) Following the in-chapter example about a block on a frictionless 
incline, we have 

   
  a = g sinθ = 9.80 m s2( )sin 30.0°  

   

  
a = 4.90 m s2

 

 (b) The block slides distance x on the incline, with 

  
sin 30.0° =

0.500 m
x

.  

   x = 1.00 m: 
  
v f

2 = vi
2 + 2a x f − xi( ) = 0 + 2 4.90 m s2( ) 1.00 m( )  

   
  
v f = 3.13 m s  after time 

  
ts =

2x f

v f

=
2 1.00 m( )
3.13 m s

= 0.639 s  

 (c) To calculate the horizontal range of the block, we need to first 
determine the time interval during which it is in free fall.  We use 

  
y f − yi = vyit + 1

2
ayt

2 , and substitute, noting that  

vyi = (–3.13 m/s) sin 30.0°. 

   

  

−2.00 = −3.13 m s( )sin 30.0°t − 1
2

9.80 m s2( )t2

4.90 m s2( )t2 + 1.56 m s( )t − 2.00 m = 0

 

   Solving for t gives 

  

  
t =

−1.56 m s ± 1.56 m s( )2 − 4 4.90 m s2( ) −2.00 m( )
9.80 m s2

 

  Only the positive root is physical, with t = 0.499 s. The horizontal 
range of the block is then 

   
  
x f = vxt = 3.13 m s( )cos30.0°⎡⎣ ⎤⎦ 0.499 s( ) = 1.35 m

 

 (d) The total time from release to impact is then  

   total time 
  
= ts + t = 0.639 s + 0.499 s = 1.14 s  
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ANS. FIG. P5.102 

 (e)  The mass of the block makes no difference ,  as acceleration due to 
gravity, whether an object is in free fall or on a frictionless incline, 
is independent of the mass of the object.  

P5.102 Throughout its up and down motion after release the block has 

 

  

Fy∑ = may : +n − mg cosθ = 0

n = mg cosθ

 

 Let     

R = Rx î + Ry ĵ  represent the force of table  

on incline. We have 

 

  

Fx∑ = max : +Rx − nsinθ = 0
Rx = mg cosθ sinθ

Fy∑ = may : −Mg − ncosθ + Ry = 0

Ry = Mg + mg cos2θ

 

    


R = mg cosθ sinθ   to the right + M + mcos2θ( ) g  upward  

*P5.103 (a) First, draw a free-body diagram of the 
top block (top panel in ANS. FIG. 
P5.103). Since ay = 0, n1 = 19.6 N, and  

   
  

fk = µkn1 = 0.300 19.6 N( )
= 5.88 N

 

  From   Fx∑ = maT ,  

     10.0 N − 5.88 N = 2.00 kg( )aT  

  or   aT = 2.06 m/s2  (for top block). Now 
draw a free-body diagram (middle 
figure) of the bottom block and 
observe that  Fx∑ = MaB  gives 

  f = 5.88 N = 8.00 kg( )aB  or 

  aB = 0.735 m/s2  (for the bottom 
block). In time t, the distance each 
block moves (starting from rest) is 

r

r

r

r

r

rr

ANS. FIG. P5.103 
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ANS. FIG. P5.104 

  
dT = 1

2
aTt2  and 

  
dB = 1

2
aBt2 .  For the top block to reach the right 

edge of the bottom block (see bottom figure), it is necessary that 

 dT = dB + L  or  

   
  
1
2

2.06 m/s2( )t2 = 1
2

0.735 m/s2( )t2 + 3.00 m  

  which gives   t = 2.13 s . 

 (b) From above, 
  
dB = 1

2
0.735 m s2( ) 2.13 s( )2 = 1.67 m . 

P5.104 (a) Apply Newton’s second law  
to two points where butter- 
flies are attached on either  
half of mobile (the other half  
is the same, by symmetry). 

    T2 cosθ2 −T1 cosθ1 = 0  [1] 

    T1 sinθ1 −T2 sinθ2 − mg = 0  [2] 

    T2 cosθ2 −T3 = 0  [3] 

    T2 sinθ2 − mg = 0  [4] 

  Substituting [4] into [2] for   T2 sinθ2 , 

     T1 sinθ1 − mg − mg = 0  

  Then 

   
  

T1 =
2mg
sinθ1

 

  Substitute [3] into [1] for   T2 cosθ2 :  

  T3 −T1 cosθ1 = 0, T3 = T1 cosθ1  

  Substitute value of T1: 

   
  
T3 = 2mg

cosθ1

sinθ1

=
2mg

tanθ1

= T3  
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  From equation [4], 

   
  
T2 =

mg
sinθ2

 

 (b) Divide [4] by [3]: 

   
  

T2 sinθ2

T2 cosθ2

=
mg
T3

 

  Substitute value of T3: 

  
tanθ2 =

mg tanθ1

2mg
, θ2 = tan−1 tanθ1

2
⎛
⎝⎜

⎞
⎠⎟

 

  Then we can finish answering part (a): 

   
  

T2 =
mg

sin tan−1 1
2 tanθ1( )⎡⎣ ⎤⎦

 

 (c) D is the horizontal distance between the points at which the two 
ends of the string are attached to the ceiling. 

   

   

D = 2cosθ1 + 2cosθ2 +  and L = 5

D =
L
5

2cosθ1 + 2cos tan−1 1
2

tanθ1
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

+ 1
⎧
⎨
⎩

⎫
⎬
⎭
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P5.2 2.38 kN 

P5.4 8.71 N 

P5.6 (a) –4.47 × 1015 m/s2; (b) +2.09 × 10–10 N 

P5.8 (a) zero; (b) zero 

P5.10 (a) 
  

1
2

vt ; (b) magnitude:   m v / t( )2 + g2 , direction: 
  
tan−1 gt

v
⎛
⎝⎜

⎞
⎠⎟

 

P5.12 
  
16.3î + 14.6 ĵ( )  N  

P5.14 (a–c) See free-body diagrams and corresponding forces in P5.14. 

P5.16 1.59 m/s2 at 65.2° N of E 

P5.18 (a) 
 

1
3

; (b) 0.750 m/s2 

P5.20 (a) ~10−22 m/s2; (b) ∆x ~ 10–23 m 

P5.22 (a)   ̂a  is at 181°; (b) 11.2 kg; (c) 37.5 m/s; (d) 
  
−37.5î − 0.893 ĵ( )  m/s  

P5.24    

F∑ = −km


v  

P5.26 (a) See ANS. FIG. P5.26; (b) 1.03 N; (c) 0.805 N to the right 

P5.28 (a) 49.0 N; (b) 49.0 N; (c) 98.0 N; (d) 24.5 N 

P5.30 (a) See ANS. FIG. P5.30(a); (b) –2.54 m/s2; (c) 3.19 m/s 

P5.32 112 N 

P5.34 See P5.33 for complete derivation. 

P5.36 (a) T1 = 31.5 N, T2 = 37.5 N, T3 = 49.0 N; (b) T1 = 113 N, T2 = 56.6 N,  
T3 = 98.0 N 

P5.38 (a) 78.4 N; (b) 105 N 

P5.40 a = 6.30 m/s2 and T = 31.5 N 
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P5.42 (a) See ANS FIG P5.42; (b) 3.57 m/s2; (c) 26.7 N; (d) 7.14 m/s 

P5.44 (a) 2m(g + a); (b) T1 = 2T2, so the upper string breaks first; (c) 0, 0 

P5.46 (a) a2 = 2a1; (b) 

  

T2 =
m1m2

2m2 + 1
2

m1

g  and 

  

T2 =
m1m2

m2 + 1
4

m1

g ; (c) 

  

m1g

2m2 + 1
2

m1

 

and 
  

m1g
4m2 + m1

 

P5.48   B = 3.37 × 103  N ,   A = 3.83 × 103  N , B is in tension and A is in 
compression. 

P5.50 (a) 0.529 m below its initial level; (b) 7.40 m/s upward 

P5.52 (a) 14.7 m; (b) neither mass is necessary 

P5.54 (a) 256 m; (b) 42.7 m 

P5.56 The situation is impossible because maximum static friction cannot 
provide the acceleration necessary to keep the book stationary on the 
seat. 

P5.58 (a) 4.18; (b) Time would increase, as the wheels would skid and only 
kinetic friction would act; or perhaps the car would flip over. 

P5.60 (a) See ANS. FIG. P5.60; (b)  θ = 55.2° ; (c) n = 167 N 

P5.62 (a) 0.404; (b) 45.8 lb 

P5.64 (a) See ANS. FIG. P5.64; (b) 2.31 m/s2, down for m1, left for m2, and up 
for m3; (c) T12 = 30.0 N and T23 = 24.2 N; (d) T12 decreases and T23 
increases 

P5.66 (a) 48.6 N, 31. 7 N; (b) If P > 48.6 N, the block slides up the wall. If  
P < 31.7 N, the block slides down the wall; (c) 62.7 N, P > 62.7 N, the 
block cannot slide up the wall. If P < 62.7 N, the block slides down the 
wall 

P5.68 834 N 

P5.70 (a) See P5.70 for complete solution; (b) 9.80 N, 0.580 m/s2 

P5.72 (a) 3.43 m/s2 toward the scrap iron; (b) 3.43 m/s2 toward the scrap 
iron; (c) −6.86 m/s2 toward the magnet 
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P5.74 The situation is impossible because these forces on the book cannot 
produce the acceleration described. 

P4.76 (a) and (b) See P5.76 for complete derivation; (c) 3.56 N 

P5.78 (a) See ANS. FIG. P5.78(a); (b) 
 
a =

F
mb + mr

; (c) 
 
T =

mb

mb + mr

⎛
⎝⎜

⎞
⎠⎟

F ; (d) the 

tension in a cord of  negligible mass is constant along its length 

P5.80 (a) At any instant they have the same velocity and at all instants they 
have the same acceleration; (b) 1.61 × 104 N; (c) 2.95 × 104 N 

P5.82 (a) Nick and the seat, with total weight 480 N, will accelerate down 
and the child, with smaller weight 440 N, will accelerate up; (b) In 
P5.81, a rope tension of 250 N does not make the rope break. In part 
(a), the rope is strong enough to support tension 459 N. But now the 
tension everywhere in the rope is 480 N, so it can exceed the breaking 
strength of the rope. 

P5.84 (a) The system will not start to move when released; (b and c) no 
answer; (d)   f = m2 g sinθ = 29.4 N  

P5.86 (a) 
  
T = f

2sinθ
; (b) 410 N 

P5.88 (a)   M = 3msinθ ;  (b)   T1 = 2mg sinθ ,  T2 = 3mg sinθ ;  (c) 
  
a = g sinθ

1+ 2sinθ
;   

(d) 
  
T1 = 4mg sinθ 1+ sinθ

1+ 2sinθ
⎛
⎝⎜

⎞
⎠⎟

,  T2 = 6mg sinθ 1+ sinθ
1+ 2sinθ

⎛
⎝⎜

⎞
⎠⎟

;   

(e)   Mmax = 3m sinθ + µs cosθ( ) ;  (f)   Mmin = 3m sinθ − µs cosθ( ) ;   
(g)   T2,max −T2,min = Mmax g − Mmin g = 6µsmg cosθ  

P5.90 See table in P5.90 and ANS. FIG P5.90; (b) 0.143 m/s2; (c) The 
acceleration values agree. 

P5.92 (a) a1 = 2a2; (b) a2 = 12.7 N (1.30 kg + 4m1)
–1 down; (c) 9.80 m/s2 down; 

(d) a2 approaches zero; (e) T = 6.37 N; (f) yes 

P5.94 (a) n = (8.23 N) cos θ; (b) a = (9.80 m/s2) sin θ; (c) See ANS. FIG P5.94;  
(d) At 0˚, the normal force is the full weight, and the acceleration is 
zero. At 90˚ the mass is in free fall next to the vertical incline. 

P5.96 (a) 3.00 s; (b) 20.1 m; (c)   18.0m( ) î − 9.00m( ) ĵ  



282     The Laws of Motion 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

P5.98 (a) 
  
m2 g

m1M
m2M + m1 m2 + M( )

⎡
⎣⎢

⎤
⎦⎥

;  (b) 
  

gm1 m2 + M( )
m2M + m1 m2 + M( )

⎡

⎣
⎢

⎤

⎦
⎥ ;   

(c) 
  

m1m2 g
m2M + m1 m2 + M( )

⎡
⎣⎢

⎤
⎦⎥

;  (d) 
  

m1Mg
m2M + m1 m2 + M( )

⎡
⎣⎢

⎤
⎦⎥

 

P5.100 The situation is impossible because at the angle of minimum tension, 
the tension exceeds 4.00 N 

P5.102     

R = mg cosθ sinθ  to the right + M + mcos2θ( ) g  upward  

P5.104 (a) 
  
T1 =

2mg
sinθ1

, 
  

2mg
tanθ1

= T3 ; (b) 
 
θ2 = tan−1 tanθ1

2
⎛
⎝⎜

⎞
⎠⎟

, 

  
T2 = −

mg
sin tan−1 1

2 tanθ1( )⎡⎣ ⎤⎦
; (c) See P5.104 for complete explanation. 
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6 
Circular Motion and Other 

Applications of Newton’s Laws 
 

CHAPTER OUTLINE 
 

6.1 Extending the Particle in Uniform Circular Motion Model 

6.2 Nonuniform Circular Motion 

6.3 Motion in Accelerated Frames 

6.4 Motion in the Presence of Velocity-Dependent Resistive Forces 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ6.1 (a) A > C = D > B = E = 0. At constant speed, centripetal acceleration is 
largest when radius is smallest. A straight path has infinite radius of 
curvature. (b) Velocity is north at A, west at B, and south at C. (c) 
Acceleration is west at A, nonexistent at B, east at C, to be radially 
inward. 

OQ6.2 Answer (a). Her speed increases, until she reaches terminal speed. 

OQ6.3 (a) Yes. Its path is an arc of a circle; the direction of its velocity is 
changing. (b) No. Its speed is not changing. 

OQ6.4 (a) Yes, point C. Total acceleration here is centripetal acceleration, 
straight up. (b) Yes, point A. The speed at A is zero where the bob is 
reversing direction. Total acceleration here is tangential acceleration, to 
the right and downward perpendicular to the cord. (c) No. (d) Yes, 
point B. Total acceleration here is to the right and either downwards or 
upwards depending on whether the magnitude of the centripetal 
acceleration is smaller or larger than the magnitude of the tangential 
acceleration. 
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OQ6.5 Answer (b). The magnitude of acceleration decreases as the speed 
increases because the air resistance force increases, counterbalancing 
more and more of the gravitational force. 

OQ6.6 (a) No. When v = 0, v2/r = 0. 

 (b) Yes. Its speed is changing because it is reversing direction.  

OQ6.7 (i) Answer (c). The iPod shifts backward relative to the student’s hand. 
The cord then pulls the iPod upward and forward, to make it gain 
speed horizontally forward along with the airplane. (ii) Answer (b). 
The angle stays constant while the plane has constant acceleration. 
This experiment is described in the book Science from your Airplane 
Window by Elizabeth Wood. 

 
 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ6.1 (a) Friction, either static or kinetic, exerted by the roadway where it 
meets the rubber tires accelerates the car forward and then maintains 
its speed by counterbalancing resistance forces. Most of the time static 
friction is at work. But even kinetic friction (racers starting) will still 
move the car forward, although not as efficiently. (b) The air around 
the propeller pushes forward on its blades. Evidence is that the 
propeller blade pushes the air toward the back of the plane. (c) The 
water pushes the blade of the oar toward the bow. Evidence is that the 
blade of the oar pushes the water toward the stern. 

CQ6.2 The drag force is proportional to the speed squared and to the effective 
area of the falling object. At terminal velocity, the drag and gravity 
forces are in balance. When the parachute opens, its effective area 
increases greatly, causing the drag force to increase greatly. Because 
the drag and gravity forces are no longer in balance, the greater drag 
force causes the speed to decrease, causing the drag force to decrease 
until it and the force of gravity are in balance again. 

CQ6.3 The speed changes. The tangential force component causes tangential 
acceleration. 

CQ6.4 (a) The object will move in a circle at a constant speed.  

 (b) The object will move in a straight line at a changing speed. 

CQ6.5 The person in the elevator is in an accelerating reference frame. The 
apparent acceleration due to gravity, “g,” is changed inside the 
elevator. “g” = g ± a 

CQ6.6 I would not accept that statement for two reasons. First, to be “beyond 
the pull of gravity,” one would have to be infinitely far away from all 
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other matter. Second, astronauts in orbit are moving in a circular path. 
It is the gravitational pull of Earth on the astronauts that keeps them in 
orbit. In the space shuttle, just above the atmosphere, gravity is only 
slightly weaker than at the Earth’s surface. Gravity does its job most 
clearly on an orbiting spacecraft, because the craft feels no other forces 
and is in free fall. 

CQ6.7 This is the same principle as the centrifuge. All the material inside the 
cylinder tends to move along a straight-line path, but the walls of the 
cylinder exert an inward force to keep everything moving around in a 
circular path. 

CQ6.8 (a) The larger drop has higher terminal speed. In the case of spheres, 
the text demonstrates that terminal speed is proportional to the square 
root of radius. (b) When moving with terminal speed, an object is in 
equilibrium and has zero acceleration. 

CQ6.9 Blood pressure cannot supply the force necessary both to balance the 
gravitational force and to provide the centripetal acceleration to keep 
blood flowing up to the pilot’s brain. 

CQ6.10 The water has inertia. The water tends to move along a straight line, 
but the bucket pulls it in and around in a circle. 

CQ6.11 The current consensus is that the laws of physics are probabilistic in 
nature on the fundamental level. For example, the Uncertainty 
Principle (to be discussed later) states that the position and velocity 
(actually, momentum) of any particle cannot both be known exactly, so 
the resulting predictions cannot be exact. For another example, the 
moment of the decay of any given radioactive atomic nucleus cannot 
be predicted, only the average rate of decay of a large number of nuclei 
can be predicted—in this sense, quantum mechanics implies that the 
future is indeterminate. How the laws of physics are related to our 
sense of free will is open to debate. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 6.1 Extending the Particle in 
Uniform Circular Motion Model	  

P6.1 We are given m = 3.00 kg, r = 0.800 m. The string will break if the 
tension exceeds the weight corresponding to 25.0 kg, so 

  Tmax = Mg = (25.0 kg)(9.80 m/s2) = 245 N 

 When the 3.00-kg mass rotates in a horizontal circle, the tension causes 
the centripetal acceleration, 

 so  
  
T =

mv2

r
 

 Then 
  

  

v2 =
rT
m

=
0.800 m( )T

3.00 kg
≤

0.800 m( )Tmax

3.00 kg

=
0.800 m( ) 245 N( )

3.00 kg
= 65.3 m2/s2

 

 This represents the maximum value of v2, or  

    0 ≤ v ≤ 65.3  m/s  

 which gives 

  
  

0 ≤ v ≤ 8.08 m s  

P6.2 (a) The astronaut’s orbital speed is found from Newton’s second law, 
with  

     Fy∑ = may :  
  
mgmoon  down =

mv2

r
 down  

  solving for the velocity gives 

   

  

v = gmoonr = 1.52 m s2( ) 1.7 × 106  m + 100 × 103  m( )
v = 1.65 × 103  m s

 

 (b) To find the period, we use 
  
v =

2πr
T

 and solve for T:  

   
  
T =

2π 1.8 × 106  m( )
1.65 × 103  m s

= 6.84 × 103  s = 1.90 h  

ANS. FIG. P6.1 
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P6.3 (a) The force acting on the electron in the Bohr model of the 
hydrogen atom is directed radially inward and is equal to  

   

  

F = mv2

r
=

9.11× 10−31  kg( ) 2.20× 106  m s( )2

0.529× 10−10  m
= 8.33× 10−8  N inward

 

 (b) 
  
a = v2

r
=

2.20× 106  m s( )2

0.529× 10−10  m
= 9.15× 1022  m s2  inward  

P6.4 In 
  

F∑ = m
v2

r
,  both m and r are unknown but remain constant. 

Symbolically, write  

   
  

Fslow∑ =
m
r

⎛
⎝⎜

⎞
⎠⎟ 14.0 m s( )2  and 

  
Ffast∑ =

m
r

⎛
⎝⎜

⎞
⎠⎟ 18.0 m s( )2  

 Therefore,  F∑  is proportional to v2 and increases by a factor of 

 

18.0
14.0

⎛
⎝⎜

⎞
⎠⎟

2

 as v increases from 14.0 m/s to 18.0 m/s. The total force at the 

higher speed is then 

  
  

Ffast∑ =
18.0
14.0

⎛
⎝⎜

⎞
⎠⎟

2

Fslow∑ =
18.0
14.0

⎛
⎝⎜

⎞
⎠⎟

2

130 N( ) = 215 N  

 This force must be 
 

horizontally inward  to produce the driver’s 

centripetal acceleration. 

P6.5 We neglecting relativistic effects. With 1 u = 1.661 x 10–27 kg, and from 
Newton’s second law, we obtain 

  

  

F = mac = mv2

r

= 2 × 1.661× 10−27  kg( ) 2.998× 107  m s( )2

0.480 m( )
= 6.22 × 10−12  N

 

P6.6 (a) The car’s speed around the curve is found from 
   

  
v = 235 m

36.0 s
= 6.53 m s

 

  This is the answer to part (b) of this problem. We calculate the 

radius of the curve from 
  

1
4

2πr( ) = 235 m,  which gives r = 150 m. 
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The car’s acceleration at point B is then 
   

    


ar = v2

r
⎛
⎝⎜

⎞
⎠⎟

 toward the center

=
6.53 m s( )2

150 m
 at 35.0° north of west

= 0.285 m s2( ) cos35.0° − î( ) + sin 35.0° ĵ( )
= −0.233î + 0.163 ĵ( )  m s2

 

 (b) From part (a), 
  
v = 6.53 m s  

 (c) We find the average acceleration from 

   

    


aavg =


v f −


v i( )

Δt

=
6.53 ĵ− 6.53î( )  m s

36.0 s

= −0.181î + 0.181ĵ( )  m s2

 

P6.7 Standing on the inner surface of the rim, and moving with it, each 
person will feel a normal force exerted by the rim. This inward force 
causes the 3.00 m/s2 centripetal acceleration: 

     ac = v2/r    so   
  
v = acr = 3.00 m s2( ) 60.0 m( ) = 13.4 m s  

The period of rotation comes from 
  
v =

2πr
T

:   

  
T =

2πr
v

=
2π 60.0 m( )
13.4 m s

= 28.1 s  

 so the frequency of rotation is      
   

  
f = 1

T
= 1

28.1 s
= 1

28.1 s
⎛
⎝⎜

⎞
⎠⎟

60 s
1 min

⎛
⎝⎜

⎞
⎠⎟ = 2.14 rev min

 

P6.8 ANS. FIG. P6.8 shows the free-body diagram for this problem.  

 (a) The forces acting on the pendulum in the vertical direction must 
be in balance since the acceleration of the bob in this direction is 
zero. From Newton’s second law in the y direction,  

   
  Fy = T cosθ − mg = 0∑   
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  Solving for the tension T gives 

   
  
T = mg

cosθ
=

80.0 kg( ) 9.80 m s2( )
cos5.00°

= 787 N  

  In vector form, 

   

    


T = T sinθ î + T cosθ ĵ

= 68.6 N( ) î + 784 N( ) ĵ
 

 (b) From Newton’s second law in the x direction,  
   

  Fx = T sinθ = mac∑  

  which gives 
   

  
ac = T sinθ

m
= 787 N( )sin 5.00°

80.0 kg
= 0.857 m/s2

 

  toward the center of the circle. 

  The length of the wire is unnecessary information. We could, on 
the other hand, use it to find the radius of the circle, the speed of 
the bob, and the period of the motion. 

P6.9 ANS. FIG. P6.9 shows the constant 
maximum speed of the turntable and the 
centripetal acceleration of the coin. 

 (a) The force of 
 

static friction causes 

the centripetal acceleration.  
 (b) From ANS. FIG. P6.9, 

   
   
maî = f î + nĵ + mg − ĵ( )  

     Fy∑ = 0 = n − mg  

  thus, n = mg and 

  
Fr∑ = m

v2

r
= f = µn = µmg

 

  Then, 
    

  
µ = v2

rg
=

50.0 cm s( )2

30.0 cm( ) 980 cm s2( ) = 0.085 0
 

ANS. FIG. P6.8 

ANS. FIG. P6.9 
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P6.10 We solve for the tensions in the two strings: 
   

  Fg = mg = 4.00 kg( ) 9.80 m s2( ) = 39.2 N
 

 The angle θ  is given by  
   

 
θ = sin−1 1.50 m

2.00 m
⎛
⎝⎜

⎞
⎠⎟ = 48.6°

 

 The radius of the circle is then 
   

  r = 2.00 m( )cos 48.6° = 1.32 m  

 Applying Newton’s second law,  

   

  

Fx∑ = max = mv2

r

Ta cos 48.6° + Tb cos 48.6° =
4.00 kg( ) 3.00 m/s( )2

1.32 m

Ta + Tb = 27.27 N
cos 48.6°

= 41.2 N

 

[1]

 

   

  

Fy∑ = may :   Ta sin 48.6° −Tb sin 48.6° − 39.2 N = 0

Ta −Tb =
39.2 N

sin 48.6°
= 52.3 N

 
[2]

 

 To solve simultaneously, we add the equations in Ta and Tb: 

   (Ta + Tb) + (Ta – Tb) = 41.2 N + 52.3 N 

   
  
Ta =

93.8 N
2

= 46.9 N  

 This means that Tb = 41.2 N – Ta = –5.7 N, which we may interpret as 
meaning the lower string pushes rather than pulls! 

 

 

The situation is impossible because the speed of the object is too
small, requiring that the lower string act like a rod and push rather
than like a string and pull.

 

 To answer the What if?, we go back to equation [2] above and 
substitute mg for the weight of the object.  Then, 

   

  

Fy∑ = may :   Ta sin 48.6° −Tb sin 48.6° − mg = 0

Ta −Tb =
(4.00 kg)g
sin 48.6°

= 5.33g

 

ANS. FIG. P6.10 
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 We then add this equation to equation [2] to obtain  

   (Ta + Tb) + (Ta – Tb) = 41.2 N + 5.33g 

 or    Ta = 20.6 N + 2.67g  and Tb = 41.2 N −Ta = 41.2 N − 2.67g   

 For this situation to be possible, Tb must be > 0, or g < 7.72 m/s2. This is 
certainly the case on the surface of the Moon and on Mars. 

P6.11 Call the mass of the egg crate m. The forces on it 
are its weight Fg = mg vertically down, the 
normal force n of the truck bed vertically up, 
and static friction fs directed to oppose relative 
sliding motion of the crate on the truck bed. The 
friction force is directed radially inward. It is 
the only horizontal force on the crate, so it 
must provide the centripetal acceleration. 
When the truck has maximum speed, friction fs 
will have its maximum value with fs =   µsn.  

Newton’s second law in component form becomes 

   Fy∑ = may  giving n – mg = 0 or n = mg 

   Fx∑ = max  giving fs = mar 

From these three equations,  

  
  
µsn ≤ mv2

r  and 
  
µsmg ≤ mv2

r   

The mass divides out. The maximum speed is then  
   

  
v ≤ µsrg = 0.600 35.0 m( ) 9.80 m/s2( ) → v ≤ 14.3 m/s

 

 
 

 

Section 6.2 Nonuniform Circular Motion 	  
P6.12 (a) The external forces acting on the water are  

   
 
the gravitational force   

  and 
 
the contact force exerted on the water by the pail .  

 (b) The 
 
contact force exerted by the pail  is the most important in 

causing the water to move in a circle. If the gravitational force 
acted alone, the water would follow the parabolic path of a 
projectile. 

ANS. FIG. P6.11 
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ANS. FIG. P6.14 

 (c) When the pail is inverted at the top of the circular path, it cannot 
hold the water up to prevent it from falling out. If the water is not 
to spill, the pail must be moving fast enough that the required 
centripetal force is at least as large as the gravitational force. That 
is, we must have 

   
  
m

v2

r
≥ mg   or  

  
v ≥ rg = 1.00m( ) 9.80m s2( ) = 3.13  m s  

 (d) If the pail were to suddenly disappear when it is at the top of the 
circle and moving at 3.13 m/s,  the water would follow the  

 
parabolic path of a projectile  launched with initial velocity 

components of vxi = 3.13 m/s, vyi = 0. 

P6.13 (a) The hawk’s centripetal acceleration is 

    
  
ac =

v2

r
=

4.00 m s( )2

12.0 m
= 1.33 m s2  

 (b) The magnitude of the acceleration vector is 
    

  

a = ac
2 + at

2

= 1.33 m/s2( )2
+ 1.20 m/s2( )2

= 1.79 m/s2

 

  at an angle  
    

  
θ = tan−1 ac

at

⎛
⎝⎜

⎞
⎠⎟

= tan−1 1.33 m/s2

1.20 m/s2

⎛
⎝⎜

⎞
⎠⎟

= 48.0° inward
 

6.14 We first draw a force diagram that shows 
the forces acting on the child-seat system 
and apply Newton’s second law to solve 
the problem. The child’s path is an arc of a 
circle, since the top ends of the chains are 
fixed. Then at the lowest point the child’s 
motion is changing in direction: He moves 
with centripetal acceleration even as his 
speed is not changing and his tangential 
acceleration is zero. 

 (a) ANS. FIG. P6.14 shows that the only 
forces acting on the system of child + seat are the tensions in the 
two chains and the weight of the boy:  

    

  
F∑ = Fnet = 2T − mg = ma = mv2

r

  

ANS. FIG. P6.13 
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  with  
   

  Fnet = 2T − mg = 2 350 N( )− 40.0 kg( ) 9.80 m/s2( ) = 308 N
 

  solving for v gives 
   

  
v = Fnetr

m = (308 N)(3.00 m)
40.0 kg = 4.81 m/s

 

 (b) The normal force from the seat on the child accelerates the child 
in the same way that the total tension in the chain accelerates the 
child-seat system. Therefore,   n = 2T = 700 N . 

P6.15 See the forces acting on seat (child) in ANS. FIG. P6.14. 

 (a) 
  

F∑ = 2T − Mg =
Mv2

R
 

  
  
v2 = 2T − Mg( ) R

M
⎛
⎝⎜

⎞
⎠⎟

 

  
  
v = 2T − Mg( ) R

M
⎛
⎝⎜

⎞
⎠⎟

 

 (b) 
  
n − Mg = F =

Mv2

R
 

  
  
n = Mg +

Mv2

R
 

P6.16 (a) We apply Newton’s second law at 
point A, with v = 20.0 m/s,  
n = force of track on roller coaster, 
and R = 10.0 m: 

   

  
F∑ = Mv2

R
= n− Mg

 

  From this we find 

   

  

n = Mg +
Mv2

R
= 500 kg( ) 9.80 m s2( ) +

500 kg( ) 20.0 m s2( )
10.0 m

n = 4 900 N + 20 000 N = 2.49 × 104  N
 

 (b) At point B, the centripetal acceleration is now downward, and 
Newton’s second law now gives  

   

  
F∑ = n− Mg = − Mv2

R

 

ANS. FIG. P6.16 
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  The maximum speed at B corresponds to the case where the 
rollercoaster begins to fly off the track, or when n = 0. Then, 

   

  
−Mg = − Mvmax

2

R

 

  which gives 
   

  
vmax = Rg = 15.0 m( ) 9.80 m/s2( ) = 12.1 m/s

 

P6.17 (a) 
  
ac =

v2

r
  

  
  
r =

v2

ac

=
13.0 m s( )2

2 9.80 m s2( ) = 8.62 m  

 (b) Let n be the force exerted by the rail. 

  Newton’s second law gives 

   
  
Mg + n =

Mv2

r
 

   
  
n = M

v2

r
− g

⎛
⎝⎜

⎞
⎠⎟

= M 2g − g( ) = Mg,  downward  

 (c) 
  
ac =

v2

r
, or 

  
ac =

13.0 m s( )2

20.0 m
= 8.45 m s2  

 (d) If the force exerted by the rail is n1, 

  then 
  
n1 + Mg =

Mv2

r
= Mac  

     n1 = M ac − g( )  which is < 0 since ac = 8.45 m/s2 

  

 

Thus, the normal force would have to point away from the
center of the curve. Unless they have belts, the riders will fall
from the cars.

 

  

  

In a teardrop-shaped loop, the radius of curvature r  decreases,
causing the centripetal acceleration to increase. The speed
would decrease as the car rises (because of gravity), but the
overall effect is that the required centripetal force increases,
meaning the normal force increases--there is less danger if
not wearing a seatbelt.

 

ANS. FIG. P6.17 
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P6.18 (a) Consider radial forces on the object, taking inward as positive. 
   

  
∑Fr = mar :     T − mg cosθ = mv2

r

 

  Solving for the tension gives 
   

  

T = mg cosθ + mv2

r
  

= (0.500 kg)(9.80 m/s2 )cos 20.0°

                     + (0.500 kg)(8.00 m/s)2/2.00 m

= 4.60 N + 16.0 N = 20.6 N

 

 (b) We already found the radial component of acceleration,  
   

  
ar = v2

r
= 8.00 m/s( )2

2.00 m
= 32.0 m/s2  inward

    

  Consider the tangential forces on the object: 
   

  Ft∑ = mat :     mg sinθ = mat
  

  Solving for the tangential component of acceleration gives 
   

  

at = g sinθ = 9.80 m/s2( )sin 20.0°

= 3.35 m/s2  downward tangent to the circle

 

 (c) The magnitude of the acceleration is  
   

  
a = ar

2 + at
2 = 32.0 m/s2( )2

+ 3.35 m/s2( )2
= 32.2 m/s2

  

  at an angle of  
   

 
tan−1 3.35 m/s2

32.0 m/s2

⎛
⎝⎜

⎞
⎠⎟

= 5.98°
  

  Thus, the acceleration is  
   

 32.2 m/s2  inward and below the cord at 5.98°
 

 (d) 
 
No change.  

 (e) 

 

If the object is swinging down it is gaining speed, and if the object
is swinging up it is losing speed, but the forces are the same;
therefore, its acceleration is regardless of the direction of swing.
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ANS. FIG. P6.19 

P6.19 Let the tension at the lowest point be T. From  
Newton’s second law,  F∑ = ma  and  

  

  

T − mg = mac =
mv2

r

T = m g +
v2

r
⎛
⎝⎜

⎞
⎠⎟

 

  

  

T = 85.0 kg( ) 9.80 m s2 +
8.00 m s( )2

10.0 m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   = 1.38 kN > 1 000 N

 

  
  

He doesn’t make it across the river because the vine breaks.  

 
 

 

Section 6.3 Motion in Accelerated Frames	  
P6.20 (a) From   Fx∑ = Ma,  we obtain  

   
  
a =

T
M

=
18.0 N
5.00 kg

= 3.60 m s2  to the right 

 (b) If v = const, a = 0, so   T = 0 .  (This is also an equilibrium 
situation.) 

 (c) 

  

Someone in the car (noninertial observer) claims that the forces
on the mass along x are T  and a fictitious force (– Ma).

 

 (d) 

  

Someone at rest outside the car (inertial observer) claims that T
is the only force on M in the x direction.

 

 

ANS. FIG. P6.20 



Chapter 6     297 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

P6.21 The only forces acting on the suspended object are the 
force of gravity    m


g  and the force of tension T forward 

and upward at angle θ  with the vertical, as shown in 
the free-body diagram in ANS. FIG. P6.21. Applying 
Newton’s second law in the x and y directions, 

    Fx∑ = T sinθ = ma  [1] 

    Fy∑ = T cosθ − mg = 0  

 or   T cosθ = mg  [2] 

 (a) Dividing equation [1] by [2] gives  

   
  
tanθ =

a
g

=
3.00 m s2

9.80 m s2 = 0.306  

  Solving for  θ ,  
 
θ = 17.0°  

 (b) From equation [1],  

   
  
T =

ma
sinθ

=
0.500 kg( ) 3.00 m s2( )

sin 17.0°( ) = 5.12 N  

P6.22 In an inertial reference frame, the girl is accelerating horizontally 
inward at 

   
  

v2

r
=

5.70 m s( )2

2.40 m
= 13.5 m s2  

 In her own noninertial frame, her head feels a horizontally outward 
fictitious force equal to its mass times this acceleration. Together this 
force and the weight of her head add to have a magnitude equal to the 
mass of her head times an acceleration of  

   

  
g2 + v2

r
⎛
⎝⎜

⎞
⎠⎟

2

= 9.80 m/s2( )2
+ 13.5 m/s2( )2

= 16.7 m s2

 

 This is larger than g by a factor of 
 

16.7 m/s
9.80 m/s

= 1.71 . 

 Thus, the force required to lift her head is larger by this factor, or the 
required force is 

   
  
F = 1.71 55.0 N( ) = 93.8 N  

ANS. FIG. P6.21 
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P6.23 The scale reads the upward normal force exerted by the floor on the 
passenger. The maximum force occurs during upward acceleration 
(when starting an upward trip or ending a downward trip). The 
minimum normal force occurs with downward acceleration. For each 
respective situation, 

    Fy∑ = may  becomes for starting +591 N − mg = +ma 

     and for stopping  +391 N − mg = −ma 

 where a represents the magnitude of the acceleration. 

  (a) These two simultaneous equations can be added to eliminate a 
and solve for mg: 

    + 591 N − mg + 391 N − mg = 0 

   or 982 N – 2mg = 0 
    

  
Fg = mg = 982 N

2 = 491 N
  

  (b) From the definition of weight, 
  
m =

Fg

g = 491 N
9.80 m s2 = 50.1 kg   

  (c) Substituting back gives +591 N − 491 N = (50.1 kg)a, or  
    

  
a = 100 N

50.1 kg = 2.00 m/s2
  

P6.24 Consider forces on the backpack as it slides in the Earth frame of 
reference. 

   

  

Fy∑ = may : +n− mg = ma,  n = m g + a( ) ,  fk = µkm g + a( )
Fx∑ = max : −µkm g + a( ) = max

 

 The motion across the floor is described by  

    
  
L = vt +

1
2

axt
2 = vt −

1
2

µk g + a( )t2  

 We solve for   µk :  
   

  
vt − L = 1

2
µk g + a( )t2

 

   

  
µk = 2 vt − L( )

g + a( )t2

 

P6.25 The water moves at speed  
   

  
v = 2πr

T
= 2π 0.120 m( )

7.25 s
= 0.104 m s
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 The top layer of water feels a downward force of gravity mg and an 
outward fictitious force in the turntable frame of reference,  

   
  

mv2

r
=

m 0.104 m s( )2

0.12 m
= m 9.01× 10−2  m s2  

 It behaves as if it were stationary in a gravity field pointing downward 
and outward at  

   

 
tan−1 0.090 1 m s2

9.8 m s2

⎛
⎝⎜

⎞
⎠⎟

= 0.527°
 

 Its surface slopes upward toward the outside, making this angle with 
the horizontal. 

 
 

 

Section 6.4 Motion in the Presence of  
Velocity-Dependent Resistive Forces	  

P6.26 (a) 
 
ρ =

m
V

, A = 0.020 1 m2, 
  
R =

1
2
ρairADvT

2 = mg  

  
  
m = ρbeadV = 0.830 g cm3 4

3
π 8.00 cm( )3⎡

⎣⎢
⎤
⎦⎥

= 1.78 kg  

  Assuming a drag coefficient of D = 0.500 for this spherical object, 
and taking the density of air at 20°C from the endpapers, we have 

   

  
vT =

2 1.78 kg( ) 9.80 m s2( )
0.500 1.20 kg m3( ) 0.020 1 m2( ) = 53.8 m s

 

 (b) From   v f
2 = vi

2 + 2gh = 0 + 2gh,  we solve for h:  

   
  
h =

v f
2

2g
=

53.8 m s( )2

2 9.80 m s2( ) = 148 m  

P6.27 With 100 km/h = 27.8 m/s, the resistive force is 
   

  

R = 1
2

DρAv2 = 1
2

0.250( ) 1.20 kg m3( ) 2.20 m2( ) 27.8 m s( )2

= 255 N

a = − R
m

= − 255 N
1 200 kg

= −0.212 m s2
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P6.28 Given m = 80.0 kg, vT = 50.0 m/s, we write 

   
  
mg =

DρAvT
2

2
 

 which gives 
  

  

DρA
2

= mg
vT

2 = 0.314 kg m
 

 (a) At v = 30.0 m/s, 
    

  

a = g − DρAv2 2
m

= 9.80 m/s2 −
0.314 kg/m( ) 30.0 m/s( )2

80.0 kg

= 6.27 m/s2  downward

 

 (b) At v = 50.0 m/s, terminal velocity has been reached. 

    
  

Fy∑ = 0 = mg − R

⇒ R = mg = 80.0 kg( ) 9.80 m s2( ) = 784 N directed up
 

 (c) At v = 30.0 m/s, 
    

  

DρAv2

2
= 0.314 kg/m( ) 30.0 m/s( )2 = 283 N upward  

 

P6.29 Since the upward velocity is constant, the resultant force on the ball is 
zero. Thus, the upward applied force equals the sum of the 
gravitational and drag forces (both downward):  

   F = mg + bv 

 The mass of the copper ball is 
   

  

m = 4πρr3

3
= 4

3
⎛
⎝⎜

⎞
⎠⎟ π 8.92 × 103  kg m3( ) 2.00× 10−2  m( )3

= 0.299 kg

 

 The applied force is then 
   

  

F = mg + bv = 0.299 kg( ) 9.80 m/s2( )
                     + 0.950 kg/s( ) 9.00× 10−2  m/s( )

= 3.01 N

 

P6.30 (a) The acceleration of the Styrofoam is given by  

   a = g – Bv 
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  When v = vT, a = 0 and 
 
g = BvT → B =

g
vT

 

  The Styrofoam falls 1.50 m at constant speed vT in 5.00 s. 

  Thus,  
   

  
vT = h

Δt
= 1.50 m

5.00 s
= 0.300 m/s

 

  Then  
   

  
B = g

vT

= 9.80 m/s2

0.300 m/s
= 32.7  s−1

 

 (b) At t = 0, v = 0, and 
  
a = g = 9.80 m s2  down  

 (c) When v = 0.150 m/s,  
   

  

a = g − Bv

= 9.80 m/s2 − 32.7 s−1( ) 0.150 m/s( )
= 4.90 m/s2  down

  

P6.31 We have a particle under a net force in the special case of a resistive 
force proportional to speed, and also under the influence of the 
gravitational force.  

 (a) The speed v varies with time according to Equation 6.6, 

  
  
v =

mg
b 1 – e–bt/m( ) = vT 1 – e–t/τ( )  

 where vT = mg/b is the terminal speed.  Hence, 

    
  
b =

mg
vT

=
3.00 × 10−3  kg( ) 9.80 m s2( )

2.00 × 10−2  m s
= 1.47 N ⋅ s m   

 (b) To find the time interval for v to reach 0.632vT, we substitute  
v = 0.632vT into Equation 6.6, giving 

   0.632vT = vT (1 − e−bt/m) or  0.368 = e−(1.47t/0.003 00) 

  Solve for t by taking the natural logarithm of each side of the 
equation:  

   
  
ln(0.368) = –

1.47 t
3.00 × 10–3 or –1 = –

1.47 t
3.00 × 10–3
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  or 
  
t = −

m
b

⎛
⎝⎜

⎞
⎠⎟ ln 0.368( ) = 2.04 × 10−3  s   

 (c) At terminal speed, R = vTb = mg.  Therefore, 
    

  R = vTb = mg = 3.00× 10−3  kg( ) 9.80 m/s2( ) = 2.94× 10−2  N
  

P6.32 We write  

   
  
−kmv2 = −

1
2

DρAv2  

  so 
   

  
k = DρA

2m
=

0.305 1.20 kg m3( ) 4.2 × 10−3  m2( )
2 0.145 kg( ) = 5.3× 10−3 m

 

 solving for the velocity as the ball crosses home plate gives 
  

  
v = vie

−kx = 40.2 m s( )e− 5.3×10−3 m( ) 18.3 m( ) = 36.5 m s
 

P6.33 We start with Newton’s second law, 

    F∑ = ma  

 substituting,  
   

  

−kmv2 = m
dv
dt

−kdt =
dv
v2

−k dt
0

t

∫ = v−2 dv
vi

v

∫

 

 integrating both sides gives 
   

  

−k t − 0( ) =
v−1

−1 vi

v

= −
1
v

+
1
vi

1
v

=
1
vi

+ kt =
1 + vikt

vi

v =
vi

1 + vikt
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P6.34 (a) Since the window is vertical, the normal force is horizontal and is 
given by n = 4.00 N. To find the vertical component of the force, 
we note that the force of kinetic friction is given by  

    fk = µkn = 0.900(4.00 N) = 3.60 N upward 

  to oppose downward motion. Newton’s second law then becomes 

    
  

∑Fy = may : +3.6 N − (0.16 kg)(9.8 m/s2 ) + Py = 0

Py = −2.03 N = 2.03 N down
 

 (b) Now, with the increased downward force, Newton’s second law 
gives  

    

  

Fy∑ = may :  

+ 3.60 N − (0.160 kg)(9.80 m/s2 )− 1.25(2.03 N)
= 0.160 kg ay

 

  then 

    
  ay = −0.508 N/0.16 kg = −3.18 m/s2 = 3.18 m/s2  down  

 (c) At terminal velocity,  
    

  

∑Fy = may :    + (20.0 N ⋅s/m)vT − (0.160 kg)(9.80 m/s2 )

                                             − 1.25(2.03 N) = 0

 

  Solving for the terminal velocity gives 

    
  vT = 4.11 N/(20 N ⋅ s/m) = 0.205 m/s down  

P6.35 (a) We must fit the equation v = vie
−ct to the two data points: 

  At t = 0, v = 10.0 m/s, so v = vie
−ct      becomes  

    10.0 m/s = vi e
0 = (vi)(1) 

   which gives vi = 10.0 m/s 

  At t = 20.0 s, v = 5.00 m/s so the equation becomes 

    5.00 m/s = (10.0 m/s)e−c(20.0 s)  

  giving 0.500 = e−c(20.0 s) 

  or  
  
−20.0c = ln

1
2

⎛
⎝⎜

⎞
⎠⎟  →  c = −

ln 1
2( )

20.0
= 3.47 × 10−2  s−1  

 (b) At t = 40.0 s  

  
  
v = 10.0 m s( )e−40.0c = 10.0 m s( ) 0.250( ) = 2.50 m s  
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 (c) The acceleration is the rate of change of the velocity: 
    

  

a =
dv
dt = 

d
dt vie

–ct = vi e–ct( )(–c) = – c vie
–ct( )

= –cv

 

   Thus, the acceleration is a negative constant times the speed. 

P6.36 In 
  
R =

1
2

DρAv2 , we estimate that the coefficient of drag for an open 

palm is D = 1.00, the density of air is  ρ = 1.20 kg m3 ,  the area of an 

open palm is   A = 0.100 m( ) 0.160 m( ) = 1.60 × 10−2  m2 ,  and v = 29.0 m/s 
(65 miles per hour). The resistance force is then 

  

  
R = 1

2
1.00( ) 1.20 kg m3( ) 1.60× 10−2  m2( ) 29.0 m s( )2 = 8.07 N

 

 or 
  
R ~ 101  N  

 
 

 

Additional Problems 

P6.37 Because the car travels at a constant speed, it has no tangential 
acceleration, but it does have centripetal acceleration because it travels 
along a circular arc. The direction of the centripetal acceleration is 
toward the center of curvature, and the direction of velocity is tangent 
to the curve. 

 Point A 

  direction of velocity:    East  

  direction of the centripetal acceleration:    South  

 Point B 

  direction of velocity:    South  

  direction of the centripetal acceleration:    West  

P6.38 The free-body diagram of the passenger is shown in 
ANS. FIG. P6.38. From Newton’s second law, 

    ∑Fy = may  

   

  
n− mg = mv2

r

 

ANS. FIG. P6.38 
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 which gives 

   

  

n = mg + mv2

r

= (50 kg)(9.80 m s2 ) +
50.0 kg( ) 19 m s( )2

25 m

= 1.2 × 103  N

 

P6.39 The free-body diagram of the rock is  
shown in ANS. FIG. P6.39. Take the  
x direction inward toward the center  
of the circle. The mass of the rock  
does not change. We know when  
r1 = 2.50 m, v1 = 20.4 m/s, and  
T1 = 50.0 N. To find T2 when  
r2 = 1.00 m, and v2 = 51.0 m/s, we 
use Newton’s second law in the  
horizontal direction:  

    ∑Fx = max  

 In both cases,  

   
  
T1 =

mv1
2

r 1

   and   
  
T2 =

mv2
2

r2

 

 Taking the ratio of the two tensions gives 
   

  

T2

T1

= v2
2

v1
2  

r1

r2

= 51.0 m/s
20.4 m/s

⎛
⎝⎜

⎞
⎠⎟

2

 
2.50 m
1.00 m

⎛
⎝⎜

⎞
⎠⎟ = 15.6

 

 then 
   

  
T2 = 15.6T1 = 15.6 50.0 N( ) = 781 N

 

 We assume the tension in the string is not altered by friction from the 
hole in the table.  

P6.40 (a) We first convert the speed of the car to SI units: 
   

  

v = 30 km h( ) 1 h
3 600 s

⎛
⎝⎜

⎞
⎠⎟

1 000 m
1 km

⎛
⎝⎜

⎞
⎠⎟

= 8.33 m s

 

  Newton’s second law in the vertical direction 
then gives 

    

  
Fy∑ = may :      + n− mg = − mv2

r

 

ANS. FIG. P6.39 

ANS. FIG. P6.40 
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  Solving for the normal force, 

   

  

n = m g − v2

r
⎛
⎝⎜

⎞
⎠⎟

= 1 800 kg( ) 9.80 m/s2 − 8.33 m/s( )2

20.4 m
⎡

⎣
⎢

⎤

⎦
⎥

= 1.15× 104  N up

 

 (b) At the maximum speed, the weight of the car is just enough to 

provide the centripetal force, so n = 0. Then 
  
mg =

mv2

r
 and 

   
  
v = gr = 9.80 m/s2( ) 20.4 m( ) = 14.1 m/s = 50.9 km/h

 

P6.41 (a) The free-body diagram in ANS. FIG. P6.40 shows the forces on 
the car in the vertical direction. Newton’s second law then gives 

   
  

Fy∑ = may =
mv2

R
 

   
  
mg − n =

mv2

R
 

  
n = mg −

mv2

R
 

 (b) When n = 0, 
  
mg =

mv2

R
 

  Then, 
 
v = gR  

A more gently curved bump, with larger radius, allows the car to 
have a higher speed without leaving the road. This speed is 
proportional to the square root of the radius. 

P6.42 The free-body diagram for the object is 
shown in ANS. FIG. P6.42. The object travels 
in a circle of radius r = L cos θ about the 
vertical rod. 

 Taking inward toward the center of the circle 
as the positive x direction, we have  

     ∑Fx = max :  
  
n sin θ =

mv2

r
 

   
  ∑Fy = may :   

      n cos θ − mg = 0→ n cos θ = mg  
ANS. FIG. P6.42 
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 Dividing, we find  
   

  

n sin θ
n cosθ

= mv2/r
gr

     →      tanθ = v2

gr

 

 Solving for v gives 
   

  

v2 = gr tan θ
v2 = g(L cosθ)tan θ

v = (gL sin θ)1/2

 

P6.43 Let vi represent the speed of the object at time 0. We have 

  

dv
vvi

v
∫ = −

b
m

dt               ln v
i

t
∫ vi

v
= −

b
m

t i
t

ln v − ln vi = −
b
m

t − 0( )      ln v / vi( ) = −
bt
m

v / vi = e−bt/m                    v = vie
−bt/m

 

 From its original value, the speed decreases rapidly at first and then 
more and more slowly, asymptotically approaching zero. 

 
 

In this model the object keeps losing speed forever. It travels a
finite distance in stopping.

 

 The distance it travels is given by 
   

  dr
0

r
∫ = vi e−bt/m

0

t
∫ dt

 

   

  

r = − m
b

vi e−bt/m
0

t
∫ − b

m
dt⎛

⎝⎜
⎞
⎠⎟ = − m

b
vi e−bt/m

0

t

= − m
b

vi e−bt/m − 1( ) = mvi

b
1− e−bt/m( )

 

 As t goes to infinity, the distance approaches 
  

mvi

b
1− 0( ) = mvi b .  

P6.44 The radius of the path of object 1 is twice that of 
object 2. Because the strings are always “collinear,” 
both objects take the same time interval to travel 
around their respective circles; therefore, the speed 
of object 1 is twice that of object 2.  

The free-body diagrams are shown in ANS. FIG. 
P6.44. We are given m1

 = 4.00 kg, m2 = 3.00 kg,  
v = 4.00 m/s, and    = 0.500 m.  

ANS. FIG. P6.44 
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 Taking down as the positive direction, we have  

  Object 1: 
  
T1 + m1g =

m1v1
2

r 1

,   where v1 = 2v,    r1 = 2.  

  Object 2: 
  
T2 −T1 + m2 g =

m2v2
2

r2

,   where v2 = v,    r2 = 2.  

 (a) From above:  

   
  
T1 =

m1v1
2

r1

− m1g = m1
v1

2

r1

− g
⎛
⎝⎜

⎞
⎠⎟

 

   

  
T1 = 4.00 kg( ) 2 4.00 m/s( )[ ]2

2 0.500 m( ) − 9.80 m/s2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

   
  
T1 = 216.8 N = 217 N

 

 (b) From above:  

   
  
T2 = T1 +

m2v2
2

r2

− m2 g  

   
  
T2 = T1 + m2

v2
2

r2

− g
⎛
⎝⎜

⎞
⎠⎟

 

   

  
T2 = T1 + 3.00 kg( ) 4.00 m/s( )2

0.500 m
− 9.80 m/s2⎡

⎣
⎢

⎤

⎦
⎥

 

   T2 = 216.8 N + 66.6 N = 283.4 N = 
 
283 N  

 (c) 
  
From above, T2 > T1  always, so string 2 will break first.  

P6.45 (a) At each point on the vertical circular path, 
two forces are acting on the ball (see ANS. 
FIG. P6.45): 

  (1) 
 
The downward gravitational force  

with constant magnitude Fg = mg 

  (2) 

 

The tension force in the string, 
always directed toward the
center of the path 

 

ANS. FIG. P6.45 
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 (b) ANS. FIG. P6.45 shows the forces acting on the ball when it is at 
the highest point on the path (left-hand diagram) and when it is 
at the bottom of the circular path (right-hand diagram). Note that 
the gravitational force has the same magnitude and direction at 
each point on the circular path. The tension force varies in 
magnitude at different points and is always directed toward the 
center of the path. 

 (c) At the top of the circle, Fc = mv2/r = T + Fg, or 

   

  

T =
mv2

r
− Fg =

mv2

r
− mg = m

v2

r
− g

⎛
⎝⎜

⎞
⎠⎟

= 0.275 kg( ) 5.20 m s( )2

0.850 m
− 9.80 m s2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 6.05 N

 

 (d) At the bottom of the circle, Fc = mv2/r = T – Fg = T – mg, and 
solving for the speed gives 

   
  
v2 =

r
m

T − mg( ) = r
T
m

− g⎛
⎝⎜

⎞
⎠⎟

    and    
 
v = r

T
m

− g⎛
⎝⎜

⎞
⎠⎟

 

  If the string is at the breaking point at the bottom of the circle, 
then T = 22.5 N, and the speed of the object at this point must be 

   
  
v = 0.850 m( ) 22.5 N

0.275 kg
− 9.80 m s2⎛

⎝⎜
⎞
⎠⎟

= 7.82 m s  

P6.46 The free-body diagram is shown on the 
right, where it is assumed that friction 
points up the incline, otherwise, the child 
would slide down the incline. The net force 
is directed left toward the center of the 
circular path in which the child travels. The 
radius of this path is   R = dcosθ .   

 Three forces act on the child, a normal 
force, static friction, and gravity. The 
relations of their force components are: 

     Fx : fs cos θ − n sin θ = mv2/R∑  [1] 

   
  

Fy : fs sin θ + n cos θ − mg = 0→∑
fs sin θ + n cos θ = mg  [2] 

 Solve for the static friction and normal force. 

ANS. FIG. P6.46 
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 To solve for static friction, multiply equation [1] by cos θ and equation 
[2] by sin θ and add: 

   

  

cosθ fs cosθ − nsinθ[ ]+ sinθ fs sinθ − ncosθ[ ]
                                              = cosθ mv2

R
⎛
⎝⎜

⎞
⎠⎟

+ sinθ mg( )

  

   

  
fs = mg sinθ + mv2

R
⎛
⎝⎜

⎞
⎠⎟

cosθ
 

 To solve for the normal force, multiply equation [1] by –sin θ and 
equation [2] by cos θ and add: 

   

  

− sinθ fs cosθ − nsinθ[ ]+ cosθ fs sinθ − ncosθ[ ]
                                              = − sinθ mv2

R
⎛
⎝⎜

⎞
⎠⎟

+ cosθ mg( )
 

   
  
n = mg cosθ − mv2

R
⎛
⎝⎜

⎞
⎠⎟

sinθ  

 In the above, we have used  sin2θ + cos2θ = 1.   
 If the above equations are to be consistent, static friction and the 

normal force must satisfy the condition fs ≤ µsn; this means 

   
  

(mg) sin θ + (mv2 R)cos θ ≤ µs[(mg) cos θ − (mv2 R)sin θ]→

v2(cos θ + µs sin θ) ≤ g R(µs cos θ − sin θ)
 

 Using this result, and that R = d cos θ, we have the requirement that 

   
  
v ≤

gdcosθ(µs cosθ − sinθ)
(cosθ + µs sinθ)

 

 If this condition cannot be met, if v is too large, the physical situation 
cannot exist. 

 The values given in the problem are d = 5.32 m, µs = 0.700, θ = 20.0°, 
and v = 3.75 m/s. Check whether the given value of v satisfies the 
above condition: 

   

 

9.80 m/s2( ) 5.32 m( )cos20.0° 0.700( )cos20.0°− sin 20.0°[ ]
cos20.0° + 0.700 sin 20.0°( )

= 3.62 m/s

 

 

 

The situation is impossible because the speed of the child given
in the problem is too large: static friction could not keep the child
 in place on the incline.
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P6.47 (a) The speed of the bag is  

   
 

2π 7.46 m( )
38 s

= 1.23 m s  

  The total force on it must add to 
    

  

mac = mv2

r

=
30 kg( ) 1.23 m s( )2

7.46 m
= 6.12 N

 

  Newton’s second law gives 
    

  

Fx∑ = max : fs cos20.0°− nsin 20.0° = 6.12 N
Fy∑ = may : fs sin 20.0° + ncos20.0°

                                        − 30.0 kg( ) 9.80 m s2( ) = 0

 

  Solving for the normal force gives 
    

  
n = fs cos20.0°− 6.12 N

sin 20.0°

 

  Substituting, 

    

  

fs sin 20.0° + fs
cos2 20.0°
sin 20.0°

− 6.12 N( ) cos20.0°
sin 20.0°

= 294 N

fs 2.92( ) = 294 N + 16.8 N

fs = 106 N

 

 (b) The speed of the bag is now  
    

  
v = 2π 7.94 m( )

34 s
= 1.47 m s

 

  which corresponds to a total force of  
    

  

mac = mv2

r

=
30 kg( ) 1.47 m s( )2

7.94 m
= 8.13 N

 

  Newton’s second law then gives 
    

  

fs cos20− nsin 20 = 8.13 N
fs sin 20 + ncos20 = 294 N

 

  Solving for n, 

    
  
n = fs cos20.0°− 8.13 N

sin 20.0°
 

ANS. FIG. P6.47 
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ANS. FIG. P6.49 

  Substituting, 

   

  

fs sin 20.0° + fs
cos2 20.0°
sin 20.0°

− 8.13 N( ) cos20.0°
sin 20.0°

= 294 N

fs 2.92( ) = 294 N + 22.4 N
fs = 108 N

n = 108 N( )cos20.0°− 8.13 N
sin 20.0°

= 273 N

µs = fs

n
= 108 N

273 N
= 0.396

 

P6.48 When the cloth is at a lower  
angle θ, the radial component  
of  F∑ = ma  reads  

  
  
n + mg sinθ =

mv2

r
 

 At  θ = 68.0°,  the normal force  

drops  to zero and 
  
g sin 68° =

v2

r
:  

  
  
v = rg sin 68° = 0.33 m( ) 9.8 m s2( )sin 68° = 1.73 m s  

 The rate of revolution is  

 angular speed 

  

= 1.73 m s( ) 1 rev
2πr

⎛
⎝⎜

⎞
⎠⎟

2πr
2π 0.33 m( )

⎛
⎝⎜

⎞
⎠⎟

= 0.835 rev s = 50.1 rev min

 

P6.49 The graph in Figure 6.16b is 
shown in ANS. FIG. P6.49. 

 (a) The graph line is straight, 
so we may use any two 
points on it to find the 
slope. It is convenient to 
take the origin as one 
point, and we read  
(9.9 m2/s2, 0.16 N) as the 
coordinates of another 
point. Then the slope is

  
    

 
slope = 0.160 N − 0

9.9 m2 s2 = 0.016 2 kg m
 

ANS. FIG. P6.48 
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 (b) In 
  
R = 1

2
DρAv2 ,  we identify the vertical-axis variable as R and 

the horizontal-axis variable as v2. Then the slope is  

    
  
slope =

R
v2 =

1
2 DρAv2

v2 =
1
2

DρA  

 (c) We follow the directions in the problem statement: 

    
  

1
2

DρA = 0.0162 kg m  

    
  
D =

2 0.0162 kg m( )
1.20 kg m3( )π 0.105 m( )2 = 0.778  

 (d) From the table, the eighth point is at force  
    

  mg = 8 1.64× 10−3  kg( ) 9.80 m s2( ) = 0.129 N
  

  and horizontal coordinate (2.80 m/s)2. The vertical coordinate of 
the line is here 

    
 0.016 2 kg m( ) 2.80 m s( )2 = 0.127 N

 

  The scatter percentage is 

    
 

0.129 N − 0.127 N
0.127 N

= 1.5%  

 (e) The interpretation of the graph can be stated thus: 
  

  

For stacked coffee filters falling at terminal speed, a graph 
of air resistance force as a function of squared speed 
demonstrates that the force is proportional to the speed 
squared within the experimental uncertainty estimated 
as 2%. This proportionality agrees with that described by 

the theoretical equation R = 1
2

DρAv2. The value of the 

constant slope of the graph implies that the drag 
coefficient for coffee filters is D = 0.78 ± 2%.
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P6.50 (a) The forces acting on the ice cube are the Earth’s gravitational 
force, straight down, and the basin’s normal force, upward and 
inward at 35.0° with the vertical. We choose the x and y axes to be 
horizontal and vertical, so that the acceleration is purely in the x 
direction. Then 

    
  Fx = max∑ : n sin 35° = mv2/R  

    
  Fy = may :∑ n cos 35°− mg = 0  

  Dividing eliminates the normal force:  
    

  n sin 35.0° n cos 35.0° = mv2/Rmg  

    tan 35.0° = v2/Rg 

    
  
v = Rg tan 35.0° = 6.86 m/s2( )R  

 (b) 
 
The mass is unnecessary.  

 (c) The answer to (a) indicates that the speed is proportional to the 
square root of the radius, so 

 
increasing the radius will make the  

 
required speed increase.  

 (d) The period of revolution is given by  

    
  
T =

2πR
v

=
2πR

Rg tan 35.0°
= 2.40 s/ m( ) R  

  
 
When the radius increases, the period increases.  

 (e) 

  

On a larger circle, the ice cube’s speed is proportional to R  but
 the distance it travels is proportional to R, so the time interval

required is proportional to R R = R.

 

P6.51 Take the positive x axis up the hill. Newton’s second law in the x 
direction then gives 

  
  Fx∑ = max :     + T sinθ − mg sinφ = ma  

 from which we obtain 

  
  
a = T

m
sinθ − g sinφ  [1] 

 In the y direction, 
  

  Fy∑ = may :     + T cosθ − mg cosφ = 0  
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 Solving for the tension gives 

  
  
T = mg cosφ

cosθ
 [2] 

 Substituting for T from [2] into [1] gives 
  

  

a = g cosφ sinθ
cosθ

− g sinφ

a = g cosφ tanθ − sinφ( )

 

P6.52 (a) We first convert miles per hour to feet per second: 

    
  
v = 300 mi h( ) 88.0 ft s

60.0 mi h
⎛
⎝⎜

⎞
⎠⎟

= 440 ft s  at the top of the loop 

and v = 450 mi/h = 660 ft/s at the bottom of the loop. 

  At the lowest point, his seat exerts an upward force; therefore, his 
weight seems to increase. His apparent weight is 

    

  
′Fg = mg + m

v2

r
= 160 lb + 160 lb

32.0 ft/s2
⎛
⎝⎜

⎞
⎠⎟

660 ft/s( )2

1 200 ft
= 1 975 lb

 

 (b) At the highest point, the force of the seat on the pilot is directed 
down and 

    

  
′Fg = mg − m

v2

r
= 160 lb− 160 lb

32.0 ft/s2
⎛
⎝⎜

⎞
⎠⎟

440 ft/s( )2

1 200 ft
= −647 lb

 

  Since the plane is upside down, the seat exerts this downward 
force as a normal force. 

 (c) 

  

When ′Fg = 0, then mg =
mv2

R
. If we vary the aircraft's R and v

such that this equation is satisfied, then the pilot feels weightless.

 

P6.53 (a) 

 

The only horizontal force on the car is the force of friction,
with a maximum value determined by the surface roughness
(described by the coefficient of static friction) and the normal
force (here equal to the gravitational force on the car).

 

 (b) From Newton’s second law in one dimension, 

   

  
Fx = max :∑ − f = ma →    a = − f

m
= v2 − v0

2( ) 2 x − x0( )
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  solving for the stopping distance gives 

   

  
x − x0 =

m v2 − v0
2( )

2 f
=

1 200 kg( ) 02 − 20.0 m s( )2⎡
⎣

⎤
⎦

2 −7 000 N( ) = 34.3 m
 

 (c) Newton’s second law now gives 

   

  
f = mv2

r

 

  or 
  
r = mv2

f
=

1 200 kg( ) 20.0 m/s( )2

7 000 N
= 68.6 m  

  A top view shows that you can avoid running into the wall by 
turning through a quarter-circle, if you start at least this far away 
from the wall. 

 

(d) 

 

Braking is better. You should not turn the wheel. If 
you used any of the available friction force to change 
the direction of the car, it would be unavailable to 
slow the car, and the stopping distance would be 
longer.

 

 
(e) 

 

The conclusion is true in general. The radius of the curve you
can barely make is twice your minimum stopping distance.

 

P6.54 (a) Since the object of mass m2 is in equilibrium,   Fy∑ = T − m2 g = 0  

  or 
  
T = m2 g . 

 (b) The tension in the string provides the required centripetal 
acceleration of the puck. 

  Thus, 
  
Fc = T = m2 g . 

 (c) From 
  
Fc =

m1v
2

R
, 

  we have 

  

v =
RFc

m1

=
m2

m1

⎛
⎝⎜

⎞
⎠⎟

gR  
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ANS. FIG. P6.55 

 (d) 
 
The puck will spiral inward, gaining speed as it does so.  It gains 

speed because the extra-large string tension pulls at an angle of 
less than 90° to the direction of the inward-spiraling velocity, 
producing forward tangential acceleration as well as inward 
radial acceleration of the puck. 

 (e) 
 
The puck will spiral outward, slowing down as it does so.  

P6.55 (a) The gravitational force exerted by the 
planet on the person is 

    mg = (75.0 kg)(9.80 m/s2)  

     =  735 N down 

Let n represent the force exerted on the 
person by a scale, which is an upward 
force whose size is her “apparent 
weight.” The true weight is mg down. 
For the person at the equator, summing 
up forces on the object in the direction towards the Earth’s center 
gives   F∑ = ma:  

   mg − n = mac 

   where  ac = v2/RE = 0.033 7 m/s2 

   is the centripetal acceleration directed toward the center of the 
Earth. 

   Thus, we can solve part (c) before part (b) by noting that    

     n = m(g − ac) < mg 

  (c) or mg = n + mac > n.  

   
 

The gravitational force is greater. The normal force is smaller,
just as one experiences at the top of a moving ferris wheel.

 

  (b) If m = 75.0 kg and g = 9.80 m/s2, at the equator we have  

   n = m(g − ac) = (75.0 kg)(9.800 m/s2 – 0.033 7 m/s2) =  732 N   

P6.56 (a) v = vi + kx implies the acceleration is  

   
  
a =

dv
dt

= 0 + k
dx
dt

= +kv  
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ANS. FIG. P6.57 

 (b) The total force is  

    F∑ = ma = m +kv( )  

  As a vector, the force is parallel or antiparallel to the velocity: 

   
   


F∑ = km


v  

 (c) 

   

For k  positive, some feedback mechanism could be used to
impose such a force on an object for a while. The object’s
speed rises exponentially.

 

 (d) 

  

For k  negative, think of a duck landing on a lake, where the
water exerts a resistive force on the duck proportional to its
speed.

 

P6.57 (a) As shown in the free-body diagram on the right, the mass at the 
end of the chain is in vertical equilibrium. Thus,  

     T cosθ = mg  [1] 

Horizontally, the mass is accelerating  
toward the center of a circle of radius r: 

 
  
T sinθ = mar =

mv2

r
 [2] 

Here, r is the sum of the radius of the  
circular platform R = D/2 = 4.00 m  
and 2.50 sinθ :    

   

  

r = 2.50sinθ + 4.00( )  m
r = 2.50sin 28.0° + 4.00( )  m

= 5.17 m

 

  We solve for the tension T from [1]: 

   
  
T cosθ = mg → T =

mg
cosθ

 

  and substitute into [2] to obtain  

   
  
tanθ =

ar

g
=

v2

gr
 

   
  v

2 = gr tanθ = 9.80 m/s2( ) 5.17 m( ) tan 28.0°( )  

   
  
v = 5.19 m/s  
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ANS. FIG. P6.59 

 (b) The free-body diagram for the child is shown in ANS. FIG. P6.57.  

 (c) 
  
T =

mg
cosθ

=
40.0 kg( ) 9.80 m s2( )

cos28.0°
= 444 N  

P6.58 (a) The putty, when dislodged, rises and returns to the original level 

in time t. To find t, we use vf = vi + at: i.e., –v = + v – gt or 
  
t =

2v
g

,  

where v is the speed of a point on the rim of the wheel. 

  If R is the radius of the wheel, 
  
v =

2πR
t

, so 
  
t =

2v
g

=
2πR

v
. 

  Thus, 
  
v2 = πRg  and v = πRg .  

 (b) The putty is dislodged when F, the force holding it to the wheel, 
is  

   
  
F =

mv2

R
= mπ g  

P6.59 (a) The wall’s normal force pushes inward:  
   

  Finward∑ = mainward
  

   becomes  

    
  
n =

mv2

R =
m
R

2πR
T

⎛
⎝⎜

⎞
⎠⎟

2

=
4π 2Rm

T 2  

  The friction and weight balance:  
   

  Fupward∑ = maupward
 

  becomes 

  +f – mg = 0  

  so with the person just ready to start sliding down,     

   fs = μsn = mg 

   Substituting,  

    
  
µsn = µs

4π 2Rm
T 2 = mg   

   Solving,  

    
  
T 2 =

4π 2Rµs

g
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   gives  

    
  
T =

4π 2Rµs

g  

 
(b) 

 

The gravitational and friction forces 
remain constant. (Static friction adjusts 
to support the weight.) The normal
force increases. The person remains in 
motion with the wall.

 
 

 (c) 

 

The gravitational force remains constant. 
The normal and friction forces decrease. 
The person slides relative to the wall and 
downward into the pit.

 

P6.60 (a) 

t(s) d (m) t(s) d (m) 

 1.00 4.88  11.0 399 

 2.00 18.9  12.0 452 

 3.00 42.1  13.0 505 

 4.00 43.8  14.0 558 

 5.00 112  15.0 611 

 6.00 154  16.0 664 

 7.00 199  17.0 717 

 8.00 246  18.0 770 

 9.00 296  19.0 823 

 10.0 347  20.0 876 
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ANS. FIG. P6.61 

 (b) 

 

 (c) A straight line fits the points from t = 11.0 s to 20.0 s quite 
precisely. Its slope is the terminal speed. 

   
  
vT = slope =

876 m − 399 m
20.0 s − 11.0 s

= 53.0 m s  

P6.61 (a) If the car is about to slip down the incline, f is directed up the 
incline. 

     Fy∑ = ncosθ + f sinθ − mg = 0   

  where   f = µsn.  Substituting,  

   
  
n =

mg
cosθ 1 + µs tanθ( )   

  and 
  
f =

µsmg
cosθ 1 + µs tanθ( )  

  Then, 
  

Fx∑ = nsinθ − f cosθ = m
vmin

2

R
 

yields 

   

  
vmin =

Rg tanθ − µs( )
1 + µs tanθ

 

When the car is about to slip up the 
incline, f is directed down the incline. 
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Then, 

     Fy∑ = ncosθ − f sinθ − mg = 0,   with  f = µsn  

  This yields 

   
  
n =

mg
cosθ 1− µs tanθ( )   and  

  
f =

µsmg
cosθ 1− µs tanθ( )  

  In this case, 
  

Fx∑ = nsinθ + f cosθ = m
vmax

2

R
, which gives 

   

  
vmax =

Rg tanθ + µs( )
1− µs tanθ

 

 (b) If 
  
vmin =

Rg tanθ − µs( )
1 + µs tanθ

= 0 , then 
  

µs = tanθ . 

P6.62 There are three forces on the child, a vertical normal force, 
a horizontal force (combination of friction and a horizontal 
force from a seat belt), and gravity. 

   
  Fx : Fs = mv2 R∑  

   
  Fy : n− mg = 0→ n = mg∑  

 The magnitude of the net force is 

   
  
Fnet = mv2 R( )2

+ mg( )2   

 with a direction of 

   
  
θ = tan−1 mg

mv2 R
⎡

⎣
⎢

⎤

⎦
⎥ = tan−1 gR

v2
⎡
⎣⎢

⎤
⎦⎥

 above the horizontal 

 For m = 40.0 kg and R = 10.0 m: 

   

  
Fnet =

40.0 kg( ) 3.00 m/s( )2

10.0 m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

+ 40.0 kg( ) 9.80 m/s2( )⎡⎣ ⎤⎦
2  

   
  
Fnet = 394 N  

 direction:  
 
θ = tan−1 9.80 m/s2( ) 10.0 m( )

3.00 m/s( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

→ θ = 84.7°  

ANS. FIG. P6.62 
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ANS. FIG. P6.63 

P6.63 The plane’s acceleration is toward the 
center of the circle of motion, so it is 
horizontal.  The radius of the circle of 
motion is (60.0 m) cos 20.0° = 56.4 m and 
the acceleration is 

   

  

ac = v2

r =
35 m s( ) 2

56.4 m
= 21.7  m s2

 

 We can also calculate the weight of the 
airplane:  

   Fg = mg  

   = (0.750 kg)(9.80 m/s2)  

   = 7.35 N 

 We define our axes for convenience. In this case, two of the forces—
one of them our force of interest—are directed along the 20.0° line. We 
define the x axis to be directed in the   +


T  direction, and the y axis to be 

directed in the direction of lift. With these definitions, the x component 
of the centripetal acceleration is  

   acx = ac cos 20.0° 

 and   ∑Fx =  max   yields T + Fg sin 20.0° = macx  

 Solving for T,   

   T = macx − Fg sin 20.0° 

 Substituting,  

   T = (0.750 kg)(21.7 m/s2) cos 20.0° − (7.35 N) sin 20.0° 

 Computing,  

   T = 15.3 N − 2.51 N =  12.8 N  

*P6.64 (a) While the car negotiates the curve, the 
accelerometer is at the angle θ . 

  Horizontally: 
  
T sinθ = mv2

r
 

  Vertically:   T cosθ = mg  

  where r is the radius of the curve, and v is the 
speed of the car.  

r

r

r

ANS. FIG. P6.64 
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  By division, 
  
tanθ = v2

rg
 

  Then  

   
  
ac = v2

r
= g tanθ:   

     ac = 9.80 m s2( )tan 15.0°  

   
  
ac = 2.63 m/s2  

 (b) 
  
r = v2

ac

 gives  
  
r = 23.0 m/s( )2

2.63 m/s2 = 201 m  

 (c)   v
2 = rg tanθ = 201 m( ) 9.80 m s2( )tan 9.00°   

  
  
v = 17.7 m/s  

 
 

 

Challenge Problems 

P6.65 We find the terminal speed from 

   
  
v =

mg
b

⎛
⎝⎜

⎞
⎠⎟ 1− exp

−bt
m

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

  [1] 

 where exp(x) = ex is the exponential function. 

 At   t→∞:   
 
v → vT =

mg
b

 

 At t = 5.54 s: 
  
0.500vT = vT 1− exp

−b 5.54 s( )
9.00 kg

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  

 Solving, 

   

  

exp
−b 5.54 s( )

9.00 kg
⎛
⎝⎜

⎞
⎠⎟

= 0.500

−b 5.54 s( )
9.00 kg

= ln 0.500 = −0.693

b =
9.00 kg( ) 0.693( )

5.54 s
= 1.13 kg s
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 (a) From 
 
vT =

mg
b

, we have 

   
  
vT =

9.00 kg( ) 9.80 m s2( )
1.13 kg s

= 78.3 m s  

 (b) We substitute 0.750vT on the left-hand side of equation [1]: 

   
  
0.750vT = vT 1− exp

−1.13t
9.00 s

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

     

  and solve for t: 

   
  
exp

−1.13t
9.00 s

⎛
⎝⎜

⎞
⎠⎟ = 0.250  

   
  
t =

9.00 ln 0.250( )
−1.13

 s = 11.1 s  

 (c) We differentiate equation [1] with respect to time, 

   
  

dx
dt

=
mg
b

⎛
⎝⎜

⎞
⎠⎟ 1− exp −

bt
m

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

  

  then, integrate both sides 

   
  

dx
x0

x

∫ =
mg
b

⎛
⎝⎜

⎞
⎠⎟ 1− exp

−bt
m

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

dt
0

t

∫  

   

  

x − x0 = mgt
b

+ m2 g
b2

⎛
⎝⎜

⎞
⎠⎟

exp
−bt
m

⎛
⎝⎜

⎞
⎠⎟

0

t

= mgt
b

+ m2 g
b2

⎛
⎝⎜

⎞
⎠⎟

exp
−bt
m

⎛
⎝⎜

⎞
⎠⎟ − 1⎡

⎣⎢
⎤
⎦⎥

 

 At t = 5.54 s, 

  

  

x = 9.00 kg( ) 9.80 m s2( ) 5.54 s
1.13 kg s

⎛
⎝⎜

⎞
⎠⎟

               +
9.00 kg( )2 9.80 m s2( )

1.13 kg s( )2

⎛

⎝
⎜

⎞

⎠
⎟ exp −0.693( )− 1[ ]

x = 434 m + 626 m −0.500( ) = 121 m
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P6.66 (a) From Problem 6.33, 

   

  

v =
dx
dt

=
vi

1 + vikt

dx
0

x

∫ = vi
dt

1 + vikt0

t

∫ =
1
k

vikdt
1 + vikt0

t

∫

x 0
x =

1
k

ln 1 + vikt( )
0

t

x − 0 =
1
k

ln 1 + vikt( ) − ln 1⎡⎣ ⎤⎦

x =
1
k

ln 1 + vikt( )

 

 (b) We have   ln 1+ vikt( ) = kx  
   

  
1+ vikt = ekx    so   v = vi

1+ vikt
= vi

ekx = vie
−kx = v

    

P6.67 Let the x axis point eastward, the y axis upward, and the z axis point 
southward. 

 (a) The range is 
  
Z =

vi
2 sin 2θi

g
 

  The initial speed of the ball is therefore 
   

  
vi = gZ

sin 2θ i

=
9.80 m/s2( ) 285 m( )

sin 96.0°
= 53.0 m/s

 

  The time the ball is in the air is found from 
  
Δy = viyt +

1
2

ayt
2  as 

  0 = 53.0 m s( ) sin 48.0°( )t − 4.90 m s2( )t2  

  giving 
  
t = 8.04 s . 

 (b) 
  
vxi = 2πRe cosφi

86 400 s
=

2π 6.37 × 106  m( )cos35.0°
86 400 s

= 379 m s  

 (c) 360° of latitude corresponds to a distance of   2πRe , so 285 m is a 
change in latitude of 

   

  

Δφ = S
2πRe

⎛
⎝⎜

⎞
⎠⎟

360°( ) = 285 m
2π 6.37 × 106  m( )

⎛

⎝
⎜

⎞

⎠
⎟ 360°( )

= 2.56× 10−3  degrees
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  The final latitude is then  
   

  φ f = φi − Δφ = 35.0°− 0.002 56° = 34.997 4°  

  The cup is moving eastward at a speed  
   

  
vxf =

2πRe cosφ f

86 400 s

 

  which is larger than the eastward velocity of the tee by 
    

  

Δvx = vxf − vxi = 2πRe

86 400 s
⎛
⎝⎜

⎞
⎠⎟

cosφ f − cosφi⎡⎣ ⎤⎦

= 2πRe

86 400 s
⎛
⎝⎜

⎞
⎠⎟

cos φ − Δφ( )− cosφi⎡⎣ ⎤⎦

= 2πRe

86 400 s
⎛
⎝⎜

⎞
⎠⎟

cosφi cosΔφ + sinφi sinΔφ − cosφi[ ]

 

  Since Δφ  is such a small angle,  cosΔφ ≈ 1  and  
   

  
Δvx ≈

2πRe

86 400 s
⎛
⎝⎜

⎞
⎠⎟

sinφi sinΔφ
 

   

  

Δvx ≈
2π 6.37 × 106  m( )

86 400 s

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
sin 35.0°sin 0.002 56°

= 1.19× 10−2  m s

 

 (d)   Δx = Δvx( )t = 1.19× 10−2  m s( ) 8.04 s( ) = 0.095 5 m = 9.55 cm  

P6.68 (a) We let R represent the radius of the hoop and T represent the 
period of its rotation. The bead moves in a circle with radius 
  r = Rsinθ  at a speed of 

   
  
v =

2πr
T

=
2πRsinθ

T
 

  The normal force has an inward radial  
component of n sinθ and an upward component  
of n cosθ . 

     Fy∑ = may : ncosθ − mg = 0  

  or 

   
  
n =

mg
cosθ

 
ANS. FIG. P6.68 
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  Then 
  

Fx∑ = nsinθ = m
v2

r
  becomes  

  

mg
cosθ

⎛
⎝⎜

⎞
⎠⎟ sinθ =

m
Rsinθ

2πRsinθ
T

⎛
⎝⎜

⎞
⎠⎟

2

 

  which reduces to 
  

g sinθ
cosθ

=
4π 2Rsinθ

T 2
 

  This has two solutions:  sinθ = 0      ⇒      θ = 0°  [1] 

  and 
  
cosθ =

gT 2

4π 2R
 [2] 

  If R = 15.0 cm and T = 0.450 s, the second solution yields 

   
 
cosθ =

9.80 m s2( ) 0.450 s( )2

4π 2 0.150 m( ) = 0.335    or   θ = 70.4° 

  Thus, in this case, the bead can ride at two positions: 
 
θ = 70.4°  

and 
 
θ = 0° . 

 (b) At this slower rotation, solution [2] above becomes 

   
 
cosθ =

9.80 m s2( ) 0.850 s( )2

4π 2 0.150 m( ) = 1.20 , which is impossible. 

  In this case, the bead can ride only at the bottom of the loop, 

 
θ = 0° . 

 (c) 
 
There is only one solution for (b) because the period is too large.  

 (d) 

  

The equation that the angle must satisfy has two solutions

whenever 4π 2R > gT 2 but only the solution 0° otherwise.
The loop’s rotation must be faster than a certain threshold
value in order for the bead to move away from the lowest
position. Zero is always a solution for the angle.

 

 (e) 

 

From the derivation of the solution in (a), there are never more
than two solutions.

 

P6.69 At terminal velocity, the accelerating force of gravity is balanced by 
friction drag: 

     mg = arv + br2v2  
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 (a) With r = 10.0 µm,   mg = 3.10 × 10−9( )v + 0.870 × 10−10( )v2  

  For water, 
  
m = ρV = 1 000 kg m3 4

3
π 10−5  m( )3⎡

⎣⎢
⎤
⎦⎥

 

   
  mg = 4.11× 10−11 = 3.10× 10−9( )v + 0.870× 10−10( )v2  

  Assuming v is small, ignore the second term on the right hand 
side: 

  
v = 0.013 2 m/s  

 (b) With r = 100 µm,   mg = 3.10 × 10−8( )v + 0.870 × 10−8( )v2  

  Here we cannot ignore the second term because the coefficients 
are of nearly equal magnitude. 

   
  mg = 4.11× 10−8 = 3.10× 10−8( )v + 0.870× 10−8( )v2  

  Taking the positive root, 

   

  
v =

−3.10 + 3.10( )2 + 4 0.870( ) 4.11( )
2 0.870( ) = 1.03 m s

 

 (c) With r = 1.00 mm,   mg = 3.10 × 10−7( )v + 0.870 × 10−6( )v2  

  Assuming v > 1 m/s, and ignoring the first term: 

  
  4.11× 10−5 = 0.870 × 10−6( )v2       

  
v = 6.87 m s  

P6.70 At a latitude of 35°, the centripetal acceleration of a plumb bob is 
directed at 35° to the local normal, as can be seen from the following 
diagram below at left. 

 Therefore, if we look at a diagram of the forces on the plumb bob and 
its acceleration with the local normal in a vertical orientation, we see 
the second diagram in ANS. FIG. P6.70: 
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ANS. FIG. P6.70 

 We first find the centripetal acceleration of the plumb bob. The first 
figure shows that the radius of the circular path of the plumb bob is  
R cos 35.0°, where R is the radius of the Earth. The acceleration is 

   

  

ac  = 
v2

r
 = 1

r
2πr
T

⎛
⎝⎜

⎞
⎠⎟

2

 =  4π
2r

T 2  =  4π
2Rcos35.0°

T 2

    =  
4π 2 6.37  × 106  m( )cos35.0°

86 400 s( )2  = 0.027  6 m/s2

 

 Apply the particle under a net force model to the plumb bob in both x 
and y directions in the second diagram: 

   

  

x:  T sinφ  = mac sin 35.0°
y:  mg  − T cosφ  = mac cos35.0°

 

 Divide the equations: 

   
  
tanφ  =  ac sin 35.0°

g  − ac cos35.0°
 

   

 
tanφ  = 

0.027  6 m/s2( )sin 35.0°
9.80 m/s2  −  0.027  6 m/s2( )cos35.0°

 = 1.62 ×10−3

 

   
 φ  = tan−1 1.62 × 10−3( ) =  0.092 8°  
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P6.2 (a) 1.65 × 103 m/s; (b) 6.84 × 103 s 

P6.4 215 N, horizontally inward 

P6.6 (a) 
  
−0.233î + 0.163 ĵ( )  m/s2 ; (b) 6.53 m/s, 

  
−0.181î + 0.181ĵ( )  m/s2  

P6.8 (a)   68.6 N( ) î + 784 N( ) ĵ ; (b) a = 0.857 m/s2 

P6.10 The situation is impossible because the speed of the object is too small, 
requiring that the lower string act like a rod and push rather than like 
a string and pull. 

P6.12 (a) the gravitational force and the contact force exerted on the water by 
the pail; (b) contact force exerted by the pail; (c) 3.13 m/s; (d) the water 
would follow the parabolic path of a projectile 

P6.14 (a) 4.81 m/s; (b) 700 N 

P6.16 (a) 2.49 × 104 N; (b) 12.1 m/s 

P6.18 (a) 20.6 N; (b) 32.0 m/s2 inward, 3.35 m/s2 downward tangent to the 
circle; (c) 32.2 m/s2 inward and below the cord at 5.98˚; (d) no change; 
(e) acceleration is regardless of the direction of swing 

P6.20 (a) 3.60 m/s2; (b) T = 0; (c) noninertial observer in the car claims that 
the forces on the mass along x are T and a fictitious force (−Ma); (d) 
inertial observer outside the car claims that T is the only force on M in 
the x direction 

P6.22 93.8 N 

P6.24 
  

2 vt − L( )
g + a( )t2  

P6.26 (a) 53.8 m/s; (b) 148 m 

P6.28 (a) 6.27 m/s2 downward; (b) 784 N directed up; (c) 283 N upward 

P6.30 (a) 32.7 s–1; (b) 9.80 m/s2 down; (c) 4.90 m/s2 down 

P6.32 36.5 m/s   

P6.34 (a) 2.03 N down; (b) 3.18 m/s2 down; (c) 0.205 m/s down 

P6.36 101 N 

P6.38 1.2 × 103 N 

P6.40 (a) 1.15 × 104 N up; (b) 14.1 m/s 

P6.42 See Problem 6.42 for full derivation. 
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P6.44 (a) 217 N; (b) 283 N; (c) T2 > T1 always, so string 2 will break first 

P6.46 The situation is impossible because the speed of the child given in the 
problem is too large: static friction could not keep the child in place on 
the incline 

P6.48 0.835 rev/s 

P6.50 (a) 
  
v = Rg tan 35.0° = 6.86 m/s2( )R ; (b) the mass is unnecessary;  

(c) increasing the radius will make the required speed increase; (d) 
when the radius increases, the period increases; (e) the time interval 
required is proportional to   R / R = R  

P6.52 (a) 1 975 lb; (b) −647 lb; (c) When 
  
′Fg = 0,  then mg = mv2

R
.  

P6.54 (a) m2g; (b) m2g; (c) 
  

m2

m1

⎛
⎝⎜

⎞
⎠⎟

gR ; (d) The puck will spiral inward, gaining 

speed as it does so; (e) The puck will spiral outward, slowing down as 
it does so 

P6.56 (a) a = +kv; (b)    

F∑ = km


v ; (c) some feedback mechanism could be used 

to impose such a force on an object; (d) think of a duck landing on a 
lake, where the water exerts a resistive force on the duck proportional 
to its speed 

P6.58 (a)   πRg ;  (b)  mπ g  

P6.60 (a) See table in P6.60 (a); (b) See graph in P6.60 (b); (c) 53.0 m/s 

P6.62 84.7° 

P6.64 (a) 2.63 m/s2; (b) 201 m; (c) 17.7 m/s 

P6.66 (a) 
  
x =

1
k

ln 1 + vikt( ) ; (b)  v = vie
−kx  

P6.68 (a) θ   = 70.4° and θ  = 0°; (b) θ  = 0°; (c) the period is too large; (d) Zero 
is always a solution for the angle; (e) there are never more than two 
solutions 

P6.70 0.092 8° 
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7 
Energy of a System 

 

CHAPTER OUTLINE 
 

7.1 Systems and Environments 

7.2 Work Done by a Constant Force 

7.3  The Scalar Product of Two Vectors 

7.4 Work Done by a Varying Force 

7.5 Kinetic Energy and the Work-Kinetic Energy Theorem 

7.6 Potential Energy of a System 

7.7 Conservative and Nonconservative Forces 

7.8 Relationship Between Conservative Forces and Potential Energy 

7.9 Energy Diagrams and Equilibrium of a System 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ7.1 Answer (c). Assuming that the cabinet has negligible speed during the 
operation, all of the work Alex does is used in increasing the 
gravitational potential energy of the cabinet-Earth system. However, in 
addition to increasing the gravitational potential energy of the cabinet-
Earth system by the same amount as Alex did, John must do work 
overcoming the friction between the cabinet and ramp. This means 
that the total work done by John is greater than that done by Alex. 

OQ7.2 Answer (d). The work–energy theorem states that   Wnet = ΔK = K f − Ki .  

Thus, if Wnet = 0, then 
  
K f − Ki  or 

1
2

mv f
2 − 1

2
mvi

2 ,  which leads to the 

conclusion that the speed is unchanged (vf = vi). The velocity of the 
particle involves both magnitude (speed) and direction. The work–
energy theorem shows that the magnitude or speed is unchanged 
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when Wnet = 0, but makes no statement about the direction of the 
velocity. 

OQ7.3 Answer (a). The work done on the wheelbarrow by the worker is 
   

  W = (F cos θ)Δx = (50 N)(5.0 m) = +250 J  

OQ7.4 Answer (c). The system consisting of the cart’s fixed, initial kinetic 
energy is the mechanical energy that can be transformed due to friction 
from the surface. Therefore, the loss of mechanical energy is  

  ΔEmech = − fkd = − 6 N( ) 0.06 m( ) = 0.36 J.  This product must remain the 
same in all cases. For the cart rolling through gravel, −(9 N)(d) = 0.36 J 
tells us d = 4 cm. 

OQ7.5 The answer is a > b = e > d > c. Each dot product has magnitude 
(1)·(1)·cos θ, where θ is the angle between the two factors. Thus for (a) 
we have cos 0 = 1. For (b) and (e), cos 45º = 0.707. For (c), cos 180º = −1. 
For (d), cos 90º = 0. 

OQ7.6 Answer (c). The net work needed to accelerate the object from v = 0 to 
v is 

   
  
W1 = KE1 f − KE1i =

1
2

mv2 −
1
2

m(0)2 =
1
2

mv2  

 The work required to accelerate the object from speed v to speed 2v is 

   

  

W2 = KE2 f − KE2 i =
1
2

m(2v)2 −
1
2

mv2

=
1
2

m 4v2 − v2( ) = 3
1
2

mv2⎛
⎝⎜

⎞
⎠⎟ = 3W1

 

OQ7.7 Answer (e). As the block falls freely, only the conservative 
gravitational force acts on it. Therefore, mechanical energy is 
conserved, or KEf + PEf = KEi + PEi. Assuming that the block is released 
from rest (KEi = 0), and taking y = 0 at ground level (PEf = 0), we have 
that 

  KEf = PEi   or   
  

1
2

mv f
2 = mgy     and     

  
yi =

v f
2

2g
 

 Thus, to double the final speed, it is necessary to increase the initial 
height by a factor of four. 

OQ7.8 (i) Answer (b). Tension is perpendicular to the motion. (ii) Answer (c). 
Air resistance is opposite to the motion. 

OQ7.9 Answer (e). Kinetic energy is proportional to mass. 
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OQ7.10 (i) Answers (c) and (e). The force of block on spring is equal in 
magnitude and opposite to the force of spring on block. 

 (ii) Answers (c) and (e). The spring tension exerts equal-magnitude 
forces toward the center of the spring on objects at both ends. 

OQ7.11 Answer (a). Kinetic energy is proportional to squared speed. Doubling 
the speed makes an object’s kinetic energy four times larger. 

OQ7.12 Answer (b). Since the rollers on the ramp used by David were 
frictionless, he did not do any work overcoming nonconservative 
forces as he slid the block up the ramp. Neglecting any change in 
kinetic energy of the block (either because the speed was constant or 
was essentially zero during the lifting process), the work done by 
either Mark or David equals the increase in the gravitational potential 
energy of the block-Earth system as the block is lifted from the ground 
to the truck bed. Because they lift identical blocks through the same 
vertical distance, they do equal amounts of work. 

OQ7.13 (i) Answer: a = b = c = d. The gravitational acceleration is quite 
precisely constant at locations separated by much less than the radius 
of the planet. 

 (ii) Answer: c = d > a = b. The mass but not the elevation affects the 
gravitational force. 

 (iii) Answer: c > b = d > a. Gravitational potential energy of the object-
Earth system is proportional to mass times height. 

OQ7.14 Answer (d). 
  
4.00 J =

1
2

k(0.100 m)2.  Therefore, k = 800 N/m and to 

stretch the spring to 0.200 m requires extra work 

   
  
ΔW =

1
2

(800)(0.200)2 − 4.00 J = 12.0 J  

OQ7.15 Answer (a). The system consisting of the cart’s fixed, initial kinetic 
energy is the mechanical energy that can be transformed due to friction 
from the surface. Therefore, the loss of mechanical energy is  

  ΔEmech = − fkd = − 6 N( ) 0.06 m( ) = 0.36 J.  This product must remain the 
same in all cases. For the cart rolling through gravel,  
−(fk)(0.18 m) = 0.36 J tells us fk = 2 N. 

OQ7.16 Answer (c). The ice cube is in neutral equilibrium. Its zero acceleration 
is evidence for equilibrium. 
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ7.1 Yes. The floor of a rising elevator does work on a passenger. A normal 
force exerted by a stationary solid surface does no work. 

CQ7.2 Yes. Object 1 exerts some forward force on object 2 as they move 
through the same displacement. By Newton’s third law, object 2 exerts 
an equal-size force in the opposite direction on object 1. In  

  W = FΔr cosθ ,  the factors F and  Δr  are the same, and θ differs by 180º, 
so object 2 does −15.0 J of work on object 1. The energy transfer is  
15 J from object 1 to object 2, which can be counted as a change in 
energy of −15 J for object 1 and a change in energy of +15 J for object 2. 

CQ7.3 It is sometimes true. If the object is a particle initially at rest, the net 
work done on the object is equal to its final kinetic energy. If the object 
is not a particle, the work could go into (or come out of) some other 
form of energy. If the object is initially moving, its initial kinetic energy 
must be added to the total work to find the final kinetic energy. 

CQ7.4 The scalar product of two vectors is positive if the angle between them 
is between 0° and 90°, including 0°. The scalar product is negative 
when 90° < θ  ≤ 180°. 

CQ7.5 No. Kinetic energy is always positive. Mass and squared speed are 
both positive. 

CQ7.6 Work is only done in accelerating the ball from rest. The work is done 
over the effective length of the pitcher’s arm—the distance his hand 
moves through windup and until release. He extends this distance by 
taking a step forward. 

CQ7.7 (a) Positive work is done by the chicken on the dirt. 

 (b) The person does no work on anything in the environment. 
Perhaps some extra chemical energy goes through being energy 
transmitted electrically and is converted into internal energy in his 
brain; but it would be very hard to quantify “extra.” 

 (c) Positive work is done on the bucket. 

 (d) Negative work is done on the bucket. 

 (e) Negative work is done on the person’s torso. 

CQ7.8 (a) Not necessarily. It does if it makes the object’s speed change, but 
not if it only makes the direction of the velocity change. 

 (b) Yes, according to Newton’s second law. 

CQ7.9 The gravitational energy of the key-Earth system is lowest when the 
key is on the floor letter-side-down. The average height of particles in 
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the key is lowest in that configuration. As described by F = −dU/dx, a 
force pushes the key downhill in potential energy toward the bottom 
of a graph of potential energy versus orientation angle. Friction 
removes mechanical energy from the key-Earth system, tending to 
leave the key in its minimum-potential energy configuration. 

CQ7.10 There is no violation. Choose the book as the system. You did positive 
work (average force and displacement are in same direction) and the 
Earth did negative work (average force and displacement are in 
opposite directions) on the book. The average force you exerted just 
counterbalanced the weight of the book. The total work on the book is 
zero, and is equal to its overall change in kinetic energy. 

CQ7.11 k′ = 2k. Think of the original spring as being composed of two half-
springs. The same force F that stretches the whole spring by x stretches 
each of the half-springs by x/2; therefore, the spring constant for each 
of the half-springs is k′ = [F/(x/2)] = 2(F/x) = 2k. 

CQ7.12 A graph of potential energy versus position is a straight horizontal line 
for a particle in neutral equilibrium. The graph represents a constant 
function. 

CQ7.13 Yes. As you ride an express subway train, a backpack at your feet has 
no kinetic energy as measured by you since, according to you, the 
backpack is not moving. In the frame of reference of someone on the 
side of the tracks as the train rolls by, the backpack is moving and has 
mass, and thus has kinetic energy. 

CQ7.14 Force of tension on a ball moving in a circle on the end of a string. 
Normal force and gravitational force on an object at rest or moving 
across a level floor. 

 

 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 7.2 Work Done by a Constant Force	  
P7.1 (a) The 35-N force applied by the shopper makes a 25° angle with the 

displacement of the cart (horizontal). The work done on the cart 
by the shopper is then 

    

  

Wshopper = F cosθ( )Δx = 35.0 N( ) 50.0 m( )cos25.0°

= 1.59× 103  J

 

 (b) The force exerted by the shopper is now completely horizontal 
and will be equal to the friction force, since the cart stays at a 
constant velocity. In part (a), the shopper’s force had a downward 
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vertical component, increasing the normal force on the cart, and 
thereby the friction force. Because there is no vertical component 
here, the friction force will be less, and the  the force is smaller  
than before. 

 (c) Since the horizontal component of the force is less in part (b), the 
work performed by the shopper on the cart over the same 50.0-m 
distance is  the same  as in part (b). 

P7.2 (a) The work done on the raindrop by the gravitational force is given 
by  

   
  
W = mgh = 3.35 × 10−5  kg( ) 9.80 m/s2( ) 100 m( ) = 3.28 × 10−2 J  

 (b) Since the raindrop is falling at constant velocity, all forces acting 
on the drop must be in balance, and R = mg, so  

   
  
Wair resistance = −3.28× 10−2 J

 

P7.3 (a) The work done by a constant force is given by 

     W = Fdcosθ  

  where θ  is the angle between the force and the displacement of 
the object. In this case, F = –mg and  θ = 180°,  giving  

   W = (281.5 kg)(9.80 m/s2)[(17.1 cm)(1 m/102 cm)] = 
 
472 J  

 (b) If the object moved upward at constant speed, the net force acting 
on it was zero. Therefore, the magnitude of the upward force 
applied by the lifter must have been equal to the weight of the 
object: 

   F = mg = (281.5 kg)(9.80 m/s2) = 2.76 × 103 N = 
 
2.76 kN  

P7.4 Assuming the mass is lifted at constant velocity, the total upward force 
exerted by the two men equals the weight of the mass: Ftotal = mg = 
(653.2 kg)(9.80 m/s2) = 6.40 × 103 N. They exert this upward force 
through a total upward displacement of 96 inches (4 inches per lift for 
each of 24 lifts). The total work would then be 

   Wtotal = (6.40 × 103 N)[(96 in)(0.025 4 m/1 in)] = 
 
1.56 × 104 J  

P7.5 We apply the definition of work by a constant force in the first three 
parts, but then in the fourth part we add up the answers. The total 
(net) work is the sum of the amounts of work done by the individual 
forces, and is the work done by the total (net) force. This identification 
is not represented by an equation in the chapter text, but is something 
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you know by thinking about it, without relying on an equation in a list.  

 The definition of work by a constant force is   W = FΔr cosθ .   

 (a) The applied force does work given by 
   

  
W = FΔr cosθ = 16.0 N( ) 2.20 m( )cos25.0° = 31.9 J

 

 (b), (c)  The normal force and the weight are both at 90° to the 
displacement in any time interval. Both do  0 work. 

 (d) 
  

W∑ = 31.9 J + 0 + 0 = 31.9 J  

P7.6 METHOD ONE 

 Let φ represent the instantaneous angle the rope 
makes with the vertical as it is swinging up from  
φi = 0 to φf = 60º. In an incremental bit of motion 
from angle φ to φ + dφ, the definition of radian 
measure implies that   Δr = 12.0 m( )dφ.  The angle  
θ  between the incremental displacement and the 
force of gravity is θ = 90º + φ. Then  

   cos θ = cos (90º + φ) = –sin φ 

 The work done by the gravitational force on Spiderman is 
   

  

W = F cosθ dr
i

f

∫ = mg(− sinφ)(12.0 m)dφ
φ=0

φ=60°

∫

= −mg(12.0 m) sinφ dφ
0

60°

∫

= (−80.0 kg) 9.80 m/s2( )(12 m)(−cosφ) 0
60°

= (−784 N)(12.0 m)(−cos60° + 1) = −4.70× 103  J

 

 METHOD TWO 

 The force of gravity on Spiderman is mg = (80 kg)(9.8 m/s2) = 784 N 
down. Only his vertical displacement contributes to the work gravity 
does. His original y coordinate below the tree limb is –12 m. His final y 
coordinate is (–12.0 m) cos 60.0º = –6.00 m. His change in elevation is  
–6.00 m – (–12.0 m). The work done by gravity is 

   
  
W = FΔr cosθ = 784 N( ) 6.00 m( )cos180° = −4.70 kJ

 

 
 

ANS. FIG. P7.6 



340     Energy of a System 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

ANS. FIG. P7.10 

Section 7.3 The Scalar Product of Two Vectors	  

P7.7 
    


A ⋅

B = Ax î + Ay ĵ + Azk̂( ) ⋅ Bx î + By ĵ + Bzk̂( )  

    


A ⋅

B = AxBx î ⋅ î( ) + AxBy î ⋅ ĵ( ) + AxBz î ⋅ k̂( )

  + AyBx ĵ ⋅ î( ) + AyBy ĵ ⋅ ĵ( ) + AyBz ĵ ⋅ k̂( )
  + AzBx k̂ ⋅ î( ) + AzBy k̂ ⋅ ĵ( ) + AzBz k̂ ⋅ k̂( )

 

 And since   î ⋅ î = ĵ ⋅ ĵ = k̂ ⋅ k̂ = 1 and   î ⋅ ĵ = î ⋅ k̂ = ĵ ⋅ k̂ = 0,  
  

   


A ⋅

B = AxBx + AyBy + AzBz

 

P7.8 A = 5.00; B = 9.00; θ = 50.0º 

 
    


A ⋅

B = ABcosθ = (5.00)(9.00)cos50.0° = 28.9  

P7.9 
   


A −

B = 3.00î + ĵ − k̂( ) − − î + 2.00 ĵ + 5.00k̂( ) = 4.00î − ĵ − 6.00k̂  

   


C ⋅

A −

B( ) = 2.00 ĵ − 3.00k̂( ) ⋅ 4.00î − ĵ − 6.00k̂( ) = 0 + (−2.00) + (+18.0)

                 = 16.0

 

P7.10 We must first find the angle between the two  
vectors. It is 

   θ = (360º – 132º) – (118º + 90.0º)  
= 20.0º 

 Then 
   

    


F ⋅ r = Fr cosθ

= (32.8 N)(0.173 m)cos20.0°

 

 or  
   

F ⋅ r = 5.33 N ⋅m = 5.33 J  

P7.11 (a) We use the mathematical representation of the definition of work.  

   

    

W =

F ⋅ Δr = Fxx + Fyy = (6.00)(3.00) N ⋅m + (−2.00)(1.00) N ⋅m

= 16.0 J

 

 (b) 

    

θ = cos−1


F ⋅ Δr
FΔr

⎛
⎝⎜

⎞
⎠⎟

= cos−1 16 N ⋅m
(6.00 N)2 + (−2.00 N)2 ⋅ (3.00 m)2 + (1.00 m)2

= 36.9°
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P7.12 (a)    

A = 3.00î − 2.00 ĵ  

     

B = 4.00î − 4.00 ĵ   

  

    
θ = cos−1


A ⋅

B

AB
⎛
⎝⎜

⎞
⎠⎟

= cos−1 12.0 + 8.00
13.0 ⋅ 32.0

⎛
⎝⎜

⎞
⎠⎟

= 11.3°
 

 (b)    

A = −2.00î + 4.00 ĵ   

  
   

B = 3.00î − 4.00 ĵ + 2.00k̂  

  

    
cosθ =


A ⋅

B

AB
⎛
⎝⎜

⎞
⎠⎟

=
−6.00 − 16.0
20.0 ⋅ 29.0

   →   θ = 156º
 

 (c)    

A = î − 2.00 ĵ + 2.00k̂  

  
   

B = 3.00 ĵ + 4.00k̂   

  
    
θ = cos−1


A ⋅

B

AB
⎛
⎝⎜

⎞
⎠⎟

= cos−1 −6.00 + 8.00
9.00 ⋅ 25.0

⎛
⎝⎜

⎞
⎠⎟

= 82.3°  

P7.13 Let θ represent the angle between   

A  and   


B . Turning by 25.0º makes 

the dot product larger, so the angle between   

C  and   


B  must be smaller. 

We call it θ − 25.0º. Then we have 

   5A cos θ = 30 and 5A cos (θ − 25.0º) = 35 

 Then  

   A cos θ = 6 and A (cos θ  cos 25.0º + sin θ sin  25.0º) = 7 

 Dividing,  

   cos 25.0º + tan θ  sin 25.0º = 7/6   

 or  tan θ = (7/6 − cos 25.0º)/sin 25.0º = 0.616 

 Which gives  θ = 31.6º. Then the direction angle of A is  

   60.0º − 31.6º = 28.4º  

 Substituting back,  

   A cos 31.6º = 6   so 
   

A = 7.05 m at 28.4°  
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Section 7.4 Work Done by a Varying Force	  

P7.14 
 
W = Fdx

i

f

∫ =  area under curve from xi to xf 

 (a) xi = 0 and xf = 800 m 

    W0→8  = area of triangle ABC  
   

 
= 1

2
⎛
⎝⎜

⎞
⎠⎟ AC× height

 

  

  

W0→8 =
1
2

⎛
⎝⎜

⎞
⎠⎟ × 8.00 m × 6.00 N

= 24.0 J

 

 (b) xi = 8.00 m and xf = 10.0 m 

    W8→10  = area of 
 
ΔCDE =

1
2

⎛
⎝⎜

⎞
⎠⎟ CE × height,  

  
  
W8→10 =

1
2

⎛
⎝⎜

⎞
⎠⎟ × (2.00 m) × (−3.00 N) = −3.00 J  

 (c) 
  
W0→10 = W0→8 + W0→10 = 24.0 + −3.00( ) = 21.0 J  

P7.15 We use the graphical representation of the 
definition of work. W equals the area under the 
force-displacement curve. This definition is still 
written 

 
W = Fx dx∫  but it is computed 

geometrically by identifying triangles and 
rectangles on the graph. 

 (a) For the region 0 ≤ x ≤ 5.00 m, 

   
  
W =

(3.00 N)(5.00 m)
2

= 7.50 J  

 (b) For the region 5.00 ≤ x ≤ 10.0, 
  
W = 3.00 N( ) 5.00 m( ) = 15.0 J  

 (c) For the region 10.00 ≤ x ≤ 15.0, 
  
W =

(3.00 N)(5.00 m)
2

= 7.50 J  

 (d) For the region 0 ≤ x ≤ 15.0, W = (7.50 + 7.50 + 15.0) J =  30.0 J  

ANS. FIG. P7.14 

ANS. FIG. P7.15 
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P7.16   Fx∑ = max :  kx = ma 

 

  

k =
ma
x

=
(4.70 × 10−3

 kg) (0.800) (9.80 m/s2 )
0.500 × 10−2m

= 7.37 N/m

 

P7.17 When the load of mass M = 4.00 kg is hanging on the spring in 
equilibrium, the upward force exerted by the spring on the load is 
equal in magnitude to the downward force that the Earth exerts on the 
load, given by w = Mg. Then we can write Hooke’s law as Mg = +kx. 
The spring constant, force constant, stiffness constant, or Hooke’s-law 
constant of the spring is given by  

   
  
k =

F
y

=
Mg
y

=
(4.00 kg)(9.80 m/s2 )

2.50 × 10−2  m
= 1.57 × 103  N/m  

 (a) For the 1.50-kg mass, 
   

  
y =

mg
k

=
(1.50 kg)(9.80 m/s2 )

1.57 × 103  N/m
= 0.009 38 m = 0.938 cm

 

 (b) Work 
  
=

1
2

ky2 =
1
2

1.57 × 103  N m( ) 4.00 × 10−2  m( )2
= 1.25 J  

P7.18 In F = –kx, F refers to the size of the force that the spring exerts on each 
end. It pulls down on the doorframe in part (a) in just as real a sense as 
it pulls on the second person in part (b). 

 (a) Consider the upward force exerted by the bottom end of the 
spring, which undergoes a downward displacement that we 
count as negative: 

   k = –F/x = – (7.50 kg)(9.80 m/s2)/(–0.415 m + 0.350 m)  

   = –73.5 N/(–0.065 m) = 
 
1.13 kN/m  

 (b) Consider the end of the spring on the right, which exerts a force 
to the left: 

   x = – F/k = –(–190 N)/(1130 N/m) = 0.168 m 

  The length of the spring is then  

   0.350 m + 0.168 m =  0.518 m = 51.8 cm  

ANS. FIG. P7.16 



344     Energy of a System 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

P7.19 (a) Spring constant is given by F = kx: 
   

  
k =

F
x

=
230 N

0.400 m
= 575 N/m

 

 (b) Work 
  
= Favgx =

230 N − 0
2

⎛
⎝⎜

⎞
⎠⎟ (0.400 m) = 46.0 J  

P7.20 The same force makes both light springs stretch. 

 (a) The hanging mass moves down by 

   

  

x = x1 + x2 =
mg
k1

+
mg
k2

= mg
1
k1

+
1
k2

⎛
⎝⎜

⎞
⎠⎟

= 1.5 kg( ) 9.8 m/s2( ) 1
1 200 N/m

+
1

1 800 N/m
⎛
⎝⎜

⎞
⎠⎟

= 2.04 × 10−2  m

 

 (b) We define the effective spring constant as 

   

  

k =
F
x

=
mg

mg 1 k1 + 1 k2( ) =
1
k1

+
1
k2

⎛
⎝⎜

⎞
⎠⎟

−1

=
1

1 200 N/m
+

1
1 800 N/m

⎛
⎝⎜

⎞
⎠⎟

−1

= 720 N/m

 

P7.21 (a) The force mg is the tension in each of the springs. The bottom of 
the upper (first) spring moves down by distance  
x1 = |F|/k1 = mg/k1. The top of the second spring moves down 
by this distance, and the second spring also stretches by  
x2 = mg/k2. The bottom of the lower spring then moves down by 
distance  

     

  
xtotal = x1 + x2 =

mg
k1

+
mg
k2

= mg
1
k1

+
1
k2

⎛
⎝⎜

⎞
⎠⎟

 

 (b) From the last equation we have   
   

  

mg =
x1 + x2

1
k1

+ 1
k2

 

   This is of the form  

    
  
|F|=

1
1/ k1 + 1/ k2

⎛

⎝⎜
⎞

⎠⎟
(x1 + x2 )  
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   The downward displacement is opposite in direction to the 
upward force the springs exert on the load, so we may write  
F = –keff xtotal, with the effective spring constant for the pair of 
springs given by 

    
  
keff =

1
1/ k1 + 1/ k2

  

P7.22 
  
k[ ] =

F
x

⎡
⎣⎢

⎤
⎦⎥

=
N
m

=
kg ⋅m/s2

m
=

kg
s2  

P7.23 (a) 

 

If the weight of the first tray stretches all four springs 
by a distance equal to the thickness of the tray, then the 
proportionality expressed by Hooke’s law guarantees 
that each additional tray will have the same effect, so 
that the top surface of the top tray can always have the 
same elevation above the floor if springs with the right 
spring constant are used.

 

 (b) The weight of a tray is (0.580 kg)(9.8 m/s2) = 5.68 N. The force 

 

1
4

(5.68 N) = 1.42 N  should stretch one spring by 0.450 cm, so its 

spring constant is 

     
k =

Fs

x
=

1.42 N
0.004 5 m

= 316 N/m
 

 (c) 
 
We did not need to know the length or width of the tray.  

P7.24 The spring exerts on each block an outward force of  
magnitude 

     Fs = kx = (3.85 N/m)(0.08 m) = 0.308 N  

 Take the +x direction to the right. For the light block on 
the left, the vertical forces are given by  

   Fg = mg = (0.250 kg)(9.80 m/s2) = 2.45 N 

 and    Fy∑ = 0     

 so       n− 2.45 N = 0     →      n = 2.45 N   

Similarly, for the heavier block, 

  n = Fg = (0.500 kg)(9.80 m/s2) = 4.90 N 

ANS. FIG. 
P7.24 
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 (a) For the block on the left,  

     Fx∑ = max :       –0.308 N = (0.250 kg)a 
    

  
a = −1.23 m/s2

 

   For the heavier block,  

   +0.308 N = (0.500 kg)a 
    

  
a = 0.616 m/s2

 

 (b) For the block on the left, fk = µkn = 0.100(2.45 N) = 0.245 N. 

   Fx∑ = max  

  –0.308 N + 0.245 N = (0.250 kg)a
 

  
a = −0.252 m/s2 if the force of static friction is not too large . 

  For the block on the right, fk = µkn = 0.490 N. The maximum force 
of static friction would be larger, so no motion would begin and 
the acceleration is  zero . 

 (c) Left block: fk = 0.462(2.45 N) = 1.13 N. The maximum static friction 
force would be larger, so the spring force would produce no 
motion of this block or of the right-hand block, which could feel 
even more friction force. For both,   a = 0 .  

P7.25 (a) The radius to the object makes angle θ 
with the horizontal. Taking the x axis in 
the direction of motion tangent to the 
cylinder, the object’s weight makes an 
angle θ  with the –x axis. Then, 

   

  

Fx∑ = max

F − mg cosθ = 0

F = mg cosθ
 

 (b) 
   
W =


F ⋅dr

i

f

∫  

  We use radian measure to express the next bit of displacement as 
dr = R dθ in terms of the next bit of angle moved through: 

   
  
W = mg cosθRdθ

0

π 2

∫ = mgRsinθ
0

π 2 = mgR(1− 0) = mgR  

ANS. FIG. P7.25 
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P7.26 The force is given by Fx = (8x – 16) N. 

 (a) See ANS. FIG. P7.26 to the right. 

 (b) 

  

Wnet =
−(2.00 m)(16.0 N)

2
+

(1.00 m)(8.00 N)
2

= −12.0 J

 

 

 

P7.27 (a)  

F (N) L (mm) F (N) L (mm) 

0.00 0.00 12.0 98.0 

2.00 15.0 14.0 112 

4.00 32.0 16.0 126 

6.00 49.0 18.0 149 

8.00 64.0 20.0 175 

10.0 79.0 22.0 190 

 
 

 

 

ANS FIG. P7.27(a) 

 (b) By least-squares fitting, its slope is 0.116 N/mm =  116 N/m .  

ANS. FIG. P7.26 
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 (c) To draw the straight line we use all the points listed and also the 
origin. If the coils of the spring touched each other, a bend or 
nonlinearity could show up at the bottom end of the graph. If the 
spring were stretched “too far,” a nonlinearity could show up at 
the top end. But there is no visible evidence for a bend in the 
graph near either end. 

 (d) In the equation F = kx, the spring constant k is the slope of the  
F-versus-x graph. 

    
  k = 116 N/m

 

 (e) F = kx = (116 N/m)(0.105 m) = 
 
12.2 N  

P7.28 (a) We find the work done by the gas on the bullet by integrating the 
function given: 

   
   
W =


F ⋅dr

i

f

∫  

   

  

W = 15 000 N + 10 000x N/m − 25 000x2  N/m2( )
0

0.600 m

∫

dxcos0°

 

   

  

W = 15 000x +
10 000x2

2
−

25 000x3

3 0

0.600 m

W = 9.00 kJ + 1.80 kJ − 1.80 kJ = 9.00 kJ

 

 (b) Similarly, 
  

  

W = (15.0 kN)(1.00 m)

           +
(10.0 kN/m) 1.00 m( )2

2
−

25.0 kN/m2( )(1.00 m)3

3
W = 11.67 kJ = 11.7 kJ

 

 (c) 

 

11.7 kJ −  9.00 kJ
 9.00 kJ

× 100% = 29.6%

The work is greater by 29.6%.

 

P7.29 
    
W =


F ⋅dr

i

f

∫ = 4xî + 3yĵ( )
0

5 m

∫ N ⋅dxî  

  
(4 N m)xdx + 0

0

5 m

∫ = (4 N/m)
x2

2 0

5 m

= 50.0 J  
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P7.30 We read the coordinates of the two specified points from the graph as 

   a = (5 cm, –2 N) and b = (25 cm, 8 N)  

 We can then write u as a function of v by first finding the slope of the 
curve:  

   

  
slope = ub − ua

vb − va

= 8 N − −2 N( )
25 cm − 5 cm

= 0.5 N/cm
  

 The y intercept of the curve can be found from u = mv + b, where  
m = 0.5 N/cm is the slope of the curve, and b is the y intercept. 
Plugging in point a, we obtain 

    

  

u = mv + b

−2 N = 0.5 N/cm( ) 5 cm( )+ b
b = −4.5 N

  

 Then, 
   

  u = mv + b = 0.5 N/cm( )v − 4.5 N  

 (a) Integrating the function above, suppressing units, gives 
   

  

udv = (0.5v − 4.5)dv = 0.5v2/2 − 4.5v⎡⎣ ⎤⎦5

25
∫a

b
∫ 5

25

= 0.25(625− 25)− 4.5(25− 5)

= 150− 90 = 60 N ⋅cm = 0.600 J

 

 (b) Reversing the limits of integration just gives us the negative of the 
quantity: 

   
  udv = −0.600 J

b

a
∫  

 (c) This is an entirely different integral. It is larger because all of the 
area to be counted up is positive (to the right of v = 0) instead of 
partly negative (below u = 0). 

   

  

vdu = (2u + 9)du = 2u2/2 + 9u⎡⎣ ⎤⎦−2

8
∫a

b
∫ −2

8

= 64− (−2)2 + 9(8 + 2)

= 60 + 90 = 150 N ⋅cm = 1.50 J
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Section 7.5 Kinetic Energy and the  
Work-Kinetic Energy Theorem 

P7.31 
    

v i = 6.00î − 1.00 ĵ( )  m/s2  

 (a) 
  
vi = vix

2 + viy
2 = 37.0  m/s  

  
  
Ki =

1
2

mvi
2 =

1
2

(3.00 kg) 37.0 m2/s2( ) = 55.5 J  

 (b)     

v f = 8.00î + 4.00 ĵ  

      v f
2 = v f ⋅


v f = 64.0 + 16.0 = 80.0 m2/s2

 

  
  
ΔK = K f − Ki =

1
2

m v f
2 − vi

2( ) =
3.00

2
(80.0) − 55.5 = 64.5 J  

P7.32 (a) Since the applied force is horizontal, it is in the direction of the 
displacement, giving θ = 0º. The work done by this force is then 

   
  WF0

= F0 cosθ( )Δx = F0 cos0( )Δx = F0Δx   

  and 

   
   
F0 =

WF0

Δx
=

350 J
12.0 m

= 29.2 N  

 (b) If the applied force is greater than 29.2 N, the crate would 
accelerate in the direction of the force, so its 

 
speed would increase  with time. 

 (c) If the applied force is less than 29.2 N, the 

 crate would slow down and come to rest.  

P7.33 (a) 
  
KA =

1
2

(0.600 kg) 2.00 m/s( )2 = 1.20 J  

 (b) 
  

1
2

mvB
2 = KB: vB =

2KB

m
=

(2)(7.50 J)
0.600 kg

= 5.00 m/s  

 (c) 
  

W∑ = ΔK = KB − KA =
1
2

m vB
2 − vA

2( ) = 7.50 J − 1.20 J = 6.30 J  
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P7.34 (a) 
  
ΔK = K f − Ki =

1
2

mv f
2 − 0 = W∑ =  (area under curve from x = 0 to 

x = 5.00 m) 

      
v f =

2 area( )
m

=
2 7.50 J( )
4.00 kg

= 1.94 m/s
 

 (b) 
  
ΔK = K f − Ki =

1
2

mv f
2 − 0 = W∑ =  (area under curve from x = 0 to 

x = 10.0 m) 

      
v f =

2 area( )
m

=
2 22.5 J( )
4.00 kg

= 3.35 m/s
 

 (c) 
  
ΔK = K f − Ki =

1
2

mv f
2 − 0 = W∑ =  (area under curve from x = 0 to 

x = 15.0 m) 

      
v f =

2 area( )
m

=
2 30.0 J( )
4.00 kg

= 3.87 m/s
 

P7.35 Consider the work done on the pile driver from the time it starts from 
rest until it comes to rest at the end of the fall. Let d = 5.00 m represent 
the distance over which the driver falls freely, and h = 0.12 the distance 
it moves the piling. 

   

  
W∑ = ΔK:    Wgravity + Wbeam =

1
2

mv f
2 −

1
2

mvi
2

 

 so   
  
(mg)(h + d)cos0° + F( )(d)cos180° = 0 − 0  

 Thus,   

   

  

F = (mg)(h + d)
d

=
(2 100 kg) 9.80 m/s2( )(5.12 m)

0.120 m

= 8.78× 105  N

 

 The force on the pile driver is 
 

upward.  

P7.36 (a)   v f = 0.096 3.00 × 108  m/s( ) = 2.88 × 107  m/s  

  
  
K f =

1
2

mv f
2 =

1
2

9.11× 10−31  kg( ) 2.88 × 107  m/s( )2
= 3.78 × 10−16  J  

 (b)   Ki + W = K f : 0 + FΔr cosθ = K f  

    F(0.028 m)cos0° = 3.78 × 10−16  J  

  
  
F = 1.35 × 10−14  N  
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 (c) 
  

F∑ = ma: a =
F∑

m
=

1.35 × 10−14  N
9.11× 10−31  kg

= 1.48 × 10+16  m/s2  

 (d)   vxf = vxi + axt: 2.88 × 107  m/s = 0 + 1.48 × 1016  m/s2( )t  

  
  
t = 1.94 × 10−9  s  

P7.37 (a) 
  
Ki + W∑ = K f =

1
2

mv f
2  

  
  
0 + W∑ =

1
2

(15.0 × 10−3  kg)(780 m/s)2 = 4.56 kJ  

 (b) As shown in part (a), the net work performed on the bullet is 

 
4.56 kJ.  

 (c) 
  
F =

W
Δr cosθ

=
4.56 × 103  J

(0.720 m)cos0°
= 6.34 kN  

 (d) 
  
a =

v f
2 − vi

2

2x f

=
(780 m/s)2 − 0

2(0.720 m)
= 422 km/s2  

 (e) 
  

F∑ = ma = (15 × 10−3  kg)(422 × 103  m/s2 ) = 6.34 kN  

 (f) 
 
The forces are the same.  The two theories agree.  

P7.38 (a) As the bullet moves the hero’s hand, work is done on the bullet to 
decrease its kinetic energy. The average force is opposite to the 
displacement of the bullet: 

   
  Wnet = FavgΔxcosθ = −FavgΔx = ΔK  

   

  
Favg  = 

ΔK
−Δx

=
0 − 1

2
7.80 × 10−3  kg( ) 575 m/s( )2

−0.055 0 m

 

   

  
Favg = 2.34 ×  104  N, opposite to the direction of motion

 

 (b) If the average force is constant, the bullet will have a constant 
acceleration and its average velocity while stopping is 

  v = (v f + vi )/ 2 . The time required to stop is then 

 
  
Δt =

Δx
v

=
2(Δx)
v f + vi

=
2(5.50×10−2 m)

0 + 575 m/s
= 1.91× 10−4 s  
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P7.39 (a) K = 
 

1
2

mv2 = 
 

1
2

m(vx
2 + vy

2)  

    = 
 

1
2

(5.75 kg)[(5.00 m/s)2 + (–3.00 m/s)2] = 
 
97.8 J  

 (b) We know Fx = max and Fy = may. At t = 0, xi = yi = 0, and  
vxi = 5.00 m/s, vyi = –3.00 m/s; at t = 2.00 s, xf = 8.50 m, yf = 5.00 m. 

   

  

x f = xi + vxit +
1
2

axt
2

ax =
2(x f − xi − vxit)

t2 =
2[8.50 m − 0 − (5.00 m/s)(2.00 s)]

(2.00 s)2

= −0.75 m/s2

 

   

  

y f = yi + vyit +
1
2

ayt
2

ay =
2(y f − yi − vyit)

t2 =
2[5.00 m − 0 − (−3.00 m/s)(2.00 s)]

(2.00 s)2

= 5.50 m/s2

 

   Fx = max = (5.75 kg)(–0.75 m/s2) = –4.31 N 

   Fy = may = (5.75 kg)(5.50 m/s2) = 31.6 N 
   

   


F = −4.31î + 31.6 ĵ( )  N

 

 (c) We can obtain the particle’s speed at t = 2.00 s from the particle 
under constant acceleration model, or from the nonisolated 
system model. From the former,  

     vxf = vxi + axt = 5.00 m/s( ) + −0.75 m/s2( ) 2.00 s( ) = 3.50 m/s  
   

  vxf = vyi + ayt = −3.00 m/s( ) + 5.50 m/s2( ) 2.00 s( ) = 8.00 m/s
 

   
  
v = vx

2 + vy
2 = (3.50 m/s)2 + (8.00 m/s)2 = 8.73 m/s

 

  From the nonisolated system model,  
   

  
W∑ = ΔK:    Wext =

1
2

mv f
2 −

1
2

mvi
2
 

  The work done by the force is given by 
   

    

Wext =

F ⋅ Δr = FxΔrx + FyΔry

= (−4.31 N)(8.50 m) + (31.6 N)(5.00 m) = 121 J
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  then,  
   

  

1
2

mv f
2 = Wext +

1
2

mvi
2 = 121 J + 97.8 J = 219 J

 

  which gives 
   

  
v f =

2(219 J)
5.75 kg

= 8.73 m/s
 

 
 

Section 7.6 Potential Energy of a System 
P7.40 (a) With our choice for the zero level for  

potential energy of the car-Earth system  
when the car is at point    B,  

   
  

UB = 0  

  When the car is at point    A,  the potential 
energy of the car-Earth system is given by 

   UA = mgy 

  where y is the vertical height above zero level. With 135 ft  
= 41.1 m, this height is found as: 

   y = (41.1 m) sin 40.0º = 26.4 m 

  Thus, 

   
  
UA = (1 000 kg) 9.80 m/s2( )(26.4 m) = 2.59 × 105  J  

  The change in potential energy of the car-Earth system as the car 
moves from   A  to   B  is 

   
  
UB −UA = 0 − 2.59 × 105  J = −2.59 × 105  J  

 (b) With our choice of the zero configuration for the potential energy 
of the car-Earth system when the car is at point    A,  we have 

  
UA = 0 . The potential energy of the system when the car is at 

point   B  is given by UB = mgy, where y is the vertical distance of 

point   B  below point    A.  In part (a), we found the magnitude of 
this distance to be 26.5 m. Because this distance is now below the 
zero reference level, it is a negative number. 

ANS. FIG. P7.40 
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  Thus, 

   
  
UB = (1 000 kg) 9.80 m/s2( )(−26.5 m) = −2.59 × 105  J  

  The change in potential energy when the car moves from   A  to 

  B  is 

   
  
UB −UA = −2.59 × 105  J − 0 = −2.59 × 105  J  

P7.41 Use U = mgy, where y is measured relative to a reference level. Here, 
we measure y to be relative to the top edge of the well, where we take 
y = 0. 

 (a) y = 1.3 m:    U = mgy = (0.20 kg)(9.80 m/s2)(1.3 m) = 
 
+2.5 J  

 (b) y = –5.0 m:    U = mgy = (0.20 kg)(9.80 m/s2)(–5.0 m) = 
 
−9.8 J  

 (c) 
  
ΔU = U f −Ui = −9.8 J( ) − 2.5 J( ) = −12.3 = −12 J  

P7.42 (a) We take the zero 
configuration of system 
potential energy with the 
child at the lowest point of 
the arc. When the swing is 
held horizontal initially, the 
initial position is 2.00 m 
above the zero level. Thus, 

   

  

Ug = mgy

= (400 N)(2.00 m)

= 800 J

 

 (b) From the sketch, we see that at an angle of 30.0° the child is at a 
vertical height of (2.00 m) (1 – cos 30.0º) above the lowest point of 
the arc. Thus, 

   
  
Ug = mgy = (400 N)(2.00 m)(1− cos 30.0°) = 107 J

 

 (c) The zero level has been selected at  
the lowest point of the arc. Therefore, 

  
Ug = 0  at this location. 

 
 

 

ANS. FIG. P7.42 



356     Energy of a System 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

Section 7.7 Conservative and Nonconservative Forces 
P7.43 The gravitational force is downward: 

  Fg = mg = (4.00 kg)(9.80 m/s2) = 39.2 N 

 (a) Work along OAC = work along OA + 
work along AC 

   

  

= Fg (OA)cos90.0°

             + Fg(AC)cos180°

= (39.2 N)(5.00 m)(0)
             + (39.2 N)(5.00 m)(−1)

= −196 J

 

 (b) W along OBC = W along OB + W along BC 

   
 

= (39.2 N)(5.00 m)cos180° + (39.2 N)(5.00 m)cos90.0°

= −196 J
 

 (c) Work along OC = Fg(OC) cos 135° 

   
 
= (39.2 N) 5.00 × 2  m( ) −

1
2

⎛
⎝⎜

⎞
⎠⎟

= −196 J  

 (d) 

 

The results should all be the same, since the gravitational force
is conservative.

 

P7.44 (a)     W =

F ⋅dr∫ ,  and if the force is constant, this can be written as 

 

    
W =


F ⋅ d


r∫ =


F ⋅ rf −


ri( ) , which depends only on the end points,

 

 
 

and not on the path .
 

 (b) 

    

W =

F ⋅dr∫ = 3î + 4 ĵ( ) ⋅ dxî + dyĵ( )∫

= (3.00 N) dx
0

5.00 m

∫ + (4.00 N) dy
0

5.00 m

∫

 

  
  
W = (3.00 N)x 0

5.00 m + (4.00 N)y
0

5.00 m = 15.0 J + 20.0 J = 35.0 J  

  The same calculation applies for all paths. 

ANS. FIG. P7.43 
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P7.45 In the following integrals, remember that 

    î ⋅ î = ĵ ⋅ ĵ = 1 and î ⋅ ĵ = 0   

 (a) The work done on the particle in its first section of motion is 
   

   
WOA = dxî ⋅ 2yî + x2 ĵ( )

0

5.00 m

∫ = 2y dx
0

5.00 m

∫
 

  and since along this path, y = 0, that means WOA = 0. 

  In the next part of its path,
 

   
WAC = dyĵ ⋅ 2yî + x2 ĵ( )

0

5.00 m

∫ = x2 dy
0

5.00 m

∫
 

  For x = 5.00 m, WAC = 125 J 

  and 
  
WOAC = 0 + 125 = 125 J .  

 (b) Following the same steps,
 

   
WOB = dyĵ ⋅ 2yî + x2 ĵ( )

0

5.00 m

∫ = x2 dy
0

5.00 m

∫
 

  Since along this path, x = 0, that means WOB = 0. 
   

   
WBC = dxî ⋅ 2yî + x2 ĵ( )

0

5.00 m

∫ = 2y dx
0

5.00 m

∫
 

  Since y = 5.00 m, WBC = 50.0 J. 
   

  
WOAC = 0 + 125 = 125 J

 

 (c) 
   
WOC = dxî + dyĵ( ) ⋅ 2yî + x2 ĵ( )∫ = 2ydx + x2dy( )∫  

  Since x = y along OC, 
  
WOC = 2x + x2( )dx

0

5.00 m

∫ = 66.7 J  

 (d)   F  is nonconservative.  

 (e) 

 

The work done on the particle depends on the path followed
by the particle.

 

P7.46 Along each step of motion, to overcome friction you must push with a 
force of 3.00 N in the direction of travel along the path, so in the 
expression for work,  cosθ = cos0° = 1.  

 (a) 
  
W = 3.00 N( ) 5.00 m( ) 1( )+ 3.00 N( ) 5.00 m( ) 1( ) = 30.0 J  
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 (b) The distance CO is (5.002 + 5.002)1/2 m = 7.07 m 
  

  

W = 3.00 N( ) 5.00 m( ) 1( )+ 3.00 N( ) 5.00 m( ) 1( )
                                                     + 3.00 N( ) 7.07 m( ) 1( ) = 51.2 J

 

 (c) 
  
W = 3.00 N( ) 7.07 m( ) 1( )+ 3.00 N( ) 7.07 m( ) 1( ) = 42.4 J  

 (d)  Friction is a nonconservative force.  

 
  

Section 7.8 Relationship Between Conservative Forces and  
Potential Energy 

P7.47 We use the relation of force to potential energy as the force is the 
negative derivative of the potential energy with respect to distance: 

    
  
U(r) =

A
r

 

   
  
Fr = −

∂U
∂r

= −
d
dr

A
r

⎛
⎝⎜

⎞
⎠⎟ =

A
r2

 

 If A is positive, the positive value of radial force indicates a force of 
repulsion. 

P7.48 We need to be very careful in identifying internal and external work 
on the book-Earth system. The first 20.0 J, done by the librarian on the 
system, is external work, so the system now contains an additional  
20.0 J compared to the initial configuration. When the book falls and 
the system returns to the initial configuration, the 20.0 J of work done 
by the gravitational force from the Earth is internal work. This work 
only transforms the gravitational potential energy of the system to 
kinetic energy. It does not add more energy to the system. Therefore, 
the book hits the ground with 20.0 J of kinetic energy. The book-Earth 
system now has zero gravitational potential energy, for a total energy 
of 20.0 J, which is the energy put into the system by the librarian. 

P7.49 
  
Fx = −

∂U
∂x

= −
∂ 3x3y − 7x( )

∂x
= − 9x2y − 7( ) = 7 − 9x2y  

 
  
Fy = −

∂U
∂y

= −
∂ 3x3y − 7x( )

∂y
= − 3x3 − 0( ) = −3x3  
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 Thus, the force acting at the point (x, y) is  
   

    


F = Fx î + Fy ĵ = 7 − 9x2y( ) î − 3x3 ĵ

 

P7.50 (a) We use Equation 7.27 relating the potential energy of the system 
to the conservative force acting on the particle, with Ui = 0: 

    

  

U = U f −Ui = U f − 0

= − −Ax + Bx2( )dx
0

x

∫ = A
x2

2
− B

x3

3 0

x

= Ax2

2
− Bx3

3

 

 (b) From (a), U(2.00 m) = 2A – 2.67B, and U(3.00 m) = 4.5A – 9B. 

    
  
ΔU = 4.5A − 9B( ) − 2A − 2.67B( ) = 2.5A − 6.33B  

 (c) If we consider the particle alone as a system, the change in its 
kinetic energy is the work done by the force on the particle:  
  W = ΔK.  For the entire system of which this particle is a member, 
this work is internal work and equal to the negative of the change 
in potential energy of the system:  

      ΔK = −ΔU = −2.5A + 6.33B  

P7.51 (a) For a particle moving along the x axis, the definition of work by a 
variable force is 

     
  
WF = Fxdx

xi

xf∫  

   Here   Fx = (2x + 4) N, xi = 1.00 m, and xf = 5.00 m. 

   So  

     

  

WF = (2x + 4)
1.00 m

5.00 m

∫ dx N ⋅ m = x2 + 4x]1.00 m
5.00 m N ⋅ m

= 52 + 20 − 1− 4( )  J = 40.0 J
 

 (b) The change in potential energy of the system is the negative of the 
internal work done by the conservative force on the particle: 

  
ΔU = −Wint = −40.0 J  

 (c) 
  
From ΔK = K f −

mv1
2

2
,  we obtain

 

        
K f = ΔK + mv1

2

2
= 40.0 J +

5.00 kg( ) 3.00 m/s( )2

2
= 62.5 J
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Section 7.9 Energy Diagrams and Equilibrium of a System 

P7.52 (a) 

  

Fx  is zero at points A, C, and E; Fx  is positive at point B and
negative at point D.

 

 (b) 

 

A and E are unstable, 
and C is stable.

 

 (c) ANS. FIG. P7.52 shows the curve for 
Fx vs. x for this problem. 

 

 

P7.53 The figure below shows the three 
equilibrium configurations for a right 
circular cone. 

      
 
 
 
 
 
 
 

 

 

Additional Problems 

P7.54 (a) 

    


F = −

d
dx

−x3 + 2x2 + 3x( ) î

= 3x2 − 4x − 3( ) î

 

 (b) F = 0 when 

    x = 1.87 and – 0.535 .  

 (c) The stable point is at x = –0.535, 
point of minimum U(x). 

  The unstable point is at 
 x = 1.87, maximum in U(x). 

ANS. FIG. P7.53 

ANS. FIG. P7.52 

ANS. FIG. P7.54 
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P7.55 Initially, the ball’s velocity is 

     

v = (40.0 m/s) cos 30.0°î + (40.0 m/s) sin 30.0° ĵ  

 At its apex, the ball’s velocity is  

     

v = (40.0 m/s) cos 30.0°î + 0 ĵ = (34.6 m/s)î  

 The ball’s kinetic energy of the ball at this point is 

  
  
K =

1
2

mv2 =
1
2

(0.150 kg)(34.6 m/s)2 = 90.0 J  

P7.56 We evaluate 
  

375dx
x3 + 3.75x12.8

23.7

∫  by calculating 

 

 

375(0.100)
(12.8)3 + 3.75(12.8)

+ 375(0.100)
(12.9)3 + 3.75(12.9)

                                               +… 375(0.100)
(23.6)3 + 3.75(23.6)

= 0.806

 

 and 
 

 

375(0.100)
(12.9)3 + 3.75(12.9)

+ 375(0.100)
(13.0)3 + 3.75(13.0)

                                               +… 375(0.100)
(23.7)3 + 3.75(23.7)

= 0.791

 

 The answer must be between these two values. We may find it more 
precisely by using a value for  Δx  smaller than 0.100. Thus, we find the 
integral to be  0.799 N ⋅m .  

P7.57 (a) The equivalent spring constant for the stel balls is 
   

  
k = F

x
= 16 000 N

0.000 2 m
= 8× 107 N/m

 

 (b)  A time interval .  If the interaction occupied no time, the force 
exerted by each ball on the other could be infinite, and that cannot 
happen. 

 (c) We assume that steel has the density of its main constituent, iron, 
shown in Table 14.1. Then its mass is  

   

  

ρV = ρ 4
3

⎛
⎝⎜

⎞
⎠⎟ πr3 = 4π

3
⎛
⎝⎜

⎞
⎠⎟ 7 860 kg/m3( ) 0.025 4 m/2( )3

= 0.067 4 kg

  

  its kinetic energy is then 
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ANS. FIG. P7.59 

   

  
K = 1

2
mv2 = 1

2
0.067 4 kg( ) 5 m/s( )2 = 0.8 J

  

 (d) Imagine one ball running into an infinitely hard wall and 
bouncing off elastically. The original kinetic energy becomes 
elastic potential energy 

   
  
0.843 J = (1/2) (8 × 107 N/m) x2 x = 0.145 mm ≈ 0.15mm  

 (e) The ball does not really stop with constant acceleration, but 
imagine it moving 0.145 mm forward with average speed  
(5 m/s + 0)/2 = 2.5 m/s. The time interval over which it stops is 
then  

   0.145 mm/(2.5 m/s) = 
 
6× 10−5 s ≈ 10−4 s  

P7.58 The work done by the applied force is 

   

  

W = Fapplieddx
i

f

∫ = − − k1x + k2x2( )⎡⎣ ⎤⎦dx
0

xmax

∫

= k1x dx
0

xmax

∫ + k2x2dx
0

xmax

∫ = k1
x2

2 0

xmax

+ k2
x3

3 0

xmax

= k1
xmax

2

2
+ k2

xmax
3

3

 

P7.59 Compare an initial picture of the  
rolling car with a final picture with  
both springs compressed. From 
conservation of energy, we have  

  
 Ki + ∑W = K f

 

 Work by both springs changes the car’s 
kinetic energy. 

  

  

Ki + 1
2

k1 x1i
2 − x1 f

2( )
           + 1

2
k2 x2 i

2 − x2 f
2( ) = K f

 

 Substituting, 
  

  

1
2

mvi
2 + 0− 1

2
(1 600 N/m)(0.500 m)2

       + 0− 1
2

(3 400 N/m)(0.200 m)2 = 0

 

 Which gives 
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1
2

(6 000 kg)vi
2 − 200 J − 68.0 J = 0

 

 Solving for vi, 
  

  
vi = 2(268 J)

6 000 kg
= 0.299 m/s

 

P7.60 Apply the work-energy theorem to the ball. The spring is initially 
compressed by xsp,i = d = 5.00 cm. After the ball is released from rest, 
the spring pushes the ball up the incline the distance d, doing positive 
work on the ball, and gravity does negative work on the ball as it 
travels up the incline a distance  Δx  from its starting point. Solve for 
  Δx.  

   

  

Ki + Ws + Wg = K f

1
2

mvi
2 +

1
2

kxsp,i
2 −

1
2

kxsp, f
2⎛

⎝⎜
⎞
⎠⎟ − mgΔ xsinθ =

1
2

mv f
2

0 +
1
2

kd2 − 0⎛
⎝⎜

⎞
⎠⎟ − mgΔ xsin 10.0° = 0

 

   

  

Δx = kd2

2mg sin 10.0°
= (1.20 N/cm)(5.00 cm)(0.0500 m)

2(0.100 kg) 9.80 m/s2( )sin 10.0°
= 0.881 m

 

 Thus, the ball travels up the incline a distance of 0.881 m after it is 
released. 

 

 

Applying the work-kinetic energy theorem to the ball, one finds
that it momentarily comes to rest at a distance up the incline of
only 0.881 m.  This distance is much smaller than the height of a
professional basketball player, so the ball will not reach the upper
end of the incline to be put into play in the machine. The ball will
simply stop momentarily and roll back to the spring; not an exciting
entertainment for any casino visitor!

 

P7.61 (a) 
   


F1 = (25.0 N) cos35.0°î + sin 35.0° ĵ( ) = 20.5î + 14.3 ĵ( )  N  

  

   


F2 = (42.0 N) cos150°î + sin 150° ĵ( ) = −36.4î + 21.0 ĵ( )  N

 

 (b) 
   


F∑ =

F1 +

F2 = −15.9î + 35.3 ĵ( )  N  



364     Energy of a System 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (c) 
    


a =


F∑

m
= −3.18î + 7.07 ĵ( )  m/s2  

 (d) 
    

v f = v i + at = 4.00î + 2.50 ĵ( )  m/s + −3.18î + 7.07 ĵ( ) m/s2( )(3.00 s)  

  

    


v f = −5.54î + 23.7 ĵ( )  m/s

 

 (e) 
    


rf = ri + v it +

1
2

at 2  

  

    


rf = 0 + 4.00î + 2.50 ĵ( )(m/s)(3.00 s)

               +
1
2

−3.18î + 7.07 ĵ( ) m/s2( )(3.00 s)2

Δr = rf = −2.30î + 39.3 ĵ( )  m

 

 (f) 
  
K f =

1
2

mvf
2 =

1
2

(5.00 kg) 5.54( )2 + 23.7( )2⎡⎣ ⎤⎦ m/s2( ) = 1.48 kJ  

 (g) 
    
K f =

1
2

mvi
2 +


F ⋅ Δr∑  

  

  

K f =
1
2

(5.00 kg) (4.00)2 + (2.50)2⎡⎣ ⎤⎦ m/s( )2

                     + (−15.9 N)(−2.30 m) + (35.3 N)(39.3 m)[ ]
K f = 55.6 J + 1 426 J = 1.48 kJ

 

 (h) 

 

The work-kinetic energy theorem is consistent with Newton’s
second law, used in deriving it.

 

P7.62 (a) We write 

   F = axb 

   1 000 N = a(0.129 m)b 

   5 000 N = a(0.315 m)b 

  Dividing the two equations gives 
   

  

5 =
0.315
0.129

⎛
⎝⎜

⎞
⎠⎟

b

= 2.44b

ln 5 = b ln 2.44
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b = ln 5
ln 2.44

= 1.80

a = 1 000 N
0.129 m( )1.80 = 4.01× 104  N/m1.8

 

 (b) 
  
W = Fapplied dx

i

f

∫ = axb dx
0

x

∫ =
axb+1

b + 1 0

x

=
axb+1

b + 1
− 0 =

axb+1

b + 1
 

  
  
W =

(4.01× 104 N/m1.8)x2.8

2.80
 

  For x = 0.250 m, 
   

  

W =
(4.01× 104 N/m1.8)(0.250 m)2.8

2.80

=
(4.01× 104 N/m1.8)(0.250)2.8(m2.8)

2.80

 

   

  
W =

(4.01× 104  N ⋅m)(0.250)2.8

2.80
= 295 J

 

P7.63 The component of the weight force parallel to the incline, mg sin θ, 
accelerates the block down the incline through a distance d until it 
encounters the spring, after which the spring force, pushing up the 
incline, opposes the weight force and slows the block through a 
distance x until the block eventually is brought to a momentary stop. 
The weight force does positive work on the block as it slides down the 
incline through total distance (d + x), and the spring force does 
negative work on the block as it slides through distance x. The normal 
force does no work. Applying the work-energy theorem, 

   

  

K i + Wg + Ws = K f

1
2

mvi
2 + mg sinθ(d + x) +

1
2

kxsp, i
2 −

1
2

kxsp,f
2⎛

⎝⎜
⎞
⎠⎟ =

1
2

mvf
2

1
2

mv2 + mg sinθ(d + x) + 0 −
1
2

kx2⎛
⎝⎜

⎞
⎠⎟ = 0

 

 Dividing by m, we have 

   

  

1
2

v2 + g sinθ(d + x) −
k

2m
x2 = 0  →

k
2m

x2 − (g sinθ)x −
v2

2
+ (g sinθ)d

⎡

⎣
⎢

⎤

⎦
⎥ = 0

 



366     Energy of a System 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 Solving for x, we have 
   

  

x =
g sinθ ± (g sinθ)2 − 4

k
2m

⎛
⎝⎜

⎞
⎠⎟ − v2

2
+ (g sinθ)d

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

2
k

2m
⎛
⎝⎜

⎞
⎠⎟

x =
g sinθ ± (g sinθ)2 + k

m
⎛
⎝⎜

⎞
⎠⎟ v2 + 2(g sinθ)d⎡⎣ ⎤⎦

k m

 

 Because distance x must be positive, 

   

  
x =

g sinθ + (g sinθ)2 + k
m

⎛
⎝⎜

⎞
⎠⎟ v2 + 2(g sinθ)d⎡⎣ ⎤⎦

k m

 

 For v = 0.750 m/s, k = 500 N/m, m = 2.50 kg, θ = 20.0°, and g =  
9.80 m/s2, we have gsin θ = (9.80 m/s2) sin 20.0° = 3.35 m/s2 and k/m  
= (500 N/m)/(2.50 kg) = 200 N/m . kg. Suppressing units, we have  

   

  

x =
3.35 + (3.35)2 + 200( ) (0.750)2 + 2(3.35)(0.300)⎡⎣ ⎤⎦

200
= 0.131 m

 

P7.64 The component of the weight force parallel to the incline, mgsin θ, 
accelerates the block down the incline through a distance d until it 
encounters the spring, after which the spring force, pushing up the 
incline, opposes the weight force and slows the block through a 
distance x until the block eventually is brought to a momentary stop. 
The weight force does positive work on the block as it slides down the 
incline through total distance (d + x), and the spring force does 
negative work on the block as it slides through distance x. The normal 
force does no work. 

 Applying the work-energy theorem, 
   

  

Ki + Wg + Ws = K f

1
2

mvi
2 + mg sinθ(d + x) +

1
2

kxsp,i
2 −

1
2

kxsp,f
2⎛

⎝⎜
⎞
⎠⎟ =

1
2

mv f
2

 

   

  

1
2

mv2 + mg sinθ(d + x) + 0 −
1
2

kx2⎛
⎝⎜

⎞
⎠⎟ = 0
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 Dividing by m, we have 

   

  

1
2

v2 + g sinθ(d + x) −
k

2m
x2 = 0  →

k
2m

x2 − (g sinθ)x −
v2

2
+ (g sinθ)d

⎡

⎣
⎢

⎤

⎦
⎥ = 0

 

 Solving for x, we have 
   

  

x =
g sinθ ± (g sinθ)2 − 4 k

2m
⎛
⎝⎜

⎞
⎠⎟ − v2

2
+ (g sinθ)d

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

2 k
2m

⎛
⎝⎜

⎞
⎠⎟

x =
g sinθ ± (g sinθ)2 + k

m
⎛
⎝⎜

⎞
⎠⎟ v2 + 2(g sinθ)d⎡⎣ ⎤⎦

k m

 

 Because distance x must be positive, 

   

  
x =

g sinθ + (g sinθ)2 + k
m

⎛
⎝⎜

⎞
⎠⎟ v2 + 2(g sinθ)d⎡⎣ ⎤⎦

k m

 

P7.65 (a) The potential energy of the system at point x is given by 5 plus 
the negative of the work the force does as a particle feeling the 
force is carried from x = 0 to location x. 

    

  

dU = −Fdx

dU = − 8e−2x dx      
0

x
∫5

U
∫

U − 5 = −
8
−2[ ]

⎛
⎝⎜

⎞
⎠⎟

e−2x(−2dx)
0

x
∫

U = 5 −
8
−2[ ]

⎛
⎝⎜

⎞
⎠⎟

e−2x
0

x
= 5 + 4e−2x − 4 ⋅1 = 1 + 4e−2x

 

 (b) 

 

The force must be conservative because the work the force does
on the object on which it acts depends only on the original and
final positions of the object, not on the path between them.
There is a uniquely defined potential energy for the associated
force.
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Challenge Problems 

P7.66 (a) The new length of each spring is   x2 + L2 , so 

its extension is   x2 + L2 − L  and the force it 

exerts is 
  
k x2 + L2 − L( )  toward its fixed 

end. The y components of the two spring 
forces add to zero. Their x components (with 

  
cosθ =

x

x2 + L2
) add to 

   

    


F = −2k x2 + L2 − L( ) x

x2 + L2
î

= −2kx 1−
L

x2 + L2

⎛
⎝⎜

⎞
⎠⎟

î
 

 (b) Choose U = 0 at x = 0. Then at any point the potential energy of 
the system is 

   

  

U x( ) = − Fx dx
0

x

∫ = − −2kx +
2kLx

x2 + L2

⎛
⎝⎜

⎞
⎠⎟

dx
0

x

∫

= 2k xdx
0

x

∫ − 2kL
x

x2 + L2
dx

0

x

∫

 

   

  
U x( ) = kx2 + 2kL L − x2 + L2( )

 

 (c) 
  
U x( ) = 40.0 N/m( )x2 + 96.0 N( ) 1.20 m − x2 + 1.44 m2( )  

  For negative x, U(x) has the same value as for positive x. The only 
equilibrium point (i.e., where Fx = 0) is   x = 0 . 

 

 
ANS FIG. P7.66(c) 

ANS. FIG. P7.66 

x 
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 (d) If we consider the particle alone as a system, the change in its 
kinetic energy is the work done by the force of the springs on the 
particle:   W = ΔK.  For the entire system of particle and springs, 
this work is internal work and equal to the negative of the change 
in potential energy of the system:   ΔK = −ΔU.  From part (c), we 
evaluate U for x = 0.500 m: 

    

  

U  =  40.0 N/m( )(0.500 m)2  

       +  96.0 N( ) 1.20 m −  0.500 m( )2  + 1.44 m2( ) 
= 0.400 J

 

  Now find the speed of the particle: 
    

  

1
2 mv2  = −ΔU

v = 
−2ΔU

m
 = 

−2
1.18 kg

(0 − 0.400 J)  =  0.823 m/s

 

P7.67 (a) We assume the spring lies in the horizontal plane of the motion, 
then the radius of the puck’s motion is r = L0 + x, where  
L0 = 0.155 m is the unstretched length. The spring force causes the 
puck’s centripetal acceleration: 

      F = mv2/r → kx = m 2πr/T( )2 /r → kT 2x = 4π 2mr  

  Substituting r = (L0 + x), we have 

    

  

kT 2x = 4π 2m L0 + x( )

kx =
4π 2mL0( )

T 2 +
x 4π 2m( )

T 2

 

    

  

x k −
4π 2m

T 2

⎛
⎝⎜

⎞
⎠⎟

=
4π 2mL0

T 2

x =
4π 2mL0 T 2

k − 4π 2mL0 T 2

 

  For k = 4.30 N/m, L0 = 0.155 m, and T = 1.30 s, we have 

   

  

x =
4π 2m(0.155 m) (1.30 s)2

4.30 N/m − 4π 2m (1.30 s)2

=
3.62 m/s2( )m

4.30 kg/s2 − 23.36 s2( )m

=
(3.62 m)m

4.30 kg − 23.36( )m[ ]
1 s2

1 s2
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x =

(3.62 m)m
4.30 kg − (23.4)m

 

 (b) For m = 0.070 kg, 
   

  

x =
3.62 m( ) 0.070 kg[ ]

4.30 kg − 23.36 0.070 kg( )
= 0.095 1 m

 

 (c) We double the puck mass and find 
   

  

x =
3.6208 m( ) 0.140 kg[ ]

4.30 kg − 23.360 0.140 kg( )
= 0.492 m

 

  more than twice as big! 

 (d) For m = 0.180 kg, 
   

  

x =
3.62 m( ) 0.180 kg[ ]

4.30 kg − 23.36 0.180 kg( )
=

0.652
0.0952

m = 6.85 m

 

  We have to get a bigger table! 

 (e) When the denominator of the fraction goes to zero, the extension 
becomes infinite. This happens for 4.3 kg – 23.4 m = 0; that is for  
m = 0.184 kg. For any larger mass, the spring cannot constrain the 
motion. 

 
The situation is impossible.  

 (f) 

  

The extension is directly proportional to m  when m  is only
a few grams. Then it grows faster and faster, diverging to
infinity for m = 0.184 kg.
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P7.2 (a) 3.28 × 10−2 J; (b) −3.28 × 10−2 J 

P7.4 1.56 × 104 J 

P7.6 method one: −4.70 × 103 J; method two: −4.70 kJ 

P7.8 28.9 

P7.10 5.33 J 

P7.12 (a) 11.3°; (b) 156°; (c) 82.3° 

P7.14 (a) 24.0 J; (b) −3.00 J; (c) 21.0 J 

P7.16 7.37 N/m 

P7.18 (a) 1.13 kN/m; (b) 0.518 m = 51.8 cm 

P7.20 (a) 2.04 × 10−2 m; (b) 720 N/m 

P7.22 kg/s2 

P7.24 (a) −1.23 m/s2, 0.616 m/s2; (b) −0.252 m/s2 if the force of static friction 
is not too large, zero; (c) 0 

P7.26 (a) See ANS FIG P7.26; (b) −12.0 J 

P7.28 (a) 9.00 kJ; (b) 11.7 kJ; (c) The work is greater by 29.6% 

P7.30 (a) 0.600 J; (b) −0.600 J; (c) 1.50 J 

P7.32 (a) 29.2 N; (b) speed would increase; (c) crate would slow down and 
come to rest. 

P7.34 (a) 1.94 m/s; (b) 3.35 m/s; (c) 3.87 m/s 

P7.36 (a) 3.78 × 10−16 J; (b) 1.35 × 10−14 N; (c) 1.48 × 10+16 m/s2; (d) 1.94 × 10−9 s 

P7.38 (a)   Favg = 2.34 × 104  N , opposite to the direction of motion; (b) 1.91 × 

10−4 s 

P7.40 (a) UB = 0, 2.59 × 105 J; (b) UA = 0, −2.59 × 105 J, −2.59 × 105 J 

P7.42 (a) 800 J; (b) 107 J; (c) Ug = 0 

P7.44 (a)     

F ⋅ rfi −


ri( ) , which depends only on end points, and not on the path; 

(b) 35.0 J 

P7.46 (a) 30.0 J; (b) 51.2 J; (c) 42.4 J; (d) Friction is a nonconservative force 

P7.48 The book hits the ground with 20.0 J of kinetic energy. The book-Earth 
now has zero gravitational potential energy, for a total energy of 20.0 J, 
which is the energy put into the system by the librarian. 
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P7.50 (a) 
  

Ax2

2
−

Bx3

3
; (b)   ΔU = 4.5A − 9B( ) − 2A − 2.67B( ) = 2.5A − 6.33B ; 

 (c)   ΔK = −ΔU = −2.5A + 6.33B  

P7.52 (a) Fx is zero at points A, C, and E; Fx is positive at point B and negative 
at point D; (b) A and E are unstable, and C is stable; (c) See ANS FIG 
P7.52 

P7.54 (a) 
   3x2 − 4x − 3( ) î ; (b) 1.87 and −0.535; (c) See ANS. FIG. P7.54 

P7.56 0.799 N ⋅ m 

P7.58 
  
k1

xmax
2

2
+ k2

xmax
3

3
 

P7.60 The ball will simply stop momentarily and roll back to the spring. 

P7.62 (a) b = 1.80, a = 4.01 × 104 N/m1.8; (b) 295 J 

P7.64 
  
x =

g sinθ g sinθ( )2 + k
m

⎛
⎝⎜

⎞
⎠⎟ v2 + 2(g sinθ)d⎡⎣ ⎤⎦

k / m
 

P7.66 (a) 
   
−2kx 1−

L

x2 + L2

⎛
⎝⎜

⎞
⎠⎟

î ; (b) 
  
kx2 + 2kL L − x2 + L2( ) ; (c) See ANS. FIG. 

P7.66(c), x = 0; (d) v = 0.823 m/s 
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8 
Conservation of Energy 

 

CHAPTER OUTLINE 
 

8.1 Analysis Model: Nonisolated System (Energy) 

8.2 Analysis Model: Isolated System (Energy) 

8.3 Situations Involving Kinetic Friction 

8.4 Changes in Mechanical Energy for Nonconservative Forces 

8.5 Power 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ8.1 Answer (a). We assume the light band of the slingshot puts equal 
amounts of kinetic energy into the missiles. With three times more 
speed, the bean has nine times more squared speed, so it must have 
one-ninth the mass. 

OQ8.2 (i) Answer (b). Kinetic energy is proportional to mass. 

 (ii) Answer (c). The slide is frictionless, so v = (2gh)1/2 in both cases. 

 (iii) Answer (a). g for the smaller child and g sin θ for the larger. 

OQ8.3 Answer (d). The static friction force that each glider exerts on the other 
acts over no distance relative to the surface of the other glider. The air 
track isolates the gliders from outside forces doing work. The gliders-
Earth system keeps constant mechanical energy. 

OQ8.4 Answer (c). Once the athlete leaves the surface of the trampoline, only 
a conservative force (her weight) acts on her. Therefore, the total 
mechanical energy of the athlete-Earth system is constant during her 
flight: Kf + Uf = Ki + Ui. Taking the y = 0 at the surface of the 
trampoline, Ui = mgyi = 0. Also, her speed when she reaches maximum 
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height is zero, or Kf = 0. This leaves us with Uf = Ki, or 
  
mgymax = 1

2
mvi

2 ,  

which gives the maximum height as 
  

  
ymax = vi

2

2g
= 8.5 m/s( )2

2 9.80 m/s2( ) = 3.7 m
 

OQ8.5 (a) Yes: a block slides on the floor where we choose y = 0. 

 (b) Yes: a picture on the classroom wall high above the floor. 

 (c) Yes: an eraser hurtling across the room. 

 (d) Yes: the block stationary on the floor. 

OQ8.6 In order the ranking: c > a = d > b. We have 
  

1
2

mv2 = µkmgd  so  

d = v2/2µk g. The quantity v2/µk controls the skidding distance. In the 
cases quoted respectively, this quantity has the numerical values: (a) 5 
(b) 1.25 (c) 20 (d) 5. 

OQ8.7 Answer (a). We assume the climber has negligible speed at both the 
beginning and the end of the climb. Then Kf = Ki, and the work done by 
the muscles is 

   

  

Wnc = 0 + Uf −Ui( ) = mg yf − yi( )
       = 70.0 kg( ) 9.80 m/s2( ) 325 m( )
       = 2.23 × 105  J

 

 The average power delivered is 
   

  
P =

Wnc

Δt
=

2.23 × 105 J
95.0 min( ) 60 s /1 min( ) = 39.1 W

 

OQ8.8  Answer (d). The energy is internal energy. Energy is never “used up.” 
The ball finally has no elevation and no compression, so the ball-Earth 
system has no potential energy. There is no stove, so no energy is put 
in by heat. The amount of energy transferred away by sound is 
minuscule. 

OQ8.9 Answer (c). Gravitational energy is proportional to the mass of the 
object in the Earth’s field. 
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ8.1 (a) No. They will not agree on the original gravitational energy if they 
make different y = 0 choices. (b) Yes, (c) Yes. They see the same change 
in elevation and the same speed, so they do agree on the change in 
gravitational energy and on the kinetic energy. 

CQ8.2 The larger engine is unnecessary. Consider a 30-minute commute. If 
you travel the same speed in each car, it will take the same amount of 
time, expending the same amount of energy. The extra power available 
from the larger engine isn’t used. 

CQ8.3 Unless an object is cooled to absolute zero, then that object will have 
internal energy, as temperature is a measure of the energy content of 
matter. Potential energy is not measured for single objects, but for 
systems. For example, a system comprised of a ball and the Earth will 
have potential energy, but the ball itself can never be said to have 
potential energy. An object can have zero kinetic energy, but this 
measurement is dependent on the reference frame of the observer.  

CQ8.4 All the energy is supplied by foodstuffs that gained their energy from 
the Sun. 

CQ8.5 (a) The total energy of the ball-Earth system is conserved. Since the 
system initially has gravitational energy mgh and no kinetic energy, the 
ball will again have zero kinetic energy when it returns to its original 
position. Air resistance will cause the ball to come back to a point 
slightly below its initial position. (b) If she gives a forward push to the 
ball from its starting position, the ball will have the same kinetic 
energy, and therefore the same speed, at its return: the demonstrator 
will have to duck. 

CQ8.6 Yes, if it is exerted by an object that is moving in our frame of 
reference. The flat bed of a truck exerts a static friction force to start a 
pumpkin moving forward as it slowly starts up. 

CQ8.7 (a) original elastic potential energy into final kinetic energy 

 (b) original chemical energy into final internal energy 

 (c) original chemical potential energy in the batteries into final 
internal energy, plus a tiny bit of outgoing energy transmitted by 
mechanical waves 

 (d) original kinetic energy into final internal energy in the brakes 

 (e) energy input by heat from the lower layers of the Sun, into energy 
transmitted by electromagnetic radiation 

 (f) original chemical energy into final gravitational energy 
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CQ8.8 (a) (i) A campfire converts chemical energy into internal energy, 
within the system wood-plus-oxygen, and before energy is 
transferred by heat and electromagnetic radiation into the 
surroundings. If all the fuel burns, the process can be 100% 
efficient. 

  (ii) Chemical-energy-into-internal-energy is also the conversion 
as iron rusts, and it is the main conversion in mammalian 
metabolism. 

 (b) (i) An escalator motor converts electrically transmitted energy 
into gravitational energy. As the system we may choose 
motor-plus-escalator-and-riders. The efficiency could be, say 
90%, but in many escalators a significant amount of internal 
energy is generated and leaves the system by heat. 

  (ii) A natural process, such as atmospheric electric current in a 
lightning bolt, which raises the temperature of a particular 
region of air so that the surrounding air buoys it up, could 
produce the same electricity-to-gravitational energy 
conversion with low efficiency. 

 (c) (i) A diver jumps up from a diving board, setting it vibrating 
temporarily. The material in the board rises in temperature 
slightly as the visible vibration dies down, and then the board 
cools off to the constant temperature of the environment. This 
process for the board-plus-air system can have 100% 
efficiency in converting the energy of vibration into energy 
transferred by heat. The energy of vibration is all elastic 
energy at instants when the board is momentarily at rest at 
turning points in its motion. 

  (ii) For a natural process, you could think of the branch of a palm 
tree vibrating for a while after a coconut falls from it. 

 (d) (i) Some of the energy transferred by sound in a shout results in 
kinetic energy of a listener’s eardrum; most of the 
mechanical-wave energy becomes internal energy as the 
sound is absorbed by all the surfaces it falls upon. 

  (ii) We would also assign low efficiency to a train of water waves 
doing work to shift sand back and forth in a region near a 
beach. 

 (e) (i) A demonstration solar car takes in electromagnetic-wave 
energy in sunlight and turns some fraction of it temporarily 
into the car’s kinetic energy. A much larger fraction becomes 
internal energy in the solar cells, battery, motor, and air 
pushed aside. 
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  (ii) Perhaps with somewhat higher net efficiency, the pressure of 
light from a newborn star pushes away gas and dust in the 
nebula surrounding it. 

CQ8.9 The figure illustrates the relative amounts of the 
forms of energy in the cycle of the block, where the 
vertical axis shows position (height) and the 
horizontal axis shows energy. Let the gravitational 
energy (Ug) be zero for the configuration of the 
system when the block is at the lowest point in the 
motion, point (3). After the block moves 
downward through position (2), where its kinetic 
energy (K) is a maximum, its kinetic energy 
converts into extra elastic potential energy in the spring (Us). After the 
block starts moving up at its lower turning point (3), this energy 
becomes both kinetic energy and gravitational potential energy, and 
then just gravitational energy when the block is at its greatest height 
(1) where its elastic potential energy is the least. The energy then turns 
back into kinetic and elastic potential energy as the block descends, 
and the cycle repeats. 

CQ8.10 Lift a book from a low shelf to place it on a high shelf. The net change 
in its kinetic energy is zero, but the book-Earth system increases in 
gravitational potential energy. Stretch a rubber band to encompass the 
ends of a ruler. It increases in elastic energy. Rub your hands together 
or let a pearl drift down at constant speed in a bottle of shampoo. Each 
system (two hands; pearl and shampoo) increases in internal energy. 

 

 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 8.1 Analysis Model: Nonisolated system (Energy)	  
P8.1 (a) The toaster coils take in energy by electrical transmission. They 

increase in internal energy and put out energy by heat into the air 
and energy by electromagnetic radiation as they start to glow.  

   
  
ΔEint = Q + TET + TER  

 (b) The car takes in energy by matter transfer. Its fund of chemical 
potential energy increases. As it moves, its kinetic energy 
increases and it puts out energy by work on the air, energy by 
heat in the exhaust, and a tiny bit of energy by mechanical waves 
in sound.  

    
  
ΔK + ΔU + ΔEint = W + Q + TMW + TMT  

ANS. FIG. CQ8.9 
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 (c) You take in energy by matter transfer. Your fund of chemical 
potential energy increases. You are always putting out energy by 
heat into the surrounding air.  

   
  
ΔU = Q + TMT  

 (d) Your house is in steady state, keeping constant energy as it takes 
in energy by electrical transmission to run the clocks and, we 
assume, an air conditioner. It absorbs sunlight, taking in energy 
by electromagnetic radiation. Energy enters the house by matter 
transfer in the form of natural gas being piped into the home for 
clothes dryers, water heaters, and stoves. Matter transfer also 
occurs by means of leaks of air through doors and windows.  

   
  
0 = Q + TMT + TET + TER  

P8.2 (a) The system of the ball and the Earth is isolated. The gravitational 
energy of the system decreases as the kinetic energy increases. 

     ΔK + ΔU = 0  
   

  

1
2

mv2 − 0⎛
⎝⎜

⎞
⎠⎟ + −mgh − 0( ) = 0→

1
2

mv2 = mgy
 

   
  
v =  2gh  

 (b) The gravity force does positive work on the ball as the ball moves 
downward. The Earth is assumed to remain stationary, so no 
work is done on it. 

   ∆K = W 
   

  

1
2

mv2 − 0⎛
⎝⎜

⎞
⎠⎟ = mgh→

1
2

mv2 = mgy
 

   
  
v =  2gh  
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ANS. FIG. P8.3 

Section 8.2 Analysis Model: Isolated system (Energy)	  
P8.3 From conservation of energy for the block-spring-

Earth system, 

  Ugf = Usi 

 or 
  

  

0.250 kg( ) 9.80 m/s2( )h

     =
1
2

⎛
⎝⎜

⎞
⎠⎟ 5 000 N/m( ) 0.100 m( )2

 

 This gives a maximum height,   h = 10.2 m .  

P8.4 (a)   ΔK + ΔU = 0→ ΔK = −ΔU  
  

  

1
2

mv f
2 −

1
2

mvi
2 = − mgy f − mgyi( )

1
2

mvi
2 =

1
2

mvi
2 + mgy f

 

  We use the Pythagorean theorem to express the original kinetic 
energy in terms of the velocity components (kinetic energy itself 
does not have components): 

   

  

1
2

mvxi
2 +

1
2

mvyi
2⎛

⎝⎜
⎞
⎠⎟ =

1
2

mvxf
2 + 0⎛

⎝⎜
⎞
⎠⎟ + mgy f

1
2

mvxi
2 +

1
2

mvyi
2 =

1
2

mvxf
2 + mgy f

 

Because vxi = vxf , we have 

   
  

1
2

mvyi
2 = mgyf → yf =

vyi
2

2g
 

  so for the first ball: 
   

  
y f =

vyi
2

2g
=

(1 000 m/s)sin 37.0°[ ]2

2 9.80 m/s2( ) = 1.85 × 104  m
 

  and for the second,  
   

  
y f =

1 000 m/s( )2

2 9.80 m/s2( ) = 5.10 × 104  m
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ANS. FIG. P8.5 

 (b) The total energy of each ball-Earth system is constant with value 

   

  

Emech = K i + Ui = K i + 0

Emech =
1
2

20.0 kg( ) 1 000 m/s( )2 = 1.00 × 107  J
 

P8.5 The speed at the top can be found from the 
conservation of energy for the bead-track-
Earth system, and the normal force can be 
found from Newton’s second law. 

 (a) We define the bottom of the loop as 
the zero level for the gravitational 
potential energy. 

  Since vi = 0,  

    Ei = Ki + Ui = 0 + mgh = mg(3.50R) 

  The total energy of the bead at point 

  A  can be written as  
   

  
EA = KA +UA = 1

2
mvA

2 + mg(2R)
 

  Since mechanical energy is conserved, Ei = EA, we get 

    
  
mg(3.50R) = 1

2
mvA

2 + mg(2R)  

   simplifying,  

       vA
2 = 3.00 gR  

      

  
vA = 3.00gR

  

  (b) To find the normal force at the top, we construct a force diagram 
as shown, where we assume that n is downward, like mg. 
Newton’s second law gives   F∑ = mac ,  where ac is the centripetal 
acceleration. 

     

  
Fy = may∑ :     n + mg = mv2

r

  

     

  
n = m

v2

R
− g

⎡
⎣⎢

⎤
⎦⎥

= m
3.00gR

R
− g⎡

⎣⎢
⎤
⎦⎥

= 2.00mg
 

     

  

n = 2.00 5.00× 10−3  kg( ) 9.80 m/s2( )
= 0.098 0 N downward
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ANS. FIG. P8.6 

ANS. FIG. P8.7 

P8.6 (a) Define the system as the block 
and the Earth. 

   ∆K + ∆U = 0 

   

  

1
2

mvB
2 − 0⎛

⎝⎜
⎞
⎠⎟ + mghB − mghA( ) = 0

1
2

mvB
2 = mg hA − hB( )

vB = 2g hA − hB( )

 

  
vB = 2 9.80 m/s2( ) 5.00 m − 3.20 m( ) = 5.94 m/s  

  Similarly, 

   
  vC = 2g hA − hC( )  

  
vC = 2g 5.00 − 2.00( ) = 7.67 m s  

 (b) Treating the block as the system, 
    

  
Wg A→C

= ΔK = 1
2

mvC
2 − 0 = 1

2
5.00 kg( ) 7.67 m/s( )2 = 147 J

 

P8.7 We assign height y = 0 to the table top. Using 
conservation of energy for the system of the Earth 
and the two objects: 

 (a) Choose the initial point before release and the 
final point, which we code with the subscript 
fa, just before the larger object hits the floor. 
No external forces do work on the system and 
no friction acts within the system. Then total 
mechanical energy of the system remains 
constant and the energy version of the 
isolated system model gives  

   (KA + KB + Ug)i = (KA + KB + Ug)fa 

   At the initial point, KAi and KBi are zero and we define the 
gravitational potential energy of the system as zero. Thus the total 
initial energy is zero, and we have 

   

  
0 = 1

2
(m1 + m2 )v fa

2 + m2 gh + m1g(–h)
 

   Here we have used the fact that because the cord does not stretch, 
the two blocks have the same speed. The heavier mass moves 
down, losing gravitational potential energy, as the lighter mass 
moves up, gaining gravitational potential energy.  Simplifying,  
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(m1 – m2 )gh = 1

2
(m1 + m2 )v fa

2  

    

  

v fa =
2 m1 − m2( ) gh

m1 + m2( ) =
2 5.00 kg − 3.00 kg( ) g 4.00 m( )

5.00 kg + 3.00 kg( )
= 19.6  m/s = 4.43 m/s

 

 (b) Now we apply conservation of energy for the system of the  
3.00-kg object and the Earth during the time interval between the 
instant when the string goes slack and the instant at which the 
3.00-kg object reaches its highest position in its free fall. 

    

  

ΔK + ΔU = 0     →      ΔK = −ΔU

0 −
1
2

m2v2 = −m2 gΔy → Δy =
v2

2g
Δy = 1.00 m

ymax = 4.00 m + Δy = 5.00 m

 

P8.8 We assume m1 > m2. We assign height y = 0 to the table top. 

 (a) ∆K + ∆U = 0 

  

  

ΔK 1 + ΔK 2 + ΔU1 + ΔU2 = 0
1
2

m 1v
2 − 0⎡

⎣⎢
⎤
⎦⎥

+
1
2

m 2v2 − 0⎡
⎣⎢

⎤
⎦⎥

+ 0 − m 1gh( ) + m 2 gh − 0( ) = 0

1
2

m 1 + m 2( )v2 = m 1gh − m 2 gh = m 1 − m 2( ) gh

 

  

  
v =

2 m1 − m2( ) gh
m1 + m2

 

 (b) We apply conservation of energy for the system of mass m2 and 
the Earth during the time interval between the instant when the 
string goes slack and the instant mass m2 reaches its highest 
position in its free fall. 

    

  

ΔK + ΔU = 0     →      ΔK = −ΔU

0− 1
2

m2v2 = −m2 g Δy → Δy = v2

2g
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ANS. FIG. P8.9 

  The maximum height of the block is then 

    

  

ymax = h + Δy = h +
2 m1 − m2( ) gh
2g m1 + m2( ) = h +

m1 − m2( )h
m1 + m2

ymax =
m1 + m2( )h
m1 + m2

+
m1 − m2( )h
m1 + m2

 

    
  
ymax =

2m1h
m1 + m2

 

P8.9 The force of tension and subsequent force of 
compression in the rod do no work on the ball, 
since they are perpendicular to each step of 
displacement. Consider energy conservation of 
the ball-Earth system between the instant just 
after you strike the ball and the instant when it 
reaches the top. The speed at the top is zero if 
you hit it just hard enough to get it there. We 
ignore the mass of the “light” rod. 

  ∆K + ∆U = 0:   

   
  

0 −
1
2

mvi
2⎛

⎝⎜
⎞
⎠⎟ + mg 2L( ) − 0[ ] = 0  

   

  

vi = 4gL = 4 9.80 m/s2( ) 0.770 m( )
vi = 5.49 m/s

 

P8.10  (a) One child in one jump converts chemical energy into mechanical 
energy in the amount that the child-Earth system has as 
gravitational energy when she is at the top of her jump: 

   mgy = (36 kg)(9.80 m/s2) (0.25 m) = 88.2 J 

  For all of the jumps of the children the energy is  

    12 1.05 × 106( ) 88.2 J( )  
 
= 1.11× 109  J  

 (b) The seismic energy is modeled as  
   

  
E = 0.01

100
⎛
⎝⎜

⎞
⎠⎟ 1.11× 109  J( ) = 1.11× 105  J

 

  making the Richter magnitude  

   
  

logE − 4.8
1.5

=
log 1.11× 105( ) − 4.8

1.5
 
 
=

5.05 − 4.8
1.5

= 0.2  
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P8.11 When block B moves up by 1 cm, block A moves down by 2 cm and 
the separation becomes 3 cm. We then choose the final point to be 

when B has moved up by 
  

h
3

 and has speed 
  

vA

2
.  Then A has moved 

down 
  

2h
3

 and has speed vA: 

  

  

ΔK + ΔU = 0

K A + K B + Ug( )
f
− K A + K B + Ug( )

i
= 0

K A + K B + Ug( )
i
= K A + K B + Ug( )

f

 

  

  

0 + 0 + 0 =
1
2

mvA
2 +

1
2

m
vA

2
⎛
⎝⎜

⎞
⎠⎟

2

+
mgh

3
−

mg2h
3

mgh
3

=
5
8

mvA
2

vA =
8gh
15

 

 
 

 

Section 8.3 Situations Involving Kinetic Friction	  
P8.12 We could solve this problem using Newton’s second law, but we will 

use the nonisolated system energy model, here written as −fkd = Kf − Ki, 
where the kinetic energy change of the sled after the kick results only 
from the friction between the sled and ice. The weight and normal 
force both act at 90° to the motion, and therefore do no work on the 
sled. The friction force is  

   fk = μkn = μkmg 

  Since the final kinetic energy is zero, we have  

    −fkd= −Ki 

 or  
  

1
2

mvi
2 = µkmgd  

 Thus, 
   

  
d = mvi

2

2 fk

= mvi
2

2µkmg
= vi

2

2µk g
= (2.00 m/s)2

2(0.100) 9.80 m/s2( ) = 2.04 m
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P8.13 We use the nonisolated system energy model, here written as  
−fkd = Kf − Ki, where the kinetic energy change of the sled after the kick 
results only from the friction between the sled and ice.  

    ΔK + ΔU = − fkd:   

   
  
0 −

1
2

mv2 = −fkd  

   

  

1
2

mv2 = µkmgd
  

 which gives 
  
d =

v2

2µk g
 

P8.14 (a) The force of gravitation is  

   (10.0 kg)(9.80 m/s2) = 98.0 N  

  straight down, at an angle of  

   (90.0° + 20.0°) = 110.0°  

  with the motion. The work done by the 
gravitational force on the crate is 

   

    

Wg =

F ⋅ Δr = mgcos 90.0° +θ( )

= (98.0 N)(5.00 m)cos110.0° = −168 J

 

 (b) We set the x and y axes parallel and perpendicular to the incline, 
respectively. 

    From 
 
∑Fy = may ,  we have     

     n − (98.0 N) cos 20.0° = 0  

    so n = 92.1 N 

   and  

    fk  = μk n = 0.400 (92.1 N) = 36.8 N 

  Therefore,  
   

  
ΔEint = fkd = 36.8 N( ) 5.00 m( ) = 184 J

 

 (c) 
   
WF = F = 100 N( ) 5.00 m( ) = 500 J  

 (d) We use the energy version of the nonisolated system model. 
    

  ΔK = − fkd + Wother forces∑  

    
  ΔK = − fkd + Wg + Wapplied force + Wn
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ANS. FIG. P8.15 

   The normal force does zero work, because it is at 90° to the 
motion. 

   

  
ΔK = −184 J − 168 J + 500 J + 0 = 148 J

 

 (e) Again,   K f − Ki = − fkd + Wother forces∑ ,  so  

   

  

1
2

mv f
2 –

1
2

mvi
2 = Wother forces∑ − fkd

 

   

  

v f = 2
m

ΔK + 1
2

mvi
2⎡

⎣⎢
⎤
⎦⎥

= 2
10.0 kg

⎛
⎝⎜

⎞
⎠⎟

[148 J + 1
2

(10.0 kg)(1.50 m/s)2 ]

 

   

  
v f =

2 159 kg ⋅m2 s2( )
10.0 kg = 5.65 m/s

 

P8.15 (a) The spring does positive work on the 
block: 

  

  

Ws = 1
2

kxi
2 − 1

2
kx f

2

Ws = 1
2

500 N/m( ) 5.00× 10−2  m( )2
− 0

= 0.625 J

 

  Applying ∆K = Ws: 
   

  

1
2

mv f
2 −

1
2

mvi
2

             = Ws →
1
2

mv f
2 − 0 = Ws

 

  so 
   

  

v f =
2 Ws( )

m

=
2 0.625( )

2.00
 m/s = 0.791 m/s
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ANS. FIG. P8.16 

 (b) Now friction results in an increase in internal energy fk d of the 
block-surface system. From conservation of energy for a 
nonisolated system, 

   

  

Ws = ΔK + ΔEint

ΔK = Ws − fkd
1
2

mv f
2 −

1
2

mvi
2 = Ws − fkd = Ws − µsmgd

 

   

  

1
2

mv f
2 = 0.625 J − 0.350( ) 2.00 kg( ) 9.80 m/s2( ) 0.050 0 m( )

1
2

2.00 kg( )v f
2 = 0.625 J − 0.343 J = 0.282 J

v f =
2 0.282( )

2.00
 m/s = 0.531 m/s

 

P8.16 

  

Fy∑ = may :   n − 392 N = 0

 n = 392 N
fk = µkn = 0.300( ) 392 N( ) = 118 N

 

 (a) The applied force and the motion are 
both horizontal. 

   

  

WF = Fdcosθ
= 130 N( ) 5.00 m( )cos0°

= 650 J

 

 (b) 
  
ΔEint = fkd = 118 N( ) 5.00 m( ) = 588 J  

 (c) Since the normal force is perpendicular to the motion, 

   
  Wn = ndcosθ = 392 N( ) 5.00 m( )cos90° = 0  

 (d) The gravitational force is also perpendicular to the motion, so  

   
  Wg = mgdcosθ = 392 N( ) 5.00 m( )cos −90°( ) = 0  

 (e) We write the energy version of the nonisolated system model as  

     ΔK = K f − Ki = Wother − ΔEint∑  

   
  

1
2

mvf
2 − 0 = 650 J − 588 J + 0 + 0 = 62.0 J  

 (f) 
  
vf =

2K f

m
=

2 62.0 J( )
40.0 kg

= 1.76 m/s  
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P8.17 (a) 

  

ΔEint = −ΔK = −
1
2

m v f
2 − vi

2( ):
ΔEint = −

1
2

(0.400 kg) (6.00)2 − (8.00)2⎡⎣ ⎤⎦(m/s)2 = 5.60 J

 

 (b) After N revolutions, the object comes to rest and Kf = 0. 

  Thus, 

   

  

ΔEint = −ΔK

fkd = −(0 − K i ) =
1
2

mvi
2
 

  or 

   
  
µkmg N(2πr)[ ] =

1
2

mvi
2  

  This gives 
   

  

N =

1
2

mvi
2

µkmg(2πr)
=

1
2

(8.00 m/s)2

(0.152) 9.80 m/s2( )2π (1.50 m)

= 2.28 rev

 

 
 

 

Section 8.4 Changes in Mechanical Energy for  
Nonconservative Forces 

P8.18 (a) If only conservative forces act, then the total mechanical energy 
does not change. 

   ∆K + ∆U = 0    or        Uf = Ki – Kf + Ui   

   Uf = 30.0 J – 18.0 J + 10.0 J = 
 
22.0 J  

   
  
E = K + U = 30.0 J + 10.0 J = 40.0 J

 

 (b)  Yes ,  if the potential energy is less than 22.0 J. 

 (c) 

  

If the potential energy is 5.00 J, the total mechanical energy
is E = K + U = 18.0 J + 5.00 J = 23.0 J, less than the original
40.0 J. The total mechanical energy has decreased, so a non-
conservative force must have acted.
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ANS. FIG. P8.19 

P8.19 The boy converts some chemical energy  
in his body into mechanical energy of  
the boy-chair-Earth system. During this  
conversion, the energy can be measured  
as the work his hands do on the wheels. 

  

  

ΔK + ΔU + ΔUbody = − fkd

K f − Ki( ) + U f −Ui( ) + ΔUbody = − fkd  

 

    Ki + Ui + Whands-on-wheels − fkd = K f  

 Rearranging and renaming, we have 
  

  

1
2

mvi
2 + mgyi + Wby boy − fkd = 1

2
mv f

2
 

  
  
Wby boy =

1
2

m v f
2 − vi

2( ) − mgyi + fkd  

  

  

Wby boy =
1
2

47.0 kg( ) 6.20 m/s( )2 − 1.40 m/s( )2⎡⎣ ⎤⎦

                          − 47.0 kg( ) 9.80 m/s2( ) 2.60 m( )
                          + 41.0 N( ) 12.4 m( )
Wby boy = 168 J

 

P8.20 (a) Apply conservation of energy to the bead-string-Earth system to 
find the speed of the bead at    B.  Friction transforms mechanical 
energy of the system into internal energy   ΔEint = fkd.  

    
  ΔK + ΔU + ΔEint = 0   

   

  

1
2

mvB
2 −

1
2

mvA
2⎡

⎣⎢
⎤
⎦⎥

+ mgyB − mgyA( ) + fkd = 0

1
2

mvB
2 − 0⎡

⎣⎢
⎤
⎦⎥

+ 0 − mgyA( ) + fkd = 0→
1
2

mvB
2 = mgyA − fkd

 

   

  
vB = 2gyA −

2 fkd
m

 

  For yA = 0.200 m, fk = 0.025 N, d = 0.600 m, and m = 25.0 × 10–3 kg: 

   

  

vB = 2 9.80 m/s2( ) 0.200 m( ) − 2 0.025 N( ) 0.600 m( )
25.0 × 10−3  kg

= 2.72  m/s

 

   
  
vB = 1.65 m/s
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 (b) The red bead slides a greater distance along the curved path, so 
friction transforms more of the mechanical energy of the system 
into internal energy. There is less of the system’s original 
potential energy in the form of kinetic energy when the bead 
arrives at point    B.  The result is that the green bead arrives at 

point   B  first and at higher speed. 

P8.21 Use Equation 8.16: 

  

ΔEmech = ΔK + ΔU = − fkd

K f − Ki( ) + U f −Ui( ) = − fkd

Ki + Ui − fkd = K f + U f

 

 (a)  Ki + Ui − fkd = K f + U f  
  

  

0 + 1
2

kx2 − fΔx = 1
2

mv2 + 0

1
2

8.00 N/m( ) 5.00× 10−2  m( )2
− 3.20× 10−2  N( ) 0.150 m( )

= 1
2

5.30× 10−3  kg( )v2

v =
2 5.20× 10−3  J( )
5.30× 10−3  kg

= 1.40 m/s

 

 (b) When the spring force just equals the friction force, the ball will 
stop speeding up. Here 

   

Fs = kx;  the spring is compressed by 

   
 

3.20 × 10−2  N
8.00 N/m

= 0.400 cm  

  and the ball has moved 

   5.00 cm – 0.400 cm =  4.60 cm from the start  

 (c) Between start and maximum speed points,  
   

  

1
2

kxi
2 − fΔx =

1
2

mv2 +
1
2

kx f
2

1
2

8.00 N/m( ) 5.00 × 10−2  m( )2
− 3.20 × 10−2  N( ) 4.60 × 10−2  m( )

=
1
2

5.30 × 10−3  kg( )v2 +
1
2

8.00 N/m( ) 4.00 × 10−3  m( )2

v = 1.79 m/s
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P8.22 For the Earth plus objects 1 
(block) and 2 (ball), we write 
the energy model equation as  

  (K1 + K2 + U1 + U2)f  

    – (K1+ K2 + U1 + U2)i  

    =   Wother forces∑ − fkd  

  Choose the initial point 
before release and the final point after each block has moved 1.50 m. 
Choose U = 0 with the 3.00-kg block on the tabletop and the 5.00-kg 
block in its final position. 

 So  K1i = K2i =U1i = U1f = U2f = 0 

 We have chosen to include the Earth in our system, so gravitation is an 
internal force. Because the only external forces are friction and normal 
forces exerted by the table and the pulley at right angles to the motion, 

   
  Wother forces∑ = 0  

  We now have  

     
  

1
2

m1v f
2 + 1

2
m2v f

2 + 0 + 0 – 0 – 0 – 0 –  m2 gy2 i = 0 –  fkd  

  where the friction force is  

     fk = µkn = µkmAg  

  The friction force causes a negative change in mechanical energy 
because the force opposes the motion. Since all of the variables are 
known except for vf, we can substitute and solve for the final speed. 

   

  

1
2

m1v f
2 + 1

2
m2v f

2 – m2 gy2 i = – fkd
 

   

  
v2 =

2gh m2 − µkm1( )
m1 + m2

 

   

  

v =
2 9.80 m s2( ) 1.50 m( ) 5.00 kg − 0.400 3.00 kg( )⎡⎣ ⎤⎦

8.00 kg

= 3.74 m/s

 

 

ANS. FIG. P8.22 
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P8.23 We consider the block-plane-planet system 
between an initial point just after the block has 
been given its shove and a final point when 
the block comes to rest. 

  (a) The change in kinetic energy is 
     

  

ΔK = K f − Ki = 1
2

mv f
2 − 1

2
mvi

2

= 0− 1
2

(5.00 kg) 8.00 m/s( )2 = −160 J

  

  (b) The change in gravitational potential energy is  
      

  

ΔU = U f −Ui = mgh

= (5.00 kg)(9.80 m/s2 ) 3.00 m( )sin 30.0° = 73.5 J

 

  (c) The nonisolated system energy model we write as 
      

  ΔK + ΔU = ∑Wother forces − fkd = 0− fkd
  

    The force of friction is the only unknown, so we may find it from 
     

  
fk = ΔK − ΔU

d
= +160 J − 73.5 J

3.00 m
= 28.8 N

 

(d) The forces perpendicular to the incline must add to zero. 
    

  Fy∑ = 0:     + n− mg cos30.0° = 0
  

   Evaluating, 
    

  n = mg cos30.0° = (5.00 kg) 9.80 m/s2( )cos30.0° = 42.4 N
 

  Now  fk = µkn  gives  

   
  
µk =

fk

n = 28.8 N
42.4 N = 0.679

  

P8.24 (a) The object drops distance d = 1.20 m until it hits the spring, then it 
continues until the spring is compressed a distance x. 

   

  

ΔK + ΔU = 0
K f − Ki + U f −Ui = 0

0 − 0 +
1
2

kx2 − 0⎛
⎝⎜

⎞
⎠⎟ + mg −x( ) − mgd[ ] = 0

1
2

kx2 − mg x + d( ) = 0

 

ANS. FIG. P8.23 
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1
2

320 N/m( )x2 − 1.50 kg( ) 9.80 m/s2( ) x + 1.20 m( ) = 0  

  Dropping units, we have 

   

  

160x2 − 14.7( )x − 17.6 = 0

x =
14.7 ± −14.7( )2 − 4 160( ) −17.6( )

2 160( )

x =
14.7 ± 107

320

 

  The negative root does not apply because x is a distance. We have 

   
  
x = 0.381 m  

 (b) This time, friction acts through distance (x + d) in the object-
spring-Earth system: 

   

  

ΔK + ΔU = − fk x + d( )

0 − 0 +
1
2

kx2 − 0⎛
⎝⎜

⎞
⎠⎟ + mg −x( ) − mgd[ ] = − fk x + d( )

1
2

kx2 − mg − fk( )x − mg − fk( )d = 0

 

  where mg – fk = 14.0 N. Suppressing units, we have 

     160x2 − 14.0x − 16.8 = 0  

   

  

160x2 − 14.0x − 16.8 = 0

x =
14.0 ± −14.0( )2 − 4 160( ) −16.8( )

2 160( )
 

   
  
x =

14.0 ± 105
320

 

  The positive root is 
  
x = 0.371 m.  

 (c) On the Moon, we have 

   
  

1
2

kx2 − mg x + d( ) = 0  

   
  

1
2

320 N/m( )x2 − 1.50 kg( ) 1.63 m/s2( ) x + 1.20 m( ) = 0  

  Suppressing units, 

     160x2 − 2.45x − 2.93 = 0  
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x =
2.45 ± −2.45( )2 − 4 160( ) −2.93( )

2 160( )

x =
2.45 ± 43.3

320

 

   
  
x = 0.143 m  

P8.25 The spring is initially compressed by xi = 0.100 m. The block travels up 
the ramp distance d. 

 The spring does work 
  
Ws =

1
2

kxi
2 −

1
2

kx f
2 =

1
2

kxi
2 − 0 =

1
2

kxi
2  on the 

block. 

 Gravity does work Wg = mgd cos(90° + 60.0°) = mgd sin(60.0°) on the 
block. There is no friction. 

 (a) 

  

∑W = ΔK: Ws + Wg = 0

1
2

kxi
2 − mgd sin(60.0°) = 0

1
2

(1.40× 103  N/m)(0.100 m)2

                 − (0.200 kg)(9.80 m/s2 )d(sin60.0°) = 0

d = 4.12 m

 

 (b) Within the system, friction transforms kinetic energy into internal 
energy: 

   

  

ΔEint = fkd = (µkn)d = µk (mg cos 60.0°)d
∑W = ΔK + ΔEint : Ws + Wg − ΔEint = 0

 

   

  

1
2

kxi
2 − mgd sin 60.0° − µkmg cos 60.0°d = 0

 

   

  

1
2

(1.40 × 103  N/m)(0.100 m)2

                           − (0.200 kg)(9.80 m/s2 )d(sin 60.0°)

                           − (0.400)(0.200 kg)(9.80 m/s2 )(cos 60.0°)d = 0

d = 3.35 m

 

P8.26 Air resistance acts like friction. Consider the whole motion: 

     ΔK + ΔU = − faird → Ki + Ui − faird = K f + U f  
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 (a) 
  
0 + mgyi − f1d1 − f2d2 =

1
2

mv f
2 + 0  

  

  

80.0 kg( ) 9.80 m/s2( )1 000 m − 50.0 N( ) 800 m( ) − 3 600 N( ) 200 m( )
=

1
2

80.0 kg( )v f
2

784 000 J − 40 000 J − 720 000 J =
1
2

80.0 kg( )v f
2

v f =
2 24 000 J( )

80.0 kg
= 24.5 m/s

 

 (b) 
 
Yes. This is too fast for safety.  

 (c) Now in the same energy equation as in part (a), d2 is unknown, 
and d1 = 1 000 m – d2: 

   

  

784 000 J − 50.0 N( ) 1 000 m − d2( ) − 3 600 N( )d2

                                                   =
1
2

80.0 kg( ) 5.00 m/s( )2

784 000 J − 50 000 J − 3 550 N( )d2 = 1 000 J

d2 =
733 000 J
3 550 N

= 206 m

 

 (d) 

 

The air drag is proportional to the square of the skydiver’s
speed,  so it will change quite a bit, It will be larger than her
784-N weight only after the chute is opened. It will be nearly
equal to 784 N before she opens the chute and again before
she touches down whenever she moves near terminal speed.

 

P8.27 (a) 

 

Yes, the child-Earth system is isolated because the only force
that can do work on the child is her weight. The normal force 
from the slide can do no work because it is always perpendicular 
to her displacement. The slide is frictionless, and we ignore air 
resistance.

 

 (b)  No, because there is no friction.  

 (c) At the top of the water slide, 

    Ug = mgh   and   K = 0:    E = 0 + mgh → 
 
E = mgh  
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 (d) At the launch point, her speed is vi, and height h = h/5:  

   E = K + Ug  

   
  
E =

1
2

mvi
2 +

mgh
5

 

 (e) At her maximum airborne height, h = ymax: 

   E = 
 

1
2

mv2 + mgh = 
 

1
2

m(vxi
2 + vyi

2) + mgymax 

   E = 
 

1
2

m(vxi
2 + 0) + mgymax → 

  
E =

1
2

mvxi
2 + mgymax  

 (f) E = mgh = 
 

1
2

mvi
2 + mgh/5 → 

  
vi =

8gh
5

 

 (g) At the launch point, her velocity has components vxi = vi cosθ and 
vyi = vi sinθ : 

   

  
E = 1

2
mvi

2 + mgh
5

= 1
2

mvxi
2 + mgymax

 

   

  

→
1
2

mvi
2 +

mgh
5

=
1
2

m vi cosθ( )2 + mgymax

→
1
2

vi
2 1− cos2θ( ) +

gh
5

= ghmax

 

   

  

→ hmax = 1
2 g

8 gh
5

⎛
⎝⎜

⎞
⎠⎟

1− cos2θ( ) +
gh

5 g

→ hmax = 4h
5

⎛
⎝⎜

⎞
⎠⎟ 1− cos2θ( ) + h

5
→ hmax = h 1− 4

5
cos2θ⎛

⎝⎜
⎞
⎠⎟

 

 (h) 

  

No. If friction is present, mechanical energy of the system would
not be conserved, so her kinetic energy at all points after leaving
the top of the waterslide would be  reduced when compared with
the frictionless case. Consequently, her launch speed, maximum
height reached, and final speed would be reduced as well.
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Section 8.5 Power 
P8.28 (a) The moving sewage possesses kinetic energy in the same amount 

as it enters and leaves the pump. The work of the pump increases 
the gravitational energy of the sewage-Earth system. We take the 
equation Ki + Ugi + Wpump = Kf + Ugf , subtract out the K terms, and 
choose Ugi = 0 at the bottom of the pump, to obtain Wpump = mgyf . 
Now we differentiate through with respect to time: 

   

  

Ppump =
Δm
Δt

gy f = ρ ΔV
Δt

gy f

= 1 050 kg/m3( ) 1.89 × 106  L/d( )
               ×

1 m3

1 000 L
⎛
⎝⎜

⎞
⎠⎟

1 d
86 400 s

⎛
⎝⎜

⎞
⎠⎟

9.80 m
s2

⎛
⎝⎜

⎞
⎠⎟ 5.49 m( )

=  1.24 × 103  W

 

 (b) 

  

efficiency = useful output work
total input work

= useful output work/Δt
useful input work/Δt

= mechanical output power
input electric power

= 1.24 kW
5.90 kW

= 0.209 = 20.9%

 

 The remaining power, 5.90 – 1.24 kW = 4.66 kW, is the rate at 
which internal energy is injected into the sewage and the 
surroundings of the pump. 

P8.29 The Marine must exert an 820-N upward force, opposite the 
gravitational force, to lift his body at constant speed. The Marine’s 
power output is the work he does divided by the time interval:  

   
  
Power =

W
t

 

   

  
P =

mgh
t

=
820 N( ) 12.0 m( )

8.00 s
= 1 230 W = 1.23 kW

 

P8.30 (a) 
  
Pav =

W
Δt

=
K f

Δt
=

mv2

2Δt
=

0.875 kg( ) 0.620 m/s( )2

2 21× 10−3  s( ) = 8.01 W  
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 (b) 

 

Some of the energy transferring into the system of the train
goes into internal energy in warmer track and moving parts
and some leaves the system by sound. To account for this as
well as the stated increase in kinetic energy, energy must be
transferred at a rate higher than 8.01 W.

 

P8.31 When the car moves at constant speed on a level roadway, the power 
used to overcome the total friction force equals the power input from 
the engine, or Poutput = ftotal v = Pinput. This gives 

   

  

ftotal =
Pinput

v
= 175 hp

29 m/s
746 W
1 hp

⎛
⎝⎜

⎞
⎠⎟

= 4.5× 105  N or about 5× 105 N.

 

P8.32 Neglecting any variation of gravity with altitude, the work required to 
lift a 3.20 × 107 kg load at constant speed to an altitude of ∆y = 1.75 km 
is 

   

  

W = ΔPEg = mg Δy( )
= 3.20× 107  kg( ) 9.80 m/s2( ) 1.75× 103  m( )
= 5.49× 1011  J

 

 The time required to do this work using a P = 2.70 kW = 2.70 × 103 J/s 
pump is 

   

  

Δt = W
P

= 5.49× 1011  J
2.70× 103  J/s

= 2.03× 108  s

= 2.03× 108  s( ) 1 h
3 600 s

⎛
⎝⎜

⎞
⎠⎟

= 5.64× 104  h = 6.44 yr

 

P8.33 energy = power × time 

 For the 28.0-W bulb: 

  Energy used = (28.0 W)(1.00 × 104 h) = 280 kWh 

  total cost = $4.50 + (280 kWh)($0.200/kWh) = $60.50 

 For the 100-W bulb: 

  Energy used = (100 W)(1.00 × 104 h) = 1.00 × 103 kWh 

  # of bulbs used 
 
=

1.00 × 104  h
750 h/bulb

= 13.3 = 13 bulbs  
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  total cost = 13($0.420) + (1.00 × 103 kWh)($0.200/kWh) = $205.46 

 Savings with energy-efficient bulb:  

  $205.46 – $60.50 = $144.96 =  $ 145  

P8.34 The useful output energy is 
   

  

120 Wh 1− 0.60( ) = mg y f − yi( ) = F Δy

Δy =
120 W 3 600 s( )0.40

890 N
J

W ⋅ s
⎛
⎝⎜

⎞
⎠⎟

N ⋅m
J

⎛
⎝⎜

⎞
⎠⎟

= 194 m

 

P8.35 A 1 300-kg car speeds up from rest to 55.0 mi/h = 24.6 m/s in 15.0 s. 
The output work of the engine is equal to its final kinetic energy, 

  

 

1
2

1 300 kg( ) 24.6 m/s( )2 = 390 kJ
 

 with power 
  
P =

390 000 J
15.0 s

~ 104  W,  around 30 horsepower. 

P8.36 
 
P =

W
Δt

 

 older-model: W = 
 

1
2

mv2 

 newer-model: 
  
W =

1
2

m(2v)2 =
1
2

(4mv2 ) → Pnewer =
4mv2

2Δt
= 4

mv2

2Δt
 

 
 
The power of the sports car is four times that of the older-model car.  

*P8.37 (a) The fuel economy for walking is  

   
 

1 h
220 kcal

3 mi
h( ) 1 kcal

4 186 J
⎛
⎝⎜

⎞
⎠⎟

1.30 × 108  J
1 gal

⎛
⎝⎜

⎞
⎠⎟

= 423 mi/gal  

 (b) For bicycling: 

   
 

1 h
400 kcal

10 mi
h( ) 1 kcal

4 186 J
⎛
⎝⎜

⎞
⎠⎟

1.30 × 108  J
1 gal

⎛
⎝⎜

⎞
⎠⎟

= 776 mi/gal  

P8.38 (a) The distance moved upward in the first 3.00 s is 

   
  
Δy = vΔt =

0 + 1.75 m/s
2

⎡
⎣⎢

⎤
⎦⎥

3.00 s( ) = 2.63 m  
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  The motor and the Earth’s gravity do work on the elevator car: 
   

  

Wmotor + Wgravity = ΔK

Wmotor + mgΔy( )cos180° =
1
2

mv f
2 −

1
2

mvi
2

Wmotor − mgΔy( ) =
1
2

mv f
2 −

1
2

mvi
2

Wmotor =
1
2

mv f
2 −

1
2

mvi
2 + mgΔy

Wmotor =
1
2

650 kg( ) 1.75 m/s( )2 − 0 + 650 kg( ) g 2.63 m( )

         = 1.77 × 104  J

 

  Also,  W = PΔt  so 
  
P =

W
Δt

=
1.77 × 104  J

3.00 s
= 5.91× 103  W = 7.92 hp . 

 (b) When moving upward at constant speed (v = 1.75 m/s), the 
applied force equals the weight = (650 kg)(9.80 m/s2)  
= 6.37 × 103 N. Therefore, 

   
  
P = Fv = 6.37 × 103  N( ) 1.75 m/s( ) = 1.11× 104  W = 14.9 hp  

P8.39 As the piano is lifted at constant speed up to the apartment, the total 
work that must be done on it is 

   

  

Wnc = ΔK + ΔUg = 0 + mg y f − yi( )
= 3.50 × 103  N( ) 25.0 m( )
= 8.75 × 104  J

 

 The three workmen (using a pulley system with an efficiency of 0.750) 
do work on the piano at a rate of 

   
  
Pnet = 0.750 3Psingle

worker

⎛
⎝⎜

⎞
⎠⎟

= 0.750 3 165 W( )[ ] = 371 W = 371 J/s  

 so the time required to do the necessary work on the piano is 

   
  
Δt =

Wnc

Pnet

=
8.75 × 104  J

371 J s
= 236 s = 236 s( ) 1 min

60 s
⎛
⎝⎜

⎞
⎠⎟ = 3.93 min  

P8.40 (a) Burning 1 kg of fat releases energy 

 
1 kg

1 000 g
1 kg

⎛
⎝⎜

⎞
⎠⎟

9 kcal
1 g

⎛
⎝⎜

⎞
⎠⎟

4 186 J
1 kcal

⎛
⎝⎜

⎞
⎠⎟ = 3.77 × 107  J
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  The mechanical energy output is 

     3.77 × 107  J( ) 0.20( ) = nFdcosθ  

  where n is the number of flights of stairs. Then 

     7.53 × 106  J = nmgΔy cos0°  

   
  

7.53 × 106  J = n 75 kg( ) 9.8 m/s2( ) 80 steps( ) 0.150 m( )
7.53 × 106  J = n 8.82 × 103  J( )

 

  where the number of times she must climb the stairs is  

  
  
n =

7.53 × 106  J
8.82 × 103  J

= 854  

 (b) Her mechanical power output is 
   

  

P =
W
t

=
8.82 × 103  J

65 s
= 136 W = 136 W( ) 1 hp

746 W
⎛
⎝⎜

⎞
⎠⎟

= 0.182 hp

 

 (c) 
 
This method is impractical compared to limiting food intake.  

P8.41 The energy of the car-Earth system is 
  
E =

1
2

mv2 + mgy:  

   
  
E =

1
2

mv2 + mgdsinθ  

 where d is the distance the car has moved along the track. 

   
  
P =

dE
dt

= mv
dv
dt

+ mgvsinθ  

 (a) When speed is constant, 
   

  

P = mgv sinθ = 950 kg( ) 9.80 m/s2( ) 2.20 m/s( )sin 30.0°

= 1.02 × 104  W

 

 (b) 
  

dv
dt

= a = 2.20 m/s − 0
12 s

= 0.183 m/s2  

  Maximum power is injected just before maximum speed is 
attained: 

   

  

P = mva + mgvsinθ

= 950 kg( ) 2.20 m/s( ) 0.183 m/s2( ) + 1.02 × 104  W

= 1.06× 104  W
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 (c) At the top end, 
   

  

1
2

mv2 + mgdsinθ

   = 950 kg
1
2

2.20 m/s( )2 + 9.80 m/s2( ) 1 250 m( )sin 30°⎛
⎝⎜

⎞
⎠⎟

   = 5.82 × 106  J

 

 
 

 

Additional Problems 
*P8.42 At a pace I could keep up for a half-hour exercise period, I climb two 

stories up, traversing forty steps each 18 cm high, in 20 s. My output 
work becomes the final gravitational energy of the system of the Earth 
and me, 

   mgy = 85 kg( ) 9.80 m/s2( ) 40 × 0.18 m( ) = 6 000 J  

 making my sustainable power 
 

6 000 J
20 s

= ~ 102  W . 

P8.43 (a) 
  
UA = mgR = 0.200 kg( ) 9.80 m/s2( ) 0.300 m( ) = 0.588 J  

 (b)  KA + UA = KB + UB  

  
  
KB = KA + UA −UB = mgR = 0.588 J  

 (c) 
  
vB =

2KB

m
=

2 0.588 J( )
0.200 kg

= 2.42 m/s  

 (d) 
  
UC = mghC = 0.200 kg( ) 9.80 m/s2( ) 0.200 m( ) = 0.392 J  

  
  

KC = KA + UA −UC = mg hA − hC( )
KC = 0.200 kg( ) 9.80 m/s2( ) 0.300 − 0.200( )  m = 0.196 J

 

P8.44 (a) Let us take U = 0 for the particle-bowl-Earth system when the 
particle is at   B . Since vB = 1.50 m/s and m = 200 g, 

    

  
KB = 1

2
mvB

2 = 1
2

0.200 kg( ) 1.50 m/s( )2 = 0.225 J
 

 (b) At   A , vi = 0, KA = 0, and the whole energy at   A  is UA = mgR: 
    

  

Ei = KA +UA = 0 + mgR = 0.200 kg( ) 9.80 m/s2( ) 0.300 m( )
= 0.588 J
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  At   B ,  

   Ef = KB + UB = 0.225 J + 0 

  The decrease in mechanical energy is equal to the increase in 
internal energy. 

    
  Emech, i + ΔEint = Emech, f

 

   The energy transformed is 

   
  
ΔEint = −ΔEmech = Emech, i −Emech, f = 0.588 J − 0.225 J = 0.363 J   

 (c)  No.  

 (d) 

  

It is possible to find an effective coefficient of friction, but
not the actual value of µ  since n and f  vary with position.

 

P8.45 Taking y = 0 at ground level, and using conservation of energy from 
when the boy starts from rest (vi = 0) at the top of the slide (yi = H) to 
the instant he leaves the lower end (yf = h) of the frictionless slide at 
speed v, where his velocity is horizontal (vxf = v, vyf = 0), we have 

   
  
E0 = Etop →

1
2

mv2 + mgh = 0 + mgH   

 or    v
2 = 2g H − h( )    [1] 

 Considering his flight as a projectile after leaving the end of the slide,  
   

  
Δy = vyit +

1
2

ayt
2

 

 gives the time to drop distance h to the ground as 

   
  
−h = 0 +

1
2

−g( )t2  or 
  
t =

2h
g

 

 The horizontal distance traveled (at constant horizontal velocity) 
during this time is d, so 

   
  
d = vt = v

2h
g

 and 
  
v = d

g
2h

=
gd2

2h
 

 Substituting this expression for v into equation [1] above gives 

   
  

gd2

2h
= 2g H − h( )   or 

  
H = h +

d2

4h
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P8.46 (a) Mechanical energy is conserved in the two blocks-Earth system: 

    

  

m2 gy = 1
2

(m1 + m2 )v2

v = 2m2 gy
m1 + m2

⎡

⎣
⎢

⎤

⎦
⎥

1/2

= 2(1.90 kg)(9.80 m/s2 )(0.900 m)
5.40 kg

⎡

⎣
⎢

⎤

⎦
⎥

1/2

  = 2.49 m/s

 

 (b) For the 3.50-kg block from when the string goes slack until just 
before the block hits the floor, conservation of energy gives 

    

  

1
2

(m2 )v2 + m2 gy =
1
2

(m2 )vd
2

vd = 2gy + v2⎡⎣ ⎤⎦
1/2

= 2(9.80 m/s2 )(1.20 m) + (2.49 m/s)2⎡⎣ ⎤⎦
1/2

   = 5.45 m/s

 

 (c) The 3.50-kg block takes this time in flight to the floor: from y = 
(1/2)gt2 we have t = [2(1.2)/9.8]1/2 = 0.495 s. Its horizontal 
component of displacement at impact is then  

    x = vd t = (2.49 m/s)(0.495 s) = 
 
1.23 m  

 (d)  No.  

 (e) 

  

Some of the kinetic energy of m2  is transferred away as sound
and some is transformed to internal energy in m1  and the floor.

 

P8.47 (a) Given m = 4.00 kg and x = t + 2.0t3, we find the velocity by 
differentiating: 

    
  
v =

dx
dt

=
d
dt

t + 2t3( ) = 1 + 6t2  

  Then the kinetic energy from its definition is 
   

  
K = 1

2
mv2 = 1

2
(4.00) 1+ 6t2( )2 = 2 + 24t2 + 72t4

 

 where K is in J and t is in s. 

 (b) Acceleration is the measure of how fast velocity is changing: 
    

  
a = dv

dt = d 
dt 1 + 6t2( ) = 12t

 

   where a is in m/s2 and t is in s. 

  Newton’s second law gives the total force exerted on the particle 

2.49 
m
/
s 
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by the rest of the universe: 

     
  F = ma = 4.00 kg( )∑ 12t( ) = 48t

  

    where F is in N and t is in s.   

 (c) Power is how fast work is done to increase the object’s kinetic 
energy: 

    

  
P = dW

dt
= dK

dt
= d

dt
2.00 + 24t2 + 72t4( ) = 48t + 288t3

  

  where P is in W [watts] and t is in s. 

  Alternatively, we could use P = Fv = 48t(1.00 + 6.0t2). 

 (d) The work-kinetic energy theorem  ΔK = ∑W  lets us find the work 
done on the object between ti = 0 and tf = 2.00 s. At ti = 0 we have 
Ki = 2.00 J. At tf = 2.00 s, suppressing units, 

    Kf = [2 + 24(2.00 s)2 + 72(2.00 s)4] = 1250 J 

   Therefore the work input is  
    

  
W = K f − Ki = 1 248 J = 1.25× 103  J

  

  Alternatively, we could start from 

   
  
W = Pdt

ti

t f∫ = 48t + 288t3( )
0

2 s

∫ dt  

P8.48 The distance traveled by the ball from the top of the arc to the bottom 
is πR. The change in internal energy of the system due to the 
nonconservative force, the force exerted by the pitcher, is 

     ΔE = Fdcos0° = F πR( )  

 We shall assign the gravitational energy of the ball-Earth system to be 
zero with the ball at the bottom of the arc. 

 Then 

    
  
ΔEmech =

1
2

mv f
2 −

1
2

mvi
2 + mgy f − mgyi  

 becomes 

    

  

1
2

mv f
2 =

1
2

mvi
2 + mgyi + F πR( ) =

1
2

mvi
2 + mg2R + F πR( )

1
2

mv f
2 =

1
2

mvi
2 + 2mg + πF( )R
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 Solve for R, which is the length of her arms. 

    

  

R =

1
2

mv f
2 − 1

2
mvi

2

2mg + πF
= m

v f
2 − vi

2

4mg + 2πF

R = 0.180 kg( ) 25.0 m/s( )2 − 0
4 0.180 kg( ) g + 2π 12.0 N( ) = 1.36 m

 

 

 

We find that her arms would need to be 1.36 m long to perform this
task. This is significantly longer than the human arm.

 

P8.49 (a) 
 

K + Ug( )
A

= K + Ug( )
B

 

  
  
0 + mgyA =

1
2

mvB
2 + 0  

  
  
vB = 2gyA = 2 9.80 m/s2( )6.30 m = 11.1 m/s

 

 (b) 
  

K + Ug + Uchemical( )
B

= K + Ug( )
D

 

   

  

1
2

mvB
2 + Uchemical =

1
2

mvD
2 + mg yD − yB( )

Uchemical =
1
2

mvD
2 −

1
2

mvB
2 + mg yD − yB( )

            =
1
2

m vD
2 − vB

2( ) + mg yD − yB( )

Uchemical =
1
2

76.0 kg( ) 5.14 m/s( )2 − 11.1 m/s( )2⎡⎣ ⎤⎦

                                              + 76.0 kg( ) 9.80 m/s2( ) 6.30 m( )

 

   
  
Uchemical = 1.00 × 103  J

 

 (c) 
 

K + Ug( )
D

= K + Ug( )
E

 where E is the apex of his motion: 

  
  

1
2

mvD
2 + 0 = 0 + mg yE − yD( )  

  

  
yE − yD =

vD
2

2g
=

5.14 m/s( )2

2 9.80 m/s2( ) = 1.35 m
 

P8.50 (a) Simplified, the equation is  

   0 = (9700 N/m)x2 – (450.8 N)x – 1395 N ⋅ m  
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  Then 

    

  

x = −b ± b2 − 4ac
2a

=
450.8 N ± 450.8 N( )2 − 4 9700 N/m( ) −1395 N ⋅m( )

2 9700 N/m( )

= 450.8 N ± 7370 N
19 400 N/m

= 0.403 m or − 0.357 m

 

 (b) 

 

From a perch at a height of 2.80 m above the top of a pile of
mattresses, a 46.0-kg child jumps upward at 2.40 m/s. The
mattresses behave as a linear spring with force constant
19.4 kN/m. Find the maximum amount by which they are
compressed when the child lands on them.

 

 (c)  0.023 2 m.  

 (d) 

 

This result is the distance by which the mattresses compress if
the child just stands on them. It is the location of the equilibrium
position of the oscillator.

 

P8.51 (a) The total external work done on the system of Jonathan-bicycle is 

   

  

W = ΔK =
1
2

mv f
2 −

1
2

mvi
2

=
1
2

(85.0 kg) (1.00 m/s)2 − (6.00 m/s)2⎡⎣ ⎤⎦

= −1 490 J

 

 (b) Gravity does work on the Jonathan-bicycle system, and the 
potential (chemical) energy stored in Jonathan’s body is 
transformed into kinetic energy: 

   

  

ΔK + ΔUchem = Wg

ΔUchem = Wg − ΔK = −mgh − ΔK

ΔUchem = − 85.0 kg( ) g 7.30 m( ) − ΔK = −6 080 − 1 490

= −7  570 J
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 (c) Jonathan does work on the bicycle (and his mass). Treat his work 
as coming from outside the bicycle-Jonathan’s mass system: 

   

  

ΔK + ΔUg = Wj

Wf = ΔK + mgh = −1 490 J + 6 080 J = 4 590 J

 

P8.52 (a) The total external work done on the system of Jonathan-bicycle is 

   
  
W = ΔK =

1
2

mv f
2 −

1
2

mvi
2  

 (b) Gravity does work on the Jonathan-bicycle system, and the 
potential (chemical) energy stored in Jonathan’s body is 
transformed into kinetic energy: 

   

  

ΔK + ΔUchem = Wg

ΔUchem = Wg − ΔK = −mgh −
1
2

mv f
2 −

1
2

mvi
2⎛

⎝⎜
⎞
⎠⎟

 

 (c) Jonathan does work on the bicycle (and his mass). Treat his work 
as coming from outside the bicycle-Jonathan’s mass system: 

   

  

ΔK + ΔUg = Wj

Wj = ΔK + mgh =
1
2

mv f
2 −

1
2

mvi
2 + mgh

 

P8.53 (a) The block-spring-surface system is isolated with a 
nonconservative force acting. Therefore, Equation 8.2 becomes 

     ΔK  + ΔU  + ΔEint  = 0  

   
  

1
2 mv2  − 0( ) +  1

2 kx2  −  1
2 kxi

2( ) +  fk xi  − x( ) = 0  

To find the maximum speed, differentiate the equation with 
respect to x: 

   
  
mv

dv
dx

 + kx −  fk  = 0  

  Now set dv/dx = 0: 

   
  
kx −  fk  = 0 →   x = 

fk

k
 = 

4.0 N
1.0  ×  103  N/m

 = 4.0 × 10−3  m  

This is the compression distance of the spring, so the position of 

the block relative to x = 0 is 
  
x = −4.0 × 10−3 m.  
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 (b) By the same approach, 

   
  
kx −  fk  = 0 →   x = 

fk

k
 = 

10.0 N
1.0  ×  103  N/m

 = 1.0 × 10−2  m  

  so the position of the block is 
  
x = −1.0 × 10−2 m.  

P8.54 
  
PΔt = W = ΔK =

Δm( )v2

2
 

 The density is 
  
ρ =

Δm
volume

=
Δm
AΔx

 

 Substituting this into the first equation and 

solving for P, since 
 

Δx
Δt

= v  for a constant speed, we get 

   
  
P =

ρAv3

2
 

 Also, since P = Fv,  

   
  

F =
ρAv2

2
 

 

  

Our model predicts the same proportionalities as the empirical
equation, and gives D = 1 for the drag coefficient. Air actually
slips around the moving object, instead of accumulating in front
of it. For this reason, the drag coefficient is not necessarily unity.
It is typically less than one for a streamlined object and can be
greater than one if the airflow around the object is complicated.

 

P8.55 
  
P =

1
2

Dρπr2v3  

 (a) We use 1.20 kg/m3 for the density of air, and calculate 
    

  

Pa = 1
2

1( ) 1.20 kg/m3( )π 1.50 m( )2 8.00 m/s( )3

= 2.17 × 103  W

 

 (b) We solve part (b) by proportion: 

    
  

Pb

Pa

=
vb

3

va
3 =

24 m/s
8 m/s

⎛
⎝⎜

⎞
⎠⎟

3

 = 33 = 27  

    
  Pb = 27 2.17 × 103  W( ) = 5.86 × 104  W = 58.6 kW  

ANS. FIG. P8.54 
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P8.56 (a) In Example 8.3, m = 35.0 g, yA = –0.120 m, yB = 0, and k = 958 N/m. 
Friction fk = 2.00 N acts over distance d = 0.600 m. For the ball-

spring-Earth system, Ki = 0, Ugi = mgyA, 
  
Usi = 1

2
kx2 ,  where 

 x = yA ; Kf = 0, Ugf = mgyC, and Usf = 0. 

    

  

ΔK + ΔU = − fkd

0 + mgyC − mgyA( ) + 0 −
1
2

kx2⎛
⎝⎜

⎞
⎠⎟ = − fkd

mgyC = mgyA +
1
2

kx2 − fkd

 

    

  

yC = yA +

1
2

kx2 − fkd

mg

= −0.120 +

1
2

958 N/m( ) 0.120 m( )2 − 2.00 N( ) 0.600 m( )
0.035 kg( ) g

= 16.5 m

 

 (b) The ball-spring-Earth system is not isolated as the popgun is 
loaded.  In addition, as the ball travels up the barrel, a 
nonconservative force acts within the system. The system is 
isolated after the ball leaves the barrel. 

   

 

 ANS. FIG. P8.56 
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P8.57 (a) To calculate the change in kinetic energy, we integrate the 
expression for a as a function of time to obtain the car’s velocity: 

    

  

v = a dt
0

t

∫ = 1.16t − 0.210t2 + 0.240t3( )dt
0

t

∫

= 1.16
t2

2
− 0.210

t3

3
+ 0.240

t4

4 0

t

= 0.580t2 − 0.070t3 + 0.060t4

 

  At t = 0, vi = 0. At t = 2.5 s, 
    

  

v f = 0.580 m/s3( ) 2.50 s( )2 − 0.070 m/s4( ) 2.50 s( )3

                           + 0.060 m/s5( ) 2.50 s( )4 = 4.88 m/s

 

  The change in kinetic energy during this interval is then 
  

  

Ki + W = K f

0 + W = 1
2

mv f
2 = 1

2
1 160 kg( ) 4.88 m/s( )2 = 1.38× 104  J

 

 (b) The road does work on the car when the engine turns the wheels 
and the car moves. The engine and the road together transform 
chemical potential energy in the gasoline into kinetic energy of 
the car. 

   

  
P =

W
Δt

=
1.38 × 104  J

2.50 s

 

   
  
P = 5.52 × 103 W

 

 (c) 

 

The value in (b) represents only energy that leaves the engine
and is transformed to kinetic energy of the car. Additional
energy leaves the engine by sound and heat. More energy leaves
the engine to do work against friction forces and air resistance.

 

P8.58 At the bottom of the circle, the initial speed of the coaster is 22.0 m/s. 
As the coaster travels up the circle, it will slow down. At the top of the 
track, the centripetal acceleration must be at least that of gravity, g, to 
remain on the track. Apply conservation of energy to the roller coaster-
Earth system to find the speed of the coaster at the top of the circle so 
that we may find the centripetal acceleration of the coaster. 

   

  

ΔK + ΔU = 0
1
2

mv2
top −

1
2

mv2
bottom

⎛
⎝⎜

⎞
⎠⎟ + mgytop − mgybottom( ) = 0
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1
2

mv2
top −

1
2

mv2
bottom

⎛
⎝⎜

⎞
⎠⎟ + mg2R − 0( ) = 0→ v2

top = v2
bottom − 4gR

v2
top = (22.0 m/s)2 − 4g(12.0 m) = 13.6 m2/s2

 

 For this speed, the centripetal acceleration is 
   

  
ac =

v2
top

R
=

13.6 m2/s2

12.0 m
= 1.13 m/s2

 

 

 

The centripetal acceleration of each passenger as the coaster passes

over the top of the circle is 1.13 m/s2. Since this is less than the 
acceleration due to gravity, the unrestrained passengers will fall out 
of the cars!

 

P8.59 (a) The energy stored in the spring is the elastic potential energy,  

U = 
 

1
2

kx2, where k = 850 N/m. At x = 6.00 cm,  

   U = 
 

1
2

kx2 = 
 

1
2

(850 N/m)(0.0600 m)2 = 
 
1.53 J  

  At the equilibrium position, x = 0, 
  
U = 0 J . 

 (b) Applying energy conservation to the block-spring system: 
   

  

ΔK + ΔU = 0
1
2

mv f
2 −

1
2

mvi
2⎛

⎝⎜
⎞
⎠⎟ + U f −Ui( ) = 0→

1
2

mv f
2 − 0⎛

⎝⎜
⎞
⎠⎟ = − U f −Ui( )

1
2

mv f
2 = Ui −U f

 

  because the block is released from rest. For xf = 0, U = 0, and 

   

  

1
2

mv f
2 = Ui −U f → v f =

2 Ui −U f( )
m

v f =
2(1.53 J)
1.00 kg

v f = 1.75 m/s

 

 (c) From (b) above, for xf = xi/2 = 3.00 cm,  

   U = 
 

1
2

kx2 = 
 

1
2

(850 N/m)(0.0300 m)2 = 0.383 J 
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  and 

   

  

1
2

mv f
2 = Ui −U f → v f =

2 Ui −U f( )
m

v f =
2(1.53 J − 0.383 J)

1.00 kg
=

2(1.15 J)
1.00 kg

v f = 1.51 m/s

 

P8.60 (a) The suggested equation  PΔt = bwd  implies all of the following 
cases: 

  (1) 
  
PΔt = b

w
2

⎛
⎝⎜

⎞
⎠⎟ 2d( )  

  (2) 
  
P

Δt
2

⎛
⎝⎜

⎞
⎠⎟ = b

w
2

⎛
⎝⎜

⎞
⎠⎟ d  

  (3) 
  
P

Δt
2

⎛
⎝⎜

⎞
⎠⎟ = bw

d
2

⎛
⎝⎜

⎞
⎠⎟

 and 

  (4) 
  

P
2

⎛
⎝⎜

⎞
⎠⎟ Δt = b

w
2

⎛
⎝⎜

⎞
⎠⎟ d  

  These are all of the proportionalities Aristotle lists. 

 

ANS FIG. P8.60 

 (b) 

  

For one example, consider a horizontal force F  pushing an object
of weight w at constant velocity across a horizontal floor with
which the object has coefficient of friction µk .

 

     

F∑ = m


a  implies that 

    +n – w = 0  and  F –  µkn = 0 

  so that F = µkw. 

  As the object moves a distance d, the agent exerting the force does 
work 

      W = Fdcosθ = Fdcos0° = µkwd   
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   and puts out power  
 
P =

W
Δt

 

  This yields the equation  PΔt = µkwd  which represents Aristotle’s 
theory with   b = µk .   

  Our theory is more general than Aristotle’s. Ours can also 
describe accelerated motion. 

P8.61  k = 2.50 × 104 N/m, m = 25.0 kg 

 xA = –0.100 m, 
  
Ug x=0

= Us x=0
= 0  

 (a) At point A, the total energy of the child-pogo-stick-Earth system 
is given by  

   

  
Emech = KA +UgA +Us    →    Emech = 0 + mgxA + 1

2
kxA

2
  

   

  

Emech = 25.0 kg( ) 9.80 m/s2( ) −0.100 m( )

+
1
2

2.50 × 104  N/m( ) −0.100 m( )2

Emech = −24.5 J + 125 J = 100 J

 

 (b) Since only conservative forces are involved, the total energy of 
the child-pogo-stick-Earth system at point C is the same as that at 
point A. 

     KC + UgC + UsC = KA + UgA + UsA  
    

  0 + 25.0 kg( ) 9.80 m/s2( )xC + 0 = 0 − 24.5 J + 125 J
 

    
  
xC = 0.410 m  

 (c)  KB + UgB + UsB = KA + UgA + UsA  

  
  

1
2

25.0 kg( )vB
2 + 0 + 0 = 0 + −24.5 J( ) + 125 J  

  
  
vB = 2.84 m/s  

 (d) The energy of the system for configurations in which the spring is 
compressed is 

     

  
E = K  +  1

2
kx2 − mgx

 

  where x is the compression distance of the spring.  
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  To find the position x for which the kinetic energy is a maximum, 
solve this expression for K, differentiate with respect to x, and set 
the result equal to zero: 

    

  

K  = E −  1
2

kx2 + mgx

dK
dx

 = 0 − kx + mg  = 0    →   x = mg
k

 

  Substitute numerical values: 
    

  
x = 

25.0 kg( ) 9.80 m/s2( )
2.50 × 104  N/m

 = 0.009 8 m = 0.98 cm
 

  Because this is the value for the compression distance of the 
spring, this position is 0.98 cm below x = 0. 

      K = Kmax  at 
  
x = −9.80 mm  

 (e) 
  
Kmax = KA + UgA −Ug x=−9.80 mm( ) + UsA −Us x=−9.80 mm( )  

  or 
    

  

1
2

25.0 kg( )vmax
2

              = 25.0 kg( ) 9.80 m/s2( ) −0.100 m( ) − −0.009 8 m( )[ ]

 

   
 
+

1
2

2.50 × 104  N/m( ) −0.100 m( )2 − −0.009 8 m( )2⎡
⎣

⎤
⎦  

  yielding 
  
vmax = 2.85 m/s  

P8.62 (a) Between the second and the third picture,   ΔEmech = ΔK + ΔU:  

   
  
−µmgd = −

1
2

mvi
2 +

1
2

kd2  

   

  

1
2

50.0 N/m( )d2 + 0.250 1.00 kg( ) 9.80 m/s2( )d

                                   −
1
2

1.00 kg( ) 3.00 m/s( )2 = 0

d =
−2.45 ± 21.35[ ] N

50.0 N/m
= 0.378 m

 

 (b) Between picture two and picture four,   ΔEmech = ΔK + ΔU:  
   

  
−µmg 2d( ) = 1

2
mv f

2 − 1
2

mvi
2
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  which gives 
   

  

v f = 3.00 m/s( )2 − 2
1.00 kg( ) 2.45 N( ) 2( ) 0.378 m( )

 = 2.30 m/s

 

 (c) For the motion from picture two to picture five in the figure 
below,   ΔEmech = ΔK + ΔU:  

   

  

−µmg D + 2d( ) =
1
2

mv f
2 −

1
2

mvi
2

D =
1.00 kg( ) 3.00 m/s( )2

2 0.250( ) 1.00 kg( ) 9.80 m/s2( ) − 2 0.378 m( ) = 1.08 m

 

 

ANS. FIG P8.62 

P8.63 The easiest way to solve this problem about a chain-reaction process is 
by considering the energy changes experienced by the block between 
the point of release (initial) and the point of full compression of the 
spring (final). Recall that the change in potential energy (gravitational 
and elastic) plus the change in kinetic energy must equal the work 
done on the block by non-conservative forces. We choose the 
gravitational potential energy to be zero along the flat portion of the 
track. 

 

ANS. FIG. P8.63 
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ANS. FIG. P8.64 

 There is zero spring potential energy in situation   A  and zero 

gravitational potential energy in situation   D . Putting the energy 
equation into symbols: 

   KD − KA − U gA + UsD = – fkdBC 

 Expanding into specific variables: 
   

  
0 – 0 – mgyA + 1

2
kxs

2 = – fkdBC

 

  The friction force is   fk = µkmg,  so  

    
  
mgyA − 1

2
kx2 = µkmgd  

  Solving for the unknown variable μk gives  
    

  

µk = yA

d − kx2

2mgd

= 3.00 m
6.00 m − (2 250 N/m)(0.300 m)2

2(10.0 kg) 9.80 m s2( )(6.00 m)
= 0.328

 

P8.64 We choose the zero configuration of potential  
energy for the 30.0-kg block to be at the  
unstretched position of the spring, and for  
the 20.0-kg block to be at its lowest point on  
the incline, just before the system is released  
from rest.  From conservation of energy, we 
have  

    
K + U( )i = K + U( ) f  

  

  

0 + 30.0 kg( ) 9.80 m/s2( ) 0.200 m( ) +
1
2

250 N/m( ) 0.200 m( )2

=
1
2

20.0 kg + 30.0 kg( )v2

                               + 20.0 kg( ) 9.80 m/s2( ) 0.200 m( )sin 40.0°

 

  

  

58.8 J + 5.00 J = 25.0 kg( )v2 + 25.2 J

v = 1.24 m/s
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P8.65 (a) For the isolated spring-block system, 

   

  

ΔK  + ΔU  = 0
1
2

mv2  − 0⎛
⎝⎜

⎞
⎠⎟  +  0 −  1

2
kx2⎛

⎝⎜
⎞
⎠⎟  = 0

x =  m
k

v =  0.500 kg
450 N/m

  12.0 m/s( )

 

   
  
x = 0.400 m

 

 (b) 

  

ΔK  + ΔU  + ΔEint = 0
1
2

mv f
2 − 1

2
mvi

2⎛
⎝⎜

⎞
⎠⎟  +  2mgR − 0( ) +  fk πR( ) = 0

 

 

  

v f  =  vi
2  − 4gR − 

2π fkR
m

     =  12.0 m/s( )2  − 4 9.80 m/s2( ) 1.00 m( ) − 2π 7.00 N( ) 1.00 m( )
0.500 kg

 

  
  
v f = 4.10 m/s

 

 (c) Does the block fall off at or before the top of the track? The block 
falls if ac < g. 

    

  
ac =

vT
2

R
=

4.10 m/s( )2

1.00 m
= 16.8 m/s2

 

  Therefore ac > g and the 
 

block stays on the track .  

P8.66  m = mass of pumpkin 

 R = radius of silo top 

  
  

Fr∑ = mar ⇒ n − mg cosθ = −m
v2

R
 

 When the pumpkin first loses contact 
with the surface, n = 0.  

 Thus, at the point where it leaves the surface:   v
2 = Rg cosθ.  

 Choose Ug = 0 in the θ = 90.0° plane. Then applying conservation of 
energy for the pumpkin-Earth system between the starting point and 
the point where the pumpkin leaves the surface gives 

   

  

K f + Ugf = Ki + Ugi

1
2

mv2 + mgRcosθ = 0 + mgR
 

ANS. FIG. P8.66 
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 Using the result from the force analysis, this becomes 

   
  

1
2

mRg cosθ + mgR cosθ = mgR , which reduces to 

   
 
cosθ =

2
3

, and gives 
 
θ = cos−1 2 3( ) = 48.2°  

 as the angle at which the pumpkin will lose contact with the surface. 

P8.67 Convert the speed to metric units: 
   

  
v =  100 km/h( ) 1 000 m

1 km
⎛
⎝⎜

⎞
⎠⎟

1 h
3 600 s

⎛
⎝⎜

⎞
⎠⎟  = 27.8 m/s

 

 Write Equation 8.2 for this situation, treating the car and surrounding 
air as an isolated system with a nonconservative force acting: 

     ΔK + ΔUgrav + ΔUfuel + ΔEint = 0  

 The power of the engine is a measure of how fast it can convert 
chemical potential energy in the fuel to other forms. The magnitude of 
the change in energy to other forms is equal to the negative of the 
change in potential energy in the fuel:   ΔEother forms = −ΔUfuel .  Therefore, 
if the car moves a distance d along the hill, 

   

  

P = − ΔUfuel

Δt
 = −

−ΔK  − ΔUgrav  − ΔEint( )
Δt

    = 
0 +  mgdsin 3.2° − 0( ) +  1

2
DρAv2d

Δt

    = mgvsin 3.2° +  1
2

DρAv3

 

 where we have recognized   d/Δt  as the speed v of the car. Substituting 
numerical values, 

   

  

P =  1 500 kg( ) 9.80 m/s2( ) 27.8 m/s( )sin 3.2° 

                +  1
2

0.330( ) 1.20 kg/m3( ) 2.50 m2( ) 27.8 m/s( )3

 

   
  
P = 33.4 kW = 44.8 hp

 

 The actual power will be larger than this because additional energy 
coming from the engine is used to do work against internal friction in 
the moving parts of the car and rolling friction with the road. In 
addition, some energy from the engine is radiated away by sound. 
Finally, some of the energy from the fuel raises the internal energy of 
the engine, and energy leaves the warm engine by heat into the cooler 
air. 
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P8.68 (a) Energy is conserved in the swing of the pendulum, and the 
stationary peg does no work. So the ball’s speed does not change 
when the string hits or leaves the peg, and the ball swings equally 
high on both sides. 

 (b) The ball will swing in a circle of radius R = (L – d) about the peg. 
If the ball is to travel in the circle, the minimum centripetal 
acceleration at the top of the circle must be that of gravity: 

    

  

mv2

R
= g → v2 = g(L − d)

 

When the ball is released from rest, Ui = mgL, and when it is at the 
top of the circle, Ui = mg2(L – d), where height is measured from 
the bottom of the swing. By energy conservation, 

    
  
mgL = mg2 L − d( ) +

1
2

mv2  

  From this and the condition on v2 we find 
  

d =
3L
5

. 

P8.69 If the spring is just barely able to lift the lower block from the table, the 
spring lifts it through no noticeable distance, but exerts on the block a 
force equal to its weight Mg. The extension of the spring, from 

    

Fs = kx,  

must be Mg/k. Between an initial point at release and a final point 
when the moving block first comes to rest, we have 

    Ki + Ugi + Usi = K f + Ugf + Usf  

   
  
0 + mg −

4mg
k

⎛
⎝⎜

⎞
⎠⎟ +

1
2

k
4mg

k
⎛
⎝⎜

⎞
⎠⎟

2

= 0 + mg
Mg
k

⎛
⎝⎜

⎞
⎠⎟ +

1
2

k
Mg
k

⎛
⎝⎜

⎞
⎠⎟

2

 

   

  

−
4m2 g2

k
+

8m2 g2

k
=

mMg2

k
+

M2 g2

2k

4m2 = mM +
M2

2
M2

2
+ mM − 4m2 = 0

M =
−m ± m2 − 4 1

2( ) −4m2( )
2 1

2( ) = −m ± 9m2

 

 Only a positive mass is physical, so we take 
  
M = m 3 − 1( ) = 2m .  
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ANS. FIG. P8.70 

P8.70 The force needed to hang on is equal to the 
force F the trapeze bar exerts on the 
performer. From the free-body diagram for 
the performer’s body, as shown, 

   
   
F − mg cosθ = m

v2


 

 or  
   
F = mg cosθ + m

v2


 

 At the bottom of the swing, θ = 0°, so    

   
   
F = mg + m

v2


 

 The performer cannot sustain a tension of more than 1.80mg. What is 
the force F at the bottom of the swing? To find out, apply conservation 
of mechanical energy of the performer-Earth system as the performer 
moves between the starting point and the bottom: 

  

   
mg 1− cos 60.0°( ) =

1
2

mv2 →
mv2


= 2mg 1− cos 60.0°( ) = mg

 

 Hence, 
   
F = mg + m

v2


= mg + mg = 2mg  at the bottom. 

 
 

The tension at the bottom is greater than the performer can
withstand; therefore the situation is impossible.

 

*P8.71 We first determine the energy output of the runner: 

   
 
= 0.600 J kg ⋅ step( ) 60.0 kg( ) 1 step

1.50 m
⎛
⎝

⎞
⎠ = 24.0 J m  

 From this we calculate the force exerted by the runner per step: 
   

  F = 24.0 J m( ) 1 N ⋅m J( ) = 24.0 N  

 Then, from the definition of power, P = Fv, we obtain 
   

  
v = P

F
= 70.0 W

24.0 N
= 2.92 m s
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P8.72 (a) At the top of the loop the car and 
riders are in free fall: 

      Fy∑ = may :   

    
  
mg  down =

mv2

R
 down  

    
 v = Rg  

  Energy of the car-riders-Earth 
system is conserved between 
release and top of loop: 

    
  Ki + Ugi = K f + Ugf :

 

    
  
0 + mgh =

1
2

mv2 + mg 2R( )  

    

  

gh =
1
2

Rg + g 2R( )

h =
5R
2

 

 (b) Let h now represent the height 

  ≥ 2.5 R  of the release point. At 
the bottom of the loop we have 

    
  
mgh =

1
2

mvb
2   

  or    vb
2 = 2gh  

  then, from   Fy∑ = may :   

    
  
nb − mg =

mvb
2

R
up( )  

    

  
nb = mg +

m 2gh( )
R

 

  At the top of the loop, 

    
  
mgh =

1
2

mvt
2 + mg 2R( )  

      vt
2 = 2gh − 4gR  

ANS. FIG. P8.72 
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  from   Fy∑ = may :   

    
  
−nt − mg = −

mvt
2

R
 

    

  

nt = −mg +
m
R

2gh − 4gR( )

nt =
m 2gh( )

R
− 5mg

 

  Then the normal force at the bottom is larger by 

     
  
nb − nt = mg +

m 2gh( )
R

−
m 2gh( )

R
+ 5mg = 6mg  

Note that this is the same result we will obtain for the difference in 
the tension in the string at the top and bottom of a vertical circle in 
Problem 73. 

P8.73 Applying Newton’s second law at the bottom (b) 
and top (t) of the circle gives 

  
  
Tb − mg =

mvb
2

R
  and  

  
−Tt − mg = −

mvt
2

R
 

 Adding these gives 

  
  
Tb = Tt + 2mg +

m vb
2 − vt

2( )
R

 

 Also, energy must be conserved and   ΔU + ΔK = 0.  

 So,    
  

m vb
2 − vt

2( )
2

+ 0 − 2mgR( ) = 0     and    
  

m vb
2 − vt

2( )
R

= 4mg  

 Substituting into the above equation gives 
  

Tb = Tt + 6mg . 

P8.74 (a)  No.  The system of the airplane and the surrounding air is 
nonisolated. There are two forces acting on the plane that move 
through displacements, the thrust due to the engine (acting across 
the boundary of the system) and a resistive force due to the air 
(acting within the system). Since the air resistance force is 
nonconservative, some of the energy in the system is transformed 
to internal energy in the air and the surface of the airplane.  
Therefore, the change in kinetic energy of the plane is less than 
the positive work done by the engine thrust. So, 

 
mechanical energy is not conserved in this case.  

ANS. FIG. P8.73 
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 (b) Since the plane is in level flight,  Ug f = Ugi  and the conservation of 
energy for nonisolated systems reduces to  

    
  W∑ other forces = W = ΔK + ΔU + ΔEint

 

  or   

      W = Wthrust = K f − Ki − fs  

    

  
F(cos0°)s =

1
2

mv f
2 −

1
2

mvi
2 − f (cos180°)s

 

  This gives 
    

  

v f = vi
2 +

2 F − f( )s
m

= 60.0 m/s( )2 +
2 7.50 − 4.00( ) × 104  N⎡⎣ ⎤⎦ 500 m( )

1.50 × 104  kg

 

   
  
v f = 77.0 m/s

 

P8.75 (a) As at the end of the process analyzed in Example 8.8, we begin 
with a 0.800-kg block at rest on the end of a spring with stiffness 
constant 50.0 N/m, compressed 0.092 4 m. The energy in the 
spring is (1/2)(50 N/m)(0.092 4 m)2 = 0.214 J. To push the block 
back to the unstressed spring position would require work 
against friction of magnitude 3.92 N (0.092 4 m) = 0.362 J. 

  

  

Because 0.214 J is less than 0.362 J, the spring cannot push the
object back to x = 0.

 

 (b) The block approaches the spring with energy  
   

  

1
2

mv2 = 1
2

0.800 kg( ) 1.20 m/s( )2 = 0.576 J
  

  It travels against friction by equal distances in compressing the 
spring and in being pushed back out, so half of the initial kinetic 
energy is transformed to internal energy in its motion to the right 
and the rest in its motion to the left. The spring must possess one-
half of this energy at its maximum compression: 

   

  

0.576 J
2

= 1
2

50.0 N/m( )x2
  

  so x = 0.107 m 
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ANS. FIG. P8.77 

  For the compression process we have the conservation of energy 
equation 

      0.576 J + µk 7.84 N 0.107 m( )cos 180° = 0.288 J  

    so   µk = 0.288 J/0.841 J = 0.342  

  As a check, the decompression process is described by 

      0.288 J + µk 7.84 N 0.107 m( ) cos 180° = 0  

  which gives the same answer for the coefficient of friction. 

*P8.76 As it moves at constant speed, the bicycle is in equilibrium. The 
forward friction force is equal in magnitude to the air resistance, which 
we write as   av2 ,  where a is a proportionality constant. The exercising 
woman exerts the friction force on the ground; by Newton’s third law, 
it is this same magnitude again. The woman’s power output is  
P = Fv = av3 = ch, where c is another constant and h is her heart rate. We 
are given a(22 km/h)3 = c(90 beats/min). For her minimum heart rate 

we have   avmin
3 = c 136 beats min( ) . By division 

  

vmin

22 km h
⎛
⎝⎜

⎞
⎠⎟

3

= 136
90

.  

   
  
vmin = 136

90( )1 3

22 km h( ) = 25.2 km h  

 Similarly, 
  
vmax = 166

90( )1 3

22 km h( ) = 27.0 km h . 

P8.77 (a) Conservation of energy for the sled-
rider-Earth system, between A and 
C: 

    Ki + Ugi = K f + Ugf  
   

  

1
2

m 2.50 m/s( )2

         + m 9.80 m/s2( ) 9.76 m( )

=
1
2

mvC
2 + 0

 

    
  
vC = 2.50 m/s( )2 + 2 9.80 m/s2( ) 9.76 m( ) = 14.1 m/s

 

 (b) Incorporating the loss of mechanical energy during the portion of 
the motion in the water, we have, for the entire motion between A 
and D (the rider’s stopping point), 

    
  Ki + Ugi − fkd = K f + Ugf :
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ANS. FIG. P8.77(c) 

ANS. FIG. P8.77(d) 

    

  

1
2

80.0 kg( ) 2.50 m/s( )2

              + 80.0 kg( ) 9.80 m/s2( ) 9.76 m( ) − fkd = 0 + 0

 

     − fkd = 7.90 × 103 J  

  The water exerts a friction force 
   

  
fk =

7.90 × 103  J
d

=
7.90 × 103  N ⋅m

50.0 m
= 158 N

 

  and also a normal force of 
    

  n = mg = 80.0 kg( ) 9.80 m/s2( ) = 784 N
 

  The magnitude of the water force is 

    
 

158 N( )2 + 784 N( )2 = 800 N  

 (c) The angle of the slide is 
    

 
θ = sin−1 9.76 m

54.3 m
⎛
⎝⎜

⎞
⎠⎟ = 10.4°

 

  For forces perpendicular to the track 
at B, 

      Fy∑ = may :    nB − mg cosθ = 0  

    
  
nB = 80.0 kg( ) 9.80 m/s2( )cos10.4° = 771 N  

 (d)   Fy∑ = may :   

    
  
+nC − mg =

mvC
2

r
 

    

  

nC = 80.0 kg( ) 9.80 m/s2( )
+

80.0 kg( ) 14.1 m/s( )2

20.0 m

nC = 1.57 × 103  N up

 

  The rider pays for the thrills of a giddy height at A, and a high 
speed and tremendous splash at C. As a bonus, he gets the quick 
change in direction and magnitude among the forces we found in 
parts (d), (b), and (c). 
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P8.78 (a) Maximum speed occurs after the needle leaves the spring, before 
it enters the body. We assume the needle is fired horizontally. 

 

 

 

ANS. FIG. P8.78(a) 
 

   
 Ki + Ui − fkd = K f + U f

 

   

  

0 + 1
2

kx2 − 0 = 1
2

mvmax
2 + 0

1
2

375 N m( ) 0.081 m( )2 = 1
2

0.005 6 kg( )vmax
2

2 1.23 J( )
0.005 6 kg

⎛
⎝⎜

⎞
⎠⎟

1 2

= vmax = 21.0 m s

 

 (b) The same energy of 1.23 J as in part (a) now becomes partly 
internal energy in the soft tissue, partly internal energy in the 
organ, and partly kinetic energy of the needle just before it runs 
into the stop. We write a conservation of energy equation to 
describe this process: 

 

 

vf

 
 

 ANS. FIG. P8.78(b) 
 

   

  

Ki + Ui − fk1d1 − fk 2d2 = K f + U f

0 + 1
2

kx2 − fk1d1 − fk 2d2 = 1
2

mv f
2 + 0

1.23 J − 7.60 N 0.024 m( ) − 9.20 N 0.035 m( ) = 1
2

0.005 6 kg( )v f
2

2 1.23 J − 0.182 J − 0.322 J( )
0.005 6 kg

⎛
⎝⎜

⎞
⎠⎟

1 2

= v f = 16.1 m s
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Challenge Problems 
P8.79 (a) Let m be the mass of the whole board. The portion on the rough 

surface has mass mx/L. The normal force supporting it is 
 

mxg
L

 

and the friction force is 
  

µkmgx
L

= ma.  Then  

   

  
a = µk gx

L
 opposite to the motion

 

 (b) In an incremental bit of forward motion dx, the kinetic energy 

converted into internal energy is 
  
fkdx =

µkmgx
L

dx.  The whole 

energy converted is 

   

  

1
2

mv2 =
µkmgx

L
dx

0

L

∫ =
µkmg

L
x2

2 0

L

=
µkmgL

2

v = µk gL

 

P8.80 (a) 
  
Ug = mgy = 64.0 kg( ) 9.80 m/s2( )y = 627 N( )y  

 (b) At the original height and at all heights above 65.0 m – 25.8 m = 
39.2 m, the cord is unstretched and 

  
Us = 0 . Below 39.2 m, the 

cord extension x is given by x = 39.2 m – y, so the elastic energy is  
   

  
Us =

1
2

kx2 =
1
2

81.0 N/m( ) 39.2 m − y( )2 .
 

 (c) For y > 39.2 m, 
  
Ug + Us = 627 N( )y  

  For   y ≤ 39.2 m,  
  

  

Ug + Us = 627 N( )y + 40.5 N/m 1 537 m2 − 78.4 m( )y + y2( )
= 40.5 N/m( )y2 − 2 550 N( )y + 62 200 J
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 (d) See the graph in ANS. FIG. P8.80(d) below. 

 

ANS. FIG. P8.80(d) 

 (e) At minimum height, the jumper has zero kinetic energy and the 
system has the same total energy as it had when the jumper was 
at his starting point.  Ki + Ui = K f + U f  becomes 

    
  627 N( ) 65.0 m( ) = 40.5 N/m( )y f

2 − 2 550 N( )y f + 62 200 J  

  Suppressing units, 
    

  

0 = 40.5y f
2 − 2 550y f + 21 500

y f = 10.0 m  the solution 52.9 m is unphysical[ ]

 

 (f) The total potential energy has a minimum, representing a 

 
stable equilibrium  position. To find it, we require 

  

dU
dy

= 0.   

Suppressing units, we get 
    

  

d
dy

40.5y2 − 2 550y + 62 200( ) = 0 = 81y − 2 550

y = 31.5 m

 

 (g) Maximum kinetic energy occurs at minimum potential energy. 
Between the takeoff point and this location, we have  

    Ki + Ui = K f + U f  
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  Suppressing units, 
   

  

0 + 40 800

       =
1
2

64.0( )vmax
2 + 40.5 31.5( )2 − 2 550 31.5( ) + 62 200

vmax =
2 40 800 − 22 200( )

64.0 kg
⎛

⎝⎜
⎞

⎠⎟

1 2

= 24.1 m/s

 

P8.81 The geometry reveals   D = Lsinθ + Lsinφ ,  

    50.0 m = 40.0 m sin 50° + sinφ( ) ,  φ = 28.9°  

 (a) From takeoff to landing for the Jane-Earth system: 
    

  

ΔK  + ΔU  + ΔEint  = 0

0 −  1
2

mvi
2⎛

⎝⎜
⎞
⎠⎟  +  mg −Lcosφ( ) − mg −Lcosθ( )⎡⎣ ⎤⎦ + FD = 0

 

    

  

1
2

mvi
2 + mg −Lcosθ( ) + FD −1( ) = 0 + mg −Lcosφ( )

1
2

50.0 kg( ) vi
2 + 50.0 kg( ) 9.80 m/s2( )(−40.0 m)cos50°

      − 110 N( ) 50.0 m( )
                    = 50.0 kg( ) 9.80 m/s2( )(−40.0 m)cos28.9°

1
2

50.0 kg( )vi
2 − 1.26 × 104  J − 5.5 × 103  J = −1.72 × 104  J

vi =
2 947 J( )
50.0 kg

= 6.15 m/s

 

 (b) For the swing back: 
   

  

ΔK  + ΔU  = ΔEmech

0 − 1
2

mvi
2⎛

⎝⎜
⎞
⎠⎟  +  mg −Lcosθ( ) − mg −Lcosφ( )⎡⎣ ⎤⎦ = FD

 

   

  

1
2

mvi
2 + mg −Lcosφ( ) + FD +1( ) = 0 + mg −Lcosθ( )

1
2

130 kg( )vi
2 + 130 kg( ) 9.80 m/s2( )(−40.0 m)cos28.9°

                              + 110 N( ) 50.0 m( )
= 130 kg( ) 9.80 m/s2( )(−40.0 m)cos50°
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1
2

130 kg( )vi
2 − 4.46× 104  J + 5 500 J = −3.28× 104  J

vi = 2 6 340 J( )
130 kg

= 9.87 m/s

 

P8.82 (a) Take the original point where the ball is released and the final 
point where its upward swing stops at height H and horizontal 
displacement 

   
  x = L2 − L − H( )2 = 2LH − H 2  

  Since the wind force is purely horizontal, it does work 

   
    
Wwind =


F ⋅ds∫ = F dx∫ = F 2LH − H 2  

 

ANS FIG. P8.82 

  The work-energy theorem can be written: 

     Ki + Ugi + Wwind = K f + Ugf , or 

   
  0 + 0 + F 2LH − H 2 = 0 + mgH   

  giving 

     F
2 2LH − F2H 2 = m2 g2H 2  

  Here the solution H = 0 represents the lower turning point of the 
ball’s oscillation, and the upper limit is at F2 (2L) = (F2 + m2g2)H. 
Solving for H yields 

 

  

H = 2LF2

F2 + m2 g2 = 2L
1+ mg/F( )2

= 2(0.800 m)
1+(0.300 kg)2(9.8 m/s2 )2 / F2 = 1.60 m

1+ 8.64 N2/F2

 

 (b) 
  
H = 1.6 m 1 + 8.64/1[ ]−1 = 0.166 m  

 (c) 
  
H = 1.6 m 1 + 8.64/100[ ]−1 = 1.47 m  

 (d) As   F → 0 , 
  
H → 0 as is reasonable.  
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 (e) As  F →∞ ,   H → 1.60 m ,  which would be hard to approach 
experimentally. 

 (f) Call θ   the equilibrium angle with the vertical and T the tension 
in the string. 

   
  

Fx∑ = 0 ⇒T sinθ = F, and
Fy∑ = 0 ⇒T cosθ = mg

 

  Dividing: 
  
tanθ =

F
mg

 

  Then 

   
  
cosθ =

mg

(mg)2 + F2
=

1

1 + (F/mg)2
=

1

1 + F2/8.64 N2  

  Therefore, 

  

Heq = L 1− cosθ( ) = 0.800 m( ) 1−
1

1 + F2/8.64 N2

⎛

⎝
⎜

⎞

⎠
⎟  

 (g) For F = 10 N, 
  
Heq = 0.800 m[1− 1 + 100/8.64( )−1/2 ] = 0.574 m  

 (h) As 
  
F →∞,  tanθ →∞,  θ → 90.0°,  cosθ → 0,  and Heq → 0.800 m .   

  A very strong wind pulls the string out horizontal, parallel to the 
ground. 

P8.83 The coaster-Earth system is isolated as the coaster travels up the circle. 
Find how high the coaster travels from the bottom: 

   

  

Ki + Ui = K f + U f

1
2

mv2 + 0 = 0 + mgh→ h =
v2

2g
=

15.0 m/s( )2

2g
= 11.5 m

 

 For this situation, the coaster stops at height 11.5 m, which is lower 
than the height of 24 m at the top of the circular section; in fact, it is 
close to halfway to the top. The passengers will be supported by the 
normal force from the backs of their seats. Because of the usual 
position of a seatback, there may be a slight downhill incline of the 
seatback that would tend to cause the passengers to slide out. Between 
the force the passengers can exert by hanging on to a part of the car 
and the friction between their backs and the back of their seat, the 
passengers should be able to avoid sliding out of the cars. Therefore, 
this situation is less dangerous than that in the original higher-speed 
situation, where the coaster is upside down. 
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P8.84 (a) Let mass m1 of the chain laying on the table and mass m2 hanging 
off the edge. For the hanging part of the chain, apply the particle 
in equilibrium model in the vertical direction: 

   m2g – T = 0 [1] 

  For the part of the chain on the table, apply the particle in 
equilibrium model in both directions: 

   n – m1g = 0 [2] 

   T – fs = 0 [3] 

  Assume that the length of chain  
hanging over the edge is such that  
the chain is on the verge of slipping.  
Add equations [1] and [3], impose  
the assumption of impending  
motion, and substitute equation [2]: 

   

  

n − m1g  = 0
fs  = m2 g    →    µsn = m2 g    
                  →    µsm1g  = m2 g    
→    m2  = µsm1  = 0.600m1

 

  From the total length of the chain of 8.00 m, we see that 

     m1  + m2  = 8.00λ  

  where λ is the mass of a one meter length of chain. Substituting 
for m2, 

   
  m1  + 0.600m1  = 8.00λ   →   1.60m1  = 8.00λ   →   m1  = 5.00λ  

  From this result, we find that 
  
m2 = 3.00λ  and we see that 3.00 m 

of chain hangs off the table in the case of impending motion. 

 (b) Let x represent the variable distance the chain has slipped since 
the start. 

  Then length (5 – x) remains on the table, with now 
   

  Fy∑ = 0:         + n− 5− x( )λg = 0   →    n = 5− x( )λg  

       fk = µkn = 0.4 5 − x( )λg = 2λg − 0.4xλg  

  Consider energies of the chain-Earth system at the initial moment 
when the chain starts to slip, and a final moment when x = 5, 
when the last link goes over the brink. Measure heights above the 
final position of the leading end of the chain. At the moment the 
final link slips off, the center of the chain is at yf = 4 meters. 

ANS. FIG. P8.84 
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  Originally, 5 meters of chain is at height 8 m and the middle of 

the dangling segment is at height 
 
8 −

3
2

= 6.5 m.  

     Ki + Ui + ΔEmech = K f + U f :  

  
0 + m1gy1 + m2 gy2( )i

− fkdx
i

f

∫ =
1
2

mv2 + mgy⎛
⎝⎜

⎞
⎠⎟ f

 

   

  

5λg( )8 + 3λg( )6.5 − 2λg − 0.4xλg( )dx
0

5

∫ =
1
2

8λ( )v2 + 8λg( )4

40.0g + 19.5g − 2.00g dx
0

5

∫ + 0.400g x dx
0

5

∫ = 4.00v2 + 32.0g

27.5g − 2.00gx
0

5 + 0.400g
x2

2 0

5

= 4.00v2

27.5g − 2.00g 5.00( ) + 0.400g 12.5( ) = 4.00v2

22.5g = 4.00v2

v =
22.5 m( ) 9.80 m/s2( )

4.00
= 7.42 m/s

 

P8.85 (a) For a 5.00-m cord the spring constant is described by F = kx,  
mg = k (1.50 m). For a longer cord of length L the stretch distance 
is longer so the spring constant is smaller in inverse proportion: 

    

  
k = 5.00 m

L
⎛
⎝⎜

⎞
⎠⎟

mg
1.50 m

⎛
⎝⎜

⎞
⎠⎟ = 3.33mg L

 

  From the isolated system model, 
    

  

K +Ug +Us( )
i
= K +Ug +Us( )

f

0 + mgyi + 0 = 0 + mgy f + 1
2

kx f
2

mg yi − y f( ) = 1
2

kx f
2 = 1

2
3.33( ) mg

L
⎛
⎝⎜

⎞
⎠⎟ x f

2

 

  here   yi − y f = 55 m = L + x f .  Substituting, 
    

  

55.0 m( )L =
1
2

3.33( ) 55.0 m − L( )2

55.0 m( )L = 5.04 × 103  m2 − 183 m( )L + 1.67L2
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  Suppressing units, we have 
    

  

0 = 1.67L2 − 238L + 5.04 × 103 = 0

L =
238 ± 2382 − 4 1.67( ) 5.04 × 103( )

2 1.67( ) =
238 ± 152

3.33
= 25.8 m

 

  Only the value of L less than 55 m is physical. 

 (b) From part (a), 
  
k = 3.33

mg
25.8 m

⎛
⎝⎜

⎞
⎠⎟ ,  with  

      xmax = x f = 55.0 m − 25.8 m = 29.2 m  

  From Newton’s second law, 

      F∑ = ma:      + kxmax − mg = ma   
    

  

3.33
mg

25.8 m
29.2 m( ) − mg = ma

a = 2.77g = 27.1 m/s2
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P8.2 (a)   ΔK + ΔU = 0,  v = 2gh ;  (b)   v = 2gh  

P8.4 (a) 1.85 × 104 m, 5.10 × 104 m; (b) 1.00 × 107 J 

P8.6 (a) 5.94 m/s, 7.67 m/s; (b) 147 J 

P8.8 (a) 
  

2(m1 − m2 )gh
m1 + m2

; (b) 
  

2m1h
m1 + m2

 

P8.10 (a) 1.11 × 109 J; (b) 0.2 

P8.12 2.04 m 

P8.14 (a) −168 J; (b) 184 J; (c) 500 J; (d) 148 J; (e) 5.65 m/s 

P8.16 (a) 650 J; (b) 588 J; (c) 0; (d) 0; (e) 62.0 J; (f) 1.76 m/s 

P8.18 (a) 22.0 J, E = K + U = 30.0 J + 10.0 J = 40.0 J; (b) Yes; (c) The total 
mechanical energy has decreased, so a nonconservative force must 
have acted. 

P8.20 (a) vB = 1.65 m/s2; (b) green bead, see P8.20 for full explanation 

P8.22 3.74 m/s 

P8.24 (a) 0.381 m; (b) 0.371 m; (c) 0.143 m 

P8.26 (a) 24.5 m/s; (b) Yes. This is too fast for safety; (c) 206 m; (d) see 
P8.26(d) for full explanation 

P8.28 (a) 1.24 × 103 W; (b) 0.209 

P8.30 (a) 8.01 W; (b) see P8.30(b) for full explanation 

P8.32 2.03 × 108 s, 5.64 × 104 h 

P8.34 194 m 

P8.36 The power of the sports car is four times that of the older-model car. 

P8.38 (a) 5.91 × 103 W; (b) 1.11 × 104 W 

P8.40 (a) 854; (b) 0.182 hp; (c) This method is impractical compared to 
limiting food intake. 

P8.42 ~102 W 

P8.44 (a) 0.225 J; (b) −0.363 J; (c) no; (d) It is possible to find an effective 
coefficient of friction but not the actual value of µ since n and f vary 
with position. 

P8.46 (a) 2.49 m/s; (b) 5.45 m/s; (c) 1.23 m; (d) no; (e) Some of the kinetic 
energy of m2 is transferred away as sound and to internal energy in m1 
and the floor. 
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P8.48 We find that her arms would need to be 1.36 m long to perform this 
task. This is significantly longer than the human arm. 

P8.50 (a) 0.403 m or –0.357 m (b) From a perch at a height of 2.80 m above the 
top of a pile of mattresses, a 46.0-kg child jumps upward at 2.40 m/s. 
The mattresses behave as a linear spring with force constant 19.4 
kN/m. Find the maximum amount by which they are compressed 
when the child lands on them; (c) 0.023 2 m; (d) This result is the 
distance by which the mattresses compress if the child just stands on 
them. It is the location of the equilibrium position of the oscillator. 

P8.52 (a) 
  

1
2

mv f
2 −

1
2

mv f
2 ; (b) 

  
−mgh −

1
2

mv f
2 −

1
2

mvi
2⎛

⎝⎜
⎞
⎠⎟ ; (c) 

  

1
2

mv f
2 −

1
2

mv f
2 + mgh  

P8.54 
  

ρAv3

2
; 
  
F =

ρAv2

2
; see P8.54 for full explanation 

P8.56 (a) 16.5 m; (b) See ANS. FIG. P8.56 

P8.58 Unrestrained passengers will fall out of the cars 

P8.60 (a) See P8.60(a) for full explanation; (b) see P8.60(b) for full explanation 

P8.62 (a) 0.378 m; (b) 2.30 m/s; (c) 1.08 m 

P8.64 1.24 m/s 

P8.66 48.2° 

P8.68 
  

3L
5

 

P8.70 The tension at the bottom is greater than the performer can withstand. 

P8.72 (a) 5R/2; (b) 6mg 

P8.74 (a) No, mechanical energy is not conserved in this case; (b) 77.0 m/s 

P8.76 25.2 km/h and 27.0 km/h 

P8.78 (a) 21.0 m/s; (b) 16.1 m/s 

P8.80 (a) (627 N)y; (b) Us = 0, 
  

1
2

81 N/m( ) 39.2m − y( )2
; (c) (627 N)y,  

(40.5 N/m) y2 – (2 550 N)y + 62 200 J; (d) See ANS. FIG. P7.78(d);  
(e) 10.0 m; (f) stable equilibrium, 31.5 m; (g) 24.1 m/s 

P8.82 (a) 
 

1.60 m
1+ 8.64 N2/F2 ; (b) 0.166 m; (c) 1.47 m; (d) H →  0 as is reasonable; 

(e) H →  1.60 m; (f) 
  
0.800 m( ) 1− 1

1+ F2/8.64 N2

⎛

⎝⎜
⎞

⎠⎟
; (g) 0.574 m;  

(h) 0.800 m 

P8.84 (a)  3.00λ ;  (b) 7.42 m/s 
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9 
Linear Momentum and Collisions 

 

CHAPTER OUTLINE 
 

9.1 Linear Momentum 

9.2 Analysis Model: Isolated System (Momentum) 

9.3 Analysis Model: Nonisolated System (Momentum) 

9.4 Collisions in One Dimension 

9.5 Collisions in Two Dimensions 

9.6 The Center of Mass 

9.7  Systems of Many Particles 

9.8 Deformable Systems 

9.9 Rocket Propulsion 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ9.1 Think about how much the vector momentum of the Frisbee changes 
in a horizontal plane. This will be the same in magnitude as your 
momentum change. Since you start from rest, this quantity directly 
controls your final speed. Thus (b) is largest and (c) is smallest. In 
between them, (e) is larger than (a) and (a) is larger than (c). Also (a) is 
equal to (d), because the ice can exert a normal force to prevent you 
from recoiling straight down when you throw the Frisbee up. The 
assembled answer is b > e > a = d > c. 

OQ9.2 (a) No: mechanical energy turns into internal energy in the coupling 
process. 

 (b) No: the Earth feeds momentum into the boxcar during the 
downhill rolling process. 

 (c) Yes: total energy is constant as it turns from gravitational into 
kinetic. 
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 (d) Yes: If the boxcar starts moving north, the Earth, very slowly, 
starts moving south. 

 (e) No: internal energy appears. 

 (f)  Yes: Only forces internal to the two-car system act. 

OQ9.3 (i) Answer (c). During the short time the collision lasts, the total 
system momentum is constant. Whatever momentum one loses 
the other gains. 

 (ii)  Answer (a). The problem implies that the tractor’s momentum is 
negligible compared to the car’s momentum before the collision. 
It also implies that the car carries most of the kinetic energy of the 
system. The collision slows down the car and speeds up the 
tractor, so that they have the same final speed. The faster-moving 
car loses more energy than the slower tractor gains because a lot 
of the car’s original kinetic energy is converted into internal 
energy. 

OQ9.4 Answer (a). We have m1 = 2 kg, v1i = 4 m/s; m2 = 1 kg, and v1i = 0. We 
find the velocity of the 1-kg mass using the equation derived in Section 
9.4 for an elastic collision: 

   

  

v2 f =
2m1

m1 + m2

⎛

⎝⎜
⎞

⎠⎟
v1i +

m1 − m2

m1 + m2

⎛

⎝⎜
⎞

⎠⎟
v2 i

v2 f =
4 kg
3 kg

⎛
⎝⎜

⎞
⎠⎟

4 m/s( ) +
1 kg
3 kg

⎛
⎝⎜

⎞
⎠⎟

0( ) = 5.33 m/s

 

OQ9.5 Answer (c). We choose the original direction of motion of the cart as 
the positive direction. Then, vi = 6 m/s and vf = −2 m/s. The change in 
the momentum of the cart is 

   

  

Δp = mv f − mvi = m v f − vi( ) = (5 kg)(−2 m/s − 6 m/s)

= −40 kg ⋅m/s.

 

OQ9.6 Answer (c). The impulse given to the ball is   I = FavgΔt = mv f − mvi .  
Choosing the direction of the final velocity of the ball as the positive 
direction, this gives 

   

  

Favg =
m v f −  vi( )

Δt
=

57.0 ×  10−3  kg( ) 25.0 m/s − (−21.0 m/s)[ ]
0.060 s

= 43.7 kg ⋅m/s2 = 43.7 N
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OQ9.7 Answer (a). The magnitude of momentum is proportional to speed and 
the kinetic energy is proportional to speed squared. The speed of the 
rocket becomes 4 times larger, so the kinetic energy becomes 16 times 
larger. 

OQ9.8 Answer (d). The magnitude of momentum is proportional to speed 
and the kinetic energy is proportional to speed squared. The speed of 
the rocket becomes 2 times larger, so the magnitude of the momentum 
becomes 2 times larger. 

OQ9.9  Answer (c). The kinetic energy of a particle may be written as 
   

  
KE =

mv2

2
=

m2v2

2m
=

mv( )2

2m
=

p2

2m

 

 The ratio of the kinetic energies of two particles is then 

   

  

KE( )2

KE( )1

=
p2

2 2m2

p1
2 2m1

=
p2

p1

⎛

⎝⎜
⎞

⎠⎟

2
m1

m2

⎛

⎝⎜
⎞

⎠⎟
 

 We see that, if the magnitudes of the momenta are equal (p2 = p1), the 
kinetic energies will be equal only if the masses are also equal. The 
correct response is then (c). 

OQ9.10 Answer (d). Expressing the kinetic energy as KE = p2/2m, we see that 
the ratio of the magnitudes of the momenta of two particles is 

   
  

p2

p1

=
2m2(KE)2

2m1(KE)1

=
m2

m1

⎛

⎝⎜
⎞

⎠⎟
(KE)2

(KE)1

 

 Thus, we see that if the particles have equal kinetic energies [(KE)2 = 
(KE)1], the magnitudes of their momenta are equal only if the masses 
are also equal. However, momentum is a vector quantity and we can 
say the two particles have equal momenta only it both the magnitudes 
and directions are equal, making choice (d) the correct answer. 

OQ9.11 Answer (b). Before collision, the bullet, mass m1 = 10.0 g, has speed  
v1i = vb, and the block, mass m2 = 200 g, has speed v2i = 0. After collision, 
the objects have a common speed (velocity) v1f = v2f = v. The collision of 
the bullet with the block is completely inelastic: 

   m1v1i + m2v2 = m1v1f + m2v2f 

   m1vb = (m1 + m2)v , so  
  
vb = v

m1 + m2

m1

⎛

⎝⎜
⎞

⎠⎟
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 The kinetic friction, fk = µkn, slows down the block with acceleration of 
magnitude µkg. The block slides to a stop through a distance d = 8.00 m. 

Using   
v f

2 = vi
2 + 2a(x f − xi ),  we find the speed of the block just after the 

collision: 

   
  v = 2(0.400)(9.80 m/s2 )(8.00 m) = 7.92 m/s.  

 Using the results above, the speed of the bullet before collision is 

   
  
vb = (7.92m/s) 

10 + 200
10.0

⎛
⎝⎜

⎞
⎠⎟

= 166 m/s.  

OQ9.12 Answer (c). The masses move through the same distance under the 
same force. Equal net work inputs imply equal kinetic energies. 

OQ9.13 Answer (a). The same force gives the larger mass a smaller 
acceleration, so the larger mass takes a longer time interval to move 
through the same distance; therefore, the impulse given to the larger 
mass is larger, which means the larger mass will have a greater final 
momentum. 

OQ9.14 Answer (d). Momentum of the ball-Earth system is conserved. Mutual 
gravitation brings the ball and the Earth together into one system. As 
the ball moves downward, the Earth moves upward, although with an 
acceleration on the order of 1025 times smaller than that of the ball. The 
two objects meet, rebound, and separate. 

OQ9.15 Answer (d). Momentum is the same before and after the collision. 
Before the collision the momentum is 

   
  m1v1 + m2v2 = 3 kg( ) +2 m/s( ) + 2 kg( ) −4 m/s( ) = −2 kg ⋅m/s   

OQ9.16 Answer (a). The ball gives more rightward momentum to the block 
when the ball reverses its momentum. 

OQ9.17 Answer (c). Assuming that the collision was head-on so that, after 
impact, the wreckage moves in the original direction of the car’s 
motion, conservation of momentum during the impact gives 

     mc + mt( )v f = mcv0c + mtv0t = mcv + mt(0)  

 or 

   
  
v f =

mc

mc + mt

⎛

⎝⎜
⎞

⎠⎟
v =

m
m + 2m

⎛
⎝⎜

⎞
⎠⎟

v =
v
3
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OQ9.18 Answer (c). Billiard balls all have the same mass and collisions 
between them may be considered to be elastic. The dual requirements 
of conservation of kinetic energy and conservation of momentum in a 
one-dimensional, elastic collision are summarized by the two relations: 

     m1v1i + m2v2 i = m1v1 f + m2v2 f  [1] 

 and 

   
  
v1i − v2 i = v1 f − v2 f( )  [2] 

 In this case, m1 = m2 and the masses cancel out of the first equation. 
Call the blue ball #1 and the red ball #2 so that v1i = −3v, v2i = +v,  
v 1f = vblue, and v2f = vred. Then, the two equations become 

     −3v + v = vblue + vred       or           vblue + vred = v  [1] 

 and 

   
  −3v − v = − vblue − vred( )       or           vblue − vred( ) = 4v  [2] 

 Adding the final versions of these equations yields 2vblue = 2v, or vblue = 
v. Substituting this result into either [1] or [2] above then yields vred = 
−3v. 

 
 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ9.1 The passenger must undergo a certain momentum change in the 
collision. This means that a certain impulse must be exerted on the 
passenger by the steering wheel, the window, an air bag, or something. 
By increasing the distance over which the momentum change occurs, 
the time interval during which this change occurs is also increased, 
resulting in the force on the passenger being decreased. 

CQ9.2 If the golfer does not “follow through,” the club is slowed down by the 
golfer before it hits the ball, so the club has less momentum available 
to transfer to the ball during the collision. 

CQ9.3 Its speed decreases as its mass increases. There are no external 
horizontal forces acting on the box, so its momentum cannot change as 
it moves along the horizontal surface. As the box slowly fills with 
water, its mass increases with time. Because the product mv must be 
constant, and because m is increasing, the speed of the box must 
decrease. Note that the vertically falling rain has no horizontal 
momentum of its own, so the box must “share” its momentum with 
the rain it catches. 



Chapter 9     443 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

CQ9.4 (a) It does not carry force, force requires another object on which to 
act. 

 (b) It cannot deliver more kinetic energy than it possesses. This 
would violate the law of energy conservation. 

 (c) It can deliver more momentum in a collision than it possesses in 
its flight, by bouncing from the object it strikes. 

CQ9.5 Momentum conservation is not violated if we choose as our system the 
planet along with you. When you receive an impulse forward, the 
Earth receives the same size impulse backwards. The resulting 
acceleration of the Earth due to this impulse is much smaller than your 
acceleration forward, but the planet’s backward momentum is equal in 
magnitude to your forward momentum. If we choose you as the 
system, momentum conservation is not violated because you are not 
an isolated system. 

CQ9.6 The rifle has a much lower speed than the bullet and much less kinetic 
energy. Also, the butt distributes the recoil force over an area much 
larger than that of the bullet. 

CQ9.7 The time interval over which the egg is stopped by the sheet (more for 
a faster missile) is much longer than the time interval over which the 
egg is stopped by a wall. For the same change in momentum, the 
longer the time interval, the smaller the force required to stop the egg. 
The sheet increases the time interval so that the stopping force is never 
too large. 

CQ9.8 (a) Assuming that both hands are never in contact with a ball, and 
one hand is in contact with any one ball 20% of the time, the total 
contact time with the system of three balls is 3(20%) = 60% of the 
time. The center of mass of the balls is in free fall, moving up and 
then down with the acceleration due to gravity, during the 40% of 
the time when the juggler’s hands are empty. During the 60% of 
the time when the juggler is engaged in catching and tossing, the 
center of mass must accelerate up with a somewhat smaller 
average acceleration. The center of mass moves around in a little 
closed loop with a parabolic top and likely a circular bottom, 
making three revolutions for every one revolution that one ball 
makes. 

 (b) On average, in one cycle of the system, the center of mass of the 
balls does not change position, so its average acceleration is zero 
(i.e., the average net force on the system is zero). Letting T 
represent the time for one cycle and Fg the weight of one ball, we 
have FJ(0.60T) = 3FgT, and FJ = 5Fg. The average force exerted by 
the juggler is five times the weight of one ball. 



444     Linear Momentum and Collisions 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

CQ9.9 (a) In empty space, the center of mass of a rocket-plus-fuel system 
does not accelerate during a burn, because no outside force acts 
on this system. The rocket body itself does accelerate as it blows 
exhaust containing momentum out the back. 

 (b) According to the text’s ‘basic expression for rocket propulsion,’ 
the change in speed of the rocket body will be larger than the 
speed of the exhaust relative to the rocket, if the final mass is less 
than 37% of the original mass. 

CQ9.10 To generalize broadly, around 1740 the English favored position (a), 
the Germans position (b), and the French position (c). But in France 
Emilie de Chatelet translated Newton’s Principia and argued for a 
more inclusive view. A Frenchman, Jean D’Alembert, is most 
responsible for showing that each theory is consistent with the others. 
All the theories are equally correct. Each is useful for giving a 
mathematically simple and conceptually clear solution for some 
problems. There is another comprehensive mechanical theory, the 
angular impulse–angular momentum theorem, which we will glimpse 
in Chapter 11. It identifies the product of the torque of a force and the 
time it acts as the cause of a change in motion, and change in angular 
momentum as the effect. 

 We have here an example of how scientific theories are different from 
what people call a theory in everyday life. People who think that 
different theories are mutually exclusive should bring their thinking 
up to date to around 1750. 

CQ9.11 No. Impulse,     

FΔt,  depends on the force and the time interval during 

which it is applied. 

CQ9.12 No. Work depends on the force and on the displacement over which it 
acts. 

CQ9.13 (a) Linear momentum is conserved since there are no external forces 
acting on the system. The fragments go off in different directions 
and their vector momenta add to zero. 

 (b)  Kinetic energy is not conserved because the chemical potential 
energy initially in the explosive is converted into kinetic energy of 
the pieces of the bomb. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 9.1 Linear Momentum 
P9.1 (a) The momentum is p = mv, so v = p/m and the kinetic energy is 

   
  
K =

1
2

mv2 =
1
2

m
p
m

⎛
⎝⎜

⎞
⎠⎟

2

=
p2

2m
 

 (b) 
  
K =

1
2

mv2  implies 
  
v =

2K
m

 so 
  
p = mv = m

2K
m

= 2mK .  

P9.2 K = p2/2m, and hence,  p = 2mK .  Thus, 

   

  
m =

p2

2 ⋅K
=

25.0 kg ⋅m/s( )2

2 275 J( ) = 1.14 kg  

 and 
   

  
v =

p
m

=
2m K( )

m
=

2 K( )
m

=
2 275 J( )
1.14 kg

= 22.0 m/s
 

P9.3 We apply the impulse-momentum theorem to relate the change in the 
horizontal momentum of the sled to the horizontal force acting on it: 

    

  

Δpx = FxΔt → Fx =
Δpx

Δt
=

mvxf − mvxi

Δt

Fx =
− 17.5 kg( ) 3.50 m/s( )

8.75 s

Fx  = 7.00 N

 

*P9.4 We are given m = 3.00 kg and 
   

v = 3.00î − 4.00 ĵ( )  m/s.   

 (a) The vector momentum is then 

   

    


p = m


v = 3.00 kg( ) 3.00î − 4.00 ĵ( )  m/s⎡⎣ ⎤⎦

= 9.00î − 12.0 ĵ( )  kg ⋅m/s
 

  Thus, 
  

px = 9.00 kg ⋅m/s  and  
  

py = −12.0 kg ⋅m/s . 

 (b) 

  

p = px
2 + py

2 = 9.00 kg ⋅m/s( )2 + 12.0 kg ⋅m/s( )2

= 15.0 kg ⋅m/s
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  at an angle of 

 

   
  
θ = tan−1 py

px

⎛
⎝⎜

⎞
⎠⎟

= tan−1 −1.33( ) = 307°  

P9.5 We apply the impulse-momentum theorem to find the average force 
the bat exerts on the baseball: 

    

   
Δp =


FΔt→


F = Δp

Δt
= m


v f −


v i

Δt
⎛
⎝⎜

⎞
⎠⎟

 

 Choosing the direction toward home plate as the positive x direction, 
we have     


v i = 45.0 m/s( ) î,  


v f = 55.0 m/s( ) ĵ,  and Δt = 2.00 ms:  

   
    


Fon ball = m


v f −


vi

Δt
= 0.145 kg( ) 55.0 m/s( ) ĵ − 45.0 m/s( ) î

2.00 ×  10−3  s
 

   
   


Fon ball = −3.26î + 3.99 ĵ( )  N  

 By Newton’s third law,  

      

Fon bat = −


Fon ball     so    

   


Fon bat = +3.26î − 3.99ĵ( )  N  

 
 

 

Section 9.2 Analysis Model: Isolated system (Momentum)	  
P9.6 (a) The girl-plank system is isolated, so horizontal momentum is 

conserved. 

  We measure momentum relative to the ice: 
    

pgi +


ppi =


pgf +


ppf .  

  The motion is in one dimension, so we can write,  

   
   
vgiî = vgpî + vpiî → vgi = vgp + vpi  

  where vgi denotes the velocity of the girl relative to the ice, vgp the 
velocity of the girl relative to the plank, and vpi the velocity of the 
plank relative to the ice. The momentum equation becomes 

   

   

0 = mgvgi î + mpvpi î → 0 = mgvgi + mpvpi

0 = mg vgp + vpi( ) + mpvpi

0 = mgvgp + mg + mp( )vpi → vpi = −
mg

mg + mp

⎛

⎝
⎜

⎞

⎠
⎟ vgp
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  solving for the velocity of the plank gives 
   

  

vpi = −
mg

mg + mp

⎛

⎝
⎜

⎞

⎠
⎟ vgp = − 45.0 kg

45.0 kg + 150 kg
⎛
⎝⎜

⎞
⎠⎟

1.50 m/s( )

vpi = −0.346 m/s

 

 (b) Using our result above, we find that 
   

  

vgi = vgp + vpi = (1.50 m/s) + (−0.346 m/s)

vgi = 1.15 m/s

 

P9.7 (a) The girl-plank system is isolated, so horizontal momentum is 
conserved. 

  We measure momentum relative to the ice: 
    

pgi +


ppi =


pgf +


ppf .  

  The motion is in one dimension, so we can write  
   

   vgiî = vgpî + vpiî → vgi = vgp + vpi
 

  where vgi denotes the velocity of the girl relative to the ice, vgp the 
velocity of the girl relative to the plank, and vpi the velocity of the 
plank relative to the ice. The momentum equation becomes 

    

   

0 = mgvgi î + mpvpi î → 0 = mgvgi + mpvpi

0 = mg vgp + vpi( ) + mpvpi

0 = mgvgp + mg + mp( )vpi

 

  solving for the velocity of the plank gives 

    

 

vpi = −
mg

mg + mp

⎛

⎝
⎜

⎞

⎠
⎟ vgp  

 (b) Using our result above, we find that 
   

 

vgi = vgp + vpi = vgp

mg + mp( )
mg + mp

−
mg

mg + mp

vgp

vgi =
mg + mp( )vgp − mgvgp

mg + mp

 

   

 
vgi =

mgvgp + mpvgp − mgvgp

mg + mp
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vgi =
mp

mg + mp

⎛

⎝
⎜

⎞

⎠
⎟ vgp  

P9.8 (a)  Brother and sister exert equal-magnitude oppositely-directed 
forces on each other for the same time interval; therefore, the 
impulses acting on them are equal and opposite. Taking east as 
the positive direction, we have 

  impulse on boy:   I = FΔt = Δp = 65.0 kg( ) −2.90 m/s( ) = −189 N ⋅s   

  impulse on girl:   I = −FΔt = −Δp = +189 N ⋅s = mv f  

  Her speed is then 
    

  
v f = I

m
= 189 N ⋅s

40.0 kg
= 4.71 m/s

  

  meaning  she moves at 4.71 m/s east .  

 (b) original chemical potential energy in girl’s body = total final 
kinetic energy 

    

  

Uchemical = 1
2

mboyvboy
2 + 1

2
mgirlvgirl

2

= 1
2

65.0 kg( ) 2.90 m/s( )2 + 1
2

40.0 kg( ) 4.71 m/s( )2

= 717 J

  

 (c)  Yes.  System momentum is conserved with the value zero. 

 (d) The forces on the two siblings are internal forces, which cannot 
change the momentum of the system—

 
the system is isolated .  

 (e) 

 

Even though there is motion afterward, the final momenta are
of equal magnitude in opposite directions so the final momentum
of the system is still zero.
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*P9.9 We assume that the velocity of the blood is constant over the 0.160 s. 
Then the patient’s body and pallet will have a constant velocity of 

 

6 × 10−5  m
0.160 s

= 3.75 × 10−4  m/s  in the opposite direction. Momentum 

conservation gives 
   

    

p1i + p2 i = p1 f + p2 f :

 

     0 = mblood 0.500 m s( ) + 54.0 kg( ) −3.75 × 10−4  m/s( )  
   

  
mblood = 0.040 5 kg = 40.5 g

 

P9.10 I have mass 72.0 kg and can jump to raise my center of gravity 25.0 cm. 
I leave the ground with speed given by 

   
  
v f

2 − vi
2 = 2a x f − xi( ):        0 − vi

2 = 2 −9.80 m/s2( ) 0.250 m( )  

   vi = 2.20 m/s 

 Total momentum of the system of the Earth and me is conserved as I 
push the planet down and myself up: 

   

   

0 = 5.98 × 1024 kg( ) −ve( ) + 85.0 kg( ) 2.20 m/s( )
ve  10−23 m/s

 

P9.11 (a) For the system of two blocks   Δp = 0,  or i fp p= . Therefore,  

   
  0 = mvm + 3m( ) 2.00 m/s( )  

  Solving gives 
  
vm = −6.00 m/s  (motion toward the left). 

 (b) 

  

1
2

kx2 =
1
2

mvM
2 +

1
2

3m( )v3M
2

=
1
2

(0.350 kg)(−6.00 m/s)2 +
3
2

(0.350 kg)(2.00 m/s)2

= 8.40 J

 

 (c) 
 
The original energy is in the spring.  

 (d)  A force had to be exerted over a displacement to compress the 
spring, transferring energy into it by work. 

 
The cord exerts force, but over no displacement.   

 (e)  
 
System momentum is conserved with the value zero.  
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 (f)  The forces on the two blocks are internal forces, which cannot 
change the momentum of the system— 

 
the system is isolated.  

 (g) 

 

Even though there is motion afterward, the final momenta are
of equal magnitude in opposite directions so the final momentum
of the system is still zero.

 

 
 

 

Section 9.3 Analysis Model: Nonisolated system (Momentum)	  
P9.12 (a)   I = FavgΔt,  where I is the impulse the man must deliver to the 

child: 
   

  
I = FavgΔt = Δpchild = mchild v f − vi → Favg =

mchild v f − vi

Δt

 

  Solving for the average force gives 
    

  

Favg =
mchild v f − vi

Δt
=

12.0 kg( ) 0− 60 mi/h
0.10 s

0.447 m/s
1 mi/h

⎛
⎝⎜

⎞
⎠⎟

= 3.22 × 103 N

 

  or 
   

  
Favg = 3.22 × 103 N( ) 0.224 8 lb

1 N
⎛
⎝⎜

⎞
⎠⎟
≈ 720 lb

 

 (b)  The man’s claim is nonsense.  He would not be able to exert a 
force of this magnitude on the child. In reality, the violent forces 
during the collision would tear the child from his arms. 

 (c) 
 
These devices are essential for the safety of small children.  

P9.13 (a) The impulse delivered to the ball is  
equal to the area under the F-t graph.  
We have a triangle and so to get its  
area we multiply half its height times  
its width: 

    
 
I = Fdt∫  = area under curve 

     
  
I =

1
2

1.50 × 10−3 s( ) 18 000 N( ) = 13.5 N ⋅ s   

ANS. FIG. P9.13 
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 (b)  
  
F =

13.5 N ⋅ s
1.50 × 10−3 s

= 9.00 kN  

P9.14 (a)  The impulse the floor exerts on the ball is equal to the change in 
momentum of the ball: 

    

    

Δp = m

v f −


vi( ) = m v f − vi( ) ĵ

= 0.300 kg( ) 5.42 m/s( )− −5.86 m/s( )[ ] ĵ

= 3.38 kg ⋅m/s ĵ

 

 (b)  Estimating the contact time interval to be 0.05 s, from the 
impulse-momentum theorem, we find 

    
    


F =

Δp
Δt

=
3.38 kg ⋅m/s ĵ

0.05 s
→

F = 7 × 102  N ĵ  

P9.15 (a) The mechanical energy of the isolated spring-mass system is 
conserved: 

    

  

Ki + Usi = K f + Usf      

0 +
1
2

kx2 =
1
2

mv2 + 0

v = x
k
m

 

 (b) 
    
I =

p f −


pi = mv f − 0 = mx

k
m

= x km  

 (c) For the glider, 
  
W = K f − Ki =

1
2

mv2 − 0 =
1
2

kx2  

  The mass makes 
 

no difference  to the work. 

*P9.16 We take the x axis directed toward the pitcher. 

 (a) In the x direction,   pxi + Ix = pxf :  

   

  

Ix = pxf − pxi

= 0.200 kg( ) 40.0 m/s( )cos30.0°
                       − 0.200 kg( ) 15.0 m/s( ) −cos 45.0°( )

= 9.05 N ⋅s
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  In the y direction,   pyi + Iy = pyf :   

   

  

Iy = pyf − pyi

= 0.200 kg( ) 40.0 m/s( )sin 30.0°
                       − 0.200 kg( ) 15.0 m/s( ) − sin 45.0°( )

= 6.12 N ⋅s

 

  Therefore, 
   


I = 9.05î + 6.12 ĵ( )  N ⋅ s  

 (b) 
    


I = 1

2
0 +

Fm( ) 4.00 ms( ) +


Fm 20.0 ms( ) + 1

2


Fm 4.00 ms( )  

  

    


Fm × 24.0 × 10−3  s = 9.05î + 6.12 ĵ( )  N ⋅ s

Fm = 377 î + 255 ĵ( )  N

 

*P9.17 (a) From the kinematic equations, 
   

  
Δt = Δx

vavg

= 2Δx
v f + vi

= 2 1.20 m( )
0 + 25.0 m/s

= 9.60× 10−2  s
  

 (b) We find the average force from the momentum-impulse theorem: 
   

  
Favg = Δp

Δt
= mΔv

Δt
=

1 400 kg( ) 25.0 m/s − 0( )
9.60× 10−2  s

= 3.65× 105  N
  

 (c) Using the particle under constant acceleration model, 

   
  
aavg = Δv

Δt
= 25.0 m/s − 0

9.60× 10−2  s
= 260 m/s2( ) 1 g

9.80 m/s2
⎛
⎝⎜

⎞
⎠⎟

= 26.5g  

P9.18 We assume that the initial direction of the ball is in the –x direction. 
 (a)  The impulse delivered to the ball is given by   
   

    


I = Δp = p f −  


pi

= 0.060 0 kg( ) 40.0 m/s( ) î − 0.060 0 m/s( ) 20.0 m/s( ) − î( )
= 3.60î N ⋅s

 

 (b) We choose the tennis ball as a nonisolated system for energy.  Let 
the time interval be from just before the ball is hit until just after.  
Equation 9.2 for conservation of energy becomes 

      ΔK + ΔEint = TMW  
  Solving for the energy sum   ΔEint −TMW and substituting gives  

      
ΔEint −TMW = −ΔK = − 1

2
mv f

2 − 1
2

mvi
2⎛

⎝⎜
⎞
⎠⎟

= 1
2

m vi
2 − v f

2( )
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  Substituting numerical values gives, 

   

  

ΔEint −TMW = − 1
2

0.060 0 kg( ) 20.0 m/s( )2 − 40.0 m/s( )2⎡
⎣

⎤
⎦

= 36.0 J
 

  There is no way of knowing how the energy splits between 

  ΔEint  and TMW  without more information. 

P9.19 (a)  The impulse is in the x direction and equal to the area under the 
F-t graph: 

    

  

I = 0 + 4 N
2

⎛
⎝⎜

⎞
⎠⎟ 2 s − 0( )+ 4 N( ) 3 s − 2 s( )+ 4 N+0

2
⎛
⎝⎜

⎞
⎠⎟ 5 s − 3 s( )

= 12.0 N ⋅s

  

    
   

I = 12.0 N ⋅ s î  

 (b) From the momentum-impulse theorem, 
    

    

m

v i +

FΔt = m


v f


v f = v i +


FΔt
m

= 0 + 12.0 î N ⋅s
2.50 kg

= 4.80 î m/s

 

 (c) From the same equation,  
    

    


v f = v i +


FΔt
m

= −2.00 î m/s + 12.0 î N ⋅s
2.50 kg

= 2.80 î m/s
 

 (d) 
     

FavgΔt = 12.0î N ⋅s =


Favg(5.00 s) →


Favg = 2.40î N  

P9.20 (a)  A graph of the expression for force shows a parabola opening 
down, with the value zero at the beginning and end of the 0.800-s 
interval. We integrate the given force to find the impulse: 

    

  

I = F dt
0

0.800s

∫
= (9 200 t N/s − 11 500 t2  N/s2 )dt

0

0.800s

∫
= 

1
2

(9 200 N/s)t2 − 1
3

(11 500 N/s2 )t3⎡
⎣⎢

⎤
⎦⎥0

0.800s

= 
1
2

(9 200 N/s)(0.800 s)2 − 1
3

(11 500 N/s2 )(0.800 s)3

= 2 944 N ⋅s − 1 963 N ⋅s = 981  N ⋅s

 

  The athlete imparts a downward impulse to the platform, so the 
platform imparts to her an impulse of 

 
981 N ⋅ s, up.  
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 (b)  We could find her impact speed as a free-fall calculation, but we 
choose to write it as a conservation-of-energy calculation:  

    

  
mgytop = 1

2
mvimpact

2
  

    

  

vimpact = 2gytop = 2 9.80 m/s2( ) 0.600 m( )

= 3.43 m/s, down

 

 (c)  Gravity, as well as the platform, imparts impulse to her during 
the interaction with the platform 

     

  

I = Δp
Igrav + Iplatform = mv f − mvi

−mgΔt + Iplatform = mv f − mvi

 

  solving for the final velocity gives 
     

  

v f = vi − mgΔt +
Iplatform

m

= −3.43 m/s( )− 9.80 m/s2( ) 0.800 s( )+ 981 N ⋅s
65.0 kg

= 3.83 m/s, up

 

  Note that the athlete is putting a lot of effort into jumping and 
does not exert any force “on herself.” The usefulness of the force 
platform is to measure her effort by showing the force she exerts 
on the floor. 

 (d) Again energy is conserved in upward flight: 
    

  
mgytop = 1

2
mvtakeoff

2
 

   which gives 
    

  
ytop = vtakeoff

2

2g
= 3.83 m/s( )2

2 9.80 m/s2( ) = 0.748 m
 

P9.21 After 3.00 s of pouring, the bucket contains  

  (3.00 s)(0.250 L/s) = 0.750 liter  

 of water, with mass (0.750 L)(1 kg/1 L) = 0.750 kg, and feeling 
gravitational force (0.750 kg)(9.80 m/s2) = 7.35 N. The scale through the 
bucket must exert 7.35 N upward on this stationary water to support 
its weight. The scale must exert another 7.35 N to support the 0.750-kg 
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bucket itself. 

 Water is entering the bucket with speed given by  
    

  
mgytop = 1

2
mvimpact

2
  

    

  

vimpact = 2gytop = 2 9.80 m/s2( ) 2.60 m( )
= 7.14 m/s, downward

 

 The scale exerts an extra upward force to stop the downward motion 
of this additional water, as described by 

   
  mvimpact + Fextrat = mv f

  

 The rate of change of momentum is the force itself: 
   

  

dm
dt

⎛
⎝⎜

⎞
⎠⎟ vimpact + Fextra = 0

 

 which gives 
   

  
Fextra = − dm

dt
⎛
⎝⎜

⎞
⎠⎟ vimpact = − 0.250 kg/s( ) −7.14 m/s( ) = 1.78 N

 

 Altogether the scale must exert 7.35 N + 7.35 N + 1.78 N = 
 
16.5 N  

 
 

 

Section 9.4 Collisions in One Dimension	  
P9.22 (a) Conservation of momentum gives  
    

 mTvTf + mCvCf = mTvTi + mCvCi
  

  Solving for the final velocity of the truck gives 
 

  

vTf =
mTvTi + mC vCi − vCf( )

mT

    =
9 000 kg( ) 20.0 m/s( ) + 1 200 kg( )[ 25.0− 18.0( ) m/s]

9 000 kg

vTf = 20.9 m/s East
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 (b) We compute the change in mechanical energy of the car-truck 
system from 

    

  

ΔKE = KEf − KEi = 1
2

mCvCf
2 + 1

2
mTvTf

2⎡
⎣⎢

⎤
⎦⎥
− 1

2
mCvCi

2 + 1
2

mTvTi
2⎡

⎣⎢
⎤
⎦⎥

= 1
2

mC vCf
2 −  vCi

2( ) + mT vTf
2 −  vTi

2( )⎡
⎣

⎤
⎦

= 1
2

1 200 kg( ) (18.0 m/s)2 − (25.0 m/s)2⎡⎣ ⎤⎦{
              + 9 000 kg( ) (20.9 m/s)2 − (20.0 m/s)2⎡⎣ ⎤⎦}

ΔKE = – 8.68× 103  J

 

  Note: If 20.9 m/s were used to determine the energy lost instead 
of 20.9333 as the answer to part (a), the answer would be very 
different. We have kept extra digits in all intermediate answers 
until the problem is complete. 

 (c) The mechanical energy of the car-truck system has decreased. 
Most of the energy was transformed to internal energy with some 
being carried away by sound. 

P9.23 Momentum is conserved for the bullet-block system: 
    

  mv + 0 = m + M( )v f
  

    

  

v = m + M
m

⎛
⎝⎜

⎞
⎠⎟ v f = 10.0× 10−3 kg + 5.00 kg

10.0× 10−3 kg
⎛
⎝⎜

⎞
⎠⎟

0.600 m/s( )

= 301 m/s

 

P9.24 The collision is completely inelastic. 

 (a)  Momentum is conserved by the collision: 

     

    


p1i +


p2i =


p1f +


p2f → m1v1i + m2v2 i = m1v1 f + m2v2 f

mv1 + 2m( )v2 = mv f + 2mv f = 3mv f

v f =
mv1 + 2mv2

3m
→ v f =

1
3

v1 + 2v2( )
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ANS. FIG. P9.26 
 

 (b) We compute the change in mechanical energy of the car-truck 
system from 

    

  

ΔK = K f − Ki = 1
2

3m( )v f
2 − 1

2
mv1

2 + 1
2

2m( )v2
2⎡

⎣⎢
⎤
⎦⎥

ΔK = 3m
2

1
3

v1 + 2v2( )⎡
⎣⎢

⎤
⎦⎥

2

− 1
2

mv1
2 + 1

2
2m( )v2

2⎡
⎣⎢

⎤
⎦⎥

ΔK = 3m
2

v1
2

9
+ 4v1v2

9
+ 4v2

2

9
⎛
⎝⎜

⎞
⎠⎟
− mv1

2

2
− mv2

2

= m
v1

2

6
+ 2v1v2

3
+ 2v2

2

3
− v1

2

2
− v2

2⎛
⎝⎜

⎞
⎠⎟

ΔK = m
v1

2

6
+ 4v1v2

6
+ 4v2

2

6
− 3v1

2

6
− 6v2

2

6
⎛
⎝⎜

⎞
⎠⎟

= m − 2v1
2

6
+ 4v1v2

6
− 2v2

2

6
⎛
⎝⎜

⎞
⎠⎟

ΔK = − m
3

v1
2 + v2

2 − 2v1v2( )

 

*P9.25 (a) We write the law of conservation of momentum as  
      mv1i + 3mv2 i = 4mv f   

  or 
  
v f = 4.00 m/s + 3 2.00 m/s( )

4
= 2.50 m/s  

 (b) 

  

K f − Ki = 1
2

4m( )v f
2 − 1

2
mv1i

2 + 1
2

3m( )v2 i
2⎡

⎣⎢
⎤
⎦⎥

= 1
2

2.50 × 104  kg( )[4(2.50 m/s)2

                     − (4.00 m/s)2 − 3(2.00 m/s)2 ]

= −3.75 × 104  J

 

*P9.26 (a) The internal forces exerted 
by the actor do not change 
the total momentum of the 
system of the four cars and 
the movie actor. 
Conservation of momentum  
gives  

    

  

4m( )vi = 3m( ) 2.00 m s( ) + m 4.00 m s( )

vi = 6.00 m s + 4.00 m s
4

= 2.50 m s

 

r



458     Linear Momentum and Collisions 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (b) 

  

Wactor = K f − Ki

= 1
2

3m( ) 2.00 m s( )2 + m 4.00 m s( )2⎡⎣ ⎤⎦ −
1
2

4m( ) 2.50 m s( )2

 

  
  
Wactor =

2.50 × 104  kg( )
2

12.0 + 16.0 − 25.0( ) m s( )2 = 37.5 kJ  

 (c) 

 

The event considered here is the time reversal of the 
perfectly inelastic collision in the previous problem. 
The same momentum conservation equation describes 
both processes.

 

P9.27 (a)  From the text’s analysis of a one-dimensional elastic collision with 
an originally stationary target, the x component of the neutron’s 
velocity changes from vi to v1f = (1 − 12)vi/13 = −11vi/13. The x 
component of the target nucleus velocity is v2f = 2vi/13. 

  The neutron started with kinetic energy  
  

1
2

m1vi
2.  

  The target nucleus ends up with kinetic energy 
  

1
2

12m1( ) 2vi

13
⎛
⎝⎜

⎞
⎠⎟

2

. 

  Then the fraction transferred is 
   

  

1
2

12m1( )(2vi /13)2

1
2

m1vi
2

= 48
169

= 0.284

  

  Because the collision is elastic, the other 71.6% of the original 
energy stays with the neutron. The carbon is functioning as a 
moderator in the reactor, slowing down neutrons to make them 
more likely to produce reactions in the fuel. 

 (b)  The final kinetic energy of the neutron is 
   

  
Kn = (0.716)(1.60× 10−13  J) = 1.15× 10−13  J

   

  and the final kinetic energy of the carbon nucleus is 
   

  
KC = (0.284)(1.60× 10−13  J) = 4.54× 10−14  J

 

*P9.28 Let’s first analyze the situation in which the wood block, of mass  
mw = 1.00 kg, is held in a vise.  The bullet of mass mb = 7.00 g is initially 
moving with speed vb and then comes to rest in the block due to the 
kinetic friction force fk between the block and the bullet as the bullet 
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deforms the wood fibers and moves them out of the way.  The result is 
an increase in internal energy in the wood and the bullet.  Identify the 
wood and the bullet as an isolated system for energy during the 
collision: 

    ΔK + ΔEint = 0  

 Substituting for the energies: 

  
  

0− 1
2

mbv b
2⎛

⎝⎜
⎞
⎠⎟

+ fkd = 0  [1] 

 where d = 8.00 cm is the depth of penetration of the bullet in the wood. 

 Now consider the second situation, where the block is sitting on a 
frictionless surface and the bullet is fired into it. Identify the wood and 
the bullet as an isolated system for energy during the collision: 

    ΔK + ΔEint = 0  

 Substituting for the energies: 

  
  

1
2

mb + mw( )v f
2 − 1

2
mbv b

2⎡
⎣⎢

⎤
⎦⎥
+ fk ′d = 0  [2] 

 where vf is the speed with which the block and imbedded bullet slide 
across the table after the collision and d’ is the depth of penetration of 
the bullet in this situation. Identify the wood and the bullet as an 
isolated system for momentum during the collision: 

    Δp = 0 → pi = pf → mbvb = mb + mw( )v f  [3] 

 Solving equation [3] for vb, we obtain 

  
 
vb =

mb + mw( )v f

mb

 [4] 

 Solving equation [1] for fkd and substituting for vb from equation [4] 
above: 

  

  
fkd = 1

2
mbv b

2 = 1
2

mb

mb + mw( )v f

mb

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

= 1
2

mb + mw( )2

mb
v f

2  [5] 
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 Solving equation [2] for fkd’ and substituting for vb from equation [4]: 

  

  

fk ′d = − 1
2

mb + mw( )v f
2 − 1

2
mbv b

2⎡
⎣⎢

⎤
⎦⎥

= − 1
2

mb + mw( )v f
2 − 1

2
mb

mb + mw( )v f

mb

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

fk ′d = 1
2

mw

mb
mb + mw( )⎡

⎣
⎢

⎤

⎦
⎥v f

2

 

[6]

 

 Dividing equation [6] by [5] gives 
  

  

fk ′d
fkd

= ′d
d

=

1
2

mw

mb
mb + mw( )⎡

⎣
⎢

⎤

⎦
⎥v f

2

1
2

mb + mw( )2

mb

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

v f
2

=
mw

mb + mw

 

 Solving for d’ and substituting numerical values gives 
  

  
′d =

mw

mb + mw

⎛
⎝⎜

⎞
⎠⎟

d = 1.00 kg
0.007 00 kg +1.00 kg
⎡

⎣
⎢

⎤

⎦
⎥ 8.00 cm( ) = 7.94 cm

 

*P9.29 (a) The speed v of both balls just before the basketball reaches the 
ground may be found from   vyf

2 = vyi
2 + 2ayΔy  as 

   

  

v = vyi
2 + 2ayΔy = 0 + 2 −g( ) −h( ) = 2gh

= 2 9.80 m/s2( ) 1.20 m( ) = 4.85 m/s

 

 (b) Immediately after the basketball rebounds from the floor, it and 
the tennis ball meet in an elastic collision. The velocities of the 
two balls just before collision are 

   for the tennis ball (subscript t):  vti = −v   

  and for the basketball (subscript b):   vbi = +v  

  We determine the velocity of the tennis ball immediately after this 
elastic collision as follows: 

  Momentum conservation gives 
   

 mtvtf + mbvbf = mtvti + mbvbi
 

  or  mtvtf + mbvbf = mb − mt( )v  [1] 
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  From the criteria for a perfectly elastic collision: 
   

 
vti − vbi = − vtf − vbf( )  

  or   vbf = vtf + vti − vbi = vtf − 2v  [2] 

  Substituting equation [2] into [1] gives 
   

  
mtvtf + mb vtf − 2v( ) = mb − mt( )v

 

  or the upward speed of the tennis ball immediately after the 
collision is 

   

  
vtf = 3mb − mt

mt + mb

⎛
⎝⎜

⎞
⎠⎟

v = 3mb − mt

mt + mb

⎛
⎝⎜

⎞
⎠⎟

2gh
 

  The vertical displacement of the tennis ball during its rebound 
following the collision is given by   vyf

2 = vyi
2 + 2ayΔy  as 

   

  

Δy =
vyf

2 − vyi
2

2ay

=
0− vtf

2

2 −g( ) = 1
2g

⎛

⎝
⎜

⎞

⎠
⎟

3mb − mt

mt + mb

⎛
⎝⎜

⎞
⎠⎟

2

2g h( )

= 3mb − mt

mt + mb

⎛
⎝⎜

⎞
⎠⎟

2

h

 

  Substituting, 
   

  
Δy =

3 590 g( )− 57.0 g( )
57.0 g + 590 g

⎡

⎣
⎢

⎤

⎦
⎥

2

1.20 m( ) = 8.41 m
 

P9.30 Energy is conserved for the bob-Earth system  
between bottom and top of the swing. At the top the  
stiff rod is in compression and the bob nearly at rest. 

   
   
Ki +Ui = K f +U f :

1
2

Mvb
2 + 0 = 0 + Mg2  

   
   vb

2 = 4g so vb = 2 g  

 Momentum of the bob-bullet system is conserved in the collision: 

   
   
mv = m

v
2

+ M 2 g( ) → v = 4M
m

g  

ANS. FIG. P9.30 
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P9.31 The collision between the clay and the wooden block is completely 
inelastic. Momentum is conserved by the collision. Find the relation 
between the speed of the clay (C) just before impact and the speed of 
the clay+block (CB) just after impact: 

   

    


pBi + pCi = pBf + pCf → mBvBi + mCvCi = mBvBf + mCvCf

M 0( ) + mvC = mvCB + MvCB = m + M( )vCB

vC =
m + M( )

m
vCB

 

 Now use conservation of energy in the presence of friction forces to 
find the relation between the speed vCB  just after impact and the 
distance the block slides before stopping: 

   

  

ΔK + ΔEint = 0:     0 −
1
2

(m + M)vCB
2 − fd = 0    

and  − fd = −µnd = −µ(m + M)gd

→
1
2

(m + M)vCB
2 = µ(m + M)gd → vCB = 2µgd

 

 Combining our results, we have 
   

  

vC = (m + M)
m

2µgd

=
(12.0 g + 100 g)

12.0 g
2(0.650) 9.80 m/s2( )(7.50 m)

 

   
  
vC = 91.2 m/s

 

P9.32 The collision between the clay and the wooden block is completely 
inelastic. Momentum is conserved by the collision. Find the relation 
between the speed of the clay (C) just before impact and the speed of 
the clay+block (CB) just after impact: 

   

    


pBi + pCi = pBf + pCf → mBvBi + mCvCi = mBvBf + mCvCf

M 0( ) + mvC = mvCB + MvCB = m + M( )vCB

vC =
m + M( )

m
vCB

 

 Now use conservation of energy in the presence of friction forces to 
find the relation between the speed vCB just after impact and the 
distance the block slides before stopping: 

   

  

ΔK + ΔEint = 0:     0− 1
2

m + M( )vCB
2 − fd = 0

and                      − fd = −µnd = −µ m + M( )gd
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 Then, 
   

  

1
2

m + M( )vCB
2 = µ m + M( )gd→ vCB = 2µgd

 

 Combining our results, we have 
   

  
vC =

m + M( )
m

2µgd
 

P9.33 The mechanical energy of the isolated 
block-Earth system is conserved as the 
block of mass m1 slides down the track. 
First we find v1, the speed of m1 at B 
before collision: 

   Ki + Ui = Kf + Uf 
   

  

1
2

m1v1
2 + 0 = 0 + m1gh

v1 = 2(9.80 m/s2 )(5.00 m) = 9.90 m/s

 

 Now we use the text’s analysis of one-dimensional elastic collisions to 
find v1 f , the speed of m1 at B just after collision. 

   
  
v1 f =

m1 − m2

m1 + m2

v1 = −
1
3

9.90( )  m/s = −3.30 m/s  

 Now the 5-kg block bounces back up to its highest point after collision 
according to 

   

  
m1ghmax = 1

2
m1v1 f

2
 

 which gives 
   

  
hmax =

v1 f
2

2g
=

−3.30 m/s( )2

2 9.80 m/s2( ) = 0.556 m
 

P9.34 (a)  Using conservation of momentum,    

p∑( )before

= 
p∑( )after , gives 

    

  

4.00 kg( ) 5.00 m/s( ) + 10.0 kg( ) 3.00 m/s( )
                   + 3.00 kg( ) −4.00 m/s( ) = 4.00 + 10.0 + 3.00( ) kg[ ]v

 

  Therefore, v = +2.24 m/s, or 
 
2.24 m/s toward the right . 

 (b) 
 

No.  For example, if the 10.0-kg and 3.00-kg masses were to 

ANS. FIG. P9.33 
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ANS. FIG. P9.35 
 

stick together first, they would move with a speed given by 
solving 

    
  (13.0 kg)v1 = (10.0 kg)(3.00 m/s) + (3.00 kg)(−4.00 m/s)     

  or   v1 = +1.38 m s  

  Then when this 13.0-kg combined mass collides with the 4.00-kg 
mass, we have 

     
  (17.0 kg)v = (13.0 kg)(1.38 m s) + (4.00 kg)(5.00 m s)   

   and v = +2.24 m/s, just as in part (a).  

   
 
Coupling order makes no difference to the final velocity.  

 
 

 

Section 9.5 Collisions in Two Dimensions	  
*P9.35 (a) We write equations expressing  

conservation of the x and y  
components of momentum,  
with reference to the figures  
on the right. Let the puck initially  
at rest be m2. In the x direction, 

      m1v1i = m1v1 f cos θ + m2v2 f cos φ  

  which gives 

    
  
v2 f cos φ =

m1v1i − m1v1 f cos θ
m2

 

  or 

    

  

v2 f cos φ = 1
0.300 kg

⎛
⎝⎜

⎞
⎠⎟

                       [ 0.200 kg( ) 2.00 m s( )
                              − 0.200 kg( ) 1.00 m s( )cos 53.0°]

 

   In the y direction, 

      0 = m1v1 f sinθ − m2v2 f sinφ  

  which gives  

    
  
v2 f sinφ =

m1v1 f sinθ
m2

 

r

r

r
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  or 

      0 = 0.200 kg( ) 1.00 m s( )sin 53.0° − 0.300 kg( ) v2 f sinφ( )  

  From these equations, we find  

    
 
tanφ = sinφ

cosφ
= 0.532

0.932
= 0.571    or     

 
φ = 29.7°  

  Then  
  
v2 f = 0.160 kg ⋅m/s

0.300 kg( ) sin 29.7°( ) = 1.07 m/s  

 (b) 
  
Ki =

1
2

(0.200 kg)(2.00 m/s)2 = 0.400 J  and  

  
  
K f = 1

2
(0.200 kg)(1.00 m/s)2 + 1

2
(0.300 kg)(1.07 m/s)2 = 0.273 J  

  
  
flost = ΔK

Ki

=
K f − Ki

Ki

= 0.273 J − 0.400 J
0.400 J

= −0.318  

P9.36 We use conservation of momentum for the 
system of two vehicles for both northward 
and eastward components, to find the 
original speed of car number 2. 

 For the eastward direction: 
   

  m 13.0 m/s( ) = 2mVf cos55.0°  

 For the northward direction: 
   

  mv2 i = 2mVf sin 55.0°  

 Divide the northward equation by the eastward equation to find: 

      v2 i = 13.0 m s( ) tan 55.0° = 18.6 m/s = 41.5 mi/h  

 

 

Thus, the driver of the northbound car was untruthful. His original
speed was more than 35 mi/h.

 

P9.37 We will use conservation of both the x component and the y 
component of momentum for the two-puck system, which we can 
write as a single vector equation. 

    
   
m1

v1i + m2

v2 i = m1

v1 f + m2

v2 f  

ANS. FIG. P8.26 
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Both objects have the same final velocity, which we call 
    
v f .  Doing the 

algebra and substituting to solve for the one unknown gives 
    

    

v f = m1
v1i + m2

v2 i

m1 + m2

= (3.00 kg)(5.00î m/s) + (2.00 kg)(−3.00 ĵ m/s)
3.00 kg + 2.00 kg

 

 and calculating gives 
    

v f =
15.0 î − 6.00 ĵ

5.00
 m/s = (3.00î − 1.20 ĵ) m/s  

 

P9.38 We write the conservation of momentum in the x direction, pxf = pxi , as 
   

  mvO cos37.0° + mvY cos53.0° = m 5.00 m s( )  

     0.799vO + 0.602vY = 5.00 m/s  [1] 

 and the conservation of momentum in the y direction,   pyf = pyi ,  as  
   

  mvO sin 37.0° −  mvY sin 53.0° = 0  

     0.602vO = 0.799vY  [2] 

 Solving equations [1] and [2] simultaneously gives, 

   
  
vO = 3.99 m/s  and 

  
vY = 3.01 m/s  

 

ANS. FIG. P9.38 

P9.39 ANS. FIG. P9.38 illustrates the collision. We write the conservation of 
momentum in the x direction, pxf = pxi , as  

   
  

mvO cos θ + mvY cos 90.0° −θ( ) = mvi

vO cos θ + vY sin θ = vi

 
[1]
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ANS. FIG. P9.40 
 

 and the conservation of momentum in the y direction,   pyf = pyi ,  as  

   
  

mvO sin θ − mvY cos 90.0° −θ( ) = 0
vO sin θ = vY cos θ

 
[2]

 

 From equation [2], 

   
  
vO = vY

cos θ
sin θ

⎛
⎝⎜

⎞
⎠⎟

 [3] 

 Substituting into equation [1], 

   
  
vY

cos2θ
sinθ

⎛
⎝⎜

⎞
⎠⎟

+ vY sinθ = vi  

 so  

    
  
vY cos2θ + sin2θ( ) = vi sinθ , and  vY = vi sinθ  

 Then, from equation [3], 
  
vO = vi cosθ . 

 We did not need to write down an equation expressing conservation of 
mechanical energy. In this situation, the requirement on perpendicular 
final velocities is equivalent to the condition of elasticity. 

*P9.40 (a) The vector expression for 
conservation of momentum,  

    

pi = p f  gives pxi = pxf  and pyi = pyf .  

      mvi = mvcos θ + mv cos φ  [1] 

      0 = mvsinθ + mv sinφ  [2] 

  From [2],  sinθ = − sinφ  so  θ = −φ.  

 

  Furthermore, energy conservation for the system of two protons 
requires 

    
  
1
2

mvi
2 = 1

2
mv2 + 1

2
mv2  

   so  
      

  
v = vi

2
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ANS. FIG. P9.41 
 

 (b) Hence, [1] gives  

    
  
vi = 2vi cosθ

2
     

   with  θ = 45.0°  and  φ = −45.0° .  

P9.41 By conservation of momentum for the  
system of the two billiard balls (with all  
masses equal), in the x and y directions  
separately, 

  

    

5.00 m/s + 0 = (4.33 m/s)cos30.0° + v2 fx

v2 fx = 1.25 m s

0 = (4.33 m/s)sin 30.0° + v2 fy

v2 fy = −2.16 m/s

v2 f = 2.50 m/s at − 60.0°

 

 Note that we did not need to explicitly use the fact that the collision is 
perfectly elastic. 

P9.42 (a)  

 

The opponent grabs the fullback and does not let go, so the
two players move together at the end of their interaction—
thus the collision is perfectly inelastic.

 

 (b)  First, we conserve momentum for the system of two football 
players in the x direction (the direction of travel of the fullback): 

    (90.0 kg)(5.00 m/s) + 0 = (185 kg)V cosθ 

  where θ is the angle between the direction of the final velocity V 
and the x axis. We find 

   V cos θ = 2.43 m/s [1] 

Now consider conservation of momentum of the system in the y 
direction (the direction of travel of the opponent): 

    (95.0 kg)(3.00 m/s) + 0 = (185 kg)V sin θ 

  which gives   

   V sinθ = 1.54 m/s  [2] 

  Divide equation [2] by [1]: 

   
 
tanθ =

1.54
2.43

= 0.633  
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  From which,  θ = 32.3° .  

  Then, either [1] or [2] gives 
  
V = 2.88 m/s . 

 (c)  
  
Ki =

1
2

(90.0 kg)(5.00 m s)2 +
1
2

(95.0 kg)(3.00 m s)2 = 1.55 × 103  J  

  
  
K f =

1
2

(185 kg)(2.88 m s)2 = 7.67 × 102  J  

  Thus, the kinetic energy lost is 
 

786 J into internal energy .  

P9.43 (a) With three particles, the total final momentum of the system is 

   
m1

v1 f + m2

v2 f +  
   
m3

v3 f  and it must be zero to equal the original 
momentum. The mass of the third particle is  

   m3 = (17.0 − 5.00 − 8.40) × 10−27 kg 

  or m3 = 3.60 × 10−27 kg 

  Solving 
   
m1

v1 f + m2

v2 f + m3

v3 f = 0  for 
    
v3 f  gives 

   
   

v3 f = −
m1

v1 f + m2

v2 f

m3

 

   

   

v3 f = –
(3.36 î + 3.00ĵ) × 10–20  kg ⋅m/s

3.60 × 10–27  kg

= (–9.33× 106 î – 8.33× 106 ĵ) m/s

 

 

ANS. FIG. P9.43 

 (b)  The original kinetic energy of the system is zero. 

  The final kinetic energy is  K = K1f + K2f + K3f . 

  The terms are 
   

  
K1 f = 1

2
(5.00× 10−27  kg)(6.00× 106  m/s)2 = 9.00× 10−14  J
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K2 f = 1

2
(8.40× 10–27  kg)(4.00× 106  m/s)2 = 6.72 × 10−14  J

 

   

  

K3 f = 1
2

(3.60× 10−27  kg)

           × (−9.33× 106  m/s)2 + (−8.33× 106  m/s)2⎡⎣ ⎤⎦
= 28.2 × 10−14  J

 

  Then the system kinetic energy is 

    K = 9.00 × 10−14  J + 6.72 × 10−14 J + 28.2 × 10−14 J 
     

 
= 4.39 × 10−13  J

  

P9.44 The initial momentum of the system is 0. Thus, 

   
  1.20m( )vBi = m 10.0 m/s( )  

 and    vBi = 8.33 m/s  

 From conservation of energy, 

    

  

Ki =
1
2

m(10.0 m s)2 +
1
2

(1.20m)(8.33 m s)2 =
1
2

m(183 m2 s2 )

K f =
1
2

m(vG )2 +
1
2

(1.20m)(vB)2 =
1
2

1
2

m(183 m2 s2 )⎛
⎝⎜

⎞
⎠⎟

 

 or     vG
2 + 1.20vB

2 = 91.7 m2 s2  [1] 

 From conservation of momentum, 

    
  mvG = 1.20m( )vB

 

 or      vG = 1.20vB  [2] 

 Solving [1] and [2] simultaneously, we find 
    

  

(1.20vB)2 + 1.20vB
2 = 91.7 m2 s2           

vB = (91.7 m2 s2 /2.64)1/2

 

 which gives 

    
  
vB = 5.89 m/s  (speed of blue puck after collision) 

 and    
  
vG = 7.07 m/s  (speed of green puck after collision) 
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Section 9.6 The Center of Mass	  
P9.45 The x coordinate of the center of mass is 
    

  
xCM =

mixi∑
mi∑

=
0 + 0 + 0 + 0

2.00 kg + 3.00 kg + 2.50 kg + 4.00 kg
= 0

 

 and the y coordinate of the center of mass is 

    

  

yCM = miyi∑
mi∑

= 1
2.00 kg + 3.00 kg + 2.50 kg + 4.00 kg

⎛
⎝⎜

⎞
⎠⎟

       × [(2.00 kg)(3.00 m) + (3.00 kg)(2.50 m)
              + (2.50 kg)(0) + (4.00 kg)(−0.500 m)]

yCM = 1.00 m

 

 Then  
   

rCM = 0î + 1.00 ĵ( )  m  

P9.46 Let the x axis start at the Earth’s center and point toward the Moon. 

   

  

xCM = m1x1 + m2x2

m1 + m2

=
5.97 × 1024 kg( ) 0( )+ 7.35× 1022 kg( ) 3.84× 108 m( )

6.05× 1024 kg

= 4.66× 106 m from the Earth's center

 

 The center of mass is within the Earth, which has radius 6.37 × 106 m. It 
is 1.7 Mm below the point on the Earth’s surface where the Moon is 
straight overhead. 

P9.47 The volume of the monument is that of a thick triangle of base  
L = 64.8 m, height H = 15.7 m, and width W = 3.60 m: V = ½ LHW = 
1.83 × 103 m3. The monument has mass M = ρV = (3 800 kg/m3)V =  
6.96 × 106 kg. The height of the center of mass (CM) is yCM = H/3 
(derived below). The amount of work done on the blocks is 

   

  

Ug = MgyCM

= Mg
H
3

= 6.96 × 106  kg( ) 9.80 m/s2( ) 15.7 m
3

⎛
⎝⎜

⎞
⎠⎟

= 3.57 × 108  J
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 We derive yCM = H/3 here: 

 We model the monument with the 
figure shown above. Consider the 
monument to be composed of slabs of 
infinitesimal thickness dy stacked on 
top of each other. A slab at height y  
has a infinitesimal volume element  
dV = 2xWdy, where W is the width of 
the monument and x is a function of height y. 

 The equation of the sloping side of the monument is 
   

  
y = H −

H
L / 2

x → y = H −
2H
L

x → y = H 1−
2
L

x⎛
⎝⎜

⎞
⎠⎟

  

 where x ranges from 0 to + L/2. Therefore, 
    

  
x = L

2
1− y

H
⎛
⎝⎜

⎞
⎠⎟

  

 where y ranges from 0 to H. The infinitesimal volume of a slab at 
height y is then 

   
  
dV = 2xWdy = LW 1−

y
H

⎛
⎝⎜

⎞
⎠⎟ dy.  

 The mass contained in a volume element is dm = ρ dV. 

 Because of the symmetry of the monument, its CM lies above the 
origin of the coordinate axes at position yCM: 

    

  

yCM = 1
M

y dm = 1
M0

M

∫ yρ dV = 1
M0

V

∫ yρLW 1− y
H

⎛
⎝⎜

⎞
⎠⎟ dy

0

H

∫

yCM = ρLW
M

y − y2

H
⎛
⎝⎜

⎞
⎠⎟

dy =
0

H

∫
ρLW

M
y2

2
− y3

3H
⎛
⎝⎜

⎞
⎠⎟

0

H

= ρLW
M

H 2

2
− H 3

3H
⎛
⎝⎜

⎞
⎠⎟

yCM = ρLWH 2

M
1
2
− 1

3
⎛
⎝⎜

⎞
⎠⎟ = 1

6
ρLWH 2

1
2
ρLWH⎛

⎝
⎞
⎠

= 2
1

⎛
⎝⎜

⎞
⎠⎟

H
6

yCM = H
3

 

 where we have used 
  
M = ρ 1

2
LHW⎛

⎝⎜
⎞
⎠⎟ .   

ANS. FIG. P9.47 
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ANS. FIG. P9.48 
 

P9.48 We could analyze the object as nine squares, each 
represented by an equal-mass particle at its 
center. But we will have less writing to do if we 
think of the sheet as composed of three sections, 
and consider the mass of each section to be at the 
geometric center of that section. Define the mass 
per unit area to be  σ ,  and number the rectangles 
as shown. We can then calculate the mass and 
identify the center of mass of each section. 

  mI = (30.0 cm)(10.0 cm)σ with CMI = (15.0 cm, 5.00 cm) 

  mII = (10.0 cm)(20.0 cm)σ with CMII = (5.00 cm, 20.0 cm) 

  mIII = (10.0 cm)(10.0 cm)σ with CMIII = (15.0 cm, 25.0 cm) 

 The overall center of mass is at a point defined by the vector equation: 
    

    

rCM ≡ mi


ri∑( ) mi∑  

 Substituting the appropriate values,    

rCM  is calculated to be: 

   

   


rCM = 1

σ 300 cm2 + 200 cm2 + 100 cm2( )
⎛

⎝
⎜

⎞

⎠
⎟

                           × σ [(300)(15.0 î + 5.00 ĵ){ + (200)(5.00 î + 20.0 ĵ)

                                                      +(100)(15.0 î + 25.0 ĵ)] cm3}

 

 Calculating,  
  

   

rCM =

4 500 î  + 1 500 ĵ + 1 000 î  + 4 000 ĵ + 1 500 î  + 2 500 ĵ
600  cm

 

 and evaluating, 
   

rCM = (11.7 î  + 13.3 ĵ) cm  

P9.49 This object can be made by wrapping tape around a light, stiff, 
uniform rod. 

 (a)  

  

M = λ dx
0

0.300 m

∫ = 50.0 + 20.0x[ ]
0

0.300 m

∫ dx

M = 50.0x + 10.0x2⎡⎣ ⎤⎦0

0.300 m
= 15.9 g
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 (b)  

  

 xCM =

xdm
all mass
∫

M
=

1
M

λ xdx
0

0.300 m

∫ =
1
M

50.0x + 20.0x2⎡⎣ ⎤⎦dx
0

0.300 m

∫

   xCM =
1

15.9 g
25.0x2 +

20x3

3
⎡

⎣
⎢

⎤

⎦
⎥

0

0.300 m

= 0.153 m

 

*P9.50 We use a coordinate system centered in 
the oxygen (O) atom, with the x axis to 
the right and the y axis upward. Then, 
from symmetry, 

   
  

xCM = 0
 

 and   
   

  

yCM = miyi∑
mi∑

= 1
15.999 u + 1.008 u + 1.008 u( )

          × 0− 1.008 u( ) 0.100 nm( )cos53.0°[
                      − 1.008 u( ) 0.100 nm( )cos53.0°]

 

 

 

The center of mass of the molecule lies on the dotted line
shown in ANS. FIG. P9.50, 0.006 73 nm below the center 
of the O atom. 

 

 
 

 

Section 9.7 Systems of Many Particles	  

P9.51 (a) 
    


vCM =

mi

v i∑

M
=

m1

v1 + m2


v2

M
 

  

   

=
1

5.00 kg
⎛
⎝⎜

⎞
⎠⎟

[(2.00 kg)(2.00î m s − 3.00 ĵ m s)

                  + (3.00 kg)(1.00î m s + 6.00 ĵ m s)]

vCM = 1.40î + 2.40 ĵ( )  m s

 

 (b)  
    

p = M


vCM = (5.00 kg)(1.40î + 2.40 ĵ) m s = (7.00î + 12.0 ĵ) kg ⋅m s  

ANS. FIG. P9.50 
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ANS. FIG. P9.52 
 

*P9.52 (a) ANS. FIG. P9.52 shows the position  
vectors and velocities of the particles. 

 (b) Using the definition of the position  
vector at the center of mass, 

   

    

rCM =
m1
r1 + m2

r2

m1 + m2

rCM = 1
2.00 kg + 3.00 kg

⎛
⎝⎜

⎞
⎠⎟

                   [ 2.00 kg( ) 1.00 m,  2.00 m( )
                    + 3.00 kg( ) −4.00 m, − 3.00 m( )]
rCM = −2.00î − 1.00 ĵ( )  m

 

 (c) The velocity of the center of mass is 

   

    


vCM =


P
M

= m1

v1 + m2


v2

m1 + m2

= 1
2.00 kg + 3.00 kg

⎛
⎝⎜

⎞
⎠⎟

    [ 2.00 kg( ) 3.00 m/s, 0.50 m/s( )
           + 3.00 kg( ) 3.00 m/s, − 2.00 m/s( )]


vCM = 3.00î − 1.00 ĵ( )  m/s

 

 (d) The total linear momentum of the system can be calculated as 

    

P = M


vCM  or as     


P = m1


v1 + m2


v2 .  Either gives  

   
   


P = 15.0î − 5.00 ĵ( )  kg ⋅m/s  

P9.53 No outside forces act on the boat-plus-
lovers system, so its momentum is 
conserved at zero and the center of mass 
of the boat-passengers system stays 
fixed: 

   xCM,i = xCM,f  

 Define K to be the point where they kiss, 
and   ΔxJ  and  Δxb  as shown in the figure. 
Since Romeo moves with the boat (and 
thus   ΔxRomeo = Δxb ), let mb be the combined mass of Romeo and the 
boat. The front of the boat and the shore are to the right in this picture, 

r

r

r r

r

ANS. FIG. P9.53 
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and we take the positive x direction to the right. Then,  
   

  mJΔxJ + mbΔxb = 0  

 Choosing the x axis to point toward the shore, 
   

  55.0 kg( )ΔxJ + 77.0 kg + 80.0 kg( )Δxb = 0   

 and    ΔxJ = −2.85Δxb  

  As Juliet moves away from shore, the boat and Romeo glide toward 
the shore until the original 2.70-m gap between them is closed. We 
describe the relative motion with the equation 

   
  
ΔxJ + Δxb = 2.70 m

 

  Here the first term needs absolute value signs because Juliet’s change 
in position is toward the left. An equivalent equation is then 

   
  −ΔxJ + Δxb = 2.70 m  

 Substituting, we find   

     +2.85Δxb + Δxb = 2.70 m  

 so    
  
Δxb = 2.70 m

3.85
= 0.700 m  towards the shore  

P9.54 The vector position of the center of mass is (suppressing units) 

   

    


rCM =

m1

r1 + m2


r2

m1 + m2

=
3.5 3î + 3 ĵ( )t + 2 ĵt2⎡

⎣
⎤
⎦ + 5.5 3î − 2ît2 + 6 ĵt⎡⎣ ⎤⎦

3.5 + 5.5

    = 1.83 + 1.17t − 1.22t2( ) î + −2.5t + 0.778t2( ) ĵ

 

 (a) At t = 2.50 s, 

   

    


rCM = 1.83 + 1.17 ⋅2.5− 1.22 ⋅6.25( ) î + (−2.5 ⋅2.5 + 0.778 ⋅6.25)ĵ

= −2.89î − 1.39 ĵ( )  cm
 

 (b)  The velocity of the center of mass is obtained by differentiating 
the expression for the vector position of the center of mass with 
respect to time: 

   
    


vCM = d


rCM

dt
= (1.17 − 2.44t)î + (−2.5 + 1.56t)ĵ  

  At t = 2.50 s, 
   

   


vCM = (1.17 − 2.44 ⋅2.5)î + (−2.5 + 1.56 ⋅2.5)ĵ

= (− 4.94î + 1.39ĵ) cm/s 
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  Now, the total linear momentum is the total mass times the 
velocity of the center of mass. 

    

   


p = (9.00 g)(− 4.94î + 1.39ĵ) cm/s 

= (− 44.5î + 12.5ĵ) g ⋅cm/s  

 

 (c) As was shown in part (b), 
  
− 4.94î + 1.39 ĵ( ) cm/s  

 (d)  Differentiating again, 
    


aCM =

d

vCM

dt
= −2.44( ) î + 1.56 ĵ  

  The center of mass acceleration is 
  
−2.44î + 1.56 ĵ( ) cm/s2  at t = 

2.50 s and at all times. 

 (e)  The net force on the system is equal to the total mass times the 
acceleration of the center of mass:  

   

   


Fnet = 9.00 g( ) −2.44î + 1.56 ĵ( )  cm/s2 = −220î + 140 ĵ( )  µN

 

P9.55 (a)  Conservation of momentum for the two-ball system gives us: 
    

  

0.200 kg( )(1.50 m s) + 0.300 kg( )(−0.400 m s)

                             = 0.200 kg( )v1 f + 0.300 kg( )v2 f

 

  Relative velocity equation: 

   
  
v2 f − v1 f = 1.90 m/s  

  Then, suppressing units, we have  
    

  0.300 − 0.120 = 0.200v1 f + 0.300(1.90 + v1 f )  

      v1 f = −0.780 m s v2 f = 1.12 m s  

   
    

v1 f = −0.780î m s


v2 f = 1.12î m s  

 (b)  Before, 

   


vCM =

0.200 kg( ) 1.50 m/s( ) î + 0.300 kg( ) −0.400 m/s( ) î
0.500 kg


vCM = 0.360 m/s( ) î

 

  Afterwards, the center of mass must move at the same velocity, 
because the momentum of the system is conserved. 
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Section 9.8 Deformable Systems	  
P9.56 (a)  Yes  The only horizontal force on the vehicle is the frictional 

force exerted by the floor, so it gives the vehicle all of its final 

momentum, 
  
(6.00 kg)(3.00î m/s) = 18.0î kg ⋅m/s .  

 (b)  

 

No. The friction force exerted by the floor on each stationary bit
of caterpillar tread acts over no distance, so it does zero work.

 

 (c)  

 

Yes, we could say that the final momentum of the cart came
from the floor or from the Earth through the floor.

 

 (d)  

  

No. The kinetic energy came from the original gravitational
potential energy of the Earth-elevated load system, in the

amount KE =
1
2

⎛
⎝⎜

⎞
⎠⎟ 6.00 kg( ) 3.00 m/s( )2 = 27.0 J.

 

 (e)  

 

Yes. The acceleration is caused by the static friction force exerted
by the floor that prevents the wheels from slipping backward.

 

P9.57 (a)  When the cart hits the bumper it immediately stops, and the 
hanging particle keeps moving with its original speed vi. The 
particle swings up as a pendulum on a fixed pivot, keeping 
constant energy. Measure elevations from the pivot: 

   

  

1
2

mvi
2 + mg −L( ) = 0 + mg −L cos θ( )    

 

  Then 
  
vi = 2gL 1− cosθ( )  

 (b) The bumper continues to exert a force to the left until the particle 
has swung down to 

 
its lowest point . This leftward force is 

necessary to reverse the rightward motion of the particle and 
accelerate it to the left. 

P9.58 (a)   Yes  The floor exerts a force, larger than the person’s weight over 
time as he is taking off. 

 (b)   No  The work by the floor on the person is zero because the force 
exerted by the floor acts over zero distance. 
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 (c) He leaves the floor with a speed given by 
  

1
2

mv2 = mgy f , or  

   
  
v = 2gy f = 2 9.80 m/s2( ) 0.150 m( ) = 1.71 m/s  

  so his momentum immediately after he leaves the floor is  
 

  
p = mv = 60.0 kg( ) 1.71 m/s up( ) = 103 kg ⋅m/s up   

 (d)  

 

Yes. You could say that it came from the planet, that gained
momentum 103 kg ⋅m/s down, but it came through the force
exerted by the floor over a time interval on the person, so it
came through the floor or from the floor through direct contact.

 

 (e)  His kinetic energy is 
   

  
K = 1

2
mv2 = 1

2
60.0 kg( ) 1.71 m/s( )2 = 88.2 J

  

 (f)  

 

No. The energy came from chemical energy in the person’s
leg muscles. The floor did no work on the person.

 

P9.59 Consider the motion of the center of mass (CM) of the system of the 
two pucks. Because the pucks have equal mass m, the CM lies at the 
midpoint of the line connecting the pucks. 

 (a)  The force F accelerates the CM to the right at the rate 
   

  
aCM =

F
2m

 

  According to Figure P9.59, when the force has moved through 

distance d, the CM has moves through distance 
   
DCM = d − 1

2
.  We 

can find the speed of the CM, which is the same as the speed v of 
the pucks when they meet and stick together: 

   

   

v f
2 = vi

2 + 2aCM x f − xi( )
vCM

2 = 0 + 2
F

2m
⎛
⎝⎜

⎞
⎠⎟

d −
1
2


⎛
⎝⎜

⎞
⎠⎟
→         v = vCM =

F 2d − ( )
2m
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 (b) The force F does work on the system through distance d, the work 
done is W = Fd. Relate this work to the change in kinetic energy 
and internal energy: 

   

   

ΔK + ΔEint = W

where ΔK =
1
2

2m( )vCM
2 = m

F 2d − ( )
2m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
F 2d − ( )

2

F 2d − ( )
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ ΔEint = Fd → ΔEint = Fd −
F 2d − ( )

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ΔEint = Fd − Fd +
F
2

ΔEint =
F
2

 

 
 

 

Section 9.9 Rocket Propulsion	  
P9.60 (a) The fuel burns at a rate given by 

   
  

dM
dt

=
12.7 g
1.90 s

= 6.68 × 10−3 kg/s  

  From the rocket thrust equation, 

   Thrust = 
  
ve

dM
dt

:  
  
5.26 N = ve 6.68 × 10−3 kg/s( )  

    
  
ve = 787 m/s

 

 (b) 
  
v f − vi = ve ln

Mi

M f

⎛

⎝
⎜

⎞

⎠
⎟ :  

   

  
v f − 0 = 787 m/s( )ln

53.5 g + 25.5 g
53.5 g + 25.5 g − 12.7 g

⎛
⎝⎜

⎞
⎠⎟

 

   
  
v f = 138 m/s  



Chapter 9     481 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

*P9.61 The force exerted on the water by the hose is 
   

  

F = Δpwater

Δt
=

mv f − mvi

Δt
= 0.600 kg( ) 25.0 m s( ) − 0

1.00 s
= 15.0 N

 

 According to Newton’s third law, the water exerts a force of equal 
magnitude back on the hose. Thus, the gardener must apply a 15.0-N 
force (in the direction of the velocity of the exiting water stream) to 
hold the hose stationary. 

P9.62 (a) The thrust, F, is equal to the time rate of change of momentum as 
fuel is exhausted from the rocket. 

    
 
F =

dp
dt =

d
dt mve( )  

  Since the exhaust velocity ve is a constant, 

     F = ve(dm/dt),  where   dm/dt = 1.50 × 104  kg/s  

  and   ve = 2.60 × 103  m/s .  

  Then   F = 2.60 × 103 m/s( ) 1.50 × 104 kg/s( ) = 3.90 × 107  N  

  (b) Applying  ∑F = ma  gives 
    

  

Fy = Thrust − Mg = Ma∑ :  

3.90× 107  N − 3.00× 106  kg( ) 9.80 m/s2( ) = 3.00× 106  kg( )a

 

   
  
a = 3.20 m/s2  

P9.63 In 
  
v = veln

Mi

M f

 we solve for Mi . 

 (a)   Mi = ev/ve M f     →     Mi = e5 3.00 × 103 kg( ) = 4.45 × 105 kg  

  The mass of fuel and oxidizer is  

   

  

ΔM = Mi − M f = 445 − 3.00( ) × 103 kg

                    = 442 metric tons
 

 (b) 
  
ΔM = e2 3.00 metric tons( ) − 3.00 metric tons = 19.2 metric tons  
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 (c) 

 

This is much less than the suggested value of 442/2.5. Mathe-
matically, the logarithm in the rocket propulsion equation is not a
linear function. Physically, a higher exhaust speed has an extra-
large cumulative effect on the rocket body’s final speed, by
counting again and again in the speed the body attains second
after second during its burn.

 

P9.64 (a)  From the equation for rocket propulsion in the text, 
    

  
v − 0 = veln

Mi

M f

⎛

⎝
⎜

⎞

⎠
⎟ = −veln

M f

Mi

⎛
⎝⎜

⎞
⎠⎟

 

  Now,   M f = Mi − kt,  so 
  
v = −ve ln

Mi − kt
Mi

⎛
⎝⎜

⎞
⎠⎟

= −ve ln 1−
k

Mi

t
⎛
⎝⎜

⎞
⎠⎟

 

  With the definition, 
  
Tp ≡

Mi

k
,  this becomes 

    

  

v t( ) = −ve ln 1−
t

Tp

⎛

⎝
⎜

⎞

⎠
⎟  

 (b)  With, ve = 1 500 m/s, and Tp = 144 s,  
   

  
v = − 1 500 m/s( )ln 1−

t
144 s

⎛
⎝⎜

⎞
⎠⎟

 

t (s) v (m/s)  

 

 

 

 

 

   ANS. FIG. P9.64(b) 

0  0 

20 224 

40 488 

60 808 

80 1 220 

100 1 780 

120 2 690 

132 3 730 
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 (c) 

  
a t( ) =

dv
dt

=
d −ve ln 1− t

Tp( )⎡
⎣

⎤
⎦

dt
= −ve

1
1− t

Tp

⎛

⎝
⎜

⎞

⎠
⎟ −

1
Tp

⎛

⎝
⎜

⎞

⎠
⎟ =

ve

Tp

⎛

⎝
⎜

⎞

⎠
⎟

1
1− t

Tp

⎛

⎝
⎜

⎞

⎠
⎟ ,   

  or 

 

a t( ) =
ve

Tp − t
 

 (d)  With, ve = 1 500 m/s, and Tp = 144 s, 
  
a =

1 500 m/s
144 s − t

. 

t (s) a (m/s2) 

 

 

  ANS. FIG. P9.64(d) 

 

0 10.4 

20 12.1 

40 14.4 

60 17.9 

80 23.4 

100 34.1 

120 62.5 

132 125 

 

 (e) 
  
x t( ) = 0 + vdt

0

t

∫ = −ve ln 1−
t

Tp

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dt

0

t

∫ = veTp ln 1−
t

Tp

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−
dt
Tp

⎛

⎝
⎜

⎞

⎠
⎟

0

t

∫  

  

  

x t( ) = veTp 1−
t

Tp

⎛

⎝
⎜

⎞

⎠
⎟ ln 1−

t
Tp

⎛

⎝
⎜

⎞

⎠
⎟ − 1−

t
Tp

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0

t

x t( ) = ve Tp − t( )ln 1−
t

Tp

⎛

⎝
⎜

⎞

⎠
⎟ + vet

 

 (f)  With, ve = 1.500 m/s = 1.50 km/s, and Tp = 144 s, 

   
  
x = 1.50(144 − t)ln 1−

t
144

⎛
⎝⎜

⎞
⎠⎟ + 1.50t  
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t (s) x (m) 

 

 

 ANS. FIG. P9.64(f) 

 

0 0 

20 2.19 

40 9.23 

60 22.1 

80 42.2 

100 71.7 

120 115 

132 153 

 
 

 

Additional Problems	  
P9.65 (a)  At the highest point, the velocity of the ball is zero, so momentum 

is also  zero .  

 (b)  Use 
  
vyf

2 = vyi
2 + 2a y f − yi( )  to find the maximum height Hmax: 

    
  0 = vi + 2 −g( )Hmax

 

  or 
  
Hmax = vi

2

2g
 

  Now, find the speed of the ball for 
  

y f − yi( ) = 1
2

Hmax:   

    

  

v f
2 = vi

2 = 2(−g)
1
2

Hmax
⎛
⎝⎜

⎞
⎠⎟

= vi
2 − 2g

1
2

⎛
⎝⎜

⎞
⎠⎟

vi
2

2g
⎛
⎝⎜

⎞
⎠⎟

= vi
2 − 1

2
vi

2 = 1
2

vi
2

 

  which gives 
  
v f = vi

2
 

  Then, 
  
p f = mv f =

mvi

2
, upward  
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P9.66 (a)  The system is isolated because the skater is on frictionless ice — if 
it were otherwise, she would be able to move. Initially, the 
horizontal momentum of the system is zero, and this quantity is 
conserved; so when she throws the gloves in one direction, she 
will move in the opposite direction because the total momentum 
will remain zero. The system has total mass M. After the skater 
throws the gloves, the mass of the gloves, m, is moving with 
velocity 

   

vgloves  and the mass of the skater less the gloves, M – m, is 

moving with velocity    

vgirl :  

    

    


p1i +


p2i =


p1f +


p2f

0 = M − m( ) vgirl + m

vgloves →


vgirl = −

m
M − m

⎛
⎝⎜

⎞
⎠⎟

vgloves

 

  The term M – m is the total mass less the mass of the gloves. 

 (b)  

   

As she throws the gloves and exerts a force on them, the gloves
exert an equal and opposite force on her (Newton’s third law)
that causes her to accelerate from rest to reach the velocity 


v girl .

 

P9.67 In     

FΔt =Δ(m


v),  one component gives  

   
  
Δpy = m vyf − vyi( ) = m vcos60.0°− vcos60.0°( ) = 0

  

  So the wall does not exert a force on the ball in the y direction. The 
other component gives 

    

  

Δpx = m vxf − vxi( ) = m −vsin60.0°− vsin60.0°( )
= −2mvsin60.0° = −2 3.00 kg( ) 10.0 m/s( )sin60.0°
= −52.0 kg ⋅m/s

 

 So  
    


F = Δp

Δt
=
Δpx î
Δt

=
–52.0 î kg ⋅ m/s

0.200 s
= –260 î N  

P9.68 (a)  In the same symbols as in the text’s Example, the original kinetic 
energy is  

    

  
KA = 1

2
m1v1A

2
  

  The example shows that the kinetic energy immediately after 
latching together is  

    

  
KB = 1

2
m1v1A

2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟
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  so the fraction of kinetic energy remaining as kinetic energy is  
    

  
KB KA = m1/ m1 + m2( )  

 (b)  Momentum is conserved in the collision so momentum after 
divided by momentum before is  1.00 .  

 (c)  

 

Energy is an entirely different thing from momentum. A 
comparison: When a photographer’s single-use flashbulb 
flashes, a magnesium filament oxidizes. Chemical energy 
disappears. (Internal energy appears and light carries some 
energy away.) The measured mass of the flashbulb is the 
same before and after. It can be the same in spite of the 100% 
energy conversion, because energy and mass are  totally 
different things in classical physics. In the ballistic pendulum, 
conversion of energy from mechanical into internal does not 
upset conservation of mass or conservation of momentum.

 

*P9.69 (a) Conservation of momentum for  
this totally inelastic collision  
gives 

     mpvi = (mp + mc )v f  

   
  

60.0 kg( ) 4.00 m/s( )
              = 120 kg + 60.0 kg( )v f

 

   
    

v f = 1.33î m/s  

 (b) To obtain the force of friction, we first consider Newton’s second 
law in the y direction,   Fy∑ = 0,  which gives 

     n − 60.0 kg( ) 9.80 m/s( ) = 0  

  or n = 588 N. The force of friction is then  

     fk = µkn = 0.400( ) 588 N( ) = 235 N  

   
    

f k = −235î N

 

 (c) The change in the person’s momentum equals the impulse, or  

     pi + I = p f  

    mvi + Ft = mv f  

ANS. FIG. P9.69 
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60.0 kg( ) 4.00 m/s( ) − 235 N( )t = 60.0 kg( ) 1.33 m/s( )

t = 0.680 s
 

 (d) The change in momentum of the person is  

       m

v f − m


v i = 60.0 kg( ) 1.33− 4.00( ) î m/s = −160î N ⋅s  

  The change in momentum of the cart is  

   
  
120 kg( ) 1.33 m/s( )− 0 = +160î N ⋅s  

  (e) 
  
x f − xi = 1

2
vi + v f( )t = 1

2
4.00 + 1.33( )  m/s[ ] 0.680 s( ) = 1.81 m  

  (f) 
  
x f − xi = 1

2
vi + v f( )t = 1

2
0 + 1.33 m/s( ) 0.680 s( ) = 0.454 m  

  (g) 

  

1
2

mv f
2 − 1

2
mvi

2 = 1
2

60.0 kg( ) 1.33 m/s( )2

                                − 1
2

60.0 kg( ) 4.00 m s( )2 = −427 J

 

 (h) 
  
1
2

mv f
2 − 1

2
mvi

2 = 1
2

120 kg( ) 1.33 m/s( )2 − 0 = 107 J  

 (i) 

  

The force exerted by the person on the cart must be equal in
magnitude and opposite in direction to the force exerted by
the cart on the person. The changes in momentum of the two
objects must be equal in magnitude and must add to zero.
Their changes in kinetic energy are different in magnitude and
do not add to zero. The following represent two ways of 
thinking about why. The distance moved by the cart is 
different from the distance moved by the point of application
of the friction force to the cart. The total change in mechanical
energy for both objects together, –320 J, becomes +320 J of 
additional internal energy in this perfectly inelastic collision.

  

*P9.70 (a) Use conservation of the 
horizontal component of 
momentum for the system of 
the shell, the cannon, and the 
carriage, from just before to just 
after the cannon firing: 

    pxf = pxi  
ANS. FIG. P9.70 
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     mshellvshell cos 45.0° + mcannonvrecoil = 0  

     200 kg( ) 125 m/s( )cos 45.0° + 5 000 kg( )vrecoil = 0  

  or 
  
vrecoil = −3.54 m/s  

 (b) Use conservation of energy for the system of the cannon, the 
carriage, and the spring from right after the cannon is fired to the 
instant when the cannon comes to rest. 

    K f + Ugf + Usf = Ki + Ugi + Usi  

   
  
0 + 0 + 1

2
kxmax

2 = 1
2

mvrecoil
2 + 0 + 0  

   
  
xmax = mvrecoil

2

k
= 5 000 kg( ) −3.54 m/s( )2

2.00 × 104  N/m
= 1.77 m  

 (c)   Fs ,  max = kxmax   

    Fs , max = 2.00 × 104  N m( ) 1.77 m( ) = 3.54 × 104  N  

 (d)  No.  The spring exerts a force on the system during the firing. 
The force represents an impulse, so the momentum of the system 
is not conserved in the horizontal direction. Consider the vertical 
direction. There are two vertical forces on the system: the normal 
force from the ground and the gravitational force. During the 
firing, the normal force is larger than the gravitational force. 
Therefore, there is a net impulse on the system in the upward 
direction. The impulse accounts for the initial vertical momentum 
component of the projectile. 

P9.71 (a)  Momentum of the bullet-block system is conserved in the 
collision, so you can relate the speed of the block and bullet right 
after the collision to the initial speed of the bullet. Then, you can 
use conservation of mechanical energy for the bullet-block-Earth 
system to relate the speed after the collision to the maximum 
height. 

 (b)  Momentum is conserved by the collision. Find the relation 
between the speed of the bullet vi just before impact and the 
speed of the bullet + block v just after impact: 

    

    


p1i + p2 i = p1 f + p2 f → m1v1i + m2v2 i = m1v1 f + m2v2 i

                                     mvi + M 0( ) = mv + Mv = m + M( )v

                →               vi =
m + M( )

m
v
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  For the bullet-block-Earth system, total energy is conserved. Find 
the relation between the speed of the bullet-block v and the height 
h the block climbs to: 

    

  

Ki + Ui = K f + U f

1
2

m + M( )v2 + 0 = m + M( ) gh→ v = 2gh

 

  Combining our results, we find 
    

  

vi = m + M
m

2gh = 1.255 kg
0.005 00 kg

⎛
⎝⎜

⎞
⎠⎟

2 9.80 m/s2( ) 0.220 m( )

vi = 521 m/s

 

P9.72 (a)  Momentum of the bullet-block system is conserved in the 
collision, so you can relate the speed of the block and bullet right 
after the collision to the initial speed of the bullet. Then, you can 
use conservation of mechanical energy for the bullet-block-Earth 
system to relate the speed after the collision to the maximum 
height. 

 (b)  Momentum is conserved by the collision. Find the relation 
between the speed of the bullet vi just before impact and the 
speed of the bullet + block v just after impact: 

   

    


p1i + p2 i = p1 f + p2 f → m1v1i + m2v2 i = m1v1 f + m2v2 i

                                     mvi + M 0( ) = mv + Mv = m + M( )v

                →               vi =
m + M( )

m
v

 

  For the bullet-block-Earth system, total energy is conserved. Find 
the relation between the speed of the bullet-block v and the height 
h the block climbs to: 

  

Ki + Ui = K f + U f

1
2

m + M( )v2 + 0 = m + M( ) gh→ v = 2gh
 

 Combining our results, we find 
  
vi =

m + M
m

2gh . 
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*P9.73 Momentum conservation for the system of 
the two objects can be written as 

   
  3mvi − mvi = mv1 f + 3mv2 f

 

 The relative velocity equation then gives 

     v1 i − v2 i = −v1 f + v2 f   

 or 
   

  

−vi − vi = −v1 f + v2 f

2vi = v1 f + 3v2 f

 

 Which gives 
   

  0 = 4v2 f
 

 or  
  
v1 f = 2vi  and   v2 f = 0 . 

P9.74 (a)  

  

The mass of the sleigh plus you is 270 kg. Your velocity is 
7.50 m/s in the x direction. You unbolt a 15.0-kg seat and 
throw it back at the ravening wolves, giving it a speed of 
8.00 m/s relative to you. Find the velocity of the sleigh 
afterward, and the velocity of the seat relative to the ground.

 

 (b) We substitute v1f = 8.00 m/s – v2f : 

    

  

270 kg( ) 7.50 m/s( ) = 15.0 kg( ) −8.00 m/s + v2 f( ) + 255 kg( )v2 f

2 025 kg ⋅m/s = −120 kg ⋅m/s + 270 kg( )v2 f

 

    

  

v2 f = 2 145 m/s
270

= 7.94 m/s

v1 f = 8.00 m/s − 7.94 m/s = 0.055 6 m/s

 

  

  

The final velocity of the seat is − 0.055 6î m/s. That of the

sleigh is 7.94î m/s.

 

 (c) You transform potential energy stored in your body into kinetic 
energy of the system: 

    

  

ΔK + ΔUbody = 0

ΔUbody = −ΔK = Ki − K f

 

ANS. FIG. P9.73 

r r

r r
1f2 f
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ΔUbody = 1
2

270 kg( ) 7.50 m/s( )2

           − 1
2

(15.0 kg)(0.0556 m/s)2⎡
⎣⎢

                           + 1
2

(255 kg)(7.94 m/s)2 ⎤
⎦⎥

ΔUbody = 7 594 J − 0.023 1 J + 8 047 J[ ]
ΔUbody = −453 J

 

P9.75 (a)  When the spring is fully compressed, each cart moves with same 
velocity v. Apply conservation of momentum for the system of 
two gliders 

    

  
pi = p f :        m1v1 + m2v2 = m1 + m2( )v  →    v =

m1v1 + m2v2

m1 + m2

 

 (b)  Only conservative forces act; therefore, ∆E = 0.  

   
  

1
2

m1v1
2 +

1
2

m1v2
2 =

1
2

m1 + m2( )v2 +
1
2

kxm
2  

  Substitute for v from (a) and solve for xm. 
   

  

xm
2 =

1
k m1 + m2( )

⎛

⎝⎜
⎞

⎠⎟
[ m1 + m2( )m1v1

2 + m1 + m2( )m2v2
2

                                     − m1v1( )2 − m2v2( )2 − 2m1m2v1v2 ]

xm =
m1m2 v1

2 + v2
2 − 2v1v2( )

k m1 + m2( ) = v1 − v2( ) m1m2

k m1 + m2( )

 

 (c) m1v1 + m2v2 = m1v1f + m2v2f 

  Conservation of momentum: 
  
m1 v1 − v1 f( ) = m2 v2 f − v2( )  [1] 

  Conservation of energy: 
  

1
2

m1v1
2 +

1
2

m2v2
2 =

1
2

m1v1 f
2 +

1
2

m2v2 f
2  

  which simplifies to: 
  
m1 v1

2 − v1 f
2( ) = m2 v2 f

2 − v2
2( )  

  Factoring gives
 

  
m1 v1 − v1 f( ) v1 + v1 f( ) = m2 v2 f − v2( ) ⋅ v2 f + v2( )  
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  and with the use of the momentum equation (equation [1]), 

  this reduces to   v1 + v1 f = v2 f + v2  

  or    v1 f = v2 f + v2 − v1  [2] 

  Substituting equation [2] into equation [1] and simplifying yields 
    

  
v2 f =

2m1v1 + m2 − m1( )v2

m1 + m2

 

  Upon substitution of this expression for into equation [2], one 
finds 

    

  
v1 f =

m1 − m2( )v1 + 2m2v2

m1 + m2

 

  Observe that these results are the same as two equations given in 
the chapter text for the situation of a perfectly elastic collision in 
one dimension. Whatever the details of how the spring behaves, 
this collision ends up being just such a perfectly elastic collision in 
one dimension. 

P9.76 We hope the momentum of the equipment provides enough recoil so 
that the astronaut can reach the ship before he loses life support! But 
can he do it? 

 Relative to the spacecraft, the astronaut has a momentum  
p = (150 kg)(20 m/s) = 3 000 kg · m/s away from the spacecraft. He 
must throw enough equipment away so that his momentum is reduced 
to at least zero relative to the spacecraft, so the equipment must have 
momentum of at least 3 000 kg · m/s relative to the spacecraft. If he 
throws the equipment at 5.00 m/s relative to himself in a direction 
away from the spacecraft, the velocity of the equipment will be 25.0 
m/s away from the spacecraft. How much mass travelling at 25.0 m/s 
is necessary to equate to a momentum of 3 000 kg · m/s? 

    
  p = 3 000 kg ⋅m/s = m(25.0 m/s)    

 which gives 
   

  
m = 3 000 kg ⋅m/s

25.0 m/s
= 120 kg

 

 
 

In order for his motion to reverse under these condition, the final mass
of the astronaut and space suit is 30 kg, much less than is reasonable.
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P9.77 Use conservation of mechanical energy for a block-Earth system in 
which the block slides down a frictionless surface from a height h: 

   
  

K + Ug( )
i
= K + Ug( )

f
→

1
2

mv2 + 0 = 0 + mgh→ v = 2gh  

 Note this also applies in reverse, a mass travelling at speed v will climb 

to a height h on a frictionless surface: 
  
h =

v2

2g
.  

 From above, we see that because each block starts from the same 
height h, each block has the same speed v when it meets the other 
block: 

   
  
v1 = v2 = v = 2 9.80 m/s2( ) 5.00 m( ) = 9.90 m/s  

 Apply conservation of momentum to the two-block system: 

   
  

m1v1 f + m2v2 f = m1v + m2 −v( )
m1v1 f + m2v2 f = m1 − m2( )v

 
[1] 

 For an elastic, head-on collision: 

   

  

v1i − v2 i = v1 f − v2 f

v − −v( ) = v2 f − v1 f

v2 f = v1 f + 2v

 
[2]

 

 Substituting equation [2] into [1] gives 
   

  

m1v1 f + m2 v1 f + 2v( ) = m1 − m2( )v

m1 + m2( )v1 f = m1 − m2( )v − 2m2v

v1 f = m1 − 3m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v = 2.00 kg − 3(4.00 kg)
2.00 kg + 4.00 kg

⎡

⎣
⎢

⎤

⎦
⎥(9.90 m/s)

     = −16.5 m/s

 

 Using this result and equation [2], we have 

   

  

v2 f = v1 f + 2v = m1 − 3m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v + 2v

v2 f = 3m1 − m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v = 3(2.00 kg)− 4.00 kg
2.00 kg + 4.00 kg

⎡

⎣
⎢

⎤

⎦
⎥(9.90 m/s)

= 3.30 m/s
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 Using our result above, we find the height that each block rises to: 

   
  
h1 =

v1 f
2

2 g
=

−16.5 m/s( )2

2 9.80 m/s2( ) = 13.9 m      

 and    
  
h2 =

v2 f
2

2 g
=

(3.30 m/s)2

2 9.80 m/s2( ) = 0.556 m  

P9.78 (a) Proceeding step by step, we find the stone’s speed just before 
collision, using energy conservation for the stone-Earth system: 

   

  
ma gyi = 1

2
mavi

2
 

  which gives 
   

  vi = 2gh = [2(9.80 m/s2 )(1.80 m)]1/2 = 5.94 m/s
 

  Now for the elastic collision with the stationary cannonball, we 
use the specialized Equation 9.22 from the chapter text, with  
m1 = 80.0 kg and m2 = m: 

   

  

vcannonball = v2 f = 2m1v1i

m1 + m2

=
2 80.0 kg( ) 5.94 m/s( )

80.0 kg + m

= 950 kg ⋅m/s
80.0 kg + m

  

  The time for the cannonball’s fall into the ocean is given by 
   

  
Δy = vyit + 1

2
ayt

2 →−36.0 = 1
2

−9.80( )t2 → t = 2.71 s
 

  so its horizontal range is 
   

  

R = v2 f t = 2.71 s( ) 950 kg ⋅m/s
80.0 kg + m

⎛
⎝⎜

⎞
⎠⎟

= 2.58× 103  kg ⋅m
80.0 kg + m

 

 (b) The maximum value for R occurs for   m→ 0,  and is 
   

  
R = 2.58× 103  kg ⋅m

80.0 kg + m
= 2.58× 103  kg ⋅m

80.0 kg + 0
= 32.2 m

 

 (c) As indicated in part (b), the maximum range corresponds to 
0m →  
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 (d) 

 

Yes, until the cannonball splashes down. No; the kinetic energy of
the system is split between the stone and the cannonball after the
collision and we don’t know how it is split without using the
conservation of momentum principle.

 

 (e) The range is equal to the product of vcannonball, the speed of the 
cannonball after the collision, and t, the time at which the 
cannonball reaches the ocean. But vcannonball is proportional to vi, the 
speed of the stone just before striking the cannonball, which is, in 
turn, proportional to the square root of g. The time t at which the 
cannonball strikes the ocean is inversely proportional to the 
square root of g. Therefore, the product R = (vcannonball)t is 
independent of g. At a location with weaker gravity, the stone 
would be moving more slowly before the collision, but the 
cannonball would follow the same trajectory, moving more 
slowly over a longer time interval. 

P9.79 We will use the subscript 1 for the blue bead and the subscript 2 for the 
green bead. Conservation of mechanical energy for the blue bead-Earth 
system, Ki + Ui = Kf + Uf , can be written as 

  

  

1
2

mv1
2 + 0 = 0 + m g h

 

 where v1 is the speed of the blue bead at point B just before it collides 
with the green bead. Solving for v1 gives  

  
  
v1 = 2 gh = 2 9.80 m/s2( ) 1.50 m( ) = 5.42 m/s

 

 Now recall Equations 9.21 and 9.22 for an elastic collision: 
  

  

v1 f = m1 − m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v1i + 2m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v2 i         

v2 f = 2m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v1i + m1 − m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v2 i

 

 For this collision, the green bead is at rest, so v2i = 0, and Equation 9.22 
simplifies to 

  

  
v2 f = 2m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v1i + m1 − m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v2 i = 2m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v1i
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 Plugging in gives 
  

  
v2 f =

2 0.400 kg( )
0.400 kg + 0.600 kg

⎛
⎝⎜

⎞
⎠⎟

5.42 m/s( ) = 4.34 m/s
 

 Now, we use conservation of the mechanical energy of the green bead 
after collision to find the maximum height the ball will reach. This 
gives 

  

  
0 + m2 g ymax = 1

2
m2v2 f

2 + 0
 

 Solving for ymax gives 
  

  
ymax =

v2 f
2

2g
=

4.34 m/s( )2

2 9.80 m/s2( ) = 0.960 m
 

P9.80 (a)  The initial momentum of the system 
is zero, which remains constant 
throughout the motion. Therefore, 
when m1 leaves the wedge, we must 
have 

   m2vwedge + m1vblock = 0 

  or 

   (3.00 kg)vwedge  

    + (0.500 kg)(+4.00 m/s) = 0 

  so  vwedge = 
 
−0.667 m/s  

 (b)  Using conservation of energy for the block-wedge-Earth system 
as the block slides down the smooth (frictionless) wedge, we have 

    
  

Kblock + Usystem⎡⎣ ⎤⎦i
+ Kwedge⎡⎣ ⎤⎦i

= Kblock + Usystem⎡⎣ ⎤⎦ f
+ Kwedge⎡⎣ ⎤⎦ f

 

   or 
  
0 + m1gh[ ] + 0 =

1
2

m1 4.00 m/s( )2 + 0⎡
⎣⎢

⎤
⎦⎥

+
1
2

m2 −0.667 m/s( )2   

   which gives 
  
h = 0.952 m  

ANS. FIG. P9.80 
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*P9.81 Using conservation of momentum 
from just before to just after the 
impact of the bullet with the block: 

   mvi = (M+ m)vf 

 or  
 
vi =

M + m
m

⎛
⎝⎜

⎞
⎠⎟

v f  [1] 

 The speed of the block and 
embedded bullet just after impact 
may be found using kinematic 
equations: 

    d = vf t   and   
  
h =

1
2

gt2  

 Thus, 
  
t =

2h
g

 and 
  
v f =

d
t

= d
g

2h
=

gd2

2h
 

 Substituting into [1] from above gives  
   

  

vi = M + m
m

⎛
⎝⎜

⎞
⎠⎟

gd2

2h
= 250 g + 8.00 g

8.00 g
⎛
⎝⎜

⎞
⎠⎟

9.80 m/s2( ) 2.00 m( )2

2 1.00 m( )
= 143 m/s

 

P9.82 Refer to ANS. FIG. P9.81. Using conservation of momentum from just 
before to just after the impact of the bullet with the block: 

   mvi = (M+ m)vf 

 or  
 
vi =

M + m
m

⎛
⎝⎜

⎞
⎠⎟

v f  [1] 

 The speed of the block and embedded bullet just after impact may be 
found using kinematic equations: 

    d = vf t   and   
  
h =

1
2

gt2  

 Thus, 
  
t =

2h
g

 and 
  
v f =

d
t

= d
g

2h
=

gd2

2h
 

 Substituting into [1] from above gives 
  
vi =

M + m
m

⎛
⎝⎜

⎞
⎠⎟

gd2

2h
.  

ANS. FIG. P9.81 
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P9.83 (a)  From conservation of momentum, 
   

    

p1i + p2 i = p1 f + p2 f → m1v1i + m2v2 i = m1v1 f + m2v2 i

  

   

    

0.500 kg( ) 2.00î − 3.00 ĵ + 1.00k̂( )  m/s

                    + 1.50 kg( ) −1.00î + 2.00 ĵ− 3.00k̂( )  m/s

                            = 0.500 kg( ) −1.00î + 3.00 ĵ− 8.00k̂( )  m/s

                                                                         + 1.50 kg ( ) v2 f

 

   

    


v2 f = 1

1.50 kg
⎛
⎝⎜

⎞
⎠⎟

−0.500î + 1.50 ĵ− 4.00k̂( )  kg ⋅m/s⎡
⎣

                              + 0.500î − 1.50 ĵ + 4.00k̂( )  kg ⋅m/s⎤⎦
= 0

 

  The original kinetic energy is 

   

 

1
2

0.500 kg( ) 22 + 32 + 12( )  m2/s2

                          + 1
2

1.50 kg( ) 12 + 22 + 32( ) m2/s2 = 14.0 J
 

  The final kinetic energy is  
   

 

1
2

0.500 kg( ) 12 + 32 + 82( )  m2/s2 + 0 = 18.5 J
 

  different from the original energy so the collision is  inelastic .  

 (b)  We follow the same steps as in part (a): 

   

    

−0.500î + 1.50 ĵ− 4.00k̂( )  kg ⋅m/s

                 = 0.500 kg( ) −0.250î + 0.750 ĵ− 2.00k̂( )  m/s

                                                                       + 1.50 kg( ) v2 f

 

       


v2 f = 1

1.50 kg
⎛
⎝⎜

⎞
⎠⎟
−0.5î + 1.5 ĵ− 4k̂( )kg ⋅m/s

                                  + 0.125î − 0.375 ĵ + 1k̂( )kg ⋅m/s

= −0.250î + 0.750 ĵ− 2.00k̂( )m/s
 

  We see 
    

v2f =


v1 f  so the collision is 

 
perfectly inelastic .  
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 (c) Again, from conservation of momentum, 
   

    

−0.500î + 1.50 ĵ− 4.00k̂( )  kg ⋅m/s

               = 0.500 kg( ) −1î + 3 ĵ + ak̂( )m/s + 1.50 kg( ) v2 f

 

  

    


v2 f = 1

1.50 kg
⎛
⎝⎜

⎞
⎠⎟
−0.500î + 1.50 ĵ− 4.00k̂( )  kg ⋅m/s

                             + 0.500î − 1.50 ĵ− 0.500ak̂( )  kg ⋅m/s

= −2.67 − 0.333a( )k̂ m/s

 

  Then, from conservation of energy: 

   

  

14.0 J = 1
2

0.500 kg( ) 12 + 32 + a2( )  m2/s2

                   + 1
2

1.50 kg( )(2.67 + 0.333a)2  m2/s2

= 2.50 J + 0.250a2 + 5.33 J + 1.33a + 0.0833a2

 

  This gives, suppressing units, a quadratic equation in a, 

     0 = 0.333a2 + 1.33a − 6.167 = 0  

  which solves to give 

   
  
a =

−1.33 ± 1.332 − 4(0.333)(−6.167)
0.667

 

  With   a = 2.74 ,    

   
    

v2f2f = −2.67 − 0.333 2.74( )( )k̂ m/s = −3.58k̂ m/s  

  With   a = −6.74 ,  

   
    
 

v2f2f = −2.67 − 0.333 −6.74( )( )k̂ m/s = −0.419k̂ m/s  

P9.84 Consider the motion of the firefighter during the three intervals: (1) 
before, (2) during, and (3) after collision with the platform. 

 (a) While falling a height of 4.00 m, her speed changes from vi = 0 to 
v1 as found from 

   

  

ΔE = K f + U f( ) − Ki – Ui( )
K f = ΔE −U f + Ki + Ui
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ANS FIG. P9.84 

  When the initial position of the platform is taken as the zero level 
of gravitational potential, we have 

   
  

1
2

mv1
2 = fh cos 180°( ) − 0 + 0 + mgh  

  Solving for v1 gives 

   

  

v1 = 2(− fh + mgh)
m

=
2 − 300 N( )(4.00 m) + 75.0 kg( )(9.80 m/s2 ) 4.00 m( )⎡⎣ ⎤⎦

75.0 kg

= 6.81 m/s

 

 (b) During the inelastic collision, momentum of the firefighter-
platform system is conserved; and if v2 is the speed of the 
firefighter and platform just after collision, we have  
mv1 = (m + M)v2, or 

   

  
v2 = m1v1

m + M
=

75.0 kg( ) 6.81 m/s( )
75.0 kg + 20.0 kg

= 5.38 m/s
 

  Following the collision and again solving for the work done by 
nonconservative forces, using the distances as labeled in the 
figure, we have (with the zero level of gravitational potential at 
the initial position of the platform) 

   
 ΔE = K f +U fg +U fs − Ki −Uig −Uis

 

  or 
  
− fs = 0 + (m + M)g(−s) +

1
2

ks2 −
1
2

(m + M)v2 − 0 − 0  
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  This results in a quadratic equation in s: 

   2 000s2 – (931)s + 300s – 1 375 = 0  

  with solution 
  
s = 1.00 m  

P9.85 Each primate swings down according to 
     

  
mgR =

1
2

mv1
2  and  MgR =

1
2

Mv1
2    →    v1 = 2gR

 

 For the collision,  

    
  −mv1 + Mv1 = + m + M( )v2

 

     

  
v2 =

M − m
M + m

v1

 

 While the primates are swinging up, 

     
  

1
2

(M + m)v2
2 = (M + m)gR(1− cos35°)  

    
  v2 = 2gR(1− cos35.0°)

 

    

  

2gR(1− cos35.0°)(M + m) = (M − m) 2gR

0.425M + 0.425m = M − m
1.425m = 0.575M

 

 which gives 

    
  

m
M

= 0.403  

P9.86   (a) We can obtain the initial speed of the projectile by utilizing 
conservation of momentum: 

    
  m1v1A + 0 = m1 + m2( )vB

 

  Solving for v1A gives 
    

  

v1A = m1 + m2

m1

2gh

v1A ≅ 6.29 m/s

   

 (b) We begin with the kinematic equations in the x and y direction: 
   

  

x = x0 + vx0t + 1
2

axt
2

y = y0 + vy0t + 1
2

ayt
2
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  And simplify by plugging in x0 = y0 = 0, vy0 = 0, vx0= v1A, ax = 0, and 
ay = g:  

   
  

1
2

gt2 = y and x = v1At  

  Combining them gives 

   
  
v1A =

x
2y g

= x
g

2y
 

  Substituting the numerical values from the problem statement 
gives 

   

  
v1A = x

g
2y

= 2.57 m( ) 9.80 m/s2

2 0.853 m( ) = 6.16 m/s
 

 (c) 

 

Most of the 2% difference between the values for speed could
be accounted for by air resistance.

 

 

ANS. FIG. P9.86 

P9.87 The force exerted by the spring on each block is in magnitude. 

   
  Fs = kx = 3.85 N/m( ) 0.08 m( ) = 0.308 N  

 (a) With no friction, the elastic energy in the spring becomes kinetic 
energy of the blocks, which have momenta of equal magnitude in 
opposite directions. The blocks move with constant speed after 
they leave the spring. From conservation of energy, 

   
 

K + U( )i = K + U( ) f

 

   

  

1
2

kx2 =
1
2

m1v1 f
2 +

1
2

m2v2 f
2
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1
2

(3.85 N/m)(0.080 0 m)2

           = 1
2

(0.250 kg)v1 f
2 + 1

2
(0.500 kg)v2 f

2

 

[1]

 

  And from conservation of linear momentum, 
   

    m1

v1i + m2


v2 i = m1


v1 f + m2


v2 f

 

   

   

0 = (0.250 kg)v1 f (− î) + (0.500 kg)v2 f î

v1 f = 2v2 f

 

  Substituting this into [1] gives 
   

  

0.012 3 J = 1
2

(0.250 kg) 2v2 f( )2
+ 1

2
(0.500 kg)v2 f

2

= 1
2

(1.50 kg)v2 f
2

 

  Solving, 
   

    

v2 f = 0.012 3 J
0.750 kg

⎛
⎝⎜

⎞
⎠⎟

1 2

= 0.128 m/s 
v2 f = 0.128î m/s

v1 f = 2(0.128 m/s) = 0.256 m/s 
v1 f = −0.256î m/s

 

 (b) For the lighter block,  
   

  Fy = may ,∑ n− 0.250 kg 9.80 m/s2( ) = 0,     n = 2.45 N,
 

   
  fk = µkn = 0.1 2.45 N( ) = 0.245 N.   

  We assume that the maximum force of static friction is a similar 
size. Since 0.308 N is larger than 0.245 N, this block moves. For 
the heavier block, the normal force and the frictional force are 
twice as large: fk = 0.490 N. Since 0.308 N is less than this, the 
heavier block stands still. In this case, the frictional forces exerted 
by the floor change the momentum of the two-block system. The 
lighter block will gain speed as long as the spring force is larger 
than the friction force: that is until the spring compression 
becomes xf  given by  

     Fs = kx,  0.245 N = (3.85 N.m)xf , 0.063 6 m = xf 

  Now for the energy of the lighter block as it moves to this 
maximum-speed point, we have 

    Ki + Ui − fkd = K f + U f  
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0 + 0.012 3 J − 0.245 N( )(0.08 − 0.063 6 m)

                     =
1
2

(0.250 kg)v f
2 +

1
2

(3.85 N/m)(0.063 6 m)2

 

   

  

0.012 3 J − 0.004 01 J = 1
2

(0.250 kg)v f
2 + 0.007 80 J

2(0.000 515 J)
0.250 kg

⎛
⎝⎜

⎞
⎠⎟

1 2

= v f = 0.064 2 m/s

 

  Thus for the heavier block the maximum velocity is  0  and for 

the lighter block, 
  
−0.064 2î m/s .  

 (c) For the lighter block, fk = 0.462(2.45 N) = 1.13 N. The force of static 
friction must be at least as large. The 0.308-N spring force is too 
small to produce motion of either block. Each has  0  maximum 
speed. 

P9.88 The orbital speed of the Earth is 
   

  
vE = 2πr

T
=

2π 1.496× 1011 m( )
3.156× 107 s

= 2.98× 104 m/s
 

 In six months the Earth reverses its direction, to undergo momentum 
change 

   

    

mE ΔvE = 2mEvE = 2 5.98× 1024  kg( ) 2.98× 104  m/s( )
= 3.56× 1029  kg ⋅m/s

 

 Relative to the center of mass, the Sun always has momentum of the 
same magnitude in the opposite direction. Its 6-month momentum 
change is the same size,     mS ΔvS = 3.56 × 1029 kg ⋅m/s  

 Then 
   
ΔvS =

3.56 × 1029 kg ⋅m/s
1.991× 1030 kg

= 0.179 m/s  

 

ANS. FIG. P9.88 
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P9.89 (a) We find the speed when the 
bullet emerges from the block 
by using momentum 
conservation: 

    mvi = MVi + mv 

  The block moves a distance of 
5.00 cm. Assume for an 
approximation that the block 
quickly reaches its maximum 
velocity, Vi , and the bullet 
kept going with a constant 
velocity, v. The block then 
compresses the spring and stops. After the collision, the 
mechanical energy is conserved in the block-spring system: 

    

  

1
2

MVi
2 =

1
2

kx2
 

     

  

Vi =
900 N/m( ) 5.00× 10−2  m( )2

1.00 kg
= 1.50 m/s

v = mvi − MVi

m

=
5.00× 10−3  kg( )(400 m/s)− (1.00 kg)(1.50 m/s)

5.00× 10−3  kg

v = 100 m/s

 

 (b) Identifying the system as the block and the bullet and the time 
interval from just before the collision to just after the collision, 

    

  

ΔK  + ΔEint  = 0   gives

ΔEint  = −ΔK   =  − 1
2

mv2 + 1
2

MVi
2 − 1

2
mvi

2⎛
⎝⎜

⎞
⎠⎟

 

  Then 

    

  

ΔEint  =  −
1
2

(0.005 00 kg)(100 m/s)2  ⎡
⎣⎢

 

                             
             +  1

2
(1.00 kg)(1.50 m/s)2

      −  1
2

(0.005 00 kg)(400 m/s)2

⎤

⎦

⎥
⎥
⎥
⎥

         =  374 J

 

ANS. FIG. P9.89 
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P9.90 (a) We have, from the impulse-momentum theorem,     

pi +

Ft = p f :  

   
    
(3.00 kg)(7.00 m/s)ĵ + 12.0î N( )(5.00 s) = (3.00 kg)


v f

 

   
    


v f = 20.0î + 7.00 ĵ( )  m/s  

 (b) The particle’s acceleration is 
   

    


a =

v f −


v i

t
=

20.0î + 7.00 ĵ− 7.00 ĵ( )  m/s

5.00 s
= 4.00î m/s2

 

 (c)  From Newton’s second law, 
   

    


a =


F∑

m
= 12.0î N

3.00 kg
= 4.00î m/s2

 

 (d) The vector displacement of the particle is 
   

    

Δr = v it + 1
2

at2

= 7.00 m s ĵ( )(5.00 s) + 1
2

4.00 m/s2 î( )(5.00 s)2

Δr = 50.0î + 35.0 ĵ( )  m

  

 (e) Now, from the work-kinetic energy theorem, the work done on 
the particle is 

  
    
W =


F ⋅ Δr = 12.0î N( ) 50.0î m + 35.0 ĵ m( ) = 600 J

 

 (f) The final kinetic energy of the particle is 

   
   

1
2

mv f
2 =

1
2

(3.00 kg) 20.0î + 7.00 ĵ( ) ⋅ 20.0î + 7.00 ĵ( )  m2/s2  

   
  

1
2

mv f
2 = (1.50 kg) 449 m2/s2( ) = 674 J  

 (g) The final kinetic energy of the particle is  

   
  

1
2

mvi
2 + W =

1
2

(3.00 kg)(7.00 m/s)2 + 600 J = 674 J  

 (h) 

 

The accelerations computed in different ways agree. The 
kinetic energies computed in different ways agree. The three
theories are consistent.
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P9.91 We note that the initial velocity of the target particle is zero (that is, 

  v2 i = 0 ). Then, from conservation of momentum, 

     m1v1 f + m2v2 f = m1v1i + 0  [1] 

 For head-on elastic collisions, 
  
v1i − v2 i = v1 f − v2 f( ) ,  and with   v2 i = 0,  

this gives 

     v2 f = v1i + v1 f  [2] 

 Substituting equation [2] into [1] yields 
   

  
m1v1 f + m2 v1i + v1 f( ) = m1v1i

 

 or 
   

  m1 + m2( )v1 f = m1 − m2( )v1i
 

 which gives  

   
  
v1 f = m1 − m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v1i  [3] 

 Now, we substitute equation [3] into [2] to obtain 

   
  
v2 f = v1i + m1 − m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v1i = 2m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v1i  [4] 

 Equations [3] and [4] can now be used to answer both parts (a) and (b). 

 (a) If   m1 = 2.00 g,m2 = 1.00 g,  and v1i = 8.00 m/s,  then 
    

  
v1 f = m1 − m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v1i = 2.00 g − 1.00 g
2.00 g + 1.00 g

⎛
⎝⎜

⎞
⎠⎟

8.00 m/s( ) = 2.67 m/s
 

   

  
v2 f = 2m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v1i =
2 2.00 g( )

2.00 g + 1.00 g
⎡

⎣
⎢

⎤

⎦
⎥ 8.00 m/s( ) = 10.7 m/s

 

 (b) If   m1 = 2.00 g,m2 = 10.0 g,  and v1i = 8.00 m/s,  we find 
    

  
v1 f = m1 − m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v1i = 2.00 g − 10.0 g
2.00 g + 10.0 g

⎛
⎝⎜

⎞
⎠⎟

8.00 m/s( ) = 5.33 m/s
 

   

  
v2 f = 2m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v1i =
2 2.00 g( )

2.00 g + 10.0 g
⎡

⎣
⎢

⎤

⎦
⎥ 8.00 m/s( ) = 2.67 m/s
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 (c) The final kinetic energy of the 2.00-g particle in each case is: 

  Case (a):  
   

  
KE1 f = 1

2
m1v1 f

2 = 1
2

2.00× 10−3  kg( ) 2.67 m/s( )2 = 7.11× 10−3  J
  

  Case (b):  
   

  
KE1 f = 1

2
m1v1 f

2 = 1
2

2.00× 10−3  kg( ) 5.33 m/s( )2 = 2.84× 10−2  J
 

  Since the incident kinetic energy is the same in cases (a) and (b), 
we observe that 

 

the incident particle loses more kinetic energy in case (a),
in which the target mass is 1.00 g.

  

 
 

 

Challenge Problems	  
P9.92 Take the origin at the center of curvature. 

We have 
  
L = 1

4
2πr,  r = 2L

π
.  An incremental 

bit of the rod at angle θ from the x axis has 

mass given by 
  

dm
rdθ

= m
L

, dm = mr
L

dθ ,  where 

we have used the definition of radian 
measure. Now 

  

  

yCM =
1
M

y dm
all mass
∫ =

1
M

r sinθ
θ = 45°

135°

∫
Mr
L

dθ =
r2

L
sinθ dθ

45°

135°

∫

=
2L
π

⎛
⎝⎜

⎞
⎠⎟

2 1
L

(− cosθ)
45°

135°

=
4L
π 2

1
2

+
1
2

⎛
⎝⎜

⎞
⎠⎟

=
4 2L
π 2

 

 The top of the bar is above the origin by 
  
r =

2L
π

, so the center of mass 

is below the middle of the bar by 
   

  

2L
π

− 4 2L
π 2 = 2

π
1− 2 2

π
⎛
⎝⎜

⎞
⎠⎟

L = 0.063 5 L
 

P9.93 The x component of momentum for the system of the two objects is 

    p1ix + p2ix = p1fx + p2fx  

ANS. FIG. P9.92 
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    –mvi + 3mvi = 0 + 3mv2x 

 The y component of momentum of the system is  

   0 + 0 = –mv1y + 3mv2y 

 By conservation of energy of the system, 

  
+

1
2

mvi
2 +

1
2

3mvi
2 =

1
2

mv1y
2 +

1
2

3m v2x
2 + v2y

2( )  

 we have 
  
v2x =

2vi

3
 

 also  v1y = 3v2y 

 So the energy equation becomes  

   
  
4vi

2 = 9v2y
2 +

4vi
2

3
+ 3v2y

2  

   

  

8vi
2

3
= 12v2y

2
 

 or   
  
v2y =

2vi

3
 

 (a) The object of mass m has final speed  

   
  
v1y = 3v2y = 2vi

 

  and the object of mass 3m moves at  

   
  

v2x
2 + v2y

2 =
4vi

2

9
+

2vi
2

9
 

   
  

v2x
2 + v2y

2 =
2
3

vi
 

 (b) 
  
θ = tan−1 v2y

v2x

⎛
⎝⎜

⎞
⎠⎟

 

  
  
θ = tan−1 2vi

3
3

2vi

⎛
⎝⎜

⎞
⎠⎟

= 35.3°  
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P9.94 A picture one second later differs by showing five extra kilograms of 
sand moving on the belt. 

 (a) 
  

dp
dt

 = 
d(mv)

dt
 = v

dm
dt

 = (0.750 m/s)(5.00 kg/s) =  3.75 N  

 (b) The only horizontal force on the sand is belt friction, which causes 

the momentum of the sand to change: 
  
F =

dp
dt

= 3.75 N  as above. 

 (c) The belt is in equilibrium: 
   

  Fx = max :  +Fext − f = 0    and    Fext∑ = 3.75 N  

 (d)  
  
W = FΔr cosθ = 3.75 N( ) 0.750 m( )cos0° = 2.81 J  

 (e)  
  

dK
dt

=
d

1
2

mv2⎛
⎝⎜

⎞
⎠⎟

dt
=

1
2

v2 dm
dt

=
1
2

0.750 m/s( )2 5.00 kg/s( ) = 1.41 J/s  

 (f) 

 

One-half of the work input becomes kinetic energy of the 
moving sand and the other half becomes additional internal 
energy. The internal energy appears when the sand does not 
elastically bounce under the hopper, but has friction eliminate 
its horizontal motion relative to the belt. By contrast, all of the 
impulse input becomes momentum of the moving sand.

 

P9.95 Depending on the length of the cord and the time interval ∆t for which 
the force is applied, the sphere may have moved very little when the 
force is removed, or we may have x1 and x2 nearly equal, or the sphere 
may have swung back, or it may have swung back and forth several 
times. Our solution applies equally to all of these cases. 

 (a) The applied force is constant, so the center of mass of the glider-
sphere system moves with constant acceleration. It starts, we 
define, from x = 0 and moves to (x1 + x2)/2. Let v1 and v2 represent 
the horizontal components of velocity of glider and sphere at the 
moment the force stops. Then the velocity of the center of mass is 
vCM = (v1 + v2)/2, and because the acceleration is constant we have  

   

  

x1 + x2

2
= v1 + v2

2
⎛
⎝⎜

⎞
⎠⎟

Δt
2

⎛
⎝⎜

⎞
⎠⎟

  

  which gives 
   

  
Δt = 2

x1 + x2

v1 + v2

⎛
⎝⎜

⎞
⎠⎟
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  The impulse-momentum theorem for the glider-sphere system is 
   

  FΔt = mv1 + mv2
  

  or 
   

  

2F
x1 + x2

v1 + v2

⎛
⎝⎜

⎞
⎠⎟

= m v1 + v2( )

2F x1 + x2( ) = m v1 + v2( )2

 

  Dividing both sides by 4m and rearranging gives 
   

  

2F x1 + x2( )
4m

=
m v1 + v2( )2

4m

F x1 + x2( )
2m

=
v1 + v2( )2

4
= vCM

2

 

  or 
   

  
vCM =

F x1 + x2( )
2m

 

 (b) The applied force does work that becomes, after the force is 
removed, kinetic energy of the constant-velocity center-of-mass 
motion plus kinetic energy of the vibration of the glider and 
sphere relative to their center of mass. The applied force acts only 
on the glider, so the work-energy theorem for the pushing 
process is 

   

  
Fx1 = 1

2
2m( )vCM

2 + Evib

  

  Substitution gives  
   

  
Fx1 = 1

2
2m( ) F x1 + x2( )

2m
⎡

⎣
⎢

⎤

⎦
⎥ + Evib = 1

2
Fx1 + 1

2
Fx2 + Evib

 

  Then, 
   

  
Evib = 1

2
Fx1 −

1
2

Fx2

 

  When the cord makes its largest angle with the vertical, the 
vibrational motion is turning around. No kinetic energy is 
associated with the vibration at this moment, but only 
gravitational energy: 

   
  mgL 1− cosθ( ) = F x1 − x2( )/2       
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  Solving gives  
   

  
θ = cos−1[1− F x1 − x2( )/2mgL]

 

P9.96 The force exerted by the table is equal to the change in momentum of 
each of the links in the chain. By the calculus chain rule of derivatives, 

   
  
F1 =

dp
dt

=
d mv( )

dt
= v

dm
dt

+ m
dv
dt

 

 We choose to account for the change in momentum of each link by 
having it pass from our area of interest just before it hits the table, so 
that 

   
  
v

dm
dt

≠ 0  and   m
dv
dt

= 0  

 Since the mass per unit length is uniform, we can  
express each link of length dx as having a mass dm: 

   
 
dm =

M
L

dx  

 The magnitude of the force on the falling chain is the force that will be 
necessary to stop each of the elements dm. 

   
  
F1 = v

dm
dt

= v
M
L

⎛
⎝⎜

⎞
⎠⎟

dx
dt

=
M
L

⎛
⎝⎜

⎞
⎠⎟

v2  

 After falling a distance x, the square of the velocity of each link v2 = 2gx 
(from kinematics), hence 

   
  
F1 =

2Mgx
L

 

 The links already on the table have a total length x, and their weight is 
supported by a force F2: 

   
  
F2 =

Mgx
L

 

 Hence, the total force on the chain is 
   

  
Ftotal = F1 + F2 =

3Mgx
L

 

 That is, the total force is three times the weight of the chain on the table at 
that instant. 

 
 

ANS. FIG. P9.96 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 
P9.2 1.14 kg; 22.0 m/s 

P9.4 (a)   px = 9.00 kg ⋅m/s, py = −12.0 kg ⋅m/s; (b) 15.0 kg . m/s 

P9.6 (a) 
  
vpi = −0.346 m/s ; (b) 

  
vgi = 1.15 m/s  

P9.8 (a) 4.71 m/s East; (b) 717 J 

P9.10 10−23 m/s 

P9.12 (a) 3.22 × 103 N, 720 lb; (b) not valid; (c) These devices are essential for 
the safety of small children. 

P9.14 (a)    Δ

p = 3.38 kg ⋅m/s ĵ ; (b)    


F = 7 × 102  Nĵ  

P9.16 (a) 
  
9.05î + 6.12 ĵ( )  N ⋅ s ; (b) 

  
377 î + 255 ĵ( )  N  

P9.18 (a)   3.60î N ⋅s  away from the racket; (b) −36.0 J 

P9.20 (a)  981 N ⋅ s,  up; (b) 3.43 m/s, down; (c) 3.83 m/s, up; (d) 0.748 m 

P9.22 (a) 20.9 m/s East; (b) −8.68 × 103 J; (c) Most of the energy was 
transformed to internal energy with some being carried away by 
sound. 

P9.24 (a) 
  
v f =

1
3

v1 + 2v2( ) ; (b) 
  
ΔK = −

m
3

v1
2 + v2

2 − 2v1v2( )  

P9.26 (a) 2.50 m/s; (b) 37.5 kJ; (c) The event considered in this problem is the 
time reversal of the perfectly inelastic collision in Problem 9.25. The 
same momentum conservation equation describes both processes. 

P9.28 7.94 cm 

P9.30 
   
v =

4M
m

g  

P9.32 
  
vc =

m + M( )
m

2µgd  

P9.34 (a) 2.24 m/s toward the right; (b) No. Coupling order makes no 
difference to the final velocity. 

P9.36 The driver of the northbound car was untruthful. His original speed 
was more than 35 mi/h. 

P9.38   vO = 3.99 m/s  and vY = 3.01 m/s  
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P9.40 
  
v = vi

2
, 45.0°, –45.0° 

P9.42 The opponent grabs the fullback and does not let go, so the two 
players move together at the end of their interaction; (b) θ = 32.3°, 2.88 
m/s; (c) 786 J into internal energy 

P9.44 vB = 5.89 m/s; vG = 7.07 m/s 

P9.46 4.67 ×106 m from the Earth’s center 

P9.48 11.7 cm; 13.3 cm 

P9.50 The center of mass of the molecule lies on the dotted line shown in 
ANS. FIG. P9.50, 0.006 73 nm below the center of the O atom. 

P9.52 (a) See ANS. FIG. P8.42; (b)   −2.00î − 1.00 ĵ( )  m ; (c) 
  
3.00î − 1.00 ĵ( )  m/s ; 

(d) 
  
15.0î − 5.00 ĵ( )  kg ⋅m/s  

P9.54 (a) 
  
−2.89î − 1.39 ĵ( )cm ; (b) 

  
−44.5î + 12.5 ĵ( )g ⋅ cm/s ;  

(c) 
  
−4.94î + 1.39 ĵ( )cm/s ; (d) 

  
−2.44î + 1.56 ĵ( )cm/s2 ;  

(e) 
  
−220î + 140 ĵ( )µN  

P9.56 (a) Yes.   18.0î kg ⋅m/s;  (b) No. The friction force exerted by the floor 
on each stationary bit of caterpillar tread acts over no distance, so it 
does zero work; (c) Yes, we could say that the final momentum of the 
card came from the floor or from the Earth through the floor; (d) No. 
The kinetic energy came from the original gravitational potential 
energy of the Earth-elevated load system, in the amount 27.0 J; (e) Yes. 
The acceleration is caused by the static friction force exerted by the 
floor that prevents the wheels from slipping backward. 

P9.58 (a) yes; (b) no; (c) 103 kg·m/s, up; (d) yes; (e) 88.2 J; (f) no, the energy 
came from chemical energy in the person’s leg muscles 

P9.60 (a) 787 m/s; (b) 138 m/s 

P9.62 (a) 3.90 × 107 N; (b) 3.20 m/s2 

P9.64 (a) 
  
−ve ln 1−

t
Tp

⎛

⎝
⎜

⎞

⎠
⎟ ; (b) See ANS. FIG. P9.64(b); (c) 

 

ve

Tp − t
; (d) See ANS. 

FIG. P9.64(d); (e) 
  
ve Tp − t( )ln 1−

t
Tp

⎛

⎝
⎜

⎞

⎠
⎟ + vet ; (f) See ANS. FIG. P9.64(f) 
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P9.66 (a) 
    
−

m
M − m

⎛
⎝⎜

⎞
⎠⎟

vgloves

; (b) As she throws the gloves and exerts a force on 

them, the gloves exert an equal and opposite force on her that causes 
her to accelerate from rest to reach the velocity 

   

vgirl . 

P9.68 (a)   KE KA = m1/ m1 + m2( ) ; (b) 1.00; (c) See P9.68(c) for argument. 

P9.70 (a) –3.54 m/s; (b) 1.77 m; (c) 3.54 × 104 N; (d) No 

P9.72 (a) See P9.72(a) for description; (b) 
  
vi =

m + M
m

2gh  

P9.74 (a) See P9.74 for complete statement; (b) The final velocity of the seat is 
−0.055 6  ̂i  m/s. That of the sleigh is 7.94  ̂i  m/s; (c) −453 J 

P9.76 In order for his motion to reverse under these conditions, the final 
mass of the astronaut and space suit is 30 kg, much less than is 
reasonable. 

P9.78 (a)   2.58 × 103 kg ⋅m/(80 kg + m) ; (b) 32.2 m; (c) m → 0; (d) See P9.78(d) 
for complete answer; (e) See P9.78(e) for complete answer. 

P9.80 (a) −0.667 m/s; (b) h = 0.952 m 

P9.82 
  

M + m
m

⎛
⎝⎜

⎞
⎠⎟

gd2

2h
 

P9.84 (a) 6.81 m/s; (b) s = 1.00 m 
P9.86 (a) 6.29 m/s; (b) 6.16 m/s; (c) Most of the 2% difference between the 

values for speed could be accounted for by air resistance. 
P9.88 0.179 m/s 

P9.90 (a)   (20.0î + 7.00 ĵ) m/s ; (b)   4.00î m/s2 ; (c)   4.00î m/s2 ;  

 (d)   (50.0î + 35.0 ĵ) m ; (e) 600 J; (f) 674 J; (g) 674 J; (h) The accelerations 
computed in different ways agree. The kinetic energies computed in 
different ways agree. The three theories are consistent. 

P9.92 0.063 5L 
P9.94 (a) 3.75 N; (b) 3.75 N; (c) 3.75 N; (d) 2.81 J; (e) 1.41 J/s; (f) One-half of 

the work input becomes kinetic energy of the moving sand and the 
other half becomes additional internal energy. The internal energy 
appears when the sand does not elastically bounce under the hopper, 
but has friction eliminate its horizontal motion relative to the belt. By 
contrast, all of the impulse input becomes momentum of the moving 
sand. 

P9.96 
  

3Mgx
L
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10 
Rotation of a Rigid Object  

About a Fixed Axis 
 

CHAPTER OUTLINE 
 

10.1 Angular Position, Velocity, and Acceleration 

10.2 Analysis Model: Rigid Object Under Constant Angular Acceleration 

10.3 Angular and Translational Quantities 

10.4 Torque 

10.5 Analysis Model: Rigid Object Under a Net Torque 

10.6 Calculation of Moments of Inertia 

10.7 Rotational Kinetic Energy 

10.8 Energy Considerations in Rotational Motion 

10.9 Rolling Motion of a Rigid Object 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ10.1 Answer (c). The wheel has a radius of 0.500 m and made 320 
revolutions. The distance traveled is  

   
  
s = rθ = 0.500 m( ) 320 rev( ) 2π  rad

1 rev
⎛
⎝⎜

⎞
⎠⎟ = 1.00 × 103  m  = 1.00 km 

OQ10.2 Answer (b). Any object moving in a circular path undergoes a 
constant change in the direction of its velocity. This change in the 
direction of velocity is an acceleration, always directed toward the 
center of the path, called the centripetal acceleration,   ac = v2/r =  rω 2 .  
The tangential speed of the object is   vt = rω ,  where ω is the angular 
velocity. If ω is not constant, the object will have both an angular 
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acceleration,   αavg = Δω /Δt,  and a tangential acceleration,   at = rα.  
The only untrue statement among the listed choices is (b). Even when 
ω is constant, the object still has centripetal acceleration. 

OQ10.3 Answer: b = e > a = d > c = 0. The tangential acceleration has 
magnitude (3/s2)r, where r is the radius. It is constant in time. The 
radial acceleration has magnitude ω 2r, so it is (4/s2)r at the first and 
last moments mentioned and it is zero at the moment the wheel 
reverses. 

OQ10.4 Answer (d). The angular displacement will be 
   

  

Δθ =ωavgΔt =
ω f +ω i

2
⎛
⎝⎜

⎞
⎠⎟
Δt

= 12.00 rad/s + 4.00 rad/s
2

⎛
⎝⎜

⎞
⎠⎟ 4.00 s( ) = 32.0 rad

 

OQ10.5 (i) Answer (d). The speedometer measures the number of revolutions 
per second of the tires. A larger tire will rotate fewer times to 
cover the same distance. The speedometer reading is assumed 
proportional to the rotation rate of the tires, ω = v/R, for a 
standard tire radius R, but the actual reading is ω = v/(1.3)R, or 
1.3 times smaller. Example: When the car travels at 13 km/h, the 
speedometer reads 10 km/h. 

 (ii) Answer (d). If the driver uses the odometer reading to calculate 
fuel economy, this reading is a factor of 1.3 too small because 
the odometer assumes 1 rev = 2πR for a standard tire radius R, 
whereas the actual distance traveled is 1.3(2πR), so the fuel 
economy in miles per gallon will appear to be lower by a factor 
of 1.3. Example: If the car travels 13 km, the odometer will read 
10 km. If the car actually makes 13 km/gal, the calculation will 
give 10 km/gal. 

OQ10.6 (i) Answer (a). Smallest I is about the x axis, along which the larger-
mass balls lie. 

 (ii) Answer (c). The balls all lie at a distance from the z axis, which is 
perpendicular to both the x and y axes and passes through the 
origin. 

OQ10.7 Answer (a). The accelerations are not equal, but greater in case (a). 
The string tension above the 50-N object is less than its weight while 
the object is accelerating downward because it does not fall with the 
acceleration of gravity. 

OQ10.8 Answers (a), (b), (e). The object must rotate with a nonzero and 
constant angular acceleration. Its moment of inertia would not 
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change unless there were a rearrangement of mass within the object. 

OQ10.9 (i) Answer (a). The basketball has rotational as well as translational 
kinetic energy. 

 (ii) Answer (c). The motions of their centers of mass are identical. 

 (iii) Answer (a). The basketball-Earth system has more kinetic energy 
than the ice-Earth system due to the rotational kinetic energy of 
the basketball. Therefore, when the kinetic energy of both 
systems has transformed to gravitational potential energy when 
the objects momentarily come to rest at their highest point on 
the ramp, the basketball will be at a higher location, 
corresponding to the larger gravitational potential energy. 

OQ10.10 (i) Answer (c). The airplane momentarily has zero torque acting on it. 
It was speeding up in its angular rotation before this instant of 
time and begins slowing down just after this instant. 

 (ii) Answer (b). Although the angular speed is zero at this instant, 
there is still an angular acceleration because the wound-up 
string applies a torque to the airplane. This is similar to a ball 
thrown upward, which we studied earlier: at the top of its 
flight, it momentarily comes to rest, but is still accelerating 
because the gravitational force is acting on it. 

OQ10.11 Answer (e). The sphere of twice the radius has eight times the 

volume and eight times the mass, and the r2 term in 
  
I = 2

5
mr2  also 

becomes four times larger. 

 
 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ10.1 Yes. For any object on which a net force acts but no net torque, the 
translational kinetic energy will change but the rotational kinetic 
energy will not. For example, if you drop an object, it will gain 
translational kinetic energy due to work done on the object by the 
gravitational force. Any rotational kinetic energy the object has is 
unaffected by dropping it. 

CQ10.2 No, just as an object need not be moving to have mass. 

CQ10.3 If the object is free to rotate about any axis, the object will start to 
rotate if the two forces act along different lines of action. Then the 
torques of the forces will not be equal in magnitude and opposite in 
direction. 

CQ10.4 Attach an object, of known mass m, to the cord. You could measure 



Chapter 10     519 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

the time that it takes the object to fall a measured distance after being 
released from rest. Using this information, the linear acceleration of 
the mass can be calculated, and then the torque on the rotating object 
and its angular acceleration. It is assumed the mass of the cord has 
negligible effect on the motion as the cord unwinds. 

CQ10.5 We have from Example 10.6 the means to calculate a and α. You 
could use  ω =αt  and v = at. 

CQ10.6 The moment of inertia depends on the distribution of mass with 
respect to a given axis. If the axis is changed, then each bit of mass 
that makes up the object is at a different distance from the axis than 
before. Compare the moments of inertia of a uniform rigid rod about 
axes perpendicular to the rod, first passing through its center of 
mass, then passing through an end. For example, if you wiggle 
repeatedly a meterstick back and forth about an axis passing through 
its center of mass, you will find it does not take much effort to 
reverse the direction of rotation. However, if you move the axis to an 
end, you will find it more difficult to wiggle the stick back and forth. 
The moment of inertia about the end is much larger, because much of 
the mass of the stick is farther from the axis. 

CQ10.11 No, only if its angular velocity changes. 

CQ10.12 Adding a small sphere of mass m to the end will increase the moment 
of inertia of the system from (1/3)ML2 to (1/3)ML2 + mL2, and the 
initial potential energy would be (1/2)MgL + mgL. Following 
Example 10.11, the final angular speed ω  would be 

   
  
ω =

3g
L

M + 2m
M + 3m

 

 If 
  
m = M,ω =

3g
L

M + 2m
M + 3m

=
3g
L

3M
4M

=
9g
4L

 

 Therefore, ω  would increase. 

CQ10.13 (a) The sphere would reach the bottom first. (b) The hollow cylinder 
would reach the bottom last. First imagine that each object has the 
same mass and the same radius. Then they all have the same torque 
due to gravity acting on them. The one with the smallest moment of 
inertia will thus have the largest angular acceleration and reach the 
bottom of the plane first. Equation 10.52 describes the speed of an 
object rolling down an inclined plane. In the denominator, ICM will be 
a numerical factor (e.g., 2/5 for the sphere) multiplied by MR2. 
Therefore, the mass and radius will cancel in the equation and the 
center-of-mass speed will be independent of mass and radius. 
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CQ10.14 (a) Sewer pipe: ICM = MR2. (b) Embroidery hoop: ICM = MR2. (c) Door: 

  
I =

1
3

MR2 .  (d) Coin: 
  
ICM =

1
2

MR2 . The distribution of mass along 

lines parallel to the axis makes no difference to the moment of 
inertia. 

CQ10.15 (a) The tricycle rolls forward. (b) The tricycle rolls forward. (c) The 
tricycle rolls backward. (d) The tricycle does not roll, but may skid 
forward. (e) The tricycle rolls backward. (f) To answer these 
questions, think about the torque of the string tension about an axis 
at the bottom of the wheel, where the rubber meets the road. This is 
the instantaneous axis of rotation in rolling. Cords A and B produce 
clockwise torques about this axis. Cords C and E produce 
counterclockwise torques. Cord D has zero lever arm. 

CQ10.16 As one finger slides towards the center, the normal force exerted by 
the sliding finger on the ruler increases. At some point, this normal 
force will increase enough so that static friction between the sliding 
finger and the ruler will stop their relative motion. At this moment 
the other finger starts sliding along the ruler towards the center. This 
process repeats until the fingers meet at the center of the ruler. 

 Next step: Try a rod with a nonuniform mass distribution. 

 Next step: Wear a piece of sandpaper as a ring on one finger to 
change its coefficient of friction. 

 

 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 10.1 Angular Position, Velocity, and Acceleration 
P10.1 (a) The Earth rotates 2 π radians (360°) on its axis in 1 day. Thus, 

   
  
ω =

Δθ
Δt

=
2π  rad
1 day

1 day

8.64 × 104  s

⎛

⎝
⎜

⎞

⎠
⎟ = 7.27 × 10−5  rad s  

 (b) Because of its angular speed, 
 
the Earth bulges at the equator .  

P10.2 (a) 

  

α =
Δω
Δt

=
1.00 rev s − 0

30.0 s
= 3.33 × 10−2  

rev
s2

⎛
⎝⎜

⎞
⎠⎟

2π  rad
1 rev

⎛
⎝⎜

⎞
⎠⎟

= 0.209 rad s2

 

 (b)  Yes.  When an object starts from rest, its angular speed is related 
to the angular acceleration and time by the equation   ω = α Δt( ).  
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Thus, the angular speed is directly proportional to both the 
angular acceleration and the time interval. If the time interval is 
held constant, doubling the angular acceleration will double the 
angular speed attained during the interval. 

P10.3 (a) 
  
θ t=0 = 5.00 rad  

  
  
ω t=0 =

dθ
dt t=0

= 10.0 + 4.00t t=0 = 10.0 rad/s  

  
  
α t=0 =

dω
dt t=0

= 4.00 rad/s2  

 (b) 
  
θ t=3.00 s = 5.00 + 30.0 + 18.0 = 53.0 rad  

   
  
ω

t=3.00s
=

dθ
dt t=3.00s

= 10.0 + 4.00t
t=3.00s

= 22.0rad/s  

   

  
α t=3.00s =

dω
dt t=3.00s

= 4.00 rad/s2
 

P10.4 
  
α =

dω
dt

= 10 + 6t    →      dω = (10 + 6t)dt    →    ω − 0 = 10t +
6
2

t2

0

t

∫0

ω

∫  

 

  
ω =

dθ
dt

= 10t + 3t2    →    dθ = (10t + 3t2 )dt   →   θ − 0 =
10t2

2
+

3t3

30

t

∫0

θ

∫
 

 
  
θ = 5t2 + t3.  At t = 4.00 s, θ = 5 4.00 s( )2 + 4.00 s( )3 = 144 rad

 

 
 

 

Section 10.2 Analysis Model: Rigid Object Under  
Constant Angular Acceleration 

P10.5 (a) We start with 
 
ω f = ω i +αt  and solve for the angular acceleration 

 α :  

    
  
α =

ω −ω i

t
=

12.0 rad/s
3.00 s

= 4.00 rad/s2  

 (b) The angular position of a rigid object under constant angular 
acceleration is given by Equation 10.7: 

    
  
θ = ω it +

1
2
αt2 =

1
2

4.00 rad/s2( ) 3.00 s( )2 = 18.0 rad  
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P10.6   ω i = 3 600 rev/min = 3.77 × 102 rad/s  

 
  
θ = 50.0 rev = 3.14 × 102  rad and ω f = 0  

 
  
ω f

2 = ω i
2 + 2αθ  

 
 
0 = 3.77 × 102  rad/s( )2

+ 2α 3.14 × 102 rad( )  

 
 
α = −2.26 × 102 rad/s2  

P10.7 We are given α  = –2.00 rad/s2,   ω f = 0,  and  
    

  
ω i = 100 rev

1.00 min
1 min
60.0 s

⎛
⎝⎜

⎞
⎠⎟

2π rad
1.00 rev

⎛
⎝⎜

⎞
⎠⎟

= 10π
3

rad/s
 

 (a) From   ω f −ω i =αt,  we have  

   
  
t =

ω f −ω i

α
=

0 − 10π / 3( )
− 2.00

 s = 5.24 s  

 (b) Since the motion occurs with constant angular acceleration, we 
write  

    
  
θ f = ωt =

ω f +ω i

2
⎛
⎝⎜

⎞
⎠⎟

t =
10π

6
 rad s⎛

⎝⎜
⎞
⎠⎟

10π
6

 s⎛
⎝⎜

⎞
⎠⎟ = 27.4 rad  

P10.8 (a) From 
  
ω f

2 = ω i
2 + 2α Δθ( ) , the angular displacement is 

 
  
Δθ =

ω f
2 −ω i

2

2α
=

(2.2 rad/s)2 − 0.06 rad/s( )2

2 0.70 rad/s2( ) = 3.5 rad  

 (b) From the equation given above for  Δθ ,  observe that when the 
angular acceleration is constant, the displacement is proportional 
to the difference in the squares of the final and initial angular 
speeds. Thus, the angular displacement would 

 
increase by a factor of 4  if both of these speeds were doubled. 

*P10.9 We are given   ω f = 2.51× 104  rev/min = 2.63 × 103  rad/s  

 (a) 
  
α =

ω f −ω i

t
= 2.63× 103  rad/s − 0

3.20 s
= 8.21× 102  rad/s2  

 (b) 
  
θ f =ω it + 1

2
αt2 = 0 + 1

2
8.21× 102  rad/s2( ) 3.20 s( )2 = 4.21× 103  rad  
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P10.10 According to the definition of average angular speed (Eq. 10.2), the 
disk’s average angular speed is 50.0 rad/10.0 s = 5.00 rad/s. According 
to the average angular speed expressed as   (ω i +ω f )/ 2  in the model of 
a rigid object under constant angular acceleration, the average angular 
speed of the disk is (0 + 8.00 rad/s)/2 = 4.00 rad/s. Because these two 
numbers do not match, the angular acceleration of the disk cannot be 
constant. 

P10.11 
  
θ f −θi = ω it +

1
2
αt2  and  ω f = ω i +αt  are two equations in two 

unknowns,  ω i  and  α.  
  

  
ω i = ω f −αt:  θ f −θi = ω f −αt( )t +

1
2
αt2 = ωt −

1
2
αt2

 

  

 
37.0 rev( ) 2π rad

1 rev
⎛
⎝⎜

⎞
⎠⎟

= 98.0 rad/s( ) 3.00 s( ) − 1
2
α 3.00 s( )2

 

  
 
232 rad = 294 rad − 4.50 s2( )α: α =

61.5 rad
4.50 s2 = 13.7 rad/s2  

P10.12 ω = 5.00 rev/s = 10.0π  rad/s. We will break the motion into two 
stages: (1) a period during which the tub speeds up and (2) a period 
during which it slows down. 

 While speeding up, 
  
θ1 = ωt =

0 + 10.0π  rad s
2

8.00 s( ) = 40.0π  rad.  

 While slowing down, 
  
θ2 = ωt =

10.0π  rad s + 0
2

12.0 s( ) = 60.0π  rad.  

 So,  θtotal = θ1 +θ2 = 100π  rad = 50.0 rev .  

*P10.13 We use 
  
θ f −θi = ω it +

1
2
αt2  and  ω f = ω i +αt  to obtain  

   

  
ω i =ω f −αt   and    θ f −θ i = ω f −αt( )t + 1

2
αt2 =ω f t −

1
2
αt2

 

 Solving for the final angular speed gives 
   

  

ω f =
θ f −θ i

t
+ 1

2
αt = 62.4 rad

4.20 s
+ 1

2
−5.60 rad/s2( ) 4.20 s( )

= 3.10 rad/s2
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P10.14 (a) Let RE represent the radius of the Earth. The base of the building 
moves east at   v1 =ωRE ,  where ω is one revolution per day. The 
top of the building moves east at   v2 = ω RE + h( ).  Its eastward 
speed relative to the ground is   v2 − v1 =ωh.  The object’s time of 

fall is given by 
  
Δy = 0 +

1
2

gt2 , t =
2h
g

.  During its fall the object’s 

eastward motion is unimpeded so its deflection distance is  

    

  
Δx = v2 − v1( )t = ωh

2h
g

= ωh3/2 2
g

⎛
⎝⎜

⎞
⎠⎟

1/2

 

 (b) 
 

2π rad
86400 s

⎛
⎝⎜

⎞
⎠⎟

50.0 m( )3/2 2
9.80 m/s2

⎛
⎝⎜

⎞
⎠⎟

1/2

= 1.16 cm  

 (c) 

 

The deflection is only 0.02% of the original height, so it is
negligible in many practical cases.

 

 (d)  Decrease.  Because the displacement is proportional to angular 
speed and the angular acceleration is constant, the displacement 
decreases linearly in time. 

 
 

 

Section 10.3 Angular and Translational Quantities 
P10.15 (a) From   v = rω ,  we have 
   

  
ω = v

r
= 45.0 m/s

250 m
= 0.180 rad/s

 

 (b) Traveling at constant speed along a circular track, the car will 
experience a centripetal acceleration given by  

   
  
ar =

v2

r
=

45.0 m/s( )2

250 m
= 8.10 m/s2  toward the center of track  

P10.16 Estimate the tire’s radius at 0.250 m and miles driven as 10 000 per 
year. Then, 

  

  
θ =

s
r

=
1.00 × 104  mi

0.250 m
⎛
⎝⎜

⎞
⎠⎟

1609 m
1 mi

⎛
⎝⎜

⎞
⎠⎟ = 6.44 × 107  rad/yr
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θ = 6.44 × 107 rad/yr( ) 1rev

2π rad
⎛
⎝⎜

⎞
⎠⎟

= 1.02 × 107 rev/yr or ~ 107 rev/yr
 

P10.17 (a) The final angular speed is 

   
  
ω =

v
r

=
25.0 m/s
1.00 m

= 25.0 rad/s  

 (b) We solve for the angular acceleration from 
  
ω f

2 = ω i
2 + 2α Δθ( ) : 

   
  
α =

ω f
2 −ω i

2

2 Δθ( ) =
(25.0 rad/s)2 − 0

2 1.25 rev( )(2π rad/rev)⎡⎣ ⎤⎦
= 39.8 rad/s2  

 (c) From the definition of angular acceleration, 

   
  
Δt =

Δω
α

=
25.0 rad/s
39.8 rad/s2 = 0.628 s  

P10.18 (a) Consider a tooth on the front sprocket. It gives this speed, relative 
to the frame, to the link of the chain it engages: 

   

  

v = rω =
0.152 m

2
⎛
⎝⎜

⎞
⎠⎟ 76 rev/min( ) 2π rad

1 rev
⎛
⎝⎜

⎞
⎠⎟

1 min
60 s

⎛
⎝⎜

⎞
⎠⎟

= 0.605 m/s

 

 (b) Consider the chain link engaging a tooth on the rear sprocket: 

   
  
ω =

v
r

=
0.605 m/s
0.070 m( )/ 2

= 17.3 rad/s  

 (c) Consider the wheel tread and the road. A thread could be 
unwinding from the tire with this speed relative to the frame: 

   
  
v = rω =

0.673 m
2

⎛
⎝⎜

⎞
⎠⎟ 17.3 rad/s( ) = 5.82 m/s  

 (d) 
 
We did not need to know the length of the pedal cranks , but we 

could use that information to find the linear speed of the pedals: 
   

  
v = rω = 0.175 m( ) 7.96 rad/s( ) 1

1 rad
⎛
⎝⎜

⎞
⎠⎟

= 1.39 m/s
 

P10.19 Given r = 1.00 m,   α = 4.00 rad/s2 , ω i = 0,  and   θi = 57.3° = 1.00 rad:  

 (a) 
  
ω f = ω i +αt = 0 +αt  

  At t = 2.00 s, 
  
ω f = 4.00 rad/s2 2.00 s( ) = 8.00 rad/s  
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 (b) 
  
v = rω = 1.00 m( ) 8.00 rad/s( ) = 8.00 m/s  

 (c)   ar = ac = rω 2 = 1.00 m( )(8.00 rad/s)2 = 64.0 m/s2  
  

  at = rα = 1.00 m( )(4.00 rad/s2 ) = 4.00 m/s2  

  The magnitude of the total acceleration is 

   
  
a = ar

2 + at
2 = 64.0 m/s2( )2

+ 4.00 m/s2( )2
= 64.1 m/s2  

 The direction the total acceleration vector makes with respect to 
the radius to point P is 

   
  
φ = tan−1 at

ac

⎛
⎝⎜

⎞
⎠⎟

= tan−1 4.00
64.0

⎛
⎝⎜

⎞
⎠⎟ = 3.58°  

 (d) 
  
θ f = θ i +ω it + 1

2
αt2 = 1.00 rad( ) + 1

2
4.00 rad/s2( ) 2.00 s( )2 = 9.00 rad  

P10.20 (a) We first determine the distance travelled by the car during the 
9.00-s interval: 

   
  
s = vt =

vi + v f

2
t = 11.0 m s( ) 9.00 s( ) = 99.0 m  

  the number of revolutions completed by the tire is then 

    
  
θ =

s
r

=
99.0 m

0.290 m
= 341 rad = 54.3 rev  

 (b)  
  
ω f =

v f

r
= 22.0 m/s

0.290 m
= 75.9 rad/s = 12.1 rev/s  

P10.21 Every part of this problem is about using radian measure to relate 
rotation of the whole object to the linear motion of a point on the 
object. 

 (a) 
  
ω = 2π f =

2π  rad
1 rev

1 200 rev
60.0 s

⎛
⎝⎜

⎞
⎠⎟ = 126 rad/s  

 (b)   v = ωr = 126 rad/s( ) 3.00 × 10−2  m( ) = 3.77 m/s  

 (c)    ac = ω 2r = 126 rad/s( )2 8.00 × 10−2  m( ) = 1 260 m/s2  so  

  
    

ar = 1.26 km/s2  toward the center

 

 (d)   s = rθ = ωrt = 126 rad/s( ) 8.00 × 10−2  m( ) 2.00 s( ) = 20.1 m  
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P10.22 (a) 
 
5.77 cm  

 (b) 

  

Yes. The top of the ladder is displaced 
          θ = s/r = 0.690m/4.90 m ≅ 0.141 rad 
from vertical about its right foot. The left foot of the 
ladder is displaced by the same angle below the 
horizontal; therefore, 
          θ = 0.690 m/4.90 m = t/0.410 m→ t = 5.77 cm
Note that we are approximating the straight-line distance
of 0.690 m as an arc length because it is much smaller 
than the length of the ladder. The thickness of the rock is 
a cruder approximation of an arc length because the rung 
of the ladder is much shorter than the length of the ladder.

 

 

P10.23 The force of static friction must act forward and then more and more 
inward on the tires, to produce both tangential and centripetal 
acceleration. Its tangential component is   m 1.70 m/s2( ).  Its radially 

inward component is 
  
mac =

mv2

r
= mω 2r,  which increases with time: 

this takes the maximum value 
   

  

mω f
2r = mr ω i

2 + 2αΔθ( ) = mr 0 + 2α π
2

⎛
⎝⎜

⎞
⎠⎟ = mπrα = mπat

= mπ 1.70m/s2( )

 

 With skidding impending we have   Fy = may , + n − mg = 0, n = mg∑ :  

   

  

fs = µsn = µsmg = m2 1.70 m/s2( )2
+ m2π 2 1.70 m/s2( )2

µs =
1.70 m/s2

g
1 + π 2 = 0.572

 

P10.24 The force of static friction must act forward and then more and more 
inward on the tires, to produce both tangential and centripetal 
acceleration. Its tangential component is   ma = mrα.  Its radially inward 

component is 
  
mac =

mv2

r
= mω 2r  which increases with time; this takes 

the maximum value 

   
  
mω f

2r = mr ω i
2 + 2αΔθ( ) = mr 0 + 2α π

2
⎛
⎝⎜

⎞
⎠⎟

= mπrα = mπa  
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 With skidding impending we have  
   

  Fy = may :   ∑ + n − mg = 0  →   n = mg  

   

  

fs = µsn = µsmg = mat( )2 + mac( )2 = m2a2 + m2π 2a2

µs =
a
g

1 + π 2
 

P10.25 (a) The general expression for angular velocity is 

    
  
ω =

dθ
dt

=
d
dt

2.50t2 − 0.600t3( ) = 5.00t − 1.80t2   

  where ω is in radians/second and t is in seconds. 

  The angular velocity will be a maximum when  

    
  

dω
dt

= d
dt

5.00t − 1.80t2( ) = 5.00− 3.60t = 0  

  Solving for the time t, we find  
    

  
t = 5.00

3.60
= 1.39s

  

  Placing this value for t into the equation for angular velocity, we 
find 

    
  
ωmax = 5.00t − 1.80t2 = 5.00 1.39( ) − 1.80 1.39( )2

= 3.47 rad/s  

 (b) 
  
vmax =ωmaxr = (3.47 rad/s) 0.500 m( ) = 1.74m/s  

 (c) The roller reverses its direction when the angular velocity is 
zero—recall an object moving vertically upward against gravity 
reverses its motion when its velocity reaches zero at the 
maximum height. 

    

  

ω = 5.00t − 1.80t2 = t 5.00− 1.80t( ) = 0

→ 5.00− 1.80t = 0→ t = 5.00
1.80

= 2.78s

 

  The driving force should be removed from the roller at 
  
t = 2.78s .  

 (d) Set t = 2.78 s in the expression for angular position: 

    
  θ = 2.50t2 − 0.600t3 = 2.50 2.78( )2

− 0.600 2.78( )3
= 6.43rad  

   or 
 
6.43 rad( ) 1 rotation

2π rad
⎛
⎝⎜

⎞
⎠⎟

= 1.02 rotations  
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P10.26 The object starts with   θi = 0.  The location of its final position on the 
circle is found from  9rad − 2π = 2.72rad = 156°.  

 (a) Its position vector is  
    

  

3.00 m at 156° = 3.00 m( )cos156°î + 3.00 m( )sin156°ĵ

= −2.73î + 1.24 ĵ( )  m

  

 (b) 
 
It is in the second quadrant, at 156°  

 (c) The object’s velocity is  v = ωr = (1.50 rad/s)(3.00 m) = 4.50 m/s at 
90°. After the displacement, its velocity is 

    

  

4.50 m/s at 90°+156°    or

4.50 m/s at 246°= 4.50 m/s( )cos246°î + 4.50 m/s( )sin 246°ĵ

                           = −1.85î − 4.10 ĵ( )  m/s

 

 (d) 
 
It is moving toward the third quadrant, at 246° . 

 (e) Its acceleration is v2/r, opposite in direction to its position vector. 
This is  

    

  

4.50 m/s( )2

3.00 m
 at   180°+156°    or

6.75 m/s2  at 336°= 6.75 m/s2( )cos336°î

                                              + 6.75 m/s2( )sin 336°ĵ

                             = 6.15î − 2.78 ĵ( )  m/s2

 

 (f) ANS. FIG. P10.26 shows the initial and final position, velocity, 
and acceleration vectors. 

 

ANS. FIG. P10.26 
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 (g) The total force is given by  
     

    
F = ma = 4.00 kg( )(6.15i− 2.78 j) m/s2 = (24.6 i− 11.1 j) N

 

 
 

 

Section 10.4 Torque 
P10.27 To find the net torque, we add the individual 

torques, remembering to apply the convention that 
a torque producing clockwise rotation is negative 
and a counterclockwise rotation is positive. 

   

 

τ∑ = 0.100 m( ) 12.0 N( )
           − 0.250 m( ) 9.00 N( )
           − 0.250 m( ) 10.0 N( )

= −3.55 N ⋅m

 

 The thirty-degree angle is unnecessary information. 

P10.28 We resolve the 100-N force into 
components perpendicular to and 
parallel to the rod, as 

    Fpar = 100 N( )cos57.0° = 54.5 N  

 and 

    Fperp = 100 N( )sin 57.0° = 83.9 N  

 The torque of 
  
Fpar  is zero since its line of 

action passes through the pivot point. 

 The torque of   Fperp  is  

  
 
τ = 83.9 N( ) 2.00 m( ) = 168 N ⋅m  (clockwise) 

 
 

 

ANS. FIG. P10.27 

ANS. FIG. P10.28 
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Section 10.5 Analysis Model: Rigid Object Under a Net Torque 
P10.29 The flywheel is a solid disk of mass M and radius R with axis through 

its center. 
   

  

τ = Iα∑

I = 1
2

MR2

⎫

⎬
⎪

⎭
⎪
−Tur + Tbr = 1

2
MR2α →Tb = Tu + MR2α

2r

 

   
  
Tb = 135 N +

80.0 kg( ) 0.625 m( )2 −1.67 rad/s2( )
2 0.230 m( ) = 21.5 N  

P10.30 (a) The moment of inertia of the wheel, modeled as a disk, is  

   
  
I =

1
2

MR2 =
1
2

2.00 kg( ) 7.00 × 10−2  m( )2
= 4.90 × 10−3  kg ⋅m2  

  From Newton’s second law for rotational motion, 

   
  
α =

∑τ
I

=
0.600

4.90 × 10−3 = 122 rad/s2  

  then, from 
  
α = Δω

Δt
,  we obtain 

   
  
Δt =

Δω
α

=
1200(2π /60)

122
= 1.03 s  

 (b) The number of revolutions is determined from 

   
  
Δθ =

1
2
αt2 =

1
2

122 rad s( ) 1.03 s( )2 = 64.7 rad = 10.3 rev  

*P10.31 (a) We first determine the moment of inertia of the merry-go-round: 
   

  
I = 1

2
MR2 = 1

2
150 kg( ) 1.50 m( )2 = 169 kg ⋅m2

 

  To find the angular acceleration, we use 
   

  
α = Δω

Δt
=
ω f −ω i

Δt
= 0.500 rev/s − 0

2.00 s
⎛
⎝⎜

⎞
⎠⎟

2π  rad
1 rev

⎛
⎝⎜

⎞
⎠⎟ = π

2
 rad/s2

 

  From the definition of torque,   τ = F ⋅r = Iα ,  we obtain 

   

  
F = Iα

r
=

169 kg ⋅m2( ) π
2

 rad/s2⎛
⎝

⎞
⎠

1.50 m
= 177 N
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P10.32 (a) See ANS. FIG. P10.32 below for the force diagrams. For m1, 

 Fy = may∑  gives 
   

  +n − m1g = 0  

     n1 = m1g  

  with   fk1 = µkn1.   

   Fx∑ = max gives  

     − fk1 + T1 = m1a  [1] 

  For the pulley,  τ∑ = Iα  gives 
   

  
−T1R + T2R =

1
2

MR2 a
R

⎛
⎝⎜

⎞
⎠⎟

 

  or  
  
−T1 + T2 = 1

2
MR

a
R

⎛
⎝⎜

⎞
⎠⎟ → –T1 + T2 = 1

2
Ma  [2] 

  For m2, 

     +n2 − m2 g cosθ = 0 → n2 = m2 g cosθ  

     fk 2 = µkn2
 

     − fk 2 −T2 + m2 g sinθ = m2a  [3] 
 

 

ANS. FIG. P10.32 
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ANS. FIG. P10.33 

 (b) Add equations [1], [2], and [3] and substitute the expressions for 
fk1 and n1, and –fk2 and n2: 

   

  

− fk1 + T1 + −T1 + T2( ) − fk 2 −T2 + m2 g sinθ = m1a +
1
2

Ma + m2a

− fk1 − fk 2 + m2 g sinθ = m1 + m2 +
1
2

M⎛
⎝⎜

⎞
⎠⎟ a

−µkm1g − µkm2 g cosθ + m2 g sinθ = m1 + m2 +
1
2

M⎛
⎝⎜

⎞
⎠⎟ a

 

    

  

a = 
m2 sinθ  − µk cosθ( ) − µkm1

m1  + m2  + 
1
2 M

g

a = 
6.00 kg( ) sin 30.0ο  − 0.360cos30.0ο( ) − 0.360 2.00 kg( )

2.00 kg( ) +  6.00 kg( ) +  1
2 10.0 kg( ) g

a = 0.309 m/s2

 

 (c) From equation [1]:  

   
  – fk1 + T1 = m1a → T1 = 2.00 kg 0.309 m/s2( ) +  

 
7.06 N = 7.67 N  

  From equation [2]: 

  
−T1 + T2 =

1
2

Ma → T2 = 7.67 N + 5.00 kg 0.309 m/s2( )  

    
 
= 9.22N  

P10.33 We use the definition of torque and the 
relationship between angular and 
translational acceleration, with m = 0.750 kg 
and F = 0.800 N: 

 (a)   τ = rF = 30.0 m( ) 0.800 N( ) = 24.0 N ⋅m  

 (b) 

  

α =
τ
I

=
rF

mr2 =
24.0 N ⋅m

0.750 kg( ) 30.0 m( )2

= 0.035 6 rad s2

 

 (c) 
  
at = αr = 0.035 6 rad/s2( ) 30.0 m( ) = 1.07 m/s2  
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P10.34 (a) The chosen tangential force produces constant torque and 
therefore constant angular acceleration. Since the disk starts from 
rest, we write 

    

  

θ f −θ i =ω it + 1
2
αt2

θ f − 0 = 0 + 1
2
αt2

θ f = 1
2
αt2

 

  Solving for the angular acceleration gives 

    

  
α =

2θ f

t2 =
2 2.00 rev( ) 2π  rad

1 rev
⎛
⎝⎜

⎞
⎠⎟

10.0 s( )2 = 0.251 rad/s2

 

  We then obtain the required combination of F and R from the 
rigid object under a net torque model: 

    
  τ = Iα∑ : FR = 100 kg ⋅m2( )(0.251 rad/s2 ) = 25.1 N ⋅m  

  
   For F = 25.1 N, R = 1.00 m. For F = 10.0 N, R = 2.51 m.  

 (b) 

  

No. Infinitely many pairs of values that satisfy this requirement
exist: for any F ≤ 50.0 N, R = 25.1 N ⋅m/F, as long as R ≤ 3.00 m.

 

P10.35 (a) From the rigid object under a net torque model,  τ∑ = Iα  gives 
   

  
I  =  τ∑

α
 =  τ∑

Δω
Δt  = 36.0 N · m

10.0 rad/s
6.00 s( ) =  21.6 kg · m2

 

 (b) For the portion of the motion during which the wheel slows 
down, 

   

  

τ∑  =  Iα  =  I
Δω
Δt

 =  21.6 kg · m2( ) –10.0 rad/s
60.0 s

⎛
⎝⎜

⎞
⎠⎟  

=  3.60 N · m

 

 (c) During the first portion of the motion, 
    

  

Δθ  = ωavgΔt = 
ω i  + ω f

2
⎛
⎝⎜

⎞
⎠⎟
Δt = 

0 + 10.0 rad/s
2

⎛
⎝⎜

⎞
⎠⎟ 6.00 s( ) 

= 30 rad
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  During the second portion, 
    

  

Δθ  = ωavgΔt = 
ω i  + ω f

2
⎛
⎝⎜

⎞
⎠⎟
Δt = 

10.0 rad/s + 0
2

⎛
⎝⎜

⎞
⎠⎟ 60.0 s( ) 

= 300 rad

 

  Therefore, the total angle is 330 rad or  52.5 revolutions .  

P10.36 (a) Let T1 represent the tension in the cord above m1 and T2 the 
tension in the cord above the lighter mass. The two blocks move 
with the same acceleration because the cord does not stretch, and 
the angular acceleration of the pulley is a/R. For the heavier mass 
we have 

     F∑ = m1a → T1 − m1g = m1 −a( )   or      −T1 + m1g = m1a  

  For the lighter mass, 
   

  F = m2a  →   ∑ T2 − m2 g = m2a  

  We assume the pulley is a uniform disk: I = (1/2)MR2 
   

  
τ∑ = Iα →     + T1R −T2R =

1
2

MR2 a/R( )
 

  or  
  
T1 −T2 =

1
2

Ma  

  Add up the three equations in a: 

   –T1 + m1g + T2 – m2 g + T1 – T2 = m1a + m2a +
  

1
2

Ma  

   

  

a = 
m1 − m2

m1  + m2  + 
1
2 M

g

=
20.0 kg − 12.5 kg

20.0 kg + 12.5 kg + 1
2 5.00 kg( ) 9.80 m/s2( )

= 2.10 m/s2

 

  Next, 
  
x = 0 + 0 +

1
2

at2 → t =
2x
a

=
2 4.00 m( )
2.10 m/s2 = 1.95 s  

 (b) 

 

If the pulley were massless, the acceleration would be larger
by a factor 35/32.5 and the time shorter by the square root of
the factor 32.5/35. That is, the time would be reduced by 3.64%.
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ANS. FIG. P10.37 

P10.37 From the rigid object under a net torque 
model, 

  
  τ  = Iα∑  

  

  

− fkR = µkFR = 
1
2

MR2⎛
⎝⎜

⎞
⎠⎟
Δω
Δt

  

µk  = −
MRΔω
2FΔt

 

 Substitute numerical values: 
  

  

µk  = −
100 kg( ) 0.500 m( ) −50.0 rev/min( )

2 70.0 N( ) 6.00 s( )
2π  rad
1 rev

⎛
⎝⎜

⎞
⎠⎟

1 min
60 s

⎛
⎝⎜

⎞
⎠⎟  

=  0.312

 

 
 

 

Section 10.6 Calculation of Moments of Inertia 
P10.38 Model your body as a cylinder of mass 60.0 kg and a radius of 12.0 cm. 

Then its moment of inertia is 

  

1
2

MR2 = 1
2

60.0 kg( ) 0.120 m( )2 = 0.432 kg ⋅m2

~ 100  kg ⋅m2 = 1 kg ⋅m2

 

P10.39 (a) Every particle in the door could be slid straight down into a high-
density rod across its bottom, without changing the particle’s 
distance from the rotation axis of the door. Thus, a rod 0.870 m 
long with mass 23.0 kg, pivoted about one end, has the same 
rotational inertia as the door: 

 

  
I = 1

3
ML2 = 1

3
23.0 kg( ) 0.870 m( )2 = 5.80 kg ⋅m2

 

 (b) The 
 
height of the door is unnecessary  data. 
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P10.40 (a) We take a coordinate system 
with mass M at the origin. The 
distance from the axis to the 
origin is also x. The moment of 
ineria about the axis is  

    
  I = Mx2 + m L − x( )2  

  To find the extrema in the 
moment of inertia, we 
differentiate I with respect to x: 

    
  

dI
dx

= 2Mx − 2m(L − x) = 0   

  Solving for x then gives 
    

 
x = mL

M + m

 

  Differentiating again gives 
  

d2I
dx2 = 2m + 2M ; therefore, I is at a 

minimum when the axis of rotation passes through 
  
x = mL

M + m
,  

which is also the position of the center of mass of the system if we 
take mass M to lie at the origin of a coordinate system. 

 (b) The moment of inertia about an axis passing through x is 
     

  

ICM = M
mL

M + m
⎡
⎣⎢

⎤
⎦⎥

2

+ m 1− m
M + m

⎡
⎣⎢

⎤
⎦⎥

2

L2 = Mm
M + m

L2

→ ICM = µL2 ,  where µ = Mm
M + m

 

P10.41 Treat the tire as consisting of three hollow cylinders: two sidewalls and 
a tread region. The moment of inertia of a hollow cylinder, where R2 > 

R1, is 
  
I =

1
2

M R1
2 + R2

2( ) , and the mass of a hollow cylinder of height (or 

thickness) t is 
  
M = ρπ R2

2 − R1
2( )t.  Substituting the expression for mass 

M into the expression for I, we get 

   
  
I =

1
2
ρπ R2

2 − R1
2( )t R1

2 + R2
2( ) =

1
2
ρπt R2

4 − R1
4( )  

 The two sidewalls have inner radius r1 = 16.5 cm, outer radius r2 =  
30.5 cm, and height tside = 0.635 cm. The tread region has inner radius  
r2 = 30.5 cm, outer radius r3 =33.0 cm, and height ttread = 20.0 cm. The 

ANS. FIG. P10.40 
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density of the rubber is 1.10 × 103 kg/m3. 

 For the tire (two sidewalls: R1 = r1, R2 = r2; tread region: R1 = r2, R2 = r3) 
   

  

Itotal = 2
1
2
ρπ tside R2

4 − R1
4( )⎡

⎣⎢
⎤
⎦⎥
+ 1

2
ρπttread R2

4 − R1
4( )

= 2
1
2
ρπtside r2

4 − r1
4( )⎡

⎣⎢
⎤
⎦⎥
+ 1

2
ρπttread r3

4 − r2
4( )

 

 Substituting, 
   

  

Itotal = 2
1
2

1.10× 103  kg/m3( )π 6.35× 10−3  m( ){
                                        × 0.305 m( )4 − 0.165 m( )4⎡⎣ ⎤⎦}
+ 1

2
1.10× 103  kg/m3( )π 0.200 m( ) 0.330 m( )4 − 0.305 m( )4⎡⎣ ⎤⎦

= 2 8.68× 10−2  kg ⋅m2( ) + 1.11 kg ⋅m2 = 1.28 kg ⋅m2

 

P10.42 We use x as a measure of the distance of each mass element dm in the 
rod from the y′ axis: 

   

  
I ′y = r2dm = x2 M

L
dx =

M
L

x3

30

L

∫
0

L

=
1
3

ML2

all mass∫  

P10.43 We assume the rods are thin, with radius much less than L. Note that 
the center of mass (CM) of the rod combination lies at the origin of the 
coordinate system. Because the axis of rotation is parallel to the y axis, 
we can first calculate the moment of inertia of the rods about the y axis, 
then use the parallel-axis theorem to find the moment about the axis of 
rotation. 

 The moment of the rod on the y axis  
about the y axis itself is essentially zero  
(axis through center, parallel to rod)  
because the rod is thin. The moments of  
the rods on the x and z axes are each  

  
I =

1
12

mL2  (axis through center,  

perpendicular to rod) from the table in  
the chapter. ANS. FIG. P10.43 
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 The total moment of the three rods about the y axis (and about the CM) 
is 

   

  

ICM = Ion x  axis + Ion y  axis + Ion z  axis

= 1
12

mL2 + 0 + 1
12

mL2 = 1
6

mL2

 

 For the moment of the rod-combination about the axis of rotation, the 
parallel-axis theorem gives 

   
  
I = ICM + 3m

L
2

⎛
⎝⎜

⎞
⎠⎟

2

=
1
6

+
3
4

⎡

⎣
⎢

⎤

⎦
⎥mL2 =

2
12

+
9

12
⎡

⎣
⎢

⎤

⎦
⎥mL2 =

11
12

mL2  

 

 
 

 

Section 10.7 Rotational Kinetic Energy 
P10.44 The masses and distances from the rotation axis 

for the three particles are:  

    m1 = 4.00 kg,  r1 = y1 = 3.00 m  
    

  m2 = 2.00 kg,  r2 = y2 = 2.00 m  

    
  m3 = 3.00 kg,  r3 = y3 = 4.00 m  

 and  ω = 2.00 rad/s  about the x axis. 

 (a)   Ix = m1r1
2 + m2r2

2 + m3r3
2  

  

  

Ix = 4.00 kg( ) 3.00 m( )2 + 2.00 kg( ) 2.00 m( )2

                          + 3.00 kg( ) 4.00 m( )2

= 92.0 kg ⋅m2

 

 (b) 
  
KR = 1

2
Ixω

2 = 1
2

92.0 kg ⋅m2( ) 2.00 m( )2 = 184 J  

 (c)   v1 = r1ω = 3.00 m( ) 2.00 rad/s( ) = 6.00 m/s  

  
  v2 = r2ω = 2.00 m( ) 2.00 rad/s( ) = 4.00 m/s

 

  
  v3 = r3ω = 4.00 m( ) 2.00 rad/s( ) = 8.00 m/s

 

 (d) 
  
K1 =

1
2

m1v1
2 =

1
2

4.00 kg( ) 6.00 m/s( )2 = 72.0 J  

ANS. FIG. P10.44 
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K2 =

1
2

m2v2
2 =

1
2

2.00 kg( ) 4.00 m/s( )2 = 16.0 J
 

  

  
K3 =

1
2

m3v3
2 =

1
2

3.00 kg( ) 8.00 m/s( )2 = 96.0 J
 

  

  
K = K1 + K2 + K3 = 72.0 J + 16.0 J + 96.0 J = 184 J =

1
2

Ixω
2

 

 (e) 
 
The kinetic energies computed in parts (b) and (d) are the same.  

Rotational kinetic energy of an object rotating about a fixed axis 
can be viewed as the total translational kinetic energy of the 
particles moving in circular paths. 

P10.45 (a) All four particles are at a distance r 
from the z axis, with 

    

  

r2 = 3.00 m( )2 + 2.00 m( )2

= 13.0 m2

  

   Thus the moment of inertia is 

    

  

Iz = miri
2∑

= 3.00 kg( ) 13.0 m2( )
      + 2.00 kg( ) 13.0 m2( )
      + 4.00 kg( ) 13.0 m2( )
      + 2.00 kg( ) 13.0 m2( )

= 143 kg ⋅m2

 

 (b) The rotational kinetic energy of the four-particle system is  
     

  
KR = 1

2
Iω 2 = 1

2
143 kg ⋅m2( ) 6.00 rad s( )2 = 2.57 × 103 J

 

P10.46 The cam is a solid disk of radius R that has had a small disk of radius 
R/2 cut from it. To find the moment of inertia of the cam, we use the 
parallel-axis theorem to find the moment of inertia of the solid disk 
about an axis at distance R/2 from its CM, then subtract off the 
moment of inertia of the small disk of radius R/2 with axis through its 
center. 

 By the parallel-axis theorem, the moment of inertia of the solid disk 
about an axis R/2 from its CM is 

   
  
Idisk = ICM + Mdisk

R
2

⎛
⎝⎜

⎞
⎠⎟

2

=
1
2

MdiskR2 +
1
4

MdiskR2 =
3
4

MdiskR2  

ANS. FIG. P10.45 



Chapter 10     541 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 With half the radius, the cut-away small disk has one-quarter the face 
area and one-quarter the volume and one-quarter the mass Mdisk of the 
original solid disk: 

   
  

Msmall disk

Mdisk

=
R 2( )2

R2 =
1
4

 

 The moment of inertia of the small disk of radius R/2 about an axis 
through its CM is 

   
  
Ismall disk =

1
2

Msmall disk

R
2

⎛
⎝⎜

⎞
⎠⎟

2

=
1
2

1
4

Mdisk

⎡

⎣
⎢

⎤

⎦
⎥

R2

4
=

1
32

MdiskR2  

 Subtracting the moment of the small disk from the solid disk, we find 
for the cam 

   
  
Icam = Idisk − Ismall disk =

3
4

MdiskR2 −
1

32
MdiskR2  

   
  
Icam = MdiskR2 24

32
−

1
32

⎡

⎣
⎢

⎤

⎦
⎥ =

23
32

MdiskR2  

 The mass of the cam is 
  
M = Mdisk − Msmall disk = Mdisk −

1
4

Mdisk =
3
4

Mdisk ,  

therefore 
   

  

Icam = 23
32

MdiskR2 M
3
4

Mdisk

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

= MR2 23
32

⎛
⎝⎜

⎞
⎠⎟

4
3

⎛
⎝⎜

⎞
⎠⎟ = 23

24
MR2

 

 The moment of inertia of the cam-shaft is the sum of the moments of 
the cam and the shaft: 

   

  

Icam-shaft = Icam + Ishaft = 23
24

MR2 + 1
2

M
R
2

⎛
⎝⎜

⎞
⎠⎟

2

= MR2 23
24

+ 1
8

⎡
⎣⎢

⎤
⎦⎥

= MR2 23
24

+ 3
24

⎡
⎣⎢

⎤
⎦⎥

Icam-shaft = 26
24

MR2 = 13
12

MR2

 

 The kinetic energy of the cam-shaft combination rotating with angular 
speed ω is 

   
  
K =

1
2

Ican-shaftω
2 =

1
2

13
12

MR2⎛
⎝⎜

⎞
⎠⎟
ω 2 =

13
24

MR2ω 2  
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ANS. FIG. P10.47 
 

P10.47 (a) Identify the two objects and the Earth as an 
isolated system. The maximum speed of the 
lighter object will occur when the rod is in the 
vertical position so let’s define the time interval 
as from when the system is released from rest to 
when the rod reaches a vertical orientation. So, 
for the isolated system, 

   

  

ΔK  + ΔU  = 0

1
2

I1ω
2 +  1

2
I2ω

2⎛
⎝⎜

⎞
⎠⎟  − 0

⎡
⎣⎢

⎤
⎦⎥
 

             +  m1gy1  + m2 gy2  − 0[ ] = 0
 

  

  

ω  = 
−2g m1y1  + m2y2( )

I1 + I2

 = 
−2g m1y1  + m2y2( )

m1r1
2 + m2r2

2

    =   
−2 9.80 m/s2( ) 0.120 kg( ) 2.86 m( ) +  60.0 kg( ) −0.140 m( )⎡⎣ ⎤⎦

0.120 kg( ) 2.86 m( )2 + 60.0 kg( ) 0.140 m( )2

    = 8.55 rad/s

 

  Then, the tangential speed of the lighter object is, 

   
  
v = rω = 2.86 m( )(8.55 rad/s) = 24.5 m/s  

 (b)  No.  The overall acceleration is not constant. It has to move either 
in a straight line or parabolic path to have a chance of being 
under constant acceleration. The circular path presented here 
rules out that possibility. 

 (c)  No.  It does not move with constant tangential acceleration, since 
the angular acceleration is not constant. See explanation in part 
(d). 

 (d)  No.  The lever arm of the gravitational force acting on the 60-kg 
mass changes during the motion. As a result, the torque changes, 
and so does the angular acceleration. 

 (e)  No.  The angular velocity changes, therefore the angular 
momentum of the trebuchet changes. 

 (f)  Yes.  The mechanical energy stays constant because the system is 
isolated—that is how we solved the problem in (a). 

 
 

 



Chapter 10     543 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

Section 10.8 Energy Considerations in Rotational Motion 
P10.48 From the rigid object under a net torque model, 
   

  

τ  = Iα    →   α  =  τ∑
I

 =  FR
1
2

MR2
 =  2F

MR
∑

 

 From the definition of rotational kinetic energy and the rigid object 
under constant angular acceleration model, 

   

  

K = 1
2

Iω 2 = 1
2

I ω i  + αt( )2 =  1
2

Iα 2t2 = 1
2

1
2

MR2⎛
⎝⎜

⎞
⎠⎟

2F
MR

⎛
⎝⎜

⎞
⎠⎟

2

t2  

= F
2t2

M

 

 Substituting, 
   

  
K  =   50.0 N( )2 3.00 s( )2

800 N/9.80 m/s2  =  276 J
 

P10.49 The moment of inertia of a thin rod about an axis through one end is 

  
I =

1
3

ML2 . The total rotational kinetic energy is given as 

   
  
KR =

1
2

Ihω h
2 +

1
2

Imωm
2  

 with  
  
Ih =

mhLh
2

3
=

60.0 kg 2.70 m( )2

3
= 146 kg ⋅m2  

 and  
  
Im =

mmLm
2

3
=

100 kg 4.50 m( )2

3
= 675 kg ⋅m2  

 In addition,  

   
  
ω h =

2π rad
12 h

1 h
3 600 s

⎛
⎝⎜

⎞
⎠⎟

= 1.45 × 10−4 rad/s  

 while 
  
ωm =

2π rad
1 h

1 h
3 600 s

⎛
⎝⎜

⎞
⎠⎟

= 1.75 × 10−3 rad/s  

 Therefore,  

   

  

KR = 1
2

146 kg ⋅m2( ) 1.45× 10−4  rad/s( )2

                  + 1
2

675 kg ⋅m2( ) 1.75× 10−3  rad/s( )2

= 1.04× 10−3 J
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ANS. FIG. P10.50 

*P10.50 Take the two objects, pulley, and Earth as the 
system. If we neglect friction in the system, 
then mechanical energy is conserved and we 
can state that the increase in kinetic energy of 
the system equals the decrease in potential 
energy. Since Ki = 0  (the system is initially at 
rest), we have 

  

  

ΔK = K f − Ki

= 1
2

m1v
2 + 1

2
m2v2 + 1

2
Iω 2

  

 where m1 and m2 have a common speed. But 

 v = Rω  so that 
  
ΔK = 1

2
m1 + m2 + I

R2( )v2 .  

 From ANS. FIG. P10.50, we see that the system loses potential energy 
because of the motion of m1 and gains potential energy because of the 
motion of m2. Applying the law of conservation of energy, 

  ΔK + ΔU = 0,  gives  
   

  

1
2

m1 + m2 + I
R2( )v2 + m2 gh − m1gh = 0

 

    

  

v = 2 m1 − m2( )gh

m1 + m2 + I
R2

 

 Since  v = Rω , the angular speed of the pulley at this instant is given by 
   

  
ω = v

R
= 2 m1 − m2( )gh

m1R
2 + m2R

2 + I

 

P10.51 For the nonisolated system of the top, 

   

  

W  = ΔK    →    FΔx =  1
2

Iω 2 − 0⎛
⎝⎜

⎞
⎠⎟

  →   ω  =  2FΔx
I

 =  2 5.57  N( ) 0.800 m( )
4 × 10−4  kg · m2  =  149 rad/s

 

P10.52 The power output of the bus is 
  
P = E

Δt
,  where  

   

  
E = 1

2
Iω 2 = 1

2
1
2

MR2ω 2⎛
⎝⎜

⎞
⎠⎟ = 1

4
MR2ω 2
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 is the stored energy and 
 
Δt =

d
v

 is the time it can roll. Then 

  

1
4

MR2ω 2 = PΔt =
Pd
v

.  The maximum range of the bus is then 

  
d = MR2ω 2v

4P
.
 

 For average 
  
P = 25.0 hp( ) 746 W

1 hp
⎛
⎝⎜

⎞
⎠⎟

= 18 650 W  and average  

v =35.0 km/h = 9.72 m/s, the maximum range is 

   

   

d = MR2ω 2v
4P

=
1 200 kg( ) 0.500 m( )2 3 000 ⋅2π /60 s( )2 (9.72 m s)

4 18 650 W( )
= 3.86 km

 

 

 

 The situation is impossible because the range is only 3.86 km,
not city-wide. 

 

P10.53 (a) Apply   ΔK + ΔU + ΔEint = 0,  where   ΔEint = fkd, µ = 0.250,  and 

  fk = µn2 = µm2g.  Both translational and rotational kinetic energy 
are present in the system. vi = 0.820 m/s. Find v. The angular 
speed of the pulley is   ω i = vi/R2 , and   ω = v/R2 . Mass m1 drops by 
h = d when mass m2 moves distance d = 0.700 m. 

  
I = 1

2
M R1

2 + R2
2( ) ,  where R1 = 0.020 0 m, R2 = 0.030 0 m, and  

M = 0.350 kg. 
    

   

K f − Ki( ) + U f −U f( )  + ΔEint  = 0

1
2

m2v2 −
1
2

m2vi
2⎛

⎝⎜
⎞
⎠⎟ +

1
2

m1v
2 −

1
2

m1vi
2⎛

⎝⎜
⎞
⎠⎟

               +
1
2

Iω 2 −
1
2

Iω i
2⎛

⎝⎜
⎞
⎠⎟ + m1gy − m1gyi( ) + fkd = 0

 

    

   

1
2

m1 + m2( ) v2 − vi
2( ) +

1
2

I
v

R2

⎛
⎝⎜

⎞
⎠⎟

2

−
vi

R2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                                            + m1g y − yi( ) + µm2 gd = 0
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1
2

m1 + m2( ) v2 − vi
2( )

                       + 1
2

1
2

M R1
2 + R2

2( )⎡
⎣⎢

⎤
⎦⎥

1
R2

⎛
⎝⎜

⎞
⎠⎟

2

v2 − vi
2⎡⎣ ⎤⎦

                                              + m1g −d( ) + µm2 gd = 0
1
2

m1 + m2( ) v2 − vi
2( )

                  + 1
2

1
2

M 1+ R1
2

R2
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ v2 − vi

2⎡⎣ ⎤⎦ = gd m1 − µm2( )

1
2

m1 + m2( ) + 1
2

M 1+ R1
2

R2
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ v2 − vi

2( ) = gd m1 − µm2( )

 

    

   

v =  vi
2  +

 4gd m1  − µkm2( )
2 m1  + m2( ) + M 1 + R1

2

R2
2

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

1/2

 

   Suppressing units, 
   

  

v =  0.820( )2  +
 4 9.80( ) 0.700( ) 0.420 −  0.250( ) 0.850( )[ ]

2 0.420 + 0.850( ) + 0.350 1 +  0.020 0( )2

0.030 0( )2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

1/2

= 1.59 m/s

 

 (b) 
  
ω =

v
r

=
1.59 m/s
0.030 0 m

= 53.1 rad/s  

P10.54 (a) For the isolated rod-ball-Earth system, 
   

  

ΔK  + ΔU  = 0   →    K f  − 0( ) +  0 − Ui( ) = 0    →   K f  = Ui

K f  = mrod gyCM, rod  + mball gyCM, ball  

      =  mrodyCM, rod  + mballyCM, ball( ) g

      =  1.20 kg( ) 0.120 m( ) +  2.00 kg( ) 0.280 m( )⎡⎣ ⎤⎦ 9.80 m/s2( )
      =   6.90 J
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 (b) We assume the rod is thin. For the compound object 
    

  

I = 1
3

MrodL2 + 2
5

mballR
2 + MballD

2⎡
⎣⎢

⎤
⎦⎥

= 1
3

1.20 kg( ) 0.240 m( )2

            + 2
5

2.00 kg( ) 4.00× 10−2  m( )2
+ 2.00 kg( ) 0.280 m( )2

I = 0.181 kg ⋅m2

 

    

  
K f = 1

2
ω 2    →   ω  =

2K f

I
 = 2 6.90 J( )

0.181 kg · m2  = 8.73 rad/s
 

 (c) 
  
v = rω = 0.280 m( ) 8.73 rad/s( ) = 2.44 m/s  

 (d) 
  
v f

2 = vi
2 + 2a y f − yi( )  

  
  
v f = 0 + 2 9.80 m/s2( ) 0.280 m( ) = 2.34 m/s  

  
 
 The speed it attains in swinging is greater by    

  
 

2.44
2.34

= 1.0432 times  

P10.55 The gravitational force exerted on the reel is  
   

  mg = 5.10 kg( ) 9.80 m/s2( ) = 50.0 N down
  

  We use  ∑τ = Iα  to find T and a. 

 First find I for the reel, which we know is a 
uniform disk. 

  

  

I =
1
2

MR2 =
1
2

3.00 kg( ) 0.250 m( )2

= 0.093 8 kg ⋅m2

 

  The forces on the reel are shown in ANS. FIG. 
P10.55, including a normal force exerted by its 
axle. From the diagram, we can see that the 
tension is the only force that produces a torque 
causing the reel to rotate. 

   τ = Iα∑  becomes 

  
  n(0) + Fgp(0) + T 0.250 m( ) = 0.093 8 kg ⋅m2( ) a/0.250 m( )  [1] 

  where we have applied at =  rα  to the point of contact between string 

ANS. FIG. P10.55 
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and reel. For the object that moves down, 

   
  

Fy = may∑ becomes 50.0 N – T = (5.10 kg)a  [2] 

  Note that we have defined downwards to be positive, so that positive 
linear acceleration of the object corresponds to positive angular 
acceleration of the reel. We now have our two equations in the 
unknowns T and a for the two connected objects. Substituting T from 
equation [2] into equation [1], we have 

   

  
50.0 N − 5.10 kg( )a⎡⎣ ⎤⎦ 0.250 m( ) = 0.093 8 kg ⋅m2( ) a

0.250 m
⎛
⎝⎜

⎞
⎠⎟

  

 (b) Solving for a from above gives 
   

  

50.0 N − 5.10 kg( )a = 1.50 kg( )a

a = 50.0 N
6.60 kg

= 7.57 m/s2

 

  Because we eliminated T in solving the simultaneous equations, 
the answer for a, required for part (b), emerged first. No matter—
we can now substitute back to get the answer to part (a). 

  (a) T = 50.0 N – 5.10 kg (7.57 m/s2) =  11.4 N  

  (c) For the motion of the hanging weight, 

  
  
v f

2 = vi
2 + 2a y f – yi( ) = 02 + 2 7.57 m s2( ) 6.00 m( )  

    v f = 9.53 m/s (down)  

  (d) The isolated-system energy model can take account of multiple 
objects more easily than Newton’s second law. Like your bratty 
cousins, the equation for conservation of energy grows between 
visits. Now it reads for the counterweight-reel-Earth system: 

  (K1 + K2 + Ug)i = (K1 + K2 + Ug)f 

  where K1 is the translational kinetic energy of the falling object 
and K2 is the rotational kinetic energy of the reel. 

  

  
0 + 0 + m1gy1i = 1

2
m1v1 f

2 + 1
2

I2ω 2 f
2 + 0

 

  Now note that ω = v/r as the string unwinds from the reel. 
  

  
mgyi = 1

2
mv2 + 1

2
Iω 2
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2mgyi = mv2 + I

v2

R2

⎛
⎝⎜

⎞
⎠⎟

= v2 m +
I

R2
⎛
⎝⎜

⎞
⎠⎟

 

  

  

v = 2mgyi

m + I/R2( ) =
2 5.10 kg( ) 9.80 m/s2( ) 6.00 m( )

5.10 kg + 0.093 8 kg ⋅m2

0.250 m( )2

= 9.53 m/s

  

P10.56 Each point on the cord moves at a linear speed of   v = ωr,  where r is 
the radius of the spool. The energy conservation equation for the 
counterweight-turntable-Earth system is: 

   (K1 + K2 + Ug)i + Wother = (K1 + K2 + Ug)f 

  Specializing, we have  

    
  
0 + 0 + mgh + 0 = 1

2
mv2 + 1

2
Iω 2 + 0  

   

  
mgh =

1
2

mv2 +
1
2

I
v2

r2

 

   
  
2mgh– mv2 = I

v2

r2
 

  and finally,  

    
  
I = mr2 2gh

v2 − 1⎛
⎝⎜

⎞
⎠⎟  

P10.57 To identify the change in gravitational energy,  
think of the height through which the center of  
mass falls. From the parallel-axis theorem, the  
moment of inertia of the disk about the pivot  
point on the circumference is 

   

  

I = ICM + MD2 = 1
2

MR2 + MR2

= 3
2

MR2

 

 The pivot point is fixed, so the kinetic energy is entirely rotational 
around the pivot. The equation for the isolated system (energy) model 

   (K + U)i = (K + U)f 

ANS. FIG. P10.57 
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 for the disk-Earth system becomes  

    
  
0 + MgR = 1

2
3
2

MR2⎛
⎝⎜

⎞
⎠⎟ω

2 + 0  

 Solving for  ω ,  
  
ω =

4g
3R

 

 (a) At the center of mass, 
  
v = Rω = 2

Rg
3  

 (b) At the lowest point on the rim, 
  
v = 2Rω = 4

Rg
3  

 (c) For a hoop,  
   

  ICM = MR2    and   Imin = 2MR2   

  By conservation of energy for the hoop-Earth system, then 
   

  
MgR = 1

2
2MR2( )ω 2 + 0

 

  so 
 
ω =

g
R

 

 and the center of mass moves at 
  
vCM = Rω = gR ,  slower than 

the disk. 

P10.58 (a) The moment of inertia of the cord on the spool is 
   

  

1
2

M R1
2 + R2

2( ) = 1
2

0.100 kg( ) 0.015 0 m( )2 + 0.090 0 m( )2⎡⎣ ⎤⎦

= 4.16× 10−4  kg ⋅m2

 

  The protruding strand has mass  
   

 1.00× 10−2 kg/m( ) 0.160 m( ) = 1.60× 10−3 kg
 

   and moment of inertia 

   

  

I = ICM + Md2 = 1
12

ML2 + Md2

= 1.60× 10−3 kg( ) 1
12

0.160 m( )2 + 0.090 0 m + 0.080 0 m( )2⎡
⎣⎢

⎤
⎦⎥

= 4.97 × 10–5 kg ⋅m2
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  For the whole cord,   I = 4.66 × 10−4 kg ⋅m2 . In speeding up, the 
average power is 

   

  
P = E

Δt
=

1
2

Iω 2

Δt
= 4.66× 10−4  kg ⋅m2

2 0.215 s( )
⎡

⎣
⎢

⎤

⎦
⎥

2 500 ⋅2π
60 s

⎛
⎝⎜

⎞
⎠⎟

2

= 74.3 W

 

 (b) 
  
P = τω = 7.65 N( ) 0.160 m + 0.090 0 m( ) 2 000 ⋅2π

60 s
⎛
⎝⎜

⎞
⎠⎟ = 401 W  

 
 

 

Section 10.9 Rolling Motion of a Rigid Object 
P10.59 (a) The kinetic energy of translation is  
   

  
Ktrans =

1
2

mv2 =
1
2

10.0 kg( ) 10.0 m/s( )2 = 500 J
 

 (b) Call the radius of the cylinder r. An observer at the center sees the 
rough surface and the circumference of the cylinder moving at 
10.0 m/s, so the angular speed of the cylinder is 

   

  
ω =

vCM

r =
10.0 m/s

r
 

   The moment of inertia about an axis through the center of mass is 

  
ICM = 1

2
mr2 ,  so 

    

  

Krot = 1
2

Iω 2 = 1
2

1
2

mr2⎛
⎝⎜

⎞
⎠⎟

v
r

⎛
⎝⎜

⎞
⎠⎟

2

= 1
4

10.0 kg( ) 10.0 m/s( )2

= 250 J
 

 (c) We can now add up the total energy: 
   

  
Ktotal = Ktrans + Krot = 750 J

 

P10.60 Conservation of energy for the sphere rolling without slipping is 
   

  Ui = Ktranslation, f + Krotation, f
 

   

  
mgh = 1

2
mv2 + 1

2
2
5

mR2⎛
⎝⎜

⎞
⎠⎟

v
R

⎛
⎝⎜

⎞
⎠⎟

2

= 7
10

mv2
 

 which gives 
  
v f = 10

7
gh  
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 Conservation of energy for the sphere sliding without friction, with 
 ω = 0,  is  

   

  
mgh = 1

2
mv2

 

 which gives 
  
v f = 2gh  

 The time intervals required for the trips follow from   x = 0 + vavgt:  
   

  

h
sinθ

=
0 + v f

2
⎛
⎝⎜

⎞
⎠⎟

t →     t = 2h
v f sinθ

 

 For rolling we have 
  
t = 2h

sinθ
⎛
⎝⎜

⎞
⎠⎟

10
7

gh  

 and for sliding, 
  
t = 2h

sinθ
⎛
⎝⎜

⎞
⎠⎟

1
2

gh  

 
 
The time to roll is longer by a factor of (0.7/0.5)1/2 = 1.18. 

 

P10.61 (a) We can consider the weight force acting at the center of mass 
(gravity) to exert a torque about the point of contact (the axis, in 
this case) between the disk and the incline. Then, from the particle 
under a net torque model, we have 

     τ = Iα    and   a = Rα  

    

  

mgRsinθ = ICM + mR2( )α
a = mgR2 sinθ

ICM + mR2

adisk = mgR2 sinθ
3
2

mR2
= 2

3
g sinθ

 

 (b) By the same method, 

    
  
a =

mgR2 sinθ
ICM + mR2

 

  

  

ahoop =
mgR2 sinθ

2mR2 =
1
2

g sinθ. The acceleration of the hoop is

smaller than that of the disk.
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 (c) Torque about the CM is caused by friction because the lever arm 
of the weight force is zero: 

   

  

τ = f R = Iα
f = µn = µmg cosθ

µ = f
mg cosθ

= Iα R
mg cosθ

=

2
3

g sinθ⎛
⎝

⎞
⎠

1
2

mR2⎛
⎝

⎞
⎠

R2mg cosθ
= 1

3
tanθ

 

P10.62 (a) Both systems of cube-Earth and cylinder-Earth are isolated; 
therefore, mechanical energy is conserved in both. 

 
The cylinder  

has extra kinetic energy, in the form of rotational kinetic energy, 
that is available to be transformed into potential energy, so it 
travels farther up the incline. 

 (b) The system of cube-Earth is isolated, so mechanical energy is 
conserved: 

    

  
Ki = U f → 1

2
mv2 = mgdsinθ → d = v2

2g sinθ

 

  Static friction does no work on the cylinder because it acts at the 
point of contact and not through a distance; therefore, mechanical 
energy is conserved in the cylinder-Earth system: 

    

  
Ktranslation, i + Krotation, i = U f →

1
2

mv2 + 1
2

1
2

mr2⎡
⎣⎢

⎤
⎦⎥

v
r

⎛
⎝⎜

⎞
⎠⎟

2

= mgdsinθ
 

  which gives 
  
d = 3v2

4g sinθ
.  

  The difference in distance is  
    

  

3v2

4g sinθ
− v2

2g sinθ
= v2

4g sinθ

 

  or, the cylinder travels 50% farther. 

 (c) 

 

The cylinder does not lose mechanical energy because static 
friction does no work on it. Its rotation means that it has 50%
more kinetic energy than the cube at the start, and so it travels
50% farther up the incline.

 

P10.63 (a)  The disk reaches the bottom first  because the ratio of its moment 
of inertia to its mass is smaller than for the hoop; this result is 
independent of the radius. 



554     Rotation of a Rigid Object About a Fixed Axis 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (b) Both systems of disk-Earth and hoop-Earth are isolated because 
static friction does no work because it acts at the point of contact 
and not through a distance. Mechanical energy is conserved in 
both systems: 

    
  
K =

1
2

mv2 +
1
2

Iω 2 =
1
2

m +
I

R2

⎡

⎣
⎢

⎤

⎦
⎥v2   

  where 
 
ω =

v
R

 since no slipping occurs. 

  Also,   Ui = mgh, U f = 0,   and    vi = 0  

  Therefore,  
  

1
2

m +
I

R2

⎡

⎣
⎢

⎤

⎦
⎥v2 = mgh  

  Thus, 
  
v2 =

2gh
1 + I/mR2( )⎡⎣ ⎤⎦

 

  For a disk, 
  
I =

1
2

mR2 , so 
  
v2 =

2gh
1 + 1

2

 or 
  
vdisk =

4gh
3

 

  For a hoop, I = mR2 so 
  
v2 =

2gh
2

 or 
  
vhoop = gh  

  Since   vdisk > vhoop ,   the disk  reaches the bottom first. 

P10.64 (a) Energy conservation for the system of the ball and the Earth 
between the horizontal section and top of loop: 

    

  

1
2

mv2
2 +

1
2

Iω2
2 + mgy2 =

1
2

mv1
2 +

1
2

Iω1
2

1
2

mv2
2 +

1
2

2
3

mr2⎛
⎝⎜

⎞
⎠⎟

v2

r
⎛
⎝⎜

⎞
⎠⎟

2

+ mgy2 =
1
2

mv1
2 +

1
2

2
3

mr2⎛
⎝⎜

⎞
⎠⎟

v1

r
⎛
⎝⎜

⎞
⎠⎟

2

5
6

v2
2 + gy2 =

5
6

v1
2

 

     

  

v2 = v1
2 −

6
5

gy2

= 4.03 m/s( )2 −
6
5

9.80 m/s2( ) 0.900 m( )
= 2.38 m/s
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ANS. FIG. P10.64 

 (b) The centripetal acceleration at the top is  
    

  

v2
2

r
=

2.38 m/s( )2

0.450 m
= 12.6 m/s2 > g

 

  Thus, the ball must be in contact with the track, with the track 
pushing downward on it. 

 (c) 
  

1
2

mv3
2 +

1
2

2
3

mr2⎛
⎝⎜

⎞
⎠⎟

v3

r
⎛
⎝⎜

⎞
⎠⎟

2

+ mgy3 =
1
2

mv1
2 +

1
2

2
3

mr2⎛
⎝⎜

⎞
⎠⎟

v1

r
⎛
⎝⎜

⎞
⎠⎟

2

 

  

  

v3 = v1
2 −

6
5

gy3

= 4.03 m/s( )2 −
6
5

9.80 m/s2( ) −0.200 m( )
= 4.31 m/s

 

 (d) 
  

1
2

mv2
2 + mgy2 =

1
2

mv1
2  

  

  

v2 = v1
2 − 2gy2 = 4.03 m/s( )2 − 2 9.80 m/s2( ) 0.900 m( )

= −1.40 m2/s2 !

 

 (e) This result is imaginary. In the case where the ball does not roll, 
the ball starts with less kinetic energy than in part (a) and never 
makes it to the top of the loop. 

P10.65 (a) For the isolated can-Earth system, 
  

  
ΔK  + ΔU  = 0   →   

1
2

mvCM
2 + 1

2
Iω 2 − 0⎛

⎝⎜
⎞
⎠⎟  +  0 − mgh( ) = 0 

 

  which gives 

    
  
I  = 2mgh− mvCM

2

ω 2  =  2mgh− mvCM
2( ) r2

vCM
2

⎛
⎝⎜

⎞
⎠⎟

= mr2 2gh
vCM

2 − 1
⎛
⎝⎜

⎞
⎠⎟
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  From the particle under constant acceleration model, 

   
vCM, avg  = 

0 + vCM

2
→ vCM  = 2vCM, avg  = 

2d
Δt

 

  Therefore, the moment of inertia is 
    

  

I = mr2 2gh Δt( )2

4d2 − 1
⎛
⎝⎜

⎞
⎠⎟

= mr2 2g dsinθ( ) Δt( )2

4d2 − 1
⎛
⎝⎜

⎞
⎠⎟

= mr2 g sinθ( ) Δt( )2

2d
− 1

⎛
⎝⎜

⎞
⎠⎟

 

  Substitute numerical values: 

    

  

I  =  0.215 kg( ) 0.031 9 m( )2

                 ×
9.80 m/s2( ) sin 25.0°( ) 1.50 s( )2

2 3.00 m( )  − 1
⎛

⎝
⎜

⎞

⎠
⎟  

   =  1.21 × 10−4  kg · m2

 

 (b) The 
 
height of the can  is unnecessary data. 

 (c) 

 

The mass is not uniformly distributed; the density of the metal
can is larger than that of the soup.

 

 
 

 

Additional Problems 
P10.66 When the rod is at angle θ from the vertical, the vertical weight force 

mg is at the same angle from the vertical so that its torque about the 

pivot is 
   
mg

2

sinθ . From the particle under a net torque model, 

   

   

τ∑ = Iα

mg

2

sinθ =
1
3

m2α

α =
3
2

g


sinθ → at =
3
2

g


sinθ⎛
⎝⎜

⎞
⎠⎟ r

For
3
2

g


sinθ⎛
⎝⎜

⎞
⎠⎟ r > g sinθ → r >

2
3


 

ANS. FIG. P10.66 
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 ∴ About 
 

1
3

 the length of the chimney  will have a tangential 

acceleration greater than   g sinθ . 

P10.67 (a) The spool starts from rest, with zero rotational kinetic energy, and 
accelerates to 8.00 rad/s. The work done to accomplish this is 
given by the work-kinetic energy theorem: 

    

  

W = ΔK = 1
2

Iω f
2 − 1

2
Iω i

2 = 1
2

I ω f
2 −ω i

2( ) , where I = 1
2

mR2

= 1
2

⎛
⎝⎜

⎞
⎠⎟

1
2

⎛
⎝⎜

⎞
⎠⎟ 1.00 kg( ) 0.500 m( )2 8.00 rad s( )2 − 0⎡

⎣
⎤
⎦ = 4.00 J

 

 (b) The time interval can be found from   
  

  
ω f =ω i +αt,      where α = a

r = 2.50 m/s2

0.500 m
= 5.00 rad/s2

 

  Therefore,   
   

  
t =

ω f – ω i

α = 8.00 rad/s – 0
5.00 rad s2 = 1.60 s

 

 (c) The spool turns through angular displacement  
   

  

θ f = θ i +ω it + 1
2
αt2

= 0 + 0 + 1
2

(5.00 rad/s2 )(1.60 s)2 = 6.40 rad

  

  The length pulled from the spool is 

   s = rθ  = (0.500 m)(6.40 rad) = 3.20 m 

  When the spool reaches an angular velocity of 8.00 rad/s, 1.60 s 
will have elapsed and 3.20 m of cord will have been removed 
from the spool. Remaining on the spool will be   0.800 m .  

P10.68 (a) We consider the elevator-sheave-counterweight-Earth system, 
including n passengers, as an isolated system and apply the 
conservation of mechanical energy. We take the initial 
configuration, at the moment the drive mechanism switches off, 
as representing zero gravitational potential energy of the system. 
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  Therefore, the initial mechanical energy of the system [elevator 
(e), counterweight (c), sheave (s)] is 

    

  

Ei = Ki +Ui = 1
2

mev
2 + 1

2
mcv

2 + 1
2

Isω
2 + 0

= 1
2

mev
2 + 1

2
mcv

2 + 1
2

1
2

msr
2⎡

⎣⎢
⎤
⎦⎥

v
r

⎛
⎝⎜

⎞
⎠⎟

2

= 1
2

me + mc + 1
2

ms
⎡
⎣⎢

⎤
⎦⎥

v2

 

  The final mechanical energy of the system is entirely gravitational 
because the system is momentarily at rest: 

    
  
E f = K f + U f = 0 + me gd − mc gd  

  where we have recognized that the elevator car goes up by the 
same distance d that the counterweight goes down. Setting the 
initial and final energies of the system equal to each other, we 
have  

     

  

1
2

me + mc + 1
2

ms
⎡
⎣⎢

⎤
⎦⎥

v2 = me − mc( ) gd
 

    

  

1
2

800 kg + n 80.0 kg( )⎡⎣ ⎤⎦ + 950 kg + 140 kg{ } 3.00 m/s( )2

                           = 800 kg + n 80.0 kg( )− 950 kg⎡⎣ ⎤⎦(9.80 m/s2 )d

 

     

  
d = 1890 + 80n( ) 0.459m

80n− 150
⎛
⎝⎜

⎞
⎠⎟

 

 (b) For 
  
n = 2:   d = 1890 + 80.0× 2( ) 0.459m

80.0× 2 − 150( ) = 94.1 m  

 (c) For 
  
n = 12:   d = 1890 + 80.0× 12( ) 0.459 m

80.0× 12 − 150( ) = 1.62 m  

 (d) For 
  
n = 0:   d = 1890 + 80.0× 0( ) 0.459 m

80.0× 0− 150( ) = −5.79 m  

 (e) 
  
The raising car will coast to a stop only for n ≥ 2.  

 (f) 

  

For n = 0 or n = 1, the mass of the elevator is less than the counter-
weight, so the car would accelerate upward if released.

 

 (g) For 
  
n→∞, d→ 80n 0.459 m( )/ 80n( ) = 0.459 m  
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P10.69 (a) We find the angular speed by integrating the angular 

acceleration, which is given as 
  
α = −10.0 − 5.00t =

dω
dt

, where α  is 

in rad/s2 and t is in seconds: 

   

  

Δω = dω
65.0

ω

∫ = −10.0 − 5.00t[ ]dt
0

t

∫
ω − 65.0 = −10.0t − 2.50t2 →ω = 65.0 − 10.0t − 2.50t2

 

  where ω  is in rad/s and t is in seconds. 

  For t = 3.00 s: 
 
ω = 65.0 − 10.0 3.00( ) − 2.50 3.00( )2 = 12.5rad/s.  

 (b) 
  
ω = dθ

dt
= 65.0 rad/s − 10.0 rad/s2( )t − 2.50 rad/s3( )t2  

  Suppressing units, 

    

  

Δθ = ω dt
0

t

∫ = 65.0 − 10.0t − 2.50t2⎡⎣ ⎤⎦dt
0

t

∫
Δθ = 65.0t − 5.00t2 − 2.50 3( )t3

Δθ = 65.0t − 5.00t2 − 0.833t3

 

  At t = 3.00 s, 
    

 

Δθ = 65.0 rad s( ) 3.00 s( )− 5.00 rad s2( ) 9.00 s2( )
                                                      − 0.833 rad s3( ) 27.0 s3( )
Δθ = 128 rad

 

P10.70 (a) We find the angular speed by integrating the angular 

acceleration, which is given as 
 
α t( ) = A + Bt =

dω
dt

, where the shaft 

is turning at angular speed ω at time t = 0. 

   

  

Δω = dω
ω (0)

ω (t)

∫ = A + Bt[ ]dt
0

t

∫

ω(t) −ω(0) = At +
1
2

Bt2 ,  and ω(0) = ω → ω(t) = ω + At +
1
2

Bt2

 

 (b) 
  

dθ
dt

= ω + At +
1
2

Bt2  
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Δθ = ω(t)dt
0

t

∫ = ω + At +
1
2

Bt2⎡
⎣⎢

⎤
⎦⎥
dt

0

t

∫

Δθ = ωt +
1
2

At2 +
1
6

Bt3

 

*P10.71 The resistive force on each ball is   R = DρAv2 .  Here   v = rω ,  where r is 
the radius of each ball’s path. The resistive torque on each ball is 
  τ = rR,  so the total resistive torque on the three-ball system is 

  τ total = 3rR.  

 The power required to maintain a constant rotation rate is 

  P = τ totalω = 3rRω .  This required power may be written as  
  

  P = τ totalω = 3r DρA rω( )2⎡⎣ ⎤⎦ω = 3r3DAω 3( )ρ  

 with 
  

 
ω = 2π  rad

1 rev
103  rev
1 min

⎛
⎝⎜

⎞
⎠⎟

1 min
60.0 s( ) = 1 000π

30.0
 rad/s

 

 Then 
  

  
P = 3 0.100 m( )3 0.600( ) 4.00 × 10−4  m2( ) 1 000π

30.0 s
⎛
⎝

⎞
⎠

3

ρ
 

 or   P = 0.827 m5 s3( )ρ , where ρ is the density of the resisting 
medium. 

 (a) In air,  ρ = 1.20 kg/m3 ,  and  

     P = 0.827 m5 s3( ) 1.20 kg/m3( ) = 0.992 N ⋅m/s = 0.992 W  

 (b) In water,  ρ = 1 000 kg/m3  and   P = 827 W . 

*P10.72 Consider the total weight of each hand to act at the center of gravity 
(midpoint) of that hand. Then the total torque (taking CCW as 
positive) of these hands about the center of the clock is given by 

   

  

τ = −mh g
Lh

2( )sinθh − mmg
Lm

2( )sinθm

= − g
2

mhLh sinθh + mmLm sinθm( )

 

 If we take t = 0 at 12 o’clock, then the angular positions of the hands at 

time t are   θh = ω ht,  where 
  
ω h = π

6
 rad h  and   θm = ωmt,  where 

  ωm = 2π  rad h.  Therefore,   
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τ = −4.90 m/s2( )
        × 60.0 kg( ) 2.70 m( )sin

πt
6( ) + 100 kg( ) 4.50 m( )sin 2πt⎡

⎣⎢
⎤
⎦⎥

 

 or  
  
τ = −794 N ⋅m( ) sin

πt
6( ) + 2.78sin 2πt⎡

⎣⎢
⎤
⎦⎥

, where t is in hours. 

 (a) (i) At 3:00, t = 3.00 h, so   

   
 
τ = −794 N ⋅m( ) sin

π
2( ) + 2.78sin 6π⎡

⎣⎢
⎤
⎦⎥

= −794 N ⋅m  

  (ii) At 5:15, 
  
t = 5 h + 15

60
 h = 5.25 h,  and substitution gives: 

   
 
τ = −2 510 N ⋅m  

  (iii) At 6:00,  τ = 0 N ⋅m  

  (iv) At 8:20, 
 
τ = −1 160 N ⋅m  

  (v) At 9:45, 
 
τ = 2 940 N ⋅m  

 (b) The total torque is zero at those times when 

   
  
sin

πt
6( ) + 2.78sin 2πt = 0  

 We proceed numerically, to find 0, 0.515 295 5, ..., corresponding 
to the times 

12:00:00 12:30:55 12:58:19 1:32:31 1:57:01 

2:33:25 2:56:29 3:33:22 3:56:55 4:32:24 

4:58:14 5:30:52 6:00:00 6:29:08 7:01:46 

7:27:36 8:03:05 8:26:38 9:03:31 9:26:35 

10:02:59 10:27:29 11:01:41 11:29:05  
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P10.73 (a) Since only conservative forces are acting 
on the bar, we have conservation of 
energy of the bar-Earth system: 

   Ki + Ui = Kf + Uf 

   For evaluation of the gravitational energy 
of the system, a rigid body can be 
modeled as a particle at its center of mass. 
Take the zero configuration for potential 
energy for the bar-Earth system with the 
bar horizontal. 

   Under these conditions, Uf = 0 and   Ui = MgL / 2.  

   Using the conservation of energy equation above,  

    
  
0 + 1

2
MgL = 1

2
Iω f

2   and    ω f = MgL/I  

   For a bar rotating about an axis through one end, I = ML2/3. 

   Therefore,   
    

  
ω f =

MgL
1
3 ML2 =

3g
L

 

   Note that we have chosen clockwise rotation as positive. 

 (b) 
  

τ = Iα:∑     Mg
L
2

⎛
⎝⎜

⎞
⎠⎟ =

1
3

ML2⎛
⎝⎜

⎞
⎠⎟ α   and  α =

3g
2L

 

   (c) 
  
ax = –ac = –rω f

2 = –
L
2

⎛
⎝⎜

⎞
⎠⎟

3g
L

⎛
⎝⎜

⎞
⎠⎟

= −
3g
2

 

   Since this is centripetal acceleration, it is directed along the 
negative horizontal. 

    
  
ay = –at = –rα = L

2
α = −

3g
4

 

    
    


a = −

3
2

gî −
3
4

gĵ  

ANS. FIG. P10.73 
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 (d) The pivot exerts a force   

F  on the rod. Using Newton’s second 

law, we find 
   

    

Fx = Max = − 3
2

Mg

Fy − Mg = May = − 3
4

Mg → Fy = Mg − 3
4

Mg = 1
4

Mg


F = M


a = − 3

2
Mgî + 1

4
Mgĵ

 

P10.74 We assume that air resistance has a negligible effect on a drop so that 
mechanical energy is conserved in the drop-Earth system. The first 
drop leaving the wheel has a velocity v1 directed upward. The 
magnitude of this velocity is found from 

   

   

Ki + Ugi = K f + Ugf

1
2

mv1
2 + 0 = 0 + mgh1

 

 so  
  
v1 = 2gh1 = 2 9.80 m/s2( ) 0.540 m( ) = 3.25 m/s  

 Similarly, the second drop has a velocity given by 
   

  
v2 = 2gh2 = 2 9.80 m/s2( ) 0.510 m( ) = 3.16 m/s

 

 From 
  
ω = v

r
,  we find 

   
   
ω1 =

v1

r
=

3.25 m s
0.381 m

= 8.53 rad s    

 and  
   
ω2 =

v2

r
=

3.16 m s
0.381 m

= 8.29 rad s  

 or  
 
α =

ω2
2 −ω1

2

2Δθ
=

8.29 rad s( )2 − 8.53 rad s( )2

4π
= −0.322 rad s2  

P10.75 We assume that air resistance has a negligible effect on a drop so that 
mechanical energy is conserved in the drop-Earth system. At the 
instant it comes off the wheel, the first drop has a velocity v1 directed 
upward. The magnitude of this velocity is found from 

   

  

Ki +Ugi = K f +Ugf

1
2

mv1
2 + 0 = 0 + mgh1  or v1 = 2gh1

 



564     Rotation of a Rigid Object About a Fixed Axis 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 The angular velocity of the wheel at the instant the first drop leaves is 

   
  
ω1 =

v1

R
=

2gh1

R2
 

 Similarly for the second drop:   v2 = 2gh2  and 
   
ω 2 = v2

R
= 2gh2

R2  

 The angular acceleration of the wheel is then 
   

  
a = ω 2

2 −ω1
2

2Δθ
= 2gh2 /R2 − 2gh1 /R2

2 2π( ) =
g h2 − h1( )

2πR2

 

P10.76 (a) Modeling the Earth as a sphere, its rotational kinetic energy is 

   

  

K = 1
2

2
5

MR2⎛
⎝⎜

⎞
⎠⎟ ω 2( )

= 1
2

2
5

5.98× 1024  kg( ) 6.37 × 106  m( )2⎡
⎣⎢

⎤
⎦⎥

2π
86 400 s

⎛
⎝⎜

⎞
⎠⎟

2

= 2.57 × 1029  J

 

 (b) The change in rotational kinetic energy is found by differentiating 
the equation for rotational kinetic energy with respect to time: 

   

  

dK
dt

= d
dt

1
2

2
5

MR2⎛
⎝⎜

⎞
⎠⎟

2π
T

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥

= 1
5

MR2 2π( )2 −2T −3( ) dT
dt

= 1
5

MR2 2π
T

⎛
⎝⎜

⎞
⎠⎟

2 −2
T

⎛
⎝⎜

⎞
⎠⎟

dT
dt

= K
−2
T

⎛
⎝⎜

⎞
⎠⎟

dT
dt

 

  Substituting, 
    

  

dK
dt

= 2.57 × 1029  J( ) −2
86 400 s

⎛
⎝⎜

⎞
⎠⎟

10× 10−6  s
3.16× 107  s

⎛
⎝⎜

⎞
⎠⎟

86 400 s day( )

= −1.63× 1017  J day

 

P10.77 (a) We apply the 
 
particle under a net force  

model to each block.   

 (b) We apply the  

 
rigid object under a net torque  model 

to the pulley.   
ANS. FIG. P10.77 



Chapter 10     565 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (c) We use  ∑F = ma for each block to find each string tension. The 
forces acting on the 15-kg block are its weight, the normal 
support from the incline, and T1. Taking the positive x axis as 
directed up the incline, 

      ∑Fx  = max  yields:  −(m1g)x + T1 = m1(+a) 

  Solving and substituting known values, we have 
     

  

T1 = m1(+a) + m1g( )x

= 15.0 kg( ) 2.00 m/s2( ) + 15.0 kg( ) 9.80 m/s2( ) sin 37.0°

= 118 N

  

 

 (d) Similarly, for the counterweight, we have 
     

  Fy = may∑   or   T2 − m2 g = m2(–a)
 

     

  

T2 = m2 g + m2(−a)

= 20.0 kg( ) 9.80 m/s2( ) + 20.0 kg( ) −2.00 m/s2( )
= 156 N

 

 (e) Now for the pulley,  

    ∑τ = r(T2 − T1) = Iα = I a/r 

  so   
  
I = r2

a
T2 −T1( )  

  where we have chosen to call clockwise positive. 

 (f) Computing from above, the pulley’s rotational inertia is  
   

  
I = r2

a
T2 −T1( ) = 156 N − 118 N( ) 0.250 m( )2

2.00 m s2 = 1.17 kg ⋅m2
 

P10.78 Choosing positive linear quantities to be 
downwards and positive angular quantities to be 
clockwise,  Fy = may∑  yields 

   

  
F = Mg −TM = a     or     a =

Mg −T
M

∑
 

  τ = Iα∑  then becomes 
   

  
τ = TR = Iα = 1

2
MR2 a

R
⎛
⎝

⎞
⎠    so   a = 2T

M
∑

 ANS. FIG. P10.78 
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 (a) Setting these two expressions equal,  
   

  

Mg −T
M

=
2T
M

and T = Mg/3
 

(b) Substituting back,  
  

  
a =

2T
M =

2Mg
3M or a =

2
3

g
 

 (c) 
  
Since vi = 0 and a =

2
3

g,  
  
v f

2 = vi
2 + 2ah  gives us 

  
v f

2 = 0 + 2
2
3

g⎛
⎝⎜

⎞
⎠⎟ h,  

  or 
  
v f = 4gh/3   

  (d) Now we verify this answer. Requiring conservation of mechanical 
energy for the disk-Earth system, we have  

    Ui + Krot, i + Ktrans, i = Uf + Krot, f + Ktrans, f 

    

  
mgh + 0 + 0 = 0 +

1
2

Iω 2 +
1
2

mv2
 

    

  
mgh =

1
2

1
2

MR2⎛
⎝⎜

⎞
⎠⎟ω

2 +
1
2

Mv2
 

 When there is no slipping, 
 
ω = v

R
 and 

  
v =

4gh
3

.  

 
 The answer is the same.  

P10.79 The block and end of the spring are pulled a  
distance d up the incline and then released.  
The angular speed of the reel and the speed  
of the block are related by   v = ωR.  The  
block-reel-Earth system is isolated, so 

   
  
ΔK + ΔU = 0 → K f − Ki + U f −Ui = 0  

   

  

1
2

mv2 − 0⎛
⎝⎜

⎞
⎠⎟ +

1
2

Iω 2 − 0⎛
⎝⎜

⎞
⎠⎟

                    + 0 − mgd sinθ( ) + 0 −
1
2

kd2⎛
⎝⎜

⎞
⎠⎟ = 0

 

   
  

1
2
ω 2 I + mR2( ) = mgd sinθ +

1
2

kd2  

ANS. FIG. P10.79 



Chapter 10     567 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

   
  
ω =

2mgdsinθ + kd2

I + mR2
 

P10.80 The center of gravity of the uniform board is at its 
middle. For the board just starting to move, 

   

   

τ∑ = Iα :

          mg

2

⎛
⎝⎜

⎞
⎠⎟ cosθ = 1

3
m2⎛

⎝⎜
⎞
⎠⎟α

α = 3
2

g


⎛
⎝⎜

⎞
⎠⎟ cosθ

 

 The tangential acceleration of the end is 
   
at = α =

3
2

g cosθ  

 and its vertical component is 
  
ay = at cosθ =

3
2

g cos2θ.  

 If this is greater than g, the board will pull ahead of the falling ball: 

 (a) 
  

3
2

g cos2θ ≥ g  gives 
 
cos2θ ≥

2
3

   so   
 
cosθ ≥

2
3

   and    θ ≤ 35.3°  

 (b) When  θ = 35.3°,  the cup will land underneath the release point of 
the ball if    rc = cosθ.  

  When    = 1.00 m  and  θ = 35.3°,         

   
  
rc = 1.00 m

2
3

= 0.816 m  

  so the cup should be 
   

   
 – rc = 1.00 m− 0.816 m =  0.184 m from the moving end

  

P10.81 For the isolated sphere-Earth system, energy is conserved, 

 so  

   
  
ΔU + ΔKrot + ΔK trans = 0  

   
  
mg R − r( ) cosθ − 1( ) +

1
2

mv2 − 0
⎡

⎣
⎢

⎤

⎦
⎥ +

1
2

2
5

mr2⎡

⎣
⎢

⎤

⎦
⎥ω

2 = 0  

ANS. FIG. P10.80 
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 Substituting   v = rω ,  we obtain 
   

  

mg R − r( ) cosθ − 1( )+ 1
2

m rω( )2 − 0⎡
⎣⎢

⎤
⎦⎥
+ 1

2
2
5

mr2⎡
⎣⎢

⎤
⎦⎥
ω 2 = 0

mg R − r( ) cosθ − 1( )+ 1
2

+ 1
5

⎡
⎣⎢

⎤
⎦⎥
mr2ω 2 = 0

 

   

  
ω = 10

7
⎛
⎝⎜

⎞
⎠⎟

R − r( ) 1− cosθ( )g
r2

 

 

ANS. FIG. P10.81 

P10.82 (a) From the particle under a net force model in the x 
direction, we have  

   
  Fx∑ = F + f = MaCM

 

  From the particle under a net torque model, 
   

 τ∑ = FR − fR = Iα  

  Combining the two equations, and noting that 
  
I = 1

2
MR2 ,  gives 

   

  
FR − MaCM − F( )R = IaCM

R
aCM = 4F

3M

 

 (b) Assuming friction is to the right, then 

    

  

f + F = MaCM = M
4F
3M

⎛
⎝⎜

⎞
⎠⎟

→ f = M
4F
3M

⎛
⎝⎜

⎞
⎠⎟ − F =

1
3

F
 

  The facts that (1) we assumed that friction is to the right in Figure 
P10.82 and (2) our value for f comes out positive indicate that the 
friction force must indeed be to the right. 

ANS. FIG. P10.82 
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 (c) From the kinematic equations, 
    

  

v f
2 = vi

2 + 2a x f − xi( )
= 0 + 2ad

 

  or 
    

  
v f = 2ad = 8Fd

3M

 

P10.83 (a)   ΔKrot + ΔKtrans + ΔU = 0  

  Note that initially the center of mass of 
the sphere is slightly higher than the 
distance h above the bottom of the 
loop; and as the mass reaches the top 
of the loop, this distance above the 
reference level is 2R – r, but we are told 
that r << R, so we ignore r when 
considering heights for the gravitational 
potential energy of the sphere-Earth system. The conservation of 
energy requirement gives 

    
  
mgh = mg 2R( ) +

1
2

mv2 +
1
2

Iω 2  

  For the sphere 
  
I =

2
5

mr2  and   v = rω ,  so that the expression 

becomes 

    
   
gh = 2gR +

7
10

v2   [1] 

  Note that  h = hmin when the speed of the sphere at the top of the 
loop satisfies the condition 

    

  
F = mg = mv2

R
∑    or   v2 = gR

  

  Substituting this into equation [1] gives 

      hmin = 2R + 0.700R  or 
  
hmin = 2.70R  

 (b) When the sphere is initially at  h = 3R and finally at point P, the 
conservation of energy equation gives 

    
  
mg3R = mgR +

1
2

mv2 +
1
5

mv2 , or 
  
v2 =

20
7

Rg  

ANS. FIG. P10.83 
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  Turning clockwise as it rolls without slipping past point P, the 
sphere is slowing down with counterclockwise angular 
acceleration caused by the torque of an upward force f of static 
friction. We have  

   
 Fy = may∑ → f − mg = −mαr  

  and 
  

τ∑ = Iα → fr = 2
5

⎛
⎝⎜

⎞
⎠⎟ mr2α .  

  Eliminating f by substitution yields  

   
  
α =

5g
7r

 so that 
  

Fy = − 5
7

mg∑  

P10.84 The length of the rod is L, and the horizontal force is applied the 
vertical distance L from the hinge. Consider the free-body diagram 
shown. The sum of torques about the chosen pivot is 

   
  

τ = Iα ⇒ F∑ = 1
3

mL2⎛
⎝⎜

⎞
⎠⎟

aCM

L/2
⎛
⎝⎜

⎞
⎠⎟

= 2
3

mL⎛
⎝⎜

⎞
⎠⎟ aCM   [1] 

 (a)     = L = 1.24 m:  In this case, equation [1] becomes 

   
  
aCM =

3F
2m

=
3 14.7 N( )

2 0.630 kg( ) = 35.0 m/s2  

 

ANS. FIG. P10.84 

 (b) We apply the particle under a net force model in the horizontal 
direction (see ANS. FIG. P10.84 for the labelling of forces): 

    
  Fx∑ = maCM ⇒ F + Hx = maCM

 

  or    Hx = maCM − F  

  Thus,  

    
  Hx = 0.630 kg( ) 35.0 m/s2( ) − 14.7 N = +7.35 N  
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  or  
    


Hx = 7.35î N  

 (c) With 
   
 =

1
2

L = 0.620 m , equation [1] yields 

   
  
aCM =

3F
4m

=
3 14.7 N( )

4 0.630 kg( ) = 17.5 m s2  

 (d) Again,   Fx∑ = maCM ⇒ Hx = maCM − F,  so 

    
  Hx = 0.630 kg( ) 17.5 m/s2( ) − 14.7 N = −3.68 N     

  or  
   
Hx = −3.68î N  

 (e) If   Hx = 0 , then   Fx = maCM ⇒ F = maCM∑ ,    or   
  
aCM =

F
m

.  

  Thus, equation [1] becomes 

    
   
F =

2
3

mL⎛
⎝⎜

⎞
⎠⎟

F
m

⎛
⎝⎜

⎞
⎠⎟

    

  so   
   
 =

2
3

L =
2
3

1.24 m( ) = 0.827  m (from the top)  

P10.85 Note that when the CM of the falling rod is very near the surface, the 
velocity of the end of the rod in contact with the surface is a 
combination of the downward motion of the CM and the upward 
motion of the rotating end:   vend = vCM −ωr.  Because the velocity of this 
end relative to the surface is zero, 

     vend = vCM −ω h/2( ) = 0→ vCM = ω h/2( )t  

 (a) There are no horizontal forces acting on the rod, so the center of 
mass (CM) will not move horizontally. Rather, the center of mass 
drops straight downward (distance h/2) with the rod rotating 
about the center of mass as it falls. 

  From conservation of energy: 

   
 
K f + Ugf = Ki + Ugi  

   
  

1
2

MvCM
2 +

1
2

Iω 2 + 0 = 0 + Mg
h
2

⎛
⎝⎜

⎞
⎠⎟

 or 

   
  

1
2

MvCM
2 +

1
2

1
12

Mh2⎛
⎝⎜

⎞
⎠⎟

vCM

h/2
⎛
⎝⎜

⎞
⎠⎟

2

= Mg
h
2

⎛
⎝⎜

⎞
⎠⎟
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  which reduces to 

   
  
vCM =

3gh
4

 

 (b) In this case, the motion is a pure rotation about a fixed pivot point 
(the lower end of the rod) with the center of mass moving in a 
circular path of radius h/2. From conservation of energy: 

   
 
K f + Ugf = Ki + Ugi  

   
  

1
2

Iω 2 + 0 = 0 + Mg
h
2

⎛
⎝⎜

⎞
⎠⎟

 or 

   
  

1
2

1
3

Mh2⎛
⎝⎜

⎞
⎠⎟

vCM

h/2
⎛
⎝⎜

⎞
⎠⎟

2

= Mg
h
2

⎛
⎝⎜

⎞
⎠⎟

  

  which reduces to 

   
  
vCM =

3gh
4

 

P10.86 The grape-Earth system is isolated, so 
mechanical energy in that system is 
conserved. Between top of the 
clown’s head and the point where the 
grape leaves the surface: 

  
 
Ki + Ui = K f + U f  

  
  
0 + mgΔy =

1
2

mv f
2 +

1
2

Iω f
2 + 0  

  

  

mgR 1− cosθ( )

      = 1
2

mv f
2 + 1

2
2
5

mR2⎛
⎝⎜

⎞
⎠⎟

v f

R
⎛
⎝⎜

⎞
⎠⎟

2

 

 which gives  

   

  
g 1− cosθ( ) =

7
10

v f
2

R

⎛

⎝
⎜

⎞

⎠
⎟  [1] 

 Consider the radial forces acting on the grape: 

   
  
mg cosθ − n =

mv f
2

R
 

ANS. FIG. P10.86 
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 At the point where the grape leaves the surface,   n→ 0.  Thus,  
   

  
mg cosθ =

mv f
2

R
     or     

v f
2

R
= g cosθ

 

 Substituting this into equation [1] gives 

   
  
g − g cosθ =

7
10

g cosθ   

 or   
 
θ = cos−1 10

17
⎛
⎝⎜

⎞
⎠⎟ = 54.0°  

 
 

 

Challenge Problems 
P10.87 Refer to the force diagrams for the plank and rollers in ANS. FIG. 

P10.87(b) below. Call ft the frictional force exerted by each roller 
backward on the plank. Name as fb the rolling resistance exerted 
backward by the ground on each roller. 

 

ANS. FIG. P10.87(a) 

 For the plank, 

    
  Fx = max :∑ 6.00 N – 2 ft = 6.00 kg( )ap   [1] 

 If we think of the motion of a roller as a small rotation about its point 
of contact with the surface, we see that the center of each roller moves 
forward only half as far as the plank. 

 Each roller has acceleration 
  

ap

2
 and angular acceleration 

   

  

ap 2
5.00 cm

=
ap

0.100 m

 

 Then for each, 

    
  

Fx = max : + ft − fb = 2.00 kg( ) ap

2
∑   [2] 
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τ = Iα :∑

ft 5.00 cm( ) + fb 5.00 cm( ) = 1
2

2.00 kg( ) 5.00 cm( )2 ap

10.0 cm

 

 So  
  
ft + fb =

1
2

kg⎛
⎝⎜

⎞
⎠⎟ ap  [3] 

 Add equations [2] and [3] to eliminate   fb :         2 ft = 1.50 kg( )ap  

 (a) Substituting the value for 2ft into equation [1] gives 
    

  

6.00 N − 1.50 kg( )ap = 6.00 kg( )ap

→ ap = 6.00 N
7.50 kg

= 0.800 m/s2

 

 (b) For each roller, 
  
a =

ap

2
= 0.400 m/s2  

 (c) Substituting back,  
    

  2 ft = 1.50 kg( ) 0.800 m/s2( )  

   
  
ft = 0.600 N  

  then, from equation [3], 
   

  
0.600 N + fb = 1

2
kg⎛

⎝⎜
⎞
⎠⎟ 0.800 m/s2( )

 

     fb = −0.200 N  

  The negative sign means that the horizontal force of ground on 
each roller is  0.200 N forward  rather than backward as we 
assumed. 

 

ANS. FIG. P10.87(b) 



Chapter 10     575 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

ANS. FIG. P10.88 
 

P10.88 For large energy storage at a 
particular rotation rate, we want a 
large moment of inertia. To combine 
this requirement with small mass, we 
place the mass as far away from the 
axis as possible. 

 We choose to make the flywheel as a hollow cylinder 18.0 cm in 
diameter and 8.00 cm long. To support this rim, we place a disk across 
its center. We assume that a disk 2.00 cm thick will be sturdy enough 
to support the hollow cylinder securely. 

 The one remaining adjustable parameter is the thickness of the wall of 
the hollow cylinder. From Table 10.2, the moment of inertia can be 
written as 

   

  

Idisk + Ihollow cylinder =
1
2

MdiskRdisk
2 +

1
2

Mwall Router
2 + Rinner

2( )
=

1
2
ρVdiskRouter

2 +
1
2
ρVwall Router

2 + Rinner
2( )

 

   

  

= ρ
2
π Router

2 2.00 cm( )Router
2 + ρ

2
π Router

2 −π Rinner
2⎡⎣ ⎤⎦

                                                   × 6.00 cm( ) Router
2 + Rinner

2( )
= ρπ

2
9.00 cm( )4 2.00 cm( )⎡⎣

         + 6.00 cm( ) 9.00 cm( )2 − Rinner
2⎡⎣ ⎤⎦ 9.00 cm( )2 + Rinner

2⎡⎣ ⎤⎦⎤⎦

= ρπ 6 561 cm5 + 3.00 cm( ) 9.00 cm( )4 − Rinner
4( )⎡⎣ ⎤⎦

= ρπ 26 244 cm5 − 3.00 cm( )Rinner
4⎡⎣ ⎤⎦

 

 For the required energy storage, 
   

  

1
2

Iω1
2 = 1

2
Iω 2

2 + Wout

1
2

I 800 rev min( ) 2π  rad
1 rev

⎛
⎝⎜

⎞
⎠⎟

1 min
60 s

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

2

                   − 1
2

I 600 rev/min( ) 2π  rad
60 s

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

2

  = 60.0 J
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I = 60.0 J
1 535 s2

 = 7.85× 103  kg m3( )π 26 244 cm5 − 3.00 cm( )Rinner
4⎡⎣ ⎤⎦

1.58× 10−5  m5 100 cm
1 m

⎛
⎝⎜

⎞
⎠⎟

5

= 26 244 cm5 − 3.00 cm( )Rinner
4

Rinner = 26 244 cm4 − 15 827 cm4

3.00
⎛
⎝⎜

⎞
⎠⎟

1 4

= 7.68 cm

 

 The inner radius of the flywheel is 7.68 cm. The mass of the flywheel is 
then 7.27 kg, found as follows: 

   

  

Mdisk + Mwall = ρπ Router
2 2.00 cm( )

            + ρ πRouter
2 −πRinner

2⎡⎣ ⎤⎦ 6.00 cm( )
= 7.86× 103  kg m3( )π
           0.090 m( )2 0.020 m( )⎡⎣

             + 0.090 m( )2 − 0.076 8 m( )2⎡
⎣

⎤
⎦ 0.060 m( )⎤⎦

= 7.27 kg

 

 If we made the thickness of the disk somewhat less than 2.00 cm and 
the inner radius of the cylindrical wall less than 7.68 cm to compensate, 
the mass could be a bit less than 7.27 kg. 

 

 

The flywheel can be shaped like a cup or open barrel, 9.00 cm in outer 
radius and 7.68 cm in inner radius, with its wall 6 cm high, and with
its bottom forming a disk 2.00 cm thick and 9.00 cm in  radius. It is
mounted to the crankshaft at the center of this disk and turns about its
axis of symmetry. Its mass is 7.27 kg. If the disk were made somewhat
thinner and the barrel wall thicker, the mass could be smaller.

 

P10.89 (a) At t = 0,   ω = 3.50 rad/s = ω0e
0 . Thus,

 
ω 0 = 3.50 rad/s .  

  At t = 9.30 s,   ω = 2.00 rad/s =ω 0e
−σ 9.30s( ).  

  We now calculate  σ :     To solve   ω = ω0e
−σ t for  σ ,  we recall that 

the natural logarithm function is the inverse of the exponential 
function. 

  

  
ω/ω 0 = e−σ t becomes ln(ω/ω 0) = −σ t or ln(ω 0/ω ) = +σ t

 



Chapter 10     577 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  so 
  
σ = 1

t
⎛
⎝⎜

⎞
⎠⎟ ln(ω 0/ω ) = 1

9.30 s
⎛
⎝⎜

⎞
⎠⎟

ln
3.50
2.00

⎛
⎝⎜

⎞
⎠⎟ = 0.560

9.30 s
= 6.02 × 10−2 s−1  

 (b) At all times,  

    
  
α = dω

dt
= d

dt
ω0e

−σ t⎡⎣ ⎤⎦ = −σω0e
−σ t  

   At t = 3.00 s,  
     

  α = −(0.060 2 s−1)(3.50 rad/s)e−0.181 = −0.176 rad/s2   

  (c) From the given equation, we have   dθ =ω 0
e–σ t

dt  

   and  

     
  
θ = ω0e

−σ tdt =
0  s

2.50 s

∫
ω0

–σ
e−σ t

0  s

2.50 s
=
ω0

–σ
e−2.50σ – 1( )  

    Substituting and solving,  

      θ = −58.2(0.860 −1) rad = 8.12 rad  

  or 
 
θ = (8.12 rad)

1 rev
2π  rad

⎛
⎝⎜

⎞
⎠⎟ = 1.29 rev  

  (d) The motion continues to a finite limit, as ω approaches zero and t 
goes to infinity. From part (c), the total angular displacement is  

    
  
θ = ω0e

–σ tdt =
0

∞

∫
ω0

–σ
e–σ t

0

∞
=
ω0

–σ
(0 – 1) =

ω0

σ
 

  Substituting,   
    

 
θ = 58.2 rad or θ = 1 rev

2π  rad( )(58.2 rad) = 9.26 rev
 

P10.90 (a) If we number the loops of the spiral track with an index n, with 
the innermost loop having n = 0, the radii of subsequent loops as 
we move outward on the disc is given by r = ri + hn. Along a 
given radial line, each new loop is reached by rotating the disc 
through  2π rad.  Therefore, the ratio  θ/2π  is the number of 
revolutions of the disc to get to a certain loop. This is also the 
number of that loop, so   n = θ/2π .  Therefore,   r = ri + hθ/2π .  

 (b) Starting from   ω = v/r,  we substitute the definition of angular 
speed on the left and the result for r from part (a) on the right: 

   
  
ω =

v
r
→

dθ
dt

=
v

ri + hθ/2π( )  
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 (c) Rearrange terms in preparation for integrating both sides: 

   
  

ri +
h

2π
θ

⎛
⎝⎜

⎞
⎠⎟

dθ = vdt  

  and integrate from  θ = 0  to θ = θ  and from t = 0 to t = t: 

   
  
riθ +

h
4π

θ 2 = vt  

  We rearrange this equation to form a standard quadratic equation 
in θ: 

   
  

h
4π

θ 2 + riθ − vt = 0  

  The solution to this equation is 
   

  

θ =
−ri ± ri

2 + h
π

vt

h
2π

= 2πri

h
1+ vh

πri
2 t − 1

⎛

⎝⎜
⎞

⎠⎟

 

  where we have chosen the positive root in order to make the 
angle θ positive. 

 (d) We differentiate the result in (c) twice with respect to time to find 
the angular acceleration, resulting in 

   

  

α = −
hv2

2πri
3 1 + vh

πri
2 t

⎛

⎝⎜
⎞

⎠⎟

3/2  

  Where we have used 
  

d
dx

u = 1
2 u

du
dx

.  Because this expression 

involves the time t, the angular acceleration is not constant. 

P10.91 (a)  Fx = max∑ reads   − f + T = ma.  If we take torques 
around the center of mass, we can use   τ = Iα∑ ,  
which reads   + fR2 −TR1 = Iα.  For rolling 

without slipping, 
  
α =

a
R2

. By  

substitution, 
    

  
fR2 −TR1 = la

R2

= I
R2m

T − f( )
 

ANS. FIG. P10.91 
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fR2
2m−TR1R2m = IT − If

f I + mR2
2( ) = T I + mR1R2( )

f = I + mR1R2

I + mR2
2

⎛
⎝⎜

⎞
⎠⎟

T

 

 (b) Since the answer is positive, the friction force is confirmed to be 

 to the left .  

P10.92 (a) From the isolated system model for the block-pulley-Earth 
system, 

    

   

ΔK + ΔU + ΔEint = 0
1
2

Mv2 − 0⎛
⎝⎜

⎞
⎠⎟ + 1

2
Iω 2 − 0⎛

⎝⎜
⎞
⎠⎟ + 0− Mgdsinθ( ) + fd = 0

1
2

Mv2 + 1
2

1
2

mr2⎛
⎝⎜

⎞
⎠⎟

v
r

⎛
⎝⎜

⎞
⎠⎟

2

− Mgdsinθ + µMg cosθ( )d = 0

v =
4Mgd sinθ − µ cosθ( )

2M + m

 

 (b) From the particle under constant acceleration model for the block, 
    

  

v f
2 = vi

2 + 2ad

a =
v f

2 − vi
2

2d
= v2

2d
=

2Mg sinθ − µ cosθ( )
2M + m

 

P10.93 The location of the dog is described by   θd = 0.750 rad/s( )t . For the 
bone, 

    
  
θb =

1
3

2π rad +
1
2

0.015 rad/s2 t2  

 (a) We look for a solution to (suppressing units) 

    

  

0.75t =
2π
3

+ 0.007 5t2

0 = 0.007 5t2 − 0.75t + 2.09 = 0

t =
0.75 ± 0.752 − 4 0.007 5( )2.09

0.015
= 2.88 s or  97.1 s

 

  The first time the dog reaches the bone is  2.88 s.  
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ANS. FIG. P10.94 

 (b) If the dog passes the bone, he must run around the merry-go-
round again. The dog will draw even with the bone when 

  
0.75t =

2π
3

+ 2π + 0.007 5t2 . 

  Solving this equation, we find (suppressing units) 
    

  
t =

0.75 ± 0.752 − 4 0.007 5( )8.38
0.015

= 12.8 s   or   87.2 s
 

  The dog draws even with the bone again at the time of  12.8 s.  

P10.94 
 
τ f  will oppose the torque due to the hanging object: 

     τ∑ = Iα = TR −τ f :   τ f = TR − Iα  [1] 

 Now find T, I, and α in given or known terms and 
substitute into equation [1]. 

     Fy = T − mg = −ma: T = m g − a( )∑   [2] 

 also,  
  
Δy = vit +

at2

2
a =

2y
t2

  [3] 

 and   
  
α =

a
R

=
2y
Rt2  [4] 

 with   
  
I =

1
2

M R2 +
R
2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
5
8

MR2  [5] 

 Substituting [2], [3], [4], and [5] into [1], we find 

  

  
τ f = m g −

2y
t2

⎛
⎝⎜

⎞
⎠⎟

R −
5
8

MR2 2y( )
Rt2 = R m g −

2y
t2

⎛
⎝⎜

⎞
⎠⎟
−

5
4

My
t2

⎡

⎣
⎢

⎤

⎦
⎥  
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P10.2 (a) 0.209 rad/s2; (b) yes 

P10.4 144 rad 

P10.6 −2.26 × 102 rad/s2 

P10.8 (a) 3.5 rad; (b) increase by a factor of 4 

P10.10 Because the disk’s average angular speed does not match the average 
angular speed expressed as 

  
ω i +ω f( )/2  in the model of a rigid object 

under constant angular acceleration, the angular acceleration of the 
disk cannot be constant. 

P10.12 50.0 rev 

P10.14 (a) 

  
ωh3/2 2

g
⎛
⎝⎜

⎞
⎠⎟

1/2

;  (b) 1.16 cm; (c) The deflection is only 0.02% of the 

original height, so it is negligible in many practical cases; (d) Decrease 

P10.16 ~107 rev/yr 

P10.18 (a) 0.605 m/s; (b) 17.3 rad/s; (c) 5.82 m/s; (d) We did not need to know 
the length of the pedal cranks. 

P10.20 (a) 54.3 rev; (b) 12.1 rev/s 

P10.22 (a) 5.77 cm; (b) Yes. See P10.20 for full explanation. 

P10.24 
  

a
g

1 + π 2  

P10.26 (a) 
   
−2.73i+ 1.24j( )  m;  (b) It is in the second quadrant, at 156°;  

(c) 
   
−1.85i− 4.10j( )  m/s;  (d) It is moving toward the third quadrant, at 

246°; (e) 
   
6.15i− 2.78j( )  m/s2 ;  (f) See ANS. FIG. P10.26;  

(g) 
   
24.6i− 11.1j( )  N  

P10.28 168 N ⋅ m 

P10.30 (a) 1.03 s; (b) 10.3 rev 

P10.32 (a) See ANS. FIG. P10.32; (b) 0.309 m/s2; (c) T1 = 7.67 N, T2 = 9.22 N 

P10.34 (a) For F = 25.1 N, R = 1.00 m. For F = 10.0 N, R = 25.1 m; (b) No. 
Infinitely many pairs of values that satisfy this requirement may exist: 
for any F ≤ 50.0 N, R = 25.1 N ⋅ m/F, as long as R ≤ 3.00 m. 
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P10.36 (a) 1.95 s; (b) If the pulley were massless, the acceleration would be 
larger by a factor 35/32.5 and the time short by the square root of the 
factor 32.5/35. That is, the time would be reduced by 3.64%. 

P10.38 100 kg ⋅ m2 = 1 kg ⋅ m2 

P10.40 (a) See P10.40(a) for full description; (b) See P10.40(b) for full 
description 

P10.42 
  
I ′y = r2dm = x2 M

L
dx =

M
L

x3

3 0

L

=
1
3

ML2

0

L

∫all mass∫  

P10.44 (a) 92.0 kg⋅m2; (b) 184 J; (c) 6.00 m/s, 4.00 m/s, 8.00 m/s; (d) 184 J;  
(e) The kinetic energies computed in parts (b) and (d) are the same. 

P10.46 
  

13
24

MR2ω 2  

P10.48 276 J 

P10.50 

  

v = 2 m1 − m2( )gh

m1 + m2 + I
R2

 and 
  
ω = 2 m1 − m2( )gh

m1R
2 + m2R

2 + I
 

P10.52 The situation is impossible because the range is only 3.86 km, not city-
wide. 

P10.54 (a) 6.90 J; (b) 8.73 rad/s; (c) 2.44 m/s; (d) The speed it attains in 
swinging is greater by 1.043 2 times 

P10.56 
  
mr2 2gh

v2 − 1
⎛
⎝⎜

⎞
⎠⎟

 

P10.58 (a) 74.3 W; (b) 401 W 

P10.60   rolling:  v f = 10gh/7 ; sliding:  v f = 2gh ;  The time to roll is longer by 

a factor of (0.7/0.5)1/2 = 1.18 

P10.62 (a) the cylinder; (b)   v
2/4g sinθ ; (c) The cylinder does not lose 

mechanical energy because static friction does not work on it. Its 
rotation means that it has 50% more kinetic energy than the cube at the 
start, and so it travels 50% farther up the incline. 

P10.64 (a) 2.38 m/s; (b) The centripetal acceleration at the top is 

  

v2
2

r
=

2.38 m/s( )2

0.450 m
= 12.6 m/s2 > g.  Thus, the ball must be in contact 

with the track, with the track pushing downward on it; (c) 4.31 m/s; 

(d)  –1.40m2/s2 ;  (e) never makes it to the top of the loop 
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P10.66 
 

1
3

 the length of the chimney 

P10.68 (a) 
  
d = 1890 + 80n( ) 0.459m

80n− 150
⎛
⎝⎜

⎞
⎠⎟ ; (b) 94.1 m; (c) 1.62 m; (d) –5.79 m;  

(e) The rising car will coast to a stop only for n ≥ 2; (f) For n = 0 or n = 1, 
the mass of the elevator is less than the counterweight, so the car 
would accelerate upward if released; (g) 0.459 m 

P10.70 
  
ω t( ) = ω + At +

1
2

Bt2 ;  (b) 
  
ωt +

1
2

At2 +
1
6

Bt3  

P10.72 (a) (i) –794 N . m, (ii) –2 510 N . m, (iii) 0 N .  m, (iv) –1 160 N . m,  
(v) 2 940 N . m; (b) See P10.72(b) for full description. 

P10.74  −0.322 rad/s2  

P10.76 (a)  2.57 × 1029 J;  (b) −1.63 × 1017J/day  

P10.78 (a) Mg/3; (b) 2g/3; (c) 
  4gh/3 ; (d) The answer is the same. 

P10.80 (a)  θ ≤ 35.5°;  (b) 0.184 m from the moving end 

P10.82 (a) 
  
aCM =

4F
3M

;  (b) 
  

1
3

F ;  (c) 
  

8Fd
3M

 

P10.84 (a) 35.0 m/s2; (b)    7.35i N;  (c) 17.5 m/s2; (d)    −3.68iN;  (e) 0.827 m (from 
the top) 

P10.86 54.0° 

P10.88 See P10.88 for full design and specifications of flywheel. 

P10.90 (a) See P10.90(a) for full solution; (b) See P10.90(g) for full solution; 

 (c) 
  

2πri

h
1+ vh

πri
2 t − 1

⎛

⎝⎜
⎞

⎠⎟
; (d) 

  

α = −
hv2

2πri
2 1 + vh

πri
2 t

⎛

⎝⎜
⎞

⎠⎟

3/2  

P10.92 (a) See P10.92(a) for full explanation; (b) 
  

2Mg(sinθ − µ cosθ)
2M + m

 

P10.94 
  
R m g −

2y
t2

⎛
⎝⎜

⎞
⎠⎟ −

5
4

My
t2

⎡
⎣⎢

⎤
⎦⎥
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11 
Angular Momentum 

 

CHAPTER OUTLINE 
 

11.1 The Vector Product and Torque 

11.2 Analysis Model: Nonisolated System (Angular Momentum) 

11.3 Angular Momentum of a Rotating Rigid Object 

11.4 Analysis Model: Isolated System (Angular Momentum) 

11.5 The Motion of Gyroscopes and Tops 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ11.1 Answer (b). Her angular momentum stays constant as I is cut in half 

and  ω doubles. Then 
  

1
2

Iω 2   doubles. 

OQ11.2 The angular momentum of the mouse-turntable system is initially 
zero, with both at rest. The frictionless axle isolates the mouse-
turntable system from outside torques, so its angular momentum 
must stay constant with the value of zero. 

 (i) Answer (a). The mouse makes some progress north, or 
counterclockwise. 

 (ii) Answer (b). The turntable will rotate clockwise. The turntable 
rotates in the direction opposite to the motion of the mouse, for 
the angular momentum of the system to remain zero. 

 (iii) No. Mechanical energy changes as the mouse converts some 
chemical into mechanical energy, positive for the motions of 
both the mouse and the turntable. 

 (iv) No. Linear momentum is not conserved. The turntable has zero 
momentum while the mouse has a bit of northward momentum. 
Initially, momentum is zero; later, when the mouse moves 
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north, the fixed axle prevents the turntable from moving south. 

 (v) Yes. Angular momentum is constant, with the value of zero. 

OQ11.3 (i) Answer (a), (ii) Answer (e), (3 m, down) × (2 N, toward you) =  
6 N · m, left 

OQ11.4 Answer c = e > b = d > a = 0. The unit vectors have magnitude 1, so 
the magnitude of each cross product is |1 · 1 · sin θ| where θ is the 
angle between the factors. Thus for (a) the magnitude of the cross 
product is sin 0° = 0. For (b), |sin 135°| = 0.707, (c) sin 90° = 1, (d) sin 
45° = 0.707, (e) sin 90° = 1. 

OQ11.5 (a) No. (b) No. An axis of rotation must be defined to calculate the 
torque acting on an object. The moment arm of each force is 
measured from the axis, so the value of the torque depends on the 
location of the axis. 

OQ11.6 (i) Answer (e). Down–cross–left is away from you: 
  
− ĵ × − î( ) = −k̂ , 

as in the first picture. 

 (ii) Answer (d). Left–cross–down is toward you: 
  
− î × − ĵ( ) = k̂ , as in 

the second picture. 

 

 

ANS FIG. OQ11.6 

OQ11.7 (i) Answer (a). The angular momentum is constant. The moment of 
inertia decreases, so the angular speed must increase. 

 (ii) No. Mechanical energy increases. The ponies must do work to 
push themselves inward. 

 (iii) Yes. Momentum stays constant, with the value of zero. 

 (iv) Yes. Angular momentum is constant with a nonzero value. No 
outside torque can influence rotation about the vertical axle. 

OQ11.8 Answer (d). As long as no net external force, or torque, acts on the 
system, the linear and angular momentum of the system are 
constant. 
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ11.1 The star is isolated from any outside torques, so its angular 
momentum is conserved as it changes size. As the radius of the star 
decreases, its moment of inertia decreases, resulting in its angular 
speed increasing. 

CQ11.2 The suitcase might contain a spinning gyroscope. If the gyroscope is 
spinning about an axis that is oriented horizontally passing through 
the bellhop, the force he applies to turn the corner results in a torque 
that could make the suitcase swing away. If the bellhop turns quickly 
enough, anything at all could be in the suitcase and need not be 
rotating. Since the suitcase is massive, it will tend to follow an 
inertial path. This could be perceived as the suitcase swinging away 
by the bellhop. 

CQ11.3 The long pole has a large moment of inertia about an axis along the 
rope. An unbalanced torque will then produce only a small angular 
acceleration of the performer-pole system, to extend the time 
available for getting back in balance. To keep the center of mass 
above the rope, the performer can shift the pole left or right, instead 
of having to bend his body around. The pole sags down at the ends 
to lower the system’s center of gravity. 

CQ11.4 (a) Frictional torque arises from kinetic friction between the inside 
of the roll and the child’s fingers. As with all friction, the 
magnitude of the friction depends on the normal force between 
the surfaces in contact. As the roll unravels, the weight of the 
roll decreases, leading to a decrease in the frictional force, and, 
therefore, a decrease in the torque. 

 (b) As the radius R of the paper roll shrinks, the roll’s angular 

speed 
 
ω =

v
R

 must increase because the speed v is constant. 

 (c) If we think of the roll as a uniform disk, then its moment of 

inertia is 
  
I =

1
2

MR2 .  But the roll’s mass is proportional to its 

base area   πR2 ;  therefore, the moment of inertia is proportional 
to R4. The moment of inertia decreases as the roll shrinks. When 
the roll is given a sudden jerk, its angular acceleration may not 
be great enough to set the roll moving in step with the paper, so 
the paper breaks. The roll is most likely to break when its radius 
is large, when its moment of inertia is large, than when its 
radius is small, when its moment of inertia is small. 
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CQ11.5 Work done by a torque results in a change in rotational kinetic 
energy about an axis. Work done by a force results in a change in 
translational kinetic energy. Work by either has the same units:  

   
  W = FΔx = N[ ] m[ ] = N ⋅m = J   

   
  W = τΔθ = N ⋅m[ ] rad[ ] = N ⋅m = J  

CQ11.6 Suppose we look at the motorcycle moving to the right. Its drive 
wheel is turning clockwise. The wheel speeds up when it leaves the 
ground. No outside torque about its center of mass acts on the 
airborne cycle, so its angular momentum is conserved. As the drive 
wheel’s clockwise angular momentum increases, the frame of the 
cycle acquires counterclockwise angular momentum. The cycle’s 
front end moves up and its back end moves down. 

CQ11.7 Its angular momentum about that axis is constant in time. You 
cannot conclude anything about the magnitude of the angular 
momentum. 

CQ11.8 No. The angular momentum about any axis that does not lie along 
the instantaneous line of motion of the ball is nonzero. 

CQ11.9 The Earth is an isolated system, so its angular momentum is 
conserved when the distribution of its mass changes. When its mass 
moves away from the axis of rotation, its moment of inertia increases, 
its angular speed decreases, so its period increases. Most of the mass 
of Earth would not move, so the effect would be small: we would not 
have more hours in a day, but more nanoseconds. 

CQ11.10 As the cat falls, angular momentum must be conserved. Thus, if the 
upper half of the body twists in one direction, something must get an 
equal angular momentum in the opposite direction. Rotating the 
lower half of the body in the opposite direction satisfies the law of 
conservation of angular momentum. 

CQ11.11 Energy bar charts are useful representations for keeping track of the 
various types of energy storage in a system: translational and 
rotational kinetic energy, various types of potential energy, and 
internal energy. However, there is only one type of angular 
momentum. Therefore, there is no need for bar charts when 
analyzing a physical situation in terms of angular momentum. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 11.1 The Vector Product and Torque 

P11.1 

   


M ×


N =

î ĵ k̂
2 −3 1
4 5 −2

= î(6 − 5) − ĵ(−4 − 4) + k̂(10 + 12) = î + 8.00 ĵ + 22.0k̂  

P11.2 (a) 

    

area =

A ×

B = ABsinθ = 42.0 cm( ) 23.0 cm( )sin 65.0° − 15.0°( )

= 740 cm2

 

 (b) The longer diagonal is equal to the sum of the two vectors. 
    

   


A +

B = [(42.0 cm)cos15.0° + (23.0 cm)cos65.0°]î

                      +[(42.0 cm)]sin 15.0° + (23.0 cm)sin65.0°]ĵ

 

    

   


A +

B = 50.3 cm( ) î + 31.7 cm( ) ĵ

length =

A +

B = 50.3 cm( )2 + 31.7 cm( )2 = 59.5 cm

 

P11.3 We take the cross product of each term of   

A  with each term of    


B,  

using the cross-product multiplication table for unit vectors. Then we 
use the identification of the magnitude of the cross product as  
AB sin θ  to find  θ .  We assume the data are known to three significant 
digits. 

 (a) We use the definition of the cross product and note that 

  î × î = ĵ× ĵ = 0:   

    

    


A ×

B = 1î + 2 ĵ( )× 2î + 3 ĵ( )


A ×

B = 2î × î + 3î × ĵ− 4 ĵ× î + 6 ĵ× ĵ

= 0 + 3k̂ − 4 −k̂( ) + 0 = 7.00k̂

  

  (b) Since 
    

A ×

B = ABsinθ , we have 

    

    
θ = sin−1


A ×

B

AB

⎛

⎝
⎜

⎞

⎠
⎟ = sin−1 7

12 + 22 22 + 32

⎛
⎝⎜

⎞
⎠⎟

= 60.3°
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P11.4 
  
î × î = 1 ⋅1 ⋅ sin 0° = 0  

   ĵ × ĵ  and   k̂ × k̂  are zero 
similarly since the vectors 
being multiplied are parallel. 

 
  
î × ĵ = 1 ⋅1 ⋅ sin 90° = 1  

 

P11.5 We first resolve all of 
the forces shown in 
Figure P11.5 into 
components parallel to 
and perpendicular to 
the beam as shown in 
ANS. FIG. P11.5. 

 (a) The torque about an axis 
through point O is given by 

   

 

τO = + 25 N( )cos30°[ ⎤⎦ 2.0 m( )
                        − 10 N( )sin 20[ ]° 4.0 m( ) = +30 N ⋅m

 

  or 
 
τ 0 = 30 N ⋅m counterclockwise  

 (b) The torque about an axis through point C is given by 
   

  

τC = + 30 N( )sin 45°⎡⎣ ⎤⎦(2.0 m)

                   − 10 N( )sin 20°⎡⎣ ⎤⎦(2.0 m) = +36 N ⋅m

 

  or 
  
τC = 36 N ⋅m counterclockwise  

P11.6 

   


A ⋅

B = −3.00 6.00( ) + 7.00 −10.0( ) + −4.00( ) 9.00( )

= −124
 

  

  

AB = −3.00( )2 + 7.00( )2 + −4.00( )2 ⋅ 6.00( )2 + −10.0( )2 + 9.00( )2

= 127

 

 (a) 
    
cos−1


A ⋅

B

AB
⎛
⎝⎜

⎞
⎠⎟

= cos−1 −0.979( ) = 168°  

ANS. FIG. P11.4 

ANS. FIG. P11.5 
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 (b) 

   


A ×

B =

î ĵ k̂
−3.00 7.00 −4.00

6.00 −10.0 9.00
= 23.0î + 3.00 ĵ − 12.0k̂  

  

    


A ×

B = 23.0( )2 + 3.00( )2 + −12.0( )2 = 26.1

sin−1


A ×

B

AB

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= sin−1 0.206( ) = 11.9° or 168°
 

 (c) Only 
 

the first method  gives the angle between the vectors 

unambiguously because sin(180° – θ ) = sin θ  but cos (180° – θ )  
= – cos θ ; in other words, the vectors can only be at most 180° 
apart and using the second method cannot distinguish θ from 
180° – θ. 

P11.7 We are given the condition    

A ×

B =


A ⋅

B.  

 This says that    ABsinθ = ABcosθ   

 so  tanθ  = 1 

 
 
θ = 45.0°  satisfies this condition.  

P11.8 (a) The torque acting on the particle about the origin is  
   

   


τ = r ×


F =

î ĵ k̂
4 6 0
3 2 0

= î 0− 0( )− ĵ 0− 0( )+ k̂ 8− 18( )

= −10.0 N ⋅m( )k̂

 

 (b) 

 

Yes. The point or axis must be on the other side of the line of
action of the force, and half as far from this line along which
the force acts. Then the lever arm of the force about this new
axis will be half as large and the force will produce counter-
clockwise instead of clockwise torque.

 

 (c) 

 

Yes. There are infinitely many such points, along a line that
passes through the point described in (b) and parallel the
line of action of the force.

 

 (d) 
  
Yes, at the intersection of the line described in (c) and the y  axis.  
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 (e) 

  

No, because there is only one point of intersection of the line
described in (d) with the y  axis.

 

 (f) Let (0, y) represent the coordinates of the special axis of rotation 
located on the y axis of Cartesian coordinates. Then the 
displacement from this point to the particle feeling the force is 

    

rnew = 4î + (6 − y)ĵ  in meters. The torque of the force about this 
new axis is 

   

    


τ new = rnew ×


F =

î ĵ k̂
4 6− y 0
3 2 0

= î 0− 0( )− ĵ 0− 0( )+ k̂ 8− 18 + 3y( )
= +5 N ⋅m( )k̂

 

  Then, 
   

  8− 18 + 3y = 5     →      3y = 15     →      y = 5  

  The position vector of the new axis is 
  
5.00 ĵ m .  

P11.9 (a) The lever arms of the forces about O are all the same, equal to 
length OD, L. 

  If    

F3  has a magnitude 

   


F3 =


F1 +


F2 ,  the net torque is zero: 

     τ∑ = F1L + F2L − F3L = F1L + F2L − F1 + F2( )L = 0  

 (b) The torque produced by    

F3  depends on the perpendicular 

distance OD, therefore translating the point of application of    

F3  to 

any other point along BC 
 

will not change the net torque .  

 

ANS. FIG. P11.9 
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P11.10 (a)  No.  

 (b) The cross-product vector must be perpendicular to both of the 
factors, so its dot product with either factor must be zero. To 
check: 

   

  

2î − 3 ĵ + 4k̂( ) ⋅ 4î + 3 ĵ− k̂( ) = î ⋅ î( )8 + −9 ĵ ⋅ ĵ( )− 4 k̂ ⋅ k̂( )
= 8− 9− 4 = −5

 

  The answer is not zero. 

  
 

No.  The cross product could not work out that way.  

 
 

 

Section 11.2 Analysis Model: Nonisolated System  
(Angular Momentum) 

P11.11 Taking the geometric center of the compound object to be the pivot, 
the angular speed and the moment of inertia are 

   ω  = v/r = (5.00 m/s)/0.500 m = 10.0 rad/s  

 and   
   

  

I = mr2∑ = 4.00 kg( ) 0.500 m( )2 + 3.00 kg( ) 0.500 m( )2

= 1.75 kg · m2

  

 By the right-hand rule, we find that the angular velocity is directed out 
of the plane. So the object’s angular momentum, with magnitude 

   L = Iω  = 
 1.75 kg ⋅m2( )(10.0 rad/s)  

 is the vector  

   
   


L = 17.5 kg ⋅m2/s( )k̂    

 

ANS. FIG. P11.11 
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P11.12 We use    

L = r × p:  

  

   


L = 1.50î + 2.20 ĵ( )  m × 1.50 kg( ) 4.20î − 3.60 ĵ( )  m/s

L = −8.10k̂ − 13.9k̂( )  kg ⋅m2/s = −22.0 kg ⋅m2/s( )k̂

 

P11.13 We use    

L = r × p:  

  

    


L =

î ĵ k̂
x y 0

mvx mvy 0
= î 0 − 0( ) − ĵ 0 − 0( ) + k̂ mxvy − myvx( )


L = m xvy − yvx( )k̂

 

P11.14 Whether we think of the Earth’s surface as curved or flat, we interpret 
the problem to mean that the plane’s line of flight extended is precisely 
tangent to the mountain at its peak, and nearly parallel to the wheat 
field. Let the positive x direction be eastward, positive y be northward, 
and positive z be vertically upward. 

 (a) 
   

r = 4.30 km( )k̂ = 4.30 × 103  m( )k̂  

  

    


p = m


v = 12 000 kg( ) −175î m/s( ) = −2.10 × 106 î kg ⋅m/s


L = r × p = 4.30 × 103 k̂ m( ) × −2.10 × 106 î kg ⋅m/s( )

= −9.03 × 109  kg ⋅m2/s( ) ĵ

 

 (b) 
 

No.      L = r p sinθ = mv r sinθ( ) ,  and r sin θ is the altitude of the 

plane. Therefore, L = constant as the plane moves in level flight 
with constant velocity. 

 (c) 
 

Zero.  The position vector from Pike’s Peak to the plane is anti-

parallel to the velocity of the plane. That is, it is directed along the 
same line and opposite in direction. Thus, L = mvr sin 180° = 0. 

P11.15 (a)  Zero  because   

L = r × p  and    


r = 0.  

 (b) At the highest point of the trajectory, 

   
  
x =

1
2

R =
vi

2 sin 2θ
2g

 and 

   
  
y = hmax =

vi sinθ( )2

2g
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 The angular momentum is then 

    

    


L1 = r1 × m


v1

=
vi

2 sin 2θ
2g

î +
vi sinθ( )2

2g
ĵ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
× mvxi î

=
−mvi

3 sinθ 2 cosθ
2g

k̂

 

 

ANS. FIG. P11.15 

 (c) 

    


L2 = Rî × m


v2 , where R =

vi
2 sin 2θ

g
=

vi
2 2 sinθ cosθ( )

g

= mRî × vi cosθ î − vi sinθ ĵ( )
= −mRvi sinθ k̂ =

−2mvi
3 sinθ sinθ

g
k̂

 

 (d) 

  

The downward force of gravity exerts a torque 
in the − z direction.

 

P11.16 We start with the particle under a net force model 
in the x and y directions: 

   

  
Fx∑ = max :          T sinθ = mv2

r

  

   
  Fy∑ = may :          T cosθ = mg   

 So  
  

sinθ
cosθ

= v2

rg
    and    v = rg

sinθ
cosθ

 

 then   
  
L = rmvsin 90.0° = rm rg

sinθ
cosθ

= m2 gr3 sinθ
cosθ

 

 and since    r = sinθ ,  

    
   
L = m2 g3 sin4θ

cosθ
 

ANS. FIG. P11.16 
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P11.17 The angular displacement of the particle around the circle is 

  
θ = ωt =

vt
R

.  

 The vector from the center of the circle to the mass is then  

    Rcosθ î + Rsinθ ĵ,   where R is measured from the +x axis. 

 The vector from point P to the mass is 

    

    


r = Rî + Rcosθ î + Rsinθ ĵ


r = R 1 + cos

vt
R

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

î + sin
vt
R

⎛
⎝⎜

⎞
⎠⎟ ĵ

⎡

⎣
⎢

⎤

⎦
⎥

 

 The velocity is 

    
    


v =

d

r

dt
= −vsin

vt
R

⎛
⎝⎜

⎞
⎠⎟ î + vcos

vt
R

⎛
⎝⎜

⎞
⎠⎟ ĵ  

 So 
 

    


L = r × m


v


L = mvR 1+ cosωt( ) î + sinωtĵ⎡⎣ ⎤⎦ × − sinωtî + cosωtĵ⎡⎣ ⎤⎦

L = mvR cos

vt
R

⎛
⎝⎜

⎞
⎠⎟ + 1⎡

⎣⎢
⎤
⎦⎥
k̂

 

P11.18 (a) The net torque on the counterweight-cord-spool system is 

    

     

τ = r ×

F = Rmg sinθ

τ = 8.00 × 10−2  m 4.00 kg( ) 9.80 m/s2( )sin 90.0° = 3.14 N ⋅m
 

 (b) 

    

L = 
r × mi


v i

i
∑ = Rmv + RMv = R m + M( )v

L = 0.080 0 m( ) 4.00 kg + 2.00 kg( )v = (0.480 kg ⋅m)v

 

 (c) 
  
τ = dL

dt
= 0.480 kg ⋅m( )a     →      a = 3.14 N ⋅m

0.480 kg ⋅m
= 6.53 m/s2   

P11.19 Differentiating 
    

r = 6.00î + 5.00tĵ m( )  with respect to time gives  

   
    


v =

d

r

dt
= 5.00 ĵ m/s  

 so  
    

p = m


v = 2.00 kg( ) 5.00 ĵ m/s( ) = 10.0 ĵ kg ⋅m/s  
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 and  

    


L = r × p =

î ĵ k̂
6.00 5.00t 0

0 10.0 0
= 60.0 kg ⋅m2/s( )k̂  

P11.20 (a) 
    

d

r

0


r

∫ = 
vdt =  

0

t

∫

r − 0 = (6t2 î + 2tĵ)dt =  


r =

0

t

∫  6t3/3( ) î + 2t2/2( ) ĵ  

    
   
=  2t3î + t2 ĵ  in meters, where t is in seconds. 

 (b) 

  

The particle starts from rest at the origin, starts moving into
the first quadrant, and gains speed faster and faster while
turning to move more and more nearly parallel to the x axis.

 

 (c) 
    

a = (d


v/dt) = (d/dt)(6t2 î + 2t ĵ) = (12t î + 2 ĵ) m/s2  

 (d) 
    


F = m


a = (5 kg)(12t î + 2 ĵ) m/s2 = (60t î + 10 ĵ) N  

 (e) 

    


τ = r ×


F = (2t3î + t2 ĵ)× (60tî + 10 ĵ) = 20t3k̂ − 60t3k̂

= −40t3k̂ N ⋅m

 

 (f) 

    


L = r × m


v = (5 kg)(2t3î + t2 ĵ)× (6t2 î + 2tĵ) = 5(4t4k̂ − 6t4k̂)

= −10t4k̂ kg ⋅m2/s

 

 (g) 

    

K = 1
2

m

v ⋅ v = 1

2
(5 kg)(6t2 î + 2tĵ) ⋅(6t2 î + 2tĵ) = (2.5)(36t4 + 4t2 )

= (90t4 + 10t2 ) J

 

 (h) 
  
P = (d/dt)(90t4 + 10t2 ) J = (360t3 + 20t) W ,  all where t is in 

seconds. 

P11.21 (a) The vector from P to the falling ball is 

    

    


r = ri + v it +

1
2

at2


r = cosθ î + sinθ ĵ( ) + 0 −

1
2

gt2⎛
⎝⎜

⎞
⎠⎟ ĵ

 

 The velocity of the ball is 

        

v = v i + at = 0 − gtĵ  

 So      

L = r × m


v  

ANS. FIG. P11.21 
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L = m cosθ î + sinθ ĵ( ) + 0 −

1
2

gt2⎛
⎝⎜

⎞
⎠⎟ ĵ⎡

⎣⎢
⎤
⎦⎥
× −gtĵ( )  

    
    

L = −mg t cosθ k̂  

 (b) 

  

The Earth exerts a gravitational torque on the projectile in the
negative z direction.

 

 (c) Differentiating with respect to time, we have 
    
−mg cosθ k̂  for 

the rate of change of angular momentum, which is also the torque 
due to the gravitational force on the ball. 

 
 

 

Section 11.3 Angular Momentum of a Rotating Rigid Object 
P11.22 The moment of inertia of the sphere about an axis through its center is 

   
  
I =

2
5

MR2 =
2
5

15.0 kg( ) 0.500 m( )2 = 1.50 kg ⋅m2  

 Therefore, the magnitude of the angular momentum is 

   
  L = Iω = 1.50 kg ⋅m2( ) 3.00 rad/s( ) = 4.50 kg ⋅m2/s  

 Since the sphere rotates counterclockwise about the vertical axis, the 
angular momentum vector is directed upward in the +z direction. 

 Thus, 

   
   


L = 4.50 kg ⋅m2/s( )k̂  

P11.23 The total angular momentum about the center point is given by  

   L = Ihω h + Imωm  

 For the hour hand: 
  
Ih =

mhLh
2

3
=

60.0 kg 2.70 m( )2

3
= 146 kg ⋅m2  

 For the minute hand:  
  
Im =

mmLm
2

3
=

100 kg 4.50 m( )2

3
= 675 kg ⋅m2  

 In addition, 
  
ω h =

2π  rad
12 h

1 h
3 600 s

⎛
⎝⎜

⎞
⎠⎟ = 1.45 × 10−4  rad/s  

 while 
  
ωm =

2π  rad
1 h

1 h
3600 s

⎛
⎝⎜

⎞
⎠⎟ = 1.75 × 10−3  rad/s  
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 Thus, 

  

L = 146 kg ⋅m2( ) 1.45 × 10−4  rad s( )
                          + 675 kg ⋅m2( ) 1.75 × 10−3  rad/s( )

 

 or 
  

L = 1.20 kg ⋅m2/s . The hands turn clockwise, so their vector 

angular momentum is 
 
perpendicularly into the clock face.  

P11.24 We begin with  

   
  
K = 1

2
Iω 2  

 And multiply the right-hand side by 
  

I
I

:   

   

  
K = 1

2
Iω 2 = 1

2
I 2ω 2

I

 

 Substituting  L = Iω  then gives 
   

  
K = 1

2
Iω 2 = 1

2
I 2ω 2

I
= L2

2I

 

P11.25 (a) For an axis of rotation passing through the center of mass, the 
magnitude of the angular momentum is given by 

   

  

L = Iω = 1
2

MR2⎛
⎝⎜

⎞
⎠⎟ω = 1

2
3.00 kg( ) 0.200 m( )2 6.00 rad/s( )

= 0.360 kg ⋅m2/s

 

 (b) For a point midway between the center and the rim, we use the 
parallel-axis theorem to find the moment of inertia about this 
point. Then, 

   

  

L = Iω =
1
2

MR2 + M
R
2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥ω

=
3
4

3.00 kg( ) 0.200 m( )2 6.00 rad/s( ) = 0.540 kg ⋅m2/s

 

P11.26 (a) Modeling the Earth as a sphere, we first calculate its moment of 
inertia about its rotation axis. 

   

  

I = 2
5

MR2 = 2
5

5.98× 1024  kg( ) 6.37 × 106  m( )2

= 9.71× 1037  kg ⋅m2
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  Completing one rotation in one day, Earth’s rotational angular 
speed is 

   

 
ω = 1 rev

24 h
= 2π  rad

86 400 s
= 7.27 × 105  s−1

  

  the rotational angular momentum of the Earth is then 

   

  

L = Iω = 9.71× 1037  kg ⋅m2( ) 7.27 × 105  s−1( )
= 7.06× 1033  kg ⋅m2/s

 

  The Earth turns toward the east, counterclockwise as seen from 
above north, so the vector angular momentum points north along 
the Earth’s axis, 

 
towards the north celestial pole  or nearly toward 

the star Polaris. 

 (b) In this case, we model the Earth as a particle, with moment of 
inertia 

   

  

I = MR2 = 5.98× 1024  kg( ) 1.496× 1011  m( )2

= 1.34× 1047  kg ⋅m2

  

  Completing one orbit in one year, Earth’s orbital angular speed is 
   

 
ω = 1 rev

365.25 d
= 2π  rad

365.25 d( ) 86 400 s/d( ) = 1.99× 10−7  s−1
  

  the angular momentum of the Earth is then 

   

  

L = Iω = 1.34× 1047  kg ⋅m2( ) 1.99× 10−7  s−1( )
= 2.66× 1040  kg ⋅m2/s

 

  The Earth plods around the Sun, counterclockwise as seen from 
above north, so the vector angular momentum points north 
perpendicular to the plane of the ecliptic, 

 
toward the north ecliptic pole  or 23.5° away from Polaris, toward 

the center of the circle that the north celestial pole moves in as the 
equinoxes precess. The north ecliptic pole is in the constellation 
Draco. 

 (c) 

 

The periods differ only by a factor of 365 (365 days for orbital
motion to 1 day for rotation). Because of the huge distance
from the Earth to the Sun, however, the moment of inertia of
the Earth around the Sun is six orders of magnitude larger
than that of the Earth about its axis.
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P11.27 Defining the distance from the pivot to the particle as d, we first find 
the rotational inertia of the system for each case, from the information  
M = 0.100 kg, m = 0.400 kg, and D = 1.00 m. 

  (a) For the meterstick rotated about its center, 
  
Im = 1

12
MD2.  

   For the additional particle, 
  
Iw = md2 = m

1
2

D2⎛
⎝⎜

⎞
⎠⎟ .   

   Together, 
  
I = Im + Iw = 1

12
MD2 + 1

4
mD2 ,  or  

    
  
I =

(0.100 kg)(1.00 m)2

12
+

(0.400 kg)(1.00 m)2

4
= 0.108 kg ⋅m2  

   And the angular momentum is 
   

  
L = Iω = 0.108 kg ⋅m2( ) 4.00 rad/s( ) = 0.433 kg ⋅m2/s

 

 (b) For a stick rotated about a point at one end, 
   

  
Im = 1

3
mD2 = 1

3
0.100 kg( ) 1.00 m( )2 = 0.033 3 kg ⋅m2

  

   For a point mass, Iw = mD2 = (0.400 kg)(1.00 m)2 = 0.400 kg · m2 

   so together they have rotational inertia  

    I = Im + Iw = 0.433 kg · m2 

   and angular momentum 
   

  
L = Iω = 0.433 kg ⋅m2( )(4.00 rad/s) = 1.73 kg ⋅m2/s

 

P11.28 We assume that the normal force n = 0 on the 
front wheel. On the bicycle, 

   

  

Fx∑ = max :      + fs = max

Fy∑ = may :      + n− Fg = 0→ n = mg

 

 We must use the center of mass as the axis in 
   

  τ∑ = Iα :   

    Fg (0) − n (77.5 cm) + fs (88 cm) = 0 

 We combine the equations by substitution: 

   

  

−mg 77.5 cm( ) + max 88 cm( ) = 0

ax =
9.80 m/s2( )77.5 cm

88 cm
= 8.63 m/s2

 

ANS. FIG. P11.28 
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P11.29 We require 
  
ac = g =

v2

r
= ω 2r:  

   

  

ω =
g
r

=
9.80 m/s2( )

100 m
= 0.313 rad/s

I = Mr2 = 5 × 104  kg( ) 100 m( )2 = 5 × 108  kg ⋅m2

 

 (a) 
  
L = Iω = 5 × 108  kg ⋅m2( ) 0.313 rad/s( ) = 1.57 × 108  kg ⋅m2/s  

 (b) 
  
Δt =

Lf − 0
τ∑

= 1.57 × 108  kg ⋅m2/s
2 125 N( ) 100 m( ) = 6.26× 103  s = 1.74 h  

 
 

 

Section 11.4 Analysis Model: Isolated System  
(Angular Momentum) 

P11.30 (a) From conservation of angular momentum for the isolated system 
of two disks: 

     I1 + I2( )ω f = I1ω i     or    
  
ω f =

I1

I1 + I2

ω i  

  This is an example of a totally inelastic collision. 

 (b) 
  
K f =

1
2

I1 + I2( )ω f
2  and 

  
Ki =

1
2

I1ω i
2  

  so 

  

K f

Ki

=

1
2

I1 + I2( )
1
2

I1ω i
2

I1

I1 + I2

ω i

⎛
⎝⎜

⎞
⎠⎟

2

= I1

I1 + I2

 

P11.31 From conservation of angular momentum, 

     Iiω i = I fω f :  

 

250 kg ⋅m2( ) 10.0 rev/min( ) =

250 kg ⋅m2 + 25.0 kg( ) 2.00 m( )2⎡⎣ ⎤⎦ω2

 

   
 
ω2 = 7.14 rev/min  

P11.32 (a) Angular momentum is conserved in the puck-rod-putty system 
because there is no net external torque acting on the system. 

   
  Iω initial = Iω final :

 

    

  
mR2 vi

R
⎛
⎝⎜

⎞
⎠⎟ + mpR

2(0) = mR2 + mpR
2( ) v f

R
⎛
⎝⎜

⎞
⎠⎟
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mRvi = m + mp( )Rv f

 

  Solving for the final velocity gives 
   

  
v f = m

m + mp

⎛

⎝
⎜

⎞

⎠
⎟ vi = 2.40 kg

2.40 kg + 1.30 kg
⎛
⎝⎜

⎞
⎠⎟

5.00 m/s( ) = 3.24 m/s
 

  Then, 
   

  
T = 2πR

v f

= 2π 1.50 m( )
3.24 m/s

= 2.91 s
   

 (b) 

 

Yes, because there is no net external torque acting on the puck-
rod-putty system.

 

 (c) 

 

No, because the pivot pin is always pulling on the rod to change
the direction of the momentum.

 

 (d) 

 

No. Some mechanical energy is converted into internal energy.
The collision is perfectly inelastic.

 

P11.33 (a) 

 

Mechanical energy is not constant; some chemical potential 
energy in the woman’s body is transformed into mechanical 
energy.

 

 (b) 

 

Momentum is not constant. The turntable bearing exerts an
external northward force on the axle to prevent the axle from
moving southward because of the northward motion of the
woman.

 

 (c) 

 

Angular momentum is constant because the system is isolated
from torque about the axle.

 

 (d) From conservation of angular momentum for the system of the 
woman and the turntable, we have Lf = Li = 0, 

  so,   L f = Iwomanωwoman + Itableω table = 0  

  and 

  

ω table = −
Iwoman

Itable

⎛
⎝⎜

⎞
⎠⎟
ωwoman = −

mwomanr2

Itable

⎛
⎝⎜

⎞
⎠⎟

vwoman

r
⎛
⎝⎜

⎞
⎠⎟

= −
mwomanrvwoman

Itable
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ω table = −

60.0 kg 2.00 m( ) 1.50 m/s( )
500 kg ⋅m2 = −0.360 rad/s  

  or 
 
ω table = 0.360 rad/s counterclockwise( )  

 (e) Chemical energy converted into mechanical energy is equal to 
   

  
ΔK = K f − 0 =

1
2

mwomanvwoman
2 +

1
2

Iω table
2

 

  

  

ΔK =
1
2

60 kg( ) 1.50 m/s( )2 +
1
2

500 kg ⋅m2( ) 0.360 rad/s( )2

= 99.9 J

 

P11.34 (a) The total angular momentum of the system of the student, the 
stool, and the weights about the axis of rotation is given by 

   
  Itotal = Iweights + Istudent = 2 mr2( ) + 3.00 kg ⋅m2  

  Before: r = 1.00 m 

  Thus, Ii = 2(3.00 kg)(1.00 m)2 + 3.00 kg · m2 = 9.00 kg · m2 

  After: r = 0.300 m 

  Thus, If  = 2(3.00 kg)(0.300 m)2 + 3.00 kg · m2 = 3.54 kg · m2 

  We now use conservation of angular momentum. 

    I fω f = Iiω i  

  or 
  
ω f =

Ii

I f

⎛

⎝
⎜

⎞

⎠
⎟ω i =

9.00
3.54

⎛
⎝⎜

⎞
⎠⎟ 0.750 rad/s( ) = 1.91 rad/s  

 (b) 
  
Ki =

1
2

Iiω i
2 =

1
2

9.00 kg ⋅m2( ) 0.750 rad/s( )2 = 2.53 J  

  
  
K f =

1
2

I fω f
2 =

1
2

3.54 kg ⋅m2( ) 1.91 rad/s( )2 = 6.44 J  

P11.35 (a) We solve by using conservation of angular momentum for the 
turntable-clay system, which is isolated from outside torques: 

    

  

Iω initial = Iω final :

           
1
2

mR2ω i = 1
2

mR2 + mcr
2⎛

⎝⎜
⎞
⎠⎟ω f  
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   Solving for the final angular velocity gives 
    

  

ω f =

1
2

mR2ω i

1
2

mR2 + mcr
2

=

1
2

30.0 kg( ) 1.90 m( )2 4π  rad/s( )
1
2

30.0 kg( ) 1.90 m( )2 + 2.25 kg( ) 1.80 m( )2

= 11.1 rad/s counterclockwise

  

 (b)  No.  The initial energy is  

    

  

Ki = 1
2

Iω i
2 = 1

2
1
2

mR2⎛
⎝⎜

⎞
⎠⎟ω i

2

= 1
2

1
2

30.0 kg( ) 1.90 m( )2⎡
⎣⎢

⎤
⎦⎥

4π  rad/s( )2

= 4 276 J

  

  The final mechanical energy is 
    

  

K f = 1
2

Iω f
2 = 1

2
1
2

mR2 + mcr
2⎛

⎝⎜
⎞
⎠⎟ω f

2

= 1
2

1
2

30.0 kg( ) 1.90 m( )2 + 2.25 kg( ) 1.80 m( )2⎡
⎣⎢

⎤
⎦⎥

                                             × 11.1 rad/s( )2

= 3 768 J

 

  Thus 507 J of mechanical energy is transformed into internal 
energy. The “angular collision” is completely inelastic. 

 (c) No. The original horizontal momentum is zero. As soon as the 
clay has stopped skidding on the turntable, the final momentum 
is (2.25 kg)(1.80 m)(11.1 rad/s) = 44.9 kg · m/s north. This is the 
amount of impulse injected by the bearing. The bearing thereafter 
keeps changing the system momentum to change the direction of 
the motion of the clay. The turntable bearing promptly imparts 
an impulse of 44.9 kg · m/s north into the turntable-clay system, 
and thereafter keeps changing the system momentum. 

P11.36 When they touch, the center of mass is distant from the center of the 
larger puck by 

   

  
yCM =

0 + 80.0 g( ) 4.00 cm + 6.00 cm( )
120 g + 80.0 g

= 4.00 cm
 

 (a) 

  

L = r1m1v1 + r2m2v2 = 0 + 6.00 × 10−2  m( ) 80.0 × 10−3  kg( ) 1.50 m/s( )
= 7.20 × 10−3  kg ⋅m2/s
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 (b) The moment of inertia about the CM is 

    

  

I =
1
2

m1r1
2 + m1d1

2⎛
⎝⎜

⎞
⎠⎟ +

1
2

m2r2
2 + m2d2

2⎛
⎝⎜

⎞
⎠⎟

I =
1
2

0.120 kg( ) 6.00 × 10−2  m( )2
+ 0.120 kg( ) 4.00 × 10−2( )2

+
1
2

80.0 × 10−3  kg( ) 4.00 × 10−2  m( )2

+ 80.0 × 10−3  kg( ) 6.00 × 10−2  m( )2

I = 7.60 × 10−4  kg ⋅m2

 

  Angular momentum of the two-puck system is conserved:  
    L = Iω  

   
  
ω =

L
I

=
7.20 × 10−3  kg ⋅m2/s
7.60 × 10−4  kg ⋅m2 = 9.47 rad/s  

P11.37 (a) Taking the origin at the pivot point, note that  
r  is perpendicular 

to    

v,  so sinθ  = 1 and    L f = Li = mr sinθ = mv  vertically down.  

  (b) Taking vf to be the speed of the bullet and the block together, we 
first apply conservation of angular momentum: Li = Lf  becomes 

      

   
mv =  m + M( )v f    or   v f = m

m + M
⎛
⎝⎜

⎞
⎠⎟ v

  

   The total kinetic energies before and after the collision are, 
respectively, 

      

  
Ki = 1

2
mv2

 

   and 
  
K f = 1

2
m + M( )v f

2 = 1
2

m + M( ) m
m + M

⎛
⎝⎜

⎞
⎠⎟

2

v2 = 1
2

m2

m + M
⎛
⎝⎜

⎞
⎠⎟

v2   

   So the fraction of the kinetic energy that is converted into internal 
energy will be 

      

  

Fraction = −ΔK
Ki

=
Ki − K f

Ki

=

1
2

mv2 − 1
2

m2

m + M
⎛
⎝⎜

⎞
⎠⎟

v2

1
2

mv2
= M

m + M
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ANS. FIG. P11.37 

P11.38 (a) Let ω be the angular speed of the signboard  
when it is vertical. 

   
  

1
2

Iω 2 = Mgh  
   

  

1
2

1
3

ML2⎛
⎝⎜

⎞
⎠⎟ω

2 = Mg
1
2

L 1− cosθ( )

ω = 3g 1− cosθ( )
L

   =
3 9.80 m/s2( ) 1− cos25.0°( )

0.500 m

    = 2.35 rad/s

 

 (b)  Iiω i − mvL = I fω f  represents angular momentum conservation for 
the sign-snowball system. Substituting into the above equation, 

    

  

1
3

ML2 + mL2⎛
⎝⎜

⎞
⎠⎟ω f = 1

3
ML2ω i − mvL

 

  Solving, 

   

  

ω f =

1
3

MLω i − mv

1
3

M + m⎛
⎝

⎞
⎠ L

=

1
3

2.40 kg( ) 0.500 m( ) 2.347 rad/s( )− 0.400 kg( ) 1.60 m/s( )
1
3

2.40 kg( ) + 0.400 kg⎡
⎣⎢

⎤
⎦⎥

0.500 m( )

= 0.498 rad/s

 

ANS. FIG. P11.38 
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 (c) Let   hCM =  distance of center of mass from the axis of rotation. 
    

  
hCM =

2.40 kg( ) 0.250 m( )+ 0.400 kg( ) 0.500 m( )
2.40 kg + 0.400 kg

= 0.285 7 m
 

  Applying conservation of mechanical energy, 
    

  
M + m( )ghCM 1− cosθ( ) = 1

2
1
3

ML2 + mL2⎛
⎝⎜

⎞
⎠⎟ω

2
 

  Solving for θ   then gives 

   

  

θ = cos−1 1−

1
3

M + m⎛
⎝

⎞
⎠ L2ω 2

2 M + m( )ghCM

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= cos−1 1−

1
3

2.40 kg( ) + 0.400 kg⎡
⎣⎢

⎤
⎦⎥

0.500 m( )2 0.498 rad/s( )2

2 2.40 kg + 0.400 kg( ) 9.80 m/s2( ) 0.285 7 m( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

= 5.58°

 

P11.39 (a) Consider the system to consist of 
the wad of clay and the cylinder. 
No external forces acting on this 
system have a torque about the 
center of the cylinder. Thus, 
angular momentum of the system 
is conserved about the axis of the 
cylinder. 

   Lf = Li:  Iω = mvid  

  or 
  

1
2

MR2 + mR2⎡
⎣⎢

⎤
⎦⎥
ω = mvid  

  Thus, 
  
ω =

2mvid
M + 2m( )R2  

 (b) 

 

No; some mechanical energy of the system (the kinetic energy
of the clay) changes into internal energy.

 

 (c) 

 

The linear momentum of the system is not constant. The axle
exerts a backward force on the cylinder when the clay strikes.

 

ANS. FIG. P11.39 
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P11.40 The rotation rate of the station is such that at its rim the centripetal 
acceleration, ac, is equal to the acceleration of gravity on the Earth’s 
surface, g. Thus, the normal force from the rim’s floor provides 
centripetal force on any person equal to that person’s weight: 

   

  
Fr = mar∑ :     n = mv2

r
→ mg = mω i

2r →ω i
2 = g

r

  

 The space station is isolated, so its angular momentum is conserved. 
When the people move to the center, the station’s moment of inertia 
decreases, its angular speed increases, and the effective value of 
gravity increases. 

 From angular momentum conservation: 
 
Iiω i = I fω f →

ω f

ω i

=
Ii

I f

, where 

  

  

Ii = Istation + Ipeople, i

= 5.00 × 108  kg ⋅m2 + 150 65.0 kg( ) 100 m( )2⎡⎣ ⎤⎦
= 5.98 × 108  kg ⋅m2

 

  

  

I f = Istation + Ipeople, f

= 5.00 × 108  kg ⋅m2 + 50 65.0 kg( ) 100 m( )2⎡⎣ ⎤⎦
= 5.32 × 108  kg ⋅m2

 

 The centripetal acceleration is the effective value of gravity:   ac ∝ g.  
Comparing values of acceleration before and during the union 
meeting, we have 

 

  

g f

gi

=
ac , f

ac , i

=
ω f

2

ω i
2 =

Ii

I f

⎛

⎝
⎜

⎞

⎠
⎟

2

=
5.98 × 108  
5.32 × 108  

⎛
⎝⎜

⎞
⎠⎟

2

= 1.26→ g f = 1.26gi
 

 

 

When the people move to the center, the angular speed of the
station increases. This increases the effective gravity by 26%.
Therefore, the ball will not take the same amount of time to drop.

 

P11.41 (a)  Yes ,  the bullet has angular momentum about an axis through 
the hinges of the door before the collision.  
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 (b) The bullet strikes the door  

   r = 1.00 m – 0.100 m = 0.900 m  

  from the hinge. Its initial angular momentum  
is therefore 

    

  

Li = rp = mBrvi

= 0.005 00 kg( ) 0.900 m( )
                  × 1.00× 103  m/s( )

=  4.50 kg · m2/s

 

 (c) 

 

No; in the perfectly inelastic collision kinetic energy is
transformed to internal energy.

 

 (d) Apply conservation of angular momentum,   Li = Lf :   
    

  

mBrvi = I fω f = Idoor + Ibullet( )ω f

mBrvi = 1
3

MdoorL
2 + mBr2⎛

⎝⎜
⎞
⎠⎟ω f

 

  where L = 1.00 m = the width of the door and r = 0.900 m [from 
part (b)]. Solving for the final angular velocity gives, 

    

  

ω = mBrvi

1
3

MdoorL
2 + mBr2

=
0.005 00 kg( ) 0.900 m( ) 1.00× 103  m/s( )

1
3

18.0 kg( ) 1.00 m( )2 + 0.005 00 kg( ) 0.900 m( )2

= 0.749 rad/s

 

 (e) The kinetic energy of the door-bullet system immediately after 
impact is 

   

  

KEf =
1
2

I fω f
2

= 1
2

1
3

18.0 kg( ) 1.00 m( )2 + 0.005 00 kg( ) 0.900 m( )2⎡
⎣⎢

⎤
⎦⎥

                                                    × 0.749 rad/s( )2

= 1.68 J

 

  The kinetic energy (of the bullet) just before impact was 
    

  
KEi = 1

2
mBvi

2 = 1
2

0.005 00 kg( ) 1.00× 103  m/s( )2
= 2.50× 103  J

 

ANS. FIG. P11.41 
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  The total energy of the system must be the same before and after 
the collision, assuming we ignore the energy leaving by 
mechanical waves (sound) and heat (from the newly-warmer 
door to the cooler air). The kinetic energies are as follows: 

  
KEi = 2.50× 103  J  and  KEf = 1.68 J.   

  
 

Most of the initial kinetic energy is transformed to internal
energy in the collision.

 

 
 

 

Section 11.5 The Motion of Gyroscopes and Tops 
P11.42 Angular momentum of the system of the spacecraft and the gyroscope 

is conserved. The gyroscope and spacecraft turn in opposite directions. 

     0 = I1ω1 + I2ω2 :  
  
−I1ω1 = I2

θ
t

 

   

  

−20 kg ⋅m2( ) −100 rad/s( ) = 5 × 105  kg ⋅m2( ) 30°
t

⎛
⎝⎜

⎞
⎠⎟

π  rad
180°

⎛
⎝⎜

⎞
⎠⎟

t =
2.62 × 105  s

2000
= 131 s

 

P11.43 We begin by calculating the moment of inertia of the Earth, modeled as 
a sphere: 

   

  

I = 2
5

MR2 = 2
5

5.98× 1024  kg( ) 6.37 × 106  m( )2

= 9.71× 1037  kg ⋅m2

 

 Earth’s rotational angular momentum is then 

   
  
L = Iω = 9.71× 1037  kg ⋅m2( ) 2π  rad

86 400 s
⎛
⎝⎜

⎞
⎠⎟

= 7.06× 1033  kg ⋅m2/s2  

 from which we can calculate the torque that is causing the precession: 

  

  

τ = Lω p

= 7.06× 1033  kg ⋅m2/s( ) 2π  rad
2.58× 104  yr

⎛
⎝⎜

⎞
⎠⎟

1 yr
365.25 d

⎛
⎝⎜

⎞
⎠⎟

1 d
86 400 s

⎛
⎝⎜

⎞
⎠⎟

= 5.45× 1022  N ⋅m
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Additional Problems 
P11.44 (a) Assuming the rope is massless, the tension is 

the same on both sides of the pulley: 
    

  τ∑ = TR −TR = 0
 

 (b) 
  

τ∑ = dL
dt

,  and since  τ∑ = 0,  L = constant. 

  Since the total angular momentum of the 
system is initially zero, the total angular 
momentum remains zero, so the 

 
monkey and  

 
bananas move upward with the same speed  

at any instant. 

 (c) 
 

The monkey will not reach the bananas.  

The motions of the monkey and bananas are 
identical, so the bananas remain out of the monkey’s reach—until 
they get tangled in the pulley. To state the evidence differently, 
the tension in the rope is the same on both sides. Newton’s 
second law applied to the monkey and bananas give the same 
acceleration upward. 

P11.45 Using conservation of angular momentum, we have 

     Laphelion = Lperihelion    or   
  
mra

2( )ω a = mrp
2( )ω p  

 Thus, 
  
mra

2( ) va

ra

= mrp
2( ) vp

rp

,  giving  rava = rpvp  or  

   

  
va =

rp

ra

vp = 0.590 AU
35.0 AU

54.0 km/s( ) = 0.910 km/s
 

P11.46 (a) Momentum is conserved in the isolated system of the two boys: 

   
    

pi = p f : m1v1 î — m2v2 î = m1 + m2( ) v f  

   

    


pi = (45.0 kg)(8.00 m/s) î — (31.0 kg)(11.0 m/s) î

= (76.0 kg)

v f


v f = 0.250 î m/s

 

ANS. FIG. P11.44 
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 (b) The initial kinetic energy of the system is 

   

  

Ki = 1
2

m1v1
2 + 1

2
m2v2

2

= 1
2

(45.0 kg)(+8.00 m/s)2 + 1
2

(31.0 kg)(11.0 m/s)2

= 3 315.5 J

 

  and the kinetic energy after the collision is 
   

  
K f = 1

2
(m1 + m2 )v f

2 = 1
2

(76.0 kg)(0.250 m/s)2 = 2.375 J
 

  Thus the fraction remaining is 
   

  

K f

Ki

= 2.375 J
3 315.5 J

= 0.000 716 = 0.071 6%
  

 (c) The calculation in part (a) still applies:     

v f = 0.250 î m/s  

 (d) Taking Jacob (m1 = 45.0 kg) at the origin of a coordinate system, 
with Ethan (m2 = 31.0 kg) on the y axis at y = L = 1.20 m, the 
position of the CM of the boys is 

   

  

yCM = m1y1 + m2y2

m1 + m2

= m1 0( )+ m2L
m1 + m2

= m2L
m1 + m2

yCM =
31.0 kg( ) 1.20 m( )
45.0 kg + 31.0 kg

 = 0.489 m

 

  Jacob is yCM = 0.489 m from the CM and Ethan is   L − yCM( )  = 

  L− m2L m1 + m2( ) = m1L m1 + m2( ) = 0.711 m   from the CM. Their 
angular momentum about the CM is   L = Iω :   

   

  

m1v1L + m2v2(L− yCM) = m1L
2 + m2(L− yCM)2⎡⎣ ⎤⎦ω

→ω = m1v1L + m2v2(L− yCM)
m2L

2 + m2(L− yCM)2

 

  

 

ω =
45.0 kg( ) 8.00 m/s( ) 0.489 m( )+ 31.0 kg( ) 11.0 m/s( ) 0.711 m( )

45.0 kg( ) 0.489 m( )2 + 31.0 kg( ) 0.711 m( )2

ω = 418 kg ⋅m2/s
26.4 kg ⋅m2 = 15.8 rad/s

 



Chapter 11     613 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (e) Their kinetic energy after they link arms is 

   

  

K f = 1
2

m1 + m2( )vCM
2 + 1

2
Iω 2

= 1
2

76.0 kg( ) 0.250 m/s( )2 + 1
2

26.4 kg ⋅m2/s( ) 15.8 rad/s( )2

K f = 3 315.5 J

 

  [Note: the result of the calculation of kinetic energy is exactly  
3 315.5 J if no round-off is made in the calculation. It can be 
shown algebraically that the expression for the final kinetic 
energy is equivalent to the expression for the initial kinetic 
energy—the student is invited to show this.] Thus the fraction 
remaining is   K f /Ki = 3 315.5 J/3 315.5 J = 1.00 = 100%.  

 (f) 

 

In part (b), the boys must necessarily deform as they slam into
each other. During this deformation process, mechanical energy
is transformed into internal energy. In part (e), there is no
deformation involved. The boys simply link hands and some of
their translational kinetic energy transforms to rotational kinetic
energy, but none is transformed to internal energy.

 

P11.47 First, we define the following symbols: 

   IP = moment of inertia due to mass of people on the equator 

   IE = moment of inertia of the Earth alone (without people) 

   ω = angular velocity of the Earth (due to rotation on its axis) 

   
  
T =

2π
ω

=  rotational period of the Earth (length of the day) 

   R = radius of the Earth 

 The initial angular momentum of the system (before people start 
running) is 

    Li = IPω i + IEω i = IP + IE( )ω i  

 When the Earth has angular speed ω, the tangential speed of a point on 
the equator is   vt = Rω .  Thus, when the people run eastward along the 
equator at speed v relative to the surface of the Earth, their tangential 
speed is  vp = vt + v = Rω + v  and their angular speed is  

   

 
ω P =

vp

R
=ω + v

R
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 The angular momentum of the system after the people begin to run is 

   
 
L f = IPω p + IEω = IP ω +

v
R

⎛
⎝⎜

⎞
⎠⎟ + IEω = IP + IE( )ω +

IPv
R

 

 Since no external torques have acted on the system, angular 
momentum is conserved 

  
L f = Li( ) ,  giving  

   

 
IP + IE( )ω + IPv

R
= IP + IE( )ω i

 

 Thus, the final angular velocity of the Earth is  

   
  
ω =ω i −

IPv
IP + IE( )R

=ω i 1− x( ),  where 
 
x ≡

IPv
IP + IE( )Rω i

 

 The new length of the day is  
   

  
T = 2π

ω
= 2π
ω i 1− x( ) = Ti

1− x
≈Ti 1+ x( )

  

 so the increase in the length of the day is  
   

 
ΔT = T −Ti ≈Tix = Ti

IPv
IP + IE( )Rω i

⎡

⎣
⎢

⎤

⎦
⎥

  

 Since 
  
ω i =

2π
Ti

,  this may be written as  

   
  
ΔT ≈

Ti
2IPv

2π IP + IE( )R
 

 To obtain a numeric answer, we compute 
   

  

IP = mpR
2 = 7 × 109( ) 55.0 kg( )⎡⎣ ⎤⎦ 6.37 × 106  m( )2

= 1.56× 1025  kg ⋅m2

 

 and 
   

  

IE = 2
5

mER2 = 2
5

5.98× 1024  kg( ) 6.37 × 106  m( )2

= 9.71× 1037  kg ⋅m2

 

 Thus,  

   

  

ΔT ≈
8.64 × 104  s( )2

1.56 × 1025  kg ⋅m2( ) 2.5 m/s( )
2π 1.56 × 1025 + 9.71× 1037( )  kg ⋅m2⎡⎣ ⎤⎦ 6.37 × 106  m( )

= 7.50 × 10−11  s
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P11.48 (a) 
 

K + Ug( )
A

= K + Ug( )
B

 

  

  

0 + mgyA =
1
2

mvB
2 + 0

vB = 2gy
A

= 2 9.80 m/s2( )(6.30 m) = 11.1 m/s

 

 (b) 
  
L = mvr = (76.0 kg) (11.1 m/s) (6.30 m) = 5.32 × 103  kg ⋅m2/s  

toward you along the axis of the channel. 

 (c) 

 

The wheels on his skateboard prevent any tangential force from
acting on him. Then no torque about the axis of the channel acts
on him and his angular momentum is constant. His legs convert
chemical into mechanical energy. They do work to increase his
kinetic energy. The normal force acts in the upward direction,
perpendicular to the direction of motion of the skateboarder.

 

 (d) L = mvr:    
  
v =

5.32 × 103  kg ⋅m2/s
(76.0 kg) 5.85 m( ) = 12.0 m/s  

 (e) 
  

K + Ug( )
B

+ Uchemical,B = K + Ug( )
C

 

       

  

1
2

(76.0 kg) 11.1 m/s( )2 + 0 + Uchem

         =
1
2

(76.0 kg) 12.0 m/s( )2 + (76.0 kg) (9.80 m/s2 ) (0.450 m)

Uchem = 5.44 kJ − 4.69 kJ + 335 J = 1.08 kJ

 

P11.49 (a) The moment of inertia is given by 

   

  

I = miri
2∑

= m
4d
3

⎛
⎝⎜

⎞
⎠⎟

2

+ m
d
3

⎛
⎝⎜

⎞
⎠⎟

2

+ m
2d
3

⎛
⎝⎜

⎞
⎠⎟

2

= 7m
d2

3

 

 

ANS. FIG. P11.49 
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 (b) Think of the whole weight, 3mg, acting at the center of gravity. 

   
    


τ = r ×


F =

d
3

⎛
⎝⎜

⎞
⎠⎟ − î( ) × 3mg − ĵ( ) = mgd( )k̂  

 (c) We find the angular acceleration from 

   
  
α =

τ
I

=
3mgd
7md2 =

3g
7d

 counterclockwise  

 (d) The linear acceleration of particle 3, a distance of 2d/3 from the 
pivot, is  

   
  
a = αr3 =

3g
7d

⎛
⎝⎜

⎞
⎠⎟

2d
3

⎛
⎝⎜

⎞
⎠⎟ =

2g
7

 upward  

 (e) Because the axle is fixed, no external work is performed on the 
system of the Earth and the three particles, so total mechanical 
energy is conserved. Rotational kinetic energy will be maximum 
when the rod has swung to a vertical orientation with the center 
of gravity directly under the axle. Take gravitational potential 
energy to be zero when the rod is in its vertical orientation. In the 
initial horizontal orientation, the center of gravity of the system 
will be d/3 higher: 

   

  

E = K + U( )i  = horizontal = K + U( ) f  = vertical

0 + 3m( ) g
d
3

⎛
⎝⎜

⎞
⎠⎟ = K f + 0→ K f = mgd

 

 (f) In the vertical orientation, the rod has the greatest rotational 
kinetic energy: 

   

  

K f =
1
2

Iω f
2

mgd =
1
2

7m
d2

3
⎛
⎝⎜

⎞
⎠⎟
ω f

2 →ω f =
6g
7d

 

 (g) The maximum angular momentum of the system is 

    
  
L f = Iω f =

7md2

3
6g
7d

=
14g

3
⎛
⎝⎜

⎞
⎠⎟

1 2

md3 2  

 (h) The maximum speed of particle 2 is 

   
  
v f = ω f r2 =

6g
7d

d
3

=
2gd
21
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P11.50 (a) The equation simplifies to 
   

   (1.75 kg ⋅m2/s − 0.181 kg ⋅m2/s) ĵ = (0.745 kg ⋅m2 )

ω   

  which gives 
   

   

ω = 2.11ĵ rad/s  

 

 (b) 

  

We take the x axis east, the y  axis up, and the z axis south.

The child has moment of inertia 0.730 kg·m2  about the axis of
the stool and is originally turning counterclockwise at 2.40 rad/s.
At a point 0.350 m to the east of the axis, he catches a 0.120-kg
ball moving toward the south at 4.30 m/s. He continues to hold
the ball in his outstretched arm. Find his final angular velocity.

 

 (c) 

 

Yes, with the left-hand side representing the final situation
and the right-hand side representing the original situation, the
equation describes the throwing process.

 

P11.51 (a) The appropriate model is 
to treat the projectile and 
the rod as an 

 
isolated system ,  

experiencing no net 
external torque, or force. 

 (b) 

  

Ltotal = Lparticle + Lrod

=
mvid

2
+ 0 =

mvid
2

 

 (c) 

  

Itotal = Iparticle + Irod =
1

12
Md2 + m

d
2

⎛
⎝⎜

⎞
⎠⎟

2

Itotal =
d2 M + 3m( )

12

 

 (d) After the collision, we could express the angular momentum as, 

   
  
Ltotal = Itotalω =

d2 M + 3m( )
12

⎛
⎝⎜

⎞
⎠⎟
ω  

ANS. FIG. P11.51 
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 (e) Recognizing that angular momentum is conserved, 

   

  

L f = Li

d2 M + 3m( )
12

⎛
⎝⎜

⎞
⎠⎟
ω =

mvid
2

ω =
6mvi

d M + 3m( )

 

 (f) 
  
K =

1
2

mvi
2  

 (g) 

  

Ktotal =
1
2

Itotalω
2 =

1
2

d2 M + 3m( )
12

⎛
⎝⎜

⎞
⎠⎟

6mvi

d M + 3m( )
⎛
⎝⎜

⎞
⎠⎟

2

Ktotal =
3m2vi

2

2 M + 3m( )

 

 (h) The change in mechanical energy is, 

   
  
ΔK =

1
2

mvi
2 −

3m2vi
2

2 M + 3m( ) =
mMvi

2

2 M + 3m( )
 

  Then, the fractional change in the mechanical energy is 
   

  

mMvi
2

2 M + 3m( )
1
2

mvi
2

= M
M + 3m

 

P11.52 (a) The puck’s linear momentum is always changing. Its mechanical 
energy changes as work is done on it. But its angular momentum 
stays constant because although an external force (the tension of 
the rope) acts on the puck, no external torques act. 

    Therefore, L = constant, and at any time,  

      mvr = mviri 

    giving us   
      

  
v = viri

r
= 1.50 m/s( ) 0.300 m( )

0.100 m
= 4.50 m/s

 

  (b) From Newton’s second law, the tension is always  
     

  
T = mv2

r
=

0.050 0 kg( ) 4.50 m/s( )2

0.100 m
= 10.1 N
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  (c) The work-kinetic energy theorem identifies the work as 

     

  

W = ΔK = 1
2

mv2 − 1
2

mvi
2

= 1
2

0.050 0 kg( ) 4.50 m/s( )2 − 1.50 m/s( )2⎡⎣ ⎤⎦

= 0.450 J

 

 

 

ANS. FIG. P11.52 

P11.53 See ANS. FIG. P11.52 above. 

 (a) The puck is rotationally isolated because friction is zero and the 
torque on the puck from the tension in the string is zero: 

    
   
τ = r ×


F = r


F sin180° = 0

 

  therefore, the angular momentum of the puck is conserved as the 
radius is decreased: 

    

  

L f = Li

mrv = mrivi

→        v = rivi

r

 

 (b) The net force on the puck is tension: 

    
  
T =

mv2

r
=

m rivi( )2

r3
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 (c) Work is done by the tension force in the negative-r, inward 
direction as the radius decreases [  d = −dr ]: 

  METHOD 1: 

    

   

W = F ⋅d∫ = − Td ′r∫ = −
m rivi( )2

′r( )3 d ′r
ri

r

∫ =
m rivi( )2

2 ′r( )2

ri

r

=
m rivi( )2

2
1
r2 −

1
ri

2

⎛
⎝⎜

⎞
⎠⎟

=
1
2

mvi
2 ri

2

r2 − 1
⎛
⎝⎜

⎞
⎠⎟

 

  METHOD 2: 

    
  
W = ΔK =

1
2

mv2 −
1
2

mvi
2 =

1
2

mvi
2 ri

2

r2 − 1
⎛
⎝⎜

⎞
⎠⎟

 

P11.54 The description of the problem allows us to assume the asteroid-Earth 
system is isolated, so angular momentum is conserved ( Li = Lf ). Let 
the period of rotation of Earth be T before the collision and  T + ΔT  
after the collision. We have 

   

  

IEω i = IE + IA( )ω f

2π
T

IE = 2π
T + ΔT

IE + IA( )
T + ΔT

T
= IE + IA

IE

 

 which gives  
   

  

ΔT
T

= IA

IE

     →      IA = IE
ΔT
T

 

 Treating Earth as a solid sphere of mass M and radius R, its moment of 

inertia is 
  

2
5

MR2.  The moment of inertia of the asteroid at the equator 

is mR2. We have then 
   

  

IA = IE
ΔT
T

   →    mR2 = 2
5

MR2⎛
⎝⎜

⎞
⎠⎟

ΔT
T

⎛
⎝⎜

⎞
⎠⎟    →    m = 2

5
M

ΔT
T

⎛
⎝⎜

⎞
⎠⎟

m = 2
5

5.98× 1024  kg( ) 0.500 s
24 3 600 s( )

⎛
⎝⎜

⎞
⎠⎟

= 1.38× 1019  kg
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Life would not go on as normal. An asteroid that would cause a 0.5-s

change in the rotation period of the Earth has a mass of 1.38 × 1019  kg
and is an order of magnitude larger in diameter than the one that
caused the extinction of the dinosaurs.

 

P11.55 Both astronauts will speed up equally as 
angular momentum for the two-astronaut-
rope system is conserved in the absence of 
external torques. We use this principle to 
find the new angular speed with the 
shorter tether. Standard equations will tell 
us the original amount of angular 
momentum and the original and final 
amounts of kinetic energy. Then the 
kinetic energy difference is the work. 

 (a) The angular momentum magnitude is 
    

L = m


r × v .   In this case, 

   

r  and 


v  are perpendicular, so the magnitude of L about the center 

of mass is 
    

  

L = mrv = 2 75.0 kg( ) 5.00 m( )∑ 5.00 m/s( )
= 3.75× 103  kg ⋅m2/s

   

 (b) The original kinetic energy is 
    

  

K = 1
2

mv2 + 1
2

mv2 = 2
1
2

⎛
⎝⎜

⎞
⎠⎟ 75.0 kg( ) 5.00 m/s( )2

= 1.88× 103  J

  

  (c) With a lever arm of zero, the rope tension generates no torque 
about the center of mass. Thus, the angular momentum for the 
two-astronaut-rope system is unchanged: 

    
  
L = 3.75× 103  kg ⋅m2/s

 

  (d) Again, L = 2mrv, so  
    

  
v = L

2mr
= 3.75× 103  kg ⋅m2/s

2 75.0 kg( ) 2.50 m( ) = 10.0 m/s
 

 (e) The final kinetic energy is 
    

  
K = 2

1
2

mv2⎛
⎝⎜

⎞
⎠⎟ = 2

1
2

⎛
⎝⎜

⎞
⎠⎟ 75.0 kg( ) 10.0 m/s( )2 = 7.50× 103  J

   

ANS. FIG. P11.55 
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 (f) The energy converted by the astronaut is the work he does: 
    

  

Wnc = K f − Ki = 7.50× 103  J − 1.88× 103  J

= 5.62 × 103  J

   

P11.56 Please refer to ANS. FIG. P11.55 and the discussion in P11.55 above. 

 (a) 
  
Li = 2 Mv

d
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= Mvd  

 (b) 
  
K = 2

1
2

Mv2⎛
⎝⎜

⎞
⎠⎟ = Mv2  

 (c) 
 
L f = Li = Mvd  

 (d) 

  

v f =
Lf

2Mrf

= Mvd

2M
d
4

⎛
⎝⎜

⎞
⎠⎟

= 2v  

 (e) 
  
K f = 2

1
2

Mv f
2⎛

⎝⎜
⎞
⎠⎟ = M 2v( )2 = 4Mv2  

 (f) If the work performed by the astronaut is made possible entirely 
by the conversion of chemical energy to mechanical energy, then 
the necessary chemical potential energy is: 

   
  
W = K f − Ki = 3Mv2  

P11.57 (a) At the moment of release, two stones are moving with speed v0. 
The total momentum has magnitude 

  
2mv0 .  It keeps this same 

horizontal component of momentum as it flies away. 

 (b) The center of mass speed relative to the hunter is vCM = p/M = 
2mv0/3m = 

  
2 v0/3  before the hunter lets go and, as far as 

horizontal motion is concerned, afterward. 

 (c) When the bola is first released, the stones are horizontally in line 
with two at distance    on one side of the center knot and one at 
distance    on the other side. The center of mass (CM) is then  

   xCM = 2m− m( )/3m = /3  from the center knot closer to the two 
stones: the one stone just being released is at distance    r1 = 4/3  
from the CM, the other two stones are at distance    r2 = 2/3  from 
the CM. 

  The two stones, moving at v0, have a relative speed v2 = v0 – 2v0/3 
= v0/3 with respect to the CM, and the one stone has relative 
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speed v1 = 2v0/3 – 0 = 2v0/3 with respect to the CM. The one stone 
has angular speed  

    

   
ω1 = v1

r1

= 2v0 /3
4/3

= v0

2

  

  The other two stones have angular speed  
    

   
ω 2 = v2

r2

= v0 /3
2/3

= v0

2

 

  which is necessarily the same as that of stone 1:  ω1 =ω 2 =ω .  The 
total angular momentum around the center of mass is  

    

   

mvr = mv1r1∑ + 2mv2r2

          = m(2v0/3)(4/3) + 2m(v0/3)(2/3)

          = 4mv0/3

 

  The angular momentum remains constant with this value as the 
bola flies away. 

 (d) As computed in part (c), the angular speed ω at the moment of 
release is    v0/2.  As it moves through the air, the bola keeps 
constant angular momentum, but its moment of inertia changes 
to    3m2 .  Then the new angular speed is given by 

    
    
L = Iω → 4mv0/3 = 3m2ω →    ω = 4v0/9

 

 (e) At the moment of release,  
    

  
K = 1

2
m 0( )2 + 1

2
2m( )v0

2 = mv0
2

  

 (f) As it flies off in its horizontal motion it has kinetic energy 
   

   

K = 1
2

3m( ) vCM( )2 + 1
2

Iω 2 = 1
2

3m( ) 2v0

3
⎛
⎝⎜

⎞
⎠⎟

2

+ 1
2

3m2( ) 4v0

9
⎛
⎝⎜

⎞
⎠⎟

2

= 26
27

mv0
2
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 (g) 

  

No horizontal forces act on the bola from outside after release,
so the horizontal momentum stays constant. Its center of mass
moves steadily with the horizontal velocity it had at release. No
torques about its axis of rotation act on the bola, so its spin 
angular momentum stays constant. Internal forces cannot affect 
momentum conservation and angular momentum conservation, 
but they can affect mechanical energy. The cords pull on the 
stones as the stones rearrange themselves, so the cords must 

stretch slightly, so that energy of mv0
2/27 changes from 

mechanical energy into internal energy as the bola takes its stable 
configuration. In a real situation, air resistance would have an 
influence on the motion of the stones.

 

P11.58 (a) Let M = mass of rod and m = mass of each bead. From  Iiω i = I fω f  
between the moment of release and the moment the beads slide 
off, we have 

    
   

1
12

M2 + 2mr1
2⎡

⎣⎢
⎤
⎦⎥
ω i =

1
12

M2 + 2mr2
2⎡

⎣⎢
⎤
⎦⎥
ω f  

  When M = 0.300 kg,    = 0.500 m , r1 = 0.100 m, r2 = 0.250 m, and 
ωi = 36.0 rad/s, we find 

    
  0.006 25 + 0.020 0m[ ] 36.0 rad/s( ) = 0.006 25 + 0.125m[ ]ω f

  

    

  
ω f = 36.0(1+ 3.20m)

1+ 20.0m
 rad/s

 

 (b) The denominator of this fraction always exceeds the numerator, 
so 

  

  

ω f  decreases smoothly from a maximum value of 36.0 rad/s

for m = 0 toward a minimum value of (36 × 3.2/20) = 5.76 rad/s
as m→∞.

 

P11.59 The moment of inertia of the rest of the Earth is 
   

  

I = 2
5

MR2 = 2
5

5.98× 1024  kg( ) 6.37 × 106  m( )2

= 9.71× 1037  kg ⋅m2
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ANS. FIG. P11.60 

 For the original ice disks, 
   

  

I = 1
2

Mr2 = 1
2

2.30× 1019  kg( ) 6× 105  m( )2

= 4.14× 1030  kg ⋅m2

 

 For the final thin shell of water, 
   

  

I = 2
3

Mr2 = 2
3

2.30× 1019  kg( ) 6.37 × 106  m( )2

= 6.22 × 1032  kg ⋅m2

 

 Conservation of angular momentum for the spinning planet is 
expressed by   Iiω i = I fω f :  

   

  

4.14× 1030 + 9.71× 1037( ) 2π
86 400 s

                          = 6.22 × 1032 + 9.71× 1037( ) 2π
86 400 s +δT( )

1+ δT
86 400 s

⎛
⎝⎜

⎞
⎠⎟

1+ 4.14× 1030

9.71× 1037

⎛
⎝⎜

⎞
⎠⎟

= 1+ 6.22 × 1032

9.71× 1037

δT
86 400 s

= 6.22 × 1032

9.71× 1037 − 4.14× 1030

9.71× 1037 →δT = 0.550 s

 

 
 
An increase of 6.368 × 10–4 % or 0.550 s.  

P11.60 To evaluate the change in kinetic 
energy of the puck, we first 
calculate the initial and final 
moments of inertia of the puck: 

  

  

Ii = mri
2

= 0.120 kg( ) 0.400 m( )2

= 1.92 × 10−2  kg ⋅m2

 

and 
  

  

I f = mrf
2

= 0.120 kg( ) 0.250 m( )2

= 7.50× 10−3  kg ⋅m2

 

 The initial angular velocity of the puck is given by 
  

  
ω i = vi

ri

= 0.800 m s
0.400 m

= 2.00 rad s
 

r

r
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 Now, use conservation of angular momentum for the system of the 
puck, 

  

  
ω f = ω i

Ii

I f

⎛

⎝⎜
⎞

⎠⎟
= 2.00 rad s( ) 1.92 × 10−2  kg ⋅m2

7.5 × 10−3  kg ⋅m2

⎛
⎝⎜

⎞
⎠⎟

= 5.12 rad s
 

 Now, 
   

  

work done = ΔK = 1
2

I fω f
2 − 1

2
Iiω i

2

= 1
2

7.50× 10−3  kg ⋅m2( ) 5.12 rad/s( )2

            − 1
2

1.92 × 10−2  kg ⋅m2( ) 2.00 rad/s( )2

= 5.99× 10−2  J

 

 
 

 

Challenge Problems 

P11.61 (a) From the particle under a net force model: 

    
  
F  = 

Δp
Δt

   →    fk  = 
m v f  − 0( )

Δt
 = 

mv f

Δt
 [1] 

  and from the rigid object under a net torque model: 

    
  
τ  = ΔL

Δt
   →   − fkR = 

I ω f  − ω i( )
Δt

 [2] 

  Divide [2] by [1]: 

    
  
−R = 

I ω f  − ω i( )
mv f

 

  Let vf = Rω f for pure rolling: 

    

  
−R = 

I ω f  − ω i( )
m Rω f( )  

  Solve for ω f : 
    

  

ω f  = 
Iω i

I  + mR2  = 

1
2

mR2ω i

1
2

mR2  + mR2
 = 

1
2

mR2ω i

3
2

mR2
 =  1

3
ω i
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 (b) The fractional change in kinetic energy is 

    

  

ΔE
E

=

1
2

Iω f
2 + 1

2
MvCM

2 − 1
2

Iω i
2

1
2

Iω i
2

=

1
2

1
2

MR2⎛
⎝

⎞
⎠ ω i/3( )2 + 1

2
M Rω i/3( )2 − 1

2
1
2

MR2⎛
⎝

⎞
⎠ω i

2

1
2

1
2

MR2⎛
⎝

⎞
⎠ω i

2

= − 2
3

 

 (c) 
  
Δt =

Δp
f

=
Mv f

µMg
=

MRω f

µMg
=

Rω f

3µg
 

 (d) From the particle under constant acceleration model: 
    

  

Δx = vavgΔt = 
0 + v f

2
Δt =  1

2
v fΔt =  1

2
Rω f( ) 1

3
Rω i

µg
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

        =  1
2

R
1
3
ω i

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

1
3

Rω i

µg
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = 

R2ω i
2

18µg

 

P11.62 (a) After impact, the disk adheres to the stick, so they will rotate 
about their common center of mass; therefore, we must consider 
the angular momentum of the system about its CM. First we find 
the velocity of the CM by writing the equations for momentum 
conservation: 

    

  

mdvdi + 0 = md + ms( )vCM

vCM = md

md + ms

vdi = 2.0 kg
2.0 kg + 1.0 kg

⎛
⎝⎜

⎞
⎠⎟

3.0 m/s( ) = 2.0 m/s

 

  The speed of the CM is  2.0 m/s .  

 (b) Locate the center of mass between the disk and the center of the 
stick at impact: 

    

  
yCM = mdr + ms 0( )

md + ms

= (2.0 kg) 2.0 m( )
2.0 kg + 1.0 kg

= 4
3

 m
 

  This means at impact the CM is 4/3 meters from the center of the 
stick; therefore, the disk is 2.0 meters – 4/3 meters = 2/3 meters 
from the CM at impact. Use the parallel-axis theorem to find the 
moment of inertia of the system about the CM: 
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Is = ICM + msrs

2 = 1.33 kg ⋅m2 + 1.0 kg( ) 4
3

 m⎛
⎝⎜

⎞
⎠⎟

2

= 3.11 kg ⋅m2  

  The moment of inertia of the disk about the CM is 

    
  
Id = mdrd

2 = 2.0 kg( ) 2
3

 m⎛
⎝⎜

⎞
⎠⎟

2

= 0.889 kg ⋅m2  

  Angular momentum about the CM is conserved: 
    

  

L = rdmdvd = Idω + Isω = Id + Is( )ω

ω = rdmdvd

Id + Is

=

2
3

 m⎛
⎝

⎞
⎠ 2.0 kg( ) 3.0 m/s( )

0.889 kg ⋅m2 + 3.11 kg ⋅m2

= 4.0 kg ⋅m2/s
4.00 kg ⋅m2 = 1.0 rad/s

 

P11.63 Angular momentum is conserved during the inelastic collision. 
    

  

Mva = Iω

ω = Mva
I

= 3v
8a

 

 

ANS. FIG. P11.63 

 The condition, that the box falls off the table, is that the center of mass 
must reach its maximum height as the box rotates,   hmax = a 2.  Using 
conservation of energy: 

  

  

1
2

Iω 2 = Mg a 2 − a( )
1
2

8Ma2

3
⎛
⎝⎜

⎞
⎠⎟

3v
8a

⎛
⎝⎜

⎞
⎠⎟

2

= Mg a 2 − a( )
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v2 = 16
3

ga 2 − 1( )

v = 4
ga
3

2 − 1( )⎡
⎣⎢

⎤
⎦⎥

1 2

 

P11.64 For the cube to tip over, the center of mass (CM)  
must rise so that it is over the axis of rotation AB.  
To do this, the CM must be raised a distance of  

  
a 2 − 1( ).  After the bullet strikes the cube, the  

system is isolated: 
   

  

K f +U f = Ki +Ui

0 + Mga 2 − 1( ) = 1
2

Icubeω
2 + 0

 

 The moment of inertia of the cube about its CM  
(from Table 10.2) is 

   

  
ICM = 1

12
M 2a( )2 + 2a( )2⎡⎣ ⎤⎦ = 8

12
Ma2 = 2

3
Ma2

 

 The cube rotates about an edge,   2a  from the CM. By the parallel-axis 
theorem, 

    
  
I = ICM + M 2a( )2

=
2
3

Ma2 + 2Ma2 =
8
3

Ma2  

 From conservation of angular momentum, 
    

  
Li  (bullet) = Li  (cube) →

4a
3

mv = 8
3

Ma2⎛
⎝⎜

⎞
⎠⎟ω     →     ω = mv

2Ma

 

 Inserting the expression for ω back into the energy equation, we have 

    
  
Mga 2 − 1( ) =

1
2

8
3

Ma2⎛
⎝⎜

⎞
⎠⎟

m2v2

4M2a2 → v =
M
m

3ga 2 − 1( )  

 
 

 
 

ANS. FIG. P11.64 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P11.2 (a) 740 cm2; (b) 59.5 cm 

P11.4 See full solution in P11.4. 

P11.6 (a) 168°; (b) 11.9°; (c) the first method 

P11.8 (a)   (− 10.0 N ⋅m)k̂ ; (b) Yes; (c) Yes; (d) Yes; (e) No; (f)   5.00 ĵ m  

P11.10 (a) No; (b) No, the cross product could not work out that way. 

P11.12   −22.0 kg ⋅m2/s( )k̂  

P11.14  (a)   −9.03 × 109 kg ⋅m2/s( ) ĵ ; (b) No; (c) Zero 

P11.16 
   

m2 g3 sin4θ
cosθ

 

P11.18 (a) 3.14 N · m; (b) (0.480 kg · m)v; (c) 6.53 m/s2 

P11.20 (a)    2t3î + t2 ĵ ; (b) The particle starts from rest at the origin, starts 
moving into the first quadrant, and gains speed faster while turning to 
move more nearly parallel to the x axis; (c) 

   
12tî + 2 ĵ( )  m/s2 ;   

(d) 
   
60tî + 10 ĵ( )  N;  (e)    −40t3k̂ N ⋅m; ; (f)    −10t4k̂ kg ⋅m2/s;   

(g) (90t4 + 10t2) J; (h) (360t3 + 20t) W 

P11.22 
   

L = 4.50 kg ⋅m2 / s( )k̂  

P11.24 
  
K =

1
2

Iω 2 =
1
2

I 2ω 2

I
=

L2

2I
 

P11.26 (a)  7.06 × 1033 kg ⋅m2/s , toward the north celestial pole;  

(b)  2.66 × 1040 kg ⋅m2/s , toward the north ecliptic pole; (c) See P11.26(c) 
for full explanation. 

P11.28 8.63 m/s2 

P11.30 (a) 
  

I1

I1 + I2

ω i ; (b) 
  

I1

I1 + I2

 

P11.32 (a) 2.91 s; (b) Yes because there is no net external torque acting on the 
puck-rod-putty system; (c) No because the pivot pin is always pulling 
on the rod to change the direction of the momentum; (d) No. Some 
mechanical energy is converted into internal energy. The collision is 
perfectly inelastic. 
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P11.34 (a) 1.91 rad/s; (b) 2.53 J, 6.44 J 

P11.36 (a)  7.20 × 10−3 kg ⋅m2/s ; (b) 9.47 rad/s 

P11.38 (a) 2.35 rad/s; (b) 0.498 rad/s; (c) 5.58° 

P11.40 When the people move to the center, the angular speed of the station 
increases. This increases the effective gravity by 26%. Therefore, the 
ball will not take the same amount of time to drop. 

P11.42 131 s 

P11.44 (a) 0; (b) monkey and bananas move upward with the same speed; (c) 
The monkey will not reach the bananas. 

P11.46 (a)   0.250î m/s ; (b) 0.000 716; (c)   0.250î m/s;  (d) 15.8 rad/s; (e) 1.00;  
(f) See P11.46(f) for full explanation. 

P11.48 (a) 11.1 m/s; (b)  5.32 × 103 kg ⋅m2/s ; (c) See P11.48(c) for full 
explanation; (d) 12.0 m/s; (e) 1.08 kJ 

P11.50 (a)   2.11ĵ rad/s;  (b) See P11.50(b) for full problem statement; (c) Yes, 
with the left-hand side representing the final situation and the right-
hand side representing the original situation, the equation describes 
the throwing process. 

P11.52 (a) 4.50 m/s; (b) 10.1 N; (c) 0.450 J 

P11.54 An asteroid that would cause a 0.500-s change in the rotation period of 
the Earth has a mass of 1.38 × 1019 kg and is an order of magnitude 
larger in diameter than the one that caused the extinction of the 
dinosaurs. 

P11.56 (a) Mvd; (b) M v2; (c) Mvd; (d) 2v; (e) 4M v2; (f) 3M v2 

P11.58 (a) 
  
ω f = 36.0(1+ 3.20m)

1+ 20.0m
 rad/s;  (b) ωf decreases smoothly from a 

maximum value of 36.0 rad/s for m = 0 toward a minimum value of 
(36 × 3.2/20) = 5.76 rad/s as  m→∞  

P11.60  5.99× 10−2  J   

P11.62 (a) 2.0 m/s; (b) 1.0 rad/s 

P11.64 
  

M
m

3ga 2 − 1( )  
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12 
Static Equilibrium and Elasticity 

 

CHAPTER OUTLINE 
 

12.1 Analysis Model: Rigid Object in Equilibrium 

12.2 More on the Center of Gravity 

12.3 Examples of Rigid Objects in Static Equilibrium  

12.4 Elastic Properties of Solids 

 

 * An asterisk indicates an item new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ12.1 Answer (b). The skyscraper is about 300 m tall. The gravitational 
field (acceleration) is weaker at the top by about 900 parts in ten 
million, by on the order of 10−4 times. The top half of the uniform 
building is lighter than the bottom half by about (1/2)(10−4) times. 
Relative to the center of mass at the geometric center, this effect 
moves the center of gravity down, by about (1/2)(10−4)(150 m) ~ 10 
mm. 

OQ12.2 Answer (c). Net torque = (50 N)(2 m) − (200 N)(5 m) − (300 N)x = 0; 
therefore, x = 3 m. 

OQ12.3 Answer (a). Our theory of rotational motion does not contradict our 
previous theory of translational motion. The center of mass of the 
object moves as if the object were a particle, with all of the forces 
applied there. This is true whether the object is starting to rotate or 
not. 

OQ12.4 Answer (d). In order for an object to be in equilibrium, it must be in 
both translational equilibrium and rotational equilibrium. Thus, it 
must meet two conditions of equilibrium, namely    F


net = 0  and 

  

τ net = 0.  
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OQ12.5 Answer (b). The lower the center of gravity, the more stable the can. 
In cases (a) and (c) the center of gravity is above the base by one-half 
the height of the can. In case (b), the center of gravity is above the 
base by only a bit more than one-quarter of the height of the can. 

OQ12.6 Answer (d). Using the left end of the plank as a pivot and requiring 
that  τ∑ = 0  gives 

   
  −mg 2.00 m( )+ F2 3.00 m( ) = 0  

 or 

    
  
F2 =

2mg
3

=
2 20.0 kg( ) 9.80 m s2( )

3
= 131 N  

OQ12.7 Answer: τD > τC > τE > τB > τA. The force exerts a counterclockwise 
torque about pivot D. The line of action of the force passes through 
C, so the torque about this axis is zero. In order of increasing negative 
(clockwise) values come the torques about F, E and B essentially 
together, and A.  

OQ12.8 Answer (e). In the problems we study, the forces applied to the object 
lie in a plane, and the axis we choose is a line perpendicular to this 
plane, so it appears as a point on the force diagram. It can be chosen 
anywhere. The algebra of solving for unknown forces is generally 
easier if we choose the axis where some unknown forces are acting. 

OQ12.9 (i) Answer (b). The extension is directly proportional to the original 
dimension, according to F/A = Y∆L/Li. 

 (ii) Answer (e). Doubling the diameter quadruples the area to make 
the extension four times smaller. 

OQ12.10 Answer (b). Visualize the ax as like a balanced playground seesaw 
with one large-mass person on one side, close to the fulcrum, and a 
small-mass person far from the fulcrum on the other side. Different 
masses are on the two sides of the center of mass. The mean position 
of mass is not the median position. 
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ12.1 The free-body diagram demonstrates that it is  
necessary to have friction on the ground to  
counterbalance the normal force of the wall and to  
keep the base of the ladder from sliding. If there is  
friction on the floor and on the wall, it is not  
possible to determine whether the ladder will slip,  
from the equilibrium conditions alone.  

CQ12.2 A V-shaped boomerang, a barstool, an empty 
coffee cup, a satellite dish, and a curving 
plastic slide at the edge of a swimming pool 
each have a center of mass that is not within 
the bulk of the object. 

CQ12.3 (a) Consider pushing up with one hand on one side of a steering 
wheel and pulling down equally hard with the other hand on 
the other side. A pair of equal-magnitude oppositely-directed 
forces applied at different points is called a couple. 

 (b) An object in free fall has a nonzero net force acting on it, but a 
net torque of zero about its center of mass. 

CQ12.4 When one is away from a wall and leans over, one’s back moves 
backward so the body’s center of gravity stays over the feet. When 
standing against a wall and leaning over, the wall prevents the 
backside from moving backward, so the center of gravity shifts 
forward. Once your CG is no longer over your feet, gravity 
contributes to a nonzero net torque on your body and you begin to 
rotate. 

CQ12.5 If an object is suspended from some point and allowed to freely 
rotate, the object’s weight will cause a torque about that point unless 
the line of action of its weight passes through the point of support. 
Suspend the plywood from the nail, and hang the plumb bob from 
the nail. Trace on the plywood along the string of the plumb bob. 
The plywood’s center of gravity is somewhere along that line. Now 
suspend the plywood with the nail through a different point on the 
plywood, not along the first line you drew. Again hang the plumb 
bob from the nail and trace along the string. The center of gravity is 
located halfway through the thickness of the plywood under the 
intersection of the two lines you drew. 

CQ12.6 She can be correct. Consider the case of a bridge supported at both 
ends: the sum of the forces on the ends equals the total weight of the 
bridge. If the dog stands on a relatively thick scale, the dog’s legs on 

ANS. FIG. CQ12.1 
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the ground might support more of its weight than its legs on the 
scale. She can check for and if necessary correct for this error by 
having the dog stand like a bridge with two legs on the scale and two 
on a book of equal thickness—a physics textbook is a good choice. 

CQ12.7 Yes, it can. Consider an object on a spring oscillating back and forth. 
In the center of the motion both the sum of the torques and the sum 
of the forces acting on the object are (separately) zero. Again, a 
meteoroid flying freely through interstellar space feels essentially no 
forces and keeps moving with constant velocity. 

CQ12.8 Shear deformation. Its deformations are parallel to its surface.  

 
 

 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 12.1 Analysis Model: Rigid Object in Equilibrium 
P12.1 Use distances, angles, and forces as shown in ANS. FIG. P12.1. The 

conditions of equilibrium are: 

   

   

Fy∑ = 0⇒ Fy + Ry − Fg = 0

Fx∑ = 0⇒ Fx − Rx = 0

τ∑ = 0⇒ Fycosθ − Fg

2

⎛
⎝⎜

⎞
⎠⎟ cosθ − Fxsinθ = 0

 

 

ANS. FIG. P12.1 

P12.2 Take torques about P, as shown in ANS. FIG. P12.2.  
   

   
τ p∑ = −nO


2

+ d⎡
⎣⎢

⎤
⎦⎥
+ m1g


2

+ d⎡
⎣⎢

⎤
⎦⎥
+ mb gd − m2 gx = 0

 

 We want to find x for which   nO = 0:  

   

   
x =

m1g + mb g( )d + m1g

2

m2 g
=

m1 + mb( )d + m1

2

m2
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 For the values given:  

    

   

x =
m1 + mb( )d + m1


2

m2

x =
5.00 kg + 3.00 kg( ) 0.300 m( )+ 5.00 kg( ) 1.00 m

2
15.0 m

x = 0.327 m

 

 

ANS. FIG. P12.2 
  

  

The situation is impossible because x is larger than the remaining
portion of the beam, which is 0.200 m long.

 

 
 

 

Section 12.2 More on the Center of Gravity 
P12.3 The coordinates of the center of gravity of 

piece 1 are 

      x1 = 2.00 cm  and   y1 = 9.00 cm  

 The coordinates for piece 2 are 

      x2 = 8.00 cm  and   y2 = 2.00 cm  

 The area of each piece is 

      A1 = 72.0 cm2  and   A2 = 32.0 cm2  

ANS. FIG. P12.3 



Chapter 12     637 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 And the mass of each piece is proportional to the area. Thus, 
   

  

xCG = mixi∑
mi∑

=
72.0 cm2( ) 2.00 cm( )+ 32.0 cm2( ) 8.00 cm( )

72.0 cm2 + 32.0 cm2

= 3.85 cm

 

 and 

    

  

yCG = miyi∑
mi∑

=
72.0 cm2( ) 9.00 cm( )+ 32.0 cm2( ) 2.00 cm( )

104 cm2

= 6.85 cm

 

P12.4 The definition of the center of gravity as the average position of mass 
in the set of objects will result in equations about x and y coordinates 
that we can rearrange and solve to find where the last mass must be. 

 From 
    


rCG = mi


ri∑

mi∑ ,

r CG mi∑( ) = mi


ri∑  

  We require the center of mass to be at the origin; this simplifies the 
equation, leaving  

    
  

mixi = 0∑ and miyi = 0∑
 

  To find the x coordinate, we substitute the known values: 
   

  

5.00 kg( ) 0 m( )+ 3.00 kg( ) 0 m( )
                         + 4.00 kg( ) 3.00 m( )+ 8.00 kg( )x = 0

  

 Solving for x gives x = –1.50 m. 

  Likewise, to find the y coordinate, we solve: 
    

  

5.00 kg( ) 0 m( )+ 3.00 kg( ) 4.00 m( )
                         + 4.00 kg( ) 0 m( )+ 8.00 kg( )y = 0

 

  to find y = –1.50 m 

 Therefore, a fourth mass of 8.00 kg should be located at  
   

   

r4 = (–1.50î − 1.50 ĵ) m
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P12.5 Let σ  represent the mass-per-face area. (It would be equal to the 
material’s density multiplied by the constant thickness of the wood.) A 

vertical strip at position x, with width dx and height 
  

x − 3.00( )2

9
,  has 

mass  

   
  
dm = σ x − 3.00( )2 dx

9
 

  The total mass is 
    

  

M = dm∫ = σ x − 3( )2 dx
9x=0

3.00

∫ = σ
9

⎛
⎝⎜

⎞
⎠⎟ x2 − 6x + 9( )dx

0

3.00

∫

= σ
9

⎛
⎝⎜

⎞
⎠⎟

x3

3
− 6x2

2
+ 9x

⎡
⎣⎢

⎤
⎦⎥0

3.00

=σ

 

  The x coordinate of the center of gravity is 
    

  

xCG =
xdm∫
M

= 1
9σ

σ x x − 3( )2 dx
0

3.00

∫ = σ
9σ

x3 − 6x2 + 9x( )dx
0

3.00

∫

= 1
9

x4

4
− 6x3

3
+ 9x2

2
⎡
⎣⎢

⎤
⎦⎥0

3.00

= 6.75 m
9.00

= 0.750 m

 

 

ANS. FIG. P12.5 

P12.6 We can visualize this as a whole pizza with mass m1 and center of 
gravity located at x1, plus a hole that has negative mass, –m2, with 
center of gravity at x2: 

   
  
xCG =

m1x1 − m2x2

m1 − m2
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 Call σ the mass of each unit of pizza area. 
   

  

xCG =
σπR2 0−σπ R

2
⎛
⎝

⎞
⎠

2 −R
2

⎛
⎝

⎞
⎠

σπR2 −σπ R
2

⎛
⎝

⎞
⎠

2

xCG = R/8
3/4

= R
6

 

P12.7 In a uniform gravitational field, the center of mass and center of 
gravity of an object coincide. Thus, the center of gravity of the triangle 
is located at x = 6.67 m, y = 2.33 m (see Example 9.12 on the center of 
mass of a triangle in Chapter 9). 

 The coordinates of the center of gravity of the three-object system are 
then: 

  

xCG = mixi∑
mi∑

=
6.00 kg( ) 5.50 m( )+ 3.00 kg( ) 6.67 m( )+ 5.00 kg( ) −3.50 m( )

6.00 + 3.00 + 5.00( )  kg

= 35.5 kg ⋅m
14.0 kg

= 2.54 m  and

yCG = miyi∑
mi∑

=
6.00 kg( ) 7.00 m( )+ 3.00 kg( ) 2.33 m( )+ 5.00 kg( ) +3.50 m( )

14.0 kg

= 66.5 kg ⋅m
14.0 kg

= 4.75 m

 

 
 

 

Section 12.3 Examples of Rigid Objects in Static Equilibrium 
P12.8 The car’s weight is 
    

  

Fg = mg = 1 500 kg( ) 9.80 m/s2( )
= 1 4700 N

 

 Call   

F  the force of the ground on each of the 

front wheels and   

R  the normal force on each of 

the rear wheels. If we take torques around the 
front axle, with counterclockwise in the picture ANS. FIG. P12.8 
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chosen as positive, the equations are as follows: 
    

  

Fx = 0:∑ 0 = 0

Fy = 0:∑ 2R – 14 700N + 2F = 0

τ = 0:∑ +2R(3.00m) – (14 700 N)(1.20m) + 2F(0) = 0

 

  The torque equation gives: 
    

  
R = 17 640 N ⋅m

6.00 m = 2 940 N = 2.94 kN  
 

  Then, from the second force equation, 
    

  
2(2.94 kN) – 14.7 kN + 2F = 0 and F = 4.41 kN

 

P12.9 The second condition for equilibrium at the 
pulley is 

    
  τ∑ = 0 = mg 3r( )−Tr  [1] 

 and from equilibrium at the truck, we 
obtain 

   

  

2T − Mg sin 45.0° = 0

T = Mg sin 45.0°
2

=
1 500 kg( ) g sin 45.0°

2
= 530g  N

 

 solving for the mass of the counterweight from [1] and substituting 
gives 

   

  
m = T

3g
= 530g

3g
= 177 kg

 

P12.10 (a) For rotational equilibrium of the lowest rod about its point of 
support,  τ∑ = 0.  

    
  + 12.0 g( ) g 3.00 cm( )− m1g 4.00 cm( ) = 0     

  which gives 

    
  

m1 = 9.00 g  

 (b) For the middle rod, 

    
  + m2 g 2.00 cm( ) − 12.0 g + 9.0 g( ) g 5.00 cm( ) = 0     

ANS. FIG. P12.9 
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  which gives 

    
  

m2 = 52.5 g  

 (c) For the top rod, 

    
  52.5 g + 12.0 g + 9.0 g( ) g 4.00 cm( ) − m3g 6.00 cm( ) = 0     

  which gives 

    
  

m3 = 49.0 g  

P12.11 Since the beam is in equilibrium, we choose the center as our pivot 
point and require that 

   
  τ center∑ = −FSam 2.80 m( )+ FJoe 1.80 m( ) = 0  

 or  

     FJoe = 1.56FSam   [1] 

 Also, 

     Fy∑ = 0   ⇒    FSam + FJoe = 450 N  [2] 

 Substitute equation [1] into [2] to get the following: 

     FSam + 1.56FSam = 450 N   or   
  
FSam =

450 N
2.56

= 176 N  

 Then, equation [1] yields   FJoe = 1.56 176 N( ) = 274 N  
 

 

Sam exerts an upward force of 176 N.
Joe exerts an upward force of 274 N.

 

P12.12 (a) To find U, measure distances and forces from point A. Then, 
balancing torques, 

   
  0.750 m( )U = 29.4 N( ) 2.25( ) U = 88.2 N

 

 (b)  To find D, measure distances and forces from point B. Then, 
balancing torques, 

   
  0.750 m( )D = 1.50 m( ) 29.4 N( ) D = 58.8 N

 

  Also, notice that   U = D + Fg ,  so    Fy∑ = 0.  

P12.13 (a) The wall is frictionless, but it does exert a horizontal normal force, 
nw.  

     Fx∑ = f − nw = 0  

     Fy∑ = ng − 800 N − 500 N = 0  
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  Taking torques about an axis at the foot of the ladder, 
   

  

800 N( ) 4.00 m( )sin 30.0° + 500 N( ) 7.50 m( )sin 30.0°
−nw 15.0 cm( )cos30.0° = 0

 

  Solving the torque equation, 

   
  
nw =

4.00 m( ) 800 N( ) + 7.50 m( ) 500 N( )[ ]tan 30.0°
15.0 m

= 268 N  

  Next substitute this value into the  Fx  equation to find 

      
f = nw = 268 N  in the positive x  

direction. 

  Solving the equation   Fy∑ = 0,  

     
ng = 1 300 N  in the positive  

y direction 

 (b) Refer to ANS. FIG. P12.13(b) on the right. In this case, the torque 
equation   τ A = 0∑  gives: 

   

  

9.00 m( ) 800 N( )sin 30.0°
       + 7.50 m( ) 500 N( )sin 30.0°

           − 15.0 m( ) nw( )sin 60.0° = 0

 

  or   nw = 421 N  

  Since   f = nw = 421 N  and   f = fmax = µng ,  we find 

   
  
µ =

fmax

ng

=
421 N

1 300 N
= 0.324  

P12.14 (a) The wall is frictionless, but it does exert a horizontal normal force, 
nw.  

     Fx∑ = f − nw = 0  [1] 

     Fy∑ = ng − m1g − m2 g = 0  [2] 

   
  

τ A∑ = −m1g
L
2

⎛
⎝⎜

⎞
⎠⎟ cosθ − m2 gxcosθ + nwLsinθ = 0  

  From the torque equation, 
   

  
nw =

1
2

m1g +
x
L

⎛
⎝⎜

⎞
⎠⎟ m2 g⎡

⎣⎢
⎤
⎦⎥

cotθ
 

ANS. FIG. P12.13(b) 
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  Then, from equation [1]: 
  
f = nw =

1
2

m1g +
x
L

⎛
⎝⎜

⎞
⎠⎟ m2 g⎡

⎣⎢
⎤
⎦⎥
cotθ  

  and from equation [2]: 
  
ng = m1 + m2( ) g  

 

 (b) Refer to ANS. FIG. P12.13(b) above. If the ladder is on the verge 
of slipping when x = d, then    

   

  
µ =

f
x=d

ng

=
m1 / 2 + m2d/L( )cotθ

m1 + m2

 

P12.15 (a) Vertical forces on one-half of the chain are  
   

  Te sin 42.0° = 20.0 N      

   
  

Te = 29.9 N
 

 (b) Horizontal forces on one-half of the chain are  
    

  Te cos 42.0° = Tm
     

    
  

Tm = 22.2 N
 

P12.16 (a) See the force diagram shown in ANS. 
FIG. P12.16.  

 (b) Select a pivot point where an unknown 
force acts so that the force has no torque 
about that point. Picking the lower end of 
the beam eliminates torque from the 
normal force, n, and the friction force, f.  

   

  

τ∑ lower end = 0:   

              0 + 0− mg
L
2

cosθ⎛
⎝⎜

⎞
⎠⎟ + T Lsinθ( ) = 0

 

  or 

   
  
T =

mg
2

cosθ
sinθ

⎛
⎝⎜

⎞
⎠⎟ =

mg
2

cotθ  

 (c) From the first condition for equilibrium, 

     Fx∑ = 0   ⇒    −T + µsn = 0  or  T = µsn  [1] 

     Fy∑ = 0   ⇒    n− mg = 0  or  n = mg  [2] 

ANS. FIG. P12.16 
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  Substitute equation [2] into [1] to obtain 
  
T = µsmg .  

 (d) Equate the results of parts (b) and (c) to obtain 
  
µs = 1

2
cotθ .  

  This result is valid only at the critical angle θ where the beam is 
on the verge of slipping (i.e., where fs = (fs)max is valid). 

 (e) 
 
The ladder slips.  When the base of the ladder is moved to the 

left, the angle θ decreases. According to the result in part (b), the 
tension T increases. This requires a larger friction force to balance 
T, but the static friction force is already at its maximum value in 
ANS. FIG. P12.16. 

P12.17 (a) In Figure P12.17, let the “Single point of contact” be point P, the 
force the nail exerts on the hammer claws be R, the mass of the 
hammer (1.00 kg) be M, and the normal force exerted on the 
hammer at point P be n, while the horizontal static friction 
exerted by the surface on the hammer at P be f.  

  Taking moments about P, 
   

  

R sin 30.0°( )0 + Rcos30.0°( ) 5.00 cm( ) + Mg 0( )
                                             − 150 N( ) 30.0 cm( ) = 0
R = 1 039.2 N = 1.04 kN

 

  The force exerted by the hammer on the nail is equal in 
magnitude and opposite in direction:  

   
 

1.04 kN at 60° upward and to the right  

 (b) From the first condition for equilibrium, 

     Fx =∑ f − Rsin 30.0° + 150 N = 0→ f = 370 N  

   
  

Fy∑ = n− Mg − Rcos30.0° = 0

→ n = 1.00 kg( ) 9.80 m/s2( ) + 1 040 N( )cos30.0° = 910 N
 

   

   


Fsurface = 370î + 910 ĵ( )  N

 

P12.18  (a) See the force diagram in 
ANS. FIG. P12.18. 

 (b) The mass M of the beam is 
20.0 kg. We consider the 
torques acting on the beam, 
about an axis perpendicular ANS. FIG. P12.18 
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to the page and through the left end of the horizontal beam. 
   

  

τ∑ = + T sin 30.0°( )d − Mgd = 0

T = Mg
sin 30.0°

= 196 N
sin 30.0°

= 392 N

 

 (c) From   Fx = 0∑ ,    H −T cos30.0° = 0,     

  or 
  
H = 392 N( )cos30.0° = 339 N to the right  

 (d) From   Fy∑ = 0,    V + T sin 30.0° − 196 N = 0 ,      

  or 
  
V = 196 N − 392 N( )sin 30.0° = 0  

 (e) From the same free-body diagram with the axis chosen at the 
right-hand end, we write 

   
  

τ = H(0)−Vd + T(0) + 196N(0) = 0,∑ so   V = 0  

 (f) From   Fy∑ = 0,    V + T sin 30.0° − 196 N = 0 ,     

  or   T = 0 + 196 N/sin 30.0° = 392 N  

 (g) From   Fx = 0∑ ,    H −T cos30.0° = 0,      

  or 
  
H = 392 N( )cos30.0° = 339 N to the right  

 (h) 
 
The two solutions agree precisely. They are equally accurate.  

P12.19  The bridge has mass M = 2 000 kg and the knight and horse have mass 
m = 1 000 kg. Relative to the hinge end of the bridge, the cable is 
attached horizontally out a distance   x = 5.00 m( )cos20.0° = 4.70 m  and 
vertically up a distance   y = 5.00 m( )sin 20.0° = 1.71 m.  The cable then 
makes the following angle with the vertical wall: 

  
 
θ = tan−1 4.70( )  m

12.0 − 1.71 m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 24.5°  

 Call the force components at the hinge Hx (to the right) and Hy 
(upward).  

 (a) Take torques about the hinge end of the bridge: 

   

  

Hx 0( ) + Hy 0( ) − Mg 4.00 m( )cos20.0°

− T sin 24.5°( ) 1.71 m( ) + T cos24.5°( ) 4.70 m( )
− mg 7.00 m( )cos20.0° = 0

 

  which yields 
  
T = 27.7 kN  
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 (b)   Fx∑ = 0⇒ Hx −T sin 24.5° = 0,       

  or  
  
Hx = 27.7 kN( )sin 24.5° = 11.5 kN right( )  

 (c)   Fy∑ = 0⇒ Hy − Mg + T cos24.5°− mg = 0  

  Thus,  
   

  

Hy = M + m( )g − 27.7 kN( )cos24.5° = −4.19 kN

= 4.19 kN down

 

P12.20 (a) 

 

No time interval. The horse’s feet lose contact with the
drawbridge as soon as it begins to move.

 

  From the result of (b) below, the tangential acceleration of the 
point where the horse stands is  

   
  at =αr = 1.73 rad/s2( ) 7.00 m( ) = 12.1 m/s2  

  which has a vertical component   at cos20.0° = 11.4 m/s2 ,  greater 
than the acceleration of gravity. 

 (b) Assuming that the bridge does fall from 
under the horse, its angular acceleration will 
be caused by torque from the weight of the 
bridge—if the bridge does not fall out from 
under the horse, there will be additional  
torque from the weight of the knight and  
horse, and the acceleration will be greater. 

    

   

τ∑ = Iα

Mg

2

⎛
⎝⎜

⎞
⎠⎟ cosθ0 = 1

3
M2α →α = 3g cos20.0ο

2 8.00 m( ) = 1.73 rad/s
 

  As cited in part (a), this results in the bridge falling out from 
under the horse, so our assumption was justified.  

 (c) Because there is no friction at the hinge, the bridge-Earth system 
is isolated, so mechanical energy is conserved. When the bridge 
strikes the wall: 

   

   

Ki +Ui = K f +U f

Mgh = 1
2

Iω 2 → Mg

2

⎛
⎝⎜

⎞
⎠⎟ 1+ sin 20.0ο( ) = 1

2
1
3

M2⎛
⎝⎜

⎞
⎠⎟ω

2  

ANS. FIG. P12.20(b) 
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  which gives 
    

  
ω =

3g 1+ sin 20.0ο( )
8.00 m

= 2.22 rad/s
 

 (d) The tangential acceleration of the center of 
mass of the bridge is 

    

   

at = 
2
α = 1

2
8.0 m( ) 1.73 rad s2( )

= 6.92 m s2

 

  which is directed 20.0° below the  
horizontal. By Newton’s second law: 

      

  

Fx∑ = Max

          Hx = 2 000 kg( ) 6.92 m/s2( )sin 20.0°

               = 4.72 kN
Fy∑ = May

          Hy − Mg = May

          Hy = 2 000 kg( ) 9.80 m/s2( )
                                    + 2 000 kg( ) −6.92 m/s2( )cos20.0°

               = 6.62 kN

 

  
  
The force at the hinge is 4.72î + 6.62 ĵ( ) kN.  

 (e) When the bridge strikes the wall, Hx = 0 and  
the hinge supplies a vertical centripetal force: 

   

   

Fy∑ = May

        Hy − Mg = May = Mω 2 
2

        Hy = Mg + Mω 2 
2

= M g +ω 2 
2

⎛
⎝⎜

⎞
⎠⎟

        Hy = 2 000 kg( ) 9.80 m/s2 + 2.22 rad/s( )2 8.00 m
2

⎛
⎝⎜

⎞
⎠⎟

        Hy = 59.1 kJ

 

ANS. FIG. P12.20(e) 

ANS. FIG. P12.20(d) 
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P12.21 Call the required force F, with components   Fx = F cos15.0°  and 

  Fy = −F sin15.0°,  transmitted to the center of the wheel by the handles. 

 

ANS. FIG. P12.21 

 Just as the wheel leaves the ground, the ground exerts no force on it.  

     Fx∑ = 0:     F cos15.0°− nx = 0  [1] 

     Fy∑ = 0:     − F sin15.0°− 400 N + ny = 0  [2] 

 Take torques about its contact point with the brick. The needed 
distances are seen to be: 

   

  

b = R − 8.00 cm = 20.0− 8.00( )  cm = 12.0 cm

a = R2 − b2 = 20.0 cm( )2 − 8.00 cm( )2 = 16.0 cm

 

 (a)   τ∑ = 0:     − Fxb + Fya + 400 N( )a = 0,  or 

  
  
F − 12.0 cm( )cos15.0° + 16.0 cm( )sin 15.0°⎡⎣ ⎤⎦ + 400 N( ) 16.0 cm( ) = 0  

  so 
  
F =

6 400 N ⋅ cm
7.45 cm

= 859 N  

 (b) Then, using equations [1] and [2], 

      nx = 859 N( )cos15.0° = 830 N  and  

    
  
ny = 400 N + 859 N( )sin 15.0° = 622 N  

   

  

n = nx
2 + ny

2 = 1.04 kN

θ = tan−1
ny

nx

⎛

⎝
⎜

⎞

⎠
⎟ = tan−1 0.749( ) = 36.9° to the left and upward
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P12.22 Call the required force F, with components   Fx = F cosθ  and 

  Fy = −F sinθ ,  transmitted to the center of the wheel by the handles. 

 

ANS. FIG. P12.22 

 Just as the wheel leaves the ground, the ground exerts no force on it.  

     Fx∑ = 0:     F cosθ − nx = 0  [1] 

     Fy∑ = 0:      − F sinθ − mg + ny = 0  [2] 

 Take torques about its contact point with the brick. The needed 
distances are seen to be: 

   
  

b = R − h

a = R2 − R − h( )2
= 2Rh − h2

 

 (a)   τ∑ = 0:     − Fxb + Fya + mga = 0,  or 

   

  

F −bcosθ + asinθ⎡⎣ ⎤⎦ + mga = 0

→ F =
mga

bcosθ − asinθ
=

mg 2Rh − h2

R − h( )cosθ − 2Rh − h2 sinθ

 

 (b) Then, using equations [1] and [2], 

   

  

nx = F cosθ =
mg 2Rh − h2 cosθ

R − h( )cosθ − 2Rh − h2 sinθ
    

  and 

  

ny = F sinθ + mg = mg 1 +
2Rh − h2 cosθ

R − h( )cosθ − 2Rh − h2 sinθ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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P12.23 When   x = xmin ,  the rod is on the verge 
of slipping, so  

    
  
f = fs( )max

= µsn = 0.50n  

 From   Fx∑ = 0,    n −T cos37° = 0  

 or   n = 0.799T 

 Thus,   f = 0.50 0.799T( ) = 0.399T  

 From   Fy∑ = 0,    f + T sin 37° − 2Fg = 0,  

 or     0.399T + 0.602T − 2Fg = 0,  giving 
  
T = 2.00Fg  

 Using  τ∑ = 0  for an axis perpendicular to the page and through the 
left end of the beam gives  

  
  
−Fg ⋅ xmin − Fg 2.0 m( ) + 2Fg( )sin 37°⎡

⎣
⎤
⎦ 4.0 m( ) = 0  

 which reduces to 
  
xmin = 2.81 m  

P12.24 (a) The force diagram is shown in ANS. FIG. P12.24.  

 (b) From   Fy∑ = 0 ⇒ nF − 120 N − mmonkey g = 0  

  
  
nF = 120 N + 10.0 kg( ) 9.80 m s2( ) = 218 N  

 

ANS. FIG. P12.24 

ANS. FIG. P12.23 



Chapter 12     651 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (c) When x = 2L/3, we consider the bottom end of the ladder as our 
pivot and obtain 

   

  

τ bottom
end

∑ = 0:

          − 120 N( ) L
2

cos60.0°
⎛
⎝⎜

⎞
⎠⎟
− 98.0 N( ) 2 L

3
cos60.0°

⎛
⎝⎜

⎞
⎠⎟

                                   + nW L sin60.0°( ) = 0

 

  or  
  
nW =

60.0 N + 196 3( )  N⎡⎣ ⎤⎦cos60.0°
sin60.0°

= 72.4 N  

  Then,    Fx∑ = 0 ⇒ T − nW = 0     or      T = nW = 72.4 N  

 (d) When the rope is ready to break,   T = nW = 80.0 N.  Then 

 
τ bottom

end
∑ = 0  yields 

    

  

− 120 N( ) L
2

cos60.0°⎛
⎝⎜

⎞
⎠⎟ − 98.0 N( )xcos60.0°

                                          + 80.0 N( ) Lsin60.0°( ) = 0

 

  or 

  

x =
80.0 N( )sin 60.0° − 60.0 N( )cos60.0°[ ]L

98.0 N( )cos60.0°

= 0.802L = 0.802 3.00 m( ) = 2.41 m

 

 (e) If the horizontal surface were rough and the rope removed, a 
horizontal static friction force directed toward the wall would act 
on the bottom end of the ladder. Otherwise, the analysis would be 
much as what is done above. The maximum distance the monkey 
could climb would correspond to the condition that the friction 
force have its maximum value,   µsnF ,  so you would need to know 
the coefficient of static friction between the ladder and the floor to 
solve part (d). 

P12.25 Consider the torques about an axis perpendicular to the page and 
through the left end of the plank.  τ∑ = 0  gives 

   

  

− 700 N( ) 0.500 m( )− 294 N( ) 1.00 m( )
                                                  + T1 sin 40.0°( ) 2.00 m( ) = 0

 

 or    T1 = 501 N  
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 Then,   Fx∑ = 0  gives  

     −T3 + T1 cos 40.0° = 0  

 or  
  
T3 = 501 N( )cos 40.0° = 384 N  

 From     Fy∑ = 0,  

     T2 − 994 N + T1 sin 40.0° = 0,  

 or  
  
T2 = 994 N − 501 N( )sin 40.0° = 672 N  

 

ANS. FIG. P12.25 

 
 

 

Section 12.4 Elastic Properties of Solids 
P12.26 Count the wires. If they are wrapped together so that all support 

nearly equal stress, the number should be 

   
 

20.0 kN
0.200 kN

= 100  

 Since cross-sectional area is proportional to diameter squared, the 
diameter of the cable will be 

   
 
1 mm( ) 100 ~ 1 cm  

P12.27 We use 
  
B = −

ΔP
ΔV /Vi

= −
ΔPVi

ΔV
. 

 (a)  
  
ΔV = − ΔPVi

B
= −

1.13× 108  N m2( ) 1 m3( )
0.21× 1010  N m2 = −0.053 8 m3  

 (b) The quantity of water with mass  1.03 × 103  kg  occupies volume at 

the bottom:  1 m3 − 0.053 8 m3 = 0.946 m3.  

   So its density is 
 

1.03 × 103  kg
0.946 m3

 
 
= 1.09 × 103  kg m3  
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 (c) 

 

With only a 5% volume change in this extreme case, liquid
water is indeed nearly incompressible.

 

P12.28 (a) We find the maximum force from the equation for stress: 
     

  
stress = F

A
= F
πr2

 

     

  

F = stress( )π d
2

⎛
⎝⎜

⎞
⎠⎟

2

F = 1.50 × 108  N m2( )π 2.50 × 10−2  m
2

⎛
⎝⎜

⎞
⎠⎟

2

F = 73.6 kN

 

 (b)  From the definition of Young’s modulus, 
     

  
stress = Y strain( ) = YΔL

Li

 

     
  
ΔL =

stress( )Li

Y
=

1.50 × 108  N m2( ) 0.250 m( )
1.50 × 1010  N m2 = 2.50 mm  

P12.29 From the defining equation for the shear modulus, we find  Δx  as 

    
  
Δx =

hf
SA

=
5.00 × 10−3  m( ) 20.0 N( )

3.0 × 106  N m2( ) 14.0 × 10−4  m2( ) = 2.38 × 10−5 m  

 or   
  
Δx = 2.38 × 10−2  mm  

P12.30 The definition of Young’s modulus, 
  
Y = stress

strain
,  means that Y is the 

slope of the graph:  

     
  
Y =

300 × 106  N m2

0.003
= 1.0 × 1011  N m2  

P12.31 (a) From ANS. FIG. P12.31(a),   
   

  

F =σA

= 4.00× 108  N/m( )
      × π 0.500× 10−2  m( )2⎡

⎣
⎤
⎦

= 3.14× 104  N

  

 

ANS. FIG. P12.31(a) 
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(b) Now the area of the molecular layers 
sliding over each other is the curved 
lateral surface area of the cylinder being 
punched out, a cylinder of radius 0.500 cm 
and height 0.500 cm. So, 

   

  

F =σA
=σ (h)(2πr)

= 4.00× 108  N/m( ) 2π( ) 0.500× 10−2  m( )
                              × 0.500× 10−2  m( )

= 6.28× 104  N

 

P12.32 Let V represent the original volume. Then, 0.090 0V is the change in 
volume that would occur if the block cracked open. Imagine squeezing 
the ice, with unstressed volume 1.09V, back down to its previous 
volume, so  ΔV  = –0.090 0V. According to the definition of the bulk 
modulus as given in the chapter text, we have  

  

  

ΔP = − B(ΔV)
Vi

= −
2.00 × 109  N m2( )(− 0.090 0V)

1.09V

= 1.65× 108 N/m2

 

P12.33 Young’s Modulus is given by 
  
Y = F/A

ΔL/Li
.  

  The load force is  

   F = (200 kg)(9.80 m/s2) = 1 960 N. 

 so 
  
ΔL = FLi

AY = (1 960 N)(4.00 m)(1 000 mm/m)
0.200 × 10–4  m2( ) 8.00 × 1010  N m2( ) = 4.90 mm  

P12.34 Part of the load force extends the cable and part compresses the 
column by the same distance   Δ:  

  

  
F = YAAAΔ

A

+ YsAsΔ
 s

 

ANS. FIG. P12.31(b) 
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 from which we obtain 

 

   

Δ = F
YAAA /A + YsAs / s

= 8 500 N
7 × 1010( )π 0.162 42 − 0.161 42( )/4 3.25( )+ 20× 1010π 0.012 7( )2 /4 5.75( )

= 8.60× 10−4  m
 

P12.35 Let the 3.00-kg mass be mass #1, with the 5.00-kg mass, mass # 2. 
Applying Newton’s second law to each mass gives 

    m1a = T − m1g  [1]  

 and   m2a = m2 g −T  [2] 

 where T is the tension in the wire.  

 Solving equation [1] for the acceleration gives  

  
  
a =

T
m1

− g   

 and substituting this into equation [2] yields 

  
  

m2

m1

T − m2 g = m2 g −T   

 Solving for the tension T gives 

  
  
T =

2m1m2 g
m2 + m1

=
2 3.00 kg( ) 5.00 kg( ) 9.80 m s2( )

8.00 kg
= 36.8 N  

 From the definition of Young’s modulus, 
  
Y =

FLi

A ΔL( ) ,  the elongation of 

the wire is: 
  

  

ΔL = TLi

YA
= 36.8 N( ) 2.00 m( )

2.00× 1011  N m2( )π 2.00× 10−3  m( )2

= 0.029 2 mm

 

P12.36 A particle under a net force model:  

  

 
F =

m v f − vi

Δt

 



656     Static Equilibrium and Elasticity 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 Hence,  

  
  
F =

30.0 kg −10.0 m s − 20.0 m s
0.110 s

= 8.18 × 103  N  

 By Newton’s third law, this is also the magnitude of the average force 
exerted on the spike by the hammer during the blow. Thus, the stress 
in the spike is  

  Stress 
  

=
F
A

=
8.18 × 103  N

π 0.023 0 m( )2
/ 4

= 1.97 × 107  N m2  

 and the strain is  

  strain 
  
=

stress
Y

=
1.97 × 107  N m2

20.0 × 1010  N m2 = 9.85 × 10−5  

 
 

 

Additional Problems 
P12.37 Let nA and nB be the normal forces at the points of support. Then, from 

the translational equilibrium equation in the y direction, we have 
  

  Fy = 0:∑      nA + nB − 8.00× 104 kg( ) g – 3.00× 104 kg( ) g = 0
  

  Choosing the axis at point A, we find, from the condition for rotational 
equilibrium: 

  

  

τ∑ = 0:     

     – 3.00× 104 kg( )(15.0 m)g – 8.00× 104 kg( )(25.0 m)g

               + nB(50.0 m) = 0

  

  We can solve the torque equation directly to find 

  

  

nB =
3.00× 104  kg( ) 15.0 m( )+ 8.00× 104  kg( ) 25.0 m( )⎡⎣ ⎤⎦(9.80 m/s2 )

50.0 m
= 4.80× 105  N

 

  Then the force equation gives 

  
  

nA = (8.00 × 104 kg + 3.00 × 104 kg)(9.80 m/s2 ) − 4.80 × 105 N

= 5.98 × 105 N
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P12.38 (a) 
 
Rigid object in static equilibrium.  

 (b) ANS. FIG. P12.38 shows the free-body diagram. 

 

ANS. FIG. P12.38 

   Mg = (90.0 kg)g = 882 N, and mg = (55.0 kg)g = 539 N. 

 (c) Note that about the right pivot, only n1 exerts a clockwise torque, 
all other forces exert counterclockwise torques except for n2 which 
exerts zero torque. The woman is at x = 0 when n1 is greatest. 
With this location of the woman, the counterclockwise torque 
about the center of the beam is a maximum. Thus, n1 must be 
exerting its maximum clockwise torque about the center to hold 
the beam in rotational equilibrium. 

 (d) 
  
n1 = 0  As the woman walks to the right along the beam, she will 

eventually reach a point where the beam will start to rotate 
clockwise about the rightmost pivot. At this point, the beam is 
starting to lift up off of the leftmost pivot and the normal force 
exerted by that pivot will have diminished to zero. 

 (e) When the beam is about to tip, n1 = 0, and  

     Fy = 0∑  gives 0 + n2 – Mg – mg = 0, or 

   
  n2 = Mg + mg = 882 N + 539 N = 1.42 × 103  N  

 (f) Requiring that the net torque be zero about the right pivot when 
the beam is about to tip (n1 = 0) gives 

     τ∑ = n2 0( )+ 4.00 m − x( )mg + 4.00 m − 3.00 m( )Mg = 0  

  or   mg( )x = 1.00 m( )Mg + 4.00 m( )mg,  and 

   
  
x = 1.00 m( ) M

m
+ 4.00 m  

  Thus,  
  
x = 1.00 m( ) 90.0 kg( )

55.0 kg( ) + 4.00 m = 5.64 m  
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 (g) When n1 = 0 and n2 = 1.42 × 103 N, for torque about the left pivot: 

   
  

τ∑ = 0− 539 N( )x − 882 N( ) 3.00 m( )
                       + 1.42 × 103  N( ) 4.00 m( ) = 0

 

  or 
  
x =

−3.03 × 103  N ⋅m
−539 N

= 5.62 m  

  which, within limits of rounding errors, is  

  
 
the same as the answer to part (f) . 

P12.39   Fy∑ = 0:      + 380 N − Fg + 320 N = 0  

 
  
Fg = 700 N  

 Take torques about her feet: 
  

 τ∑ = 0:     

  

−380 N 1.65 m( ) + 700 N( )x

                              + 320 N( )0 = 0

 

  
  
x = 0.896 m  

P12.40 When the concrete has cured and the pre-stressing tension has been 
released, the rod presses in on the concrete and with equal force, T2, 
the concrete produces tension in the rod. 

 (a) In the concrete:  

    stress 
  
= 8.00 × 106  N m2 = Y ⋅ strain( ) = Y

ΔL
Li

⎛

⎝⎜
⎞

⎠⎟
 

  Thus,     

    
  
ΔL =

stress( )Li

Y
=

8.00 × 106  N m2( ) 1.50 m( )
30.0 × 109  N m2

 

  or  
  
ΔL = 4.00 × 10−4  m = 0.400 mm  

 (b) In the concrete:  
    

  
stress = T2

Ac

= 8.00× 106  N m2
 

ANS. FIG. P12.39 



Chapter 12     659 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  so 

    
  
T2 = 8.00 × 106  N m2( ) 50.0 × 10−4  m2( ) = 40.0 kN  

 (c) For the rod:  

    
  

T2

AR

=
ΔL
Li

⎛

⎝⎜
⎞

⎠⎟
Ysteel  so  

  
ΔL =

T2Li

ARYsteel

 

    

  

ΔL =
4.00× 104  N( ) 1.50 m( )

1.50× 10−4  m2( ) 20.0× 1010  N m2( )
= 2.00× 10−3  m = 2.00 mm

 

 (d) The rod in the finished concrete is 2.00 mm longer than its 
unstretched length. To remove stress from the concrete, one must 
stretch the rod 0.400 mm farther, by a total of 

 
2.40 mm . 

 (e) For the stretched rod around which the concrete is poured: 

    

  

T1

AR

= ΔLtotal

Li

⎛
⎝⎜

⎞
⎠⎟

Ysteel or T1 = ΔLtotal

Li

⎛
⎝⎜

⎞
⎠⎟

ARYsteel

T1 = 2.40× 10−3  m
1.50 m

⎛
⎝⎜

⎞
⎠⎟

1.50× 10−4  m2( ) 20.0× 1010  N m2( )
= 48.0 kN

 

P12.41 We reproduce the forces in ANS. FIG. P12.41. 

 

ANS. FIG. P12.41 

 Requiring that  τ = 0∑ ,  using the shoulder joint at point O as a pivot, 
gives 

   
  τ∑ = Ft sin12.0°( ) 0.080 0 m( )− 41.5 N( ) 0.290 m( ) = 0  

  or   Ft = 724 N  

 Then  
  

  Fy∑ = 0 ⇒ − Fsy + 724 N( )sin12.0°− 41.5 N = 0   
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 yielding 
  
Fsy = 109 N  

   Fx∑ = 0  then gives  

  
  Fsx − 724 N( )cos12.0° = 0,  or   Fsx = 708 N  

 Therefore, 

   
  
Fs = Fsx

2 + Fsy
2 = 708 N( )2

+ 109 N( )2
= 716 N  

P12.42 In the free-body diagram 
of the foot given at the 
right, note that the force   R


 

(exerted on the foot by the 
tibia) has been replaced by 
its horizontal and vertical 
components. Employing 
both conditions of 
equilibrium (using point O 
as the pivot point) gives 
the following three 
equations: 

   
  Fx∑ = 0 ⇒  Rsin15.0°−T sinθ = 0  

 or  
  
R =

T sinθ
sin 15.0°

 [1] 

   Fy∑ = 0 ⇒ 700 N − Rcos15.0° + T cosθ = 0  [2] 
 

  τO∑ = 0 ⇒  − 700 N( ) 18.0 cm( )cosθ[ ]+ T 25.0 cm − 18.0 cm( ) = 0  

 or   T = 1 800 N( )cosθ  [3] 

 Substituting equation [3] into equation [1] gives 

   
  
R =

1 800 N
sin 15.0°

⎛
⎝⎜

⎞
⎠⎟

sinθ cosθ  [4] 

 Substituting equations [3] and [4] into equation [2] yields 

   
 

1 800 N
tan 15.0°

⎛
⎝⎜

⎞
⎠⎟

sinθ cosθ − 1 800 N( )cos2θ = 700 N  

 which reduces to:  sinθ cosθ = tan 15.0°( )cos2θ + 0.104 2  

ANS. FIG. P12.42 
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 Squaring this result and using the identity  sin2θ = 1− cos2θ  gives 
   

 

tan2 15.0°( ) + 1⎡⎣ ⎤⎦cos4θ

            + 2 tan 15.0°( ) 0.104 2( ) − 1⎡⎣ ⎤⎦cos2θ + 0.104 2( )2 = 0

 

 In this last result, let   u = cos2θ  and evaluate the constants to obtain the 
quadratic equation: 

   
  1.071 8( )u2 − 0.944 2( )u + 0.010 9 = 0  

 The quadratic formula yields the solutions u = 0.869 3 and u = 0.0117. 
Thus, 

   
 
θ = cos−1 0.869 3( ) = 21.2°    or   

 
θ = cos−1 0.011 7( ) = 83.8°  

 We ignore the second solution since it is physically impossible for the 
human foot to stand with the sole inclined at 83.8° to the floor. We are 

the left with  θ = 21.2° . 

 Equation [3] then yields 

   
  
T = 1 800 N( )cos21.2° = 1.68 kN  

 and equation [1] gives 

   
  
R =

1.68 × 103  N( )sin 21.2°

sin 15.0°
= 2.34 kN  

P12.43 (a) ANS. FIG. P12.43 shows the force diagram. 

 (b) If x = 1.00 m, then 
   

  

τO∑ = −700 N( ) 1.00 m( )− 200 N( ) 3.00 m( )
− 80.0 N( ) 6.00 m( )
+ T sin60.0°( ) 6.00 m( ) = 0

 

 

ANS. FIG. P12.43 

  Solving for the tension gives:   T = 343 N .  

  From   Fx∑ = 0,    Rx = T cos60.0° = 171 N .  



662     Static Equilibrium and Elasticity 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  From   Fy∑ = 0,    Ry = 980 N −T sin60.0° = 683 N .  

 (c) If T = 900 N:  
    

  

τO∑ = −700 N( )x − 200 N( ) 3.00 m( )− 80.0 N( ) 6.00 m( )
+ 900 N( )sin60.0°[ ] 6.00 m( ) = 0

 

  Solving for x gives   x = 5.14 m .  

P12.44 (a) See ANS. FIG. P12.44 for the force diagram. See the solution in the 
textbook. The weight of the uniform gate is 392 N. It is 3.00 m 
wide. The hinges are separated vertically by 1.80 m. The bucket of 
grain weighs 50.0 N. One of the hinges, which we suppose is the 
upper one, supports the whole weight of the gate. Find the 
components of the forces that both hinges exert on the gate.  

 (b) From the torque equation, 

   
  
C =

738 N ⋅m
1.8 m

= 410 N  

  Then A = 410 N. Also B = 442 N. 

  
 

The upper hinge exerts 410 N to the left and 442 N up.
The lower hinge exerts 410 N to the right.

 

 

ANS. FIG. P12.44 

P12.45 We know that the direction of the force from the cable at the right end 
is along the cable, at an angle of θ above the horizontal. On the other 
end, we do not know magnitude or direction for the hinge force   


R  so 

we show it as two unknown components. 

  The first condition for equilibrium gives two equations:   
  

  

Fx = 0:∑ +Rs – T cosθ = 0

Fy = 0:∑ +Ry – Fg + T sinθ = 0
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  Taking torques about the left end, we find the second condition is 
   

  

τ = 0:∑
       Ry(0) + Rs(0) – Fg(d + L) + (0)(T cosθ) + (d + 2L)(T sinθ) = 0

 

 

ANS. FIG. P12.45 

  (a) The torque equation gives 
  
T =

Fg L + d( )
sinθ 2L + d( )    

 (b) Now from the force equations,  

    
  
Rx =

Fg L + d( )cotθ
2L + d

 and 
  
Ry =

FgL

2L + d
 

P12.46 ANS. FIG. P12.46 shows the force diagram.  

  τ point O∑ = 0  gives 

  

   

T cos25.0°( ) 3
4

sin 65.0°⎛
⎝⎜

⎞
⎠⎟ + T sin 25.0°( ) 3

4
cos65.0°⎛

⎝⎜
⎞
⎠⎟

= 2 000 N( ) cos65.0°( ) + 1 200 N( ) 
2

cos65.0°⎛
⎝⎜

⎞
⎠⎟

 

 From which, 
  
T = 1 465 N = 1.46 kN  

 From   Fx∑ = 0,  

  
  
H = T cos25.0° = 1 328 N toward right( ) = 1.33 kN  

 From   Fy∑ = 0,  

  
  
V = 3 200 N −T sin 25.0° = 2 581 N upward( ) = 2.58 kN  
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ANS. FIG. P12.47 

 

ANS. FIG. P12.46 

P12.47 We interpret the problem to mean that the 
support at point B is frictionless. Then the 
support exerts a force in the x direction 
and 

   

  

FBy = 0

Fx∑ = FBx − FAx = 0

FAy − 3 000 + 10 000( ) g = 0

 

 and  
    

  

τ∑ = − 3 000g( ) 2.00( )
               − 10 000g( ) 6.00( )+ FBx 1.00( ) = 0

   

 These equations combine to give the magnitudes of the components:  

   
  

FAx = FBx = 6.47 × 105  N

FAy = 1.27 × 105  N
 

 

     

The forces are:

FA = (−6.47 × 105 î + 1.27 × 105 ĵ) N

and     

FB = 6.47 × 105 î N

 

P12.48 (a) Choosing torques about the hip joint,  τ∑ = 0  
gives 

   

  

−
L
2

350 N( ) + T sin 12.0°( ) 2L
3

⎛
⎝⎜

⎞
⎠⎟

                                − 200 N( )L = 0

 

  From which, 
  
T = 2.71 kN . 

ANS. FIG. P12.48 
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 (b) Let  Rx =  compression force along spine, and from  Fx∑ = 0:  

	   	   	     
Rx = Tx = T cos12.0° = 2.65 kN  

 (c) 

 

You should lift “with your knees” rather than “with your back.”
In this situation, with a load weighing only 200 N, you can
make the compressional force in your spine about ten times
smaller by bending your knees and lifting with your back as
straight as possible.

 

 (d) 

 

In this situation, you can make the compressional force in your
spine about ten times smaller by bending your knees and lifting
with your back as straight as possible

 

P12.49 From ANS. FIG. P12.49, the angle   

T  makes with 

the rod is θ = 60.0°+ 20.0° = 80.0° and the 
perpendicular component of   


T  is T sin 80.0°. 

 Summing torques around the base of the rod, and 
applying Newton’s second law in the horizontal 
and vertical directions, we have 

   

  

τ∑ = 0:      − (4.00 m)(10 000 N)cos60°
                              + T(4.00 m) sin 80.0° = 0

  

  (a) Solving the above equation for T gives  
    

  
T = (10 000 N) cos (60.0ο)

sin(80.0ο)
= 5.08 kN

 

  (b) In the horizontal direction, 
   

  Fx = 0:      ∑ FH –T cos(20.0°) = 0  

  so    FH =T cos(20.0°) = 4.77 kN  

   (c) From
  

Fy = 0:∑ FV + T  sin (20.0°) – 10 000 N = 0,  

  we find  
   

  FV = (10 000 N) – T  sin(20.0°) = 8.26 kN   

 

ANS. FIG. P12.49 
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P12.50 The cabinet has height    = 1.00 m,  width w = 0.600 m, and weight  
Mg = 400 N. The force F = 300 N is applied by the worker in the first 
case at height h1 = 0.100 m and in the second at height h2 = 0.650 m. 

 Consider the magnitudes of the torques about the lower right front 
edge of the cabinet from the weight Mg and from the applied force F 
for the two values of h. 

 The torque from the weight is the same in each case: 

 Cases 1 and 2 
  

  

τG = Mg
w
2

= 400 N( ) 0.300 m( ) = 120 N ⋅m

 

 The torque from force F is different in each 
case: 

 Case 1 
  

  

τ F = F cos37.0°( )h1

= 300 N cos37.0°( ) 0.100 m( )
τ F = 24.0 N ⋅m

 

 Case 2 
   

  

τ F = F cos37.0°( )h2

= 300 N cos37.0°( ) 0.650 m( )
τ F = 156 N ⋅m

 

 We see in Case 1 that the counterclockwise torque from the weight is 
greater than the clockwise torque from the applied force. If the cabinet 
is to slide without acceleration, the net torque must be zero; this is 
possible because the normal force from the floor can provide 
additional clockwise torque. We see in Case 2, however, that the 
counterclockwise torque from the weight is smaller than the clockwise 
torque from the applied force, but no other force is available to provide 
addition counterclockwise torque, so the net torque cannot be zero. 

 

 

The situation is impossible because the new technique would tip the
cabinet over.

 

ANS. FIG. P12.50 
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P12.51 (a) We use   Fx = Fy = τ = 0∑∑∑  and  
choose the axis at the point of contact  
with the floor to simplify the torque  
analysis. Since the rope is described as  
very rough, we will assume that it will  
never slip on the end of the beam. First,  
let us determine what friction force at  
the floor is necessary to put the system  
in equilibrium; then we can check  
whether that friction force can be  
obtained. 

   

  

Fx = 0:∑ T − f = 0

Fy = 0:∑ n− Mg − mg = 0

τ = 0:∑ Mg(cosθ)L + mg(cosθ) L
2 −T(sin θ)L = 0

 

  Solving the torque equation, we find 
  
T = M + 1

2
m⎛

⎝⎜
⎞
⎠⎟ g cotθ .  

  Then the horizontal-force equation implies by substitution that 
this same expression is equal to f. In order for the beam not to 
slip, we need   f ≤ µsn.  Substituting for n and f from the above 
equations, we obtain the requirement 

   

  
µs ≥

M + m/2
M + m

⎡
⎣⎢

⎤
⎦⎥
cotθ

 

  The factor in brackets is always < 1, so if  µ ≥ cotθ  then M can be 
increased without limit. In this case, there is no maximum mass! 
Otherwise, if   µs < cotθ ,  the equality will apply on the verge of 
slipping, and solving for M yields 

   

  
M = m

2
2µs sinθ – cosθ
cosθ – µs sinθ

⎡
⎣⎢

⎤
⎦⎥

 

 (b) At the floor, we see that the normal force is in the y direction and 
the friction force is in the –x direction. The reaction force 
exerted by the floor then has magnitude 

    

  
R = n2 + µsn( )2  = g(M + m) 1 + µs

2
 

 (c) At point P, the force of the beam on the rope is in magnitude 
   

  
F = T 2 + (Mg)2 = g M2 + µs

2(M + m)2
 

ANS. FIG. P12.51 
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P12.52 First, we resolve all forces into 
components parallel to and perpendicular 
to the tibia, as shown. Note that  θ = 40.0°  
and 

  
  

wy = 30.0 N( )sin 40.0° = 19.3 N

Fy = 12.5 N( )sin 40.0° = 8.03 N
 

 and 

  
  
Ty = T sin 25.0°  

 Using  τ∑ = 0  for an axis perpendicular to 
the page and through the upper end of the 
tibia gives 

  
  
T sin 25.0°( ) d

5
− 19.3 N( ) d

2
− 8.03 N( )d = 0  

 or   T = 209 N  

P12.53 (a) From the symmetry of the 
situation, we may conclude that 
the magnitude of the upward force 
on each hand is half the weight of 
the athlete: Fh = 750 N/2 = 375 N. 
Considering the shoulder joint as 
the pivot, the second condition of 
equilibrium gives 

   

  

τ∑ = 0 ⇒  Fh 70.0 cm( )
− Fm sin 45°( ) 4.00 cm( ) = 0

 

  or  
  
Fm =

375 N( ) 70.0 cm( )
4.00 cm( )sin 45°

= 9.28 kN  

 (b) The moment arm of the force is no longer 70.0 cm from the 
shoulder joint but only 49.5 cm: 

   

  

τ∑ = 0 ⇒  Fh 70.0 cm( )sin 45°− Fm sin 45°( ) 4.00 cm( ) = 0

Fm = 375 N( ) 70.0 cm( )
4.00 cm( ) = 6.56 kN

 

  therefore reducing Fm to 6.56 kN. 

ANS. FIG. P12.52 
 

ANS. FIG. P12.53 
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P12.54 (a) The height of pin B is 

    10.0 m( )sin 30.0° = 5.00 m  

  The length of bar BC is then 

   
  
BC =

5.00 m
sin 45.0°

= 7.07 m  

  Consider the entire truss: 
   

  

Fy∑ = nA − 1 000 N + nC = 0

τ A∑ = − 1 000 N( )10.0cos30.0°

                   + nC 10.0cos30.0° + 7.07 cos 45.0°[ ] = 0

 

  Which gives 
  
nC = 634 N .  

  Then, 
  

nA = 1 000 N − nC = 366 N  

 (b) Joint A:   Fy = 0∑ :    −CAB sin 30.0° + 366 N = 0  

  so 
  
CAB = 732 N  

  
  Fx∑ = 0:   

     −CAB cos30.0° + TAC = 0  

   
  
TAC = 732 N( )cos30.0° = 634 N  

  Joint B:  
   

  Fx∑ = 0:     732 N( )cos30.0°−CBC cos 45.0° = 0  

   
  
CBC =

732 N( )cos30.0°
cos 45.0°

= 897 N  

P12.55 Considering the torques about the point at the bottom of the bracket 
yields: 

   
  W 0.0500 m( ) − Fhor 0.0600 m( ) = 0 so Fhor = 0.833W  

 (a) With W = 80.0 N,   Fhor = 0.833 80 N( ) = 66.7 N . 

 (b) Differentiate with respect to time:   dFhor/dt = 0.833 dW/dt.  

  Given that dW/dt = 0.150 N/s: 

  
  

The force exerted by the screw is increasing at the rate dFhor/dt =
0.833(0.150 N/s) = 0.125 N/s.

 

ANS. FIG. P12.54(a) 

ANS. FIG. P12.54(b) 
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P12.56 Refer to the solution to P12.57 for a 
general discussion of the solution. 

 From the geometry of the ladder, 
observe that 

   

 
cosθ =

1
4
→θ = 75.5°

 

 In the following, we use the variables 
m = 70.0 kg, length 
   AC = BC =  = 4.00 m,  and d = 3.00 m. 

 Consider the net torque about point A (on the bottom left side of the 
ladder) from external forces on the whole ladder. The torques about A 
come from the weight of the painter and the normal force nB. 

   

   

τ A∑ = −mgd cos 75.5° + nB

2

= 0

→ nB = 2


mgd cos 75.5° = 2


mgd
1
4

⎛
⎝⎜

⎞
⎠⎟ → nB = mgd

2

 

 Consider the net torque about point B (on the bottom right side of the 
ladder) from external forces on the whole ladder. The torques about B 
come from the weight of the painter and the normal force nA. 

   

   

τ B∑ = −nA

2

+ mg

2
− d cos 75.5°⎛

⎝⎜
⎞
⎠⎟ = 0

→ nA

2

= mg

2
− d cos 75.5°⎛

⎝⎜
⎞
⎠⎟

nA = 2


mg

2
− d cos 75.5°⎛

⎝⎜
⎞
⎠⎟ = mg 1− d

2
⎛
⎝⎜

⎞
⎠⎟

 

 Consider the torque from external forces about point C at the top of the 
right half of the ladder: 

   

   

τC∑ = −T

2

sin 75.5° + nB

4

= 0

→T = nB
1

2 sin 75.5°
= mgd

2
1

2 sin 75.5°

→T = mgd
4 sin 75.5°

 

 Note that the tension T on the right half of the ladder must pull to the 
left, otherwise it could not contribute a clockwise torque about C to 
balance the counterclockwise torque from nB. 

ANS. FIG. P12.56 
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 Now we find the components of the reaction force that the left half of 
the ladder exerts on the right half. Consider the forces acting on the 
right half of the ladder: 

   

  

Fx∑ = Rx −T = 0→ Rx = T , to the right

Fy∑ = Ry + nB = 0→ Ry = −nB → Ry = nB , downward

 

 Collecting our results, we find 

 (a) 
   
T = mgd

4 sin 75.5°
=

70.0 kg( ) 9.80 m/s2( ) 3.00 m( )
4 4.00 m( )sin 75.5°

  →   T = 133 N  

 (b) 
   
nA = mg 1−

d
2

⎛
⎝⎜

⎞
⎠⎟

 

  
  
nA = 70.0 kg( ) 9.80 m/s2( ) 1−

2 3.00 m( ) 1 4( )
4.00 m

⎛

⎝
⎜

⎞

⎠
⎟ → nA = 429 N  

  and 

   
   
nB =

mgd
2

=
70.0 kg( ) 9.80 m/s2( ) 3.00 m( )

2 4.00 m( ) → nB = 257 N  

 (c) The force exerted by the left half of the ladder on the right half is 
to the right and downward: 

   
  
Rx = T → Rx = 133 N, to the right    

  and 
  
Ry = −nb → Ry = −257 N → Ry = 257 N, downward  

P12.57 From the geometry of Figure P12.56 and ANS. FIG. P12.56, we observe 
that 

   

  
cosθ =

 4


=
1
4

 

 and   
   

 

sinθ = 1− cos2θ = 1−
1
4

⎛
⎝⎜

⎞
⎠⎟

2

= 1−
1

16
=

15
16

sinθ =
15
4

 

 (a) Below in part (b) we show that normal force    nB = mgd/2.  We use 
this result here to find the tension T in the horizontal bar. 
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  Consider the torque about point C at the top of the right half of 
the ladder: 

   

   

τC∑ = −T

2

sinθ + nB

4

= 0

T = nB

4

⎛
⎝⎜

⎞
⎠⎟

2
 sinθ

= mgd
2


4

⎛
⎝⎜

⎞
⎠⎟

2
 sinθ

= mgd
4 sinθ

= mgd
4 15 4( )

T = mgd
 15

 

  Note that the tension T on the right half of the ladder must pull to 
the left, otherwise it could not contribute a clockwise torque 
about C to balance the counterclockwise torque from nB. 

 (b) We now proceed to find the normal forces nA and nB. 

  First, consider the net torque from all forces acting on the ladder 
about point B at the bottom right side of the whole ladder. Note 
that tension T on the left half of the ladder and tension T on the 
right half of the ladder have opposite torques because they have 
the same moment arms about point B, so their torques cancel 
(they are forces internal to the system, so they cannot contribute 
to net torque). In like manner, torques from Rx and Ry on both 
halves of the ladder cancel in pairs (again, they are internal 
forces). The only contributing torques come from the weight of 
the painter and the normal force nA (these are forces external to 
the ladder). 

   

   

τ B∑ = −nA

2

+ mg

2
− d cos θ⎛

⎝⎜
⎞
⎠⎟ = 0

nA

2

= mg

2
− d

4
⎛
⎝⎜

⎞
⎠⎟

nA

2

= mg
2− d

4
⎛
⎝⎜

⎞
⎠⎟

nA = 2


mg
2− d

4
⎛
⎝⎜

⎞
⎠⎟

nA = mg 2− d( )
2

 

  Now, consider the net torque from all forces acting on the ladder 
about point A on the bottom left side of the whole ladder. 
Similarly to the case of the torques about point B, the only 
contributing torques about A come from the weight of the painter 
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and the normal force nB (again, these are external forces). 
   

   

τ A∑ = −mgdcosθ + nB

2

= 0

→ nB = 2


mgdcosθ = 2


mgd
1
4

⎛
⎝⎜

⎞
⎠⎟ → nB = mgd

2

 

 (c) Now we find the components of the reaction force that the left 
half of the ladder exerts on the right half. Consider the forces 
acting on the right half of the ladder: 

   

   

Fx∑ = Rx −T = 0→ Rx = T

                  Rx = mgd
15

, to the right

Fy∑ = Ry + nB = 0→ Ry = −nB = − mgd
2

                  Ry = mgd
2

, downward

 

P12.58 (a) 
  
F = m

Δv
Δt

⎛
⎝⎜

⎞
⎠⎟ = 1.00 kg( ) 10.0− 1.00( )  m s

0.002 s
= 4 500 N  

 (b) 
  
stress =

F
A

=
4 500 N

0.010 m( ) 0.100 m( ) = 4.50 × 106  N m2  

 (c) 
 

Yes.  This is more than sufficient to break the board. 

P12.59 (a) Take both balls together. Their weight is 2mg = 3.33 N and their 
CG is at their contact point. 

   

  

Fx∑ = 0:+ P3 − P1 = 0→ P3 = P1

Fy∑ = 0: + P2 − 2mg = 0→ P2 = 2mg = 3.33 N

  

  For torque about the contact point (CP) between the balls: 
   

  

τCP∑ = 0:     P1 Rcos 45.0°( )− P2 Rcos 45.0°( )+ P3 Rcos 45.0°( )
− mg Rcos 45.0°( )+ mg Rcos 45.0°( ) = 0
→ P1 − P2 + P3 = 0→ P1 + P3 = P2

 

  Substituting P3 = P1, we find 

     2P1 = P2 = 2mg → P1 = mg  
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  Therefore,  

   
  
P1 = P3 = 1.67 N  

 

ANS. FIG. P12.59(a) 

 (b) Take the upper ball. The lines of action of its weight, of   P1
, and of 

the normal force n exerted by the lower ball all go through its 
center, so for rotational equilibrium there can be no frictional 
force. 

     Fx∑ = 0:    ncos 45.0° − P1 = 0  

    
  
n =

1.67 N
cos 45.0°

= 2.36 N  

     Fy∑ = 0:    nsin 45.0° − 1.67 N = 0   gives the same result. 

 

ANS. FIG. P12.59(b) 

P12.60 We will let F represent some stretching force and use algebra to 
combine the Hooke’s-law account of the stretching with the Young’s-
modulus account. Then integration will reveal the work done as the 
wire extends. 

  (a) According to Hooke’s law,     |

F|= kΔL  

   Young’s modulus is defined as 
  
Y = F/A

ΔL/L
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   By substitution, 
     

  
Y = k

L
A

or k = YA
L

  

 (b) The spring exerts force –kx. The outside agent stretching it exerts 
force +kx. We can determine the work done by integrating the 
force kx over the distance we stretch the wire. 

   
  
W = − F  dx = − (−kx)dx =

0

ΔL

∫ YA
L

x dx
0

ΔL

∫ = YA
L

1
2

x2( )⎡
⎣⎢

⎤
⎦⎥ x = 0

x = ΔL

0

ΔL

∫  

  Therefore, 
   

  
W = 1

2
YA ΔL( )2 /L

 

P12.61 Let θ represent the angle of the wire with 
the vertical. The radius of the circle of 
motion is   r = Lsinθ , where L = 0.850 m. 

 For the mass: 
   

  

Fr∑ = mar = m
v2

r
= mrω 2

              T sinθ = m Lsinθ[ ]ω 2

 

 Further, 
 

T
A

= Y ⋅
ΔL
L

 or 
 
T = AY ⋅

ΔL
L

 

 Thus,   AY ⋅ ΔL L( ) = mLω 2 ,  giving 

 

  
ω =

AY ⋅ ΔL L( )
mL

=
π 3.90 × 10−4  m( )2

7.00 × 1010  N m2( ) 1.00 × 10−3( )
1.20 kg( ) 0.850 m( )

 

 or  
 
ω = 5.73 rad s  

P12.62 (a), (b) Use the first diagram and sum the torques about the lower 
front corner of the cabinet. 

   
  τ∑ = 0⇒−F 1.00 m( )+ 400 N( ) 0.300 m( ) = 0  

  yielding 
  
F =

400 N( ) 0.300 m( )
1.00 m

= 120 N  

     Fx∑ = 0⇒− f + 120 N = 0,  or   f = 120 N  

ANS. FIG. P12.61 
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  Fy∑ = 0⇒−400 N + n = 0  

  so   n = 400 N  

  Thus, 

   
  
µs =

f
n

=
120 N
400 N

= 0.300  

 (c) Apply F’ at the upper rear corner and directed so 

 θ + φ = 90.0°  to obtain the largest possible lever 
arm. 

   
 
θ = tan−1 1.00 m

0.600 m
⎛
⎝⎜

⎞
⎠⎟

= 59.0°  

  Thus,  φ = 90.0° − 59.0° = 31.0°  

  Sum the torques about the lower front corner 
of the cabinet: 

   
  − ′F 1.00 m( )2 + 0.600 m( )2 + 400 N( ) 0.300 m( ) = 0  

  so 
  
′F =

120 N ⋅m
1.17 m

= 103 N  

  Therefore, the minimum force required to tip the cabinet is 
  

 

103 N applied at 31.0° above the horizontal at the upper 
left corner

 

*P12.63 (a) Consider the torques about an axis perpendicular to the page 
through the left end of the rod, as shown in ANS. FIG. P12.63. 

   

  

τ = 0:∑
    T 6.00 m( )cos30.0°− 100 N( ) 3.00 m( )− 500 N( ) 4.00 m( ) = 0

  

  then, 
   

  

T = 100 N( ) 3.00 m( )+ 500 N( ) 4.00 m( )
6.00 m( )cos30.0°

= 443 N

 

 (b) From the first condition for equilibrium, 

   

  

Fx∑ = 0:
        Rx = T sin 30.0° = 443 N( )sin 30.0°

            = 221 N toward the right

 

ANS. FIG. P12.62 
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  Similarly,  
  

  

Fy∑ = 0:

        Ry + T cos30.0°− 100 N − 500 N = 0

 

  which gives 
  

  

Ry = 600 N −T cos30.0° = 600 N − 443 N( )cos30.0°

= 217 N upward

 

 

ANS. FIG. P12.63 

P12.64 Let the original length (when the cable is laid 
horizontally on a frictionless surface) of an 
infinitesimal piece of the cable be dy. Let the 
extension of this piece be dL when the cable is 
hung vertically. Then, for the entire cable, 

   
  
ΔL =  dL∫  = 

F
AY

dy∫  

 where F is the weight of the cable below a point 
at position y. Evaluating F, with µ  as the mass 
per unit length, 

   

  

ΔL = 
µy( )g
AY

dy∫  =  µg
AY

y dy
0

L

∫  

=  µg
AY

L2

2
⎛
⎝⎜

⎞
⎠⎟
 =  1

2
µgL2

AY
⎛
⎝⎜

⎞
⎠⎟

 

   

  

ΔL = 1
2

2.40 kg/m( ) 9.80 m/s2( ) 500 m( )2

2.00× 1011  N/m2( ) 3.00× 10−4  m2( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 0.049 0 m = 4.90 cm

 

 
 

ANS. FIG. P12.64 
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Challenge Problems 
P12.65 With    as large as possible, n1 and n2 will both be large. The equality 

sign in   f2 ≤ µsn2  will be true, but the less-than sign will apply in 

  f1 < µsn1.  Take torques about the lower end of the pole. 

   
   
n2cosθ + Fg

1
2


⎛
⎝⎜

⎞
⎠⎟

cosθ − f2sinθ = 0  

 Setting   f2 = 0.576n2
, the torque equation becomes 

   
  
n2 1− 0.576tanθ( ) +

1
2

Fg = 0  

 Since   n2 > 0 , it is necessary that 

   

   

1− 0.576tanθ < 0

∴ tanθ >
1

0.576
= 1.736

∴θ > 60.1°

∴ =
d

sinθ
<

7.80 ft
sin 60.1°

= 9.00 ft

 

 

ANS. FIG. P12.65 

P12.66 Consider forces and torques on the beam. 
  

  

Fx∑ = 0:      Rcosθ −T cos53° = 0
Fy∑ = 0:      Rsinθ + T sin 53°− 800 N = 0

τ∑ = 0:      T sin 53°( ) 8.00 m( )− 600 N( )d

                                                       − 200 N( ) 4.00 m( ) = 0

 

 (a) Suppressing units, we find  

   
  
T =

600d + 800
8sin 53°

= 93.9d + 125, in N  
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 (b) From substituting back, 
   

  

Rcosθ = 93.9d + 125[ ]cos53.0°

Rsinθ = 800 N − 93.9d + 125[ ]sin 53.0°

 

  Dividing,  
   

  
tanθ = Rsinθ

Rcosθ
= − tan 53.0° + 800 N

93.9d+125( )cos53.0°

 

   

  
tanθ = 32

3d + 4
− 1⎛

⎝⎜
⎞
⎠⎟ tan 53.0°

 

 (c) To find R we can work out   R
2 cos2θ + R2 sin2θ = R2 .  From the 

expressions above for   Rcosθ  and   Rsinθ ,  
   

  

R2 = T 2 cos2 53° + T 2 sin2 53°− 1 600T sin 53° + 800 N( )2

R2 = T 2 − 1 600T sin 53° + 640 000

R2 = 93.9d + 125( )2 − 1 278 93.9d + 125( ) + 640 000

R = 8.82 × 103 d2 − 9.65× 104 d + 4.96× 105( )1 2

 

 (d) 

  

As d increases, T  grows larger, θ  decreases, and R decreases
until about d = 5.4 m, then it increases. Notes as d increases,

the d2  term predominates.

 

P12.67 Imagine gradually increasing the force P. This 
will make the force of static friction at the bottom 
increase, so that the normal force at the wall 
increases and the friction force at the wall can 
increase. As P reaches its maximum value, the 
cylinder will turn clockwise microscopically to 
stress the welds at both contact points and make 
both forces of friction increase to their maximum 
values. 

 When it is on the verge of slipping, the cylinder 
is in equilibrium. 

     Fx∑ = 0:    → f1 = n2 = µsn1    and   f2 = µsn2  

     Fy∑ = 0:    → P + n1 + f2 = Fg  

    τ∑ = 0:    → −PR + f1R + f2R = 0→ P = f1 + f2  

ANS. FIG. P12.67 
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 As P grows, so do   f1
 and   f2 .  Therefore, since 

  
µs =

1
2

,  

   
  
f1 =

n1

2
  and 

  
f2 =

n2

2
=

n1

4
 

 then  
  
P + n1 +

n1

4
= Fg   

 and  
  
P =

n1

2
+

n1

4
=

3
4

n1   

 So 
  
P +

5
4

n1 = Fg  becomes 
  
P +

5
4

4
3

P
⎛
⎝⎜

⎞
⎠⎟

= Fg  or 
  

8
3

P = Fg .  

 Therefore, 
  
P =

3
8

Fg .  

P12.68 (a) Just three forces act on the rod: forces perpendicular to the sides 
of the trough at A and B, and its weight. The lines of action of the 
normal forces at A and B will intersect at a point above the rod so 
that those forces will have no torque about this point. The rod’s 
weight will cause a torque about the point of intersection as in 
ANS. FIG. P12.68(a), and the rod will not be in equilibrium unless 
the center of the rod lies vertically below the intersection point, as 
in ANS. FIG. P12.68(b). All three forces must be concurrent. Then 
the line of action of the weight is a diagonal of the rectangle 
formed by the two normal forces, and the rod’s center of gravity 
is vertically above the bottom of the trough. 

 

ANS. FIG. P12.68(a) 

 (b) In ANS. FIG. P12.68(b),  AO cos30.0° = BO cos60.0°  and 

   

  

L2 = AO
2

+ BO
2

= AO
2

+ AO
2 cos2 30.0°

cos2 60.0°
⎛
⎝⎜

⎞
⎠⎟

AO =
L

1 + cos30°
cos60°

⎛
⎝⎜

⎞
⎠⎟

2
=

L
2
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  So  
  
cosθ =

AO
L

=
1
2

 and 
 
θ = 60.0°  

 

ANS. FIG. P12.68(b) 

 (c)  Unstable.  If the rod is displaced slightly, it will slip until it lies 
along the left edge of the trough where its center of gravity will 
be lower. 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 
P12.2 The situation is impossible because x is larger than the remaining 

portion of the beam, which is 0.200 m long. 

P12.4 x = −1.50 m; y = −1.50 m 

P12.6 
  

R
6

 

P12.10 2.94 kN; 4.41 kN 

P12.8 (a) m1 = 9.00 g; (b) m2 = 52.5 g; (c) m3 = 49.0 g 

P12.12 (a) U = 88.2 N; (b) D = 58.8 N 

P12.14 (a)  
  

1
2

m1g +
x
L

⎛
⎝⎜

⎞
⎠⎟

m2 g
⎡

⎣
⎢

⎤

⎦
⎥cotθ , (m1 + m2)g; (b) 

  

m1 / 2 + m2d / L( )cotθ
m1 + m2

 

P12.16 (a) See ANS. FIG. P12.16; (b) 
  

mg
2

cotθ ;  (c) T = µsmg; (d) 
  
µs = 1

2
cotθ ;   

(e) The ladder slips 

P12.18 (a) See ANS. FIG. P12.18; (b) 392 N; (c) 339 N to the right; (d) 0;  
(e) V = 0; (f) 392 N; (g) 339 N to the right; (h) The two solutions agree 
precisely. They are equally accurate. 

P12.20 (a) No time interval. The horse’s feet lose contact with the drawbridge 
as soon as it begins to move; (b) 1.73 rad/s; (c) 2.22 rad/s; (d) 6.62 kN. 
The force at the hinge is 

  
4.72î + 6.62 ĵ( )kN ; (e) 59.1 kJ 

P12.22 (a) 

  

mg 2Rh − h2

R − h( )cosθ − 2Rh − h2 sinθ
;  

 (b) 
  

mg 2Rh− h2 cosθ
R − h( )cosθ − 2Rh− h2 sinθ

 and mg 1+ 2Rh− h2 cosθ
(R − h)cosθ − 2Rh− h2 sinθ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

P12.24 (a) See ANS. FIG. P12.24; (b) 218 N; (c) 72.4 N; (d) 2.41 m; (e) See 
P12.24(e) for full explanation. 

P12.26 ~ 1 cm 

P12.28 (a) 73.6 kN; (b) 2.50 mm 

P12.30 1.0 × 1011 N/m2 

P12.32 1.65 × 108 N/m2 

P12.34 8.60 × 10–4 m 
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P12.36 9.85 × 10–5 

P12.38 (a) Rigid object in static equilibrium; (b) See ANS. FIG. P12.38; (c) The 
woman is at x = 0 when n1 is greatest; (d) n1 = 0; (e) 1.42 × 103 N;  
(f) 5.64 m; (g) same as answer (f) 

P12.40 (a) 0.400 mm; (b) 40.0 kN; (c) 2.00 mm; (d) 2.40 mm; (e) 48.0 kN 

P12.42 θ = 21.2°; T = 1.68 kN; R = 2.34 kN 

P12.44 (a) See ANS. FIG. P12.44 for the force diagram and see P12.44(a) for a 
sample problem statement. (b) The upper hinge exerts 410 N to the left 
and 442 N up. The lower hinge exerts 410 N to the right. 

P12.46 T = 1.46 kN; H = 1.33 kN; V = 2.58 kN 

P12.48 (a) 2.71 kN; (b) 2.65 kN; (c) You should lift “with your knees” rather 
than “with your back”; (d) In this situation, you can make the 
compressional force in your spine about ten times smaller by bending 
your knees and lifting with your back as straight as possible. 

P12.50 The situation is impossible because the new technique would tip the 
cabinet over. 

P12.52 209 N 

P12.54 (a) nC = 634 N, nA = 1 000 N – nC = 366 N; (b) CAB = 732 N, TAC = 634 N, 
and CBC = 897 N 

P12.56 (a) T = 133 N; (b) nA = 429 N, nB = 257 N; (c) Rx = 133 N, to the right,  
Ry = 257 N, downward 

P12.58 (a) 4 500 N; (b) 4.50 × 106 N/m2; (c) yes 

P12.60 
  
(a)

YA
L

; (b) YA
(ΔL)2

2L
 

P12.62 (a and b) 120 N, 0.300; (c) 103 N applied at 31.0° above the horizontal at 
the upper left corner. 

P12.64 4.90 cm 

P12.66 (a) 93.9d + 125, in N; (b) See P12.66(b) for full derivation; (c) See 
P12.66(c) for full derivation; (d) As d increases, T grows larger, θ 
decreases, and R decreases until about d = 5.4 m, then it increases. Note 
as d increases, the d2 term predominates. 

P12.68 (a) See P12.68(a) for the full explanation; (b) 60.0°; (c) unstable 
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13 
Universal Gravitation 

 

CHAPTER OUTLINE 
 

13.1 Newton’s Law of Universal Gravitation 

13.2 Free-Fall Acceleration and the Gravitational Force 

13.3 Analysis Model: Particle in a Field (Gravitational) 

13.4 Kepler’s Laws and the Motion of Planets 

13.5 Gravitational Potential Energy 

13.6 Energy Considerations in Planetary and Satellite Motion 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ13.1 Answer (c). Ten terms are needed in the potential energy: 

  U = U12 + U13 + U14 + U15 + U23 + U24 + U25 + U34 + U35 + U45 

OQ13.2 The ranking is a > b = c. The gravitational potential energy of the 
Earth-Sun system is negative and twice as large in magnitude as the 
kinetic energy of the Earth relative to the Sun. Then the total energy 
is negative and equal in absolute value to the kinetic energy.  

OQ13.3 Answer (d). The satellite experiences a gravitational force, always 
directed toward the center of its orbit, and supplying the centripetal 
force required to hold it in its orbit. This force gives the satellite a 
centripetal acceleration, even if it is moving with constant angular 
speed. At each point on the circular orbit, the gravitational force is 
directed along a radius line of the path, and is perpendicular to the 
motion of the satellite, so this force does no work on the satellite. 

OQ13.4 Answer (d). Having twice the mass would make the surface 
gravitational field two times larger. But the inverse square law says 
that having twice the radius would make the surface acceleration due 
to gravitation four times smaller. Altogether, g at the surface of B 
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becomes (2 m/s2)(2)/4 = 1 m/s2. 

OQ13.5 Answer (b). Switching off gravity would let the atmosphere 
evaporate away, but switching off the atmosphere has no effect on 
the planet’s gravitational field. 

OQ13.6 Answer (b). The mass of a spherical body of radius R and 
density ρ is M = ρV = ρ(4πR3/3). The escape velocity from the 
surface of this body may then be written in either of the following 
equivalent forms: 

  
  
vesc =

2GM
R

    and
  
vesc =

2G
R

4πρR3

3
⎛
⎝⎜

⎞
⎠⎟

=
8πρGR2

3
 

 We see that the escape velocity depends on the three properties 
(mass, density, and radius) of the planet. Also, the weight of an 
object on the surface of the planet is Fg = mg = GMm/R2, giving 

  
  
g = GM R2 =

G
R2 ρ 4πR3

3
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

4
3
πρGR  

 The free-fall acceleration at the planet’s surface then depends on the 
same properties as does the escape velocity. Changing the value of g 
would necessarily change the escape velocity. Of the listed 
quantities, the only one that does not affect the escape velocity is the 
mass of the object. 

OQ13.7 (i) Answer (e). According to the inverse square law, 1/42 = 16 times 
smaller. 

 (ii) Answer (c). mv2/r = GMm/r2 predicts that v is proportional to 
(1/r)1/2, so it becomes (1/4)1/2 = 1/2 as large. 

 (iii) Answer (a). According to Kepler’s third law, (43)1/2 = 8 times 
larger; also, the circumference is 4 times larger and the speed 
1/2 as large: 4/(1/2) = 8. 

OQ13.8 Answer (b). The Earth is farthest from the sun around July 4 every 
year, when it is summer in the northern hemisphere and winter in 
the southern hemisphere. As described by Kepler’s second law, this 
is when the planet is moving slowest in its orbit. Thus it takes more 
time for the planet to plod around the 180° span containing the 
minimum-speed point. 

OQ13.9 The ranking is b > a > c = d > e. The force is proportional to the 
product of the masses and inversely proportional to the square of the 
separation distance, so we compute m1m2/r2 for each case: (a) 2·3/12 = 
6 (b) 18 (c) 18/4 = 4.5 (d) 4.5 (e) 16/4 = 4.  
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OQ13.10 Answer (c). The International Space Station orbits just above the 
atmosphere, only a few hundred kilometers above the ground. This 
distance is small compared to the radius of the Earth, so the 
gravitational force on the astronaut is only slightly less than on the 
ground. We might think the gravitational force is zero or nearly zero, 
because the orbiting astronauts appear to be weightless. They and the 
space station are in free fall, so the normal force of the space station’s 
wall/floor/ceiling on the astronauts is zero; they float freely around 
the cabin. 

OQ13.11 Answer (e). We assume that the elliptical orbit is so elongated that 
the Sun, at one focus, is almost at one end of the major axis. If the 
period, T, is expressed in years and the semimajor axis, a, in 
astronomical units (AU), Kepler’s third law states that T2 = a3. 
Thus, for Halley’s comet, with a period of T = 76 y, the semimajor 
axis of its orbit is 

   
  a = 76( )23 = 18 AU  

 The length of the major axis, and the approximate maximum distance 
from the Sun, is 2a = 36 AU. 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ13.1 (a) The gravitational force is conservative. (b) Yes. An encounter with 
a stationary mass cannot permanently speed up a spacecraft. But 
Jupiter is moving. A spacecraft flying across its orbit just behind the 
planet will gain kinetic energy because of the change in potential 
energy of the spacecraft-planet system. This is a collision because the 
spacecraft and planet exert forces on each other while they are 
isolated from outside forces. It is an elastic collision because only 
conservative forces are involved. (c) The planet loses kinetic energy 
as the spacecraft gains it. 

CQ13.2 Cavendish determined G. Then from 
  
g =

GM
R2 , one may determine 

the mass of the Earth. The term “weighed” is better expressed as 
“massed.” 

CQ13.3 For a satellite in orbit, one focus of an elliptical orbit, or the center of 
a circular orbit, must be located at the center of the Earth. If the 
satellite is over the northern hemisphere for half of its orbit, it must 
be over the southern hemisphere for the other half. We could share 
with Easter Island a satellite that would look straight down on 
Arizona each morning and vertically down on Easter Island each 
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evening. 

CQ13.4 (a) Every point q on the sphere that does not lie along the axis 
connecting the center of the sphere and the particle will have 
companion point q' for which the components of the 
gravitational force perpendicular to the axis will cancel. Point  q' 
can be found by rotating the sphere through 180° about the axis. 

 (b) The forces will not necessarily cancel if the mass is not 
uniformly distributed, unless the center of mass of the 
nonuniform sphere still lies along the axis. 

 

ANS. FIG. CQ13.4 

CQ13.5 The angular momentum of a planet going around a sun is 
conserved. (a) The speed of the planet is maximum at closest 
approach. (b) The speed is a minimum at farthest distance. These two 
points, perihelion and aphelion respectively, are 180° apart, at 
opposite ends of the major axis of the orbit. 

CQ13.6 Set the universal description of the gravitational force, 
  
Fg =

GMXm
RX

2 , 

equal to the local description, Fg = magravitational, where Mx and Rx are 
the mass and radius of planet X, respectively, and m is the mass of a 
“test particle.” Divide both sides by m. 

CQ13.7 (a) In one sense, ‘no’. If the object is at the very center of the Earth 
there is no other mass located there for comparison and the 
formula does not apply in the same way it was being applied 
while the object was some distance from the center. In another 
sense, ‘yes’. One would have to compare, though, the distance 
between the object with mass m to the other individual masses 
that make up the Earth. 

 (b) The gravitational force of the Earth on an object at its center 
must be zero, not infinite as one interpretation of Equation 11.1 
would suggest. All the bits of matter that make up the Earth 
pull in different outward directions on the object, causing the 
net force on it to be zero. 

CQ13.8 The escape speed from the Earth is 11.2 km/s and that from the 
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Moon is 2.3 km/s, smaller by a factor of 5. The energy required—and 
fuel—would be proportional to v2, or 25 times more fuel is required 
to leave the Earth versus leaving the Moon. 

CQ13.9 Air resistance causes a decrease in the energy of the satellite-Earth 
system. This reduces the radius of the orbit, bringing the satellite 
closer to the surface of the Earth. A satellite in a smaller orbit, 
however, must travel faster. Thus, the effect of air resistance is to 
speed up the satellite! 

 
 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 13.1 Newton’s Law of Universal Gravitation 
P13.1 This is a direct application of the equation expressing Newton’s law of 

gravitation: 

   

  

F =
GMm

r2 = 6.67 × 10−11  N ⋅m2/kg2( ) 1.50 kg( ) 15.0 × 10−3  kg( )
4.50 × 10−2  m( )2

= 7.41 × 10−10  N

 

P13.2 For two 70-kg persons, modeled as spheres, 
  

  

Fg = Gm1m2

r2 =
6.67 × 10−11  N ⋅m2/kg2( ) 70 kg( ) 70 kg( )

2 m( )2

~ 10−7  N

 

P13.3 (a) At the midpoint between the two objects, the forces exerted by the 
200-kg and 500-kg objects are oppositely directed, 

  and from 
  
Fg =

Gm1m2

r2  

  we have 

  

F∑ =
G 50.0 kg( ) 500 kg − 200 kg( )

2.00 m( )2 = 2.50 × 10−7  N  

toward the 500-kg object.  

  (b) At a point between the two objects at a distance d from the 
500-kg object, the net force on the 50.0-kg object will be zero 
when  

    
  

G 50.0 kg( ) 200 kg( )
4.00 m − d( )2 =

G 50.0 kg( ) 500 kg( )
d2  
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  To solve, cross-multiply to clear of fractions and take the square 
root of both sides. The result is 

  
d = 2.45 m  from the 500-kg object toward the smaller object .

 

P13.4 (a) The Sun-Earth distance is 1.496 × 1011 m and the Earth-Moon 
distance is 3.84 × 108 m, so the distance from the Sun to the Moon 
during a solar eclipse is  

   1.496 × 1011 m − 3.84 × 108 m = 1.492 × 1011 m 

  The mass of the Sun, Earth, and Moon are  

     MS = 1.99 × 1030  kg  

     ME = 5.98 × 1024  kg  

  and   MM = 7.36 × 1022  kg  

  We have  
    

  

FSM =
Gm1m2

r2

=
6.67 × 10−11  N ⋅m2/kg2( ) 1.99 × 1030  kg( ) 7.36 × 1022  kg( )

1.492 × 1011  m( )2

= 4.39 × 1020  N

 

 (b) 

  

FEM =
6.67 × 10−11  N ⋅m2/kg2( ) 5.98 × 1024  kg( ) 7.36 × 1022  kg( )

3.84 × 108  m( )2

= 1.99 × 1020  N

 

  (c) 

  

FSE =
6.67 × 10−11  N ⋅m2/kg2( ) 1.99 × 1030  kg( ) 5.98 × 1024  kg( )

1.496 × 1011  m( )2

= 3.55 × 1022  N

 

 (d) 

 

The force exerted by the Sun on the Moon is much stronger than
the force of the Earth on the Moon. In a sense, the Moon orbits the
Sun more  than it orbits the Earth. The Moon’s path is everywhere
concave toward the Sun. Only by subtracting out the solar orbital
motion of the Earth-Moon system do we see the Moon orbiting
the center of mass of this system.
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P13.5 With one metric ton = 1 000 kg, 

   
  
F = m1g =

Gm1m2

r2  

   

  

g =
Gm2

r2 =
6.67 × 10−11  N ⋅m2/kg2( ) 4.00 × 107  kg( )

100 m( )2

= 2.67 × 10−7  m/s2

 

P13.6 The force exerted on the 4.00-kg mass by the 
2.00-kg mass is directed upward and given 
by 

   

    


F12 = G

m2m1

r12
2 ĵ

= 6.67 × 10−11  N ⋅m2/kg2( )
              

4.00 kg( ) 2.00 kg( )
3.00 m( )2 ĵ

= 5.93× 10−11 ĵ N

 

 The force exerted on the 4.00-kg mass by the 6.00-kg mass is directed to 
the left:  

   

    


F32 = G

m2m3

r32
2 − î( )

= −6.67 × 10−11  N ⋅m2/kg2( ) 4.00 kg( ) 6.00 kg( )
4.00 m( )2 î

= −10.0× 10−11 î N

 

  Therefore, the resultant force on the 4.00-kg mass is  

      

F4 =

F24 +


F64 =  

  
−10.0î + 5.93 ĵ( ) × 10−11  N   

*P13.7 The magnitude of the gravitational force is given by 
   

  

F = Gm1m2

r2 =
6.672 × 10−11  N · m2/kg2( ) 2.00 kg( ) 2.00 kg( )

0.300 m( )2

= 2.97 × 10−9  N

 

P13.8 Assume the masses of the sphere are the same. Using 
  
Fg =

Gm1m2

r2 ,  we 

would find that the mass of a sphere is 1.22 × 105 kg! If the spheres 
have at most a radius of 0.500 m, the density of spheres would be at 

ANS. FIG. P13.6 
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least 2.34 × 105 kg/m3, which is ten times the density of the most dense 
element, osmium.  

 
 

The situation is impossible because no known element could compose
the spheres.

 

P13.9 We are given m1 + m2 = 5.00 kg, which means that m2 = 5.00 kg − m1. 
Newton’s law of universal gravitation then becomes 

  

  

F = G
m1m2

r2

      ⇒ 1.00× 10−8  N

                  = 6.67 × 10−11  N ⋅m2/kg2( ) m1 5.00 kg − m1( )
0.200 m( )2

      5.00 kg( )m1 − m1
2 =

1.00× 10−8  N( ) 0.040 0 m2( )
6.67 × 10−11  N ⋅m2/kg2 = 6.00 kg2

 

 Thus,   m1
2 − 5.00 kg( )m1 + 6.00 kg = 0  

 or   m1 − 3.00 kg( ) m1 − 2.00 kg( ) = 0  

 giving   m1 = 3.00 kg, so m2 = 2.00 kg .  The answer m1 = 2.00 kg and  
m2 = 3.00 kg is physically equivalent. 

P13.10 Let θ represent the angle each cable makes with the 
vertical, L the cable length, x the distance each ball is 
displaced by the gravitational force, and d = 1 m the 
original distance between them. Then r = d − 2x is the 
separation of the balls. We have  

   

  

Fy∑ = 0: T cosθ − mg = 0

Fx∑ = 0: T sinθ − Gmm
r2 = 0

 

 Then 
  
tanθ = Gmm

r2mg
 

   

  

x
L2 − x2

= Gm
g d − 2x( )2 →     x d − 2x( )2 = Gm

g L2 − x2
 

ANS. FIG. P13.10 
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 The factor 
 

Gm
g

 is numerically small. We expect that x is very small 

compared to both L and d, so we can treat the term (d − 2x) as d, and  
(L2 − x2) as L2. We then have 

   

  

x 1 m( )2 =
6.67 × 10−11  N ⋅m2/kg2( ) 100 kg( )

9.80 m/s2( ) 45.00 m( )

x = 3.06 × 10−8  m

 

 
 

 

Section 13.2 Free-Fall Acceleration and the Gravitational Force 
P13.11 The distance of the meteor from the center of Earth is R + 3R = 4R. 

Calculate the acceleration of gravity at this distance. 
   

  

g =
GM
r2 =

(6.67 × 10−11  N ⋅m2/kg2 )(5.98 × 1024  kg)
[4(6.37 × 106  m)]2

= 0.614 m/s2 , towardEarth

 

P13.12 The gravitational field at the surface of the Earth or Moon is given by 

  
g = GM

R2 .
 

  The expression for density is 

  

ρ = M
V = M

4
3
πR3

,  

 so  
  
M = 4

3
πρR3  

 and  
  
g =

G
4
3
πρR3⎛

⎝
⎞
⎠

R2 = 4
3

GπρR  

  Noting that this equation applies to both the Moon and the Earth, and 
dividing the two equations, 

    

  

gM

gE
=

4
3

GπρMRM

4
3

GπρERE

= ρMRM

ρERE
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  Substituting for the fractions, 
   

  

1
6 =

ρM

ρE

1
4( ) and    

ρM
ρE

=
4
6 =

2
3

 

P13.13 (a) For the gravitational force on an object in the neighborhood of 
Miranda, we have 

   

  

mobjg =
GmobjmMiranda

rMiranda
2

g =
GmMiranda

rMiranda
2 =

6.67 × 10−11  N ⋅m2 / kg2( ) 6.68 × 1019  kg( )
242 × 103  m( )2

  = 0.076 1 m/s2

 

 (b) We ignore the difference (of about 4%) in g between the lip and 
the base of the cliff. For the vertical motion of the athlete, we have 

   

  

y f = yi + vyi +
1
2

ayt
2

−5 000 m = 0 + 0 +
1
2

−0.076 1 m/s2( )t2

t =
2 5 000 m( )s2

0.076 1 m
⎛

⎝⎜
⎞

⎠⎟

1/2

= 363 s

 

 (c) 
  
x f = xi + vxit + 1

2
axt

2 = 0 + 8.50 m/s( ) 363 s( )+ 0 = 3.08× 103  m  

  We ignore the curvature of the surface (of about 0.7°) over the 
athlete’s trajectory. 

 (d)   vxf = vxi = 8.50 m/s  

  
  vyf = vyi + ayt = 0 − 0.076 1 m/s2( ) 363 s( ) = −27.6 m/s  

  Thus 
    

v f = 8.50î − 27.6 ĵ( )  m/s = 8.502 + 27.62  m/s  at 

 
tan−1 27.6 m/s

8.50 m/s
⎛
⎝⎜

⎞
⎠⎟

= 72.9°  below the x axis. 

  
    

v f = 28.9 m/s at 72.9° below the horizontal  
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Section 13.3 Analysis Model: Particle in a Field (Gravitational) 

P13.14 (a) 
  
g1 = g2 =

MG
r2 + a2  

    g1y = − g2y   

    gy = g1y + g2y = 0  

    g1x = g2x = g2 cosθ  

  
  
cosθ =

r

a2 + r2( )1/2  

   
    

g = 2g2x − î( )  

  or 

    


g =

2MGr

r2 + a2( )3 2  toward the center of mass  

 (b) 

  

At r = 0, the fields of the two objects are equal in magnitude and
opposite in direction, to add to zero.

 

 (c) 
  
As r → 0, 2MGr(r2 + a2 )−3/2  approaches 2MG(0)/a3 = 0.  

 (d) 

  

When r  is much greater than a, the angles the field vectors make
with the x axis become smaller. At very great distances, the field
vectors are almost parallel to the axis; therefore, they begin to
look like the field vector from a single object of mass 2M.

 

 (e) 

  

As r  becomes much larger than a, the expression approaches

2MGr(r2 + 02 )−3/2 = 2MGr/r3 = 2MG/r2  as required.

 

P13.15 The vector gravitational field at point O is given by 

  
    


g =

Gm
l2 î +

Gm
l2 ĵ +

Gm
2l2 cos 45.0°î + sin 45.0 ĵ( )  

 so  
     

g = Gm

l2 1 +
1

2 2
⎛
⎝⎜

⎞
⎠⎟

î + ĵ( )  or 

 
     

g = Gm

l2 2 +
1
2

⎛
⎝⎜

⎞
⎠⎟ toward the opposite corner.  

ANS. FIG. P13.14 
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ANS. FIG. P13.15 

P13.16 (a) 

  

F =
GMm

r2 =
6.67 × 10−11  N ⋅m2/kg2( ) 100 1.99 × 1030  kg( ) 103  kg( )⎡⎣ ⎤⎦

1.00 × 104  m + 50.0 m( )2

= 1.31× 1017  N

 

 (b) 
  
ΔF =

GMm
rfront

2 −
GMm
rback

2  

  
  
Δg =

ΔF
m

=
GM rback

2 − rfront
2( )

rfront
2 rback

2
 

  

  

Δg = 6.67 × 10−11  N ⋅m2/kg2( )

          
100 1.99 × 1030  kg( )⎡⎣ ⎤⎦ 1.01× 104  m( )2

− 1.00 × 104  m( )2⎡
⎣

⎤
⎦

1.00 × 104  m( )2
1.01× 104  m( )2

Δg = 2.62 × 1012  N/kg

 

 
 

 

Section 13.4 Kepler’s Laws and the Motion of Planets 
P13.17 The gravitational force on mass located at distance r from the center of 

the Earth is   Fg = mg = GMEm/r2 .  Thus, the acceleration of gravity at 

this location is   g = GME/r2 .  If g = 9.00 m/s2 at the location of the 
satellite, the radius of its orbit must be 

  

  

r = GME

g =
6.67 × 10−11  N ⋅m2/kg2( ) 5.98× 1024  kg( )

9.00 m/s2

= 6.66× 106  m

 

 From Kepler’s third law for Earth satellites,   T
2 = 4π 2r3GMES,  the 

period is found to be 

ANS. FIG. P13.16 
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T = 2π r3

GME

= 2π
6.66× 106  m( )3

6.67 × 10−11  N ⋅m2/kg2( ) 5.98× 1024  kg( )
= 5.41× 103  s

 

 or 

  
  
T = 5.41× 103 s( ) 1 h

3 600 s
⎛
⎝⎜

⎞
⎠⎟

= 1.50 h = 90.0 min  

P13.18 The gravitational force exerted by Jupiter on Io causes the centripetal 
acceleration of Io. A force diagram of the satellite would show one 
downward arrow. 

   

  
Fon Io∑ = MIoa:    

GMJMIo

r2 = MIov2

r
= MIo

r
2πr
T

⎛
⎝⎜

⎞
⎠⎟

2

= 4π 2rMIo

T 2

 

 Thus the mass of Io divides out and we have Kepler’s third law with  
m << M, 

   

  
MJ = 4π 2r3

GT 2 = 4π 2(4.22 × 108 m)3

(6.67 × 10−11N ⋅m2/kg2 )(1.77 d)2

1 d
86 400 s

⎛
⎝⎜

⎞
⎠⎟

2  

 and  
  
MJ = 1.90 × 1027  kg  (approximately 316 Earth masses)  

P13.19 (a) The desired path is an elliptical trajectory with the Sun at one of 
the foci, the departure planet at the perihelion, and the target 
planet at the aphelion. The perihelion distance rD is the radius of 
the departure planet’s orbit, while the aphelion distance rT is the 
radius of the target planet’s orbit. The semimajor axis of the 
desired trajectory is then   a = rD + rT( )/2.  

 

ANS. FIG. P13.19 

  If Earth is the departure planet,   rD = 1.496 × 1011  m = 1.00 AU  
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  With Mars as the target planet, 

    
  
rT = 2.28 × 1011 m

1 AU
1.496 × 1011 m

⎛
⎝⎜

⎞
⎠⎟

= 1.52 AU  

  Thus, the semimajor axis of the minimum energy trajectory is 

    
  
a =

rD + rT

2
=

1.00 AU + 1.52 AU
2

= 1.26 AU  

  Kepler’s third law, T2 = a3, then gives the time for a full trip 
around this path as 

    
  T = a3 = 1.26 AU( )3 = 1.41 yr  

  so the time for a one-way trip from Earth to Mars is 

    
  
Δt =

1
2

T =
1.41 yr

2
= 0.71 yr  

 (b) 

 

This trip cannot be taken at just any time. The departure must
be timed so that the spacecraft arrives at the aphelion when the
target planet is located there.

 

P13.20 (a) 

 

The particle does possess angular momentum, because it is
not headed straight for the origin.

 

 (b) 

 

Its angular momentum is constant. There are no identified
outside influences acting on the object.

 

 (c) 

  

Since speed is constant, the distance traveled between tA  and
tB  is equal to the distance traveled between tC  and tD. The area
of a triangle is equal to one-half its (base) width across one side
times its (height) dimension perpendicular to that side.

So   
1
2

bv0 tB − tA( ) =
1
2

bv0 tD − tC( )

states that the particle’s radius vector sweeps out equal areas in
equal times.
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P13.21 Applying Newton’s second law,  F∑ = ma  yields 

 Fg = mac  for each star:  

   
  

GMM
2r( )2 =

Mv2

r
      or 

  
M =

4v2r
G

 

 We can write r in terms of the period, T, by 
considering the time and distance of one complete 
cycle. The distance traveled in one orbit is the 
circumference of the stars’ common orbit, so 
  2πr = vT.  Therefore, 

   

  
M =

4v2r
G

=
4v2

G
vT
2π

⎛
⎝⎜

⎞
⎠⎟

 

 so,  

  

M = 2v3T
πG

=
2 220× 103 m/s( )3

14.4 d( ) 86 400 s/d( )
π 6.67 × 10−11  N ⋅m2/kg2( )

= 1.26× 1032  kg = 63.3 solar masses

  

P13.22 To find the angular displacement of planet Y, we 
apply Newton’s second law: 

   
  

F = ma∑ :   
Gmplanet Mstar

r2 =
mplanetv

2

r
 

 Then, using   v = rω ,   
   

  

GMstar

r
= v2 = r2ω 2

GMstar = r3ω 2 = rx
3ω x

2 = ry
3ω y

2

 

 solving for the angular velocity of planet Y gives 
  

  
ω y =ω x

rx

ry

⎛

⎝
⎜

⎞

⎠
⎟

3 2

= 90.0°
5.00yr

⎛
⎝⎜

⎞
⎠⎟

33 2 = 468°
5.00yr

 

 So, given that there are 360° in one revolution we 
convert 468° to find that planet Y has turned through 

 1.30 revolutions .  

ANS. FIG. P13.21 
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P13.23 By Kepler’s third law, T2 = ka3 (a = semimajor 
axis). For any object orbiting the Sun, with T in 
years and a in AU, k = 1.00. Therefore, for 
Comet Halley, and suppressing units, 

   

  
(75.6)2 = (1.00)

0.570 + y
2

⎛
⎝⎜

⎞
⎠⎟

3  

 The farthest distance the comet gets from the 
Sun is 

     y = 2 75.6( )2 3 − 0.570 = 35.2 AU   

 (out around the orbit of Pluto). 

*P13.24 By conservation of angular momentum for the satellite,   rpvp = rava ,  or   
   

  

vp

va

= ra

rp

= 2 289 km + 6.37 × 103  km
459 km + 6.37 × 103  km

= 8 659 km
6 829 km

= 1.27
 

 We do not need to know the period. 

P13.25 For an object in orbit about Earth, Kepler’s third law gives the relation 
between the orbital period T and the average radius of the orbit 
(“semimajor axis”) as 

   
  
T 2 =

4π 2

GME

⎛
⎝⎜

⎞
⎠⎟

r3  

 We assume that the two given distances in the problem statements are 
the perigee and apogee, respectively. 

 Thus, if the average radius is 
   

  

r = rmin + rmax

2
= 6 670 km + 385 000 km

2
= 1.96× 105  km = 1.96× 108  m

 

 The period (time for a round trip from Earth to the Moon) would be 

   

  

T = 2π r3

GME

= 2π
1.96× 108  m( )3

6.67 × 10−11  N ⋅m2/kg2( ) 5.98× 1024  kg( )
= 8.63× 105  s

 

ANS. FIG. P13.23 
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 The time for a one-way trip from Earth to the Moon is then 
   

  
Δt = 1

2
T = 8.63× 105 s

2
⎛
⎝⎜

⎞
⎠⎟

1 day
8.64× 104 s

⎛
⎝⎜

⎞
⎠⎟

= 4.99 d
 

P13.26 The gravitational force on a small parcel of material at the star’s 
equator supplies the necessary centripetal acceleration: 

   
  

GMsm
Rs

2 =
mv2

Rs

= mRsω
2  

 so  

  

ω =
GMs

Rs
3 =

6.67 × 10−11N ⋅m2/kg2( ) 2 1.99 × 1030 kg( )⎡⎣ ⎤⎦
10.0 × 103 m( )3  

   
 ω = 1.63 × 104  rad/s  

P13.27 We find the satellite’s altitude from 

   

  

GMJ

RJ + d( )2 =
4π 2 RJ + d( )

T 2  

 where d is the altitude of the satellite above Jupiter’s cloud tops. Then, 
   

  

GMJT
2 = 4π 2 RJ + d( )3

6.67 × 10−11  N ⋅m2/kg2( ) 1.90× 1027  kg( ) 9.84× 3 600( )2

                                                           = 4π 2 6.99× 107 + d( )3

 

 which gives 
 

  d = 8.92 × 107  m = 89 200 km  above the planet
 

P13.28 (a) In T2 = 4 π2a3/GMcentral we take a = 3.84 × 108 m. 

   

  

Mcentral = 4π 2a3

GT 2

= 4π 2(3.84× 108 m)3

(6.67 × 10−11  N ⋅m2/kg2 )(27.3× 86 400 s)2

= 6.02 × 1024  kg

 

  This is a little larger than 5.98 × 1024 kg. 
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 (b) 

 

The Earth wobbles a bit as the Moon orbits it, so both objects 
move nearly in circles about their center of mass, staying on 
opposite sides of it. The radius of the Moon’s orbit is therefore 
a bit less than the Earth-Moon distance.

 

P13.29 The speed of a planet in a circular orbit is given by  
   

  
F∑ = ma:

GMsunm
r2 =

mv2

r
→ v =

GMsun

r

 

 (a) For Mercury, the speed is 
   

  

vM =
(6.67 × 10−11  N ⋅m2/kg2 )(1.99 × 1030  kg)

5.79 × 1010  m
= 4.79 × 104  m/s

 

  and for Pluto, 
   

  

vp =
(6.67 × 10−11  N ⋅m2/kg2 )(1.99 × 1030  kg)

5.91× 1012  m
= 4.74 × 103  m/s

 

  With greater speed, Mercury will eventually move farther from 
the Sun than Pluto. 

 (b) With original distances rP and rM perpendicular to their lines of 
motion, they will be equally far from the Sun at time t, where  

   

  

rP
2 + vP

2t2 = rM
2 + vM

2 t2

rP
2 − rM

2 = vM
2 − vP

2( )t2

t =
5.91× 1012  m( )2

− 5.79 × 1010  m( )2

4.79 × 104  m/s( )2
− 4.74 × 103  m/s( )2

 =
3.49 × 1025  m2

2.27 × 109  m2/s2 = 1.24 × 108  s = 3.93 yr
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Section 13.5 Gravitational Potential Energy 
P13.30 (a) We compute the gravitational potential energy of the satellite-

Earth system from 

   

  

U = −GMEm
r

= −
6.67 × 10−11  N ⋅m2/kg2( ) 5.98× 1024  kg( ) 100 kg( )

6.37 + 2.00( )× 106  m

= −4.77 × 109  J

 

 (b), (c) The satellite and Earth exert forces of equal magnitude on each 
other, directed 

 
downward on the satellite and upward on Earth.  

The magnitude of this force is  

   

  

F = GMEm
r2

=
6.67 × 10−11  N ⋅m2/kg2( ) 5.98× 1024  kg( ) 100 kg( )

8.37 × 106  m( )2

= 569 N

 

P13.31 The work done by the Moon’s gravitational field is equal to the 
negative of the change of potential energy of the meteor-Moon system: 

   
  
Wint = −ΔU = −

−Gm1m2

r
− 0⎛

⎝⎜
⎞
⎠⎟

 

   

  

Wint =
(6.67 × 10−11  N ⋅m2/kg2 )(7.36 × 1022  kg)(1.00 × 103  kg)

1.74 × 106  m

= 2.82 × 109  J

 

*P13.32 The enery required is equal to the change in gravitational potential 
energy of the object-Earth system: 

   
 
U = −G

Mm
r

 and 
  
g = GME

RE
2  so that 

   

  

ΔU = −GMm
1

3RE

− 1
RE

⎛
⎝⎜

⎞
⎠⎟

= 2
3

mgRE

ΔU = 2
3

1 000 kg( ) 9.80 m s2( ) 6.37 × 106  m( ) = 4.17 × 1010  J
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P13.33 (a) The definition of density gives  
   

  

ρ = MS

4
3
πrE

2
=

3 1.99× 1030  kg( )
4π 6.37 × 106  m( )3 = 1.84× 109  kg/m3

 

   (b) For an object of mass m on its surface, mg = GMS m/RE
2. Thus, 

   

  

g =
GMS

rE
2 =

6.67 × 10−11  N ⋅m2/kg2( ) 1.99 × 1030  kg( )
6.37 × 106  m( )2

= 3.27 × 106  m/s2

 

 (c) Relative to Ug = 0 at infinity, the potential energy of the object-star 
system at the surface of the white dwarf is 

   

  

Ug = −GMSm
rE

= −
6.67 × 10−11  N ⋅m2/kg2( ) 1.99× 1030  kg( ) 1.00 kg( )

6.37 × 106  m

= − 2.08× 1013  J

 

P13.34 (a) Energy conservation of the object-Earth system from release to 
radius r: 

    

  

K + Ug( )
altitude h

= K + Ug( )
radius r

0 −
GMEm
RE + h

=
1
2

mv2 −
GMEm

r

v = 2GME
1
r
−

1
RE + h

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

1/2

= −
dr
dt

 

 (b) 
  

dt
i

f

∫ = −
dr
vi

f

∫ =
dr
vf

i

∫ .  The time of fall is, suppressing units, 

    

  

Δt = 2GME
1
r
− 1

RE + h
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

−1/2

dr
RE

RE+h

∫

Δt = 2 × 6.67 × 10−11 × 5.98× 1024( )−1/2

                    ×  
1
r
− 1

6.87 × 106  m
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

−1/2

dr
6.37×106  m

6.87×106  m

∫
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  We can enter this expression directly into a mathematical 
calculation program.  

  Alternatively, to save typing we can change variables to 
  
u =

r
106 . 

Then  
    

  

Δt = 7.977 × 1014( )−1/2 1
106 u

−
1

6.87 × 106
⎛
⎝⎜

⎞
⎠⎟
−1/2

106 du
6.37

6.87

∫

= 3.541× 10−8 106

106( )−1/2

1
u
−

1
6.87

⎛
⎝⎜

⎞
⎠⎟
−1/2

du
6.37

6.87

∫

 

  A mathematics program returns the value 9.596 for this integral, 
giving for the time of fall 

    
  
Δt = 3.541 × 10−8 × 109 × 9.596 = 339.8 = 340 s   

P13.35 (a) Since the particles are located at the corners of an equilateral 
triangle, the distances between all particle pairs is equal to  
0.300 m. The gravitational potential energy of the system is then 

    
  
UTot = U12 + U13 + U23 = 3U12 = 3 −

Gm1m2

r12

⎛
⎝⎜

⎞
⎠⎟

 

    

  

UTot = −
3 6.67 × 10−11  N ⋅m2/kg2( ) 5.00× 10−3  kg( )2

0.300 m

= −1.67 × 10−14  J

 

 (b) 

 

Each particle feels a net force of attraction toward the midpoint
between the other two. Each moves toward the center of the
triangle with the same acceleration. They collide simultaneously
at the center of the triangle.

 

 
 

 

Section 13.6 Energy Considerations in  
Planetary and Satellite Motion 

P13.36 We use the isolated system model for energy: 

   Ki + Ui = Kf  + Uf 
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1
2

mvi
2 + GMEm

1
rf

−
1
ri

⎛

⎝
⎜

⎞

⎠
⎟ =

1
2

mv f
2  

 which becomes 
   

  

1
2

vi
2 + GME 0− 1

RE

⎛
⎝⎜

⎞
⎠⎟

= 1
2

v f
2

 

 or  
  
v f

2 = v1
2 −

2GME

RE

 

 and  
  
v f = v1

2 − 2GME

RE

⎛
⎝⎜

⎞
⎠⎟

1/2

 

  

v f = 2.00× 104  m/s( )2
−

2 6.67 × 10−11  N ⋅m2/kg2( ) 5.98× 1024  kg( )
6.37 × 106  m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1/2

= 1.66× 104  m/s

 

*P13.37 To determine the energy transformed to internal energy, we begin by 
calculating the change in kinetic energy of the satellite. To find the 
initial kinetic energy, we use 

   
  

vi
2

RE + h
= GME

RE + h( )2  

 which gives  

   

  

Ki = 1
2

mvi
2 = 1

2
GMEm
RE + h

⎛
⎝⎜

⎞
⎠⎟

= 1
2

6.67 × 10−11  N ⋅m2 kg2( ) 5.98 × 1024  kg( ) 500 kg( )
6.37 × 106  m + 0.500 × 106  m

⎡
⎣⎢

⎤
⎦⎥

= 1.45 × 1010  J

  

 Also,  
  
K f = 1

2
mv f

2 = 1
2

500 kg( ) 2.00 × 103  m s( )2 = 1.00 × 109  J.  



706     Universal Gravitation  
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 The change in gravitational potential energy of the satellite-Earth 
system is 

    

  

ΔU = GMEm
Ri

− GMEm
R f

= GMEm
1
Ri

− 1
R f

⎛

⎝⎜
⎞

⎠⎟

= 6.67 × 10−11  N ⋅m2 kg2( ) 5.98 × 1024  kg( ) 500 kg( )
                                                          × −1.14 × 10−8  m−1( )

= −2.27 × 109  J

 

 The energy transformed into internal energy due to friction is then 
    

  

ΔEint = Ki − K f − ΔU = 14.5− 1.00 + 2.27( )× 109  J

= 1.58× 1010  J

 

P13.38 To obtain the orbital velocity, we use    
   

  
F∑ = mMG

R2 = mv2

R

 

 or  
 
v =

MG
R

 

 We can obtain the escape velocity from  

   
  

1
2

mvesc
2 =

mMG
R

 

 or  
  
vesc =

2MG
R

= 2v  

P13.39 (a) The total energy of the satellite-Earth system at a given orbital 
altitude is given by 

    
  
Etot = −

GMm
2r

 

  The energy needed to increase the satellite’s orbit is then, 
suppressing units, 

    

  

ΔE = GMm
2

1
ri

− 1
rf

⎛

⎝
⎜

⎞

⎠
⎟

=
6.67 × 10−11( ) 5.98× 1024( )

2
103  kg
103  m

1
6 370 + 100

− 1
6 370 + 200

⎛
⎝⎜

⎞
⎠⎟

ΔE = 4.69× 108  J = 469 MJ

 



Chapter 13     707 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (b) 

 

Both in the original orbit and in the final orbit, the total energy
is negative, with an absolute value equal to the positive kinetic
energy. The potential energy is negative and twice as large as
the total energy. As the satellite is lifted from the lower to the
higher orbit, the gravitational energy increases, the kinetic energy
decreases, and the total energy increases. The value of each
becomes closer to zero. Numerically, the gravitational energy
increases by 938 MJ, the kinetic energy decreases by 469 MJ,
and the total energy increases by 469 MJ.

 

P13.40 (a) The major axis of the orbit is 2a = 50.5 AU  so  a = 25.25 AU. 

  Further, in the textbook’s diagram of an ellipse, a + c = 50 AU,  
so  c = 24.75 AU. Then 

   
  
e =

c
a

=
24.75
25.25

= 0.980  

 (b) In T2 = Ks a
3 for objects in solar orbit, the Earth gives us 

   
  1 yr( )2 = Ks 1 AU( )3

  
Ks =

1 yr( )2

1 AU( )3
 

  Then  

   
  
T 2 =

1 yr( )2

1 AU( )3 25.25 AU( )3      →  
  
T = 127 yr  

 (c) 

  

U = −
GMm

r

= −
6.67 × 10−11  N ⋅m2 / kg2( ) 1.99 × 1030  kg( ) 1.20 × 1010  kg( )

50 1.496 × 1011  m( )
= −2.13 × 1017  J

 

*P13.41 For her jump on Earth,  

   
  
1
2

mvi
2 = mgy f  [1] 

 which gives 
   

  vi = 2gy f = 2 9.80 m/s( ) 0.500 m( ) = 3.13 m/s
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 We assume that she has the same takeoff speed on the asteroid. Here 

   
  

1
2

mvi
2 − GMAm

RA

= 0 + 0  [2]  

 The equality of densities between planet and asteroid,  
   

  

ρ = ME

4
3
π RE

3
= MA

4
3
π RA

3

  

 implies  

   
  
MA = RA

RE

⎛
⎝⎜

⎞
⎠⎟

3

ME   [3]  

 Note also at Earth’s surface  

   
  
g = GME

RE
2  [4] 

 Combining the equations [2], [1], [3], and [4] by substitution gives 
   

  

1
2

vi
2 = GMA

RA

     

   

  

GME

RE
2 y f = GMERA

2

RE
3

 

   
  RA

2 = y f RE = 0.500 m( ) 6.37 × 106  m( )  

   
  RA = 1.78 × 103  m

 

*P13.42 For a satellite in an orbit of radius r around the Earth, the total energy 

of the satellite-Earth system is 
  
E = −GME

2r
.  Thus, in changing from a 

circular orbit of radius r = 2RE to one of radius r = 3RE, the required 
work is 

   

  
W = ΔE = −GMEm

2rf

+ GMEm
2ri

= GMEm
1

4RE

− 1
6RE

⎡
⎣⎢

⎤
⎦⎥

= GMEm
12RE
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*P13.43 (a) The work must provide the increase in gravitational energy: 

   

  

W = ΔUg = Ugf −Ugi

= −
GMEMp

rf

+
GMEMp

ri

= −
GMEMp

RE + y
+

GMEMp

RE

= GMEMp
1

RE

− 1
RE + y

⎛
⎝⎜

⎞
⎠⎟

= 6.67 × 10−11  N ⋅m2

kg2

⎛
⎝⎜

⎞
⎠⎟

5.98 × 1024  kg( ) 100 kg( )

                                   × 1
6.37 × 106  m

− 1
7.37 × 106  m( )

W = 850 MJ

 

 (b) In a circular orbit, gravity supplies the centripetal force: 

   
  

GMEMp

RE + y( )2 =
Mpv2

RE + y
 

  Then,  

   
  

1
2

Mpv2 = 1
2

GMEMp

RE + y( )  

  So, additional work = kinetic energy required is 

   

  

ΔW = 1
2

6.67 × 10−11  N ⋅m2 / kg2( ) 5.98 × 1024  kg( ) 100 kg( )
7.37 × 106  m

= 2.71× 109  J
 

P13.44 (a) The escape velocity from the solar system, starting at Earth’s 
orbit, is given by 

   

  

vsolar escape = 2MSunG
RSun

=
2 1.99× 1030  kg( ) 6.67 × 10−11  N ⋅m2 /kg2( )

1.50× 109  m

= 42.1 km/s
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 (b) Let x represent the variable distance from the Sun. Then, 
   

  
v = 2MSunG

x
   →    x = v2

2MSunG

 

  If 
  
v = 125 000 km

3 600 s
= 34.7 m/s,  then  

   

  

x = v2

2MSunG
= 34.7 m/s( )2

2 1.99× 1030  kg( ) 6.67 × 10−11  N ⋅m2 /kg2( )
= 2.20× 1011  m

 

  Note that at or beyond the orbit of Mars, 125 000 km/h is 
sufficient for escape. 

P13.45 Fc = FG  gives 
  

mv2

r
=

GmME

r2
 

 which reduces to 
 
v =

GME

r
 

 and period 
  
=

2πr
v

= 2πr
r

GME

.  

 (a)   r = RE + 200 km = 6 370 km + 200 km = 6 570 km  

  Thus, 
    

  

period = 2π 6.57 × 106  m( )
                  ×

6.57 × 106  m
6.67 × 10−11  N ⋅m2/kg2( ) 5.98 × 1024  kg( )

T = 5.30 × 103  s = 88.3 min = 1.47 h

 

 (b) 

  

v =
GME

r

=
6.67 × 10−11  N ⋅m2/kg2( ) 5.98 × 1024  kg( )

6.57 × 106  m

= 7.79 km/s

 

 (c)  K f + U f = Ki + Ui +  energy input  gives  

    input 
  
=

1
2

mv f
2 −

1
2

mvi
2 +

−GMEm
rf

⎛

⎝
⎜

⎞

⎠
⎟ −

−GMEm
ri

⎛
⎝⎜

⎞
⎠⎟

 [1] 
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ri = RE = 6.37 × 106  m

vi =
2πRE

86 400 s
= 4.63 × 102  m/s

 

  Substituting the appropriate values into [1] yields: 

minimum energy input 
 
= 6.43 × 109  J  

P13.46 The gravitational force supplies the needed centripetal acceleration. 

 Thus, 
  

GMEm
RE + h( )2 = mv2

RE + h
 or 

  
v2 =

GME

RE + h
 

 (a) 

  

T =
2πr

v
=

2π RE + h( )
GME

RE + h( )

= 2π
RE + h( )3

GME

  

 (b) 

 

v =
GME

RE + h
 

 (c) Minimum energy input is  

    
  
ΔEmin = K f + Ugf( ) − Ki −Ugi( )  

  This choice has the object starting with energy  

    
  
Ki =

1
2

mvi
2  

  with 
  
vi =

2πRE

1.00 day
=

2πRE

86 400 s
    and 

  
Ugi = −

GMEm
RE

.  

  Thus, 

 
  
ΔEmin =

1
2

m
GME

RE + h
⎛
⎝⎜

⎞
⎠⎟
−

GMEm
RE + h

−
1
2

m
4π 2RE

2

86 400 s( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+
GMEm

RE

 

  or 

  

ΔEmin = GMEm
RE + 2h

2RE RE + h( )
⎡

⎣
⎢

⎤

⎦
⎥ −

2π 2RE
2m

86 400 s( )2 .  

P13.47 (a) 

 

Gravitational screening does not exist. The presence of the 
satellite has no effect on the force the planet exerts on the 
rocket.
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  (b) The rocket has a gravitational potential energy with respect to 
Ganymede 

    

  

U1 = −
Gm1m2

r
= −

6.67 × 10−11  N ⋅m2( )m2 1.495 × 1023  kg( )
2.64 × 106  m( )kg2

U1 = −3.78 × 106  m2/s2( )m2

 

  The rocket’s gravitational potential energy with respect to 
Jupiter at the distance of Ganymede is  

    

  

U2 = −
Gm1m2

r
= −

6.67 × 10−11  N ⋅m2( )m2 1.90 × 1027  kg( )
1.071× 109  m( )kg2

U2 = −1.18 × 108  m2 / s2( )m2

 

  To escape from both requires 

    

  

1
2

m2vesc
2 = + 3.78 × 106 + 1.18 × 108( )  m2/s2⎡⎣ ⎤⎦m2

vesc = 2 × 1.22 × 108  m2 / s2( ) = 15.6 km/s
 

P13.48 (a) For the satellite   F∑ = ma;  
  

GmME

r2 =
mvi

2

r
 gives 

    
  

vi =
GME

r
⎛
⎝⎜

⎞
⎠⎟

1/2

 

 (b) Conservation of momentum in the forward direction for the 
exploding satellite gives: 

    

  

mv∑( )i
= mv∑( ) f

5mvi = 4mv + m0

v = 5
4

vi = 5
4

GME

r
⎛
⎝⎜

⎞
⎠⎟

1/2

 

 (c) With velocity perpendicular to radius, the orbiting fragment is at 
perigee. Its apogee distance and speed are related to r and v 
by 4mrv = 4mrf vf  and 

    

  

1
2

4mv2 − GME 4m
r

= 1
2

4mv f
2 − GME 4m

rf
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  Substituting 
 
v f =

vr
rf

 we have  

    

  

1
2

v2 − GME

r
= 1

2
v2r2

rf
2 − GME

rf

 

  Further, substituting 
  
v2 =

25
16

GME

r
 gives 

    

  

25
32

GME

r
−

GME

r
=

25
32

GMEr
rf

2 −
GME

rf

−7
32r

=
25r
32rf

2 −
1
rf

 

  Clearing fractions we have   −7rf
2 = 25r2 − 32rrf , or 

  
7

rf

r
⎛
⎝⎜

⎞
⎠⎟

2

− 32
rf

r
⎛
⎝⎜

⎞
⎠⎟

+ 25 = 0   

  giving 
  

rf

r
=

+32 ± 322 − 4 7( ) 25( )
14

=
50
14

 or 
 

14
14

.  

  The latter root describes the starting point. 

  The outer end of the orbit has 
  

rf

r
=

25
7

:  
  

rf =
25r
7

 

*P13.49 The height attained is not small compared to the radius of the Earth, so 

U = mgy does not apply; 
  
U = −GM1M2

r
 does. From launch to apogee at 

height h, conservation of energy gives 

     Ki + Ui + ΔEmech = K f + U f   

   
  

1
2

Mpvi
2 −

GMEMp

RE

+ 0 = 0 −
GMEMp

RE + h
 

 The mass of the projectile cancels out, giving 
   

  

1
2

vi
2 − GME

RE

= GME

RE + h

RE + h = GME

1
2

vi
2 − GME

RE
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h = GME

1
2

vi
2 − GME

RE

− RE

=
6.67 × 10−11  N ⋅m2/kg2( ) 5.98× 1024  kg( )

1
2

10.0× 103  m/s( )2 −
6.67 × 10−11  N ⋅m2/kg2( ) 5.98× 1024  kg( )

6.37 × 106  m( )
                                                                                    − 6.37 × 106  m

= 2.52 × 107  m

 

 
 

 

Additional Problems 
P13.50 (a) When the rocket engine shuts off at an altitude of 250 km, we may 

consider the rocket to be beyond Earth’s atmosphere. Then, its 
mechanical energy will remain constant from that instant until it 
comes to rest momentarily at the maximum altitude. That is, 

  KEf + PEf = KEi + PEi ,  or  

    
  
0 −

GME m
rmax

=
1
2

mvi
2 −

GME m
ri

 or 
  

1
rmax

= −
vi

2

2GME

+
1
ri

 

  With rl = RE + 250 km = 6.37 × 106 m + 250 × 103 m = 6.62 × 106 m 
and vi = 6.00 km/s = 6.00 × 103 m/s, this gives 

    

  

1
rmax

= −
6.00× 103  m/s( )2

2 6.67 × 10−11  N ⋅m2/kg2( ) 5.98× 1024  kg( ) + 1
6.62 × 106  m

= 1.06× 10−7  m−1

 

  or rmax = 9.44 × 106 m. The maximum distance from Earth’s surface 
is then 

    hmax = rmax – RE = 9.44 × 106 m – 6.37 × 106 m =  3.07 × 106 m  

 (b) If the rocket were fired from a launch site on the equator, it would 
have a significant eastward component of velocity because of the 
Earth’s rotation about its axis. Hence, compared to being fired 
from the South Pole, the rocket’s initial speed would be greater, 
and  the rocket would travel farther from Earth .  
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P13.51 For a 6.00-km diameter cylinder, r = 3 000 m and to simulate  
1g = 9.80 m/s2, 

    

  

g =
v2

r
= ω 2r

ω =
g
r

= 0.057 2 rad/s
 

 The required rotation rate of the cylinder is 
 

1 rev
110 s

. 

 (For a description of proposed cities in space, see Gerard K. O’Neill 
in Physics Today, Sept. 1974. and the Wikipedia article on “Rotating 
Wheel Space Station at 
http://en.wikipedia.org/wiki/Rotating_wheel_space_station)  

*P13.52 To approximate the height of the sulfur, set 
  
mv2

2
= mgIoh,  with  

h = 70 000 m and 
  
gIo = GM

r2 = 1.79 m s2 .  This gives 

   

  

v = 2gIoh = 2 1.79 m/s2( ) 70 000 m( )
≈ 500 m s  over 1 000 mi h( )

 

 We can obtain a more precise answer from conservation of energy: 
   

  

1
2

mv2 − GMm
r1

= −GMm
r2

 

   

  

1
2

v2 = 6.67 × 10−11  N ⋅m2 kg2( ) 8.90× 1022  kg( )

                                   × 1
1.82 × 106  m

− 1
1.89× 106  m( )

  

   
  
v = 492 m/s

 

*P13.53 (a) The radius of the satellite’s orbit is  
   

  r = RE + h = 6.37 × 106  m + 2.80× 106  m = 9.17 × 106  m   

  Then, modifying Kepler’s third law for orbital motion about the 
Earth rather than the Sun, we have 

   

  

T 2 = 4π 2

GME

⎛
⎝⎜

⎞
⎠⎟

r3 =
4π 2 9.17 × 106  m( )3

6.67 × 10−11  N ⋅m2 kg2( ) 5.98× 1024  kg( )
= 7.63× 107  s2
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  or 
  
T = 8.74× 103  s( ) 1 h

3 600 s
⎛
⎝⎜

⎞
⎠⎟ = 2.43 h   

 (b) The constant tangential speed of the satellite is 
   

  
v = 2πr

T
=

2π 9.17 × 106  m( )
8.74× 103  s

= 6.60× 103  m/s = 6.60 km/s
  

 (c) The satellite’s only acceleration is centripetal acceleration, so 
   

  
a = ac = v2

r
=

6.60× 103  m/s( )2

9.17 × 106  m
= 4.74 m/s2  toward the Earth

  

P13.54 If one uses the result 
 
v =

GM
r

 and the relation v = (2π r/T), one finds 

the radius of the orbit to be smaller than the radius of the Earth, so the 
spacecraft would need to be in orbit underground. 

P13.55 The acceleration of an object at the center of 
the Earth due to the gravitational force of the 

Moon is given by 
  
a = G

MM

d2 .  

 At the point A nearest the Moon, 
   

  
a+ = G

MM

d − RE( )2

 

 At the point B farthest from the Moon,  
   

  
a− = G

MM

d + RE( )2

 

 From the above, we have 
   

  

ΔgM

g
=

a+ − a−( )
g

=
GMM

g
1

d − RE( )2 −
1

d + RE( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 Evaluating this expression, we find across the planet  

 

  

ΔgM

g
=

6.67 × 10−11  N ⋅m2 kg2( ) 7.36 × 1022  kg( )
9.80 m/s2

×
1

3.84 × 108  m − 6.37 × 106  m( )2 −
1

3.84 × 108  m + 6.37 × 106  m( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 2.25 × 10−7

 

ANS. FIG. P13.55 
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P13.56 (a) The only force acting on the astronaut is the normal force exerted 
on him by the “floor” of the cabin. The normal force supplies the 
centripetal force: 

    
  
Fc =

mv2

r
   and 

  
n =

mg
2

 

 This gives 

     

  

mv2

r
=

mg
2

→ v =
gr
2

v =
(9.80m/s2 )(10.0m)

2
→ v = 7.00 m/s

 

  Since   v = rω ,  we have 
    

  
ω = v

r
= 7.00 m/s

10.0 m
= 0.700 rad/s

 

 

ANS. FIG. P13.56 

 (b) 

 

Because his feet stay in place on the floor, his head will be
moving at the same tangential speed as his feet. However,
his feet and his head are travelling in circles of different radii.

 

 (c) 

 

If he stands up without holding on to anything with his hands,
the only force on his body is radial. Because the wall of the
cabin near the traveler's head moves in a smaller circle, it
moves at a slower  tangential speed than that of the traveler's
head so his head moves toward the wall—if he is not careful,
there could be a collision. This is an example of the Coriolis
force investigated in Section 6.3. Holding onto to a rigid support
with his hands will provide a tangential force to the traveler to
slow the upper part of his body down.
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P13.57 (a) Ignoring air resistance, the energy conservation for the object-
Earth system from firing to apex is given by, 

    

  

K + Ug( )
i
= K + Ug( )

f

1
2

mvi
2 −

GmME

RE

= 0 −
GmME

RE + h

 

  where 
  

1
2

mvesc
2 =

GmME

RE

. Then  

   

  

1
2

vi
2 −

1
2

vesc
2 = −

1
2

vesc
2 RE

RE + h

vesc
2 − vi

2 =
vesc

2 RE

RE + h

 

   

  

1
vesc

2 − vi
2 =

RE + h
vesc

2 RE

 

   

  

h =
vesc

2 RE

vesc
2 − vi

2 − RE =
vesc

2 RE − vesc
2 RE + vi

2RE

vesc
2 − vi

2

h =
REvi

2

vesc
2 − vi

2

 

   

  
h =

6.37 × 106  m( ) 8.76 km/s( )2

11.2 km/s( )2 − 8.76 km/s( )2 = 1.00× 107  m
 

 (b) The fall of the meteorite is the time-reversal of the upward flight 
of the projectile, so it is described by the same energy equation:  

   

  

vi
2 = vesc

2 1−
RE

RE + h
⎛
⎝⎜

⎞
⎠⎟

= vesc
2 h

RE + h
⎛
⎝⎜

⎞
⎠⎟

= 11.2 × 103  m/s( )2 2.51× 107  m
6.37 × 106  m + 2.51× 107  m

⎛
⎝⎜

⎞
⎠⎟

= 1.00 × 108  m2 / s2

vi = 1.00 × 104  m/s
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P13.58 (a) Ignoring air resistance, the energy conservation for the object-
Earth system from firing to apex is given by, 

   

  

K + Ug( )
i
= K + Ug( )

f

1
2

mvi
2 −

GmME

RE

= 0 −
GmME

RE + h

 

  where 
  

1
2

mvesc
2 =

GmME

RE

. Then  

   

  

1
2

vi
2 −

1
2

vesc
2 = −

1
2

vesc
2 RE

RE + h

vesc
2 − vi

2 =
vesc

2 RE

RE + h

 

   

  

1
vesc

2 − vi
2 =

RE + h
vesc

2 RE

 

   

  

h =
vesc

2 RE

vesc
2 − vi

2 − RE =
vesc

2 RE − vesc
2 RE + vi

2RE

vesc
2 − vi

2

h =
REvi

2

vesc
2 − vi

2

 

 (b) The fall of the meteorite is the time-reversal of the upward flight 
of the projectile, so it is described by the same energy equation. 
From (a) above, replacing vi with vf , we have 

   

  

v f
2 = vesc

2 − vesc
2 RE

RE + h

v f
2 = vesc

2 1−
RE

RE + h
⎛
⎝⎜

⎞
⎠⎟

v f = vesc
h

RE + h

 

 (c) With vi << vesc, 
  
h ≈

REvi
2

vesc
2 =

REvi
2RE

2GME

. But 
  
g =

GME

RE
2 , so 

  
h =

vi
2

2g
, in 

agreement with   0
2 = vi

2 + 2 −g( ) h − 0( ).  
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P13.59 (a) Let R represent the radius of the asteroid. Then its volume is 

  

4
3
π R3  and its mass is 

  
ρ 4

3
π R3.  For your orbital motion,  F∑ = ma  

gives  

   
  

Gm1m2

R2 =
m2v2

R
    →   

  

Gρ4π R3

3R2 =
v2

R
 

  solving for R, 

   

  

R =
3v2

Gρ4π
⎛
⎝⎜

⎞
⎠⎟

1/2

=
3 8.50 m/s( )2

6.67 × 10−11  N ⋅m2/kg2( ) 1 100 kg/m3( )4π

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

= 1.53 × 104  m

 

 (b) 
  
ρ 4

3
π R3 = 1 100 kg/m3( ) 4

3
π 1.53 × 104  m( )3

= 1.66 × 1016  kg  

 (c) 
  
v =

2π R
T

T =
2π R

v
=

2π 1.53 × 104  m( )
8.5 m/s

= 1.13 × 104  s = 3.15 h  

 (d) For an illustrative model, we take your mass as 90.0 kg and 
assume the asteroid is originally at rest. Angular momentum is 
conserved for the asteroid-you system: 

   

  

Li∑ = Lf∑
0 = m2vR − Iω

0 = m2vR −
2
5

m1R
2 2π

Tasteroid

m2v =
4π
5

m1R
Tasteroid

Tasteroid =
4π m1R
5m2v

=
4π 1.66 × 1016  kg( ) 1.53 × 104  m( )

5 90.0 kg( ) 8.50 m/s( )
= 8.37 × 1017  s = 26.5 billion years

 

  

 

Thus your running does not produce significant rotation of the
asteroid if it is originally stationary and does not significantly
affect any rotation it does have.

 

  This problem is realistic. Many asteroids, such as Ida and Eros, 
are roughly 30 km in diameter. They are typically irregular in 
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shape and not spherical. Satellites such as Phobos (of Mars), 
Adrastea (of Jupiter), Calypso (of Saturn), and Ophelia (of Uranus) 
would allow a visitor the same experience of easy orbital motion. 
So would many Kuiper Belt objects.  

P13.60 (a) 

 

The two appropriate isolated system models are conservation
of momentum and conservation of energy applied to the system
consisting of the two spheres.

 

 (b) Applying conservation of momentum to the system, we find 

   

    

m1

v1i + m2


v2 i = m1


v1 f + m2


v2 f

0 + 0 = M

v1 f + 2M


v2 f


v1 f = −2


v2 f

 

 (c) Applying conservation of energy to the system, we find 
   

  

Ki + Ui + ΔE = K f + U f

0 −
Gm1m2

ri

+ 0 =
1
2

m1v1 f
2 +

1
2

m2v2 f
2 −

Gm1m2

rf

 

   

  
−

GM 2M( )
12R

=
1
2

Mv1 f
2 +

1
2

2M( )v2 f
2 −

GM 2M( )
4R

 

   

  

1
2

Mv1 f
2 =

GM
2R

−
GM
6R

− v2 f
2

v1 f =
2GM
3R

− 2v2 f
2

 

 (d) Combining the results for parts (b) and (c), 
   

   

2v2 f =
2GM
3R

− 2v2 f
2

6v2 f
2 =

2GM
3R

v2 = 1
3

G
M
R

      v1 =
2
3

G
M
R

  

 

P13.61 (a) At infinite separation U = 0 and at rest K = 0. Since the system is 
isolated, the energy and momentum of the two-planet system is 
conserved. We have 

   
  
0 =

1
2

m1v1
2 +

1
2

m2v2
2 −

Gm1m2

d
 [1] 
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  and 

     0 = m1v1 − m2v2  [2] 

  because the initial momentum of the system is zero. 

  Combine equations [1] and [2]: 

   

  

v1 = m2
2G

d m1 + m2( )  and 

  

v2 = m1
2G

d m1 + m2( )  

  The relative velocity is then 

   
  
vr = v1 − −v2( ) =

2G m1 + m2( )
d

 

  (b) The instant before the collision, the distance between the planets 
is d = r1 + r2. Substitute given numerical values into the equation 
found for v1 and v2 in part (a) to find 

     v1 = 1.03 × 104  m/s  and   v2 = 2.58 × 103  m/s  

  Therefore, 

   
  
K1 =

1
2

m1v1
2 = 1.07 × 1032  J  and 

  
K2 =

1
2

m2v2
2 = 2.67 × 1031  J  

P13.62 (a) The free-fall acceleration produced by the Earth is  

   
  
g =

GME

r2 = GMEr−2  (directed downward) 

  Its rate of change is  

   
  

dg
dr

= GME −2( )r−3 = −2GMEr−3  

  The minus sign indicates that g decreases with increasing height. 
At the Earth’s surface, 

   
  

dg
dr

= −
2GME

RE
3  

 (b) For small differences, 

   
  

Δg
Δr

=
Δg
h

=
2GME

RE
3

 

  Thus, 
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Δg =

2GMEh
RE

3  

 (c) 

  

Δg =
2 6.67 × 10−11  N ⋅m2/kg2( ) 5.98 × 1024  kg( ) 6.00 m( )

6.37 × 106  m( )3

= 1.85 × 10−5  m/s2

 

P13.63 (a) Each bit of mass dm in the ring is at the same distance from the 

object at A. The separate contributions 
 
−

Gmdm
r

 to the system 

energy add up to 
  
−

GmMring

r
. When the object is at A, this is  

  

 

−
(6.67 × 10−11 N ⋅m2/kg2 )(1 000 kg)(2.36 × 1020 kg)

1.00 × 108  m( )2
+ 2.00 × 108  m( )2

= −7.04 N

 

 (b) When the object is at the center of the ring, the potential energy of 
the system is  

   

 

−
6.67 × 10−11  N ⋅m2 / kg2( ) 1 000 kg( ) 2.36 × 1020  kg( )

1.00 × 108  m

                                                                         = −1.57 × 105  J

 

 (c) Total energy of the object-ring system is conserved: 
   

  

K + Ug( )
A

= K + Ug( )
B

0 − 7.04 × 104  J =
1
2

1 000 kg( )vB
2 − 1.57 × 105  J

vB =
2 × 8.70 × 104  J

1 000 kg
⎛
⎝⎜

⎞
⎠⎟

1/2

= 13.2 m/s

 

*P13.64 The original orbit radius is  
   

  r = a = 6.37 × 106  m + 500 × 103  m = 6.87 × 106  m  

 The original energy is 

   

  

Ei = −GMm
2a

= −
6.67 × 10−11  N ⋅m2 kg2( ) 5.98× 1024  kg( ) 104  kg( )

2 6.87 × 106  m( )
= −2.90× 1011  J
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 We assume that the perigee distance in the new orbit is 6.87 × 106 m. 
Then the major axis is   2a = 6.87 × 106  m + 2.00 × 107  m = 2.69 × 107  m  
and the final energy is 

   

  

E f = −GMm
2a

= −
6.67 × 10−11  N ⋅m2 kg2( ) 5.98× 1024  kg( ) 104  kg( )

2.69× 107  m
= −1.48× 1011  J

 

 The energy input required from the engine is  
   

  
E f − Ei = −1.48 × 1011  J − −2.90 × 1011  J( ) = 1.42 × 1011  J

 

P13.65 From the walk, 2πr = 25 000 m. Thus, the radius of the planet is  

   
  
r =

25 000 m
2π

= 3.98 × 103  m  

 From the drop:  

   
  
Δy =

1
2

gt2 =
1
2

g 29.2 s( )2 = 1.40 m  

 so, 
   

  
g = 2 1.40 m( )

29.2 s( )2 = 3.28× 10−3  m/s2 = MG
r2

 

 which gives 
   

  
M = 7.79× 1014  kg

 

P13.66 The distance between the orbiting stars is 

  d = 2r cos30° = 3r  since 
 
cos30° =

3
2

. The net 

inward force on one orbiting star is  
  

  

Gmm
d2 cos30° + GMm

r2

                     + Gmm
d2 cos30° = mv2

r
Gm2cos30°

3r2 + GM
r2 = 4π 2r2

rT 2

G
m
3

+ M⎛
⎝⎜

⎞
⎠⎟ = 4π 2r3

T 2

 

ANS. FIG. P13.66 
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 solving for the period gives 
  

  

T 2 = 4π 2r3

G M + m/ 3( )

T = 2π r3

G M + m/ 3( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/2

 

P13.67 (a) We find the period from 
   

  

T = 2πr
v

=
2π 30 000× 9.46× 1015  m( )

2.50× 105  m/s
= 7 × 1015  s

= 2 × 108  yr

 

 (b) We estimate the mass of the Milky Way from 

   

  

M =
4π 2a3

GT 2 =
4π 2 30 000 × 9.46 × 1015  m( )3

6.67 × 10−11  N ⋅m2/kg2( ) 7.13 × 1015  s( )2

= 2.66 × 1041  kg

, 

  or 
 
about 1041  kg  

  Note that this is the mass of the galaxy contained within the Sun’s 
orbit of the galactic center. Recent studies show that the true mass 
of the galaxy, including an extended halo of dark matter, is at 
least an order of magnitude larger than our estimate. 

 (c) A solar mass is about 1 × 1030 kg: 1041/1030 = 1011 

  The number of stars is 
 

on the order of 1011 .  

P13.68 Energy conservation for the two-sphere system from release to contact:  
   

  

−
Gmm

R
= −

Gmm
2r

+
1
2

mv2 +
1
2

mv2

Gm
1
2r

−
1
R

⎛
⎝⎜

⎞
⎠⎟ = v2 → v = Gm

1
2r

−
1
R

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

1/2

 

 (a) The injected momentum is the final momentum of each sphere, 
   

  
mv = m2/2 Gm

1
2r

−
1
R

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

1/2

= Gm3 1
2r

−
1
R

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

1/2  
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 (b) If they now collide elastically each sphere reverses its velocity 
to receive impulse 

   

  
mv − −mv( ) = 2mv = 2 Gm3 1

2r
−

1
R

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

1/2

 

P13.69 (a) The net torque exerted on the Earth is zero. Therefore, the angular 
momentum of the Earth is conserved. We use this to find the 
speed at aphelion: 

    mrava = mrpvp   

  and  
   

  
va = vp

rp

ra

⎛
⎝⎜

⎞
⎠⎟

= 3.027 × 104  m/s( ) 1.471
1.521

⎛
⎝⎜

⎞
⎠⎟ = 2.93 × 104  m/s

  

 (b) 
  
Kp =

1
2

mvp
2 =

1
2

5.98 × 1024  kg( ) 3.027 × 104  m/s( )2
= 2.74 × 1033  J  

  

  

Up = −
GmM

rp

= −
6.67 × 10−11  N ⋅m2/kg2( ) 5.98 × 1024  kg( ) 1.99 × 1030  kg( )

1.471× 1011  m

= −5.40 × 1033  J

 

 (c) Using the same form as in part (b),  

   
  
Ka = 2.57 × 1033  J  and 

  
Ua = −5.22 × 1033  J  

 (d) Compare to find that   

   
  
Kp + Up = −2.66 × 1033  J  and 

  
Ka + Ua = −2.65 × 1033  J . 

  
 
They agree,  with a small rounding error.

 

P13.70 For both circular orbits, 

   

  

F∑ = ma:
GMEm

r2 =
mv2

r

v =
GME

r

 

ANS. FIG. P13.70 
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 (a) The original speed is 
   

  

vi =
6.67 × 10−11  N ⋅m2 / kg2( ) 5.98 × 1024  kg( )

6.37 × 106  m + 2.00 × 105  m

= 7.79 × 103  m/s

 

 (b) The final speed is 
   

  

vi =
6.67 × 10−11  N ⋅m2 / kg2( ) 5.98 × 1024  kg( )

6.47 × 106  m

= 7.85 × 103  m/s

 

  The energy of the satellite-Earth system is 

   
  
K + Ug =

1
2

mv2 −
GMEm

r
=

1
2

m
GME

r
−

GME

r
= −

GMEm
2r

 

 (c) Originally, 
   

  

Ei = −
6.67 × 10−11  N ⋅m2/kg2( ) 5.98 × 1024  kg( ) 100 kg( )

2 6.57 × 106  m( )
= −3.04 × 109  J

 

 (d) Finally, 
   

  

E f = −
6.67 × 10−11  N ⋅m2/kg2( ) 5.98× 1024  kg( ) 100 kg( )

2 6.47 × 106  m( )
= −3.08× 109  J

 

 (e) Thus the object speeds up as it spirals down to the planet. The 
loss of gravitational energy is so large that the total energy 
decreases by  

   
  
Ei − Ef = −3.04 × 109  J − −3.08 × 109  J( ) = 4.69 × 107  J  

 (f) The only forces on the object are the backward force of air 
resistance R, comparatively very small in magnitude, and the 
force of gravity. Because the spiral path of the satellite is not 
perpendicular to the gravitational force, 

 

one component of the gravitational force pulls forward 
on the satellite

 

   to do positive work and make its speed increase. 
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P13.71 The centripetal acceleration of the blob comes from gravitational 
acceleration: 

   

  

v2

r
= McG

r2 = 4π 2r2

T 2r
GMcT

2 = 4π 2r3

 

 Solving for the radius gives 
  

  

r =
6.67 × 10−11  N ⋅m2/kg2( ) 20( ) 1.99× 1030  kg( ) 5.00× 10−3  s( )2

4π 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/3

rorbit = 119 km

 

P13.72 From Kepler’s third law, minimum period means minimum orbit size. 
The “treetop satellite” in Problem 38 has minimum period. The radius 
of the satellite’s circular orbit is essentially equal to the radius R of the 
planet. 

   

  
F∑ = ma:

GMm
R2 =

mv2

R
=

m
R

2πR
T

⎛
⎝⎜

⎞
⎠⎟

2  

   

  

GρV =
R2 4π 2R2( )

RT 2

Gρ 4
3
πR3⎛

⎝⎜
⎞
⎠⎟ =

4π 2R3

T 2

 

 The radius divides out:  
  
T 2Gρ = 3π    → T = 3π

Gρ
 

P13.73 Let m represent the mass of the meteoroid and vi 
its speed when far away. No torque acts on the 
meteoroid, so its angular momentum is conserved 
as it moves between the distant point and the 
point where it grazes the Earth, moving 
perpendicular to the radius: 

   

    

Li = Lf : m

ri ×

v i = m


rf ×

v f

m 3REvi( ) = mREv f

v f = 3vi

 

ANS. FIG. P13.73 
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 Now, the energy of the meteoroid-Earth system is also conserved:  

   

  

K + Ug( )
i
= K + Ug( )

f
:

1
2

mvi
2 + 0 =

1
2

mv f
2 −

GMEm
RE

1
2

vi
2 =

1
2

9vi
2( ) − GME

RE

 

   
  

GME

RE

= 4vi
2 :  

  
vi =

GME

4RE

 

P13.74 If we choose the coordinate of the center of mass at the origin, then 

   
  
0 =

Mr2 − mr1( )
M + m

 and   Mr2 = mr1  

 (Note: this is equivalent to saying that the net torque must be zero and 
the two experience no angular acceleration.) For each mass F = ma so  

   
  
mr1ω1

2 =
MGm

d2  and 
  
Mr2ω2

2 =
MGm

d2  

 

ANS. FIG. P13.74 

 Combining these two equations and using d = r1 + r2 gives 

  
r1 + r2( )ω 2 =

M + m( )G
d2  with 

    ω1 = ω2 = ω  

 and 

   
  
T =

2π
ω

 

 we find 

   
  

T 2 =
4π 2d3

G M + m( )
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P13.75 The gravitational forces the particles exert on each other are in the x 
direction. They do not affect the velocity of the center of mass. Energy 
is conserved for the pair of particles in a reference frame coasting along 
with their center of mass, and momentum conservation means that the 
identical particles move toward each other with equal speeds in this 
frame: 

   Ugi + Ki + Ki = Ugf + Kf + Kf 
   

  

−Gm1m2

ri

+ 0 = −Gm1m2

rf

+ 1
2

m1v
2 + 1

2
m2v2

− (6.67 × 10−11  N ⋅m2/kg2 )(1 000 kg)2

20.0 m

= − (6.67 × 10−11  N ⋅m2/kg2 )(1 000 kg)2

2.00 m
+ 2

1
2

⎛
⎝⎜

⎞
⎠⎟ (1 000 kg)v2

3.00× 10−5  J
1 000 kg

⎛
⎝⎜

⎞
⎠⎟

1/2

= v = 1.73× 10−4  m/s

 

 

  

Then their vector velocities are (800 + 1.73× 10−4) î m/s and 

(800− 1.73× 10−4)î m/s for the trailing particle and the leading 
particle, respectively.

 

P13.76 (a) The gravitational force exerted on m by the Earth (mass ME) 

accelerates m according to 
  
g2 =

GME

r2 .  The equal-magnitude force 

exerted on the Earth by m produces acceleration of the Earth 

given by 
  
g1 =

Gm
r2 .  The acceleration of relative approach is then 

    

  

g2 + g1 =
Gm
r2 +

GME

r2

=
6.67 × 10−11  N ⋅m2/kg2( ) 5.98 × 1024  kg + m( )

1.20 × 107  m( )2

=  2.77  m/s2( )  1 + 
m

5.98 ×1024  kg
⎛
⎝⎜

⎞
⎠⎟

 

 (b) and (c) Here m = 5 kg and m = 2000 kg are both negligible 
compared to the mass of the Earth, so the acceleration of relative 
approach is just  2.77 m/s2 .  
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 (d) Substituting m = 2.00 × 1024 kg into the expression for (g1 + g2) 
above gives 

    
  g1 + g2 = 3.70 m/s2  

 (e) 

  

Any object with mass small compared to the Earth starts to

fall with acceleration 2.77 m/s2. As m increases to become
comparable to the mass of the Earth, the acceleration increases,
and can become arbitrarily large. It approaches a direct pro-
portionality to m.

 

P13.77 For the Earth, 
  

F∑ = ma:
GMsm

r2 = mv2

r
= m

r
2πr
T

⎛
⎝⎜

⎞
⎠⎟

2

 

 Then    GMsT
2 = 4π 2r3  

 Also, the angular momentum 
  
L = mvr = m

2πr
T

r  is a constant for the 

Earth. We eliminate 
  
r =

LT
2πm

 between the equations: 

   
  
GMsT

2 = 4π 2 LT
2πm

⎛
⎝⎜

⎞
⎠⎟

3/2

  gives 
  
GMsT

1/2 = 4π 2 L
2πm

⎛
⎝⎜

⎞
⎠⎟

3/2

 

 Now the rates of change with time t are described by 
   

  
GMs

1
2

T −1/2 dT
dt

⎛
⎝⎜

⎞
⎠⎟ + G 1

dMs

dt
T 1/2⎛

⎝⎜
⎞
⎠⎟ = 0

 

 or 
   

  

dT
dt

= −
dMs

dt
2

T
Ms

⎛
⎝⎜

⎞
⎠⎟
≈
ΔT
Δt

 

 which gives 

   

  

ΔT ≈ −Δt
dMs

dt
2

T
Ms

⎛
⎝⎜

⎞
⎠⎟

              = − 5 000 yr( ) 3.16× 107  s
1 yr

⎛
⎝⎜

⎞
⎠⎟
−3.64× 109  kg/s( )

                                                              × 2
1 yr

1.99× 1030  kg
⎛
⎝⎜

⎞
⎠⎟

ΔT = 5.78× 10−10  s
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Challenge Problems 
P13.78 Let m represent the mass of the spacecraft, rE the radius of the Earth’s 

orbit, and x the distance from Earth to the spacecraft. 

 The Sun exerts on the spacecraft a radial inward force of   

   
  
Fs =

GMsm
rE − x( )2  

 while the Earth exerts on it a radial outward force of  

   
  
FE =

GMEm
x2

 

 The net force on the spacecraft must produce the correct centripetal 
acceleration for it to have an orbital period of 1.000 year. 

 Thus, 

  

FS − FE =
GMSm

rE − x( )2 −
GMEm

x2 =
mv2

rE − x( ) =
m

rE − x( )
2π rE − x( )

T

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

 

 which reduces to  
  

GMS

rE − x( )2 −
GME

x2 =
4π 2 rE − x( )

T 2  [1] 

 Cleared of fractions, this equation would contain powers of x ranging 
from the fifth to the zeroth. We do not solve it algebraically. We may 
test the assertion that x is 1.48 × 109 m by substituting it into the 
equation, along with the following data: MS = 1.99 × 1030 kg,  
ME = 5.974 × 1024 kg, rE = 1.496 × 1011 m, and T = 1.000 yr = 3.156 × 107 s. 

 With x = 1.48 × 109 m, the result is  

    6.053 × 10−3  m/s2 − 1.82 × 10−3  m/s2 ≈ 5.870 8 × 10−3  m/s2  

 or   5.870 9 × 10−3  m/s2 ≈ 5.870 8 × 10−3  m/s2  

 
 
To three-digit precision, the solution is 1.48 × 109 m.  

 As an equation of fifth degree, equation [1] has five roots. The Sun-
Earth system has five Lagrange points, all revolving around the Sun 
synchronously with the Earth. The SOHO and ACE satellites are at 
one. Another is beyond the far side of the Sun. Another is beyond the 
night side of the Earth. Two more are on the Earth’s orbit, ahead of the 
planet and behind it by 60°. The twin satellites of NASA’s STEREO 
mission, giving three-dimensional views of the Sun from orbital 
positions ahead of and trailing Earth, passed through these Lagrange 
points in 2009. The Greek and Trojan asteroids are at the co-orbital 
Lagrange points of the Jupiter-Sun system.  
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P13.79 (a) From the data about perigee, the energy of the satellite-Earth 
system is  

   

  

E =
1
2

mvp
2 −

GMEm
rp

=
1
2

1.60 kg( ) 8.23 × 103  m/s( )2

                        −
6.67 × 10−11  N ⋅m2/kg2( ) 5.98 × 1024  kg( ) 1.60 kg( )

7.02 × 106  m

 

  or   E =  −3.67 × 107  J  

 (b) 

  

L = mvr sinθ = mvprp sin 90.0°

= 1.60 kg( ) 8.23 × 103  m/s( ) 7.02 × 106  m( )
=  9.24 × 1010  kg ⋅m2/s

 

 (c) Since both the energy of the satellite-Earth system and the 
angular momentum of the Earth are conserved, 

  at apogee we must have  

   
  

1
2

mva
2 −

GMm
ra

= E  

  and   mvara sin 90.0° = L  

  Thus,
 

  

1
2

1.60 kg( )va
2

                −
6.67 × 10−11  N ⋅m2/kg2( ) 5.98 × 1024  kg( ) 1.60 kg( )

ra

                = −3.67 × 107  J

 

  and   1.60 kg( )vara = 9.24 × 1010  kg ⋅m2/s  

  Solving simultaneously, and suppressing units, 
   

  

1
2

1.60( )va
2 −

6.67 × 10−11( ) 5.98 × 1024( ) 1.60( ) 1.60( )va

9.24 × 1010

                                                                          = −3.67 × 107

 

  which reduces to  

     0.800va
2 − 11 046va + 3.672 3 × 107 = 0  

  so 
  
va =

11 046 ± 11 046( )2 − 4 0.800( ) 3.672 3 × 107( )
2 0.800( )
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  This gives va = 8 230 m/s or  5 580 m/s . The smaller answer 
refers to the velocity at the apogee while the larger refers to 
perigee. 

  Thus,

 
  
ra =

L
mva

=
9.24 × 1010  kg ⋅m2/s

1.60 kg( ) 5.58 × 103  m/s( ) = 1.04 × 107  m  

 (d) The major axis is 2a = rp + ra, so the semimajor axis is 

   
  
a =

1
2

7.02 × 106  m + 1.04 × 107  m( ) = 8.69 × 106  m  

 (e) 
  
T =

4π 2a3

GME

=
4π 2 8.69 × 106  m( )3

6.67 × 10−11  N ⋅m2/kg2( ) 5.98 × 1024  kg( )  

  
  
T = 8 060 s = 134 min  

*P13.80 (a) Energy of the spacecraft-Mars system is conserved as the 
spacecraft moves between a very distant point and the point of 
closest approach: 

   

  

0 + 0 = 1
2

mvr
2 − GMMarsm

r

vr = 2GMMars

r

 

  After the engine burn, for a circular orbit we have 

   

  

F∑ = ma:
GMMarsm

r2 = mv0
2

r

v0 = GMMars

r

 

  The percentage reduction from the original speed is 

   
  

vr − v0

vr

= 2v0 − v0

2v0

= 2 − 1
2

× 100% = 29.3%  

 (b) The answer to part (a) applies with 
 

no changes , as the solution 

to part (a) shows. 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P13.2 ~10−7 N 

P13.4 (a) 4.39 × 1020 N; (b) 1.99 × 1020 N; (c) 3.55 × 1022 N; (d) The force exerted 
by the Sun on the Moon is much stronger than the force of the Earth on 
the Moon. 

P13.6 
  
−10.0î + 5.93 ĵ( ) × 10−11  N  

P13.8 The situation is impossible because no known element could compose 
the spheres. 

P13.10 3.06 × 10–8 m 

P13.12 
 

2
3

 

P13.14 (a) 
  

2MGr

r2 + a2( )3/2  toward the center of mass; (b) At r = 0, the fields of the 

two objects are equal in magnitude and opposite in direction, to add to 

zero; (c) As   r → 0,2MGr r2 + a2( )−3/2
 approaches 2MG(0)/a3 = 0; (d) 

When r is much greater than a, the angles the field vectors make with 
the x axis become smaller. At very great distances, the field vectors are 
almost parallel to the axis; therefore they begin to look like the field 
vector from a single object of mass 2M; (e) As r becomes much larger 
than a, the expression approaches 

  2MGr r2 + 02( )−3/2
= 2MGr/r3 = 2MG/r2  as required. 

P13.16 (a) 1.31 × 1017 N; (b) 2.62 × 1012 N/kg 

P13.18 1.90 × 1027 kg 

P13.20 (a) The particle does posses angular momentum because it is not 
headed straight for the origin. (b) Its angular momentum is constant. 
There are no identified outside influences acting on the object. (c) See 
P13.20(c) for full explanation. 

P13.22 1.30 revolutions 

P13.24 1.27 

P13.26 1.63 × 104 rad/s 

P13.28 (a) 6.02 × 1024 kg; (b) The Earth wobbles a bit as the Moon orbits it, so 
both objects move nearly in circles about their center of mass, staying 
on opposite sides of it. 
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P13.30 (a) −4.77 × 109 J; (b) 569 N 

P13.32 4.17 × 1010 J 

P13.34 (a) See P13.34 for full description; (b) 340 s 

P13.36 1.66 × 104 m/s  

P13.38   2v  

P13.40 (a) 0.980; (b) 127 yr; (c) –2.13 × 1017 J 

P13.42 
  

GMEm
12RE

 

P13.44 (a) 42.1 km/s; (b) 2.20 × 1011 m  

P13.46 (a) 
  
2π

RE + h( )3

GME

; (b) 
 

GME

RE + h
; (c) 

  
GMEm

RE + 2h
2RE RE + h( )

⎡

⎣
⎢

⎤

⎦
⎥ −

2π 2RE
2m

86 400 s( )2  

P13.48 (a) 
  
vi =

GME

r
⎛
⎝⎜

⎞
⎠⎟

1/2

; (b) 
  

5
4

GME

r
⎛
⎝⎜

⎞
⎠⎟

1/2

; (c) 
  
rf =

25r
7

 

P13.50 (a) 3.07 × 106 m; (b) the rocket would travel farther from Earth  

P13.52 492 m/s 

P13.54 If one uses the result 
 
v =

GM
r

 and the relation   v = (2πτ/T),  one finds 

the radius of the orbit to be smaller than the radius of the Earth, so the 
spacecraft would need to be in orbit underground. 

P13.56 (a) 0.700 rad/s; (b) Because his feet stay in place on the floor, his head 
will be moving at the same tangential speed as his feet.  However, his 
feet and his head are travelling in circles of different radii; (c) If he’s 
not careful, there could be a collision between his head and the wall 
(see P13.56 for full explanation) 

P13.58 (a) 
  
h =

REvi
2

vesc
2 − vi

2 ; (b) 
 
v f = vesc

h
RE + h

; (c) With 

  
v1 << vesc , h ≈

REvi
2

vesc
2 =

REvi
2RE

2GME

.  But 
  
g =

GME

RE
2 ,  so 

  
h =

vi
2

2g
 in agreement 

with   0
2 = vi

2 + 2 −g( ) h − 0( ).  
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P13.60 (a) The two appropriate isolated system models are conservation of 
momentum and conservation of energy applied to the system 

consisting of the two spheres; (b)     −2

v2 f ; (c) 

  

2GM
3R

− 2v2 f
2 ;  

(d) 
  
v2 =

1
3

G
M
R

, 
  
v1 =

2
3

G
M
R

 

P13.62 (a) 
  

dg
dr

= −
2GME

RE
3 ; (b) 

  
Δg =

2GMEh
RE

3 ; (c) 1.85 × 10−5 m/s2 

P13.64 1.42 × 1011 J 

P13.66 See P13.66 for the full answer.  

P13.68 (a) 
  
mv = GM3 1

2r
−

1
R

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

1/2

; (b) 
  
2 GM3 1

2r
−

1
R

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

1/2

 

P13.70 (a) 7.79 × 103 m/s; (b) 7.85 × 103 m/s; (c) −3.04 × 109 J; (d) −3.08 × 109 J; 
(e) 4.69 × 107 J; (f) one component of the gravitational force pulls 
forward on the satellite  

P13.72 See P13.72 for full description. 

P13.74 See P13.74 for full description. 

P13.76 (a) 
  
2.77 m/s2( ) 1 +

m
5.98 × 1024  kg

⎛
⎝⎜

⎞
⎠⎟

; (b and c) 2.77 m/s2; (d) 3.70 m/s2; 

(e) Any object with mass small compared to the Earth starts to fall with 
acceleration 2.77 m/s2. As m increases to become comparable to the 
mass of the Earth, the acceleration increases and can become arbitrarily 
large. It approaches a direct proportionality to m. 

P13.78 See P13.78 for full description. 

P13.80 (a) 29.3%; (b) no changes 

 



738 
© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

14 
Fluid Mechanics 

 

CHAPTER OUTLINE 
 

14.1  Pressure 

14.2  Variation of Pressure with Depth 

14.3  Pressure Measurements 

14.4  Buoyant Forces and Archimedes’s Principle 

14.5  Fluid Dynamics 

14.6 Bernoulli’s Equation 

14.7 Other Applications of Fluid Dynamics 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ14.1 Answer (c). Both must be built the same. A dam must be constructed 
to withstand the pressure at the bottom of the dam. The pressure at 
the bottom of a dam due to water is   P = ρgh,  where h is the height of 
the water. If both reservoirs are equally high (meaning the water is 
equally deep), the pressure is the same regardless of width. 

OQ14.2 Answer (b), (e). The buoyant force on an object is equal to the weight 
of the volume of water displaced by that object. 

OQ14.3 Answer (d), (e). The buoyant force on the block is equal to the 
WEIGHT of the volume of water it displaces.  

OQ14.4 Answer (b). The apple does not change volume appreciably in a 
dunking bucket, and the water also keeps constant density. Then the 
buoyant force is constant at all depths. 

OQ14.5 Answer (c). The water keeps nearly constant density as it increases in 
pressure with depth. The beach ball is compressed to smaller volume 
as you take it deeper, so the buoyant force decreases. Note that the 
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situation this question considers is different from that of OQ14.2. In 
OQ14.2, the beach ball is fully inflated at a pressure higher than 1 
atm, and the tension from the plastic balances the excess pressure. So 
even when the ball is 1 m under water, the water pressure increases, 
so the plastic tension decreases, but the inside pressure remains 
practically constant, hence no volume change. 

OQ14.6 Answer (a), (c). Both spheres have the same volume, so the buoyant 
force is the same on each. The lead sphere weighs more, so its string 
tension must be greater. 

OQ14.7 Answer (c). The absolute pressure at depth h below the surface of a 
fluid having density ρ is   P = P0 + ρgh,  where P0 is the pressure at the 
upper surface of that fluid. The fluid in each of the three vessels has 
density ρ = ρwater, the top of each vessel is open to the atmosphere so 
that P0 = Patm in each case, and the bottom is at the same depth h 
below the upper surface for the three vessels. Thus, the pressure P at 
the bottom of each vessel is the same. 

OQ14.8 Answer (b). Ice on the continent of Antarctica is above sea level. At 
the north pole, the melting of the ice floating in the ocean will not 
raise the ocean level (see OQ14.15). 

OQ14.9 Answer (c). The normal force from the bottom plus the buoyant force 
from the water together balance the weight of the boat.  

OQ14.10 (i) Answer (b). (ii) Answer (c). When the steel is underwater, the 
water exerts on the steel a buoyant force that was not present when 
the steel was on top surrounded by air. Thus, slightly less wood will 
be below the water line on the wooden block. It will float higher. In 
both orientations the compound floating object displaces its own 
weight of water, so it displaces equal volumes of water. The water 
level in the tub will be unchanged when the object is turned over. 

OQ14.11 Answer (b). The excess pressure is transmitted undiminished 
throughout the container. It will compress air inside the wood. The 
water driven into the pores of the wood raises the block’s average 
density and makes if float lower in the water. Add some thumbtacks 
to reach neutral buoyancy and you can make the wood sink or rise at 
will by subtly squeezing a large clear–plastic soft–drink bottle. René 
Descartes invented this toy or trick, called a Cartesian diver. 

OQ14.12 Answer (b). The level of the pond falls. This is because the anchor 
displaces more water while in the boat. A floating object displaces a 
volume of water whose weight is equal to the weight of the object. A 
submerged object displaces a volume of water equal to the volume of 
the object. Because the density of the anchor is greater than that of 
water, a volume of water that weighs the same as the anchor will be 
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greater than the volume of the anchor. 

OQ14.13 Answer: (b) = (d) = (e) > (a) > (c). Objects (a) and (c) float, and (e) 
barely floats (we ignore the thin-walled bottle). On them the buoyant 
forces are equal to the gravitational forces exerted on them, so the 
ranking is (e) greater than (a) and (e) greater than (c). Objects (b) and 
(d) sink, and have volumes equal to (e), so they feel equal-size 
buoyant forces: (e) = (b) = (d). 

OQ14.14 Answer (d). You want the water drop-Earth system to have four 
times the gravitational potential energy, relative to where the water 
drop leaves the nozzle, as a water drop turns around at the top of the 
fountain. Therefore, you want it to start out with four times the 
kinetic energy, which means with twice the speed at the nozzle. 
Given the constant volume flow rate Av, you want the area to be two 
times smaller. If the nozzle has a circular opening, you need to 
decrease its radius only by the square root of two. 

OQ14.15 Answer (c). The water level stays the same. The solid ice displaced its 
own mass of liquid water. The meltwater does the same. 

OQ14.16 Answer (e). Since the pipe is horizontal, each part of it is at the same 
vertical level or has the same y coordinate. Thus, from Bernoulli’s 

equation 
  
P + 1

2
ρv2 + ρgy = constant,  we see that the sum of the 

pressure and the kinetic energy per unit volume (
  
P + 1

2
ρv2 ) must 

also be constant throughout the pipe. 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ14.1 The horizontal force exerted by the outside fluid, on an area element 
of the object’s side wall, has equal magnitude and opposite direction 
to the horizontal force the fluid exerts on another element 
diametrically opposite the first. 

CQ14.2 The weight depends upon the total volume of water in the glass. The 
pressure at the bottom depends only on the depth. With a cylindrical 
glass, the water pushes only horizontally on the side walls and does 
not contribute to an extra downward force above that felt by the 
base. On the other hand, if the glass is wide at the top with a conical 
shape, the water pushes outward and downward on each bit of side 
wall. The downward components add up to an extra downward 
force, more than that exerted on the small base area. 

CQ14.3 The air in your lungs, the blood in your arteries and veins, and the 



Chapter 14     741 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

protoplasm in each cell exert nearly the same pressure, so that the 
wall of your chest can be in equilibrium. 

CQ14.4 Yes. The propulsive force of the fish on the water causes the scale 
reading to fluctuate. Its average value will still be equal to the total 
weight of bucket, water, and fish. In other words, the center of mass 
of the fish-water-bucket system is moving around when the fish 
swims. Therefore, the net force acting on the system cannot be a 
constant. Apart from the weights (which are constants), the vertical 
force from the scale is the only external force on the system: it 
changes as the center of mass moves (accelerates). So the scale 
reading changes. 

CQ14.5 (a) The greater air pressure inside the spacecraft causes air to be 
expelled through the hole. 

 (b) Clap your shoe or wallet over the hole, or a seat cushion, or 
your hand. Anything that can sustain a force on the order of  
100 N is strong enough to cover the hole and greatly slow down 
the escape of the cabin air. You need not worry about the air 
rushing out instantly, or about your body being “sucked” 
through the hole, or about your blood boiling or your body 
exploding. If the cabin pressure drops a lot, your ears will pop 
and the saliva in your mouth may boil—at body temperature—
but you will still have a couple of minutes to plug the hole and 
put on your emergency oxygen mask. Passengers who have 
been drinking carbonated beverages may find that the carbon 
dioxide suddenly comes out of solution in their stomachs, 
distending their vests, making them belch, and all but frothing 
from their ears; so you might warn them of this effect. 

CQ14.6 The rapidly moving air above the ball exerts less pressure than the 
atmospheric pressure below the ball. This can give substantial lift to 
balance the weight of the ball. 

CQ14.7 Imagine there have been large water demands and the water vessel 
at the top is half full. The depth of water from the upper water 
surface to the ground is still large. Therefore, the pressure at the base 
of the water is only slightly reduced from that due to a full tank, 
resulting in adequate water pressure at residents’ faucets. If the 
water tank were a tall cylinder, a half-full tank would be only half as 
deep and the pressure at residents’ faucets would be only half as 
great. Also, the water level in a tall cylinder would drop faster, 
because its cross-sectional area is smaller, so it would have to be 
replaced more often. 

CQ14.8 Like the ball, the balloon will remain in front of you. It will not bob 
up to the ceiling. Air pressure will be no higher at the floor of the 
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sealed car than at the ceiling. The balloon will experience no buoyant 
force. You might equally well switch off gravity. In the freely falling 
elevator, everything is effectively “weightless,” so the air does not 
exert a buoyant force on anything. 

CQ14.9 (a) Yes. (b) Yes. (c) The buoyant force is a conservative force. It does 
positive work on an object moving upward in a fluid and an equal 
amount of negative work on the object moving down between the 
same two elevations. [Note that mechanical energy, K + U, is not 
conserved here because of viscous drag from the water.] Potential 
energy is not associated with the object on which the buoyant force 
acts, but with the system of objects interacting by the buoyant force. 
This system is the immersed object and the fluid. 

CQ14.10 The metal is more dense than water. If the metal is sufficiently thin, it 
can float like a ship, with the lip of the dish above the water line. 
Most of the volume below the water line is filled with air. The mass 
of the dish divided by the volume of the part below the water line is 
just equal to the density of water. Placing a bar of soap into this space 
to replace the air raises the average density of the compound object 
and the density can become greater than that of water. The dish sinks 
with its cargo. 

CQ14.11 Use a balance to determine its mass. Then partially fill a graduated 
cylinder with water. Immerse the rock in the water and determine 
the volume of water displaced. Divide the mass by the volume and 
you have the density. It may be more precise to hang the rock from a 
string, measure the force required to support it under water, and 
subtract to find the buoyant force. The buoyant force can be thought 
of as the weight of so many grams of water, which is that number of 
cubic centimeters of water, which is the volume of the submerged 
rock. This volume with the actual rock mass tells you its density. 

CQ14.12 The diet drink fluid has no dissolved sugar, so its density is less than 
that of the regular drink. Try it. 

CQ14.13 At lower elevation the water pressure is greater because pressure 
increases with increasing depth below the water surface in the 
reservoir (or water tower). The penthouse apartment is not so far 
below the water surface. The pressure behind a closed faucet is 
weaker there and the flow weaker from an open faucet. Your fire 
department likely has a record of the precise elevation of every fire 
hydrant. 

CQ14.14 The boat floats higher in the ocean than in the inland lake. According 
to Archimedes’s principle, the magnitude of buoyant force on the 
ship is equal to the weight of the water displaced by the ship. 
Because the density of salty ocean water is greater than fresh lake 
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water, less ocean water needs to be displaced to enable the ship to 
float. 

CQ14.15 The ski jumper gives her body the shape of an airfoil. She deflects the 
air stream downward as it rushes past and the airstream deflects her 
upward by Newton’s third law. The air exerts on her a lift force, 
giving her a higher and longer trajectory. 

 
ANS FIG. CQ14.15 

CQ14.16 When taking off into the wind, the increased airspeed over the wings 
gives a larger lifting force, enabling the pilot to take off in a shorter 
length of runway. 

CQ14.17 A breeze from any direction speeds up to go over the mound and the 
air pressure drops. Air then flows through the burrow from the 
lower entrance to the upper entrance. 

CQ14.18 (a) Since the velocity of the air in the right-hand section of the pipe 
is lower than that in the middle, the pressure is higher. 

 (b) The equation that predicts the same pressure in the far right- 
and left-hand sections of the tube assumes laminar flow without 
viscosity. The equation also assumes the fluid is incompressible, 
but air is not. Also, the left-hand tube is open to the atmosphere 
while the right-hand tube is not. Internal friction will cause 
some loss of mechanical energy, and turbulence will also 
progressively reduce the pressure. If the pressure at the left 
were not lower than at the right, the flow would stop.  

CQ14.19 The stored corn in the silo acts as a fluid: the greater the depth, the 
greater the pressure on the sides of the silo. The metal bands are 
placed closer, or doubled, at lower portions to provide more force to 
balance the force from the greater pressure. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 14.1 Pressure	  
P14.1 We shall assume that each chair leg supports one-fourth of the total 

weight so the normal force each leg exerts on the floor is n = mg/4. The 
pressure of each leg on the floor is then 

   
  

Pleg =
n

Aleg

=
mg 4
πr2 =

95.0 kg( ) 9.80 m s2( )
4π 0.500 × 10−2  m( )2 = 2.96 × 106  Pa  

P14.2 (a) If the particles in the nucleus are closely packed with negligible 
space between them, the average nuclear density should be 
approximately that of a proton or neutron. That is 

   

   

ρnucleus ≈
mproton

Vproton

=
mproton

4πr3 3


3 1.67 × 10−27  kg( )
4π 1× 10−15  m( )3   

 4× 1017  kg m3

 

 (b) 

 

The density of an atom is about 1014  times greater than 
the density of iron and other common solids and liquids. 
This shows that an atom is mostly empty space. Liquids 
and solids, as well as gases, are mostly empty space.

 

P14.3 (a) 

  
P =

F
A

=
50.0 kg( ) 9.80 m/s2( )
π 0.500 × 10−2  m( )2 = 6.24 × 106  N m2  

 (b)  

 

The pressure from the heel might damage the vinyl floor
 covering.

 

P14.4 The Earth’s surface area is  4πR2 .  The force pushing inward over this 
area amounts to 

     
F = P0A = P0 4πR2( )  

 This force is the weight of the air: 

      
Fg = mg = P0 4πR2( )  
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 so, assuming g is everywhere the same, the mass of the air is  

    

  

m =
P0 4πR2( )

g

=
1.013 × 105  N/m2( ) 4π 6.37 × 106  m( )2⎡

⎣
⎤
⎦

9.80 m/s2

= 5.27 × 1018  kg

 

P14.5 The definition of density, ρ = m/V, is often most directly useful in the 
form m = ρV. 

   so ρ ρ= = = V wh m V wh  

 Thus   

  

m = (19.3× 103  kg/m3)(4.50 cm)(11.0 cm)(26.0 cm)

= (19.3× 103  kg/m3)(1 290 cm3)(1 m3/106  cm3) = 24.8 kg

 

 
 

	  
Section 15.2 Variation of Pressure with Depth 
P14.6 (a) Suppose the “vacuum cleaner” functions as a high–vacuum 

pump. The air below the brick will exert on it a lifting force 
   

  
F = PA = 1.013 × 105  Pa( ) π 1.43 × 10−2  m( )2⎡

⎣
⎤
⎦ = 65.1 N

 

 (b) The octopus can pull the bottom away from the top shell with a 
force that could be no larger than 

   

  

F = PA = P0 + ρgh( )A

= 1.013 × 105  Pa + 1 030 kg m3( ) 9.80 m s2( ) 32.3 m( )⎡⎣ ⎤⎦

                                                              × π 1.43 × 10−2  m( )2⎡
⎣

⎤
⎦

F = 275 N

 

P14.7 Assuming the spring obeys Hooke’s law, the increase in force on the 
piston required to compress the spring an additional amount  Δx  is 

   
  ΔF = F − F0 = P − P0( )A = k Δx( )  

 The gauge pressure at depth h beneath the surface of a fluid is  

     P − P0 = ρgh   
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 so we have 

    ρghA = k Δx( )   

 or the required depth is  

    h = k Δx( ) ρgA   

 If k = 1 250 N/m, A = π d2/4, d = 1.20 × 10−2 m, and the fluid is water  
(ρ = 1.00 × 103  kg/m3), the depth required to compress the spring an 
additional   Δx = 0.750× 10−2  m  is 

   
  h = 8.46 m   

P14.8 Since the pressure is the same on both sides, 
  

F1

A1

=
F2

A2

,  and  

 in this case, 
  

15 000 N
200 cm2 =

F2

3.00 cm2
  or   F2 = 225 N  

P14.9   Fg = 80.0 kg( ) 9.80 m s2( ) = 784 N  

 When the cup barely supports the student, the normal force of the 
ceiling is zero and the cup is in equilibrium. 

  

  

Fg = F = PA = 1.013 × 105  Pa( )A

A =
Fg

P
=

784 N
1.013 × 105  Pa

= 7.74 × 10−3  m2

 

P14.10 The pressure on the bottom due to the water is   Pb = ρgz = 1.96 × 104  Pa.  

 (a) The force exerted by the water on the bottom is then  
   

  

Fb = PbA = 1.96 × 104  Pa( ) 30.0 m( ) 10.0 m( )
= 5.88 × 106  N  down

 

  Pressure varies with depth. On a strip of height dz and length L, 
the force is dF = PdA = PLdz = ρgzLdz, which gives the integral 

   
  
F = ρgzLdz =

1
2
ρgLh2

0

h

∫ =
1
2
ρgh⎛

⎝⎜
⎞
⎠⎟ Lh = PaverageA  

 (b) On each end, 
   

  F = PaverageA = 9.80 × 103  Pa( ) 20.0 m2( ) = 196 kN  outward
 

 (c) On the side, 
   

  F = PaverageA = 9.80 × 103  Pa( ) 60.0 m2( ) = 588 kN  outward
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P14.11 (a) At a depth of 27.5 m, the absolute pressure is 
    

  

P = P0 + ρgh = 101.3× 103  Pa

               + 1.00× 103  kg m3( ) 9.80 m s2( ) 27.5 m( )

= 3.71× 105  Pa

 

 (b) The inward force the water will exert on the window is 
    

  

F = PA = P πr2( ) = 3.71× 105  Pa( )π 35.0× 10−2  m
2

⎛
⎝⎜

⎞
⎠⎟

2

= 3.57 × 104  N

 

P14.12 We imagine Superman can produce a perfect vacuum in the straw. 
Take point 1, at position y1 = 0, to be at the water’s surface and point 2, 
at position y2 = length of straw, to be at the upper end of the straw. 
What is the greatest length of straw that will allow Superman to drink? 
Solve for y2: 

     P1 + ρgy1 = P2 + ρgy2  

   1.013 × 105 Pa + 0 = 0 + (103 kg/m3)(9.80 m/s2)y2    

 or  y2 = 10.3 m. 
 

 

The situation is impossible because the longest straw Superman can 
use and still get a drink is less than 12.0 m.

 

*P14.13 The excess water pressure (over air pressure) halfway down is 
   

  

Pgauge = ρgh = 1 000 kg/m3( ) 9.80 m/s2( ) 1.20 m( )

= 1.18× 104  Pa

 

 The force on the wall due to the water is 
   

  

F = PgaugeA = 1.18× 104  Pa( ) 2.40 m( ) 9.60 m( )

= 2.71× 105  N

 

 horizontally toward the back of the hole. 

*P14.14 We first find the absolute pressure at the interface between oil and 
water: 

   

  

P1 = P0 + ρoil ghoil

= 1.013 × 105  Pa + 700 kg/m3( ) 9.80 m/s2( ) 0.300 m( )
= 1.03 × 105  Pa
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 This is the pressure at the top of the water. To find the absolute 
pressure at the bottom, we use  

   

  

P2 = P1 + ρwater ghwater

= 1.03 × 105  Pa + 103  kg/m3( ) 9.80 m/s2( ) 0.200 m( )

= 1.05 × 105  Pa

 

P14.15 The air outside and water inside both 
exert atmospheric pressure, so only the 
excess water pressure ρgh counts for the 
net force. Take a strip of hatch between 
depth h and h + dh. It feels force 

  
  dF = PdA = ρgh 2.00 m( )dh  

 (a) The total force is 
   

  

F = dF = ρgh 2.00 m( )dh
h=1.00 m

2.00 m

∫∫

F = ρg 2.00 m( ) h2

2 1.00 m

2.00 m

= 1 000 kg m3( ) 9.80 m s2( ) 2.00 m( )
2

× 2.00 m( )2 − 1.00 m( )2⎡⎣ ⎤⎦

F = 29.4 kN to the right( )

 

 (b) The lever arm of dF is the distance   h − 1.00 m( )  from hinge to 
strip: 

   

  

τ = dτ∫ = ρgh 2.00 m( ) h − 1.00 m( )dh
h=1.00 m

2.00 m

∫

τ = ρg 2.00 m( ) h3

3
− 1.00 m( ) h2

2
⎡

⎣
⎢

⎤

⎦
⎥

1.00 m

2.00 m

τ = 1 000 kg m3( ) 9.80 m s2( ) 2.00 m( ) 7.00 m3

3
−

3.00 m3

2
⎛
⎝⎜

⎞
⎠⎟

τ = 16.3 kN ⋅m counterclockwise

 

P14.16 The air outside and water inside both exert atmospheric pressure, so 
only the excess water pressure ρgh counts for the net force.  

 (a) At a distance y from the top of the water, take a strip of hatch 
between depth y and y + dy. It feels force 

   dF = PdA = Pwdy = (ρgyw)dy 

ANS. FIG. P14.15 
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  The total force is 
   

  
F = ρgwydy =

1
2
ρgwy2

d−h

d

d−h

d

∫ =
1
2
ρgw d2 − d − h( )2⎡⎣ ⎤⎦

 

   
  
F =

1
2
ρgwh 2d − h( )  

 (b) The lever arm of dF is the distance [y – (d – h)] from hinge to strip: 
     

  

τ = ρgwy y − d − h( )[ ]dy
d−h

d

∫ = ρgw y2 − y d − h( )⎡⎣ ⎤⎦dy
d−h

d

∫

= ρgw
y3

3
− d − h( )y2

2
⎡
⎣⎢

⎤
⎦⎥d−h

d

= ρgw
6

2d3 − 2 d − h( )3 − 3 d − h( )d2 + 3 d − h( )3⎡⎣ ⎤⎦

= ρgw
6

2d3 − 3 d − h( )d2 + d − h( )3⎡⎣ ⎤⎦

= ρgw
6

2d3 − 3d3 + 3d2h + d3 − 3d2h + 3dh2 − h3⎡⎣ ⎤⎦

τ = ρgw
6

+ 3dh2 − h3⎡⎣ ⎤⎦

 

   
  
τ =

1
2
ρgw dh2 −

1
3

h3⎛
⎝⎜

⎞
⎠⎟

 

*P14.17 The fluid in the hydraulic jack is originally exerting the same pressure 
as the air outside. This pressure P0 results in zero net force on either 
piston. For the equilibrium of piston 2 we require 

   

  
500 lb = P − P0( )A = P − P0( )π 1.50 in.

2( )2  

 Let F1 represent the force the lever bar exerts on piston 1. Then 
similarly 

   

  
F1 = P − P0( )π 0.250 in.

2( )2  

 We ignore the weights of the pistons, sliding friction, and the slight 
difference in fluid pressure P due to the height difference between 
points 1 and 2. By division, 

   
  

F1

500 lb
= 0.250 in.

1.50 in.( )2

     →      F1 = 500 lb
36.0
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 We say the hydraulic lift has an ideal mechanical advantage of 36. 
Next for the lever bar we ignore weight and friction, assume 
equilibrium, and take torques about the fixed hinge. 

    τ∑ = 0  gives   F1 2.00 in.( ) − F 12.0 in.( ) = 0 , or 
  
F = F1

6
.  

 The lever has an ideal mechanical advantage of 6. By substitution, 
   

  
F = 500 lb

36 ⋅6
= 2.31 lb

 

P14.18 The bell is uniformly compressed, so we can model it with any shape. 
We choose a sphere of diameter 3.00 m. 

 The pressure on the ball is given by   P = Patm + ρw gh,  so the change in 
pressure on the ball from when it is on the surface of the ocean to 
when it is at the bottom of the ocean is   ΔP = ρw gh.  

 In addition, 
   

  
ΔV = −VΔP

B
= −ρw ghV

B
= − 4πρw ghr3

3B

  

 where B is the bulk modulus. Substituting, 
   

  

ΔV = −
4π 1 030 kg/m3( ) 9.80 m/s2( ) 1 000 m( ) 1.50 m( )3

3 14.0× 1010  Pa( )
ΔV = −1.02 × 10−3  m3

 

 From 
  
V =

4
3
πr3 → dV = 4πr2dr,  we use r = 1.50 m, set dV = ∆V, and 

solve for dr: 

   dr = –3.60 × 10–5 m 

 Therefore, the diameter decreases by  0.072 1 mm.  

 
 

	  

Section 14.3 Pressure Measurements 
P14.19 A drop of 20.0 mm of mercury is a pressure change of  
  

  

ΔP = ρgΔh = 13.6× 103  kg/m3( ) 9.80 m/s2( ) −20.0× 10−3  m( )
= −2.66× 103  Pa

  

  
  P = P0 + ΔP0 = 1.013 − 0.026 6( ) × 105  Pa = 0.986 × 105  Pa
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ANS. FIG. P14.21 
 

P14.20  (a)   P = P0 + ρgh  and the gauge pressure is 
    

  

P − P0 = ρgh = 1 000 kg( ) 9.8 m/s2( ) 0.160 m( )

= 1.57 kPa = 1.57 × 103  Pa( ) 1 atm
1.013 × 105  Pa

⎛
⎝⎜

⎞
⎠⎟

= 0.015 5 atm

 

   It would lift a mercury column to height 
     

  
h =

P − P0

ρg
=

1 568 Pa
13 600 kg/m3( ) 9.80 m/s2( ) = 11.8 mm

 

 (b) 

 

Blockage of the fluid within the spinal column or between
the skull and the spinal column would prevent the fluid level
from rising.

 

P14.21 (a) To find the height of the column of wine, we use 

     P0 = ρgh  

  then 

   

  

h =
P0

ρg

=
1.013 × 105  Pa

0.984 × 103  kg/m3( ) 9.80 m/s2( )
= 10.5 m

 

 (b) 

 

No. The vacuum is not as good because 
some alcohol and water will evaporate. 
The equilibrium vapor pressures of  alcohol 
and water are higher than the vapor pressure 
of mercury.

 

P14.22 (a) Using the definition of density, 
we have 

  

  

hw =
mwater

A2ρwater

=
100 g

5.00 cm2( ) 1.00 g/cm3( )
= 20.0 cm

 

ANS. FIG. P14.22 
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 (b) ANS. FIG. P14.22 (b) represents the situation after the water is 
added. A volume   A2h2( )  of mercury has been displaced by water 
in the right tube. The additional volume of mercury now in the 
left tube is   A1h.  Since the total volume of mercury has not 
changed, 

     A2h2 = A1h    or   
  
h2 =

A1

A2

h  [1] 

  At the level of the mercury–water interface in the right tube, we 
may write the absolute pressure as: 

     P = P0 + ρwater ghw
 

  The pressure at this same level in the left tube is given by 

   
  
P = P0 + ρHg g h + h2( ) = P0 + ρwater ghw  

  which, using equation [1] above, reduces to 

   
  
ρHgh 1 +

A1

A2

⎡

⎣
⎢

⎤

⎦
⎥ = ρwaterhw  

  or 
  
h =

ρwaterhw

ρHg 1 + A1/A2( ) .  

  Thus, the level of mercury has risen a distance of 
   

  
h =

1.00 g/cm3( ) 20.0 cm( )
13.6 g/cm3( ) 1 + 10.0 5.00( )

 

      h = 0.490 cm  above the original level.  

P14.23 (a) We can directly write the bottom pressure as P = P0 + ρgh, or we 
can say that the bottom of the tank must support the weight of the 
water: 

   PA − P0A = mwaterg = ρVg = ρAhg  

  which gives again 

   P = P0 + ρgh 

  The absolute pressure at depth h = 1.50 m is  

   P = P0 + ρgh = 101.3 kPa + (1 000 kg/m3)(9.80 m/s2)(1.50 m)  
     

 = 116 kPa  
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 (b) Now the bottom of the tank must support the weight of the whole 
contents. Before the people enter, P = 116 kPa. Afterwards,  

   

  
ΔP = Mg

A
=

150 kg( ) 9.80 m/s2( )
π 3.00 m( )2 = 52.0 Pa

  

P14.24 (a) We can directly write the bottom pressure as P = P0 + ρgh, or we 
can say that the bottom of the tank must support the weight of the 
water: 

   PA − P0A = mwaterg = ρVg = ρAhg 

  which gives again  
    

  
P = P0 + ρgh

 

 (b) Now, the bottom of the tank must support the weight of the 
whole contents: 

   PbA − P0A = mwaterg + Mg = ρVg + Mg = ρAhg + Mg 

  and this gives 

   Pb = P0 + ρhg + Mg/A    

  Then  

   
 
ΔP = Pb − P = Mg

A
  

 
 

	  

Section 14.4 Buoyant Forces and Archimedes’s Principle 
P14.25 At equilibrium   F∑ = 0     or      Fapp + mg = B,  

 where B is the buoyant force. 

 The applied force is    Fapp = B − mg,  

 where    B = V ρwater( ) g  

 and     m = Vρball  

 So,   
  
Fapp = Vg ρwater − ρball( ) = 4

3
πr3g ρwater − ρball( ):  

  

  

Fapp =
4
3
π 1.90 × 10−2  m( )3

9.80 m/s2( ) 103  kg/m3 − 84.0 kg/m3( )
= 0.258 N down
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P14.26 Refer to Figure P14.26. We observe from the left-hand diagram,  
   

  Fy∑ = 0    →     T1 = Fg = mobject g = ρobject gVobject
  

 and from the right-hand diagram,  
  

  Fy∑ = 0    →     T2 + B = Fg     →     T2 + B = T1
 

 which gives 
  

  T2 −T1 = B  

 where the buoyant force is  

    B = mwater g = ρwVobject g 

 Now the density of the object is  
    

  
ρobject =

mobject

Vobject

= T1 g
B ρw g( ) = ρwT1

B

 

    

  
ρobject =

ρwT1

T1 −T2

=
1 000 kg m3( ) 5.00 N( )

1.50 N
= 3.33 × 103  kg/m3

 

P14.27 (a) We start with   P = P0 + ρgh.  

   Taking   P0 = 1.013 × 105  N/m2 ,   

    ρwater = 1 000 kg/m3 ,  and h = 5.00 cm, 

   we find   Ptop = 1.017 9× 105  N/m2.  

   For  h = 17.0 cm, we get   
    

  Pbot = 1.029 7 × 105  N/m2  

   Since the areas of the top and bottom are  

    
  A = 0.100 m( )2

= 10−2  m2  

   we find  
    

  Ftop = PtopA = 1.017  9 × 103  N
 

   and   Fbot = 1.029 7 × 103  N .  

 (b) The tension in the string is the scale reading: 

    T = Mg − B 

   where   
    

  B = ρwVg = 103  kg/m3( ) 1.20 × 10−3  m3( ) 9.80 m/s2( ) = 11.8 N  

ANS. FIG. P14.27 
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   and    
    

  Mg = 10.0 kg( ) 9.80 m/s2( ) = 98.0 N  

   Therefore,    
    

  T = Mg − B = 98.0 N − 11.8 N = 86.2 N  

 (c)   Fbot − Ftop = 1.0297 − 1.017 9( ) × 103  N = 11.8 N  

   which is equal to B found in part (b). 

P14.28 (a) The balloon is nearly in equilibrium: 
    

  
Fy∑ = may ⇒ B− Fg( )

helium
− Fg( )

payload
= 0

 

  or       ρair gV − ρhelium gV − mpayload g = 0  

  This reduces to 
    

  

mpayload = ρair − ρhelium( )V
= 1.29 kg/m3 − 0.179 kg/m3( ) 400 m3( )

mpayload = 444 kg

 

 (b) Similarly, 
    

  

mpayload = ρair − ρhydrogen( )V
= 1.29 kg/m3 − 0.089 9 kg/m3( ) 400 m3( )

mpayload = 480 kg

 

  The surrounding air does the lifting, nearly the same for the two 
balloons. 

P14.29 (a) The cube has sides of length L. When floating, the horizontal top 
surface lies a distance h above the water’s surface. The buoyant 
force supports the weight of the block:  

   
  B = ρwaterVobject g = ρwaterL

2 L− h( ) g = ρwoodL3g   

  Solve for h:  
   

  

h = L− L ρwood /ρwater( ) = L 1− ρwood /ρwater( )
= 20.0 cm( ) 1− 0.650( ) = 7.00 cm

 

 (b) The buoyant force supports the weight of both blocks: 

     B = Fg + Mg,  where M = mass of lead 
   

  ρwaterL
3g = ρwoodL3g + Mg    →    M = ρwater − ρwood( )L3  



756     Fluid Mechanics 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

   M = (1.00 kg/m3 − 0.650 kg/m3)(20.0 m)3 = 
 
 2.80 kg  

P14.30 By Archimedes’s principle, the weight of the 50 planes is equal to the 
weight of a horizontal slice of water 11.0 cm thick and circumscribed 
by the water line: 

  
  

ΔB = ρwater g ΔV( )
50 2.90 × 104  kg( ) g = 1030 kg m3( ) g 0.110 m( )A

 

 giving 
  
A = 1.28 × 104  m2 . The acceleration of gravity does not affect 

the answer. 

P14.31 (a) The buoyant force of glycerin supports the weight of the sphere 
which is supported by the buoyant force of water.  

   
  
B = ρglycerin 0.40V( ) = ρwater

V
2

 

    

 
ρglycerin =

ρwater

2 0.40( ) =
1 000 kg/m3

0.80
= 1 250 kg/m3

 

 (b) The buoyant force from the water supports the weight of the 
sphere: 

    
 
B = Fg  

    
  
B = ρwater

V
2

= ρsphereV  

    
 
ρsphere =

ρwater

2
= 500 kg/m3  

P14.32 Constant velocity implies zero acceleration, which means that the 
submersible is in equilibrium under the gravitational force, the 
upward buoyant force, and the upward resistance force: 

  

  

Fy∑ = may = 0:

          − 1.20× 104  kg + m( ) g + ρw gV + 1 100 N = 0

  

 where m is the mass of the added water and V is the sphere’s volume. 
Substituting, 

  

  

1.20× 104  kg + m

               = 1.03× 103  kg/m3( ) 4
3
π 1.50 m( )3⎡

⎣⎢
⎤
⎦⎥
+ 1 100 N

9.80 m/s2
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 so 
  
m = 2.67 × 103  kg .  

*P14.33 (a) While the system floats,   B = wtotal = wblock + wsteel
, or 

       ρw gVsubmerged = ρb gVb + msteel g  

  When   msteel = 0.310 kg , 
  
Vsubmerged = Vb = 5.24 × 10−4  m3  giving 

    

  

ρb = ρwVb − msteel

Vb

= ρw − msteel

Vb

= 1.00× 103  kg m3 − 0.310 kg
5.24× 10−4  m3

= 408 kg m3

 

 (b) If the total weight of the block + steel system is reduced, by 
having   msteel < 0.310 kg,  a smaller buoyant force is needed to 
allow the system to float in equilibrium. Thus, the block will 
displace a smaller volume of water and will be only partially 
submerged in the water. 

 (c) The block is fully submerged when msteel = 0.310 kg. The mass of 
the steel object can increase slightly above this value without 
causing it and the block to sink to the bottom. As the mass of the 
steel object is gradually increased above 0.310 kg, the steel object 
begins to submerge, displacing additional water, and providing a 
slight increase in the buoyant force. With a density of about eight 
times that of water, the steel object will be able to displace 
approximately 0.310 kg/8 = 0.039 kg of additional water before it 
becomes fully submerged. At this point, the steel object will have 
a mass of about 0.349 kg and will be unable to displace any 
additional water. Any further increase in the mass of the object 
causes it and the block to sink to the bottom. In conclusion, 

  
the block + steel system will sink if mstee ≥ 0.350 kg.  

P14.34 (a)   Fy∑ = 0:    B −T − Fg = 0→ B − 15.0 N − 10.0 N = 0  

   
  B = 25.0 N  

 (b) The oil pushes 
 
horizontally inward  on each side of the block. 

 (c) The string tension increases. The water under the block pushes up 
on the block more strongly than before because the water is under 
higher pressure due to the weight of the oil above it. 
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 (d) The pressure of the oil’s weight on the water is P = ρoilgh, where h 
is the height of the oil. This pressure is transmitted to the bottom 
of the block, so the extra upward force on the block is Foil = PA = 
ρoilghA = ρoilg∆V, where ∆V = hA is the volume of the block below 
the top surface of the oil. 

  The force from the oil and the buoyant force of water balance the 
tension and the weight of the block: 

   

  

Fy = 0:   Foil + B −T − Fg = 0∑
Foil + 25.0 N − 60.0 N − 15.0 N = 0

              Foil = 50.0 N

 

  The ratio of Foil and B are  

   
  

Fup

B
=

ρoil gΔV
ρwater g V 4( ) →

ΔV
V

=
Fup

4B
ρwater

ρoil

 

   

  

ΔV
V

=
50.0 N

4(25.0 N)
1 000 kg/m3

800 kg/m3 = 0.625
 

  The additional fraction of the block’s volume below the top 
surface of the oil is  62.5%.  

P14.35 (a) Since the balloon is fully submerged in air, Vsubmerged = Vb = 325 m3, 
and 

    

  

B = ρair gVb = 1.20 kg m3( ) 9.80 m s2( ) 325 m3( )
= 3.82 × 103  N

 

 (b) 

  

Fy∑ = B− wb − wHe = B− mb g − ρHegVb = B− mb + ρHeV( ) g

= 3.82 × 103  N

     − 226 kg + 0.179 kg m3( ) 325 m3( )⎡⎣ ⎤⎦ 9.80 m s2( )
= +1.04× 103  N

 

  Since   Fy∑ = may > 0,  ay will be positive (upward), and 

 the balloon rises .  

 (c) If the balloon and load are in equilibrium,  
    

  Fy∑ = B− wb − wHe( )− wload = 0    
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  and  

    
  wload = B − wb − wHe( ) = 1.04 × 103  N  

  Thus, the mass of the load is 

    
  
mload =

wload

g
=

1.04 × 103  N
9.80 m s2 = 106 kg  

P14.36 Let A represent the horizontal cross-sectional area of the rod, which we 
presume to be constant. The rod is in equilibrium: 

   
  Fy∑ = 0:     − mg + B = 0 = −ρ0Vwhole rod g + ρfluidVimmersed g    

   
  ρ0ALg = ρA L − h( ) g  

 The density of the liquid is 
  
ρ =

ρ0L
L − h

.   

P14.37 We use the result of Problem 14.36. For the rod floating in a liquid of 
density 0.98 g/cm3, 

   

  

ρ = ρ0
L

L − h

0.98 g/cm3 =
ρ0L

L − 0.2 cm( )
0.98 g/cm3( )L − 0.98 g/cm3( )0.2 cm = ρ0L

 

 For floating in the dense liquid, 
   

  

1.14 g/cm3 = ρ0L
L− 1.80 cm( )

1.14 g/cm3( )L− 1.14 g/cm3( ) 1.80 cm( ) = ρ0L

 

 (a) By substitution, and suppressing units, 
   

  

1.14L− 1.14 1.80( ) = 0.98L− 0.200 0.98( )
0.16L = 1.856

L = 11.6 cm

 

 (b) Substituting back, 
   

 

0.98 g/cm3( ) 11.6 cm − 0.200 cm( ) = ρ0 11.6 cm( )
ρ0 = 0.963 g/cm3

 

 (c) 
  
No; the density ρ is not linear in h.  
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P14.38 (a) We can estimate the total buoyant force of the 600 toy balloons as 
    

  

Btotal = 600 ⋅Bsingle
balloon

= 600 ρair gVballoon( )

= 600 ρair g
4π
3

r3⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= 600 1.20 kg m3( ) 9.80 m s2( ) 4π
3

0.50 m( )3⎡
⎣⎢

⎤
⎦⎥

= 3.7 × 103  N = 3.7 kN

 

 (b) We estimate the net upward force by applying Newton’s second 
law in the vertical direction: 

    

  

Fy∑ = Btotal − mtotal g

= 3.7 × 103  N − 600 0.30 kg( ) 9.8 m s2( )
= 1.9× 103  N = 1.9 kN

 

  This net force was sufficient to lift Ashpole, his parachute, and 
other supplies.  

 (c) Atmospheric pressure at this high altitude is much lower than at 
Earth’s surface , so the balloons expanded and eventually burst. 

P14.39 We assume that the mass of the balloon envelope is included in the  
400 kg. We assume that the 400-kg total load is much denser than air 
and so has negligible volume compared to the helium. At z = 8 000 m, 
the density of air is 

   

  

ρair = ρ0e
−z 8 000 = (1.20 kg/m3)e−1

= (1.20 kg/m3)(0.368)

= 0.441 kg/m3

 

 Think of the balloon reaching equilibrium at this height. The weight of 
its payload is Mg = (400 kg)(9.80 m/s2) = 3 920 N. The weight of the 
helium in it is mg = ρHeVg. 

   
  Fy = 0∑      →     +ρairVg − Mg − ρHeVg = 0   

 Solving, 
   

  (ρair − ρHe)V = M  

 and  
   

  
V =

M
ρair − ρHe

=
400 kg

(0.441− 0.179) kg/m3 = 1.52 × 103  m3
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Section 14.5 Fluid Dynamics 
Section 14.6 Bernoulli’s Equation 
P14.40 (a) The cross-sectional area of the hose is  
    

  A = πr2 = πd2 / 4 = π 2.74 cm( )2 / 4   

  and the volume flow rate (volume per unit time) is  

    Av = 25.0 L/1.50 min 

  Thus, 
     

  

v = 25.0 L 1.50 min
A

= 25.0 L
1.50 min

⎛
⎝⎜

⎞
⎠⎟

4
π ⋅ 2.74( )2  cm2

⎡

⎣
⎢

⎤

⎦
⎥

1 min
60 s

⎛
⎝⎜

⎞
⎠⎟

103  cm3

1 L
⎛
⎝⎜

⎞
⎠⎟

= 47.1 cm s( ) 1 m
102  cm

⎛
⎝⎜

⎞
⎠⎟ = 0.471 m s

 

 (b) 
  

A2

A1

=
πd2

2

4

⎛

⎝⎜
⎞

⎠⎟
4

πd1
2

⎛

⎝⎜
⎞

⎠⎟
=

d2

d1

⎛

⎝⎜
⎞

⎠⎟

2

=
1
3

⎛
⎝⎜

⎞
⎠⎟

2

=
1
9

    or   
  
A2 =

A1

9
 

  Then from the equation of continuity,   A2v2 = A1v1 , we find 

    
  
v2 =

A1

A2

⎛
⎝⎜

⎞
⎠⎟

v1 = 9 0.471 m s( ) = 4.24 m s  

P14.41 Assuming the top is open to the atmosphere, then  

      P1 = P0  

 Note   P2 = P0 . The water pushes on the air just as hard as the air pushes 
on the water. 

   Flow rate  = 2.50 × 10−3  m3 min = 4.17 × 10−5  m3 s  

 (a)   A1 >> A2  so    v1 << v2  

  Assuming   v1 = 0,  
   

  

P1 + ρv1
2

2
+ ρgy1 = P2 + ρv2

2

2
+ ρgy2

v2 = 2gy1 = 2 9.80 m/s2( ) 16.0 m( ) = 17.7 m/s

 

 (b) Flow rate 
  
= A2v2 =

πd2

4
⎛
⎝⎜

⎞
⎠⎟

17.7 m/s( ) = 4.17 × 10−5  m3/s  

   
  d = 1.73 × 10−3  m = 1.73 mm
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P14.42 (a) The mass flow rate and the volume flow rate are constant: 
   

  ρA1v1 = ρA2v2    →    πr1
2v1 = πr2

2v2
 

  Substituting, 
   

  (3.00 cm)2 v1 = (1.50 cm)2 v2    →    v2 = 4v1
  

  For ideal flow, 
   

  
P1 + ρgy1 + 1

2
ρv1

2 = P2 + ρgy2 + 1
2
ρv2

2
 

    

  

1.75× 104  Pa + 0 + 1
2

1 000 kg m3( ) v1( )2

                        = 1.20× 104  Pa + (1000)(9.8)(0.250) Pa

                                                      + 1
2

1 000 kg m3( )(4v1)2

 

   Solving for v1 gives 
    

  
v1 = 3 050 Pa

7 500 kg m3 = 0.638 m s
 

 (b) From part (a), we have 

   v2 = 4v1 = 
 2.55 m/s  

 (c) The volume flow rate is 
   

  πr1
2v1 = π (0.030 0 m)2(0.638 m/s) = 1.80× 10−3  m3/s

 

P14.43 The volume flow rate is 

   
  

ΔV
Δt

=
125 cm3

16.3 s
= 7.67 cm3 s = Av1

 

 where d = 0.96 cm and   A = πr2 = 0.724 cm2.  The speed at the top of the 
falling column is 

   

  
v1 =

ΔV/Δt
A

=
7.67 cm3/s
0.724 cm3 = 10.6 cm/s

 

 Take point 2 at 13 cm below: 
   

  
P1 + ρgy1 + 1

2
ρv1

2 = P2 + ρgy2 + 1
2
ρv2

2
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ANS. FIG. P14.44 
 

   

  

P0 + 1 000 kg m3( ) 9.80 m/s2( )0.130 m

                    + 1
2

1 000 kg m3( ) 0.106 m s( )2

= P0 + 0 + 1
2

1 000 kg m3( )v2
2

  solving for the velocity gives 
   

  
v2 = 2 9.80 m/s2( ) 0.130 m( ) + 0.106 m/s( )2 = 1.60 m/s

 

 The volume flow rate is constant: 

   

  

7.67 cm3 s = π d
2

⎛
⎝⎜

⎞
⎠⎟

2

160 cm s

d = 0.247 cm

 

P14.44 Take point    at the free surface of the water in the 
tank and    inside the nozzle. 

 (a) With the cork in place, 

  
P1 + ρgy1 +

1
2
ρv1

2 = P2 + ρgy2 +
1
2
ρv2

2   

  becomes  
   

  P0 + 1 000 kg/m3( ) 9.80 m/s2( ) 7.50 m( ) + 0 = P2 + 0 + 0  

  P2 − P0 = 7.35 × 104  Pa  

  For the stopper, 
    

  Fx∑ = 0  

   

  

Fwater − Fair − f = 0
P2A − P0A = f

f = 7.35 × 104  Pa( )π 0.011 0 m( )2 = 27.9 N

 

 (b) Now Bernoulli’s equation gives 
   

  

P0 + 7.35 × 104  Pa + 0 = P0 + 0 +
1
2

1 000 kg/m3( )v2
2

v2 = 12.1 m/s
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  The quantity leaving the nozzle in 2 h is  
    

  

ρV = ρAv2t

= 1 000 kg/m3( )π 0.011 0 m( )2 12.1 m/s( ) 7  200 s( )
= 3.32 × 104  kg

 

 (c) Take point 1 in the wide hose and 2 just outside the nozzle. 
Applying the continuity equation: 

   

  

A1v1 = A2v2

π 6.60 cm
2

⎛
⎝⎜

⎞
⎠⎟

2

v1 = π 2.20 cm
2

⎛
⎝⎜

⎞
⎠⎟

2

12.1 m/s( )

v1 =
12.1 m/s

9
= 1.35 m/s

 

   

  

P1 + ρgy1 +
1
2
ρv1

2 = P2 + ρgy2 +
1
2
ρv2

2

P1 + 0 +
1
2

1 000 kg/m3( ) 1.35 m/s( )2

           = P0 + 0 +
1
2

1 000 kg/m3( ) 12.1 m/s( )2

P1 − P0 = 7.35 × 104  Pa − 9.07 × 102  Pa = 7.26 × 104  Pa

 

P14.45 (a) Between sea surface and clogged hole:      

   
  
P1 +

1
2
ρv1

2 + ρgy1 = P2 +
1
2
ρv2

2 + ρgy2  

   
  1 atm + 0 + 1 030 kg/m3( ) 9.80 m/s2( ) 2.00 m( ) = P2 + 0 + 0     

     P2 = 1 atm + 20.2 kPa  

  The air on the back of his hand pushes opposite the water, so the 
net force on his hand is 

   

  
F = PA = 20.2 × 103  N/m2( ) π

4
⎛
⎝⎜

⎞
⎠⎟ 1.2 × 10−2  m( )2

  

     F = 2.28 N  toward Holland 

 (b) Now, Bernoulli’s equation gives 
   

  
1 atm + 0 + 20.2 kPa = 1 atm +

1
2

1 030 kg/m3( )v2
2 + 0

 

   
  v2 = 6.26 m/s  
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  The volume rate of flow is  
    

  
A2v2 =

π
4

1.2 × 10−2  m( )2
6.26 m/s( ) = 7.08 × 10−4  m3/s

  

  One acre–foot is  4 047 m2 × 0.304 8 m = 1 234 m3.  

  Requiring 
 

1 234 m3

7.08 × 10−4  m3/s
= 1.74 × 106  s = 20.2 days.  

P14.46 (a) Power is the rate of energy flow as a function of time: 

   
 
P =

ΔE
Δt

=
Δmgh
Δt

=
Δm
Δt

⎛
⎝⎜

⎞
⎠⎟

gh = Rgh  

 (b) The power delivered by the Grand Coulee dam is 

     PEL = 0.85 8.50 × 105  kg/s( ) 9.80 m/s2( ) 87.0 m( ) = 616  MW  

P14.47 (a) The cross-sectinal area is the same everywhere, so the speed is the 
same everywhere: 

   
  

P +
1
2
ρv2 + ρgy⎛

⎝⎜
⎞
⎠⎟ river

= P +
1
2
ρv2 + ρgy⎛

⎝⎜
⎞
⎠⎟ rim

 

   

  

P + 0 + ρg 564 m( ) = 1 atm + 0 + ρg 2 096 m( )
P = 1 atm + 1 000 kg/m3( ) 9.80 m/s2( ) 1 532 m( )
  = 1 atm + 15.0 MPa

 

 (b) The volume flow rate is 
  
4 500 m3/d = Av = πd2v

4
.  

   

  
v = 4 500 m3/d( ) 1 d

86 400 s
⎛
⎝⎜

⎞
⎠⎟

4
π 0.150 m( )2

⎛

⎝⎜
⎞

⎠⎟
= 2.95 m/s

 

P14.48 (a) The volume flow rate is the same at the two points: A1v1 = A2v2: 
    

  π 1 cm( )2 v1 = π 0.5 cm( )2 v2    →    v2 = 4v1
 

  We assume the tubes are at the same elevation: 

    

  

P1 + 1
2
ρv1

2 + ρgy1 = P2 + 1
2
ρv2

2 + ρgy2

P1 − P2 = ΔP = 1
2
ρ(4v1)2 + 0− 1

2
ρv1

2

ΔP = 1
2

(850 kg/m3) 15v1
2     

v1 = 0.012 5 m/s( ) ΔP      

 

  where the pressure is in pascals. 



766     Fluid Mechanics 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  The volume flow rate is  
    

  

π 0.01 m( )2 0.0125 m/s( ) ΔP

             = 3.93× 10−6  m3/s( ) ΔP ,    where ΔP is in pascals

 

 (b) For   ΔP = 6.00 kPa,   
    

 3.93× 10−6  m3/s( ) 6 000 Pa = 0.305 L/s
 

 (c)  With pressure difference 2 times larger, the flow rate is larger by 
the square root of 2:  

    
 2 0.305 L/s( ) = 0.431 L/s

  

P14.49 (a) Since the tube is horizontal, y1 = y2 and the 
gravity terms in Bernoulli’s equation 
cancel, leaving 

   
  
P1 +

1
2
ρv1

2 = P2 +
1
2
ρv2

2  

  or 

   
  
v2

2 − v1
2 =

2 P1 − P2( )
ρ

=
2 1.20 × 103  Pa( )

7.00 × 102  kg m3
 

  and 

     v2
2 − v1

2 = 3.43 m2 s2  [1] 

  From the continuity equation, A1v1 = A2v2, we find 

   
  
v2 =

A1

A2

⎛
⎝⎜

⎞
⎠⎟

v1 =
r1

r2

⎛
⎝⎜

⎞
⎠⎟

2

v1 =
2.40 cm
1.20 cm

⎛
⎝⎜

⎞
⎠⎟

2

v1  

  or 

     v2 = 4v1   [2] 

  Substituting equation [2] into [1] yields   15v1
2 = 3.43 m2 s2  and  

   v1 = 0.478 m/s 

  Then, equation [2] gives  
   

  v2 = 4 0.478 m/s( ) = 1.91 m/s
 

ANS. FIG. P14.49 
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 (b) The volume flow rate is 
   

  

A1v1 = A2v2 = πr2
2( )v2 = π 1.20× 10−2  m( )2

1.91 m/s( )
= 8.64× 10−4  m3/s

 

P14.50 (a) For upward flight of a water-drop projectile from geyser vent to 
fountain–top,   vyf

2 = vyi
2 + 2ayΔy.  

  Then   0 = vi
2 + 2 −9.80 m s2( ) +40.0 m( )    and    vi = 28.0 m/s .  

 (b) Between geyser vent and fountain-top:  

   
  
P1 +

1
2
ρv1

2 + ρgy1 = P2 +
1
2
ρv2

2 + ρgy2  

  Air is so low in density that very nearly   P1 = P2 = 1 atm.  Then, 

   
  

1
2

v1
2 + 0 = 0 + 9.80 m/s2( ) 40.0 m( )  

   
  v1 = 28.0 m/s  

 (c) 

 

The answers agree precisely. The models are consistent with
each other.

 

 (d) Between the chamber and the fountain-top: 

  
P1 +

1
2
ρv1

2 + ρgy1 = P2 +
1
2
ρv2

2 + ρgy2  

  

  

P1 + 0 + 1 000 kg m3( ) 9.80 m s2( ) −175 m( )
= P0 + 0 + 1 000 kg m3( ) 9.80 m s2( ) +40.0 m( )

P1 − P0 = 1 000 kg m3( ) 9.80 m s2( ) 215 m( ) = 2.11 MPa

 

 
 

	  

Section 14.7 Other Applications of Fluid Dynamics 
P14.51 The assumption of incompressibility is surely unrealistic, but allows an 

estimate of the speed. From Bernoulli’s equation, 

   

  

P1 + ρgy1 + 1
2
ρv1

2 = P2 + ρgy2 + 1
2
ρv2

2

1.00 atm + 0 + 0 = 0.287 atm + 0 + 1
2

1.20 kg/m3( )v2
2
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ANS. FIG. P14.53 
 

 solving for the velocity gives 

   

  
v2 =

2 1.00− 0.287( ) 1.013× 105  N/m2( )
1.20 kg/m3 = 347 m/s

 

P14.52 (a) Force balance requires that 

   
  Mg = P1 − P2( )A   

   

  

16 000 kg( ) 9.80 m/s2( )
2 40.0 m2( ) = 7.00 × 104  Pa − P2

 

   
  ∴P2 = 7.0 × 104  Pa − 0.196 × 104  Pa = 6.80 × 104  Pa

 

 (b) 

 

Higher. With the inclusion of another upward force due to
deflection of air downward, the pressure difference does not
need to be as great to keep the airplane in flight.

 

P14.53 (a) We use Bernoulli’s equation, 

   
  
P0 + ρgh + 0 = P0 + 0 +

1
2
ρv3

2   

  which gives   v3 = 2gh.  

  If  h = 1.00 m, then   v3 = 4.43 m/s .  

 (b) Again, from Bernoulli’s equation, 

   
  
P + ρgy +

1
2
ρv2

2 = P0 + 0 +
1
2
ρv3

2  

  Since   v2 = v3 ,  

     P = P0 − ρgy  

  Since   P ≥ 2.3 kPa,  the greatest possible siphon height is given by 
   

  
y ≤

P0 − P
ρg

=
1.013 × 105  Pa − 2.30 × 103  Pa

103  kg/m3( ) 9.80 m/s2( ) = 10.1 m
 

P14.54 Take points 1 and 2 in the air just inside and outside the window pane. 
   

  

P1 +
1
2
ρv1

2 + ρgy1 = P2 +
1
2
ρv2

2 + ρgy2

P0 + 0 = P2 +
1
2

1.20 kg/m3( ) 11.2 m/s( )2 → P2 = P0 − 75.3 Pa
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 (a) The total force exerted by the air is outward, 
   

  

P1A − P2A = P0A − P0A + 75.3 N/m2( ) 4.00 m( ) 1.50 m( )
= 452 N outward

 

 (b) 

  

P1A − P2A =
1
2
ρv2

2A =
1
2

1.20 kg/m3( ) 22.4 m/s( )2 4.00 m( ) 1.50 m( )

= 1.81 kN outward

 

P14.55 In the reservoir, the gauge pressure is 
   

  

ΔP =
2.00 N

2.50 × 10−5  m2

= 8.00 × 104  Pa

 

  From the equation of 
continuity, we have  

     
  

A1v1 = A2v2

2.50× 10−5  m2( )v1 = 1.00× 10−8  m2( )v2   so  v1 = 4.00× 10−4( )v2

  

 Thus,   v1
2  is negligible in comparison to   v2

2 . In Bernoulli’s equation, 

  
(P1 − P2 ) +

1
2
ρv1

2 + ρgy1 =
1
2
ρv2

2 + ρgy2 , the term in   v1
2  is essentially zero 

and the terms in y1 and y2 cancel each other. Then,  

    
  
v2 =

2(P1 − P2 )
ρ

⎛
⎝⎜

⎞
⎠⎟

1/2

=
2(8.00 × 104  Pa)

1 000 kg/m3 = 12.6 m/s  

 

 

 

Additional Problems 
*P14.56 The water exerts a buoyant force on the air, given by 

   

  

B = ρfluid gV = 1 000 kg/m3( ) 9.80 m/s2( ) 10.0 L( ) 1 m3

103  L
⎛
⎝⎜

⎞
⎠⎟

= 98.0 N up
  

 The weight of the air is 

   
  

Fg = ρ gV = 2.40 kg/m3( ) 9.80 m/s2( ) 10.0 × 10−3  m3( )
= 0.235 N down

 

 To transport the air down at constant speed requires a downward 
force D in +98.0 N – 0.235 N – D = 0, D = 97.8 N, and work 

   
    
W =


D ⋅

d = 97.8 N( ) 10.3 m( ) cos 0° = 1.01 kJ  

 

ANS. FIG. P14.55 
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P14.57 (a) At a depth of 1 000 m, 
   

  

P = P0 + ρgh = 1.013× 105  Pa

                              + 1 030 kg m3( ) 9.80 m s2( ) 1 000 m( )

 

   
  P = 1.02 × 107  Pa

 

 (b) The buoyant force on the submarine at this depth is 

   

  

B = ρgV = ρg
4
3
πr3 = 1 030 kg m3( ) 9.80 m s2( ) 4

3
π(2.50 m)3

= 6.61× 105  N

 

P14.58 The pressure on the surface of the two hemispheres is constant at all 
points, and the force on each element of 
surface area is directed along the radius of the 
hemispheres. The applied force along the axis 
must balance the force on the “effective” area, 
which is the projection of the actual surface 
onto a plane perpendicular to the x axis, 

  A = πR2 .  Therefore,  
   

  
F = P0 − P( )πR2

 

P14.59 (a) The weight of the ball must be equal to the buoyant force of the 
water: 

    

  

1.26 kg g = ρwater

4
3
πrouter

3 g

router =
3 × 1.26 kg

4π  1 000 kg m3

⎛

⎝⎜
⎞

⎠⎟

1 3

= 6.70 cm
 

 (b) The mass of the ball is determined by the density of aluminum: 

    

  

m = ρAlV = ρAl

4
3
πr0

3 −
4
3
πri

3⎛
⎝⎜

⎞
⎠⎟

1.26 kg = 2700 kg m3 4
3
π

⎛
⎝⎜

⎞
⎠⎟

0.067 m( )3
− ri

3( )
1.11 × 10−4  m3 = 3.01 × 10−4  m3 − ri

3

ri = 1.89 × 10−4  m3( )1 3
= 5.74 cm

 

ANS. FIG. P14.58 
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P14.60 (a) 
 
A particle in equilibrium model  

 (b) When the balloon comes into equilibrium, we must have 
   

  
Fy∑ = B− Fb − F He − Fs = 0

 

  where B is the buoyant force, Fb the weight of the balloon, FHe the 
weight of the helium, and Fs the weight of the segment of string 
above the ground. 

 (c) Write expressions for each of the terms in the force equation: 

   

  

B = ρairVg = ρair

4
3
πr3g

Fb = mb g

F He = ρHeVg = ρHe

4
3
πr3 g

 

  and     Fs = ms g ;    where 
  
ms = m

h


 

  Therefore, we have 
   

  ρairVg − mb g − ρHeVg − ms g = 0  

  or   
  
ms = ρair − ρHe( )V − mb → ms = ρair − ρHe( ) 4

3
πr2 − mb  

 (d) 

  

ms =  (1.20– 0.179) kg/m3⎡⎣ ⎤⎦
4
3
π(0.400 m)3⎡

⎣⎢
⎤
⎦⎥

– 0.250 kg

 =  0.023 7 kg

 

 (e) 
   
ms = m

h


→ h = 
ms

m
 = (2.00 m) 

0.023 7  kg
0.050 0 kg

 =  0.948 m  

P14.61 Consider the diagram in ANS. FIG. P14.61 and apply Bernoulli’s 
equation to points A and B, taking y = 0 at the level of point B, and 
recognizing that vA is approximately zero. This gives: 

   
  
PA +

1
2
ρw 0( )2 + ρw g h − Lsinθ( ) = PB +

1
2
ρwvB

2 + ρw g 0( )  

 Now, recognize that   PA = PB = Patmosphere  since both points are open to 
the atmosphere (neglecting variation of atmospheric pressure with 
altitude). Thus, we obtain 

   
  vB = 2g h − Lsinθ( )  
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 Now the problem reduces to one of projectile motion with vyi = vB sin θ. 
Then using,   vyf

2 = vyi
2 + 2a Δy( ) , where   y = ymax , vyf = 0,  and a = –g, we 

find 

   

  

Δy =
0 − vyi

2

2a
=
−vB

2 sin2θ
2 −g( ) =

2g h − Lsinθ( )[ ]sin2θ
2g

Δy = h − Lsinθ( )sin2θ

 

   

  

Δy = 10.0 m − 2.00 m( )sin 30.0°[ ]sin2 30.0°

ymax = 2.25 m above the level where the water emerges( )

 

 

 

ANS. FIG. P14.61 

P14.62 The “balanced” condition is one in which the apparent weight of the 
body equals the apparent weight of the weights. This condition can be 
written as 

    Fg − B = ′Fg − ′B  

 where B and B′ are the buoyant forces on the body and weights, 
respectively. The buoyant force experienced by an object of volume V 
in air equals 

     Buoyant force = Volume of object( )ρair g  

 so we have   B = Vρair g   and  

   
  
′B =

′Fg

ρg
⎛
⎝⎜

⎞
⎠⎟
ρair g  

 Therefore, 
  
Fg = ′Fg + V −

′Fg

ρg
⎛
⎝⎜

⎞
⎠⎟
ρair g.  
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P14.63 Assume   vinside ≈ 0.  From Bernoulli’s equation,  
   

  

P + 0 + 0 = 1 atm +
1
2

1 000 kg/m3( ) 30.0 m/s( )2

                                + 1 000 kg/m3( ) 9.80 m/s2( ) 0.500 m( )

 

   

  

Pgauge = P − 1 atm = 4.50 × 105  Pa + 4.90 × 103  Pa

        = 455 kPa

 

P14.64 Let the ball be released at point 1, enter the liquid at point 2, attain 
maximum depth at point 3, and pop through the surface on the way 
up at point 4. 

 (a) Energy conservation for the fall through the air: 

    
 
Ki + Ui = K f + U f  

    

  

0 + mgy1 = 1
2

mv2
2

v2 = 2gy1 = 2 9.80 m/s2( ) 3.30 m( ) = 8.04 m/s

 

 (b) 
 
The gravitational force and the buoyant force.  

  The gravitational force is  

    mg = (2.10 kg)(9.80 N/kg) = 20.6 N down  

  and the buoyant force is  
    

  

mfluid g = ρfluidVobject g = ρfluid 4/3( )πr3g

= 1 230 kg/m3( ) 4π/3( ) 0.090 0 m( )3 9.80 m/s2( )
= 36.8 N up

 

 (c) The buoyant force is greater than the gravitational force. 

  
 

The net upward force on the ball brings its downward motion to
a stop.

 

  We choose to use the work-kinetic energy theorem. 
    

  

1
2

mv2
2 + Fnet ⋅ Δy = 1

2
mv3

2
 

    

  

1
2

2.10 kg( ) 8.04 m s( )2 + 36.8 N − 20.6 N( ) −Δy( ) = 0
 

      Δy = 67.9 J/16.2 N = 4.18 m  
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 (d) The same net force acts on the ball over the same distance as it 
moves down and as it moves up, to produce the same speed 
change. Thus v4 =  8.04 m/s .  

 (e) 
 
The time intervals are equal ,  because the ball moves with the 

same range of speeds over equal distance intervals. 

 (f) 

  

With friction present, Δtdown  is less than Δtup. The magnitude 

of the ball’s acceleration on the way down is greater than its 
acceleration on the way up. The two  motions cover equal 
distances and both have zero speed at one end point, so the 
downward trip with larger-magnitude acceleration must take 
less time.

 

P14.65 At equilibrium,   Fy∑ = 0:     B− Fspring − Fg , He − Fg , balloon = 0  

 giving    Fspring = kL = B− mHe + mballoon( ) g   

 But   B = weight of displaced air = ρairVg  

 and     mHe = ρHeV  

 Therefore, we have   kL = ρairVg − ρHeVg − mballoon g  

 or   
  
L =

ρair − ρHe( )V − mballoon

k
g  

 From the data given, 
  

  
L =

1.20− 0.179( )  kg/m3⎡⎣ ⎤⎦ 5.00 m3( )− 2.00× 10−3  kg
90.0 N m

9.80 m s2( )
 

 Thus, this gives   L = 0.556 m.  

 

ANS. FIG. P14.65 
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*P14.66 Consider spherical balloons of radius 12.5 cm containing helium at STP 
and immersed in air at 0°C and 1 atm. If the rubber envelope has mass 
5.00 g, the upward force on each is 

   

  

Fup = B− Fg ,He − Fg ,env = ρairVg − ρHeVg − menv g

Fup = ρair − ρHe( ) 4
3
πr3( ) g − menv g

Fup = 1.29− 0.179( )  kg/m3[ ] 4
3
π 0.125 m( )3⎡

⎣⎢
⎤
⎦⎥

9.80 m/s2( )
                                   − 5.00× 10−3  kg( ) 9.80 m/s2( ) = 0.040 1 N

 

 If your weight (including harness, strings, and submarine sandwich) is 
   

 70.0 kg 9.80 m/s2( ) = 686 N  

 you need this many balloons: 
   

 

686 N
0.040 1 N

= 17 000 ~ 104
 

P14.67 The buoyant force B supports the weights of the raft and the boy. 
Using M = mass of boy, V = volume of raft,  ρst =  density of Styrofoam, 
and  ρw =  density of water, and the volume of the raft is  

   V = (1.00 m)(1.00 m)(0.050 m) = 0.050 m3 

 From Newton’s second law, 
   

  Fy∑ = 0:    B− Mg − ρst gV = 0   →    ρw gV − Mg − ρst gV = 0  

 Solving for  ρst  we get  
   

  
ρst = ρw − M

V
= 1 000 kg/m3 − 42.0 kg

0.050 0 m3
⎛
⎝⎜

⎞
⎠⎟ = 160 kg/m3

 

*P14.68 (a) The blood flowing through the artery is similar to water flowing 

through a pipe. We substitute numerical values into the equation 

for the Reynolds number: 
   

  

Re = 
1.06 × 103  kg/m3( ) 6.70 × 10−2  m/s( ) 3.00 × 10−2  m( )

3.00 × 10−3  Pa · s 
 

= 710

 

  Because this result is less than 2 300, the flow is laminar. 

  (b)  Denote the situation in part (a) using subscripts 1. In the 

expression for the Reynolds number for the capillary, which we 
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denote as situation 2, incorporate the continuity equation for 

fluids as the blood flows into the smaller blood vessel: 

   

    
Re2  = 

ρv2d2

µ
 = 

ρv1
A1

A2

⎛
⎝⎜

⎞
⎠⎟

2r2( )
µ

 = 
ρv1

πr1
2

πr2
2

⎛
⎝⎜

⎞
⎠⎟

2r2( )
µ

 = 
2ρv1r1

2

µr2

 

  Solve the resulting equation for the radius of the capillary: 
   

    
r2  = 

2ρv1r1
2

µ Re2( )
 

  Substitute numerical values, including a Reynolds number 

representing turbulent flow: 
   

  

r2  = 
2 1.06 × 103  kg/m3( ) 6.70 × 10−2  m/s( ) 1.50 × 10−2  m( )2

3.00 × 10−3  Pa · s( ) 4 000( )
 

    =  2.66 × 10−3  m

 

 (c)  

 

The situation in the human body is not represented by a 
large artery feeding into a single capillary as in part (b). 
The artery branches into smaller vessels and eventually 
into approximately 10 billion capillaries. Even though the 
radius of each capillary is very small, the overall area through 
which the blood flows in all the capillaries is larger than the 
area of the artery in part (a).  Consequently, in the expression 
for the Reynolds number, both the speed of the blood and the 
diameter is very small for each capillary, representing a very 
low value for the Reynolds number and, consequently, laminar 
flow.

  

P14.69 (a)  P = ρgh  gives   1.013 × 105  Pa = 1.29 kg/m3( ) 9.80 m/s2( )h.   

  
  h = 8.01 km  

 (b) For Mt. Everest,  29 300 ft = 8.88 km,  Yes .  
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ANS. FIG. P14.70 
 

P14.70 (a) The torque is   

   
 
τ = dτ∫ = rdF∫  

  From ANS. FIG. P14.70, 

   
  
τ = y ρg H − y( )wdy⎡⎣ ⎤⎦

0

H

∫ =
1
6
ρgwH 3  

 (b) The total force is given as 
  

1
2
ρgwH 2 .  

  If this were applied at a height yeff such that 
the torque remains unchanged, we have 

   
  

1
6
ρgwH 3 = yeff

1
2
ρgwH 2⎡

⎣
⎢

⎤

⎦
⎥   and 

  
yeff = 1

3
H  

P14.71 Looking first at the top scale and the iron block, we have 

     
T + B = Fg ,  iron  

 where T is the tension in the spring scale, B is the buoyant force, and 

  
Fg ,  iron  is the weight of the iron block. Now if   miron

 is the mass of the 
iron block, we have 

     miron = ρironV   

 so   
  
V = miron

ρiron

= Vdisplaced oil  

 Then,    B = ρoilViron g  

 Therefore,  

   
  
T = Fg ,  iron − ρoilViron g = miron g − ρoil

miron

ρiron

 

 or  

   

  

T = 1− ρoil

ρiron

⎛
⎝⎜

⎞
⎠⎟

miron g

= 1− 916 kg/m3

7 860 kg/m3

⎛
⎝⎜

⎞
⎠⎟

2.00 kg( ) 9.80 m/s2( )
= 17.3 N
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 Next, we look at the bottom scale which reads n (i.e., exerts an upward 
normal force n on the system). Consider the external vertical forces 
acting on the beaker-oil-iron combination. 

     Fy∑ = 0  gives 

   
  
T + n − Fg, beaker − Fg,oil − Fg,iron = 0 →  

   
  n = mbeaker+moil+miron( ) g −T = 5.00 kg( ) 9.80 m/s2( ) − 17.3 N  

 Thus,   n = 31.7 N  is the lower scale reading.  

P14.72 Looking at the top scale and the iron block: 

   T + B = Fg ,  Fe ,  where 
  
B = ρoVFe g = ρo

mFe

ρFe

⎛

⎝⎜
⎞

⎠⎟
g  

 is the buoyant force exerted on the iron block by the oil. 

 Thus, 
  
T = Fg ,  Fe − B = mFe g − ρo

mFe

ρFe

⎛
⎝⎜

⎞
⎠⎟

g,  

 or 

  
T = 1−

ρo

ρFe

⎛

⎝⎜
⎞

⎠⎟
mFe g  is the reading on the top scale. 

 Now, consider the bottom scale, which exerts an upward force of n on 
the beaker-oil-iron combination. 

   
  Fy∑ = 0:  

    

  

T + n − Fg , beaker − Fg ,oil − Fg ,Fe = 0

n = (mb + mo + mFe )g −T

n = (mb + mo + mFe )g − 1−
ρo

ρFe

⎛
⎝⎜

⎞
⎠⎟

mFe g

 

 or the reading of the bottom scale is  
   

  

n = mb + mo +
ρo

ρFe

⎛
⎝⎜

⎞
⎠⎟
 mFe

⎡

⎣
⎢

⎤

⎦
⎥ g

 

P14.73 Let f represent the fraction of the volume V occupied by zinc in the 
new coin. We have m = ρV for both coins: 

   
  3.083 g = (8.920 g cm3)V  

 and    2.517 g = 7.133 g/cm3( )( f V) + 8.920 g/cm3( )(1− f )V   
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  By substitution, 
   

  

2.517 g = (7.133 g cm3) f V + 3.083 g − (8.920 g cm3) f V

f V = 3.083 g – 2.517 g
8.920 g cm3 – 7.133 g cm3

 

  and again substituting to eliminate the volume, 
     

   
f = 0.566 g

1.787 g cm3
8.920 g cm3

3.083 g 
⎛
⎝⎜

⎞
⎠⎟

= 0.916 4 = 91.64%
 

*P14.74 Let    represent the length below water at equilibrium and M the 
tube’s mass: 

     Fy = 0∑  gives    −Mg + ρπ r2g = 0  

 Now with any excursion x from equilibrium: 
   

   −Mg + ρπ r2  − x( ) g = Ma  

 Subtracting the equilibrium equation gives:  
   

  −ρπ r2 gx = Ma  

   

  
a = − ρπ r2 g

M
⎛
⎝⎜

⎞
⎠⎟

x = −ω 2x
 

 The opposite direction and direct proportionality of a to x imply SHM 
with angular frequency 

   

  
ω = ρπ r2 g

M

 

   

  
T = 2π

ω
= 2

r
π M
ρ g

 

P14.75 Pascal’s principle, 

  

F1

A1

= F2

A2

,  or 
Fpedal

AMaster
cylinder

= Fbrake

Abrake
cylinder

,  gives 

   
  
Fbrake =

Abrake cylinder

Amaster cylinder

⎛

⎝
⎜

⎞

⎠
⎟ Fpedal =

6.4 cm2

1.8 cm2

⎛

⎝⎜
⎞
⎠⎟

44 N( ) = 156 N  

 This is the normal force exerted on the brake shoe. The frictional force 
is 

   
  f = µk n = 0.50 156 N( ) = 78 N  

 and the torque is 
  
τ = f ⋅ rdrum = 78 N( ) 0.34 m( ) = 27 N ⋅m . 
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*P14.76 (a) Since the upward buoyant force is balanced by the weight of the 
sphere, 

   
  
m1g = ρVg = ρ 4

3
πR3( ) g  

  In this problem,  ρ = 0.789 45 g/cm3 at 20.0°C, and R = 1.00 cm, so 
we find 

   

  

m1 = ρ 4
3
πR3( ) = 0.789 45 g/cm3( ) 4

3
π 1.00 cm( )3⎡

⎣⎢
⎤
⎦⎥

= 3.307 g
 

 (b) Following the same procedure as in part (a), with 

 ′ρ = 0.780 97 g/cm3  at 30.0°C, we find 

   

  

m2 = ′ρ 4
3
πR3( ) = 0.780 97 g/cm3( ) 4

3
π 1.00 cm( )3⎡

⎣⎢
⎤
⎦⎥

= 3.271 g
 

 (c) When the first sphere is resting on the bottom of the tube, 

  n + B = Fg1 = m1g,  where n is the normal force. 

  Since   B = ′ρ Vg,  

   

  

n = m1g − ′ρ Vg

= 3.307 g − 0.780 97 g/cm3( ) 4
3
π 1.00 cm( )3⎡

⎣⎢
⎤
⎦⎥

980 cm/s2( )

n = 34.8 g ⋅ cm/s2 = 3.48 × 10−4  N

 

P14.77 The disk (mass M = 10.0 kg, radius R = 0.250 m) has moment of inertia 

  
I = 1

2
MR2.  The disk slows from   ω i = 300  rev/min to   ω f = 0  in time 

interval   Δt = 60.0 s.  Its angular acceleration is 

   
 
α =

Δω
Δt

=
ω f −ω i

Δt
=
−ω i

Δt
 

 Frictional torque from the brake pad slows the wheel. Friction has 
moment arm d = 0.220 m. The relation between friction and angular 
acceleration is 

   

  

τ∑ = Iα :   − fd = Iα   →   f = − I
d
α = −

1
2

MR2

d
−ω i

Δt
⎛
⎝⎜

⎞
⎠⎟

→ f = MR2ω i

2dΔt
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 The normal force and coefficient of friction   (µk = 0.500)  between the 
brake pad and the disk determine the amount of friction. We can write 
an expression for the normal force: 

   
  
f = µkn  →   n =

f
µk

=
MR2ω i

2µkdΔt
 

 The pressure of the brake fluid acting on a piston of area A (diameter  
D = 5.00 cm, radius r = D/2 = 0.0250 m) produces the normal force that 
the brake pad exerts on the disk. The pressure in the brake fluid is 

   
  
P =

n
πr2 =

MR2ω i

2µkdΔt( )πr2
 

   

  

P =
(10.0 kg) 0.250 m( )2 300 rev

min
⎛
⎝

⎞
⎠

2π  rad
1 rev

⎛
⎝⎜

⎞
⎠⎟

1 min
60.0 s

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

2 0.500( ) 0.220 m( ) 60.0 s( )π 0.0250 m( )2

= 758 Pa

 

P14.78 (a) Since the pistol is fired horizontally, the emerging water stream 
has initial velocity components of   (v0x = vnozzle , v0y = 0).  Then, 

  
Δy = v0yt + 1

2
ayt

2 ,  with ay = −g, gives the time of flight as 

   
  
t =

2 Δy( )
ay

=
2 −1.50 m( )
−9.80 m s2 = 0.553 s  

 (b) With ax = 0, and v0x = vnozzle, the horizontal range of the emergent 
stream is   Δx = vnozzlet,  where t is the time of flight from above. 
Thus, the speed of the water emerging from the nozzle is 

   
  
vnozzle =

Δx
t

=
8.00 m
0.553 s

= 14.5 m s  

 (c) From the equation of continuity, A1v1 = A2v2, the speed of the 
water in the larger cylinder is   v1 = (A2/A1)v2 = (A2/A1)vnozzle ,  or 

   

  

v1 = πr2
2

πr1
2

⎛
⎝⎜

⎞
⎠⎟

vnozzle = r2

r1

⎛
⎝⎜

⎞
⎠⎟

2

vnozzle = 1.00 mm
10.0 mm

⎛
⎝⎜

⎞
⎠⎟

2

14.5 m s( )

= 0.145 m s

 

 (d) The pressure at the nozzle is atmospheric pressure, or 

  
P2 = 1.013 × 105  Pa .  
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 (e) With the two cylinders horizontal, y1 = y2 and gravity terms from 
Bernoulli’s equation can be neglected, leaving  

    

  
P1 + 1

2
ρwv1

2 = P2 + 1
2
ρwv2

2
  

  so the needed pressure in the larger cylinder is 
    

  

P1 = P2 + ρw

2
v2

2 − v1
2( )

= 1.013× 105  Pa

        + 1.00× 103  kg m3

2
14.5 m s( )2 − 0.145 m s( )2⎡

⎣
⎤
⎦

 

  or 

    
  P1 = 2.06 × 105  Pa  

 (f) To create an overpressure of   ΔP = 2.06 × 105 Pa= 1.05 × 105 Pa  in 
the larger cylinder, the force that must be exerted on the piston is 

    

  

F1 = ΔP( )A1 = ΔP( ) πr1
2( )

= 1.05× 105  Pa( )π 1.00× 10−2  m( )2

= 33.0 N

 

P14.79 Energy for the fluid-Earth system is conserved. 
   

  

K + U( )i = K + U( ) f

0 +
mgL

2
+ 0 =

1
2

mv2 + 0

v = gL = 2.00 m( ) 9.80 m/s2( ) = 4.43 m/s

 

P14.80 (a) The flow rate, Av, as given may be expressed as follows: 
   

 

25.0 liters
30.0 s

= 0.833 liters/s = 833 cm3/s
 

  The area of the faucet tap is  π  cm2 ,  so we can find the velocity as 
 

  
v =

flow rate
A

=
833 cm3/s
π  cm2 = 265 cm/s = 2.65 m/s

 

 (b) We choose point 1 to be in the entrance pipe and point 2 to be at 
the faucet tap.   A1v1 = A2v2  gives   v1 = 0.295 m/s.  Bernoulli’s 
equation is: 

   
  
P1 − P2 =

1
2
ρ v2

2 − v1
2( ) + ρg y2 − y1( )  
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  and gives 
 

  

P1 − P2 =
1
2

103  kg/m3( ) 2.65 m/s( )2 − 0.295 m/s( )2⎡⎣ ⎤⎦

+ 103  kg/m3( ) 9.80 m/s( ) 2.00 m( )

 

  or    Pgauge = P1 − P2 = 2.31× 104  Pa .  

P14.81 (a) Consider the pressure at points A and B in ANS. FIG. P14.81(b).  

  Using the left tube: 
  
PA = Patm + ρ

w
g L − h( )  

  Using the right tube:   PB = Patm + ρogL  

  But Pascal’s principle says that   PA = PB.  

  Therefore, 
  
Patm + ρ

w
g L − h( ) = Patm + ρogL  

  or   ρwh = ρw − ρo( )L,  giving 

   

  

h = ρw − ρo

ρw

⎛
⎝⎜

⎞
⎠⎟

L

= 1 000 kg/m3 − 750 kg/m3

1 000 kg/m3

⎛
⎝⎜

⎞
⎠⎟

5.00 cm( )

= 1.25 cm

 

 (b) Consider part (c) of the diagram showing  
the situation when the air flow over the left  
tube equalizes the fluid levels in the two  
tubes. First, apply Bernoulli’s equation to  
points A and B   (yA = yB , vA = v,  and  

  vB = 0).  

  This gives: 
    

  

PA +
1
2
ρav

2 + ρa gyA

           = PB +
1
2
ρa 0( )2 + ρa gyB

  

  and since  yA = yB , this reduces to  

   
  
PB − PA =

1
2
ρav

2   [1] 

  Now consider points C and D, both at the level of the oil-water 
interface in the right tube. Using the variation of pressure with 

ANS. FIG. P14.81 
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depth in static fluids, we have 

     PC = PA + ρagH + ρw gL      

  and   PD = PB + ρagH + ρogL  

  But Pascal’s principle says that   PC = PD.  Equating these two gives: 

     PB + ρagH + ρogL = PA + ρagH + ρw gL  

  or   PB − PA = ρw − ρo( ) gL  [2] 

  Substitute equation [1] for  PB − PA  into [2] to obtain 

  

1
2
ρav

2 = ρw − ρo( ) gL  

  or  

    

  

v =
2gL ρw − ρo( )

ρa

= 2 9.80 m/s2( ) 0.050 0 m( ) 1 000 kg/m3 − 750 kg/m3

1.20 kg/m3

⎛
⎝⎜

⎞
⎠⎟

v = 14.3 m/s

  

P14.82 Take point    at the free water surface in the tank and point    at the 
bottom end of the tube: 

   

  

P1 + ρgy1 +
1
2
ρv1

2 = P2 + ρgy2 +
1
2
ρv2

2

P0 + ρgd + 0 = P0 + 0 +
1
2
ρv2

2

v2 = 2gd

 

 The volume flow rate is 
  

V
t

= Ah
t

= v2 ′A .  Then 
  
t = Ah

v2 ′A
= Ah

′A 2gd
.   

P14.83 (a) For diverging streamlines that pass just above and just below the 
hydrofoil, we have 

    
  
Pt + ρgyt + 1

2
ρvt

2 = Pb + ρgyb + 1
2
ρvb

2  
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  Ignoring the buoyant force means taking   yt ≈ yb :  

    

  

Pt + 1
2
ρ nvb( )2 = Pb + 1

2
ρvb

2

Pb − Pt = 1
2
ρvb

2 n2 − 1( )
 

  The lift force is 
  

Pb − Pt( )A =
1
2
ρvb

2 n2 − 1( )A.  

 (b) For liftoff, 

   

  

1
2
ρvb

2 n2 − 1( ) A = Mg

vb = 2Mg
ρ n2 − 1( ) A

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1 2  

  The speed of the boat relative to the shore must be nearly equal to 
this speed of the water below the hydrofoil relative to the boat. 

*P14.84 First, consider the path from the viewpoint of projectile motion to find 
the speed at which the water emerges from the tank. From 

  
Δy = vyit + 1

2
ayt

2   with   vyi = 0,  Δy = −1.00 m,  and ay = −g,   we find the 

time of flight as 
   

  
t =

2 Δy( )
ay

= 2.00 m
g

= 0.452 s
  

 From the horizontal motion, the speed of the water coming out of the 
hole is 

   

  
v2 = vxi = Δx

t
= 0.600 m

0.452 s
= 1.33 m/s

  

 We now use Bernoulli’s equation, with point 1 at the top of the tank 
and point 2 at the level of the hole. With P1 = P1 = Patm  and   v1 ≈ 0,  this 
gives  

   

  
ρgy1 = ρgy2 + 1

2
ρv2

2
 

 or 
   

  
h = y1 − y2 = v2

2

2g
= 1.33 m/s( )2

2g
= 9.00× 10−2  m = 9.00 cm
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Challenge Problems 

P14.85 Let s stand for the edge of the cube, h for the depth of immersion,  ρice  

for the density of the ice,  ρw  for the density of water, and  ρal  for the 
density of the alcohol. 

 (a) According to Archimedes’s principle, at equilibrium we have 

   
  
B = Fg  

   
  
ρw ghs2 = ρice gs3 ⇒ h = s

ρice

ρw

 

  With  ρice = 0.917 × 103  kg/m3 ,  
   

 ρw = 1.00 × 103  kg/m3  

  and s = 20.0 mm,  

  we obtain   h = 20.0 0.917( ) = 18.34 mm ≈ 18.3 mm  

 (b) We assume that the top of the cube is still above the alcohol 
surface. Letting   hal stand for the thickness of the alcohol layer, we 
have 

     ρal gs2hal + ρw gs2hw = ρice gs3      so    
  
hw =

ρice

ρw

⎛
⎝⎜

⎞
⎠⎟

s −
ρal

ρw

⎛
⎝⎜

⎞
⎠⎟

hal .  

  With  ρal = 0.806 × 103  kg/m3  

  and   hal = 5.00 mm,  

  we obtain   hw = 18.34 − 0.806 5.00( ) = 14.31 mm ≈ 14.3 mm .  

  To check our assumption above, the bottom of the cube is below 
the top surface of the alcohol 14.4 mm + 5.00 mm = 19.3 mm, so 
the top of the cube is above the surface of the alcohol 20.0 mm – 
19.3 mm = 0.7 mm. The assumption was valid.  

 (c) Here ,   ′hw = s − ′hal ,  so Archimedes’s principle gives 
   

  

ρal gs2 ′hal + ρw gs2 s − ′hal( ) = ρice gs3 ⇒ ρal ′hal + ρw s − ′hal( ) = ρices

′hal = s
ρw − ρice( )
ρw − ρal( ) = 20.0 mm( ) 1.000 − 0.917( )

1.000 − 0.806( )
    = 8.557 ≈ 8.56 mm
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P14.86 Assume the top of the barge without the pile of iron has height H0 
above the surface of the water. When a mass of iron MFe is added to the 
barge, the barge sinks a distance  ΔH  until the buoyant force from the 
water equals the additional weight of the iron. The barge is a square 
with sides of length L, so the volume of displaced water is   L

2ΔH ,  and 
the buoyant force supporting the extra weight is  

   
  
B = ρwL2ΔH( ) g = MFe g  

 where  ρw  is the density of water.  

 The scrap iron pile has the shape of a cone, and the volume of a cone of 
base radius R and central height h is   Vcone = πR2h/3;  therefore, the mass 

of the iron is   MFe = ρFeπR2h/ 3,  where  ρFe  is the density of iron. We 
find the distance the barge sinks with a pile of iron:  

   

  

B = ρwL2ΔH( ) g = MFe g

ρwL2ΔH( ) g = ρFeπR2h/ 3( ) g → ΔH =
ρFe

ρw

⎛
⎝⎜

⎞
⎠⎟

π
3

⎛
⎝⎜

⎞
⎠⎟

R2

L2

⎛

⎝⎜
⎞

⎠⎟
h

 

 If the iron is piled to a height h, the barge will sink by the distance   ΔH ,  
so the distance from the water level to the top of the iron pile is 

  Dtop = H0 − ΔH + h.  

 For the situation of the problem, side L = 2r, and the initial conical pile 
of scrap iron has radius R = r and height is h = r. The distance the barge 
sinks is  

   

  

ΔH =
ρFe

ρw

⎛
⎝⎜

⎞
⎠⎟

π
3

⎛
⎝⎜

⎞
⎠⎟

R2

L2

⎛

⎝⎜
⎞

⎠⎟
h

ΔH =
ρFe

ρw

⎛
⎝⎜

⎞
⎠⎟

π
3

⎛
⎝⎜

⎞
⎠⎟

r2

(2r)2

⎛

⎝⎜
⎞

⎠⎟
r =

ρFe

ρw

⎛
⎝⎜

⎞
⎠⎟

π
3

⎛
⎝⎜

⎞
⎠⎟

r2

4r2

⎛

⎝⎜
⎞

⎠⎟
r =

ρFe

ρw

⎛
⎝⎜

⎞
⎠⎟

π
12

⎛
⎝⎜

⎞
⎠⎟ r

 

 and the height of the top of the pile above the water is 
   

  
Dtop = H0 − ΔH + h = H0 −

ρFe

ρw

⎛
⎝⎜

⎞
⎠⎟

π
12

⎛
⎝⎜

⎞
⎠⎟ r + r

 

 For  ρw = 1.00 × 103  kg/m3  and  ρFe = 7.86 × 103  kg/m3 ,  this expression 
becomes  

   

  

Dtop = H0 −
7.86× 103

1.00× 103

⎛

⎝
⎜

⎞

⎠
⎟

π
12
⎛
⎝
⎜

⎞
⎠
⎟r + r = H0 − 2.06r + r

Dtop = H0 − 1.06r
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 This distance is too large to allow the barge to go under the bridge: 

     
Dtop = H0 − 1.06r ≥ Dbridge  

 When the pile is reduced to a height h′, but still with the same base 
radius R = r, the distance the barge sinks is  

   
  
ΔH = ρFe

ρw

⎛

⎝
⎜

⎞

⎠
⎟

π
12
⎛
⎝
⎜

⎞
⎠
⎟h′ = 2.06h′  

 The height of the top of the pile above the water is now 
   

  ′Dtop = H0 − ΔH + ′h = H0 − 2.06 ′h + ′h = H0 − 1.06 ′h  

 but this means the top of the pile is now higher! To check this, recall 
that the height of the pile is reduced, so   ′h < r:   

   
  
′Dtop > Dtop  

   
  H0 − 1.06 ′h > H0 − 1.06r    →    − 1.06 ′h > −1.06r    →    ′h < r  

  which is true. 

 

 

The situation is impossible because lowering the height of the iron
pile on the barge while keeping the base radius the same results in
the top of the pile rising higher above the water level.

 

P14.87 The incremental version of   P − P0 = ρgy  is   dP = −ρgdy.  

 We assume that the density of air is proportional to pressure,  

 or  
  

P
ρ

=
P0

ρ0

. Combining these two equations we have  

   
  
dP = −P

ρ0

P0

gdy  

 Integrating both sides, 
   

  

dP
PP0

P

∫ = −g
ρ0

P0

dy
0

y

∫
 

 gives 
  
ln

P
P0

⎛
⎝⎜

⎞
⎠⎟

= − ρ0gy
P0

 

 Defining 
  
α =

ρ0g
P0

 then gives   P = P0e
−αy .  
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P14.2 (a) ~4 × 1017 kg/m3; (b) See P14.2 for the full description. 

P14.4 5.27 × 1018 kg 

P14.6 (a) 65.1 N; (b) 275 N 

P14.8 225 N 

P14.10 (a) 5.88 × 106 N down; (b) 196 kN outward; (c) 588 kN outward 

P14.12 The situation is impossible because the longest straw Superman can 
use and still get a drink is less than 12.0 m. 

P14.14 1.05 × 105 Pa 

P14.16 (a) 
  
F =

1
2
ρgwh 2d − h( ) ; (b) 

  
τ =

1
2
ρgh dh2 −

1
3

h3⎛
⎝⎜

⎞
⎠⎟

 

P14.18 0.072 1 mm 

P14.20 (a) 14.7 kPa, 0.015 5 atm, 11.8 m; (b) Blockage of the fluid within the 
spinal column or between the skull and the spinal column would 
prevent the fluid level from rising. 

P14.22 (a) 20.0 cm; (b) 0.490 cm 

P14.24 (a) P = P0 + ρgh; (b) Mg/A 

P14.26 3.33 × 103 kg/m3 

P14.28 (a) 444 kg; (b) 480 kg 

P14.30 1.28 × 104 m2 

P14.32 2.67 × 103 kg 

P14.34 (a) B = 25.0 N; (b) horizontally inward; (c) The string tension increases. 
The water under the block pushes up on the block more strongly than 
before because the water is under higher pressure due to the weight of 
the oil above it; (d) 62.5% 

P14.36 See P14.36 for the full derivation. 

P14.38 (a) 3.7 kN; (b) 1.9 kN; (c) Atmospheric pressure at this high altitude is 
much lower than at the Earth’s surface 

P14.40 (a) 0.471 m/s; (b) 4.24 m/s 

P14.42 (a) 0.638 m/s; (b) 2.55 m/s; (c) 1.80 × 10–3 m3/s 

P14.44 (a) 27.9 N; (b) 3.32 × 104 kg; (c) 7.26 × 104 Pa 



790     Fluid Mechanics 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

P14.46 (a) 
  
P =

ΔE
Δt

=
Δmgh
Δt

=
Δm
Δt

⎛
⎝⎜

⎞
⎠⎟ gh = Rgh;  (b) 616 MW 

P14.48 (a) 
  
3.93 × 10−6  m3/s( ) ΔP  where  ΔP  is in pascal; (b) 0.305 L/s;  

(c) 0.431 L/s 

P14.50 (a) 28.0 m/s; (b) 28.0 m/s; (c) The answers agree precisely. The models 
are consistent with each other. (d) 2.11 MPa 

P14.52 (a) 6.80 × 104 Pa; (b) Higher. With the inclusion of another upward 
force due to deflection of air downward, the pressure difference does 
not need to be as great to keep the airplane in flight. 

P14.54 (a) 452 N outward; (b) 1.81 kN outward 

P14.56 1.01 kJ 

P14.58   P0 − P( )πR2  

P14.60 (a) A particle in equilibrium model; (b)   Fy∑ = B − Fb − FHe − Fs = 0;  

(c) 
  
ms = ρair − ρHe( ) 4

3
πr2 − mb ;  (d) 0.023 7 kg; (e) 0.948 m 

P14.62 See P14.62 for full description. 

P14.64 (a) 8.04 m/s; (b) The gravitational force and the buoyant force; (c) The 
net upward force on the ball brings it downward motion to a stop,  
4.18 m; (d) 8.04 m/s; (e) The time intervals are equal; (f) See P14.64(f) 
for a full conceptual argument. 

P14.66 ~104 

P14.68 (a) See P14.68(a) for full description; (b) 2.66 × 10–3 m; (c) The situation 
in the human body is not represented by a large artery feeding into a 
single capillary as in part (b). See P14.68(c) for full explanation. 

P14.70 (a) 
  

1
6
ρgwH 3 ;  (b) 

  

1
3

H  

P14.72 
  
T = 1−

ρo

ρFe

⎛
⎝⎜

⎞
⎠⎟

mFe g, n = mb + mo +
ρo

ρFe

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ g  

P14.74 
  

2
r

π M
ρ g

 

P14.76 (a) 3.307 g; (b) 3.271 g; (c) 3.48 × 10–4 N 

P14.78 (a) 0.553 s; (b) 14.5 m/s; (c) 0.145 m/s; (d) P2 = 1.013 × 105 Pa;  
(e) 2.06 × 105 Pa; (f) 33.0 N 
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P14.80 (a) 2.65 m/s; (b) 2.31 × 104 Pa 

P14.82 See P14.82 for the full answer. 

P14.84 9.00 cm 

P14.86 The situation is impossible because lowering the height of the iron pile 
on the barge while keeping the base radius the same results in the top 
of the pile rising higher above the water level. 
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15 
Oscillatory Motion 

 

CHAPTER OUTLINE 
 

15.1 Motion of an Object Attached to a Spring 

15.2 Analysis Model: Particle in Simple Harmonic Motion 

15.3  Energy of the Simple Harmonic Oscillator 

15.4 Comparing Simple Harmonic Motion with Uniform Circular Motion 

15.5 The Pendulum 

15.6 Damped Oscillations 

15.7 Forced Oscillations 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ15.1 Answer (d). The period of a simple pendulum is 
   T = 2π  g ,  and its 

frequency is 
   f = 1 T = 1 2π( ) g .  Thus, if the length is doubled so 

  ′ = 2,  the new frequency is 
   

   
f ′ =

1
2π

g
′

=
1

2π
g
2

=
1
2

1
2π

g


⎛

⎝⎜
⎞

⎠⎟
=

f
2

 

OQ15.2 Answer (c). The equilibrium position is 15 cm below the starting 
point. The motion is symmetric about the equilibrium position, so the 
two turning points are 30 cm apart. 

OQ15.3 Answer (a). In this spring-mass system, the total energy equals the 
elastic potential energy at the moment the mass is temporarily at rest 
at x = A = 6 cm (i.e., at the extreme ends of the simple harmonic 
motion). Thus,   E = kA2 2  and we see that as long as the spring 
constant k and the amplitude A remain unchanged, the total energy 
is unchanged. 
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OQ15.4 Answer (c). The total energy of the object-spring system is 

  

1
2

kA2 =
1
2

mv2 +
1
2

kx2 .  When the kinetic energy is twice the potential 

energy, 
  

1
2

mv2 = 2
1
2

kx2⎛
⎝⎜

⎞
⎠⎟ = kx2 ,  and the total energy is 

   
  

1
2

kA2 = kx2 +
1
2

kx2   →   
1
2

kA2 =
3
2

kx2   →   x =
A
3

 

OQ15.5 Answer (d). When the object is at its maximum displacement, the 
magnitude of the force exerted on it by the spring is   Fs = k xmax =  

 8.0 N m( ) 0.10 m( ) = 0.80 N.  This force will give the mass an 

acceleration of   a = Fs m = 0.80 N 0.40 kg = 2.0 m s2 .  

OQ15.6 Answer (a). The car will continue to compress the spring until all of 
the car’s original kinetic energy has been converted into elastic 

potential energy within the spring, i.e., until 
  

1
2

kx2 =
1
2

mvi
2 ,  or 

   

  
x = vi

m
k

= 2.0 m s( ) 3.0 × 105  kg
2.0 × 106  N m

= 0.77 m
 

OQ15.7 Answer (c). When an object undergoes simple harmonic motion, the 
position as a function of time may be written as 

  x = Acosωt = Acos 2π ft( ).  Comparing this to the given relation, we 
see that the frequency of vibration is f = 3 Hz, and the period is  
T = 1/f = 1/3. 

*OQ15.8 Answer (b). The frequency of vibration is 

   
  
f =

ω
2π

=
1

2π
k
m

 

 Thus, increasing the mass by a factor of 9 will decrease the 
frequency to 1/3 of its original value. 

OQ15.9 Answer (a). Higher frequency. When it supports your weight, the 
center of the diving board flexes down less than the end does when it 
supports your weight—this is similar to a spring that stretches a 
smaller distance for the same force: its spring constant is greater 
because the displacement is smaller. Therefore, the stiffness constant 
describing the center of the board is greater than the stiffness 

constant describing the end. And then 
  
f =

1
2π

⎛
⎝⎜

⎞
⎠⎟

k
m

 is greater for 

you bouncing on the center of the board. 
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OQ15.10 (i) Answer (c). At 40 cm we have the midpoint between the turning 
points, so it is the equilibrium position and the point of 
maximum speed, and therefore, maximum momentum. 

 (ii) Answer (c). The position of maximum speed is also the position 
of maximum kinetic energy. 

 (iii) Answer (e). The total energy of the system is conserved, so it is 
the same at every position. 

OQ15.11 The ranking is (c) > (e) > (a) = (b) > (d). The amplitude does not affect 
the period in simple harmonic motion; neither do constant forces that 
offset the equilibrium position. Thus (a) and (b) have equal periods. 
The period is proportional to the square root of mass divided by 
spring constant. So (c), with larger mass, has a larger period than (a). 
And (d) with greater stiffness has smaller period. In situation (e) the 
motion is not quite simple harmonic, but has slightly smaller angular 
frequency and so a slightly longer period. 

OQ15.12 (a) Yes. In simple harmonic motion, one-half of the time, the 
velocity is in the same direction as the displacement away from 
equilibrium. 

 (b) Yes. Velocity and acceleration are in the same direction half the 
time. 

 (c) No. The spring force and, therefore, the acceleration are always 
opposite to the position vector, and never in the same direction. 

OQ15.13 Answer (d). We assume that the coils of the spring do not hit one 
another. When the spring with two blocks is set into oscillation in 
space, the coil in the center of the spring does not move. We can 
imagine clamping the center coil in place without affecting the 
motion. We can effectively duplicate the motion of each individual 
block in space by hanging a single block on a half-spring here on 
Earth. The half-spring with its center coil clamped—or its other half 
cut off—has twice the spring constant as the original uncut spring 
because an applied force of the same size would produce only one-
half the extension distance. Thus the oscillation frequency in space is 

  

1
2π

⎛
⎝⎜

⎞
⎠⎟

2k
m

⎛
⎝⎜

⎞
⎠⎟

1 2

= 2 f .  The absence of a force required to support the 

vibrating system in orbital free fall has no effect on the frequency of 
its vibration. 

OQ15.14 Answer (d) is the only false statement. At the equilibrium position,  

x = 0, the elastic potential energy of the system 
  

PEs =
1
2

kx2⎛
⎝⎜

⎞
⎠⎟

 is a 

minimum and the kinetic energy is a maximum. 
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OQ15.15 (i) Answer (e). We have 
  
Ti = 2π Li

g
 and 

  
Tf = 2π

Lf

g
= 2π 4Li

g
= 2Ti .  The period becomes larger by a 

factor of 2, to become 5 s. 

 (ii) Answer (c). Changing the mass has no effect on the period of a 
simple pendulum. 

OQ15.16 (i) Answer (b). The upward acceleration has the same effect as an 
increased gravitational acceleration. 

 (ii) Answer (a). The downward acceleration has the same effect as a 
decreased gravitational acceleration. 

 (iii) Answer (c). The absence of acceleration means that the effective 
gravitational field is the same as that for a stationary elevator. 

OQ15.17 (i) Answer (c). At 120 cm we have the midpoint between the 
turning points, so it is the equilibrium position and the point of 
maximum speed. 

 (ii) Answer (a). In simple harmonic motion the acceleration is 
maximum when the displacement from equilibrium is 
maximum. 

 (iii) Answer (a), by the same logic as in part (ii). 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ15.1 An imperceptibly slight breeze blowing over the edge of a leaf can 
produce fluttering in the same way that a breeze can cause a flag to 
flap. As a leaf twists in the wind, the fibers in its stem provide a 
restoring torque. If the frequency of the breeze matches the natural 
frequency of vibration of one particular leaf as a torsional pendulum, 
that leaf can be driven into a large-amplitude resonance vibration. 
Note that it is not the size of the driving force that sets the leaf into 
resonance, but the frequency of the driving force. If the frequency 
changes, another leaf will be set into resonant oscillation. 

CQ15.2 (a) No. Since the acceleration is not constant in simple harmonic 
motion, none of the equations in Table 2.2 are valid. 

 (b) Equation Information given by equation 

    x t( ) = Acos ωt + φ( )  position as a function of time 
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    v t( ) = −ωAsin ωt + φ( )  velocity as a function of time 

    v x( ) = ±ω A2 − x2( )1 2
 velocity as a function of position 

    a t( ) = −ω 2Acos ωt + φ( )  acceleration as a function of time 

    a t( ) = −ω 2x t( )  acceleration as a function of  
  position 

 (c) The angular frequency ω  appears in every equation. 

CQ15.3 (a) The general equation of position is   x t( ) = Acos ωt + φ( ).  If 

  x = −Acos ωt( ) ,  then  φ = π ,  or equally well,  φ = −π .  

 (b) At t = 0, the particle is at its turning point on the negative side of 
equilibrium, at x = –A. 

CQ15.4 We assume the diameter of the bob is not very small compared to the 
length of the cord supporting it. As the water leaks out, the center of 
mass of the bob moves down, increasing the effective length of the 
pendulum and slightly lowering its frequency. As the last drops of 
water dribble out, the center of mass of the bob moves back up to the 
center of the sphere, and the pendulum frequency quickly increases 
to its original value. 

CQ15.5 (a) No force is exerted on the particle. The particle moves with 
constant velocity. 

 (b) The particle feels a constant force toward the left. It moves with 
constant acceleration toward the left. If its initial push is toward 
the right, it will slow down, turn around, and speed up in 
motion toward the left. If its initial push is toward the left, it 
will just speed up. 

 (c) A constant force toward the right acts on the particle to produce 
constant acceleration toward the right. 

 (d) The particle moves in simple harmonic motion about the lowest 
point of the potential energy curve. 

CQ15.6 Most everyday vibrations are damped, they eventually die down as 
their energy is transferred to their surroundings. However, as you 
will learn later, atoms in the molecules have vibration modes that do 
not damp out. 

CQ15.7 The mechanical energy of a damped oscillator changes back and 
forth between kinetic and potential while it gradually and 
permanently decreases and transforms to internal energy. 

CQ15.8 Yes. An oscillator with damping can vibrate at resonance with 
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amplitude that remains constant in time. Without damping, the 
amplitude would increase without limit at resonance. 

CQ15.9 No. If the resistive force is large compared to the restoring force of 
the spring (in particular, if   b

2 > 4mk ), the system will be overdamped 
and will not oscillate. 

CQ15.10 The period of a pendulum depends on the acceleration of gravity: 

  
T = 2π L

g
.  If the acceleration of gravity is different at the top of the 

mountain, the period is different and the pendulum does not keep 
perfect time. Two things can effect the acceleration of gravity, the top 
of the mountain is farther from the center of the Earth, and the 
nearby large mass of the mountain under the pendulum. 

CQ15.11 Neither are examples of simple harmonic motion, although they are 
both periodic motion. In neither case is the acceleration proportional 
to the displacement from an equilibrium position. Neither motion is 
so smooth as SHM. The ball’s acceleration is very large when it is in 
contact with the floor, and the student’s when the dismissal bell 
rings. 

CQ15.12 The motion will be periodic—that is, it will repeat, though it is not 
harmonic at large angles. The period is nearly constant as the angular 
amplitude increases through small values; then the period becomes 
noticeably larger as θ increases farther. 

CQ15.13 The angle of the crank pin is   θ = ωt.  Its x coordinate is   x = A cos θ =  

  A cosωt,  where A is the distance from the center of the wheel to the 
crank pin. This is of the form   x = A cos θt + φ( ) ,  so the yoke and 
piston move with simple harmonic motion. 

 

ANS FIG. CQ15.13 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 15.1 Motion of an Object Attached to a Spring 
P15.1 (a) Taking to the right as positive, the spring force acting on the block 

at the instant of release is 
   

  

Fs = −kxi = − 130 N m( ) +0.13 m( )
= −17 N   or   17 N to the left

 

 (b) At this instant, the acceleration is 

   
  
a =

Fs

m
=

−17 N
0.60 kg

= −28 m s2   

  or 
  
a = 28 m s2  to the left  

P15.2 When the object comes to equilibrium (at distance y0 below the 
unstretched position of the end of the spring),   Fy∑ = −k −y0( )− mg = 0  
and the force constant is 

   

  
k =

mg
y0

=
4.25 kg( ) 9.80 m s2( )

2.62 × 10−2  m
= 1.59 × 103  N = 1.59 kN/m  

 
 

 

Section 12.2 Analysis Model: Particle in  
Simple Harmonic Motion 

P15.3 The spring constant is found from 

   
  
k =

Fs

x
=

mg
x

=
0.010 kg( ) 9.80 m s2( )

3.9 × 10−2  m
= 2.5 N m  

 When the object attached to the spring has mass m = 25 g, the period 
of oscillation is 

   
  
T = 2π m

k
= 2π

0.025 kg
2.5 N m

= 0.63 s  

P15.4 (a) The equation for the piston’s position is given as 

   
  
x = 5.00 cm( ) cos 2t +

π
6

⎛
⎝⎜

⎞
⎠⎟
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  At t = 0,   
   

  
x = 5.00 cm( ) cos

π
6

⎛
⎝⎜

⎞
⎠⎟  =   4.33 cm

 

 (b) Differentiating the equation for position with respect to time 
gives us the piston’s velocity: 

   
  
v =

dx
dt

= − 10.0 cm/s( ) sin 2t +
π
6

⎛
⎝⎜

⎞
⎠⎟

   

  At t = 0, 
  
v = −5.00 cm s  

 (c) Differentiating again gives its acceleration: 

   
  
a =

dv
dt

= − 20.0 cm/s2( ) cos 2t +
π
6

⎛
⎝⎜

⎞
⎠⎟

   

  At t = 0, 
  
a = −17.3 cm s2  

 (d) The period of motion is 

   
  
T =

2π
ω

=
2π
2

= 3.14 s  

 (e) We read the amplitude directly from the equation for x: 

   
  
A = 5.00 cm  

P15.5   x = 4.00 m( )cos 3.00πt + π( ) ;  compare this with   x = Acos ωt + φ( )  to 
find 

 (a)   ω = 2π f = 3.00π  or 
  

f = 1.50 Hz  

 (b) 
  
T =

1
f

= 0.667 s  

 (c) 
  
A = 4.00 m  

 (d) 
 
φ = π  rad  

 (e)   x t = 0.250 s( ) = 4.00 m( ) cos 1.75π( ) = 2.83 m  

P15.6 From the information given, we write the equation for position as 
  x = Acosωt,  with the amplitude given as A = 0.050 0 m. Differentiating 
gives us the piston’s velocity, 

     v = −Aω sinωt   
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 and differentiating again gives its acceleration 

     a = −Aω 2 cosωt  

 Then, if f = 3600 rev/min = 60 Hz, then   ω = 2π f = 120π  s−1  

 (a) 
  
vmax =ωA = 120π( ) 0.050 0( )  m s = 18.8 m s  

 (b) 
  
amax =ω 2A = 120π( )2 0.050 0( )  m s2 = 7.11 km s2  

15.7 The 0.500 s must elapse between one turning point and the other. Thus 
the period is 1.00 s. 

    

  
ω = 2π

T
= 6.28 s−1

 

 and 
  
vmax =ωA = 6.28 s−1( ) 0.100 m( ) = 0.628 m s . 

P15.8 (a) From the information given, 

   
  
T =

12.0 s
5

= 2.40 s  

 (b) 
  
f =

1
T

=
1

2.40
= 0.417 Hz  

 (c) 
  
ω = 2π f = 2π 0.417( ) = 2.62 rad s  

P15.9 An object hanging from a vertical spring moves with simple harmonic 
motion just like an object moving without friction attached to a 
horizontal spring. We are given the period, which is related to the 

frequency of motion by T = 1/f. Then, since 
  
ω = 2π f = k

m
,  

   

  
T = 1

f
= 2π m

k

 

 Solving for k,  

  
  
k =

4π 2m
T 2 =

4π 2 7.00 kg( )
2.60 s( )2 = 40.9 N m  

*P15.10 For a simple harmonic oscillator, the maximum speed occurs at the 
equilibrium position and is given by Equation 15.17: 

  

  
vmax = A

k
m
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 Thus,  
  

  
m = kA2

vmax
2 = 16.0 N/m( ) 0.200 m( )2

0.400 m/s( )2 = 4.00 kg
  

 and  
  

  Fg = mg = 4.00 kg( ) 9.80 m/s2( ) = 39.2 N
  

*P15.11 The mass of the cube is 
   

  m = ρV = 2.70 × 103  kg/m3( ) 0.015 m( )3 = 9.11× 10−3  kg  

 The spring constant of the strip of steel is 
   

  

k = F
x

= 1.43 N
0.027 5 m

= 52.0 N/m

f = ω
2π

= 1
2π

k
m

= 1
2π

52.0 N/m
9.11× 10−3  kg

= 12.0 Hz

 

P15.12 (a) The spring constant of this spring is 

   
  
k =

F
x

=
mg
x

=
 0.450 kg( ) 9.80 m s2( )

0.350 m
= 12.6 N m  

  We take the x axis pointing downward, so  φ = 0 . 
   

  

x = A cos ωt = 18.0 cm( ) cos
12.6 N/m
0.450 kg

84.4 s( )
⎡

⎣
⎢

⎤

⎦
⎥

= 18.0 cm( ) cos 446.6 rad( ) = 15.8 cm

 

 (b) Now  446.6 rad = 71× 2π + 0.497 rad.  In each cycle the object 
moves 4(18) = 72 cm, so it has moved 

 
71 72 cm( ) + 18 − 15.8( )  cm = 51.1 m  

 (c) By the same steps, 
  
k =

0.440 kg( ) 9.80 m/s2( )
0.355 m

 = 12.1 N/m.  

   

  

x = A cos
k
m

t = (18.0 cm) cos
12.1 N/m
0.440 kg

84.4 s( )
⎡

⎣
⎢

⎤

⎦
⎥

= (18.0 cm)cos(443.4 rad) = −15.9 cm

 

 (d)  443.4 rad = 70.569 2π( )  

  Distance moved 
 
= 70.569 0.72 m( ) = 50.8 m  
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 (e) 

  

The patterns of oscillation diverge from each other, starting
out in phase but becoming completely out of phase. To calculate
the future we would need exact knowledge of the present, an
impossibility.

 

P15.13 (a) For constant acceleration position is given as a 
function of time by 

   

  

x = xi + vxit +
1
2

axt
2

= 0.270 m + 0.140 m/s( ) 4.50 s( )

             +
1
2

−0.320 m/s2( ) 4.50 s( )2

= −2.34 m

 

 (b) 
  
vx = vxi + axt = 0.140 m s − 0.320 m s2( ) 4.50 s( ) = −1.30 m s  

 (c) For simple harmonic motion we have 
instead  

   
  x = A cos ω t + φ( )   

  and   v = −Aω sin ω t + φ( )   

  where    a = −ω 2x,  so that 

 −0.320 m s2 = −ω 2 0.270 m( ) ,   ω = 1.09 rad s.   

  At t = 0,   0.270 m = A cos φ  and   0.140 m/s = −A 1.09 s−1( ) sin φ.   

  Dividing gives 
 

0.140 m/s
0.270 m

= − 1.09 s−1( ) tan φ ,   tan φ = −0.476,  

 φ = −25.5°.  Still at t = 0,   0.270 m = A cos −25.5°( ) ,  A = 0.299 m.  

  Now at t = 4.50 s, 
    

  

x = 0.299 m( ) cos 1.09 rad s( ) 4.50 s( ) − 25.5°⎡⎣ ⎤⎦
= 0.299 m( ) cos 4.90 rad − 25.5°( )
= 0.299 m( ) cos 255°

= −0.076 3 m

 

 (d) 
  
v = − 0.299 m( ) 1.09 s−1( ) sin 255° = +0.315 m/s  

ANS. FIG.  
P15.13(a, b) 

 

ANS. FIG. P15.13(c, d) 
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P15.14 (a) Since the collision is perfectly elastic, the ball will rebound to the 
height of 4.00 m and then repeat the motion over and over again. 
Thus, the 

 
motion is periodic .  

 (b) To determine the period, we use 
  
x =

1
2

gt2 .  The time for the ball to 

hit the ground is  

   
  
t =

2x
g

=
2 4.00 m( )
9.80 m s2

  = 0.904 s  

  This equals one-half the period, so 
  
T = 2 0.904 s( ) = 1.81 s . 

 (c) 

  

The motion is not simple harmonic. The net force action on the
ball is a constant given by F = −mg  (except when it is in contact
with the ground), which is not in the form of Hooke’s law.

 

P15.15 The period of the oscillation is 

  T = 1/f = 1/1.50 Hz = 1/ 3/2 s−1( ) = 2/3 s.
 

 (a) At t = 0, x = 0 and v is positive (to the right). Therefore, this 
situation corresponds to   x = A sin ωt  and   v = vi cos ωt.  Since  
f = 1.50 Hz,   ω = 2π f = 3.00π ,  and A = 2.00 cm: 

  
x = 2.00 cos 3.00π t − 90°( ) = 2.00 sin 3.00π t

 

  where x is in centimenters and t is in seconds. 

 (b) 
  
vmax = vi = Aω = 2.00 3.00π( ) = 6.00π  cm s = 18.8 cm s  

 (c) The particle has this speed at t = 0 and next after half a period:  

   
  
t =

T
2

=
1
3

 s  

 (d) 
  
amax = Aω 2 = 2.00 3.00π( )2 = 18.0π 2  cm/s2 = 178 cm/s2  

 (e) This positive value of maximum acceleration first occurs when 
the particle is reversing its direction on the negative x axis, three-

quarters of a period after t = 0: at 
  
t =

3
4

T = 0.500 s . 
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 (f) Since 
  
T =

2
3

 s  and A = 2.00 cm, the particle will travel 8.00 cm in 

one cycle. Hence, in 
  
1.00 s =

3
2

T = 11
2  cycles, the particle will 

travel 
 
8.00 cm + 4.00 cm = 12.0 cm . 

*P15.16 The proposed solution,  
   

  
x t( ) = xi cos ω t + vi

ω( ) sin ω t
 

 implies velocity  
   

  
v = dx

dt
= −xiω sin ω t + vi cos ω t

 

 and acceleration  
   

  

a = dv
dt

= −xiω
2 cos ω t − viω sin ω t

= −ω 2 xi cos ω t + vi

ω( ) sin ω t( ) = −ω 2x

 

 (a) The acceleration being a negative constant times position means 
we do have SHM, and its angular frequency is  ω .  At t = 0 the 
equations reduce to  x = xi  and   v = vi ,  so they satisfy all the 
requirements. 

 (b) 

  

v2 − ax = v2 − −ω 2x( )x = v2 +ω 2x2

= −xiω sin ω t + vi cos ω t( )2 +ω 2 xi cos ω t + vi

ω( ) sin ω t( )2

= xi
2ω 2 sin2 ω t − 2xiviω sin ω t cos ω t + vi

2 cos2 ω t

           + xi
2ω 2 cos2 ω t + 2xiviω cos ω t sin ωt

           + vi
2 sin2 ω t

= xi
2ω 2 + vi

2

 

  So the expression   v
2 − ax  is constant in time because all the 

parameters in the final equivalent expression   xi
2ω 2 + vi

2  are 
constant. Because   v

2 − ax  must have the same value at all times, it 
must be equal to the value at t = 0, so   v

2 − ax = vi
2 − aixi .  If we 

evaluate   v
2 − ax  at a turning point where v = 0 and x = A, it is 

  v
2 − ax = v2 +ω 2x2 = 02 +ω 2 A2( ) =ω 2A2.  Thus it is proved. 
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*P15.17 (a) The distance traveled in one cycle is four times the amplitude of 
motion, or  20.0 cm .  

 (b) 
  
vmax = ω A = 2π fA = 2π (3.00 Hz)(5.00 cm) = 94.2 cm/s  

  This occurs as the particle passes through equilibrium. 

 (c) 
  
amax = ω 2A = 2π f( )2 A = 2π (3.00 Hz)[ ]2 (0.05 m) = 17.8 m s2  

  This occurs at maximum excursion from equilibrium. 

P15.18 m = 1.00 kg, k = 25.0 N/m, and A = 3.00 cm. At t = 0, x = –3.00 cm. 

 (a) 
  
ω =

k
m

=
25.0 N/m

1.00 kg
= 5.00 rad/s  

  so that, 
  
T =

2π
ω

=
2π

5.00
= 1.26 s  

 (b) 
  
vmax = Aω = 3.00 × 10−2  m( ) 5.00 rad/s( ) = 0.150 m/s  

  
  
amax = Aω 2 = 3.00 × 10−2  m( ) 5.00 rad/s( )2 = 0.750 m/s2  

 (c) Because x = –3.00 cm and v = 0 at t = 0, the required solution is 

  x = −A cos ωt,  or   

  
  

x = 3.00cos 5.00t + π( )  

  Then,  
  
v =

dx
dt

= −15.0 sin 5.00t + π( )  

  and  
  
a =

dv
dt

= −75.0 cos 5.00t + π( )  

  where x is in cm, v is in cm/s, and a is in cm/s2. 

P15.19 
  
ω =

k
m

=
8.00 N m
0.500 kg

= 4.00 s−1.  Assuming the position of the object is 

at the origin at t = 0, position is given by   x = 10.0 sin 4.00t( ) ,  where x is 
in cm. From this, we find that   v = 40.0 cos 4.00t( ) ,  where v is in cm/s, 

and   a = −160 sin 4.00t( ) ,  where a is in cm/s2. 

 (a) 
  
vmax = ωA = 4.00 rad/s( ) 10.0 cm( ) = 40.0 cm s  

 (b) 
  
amax == ω 2A = 4.00 rad/s( )2

10.0 cm( ) = 160 cm s2  
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  From our assumed expression for x, we solve for the time t: 
    

  
t = 1

4.00 Hz
⎛
⎝⎜

⎞
⎠⎟ sin−1 x

10.0 cm
⎛
⎝⎜

⎞
⎠⎟

 

  When x = 6.00 cm, 
  
t =

1
4.00 Hz

⎛
⎝⎜

⎞
⎠⎟ sin−1 6.00 cm

10.0 cm
⎛
⎝⎜

⎞
⎠⎟ = 0.161 s.  

  We find then that at that time: 

 (c) 
  
v = 40.0 cm/s( ) cos 4.00 Hz( ) 0.161 s( )[ ] = 32.0 cm/s  and 

 (d) 
  
a = − 160 cm/s2( ) sin 4.00 Hz( ) 0.161 s( )[ ] = −96.0 cm/s2  

 (e) Using 
  
t =

1
4.00 Hz

⎛
⎝⎜

⎞
⎠⎟ sin−1 x

10.0 cm
⎛
⎝⎜

⎞
⎠⎟

 we find that when x = 0,  

t = 0, and when x = 8.00 cm, t = 0.232 s. Therefore, 
  
Δt = 0.232 s . 

P15.20 (a)  Yes.  

 (b) We assume that the mass of the spring is negligible and that we 
are on Earth. Let m represent the mass of the object. Its hanging at 
rest is described by 

   
  

F = 0→ kx − mg = 0→ k = mg
x

∑ ,  where x = 18.3 cm 

  To find the period, we must find the angular frequency 
  
T =

2π
ω

.  

We do not know the mass, but we do not need it because  

   
  
ω =

k
m

=
mg
x

1
m

=
g
x

 

  From our value for x, we find 
    

  
T =

2π
ω

= 2π x
g

= 2π 0.183 m
9.80 m/s2 = 0.859 s

  

  
  

We see that finding the period does not depend on knowing the
mass: T = 0.859 s.
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Section 15.3 Energy of the Simple Harmonic Oscillator 
P15.21 Choose the car with its shock-absorbing bumper as the system; by 

conservation of energy, 
  

  

1
2

mv2 = 1
2

kx2:

         v = x
k
m

= 3.16× 10−2  m( ) 5.00× 106  N/m
103  kg

= 2.23 m s

 

P15.22 We are given m = 200 g, T = 0.250 s, E = 2.00 J, and   

   
  
ω =

2π
T

=
2π

0.250
= 25.1 rad s  

 (a) 
  
k = mω 2 = 0.200 kg( ) 25.1 rad s( )2 = 126 N m  

 (b) 
  
E =

kA2

2
⇒ A =

2E
k

=
2 2.00 J( )
126 N/m

= 0.178 m  

*P15.23 (a) Energy is conserved for the block-spring system between the 
maximum-displacement and the half-maximum points: 

     K + U( )i = K + U( ) f   

    
  
0 + 1

2
kA2 = 1

2
mv2 + 1

2
kx2  

    

  

1
2

6.50 N m( ) 0.100 m( )2 = 1
2

m 0.300 m s( )2

                                              + 1
2

6.50 N m( ) 5.00 × 10−2  m( )2
 

    
  
3.25× 10−2  J = 1

2
m 0.300 m/s( )2 + 8.12 × 10−3  J   

  giving   
  
m =

2 2.44× 10−2  J( )
9.0× 10−2  m2 s2 = 0.542 kg  

  (b) 
  
ω = k

m
= 6.50 N/m

0.542 kg
= 3.46 rad/s  

  Then, 
  
T = 2π

ω
= 2π  rad

3.46 rad s
= 1.81 s  

  (c) 
  
amax = Aω 2 = 0.100 m( ) 3.46 rad/s( )2 = 1.20 m/s2  
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*P15.24 (a) The mechanical energy of the system is equal to the potential 
energy stored in the spring at maximum amplitude: 

    
  
E = kA2

2
=

250 N/m( ) 3.50 × 10−2  m( )2

2
= 0.153 J  

 (b)   vmax = Aω ,  where 
  
ω = k

m
= 250 N/m

0.500 kg
= 22.4 s−1 ,   

  giving  
  
vmax = 0.784 m/s  

  (c) 
  
amax = Aω 2 = 3.50 × 10−2  m( ) 22.4 s−1( )2 = 17.5 m/s2  

*P15.25 Model the oscillator as a block-spring system. From energy 
considerations,  

   
  v

2 +ω 2x2 = ω 2A2  

 with   vmax = ω A  and 
  
v = ω A

2
,  so 

   

  

ω A
2

⎛
⎝

⎞
⎠

2

+ω 2x2 = ω 2A2
 

 From this we find  

   
  
x2 = 3

4
A2   

 and since A = 3.00 cm, 
     

  
x = ± 3

2
A = ±2.60 cm

  

*P15.26 (a) 
  
E = 1

2
kA2 ,  so if   ′A = 2A,  

  
′E = 1

2
k ′A( )2 = 1

2
k 2A( )2 = 4E  

  Therefore 
  

E increases by factor of 4.  

  (b) 
  
vmax = k

m
A , so if A is doubled, 

  
vmax  is doubled.  

 (c) 
  
amax = k

m
A , so if A is doubled, 

  
amax  also doubles.  

 (d) 
  
T = 2π m

k
 is independent of A, so 

 
the period is unchanged.  
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P15.27 (a) 
  
E =

1
2

kA2 =
1
2

35.0 N m( ) 4.00 × 10−2  m( )2
= 28.0 mJ  

 (b) 
  
v = ω A2 − x2 =

k
m

A2 − x2  

  

  

v =
35.0 N/m

50.0 × 10−3  kg
4.00 × 10−2  m( )2

− 1.00 × 10−2  m( )2

= 1.02 m/s

 

 (c) 

  

1
2

mv2 =
1
2

kA2 −
1
2

kx2

=
1
2

35.0 N/m( ) 4.00 × 10−2  m( )2
− 3.00 × 10−2  m( )2⎡

⎣
⎤
⎦

= 12.2 mJ

 

 (d) 
  

1
2

kx2 = E −
1
2

mv2 = 28.0 mJ − 12.2 mJ = 15.8 mJ  

P15.28 (a) 
  
k =

F
x

=
20.0 N

0.200 m
= 100 N m  

 (b) 
  
ω =

k
m

= 50.0  rad s  so 
  
f =

ω
2π

= 1.13 Hz  

 (c) 
  
vmax = ωA = 50.0 0.200( ) = 1.41 m s  

 (d) Maximum speed occurs when the object passes through its 
equilibrium position, at   x = 0 . 

 (e) 
  
amax = ω 2A = 50.0 0.200( ) = 10.0 m s2  

 (f) Maximum acceleration occurs where the object reverses direction, 
which is where its distance from equilibrium is a maximum, at 

  x = ±A = ±0.200 m .  

 (g) 
  
E =

1
2

kA2 =
1
2

100 N/m( ) 0.200 m( )2 = 2.00 J  

 (h) 
  
v = ω A2 − x2 = 50.0  rad/s( ) 8

9
0.200( )2  m = 1.33 m/s  

 (i) 
  
a = ω 2x = 50.0 rad2/s2( ) 0.200 m

3
⎛
⎝⎜

⎞
⎠⎟ = 3.33 m/s2  
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P15.29 (a) Energy is conserved by an isolated simple harmonic oscillator: 

   

  

E =
1
2

kA2 =
1
2

mv2 +
1
2

kx2 →
1
2

mv2 =
1
2

kA2 −
1
2

kx2

→
1
2

mv2 =
1
2

k A2 − x2( )
 

  When x = A/3, 

   

  

1
2

mv2 =
1
2

k A2 − x2( ) =
1
2

k A2 −
A
3

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥ =

1
2

kA2 1−
1
9

⎡
⎣⎢

⎤
⎦⎥

1
2

mv2 =
1
2

kA2 8
9

=
8
9

E

 

 (b) When x = A/3, 

   
  

1
2

kx2 =
1
2

k
A
3

⎛
⎝⎜

⎞
⎠⎟

2

=
1
9

1
2

kA2⎛
⎝⎜

⎞
⎠⎟ =

1
9

E  

 (c) 
  

1
2

kA2 =
1
2

mv2 +
1
2

kx2 =
1
2

1
2

kx2⎛
⎝⎜

⎞
⎠⎟ +

1
2

kx2  

   
  

1
2

kA2 =
3
4

kx2 → x = ±
2
3

A  

 (d)  No.  The maximum potential energy of the system is equal to the 
total energy of the system: kinetic plus potential energy. Because 
the total energy must remain constant, the kinetic energy can 
never be greater than the maximum potential energy. 

P15.30 (a)  Particle under constant acceleration.  

 (b) 
  
y fi = y + vyit + 1

2
ayt

2:  

   

  

−11.0 m = 0 + 0 +
1
2

−9.80 m s2( )t2

t =
22.0 m

9.80 m/s2 = 1.50 s

 

 (c) The system of the bungee jumper, the spring (cord), and the Earth 
is  isolated .  

 (d) The system is isolated, so energy is conserved within the system. 
Take the initial point where she steps off the bridge and the final 
point at the bottom of her motion. 
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K + Ug + Us( )
i
= K + Ug + Us( )

f

0 + mgy + 0 = 0 + 0 +
1
2

kx2

65.0 kg( ) 9.80 m s2( ) 36.0 m( ) =
1
2

k 25.0 m( )2

 

  which gives 
  
k = 73.4 N/m  

 (e) The spring extension at equilibrium is  

   
  
x =

F
k

=
mg
k

=
65.0 kg( ) 9.80 m s2( )

73.4 N m
= 8.68 m   

  so this point is 
 
11.0 + 8.68 m = 19.7 m below the bridge  and the 

amplitude of her oscillation is 36.0 m – 19.7 m = 16.3 m. 

 (f) 
  
ω =

k
m

=
73.4 N/m

65.0 kg
= 1.06 rad/s  

 (g) Set x = 0 at the equilibrium position of the bungee jumper on the 
spring. Relative to the equilibrium position, the lowest part of the 
drop corresponds to x = +16.3 m—we have taken down as 
positive—and the point in the drop where the spring begins 
to stretch is at x = –8.68 m. Take the phase as zero at maximum 
downward extension (x = +16.3 m). We find that the phase,   ωt,  
was 25 m higher where x = –8.68 (above the equilibrium point): 

    x = A cos ωt:  at time t = 0,   x = 16.3 m( ) cos 0 = 16.3 m , and when 

  x = −8.68 = 16.3 cos ωt( ) ,    ωt = ±122° = ±2.13 rad.  Which sign do 

we pick for   ωt?  From
  
v =

dx
dt

= −ωA sin ωt,  at x = –8.68 m, v is 

downward, which means by our choice of positive direction, v is 
positive. Pick   ωt = −2.13 rad:  

  v = −ωA sin −2.13 rad( ) = +ωA 0.848( ) ,  which is positive. 

  Therefore, 
  
ωt = 1.06t = −2.13 rad → t =

−2.13 rad
1.06

= −2.01 s,  

meaning t = –2.01 s when the spring begins to stretch and t = 0 
when the jumper reaches the bottom of the jump: then 

 
+2.01 s  

is the time over which the spring stretches. 

 (h) total time 
 
= 1.50 s + 2.01 s = 3.50 s  
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P15.31 (a)   F = k x = 83.8 N m( ) 5.46 × 10−2  m( ) = 4.58 N  

 (b) 
  
E = Us =

1
2

kx2 =
1
2

83.8 N m( ) 5.46 × 10−2  m( )2
= 0.125 J  

 (c) While the block was held stationary at x = 5.46 cm, 

  Fx∑ = −Fs + F = 0,  or the spring force was equal in magnitude and 
oppositely directed to the applied force. When the applied force is 
suddenly removed, there is a net force Fs = 4.58 N directed 
toward the equilibrium position acting on the block. This gives 
the block an acceleration having magnitude 

    
  
a =

Fs

m
=

4.58 N
0.250 kg

= 18.3 m s2  

 (d) At the equilibrium position, PEs = 0, so the block has kinetic 
energy K = E = 0.125 J and speed 

    
  
v =

2E
m

=
2 0.125 J( )
0.250 kg

= 1.00 m s  

 (e)  Smaller.  Friction would transform some kinetic energy into 
internal energy. 

 (f)  The coefficient of kinetic friction between the block and surface.  

 (g) The block will come to a stop after sliding through distance  
d = x = 0.054 6 m. 

    

  

ΔEmech = ΔK + ΔU = − fkd

0 + 0− 1
2

kx2⎛
⎝⎜

⎞
⎠⎟ = − fkd = −µkmgd→ µk = kx2

2mgd
= kx2

2mgx
= kx

2mg

→ µk =
83.8 N/m( ) 0.054 6 m( )

2 0.250 kg( ) 9.80 m/s2( ) = 0.934

 

P15.32 (a) At the equilibrium position, the total energy of the system is in 
the form of kinetic energy and   mvmax

2 2 = E,  so the maximum 
speed is 

    
  
vmax =

2E
m

=
2 5.83 J( )
0.326 kg

= 5.98 m s  
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 (b) The period of an object-spring system is   T = 2π m k ,  so the force 
constant of the spring is 

    
  
k =

4π 2m
T 2 =

4π 2 0.326 kg( )
0.250 s( )2 = 206 N m  

 (c) At the turning points, x = ±A, the total energy of the system is in 
the form of elastic potential energy, or E = KA2/2,  giving the 
amplitude as 

    
  
A =

2E
k

=
2 5.83 J( )
206 N m

= 0.238 m  

 
 

 

Section 15.4 Comparing Simple Harmonic Motion  
with Uniform Circular Motion 

P15.33 (a) 

 

The motion is simple harmonic because the tire is rotating with
constant angular velocity and you see the projection of the motion
of the bump in a plane perpendicular to the tire.

 

 (b) Since the car is moving with speed v = 3.00 m/s, and its radius 
is 0.300 m, we have 

    
 
ω =

3.00 m s
0.300 m

= 10.0 rad s  

  Therefore, the period of the motion is 

    
  
T =

2π
ω

=
2π

10.0 rad s( ) = 0.628 s  

 
 

 

Section 15.5 The Pendulum 

P15.34 The period in Tokyo is 
  
TT = 2π LT

gT

,  and the period in Cambridge is 

  
TC = 2π LC

gC

. 
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ANS. FIG. P15.36 
 

 We know that   TT = TC = 2.00 s,  which means that 
  

LT

gT

=
LC

gC

,   

 or  
  

gC

gT

=
LC

LT

=
0.994 2
0.992 7

= 1.001 5  

P15.35 The period of a pendulum is the time for one complete oscillation and 
is given by 

   T = 2π  g ,  where    is the length of the pendulum. 

 (a) 
  
T = 3.00 min

120 oscillations
⎛
⎝⎜

⎞
⎠⎟

60 s
1 min

⎛
⎝⎜

⎞
⎠⎟ = 1.50 s  

 (b) The length of the pendulum is 

   
   
 = g

T 2

4π 2

⎛
⎝⎜

⎞
⎠⎟

= 9.80 m s2( ) 1.50 s( )2

4π 2

⎛

⎝⎜
⎞

⎠⎟
= 0.559 m  

P15.36 Referring to ANS. FIG. P15.36, we have 

    F = −mg sinθ    and   
  
tanθ =

x
R

 

 For small displacements,    

   tanθ ≈ sinθ    and  
 
F = −

mg
R

x = −kx  

 Since the restoring force is proportional to 
the displacement from equilibrium, the  
motion is simple harmonic motion. 

 Comparing to   F = −mω 2x  shows  

   
 
ω =

k
m

=
g
R

 

P15.37 f = 0.450 Hz, d = 0.350 m, and m = 2.20 kg.  Now,  
  

  

T =
1
f

T = 2π I
mgd

→ T 2 =
4π 2I
mgd

 

 Solving for the moment of inertia, we obtain 
   

  

I = T 2 mgd
4π 2 =

1
f

⎛
⎝⎜

⎞
⎠⎟

2
mgd
4π 2 =

2.20 kg( ) 9.80 m/s2( ) 0.350 m( )
4π 2 0.450 s−1( )2

= 0.944 kg ⋅m2

 

ANS. FIG. P15.37 
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P15.38 Please see ANS. FIG. P15.37. For a physical pendulum, 
   

  

T =
1
f

T = 2π I
mgd

→ T 2 =
4π 2I
mgd

→ I = T 2 mgd
4π 2 =

1
f

⎛
⎝⎜

⎞
⎠⎟

2
mgd
4π 2 → I =

mgd
4π 2 f 2

 

*P15.39 We solve 
  
ω = 2π

T
  for 

  
T = 2π

ω
= 2π

4.43
= 1.42 s  

 We then solve 
 
ω = g

L
    for  

  
L = g

ω 2 = 9.80 m/s2

4.43 rad/s( )2 = 0.499  

P15.40 (a) The parallel-axis theorem gives   I = ICM + md2 ,  

  so   

  

T = 2π I
mgd

= 2π ICM + md2

mgd
 

 (b) When d is very large 
  
T → 2π d

g
 gets large. 

  When d is very small 
  
T → 2π ICM

mgd
 gets large. 

  So there must be a minimum, found by 
   

  

dT
dd

= 0 =
d
dd

2π ICM + md2( )1 2
mgd( )−1 2

= 2π ICM + md2( )1 2
−

1
2

⎛
⎝⎜

⎞
⎠⎟ mgd( )−3 2

mg

           + 2π mgd( )−1 2 1
2

⎛
⎝⎜

⎞
⎠⎟ ICM + md2( )−1 2

2md

=
−π ICM + md2( )mg

ICM + md2( )1 2
mgd( )3 2 +

2π mdmgd

ICM + md2( )1 2
mgd( )3 2 = 0

 

  This requires 

     −ICM − md2 + 2md2 = 0  

  or  
  

ICM = md2  



816     Oscillatory Motion 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

ANS. FIG. P15.41 
 

P15.41 Using the simple harmonic motion model: 
  

  

A = rθ = 1.00 m( ) 15.0°( ) π
180°

⎡
⎣⎢

⎤
⎦⎥

= 0.262 m

ω =
g
L

=
9.80 m s2

1.00 m
= 3.13 rad s

 

 (a) 

  

vmax = Aω = 0.262 m( ) 3.13 s−1( )
= 0.820 m/s

 

 (b) For simple harmonic motion, the maximum 
acceleration  

   

  

amax = Aω 2 = 0.262 m( ) 3.13 s−1( )2

= 2.57 m/s2

 

  which is equal to the maximum tangential acceleration, occurs at 
the extreme ends of the swing: 

   

  
at = rα →α =

at

r
=

2.57 m/s2

1.00 m
= 2.57 rad/s2

 

 (c) The maximum restoring force causes the maximum acceleration: 
   

  F = mamax = 0.25 kg 2.57 m/s2( ) = 0.641 N
 

 (d) (a) Applying energy conservation to the isolated pendulum-
Earth system: 

    
  
Ki + Ui = K f + U f → mgh =

1
2

mv2      

   and    h = L 1− cosθ( ) ,  

   then  
    

  

vmax = 2gh = 2gL 1− cosθ( )
= 2(9.80 m/s2 )(1.00 m)(1− cos15.0°)

= 0.817 m s
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ANS. FIG. P15.42 
 

P15.42 (a) The parallel-axis theorem gives: 
   

  

I = ICM + Md2 =
1

12
ML2 + Md2

=
1

12
M 1.00 m( )2 + M 1.00 m( )2

= M
13
12

 m2⎛
⎝⎜

⎞
⎠⎟

T = 2π I
Mgd

= 2π
M 13/12 m2( )

Mg 1.00 m( )

= 2π 13/12 m
9.80 m s2

= 2.09 s

 

 (b) For the simple pendulum, 

   
  
T = 2π 1.00 m

9.80 m s2 = 2.01 s      

    
 
difference =

2.09 s − 2.01 s
2.01 s

= 4.08%  

P15.43 (a) The string tension must support the weight of the bob, accelerate 
it upward, and also provide the restoring force, just as if the 
elevator were at rest in a gravity field of (9.80 + 5.00) m/s2. Thus 
the period is 

   

  

T = 2π L
g

= 2π 5.00 m
14.8 m s2

T = 3.65 s

 

 (b) 
  
T = 2π 5.00 m

9.80 m s2 − 5.00 m s2( ) = 6.41 s  

 (c) 
  
geff = 9.80 m s2( )2

+ 5.00 m s2( )2
= 11.0 m s2  

  

  
T = 2π 5.00 m

11.0 m s2 = 4.24 s
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P15.44 (a) From 
  
T =

total measured time
50

,  

  the measured periods are: 
 

Length, L (m)  1.000   0.750   0.500 

Period, T (s)  2.00   1.73   1.42 

 (b) 
  
T = 2π L

g
 so 

  
g =

4π 2L
T 2  

  The calculated values for g are: 
 

Period, T (s)   2.00   1.73   1.42 

g (m/s2)   9.87   9.89   9.79 

  Thus, gavg = 9.85 m/s2  
  

  

This agrees with the accepted value of  g = 9.80 m/s2  
within 0.5%. 

 

 

ANS. FIG. P15.44 

 (c) From 
  
T 2 =

4π 2

g
⎛
⎝⎜

⎞
⎠⎟

L , the slope of T2 versus L graph is  

   

  

4π 2

g
= 3.97 s2/m
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  Thus, 
  
g =

4π 2

slope
= 9.94 m s2 .This is within 1.5% of the accepted 

value for g. 

P15.45 The period of oscillation for the watch balance wheel is T = 0.250 s. 
Modeling the 20.0-g mass as a particle, we find the moment of inertia 
from I = mr2.  

 (a) 
  
I = mr2 = 2.00× 10−2  kg( ) 5.00× 10−3  m( )2

= 5.00× 10−7  kg ⋅m2  

 (b) To find the torsion constant, we use Equation 15.29 for the motion 
of a torsional pendulum, 

   

  
I

d2θ
dt2 = −κθ

 

  where  

   
  

κ
I

= ω =
2π
T

 

  Solving for the torsion constant gives 
   

  
κ = Iω 2 = 5.00× 10−7  kg ⋅m2( ) 2π

0.250 s
⎛
⎝⎜

⎞
⎠⎟

2

= 3.16× 10−4  
N ⋅m
rad

 

 
 

 

Section 15.6 Damped Oscillations 

P15.46 We are given   θi = 15.0°, and   θ t = 1 000 s( ) = 5.50°.  We then use 
Equation 15.32 for damped oscillations: 

     x = Ae−bt 2m   

 Substituting, 

   
  

x1 000

xi

=
Ae−bt 2m

A
=

5.50
15.0

= e−b 1 000( ) 2m  

   

  
ln

5.50
15.0

⎛
⎝⎜

⎞
⎠⎟ = −1.00 = −b 1 000( )

2m

 

 which gives 
   

  

b
2m

= 1.00× 10−3  s−1
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P15.47 If the oscillation was undamped, its frequency would be  
   

  
ω 0 = k

m
= 2.05× 104  N m

10.6 kg
= 44.0 s−1

  

 (a) With damping, the frequency becomes 

   

  

ω = ω 0
2 − b

2m
⎛
⎝⎜

⎞
⎠⎟

2

= 44 
1
s

⎛
⎝⎜

⎞
⎠⎟

2

− 3 kg
 2  × 10.6 kg

⎛
⎝⎜

⎞
⎠⎟

= 1 933.96− 0.02 = 44.0 s−1

f = ω
2π

= 44.0 s−1

2π
= 7.00 Hz

 

 (b) In   x = A0e
−bt 2m cos ωt + φ( )  over one cycle, a time 

  
T =

2π
ω

, the 

amplitude changes from A0 to   A0e
−b2π 2mω  for a fractional decrease 

of 
   

  

A0 − A0e
−πb mω

A0

= 1− e−π 3 10.6⋅44.0( ) = 1− e−0.020 2 = 1− 0.979 98

= 0.020 0 = 2.00%

 

 (c) The energy is proportional to the square of the amplitude, so 
its fractional rate of decrease is twice as fast: 

   
  
E =

1
2

kA2 =
1
2

kA0
2e−2bt 2m = E0e

−bt m  

  We specify 
   

  

0.050 0( )E0 = E0e
−3t 10.6

0.050 0 = e−3t 10.6

e+3t 10.6 = 20.0
3t

10.6
= ln 20.0 = 3.00

t = 10.6 s

 

P15.48 The total energy is 
  
E =

1
2

mv2 +
1
2

kx2 .  

 Taking the time derivative gives 
  

dE
dt

= mv
d2x
dt2 + kxv.  
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 Then, substituting from Equation 15.31, 
  

md2x
dt2 = −kx − bv,  gives 

   
 

dE
dt

= v −kx − bv( ) + kvx  

 Thus, 
  

dE
dt

= −bv2 < 0  

 We have proved that the mechanical energy of a damped oscillator 
is always decreasing. 

P15.49 To show that   x = Ae−bt 2m cos ωt + φ( )  

 is a solution of 
  
−kx − b

dx
dt

= m
d2x
dt2  [1] 

 where 
  
ω =

k
m

−
b

2m
⎛
⎝⎜

⎞
⎠⎟

2

 and b2 < 4mk so that ω is real,  [2] 

 we take   x = Ae−bt 2m cos ωt + φ( )  and compute [3] 

  
  

dx
dt

= Ae−bt 2m −
b

2m
⎛
⎝⎜

⎞
⎠⎟ cos ωt + φ( ) − Ae−bt 2mω sin ωt + φ( )  [4] 

  

  

d2x
dt2 = −

b
2m

Ae−bt 2m −
b

2m
⎛
⎝⎜

⎞
⎠⎟ cos ωt + φ( ) − Ae−bt 2mω sin ωt + φ( )⎡

⎣⎢
⎤
⎦⎥

 

  
  
− Ae−bt 2m −

b
2m

⎛
⎝⎜

⎞
⎠⎟ω sin ωt + φ( ) + Ae−bt 2mω 2 cos ωt + φ( )⎡

⎣⎢
⎤
⎦⎥

 [5] 

 We substitute [3] and [4] into the left side of [1], and [5] into the right 
side of [1]: 

  

  

−kAe−bt 2m cos ωt + φ( ) +
b2

2m
Ae−bt 2m cos ωt + φ( )

                                               + bωAe−bt 2m sin ωt + φ( )

= −
b
2

Ae−bt 2m −
b

2m
⎛
⎝⎜

⎞
⎠⎟ cos ωt + φ( ) − Ae−bt 2mω sin ωt + φ( )⎡

⎣⎢
⎤
⎦⎥

+
b
2

Ae−bt 2mω sin ωt + φ( ) − mω 2Ae−bt 2m cos ωt + φ( )

 

 We then compare the coefficients of the   Ae−bt 2m cos ωt + φ( )  and the 

  Ae−bt 2m sin ωt + φ( )  terms. 
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 The cosine term is 

  
  
−k +

b2

2m
= −

b
2

−
b

2m
⎛
⎝⎜

⎞
⎠⎟ − mω 2 =

b2

4m
− m

k
m

−
b2

4m2

⎛
⎝⎜

⎞
⎠⎟

= −k +
b2

2m
 

 and the sine term is  

  
  
bω = +

b
2
ω( ) +

b
2
ω( ) = bω  

 Since the coefficients are equal,   x = Ae−bt 2m cos ωt + φ( )  is a solution of 
the equation. 

 
 

 

Section 15.7 Forced Oscillations  
P15.50 (a) For resonance, her frequency must match: 

 
  
f0 =

ω0

2π
=

1
2π

k
m

=
1

2π
7.00 × 102  N m

12.5 kg
= 1.19 Hz  

 (b) From   x = A cos ωt,  
  
v =

dx
dt

= −Aω sin ωt,  and 

  
a =

dv
dt

= −Aω 2 cos ωt,  the maximum acceleration is   Aω
2 .  When 

this becomes equal to the acceleration due to gravity, the normal 
force exerted on her by the mattress will drop to zero at one point 
in the cycle: 

     Aω
2 = g    or   

  
A =

g
ω 2 =

g
k m

=
gm
k

      

   
  
A =

9.80 m s2( ) 12.5 kg( )
7.00 × 102  N m  

= 17.5 cm  

P15.51 The pendulum is resonating with the beeper. The beeper must vibrate 
at the frequency of a simple pendulum of frequency 1.50 Hz: 

   

  

ω = 2π f = g
L
→ L = g

2π f( )2 = 9.80 m/s2

2π 1.50 Hz( )[ ]2

                                = 0.110 m = 11.0 cm

 



Chapter 15     823 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

P15.52 From the equation for the amplitude of a driven oscillator with no 
damping, 

  

  

A = F0 m

ω 2 −ω 0
2( )2

= F0 m
ω 2 −ω 0

2

 

 which gives 
  

  F0 = mA ω 2 −ω 0
2( )  

 The driving frequency is 
  

  
ω 2 = 2π f( )2 = 2π 10.0 s−1( )⎡⎣ ⎤⎦

2
= 3.95× 103  s−2  

 and the natural frequency of the oscillator is 
  

  
ω 0

2 = k
m

= 200 N/m
40.0 N/9.80 m/s2 = 49.0 s−2

 

 Substituting gives us a driving force of  
  

  

F0 = 40.0 N
9.80 m/s2

⎛
⎝⎜

⎞
⎠⎟

2.00× 10−2  m( ) 3.95× 103  s−2 − 49.0 s−2( )
= 318 N

 

P15.53 We are given F = 3.00 sin (2π t), k = 20.0 N/m, and m = 2.00 kg. 

 (a) 
  
ω0 =

k
m

=
20.0 N/m

2.00 kg
= 3.16 s−1  

 (b) From F = 3.00 sin (2π t), the angular frequency of the force is  

   
 ω = 2π = 6.28 s−1  

 (c) From equation 15.36, the amplitude A of a driven oscillator, with 
b = 0, gives 

   

  
A = F0 /m

ω 2 −ω 0
2 =

3.00 N/m( ) 2.00 kg( )
6.28 s−1( )2

− 3.16 s−1( )2 = 0.050 9 m = 5.09 cm
 

P15.54 We start with Equation 15.34, 
  
F0 sin ωt − kx = m

d2x
dt2  [1] 

 Equation 15.35 gives the solution to this equation as 

     x = A cos ωt + φ( )  [2] 
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 differentiating, 

   
  

dx
dt

= −Aω sin ωt + φ( )  [3] 

 and differentiating again, 

   
  

d2x
dt2 = −Aω 2 cos ωt + φ( )  [4] 

 Substituting [2] and [4] into [1]:  
   

  F0 sin ωt − kA cos ωt +φ( ) = m −Aω 2( ) cos ωt +φ( )   

 Solving for the amplitude:  
   

  kA − mAω 2( ) cos ωt + φ( ) = F0 sinωt = −F0 cos ωt + 90°( )   

 These will be equal, provided only that φ must be +90º and  

     kA − mAω 2 = −F0  

 Thus, 
  
A =

F0/m
ω 2 −ω0

2
,    where 

  
ω0 =

k
m

.  

P15.55 We use the equation for the amplitude of forced oscillations,  

   

  

A =
Fext m

ω 2 −ω0
2( )2

+ bω m( )2
 

 With b = 0,  

   

  

A =
Fext m

ω 2 −ω0
2( )2

=
Fext m

± ω 2 −ω0
2( ) = ±

Fext m
ω 2 −ω0

2  

 Thus, 
   

  

ω 2 =ω 0
2 ± Fext m

A
= k

m
± Fext

mA

= 6.30 N m
0.150 kg

± 1.70 N
0.150 kg( ) 0.440 m( )

 

 This yields  ω = 8.23 rad s  or  ω = 4.03 rad/s.  Then, 

  
  
f =

ω
2π

 gives either 
  
f = 1.31 Hz    or     f = 0.641 Hz  
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Additional Problems 
P15.56 Deuterium is the isotope of the element hydrogen with atoms having 

nuclei consisting of one proton and one neutron. For brevity we refer 
to the molecule formed by two deuterium atoms as D and to the 
diatomic molecule of hydrogen-1 as H, with   MD = 2MH .  

   
  

ωD

ωH

=
k MD

k MH

=
MH

MD

=
1
2

     

   

  
fD =

fH

2
=

1.30 × 1014  Hz
2

= 0.919 × 1014  Hz
 

P15.57 From a = – ω 2x, the maximum acceleration is given by amax = ω 2A. Then 
108 cm/s2 = ω 2 (12.0 cm), giving ω = 3.00 rad/s. 

 (a) 
  
T = 1/f = 2π/ω = 2π/ 3.00 s−1( ) = 2.09 s  

 (b) 
  
f =ω/2π = 3.00 s−1( )/2π = 0.477 Hz  

 (c) 
  
vmax =ωA = 3 s−1( ) 12.0 cm( ) = 36.0 cm/s  

 (d) 

  

E = 1
2

mvmax
2 = 1

2
m 0.360 m/s( )2

= 0.064 8m,  where E is in joules and m is in kg

 

 (e) From 
  
ω 2 = k

m
,  we obtain 

   

  

k =ω 2m = 3.00 s−1( )2
m

= 9.00m,  where k  is in newtons/meter and m is in kg

   

 (f) 

 

Period, frequency, and maximum speed are all independent of
mass in this situation. The energy and the force constant are
directly proportional to mass.

 

P15.58 (a) Consider the first process of spring compression. It continues as 
long as glider 1 is moving faster than glider 2. The spring 
instantaneously has maximum compression when both gliders 
are moving with the same speed va. 

    

 

ANS. FIG. P15.58(a) 
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ANS. FIG. P15.59 
 

  Momentum conservation then gives 
   

  

m1v1i + m2v2 i = m1v1 f + m2v2 f

0.240 kg( ) 0.740 m/s( ) + 0.360 kg( ) 0.12 m/s( )
                                       = 0.240 kg( )va + 0.360 kg( )va

 

   

  

0.220 8 kg ⋅m/s
0.600 kg

= va

va = 0.368 m/s

 

 (b) From energy conservation, we have 
   

  

K1 + K2 + Us( )i
= K1 + K2 + Us( ) f

1
2

m1v1i
2 +

1
2

m2v2 i
2 + 0 =

1
2

m1 + m2( )va
2 +

1
2

kx2

 

   

  

1
2

0.240 kg( ) 0.740 m/s( )2 +
1
2

0.360 kg( ) 0.120 m/s( )2

=
1
2

0.600 kg( ) 0.368 m/s( )2 +
1
2

45.0 N/m( )x2

0.068 3 J = 0.040 6 J +
1
2

45.0 N/m( )x2

x =
2 0.027 7 J( )
45.0 N/m

⎛
⎝⎜

⎞
⎠⎟

1 2

= 0.035 1 m = 3.51 cm

 

 (c) 
  

1
2

mtotvCM
2 =

1
2

0.600 kg( ) 0.368 m/s( )2 = 0.040 6 J = 40.6 mJ  

 (d) 
  

1
2

kx2 =
1
2

45.0 N/m( ) 0.0351 m( )2 = 0.027 7 J = 27.7 mJ  

P15.59 Let F represent the tension in the rod. 

 (a) At the pivot,  

   
  
F = Mg + Mg = 2Mg  

 (b) A fraction of the rod’s weight 

 
Mg

y
L

⎛
⎝⎜

⎞
⎠⎟

 as well as the weight of the 

ball pulls down on point P. Thus, the 
tension in the rod at point P is 

   
  
F = Mg

y
L

⎛
⎝⎜

⎞
⎠⎟ + Mg = Mg 1 +

y
L

⎛
⎝⎜

⎞
⎠⎟
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 (c) Relative to the pivot, 
  
I = Irod + Iball =

1
3

ML2 + ML2 =
4
3

ML2 .  

  For the physical pendulum, 
  
T = 2π I

mgd
,  where m = 2M and d is 

the distance from the pivot to the center of mass of the rod and 
ball combination. Therefore, 

   
  
d =

M L 2( ) + ML
M + M

=
3L
4

    

   and 

  

T = 2π
(4 3)ML2

2M( ) g 3L 4( ) =
4π
3

2L
g

.  

 (d) For L = 2.00 m, 
  
T =

4π
3

2 2.00 m( )
9.80 m s2 = 2.68 s . 

P15.60 (a) From a = –ω 2x, the maximum acceleration is given by amax = ω 2A. 
As A increases, the maximum acceleration increases. When it 
becomes greater than the free-fall acceleration, the rock will no 
longer stay in contact with the vibrating ground, but lag behind 
as the ground moves down with greater acceleration. We have 
then 

   

  

A = g
ω 2 = g

2π f( )2 = 9.80 m/s2

2π 2.40 s−1( )⎡⎣ ⎤⎦
2 = 4.31 cm

 

 (b) 

 

When the rock is on the point of lifting off, the surrounding
water is also barely in free fall. No pressure gradient exists 
in the water, so no buoyant force acts on the rock. The effect
of the surrounding water disappears at that instant.

 

*P15.61 For the resonance vibration with the occupants in the car, we have for 
the spring constant of the suspension: 

   

  
f = 1

2π
k
m

 

   

  

k = 4π 2 f 2m = 4π 2 1.80 s−1( )2 1 130 kg + 4 72.4 kg( )[ ]
= 1.82 × 105  kg/s2
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θ max

stride length 

 Now as the occupants exit, 
   

  
x = F

k
=

4 72.4 kg( ) 9.8 m/s2( )
1.82 × 105  kg/s2 = 1.56 × 10−2  m

 

*P15.62 (a) The period of the swinging rod is 

   

   

T = 2π I
mgd

= 2π 1 3( )m2

mg 2

= 2π 2
3g

 

  The time for one half a cycle is 
   

T
2

= π 2
3g

. 

The distance traveled in this time is the stride length   2 sin θmax ,  
so the speed is 

   
   

d
t

= 2 sin θmax

π 2 3g
= 23g sin θmax

π
= 6g sin θmax

π
 

  (b) We use the more precise expression 

   

   

6gcos θmax 2( ) sin θmax

π

                       =
6 9.80 m/s2( ) 0.850 m( ) cos 14.0° sin 28.0°

π
                       = 1.04 m/s

 

  (c) With 

   

   

vold = 6gold cos θmax 2( ) sin θmax

π

vnew = 6gnew cos θmax 2( ) sin θmax

π

 

  dividing gives 

   

   

vnew

vold

= new

old

= 2

new

0.850 m
= 22

new = 3.40 m

 

 

ANS. FIG. P15.62 
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*P15.63 From 
  
T = 2π L

g
,  the length of a pendulum with period T is 

  
L = gT 2

4π 2 .  

 (a) On Earth, with T = 1.0 s,  
   

  
L = gT 2

4π 2 =
9.8 m/s2( ) 1.0 s( )2

4π 2 = 0.25 m = 25 cm
 

 (b) If T = 1.0 s on Mars, then 
   

  
L = gMarsT

2

4π 2 =
3.7 m/s2( ) 1.0 s( )2

4π 2 = 0.094 m = 9.4 cm
 

 (c) and (d) The period of an object on a spring is 
  
T = 2π m

k
,  which 

is independent of the local free-fall acceleration. Thus, the same 
mass will work on Earth and on Mars. This mass is 

    

  
m = kT 2

4π 2 = 10 N/m( ) 1.0 s( )2

4π 2 = 0.25 kg
  

P15.64 (a) The amplitude is the magnitude of the maximum displacement 
from equilibrium (at x = 0). Thus,   A = 2.00 cm .  

 (b) The period is the time for one full cycle of the motion. Therefore, 

  T = 4.00 s .  

 (c) The angular frequency is 
  
ω =

2π
T

=
2π

4.00 s
=

π
2

 rad s . 

 

ANS. FIG. P15.64 

 (d) The maximum speed is  

    
  
vmax = ωA =

π
2

 rad s⎛
⎝⎜

⎞
⎠⎟ 2.00 cm( ) = π  cm s  
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 (e) The maximum acceleration is 

    
  
amax = ω 2A =

π
2

 rad s⎛
⎝⎜

⎞
⎠⎟

2

2.00 cm( ) = 4.93 cm s2  

 (f) The general equation for position as a function of time for an 
object undergoing simple harmonic motion with x = 0 when t = 0 
and x increasing positively is   x = Asinωt.  For this oscillator, this 
becomes 

  
  
x = 2.00sin

π
2

t⎛
⎝⎜

⎞
⎠⎟ , where x is in centimeters and t in seconds.  

P15.65 The maximum acceleration of the oscillating 
system is   amax = Aω 2 = 4π 2Af 2 .  The friction 
force exerted between the two blocks must be 
capable of accelerating Block B at this rate. 
Thus, if Block B is about to slip, 

   

  

f = fmax = µsn = µsmg

= m 4π 2Af 2( )
 

 which gives a maximum amplitude of 
oscillation of  

   

  
A = µsg

4π 2 f 2 = 0.600( )(980 cm/s2 )
4π 2(1.50 s−1)2 = 6.62 cm

 

P15.66 Refer to ANS. FIG. P15.65. The maximum acceleration of the oscillating 
system is   amax = Aω 2 = 4π 2Af 2 .  The friction force exerted between the 
two blocks must be capable of accelerating Block B at this rate. Thus, if 
Block B is about to slip, 

   
  f = fmax = µsn = µsmg = m 4π 2Af 2( )   

 which gives a maximum amplitude of oscillation of  

   
  
A =

µs g
4π 2 f 2  

ANS. FIG. P15.65 
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ANS. FIG. P15.67 
 

P15.67 We draw a free-body diagram of the 
pendulum in ANS. FIG. P15.67. The 
force   


H  exerted by the hinge causes 

no torque about the axis of rotation. 

    τ = Iα    and 
  

d2θ
dt2 = −α  

   

  

τ = MgL sin θ + kxh cos θ

= −I
d2θ
dt2

 

 For small-amplitude vibrations, use the approximations:  sin θ ≈ θ ,  

 cos θ ≈ 1,  and   x ≈ s = hθ.  

 Therefore, 
   

  

d2θ
dt2 = −

MgL + kh2

I
⎛
⎝⎜

⎞
⎠⎟
θ = −ω 2θ

ω =
MgL + kh2

ML2 = 2π f

f =
1

2πL
gL +

kh2

M

 

P15.68 (a) When the mass is displaced a 
distance x from equilibrium, 
spring 1 is stretched a distance x1 

and spring 2 is stretched a 
distance x2. 

  By Newton’s third law, we expect 
   

  k1x1 = k2x2
 

  When this is combined with the 
requirement that 

   
  x = x1 + x2

 

  we find 
  
x1 =

k2

k1 + k2

⎡

⎣
⎢

⎤

⎦
⎥x.  

  The force on either spring is given by 
  
F1 =

k1k2

k1 + k2

⎡

⎣
⎢

⎤

⎦
⎥x = ma  

  where a is the acceleration of the mass m. 

ANS. FIG. P15.68 
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  This is in the form   F = keffx = ma  

  and 

  
T = 2π m

keff

= 2π
m k1 + k2( )

k1k2

.  

 (b) In this case each spring is distorted by the distance x which the 
mass is displaced. Therefore, the restoring force is 

      F = − k1 + k2( )x  and   keff = k1 + k2  

  so that 
  
T = 2π m

k1 + k2

.  

P15.69 At equilibrium, we have 
   

  
τ∑ = 0− mg

L
2

⎛
⎝⎜

⎞
⎠⎟ + kx0L

 

 where x0 is the equilibrium compression. 

 After displacement by a small angle (we  
assume cos θ ≈ 1), 
 

  
τ∑ = −mg

L
2

⎛
⎝⎜

⎞
⎠⎟ + kxL = −mg

L
2

⎛
⎝⎜

⎞
⎠⎟ + k x0 − Lθ( )L = −kθL2

 

 But, 
   

  
τ∑ = Iα = 1

3
mL2 d2θ

dt2

 

 so  
  

d2θ
dt2 = −

3k
m

θ  

 Comparing this result to the general form for simple harmonic motion 
in which the angular acceleration is opposite in direction and 
proportional to the displacement, 

   
  

d2θ
dt2 = −ω 2θ  

 we find that 
   

  
ω 2 =

3k
m

→ω =
3k
m

=
3 100 N/m( )

5.00 kg
= 7.75 s−1

 

ANS. FIG. P15.69 
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P15.70 Please refer to ANS. FIG. P15.69.  At equilibrium, we have 
   

  
τ∑ = 0− mg

L
2

⎛
⎝⎜

⎞
⎠⎟ + kx0L

 

 where x0 is the equilibrium compression. 

 After displacement by a small angle (we assume cos θ ≈ 1), 
 

  
τ∑ = −mg

L
2

⎛
⎝⎜

⎞
⎠⎟ + kxL = −mg

L
2

⎛
⎝⎜

⎞
⎠⎟ + k x0 − Lθ( )L = −kθL2

 

 But, 
   

  
τ∑ = Iα = 1

3
mL2 d2θ

dt2

 

 Comparing this result to the general form for simple harmonic motion 
in which the angular acceleration is opposite in direction and 
proportional to the displacement, 

     

d2θ
dt2 = −ω 2θ

 
 we find that 

   
  
ω 2 =

3k
m

→ ω =
3k
m

 

P15.71 As it passes through equilibrium, the 4.00-kg object has speed 
   

  
vmax = ωA =

k
m

A =
100 N m
4.00 kg

2.00 m( ) = 10.0 m s
 

 In the completely inelastic collision, momentum of the two-object 
system is conserved. So the new 10.0-kg object starts its oscillation with 
a new maximum speed given by 

   

  

4.00 kg( ) 10.0 m s( ) + 6.00 kg( )0 = 10.0 kg( )vmax

vmax = 4.00 m s

 

 (a) The system consisting of the two objects, the spring, and the 
Earth, is isolated, so mechanical energy is conserved. The new 
amplitude is given by 

   
  

1
2

mvmax
2 =

1
2

kA2  

   
  

10.0 kg( ) 4.00 m s( )2 = 100 N m( )A2

A = 1.26 m
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ANS. FIG. P15.72 
 

 (b) The old period was 
  
T = 2π m

k
= 2π

4.00 kg
100 N/m

= 1.26 s.  

  The new period is 
  
T = 2π 10

100
 s2 = 1.99 s.  

  The period of the system has changed by a factor of  

   
  

fnew

fold

=
1.99 s
1.26 s

= 1.58  

 (c) The old energy was 
  

1
2

mvmax
2 =

1
2

4.00 kg( ) 10.0 m s( )2 = 200 J.  

  The new mechanical energy is 
 

1
2

10.0 kg( ) 4.00 m/s( )2 = 80.0 J.  

  The energy has 
 

decreased by 120 J .  

 (d) 

 

Mechanical energy is transformed into internal energy in the
perfectly inelastic collision.

 

P15.72 (a)     

F∑ = −2T sinθ ĵ   

  where 
  
θ = tan−1 y

L
⎛
⎝⎜

⎞
⎠⎟ .  

  Therefore, for a small displacement, 

  
  
sinθ ≈ tanθ =

y
L

 and 
    


F∑ = −2Ty

L
ĵ  

 (b) The total force exerted on the ball is opposite in direction and 
proportional to its displacement from equilibrium, so the ball 
moves with simple harmonic motion. For a spring system, 

      

F∑ = −k


x     becomes here    

    


F∑ = −

2T
L

y.  

  Therefore, the effective spring constant is 
  

2T
L

 and     

     
ω =

k
m

=
2T
mL  
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P15.73 One can write the following equations of motion: 

     T − kx = 0  (describes the spring) 

   
  
mg − ′T = ma = m

d2x
dt2

  

    (for the hanging object) 

   
  
R ′T −T( ) = I

d2θ
dt2 =

I
R

d2x
dt2

  

    (for the pulley) 

 with 
  
I =

1
2

MR2 .  

 Combining these equations gives the equation of motion: 

   
  

m +
1
2

M⎛
⎝⎜

⎞
⎠⎟

d2x
dt2 + kx = mg  

 The solution is 
  
x t( ) = A sin ωt +

mg
k

 (where 
 

mg
k

 arises because of the 

extension of the spring due to the weight of the hanging object), with 
angular frequency  

   

  

ω = k

m + 1
2

M
= 2k

2m + M

 

 (a) For k = 100 N/m and m = 0.200 kg,  

   
  
ω =

200
0.400 + M

, where ω  is in s−1and M is in kilograms.   

 (b) The highest possible value occurs when M = 0:  ω = 22.4 s−1 .  

 (c) The angular frequency is independent of the radius of the pulley: 

 ω = 22.4 s−1  

P15.74 Suppose a 100-kg biker compresses the suspension 2.00 cm. 

 Then, 

   
  
k =

F
x

=
980 N

2.00 × 10−2  m
= 4.90 × 104  N m  

ANS. FIG. P15.73 
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 If total mass of motorcycle and biker is 500 kg, the frequency of free 
vibration is 

   
  
f =

1
2π

k
m

=
1

2π
4.90 × 104  N m

500 kg
= 1.58 Hz  

 

 

If he encounters washboard bumps at the same frequency as the free
vibration, resonance will make the motorcycle bounce a lot. It may
bounce so much as to interfere with the rider’s control of the machine.

 

 Assuming a speed of 20.0 m/s, we find these ridges are separated by 
   

 

20.0 m/s
1.58 s−1 = 12.7 m ~ 101  m

 

 In addition to this vibration mode of bouncing up and down as one 
unit, the motorcycle can also vibrate at higher frequencies by rocking 
back and forth between front and rear wheels, by having just the front 
wheel bounce inside its fork, or by doing other things. Other spacing of 
bumps will excite all of these other resonances. 

P15.75 (a) 
  
T = 2π

ω
= 2π L

g
= 2π 2.23 m

9.80 m/s2 = 3.00 s  

 (b) 
  
E =

1
2

mv2 =
1
2

6.74 kg( ) 2.06 m/s( )2 = 14.3 J  

 (c) For a system of an isolated pendulum-Earth, mechanical energy is 
conserved. Relate the pendulum bob at the lowest point to the 
highest point: 

   

  

ΔK + ΔUg = 0

0 −
1
2

mv2⎛
⎝⎜

⎞
⎠⎟ + mgh − 0( ) = 0

mgh =
1
2

mv2

h =
v2

2g
=

(2.06 m/s)2

2(9.80 m/s2 )
= 0.217 m

 

  and 
   

  

h = L − L cos θ = L 1− cos θ( )
cos θ = 1−

h
L

= 1−
0.217 m
2.23 m

θ = 25.5°
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P15.76 (a) The graph of Mg versus x is shown in ANS. FIG. P15.76(a). 

 

ANS. FIG. P15.76(a) 

 (b) Assuming a Hooke’s Law type spring, F = Mg = kx, and 
empirically 

     Mg = 1.74x − 0.113  

  so 
  
k = 1.74 N m ± 6%    

 (c)  

M, kg x, m Mg, N 

0.020 0 0.17 0.196 

0.040 0 0.293 0.392 

0.050 0 0.353 0.49 

0.060 0 0.413 0.588 

0.070 0 0.471 0.686 

0.080 0 0.493 0.784 
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 (d)  

Time, s T, s M, kg T2, s2 

  7.03 0.703 0.020 0 0.494 

  9.62 0.962 0.040 0 0.925 

10.67 1.067 0.050 0 1.138 

11.67 1.167 0.060 0 1.362 

12.52 1.252 0.070 0 1.568 

13.41 1.341 0.080 0 1.798 

 (e) The graph of T2 versus M is shown in ANS. FIG. P15.76(e). 

 

ANS. FIG. P15.76(e) 

 (f) We may write the equation as theoretically 

   
  
T 2 =

4π 2

k
M +

4π 2

3k
ms

 

  and empirically 

   T2 = 21.7 M + 0.058 9 

  so 

   
  
k =

4π 2

21.7
= 1.82 N m ± 3%  

 (g) The k values  1.74 N m ± 6%  

  and  1.82 N m ± 3%  differ by 4% so 
 

they agree .  



Chapter 15     839 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (h) Utilizing the axis-crossing point,  
   

  
ms = 3

0.0589
21.7

⎛
⎝⎜

⎞
⎠⎟  kg = 8 grams ± 12%

 

  
 

in agreement  with 7.4 grams. 

P15.77 The free-body diagram in ANS. FIG. P15.77 shows the forces acting on 
the balloon when it is displaced distance s = Lθ along the circular arc it 
follows. The net force tangential to this path is 

   
  Fnet = Fx∑ = −Bsinθ + mg sinθ = − B− mg( )sinθ  

 For small angles,   sinθ ≈ θ = s / L  

 Also,   mg = ρHeV( ) g  

 and the buoyant force is   B = ρairV( ) g.  Thus, the net restoring force 
acting on the balloon is 

   
  
Fnet ≈ −

ρair − ρHe( )Vg
L

⎡

⎣
⎢

⎤

⎦
⎥ s  

 

ANS. FIG. P15.77 

 Observe that this is in the form of Hooke’s law,   F = −k s,  with  

     k = ρair − ρHe( )Vg L  

 Thus, the motion will be simple harmonic and the period is given by 
   

  

T = 1
f

= 2π
ω

= 2π m
k

= 2π ρHeV
ρair − ρHe( )Vg L

= 2π ρHe

ρair − ρHe

⎛
⎝⎜

⎞
⎠⎟

L
g
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 This yields 
   

  
T = 2π 0.179 kg/m3  

1.20 kg/m3 − 0.179 kg/m3

⎛
⎝⎜

⎞
⎠⎟

3.00 m( )
9.80 m s2( ) = 1.46 s

 

P15.78 (a) We require   
  
Ae−bt 2m =

A
2

   →    e+bt 2m = 2,   

  or    
  

bt
2m

= ln 2   

  or 
  

0.100 kg s
2 0.375 kg( ) t = 0.693  

  which gives   t = 5.20 s .   

  The spring constant is irrelevant. 

 (b) We can evaluate the energy at successive turning points, where 

   cos ωt + φ( ) = ±1  and the energy is 
  

1
2

kx2 =
1
2

kA2e−bt m.  

  We require 
  

1
2

kA2e−bt m =
1
2

1
2

kA2⎛
⎝⎜

⎞
⎠⎟

 

  or   e
+bt m = 2   

  which gives 
   

  
t =

m ln 2( )
b

=
0.375 kg( ) 0.693( )

0.100 kg/s
= 2.60 s

 

 (c) From 
  
E =

1
2

kA2 ,  the fractional rate of change of energy over time 

is 

   

  

dE dt
E

=
(d dt) 1

2
kA2⎛

⎝
⎞
⎠

1
2

kA2
=

1
2

k 2A( )(dA dt)

1
2

kA2
= 2

dA dt
A

 

  which gives   
  

dA dt
A

=
1
2

dE dt
E

.  

  which is twice as fast as the fractional rate of change in 
amplitude. 
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P15.79  (a)   x = A cos ωt + φ( ) → v = −ωA sin ωt + φ( )  

  We have at, t = 0,   v = −ωA sin φ = −vmax.  

  This requires  φ = 90°,  so   x = A cos ωt + 90°( )   
  

  
→ x = A cos ωt +

π
2

⎛
⎝⎜

⎞
⎠⎟ .

 

  Numerically we have 
  
ω = k

m
= 50.0 N m

0.500 kg
= 10.0 s−1  

  and   vmax =ωA→ 20.0 m s = 10.0 s−1( )A→ A = 2.00 m.  

  So 
  

x = 2 cos 10t +
π
2

⎛
⎝⎜

⎞
⎠⎟

, where x is in meters and t in seconds. 

 (b) Using 
  

1
2

mv2 +
1
2

kx2 =
1
2

kA2 ,  we require 
  

1
2

kx2 = 3
1
2

mv2⎛
⎝⎜

⎞
⎠⎟

 

  which implies 
  

1
3

1
2

kx2⎛
⎝⎜

⎞
⎠⎟ +

1
2

kx2 =
1
2

kA2 →
4
3

x2 = A2  

  which gives 
  
x = ±

3
4

A = ±0.866(2.00 m) = ±1.73 m  

 (c) The particle’s position is given by 
  
x = 2 cos 10t +

π
2

⎛
⎝⎜

⎞
⎠⎟ .  

  The particle is at x = 0 when  

   
  
10t +

π
2

=
π
2

,
3π
2

,
5π
2

, ...→    10t = 0, π , 2π , 4π ...  

  At t = 0, the particle is at the origin, but moving to the left. The 
next time the particle is at the origin is when 10t = π when it is 
moving to the right. 

  The particle is first at x = 1.00 m when 
  
10t +

π
2

=
3π
2

+
π
3

=
11π

6
.  

  So then, 
  
10t =

4π
3

.  

  The minimum time required for the particle to move from x = 0 
to x = 1.00 m is 

   
  
10Δt =

4π
3

− π =
π
3
→ Δt =

π
30

= 0.105 s = 105 ms  
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 (d) 
  
ω =

g
L
→ L =

g
ω 2 =

9.80 m/s2

10 s−1( )2 = 0.098 0 m  

P15.80 (a) The block moves with the board in what we take as the positive x 
direction, stretching the spring until the spring force –kx is equal 
in magnitude to the maximum force of static friction: 

    
 kx = µsn = µsmg   

  This occurs at 
  
x =

µsmg
k

.  

 (b) Since v is small, the block is nearly at the rest at this break point. It 
starts almost immediately to move back to the left, the forces on it 
being –kx and   +µkmg.  While it is sliding the net force exerted on 
it can be written as 

    

  

Fnet = −kx + µkmg = −kx + kµkmg
k

= −k x − µkmg
k

⎛
⎝⎜

⎞
⎠⎟

= −kxrel

 

  where xrel is the excursion of the block away from the point 
 

µkmg
k

. 

  Conclusion: the block goes into simple harmonic motion centered 
about the equilibrium position where the spring is stretched by 

  

µkmg
k

.
 

 (c) The graph of the motion looks as shown in ANS. FIG. P15.80(c): 

   

    ANS. FIG. P15.80(c) 

 (d) The amplitude of its motion is its original displacement, 

  
A =

µsmg
k

−
µkmg

k
,   because the block has been pulled out to 

 
x =

µsmg
k

, then it goes into simple harmonic motion centered 

about 
 
x =

µkmg
k

. 
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  It first comes to rest at spring extension 
  

µkmg
k

− A =
2µk − µs( )mg

k
.   

  Almost immediately at this point it latches onto the slowly-
moving board to move with the board. The board exerts a force of 
static friction on the block, and the cycle continues. 

 (e) The time during each cycle when the block is moving with the 

board is 
  

2A
v

=
2 µs − µk( )mg

kv
.  The time for which the block is 

springing back is one half a cycle of simple harmonic motion, 

  

1
2

2π m
k

= π m
k

⎛
⎝⎜

⎞
⎠⎟

 (because the block slides from +A to –A 

during its SHM). We ignore the times at the end points of the 
motion when the speed of the block changes from v to 0 and from 

0 to v. Since v is small compared to 
  

2A
π m/ k

,  these times are 

negligible. Then the period is 
    

  
T =

2 µs − µk( )mg
kv

+ π m
k

 

P15.81 (a) Let    represent the length below water at equilibrium and M the 
tube’s mass: 

    
   Fy∑ = 0⇒−Mg + ρπ r2g = 0  

  Now with any excursion x from equilibrium 

       −Mg + ρπ r2  − x( ) g = Ma  

  Subtracting the equilibrium equation gives 

    
  
−ρπ r2 gx = Ma → a = −

ρπ r2 g
M

⎛
⎝⎜

⎞
⎠⎟

x  

  

  

The opposite direction and direct proportionality of a to x
imply SHM.

 

 (b) For SHM,   F = −kx = ma→ a = −(k/m)x = −ω 2x:  the coefficient of x 
is the square of the angular frequency: 

    

  
ω =

ρπ r2 g
M

→ T =
2π
ω

=
2
r

πM
ρg
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P15.82 From the oscillator information, find the natural frequency of the 
oscillator: 

   
  
ω0  = 

k
m
 = 

10.0 N/m
0.001 kg

 = 100 s−1  

 From the measurement information, find the value of b/2m: 

   
  

xmax 23.1 ms( )
xmax 0( )  = 0.250 = 

Ae− b/2m( ) 0.023  1 s( )

A e0( )  = e− b/2m( ) 0.023  1 s( )  

 Solving, 
   

  

b
2m

 = − 
ln 0.250( )
0.0231 s

 = 60.0 s−1
 

 

  

If the damping constant is doubled, b/2m = 120 s−1. In this case, 
however, b/2m >ω0  and the system is overdamped. Your design 
objective is not met because the system does not oscillate.

 

P15.83 The effective spring constant of a ball is  
   

  
k = F

x
= 1.60× 103  N

0.200× 10−3  m
= 80.0 MN/m

  

 The half-cycle is from the equilibrium position of the model spring to 
maximum compression and back to equilibrium again. The time is 
one-half the period: 

   

  

1
2

T = 1
2

2π( ) m
k

= π 0.067 4 kg
80.0× 106  N/m

= 9.12 × 10−5  s
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Challenge Problems 

P15.84 (a)   ΔK + ΔU = 0  

  Thus,   Ktop + Utop = Kbot + Ubot  

  where   Ktop = Ubot = 0.  

  Therefore, 
  
mgh =

1
2

Iω 2 ,  but 

   

  

h = R − Rcosθ = R 1− cosθ( )

ω = v
R

 

  and 
  
I =

MR2

2
+

mr2

2
+ mR2  

  Substituting, we find 

  

mgR 1− cos θ( ) =
1
2

MR2

2
+

mr2

2
+ mR2⎛

⎝⎜
⎞
⎠⎟

v2

R2

mgR 1− cos θ( ) =
M
4

+
mr2

4R2 +
m
2

⎡

⎣
⎢

⎤

⎦
⎥v2

 

  and 
  
v2 = 4gR

1− cosθ
M/m + r2/R2 + 2

⎛
⎝⎜

⎞
⎠⎟

,   so    

   

  

v = 2
Rg 1− cos θ( )

M/m + r2/R2 + 2
⎡

⎣
⎢

⎤

⎦
⎥

1 2
 

 (b) 
  
T = 2π I

mT gdCM

 

  Substituting  mT = m + M  and solving for dCM gives 

   
  
dCM =

mR + M 0( )
m + M

 

  The period is then 

   

  

T = 2π

1
2

MR2 + 1
2

mr2 + mR2

mgR
= 2π

1
2

MR2 + 2mR2 + mr2( )
mgR

= 2π M + 2m( )R2 + mr2

2mgR
⎡

⎣
⎢

⎤

⎦
⎥

1 2
 

ANS. FIG. P15.84 
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P15.85 (a) Total energy 
  
=

1
2

kA2 =
1
2

100 N m( ) 0.200 m( )2 = 2.00 J.  

  At equilibrium, the total energy is: 

   
  

1
2

m1 + m2( )v2 =
1
2

16.0 kg( )v2 = 8.00 kg( )v2  

  Therefore, 

     8.00 kg( )v2 = 2.00 J , and 
  
v = 0.500 m s  

  This is the speed of m1 and m2 at the equilibrium point. Beyond 
this point, the mass m2 moves with the constant speed of  
0.500 m/s while mass m1 starts to slow down due to the restoring 
force of the spring. 

 (b) The energy of the m1-spring system at equilibrium is: 

   
  

1
2

m1v
2 =

1
2

9.00 kg( ) 0.500 m s( )2 = 1.125 J  

  This is also equal to 
  

1
2

k ′A( )2 ,  where A’ is the amplitude of the 

m1-spring system. 

  Therefore, 

   
  

1
2

100( ) ′A( )2 = 1.125  or   ′A = 0.150 m  

  The period of the m1-spring system is  
   

  
T = 2π m1

k
= 2π

9.00 kg
100 N/m

= 1.885 s
 

  and it takes 
  

1
4

T = 0.471 s  after it passes the equilibrium point for 

the spring to become fully stretched the first time. The distance 
separating m1 and m2 at this time is 

   

  

D = v
T
4

⎛
⎝⎜

⎞
⎠⎟ − ′A = 0.500 m/s( ) 0.471 s( ) − 0.150 m

= 0.085 6 m = 8.56 cm
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ANS. FIG. P15.87 
 

P15.86 The time interval for your competitor’s package to arrive is half of the 
orbital period found from Kepler’s third law, Equation 13.11: 

   

  
Δt =  1

2
T  =  1

2
4π 2

GME

RE( )3  = π RE
3

GME

 

 Now, consider your proposal. The force on the package at an arbitrary 
position r is 

   

  
Fg  = −G

Mcloser than rm
r2  = −G

m
r2

4
3πr3( )
4
3πRE

3( ) ME  = −G
MEm
RE

3 r
 

 This force is of the form of Hooke’s law! The “spring constant” for this 
motion is 

   
  
k  = G

MEm
RE

3  

 Because the force on the package is a Hooke’s-law force, the package 
will oscillate between opposite points on the Earth in simple harmonic 
motion. To deliver the package to the other side of the Earth, someone 
must grab the package before it begins its return journey. The time 
interval for the package to travel to the other side of the Earth is 
half of a period of oscillation: 

   

  

Δt = 
1
2

T  = 
1
2

2π m
k

⎡

⎣
⎢

⎤

⎦
⎥ = 

1
2

2π m G
MEm
RE

3

⎛
⎝⎜

⎞
⎠⎟

−1⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
 = π RE

3

GME

 

 

 

This is exactly the same time interval as for your competitor, so you
have no advantage! In fact, you have the disadvantage of the initial
capital outlay to bore through the entire Earth!

 

P15.87 (a) For each segment of the spring: 

   
  
dK =

1
2

dm( )vx
2  

  Also, 

   
  
vx =

x


v    and   
  
dm =

m


dx  

  Therefore, the total kinetic energy of the block-spring system is 

   
   
K =

1
2

Mv2 +
1
2

x2v2

2

⎛
⎝⎜

⎞
⎠⎟

m


dx
0



∫ =
1
2

M +
m
3

⎛
⎝⎜

⎞
⎠⎟ v2  
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 (b) 
  
ω =

k
meff

   and    
  

1
2

meffv
2 =

1
2

M +
m
3

⎛
⎝⎜

⎞
⎠⎟ v2  

  Therefore, 

   
  
T =

2π
ω

= 2π
M + m 3

k
 

P15.88 (a) Note that as the spring passes through the vertical position, the 
object is moving in a circular arc of radius L − yf , where the y 
coordinate of the object at this point must be negative (yf < 0). 
When the object is at yf , the spring is stretched x = yf – L. At 
position yf , the spring is stretched and exerting an upward 
tension force of magnitude greater than the object’s weight. This 
is necessary so the object experiences a net force toward the pivot 
to supply the needed centripetal acceleration in this position. This 
is summarized by Newton’s second law applied to the object at 
this point, stating (remember, yf is negative) 

   
  

Fy∑ = ma→−ky f − mg = mv2

L− y f

 [1] 

  The system is isolated, so conservation of energy requires that 

     E = KEi + PEg , i + PEs , i = KEf + PEg , f + PEs , f  

  or 

   
  
E = 0 + mgL + 0 =

1
2

mv2 + mgy f +
1
2

ky f
2  

  reducing to 

   
  
2mg L − y f( ) = mv2 + ky f

2  [2] 

  From equation [1], observe that   mv2 = −(L − y f )(ky f + mg) . 
Substituting this into equation [2] gives 

   
  2mg(L− y f ) = −(L− y f )(ky f + mg) + ky f

 

  After expanding and regrouping terms, this becomes 

     (2k)y f
2 + (3mg − kL)y f + (−3mgL) = 0  

  which is a quadratic equation   ay f
2 + by f + c = 0 , with 

     a = 2k = 2 1250 N m( ) = 2.50 × 103  N m  
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b = 3mg − kL = 3 5.00 kg( ) 9.80 m s2( )− 1 250 N m( ) 1.50 m( )
= −1.73× 103  N

 

  and 

   
  c = −3mgL = −3 5.00 kg( ) 9.80 m s2( ) 1.50 m( ) = −221 N ⋅m  

  Applying the quadratic formula, keeping only the negative 
solution [see the discussion in part (a)], and suppressing units, 
gives 

   

  

y f = −b − b2 − 4ac
2a

=
− −1.73× 103( )− −1.73× 103( )2

− 4 2.50× 103( ) −221( )
2 2.50× 103( )

 

  or 
  
y f = −0.110 m  

 (b) Because the length of this pendulum varies and is longer 
throughout its motion than a simple pendulum of length L, 

 
its period will be longer  than that of a simple pendulum. 

P15.89 (a) The period of the pendulum is 
given by 

   
  
T = 2π L

g
  

  and changes as 

   
  

dT
dt

=
π
g

1
L

dL
dt

 [1] 

  We need to find L (t) and 
 

dL
dt

. From the diagram in ANS. FIG. 

P15.89(a), 

   
  
L = Li +

a
2
−

h
2

      and      
  

dL
dt

= −
1
2

⎛
⎝⎜

⎞
⎠⎟

dh
dt

 

  But 
 

dM
dt

= ρ dV
dt

= −ρA
dh
dt

. Therefore, 

   
  

dh
dt

= −
1
ρA

dM
dt

→
dL
dt

=
1

2ρA
⎛
⎝⎜

⎞
⎠⎟

dM
dt

 [2] 

ANS. FIG. P15.89 
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  Also,    

   
  

dL
Li

L

∫ =
1

2ρA
⎛
⎝⎜

⎞
⎠⎟

dM
dt

⎛
⎝⎜

⎞
⎠⎟ t = L − Li  [3] 

  Substituting equations [2] and [3] into [1] gives: 

   
  

dT
dt

=
π
g

1
2ρa2

⎛
⎝⎜

⎞
⎠⎟

dM
dt

⎛
⎝⎜

⎞
⎠⎟

1

Li + t / 2ρa2( ) dM / dt( )
 

  Integrating, we get 

   

  

T =
π
g

1
2ρa2

⎛
⎝⎜

⎞
⎠⎟

dM
dt

⎛
⎝⎜

⎞
⎠⎟

dt

Li + t / 2ρa2( ) dM / dt( )0

t

∫

T =
π
g

1
2ρa2

⎛
⎝⎜

⎞
⎠⎟

dM
dt

⎛
⎝⎜

⎞
⎠⎟

2 Li + t / 2ρa2( ) dM / dt( )
1/ 2ρa2( ) dM / dt( )

T =
2π

g
Li +

1
2ρa2

dM
dt

⎛
⎝⎜

⎞
⎠⎟ t

 

 (b) When the liquid is gone, the CM of the bob is suddenly again at 
the center of the cube. We had ignored the mass of the cube up 
until now since it was small compared to the mass of the liquid. 
Thus, once the liquid is gone, L = Li. 

   

  
T = 2π Li

g
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 
P15.2 1.59 k N/m 

P15.4 (a) 4.33 cm; (b) −5.00 cm/s; (c) −17.3 cm/s2; (d) 3.14 s; (e) 5.00 cm 

P15.6 (a) 18.8 m/s; (b) 7.11 km/s2 

P15.8 (a) 2.40 s; (b) 0.417 Hz; (c) 2.62 rad/s 

P15.10 39.2 N 

P15.12 (a) 15.8 cm; (b) 51.1 m; (c) −15.9 cm; (d) 50.8 m; (e) The patterns of 
oscillation diverge from each other, starting out in phase but becoming 
completely out of phase. To calculate the future, we would need exact 
knowledge of the present; an impossibility. 

P15.14 (a) motion is periodic; (b) 1.81 s; (c) The motion is not simple harmonic. 
The net force acting on the ball is a constant given by F = −mg (except 
when it is in contact with the ground), which is not in the form of 
Hooke’s law. 

P15.16 (a) See P15.16(a) for complete solution; (b) See P15.16(b) for complete 
solution 

P15.18 (a) 1.26 s; (b) 0.150 m/s, 0.750 m/s2; (c)   x = 3.00 cos 5.00t + π( ) ,  

  −15.0 sin 5.00t + π( ) ,  and   −75.0 cos 5.00t + π( )  

P15.20 (a) yes; (b) We see that finding the period does not depend on knowing 
the mass: T = 0.859 s. 

P15.22 (a) 126 N/m; (b) 0.178 m 

P15.24 (a) 0.153 J; (b) 0.784 m/s; (c) 17.5 m/s2 

P15.26 (a) E increases by a factor of 4; (b) vmax is doubled; (c) amax also doubles; 
(d) the period is unchanged. 

P15.28 (a) 100 N/m; (b) 1.13 Hz; (c) 1.41 m/s; (d) x = 0; (e) 10.0 m/s2;  
(f) ±0.200 m; (g) 2.00 J; (h) 1.33 m/s; (i) 3.33 m/s2 

P15.30 (a) Particle under constant acceleration; (b) 1.50 s; (c) isolated;  
(d) 73.4 N/m; (e) 19.7 m below the bridge; (f) 1.06 rad/s; (g) +2.01 s;  
(h) 3.50 s 

P15.32 (a) 5.98 m/s; (b) 206 N/m; (c) 0.238 m 

P15.34 1.001 5 

P15.36 
 
ω =

k
m

=
g
R
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P15.38 
  
I =

mgd
4π 2 f 2  

P15.40 (a) 
  
2π

ICM + md2( )
mgd

;  (b)   ICM = md2  

P15.42 (a) 2.09 s; (b) 4.08% 

P15.44 For Length, L (m): 1.000, 0.750, 0.500 and Period, T (s): 2.00, 1.73, 1.42; 
(b) For Period T(s): 2.00, 1.73, 1.42 and g (m/s2): 9.87, 9.89, 9.79. This 
agrees with the accepted value of g = 9.80 m/s2 within 0.5%;  
(c) 9.94 m/s2 

P15.46 1.00 × 10–3 s–1 

P15.48 
  

dE
dt

= −bv2 < 0  

P15.50 (a) 1.19 Hz; (b) 17.5 cm 

P15.52 318 N 

P15.54 See P15.54 for complete solution. 

P15.56 0.919 × 1014 Hz 

P15.58 (a) 0.368 m/s; (b) 3.51 cm; (c) 40.6 mJ; (d) 27.7 mJ 

P15.60 (a) 4.31 cm; (b) When the rock is on the point of lifting off, the 
surrounding water is also barely in free fall. No pressure gradient 
exists in the water, so no buoyant force acts on the rock. The effect of 
the surrounding water disappears at that instant. 

P15.62 (a) See P15.62(a) for complete solution; (b) 1.04 m/s; (c) 3.40 m 

P15.64 (a) A = 2.00 cm; (b) T = 4.00 s; (c) 
 

π
2

 rad/s ; (d) π cm/s;  

(e) 4.93 cm/s2; (f) 
  
x = 2.00sin

π
2

t⎛
⎝⎜

⎞
⎠⎟

, where x is in centimeters and t is 

in seconds 

P15.66 
  

µs g
4π 2 f 2  

P15.68 (a) 
  
2π

m k1 + k2( )
k1k2

;  (b) 
  
2π m

k1 + k2( )  

P15.70 
  
ω =

3k
m
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P15.72 (a) 
    


F∑ = −2Ty

L
ĵ;  (b) 

  
ω =

2T
mL

 

P15.74 If he encounters washboard bumps at the same frequency as the free 
vibration, resonance will make the motorcycle bounce a lot. It may 
bounce so much as to interfere with the rider’s control of the machine; 
~101 m. 

P15.76 (a) See ANS. FIG. P15.76(a); (b) 1.74 N/m ± 6%; (c) See table in 
P15.76(c); (d) See table in P15.76(d); (e) See ANS. FIG. P15.64(e);  
(f) 1.82 N/m ± 3%; (g) they agree; (h) 8 grams ± 12% in agreement 

P15.78 (a) 5.20 s; (b) 2.60 s; (c) 
  

dA/dt
A

=
1
2

dE/dt
E

 

P15.80 See P15.80 for complete solution. 

P15.82 If the damping constant is doubled, b/2m = 120 s−1. In this case, 
however,   b/2m >ω0  and the system is overdamped. Your design 
objective is not met because the system does not oscillate. 

P15.84 (a) 
  
v = 2

Rg 1− cos θ( )
M/m + r2/R2 + 2

⎡

⎣
⎢

⎤

⎦
⎥

1/2

;  (b) 
  
2π

M + 2m( )R2 + mr2

2mgR
⎡

⎣
⎢

⎤

⎦
⎥

1/2

 

P15.86 This is exactly the same time interval as for your competitor, so you 
have no advantage! In fact, you have the disadvantage of the initial 
capital outlay to bore through the entire Earth! 

P15.88 (a)   y f = −0.110 m ; (b) its period will be longer 
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16 
Wave Motion 

 

CHAPTER OUTLINE 
 

16.1  Propagation of a Disturbance 

16.2  Analysis Model: Traveling Wave 

16.3  The Speed of Transverse Waves on Strings 

16.4  Reflection and Transmission 

16.5  Rate of Energy Transfer by Sinusoidal Waves on Strings 

16.6  The Linear Wave Equation 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ16.1 (i) Answer (a). As the wave passes from the massive string to the 
less massive string, the wave speed will increase according to 

  
v =

T
µ

.
 

 (ii) Answer (c). The frequency will remain unchanged. The rate at 
which crests come up to the boundary is the same rate at which 
they leave the boundary. 

 (iii) Answer (a). Since   v = fλ,  the wavelength must increase. 

OQ16.2 (i) Answer (a). Higher tension makes wave speed higher. 

 (ii) Answer (b). Greater linear density makes the wave move more 
slowly. 

OQ16.3 (i) The ranking is (c) = (d) > (e) > (b) > (a). Look at the coefficients 
of the sine and cosine functions: (a) 4, (b) 6, (c) 8, (d) 8, (e) 7. 

 (ii) The ranking is (c) > (a) = (b) > (d) > (e). Look at the coefficients 
of x. Each is the wave number, 2π/λ, so the smallest k goes with 
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the largest wavelength. 

 (iii) The ranking is (e) > (d) > (a) = (b) = (c). Look at the coefficients 
of t. The absolute value of each is the angular frequency ω = 2π f. 

 (iv) The ranking is (a) = (b) = (c) > (d) > (e). Period is the reciprocal 
of frequency, so the ranking is the reverse of that in part (iii). 

 (v) The ranking is (c) > (a) = (b) = (d) > (e). From   v = fλ =ω / k,  we 
compute the absolute value of the ratio of the coefficient of t to 
the coefficient of x in each case: (a) 5, (b) 5, (c) 7.5, (d) 5, (e) 4. 

OQ16.4 Answer (b). From 
  
v =

T
µ

,  we must increase the tension by a factor 

of 4 to make v double. 

OQ16.5 Answer (b). Wave speed is inversely proportional to the square root 
of linear density. 

OQ16.6 Answer (b). Not all waves are sinusoidal. A sinusoidal wave is a 
wave of a single frequency. In general, a wave can be a superposition 
of many sinusoidal waves. 

OQ16.7 (a) through (d): Yes to all. The maximum element speed and the 
wave speed are related by   vy ,max =ωA = 2π fA = 2πvA/λ.  Thus the 
amplitude or the wavelength of the wave can be adjusted to make 
either vy, max or v larger. 

OQ16.8 Answer (c). The power carried by a wave is proportional to its 
frequency, wave speed, and the square of its amplitude. If the 
frequency does not change, the amplitude is increased by a factor of 

 2.  The wave speed does not change. 

OQ16.9 Answer (c). The distance between two successive peaks is the 
wavelength: λ = 2 m, and the frequency is 4 Hz. The frequency, 
wavelength, and speed of a wave are related by the equation   fλ = v.  

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ16.1 Longitudinal waves depend on the compressibility of the fluid for 
their propagation. Transverse waves require a restoring force in 
response to shear strain. Fluids do not have the underlying structure 
to supply such a force. A fluid cannot support static shear. A viscous 
fluid can temporarily be put under shear, but the higher its viscosity 
the more quickly it converts kinetic energy into internal energy. A 
local vibration imposed on it is strongly damped, and not a source of 
wave propagation. 
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CQ16.2 The type of wave you generate depends upon the direction of the 
disturbance (vibration) you generate and the direction of its travel 
(propagation). 

 (a) To use a spring (or slinky) to create a longitudinal wave, pull a 
few coils back and release. 

 (b) For a transverse wave, jostle the end coil side to side. 

CQ16.3 It depends on from what the wave reflects. If reflecting from a less 
dense string, the reflected part of the wave will be right side up. A 
wave inverts when it reflects off a medium in which the wave speed 
is smaller. 

CQ16.4 The speed of a wave on a “massless” string would be infinite! 

CQ16.5 Since the frequency is 3 cycles per second, the period is 1/3 second = 
333 ms. 

CQ16.6 (a) and (b) Each element of the rope must support the weight of the 
rope below it. The tension increases with height. (It increases 

linearly, if the rope does not stretch.) Then the wave speed 
 
v =

T
µ

 

increases with height. 

CQ16.7 As the pulse moves down the string, the elements of the string itself 
move side to side. Since the medium—here, the string—moves 
perpendicular to the direction of wave propagation, the wave is 
transverse by definition. 

CQ16.8 No. The vertical speed of an element will be the same on any string 
because it depends only on frequency and amplitude:  

   
  vy ,max =ωA = 2π fA  

 The elements of strings with different wave speeds will have the 
same maximum vertical speed. 

CQ16.9 (a) Let  Δt = ts − tp  represent the difference in arrival times of the 
two waves at a station at distance d = vsts = vptp from the focus. 

Then 
  
d = Δt

1
vs

−
1
vp

⎛

⎝
⎜

⎞

⎠
⎟

−1

.  

 (b) Knowing the distance from the first station places the focus on a 
sphere around it. A measurement from a second station limits it 
to another sphere, which intersects with the first in a circle. Data 
from a third non-collinear station will generally limit the 
possibilities to a point. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 16.1 Propagation of a Disturbance 
P16.1 The distance the waves have traveled is d = (7.80 km/s)t =  

(4.50 km/s)(t + 17.3 s), where t is the travel time for the faster wave. 

 Then,   7.80 − 4.50( ) km s( )t = 4.50 km s( ) 17.3 s( )  

 or  
  
t =

4.50 km s( ) 17.3 s( )
7.80 − 4.50( )  km s

= 23.6 s  

 and the distance is 
  
d = 7.80 km s( ) 23.6 s( ) = 184 km  

P16.2 (a) ANS. FIG. P16.2(a) shows the sketch of y(x,t) at t = 0. 
 

   

    ANS. FIG. P16.2(a) 

 (b) ANS. FIG. P16.2(b) shows the sketch of y(x,t) at t = 2.00 s. 

   
    ANS. FIG. P16.2(b) 

 (c) 

  

The graph in ANS. FIG. P16.2(b) has the same amplitude 
and wavelength as the graph in ANS. FIG. P16.2(a). It 
differs just by being shifted toward larger x by 2.40 m.

 

 (d) 
  
The wave has travelled d = vt = 2.40 m to the right.  
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P16.3 We obtain a function of the same shape by writing  
    

  

y x,t( ) = 6

x − x0( )2 + 3⎡
⎣

⎤
⎦

 

  where the center of the pulse is at x0 = 4.50t. Thus, we have 
    

  

y = 6
x − 4.50t( )2 + 3⎡⎣ ⎤⎦

 

  Note that for y to stay constant as t increases, x must increase by 4.50t, 
as it should to describe the wave moving at 4.50 m/s. 

P16.4 (a) The 
 

longitudinal  P wave  travels a shorter distance and is 

moving faster, so it will arrive at point B first. 

 (b) The P wave that travels through the Earth must travel 

  a distance of 
  2Rsin 30.0° = 2 6.37 × 106  m( )sin 30.0° = 6.37 × 106  m  

  at a speed of 7 800 m/s. 

  Therefore, it takes 
   
ΔtP =

6.37 × 106  m
7 800 m/s

 817 s.  

  The Rayleigh wave that travels along the Earth’s surface must 
travel a distance of  

   
  
s = Rθ = R

π
3

 rad⎛
⎝⎜

⎞
⎠⎟ = 6.67 × 106  m  

  at a speed of 4 500 m/s. 

  Therefore, it takes 
   
ΔtS =

6.67 × 106  m
4 500 m/s

 1 482 s.  

  The time difference is   ΔT = ΔtS − ΔtP = 666 s = 11.1 min.  

 
 

 

Section 16.2 Analysis Model: Traveling Wave 
P16.5 Compare the specific equation to the general form: 

   y = (0.020 0 m) sin (2.11x − 3.62t) = y = A sin (kx − ω t + φ) 

 (a) 
  
A = 2.00 cm  
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 (b) 
  
k = 2.11 rad m → λ =

2π
k

= 2.98 m  

 (c) 
  
ω = 3.62 rad s → f =

ω
2π

= 0.576 Hz  

 (d) 
  
v = fλ =

ω
2π

2π
k

=
3.62
2.11

= 1.72 m s  

P16.6 (a) ANS. FIG. P16.6(a) shows the snapshot of a wave on a string. 
 

 

ANS. FIG. P16.6(a) 

 (b) ANS. FIG. P16.6(b) shows the wave from part (a) one-quarter 
period later 

 

 

ANS. FIG. P16.6(b) 

 (c) ANS. FIG. P16.6(c) shows a wave with an amplitude 1.5 times 
larger than the wave in part (a).   

 

 

ANS. FIG. P16.6(c) 

 (d) ANS. FIG. P16.6(d) shows a wave with wavelength 1.5 times 
larger than the wave in part (a). 

 

 

ANS. FIG. P16.6 (d) 



860     Wave Motion 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (e) ANS. FIG. P16.6(e) shows a wave with frequency 1.5 times larger 
than the wave in part (a): The wave appears the same as in ANS. 
FIG. P16.6(a) because this is a snapshot of a given moment. 

 

 

ANS. FIG. P16.6(e) 

P16.7 The frequency of the wave is 

   
  
f =

40.0 vibrations
30.0 s

=
4
3

 Hz   

 as the wave travels 425 cm in 10.0 s, its speed is 
   

  
v =

425 cm
10.0 s

= 42.5 cm/s
 

 and its wavelength is therefore 
   

  
λ = v

f
= 42.5 cm s

1.33 Hz
= 31.9 cm = 0.319 m

 

P16.8 Using data from the observations, we have  λ = 1.20 m  and  

   
  
f =

8.00 crests
12.0 s

=
8.00 cycles

12.0 s
=

8.00
12.0

 Hz  

 Therefore, 
  
v = λ f = 1.20 m( ) 8.00

12.0
 Hz⎛

⎝⎜
⎞
⎠⎟ = 0.800 m/s .  

P16.9 (a) We note that  sinθ = − sin −θ( ) = sin −θ +π( ),  so the given wave 
function can be written as  

   
  y x,t( ) = 0.350( )sin −10πt + 3πx +π −π / 4( )   

  Comparing,   10π t − 3π x + π/4 = kx −ωt + φ.  For constant phase, x 
must increase as t increases, so the wave travels in the positive x 
direction. Comparing the specific form to the general form, we 
find that 

   
  
v = 

ω
k
 = 

10π
3π

 = 3.33 m/s.   

  Therefore, the velocity is 
  

3.33î( ) m/s .  
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 (b) Substituting t = 0 and x = 0.100 m, we have  
   

  

y 0.100 0( ) = 0.350 m( ) sin −0.300π +
π
4

⎛
⎝⎜

⎞
⎠⎟ = −0.054 8 m

= −5.48 cm

 

 (c) 
  
k =

2π
λ

= 3π :  λ = 0.667 m ω = 2π f = 10π :   f = 5.00 Hz  

 (d) 
  
vy =

∂y
∂t

= 0.350( ) 10π( ) cos 10π t − 3π x +
π
4

⎛
⎝⎜

⎞
⎠⎟

   

  
  
vy ,  max = 10π( ) 0.350( ) = 11.0 m/s

 

P16.10 The speed of waves along this wire is 

  
  
v = fλ = 4.00 Hz( ) 60.0 cm( ) = 240 cm s = 2.40 m s  

P16.11 (a) 
  
ω = 2π f = 2π 5.00 s−1( ) = 31.4 rad s  

 (b) 
  
λ =

v
f

=
20.0 m/s
5.00 s−1 = 4.00 m  

  

  
k =

2π
λ

=
2π

4.00 m
= 1.57 rad/m

 

 (c) In   y = A sin kx −ω t + φ( )  we take A = 12.0 cm. At x = 0 and t = 0 
we have   y = 12.0 cm( ) sin φ.  To make this fit y = 0, we take  φ = 0.  
Then 

  

  

y = 0.120 sin (1.57x − 31.4t), where x and y  are in meters and t is
in seconds

 

 (d) The transverse velocity is 
  

∂y
∂t

= −Aω cos kx −ωt( ).  

  Its maximum magnitude is  
   

  
Aω = 12.0 cm( ) 31.4 rad s( ) = 3.77 m s

 

 (e) 
  
ay =

∂vy

∂t
=

∂
∂t

−Aω cos kx −ωt( )[ ] = −Aω 2 sin kx −ωt( )  

  The maximum value is 
  
Aω 2 = 0.120 m( ) 31.4 s−1( )2

= 118 m/s2  
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P16.12 At time t, the motion at point A, where x = 0, is  
   

  yA = 1.50 cm( )cos −50.3t( )   

 At point B, the motion is  
   

  
yB = 15.0 cm( )cos 15.7xB − 50.3t( ) = 15.0 cm( )cos −50.3t ± π

3
⎛
⎝⎜

⎞
⎠⎟

 

 which implies 
   

  
15.7xB = 15.7 m−1( )xB = ± π

3
 
 

 or    xB = −0.066 7 m = ±6.67 cm  

P16.13 (a) 
  
f =

v
λ

=
1.00 m s( )
2.00 m

= 0.500 Hz  

 (b) 
  
ω = 2π f = 2π 0.500 s( ) = π s = 3.14 rad s  

 (c) 
  
k = 2π

λ
= 2π

2.00 m
= π m = 3.14 rad m  

 (d)   y = Asin kx −ωt + φ( )  becomes 

    
  
y = 0.100sin πx − πt( )  

 (e) For x = 0 the wave function requires 

    
  

y = 0.100sin πt( )  

 (f) 
  

y = 0.100sin 4.71− πt( )  

 (g) 
  
vy =

∂y
∂t

= 0.100 m −3.14 s( )cos 3.14x m − 3.14t s( )  

  The cosine varies between +1 and −1, so maximum 

  
vy = 0.314 m s .  

P16.14 (a) ANS. FIG. P16.14 shows the y vs. t plot of the given wave. 

 

ANS. FIG. P16.14 
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 (b) The time from one peak to the next one is 
   

  
T = 2π

ω
= 2π

50.3 s−1 = 0.125 s
 

 (c) 
 
This agrees with the period found in the example in the text.  

P16.15 The wave function is given as 

   
  
y = 0.120 m( ) sin

π
8

x + 4π t⎛
⎝⎜

⎞
⎠⎟

 

 (a)  We differentiate the wave function with respect to time to obtain 
the velocity: 

  
  
v =

∂y
∂t

:   v = 0.120( ) 4π( ) cos
π
8

x + 4π t⎛
⎝⎜

⎞
⎠⎟

 

   
  
v 0.200 s, 1.60 m( ) = −1.51 m/s

 

 (b) Differentiating the velocity function gives the acceleration: 

   
  
a =

∂v
∂t

:   a = −0.120 m( ) 4π( )2 sin
π
8

x + 4π t⎛
⎝⎜

⎞
⎠⎟

 

   
  
a 0.200 s, 1.60 m( ) = 0  

 (c) 
  
k =

π
8

=
2π
λ

:  
 
λ = 16.0 m  

 (d) 
  
ω = 4π =

2π
T

:  
  
T = 0.500 s  

 (e) 
  
v =

λ
T

=
16.0 m
0.500 s

= 32.0 m s  

P16.16 (a) At x = 2.00 m, 
  
y = 0.100sin 1.00 − 20.0t( ) . Because this 

disturbance varies sinusoidally in time, it describes simple 
harmonic motion. 

 (b) At x = 2.00 m, compare   y = 0.100sin 1.00 − 20.0t( )  to   Acos ωt + φ( ) : 
   

  

y = 0.100sin 1.00− 20.0t( ) = −0.100sin 20.0t − 1.00( )
= 0.100cos(20.0t − 1.00 +π )
= 0.100cos 20.0t + 2.14( )

 

  so  ω = 20.0 rad s  and  
  
f =

ω
2π

= 3.18 Hz  
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P16.17 The wave function is:  y = 0.25 sin (0.30x − 40t) m 

 Compare this with the general expression y = A sin (kx − ω t): 

 (a) 
  
A = 0.250 m  

 (b) 
 
ω = 40.0 rad s  

 (c) 
  
k = 0.300 rad m  

 (d) 
  
λ =

2π
k

=
2π

0.300 rad m
= 20.9 m  

 (e) 
  
v = fλ =

ω
2π

⎛
⎝⎜

⎞
⎠⎟ λ =

40.0 rad s
2π

⎛
⎝⎜

⎞
⎠⎟ 20.9 m( ) = 133 m s  

 (f) The wave moves to the right,   in the + x direction .  

P16.18 (a) ANS. FIG. P16.18(a) shows a sketch of the wave at t = 0. 

   

ANS FIG. P16.18(a) 

 (b) 
  
k =

2π
λ

=
2π

0.350 m
= 18.0 rad m  

 (c) 
  
T =

1
f

=
1

12.0/s
= 0.083 3 s  

 (d) 
  
ω = 2π f = 2π 12.0 s = 75.4 rad s  

 (e) 
  
v = fλ = 12.0 s( ) 0.350 m( ) = 4.20 m s  

 (f)   y = A sin kx +ωt + φ( )  specializes to 
  

  
y = 0.200 m( ) sin 18.0 x m + 75.4t s + φ( )  
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 (g) At x = 0, t = 0 we require  
   

 

−3.00 × 10−2  m = 0.200 m( ) sin +φ( )
φ = −8.63° = −0.151 rad

  

  so 
  

  

y x, t( ) = 0.200 sin 18.0x + 75.4t − 0.151( ) ,  where x and y  are in
meters and t is in seconds.

 

P16.19 Using the traveling wave model, we can put constants with the right 
values into   y = A sin kx +ωt + φ( )  to have the mathematical 
representation of the wave. We have the same (positive) signs for both 
kx and ωt so that a point of constant phase will be at a decreasing value 
of x as t increases—that is, so that the wave will move to the left. 

 The amplitude is A = ymax = 8.00 cm = 0.080 0 m 

 The wave number is 
  
k = 2π

λ
= 2π

0.800 m
= 2.50π  m−1  

 The angular frequency is   ω = 2π f = 2π 3.00 s−1( ) = 6.00π  rad/s   

 (a) In   y = A sin kx +ωt +φ( ) ,  choosing φ = 0 will make it true that  
y(0, 0) = 0. Then the wave function becomes upon substitution of 
the constant values for this wave 

   

  
y = 0.080 0( ) sin 2.50πx + 6.00π t( )

  

 (b) In general,   y = 0.080 0( )sin 2.50πx + 6.00πt +φ( )  

  If y(x, 0) = 0 at x = 0.100 m, we require  

    0 = 0.080 0( )sin 2.50π +φ( )  

  so we must have the phase constant be   φ = −0.250π  rad.  

   Therefore, the wave function for all values of x and t is 
  

  

y = 0.080 0 sin 2.50πx + 6.00π t − 0.250π( ) ,  where x and y  are in
meters and t is in seconds.

 

P16.20 (a) Let us write the wave function as   y x,t( ) = Asin kx +ωt +φ( ).  

  We have   yi = y 0, 0( ) = A sin φ = 0.020 0 m  

  and   
  
vi = v 0, 0( ) =

∂y
∂t 0, 0

= Aω cos φ = −2.00 m/s.  
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  Also, 
  
ω =

2π
T

=
2π

0.025 0 s
= 80.0π  s−1.  

  Use the identity  sin2φ + cos2φ = 1  and the expressions for yi and 
vi: 

   

  

A sin φ( )2

A2 +
Aω cos φ( )2

A2ω 2 = 1

A sin φ( )2 +
Aω cos φ( )2

ω 2 = A2

A2 = yi
2 +

vi

ω
⎛
⎝⎜

⎞
⎠⎟

2

= 0.020 0 m( )2 +
−2.00 m/s
80.0π  s−1

⎛
⎝⎜

⎞
⎠⎟

2

A = 0.021 5 m

 

 (b) 
  

ωyi

vi

=
ω A sin φ( )
ωA cos φ

= tan φ → tan φ =
80.0π 0.020 0( )

−2.00
= −2.51  

  Your calculator’s answer φ = tan−1 (−2.51) = −1.19 rad is an angle 
in the fourth quadrant with a negative sine and positive cosine, 
just the reverse of what is required. Recall on the unit circle, an 
angle with a negative tangent can be in either the second or 
fourth quadrant. The sine is positive and the cosine is negative in 
the second quadrant. The angle in the second quadrant is 

 
 
φ = π − 1.19 rad = 1.95 rad  

 (c) 
  
vy ,  max = Aω = 0.021 5 m( ) 80.0π s( ) = 5.41 m/s  

 (d)   λ = vxT = 30.0 m s( ) 0.025 0 s( ) = 0.750 m  

  
  
k =

2π
λ

=
2π

0.750 m
= 8.38 m−1 ,   ω = 80.0π  s−1  

  

  
y x, t( ) = 0.021 5( ) sin 8.38x + 80.0π t + 1.95( )  
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Section 16.3 The Speed of Transverse Waves on Strings 
P16.21 If the tension in the wire is T, the tensile stress is 
  

  
stress = T

A
so T = A stress( )

 

 The speed of transverse waves in the wire is 

  
  
v =

T
µ

=
A Stress( )

m/ L
=

Stress
m/ AL

=
Stress

m/ Volume
=

Stress
ρ

 

 where ρ is the density. The maximum velocity occurs when the stress 
is a maximum: 

  
  
vmax =

2.70 × 108  Pa
7860 kg m3 = 185 m s  

P16.22 The speed is given by 

   
  
v =

T
µ

=
1 350 kg ⋅m s2

5.00 × 10−3  kg m
= 520 m s  

P16.23 The two wave speeds can be written as 

   
  v1 = T1 µ and v2 = T2 µ  

 Since µ  is constant, 
  
µ =

T2

v2
2 =

T1

v1
2 ,  and 

   
  
T2 =

v2

v1

⎛
⎝⎜

⎞
⎠⎟

2

T1 =
30.0 m s
20.0 m s

⎛
⎝⎜

⎞
⎠⎟

2

6.00 N( ) = 13.5 N  

P16.24 (a) For the first equation, 
    

  
f  =  1

T
    →    T  =  1

f
    →     T[ ] =  1

f[ ] = 
1

T−1  = T 
 

 units are seconds  

    

  
v =  T

µ
    →    T  = µv2  →     T[ ] =  µv2⎡⎣ ⎤⎦ = 

M
L

L
T

⎛
⎝⎜

⎞
⎠⎟

2

 = ML
T2

 

 units are newtons  

 (b) 
  
The first T  is period of time; the second is force of tension.  
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P16.25 The down and back distance is 4.00 m + 4.00 m = 8.00 m. 

 The speed is then 
  
v =

dtotal

t
=

4 8.00 m( )
0.800 s

= 40.0 m s =
T
µ

.  

 Now, 
 
µ =

0.200 kg
4.00 m

= 5.00 × 10−2  kg/m.  

 So     T = µv2 = 5.00 × 10−2  kg/m( ) 40.0 m/s( )2 = 80.0 N .  

P16.26 (a) To write the equation, we determine the angular frequency and 
wave number: 

    
  ω = 2π f = 2π 500 Hz( ) = 3 140 rad s  

    

  
k = ω

v
= 3 140

196
= 16.0 m−1

 

  

  

y = 2.00× 10−4( )sin 16.0x − 3 140t( ) ,  where y  and x are in meters

and t is in seconds.

 

 (b) 
  
v = 196 m s =

T
4.10 × 10−3  kg m

→ T = 158 N  

P16.27 The total time interval is the sum of the two time intervals. 

 In each wire  

   
 
Δt =

L
v

= L
µ
T

 

 Let A represent the cross-sectional area of one wire. The mass of one 
wire can be written both as  m = ρV = ρAL  and also as   m = µL.  

 Then we have 
  
µ = ρA =

πρd2

4
.  

 Thus, 
  
Δt = L

πρd2

4T
⎛
⎝⎜

⎞
⎠⎟

1 2

 

 For copper,  
   

  

Δt = 20.0 m( )
π( ) 8 920 kg/m3( ) 1.00 × 10−3  m( )2

4( ) 150 N( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

= 0.137 s
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 For steel,  
   

  

Δt = 30.0 m( )
π( ) 7  860 kg/m3( ) 1.00 × 10−3  m( )2

4( ) 150 N( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

= 0.192 s

 

 The total time interval is 
 
0.137 + 0.192 = 0.329 s  

P16.28 The tension in the string is T = mg, where g is the acceleration of 
gravity on the Moon, about one-sixth that of Earth. From the data 
given, what is the acceleration of gravity on the Moon? 

 The wave speed is  
   

  
v = T

µ
= Mg

m/L
= MgL

m
= L

t
→ MgL

m
= L2

t2 → g = mL
Mt2

 

   

  
g =

mL
Mt2 =

4.00 × 10−3  kg( ) 1.60 m( )
3.00 kg( ) 26.1× 10−3  s( )2 = 3.13 m/s2

 

 

 

The calculated gravitational acceleration of the Moon is almost twice 
that of the accepted value.

 

P16.29 (a) The tension in the string is  
    

  F = mg = 3.00 kg( ) 9.80 m s2( ) = 29.4 N
  

  Then, from 
  
v = F

µ
,  the mass per unit length is 

    
  
µ =

F
v2 =

29.4 N
24.0 m s( )2 = 0.0510 kg m  

 (b) When m = 2.00 kg, the tension is 

    
  F = mg = 2.00 kg( ) 9.80 m s2( ) = 19.6 N  

  and the speed of transverse waves in the string is 

    
  
v =

F
µ

=
19.6 N

0.0510 kg m
= 19.6 m s  
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P16.30 From the free-body diagram   mg = 2T sin θ  
   

  
T =

mg
2 sin θ

 

 The angle θ is found from  
   

  
cos θ =

3L/8
L/2

=
3
4

 

    ∴θ = 41.4°  

 (a) 

  

v = T
µ

= mg
2µ sinθ

= mg
2µ sin 41.4°

= 9.80 m/s2

2 8.00× 10−3  kg/m( ) sin 41.4°

⎛

⎝
⎜

⎞

⎠
⎟ m

  

  or 

  

v = 30.4 ( ) m , where v is in meters per second and 
m is in kilograms. 

 

 (b)   v = 60.0 = 30.4 m   and  
  

m = 3.89 kg  

P16.31 We use 
 
v =

T
µ

 to solve for the tension: 

   

  

T = µv2 = ρAv2 = ρπr2v2

T = 8920 kg m3( ) π( ) 7.50 × 10−4  m( )2
200 m s( )2

T = 631 N

 

 
 

 

Section 16.5 Rate of Energy Transfer by Sinusoidal  
Waves on Strings 

P16.32 (a) 

 

As for a string wave, the rate of energy transfer is proportional to
the square of the amplitude and to the speed. The rate of energy
transfer stays constant because each wavefront carries constant
energy and the frequency stays constant. As the speed drops the
amplitude must increase.

 

ANS. FIG. P16.30 
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 (b) We write P = FvA2, where F is some constant. With no absorption 
of energy, 

     

  

FvgraniteAgranite
2 = FvmudfillAmudfill

2

Amudfill

Agranite

=
vgranite

vmudfill

=
vgranite

vgranite
25.0

=
25.0vgranite

vgranite

= 5.00  

  
 

The amplitude increases by 5.00 times.  

P16.33 We are given T = constant; we use the equation for the speed of a wave 

on a string, 
  
v = T

µ
,  and the power supplied to a vibrating string, 

  
P = 1

2
µω 2A2v.

 

 (a) If L is doubled, µ is still the same, so v remains constant: therefore 
P is constant:  1 .  

 (b) If A is doubled and ω is halved,   P∝ω2A2  remains constant:  1 .  

 (c) If λ and A are doubled, the product 
  
ω2A2 ∝ A2

λ2
 remains constant, 

so  1 .  

 (d) If L and λ are halved, µ is still the same, and 
 
ω2 ∝ 1

λ2  is 

quadrupled, so P 
 

is increased by a factor of 4 .  

P16.34 We will use the expression for power carried by a wave on a string. 

The wave speed is 
  
v = T

µ
= 100 N

4.00× 10−2  kg/m
= 50.0 m/s  

 From 
  
P = 1

2
µω 2A2v,  we have 

    

  
ω 2 = 2P

µA2v
= 2(300 N ⋅m/s)  

4.00 × 10–2  kg m( ) 5.00 × 10–2  m( )2
(50.0 m s)

 

 Computing,  
   

  
ω = 346 rad/s     and     f = ω

2π
= 55.1 Hz
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P16.35 Comparing the given wave function, y = (0.15) sin (0.80x − 50t), with 
the general wave function, y = A sin (kx − ωt), we have k = 0.80 rad/m,  
ω = 50 rad/s, and A = 0.15 m. 

 (a) 
  
v = fλ = ω

2π
2π
k

= ω
k

= 50.0
0.800

 m s = 62.5 m s  

 (b) 
  
λ = 2π

k
= 2π

0.800
 m = 7.85 m  

 (c) 
  
f = 50.0

2π
= 7.96 Hz  

 (d) 
  
P = 1

2
µω2A2v = 1

2
12.0× 10−3( ) 50.0( )2 0.150( )2 62.5( )  W = 21.1 W  

P16.36 The frequency and angular frequency of the wave are 
   

  
f = v

λ
= 30.0 m/s

0.500 s
= 60.0 Hz   and   ω = 2π f = 120π  rad s

 

 The power that is required is then 
   

  

P = 1
2
µω 2A2v

= 1
2

0.180 kg
3.60 m

⎛
⎝⎜

⎞
⎠⎟ 120π  rad/s( )2 0.100 m( )2 30.0 m/s( )

= 1.07 kW

 

P16.37 We are given  µ = 30.0 g m = 30.0× 10−3  kg m,  with 
   

  

λ = 1.50 m

f = 50.0 Hz:       ω = 2π f = 314 s−1

2A = 0.150 m:    A = 7.50× 10−2  m

 

 (a) From 
  
y = A sin

2π
λ

x −ωt⎛
⎝⎜

⎞
⎠⎟

, 
  

y = 0.075( ) sin 4.19x − 314t( )  

 (b) 
  
P = 1

2
µω2A2v = 1

2
30.0× 10−3( ) 314( )2 7.50× 10−2( )2 314

4.19
⎛
⎝
⎜

⎞
⎠
⎟  W      

  
  

P = 625 W  

 

ANS. FIG. P16.37 
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P16.38 Originally, 

   

  

P0 = 1
2

µω2A2v

P0 = 1
2

µω2A2 T
µ

P0 = 1
2
ω2A2 Tµ

 

 The doubled string will have doubled mass per length. Presuming that 
we hold tension constant, it can carry power larger by  2  times: 

   

  
P =  1

2
ω 2A2 T 2µ( )  =  2

1
2
ω 2A2 Tµ⎛

⎝⎜
⎞
⎠⎟  =  2P0

 

P16.39 Comparing  
   

  
y = 0.350sin 10πt − 3πx + π

4
⎛
⎝⎜

⎞
⎠⎟

   

 with  
   

  y = Asin kx −ω t +φ( ) = Asin ω t − kx −φ +π( )   

 we have  
   

  k = 3π  m−1 ,  ω = 10π  s−1 ,  and A = 0.350 m   

 Then, 
    

  
v = fλ = 2π f( ) λ

2π
⎛
⎝⎜

⎞
⎠⎟ = ω

k
= 10π  s−1

3π  m−1 = 3.33 m/s
 

 (a) The rate of energy transport is 

   

  

P = 1
2
µω 2A2v

= 1
2

75× 10−3  kg/m( ) 10π  s−1( )2
0.350 m( )2 3.33 m/s( )

= 15.1 W

 

 (b) Recall that vT = λ. The energy per cycle is 
   

  

Eλ = P T = 1
2
µω 2A2λ

= 1
2

75.0× 10−3  kg m( ) 10π  s−1( )2
0.350 m( )2 2π

3π  m−1
⎛
⎝⎜

⎞
⎠⎟

= 3.02 J
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P16.40 Suppose that no energy is absorbed or carried down into the water. 
Then a fixed amount of power is spread thinner farther away from the 
source. It is spread over the circumference 2π r of an expanding circle. 
The power-per-width across the wave front 

   
  

P
2π r

 

 is proportional to amplitude squared, so amplitude is proportional to 

   
  

P
2π r

 

 
 

 

Section 16.6 The Linear Wave Equation 
P16.41 The important thing to remember with partial derivatives is that you 

treat all variables as constants, except the single variable of interest. 
Keeping this in mind, we must apply two standard rules of differentiation 
to the function y = ln[b(x − vt)]: 

   
  

∂
∂x

ln f (x)[ ] = 1
f (x)

∂ f (x)[ ]
∂x

 [1] 

   

  

∂
∂x

1
f (x)

⎡

⎣
⎢

⎤

⎦
⎥ = ∂

∂x
f (x)[ ]−1 = (−1) f (x)[ ]−2 ∂ f (x)[ ]

∂x

= − 1
f (x)[ ]2

∂ f (x)[ ]
∂x

 

[2]

 

  Applying [1], 

    
  

∂y
∂x

= 1
b(x– vt)

⎛
⎝⎜

⎞
⎠⎟
∂(bx – bvt)

∂x = 1
b(x– vt)

⎛
⎝⎜

⎞
⎠⎟ b( ) = 1

x – vt  

  Applying [2],  

    
  

∂2 y
∂x2 = – 1

(x – vt)2  

 In a similar way, 
   

  

∂y
∂t = −v

x − vt
and

∂2 y
∂t2 = v2

x − vt( )2
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  From the second-order partial derivatives, we see that it is true that 

   
  

∂2y
∂x2 =

1
v2

∂2y
∂t2

  

 so the proposed function is one solution to the wave equation. 

P16.42 (a) A = (7.00 + 3.00)( 4.00) yields 
  

A = 40.0  

 (b) 
  

A = 7.00, B = 0,  and C = 3.00  

 (c) 

 

In order for two vectors to be equal, they must have the same
magnitude and the same direction in three-dimensional space.
All of their components must be equal, so all coefficients of the
unit vectors must be equal.

 

 (d) 
  

A = 0  
  

B = 7.00  in meters, 
  

C = 3.00  in m−1, 
  

D = 4.00  in s−1, 

  
E = 2.00  in rad. 

 (e) 

 

Identify corresponding parts. In order for two functions to be
identically equal, corresponding parts must be identical. The
argument of the sine function must have no units, or be equiv-
alent to units of radians.

 

P16.43 The linear wave equation is 
  

∂2y
∂x2 =

1
v2

∂2y
∂t2 .  

 If   y = eb(x−vt) 

 Then  
 

∂y
∂t

= −bveb x−vt( )   and  
 

∂y
∂x

= beb x−vt( )  

   
  

∂2y
∂t2 = b2v2eb x−vt( )  and  

  

∂2y
∂x2 = b2eb x−vt( )  

 Therefore, 
  

∂2y
∂t2 = v2 ∂2y

∂x2 ,  demonstrating that eb(x−vt) is a solution. 

P16.44 (a) From   y = x2 + v2t2 ,  

  evaluate  
  

∂y
∂x

= 2x  and 
  

∂2y
∂x2 = 2  

  Also, 
  

∂y
∂t

= v2 2t  and 
  

∂2y
∂t2 = 2v2  
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  Does 
  

∂2y
∂t2 = 1

v2

∂2y
∂t2

? 

  By substitution, we must test 
  
2 = 1

v2 2v2( )  and this is true, so the 

wave function does satisfy the wave equation. 

 (b) Note  
    

  

1
2

x + vt( )2 + 1
2

x − vt( )2 = 1
2

x2 + xvt + 1
2

v2t2 + 1
2

x2 − xvt + 1
2

v2t2

= x2 + v2t2

 

  as required. So 
    

  
f x + vt( ) = 1

2
x + vt( )2    and   g x − vt( ) = 1

2
x − vt( )2

  

 (c) y = sin x cos vt makes 

    
  

∂y
∂x

= cos xcos vt  
  

∂2y
∂x2 = −sin xcos vt  

    

  

∂y
∂t

= −vsin xsin vt
 

  

∂2y
∂t2 = −v2 sin xcos vt

 

  Then 
  

∂2y
∂x2 = 1

v2

∂2y
∂t2

 becomes 
  
−sin xcos vt = −1

v2 v2 sin xcos vt  which 

is true, as required. 

  Note    sin x + vt( ) = sin xcos vt + cos xsin vt  

       sin x − vt( ) = sin xcos vt − cos xsin vt  

  So     sin xcos vt = f x + vt( ) + g x − vt( )  with 
    

  
f x + vt( ) = 1

2
sin x + vt( )    and   g x − vt( ) = 1

2
sin x − vt( )

   

 
 

 

Additional Problems 
P16.45 The equation  v = λ f  is a special case of 

   speed = (cycle length)(repetition rate) 

 Thus, 

   
  
v = 19.0× 10−3  m frame( ) 24.0 frames s( ) = 0.456 m s  
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P16.46 Assume a typical distance between adjacent people ∼ 1 m. 

 Then the wave speed is 
  
v =

Δx
Δt

~
1 m
0.1 s

~ 10 m/s.  

 Model the stadium as a circle with a radius of order 100 m. Then, the 
time for one circuit around the stadium is 

   
  
T = 2π r

v
~

2π 102( )
10 m s

= 63 s ~ 1 min  

P16.47 The speed of the wave on the rope is 
 
v = T

µ
 and in this case T = mg; 

therefore, 
  
m = µv2

g
. 

 Now v = fλ implies 
 
v = ω

k
 so that 

 

  
m =

µ
g

ω
k

⎛
⎝⎜

⎞
⎠⎟

2

=
0.250 kg m
9.80 m s2

18π  s−1

0.750π  m−1

⎡

⎣
⎢

⎤

⎦
⎥

2

= 14.7 kg
 

*P16.48 
  
v = 2d

t
 gives  

   

  
d = vt

2
= 1

2
6.50 × 103  m s( ) 1.85 s( ) = 6.01 km

 

P16.49 The block-cord-Earth system is isolated, so energy is conserved as the 
block moves down distance x: 

   

  

ΔK +ΔU = 0 →

K +Ug +Us( )top
= K +Ug +Us( )bottom

0 + Mgx + 0 + 0 = 0 + 0 + 1
2

kx2

x = 2Mg
k

 

 (a) 
  
T = kx = 2Mg = 2 2.00 kg( ) 9.80 m s2( ) = 39.2 N  

 (b) 
  
L = L0 + x = L0 + 2Mg

k
 

  
  
L = 0.500 m + 39.2 N

100 N m
= 0.892 m  
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 (c) 
 
v = T

µ
= TL

m
 

  

  

v =
39.2 N × 0.892 m

5.0 × 10−3  kg

v = 83.6 m/s

 

P16.50 The block-cord-Earth system is isolated, so energy is conserved as the 
block moves down distance x: 

   

  

ΔK + ΔU = 0→

K + Ug + Us( )
top

= K + Ug + Us( )
bottom

0 + Mgx + 0 + 0 = 0 + 0 +
1
2

kx2

 

   
  
Mgx = 1

2
kx2  

 (a) 
  
T = kx = 2Mg  

 (b) 
  
L = L0 + x = L0 + 2Mg

k
 

 (c) 

  
v =

T
µ

=
TL
m

=
2Mg

m
L0 +

2Mg
k

⎛
⎝⎜

⎞
⎠⎟

 

P16.51 (a) The wave function becomes 

   
  
0.175 m = 0.350 m( )sin 99.6 rad s( )t⎡⎣ ⎤⎦  

  or 
  
sin 99.6 rad s( )t⎡⎣ ⎤⎦ = 0.500  

  The smallest two angles for which the sine function is 0.500 are 
30.0° and 150°, i.e., 0.523 6 rad and 2.618 rad. 

     99.6 rad s( )t1 = 0.523 6 rad,  thus t1 = 5.26 ms 

   
  99.6 rad s( )t2 = 2.618 rad,  thus t2 = 26.3 ms 

   
  
Δt ≡ t2 − t1 = 26.3 ms − 5.26 ms = 21.0 ms  

 (b) Distance traveled by the wave 
    

  
= ω

k
⎛
⎝⎜

⎞
⎠⎟ Δt = 99.6 rad s

1.25 rad m
⎛
⎝⎜

⎞
⎠⎟

21.0× 10−3  s( ) = 1.68 m
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P16.52 (a) From y = (0.150 m) sin (0.800x – 50.0t) = A sin(kx – ω t) 

  we compute  
   

  ∂y/∂t = 0.150 m( ) (−50.0 s−1) cos(0.800x −50.0t)  

  and   a = ∂2 y/∂t2 = − 0.150 m( ) (−50.0 s−1)2 sin(0.800x − 50.0t)  

  Then   amax = (0.150 m)(50.0 s−1)2 = 375 m/s2  

 (b) For the 1.00-cm segment with maximum force acting on it, 
   

  
F∑ = ma = 12.0× 10−3  kg

100 cm
⎛
⎝⎜

⎞
⎠⎟

1.00 cm( ) 375 m/s2( ) = 0.045 0 N
  

 (c) To find the tension in the string, we first compute the wave speed 
   

  
v = λ f = ω

k
= 50.0 s−1

0.800 m−1 = 62.5 m/s
  

  then, 
   

  
v = T

µ
 gives T = µv2 = 12.0× 10−3  kg

1.00 m
⎛
⎝⎜

⎞
⎠⎟

62.5 m/s( )2 = 46.9 N
 

  

 

The maximum transverse force is very small compared to the 
tension, more than a thousand times smaller.

 

P16.53 Assuming the incline to be frictionless and taking the positive x 
direction to be up the incline: 

   
  ∑Fx = T − Mg sin θ = 0   

 or the tension in the string is   T = Mg sin θ.  

 The speed of transverse waves in the string is then 
   

  
v =

T
µ

=
Mg sin θ

m/L
=

MgL sin θ
m

 

 The time interval for a pulse to travel the string’s length is 
   

  

Δt =
L
v

= L
m

MgL sin θ
=

mL
Mg sin θ

 

P16.54 (a) 

 

The energy a wave crest carries is constant in the absence of
absorption. Then the rate at which energy passes a stationary
point, which is the power of the wave, is constant.
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 (b) 

 

The power is proportional to the square of the amplitude and to
the wave speed. The speed decreases as the wave moves into
shallower water near shore, so the amplitude must increase.

 

 (c) For the wave described, with a single direction of energy 
transport, the power is the same at the deep-water location  and 
at the place  with depth 9.00 m. Because power is proportional 
to the square of the amplitude and the wave speed, to express the 
constant power we write, 

    

  

A1
2v1 = A2

2v2 = A2
2 gd2

1.80 m( )2 200 m/s( ) = A2
2 9.80 m s2( ) 9.00 m( )

                                  = A2
2 9.39 m s( )

A2 = 1.80 m
200 m s
9.39 m s

⎛
⎝⎜

⎞
⎠⎟

1/2

     = 8.31 m

 

 (d) 

  

As the water depth goes to zero, our model would predict zero
speed and infinite amplitude. In fact the amplitude must be finite
as the wave comes ashore. As the speed decreases the wavelength
also decreases. When it becomes comparable to the water depth,

or smaller, our formula gd  for wave speed no longer applies.

 

P16.55 Let M = mass of block, m = mass of string. For the block,  ∑F = ma  

implies 
  
T = mvb

2

r
= mω2r.  The speed of a wave on the string is then 

   

  
v =

T
µ

=
Mω 2r
m/r

= rω M
m

 

 the travel time of the wave on the string is given by 
   

  
Δt =

r
v

=
1
ω

m
M

 

 and the angle through which the block rotates is  
   

  
Δθ = ω Δt =

m
M

=
0.003 2 kg
0.450 kg

= 0.084 3 rad
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P16.56 The transverse wave velocity in the string is 
  
vtrans =

T
µ

,  

 where T is the tension in the cord, and µ is the mass per unit length of 
the cord. The tension T is generated by the centripetal force holding 
the mass and cord in uniform circular motion at the angular velocity ω; 
thus: 

   
  
T = Fc = M v2

r
= Mω2r  

 where we note that M is the mass of the block. 

 The mass density of the cord is 
  
µ = m

r
;  thus, the transverse wave 

velocity is 

   

  

vtrans =
T
µ

=
Mω 2r( )

m
r

⎛
⎝⎜

⎞
⎠⎟

=
Mω 2r2( )

m( ) =ωr
M
m  

 Now the transverse wave travels a distance r (the length of the cord) at 
a uniform velocity vtrans ; thus, distance = r = vtrans

 t, and therefore, 

   

  

t =
r

vtrans

=
r

ωr
M
m

⎛

⎝
⎜

⎞

⎠
⎟

=
1
ω

m
M  

 which we may solve numerically: 
   

  
t = 1

ω
m
M

= 1
10.0 rad/s( )

0.003 20 kg
0.450 kg

= 8.43× 10−3  s
 

 [See Note to P16.57.] 

P16.57 The transverse wave velocity in the string is 
  
vtrans =

T
µ

,  

 where T is the tension in the cord, and µ is the mass per unit length of 
the cord. The tension T is generated by the centripetal force holding 
the mass and cord in uniform circular motion at the angular velocity, 
ω; thus 

   
  
T = Fc = M v2

r
= Mω2r  

 where we note that M is the mass of the block, and the mass density of 
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the cord is 
  
µ =

m
r

.  Thus transverse wave velocity is 

   

  

vtrans =
T
µ

=
Mω 2r( )

m
r

⎛
⎝⎜

⎞
⎠⎟

=
Mω 2r2( )

m( ) =ωr
M
m  

 Now the transverse wave travels a distance r (the length of the cord) at 
a uniform velocity vtrans ; thus,   distance = r = vtranst,  and therefore, 

   

  

t =
r

vtrans

=
r

ωr
M
m

⎛

⎝
⎜

⎞

⎠
⎟

=
1
ω

m
M  

 [Note: To solve this problem without integration of the mass density µ 
over the length of the cord to include the cord’s own mass as a 
contribution to its own tension, and thus to a nonuniform tension 
along the length of the cord (and thus also to a nonuniform wave 
velocity along the cord), we must assume that the mass of the cord m 
is very small compared to the mass of the block M. In such a case, the 
mass of the cord does not contribute to the centripetal force, or as a 
result, to the tension on the cord itself. The only role the cord’s mass 
will then play is in generating the linear density in the transverse wave 
velocity equation. To be forced to include mass of the cord in the 
centripetal force calculation is a significantly more difficult problem 
and is not attempted here.] 

P16.58 (a) In 
  
P = 1

2
µω 2A2v  where v is the wave speed, the quantity ω A is 

the maximum particle speed vy, max. We have µ = 0.500 × 10−3 kg/m 
and  

    

  
v = T

µ
= 20.0 N

0.500× 10−3  kg/m
= 200 m/s

  

  Then  
    

  
P = 1

2
0.500× 10−3  kg/m( )vy ,max

2 200 m/s( )
  

  

  

P = 0.050 0 vy ,max
2 , where P is in watts and vy ,max  is in meters

per second
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 (b) 

 

The power is proportional to the square of the maximum
particle speed.

 

 (c) In time t = (3.00 m)/v = (3.00 m)/(200 m/s) = 1.50 × 10−2 s, all the 
energy in a 3.00-m length of string goes past a point. Therefore, 
the amount of this energy is 

    
  E = Pt = 0.050 0 kg/s( )vy ,max

2 (0.015 s) = 7.50× 10−4 kg( )vy ,max
2  

  The mass of this section is 
    

  m3.00−m = 0.500× 10−3  kg/m( ) 3.00 m( ) = 1.50× 10−3  kg 
  

  so 
  

1
2

m3.00−m = 7.50× 10−4  kg  

  

  

E = (7.5× 10−4 ) vy ,max
2 , where E is in joules and vy ,max  is in meters

per second. 
 

 (d) 
  

1
2

mvy ,max
2  

 (e) E = Pt = (0.050 0 kg/s)   vy ,max
2  (6.00 s) 

  

  

→ E =  0.300 vy ,max
2  where E is in joules and vy ,max  is in meters

per second. 

 

P16.59 (a) 
 
µ = dm

dL
= ρA dx

dx
= ρA  

  

  

v =
T
µ

=
T
ρA

=
T

ρ ax + b( )⎡⎣ ⎤⎦
=

T

ρ 10−3 x + 10−2( )cm2⎡
⎣

⎤
⎦

 

  With all SI units, 

  

  

v =
T

ρ 1.00 × 10−5 x + 1.00 × 10−6( )⎡
⎣

⎤
⎦

 where x is in meter, T  is in

newtons, and v is in meters per second.

 

 (b) 

  

v(0) =
24.0

2700( ) 0 + 10−6( )⎡
⎣

⎤
⎦

= 94.3 m s  

  

  

v(10.0 m) =
24.0

2700( ) 10−4 + 10−6( )⎡
⎣

⎤
⎦

= 9.38 m s  
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P16.60 Imagine a short transverse pulse traveling from the bottom to the top 
of the rope. When the pulse is at position x above the lower end of the 

rope, the wave speed of the pulse is given by 
  
v = T

µ
,  where  T = µxg  

is the tension required to support the weight of the rope below 
position x. 

 Therefore,   v = gx.  

 But 
 
v = dx

dt
, so that 

 
dt = dx

gx
 

 and 
  
t =

dx

gx
0

L

∫ =
1

g

x
1
2 0

L

≈ 2
L
g

 

P16.61 (a) 
  
P x( ) = 1

2
µω2A2v = 1

2
µω2A0

2e−2bx ω
k

⎛
⎝
⎜

⎞
⎠
⎟ =

µω3

2k
A0

2e−2bx  

 (b) 
  
P 0( ) = µω3

2k
A0

2  

 (c) 
  

P x( )
P 0( )

= e−2bx  

P16.62 
  
v = 4 450× 103  m

5.88 h
⎛
⎝⎜

⎞
⎠⎟

1 h
3 600 s

⎛
⎝⎜

⎞
⎠⎟ = 210 m/s  

 

  
davg =

v2

g
=

210 m/s( )2

9.80 m/s2 = 4 500 m
 

 

 

The given speed corresponds to an ocean depth that is 
greater than the average ocean depth, about 4 280 m.

 

P16.63 Young’s modulus for the wire may be written as 
  
Y = T/A

ΔL/L
, where T is 

the tension maintained in the wire and  ΔL  is the elongation produced 
by this tension. Also, the mass density of the wire may be expressed as 

  
 
ρ = µ

A
 

 The speed of transverse waves in the wire is then 

  
  
v = T

µ
= T/A

µ/A
=

Y ΔL/L( )
ρ
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 and the strain in the wire is 
  

ΔL
L

= ρv2

Y
. 

 If the wire is made of aluminum and v = 100 m/s, the strain is 

  
  

ΔL
L

=
2.70× 103  kg m3( ) 100 m s( )2

7.00× 1010  N m2 = 3.86× 10−4  

 
 

 

Challenge Problems 
P16.64 Refer to Problem 60. At distance x from the bottom, the tension is 

  
T =

mxg
L

⎛
⎝⎜

⎞
⎠⎟

+ Mg,  so the wave speed is: 

  

 

v =
T
µ

=
TL
m

= xg +
MgL

m
⎛
⎝⎜

⎞
⎠⎟

=
dx
dt

→ dt =
dx

xg + MgL
m

⎛
⎝⎜

⎞
⎠⎟

 

 (a) Then 
    

  
t = dt

0

t

∫ = xg +
MgL

m
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

−1 2

dx
0

L

∫
 

  gives 

  

t =
1
g

xg + MgL m( )⎡⎣ ⎤⎦
1 2

1
2

x=0

x=L

 

    

  
t =

2
g

Lg +
MgL

m
⎛
⎝⎜

⎞
⎠⎟

1 2

−
MgL

m
⎛
⎝⎜

⎞
⎠⎟

1 2⎡

⎣
⎢

⎤

⎦
⎥

 

    
  

t = 2
L

mg
M + m − M( )  

 (b) When M = 0,  

   
  
t = 2 L

g
m − 0

m

⎛

⎝
⎜

⎞

⎠
⎟ = 2 L

g
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 (c) As   m → 0  we expand  

   
  

M + m = M 1 +
m
M

⎛
⎝⎜

⎞
⎠⎟

1 2

  
= M 1 +

1
2

m
M

−
1
8

m2

M2 + …⎛

⎝⎜
⎞

⎠⎟
 

  to obtain 
  
t = 2

L
mg

M + 1
2

m
M

⎛
⎝⎜

⎞
⎠⎟
− 1

8
m2 M3 2( ) +…− M

⎛
⎝⎜

⎞
⎠⎟

 

    

  
t ≈ 2

L
g

1
2

m
M

⎛
⎝⎜

⎞
⎠⎟

= mL
Mg

 

 where we neglect terms 
  

1
8

m2

M3 2

⎛
⎝⎜

⎞
⎠⎟

 and higher because terms with 

m2 and higher powers are very small. 

P16.65 (a) Refer to Problem 60. From the definition of velocity, find the 
relationship between the position x of the pulse and the time 
interval  Δt  required to reach that position from the bottom of the 
rope: 

   
  
v = dx

dt
   →   dt = dx

v
 =  dx

gx
   →   Δt =  dx

gx
∫     →   Δt = 2 x

g
 

  Evaluate this time interval for 
  
x = L

2
:  

   

  

Δt = 2 L/2
g

 = 2
L

2g
 =  1

2
2

L
g

⎛

⎝⎜
⎞

⎠⎟
 =  0.707 2

L
g

⎛

⎝⎜
⎞

⎠⎟

 

 (b) Solve the expression from part (a) for x and substitute the given 
time interval: 

   
  
x = 

g Δt( )2

4
 =

g L 2( )2

4
=  g

4
L
g
 =  L

4
 

P16.66 (a)  µ x( )  is a linear function, so it is of the form   µ x( ) = mx + b.  

  To have  µ 0( ) = µ0  we require   b = µ0.  Then   µ L( ) = µL = mL + µ0  

  so 
  
m =

µL − µ0

L
.  

  Then 
  

µ x( ) =
µL − µ0( )x

L
+ µ0 .  

 (b) Imagine the crest of a short transverse pulse traveling from one 
end of the string to the other. Consider the pulse to be at position 
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x. From 
  
v =

dx
dt

,  the time interval required to move from x to  

x + dx is 
  

dx
v

.  The time interval required to move from 0 to L is 

   

  

Δt =
dx
v

0

L

∫ =
dx

T / µ
0

L

∫ =
1
T

µ x( ) dx
0

L

∫
Δt =

1
T

µL − µ0( )x
L

+ µ0

⎛
⎝⎜

⎞
⎠⎟

1 2
µL − µ0

L
⎛
⎝⎜

⎞
⎠⎟ dx

L
µL − µ0

⎛
⎝⎜

⎞
⎠⎟

0

L

∫
Δt =

1
T

L
µL − µ0

⎛
⎝⎜

⎞
⎠⎟

µL − µ0( )x
L

+ µ0

⎛
⎝⎜

⎞
⎠⎟

3 2
1
3
2( )

0

L

Δt =
2L

3 T µL − µ0( ) µL
3 2 − µ0

3 2( )

 

P16.67 (a) Consider a short section of chain at the 
top of the loop. A free-body diagram is 
shown. Its length is   s = R 2Δθ( )  and its 
mass is   µR2Δθ.  In the frame of reference 
of the center of the loop, Newton’s 
second law is 

    

  
∑Fy = may :    2T sinΔθ  down = mv0

2

R
 down = µR2Δθv0

2

R

 

  For a very short section,  sinΔθ = Δθ  and 
  

T = µ v0
2  

 (b) The wave speed is 
  
v = T

µ
= v0  

 (c) In the frame of reference of the center of the loop, each pulse 
moves with equal speed clockwise and counterclockwise (ANS. 
FIG. P16.67(c1)). 

 

ANS. FIG. P16.67(c1) 

ANS. FIG. P16.67(a) 
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  In the frame of reference of the ground, once pulse moves 
backward, clockwise, at speed   v0 + v = 2v0  and the other forward, 
counterclockwise, at 

  v0 − v = 0  (ANS. FIG. P16.67(c2)) 

 
ANS. FIG. P16.67(c2) 

  

 

While the loop makes one revolution, the one pulse traveling
clockwise makes two revolutions and the other pulse traveling
counterclockwise does not move around the loop. The counter-
clockwise pulse it is generated at the 6 o’clock position, and it
will stay at the 6 o’clock position.
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 
P16.2 (a) See ANS. FIG. P16.2(a); (b) See ANS. FIG. P16.2(b); (c) The graph in 

ANS. FIG. P16.2(b) has the same amplitude and wavelength as the 
graph in ANS. FIG. P16.2(a). It differs just by being shifted toward 
larger x by 2.40 m; (d) The wave has traveled d = vt = 2.40 m to the 
right. 

P16.4 (a) longitudinal P wave; (b) 666 s 

P16.6 (a) See ANS. FIG. P16.6(a); (b) See ANS. FIG. P16.6(b); (c) See ANS. 
FIG. P16.6(c); (d) See ANS. FIG. P16.6(d); (e) See ANS. FIG. P16.6(e) 

P16.8 0.800 m/s 

P16.10 2.40 m/s 

P16.12 ±6.67 cm 

P16.14 (a) See ANS FIG P16.14; (b) 0.125 s; (c) This agrees with the period 
found in the example in the text. 

P16.16 (a) 0.100 sin (1.002–20.0t); (b) 3.18 Hz 

P16.18 (a) See ANS FIG P13.12(a); (b) 18.0 rad/m; (c) 0.083 3 s; (d) 75.4 rad/s;  
(e) 4.20 m/s; (f)   y = 0.200 m( ) sin 18.0x / m + 75.4t / s + φ( ) ; (g) y(x, t) = 
0.200 sin (18.0x + 75.4t – 0.151), where x and y are in meters and t is in 
seconds. 

P16.20 (a) 0.021 5 m; (b) 1.95 rad; (c) 5.41 m/s;  
(d)   y x, t( ) = 0.021 5( ) sin 8.38x + 80.0πt + 1.95( )  

P16.22 520 m/s 

P16.24 (a) units are seconds and newtons; (b) The first T is period of time; the 
second is force of tension. 

P16.26 (a) y = (2.00 × 10–4) sin (16.0x – 3 140t), where y and x are in meters and 
t is in seconds; (b) 158 N 

P16.28 The calculated gravitational acceleration of the Moon is almost twice 
that of the accepted value. 

P16.30 (a)   v = 30.4( ) m  where v is in meters per second and m is in kilograms;  
(b) m = 3.89 kg 

P16.32 (a) As for a string wave, the rate of energy transfer is proportional to 
the square of the amplitude to the speed. The rate of energy transfer 
stays constant because each wavefront carries constant energy, and the 
frequency stays constant. As the speed drops, the amplitude must 
increase; (b) The amplitude increases by 5.00 times 
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P16.34 55.1 Hz 

P16.36 1.07 kW 

P16.38   2P0  

P16.40 See P16.40 for the full explanation. 

P16.42 (a) A = 40.0; (b) A = 7.00, B = 0, and C = 3.00; (c) In order for two 
vectors to be equal, they must have the same magnitude and the same 
direction in three-directional space. All of their components must be 
equal, so all coefficients of the unit vectors must be equal; (d) A = 0,  
B = 7.00, C = 3.00, D = 4.00, E = 2.00; (e) Identify corresponding parts. 
In order for two functions to be identically equal, corresponding parts 
must be identical. The argument of the sine function must have no 
units or be equal to units of radians. 

P16.44 (a) See P16.44(a) for full explanation; (b) 
  
f x + vt( ) = 1

2
x + vt( )2  and 

  
g x − vt( ) = 1

2
x − vt( )2 ; (c) 

  
f x + vt( ) = 1

2
sin x + vt( )  and 

  
g x − vt( ) = 1

2
sin x − vt( )  

P16.46 ~1 min 

P16.48 6.01 km 

P16.50 (a) 2 Mg; (b) 
  
L0 + 2 Mg

k
; (c) 

  

2 Mg
k

L0 + 2 Mg
k

⎛
⎝
⎜

⎞
⎠
⎟  

P16.52 (a) 375 m/s2; (b) 0.045 0 N; (c) 46.9 N. The maximum transverse force is 
very small compared to the tension, more than a thousand times 
smaller. 

P16.54 (a) The energy a wave crest carries is constant in the absence of 
absorption. Then the rate at which energy passes a stationary point, 
which is the power of the wave, is constant; (b) The power is 
proportional to the square of the amplitude and to the wave speed. 
The speed decreases as the wave moves into shallower water near 
shore, so the amplitude must increase; (c) 8.31 m; (d) As the water 
depth goes to zero, our model would predict zero speed and infinite 
amplitude. In fact, the amplitude must be finite as the wave comes 
ashore. As the speed decreases, the wavelength also decreases. When it 
becomes comparable to the water depth, or smaller, our formula  gd  
for wave speed no longer applies. 

P16.56 8.43 × 10−3 s 
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P16.58 (a)   P = 0.050 0 vy ,max
2  where P is in watts and vy,max is in meters per 

second; (b) The power is proportional to the square of the maximum 
particle speed; (c)   E = 7.50× 10−4( )vy ,max

2  where E is in joules and vy,max is 

in meters per second; (d) 
  

1
2

mvy ,max
2 ; (e)   E = 0.300vy ,max

2  where E is in 

joules and vy,max is in meters per second 

P16.60 
  
2 L

g
 

P16.62 The given speed corresponds to an ocean depth that is greater than the 
average ocean depth, about 4 280 m. 

P16.64 (a) 
  
t = 2 L

g
M + m − M( ) ; (b) 

  
2 L

g
; (c) 

 

mL
Mg

 

P16.66 (a) 
  
µ (x) =

µL −µ0( )x
L

+ µ0 ; (b) 
  
Δt = 2L

3 T µL −µ0( )
µL

3/2 −µ0
3/2( )  
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17 
Sound Waves 

 

CHAPTER OUTLINE 
 

17.1  Pressure Variations in Sound Waves 

17.2  Speed of Sound Waves 

17.3  Intensity of Periodic Sound Waves 

17.4 The Doppler Effect 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ17.1 Answer (b). The typically higher density would by itself make the 
speed of sound lower in a solid compared to a gas. 

OQ17.2 Answer (e). The speed of sound in air, at atmospheric pressure, is 
determined by the temperature of the air and does not depend on the 
frequency of the sound. Sound from siren A will have a wavelength 
that is half the wavelength of the sound from B, but the speed of the 
sound (the product of frequency times wavelength) will be the same 
for the two sirens. 

OQ17.3 Answer (c). The ambulance driver, sitting at a fixed distance from the 
siren, hears the actual frequency emitted by the siren. However, the 
distance between you and the siren is decreasing, so you will detect a 
frequency higher than the actual 500 Hz. 

OQ17.4 Answer (d). When a sound wave travels from air into water, several 
properties will change. The wave speed will increase as the wave 
crosses the boundary into the water causing the spacing between 
crests (the wavelength) to increase, because crests move away from 
the boundary faster than they move up to the boundary. The sound 
intensity in the water will be less than it was in air because some 
sound is reflected by the water surface. However, the frequency 
(number of crests passing each second) will be unchanged, since a 
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crest moves away from the boundary every time a crest arrives at the 
boundary. 

OQ17.5 Answer (d). The drop in intensity is what we should expect 
according to the inverse-square law:  

  

  

I1

I2

= r1
2

r2
2 :     

2 µW/m2

0.2 µW/m2 = 10 = 950 m( )2

300 m( )2

  

OQ17.6 Answer (d). We have fs = 1 000 Hz, v = 343 m/s, vo = −30 m/s,  
vs = 50 m/s. We find 

  

  

′f =
f v + vo( )

v − vs( ) =
1 000 Hz( ) 343 m/s( ) + −30 m/s( )[ ]

343 m/s − 50 m/s
= 1 068 Hz

 

OQ17.7  Answer (b). A sound wave is a longitudinal vibration that is 
propagated through a material medium. 

OQ17.8 (i) Answer (b). The frequency increases by a factor of 2 because the 
wave speed, which is dependent only on the medium through 
which the wave travels, remains constant. 

 (ii) Answer (c). 

OQ17.9 Answer (a) We suppose that a point source has no structure, and 
radiates sound equally in all directions (isotropically). The sound 
wavefronts are expanding spheres, so the area over which the sound 
energy spreads increases according to   A = 4π r2.  Thus, if the distance 
is tripled, the area increases by a factor of nine, and the new intensity 
will be one-ninth of the old intensity. This answer according to the 
inverse-square law applies if the medium is uniform and 
unbounded. For contrast, suppose that the sound is confined to move 
in a horizontal layer. (Thermal stratification in an ocean can have this 
effect on sonar “pings.”) Then the area over which the sound energy 
is dispersed will only increase according to the circumference of an 
expanding circle:   A = 2π rh,  and so three times the distance will 
result in one-third the intensity. In the case of an entirely enclosed 
speaking tube (such as a ship’s telephone), the area perpendicular to 
the energy flow stays the same, and increasing the distance will not 
change the intensity appreciably. 

OQ17.10 (i) Answer (c). Both observer and source have equal speeds in 
opposite directions relative to the medium, so in 

  ′f = (v + vo )/(v − vs)  we would have something like  
(343 − 25)f/(343 − 25) = f. 
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 (ii) Answer (a). The speed of the medium adds to the speed of 
sound as far as the observer is concerned, to cause an increase in 
λ = v/f. The wind “stretches” the wavelength out. 

 (iii) Answer (a). 

OQ17.11 In order of decreasing size we have (b) > (d) > (a) > (c) > (e). In 

  ′f = f (v + vo )[ ] (v − vs)[ ]  we can consider the size of the fraction 

  (v + vo ) (v − vs)  in each case, where the positive direction for the 
observer is toward the source, the positive direction for the source is 
toward the observer: (a) 343/343 = 1, (b) 343/(343 − 25) = 1.08, (c) 
343/(343 + 25) = 0.932, (d) (343 + 25)/343 = 1.07, (e) (343 − 25)/343 = 
0.927. 

OQ17.12 Answer (c). The intensity is about 10−13 W/m2. 

OQ17.13 Answer (c). Doubling the power output of the source will double the 
intensity of the sound at the observer’s location. The original decibel 
level of the sound is   β = 10 ⋅ log I I0( ) . After doubling the power 
output and intensity, the new decibel level will be 

  

  

′β = 10 ⋅ log 2I I0( ) = 10 ⋅ log 2 I I0( )⎡⎣ ⎤⎦ = 10 ⋅ log 2( )+ log I I0( )⎡⎣ ⎤⎦
= 10 ⋅ log 2( )+ β

 

 so the increase in decibel level is  ′β − β = 10 ⋅ log 2( ) = 3.0 dB,  making 
(c) the correct answer. 

OQ17.14 Answer (c). The threshold of human hearing is defined as 0 dB; the 
average person cannot hear sound with a lower intensity level. 
Normal conversation has an intensity level of about 60 dB. 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ17.1 For the sound from a source not to shift in frequency, the radial 
velocity of the source relative to the observer must be zero; that is, 
the source must not be moving toward or away from the observer. 
The source can be moving in a plane perpendicular to the line 
between it and the observer. Other possibilities: The source and 
observer might both have zero velocity. They might have equal 
velocities relative to the medium. The source might be moving 
around the observer on a sphere of constant radius. Even if the 
source speeds up on the sphere, slows down, or stops, the frequency 
heard will be equal to the frequency emitted by the source. 

CQ17.2 The speed of sound in air is proportional to the square-root of the 
absolute temperature,   T .  The speed of sound is greater in warmer 
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air, so the pulse from the camera would return sooner than it would 
on a cooler day from an object at the same distance. The camera 
would interpret an object as being closer than it actually is on a hot 
day. 

CQ17.3 The speed of sound to two significant figures is 340 m/s. Let’s 

assume that you can measure time to 
 

1
10

 second by using a 

stopwatch. To get a speed to two significant figures, you need to 
measure a time of at least 1.0 seconds. Since d = vt, the minimum 
distance is 340 meters. 

CQ17.4 When listening, you are approximately the same distance from all of 
the members of the group. If different frequencies traveled at 
different speeds, then you might hear the higher pitched frequencies 
before you heard the lower ones produced at the same time. 

CQ17.5 The speed of light is so high that the arrival of the flash is practically 
simultaneous with the lightning discharge. Thus, the delay between 
the flash and the arrival of the sound of thunder is the time sound 
takes to travel the distance separating the lightning from you. By 
counting the seconds between the flash and thunder and knowing 
the approximate speed of sound in air, you have a rough measure of 
the distance to the lightning bolt. 

CQ17.6 Both. There are actually two Doppler shifts. The first shift arises from 
the source (you) moving toward the observer (the cliff). The second 
arises from the observer (you) moving toward the source (the cliff). 
If, instead of a cliff, there is a spacecraft moving toward you, then 
there are shifts due to moving source (you) and moving observer (the 
spacecraft) before reflection, and moving source (the spacecraft) and 
moving observer (you) after reflection. 

CQ17.7 A beam of radio waves of known frequency is sent toward a 
speeding car, which reflects the beam back to a detector in the police 
car. The amount the returning frequency has been shifted depends 
on the velocity of the oncoming car. 

CQ17.8 Our brave Siberian saw the first wave he encountered, light traveling 
at 3.00 × 108 m/s. At the same moment, infrared as well as visible 
light began warming his skin, but some time was required to raise 
the temperature of the outer skin layers before he noticed it. The 
meteor produced compressional waves in the air and in the ground. 
The wave in the ground, which can be called either sound or a 
seismic wave, traveled much faster than the wave in air, since the 
ground is much stiffer against compression. Our witness received it 
next and noticed it as a little earthquake. He was no doubt unable to 
distinguish the P and S waves from each other. The first air-
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compression wave he received was a shock wave with an amplitude 
on the order of meters. It transported him off his doorstep. Then he 
could hear some additional direct sound, reflected sound, and 
perhaps the sound of the falling trees. 

CQ17.9 If an object is a half meter from the sonic ranger, then the sensor 
would have to measure how long it would take for a sound pulse to 
travel one meter. Because sound of any frequency moves at about 
343 m/s, the sonic ranger would have to be able to measure a time 
difference of under 0.003 seconds. This small time measurement is 
possible with modern electronics, but it would be more expensive to 
outfit sonic rangers with the more sensitive equipment than it is to 

print “do not use to measure distances less than 
 

1
2

 meter” in the 

users’ manual. 

 

 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 17.1 Pressure Variations in Sound Waves 

P17.1 (a) 
  
A = 2.00 µm  

 (b) 
 
λ = 2π

15.7
= 0.400 m = 40.0 cm  

 (c) 
  
v = ω

k
= 858

15.7
= 54.6 m s  

 (d) 
  
s = 2.00 cos 15.7( ) 0.050 0( ) − 858( ) 3.00 × 10−3( )⎡⎣ ⎤⎦ = −0.433 µm  

 (e) 
  
vmax = Aω = 2.00 µm( ) 858 s−1( ) = 1.72 mm s  

P17.2 (a) 
  
ΔP = 1.27 Pa( )sin π x

m
− 340π t

s
⎛
⎝
⎜

⎞
⎠
⎟  (SI units) 

  The pressure amplitude is: 
  
ΔPmax = 1.27 Pa  

 (b)   ω = 2π f = 340π s,  so 
  
f = 170 Hz  

 (c) 
  
k = 2π

λ
= π m,  giving 

 
λ = 2.00 m  

 (d) 
  
v = λ f = 2.00 m( ) 170 Hz( ) = 340 m/s  
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P17.3 We write the pressure variation as   ΔP = ΔPmax sin kx −ωt( ).  Note that 

   
  
k = 2π

λ
= 2π

0.100 m( )
= 62.8 m−1  

 and  
  
ω =

2π v
λ

=
2π 343 m s( )

0.100 m( ) = 2.16 × 104  s−1.  

 Therefore, 
   

  
ΔP = 0.200 sin 62.8x − 2.16 × 104t⎡⎣ ⎤⎦

  

 where  ΔP  is in Pa, x is in meters, and t is in seconds. 
 

 

 

Section 17.2 Speed of Sound Waves 

P17.4 We use 
  
ΔPmax = ρvω smax = ρv

2π v
λ

⎛
⎝⎜

⎞
⎠⎟ smax:  

 

  
λmin =

2πρv2smax

ΔPmax

=
2π 1.20 kg/m3( ) 343 m/s( )2 5.50 × 10−6  m( )

0.840 Pa
= 5.81 m

 

*P17.5   ΔPmax = ρω vsmax = 1.20 kg m3( ) 2π 2 000 s−1( )[ ] 343 m s( ) 2.00 × 10−8  m( )  
 

  ΔPmax = 0.103 Pa
 

P17.6 The speed of longitudinal waves in a fluid is   v = B ρ .  Considering 
the Earth’s crust to consist of a very viscous fluid, our estimate of the 
average bulk modulus of the material in Earth’s crust is 

   
  
B = ρv2 = 2 500kg m3( ) 7 × 103 m s( )2

= 1× 1011  Pa  

P17.7 The sound pulse must travel 150 m before reflection and 150 m after 
reflection. We have d = vt: 

   
  
t = d

v
= 300 m

1 533 m s
= 0.196 s  
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P17.8 (a) 

  

The speed gradually changes from 

v = (331 m/s)(1+ 27.0°C
273°C

)1/2 = 347 m/s 

to v = (331 m/s)(1+ 0°C
273°C

)1/2 = 331 m/s

a 4.6% decrease. The cooler air at the same pressure is 
more dense.

 

 (b) 

 

The frequency is unchanged because every wave crest in the hot
air becomes one crest without delay in the cold air.

 

 (c) 

  

The wavelength decreases by 4.6%, from 
v/f = (347 m/s)/(4000/s) = 86.7 mm 

to v/f = (331 m/s)/(4000/s) = 82.8 mm
The crests are more crowded together when they move 
more slowly.

 

P17.9 (a) If  f = 2.40 MHz, 
  
λ =

v
f
=

1 500 m/s
2.40 × 106  s−1 = 0.625 mm  

 (b) If  f = 1.00 MHz, 
  
λ =

v
f
=

1 500 m/s
106  s−1 = 1.50 mm  

  If  f = 20.0 MHz, 
 
λ =

1 500 m/s
2 × 107  s−1 = 75.0 µm  

P17.10   ΔPmax = ρvω smax  
 

  

smax = ΔPmax

ρvω
= 4.00× 10−3  N m2

1.20 kg m3( ) 343 m s( ) 2π( ) 10.0× 103  s−1( )
= 1.55× 10−10  m

 

P17.11 (a) Since vlight >> vsound, and assuming that the speed of sound is 
constant through the air between the lightning strike and the 
observer, we have  

   
  
d ≈ 343 m s( ) 16.2 s( ) = 5.56 km  

 (b) 

 

No, we do not need to know the value of the speed of light.
The speed of light is much greater than the speed of sound,
so the time interval required for the light to reach you is
negligible compared to the time interval for the sound.
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P17.12 It is easiest to solve part (b) first: 

 (b) The distance the sound travels to the plane is  

   
  
ds = h2 + h

2
⎛
⎝
⎜

⎞
⎠
⎟

2

= h 5
2

 

  The sound travels this distance in 2.00 s, so 

   
  
ds = h 5

2
= 343 m s( ) 2.00 s( ) = 686 m  

  giving the altitude of the plane as 
  
h =

2 686 m( )
5

= 614 m  

 (a) The distance the plane has traveled in 2.00 s is  

   
  
v 2.00 s( ) = h

2
= 307 m  

  Thus, the speed of the plane is:  

   
  
v = 307 m

2.00 s
= 153 m s  

P17.13 Sound takes this time to reach the man: 
  
Δts =

d − h
v

. The minimum time 

interval between when a warning is shouted and when the man 
responds to the warning is   Δtmin = Δts + Δt.  

 Since the whole time interval to fall is given by  

   
  
Δy = d − h( ) = 1

2
gΔt f

2 →  
  
Δt f =

2 d − h( )
g

 

 The warning needs to come at least  

   
  
ΔT = Δt f − Δt − Δts =

2 d − h( )
g

−  
 
Δt − d − h

v
  

 into the fall, when the pot is at the position 
   

  

y f = yi + vyiΔT − 1
2

gΔT 2

y f = 20.0 m − 1
2

9.80 m/s2( )

              × 2 20.0 m − 1.75 m( )
g

− 0.300 s − 20.0 m − 1.75 m
343 m/s

⎛

⎝⎜
⎞

⎠⎟

2

y f = 7.82 m  above the ground.
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P17.14 Sound takes this time to reach the man: 
  
Δts =

d − h
v

.  The minimum 

time interval between when a warning is shouted and when the man 
responds to the warning is   Δtmin = Δts + Δt.  

 Since the whole time interval to fall is given by  

   
  
Δy = d − h( ) = 1

2
gΔt f

2 →  
  
Δt f =

2 d − h( )
g

 

 The warning needs to come at least 

    
  
ΔT = Δt f − Δt − Δts =

2 d − h( )
g

−  
 
Δt − d − h

v
  

 into the fall, when the pot is at the position 

     

y f = yi + vyiΔT −
1
2

gΔT 2

y f = d −
1
2

g
2 d − h( )

g
− Δt −

d − h
v

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

 above the ground.

 

P17.15 (a) At 9 000 m, 
  
ΔT = 9 000 m( ) −1.00°C

150 m
⎛
⎝⎜

⎞
⎠⎟ = −60.0°C,  so T = –30.0°C.  

  Using the chain rule, 

   
  

dv
dt

= dv
dTC

dTC

dx
dx
dt

= v dv
dTC

dTC

dx
= v 0.607( ) 1

150
⎛
⎝
⎜

⎞
⎠
⎟ = v

247
 

  so 
  
dt = 247 s( ) dv

v
. Integrating, 

   

  

dt
0

t

∫ = 247 s( ) dv
v

vi

v f

∫
t = 247 s( )ln

v f

vi

⎛

⎝
⎜

⎞

⎠
⎟ = 247 s( )ln

331.5 + 0.607 30.0( )
331.5 + 0.607 −30.0( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

  which gives 
  
t = 27.2 s  for sound to reach the ground. 

 (b) 
  
t = h

v
= 9 000 m

331.5 m/s + 0.607 30.0°C( ) = 25.7 s  

 
The time interval in (a) is longer.  
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P17.16 Since  cos2θ + sin2θ = 1 ,  sinθ = ± 1− cos2θ  (each sign applying half the 
time), 

   
  ΔP = ΔPmax sin kx −ωt( ) = ±ρvω smax 1− cos2 kx −ωt( )  

 Therefore,  
  

  ΔP = ± ρvω smax
2 − smax

2 cos2 kx −ωt( ) = ± ρvω smax
2 − s2  

P17.17 (a) The two pulses travel the same distance, and so the one that 
travels at the highest velocity will arrive first. Because the speed 
of sound in air is 343 m/s and the speed of sound in the iron rod 
is 5 950 m/s, 

 
the pulse travelling through the iron rail will arrive first .  

 (b) For each of the pulses 
 
t = L

v
. 

  Therefore,  

    
  
trod = L

vrod

= 8.50 m
5 950 m/s

= 1.43 milliseconds  

  and 
  
tair =

L
vair

= 8.50 m
343 m/s

= 24.78 milliseconds  

  The difference between their two arrival times is 

      Δt = tair − trod = 24.78 ms − 1.43 ms = 23.4 ms  

P17.18 Let d1 represent the cowboy’s distance from the nearer canyon wall 
and d2 his distance from the farther cliff. The sound for the first echo 
travels distance 2d1. For the second, 2d2. For the third, 2d1 + 2d2. For the 
fourth echo, 2d1 + 2d2 + 2d1. The time interval between the shot and the 
first echo is ∆t1 = 2d1/v, between the shot and the second echo is ∆t2 = 
2d2/v, and so on. 

 Then 

   
  
Δt2 − Δt1 =

2d2 − 2d1

343 m/s
= 1.92 s  and 

   

  
Δt3 − Δt2 =  1.47 s   →    

2d1 + 2d2( ) − 2d2

343 m/s
=

2d1

343 m/s
= 1.47 s

 

 Thus, 
  
d1 = 1

2
343 m s( ) 1.47 s( ) = 252 m , and   Δt1 = 1.47 s  
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 From above,    
   

  
Δt2 − Δt1  = 1.92 s   →   

2d2

343 m/s
= 1.92 s + 1.47 s

  

 which gives   d2 = 581 m  

 (a) So, 
  
d1 + d2 = 833m . 

 (b) 
  

2d1 + 2d2 + 2d1 − 2d1 + 2d2( )
343 m/s

=
2d2

343 m/s
= 1.47 s  

 

 

 

Section 17.3 Intensity of Periodic Sound Waves 
P17.19 We use Equation 17.14: 
    

  

β =  10 dB( )log
I
I0

⎛
⎝⎜

⎞
⎠⎟

= 10 dB( )log
4.00× 10−6  W/m2

1.00× 10−12  W/m2

⎛
⎝⎜

⎞
⎠⎟

= 66.0 dB

 

P17.20 The sound power incident on the eardrum is P = IA, where I is the 
intensity of the sound and A = 5.00 × 10−5 m2 is the area of the eardrum. 

 (a) At the threshold of pain, I = 1.00 W/m2. 

  Thus, 
  
P = IA = 5.00× 10−5 m2( ) 1.00 W/m2( ) = 5.00× 10−5 W  

 (b) Energy transfer can be obtained from power by 

  
P = E

Δt
→ E = PΔt.  Thus,  

    
  
E = PΔt = 5.00× 10−5  J/s( ) 60.0 s( ) = 3.00× 10−3  J  

P17.21 We use 
  
I = 1

2
ρω 2smax

2 v.  

 (a) At f = 2 500 Hz, the frequency is increased by a factor of 2.50, so 
the intensity (at constant smax) increases by (2.50)2 = 6.25. 

  Therefore, 
 
6.25 0.600( ) = 3.75 W/m2  

 (b) The changes cancel each other: frequency   f → ′f = f /2,  and 
displacement amplitude   smax → ′smax = 2smax  
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  originial intensity: 
  
I =

1
2
ρω 2smax

2 v = 0.600 W/m2  

  new intensity: 

  

′I = 1
2
ρ ′ω 2 ′smax

2 v = 1
2
ρ ω

2
⎛
⎝⎜

⎞
⎠⎟

2

2smax( )2
v = 1

2
ρω 2smax

2 v

= 600 W/m2

  

P17.22 The original intensity is 
  
I1 =

1
2
ρω2smax

2 v = 2π 2ρvf 2smax
2  

 (a) If the frequency is increased to f ′ while a constant displacement 
amplitude is maintained, the new intensity is 

    
  I2 = 2π 2ρv ′f( )2 smax

2  so 
  

I2

I1

=
2π 2ρv ′f( )smax

2

2π 2ρvf 2smax
2 =

′f
f

⎛
⎝⎜

⎞
⎠⎟

2

  

  or 
  

I2 =
′f

f
⎛
⎝⎜

⎞
⎠⎟

2

I1
 

 (b) If the frequency is reduced to 
  
′f = f

2
 while the displacement 

amplitude is doubled, the new intensity is 

    
  
I2 = 2π 2ρv

f
2

⎛
⎝⎜

⎞
⎠⎟

2

2smax( )2
= 2π 2ρvf 2smax

2 = I1
 

  or the 
 

intensity is unchanged . 

P17.23 In terms of their intensities, the difference in the decibel level of two 
sounds is 

    

  

β2 − β1 = 10 dB( )log
I2

I0

⎛
⎝⎜

⎞
⎠⎟
− 10 dB( )log

I1

I0

⎛
⎝⎜

⎞
⎠⎟

= 10 dB( )log
I2

I0

⋅
I0

I1

⎛

⎝
⎜

⎞

⎠
⎟ = 10 dB( )log

I2

I1

⎛
⎝⎜

⎞
⎠⎟

 

 Thus,  
  

I2

I1

= 10 β2 −β1( ) 10       or        I2 = I1 × 10 β2 −β1( ) 10  

 If  β2 − β1 = 30 dB   and   I1 = 3.0 × 10−11  W/m2 , then 

    
  
I2 = 3.0 × 10−11  W/m2( ) × 103 = 3.0 × 10−8  W/m2  
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P17.24 The intensity is given by 
  
I =

Pavg

4πr2 .  

 The power is not given, but the intensity at a known distance is 

  
I =

Pavg

4πr2 ,  which gives 

    
  Pavg = I(r)4πr2 = 4π 0.25 W/m2( ) 16 m( )2 = 804.2 W

 

 which can then be substituted back into the same equation: 
    

  
I =

Pavg

4πr2 = 804.2 W
4π 28 m( )2 = 0.082 W/m2

 

P17.25 (a) From the sound level equation, 

    
  
120 dB = 10 dB( )log

I
10−12  W/m2

⎡

⎣
⎢

⎤

⎦
⎥  

    

  

I = 1.00 W m2 =
P

4π r2

r =
P

4π I
=

6.00 W
4π 1.00 W/m2( ) = 0.691 m

 

  We have assumed the speaker is an isotropic point source. 

 (b) Again from the sound level equation, 

    
  
0 dB = 10 dB( )log

I
10−12  W/m2

⎛
⎝⎜

⎞
⎠⎟

 

    

  

I = 1.00 × 10−12  W/m2

r =
P

4π I
=

6.00 W
4π 1.00 × 10−12  W/m2( ) = 691km

 

  We have assumed a uniform medium that absorbs no energy. 

P17.26 The decibel level due to the first siren is 

    
 
β1 = 10 dB( )log

100.0 W/m2

1.0 × 10−12  W/m2

⎛

⎝⎜
⎞

⎠⎟
= 140 dB  

 Thus, the decibel level of the sound from the ambulance is 

     β2 = β1 + 10 dB = 140 dB + 10 dB = 150 dB  
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*P17.27 (a) The intensity of sound at 10 km from the horn (where β = 50 dB) 
is 

    
  I = I010β/10 = 1.0× 10−12  W/m2( )105.0 = 1.0× 10−7  W/m2   

  Thus, from 
  
I = P

4πr2 ,  the power emitted by the source is 

    
  P = 4πr2I = 4π 10.0× 103  m( )2

1.0× 10−7  W/m2( ) = 126 W
 

 (b) At r = 50 m, the intensity of the sound will be 
    

  
I = P

4πr2 = 1.3× 102  W
4π 50 m( )2 = 4.0× 10−3  W/m2

 

  and the sound level is 
    

  

β = 10 dB( )log
I
I0

⎛
⎝⎜

⎞
⎠⎟

= 10 dB( )log
4.0× 10−3  W/m2

1.0× 10−12  W/m2

⎛
⎝⎜

⎞
⎠⎟

= 96 dB

 

P17.28 (a) The sound intensity inside the church is given by 

   

  

β = 10 dB( )log
I
I0

⎛
⎝⎜

⎞
⎠⎟

101 dB = 10 dB( )log
I

10−12  W/m2
⎛
⎝⎜

⎞
⎠⎟

I = 1010.1 10−12  W/m2( ) = 10−1.90  W/m2 = 0.012 6 W/m2

 

  We suppose that sound comes perpendicularly out through the 
windows and doors. Then, the radiated power is 

   
  
P = IA = 0.012 6 W/m2( ) 22.0 m2( ) = 0.277 W

 

  Are you surprised by how small this is? The energy radiated in  
20.0 minutes is 

   
  
E = Pt = 0.277 J s( ) 20.0 min( ) 60.0 s

1.00 min
⎛
⎝
⎜

⎞
⎠
⎟ = 332 J  

 (b) If the ground reflects all sound energy headed downward, the 
sound power, P = 0.277 W, covers the area of a hemisphere. One 
kilometer away, this area is  

   
  A = 2π r2 = 2π 1 000 m( )2 = 2π × 106  m2  
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  The intensity at this distance is 

   
  
I =

P
A

=
0.277 W

2π × 106  m2 = 4.41× 10−8  W/m2  

  and the sound intensity level is 
   

 
β = 10 dB( )log

4.41× 10−8  W/m2

1.00× 10−12  W/m2

⎛
⎝⎜

⎞
⎠⎟

= 46.4 dB
 

P17.29 (a) For the initial low note the wavelength is  

   
  
λ =

v
f
=

343 m/s
146.8/ s

= 2.34 m  

 (b) For the final high note 
 
λ =

343 m/s
880/ s

= 0.390 m  

  We observe that the ratio of the frequencies of these two notes is 

 

880 Hz
146.8 Hz

= 5.99,  nearly equal to a small integer. This fact is 

associated with the consonance of the notes D and A. 

 (c, d)  The intensity level for both notes is the same 75.0 dB: 
   

  
β = (10 dB) log

I
10−12  W m2

⎛
⎝⎜

⎞
⎠⎟
= 75 dB

  

  gives   I = 3.16 × 10−5  W/m2  

  Therefore, the pressure amplitude for both low and high notes is 

the same, and 
  
I = ΔPmax

2

2ρv
 gives 

          

  

ΔPmax = 2ρvI

= 2 1.20 kg/m3( ) 343 m/s( ) 3.16× 10−5  W/m2( )
= 0.161 Pa

 

 (e) 
  
I = 1

2
ρv ωsmax( )2 = 1

2
ρv4π 2 f 2smax

2 → smax = I
2π 2ρvf 2 = 1

f
I

2π 2ρv
 

  We see that for the same intensity level, the displacement 
amplitude is inversely proportional to the frequency. 



Chapter 17     907 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  For the low note, 
    

  

smax =
1

146.8 s
3.16× 10−5  W m2

2π 2 (1.20 kg m3)(343 m s)

= 6.24× 10−5 m s
146.8 s−1 = 4.25× 10−7  m

 

 (f) For the high note, 
   

  
smax =

6.24× 10−5  m/s
880 s−1 = 7.09× 10−8  m

 

P17.30 We begin with 
  
β2 = 10 dB( ) log I2

I0

⎛

⎝
⎜

⎞

⎠
⎟  and 

  
β1 = 10 dB( )log

I1

I0

⎛
⎝⎜

⎞
⎠⎟

,  so 

   
  
β2 − β1 = 10 dB( ) log I2

I1

⎛

⎝
⎜

⎞

⎠
⎟  

 Also, 
  
I2 =

P
4π r2

2  and 
  
I1 =

P
4π r1

2 ,  giving 
  

I2

I1

=
r1

r2

⎛

⎝⎜
⎞

⎠⎟

2

 

 Then, 
  
β2 − β1 = 10 dB( )log

r1

r2

⎛
⎝⎜

⎞
⎠⎟

2

= 20log
r1

r2

⎛
⎝⎜

⎞
⎠⎟

 

P17.31 From 
  
β = 10 log I

10–12  W m2

⎛
⎝⎜

⎞
⎠⎟

, we have  

    
  I = [10β/10] 10−12  W/m2( )  

 (a) For your baby,   

    
  Ib = 1075.0/10( ) 10−12 W/m2( ) = 3.16× 10−5 W/m2  

  For the music,   

    
  
Im = 1080.0/10( ) 10−12 W/m2( ) = 10.0 × 10−5 W/m2  

   The combined intensity is  
    

  

Itotal = Im + Ib

= 10.0× 10−5 W/m2 + 3.16× 10−5 W/m2

= 13.2 × 10−5 W/m2
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 (b) The combined sound level is then 
    

  

βtotal = 10log
Itotal

10–12  W m2
⎛
⎝⎜

⎞
⎠⎟
= 10log

1.32 × 10–4 W m2

10–12 W m2
⎛
⎝⎜

⎞
⎠⎟

= 81.2 dB

 

P17.32 The speakers broadcast equally in all directions, so the intensity of 
sound is inversely proportional to the square of the distance from its 
source. 

 (a)   rAC = 3.002 + 4.002  m = 5.00 m  

   

  

I =
P

4π r2 =
1.00 × 10−3  W

4π 5.00 m( )2 = 3.18 × 10−6  W/m2

β = 10 dB( )log
3.18 × 10−6  W/m2

10−12  W/m2

⎛

⎝⎜
⎞

⎠⎟

β = 10 dB( )  6.50 = 65.0dB

 

 (b)   rBC = 4.47 m  

   

  

I = 1.50× 10−3  W
4π 4.47 m( )2 = 5.97 × 10−6  W/m2

β = 10 dB( )log
5.97 × 10−6 W m2

10−12 W m2

⎛
⎝⎜

⎞
⎠⎟

β = 67.8 dB

 

 (c)   I = 3.18 µW m2 + 5.97 µW m2  
   

 
β = 10 dB( )log

9.15× 10−6 W m2

10−12 W m2

⎛
⎝⎜

⎞
⎠⎟

= 69.6 dB
 

P17.33 The sound intensity at distance d1 is, suppressing units, 

   
  
I1 = ΔPmax

2

2ρv
=

10.0( )2

2 1.20( ) 343( )
= 0.121 W m2  

 If air does not absorb sound energy, the intensity of sound is inversely 
proportional to the square of the distance from its source. The intensity 
at distance d2 is 

   

  

I2 = d1

d2

⎛
⎝⎜

⎞
⎠⎟

2

I1 = 500 m
4 000 m

⎛
⎝⎜

⎞
⎠⎟

2

I1 = 1
64

0.121 W/m2( )
= 1.89× 10−3  W/m2
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 which has an intensity level of 
   

  

β2 = 10 dB( )log
I2

I0

⎛
⎝⎜

⎞
⎠⎟

= 10 dB( )log
1.89× 10−3  W/m2

10−12  W m2

⎛
⎝⎜

⎞
⎠⎟

= 92.77 dB

 

 Allowing for absorption of the wave over the distance traveled, 
   

 ′β2 = β2 − 7.00 dB km( ) 3.50 km( ) = 68.3 dB
 

 This is equivalent to the sound intensity level of heavy traffic. 

P17.34 (a) The energy transferred by sound from the explosion is 
   

  

TMW = PΔt = 4πr2IΔt

=  4π 100 m( )2 7.00× 10−2  W/m2( ) 0.200 s( )
= 1.76 kJ

 

 (b) 
 
β = 10 dB( ) log 7.00× 10−2

1.00× 10−12

⎛

⎝
⎜

⎞

⎠
⎟ = 108 dB  

P17.35 From the definition of sound level, 
   

  
β = 10log I

10–12  W m2
⎛
⎝⎜

⎞
⎠⎟

 

 we can compute the intensities corresponding to each of the levels 
mentioned as I = [10β/10]10−12 W/m2. 

 They are  I120 = 1 W/m2  

    I100
 =10−2 W/m2  

 and   I10 = 10−11 W/m2 

 (a) The power passing through any sphere around the source is 

  Power = 4πr2I.  If we ignore absorption of sound by the medium, 
conservation of energy for the sound wave as a system requires 
that   r120

2 I120 = r100
2 I100 = r10

2 I10.  Then
 

  
r100 = r120

I120
I100

= (3.00 m) 
1 W m2

10–2  W m2 = 30.0 m
 

 (b) 
  
r10 = r120

I120
I10

= (3.00 m)
1 W m2

10–11  W m2 = 9.49× 105  m  
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P17.36 

 

We assume that both lawn mowers are equally loud and
approximately the same distance away. We found in 
Example 17.3 that a sound of twice the intensity results in 
an increase in sound level of 3 dB. We also see from the 
What If? section of that example that a doubling of loudness 
requires a 10-dB increase in sound level. Therefore, the 
sound of two lawn mowers will not be twice the loudness, 
but only a little louder than one!

 

 
 

 

Section 17.4 The Doppler Effect 
P17.37 The source and detector of waves are both moving with respect to the 

medium in which the waves are travelling. 

 (a) The general form of the Doppler equation is: 

   
 
′f = v + vo

v − vs

⎛

⎝
⎜

⎞

⎠
⎟ f  

  where the positive signs for vo and vs are for source or observer 
approaching each other. When the ambulance is approaching the 
car from behind: 

   

  

′f = v + vO

v − vS

⎛
⎝⎜

⎞
⎠⎟

f =
343 + −25( )
343− +42( )

⎛

⎝⎜
⎞

⎠⎟
450 Hz = 1.056( )450 Hz

= 475 Hz

 

 (b) When the ambulance is moving away in front of the moving car: 
   

  

′f = v + vO

v − vS

⎛
⎝⎜

⎞
⎠⎟

f =
343 + +25( )
343− −42( )

⎛

⎝⎜
⎞

⎠⎟
450 Hz = 0.956( )450 Hz

= 430 Hz

 

P17.38 The half angle of the shock wave cone is given by 
  
sinθ =

vlight

vS

.  

   
  
vS =

vlight

sinθ
= 2.25× 108  m s

sin 53.0°( )
= 2.82 × 108  m s  
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P17.39 (a) The Doppler-shifted frequency is found from 
   

  

′f =
f v + vo( )

v − vs( )
= 2 500 Hz( ) 343 + 25.0( )

343− 40.0( ) = 3.04 kHz

 

 (b) After the police car passes, 
   

  
′f = 2 500 Hz( ) 343 + −25.0( )

343− (−40.0)
⎛
⎝⎜

⎞
⎠⎟

= 2.08 kHz
 

 (c) While the police car overtakes the driver, 
   

  
′f = 2 500 Hz( ) 343 + −25.0( )

343− 40.0
⎛
⎝⎜

⎞
⎠⎟

= 2.62 kHz
  

  After the police car passes, 
    

  
′f = 2 500 Hz( ) 343 + 25.0

343− −40.0( )
⎛
⎝⎜

⎞
⎠⎟

= 2.40 kHz
  

P17.40 (a) Equation 17.19, 
 
′f = f v + vo

v − vs

⎛

⎝
⎜

⎞

⎠
⎟ , applies to an observer on  B  

because B is receiving sound from source A. 

 (b) The sign of vs should be 
 
positive  because the source is moving 

toward the observer, resulting in an increase in frequency. 

 (c) The sign of vo should be 
 
negative  because the observer is 

moving away from the source, resulting in a decrease in 
frequency. 

 (d) The speed of sound should be that of the medium of seawater, 

 1 533 m/s .  

 (e) 

  

fo = fs
v + vo

v − vs

⎛
⎝⎜

⎞
⎠⎟

= 5.27 × 103  Hz( ) 1 533 m/s( ) + −3.00 m/s( )
1 533 m/s( ) − +11.0 m/s( )

⎡

⎣
⎢

⎤

⎦
⎥

= 5.30 × 103  Hz
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P17.41 (a) The maximum speed of the speaker is described by 

   

  

1
2

mvmax
2 =

1
2

kA2

vmax =
k
m

A =
20.0 N m

5.00 kg
0.500 m( ) = 1.00 m s

 

  The frequencies heard by the stationary observer range from 

   
  
′fmax = f v

v − vmax

⎛

⎝
⎜

⎞

⎠
⎟ = 440 Hz 343

343 − 1.00
⎛
⎝
⎜

⎞
⎠
⎟ = 441 Hz  

  to 

 (b) 
  
′fmin = f v

v + vmax

⎛

⎝
⎜

⎞

⎠
⎟ = 440 Hz 343

343 + 1.00
⎛
⎝
⎜

⎞
⎠
⎟ = 439 Hz  

 (c) 
  
β = 10 dB( ) log I

I0

⎛

⎝
⎜

⎞

⎠
⎟ = 10 dB( ) log P 4π r2

I0

⎛

⎝
⎜

⎞

⎠
⎟  

  The maximum intensity level βmax = 60.0 dB occurs at r = rmin = 
1.00 m. The minimum intensity level occurs when the speaker is 
farthest from the listener, i.e., when r = rmax = rmin + 2A = 2.00 m. 

  Thus, 
  
βmax − βmin = (10 dB)log P

4π I0rmin
2

⎛

⎝
⎜

⎞

⎠
⎟− (10 dB)log P

4π I0rmax
2

⎛

⎝
⎜

⎞

⎠
⎟  

  or 
   

  

βmax − βmin = (10 dB) log
P

4π I0rmin
2

4π I0rmax
2

P
⎛
⎝⎜

⎞
⎠⎟

= (10 dB) log
rmax

2

rmin
2

⎛
⎝⎜

⎞
⎠⎟
= (20 dB) log

rmax

rmin

⎛
⎝⎜

⎞
⎠⎟

 

  This gives: 
    

 60.0 dB − βmin = (20 dB) log 2.00( ) = 6.02 dB  

or  βmin = 54.0 dB  

P17.42 The maximum speed of the speaker is described by 

  

  

1
2

mvmax
2 = 1

2
kA2

vmax =
k
m

A
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 The frequencies heard by the stationary observer range from 

 (a) 

  

′fmax =
vf

v − A k
m

 to (b) 

  

′fmax = vf

v + A k
m

 

  where v is the speed of sound. 

 (c) 
  
β = 10 dB( ) log I

I0

⎛

⎝
⎜

⎞

⎠
⎟ = 10 dB( ) log P 4π r2

I0

⎛

⎝
⎜

⎞

⎠
⎟  

  The maximum intensity level βmax = β occurs at r = rmin = d. The 
minimum intensity level occurs when the speaker is farthest from 
the listener, i.e., when r = rmax = rmin + 2A = d + 2A. 

  Thus, 

   
  
βmax − βmin = (10 dB) log P

4π I0rmin
2

⎛

⎝
⎜

⎞

⎠
⎟− (10 dB) log P

4π I0rmax
2

⎛

⎝
⎜

⎞

⎠
⎟  

  or 
   

  

βmax − βmin = (10 dB) log
P

4π I0rmin
2

4π I0rmax
2

P
⎛
⎝⎜

⎞
⎠⎟

= (10 dB) log
rmax

2

rmin
2

⎛
⎝⎜

⎞
⎠⎟
= (20 dB) log

rmax

rmin

⎛
⎝⎜

⎞
⎠⎟

 

  This gives: 
   

  
β − βmin = (20 dB)log

d + 2A
d

⎛
⎝⎜

⎞
⎠⎟

 

  or 
  
βmin = β − (20 db)log 1+ 2A

d
⎛
⎝⎜

⎞
⎠⎟  

P17.43 (a) 
  
ω = 2π f = 2π 115 min−1

60.0 s min
⎛
⎝⎜

⎞
⎠⎟
= 12.0 rad/s  

  
  
vmax = ωA = 12.0 rad/s( ) 1.80 × 10−3  m( ) = 0.021 7 m/s

 

 (b) The heart wall is a moving observer: 

   

  

Δ ′f = ′f − f = f v + vO

v
− f

⎛
⎝
⎜

⎞
⎠
⎟− f = f vO

v
⎛
⎝
⎜

⎞
⎠
⎟

= 2 000 000 Hz( ) 0.021 7
1 500

⎛

⎝
⎜

⎞

⎠
⎟ = 28.9 Hz
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 (c) Now, the heart wall is a moving source: 

   

 

Δf ″ = f ′
v

v − vs

⎛

⎝⎜
⎞

⎠⎟
− f = f

v + vo

v
⎛
⎝⎜

⎞
⎠⎟

v
v − vs

⎛

⎝⎜
⎞

⎠⎟
− f

Δf ″ = f
v v + vo( )
v v − vs( )

⎛

⎝
⎜

⎞

⎠
⎟ −

v v − vs( )
v v − vs( )

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= f
vo + vs

v − vs

⎡

⎣
⎢

⎤

⎦
⎥

 

  Since the velocities of the source and the observer in these 
expressions are both referring to the movement of the heart wall, 
and the velocity of the sound wave is much greater than those 
velocities, we may approximate: 

   

  

Δf ″ ≅ f
2vs

v
⎡
⎣⎢

⎤
⎦⎥

Δf ″ ≅ 2.00 × 106  Hz( ) 0.043 4
1 500

⎡
⎣⎢

⎤
⎦⎥

= 57.9 Hz

 

P17.44 The apparent frequency drops because of the Doppler effect. Using a T 
subscript for the situation when the athlete moves toward the horn, and 
A for movement away from the horn, we have, 

   

  

′fA

′fT

 = 

v + vOA

v − vS

⎛

⎝
⎜

⎞

⎠
⎟ f

v + vOT

v − vS

⎛

⎝
⎜

⎞

⎠
⎟ f

 =  v + vOA

v + vOT

 = 
v +  −vO( )
v +  +vO( )

 =  v − vO

v + vO

 

 where v0 is the constant speed of the athlete. Setting this ratio equal to 
5/6, we have 

   
  

5
6
  =  v − vO

v + vO

     →    5v + 5vO  = 6v − 6vO      →    11vO = v  

 Solving for the speed of the athlete, 

   
  
vO =  v

11
 = 343 m/s

11
 = 31.2 m/s  

 This is much faster than a human athlete can run.  

P17.45 Let va represent the magnitude of the velocity of the ambulance. 

 As it approaches you hear the frequency 
  
′f = v v

v – va

⎛
⎝⎜

⎞
⎠⎟ f = 560 Hz.  

 The negative sign appears because the source is moving toward the 
observer. The opposite sign with source velocity magnitude describes 
the ambulance moving away. As the ambulance recedes, the Doppler-
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shifted frequency is  

   
  
′′f =  v

v + va

⎛
⎝⎜

⎞
⎠⎟  f = 480 Hz . 

 Solving the second of these equations for f and substituting into the 
other gives 

   
  
′f = v

v – va

⎛
⎝⎜

⎞
⎠⎟

v + va

v
⎛
⎝⎜

⎞
⎠⎟ ′′f    or     ′f v − ′f va = v ′′f + va ′′f  

 so the speed of the source is 
   

  
va =

v ′f – ′′f( )
′f + ′′f =

(343 m/s)(560 Hz – 480 Hz)
560 Hz + 480 Hz = 26.4 m/s

 

P17.46 We first determine how fast the tuning fork is falling to emit sound with 
apparent frequency 485 Hz. Call the magnitude of its velocity vfall. The 
tuning fork source is moving away from the listener, so vs = –vfall. 

 Therefore, we use the equation 
  
′f = v

v + vfall

⎛
⎝⎜

⎞
⎠⎟

f  

 Solving for vfall gives 
   

v + vfall

v
=

f
f '

and vfall = v
f
f '
− 1

⎛
⎝⎜

⎞
⎠⎟

. 

 Substituting, we have 
  
vfall = 512 Hz

485 Hz
− 1⎛

⎝⎜
⎞
⎠⎟ 343 m/s( ) = 19.1 m/s.  

 The time interval required for the tuning fork to reach this speed, from 
the particle under constant acceleration model, is given by 

   
  
vy = 0 + ayt  as   t = vy/ay = (19.1 m/s)/(9.80 m/s2 ) = 1.95 s  

 The distance that the fork has fallen is 
   

  
Δy = 0 +

1
2

ayt
2 =

1
2

(9.80 m/s2 )(1.95 s)2 = 18.6 m
 

 At this moment, the fork would appear to ring at 485 Hz to a 
stationary observer just above the fork. However, some additional time 
is required for the waves to reach the point of release. The fork is 
moving down, but the sound it radiates still travels away from its 
instantaneous position at 343 m/s. From the traveling wave model, the 
time interval it takes to return to the listener is 

     Δt = Δy/v = 18.6 m/(343 m/s) = 0.054 2 s  
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 Over a total time t + ∆t = 1.95 s + 0.054 2 s = 2.00 s, the fork falls a total 
distance  

   

  
dtotal =

1
2

gttotal fall
2 = 19.7 m

 

P17.47 (a) We find the shock angle from 
   

  
θ = sin

v
vS

⎛
⎝⎜

⎞
⎠⎟

−1

= sin
1

3.00
⎛
⎝⎜

⎞
⎠⎟
−1

= 19.5°
 

  from 
  
tan θ = h

x
, 

   

  
x = h

tan θ
= 20 000 m

tan 19.5°
= 5.66× 104  m = 56.6 km

 

  It takes the plane  

   
  
t =

x
vS

=
5.66 × 104  m

3.00 335 m s( ) = 56.3 s   

  to travel this distance. 

 (b) From part (a),   x = 56.6 km  

 
ANS. FIG. P17.47 

 
 

 

Additional Problems 
*P17.48 The size of the insect detected by the bat will be comparable to the 

wavelength of sound emitted by the bat: 

   
  
λ = v

f
= 340 m/s

60.0 × 103  s−1 = 5.67 mm  
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*17.49 At normal body temperature of T = 37.0°C, the speed of sound in air is 
   

  
v = (331 m/s) 1 +

TC

273
= (331 m/s) 1 +

37.0
273

= 353 m/s
 

 and the wavelength of sound having a frequency of f = 20 000 Hz is 

   
  
λ =

v
f
=

353 m/s
20 000 Hz

= 1.76 × 10−2  m = 1.76 cm  

 Thus, the diameter of the eardrum is  1.76 cm.  

P17.50 (a) The wavelength of the note is 

    
  
λ = v

f
= 343 m s

1 480 s−1 = 0.232 m  

 (b) We find the intensity of the 81.0 dB sound from 

     
  
β = 81.0 dB = 10 dB( ) log I

10−12  W m2

⎡

⎣
⎢

⎤

⎦
⎥  

  Then, 
    

  

I = 10−12  W m2( )108.10 = 10−3.90  W m2 = 1.26× 10−4  W m2

= 1
2
ρvω 2smax

2

 

  Which gives a displacement amplitude of 
    

  

smax = 2I
ρvω 2 =

2 1.26× 10−4  W m2( )
1.20 kg m3( ) 343 m s( )4π 2 1 480 s−1( )2

= 8.41× 10−8  m

 

 (c) The wavelength of the F above high C is 

    
  
′λ = v

′f
= 343 m s

1 397 s−1 = 0.246 m  

  and the change in wavelength is 
    

 Δλ = ′λ − λ = 0.246 m − 0.232 m = 13.8 mm
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P17.51 The trucks form a train analogous to a wave train of crests with speed  

v = 19.7 m/s and unshifted frequency 
  
f =

2
3.00 min

= 0.667 min−1.  

 (a) The cyclist as observer measures a lower Doppler-shifted 
frequency: 

   

  

′f = f
v + vo

v
⎛
⎝⎜

⎞
⎠⎟ = 0.667 min−1( ) 19.7 + −4.47( )

19.7
⎛
⎝⎜

⎞
⎠⎟

= 0.515 min

 

 (b) 
  
′′f = f

v + ′vo

v
⎛
⎝⎜

⎞
⎠⎟ = 0.667 min−1( ) 19.7 + −1.56( )

19.7
⎛
⎝⎜

⎞
⎠⎟

= 0.614 min  

  The cyclist’s speed has decreased very significantly, but there is 
only a modest increase in the frequency of trucks passing him. 

P17.52 We calculate the intensity of the speaker from 
   

  
103 dB = 10 dB( )log  

I
10−12  W/m2

⎛
⎝⎜

⎞
⎠⎟

 

 which gives   I = 2.00× 10−2  W m2  

 (a) We find the sound power output from 
   

  
I = P

4π r2

 

  which gives 
   

  P = 4π r2I = 4π 1.60 m( )2 2.00× 10−2  W m2( ) = 0.642 W
 

 (b) The efficiency of the speaker is 

   
  
e = Pout

Pin

= 0.642 W
150 W

= 0.004   or   0.4%  

P17.53 The flow of traffic at night is 1/20th that of the afternoon, so 

   
  
P2 =

1
20.0

P1   

 The difference in sound level is 
   

  
β1 − β2 = 10log

P1

P2

⎛
⎝⎜

⎞
⎠⎟
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 solving for the sound level at night gives 
   

 

80.0− β2 = 10log 20.0( ) = +13.0

β2 = 67.0 dB

 

*P17.54 (a) We have 
 
′f = fv

v − u
 and 

  
′′f = fv

v − −u( )
.   We then have 

    
  
′f − ′′f = fv

1
v − u

− 1
v + u( )  

   

  

Δf = fv v + u− v + u( )
v2 − u2 = 2uvf

v2 1− u2

v2
⎛
⎝⎜

⎞
⎠⎟

=
2 u

v( )
1− u2

v2

f  

  (b)  130 km/h = 36.1 m/s   

   

  

Δf = 2 36.1 m/s( ) 400 Hz( )

340 m/s( ) 1− 36.1 m/s( )2

340 m/s( )2
⎡
⎣⎢

⎤
⎦⎥

= 85.9 Hz  

*P17.55 The sound speed is  

     v = 331 m/s + 0.600 m/s ⋅ °C( ) 26.0°C( ) = 347 m s  

  (a) Let t represent the time for the echo to return. Then 

   
  
d = 1

2
vt = 1

2
347 m/s ( ) 24.0 × 10−3  s( ) = 4.16 m  

 (b) Let  Δt  represent the duration of the pulse: 

   
  
Δt = 10λ

v
= 10λ

fλ
= 10

f
= 10

22.0 × 106  s−1 = 0.455 µs  

 (c) 
  
L = 10λ = 10v

f
= 10 347 m s( )

22.0 × 106  s–1 = 0.158 mm  

P17.56 (a) The sound “pressure” is extra tensile stress for one-half of each 
cycle. When it becomes (0.500%)(13.0 × 1010 Pa) = 6.50 × 108 Pa, the 
rod will break. Then,   ΔPmax = ρvω smax  and 

   

  

smax = ΔPmax

ρvω
= 6.50× 108  N m2

8.92 × 103  kg m3( ) 5 010 m s( ) 2π 500 s−1( )
= 4.63 mm

 

 (b) From   s = smax cos kx −ωt( ) , differentiating gives 

    
  
v = ∂s

∂t
= −ω smax sin kx −ωt( )  
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  then 
   

  
vmax =ω smax = 2π 500 s−1( ) 4.63 mm( ) = 14.5 m s

 

 (c) 

  

I = 1
2
ρv ω smax( )2 = 1

2
ρvvmax

2

= 1
2

8.92 × 103  kg m3( ) 5 010 m s( ) 14.5 m s( )2

= 4.73× 109  W m2

 

P17.57 The gliders stick together and move with final speed given by 
momentum conservation for the two-glider system: 

   

  

m1v1 + m2v2 = m1v1 + 0 = m1 + m2( )v

v = m1v1

m1 + m2

=
0.150 kg( ) 2.30 m/s( )
0.150 kg + 0.200 kg

= 0.986 m/s

  

 The missing mechanical energy is 

   

  

ΔK = 1
2

m1v1
2 − 1

2
m1 + m2( )v2

= 1
2

0.150 kg( ) 2.30 m/s( )2 − 1
2

0.350 kg( ) 0.986 m/s( )2

= 0.227 J

  

 We imagine one-half of 227 mJ going into internal energy and half into 
sound radiated isotropically in 7.00 ms. Its intensity 0.800 m away is 

   

  
I = E

At
=

1
2

0.227 J( )
4π 0.800 m( )2 7.00× 10−3  s( ) = 2.01 W/m2

  

 Its intensity level is      
   

 
β = 10 dB( )log

2.01 W/m2

1.00× 10−12  W/m2

⎛
⎝⎜

⎞
⎠⎟

= 123 dB
  

 
 

It is unreasonable, implying a sound level of 123 dB. Nearly all of the
decrease in mechanical energy becomes internal energy in the latch.

 

P17.58 (a) 

  

The wave moves outward equally in all directions. (We can tell
it is outward because of the negative sign in 1.36r − 2 030t.)
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 (b) 

 

Its amplitude is inversely proportional to its distance from
the center. Its intensity is proportional to the square of the
amplitude, so the intensity follows the inverse-square law,
with no absorption of energy by the medium.

 

 (c) 

  

Its speed is constant at v = fλ =ω/k = (2030/s)/(1.36/m) =
1.49 km/s. By comparison to the table in the chapter, it can
be moving through water at 25°C, and we assume that it is.

 

 (d) 
 
Its frequency is constant at (2030/s)/2π = 323 Hz.  

 (e) 
  
Its wavelength is constant at 2π/k = 2π/(1.36/m) = 4.62 m.  

 (f) 

  

Its pressure amplitude is (25.0 Pa/r). Its intensity at this distance is

I =
ΔPmax

2

2ρv
=

25 N/m2( ) r⎡
⎣

⎤
⎦

2

2(1000 kg/m3)(1490 m/s)
=

209 µW/m2

r2

so the power of the source and the net power of the wave at all
distances is

P = I4πr2 =
2.09 × 10−4 W/m2

r2

⎛

⎝⎜
⎞

⎠⎟
4πr2 = 2.63 mW

 

 (g) 

  

Its intensity follows the inverse-square law; at r = 1 m, the

intensity is 209 µW/m2.

 

P17.59 (a) The speed of a compression wave in a bar is 

   
  
v = Y

ρ
= 20.0× 1010  N m2

7 860 kg m3 = 5.04× 103  m s  

 (b) The signal to stop passes between layers of atoms as a sound 
wave, reaching the back end of the bar in time interval 

   
  
Δt = L

v
= 0.800 m

5.04× 103  m s
= 1.59× 10−4  s  

 (c) As described by Newton’s first law, the rearmost layer of steel has 
continued to move forward with its original speed vi for this time, 
compressing the bar by 

   

  

ΔL = viΔt = 12.0 m s( ) 1.59× 10−4  s( ) = 1.90× 10−3  m

= 1.90 mm
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 (d) The strain in the rod is 
  

ΔL
L

= 1.90× 10−3  m
0.800 m

= 2.38× 10−3  

 (e) The stress in the rod is  

   

  

σ = Y ΔL
L

⎛
⎝
⎜

⎞
⎠
⎟ = 20.0× 1010  N m2( ) 2.38× 10−3( )
= 4.76× 108  N m2

  

  Since  σ > 400 MPa , the rod will be permanently distorted. 

 (f) We go through the same steps as in parts (a) through (e), but use 
algebraic expressions rather than numbers: 

  The speed of sound in the rod is 
 
v = Y

ρ
 

  The back end of the rod continues to move forward at speed vi for 

a time interval of 
 
Δt = L

v
= L ρ

Y
, traveling distance  ΔL = viΔt  after 

the front end hits the wall. 

  The strain in the rod is 
 

ΔL
L

= vit
L

= vi
ρ
Y

 

  The stress is then 
 
σ =Y ΔL

L
⎛
⎝
⎜

⎞
⎠
⎟ =Yvi

ρ
Y

= vi ρY  

  For this to be less than the yield stress,   σ y ,  it is necessary that the 
maximum speed be 

   
 

σ y

ρY
 

P17.60 (a) Model your loud, sharp sound impulse as a single narrow peak in 
a graph of air pressure versus time. It is a noise with no 
frequency, wavelength, or period. It radiates away from you in all 
directions and some of it is incident on each one of the solid 
vertical risers of the bleachers. 

  

 

The repeated reflections from the steps create a repetition
frequency so that the ear/brain combination assigns a pitch
to the sound heard by the listener.
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  Suppose that, at the ambient temperature, sound moves at 343 
m/s; and suppose that the horizontal width of each row of seats 
is 60 cm. Then there is a time delay of 

   

 

0.60 m
343 m s

= 0.001 7 s
 

  between your sound impulse reaching each riser and the next. 
Whatever its material, each will reflect much of the sound that 
reaches it. The reflected wave sounds very different from the 
sharp pop you made. 

 (b) If there are twenty rows of seats, you hear from the bleachers a 
tone with twenty crests, each separated from the next in time by 

   

 

2 0.60 m( )
343 m s

= 0.003 5 s
 

  This is the extra time for it to cross the width of one seat twice, 
once as an incident pulse and once again after its reflection. Thus, 
you hear a sound of definite pitch, with a period of about 0.0035 s, 
and frequency, 

   
 

1
0.003 5 s

= 290 Hz ~ a few hundred Hz  

 (c) Wavelength 
   

  
λ = v

f
= 343 m s

290 s−1 = 1.2 m ~ 1 m
 

 (d) and duration 
   

 20 0.003 5 s( ) ~ 0.1 s
 

P17.61 Let fe = 1 800 Hz represent the emitted frequency; ve the speed of the 
skydiver; and fg = 2 150 Hz the frequency of the wave crests reaching 
the ground. 

 (a) The skydiver source is moving toward the stationary ground, so 

we rearrange the equation 
  
fg = fe

v
v – ve

⎛
⎝⎜

⎞
⎠⎟

 to give 

   
  
ve = v 1 –

fe

fg

⎛
⎝⎜

⎞
⎠⎟

= (343 m/s) 1 – 1 800 Hz
2 150 Hz( ) = 55.8 m/s  
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 (b) The ground now becomes a stationary source, reflecting crests with 
the 2 150-Hz frequency at which they reach the ground, and 
sending them to a moving observer, who receives them at the 
rate 

   

  

fe2 = fg  v + ve

v
⎛
⎝⎜

⎞
⎠⎟ = (2 150 Hz)

343 m/s + 55.8 m/s
343 m/s

⎛
⎝⎜

⎞
⎠⎟

= 2 500 Hz

 

P17.62 (a) 

 

The distance is larger by 240/60 = 4 times. The intensity is 16
times smaller at the larger distance because the sound power 
is spread over a 42 times larger area.

 

 (b) 

 

The amplitude is 4 times smaller at the larger distance because
intensity is proportional to the square of amplitude.

 

 (c) 

 

The extra distance is (240− 60)/45 = 4 wavelengths. The 
phase is the same at both points because they are separated 
by an integer number of wavelengths.

 

P17.63 (a) If the velocity of the insect is vx , 
   

  
40.4 kHz = 40.0 kHz( ) 343 m/s + 5.00 m/s( ) 343 m/s − vx( )

343 m/s − 5.00 m/s( ) 343 m/s + vx( )
 

  Solving,   vx = 3.29 m/s .  

 (b) Therefore, 
 

the bat is gaining on its prey at 1.71 m s .  

P17.64 When the observer is moving in front of and in the same direction as 

the source, 
  
′f = f

v − vO

v − vS

,  where vO and vS are measured relative to the 

medium in which the sound is propagated. In this case the ocean 
current is opposite the direction of travel of the ships, and 

   
  

vO = 45.0 km h − −10.0 km h( ) = 55.0 km h = 15.3 m s , and

vS = 64.0 km h − −10.0 km h( ) = 74.0 km h = 20.55 m s
 

 Therefore, 
   

  
′f = 1 200.0 Hz( ) (1 533 m s)− (15.3 m s)

(1 533 m s)− (20.55 m s)
= 1 204.2 Hz
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P17.65 (a) If the police car were at rest, the wavelength in air of its siren 
would be  

   
  
λ = v

f
= 343 m s

1 000 s−1 = 0.343 m  

 (b) In front of the police car, 

   
  
′λ = v

′f
= v

f
v − vS

v
⎛
⎝
⎜

⎞
⎠
⎟ =

343 − 40.0( )  m s
1 000 s−1 = 0.303 m  

 (c) Behind the police car, 

   
  
′′λ = v

′′f
= v

f
v + vS

v
⎛
⎝
⎜

⎞
⎠
⎟ =

343 + 40.0( )  m s
1 000 s−1 = 0.383 m  

 (d) The frequency heard by the speeder is 

   
  
′f = f

v − vO

v − vS

⎛
⎝⎜

⎞
⎠⎟

= 1 000 Hz( ) 343 − 30.0( )  m s
343 − 40.0( )  m s

= 1.03 kHz  

P17.66 (a) 

 

The sound through the metal arrives first because it moves
faster than sound in air.

 

 (b) Each travel time is individually given by t = L/v. Then the delay 

between the pulses’ arrivals is 
  
Δt = L 1

vair

− 1
vcu

⎛

⎝
⎜

⎞

⎠
⎟ = L vcu − vair

vairvcu

 and 

the length of the bar is 

   
  
L = vairvcu

vcu − vair

Δt =
343 m s( ) 3.56× 103  m s( )

3 560 − 343( )  m s
Δt  

  
  
L = 380Δt,  where Δt is seconds and the length is in meters.  

 (c) L = (380 m/s)(0.127 s) =  48.2 m  

 (d) 

  

The answer becomes L = Δt
1

343 
− 1

vr

,  where vr  is the speed of

sound in the rod in meters per second, Δt is in seconds, and L
is in meters.

 

 (e) 

  

As vr  goes to infinity, the travel time in the rod becomes
negligible. The answer approaches 343Δt, which is just the
distance that the sound travels in air during the delay time.
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P17.67 (a) The Mach angle in the air is  

   
  
θ = sin−1 vsound

vobj

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = sin−1 343

20.0× 103

⎛
⎝
⎜

⎞
⎠
⎟ = 0.983°  

 (b) At impact with the ocean, 

   
 
′θ = sin−1 1 533

20.0× 103

⎛
⎝
⎜

⎞
⎠
⎟ = 4.40°  

P17.68 The time interval required for a sound pulse to travel a distance L at a 

speed v is given by 
  
t = L

v
= L

Y/ρ
.  Using this expression, we find the 

travel time in each rod. 

   
  
t1 = L1

ρ1

Y1
= L1

2.70 × 103  kg m3

7.00 × 1010  N m2 = L1(1.96× 10−4  s/m)  

   

  

t2 = (1.50 – L1)
11.3 × 103  kg m3

1.60 × 1010  N m2

= 1.26× 10−3  s − (8.40× 10−4  s/m)L1

 

   
  
t3 = (1.50 m)

8.80 × 103  kg m3

11.0 × 1010  N m2 = 4.24× 10−4  s  

 We require t1 + t2 = t3, or 
   

  

(1.96× 10−4  s/m)L1 + (1.26× 10−3  s)

                                 − (8.40× 10−4  s/m)L1 = 4.24× 10−4  s

 

 This gives  

   L1 = 1.30 m and L2 = (1.50 m) – (1.30 m) = 0.201 m 

 The ratio of lengths is  
  

L1

L2

= 6.45 .  

 
ANS. FIG. P17.68 
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P17.69 For the longitudinal wave  
  
vL =

Y
ρ

⎛

⎝
⎜

⎞

⎠
⎟

1 2

 

 For the transverse wave  
  
vT = T

µ
⎛

⎝
⎜

⎞

⎠
⎟

1 2

 

 If we require 
  

vL

vT

= 8.00 , we have 
  
T = µY

64.0ρ
    where   

 
µ = m

L
 and 

  
  
ρ = mass

volume
= m
π r2L

 

 This gives 
  

  

T = π r2Y
64.0

=
π 2.00× 10−3  m( )2

6.80× 1010  N m2( )
64.0

= 1.34× 104  N

 

*P17.70 (a) Sound moves upwind with speed (343 – 15) m/s = 328 m/s. 
Crests pass a stationary upwind point at frequency 900 Hz. Then

 
  
λ = v

f
= 328 m/s

900 s−1 = 0.364 m  

  (b) By similar logic, 
  
λ = v

f
= 343 + 15( )  m/s

900 s−1 = 0.398 m  

  (c) The source is moving through the air at 15 m/s toward the 
observer. The observer is stationary relative to the air. 

   
  
′f = f

v + vo

v − vs

⎛
⎝⎜

⎞
⎠⎟

= 900 Hz( ) 343 m/s + 0
343 m/s − 15.0 m/s

⎛
⎝

⎞
⎠ = 941 Hz  

  (d) The source is moving through the air at 15 m/s away from the 
downwind firefighter. Her speed relative to the air is 30 m/s 
toward the source. 

   

  

′f = f
v + vo

v − vs

⎛
⎝⎜

⎞
⎠⎟

= 900 Hz( ) 343 m/s + 30.0 m/s
343 m/s − −15.0 m/s( )

⎛
⎝⎜

⎞
⎠⎟

= 900 Hz( ) 373 m/s
358 m/s

⎛
⎝

⎞
⎠ = 938 Hz
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Challenge Problems 

P17.71 (a) If vO = 0 m/s, then 
  
′f =

v
v − vS cos θS

f .  

  Also, when the train is 40.0 m from the intersection, and the car is  
30.0 m from the intersection, 

   
  
cosθS =

4
5

 

  so 
  
′f =

343 m/s
343 m/s − 0.800 25.0 m/s( ) 500 Hz( ) ,  

  or    ′f = 531 Hz .  

 (b) Note that as the train approaches, passes, and departs from the 
intersection, θS varies from 0° to 180° and the frequency heard by 
the observer varies between the limits 

   

  

′fmax =
v

v − vS cos 0°
f =

343 m/s
343 m/s − 25.0 m/s

500 Hz( )

= 539 Hz

 

  to 
   

  

′fmin =
v

v − vS cos 180°
f =

343 m/s
343 m/s + 25.0 m/s

500 Hz( )

= 466 Hz

 

 (c) Now vO = +40.0 m/s, and the train is 40.0 m from the intersection, 
and the car is 30.0 m from the intersection, so 

   

  
cos θO =

3
5

 

   

  
′f =

343 m/s + 0.600(40.0 m/s)
343 m/s − 0.800(25.0 m/s)

 (500 Hz) = 568 Hz
 

P17.72 (a) ANS. FIG. P17.72 shows a force diagram of an element of gas 
indicating the forces exerted on the left and right surfaces due to 
the pressure of the gas on either side of the element. 

 (b) Let P(x) represent absolute pressure as a function of x. The net 
force to the right on the chunk of air is   +P x( )A− P x + Δx( )A.  
Atmospheric pressure subtracts out, leaving 

    
 
−ΔP x + Δx( ) + ΔP x( )[ ]A = −

∂ΔP
∂x

ΔxA  
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ANS. FIG. P17.72 

  The mass of the air is  Δm = ρΔV = ρAΔx  and its acceleration is 

  

∂2s
∂t2

. So Newton’s second law becomes 

    
  
−
∂ΔP
∂x

ΔxA = ρAΔx
∂2s
∂t2

 

 (c) From the result above, we have 

    
  
−
∂ΔP
∂x

ΔxA = ρAΔx
∂2s
∂t2      →      −

∂ΔP
∂x

= ρ ∂2s
∂t2

 

  Substituting   ΔP = −(B∂s/∂x)  (Eq. 17.3), we have 

    
  
−

∂
∂x

−B
∂s
∂x

⎛
⎝⎜

⎞
⎠⎟
= ρ ∂2s

∂t2      →      
B
ρ
∂2s
∂x2 =

∂2s
∂t2

 

 (d) Into this wave equation we substitute a trial solution  

  s x, t( ) = smax cos kx −ωt( ).  We find 

    

  

∂s
∂x

= −ksmax sin kx −ωt( )
∂2s
∂x2 = −k2smax cos kx −ωt( )
∂s
∂t

= +ωsmax sin kx −ωt( )
∂2s
∂t2 = −ω 2smax cos kx −ωt( )

 

   
  

B
ρ
∂2s
∂x2 =

∂2s
∂t2

 becomes 

    
  
−

B
ρ

k2smax cos kx −ωt( ) = −ω 2smax cos kx −ωt( )  

  This is true provided that 
  

B
ρ

k2 =ω 2 →
ω
k
=

B
ρ

, that is, provided 

it propagates with speed 
 
v =

B
ρ

. 
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P17.73 Figure 17.10 shows that each wavefront that passes the observer is 
spherical. Let T represent the period of the source vibration, and TMW 
be the energy put into each wavefront during one vibration. Then 

  
Power( )avg =

TMW

T
.  At the moment when the observer is at distance r in 

front of the source, he is receiving a spherical wavefront of radius  

   Rw = vΔt,  where  Δt  is the time interval since this energy was radiated. 
Since the wavefront was radiated, the source has moved forward 
distance    ds = vsΔt,  so the total distance the wavefront has traveled is 

   
 Rw = r + ds → vΔt = r + vsΔt  

 therefore, 

   
 
Δt =

r
v − vS

 

 The surface area of the sphere is 
  
4πRw

2 = 4π vΔt( )2 =
4π v2r2

v − vS( )2 . The 

energy per unit area emitted during one cycle and carried by one 
spherical wavefront is uniform with the value 

   
  
I =

TMW

A
=

Power( )avg T v − vS( )2

4π v2r2
 

 The energy carried by the wavefront passes the observer in the time 
interval T ′ = 1/f ′, where f ′ is the Doppler-shifted frequency 

   
 
′f = f

v
v − vS

⎛
⎝⎜

⎞
⎠⎟

=
v

T v − vS( )  

 so the observer receives a wave with intensity 

   

  

I =
TMW

A
⎛
⎝⎜

⎞
⎠⎟

1
T '

=
TMW

A
⎛
⎝⎜

⎞
⎠⎟ f ' =

Power( )avg T v − vS( )2

4π v2r2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

v
T v − vS( )

⎛

⎝⎜
⎞

⎠⎟

I =
Power( )avg

4π r2

v − vS

v
⎛
⎝⎜

⎞
⎠⎟
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 
P17.2 (a) 1.27 Pa; (b) 170 Hz; (c) 2.00 m; (d) 340 m/s 

P17.4 5.81 m 

P17.6 1 × 1011 Pa 

P17.8 (a) The speed gradually changes from  
v = (331 m/s)(1 + 27°C/273°C)1/2 = 347 m/s to  
(331 m/s) (1 + 0/273°C)1/2 = 331 m/s, a 4.6% decrease. The cooler air at 
the same pressure is more dense; (b) The frequency is unchanged 
because every wave crest in the hot air becomes one crest without 
delay in the cold air; (c) The wavelength decreases by 4.6%, from v/f = 
(347 m/s) (4 000/s) = 86.7 mm to (331 m/s)(4 000/s) = 82.8 mm. The 
crests are more crowded together when they move more slowly. 

P17.10 1.55 × 10−10 m 

P17.12 (a) 153 m/s; (b) 614 m 

P17.14 
  
d −

1
2

g
2 d − h( )

g
− Δt −

d − h
v

⎛

⎝
⎜

⎞

⎠
⎟

2

 above the ground 

P17.16 See P17.16 for complete solution. 

P17.18 (a) 833 m; (b) 1.47 s 

P17.20 (a) 5.00 × 10−5 W; (b) 3.00 × 10−3 J 

P17.22 (a) 
  
I2 =

′f
f

⎛
⎝⎜

⎞
⎠⎟

2

I1 ; (b) intensity is unchanged 

P17.24 0.082 W/m2 

P17.26 150 dB 

P17.28 (a) 332 J; (b) 46.4 dB 

P17.30 
  
20log

r1

r2

⎛
⎝⎜

⎞
⎠⎟

 

P17.32 (a) 65.0 dB; (b) 67.8 dB; (c) 69.6 dB 

P17.34 (a) 1.76 kJ; (b) 108 dB 
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P17.36 We assume that both lawn mowers are equally loud and 
approximately the same distance away. We found in Example 17.3 that 
a sound of twice the intensity results in an increase in sound level of 3 
dB. We also see from the What If? section of that example that a 
doubling of loudness requires a 10-dB increase in sound level. 
Therefore, the sound of two lawn mowers will not be twice the 
loudness, but only a little louder than one! 

P17.38 2.82 × 108 m/s 

P17.40 (a) B; (b) positive; (c) negative; (d) 1 533 m/s; (e) 5.30 × 103 Hz 

P17.42 (a) 

  

vf

v − A
k
m

;  (b) 

  

vf

v + A
k
m

;  (c) 
  
β − 20 dB( )log 1 +

2A
d

⎛
⎝⎜

⎞
⎠⎟

 

P17.44 This is much faster than a human athlete can run. 

P17.46 19.7 m 

P17.48 5.67 mm 

P17.50 (a) 0.232 m; (b) 8.41 × 10−8 m; (c) 13.8 mm 

P17.52 0.642 W 

P17.54 (a) 
  

2 u
v

1− u2

v2

f ; (b) 85.9 Hz 

P17.56 (a) 4.63 mm; (b) 14.5 m/s; (c) 4.73 × 109 W/m2 

P17.58 (a) The wave moves outward equally in all directions; (b) Its amplitude 
is inversely proportional to its distance from the center. Its intensity is 
proportional to the square of the amplitude, so the intensity follows 
the inverse-square law, with no absorption of energy by the medium; 
(c) Its speed is constant   v = fλ = ω/k = 2 030/s( ) 1.36/m( ) = 1.49km s . 
By comparison to the table, it can be moving through water at 25° C, 
and we assume it is; (d) Its frequency is constant at 

 2 030/s( )/2π = 323 Hz;  (e) Its wavelength is constant at 

 2π/k = 2π/ 1.36/m( ) = 4.62 m ; 

(f) 
  
P = I4πr2 =

2.09 × 10−4  W/m2

r2

⎛
⎝⎜

⎞
⎠⎟

4πr2 = 2.63 mW ; (g) Its intensity 

follows the inverse-square law; at r = 1 m, the intensity is  209 µW/m2  

P17.60 (a) The repeated reflections from the steps create a repetition frequency 
so that the ear/brain combination assigns a pitch to the sound heard 
by the listener; (b) ~ a few hundred Hz; (c) ~ 1 m; (d) ~ 0.1 s 
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P17.62 (a) The distance is larger by 240/60 = 4 times. The intensity is 16 times 
smaller at the larger distance because the sound power is spread over a 
42 times larger area; (b) The amplitude is 4 times smaller at the larger 
distance because intensity is proportional to the square of amplitude; 
(c) The extra distance is (240 – 60)/45 = 4 wavelengths. The phase is the 
same at both points because they are separated by an integer number 
of wavelengths 

P17.64 1 204.2 Hz 

P17.66 (a) The sound through the metal arrives first because it moves faster 
than sound in air; (b)   L = 380Δt,  where  Δt  is in seconds and the length 

is in meters; (c) 48.2 m; (d) The answer becomes 

  

L =
Δt

1
343

− 1
vr

 where vr 

is the speed of sound in the rod in meters per second,  Δt  is in seconds, 
and L is in meters; (e) As vr goes to infinity, the travel time in the rod 
becomes negligible. The answer approaches   343Δt  which is just the 
distance that the sound travels in air during the delay time 

P17.68 6.45 

P17.70 (a) 0.364 m; (b) 0.398 m; (c) 941 Hz; (d) 938 Hz 

P17.72 (a) See ANS. FIG P17.72; (b) See P17.72(b) for full explanation; (c) See 
P17.72(c) for full explanation; (d) See P17.72(d) for full explanation. 
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18 
Superposition and Standing Waves 

 

CHAPTER OUTLINE 
 

18.1 Analysis Model: Waves in Interference 

18.2  Standing Waves 

18.3  Analysis Model: Waves Under Boundary Conditions 

18.4 Resonance 

18.5 Standing Waves in Air Columns 

18.6 Standing Waves in Rods and Membranes 

18.7  Beats: Interference in Time 

18.8 Nonsinusoidal Wave Patterns 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ18.1 The ranking is (d) > (a) = (c) > (b). In the starting situation, the waves 
interfere constructively. When the sliding section is moved out by  
0.1 m, the wave going through it has an extra path length of  
0.2 m = λ/4, to show partial interference. When the slide has come out 
0.2 m from the starting configuration, the extra path length is  
0.4 m = λ /2, for destructive interference. Another 0.1 m and we are at 
r2 – r1 = 3λ /4 for partial interference as before. At last, another equal 
step of sliding and one wave travels one wavelength farther to 
interfere constructively. 

OQ18.2 The fundamental frequency is described by  

    
  
f1 =

v
2L

, where 
  
v =

T
µ

⎛
⎝⎜

⎞
⎠⎟

1 2

 

 (i) Answer (e). If L is doubled, then the wavelength of the 
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fundamental frequency is doubled, then f = v/λ will be reduced 

by a factor of 
 

1
2

. 

 (ii) Answer (d). If µ is doubled, then the speed is reduced by a 

factor of 
 

1
2

,  so f = v/λ will be reduced by a factor of 
 

1
2

.  

 (iii) Answer (b). If T is doubled, then the speed is increased by a 
factor of  2 , so f = v/λ will increase by a factor of  2.  

OQ18.3 Answer (c). The two waves must have slightly different amplitudes 
at P because of their different distances, so they cannot cancel each 
other exactly. 

OQ18.4 (i) Answer (e). If the end is fixed, there is inversion of the pulse 
upon reflection. Thus, when they meet, they cancel and the 
amplitude is zero.  

 (ii) Answer (c). If the end is free, there is no inversion on reflection. 
When they meet, the amplitude is 2A = 2(0.1 m) = 0.2 m. 

OQ18.5 Answer (a). At resonance, a tube closed at one end and open at the 
other forms a standing wave pattern with a node at the closed end 
and antinode at the open end. In the fundamental mode (or first 
harmonic), the length of the tube closed at one end is a quarter 
wavelength (L = λ1/4 or λ1 = 4L). Therefore, for the given tube,  
λ1 = 4(0.580 m) = 2.32 m and the fundamental frequency is 

    
  
f1 =

v
λ1

=
343 m s
2.32 m

= 148 Hz  

OQ18.6 Answer (e). The number of beats per second (the beat frequency) 
equals the difference in the frequencies of the two tuning forks. Thus, 
if the beat frequency is 5 Hz and one fork is known to have a 
frequency of 245 Hz, the frequency of the second fork could be either 
f2 = 245 Hz – 5 Hz = 240 Hz or f2 = 245 Hz + 5 Hz = 250 Hz. This 
means that the best answer for the question is choice (e), since 
choices (a) and (d) are both possibly correct. 

OQ18.7 Answer (d). The tape will reduce the frequency of the fork, leaving 
the string frequency unchanged. If the bit of tape is small, the fork 
must have started with a frequency 4 Hz below that of the string, to 
end up with a frequency 5 Hz below that of the string. The string 
frequency is 262 + 4 = 266 Hz. 

OQ18.8 Answer (c). The bow string is pulled away from equilibrium and 
released, similar to the way that a guitar string is pulled and released 
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when it is plucked. Thus, standing waves will be excited in the bow 
string. If the arrow leaves from the exact center of the string, then a 
series of odd harmonics will be excited. Even harmonics will not be 
excited because they have a node at the point where the string 
exhibits its maximum displacement. 

OQ18.9 Answer (d). The energy has not disappeared, but is still carried by 
the wave pulses. Each element of the string still has kinetic energy. 
This is similar to the motion of a simple pedulum. The pendulum 
does not stop at its equilibrium position during oscillation—likewise 
the elements of the string do not stop at the equilibrium position of 
the string when these two waves superimpose. 

OQ18.10 Answer (c). On a string fixed at both ends, a standing wave with 
three nodes is the second harmonic: there is a node on each end and 
one in the middle, so it has two antinodes because there is an 
antinode between each pair of nodes. The number of antinodes is the 
same as the harmonic number. Doubling the frequency gives the 
fourth harmonic, therefore four antinodes.  

OQ18.11 Answers (b) and (e). The strings have different linear densities and 
are stretched to different tensions, so they carry string waves with 
different speeds and vibrate with different fundamental frequencies. 
They are all equally long, so the string waves have equal 
fundamental wavelengths. They all radiate sound into air, where the 
sound moves with the same speed for different sound wavelengths. 

OQ18.12 Answer (d). The resultant amplitude is greater than either individual 
amplitude, wherever the two waves are nearly enough in phase that 
2Acos(φ/2) is greater than A. This condition is satisfied whenever the 
absolute value of the phase difference φ between the two waves is 
less than 120°. 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ18.1 The resonant frequency depends on the length of the pipe. Thus, 
changing the length of the pipe will cause different frequencies to be 
emphasized in the resulting sound. 

CQ18.2 No. The total energy of the pair of waves remains the same. Energy 
missing from zones of destructive interference appears in zones of 
constructive interference. 

CQ18.3 What is needed is a tuning fork—or other pure-tone generator—of 
the desired frequency. Strike the tuning fork and pluck the 
corresponding string on the piano at the same time. If they are 
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precisely in tune, you will hear a single pitch with no amplitude 
modulation. If the two frequences are a bit off, you will hear beats. 
As they vibrate, retune the piano string until the beat frequency goes 
to zero. 

CQ18.4 Damping, and nonlinear effects in the vibration, transform the 
energy of vibration into internal energy. 

CQ18.5 (a) The tuning fork hits the paper repetitively to make a sound like 
a buzzer, and the paper efficiently moves the surrounding air. 
The tuning fork will vibrate audibly for a shorter time. 

 (b) Instead of just radiating sound very softly into the surrounding 
air, the tuning fork makes the chalkboard vibrate. With its large 
area this stiff sounding board radiates sound into the air with 
higher power. So it drains away the fork’s energy of vibration 
faster and the fork stops vibrating sooner. 

 (c) The tuning fork in resonance makes the column of air vibrate, 
especially at the antinode of displacement at the top of the tube. 
Its area is larger than that of the fork tines, so it radiates louder 
sound into the environment. The tuning fork will not vibrate for 
so long. 

 (d) The cardboard acts to cut off the path of air flow from the front 
to the back of a single tine. When a tine moves forward, the high 
pressure air in front of the tine can simply move to fill in the 
lower pressure area behind the tine. This “sloshing” of the air 
back and forth does not contribute to sound radiation and 
results in low intensity of sound actually leaving the tine. By 
cutting off this “sloshing” path by bringing the cardboard near, 
the tine becomes a more efficient radiator. This is the same 
theory as that involved with placing loudspeakers on baffles. A 
speaker enclosure for a loudspeaker is equivalent to an infinite 
baffle because there is no path the high pressure air can find to 
cancel the lower pressure air on the other side of the speaker. 

CQ18.6 The loudness varies because of beats. The propellers are rotating at 
slightly different frequencies. 

CQ18.7 Walking makes the person’s hand vibrate a little. If the frequency of 
this motion is equal to the natural frequency of coffee sloshing from 
side to side in the cup, then a large-amplitude vibration of the coffee 
will build up in resonance. To get off resonance and back to the 
normal case of a small-amplitude disturbance producing a small-
amplitude result, the person can walk faster, walk slower, or get a 
larger or smaller cup. You do not need a cover on your cup. 
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CQ18.8 Consider the level of fluid in the bottle to be adjusted so that the air 
column above it resonates at the first harmonic. This is given by 

  
f =

v
4L

.  This equation indicates that as the length L of the column 

increases (fluid level decreases), the resonant frequency decreases. 

CQ18.9 No. Waves with all waveforms interfere. Waves with other wave 
shapes are also trains of disturbance that add together when waves 
from different sources move through the same medium at the same 
time. 

 
 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 18.1 Analysis Model: Waves in Interference 
P18.1 Suppose the waves are sinusoidal. The sum is 
   

  

4.00 cm( )sin kx −ωt( ) + 4.00 cm( )sin kx −ωt + 90.0°( )
                           = 2 4.00 cm( )sin kx −ωt + 45.0°( )cos 45.0°

  

 So the amplitude of the resultant wave is  
   

 
8.00 cm( )cos 45.0° = 5.66 cm

 

P18.2 ANS. FIG. P18.2 shows the sketches at each of the times. 
 

 

ANS. FIG. P18.2 

P18.3 The superposition of the waves is given by  

     y = y1 + y2 = 3.00cos 4.00x − 1.60t( )+ 4.00sin 5.00x − 2.00t( )   
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 evaluated at the given x values. 

 (a) At x = 1.00, t = 1.00, the superposition of the two waves gives 
   

  

y = 3.00cos 4.00 1.00( )− 1.60 1.00( )[ ]
                          + 4.00sin 5.00 1.00( )− 2.00 1.00( )[ ]

= 3.00cos 2.40 rad( ) + 4.00sin 3.00 rad( ) = −1.65 cm

 

 (b) At x = 1.00, t = 0.500, the superposition of the two waves gives  
   

  

y = 3.00cos 4.00 1.00( )− 1.60 0.500( )[ ]
                          + 4.00sin 5.00 1.00( )− 2.00 0.500( )[ ]

= 3.00cos 3.20 rad( ) + 4.00sin 4.00 rad( ) = −6.02 cm

 

 (c) At x = 0.500, t = 0, the superposition of the two waves gives 
   

  

y = 3.00cos 4.00 1.00( )− 1.60 0( )[ ]
                          + 4.00sin 5.00 1.00( )− 2.00 0( )[ ]

= 3.00cos 2.00 rad( ) + 4.00sin 2.50 rad( ) = +1.15 cm

 

P18.4 (a) The graph at time t = 0.00 seconds is shown in ANS. FIG. P18.4(a) 

 

ANS. FIG. P18.4(a) 

  The pulse initially on the left will move to the right at 1.00 m/s, 
and the one initially at the right will move toward the left at the 
same rate, as follows: 

  ANS. FIG. P18.4(b) shows the pulses at time t = 2.00 seconds  

 

ANS. FIG. P18.4(b) 
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  ANS. FIG. P18.4(c) shows the waves at time t = 4.00 seconds, 
immediately before they overlap. 

 

ANS. FIG. P18.4(c) 

   ANS. FIG. P18.4(d) shows the pulses at time t = 5.00 seconds, 
while the two pulses are fully overlapped. The two pulses are 
shown as dashed lines. 

 

ANS. FIG. P18.4(d) 

  ANS. FIG. P18.4(e) shows the pulses at time At time t = 6.00 
seconds, immediately after they completely pass. 

 

ANS. FIG. P18.4(e) 
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 (b) If the pulse to the right is inverted, ANS. FIG. P18.4(f) shows the 
pulses at time t = 0.00 seconds. 

 

ANS. FIG. P18.4(f) 

  The pulse initially on the left will move to the right at 1.00 m/s, 
and the one initially at the right will move toward the left at the 
same rate, as follows: 

  ANS. FIG. P18.4(g) shows the two pulses at time t = 2.00 seconds 

 

ANS. FIG. P18.4(g) 

   ANS. FIG. P18.4(h) shows the two pulses at time t = 4.00 seconds, 
immediately before they overlap. 

 

ANS. FIG. P18.4(h) 
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  ANS. FIG. P18.4(i) shows the two pulses at time t = 5.00 seconds, 
while the two pulses are fully overlapped. The two pulses are 
shown as dashed lines. 

 

ANS. FIG. P18.4(i) 

  ANS. FIG. P18.4(j) shows the two pulses at time t = 6.00 seconds, 
immediately after they completely pass. 

 

ANS. FIG. P18.4(j) 

*P18.5 Waves reflecting from the near end travel 28.0 m (14.0 m down and 
14.0 m back), while waves reflecting from the far end travel 66.0 m. 
The path difference for the two waves is: 

     Δr = 66.0 m − 28.0 m = 38.0 m  

 Since 
 
λ = v

f
,  

 Then 
   

  

Δr
λ

= Δr( ) f
v

= 38.0 m( ) 246 Hz( )
343 m/s

= 27.254
 

 or    Δr = 27.254λ  

 The phase difference between the two reflected waves is then 
   

 φ = 0.254( ) 1 cycle( ) = 0.254( ) 2π  rad( ) = 1.594 rad = 91.3°
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P18.6 The wavelength of the sound emitted by the speaker is 

   
   
λ =

v
f
=

343 m s
756 Hz

 0.454 m  

 Raising the sliding section by  Δh  changes the path through that section 
by   2Δh,  because sound must travel up and down through the addition 
distance. 

 (a) If constructive interference currently exists, this can be changed to 
destructive interference by increasing the path distance through 
the sliding section by λ/2, which means raising it by 

 
λ 4 = 0.113 m .

 

 (b) To move from constructive interference to the next occurrence of 
constructive interference, one should increase the path distance 
through the sliding section by λ, which means raising it by 

 λ/2 = 0.227 m .
 

P18.7 (a) At constant phase, φ = 3x – 4t will be constant. Then 
  
x = φ + 4t

3
 

will change: the wave moves. As t increases in this equation, x 
increases, so the first wave moves to the right, in the 

  
+x direction . 

  In the same way, in the second case 
  
x = φ – 4t + 6

3
.  As t 

increases, x must decrease, so the second wave moves to the left, 
in the 

  
−x direction .  

 (b) We require that y1 + y2 = 0. 

   
  

5
(3x – 4t)2 + 2

+ – 5
(3x + 4t – 6)2 + 2

= 0  

  This can be written as  

   (3x − 4t)2 = (3x + 4t − 6)2 

  Solving for the positive root, 8t = 6, or 

   
  

t = 0.750 s  

  (c) The negative root yields  

   (3x − 4t) = –(3x + 4t − 6)  

  The time terms cancel, leaving 
  

x = 1.00 m . At this point, the 

waves always cancel.  
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ANS. FIG. P18.10 
 

P18.8 (a)   Δx = 9.00 m2 + 4.00 m2 − 3.00 m = 13 m2 − 3.00 m = 0.606 m  

  The wavelength is 
  
λ =

v
f
=

343 m s
300 Hz

= 1.14 m.  

  Thus, 
  

Δx
λ

=
0.606
1.14

= 0.530  of a waves, 

  or  Δφ = 2π 0.530( ) = 3.33 rad .  

 (b) For destructive interference, we want  

   
  

Δx
λ

= 0.500 → λ =
Δx

0.500
= 2Δx  

  The frequency is 
  
f = v

λ
= v

2Δx
= 343 m/s

2 0.606 m( ) = 283 Hz .  

P18.9 The sum of two waves traveling in the same direction that have the 
same amplitude A0, angular frequency ω, and wave number k but are 
different in phase φ have the resultant wave function in the form 

   

  
y = 2A0 cos

φ
2

⎛
⎝⎜

⎞
⎠⎟ sin kx −ωt +

φ
2

⎛
⎝⎜

⎞
⎠⎟

 

 (a) 
  
A = 2A0 cos

φ
2

⎛
⎝⎜

⎞
⎠⎟ = 2 5.00 m( ) cos

−π 4
2

⎡
⎣⎢

⎤
⎦⎥

= 9.24 m  

 (b) 
  
f =

ω
2π

=
1 200π  rad/s

2π
= 600 Hz  

P18.10 Consider the geometry of the situation  
shown on the right. The path difference for  
the sound waves at the location of the man is 

     Δr  =  d2  + x2  − x  

 For a minimum, this path difference must 
equal a half-integral number of wavelengths: 

   

  

d2  + x2  − x =  n +  1
2( )λ        

                                    n = 0, 1, 2,...

 

 Solve for x: 

   

  
x = 

d2  −  n +  1
2( )λ⎡⎣ ⎤⎦

2

2 n +  1
2( )λ    
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 In order for x to be positive, we must have 

   
  

n + 
1
2

⎛
⎝⎜

⎞
⎠⎟ λ

⎡
⎣⎢

⎤
⎦⎥

2

 < d2      →       n < 
d
λ
 − 

1
2
 = 

df
v
 − 

1
2

 

 Substitute numerical values: 

   
  
n < 

4.00 m( ) 200 Hz( )
343 m/s

 − 
1
2
 = 1.83  

 The only values of n that satisfy this requirement are n = 0 and n = 1. 

 Therefore,  
   

  

the man walks through only two minima; 
a third minimum is impossible

 

*P18.11 At any time and place, the phase shift between the waves is found by 
subtracting the phases of the two waves, Δφ = φ1 − φ2. 

    Δφ = (20.0 rad/cm)x − (32.0 rad/s)t  

     − [(25.0 rad/cm)x − (40.0 rad/s)t] 

 Collecting terms,  

   Δφ = −(5.00 rad/cm)x + (8.00 rad/s)t 

  (a) At x = 5.00 cm and  t = 2.00 s, the phase difference is 

     Δφ = (−5.00 rad/cm)(5.00 cm) + (8.00 rad/s)(2.00 s) 

      Δφ = 9.00 radians = 516° = 156°  

 (b) The sine functions repeat whenever their arguments change by an 
integer number of cycles, an integer multiple of 2π radians. Then 
the phase shift equals ±π whenever Δφ = π + 2nπ, for all integer 
values of n. Substituting this into the phase equation, we have 

   π + 2nπ = −(5.00 rad/cm)x + (8.00 rad/s)t 

  At t = 2.00 s,  

   π + 2nπ = −(5.00 rad/cm)x + (8.00 rad/s)(2.00 s) 

    or (5.00 rad/cm)x = (16.0 − π − 2nπ) rad 

   The smallest positive value of x is found when n = 2: 
    

  
x =

(16.0 – 5π ) rad
5.00 rad/cm = 0.058 4 cm

 

*P18.12 
  
2A0 cos

φ
2( ) = A0  so 

 

φ
2

= cos−1 1
2( ) = 60.0° = π

3
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 Thus, the phase difference is  
   

 
φ = 120° = 2π

3

 

 This phase difference results if the time delay is  
   

  

T
3
= 1

3 f
= λ

3v

 

 Time delay 
 
= 3.00 m

3 2.00 m/s( )
= 0.500 s  

P18.13 (a) First we calculate the wavelength:   
  
λ =

v
f
=

344 m s
21.5 Hz

= 16.0 m   

  Then we note that the path difference equals  

   
 
9.00 m − 1.00 m =

1
2
λ  

  

  

Point A is one-half wavelength farther from one speaker 
than from the other. The waves from the two sources 
interfere destructively, so the receiver records a minimum 
in sound intensity.

 

 (b) We choose the origin at the midpoint between the speakers. If the 
receiver is located at point (x, y), then we must solve: 

   
  

x + 5.00( )2 + y2 − x − 5.00( )2 + y2 =
1
2
λ  

  Then,  

   
  

x + 5.00( )2 + y2 = x − 5.00( )2 + y2 +
1
2
λ  

  Square both sides and simplify to get  
   

  
20.0x −

λ2

4
= λ x − 5.00( )2 + y2

 

  Upon squaring again, this reduces to  

     400x2 − 10.0λ2x +  
  

λ 4

16.0
= λ2 x − 5.00( )2 + λ2y2  

  Substituting, λ = 16.0 m, and reducing,  

     9.00x2 − 16.0y2 = 144  
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  Note that the equation 9.00x2 – 16.0y2 = 144 represents two 
hyperbolas: one passes through the x axis at x = +4.00 m; the 
second, which is the mirror image of the first, passes through  
x = –4.00 m to the left of the y axis. 

 (c) Solve for y in terms of x: 
   

  9x2 − 16y2 = 144  

  Then 
   

  

y = ±
9

16
x2 − 9 = ±

3
4

x 1−
16
x2

y = ±
3
4

x 1−
16
x2

 

  For very large x, the square root term approaches 1: 

   
  
y = ±

3
4

x 1−
16
x2     →     y = ±

3
4

x  

  To the right of the origin, for large x the hyperbola approaches the 
shape of a straight line above and below the x axis. 

  
 

Yes; the limiting form of the path is two straight lines through
the origin with slope ±0.75.

 

 
 

 

Section 18.2 Standing Waves 

P18.14 (a) From the resultant wave 
  
y = 2A sin kx +

φ
2

⎛
⎝⎜

⎞
⎠⎟ cos ωt −

φ
2

⎛
⎝⎜

⎞
⎠⎟ ,  

  the shape of the wave form is determined by the term  
  

  
sin kx +

φ
2

⎛
⎝⎜

⎞
⎠⎟ .

 

  The nodes are located at 
  
kx +

φ
2

= nπ ,  or where 
  
x =

nπ
k

−
φ
2k

.  

  

  

The separation of adjacent nodes is

Δx = n + 1( )π
k
− φ

2k
⎡
⎣⎢

⎤
⎦⎥
− nπ

k
− φ

2k
⎡
⎣⎢

⎤
⎦⎥

= π
k

= λ
2

   

The nodes are still separated by half a wavelength.
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 (b) 

  

Yes. The nodes are located at kx +
φ
2

= nπ , so that x =
nπ
k

−
φ
2k

,

which means that each node is shifted 
φ
2r

 to the left by the phase

difference between the traveling waves in comparison to the case
in which φ = 0.

 

P18.15   y = 1.50 m( ) sin 0.400x( ) cos 200t( ) = 2A0 sin kx cos ωt  

 Compare corresponding parts:  

 (a) 
  
k =

2π
λ

= 0.400 rad m   

  
 
λ =

2π
0.400 rad m

= 15.7 m  

 (b)   ω = 2π f     so    
  
f =

ω
2π

=
200 rad s

2π  rad
= 31.8 Hz  

 (c) The speed of waves in the medium is  

   
  
v = λ f =

λ
2π

2π kf =
ω
k
=  

 

200 rad s
0.400 rad m

= 500 m s  

P18.16 From   y = 2A0 sin kx cos ωt,  we find 
   

  

∂y
∂x

= 2A0k cos kx cos ωt
 

  

∂y
∂t

= −2A0ω sin kx sin ωt
 

   

  

∂2y
∂x2 = −2A0k2 sin kx cos ωt

 

   

  

∂2y
∂t2 = −2A0ω

2 sin kx cos ωt
 

 Substitution into the wave equation gives  
   

  
−2A0k

2 sin kx cos ωt =
1
v2

⎛
⎝⎜

⎞
⎠⎟ −2A0ω

2 sin kx cos ωt( )
  

 This is satisfied, provided that 
  
v =

ω
k

.  But this is true, because  

   
  
v = λ f =

λ
2π

2π f =
ω
k
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P18.17   y1 = 3.00 sin π x + 0.600t( )[ ] ;     y2 = 3.00 sin π x − 0.600t( )[ ]  
 

  

y = y1 + y2 = 3.00 sin π x( ) cos 0.600π t( ) + 3.00 sin π x( ) cos 0.600π t( )⎡⎣ ⎤⎦
y = 6.00 cm( ) sin π x( ) cos 0.600π t( )

 

 We can take 
  
cos 0.600π t( ) = 1  to get the maximum y. 

 (a) At x = 0.250 cm,   ymax = 6.00 cm( ) sin 0.250π( ) = 4.24 cm  

 (b) At x = 0.500 cm,   ymax = 6.00 cm( ) sin 0.500π( ) = 6.00 cm  

 (c) At x = 1.50 cm,   ymax = 6.00 cm( ) sin 1.50π( ) = 6.00 cm  

 (d) The antinodes occur where 
   

  
sin πx( ) = ±1  →   πx = n

π
2

 
 

  or where 
  
x =

n
2

, where n = 1,  3,  5,  7,...   and x is in centimeters. 

   
  
n = 1:   x1 =

1
2
= 0.500 cm     as in (b)  

   
  
n = 3:   x2 =

3
2
= 1.50 cm     as in (c)  

   
  
n = 5:   x3 =

5
2
= 2.50 cm  

P18.18 (a) ANS. FIG. P18.18 shows the graphs for t = 0, t = 5 ms, t =10 ms, 
t = 15 ms, and t = 20 ms. The units of the x and y axes are 
meters. 
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ANS. FIG. P18.18 

 (b) 

  

In any one picture, the wavelength is the smallest distance
along the x axis that contains a nonrepeating shape. The
wavelength is λ = 4 m.

 

 (c) 

 

The frequency is the inverse of the period. The period is the 
time the wave takes to go from a full amplitude starting 
shape to the inversion of that shape and then back to the 
original shape. The period is the time interval between the 
top and bottom graphs: 20 ms. The frequency is 
1/0.020 s = 50 Hz.

 

 (d) 

  

4 m. By comparison with the wave function 
y = (2A sin kx) cosωt,
we identify k = π/2, and then compute λ = 2π/k.
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 (e) 

  

50 Hz. By comparison with the wave function 
y = (2A sin kx)cosωt,
we identify ω = 2π f = 100π .

 

P18.19 The facing speakers produce a standing wave in the space between 
them, with the spacing between nodes being 

   
  
dNN =

λ
2

=
v

2 f
=

343 m s
2 800 s−1( ) = 0.214 m  

 If the speakers vibrate in phase, the point halfway between them is an 
antinode of pressure at a distance from either speaker of 

   
 

1.25 m
2

= 0.625 m  

 Then there is a node one-quarter of a wavelength away at 

   
 
0.625 −

0.214
2

= 0.518 m  

 from either speaker, after which, there is a node every half-
wavelength:  

   a node at 
 
0.518 m − 0.214 m = 0.303 m  

   a node at  0.303 m − 0.214 m = 0.089 1 m  

   a node at 
 
0.518 m + 0.214 m = 0.732 m  

   a node at 
 
0.732 m + 0.214 m = 0.947 m  

 and  a node at 
 
0.947 m + 0.214 m = 1.16 m  from either 

speaker. 

 
 

 

Section 18.3 Analysis Model: Waves Under  
Boundary Conditions 

*P18.20 We are given L = 120 cm, f = 120 Hz. 

 (a) For four segments,   L = 2λ  or  λ = 60.0 cm = 0.600 m .   

 (b)   v = λ f = 72.0 m/s,  
  
f1 = v

2L
= 72.0 m/s

2 1.20 m( )
= 30.0 Hz  
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ANS. FIG. P18.22(a) 
 

P18.21 Using Lv for the vibrating portion of the string of total length L, 
    

  

f  = 
v

2Lv

 = 
1

2Lv

T
µ
 = 

1
2Lv

MgL
m

    = 
1

2 4.00 m( )
4.00 kg( ) 9.80 m/s2( ) 5.00 m( )

0.008 00 kg
=  19.6 Hz

 

P18.22 The frequency of vibration of a string is determined by the wave speed 
and the wavelength of the standing wave on the string. The length of 
the string and mode number n determines the size of the allowed 
wavelengths:  

   λ = 2L/n 

   
  
f =

v
λ
=

v
2L n

= n
v

2L
 

 As long as the wave speed does not change, 

   
 
f ∝

n
L

 

 and so we may compare frequencies of vibrations for different modes 
and lengths of string: 

   
  

f2

f1

=
n2L1

n1L2

 

 When the string is pressed down on the fret, the wave speed on the 
string remains the same, but the length of the vibrating string is 
smaller. When the string is plucked, it vibrates at the fundamental 
frequency (n = 1) corresponding to the shorter length of the string. We 
can compare frequencies and length of vibrating string thus: 

   
  

f2

f1

=
n2L1

n1L2

 

 For the original length of string, L1 = L = 0.640 m, n1 = 1, and  
f1 = 330 Hz.  

 (a) When the string is stopped at the fret, 

  
L2 =

2
3

L1 ,  and n1 = n2 = 1. 

   

  

f2

f1

= n2L1

n1L2

= 1( )L1

1( ) 2
3

L1
⎛
⎝

⎞
⎠

= 3
2

f2 = 3
2

f1 = 495 Hz
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ANS. FIG. P18.22(b) 
 

 

ANS. FIG. P18.23 
 

 (b) The light touch at a point one-third of  
the way along the string forces the  
point of contact to be a node while  
still allowing the entire string to vibrate. 
The whole string vibrates in three loops; 
therefore, the string vibrates in its third 
resonance possibility (n = 3): 

   

  

f2

f1

=
n2L1

n1L2

f2

f1

=
3( )L1

1( )L1

→ f2 = 3 f1 = 990 Hz
 

P18.23 When the string vibrates in the lowest  
frequency mode, the length of string  
forms a standing wave where L = λ/2,  
so the fundamental harmonic  
wavelength is 

    
  

λ = 2L = 2 0.700 m( )
= 1.40 m

 

  and the speed is 
   

  

v = λ f = 220 s−1( ) 1.40 m( )
= 308 m/s

 

  (a) From the tension equation  

    
  
v = T

µ
= T

m/L
 

  we get T = v2m/L,  

  or 
  
T =

(308 m/s)2 1.20 × 10–3 kg( )
0.700 m = 163 N   

  (b) For the third harmonic, the tension, linear density, and speed 
are the same, but the string vibrates in three segments. Thus, 
the wavelength is one third as long as in the fundamental. 

    λ3 = λ1/3 

   From the equation v = fλ, we find the frequency is three times as 
high. 

   

  
f3 =

v
λ3

= 3
v
λ1

= 3 f1 = 660 Hz
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P18.24 (a) Because the string is taut and is fixed at both ends, any standing 
waves will have nodes (which are multiples of λ/2 apart). The 
wavelengths of all possible modes on the string are: 

    
  
λn =

2L
n

,   where n = 1, 2, 3,… 

  The fundamental (n = 1) wavelength must then have a 
wavelength λ exactly twice the string length, or  

    
  
λ1 =

2L
1

= 2 2.60 m( ) = 5.20 m  

 (b) 
 
No. We do not know the speed of waves on the string.  To obtain 

the frequencies on the string, 

    
  
fn = n

v
2L

=
1

2L
T
µ

 

  it is necessary to have either the wave velocity v or the tension T 
and mass density µ of the string. We do not know these; therefore, 
it is not possible to find the frequency of this mode on the string. 

P18.25 Because the piano string is fixed at both end, it will have nodes at each 
end, and also a node between the two antinodes. Thus, this standing 
wave pattern represents one full wavelength.  

 (a) Thus, this is  second harmonic . 

 (b) And, because 
  
λn =

2L
n

,  where n = 1, 2, 3,… 

  The wavelength is 
  
λ2 = 2L

n
= 2 74.0 cm( )

2
= 74.0 cm .  

 (c) Because nodes are at both ends and in the middle, the number of 
nodes is  3 . 

P18.26 The wave speed is 
    

  
v = T

µ
= 20.0 N

9.00× 10−3  kg/m
= 47.1 m/s

 

  For a vibrating string of length L fixed at both ends, there are nodes at 
both ends. The wavelength of the fundamental is λ = 2dNN = 2L =  
0.600 m, and the frequency is 

    

  
f1 =

v
λ
=

v
2L

=
47.1 m/s
0.600 m

= 78.6 Hz
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  After NAN, the next three vibration possibilities read NANAN, 
NANANAN, and NANANANAN. Each has just one more node and 
one more antinode than the one before. Respectively, these string 
waves have wavelengths of one-half, one-third, and one-quarter of  
60.0 cm. The harmonic frequencies are 

     f2 = 2 f1 = 157  Hz  

     f3 = 3 f1 = 236 Hz  

     f4 = 4 f1 = 314 Hz  

P18.27 (a) Let n be the number of nodes in the standing wave resulting from 
the 25.0-kg mass. Then n + 1 is the number of nodes for the 
standing wave resulting from the 16.0-kg mass. For standing 

waves, 
  
λ =

2L
n

 and the frequency is 
 
f =

v
λ

. The frequency does 

not change as the masses are changed. 

  Thus, 
  
f =

n
2L

Tn

µ
    and also    

  
f =

n + 1
2L

Tn+1

µ
.  

  Equating the expressions for f, we have  

   
  

n + 1
n

=
Tn

Tn+1

=
25.0 kg( ) g
16.0 kg( ) g

=
5
4

 

  Therefore, 4n + 4 = 5n, or n = 4. Using either expression for f, we 
find  

   
  
f =

4
2 2.00 m( )

25.0 kg( ) 9.80 m s2( )
0.002 00 kg m

= 350 Hz  

 (b) For tension Tn = mg, we write  

   
  
f =

n
2L

Tn

µ
=

n
2L

mg
µ

   →   m = 
4L2 f 2µ

n2 g
 

  We solve for m for n = 1: 

   
  
m = 

4 2.00 m( )2 350 Hz( )2 0.002 00 kg/m( )
1( )2 9.80 m/s2( ) = 400 kg  

*P18.28 (a) For a standing wave of 6 loops,   6 λ/2( ) = L,   or  
   

  λ = L/3 = 2.00 m( )/3  



956     Superposition and Standing Waves 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  The speed of the waves in the string is then 
    

  
v = λ f = 2.00 m

3
⎛
⎝⎜

⎞
⎠⎟ 150 Hz−1( ) = 1.00× 102  m/s

 

  Since the tension in the string is  
    

  F = mg = 5.00 kg( ) 9.80 m/s2( ) = 49.0 N
  

  
 
v = F

µ
 gives 

    

  
µ = F

v2 = 49.0 N
1.00× 102  m/s( )2 = 4.90× 10−3  kg/m

  

 (b) If m = 45.0 kg, then  
    

  F = mg = 45.0 kg( ) 9.80 m/s2( ) = 4.41× 102  N
 

  and 
    

  
v = 4.41× 102  N

4.90× 10−3  kg/m
= 3.00× 102  m/s

  

  Thus, the wavelength will be 
    

  
λ = v

f
= 3.00× 102  m/s

150 Hz
= 2.00 m

  

  and the number of loops is  
    

  
n = L

λ/2
= 2.00 m

1.00 m
= 2

  

 (c) If m = 10.0 kg, the tension is  
    

  F = mg = 10.0 kg( ) 9.80 m/s2( ) = 98.0 N
 

  and 
    

  
v = 98.0 N

4.90× 10−3  kg/m
= 1.41× 102  m/s

 

  Then,  
    

  
λ = v

f
= 1.41× 102  m/s

150 Hz
= 0.943 m

 

  and 
  
n = L

λ/2
= 2.00 m

0.471 m
 is not an integer, 

  so 
 
no standing wave will form .  
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P18.29 In the fundamental mode, the string above the rod has only two nodes, 
at A and B, with an antinode halfway between A and B. Thus, 

   
  

λ
2
= AB =

L
cos θ

   or   
  
λ =

2L
cos θ

 

 Since the fundamental frequency is f, the wave speed in this segment 
of string is  

   

  
v = λ f =

2Lf
cos θ

 

 Because of the pulley, the string has tension T = Mg. 

 Also, 
   

  
v =

T
µ

=
Mg

m AB
=

MgL
m cos θ

 

 Thus, 

   
  

2Lf
cos θ

=
MgL

m cos θ
    or    

  

4L2 f 2

cos2 θ
=

MgL
m cos θ

 

 and the mass of string above the rod is: 
   

  
m =

Mg cos θ
4 f 2L

=
1.00 kg( ) 9.80 m/s2( ) cos 35.0°

4 60.0 Hz( )2 0.300 m( )
= 1.86 g

 

P18.30 In the fundamental mode, the string above the rod has only two nodes, 
at A and B, with an anti-node halfway between A and B. Thus, 

   
  

λ
2
= AB =

L
cos θ

    or    
  
λ =

2L
cos θ

 

 Since the fundamental frequency is f, the wave speed in this segment 
of string is  

   

  
v = λ f =

2Lf
cos θ

 

 Because of the pulley, the string has tension T = Mg. 

 Also, 

   
  
v =

T
µ

=
Mg

m AB
=

MgL
m cos θ

 

 Thus, 

   
  

2Lf
cos θ

=
MgL

m cos θ
    or    

  

4L2 f 2

cos2 θ
=

MgL
m cos θ
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 and the mass of string above the rod is:  
   

  
m =

Mg cos θ
4 f 2L

 

P18.31 When the open string vibrates in its fundamental mode it produces 
concert G. When concert A is played, the shorter length of string 
vibrates in its fundamental mode also. 

 (a) 
  
λG = 2LG =

v
fG

;  
  
λA = 2LA =

v
fA

,     and    
 

LA

LG

=
fG

fA

 

  

  

LG − LA = LG −
LA

LG

⎛
⎝⎜

⎞
⎠⎟

LG = LG −
fG

fA

⎛
⎝⎜

⎞
⎠⎟

LG = LG 1−
fG

fA

⎛
⎝⎜

⎞
⎠⎟

LG − LA = 0.350 m( ) 1−
392
440

⎛
⎝⎜

⎞
⎠⎟ = 0.038 2 m

 

  Thus,   LA = LG − 0.038 2 m = 0.350 m − 0.038 2 m = 0.312 m,  

  or the finger should be placed 
 

31.2 cm from the bridge . 

 (b) If the position of the finger is correct within dL = 0.600 cm when 
the note is played, by how much can the tension be off so that the 
note is the same? We want to find the maximum allowable 
percentage change in tension, dT/T, that will compensate for a 
small percentage change in position, dL/L, so that the change in 
the fundamental frequency, df, is zero. 

  From the expression for the fundamental frequency, 

   
  
f =

v
2L

=
1

2L
T
µ

,     we require df = 0. 

   

  

df =
−dL
2L2

T
µ

 +
1

2L
1
2

dT
Tµ

= 0   →    
dL
2L2

T
µ

 =
1

4L
dT
Tµ

→    
dL
L

T
µ

 =
1
2

T
µ

dT
T

   →    
dT
T

= 2
dL
L

= 2
0.600 cm
31.2 cm

⎛
⎝⎜

⎞
⎠⎟ → 3.85%
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P18.32 Let  m = ρV  represent the mass of the copper cylinder. The original 
tension in the wire is   T1 = mg = ρVg.  The water exerts a buoyant force 

  
ρwater

V
2

⎛
⎝⎜

⎞
⎠⎟ g  on the cylinder, to reduce the tension to 

   
  
T2 = ρVg − ρwater

V
2

⎛
⎝⎜

⎞
⎠⎟ g = ρ −

ρwater

2
⎛
⎝⎜

⎞
⎠⎟Vg  

 The speed of a wave on the string changes from 
  

T1

µ
   to   

  

T2

µ
.  The 

frequency changes from 

   
  
f1 =

v1

λ
=

T1

µ
1
λ

    to    
  
f2 =

T2

µ
1
λ

 

 where we assume λ = 2L is constant. 

 Then  

   
  

f2

f1

=
T2

T1

=
ρ − ρwater 2

ρ
=

8.92 − 1.00 2
8.92

 

 and 
   

  
f2 = 300 Hz( ) 8.42

8.92
= 291 Hz

 

P18.33 Comparing   y = 0.002 00 sin πx( ) cos 100πt( )  with   y = 2A sin kx cos ωt,  

 we find 
  
k =

2π
λ

= π  m−1 → λ = 2.00 m, and  

     ω = 2π f = 100π  s−1 → f = 50.0 Hz 

 (a) The distance between adjacent nodes is 
  
dNN =

λ
2
= 1.00 m,  

  and on the string there are 
  

L
dNN

=
3.00 m
1.00 m

= 3 loops .  

 (b) For the speed we have   v =ω k = 100π  s–1 π  m–1 = 100 m/s.  

  In the simplest standing wave vibration, 
  
dNN = 3.00 m =

λb

2
,  

  λb = 6.00 m,  and 
  
fb =

va

λb

=
100 m s
6.00 m

= 16.7 Hz .  
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 (c) In 
  
v0 =

T0

µ
,  if the tension increases to   Tc = 9T0  and the string 

does not stretch, the speed increases to 

   
  
vc =

9T0

µ
= 3

T0

µ
= 3v0 = 3 100 m s( ) = 300 m s  

  Then 
  
λc =

vc

fa

=
300 m s
50 Hz

= 6.00 m,     
  
dNN =

λc

2
= 3.00 m,  

  and 
 
one loop  fits onto the string. 

 
 

 

Section 18.4 Resonance 

P18.34 The wave speed is 
  
v = gd = 9.80 m s2( ) 36.1 m( ) = 18.8 m s.  

 The bay has one end open and one closed. Its simplest resonance is 
with a node of horizontal velocity, which is also an antinode of vertical 
displacement, at the head of the bay and an antinode of velocity, which 
is a node of displacement, at the mouth. 

 Then, 
  
dNA = 210 × 103  m =

λ
4

 

 and   λ = 840 × 103  m.  

 Therefore, the period is  
   

  
T = 1

f
= λ

v
= 840× 103  m

18.8 m s
= 4.47 × 104  s = 12 h, 24 min

 

 

 

The natural frequency of the water sloshing in the bay agrees precisely
with that of lunar excitation, so we identify the extra-high tides as
amplified by resonance.

 

P18.35 (a) The wave speed is 
  
v =

9.15 m
2.50 s

= 3.66 m/s .  

 (b) There are antinodes at both ends of the pond, so the distance 

between adjacent antinodes is 
  
dAA = λ

2
= 9.15 m  and the 

wavelength is λ = 18.3 m 
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  The frequency is then 
  
f =

v
λ
=

3.66 m/s
18.3 m

= 0.200 Hz .  

  We have assumed the wave speed on water is the same for all 
wavelengths. 

P18.36 The distance between adjacent nodes is one-quarter of the 
circumference.  

   
  
dNN = dAA =

λ
2
=

20.0 cm
4

= 5.00 cm  

 so   λ = 10.0 cm     

 and    
  
f = v

λ
= 900 m/s

0.100 m
= 9 000 Hz = 9.00 kHz  

 The singer must match this frequency quite precisely for some interval 
of time to feed enough energy into the glass to crack it. 

 
 

 

Section 18.5 Standing Waves in Air Columns 
*P18.37 Assuming an air temperature of T = 37.0°C = 310 K, the speed of sound 

inside the pipe is 
   

  v = 331 m s + 0.600 m/s ⋅ °C( ) 37.0°C( ) = 353 m/s  

 In the fundamental resonant mode, the wavelength of sound waves in 
a pipe closed at one end is   λ = 4L.  Thus, for the whooping crane, 

   
 λ = 4 5.00 ft( ) = 2.00 × 101  ft   

 and 
   

  
f = v

λ
= 353 m s( )

2.00 × 101  ft( )
3.281 ft

1 m( ) = 57.9 Hz
 

18.38 At T = 37.0°C = 310 K, the speed of sound in air is 
   

  
v = (331 m/s) 1 +

TC

273
= (331 m/s) 1 +

37.0
273

= 353 m/s
 

 Thus, the wavelength of 3 000-Hz sound is 
   

  
λ =

v
f
=

353 m/s
3 000 Hz

= 0.118 m
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 For the fundamental resonant mode in a pipe closed at one end, the 
length required is 

   

  
L = λ

4
= 0.118 m

4
= 0.029 4 m = 2.94 cm

 

P18.39 (a) For the fundamental mode in a closed 
pipe, λ = 4L, as in the diagram. 

  But v = fλ, therefore 
  
L =

v
4 f

.  

  so, 
  
L =

343 m s
4 240 s−1( ) = 0.357 m  

 (b) For an open pipe, λ = 2L, as in the 
diagram. 

  So, 
  
L = v

2f
= 343 m/s

2 240 s−1( ) = 0.715 m  

P18.40 The 32.0-cm length corresponds to   dAA = 0.320 m,  which gives a 
wavelength of 

     λ = 2dAA = 2 0.320 m( ) = 0.640 m  

 (a) The frequency of the lowest note is 

   
  
f =

v
λ
=

343 m/s
0.640 m

= 536 Hz  

 (b) For a 4 000 Hz high note, 

   
  
dAA =

λ
2
=

v
2 f

=
343 m/s
8 000 Hz

= 0.042 9 m = 42.9 mm  

P18.41 (a) The wavelength is 
  
λ =

v
f
=

343 m/s
261.6/s

= 1.31 m,  

 

ANS. FIG. P18.41 

ANS. FIG. P18.39 
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  so the length of the open pipe vibrating in its simplest (ANA) 
mode is 

   
  
dA to A =

1
2
λ = 0.656 m  

 (b) A closed pipe has (NA) for its simplest resonance, (NANA) for 
the second, and (NANANA) for the third, equal to 5/4 
wavelengths. 

  Here, the pipe length is 
  
5dN to A =

5λ
4

=
5
4

1.31 m( ) = 1.64 m  

P18.42 At TC  = 0.00°C, the speed of sound is  

   
  
v = 331 m s 1 +

TC

273
= 331 m s  

 (a) For a pipe closed at one end,  

   
  
f1 =

v
4L

=
331 m/s

4 4.88 m( ) = 17.0 Hz  

 (b) For a pipe open at each end,  

   
  
f1 =

v
2L

=
331 m/s

2 4.88 m( ) = 33.9 Hz  

 (c) At TC = 20.0°C, the speed of sound is v = 343 m/s. 

  closed at one end:  

   
  
f1 =

v
4L

=
343 m/s

4 4.88 m( ) = 17.6 Hz  

  open at each end:  

   
  
f1 =

v
2L

=
343 m/s

2 4.88 m( ) = 35.1 Hz  

P18.43 For resonance in a narrow tube open at one end, 

   
   
f = n

v
4L

n = 1, 3, 5, …( )  

 (a) The node–node distance is  

   dNN = 68.3 cm – 22.8 cm = 45.5 cm  

ANS. FIG. P18.43 
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  This distance is equal to half the wavelength, so, 
    

  

v = λ f  = 2dNN f  
= 2 0.455 m( ) 384 Hz( )
 =  349 m/s

 

 (b) Resonance will be established when the tube length has increased 
by another half wavelength: 68.3 cm + 45.5 = 113.8 =  1.14 m  

P18.44 The tube acts as a pipe open at one end and closed at the other. 
Resonance frequencies are odd harmonics. The length corresponding 
to the fundamental satisfies 

   
  
f1 =

v
4L

:   
  
L1 =

v
4 f1

=
343 m/s

4 512 s−1( ) = 0.167 m  

 Since L > 20.0 cm, the next two modes will be observed,  

 corresponding to 
  
f2 =

3v
4L2

 and 
  
f3 =

5v
4L3

,  

 or 
  
L2 =

3v
4 f2

= 3 f1 = 0.502 m    and   
  
L3 =

5v
4 f3

= 5 f1 = 0.837 m .  

P18.45 (a) For the fundamental mode of an open tube, 

   
  
L =

λ1

2
=

v
2 f1

=
343 m s

2 880 s−1( ) = 0.195 m  

 (b) 
  
v = 331 m s 1 +

−5.00( )
273

= 328 m s  

  We ignore the thermal expansion of the metal. 

   
  
f1 =

v
λ1

=
v

2L
=

328 m s
2 0.195 m( ) = 841 Hz  

  The flute is flat by a semitone. 

P18.46 For a closed box, the resonant frequencies will have nodes at both 

sides, so the permitted wavelengths will be 
  
λ =

2L
n

, (n = 1, 2, 3, …), 

 i.e.,  
  
L =

nλ
2

=
nv
2 f

    and    
  
f =

nv
2L

.  



Chapter 18     965 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 Therefore, with L = 0.860 m, L′ = 2.10 m, and v = 355 m/s, the resonant 
frequencies are 

   
  
fn = n 206 Hz( )     for L = 0.860 m for each n from 1 to 9 

 and  
  
′fn = n 84.5 Hz( )     for L′ = 2.10 m for each n from 2 to 23. 

*P18.47 
  

λ
2
= dAA = L

n
 or 

  
L = nλ

2
 for n = 1, 2, 3, … 

 Since 
 
λ = v

f
, 
  
L = n

v
2 f

⎛
⎝⎜

⎞
⎠⎟

 for n = 1, 2, 3, … 

 With v = 343 m/s and f = 680 Hz,  

  
  
L = n

343 m s
2 680 Hz( )

⎛
⎝⎜

⎞
⎠⎟ = n 0.252 m( )  for n = 1, 2, 3, …  

 Possible lengths for resonance are: 
  

   
L = 0.252 m, 0.504 m, 0.757 m, …, n 0.252( )  m

 

P18.48 (a) The open ends of the tunnel are antinodes, so dAA = 2 000 m/n, 
with n = 1, 2, 3,… 

  Then  
   

  λ = 2dAA = 4 000 m/n  

  and  
   

  
f = v

λ
= 343 m/s

4 000 m/n
= 0.085 8n Hz, with n = 1, 2, 3,...

 

 (b) 

 

It is a good rule. Any car horn would produce several or many
of the closely-spaced resonance frequencies of the air in the
tunnel, so it would be greatly amplified. Other drivers might be
frightened directly into dangerous behavior, or might blow their
horns also.

 

P18.49 The wavelength of the sound from the tuning fork is 
 
λ =

v
f

. The 

cylinder is a pipe open at the top and closed at the water surface; its 
resonance patterns are AN, ANAN, ANANAN, etc. Resonance occurs 
each time the height of the air column changes by half a wavelength: 

  
Δh =

v
2 f

.  The volume of the pipe between these two water levels is 

  πr2Δh,  which is also equal to the amount of water that has entered the 
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pipe at rate R in a time interval  Δt  and has filled this volume.  

 Therefore,  
   

  
RΔt = π r2Δh = π r2v

2 f
   →   Δt = π r2v

2Rf

 

   

  

Δt =
π r2v
2Rf

=
π 0.050 0 m( )2 343 m/s( )
2 1.00 L/min( ) 512 Hz( )

1 L
103  cm3

⎛
⎝⎜

⎞
⎠⎟

100 cm
m

⎛
⎝⎜

⎞
⎠⎟

3

= 2.63 min( ) 60 s
1 min

⎛
⎝⎜

⎞
⎠⎟ = 158 s

 

P18.50 The wavelength of the sound from the tuning fork is 
 
λ =

v
f

. The 

cylinder is a pipe open at the top and closed at the water surface; its 
resonance patterns are AN, ANAN, ANANAN, etc. Resonance occurs 
each time the height of the air column changes by half a wavelength: 

  
Δh =

v
2 f

.  The volume of the pipe between these two water levels is 

  πr2Δh,  which is also equal to the amount of water that has entered the 
pipe at rate R in a time interval ∆t and has filled this volume. 
Therefore, 

   
  
RΔt = π r2Δh =

π r2v
2 f

→ Δt =
π r2v
2Rf

 

P18.51 For both open and closed pipes, resonant frequencies are equally 
spaced as numbers. The set of resonant frequencies then must be  
650 Hz, 550 Hz, 450 Hz, 350 Hz, 250 Hz, 150 Hz, 50 Hz. These are odd-
integer multipliers of the fundamental frequency of 

 
50.0 Hz . Then 

the pipe length is 
  
dNA = λ

4
= v

4 f
= 343 m s

4 50.0 s−1( ) = 1.72 m .  

P18.52 For an air column of length 0.730 m, the column may be open ended or 
closed at one end. For a column open at both ends: 

   
  
fn = n

v
2L

    where n = 1, 2, 3,… 

   
  
fn = n

v
2L

= n
343 m/s

2 0.730 m( ) = n 235 Hz( )     where n = 1, 2, 3,… 
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 And thus 235 Hz belongs to the harmonic series of an open column 
(with n = 1), but 587 Hz does not match this harmonic series. 
Similarly, for a column open only at one end: 

   
  
fn = n

v
4L

,     where n = 1, 3, 5,… (only odd harmonics) 

   
  
fn = n

v
4L

= n
343 m/s

4 0.730 m( ) = n 117.5 Hz( ),     where n = 1, 3, 5,... 

 and 587 Hz belongs to the harmonic series of a column open at only 
one end (for n = 5), but 235 Hz does not match this harmonic series. 
Therefore, it is impossible because a single column could not produce 
both frequencies. 

P18.53 (a) The well acts like a pipe open at one end and closed at the other. 
The normal modes of vibrations of such a pipe are odd harmonics 
of a fundamental. Call L the depth of the well and v the speed of 
sound.  

  Then for some integer n, 
   

  
L = 2n − 1( )λ1

4
= 2n − 1( ) v

4 f1

=
2n − 1( ) 343 m s( )

4 51.87 s−1( )
 

  and for the next resonance
 

  
L = 2 n + 1( ) − 1[ ]λ2

4
= 2n + 1( ) v

4 f2

=
2n + 1( ) 343 m s( )

4 59.85 s−1( )
 

  Thus,  

   
  

2n − 1( ) 343 m s( )
4 51.87 s−1( ) =

2n + 1( ) 343 m s( )
4 59.85 s−1( )   

  and we require an integer solution to 
  

2n + 1
59.85

=
2n − 1
51.87

.  

  The equation gives n = 7, which gives us  

   
  
L =

2 7( ) − 1[ ] 343 m s( )
4 51.87 s−1( ) =

2 7( ) + 1[ ] 343 m s( )
4 59.85 s−1( )   = 21.5 m  

 (b) The first harmonic (fundamental frequency) of the well is f1 = 
v/4L = (343 m/s)/[4(21.5 m)] = 3.99 Hz; its pattern is AN. The 3rd 
harmonic pattern is ANAN, the 5th is ANANAN, etc. We can see 
that a pattern with n antinodes is the (2n – 1)th harmonic. The 
frequency 51.87 Hz = 13(3.99 Hz) is the 13th harmonic: 13 = 2(7) –
1, so the standing wave has 

 
7 antinodes.  
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Section 18.6 Standing Waves in Rods and Membranes 
P18.54 When the rod is clamped at one-quarter of its length, the vibration 

pattern reads ANANA and the rod length is   L = 2dAA = λ.  

 Therefore, 
  
L =

v
f
=

5 100 m s
4 400 Hz

= 1.16 m  

P18.55 (a) The mode pattern is ANA, corresponding to the fundamental 
mode. The length of the rod is one wavelength:  

   
  
f =

v
2L

=
5 100

2( ) 1.60( ) = 1.59 kHz  

 (b) Since it is held in the center, there must be a node in the center 
as well as antinodes at the ends. The even harmonics have an 
antinode at the center so only 

 
the odd harmonics  are present. 

 (c) The wavelength is the same as in (a):   

   
  
f = ′v

2L
=

3 560
2( ) 1.60( ) = 1.11 kHz  

 
 

 

Section 18.7 Beats: Interference in Time 

P18.56 (a) The string could be tuned to either 
 

521 Hz or 525 Hz  from this 

evidence. 

 (b) Tightening the string raises the wave speed and frequency. If the 
frequency were originally 521 Hz, the beats would slow down. 

  Instead, the frequency must have started at 525 Hz to become 

 
526 Hz . 

 (c) From 
  
f =

v
λ

=
T µ
2L

=
1

2L
T
µ

, 

   
  

f2

f1

=
T2

T1

    and    
  
T2 =

f2

f1

⎛
⎝⎜

⎞
⎠⎟

2

T1.  



Chapter 18     969 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  The fractional change that should be made in the tension is then 

   fractional change 
  
=

T2 −T1

T1

=
T2

T1

− 1 = T2 =
f2

f1

⎛
⎝⎜

⎞
⎠⎟

2

− 1  

    
 
=

523
526

⎛
⎝⎜

⎞
⎠⎟

2

− 1 = −0.011 4 = −1.14%  

  The tension should be 
 

reduced by 1.14% .  

P18.57 Combining the velocity and the tension equations  v = fλ  and 

  v = T/µ ,  we find that the frequency is 

   
  
f = T

µλ 2  

  Since μ and λ are constant, we can apply that equation to both 
frequencies, and then divide the two equations to get the proportion 

   
  

f1

f2

=
T1

T2

 

  With f1 = 110 Hz, T1 = 600 N, and T2 = 540 N we have 

   
  
f2 = (110 Hz) 540 N

600 N
= 104.4 Hz  

  The beat frequency is 
   

  
fb = f1 − f2 = 110 Hz − 104.4 Hz = 5.64 beats s

 

P18.58 We use 
  
′f =

v + vO

v − vS

⎛

⎝⎜
⎞

⎠⎟
f .  The observer is stationary, so v0 = 0. 

 For the approaching train vs = +8.00 m/s; the frequency arriving at the 
observer is  

  

  
f1
′ = v

v − vS

⎛
⎝⎜

⎞
⎠⎟

f = 343 m/s
343 m/s − 8.00 m/s

⎛
⎝⎜

⎞
⎠⎟

f = 343 m/s
335 m/s

⎛
⎝⎜

⎞
⎠⎟

f
 

 For the receding train is vs = –8.00 m/s; the frequency arriving at the 
observer is  

  

  
f2
′ = v

v − vS

⎛
⎝⎜

⎞
⎠⎟

f = 343 m/s
343 m/s − −8.00 m/s( )

⎛
⎝⎜

⎞
⎠⎟

f = 343 m/s
351 m/s

⎛
⎝⎜

⎞
⎠⎟

f
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 The beat frequency between the waves emanating from the trains is  

    fbeat = | f1 − f2| 

 and, because the receding train produces a lower frequency,  
  

  

f1
′ − f2

′ = fbeat    →   
343 m/s
335 m/s

⎛
⎝⎜

⎞
⎠⎟

f − 343 m/s
351 m/s

⎛
⎝⎜

⎞
⎠⎟

f = 4.00 Hz

343 m/s
335 m/s

⎛
⎝⎜

⎞
⎠⎟
− 343 m/s

351 m/s
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

f = 4.00 Hz   →    f = 85.7 Hz

 

P18.59 The source moves toward the wall: 

   vs = +vstudent,  v0 = 0,    and    
  
′f = f

v + vo( )
v − vs( ) = f

v
v − vstudent( ) .  

 The wall acts as stationary source, reflecting the wave of frequency   ′f .  
The observe moves toward the source: vs = 0, v0 = +vstudent, and  

   

  

′′f = ′f
v + vo( )
v − vs( ) = ′f

v + vs( )
v

= f
v

v − vstudent( )
v + vstudent( )

v

= f
v + vstudent( )
v − vstudent( )

 

 (a) When the student walks toward the wall  ′′f  is larger than f; the 
beat frequency is 

   

  

fb = ′′f − f = f
v + vstudent( )
v − vstudent( ) − f = f

v + vstudent( )
v − vstudent( ) − 1

⎡

⎣
⎢

⎤

⎦
⎥

= f
2vstudent

v − vstudent( )

 

   
  
fb = 256 Hz( ) 2 1.33 m/s( )

343 m/s − 1.33 m/s( ) = 1.99 Hz   

 (b) When he is moving away from the wall, the sign of vstudent changes 
and  ′′f  is smaller than f: 

 

  

fb = ′′f − f = f − f
v − vstudent( )
v + vstudent( ) = f 1−

v − vstudent( )
v + vstudent( )

⎡

⎣
⎢

⎤

⎦
⎥

= f
2vstudent

v + vstudent( )
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  Solving for vstudent gives 
    

  
vstudent =

fbv
2 f − fb

=
5 Hz( ) 343 m/s( )

2( ) 256 Hz( ) − 5 Hz
= 3.38 m/s

 

 
 

 

Section 18.8 Nonsinusoidal Wave Patterns 
*P18.60 We list the frequencies of the harmonics of each note in Hz: 
 

  Harmonic 

 Note 1 2 3 4 5 

 A 440.00  880.00 1 320.0 1 760.0 2 200.0 

 C# 554.37 1 108.7 1 663.1 2 217.5 2 771.9 

 E 659.26 1 318.5 1 977.8 2 637.0 3 296.3 
 

 

 

The second harmonic of E is close the the third harmonic of A, 
and the fourth harmonic of C# is close to the fifth harmonic of A.

 

P18.61 We evaluate 
    

  

s = 100 sin θ + 157 sin 2θ + 62.9 sin 3θ + 105 sin 4θ
  + 51.9 sin 5θ + 29.5 sin 6θ + 25.3 sin 7θ

 

 where s represents particle displacement in nanometers and θ 
represents the phase of the wave in radians. As θ advances by 2π, time 
advances by (1/523) s. The resultant waveform is shown below in 
ANS. FIG. P18.61.  

 

ANS. FIG. P18.61 
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Additional Problems 
*P18.62 (a) The fundamental wavelength of the pipe open at both ends is 

  λ = 2L = v/ f1.  Since the speed of sound is 331 m/s at 0°C, the 
length of the pipe is 

   

  
L = v

2 f1

= 331 m/s
2 300 Hz( ) = 0.552 m

  

 (b) At T = 30.0°C = 303 K, 
    

  
v = 331 m/s( ) TK

273
= 331 m/s( ) 303

273
= 349 m/s

  

   and 
    

  
f1 = v

λ1

= v
2L

= 349 m/s
2 0.552 m( ) = 316 Hz

 

*P18.63 The second standing wave mode of the air in the pipe reads ANAN, 

with  
  
dNA = λ

4
= 1.75 m

3
,  

 so   λ = 2.33 m  

 and  
  
f = v

λ
= 343 m/s

2.33 m
= 147 Hz.  

 For the string, λ and v are different but f is the same. 
   

  
λ
2
= dNN = 0.400 m

2

 

 so   λ = 0.400 m.  
   

  

v = λ f = 0.400 m( ) 147 Hz( ) = 58.8 m/s = T
µ

T = µv2 = 9.00 × 10−3  kg/m( ) 58.8 m/s( )2 = 31.1 N

 

P18.64 The beat frequency between the waves emanating from the two strings 
is 

     fbeat =| f1 − f2| 

 and, because the decrease in tension causes the second frequency to be 
lower, 

     f2 = f1 − fbeat = 150 Hz( ) − 4 Hz( ) = 146 Hz  
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P18.65 At point D, the distance of the ship from point A is 
   

  d1 = d2
2 + 800 m( )2 = 600 m( )2 + 800 m( )2 = 1 000 m

 

 Since destructive interference occurs for the first time when the ship 
reaches D, it is necessary that   d1 − d2 = λ 2  or 

   
  
λ = 2 d1 − d2( ) = 2 1 000 m − 600 m( ) = 800 m

 

P18.66 According to Equation 18.6, the natural frequencies of vibration of a 
string fixed at both ends are given by  

   

  

fn =
n

2L
T
µ

=
n

2 2.00 m( )
20.0 N

0.100 kg
2.00 m

⎛
⎝⎜

⎞
⎠⎟

= n 5.00 Hz( )     

 where n = 1, 2, 3, ... 

 (a)   f1 = 5.0 Hz , f2 = 10.0 Hz , f3 = 15.0 Hz  

 (b) This could be any mode that has a node 0.400 m from an end. If  
D = 0.400 m is the distance between adjacent nodes (the distance 
across a pair of nodes),   dNN = D = λ/2,  and its wavelength is  
0.800 m:  

   

  

λ
2

= D   →    λ  = 2D = 2 0.400 m( )

λ =
2L
n

   →    n =
2L
λ

=
2L
2D

=
L
D

=
2.00 m

0.400 m
= 5

 

  This mode corresponds to the 5th harmonic: f5 = 5(5.00 Hz) =  
25.0 Hz. But D could be the distance across two pairs of nodes 
(from node to node to node),   dNNN = D = 2 λ/2( ) , or three pairs, 
dNNN, or across N pairs of nodes:  

   

  
N

λ
2
= D   →    λ  = 2D N  

 

  then, 
   

  
n = 2L

λ
= 2L

2D N( ) = N
L
D

= N
2.00 m
0.400 m

= 5N
 

  and so on, corresponding to the 10th, or the 15th harmonic, etc. 

  

 

The frequency could be the fifth state at 25.0 Hz or any integer
multiple, such as the tenth state at 50.0 Hz, the fifteenth state at
75.0 Hz, and so on.
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P18.67 When the string is plucked, nodes occur on the ends because they are 
fixed. The plucked guitar string vibrates in its fundamental mode with 
a wavelength equal to twice the length of the string. For the 2 349-Hz 
note, the length of the vibrating string is L = 21.4 cm. For the 2 217-Hz 
note, the length of the vibrating string is L + x, where x is the distance 
to the next fret. We wish to solve for x.  

 We assume the wave speed is the same on each string. Compare the 
frequencies to the lengths of vibrating string: 

   

  
f1 = 2349 Hz = 

v
2L

 

   

  
f2 = 2217 Hz = 

v
2 L + x( )

 

 Taking the ratio, 
   

  

f1

f2

= L + x
L

= 1+ x
L

 

   

  
x = L

f1

f2

− 1
⎛
⎝⎜

⎞
⎠⎟

= 21.4 cm( ) 2 349 Hz
2 217 Hz

− 1⎛
⎝⎜

⎞
⎠⎟ = 1.27 cm

 

P18.68 (a) The frequency of the normal mode produces a sound wave of the 
same frequency. For the same frequency, wavelength is 
proportional to wave speed. On the string, the wave speed is  

   

  

v =
T
µ

=
48.0 N( )

4.80 × 10−3  kg
2.00 m

⎛
⎝⎜

⎞
⎠⎟

= 141 m s  

  which is smaller than the speed of sound (343 m/s). 

  The wavelength in air of the sound produced by the string is 

 
larger  because the wave speed is larger. 

 (b) 
  

λair

λstring

= vair f
vstring f

=
vair

vstring

=
343 m/s
141 m/s

= 2.43  

P18.69 
  
dAA =

λ
2
= 7.05 × 10−3  m  is the distance between 

antinodes. Then  λ = 14.1× 10−3  m,  

 and 
  
f =

v
λ
=

3.70 × 103  m/s
14.1× 10−3  m

= 2.62 × 105  Hz ,  

 The crystal can be tuned to vibrate at 218 Hz, so that binary counters 
can derive from it a signal at precisely 1 Hz. 

ANS. FIG. P18.69 
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P18.70 (a) 

 

The particle under constant 
acceleration model

  

 (b) 

 

Waves under boundary conditions
model

 

 (c) For the block: 
   

  Fx∑ = T − Mg sin θ = 0  

  so 
  
T = Mg sin θ .  

 (d) The length of the section of string parallel to the incline is 
  

h
sin θ

.  

The total length of the string is then  
   

  
L =

h
sin θ

+ h =
h

sin θ
+

h sin θ
sin θ

= h
1 + sin θ

sin θ
⎛
⎝⎜

⎞
⎠⎟

  

 (e) The mass per unit length of the string is  
   

  

µ =
m
L

=
m

h
1 + sin θ

sin θ
⎛
⎝⎜

⎞
⎠⎟

=
m sin θ

h 1 + sin θ( )

  

 (f) The speed of waves in the string is  
   

  

v =
T
µ

=
Mg sin θ
m sin θ

h 1 + sin θ( )
⎡

⎣
⎢

⎤

⎦
⎥

=
Mgh

m
1 + sin θ( )

  

 (g) The fundamental mode vibrates at the lowest frequency. In the 
fundamental mode, the segment of length h vibrates as one loop. 

The distance between adjacent nodes is then 
  
dNN =

λ
2
= h,  so the 

wavelength is   λ = 2h.  

  The frequency is 
  
f =

v
λ

=
1

2h
Mgh

m
1 + sin θ( ) =

Mg
4mh

1 + sin θ( ) .  

 (h) 
  
f =

Mg
4mh

1 + sin θ( ) =
1.50 kg( ) 9.80 m/s2( )

4 0.750 × 10−3  kg( ) 0.500 m( )
1 + sin 30.0°( )   

    = 121 Hz  

ANS. FIG. P18.70 
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 (i) The fundamental mode has a wavelength twice the length of the 

sloped section of string, 
  
λ = 2

h
sin θ

.  Its frequency is  

   

  

f =
v
λ

=
1

2
h

sin θ
⎛
⎝⎜

⎞
⎠⎟

Mgh
m

1 + sin θ( ) = sin θ
Mg
4mh

1 + sin θ( )

f = sin 30.0° 121 Hz( ) = 60.6 Hz

 

*P18.71 For the wire, 
 
µ = 0.010 0 kg

2.00 m
= 5.00 × 10−3  kg/m:  

   

  
v = T

µ
= 200 kg ⋅m/s2

5.00× 10−3  kg/m
= 200 m/s

 

 If it vibrates in its simplest state, 
  
dNN = 2.00 m = λ

2
:  

   

  
f = v

λ
= 200 m/s

4.00 m
= 50.0 Hz

 

 (a) The tuning fork can have frequencies  45.0 Hz or 55.0 Hz.  

 (b) If f = 45.0 Hz, and   v = fλ = 45.0 s−1( ) 4.00 m( ) = 180 m/s,  then 

     T = v2µ = 180 m/s( )2 5.00 × 10−3  kg/m( ) = 162 N  

  or if f = 55.0 Hz,  

   
  

T = v2µ = f 2λ2µ = 55.0 s−1( )2 4.00 m( )2 5.00 × 10−3  kg/m( )
= 242 N

 

*P18.72 We are told that the man’s ears are at the same level as the lower 
speaker. Sound from the upper speaker is delayed by traveling the 

extra distance   Δr = L2 + d2 − L.  

 He hears a minimum when 
  
Δr = 2n − 1( ) λ

2
⎛
⎝

⎞
⎠ ,  with n = 1, 2, 3, …  

 Then, 
    

  
L2 + d2 − L = n − 1

2( ) v
f

⎛
⎝⎜

⎞
⎠⎟
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L2 + d2 = n − 1
2( ) v

f
⎛
⎝⎜

⎞
⎠⎟

+ L

L2 + d2 = n − 1
2( )2 v

f
⎛
⎝⎜

⎞
⎠⎟

2

+ 2 n − 1
2( ) v

f
⎛
⎝⎜

⎞
⎠⎟

L + L2

 

    
  
d2 − n − 1

2( )2 v
f

⎛
⎝⎜

⎞
⎠⎟

2

= 2 n − 1
2( ) v

f
⎛
⎝⎜

⎞
⎠⎟

L  [1] 

 Equation [1] gives the distances from the lower speaker at which the 
man will hear a minimum. The path difference  Δr  starts from nearly 
zero when the man is very far away and increases to d when L = 0. 

 (a) The number of minima he hears is the greatest integer value for 
which   L ≥ 0.  This is the same as the greatest integer solution to  

   
  
d ≥ n − 1

2( ) v
f

⎛
⎝⎜

⎞
⎠⎟

 

  or 

   

  

number of minima heard = nmax

                            = greatest integer ≤ d
f
v

⎛
⎝

⎞
⎠ + 1

2
 

 (b) From equation [1], the distances at which minima occur are given 
by 

   

   

Ln =
d2 − n− 1

2( )2 v
f

⎛
⎝⎜

⎞
⎠⎟

2

2 n− 1
2( ) v

f
⎛
⎝⎜

⎞
⎠⎟

,  where n = 1, 2, …, nmax  

P18.73 (a) The tension on the string defines the wave velocity on the string, 
and thus also the frequencies, wavelengths, and number of nodes 
of the standing waves. The tension on the string in Figure 18.11a 
is: 

      T1 = mg,     where m is the mass of the sphere. 

  The tension on the string in Figure 18.11b, must also include the 
buoyant force on the sphere: 

    
  
T2 = mg − B = mg − ρwater gVsphere = mg − ρwater g

4
3
πr3⎛

⎝⎜
⎞
⎠⎟
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  Notice that the number of antinodes n is exactly the number of 
half wavelengths of standing waves on the string (i.e. there are 
two antinodes (and one full wavelength) on the string in Figure 
18.11a, and there are five antinodes (and two and a half full 
wavelengths) in Figure 18.11b). From Equations 18.5 and 18.6 we 
have  

    

  
fn = v

λn

= n
v

2L
= n

2L
T
µ

,  n = 1,  2,  3,  4,...
 

  The frequency of oscillation is the same in both cases because it is 
defined by the moving blade to the left. In addition, neither the 
total length of the string L nor the string density µ changes 
between the two cases: 

    
  
f =

n1

2L
T1

µ
   and    

  
f =

n2

2L
T2

µ
    

  therefore,     

      2Lf µ = n1 T1 = n2 T2  

  Or equivalently,   
    

  
T2 =

n1

n2

⎛
⎝⎜

⎞
⎠⎟

2

T1 =
n1

n2

⎛
⎝⎜

⎞
⎠⎟

2

mg
 

  But we have already obtained the value for tension above in 
terms of the buoyant force and thus the radius of the sphere. 

    

  
T2 =

n1

n2

⎛
⎝⎜

⎞
⎠⎟

2

T1 =
n1

n2

⎛
⎝⎜

⎞
⎠⎟

2

mg = mg − ρwater g
4
3
πr3⎛

⎝⎜
⎞
⎠⎟

 

  The radius of the sphere r may now be solved in terms of the 
number of antinodes n2 (and the other parameters, n1, m, g, and 

 ρwater  which are all constants, or already defined in the problem). 
    

  
ρwater g

4
3
πr3⎛

⎝⎜
⎞
⎠⎟ = mg 1− n1

2

n2
2

⎛
⎝⎜

⎞
⎠⎟

   →    r3 = 3m
4πρwater

1− n1
2

n2
2

⎛
⎝⎜

⎞
⎠⎟

 

   solving for r gives 

    

  

r = 3m
4πρwater

⎛
⎝⎜

⎞
⎠⎟

1− n1
2

n2
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

1/3

=
3 2.00 kg( )

4π 103  kg/m3( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1− 4
n2

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

1/3

= 0.078 2 1− 4
n2

⎛
⎝⎜

⎞
⎠⎟

1/3
  

  where r is in meters. 
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 (b) Because the factor inside the cube root  

    
  

1−
4

n2
⎛
⎝⎜

⎞
⎠⎟

1/3
 

  will be either zero or negative, which are each meaningless 
results, for n = 1 and 2, the minimum allowed value of n for a 
sphere of nonzero size is   n = 3 .  

 (c) Because the mass of the sphere is held constant, while its radius 
(and thus also volume and density) is changed, there will reach a 
point where the density of the sphere reaches the density of 
water, and thus the sphere will float, so that it will no longer be 
fully immersed in the water. After this point, the sphere will float 
on the water, and will not produce further standing waves. 

  The limiting condition is  ρsphere = ρwater = 1.00× 103  kg/m3.  

  But 

  

ρsphere =
m
V

= m
4
3
πr3

 which may be rearranged to solve for r. 

    

  

4
3
πr3 = m

ρsphere

= m
ρwater

     →      r = 3m
4πρwater

⎛
⎝⎜

⎞
⎠⎟

1/3  

  and substituting in numerically: 
    

  

r = 3m
4πρwater

⎛
⎝⎜

⎞
⎠⎟

1/3

=
3 2.00 kg( )

4π 1.0× 103  kg/m3( )
⎛

⎝
⎜

⎞

⎠
⎟

1/3

= 4.766 × 10−4  m3( )1/3
= 0.078 2 m

 

  is the limiting (maximum) radius for which the sphere will stay 
totally immersed. 

 (d) 
 
The sphere floats on the water.  

P18.74 (a) The wavelength is twice the length of string from the top end to 
the yo-yo: λ = 2L. The length L changes in time because the yo-yo 

is a particle under constant acceleration: 
  
L = L0 + 1

2
at2 ,  where L0 is 

the length of the string at t = 0 and a is the acceleration of the yo-
yo. Therefore, 

    

  

dλ
dt

 =  d
dt

2L( ) =  d
dt

2 L0  + 
1
2

at2⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
 = 2at 

      = 2 0.800 m/s2( ) 1.20 s( ) = 1.92 m/s
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 (b) For the second harmonic, the wavelength is equal to the length of 
the string. Therefore, 

    

  

dλ
dt

 =  d
dt

L =  d
dt

L0  + 
1
2

at2⎛
⎝⎜

⎞
⎠⎟ = at 

      =  0.800 m/s2( ) 1.20 s( ) 
=  0.960 m/s, half as much as for the first harmonic .

 

 (c) 

 

Yes. A yo-yo of different mass will hold the string under 
different tension to make each string wave vibrate with a 
different frequency, but the geometrical argument given 
in part (a) still applies to the wavelength.

 

 (d) 

 

Yes, for the same reason as in (c): the geometrical argument
given in part (b) still applies to the wavelength.

 

P18.75 f = 87.0 Hz. The speed of sound in air is  
va = 343 m/s. 

 (a) The pattern on the bar (see upper figure at 
right) is ANANA, corresponding to the second 
harmonic. The wavelength on the bar is   λb = L,  

   

  

v = fλb = 87.0 s−1( ) 0.400 m( )

= 34.8 m s

 

 (b) With   λa = 4L   and   va = λa f ,  
   

  
L =

va

4 f
=

343 m/s
4 87.0 s−1( ) = 0.986 m

 

P18.76 (a) 
 
µ =

5.50 × 10−3  kg
0.860 m

= 6.40 × 10−3  kg m  

  

  
v =

T
µ

=
1.30 kg ⋅m s2

6.40 × 10−3  kg m
= 14.3 m/s

 

 (b) The distance between a node and its adjacent antinode is one-
quarter of a wavelength. In order for there to be a node at the 
bottom and an antinode at the top, the string can contain only an 
odd number of node-antinode pairs.  

  The simplest pattern is (top to bottom) AN = one node-antinode 
pair:  

ANS. FIG. P18.75 
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λ1

4
= L = 86.0 cm  

  The next simplest pattern is ANAN = AN + NA + AN = three 
node-antinode pairs:  

   

  
3
λ3

4
= L   →    

λ3

4
= L

3
= 28.7 cm

 

  The next simplest pattern is ANANAN = AN + NA + AN + NA + 
AN = five node-antinode pairs:  

   
  
5
λ5

4
= L   →    

λ5

4
=

L
5
= 17.2 cm  

 (c) The distance between node and an antinode is 
 

λ
4

.  The 

corresponding frequency is  
   

  

fn =
v

4
λn

4
⎛
⎝⎜

⎞
⎠⎟

:        

f1 =
v

4
λ1

4
⎛
⎝⎜

⎞
⎠⎟

=
14.3 m/s

4 0.860 m( ) = 4.14 Hz

f3 =
v

4
λ3

4
⎛
⎝⎜

⎞
⎠⎟

=
14.3 m/s

4 0.287 m( ) = 12.4 Hz

f5 =
v

4
λ5

4
⎛
⎝⎜

⎞
⎠⎟

=
14.3 m/s

4 0.172 m( ) = 20.7 Hz

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

 

P18.77 We consider velocities of approach and of recession separately in the 
Doppler equation, after we observe from our beat equation fb = |f1 − f2| 
= |f − f’| that the moving train must have an apparent frequency of 
either  f’  = 182 Hz  or  f’  = 178 Hz. 

  We let vt represent the magnitude of the train’s velocity. If the train is 
moving away from the station, the apparent frequency is 178 Hz, 
lower, as described by 

    
 
′f =

v
v + vt

 

  and the train is moving away at 

   
  
vt = v

f
′f – 1⎛

⎝⎜
⎞
⎠⎟ = (343 m/s)

180 Hz
178 Hz

− 1⎛
⎝⎜

⎞
⎠⎟ = 3.85 m/s  

  If the train is pulling into the station, then the apparent frequency is 
182 Hz. Again from the Doppler shift, 
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′f =

v
v − vs

 

  The train is approaching at 

   

  

vs = v 1 –
f
′f

⎛
⎝⎜

⎞
⎠⎟ = (343 m/s) 1−

180 Hz
182 Hz

⎛
⎝⎜

⎞
⎠⎟

vs = 3.77 m/s
 

 The moving train has a velocity of either 3.85 m/s away from the 
station or 3.77 m/s toward the station. 

*P18.78 (a) Use the Doppler formula: 

   
   
′f = f

v ± v0( )
v  vs( )  

  with    ′f1 =  frequency of the speaker in front of student and 

     ′f2 =  frequency of the speaker behind the student. 

   

  

′f1 = 456 Hz( ) 343 m/s + 1.50 m/s( )
343 m/s − 0( )

= 458 Hz

′f2 = 456 Hz( ) 343 m/s − 1.50 m/s( )
343 m/s + 0( )

= 454 Hz
 

  Therefore,   fb = ′f1 − ′f2 = 3.99 Hz . 

 (b) The waves broadcast by both speakers have  

   
  
λ = v

f
= 343 m/s

456 s−1 = 0.752 m  

  The standing wave between them has 
  
dAA = λ

2
= 0.376 m.   

  The student walks from one maximum to the next in time  

  
  
Δt = 0.376 m

1.50 m/s
= 0.251 s,  so the frequency at which she hears 

maxima is  

   
  
f = 1

T
= 1

0.251 s
= 3.99 Hz  
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*P18.79 As in Problem 32, we let  m = ρV  represent the mass of the copper 
cylinder. The original tension in the wire is   T1 = mg = ρVg.  The water 
exerts a buoyant force   ρwater nV( )g  on the copper object, where n is the 
fraction of the object that is submerged, to reduce the tension to 

   
  T2 = ρVg − ρwater nV( )g = ρ − nρwater( )Vg  

 The speed of a wave on the string changes from 
  

T1

µ
   to   

  

T2

µ
.  The 

frequency changes from 
   

  
f1 = v1

λ
= 1

λ
⎛
⎝⎜

⎞
⎠⎟

T1

µ
     to     f2 = 1

λ
⎛
⎝⎜

⎞
⎠⎟

T2

µ

    

 where we assume λ = 2L is constant. 

 Then  
   

  

f2

f1

= T2

T1

 

  

 and 
   

  
f2 = f1

ρ − nρwater

ρ

 

 The frequency decreases as the fraction of the object that is submerged 
increases, with the lowest frequency occurring when the object is 
completely submerged, or n = 1: 

   

  

f2 = f1
ρ − nρwater

ρ
= 300 Hz( ) 8.92 − 1.00( )1.00

8.92

= 300 Hz( ) 7.92
8.92

= 283 Hz

 

P18.80 (a) Since the first node is at the weld, the wavelength in the thin wire 
is 2L or 80.0 cm. The frequency and tension are the same in both 
sections, so 

   

  
f =

1
2L

T
µ

=
1

2 0.400 m( )
4.60 N

2.00 × 10−3  kg/m
= 59.9 Hz
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 (b) As the thick wire is twice the diameter, the linear density is 4 
times that of the thin wire, or  ′µ = 8.00 g/m.  

  so 

  

′L =
1

2 f
T
′µ

=
1

2( ) 59.9 s−1( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

4.60 N
8.00 × 10−3  kg/m

= 20.0 cm

 

  or half the length of the thin wire. 

P18.81 The wavelength stays constant at   λ1 = 2L  while the wavespeed rises 
according to  

     v = (T/µ)1/2 = [(15.0 + 10.0t/3.50)/µ]1/2  

 so the frequency rises as   f = v/λ =  [(15.0 + 10.0t/3.50) /µ ]1/2/2L.  

 The number of cycles is N = dt/T = f dt in each incremental bit of time, 
or altogether  

 

  

N = 1
2L µ

15.0 + 10.0
3.50

t⎛
⎝⎜

⎞
⎠⎟

1 2

0

3.5

∫ dt

= 1
2L 3.50µ

52.5 + 10.0t( )1 2

0

3.5

∫ dt

N = 1
2L 3.50µ

1
10.0 3 2( ) 52.5 + 10.0t( )3 2

0

3.5

= 1
30L 3.50µ

52.5 + 10.0t( )3 2

0

3.5

N = 1

30.0 0.480 m( ) 3.50 1.60× 10−3  kg/m( )
                                   × 52.5 + 35.0( )3 2 − 52.5( )3 2⎡⎣ ⎤⎦

N = 407 cycles

 

P18.82 We use the basic relationship 
  
f =

n
2L

T
µ

.  

 (a) Changing the length does not change the tension or the mass per 
unit length, so the wave speed is the same.  

   
  

′f
f
=

L
′L
=

L
2L

=
1
2
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  The 
 

frequency should be halved  to get the same number of 

antinodes for twice the length.  

 (b) 
 

′n
n
=

T
′T

    so    
  

′T
T

=
n
′n

⎛
⎝⎜

⎞
⎠⎟

2

=
n

n + 1
⎡
⎣⎢

⎤
⎦⎥

2

 

  The tension must be 
  
′T =

n
n + 1

⎡
⎣⎢

⎤
⎦⎥

2

T .  

 (c) 
 

′f
f
= ′n L

n ′L
′T

T
    so    

  

′T
T

=
n ′f ′L
′n fL

⎛
⎝⎜

⎞
⎠⎟

2

=
n
′n

⎛
⎝⎜

⎞
⎠⎟

′f
f

⎛
⎝⎜

⎞
⎠⎟

′L
L

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

2

 

  
  

′T
T

=
3

2 ⋅2
⎛
⎝⎜

⎞
⎠⎟

2

     →  
  

′T
T

=
9

16
  to get twice as many antinodes. 

P18.83 We look for a solution of the form 

   5.00 sin (2.00x – 10.0t) + 10.0 cos (2.00x – 10.0t)  

     = A sin (2.00x – 10.0t + φ) 

     = A sin (2.00x – 10.0t) cos φ + A cos (2.00x – 10.0t) sin φ 

 This will be true if both 5.00 = A cos φ  and  10.0 = A sin φ, 

 requiring    

     5.00( )2 + 10.0( )2 = A2 → A = 11.2,  and  
   

 
tan φ =

10.0
5.00

= 2.00   →    φ = 63.4°
 

 (a) 

  

From above, we were able to find values for A and φ ; therefore,
the resultant wave is sinusoidal.

 

 (b) From above   A = 11.2  and 
 
φ = 63.4° . 

P18.84 The speed of sound at Celsius temperature TC is 

   
  
v = 331 m/s( ) 1 +

TC

273°C
 

 At 20.0°C, the speed of sound is 343 m/s. 

 (a) For a pipe open at both ends, the fundamental frequency (n = 1) is 

   
  
f1 =

v
2L

   →    L =
v

2 f1

=
343 m/s

2 261.6 Hz( ) = 0.656 m  
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 (b) The speed of sound in the colder room is smaller because the 
temperature is lower. The fundamental frequency of the pipe 
played in that room, call it f ′1, is smaller because the frequency of 
a standing wave is proportional to the wave speed. The beat 
frequency is  

   
  fbeat = ′f  1 − ′f  1 = f1 − ′f  1     

  which gives 
   

   f1 = f1 − fbeat = 261.6− 3.00 = 258.6 Hz  

  because f1 = 261.6 Hz is larger than f ′1.  

  The lengths of the flutes are the same, so compare frequencies 
and wave speeds:  

   

  
f1 =

v
2L

   →    ′f   1
f1

= ′v
v

  
 

  Solving for the wave speed gives 
   

  
 ′v = v

′f   1
f1

= 343 m/s( ) 258.6 Hz
261.6 Hz

⎛
⎝⎜

⎞
⎠⎟ = 339 m/s

 

  The wave speed depends on the temperature: 
   

  
v = 331 m/s( ) 1+ TC

273°
=  339 m/s 

 

  Solving for the temperature gives 
   

  
TC = 273° 339 m/s

331 m/s
⎛
⎝⎜

⎞
⎠⎟

2

− 1
⎡

⎣
⎢

⎤

⎦
⎥ = 13.5°C

 

P18.85 (a) Let θ represent the angle each 
slanted rope makes with the 
vertical. In the diagram, 
observe that: 

   

 
sin θ =

1.00 m
1.50 m

=
2
3

 

  or  θ = 41.8°  

  Considering the mass, 
   

  Fy∑ = 0:   2T cos θ = mg  ANS. FIG. P18.85 
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  or 
  
T =

12.0 kg( ) 9.80 m/s2( )
2 cos 41.8°

= 78.9 N  

 (b) The speed of transverse waves in the string is  
   

  
v =

T
µ

=
78.9 N

0.001 00 kg m
= 281 m/s

 

  For the standing wave pattern shown (3 loops), 
  
d =

3
2
λ,  

  or 
 
λ =

2 2.00 m( )
3

= 1.33 m.  

  Thus, the required frequency is    
  
f =

v
λ
=

281 m/s
1.33 m

= 211 Hz .  

P18.86 (a) Let θ (refer to ANS. FIG. P18.85) represent the angle each slanted 
rope makes with the vertical. In the diagram, observe that: 

   

  
sin θ =

d 2
L − d( ) 2

=
d

L − d

 

  and  

   

  

cos θ = 1− sin2 θ = 1− d
L− d

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥

1
2

cos θ =
L2 − 2dL + d2( )− d2

L− d( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

cos θ = L2 − 2dL
L− d

 

  Considering the mass, 
    

  
Fy∑ = 0:   2T cos θ = mg → T =

mg
2cos θ

 

  or 
  
T =

mg L − d( )
2 L2 − 2dL

.  

 (b) The speed of transverse waves in the string is 
  
v =

T
µ

.  

  For the standing wave pattern shown (3 loops), 
  
d =

3
2
λ,  
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  or 
  
λ =

2d
3

.  

  Thus, the required frequency is 

  

f =
v
λ

=
3

2d
mg L − d( )

2µ L2 − 2dL
.  

 
 

 

Challenge Problems 
P18.87 The idea is that the tension on 

the string after the force is 
applied is the vector sum of the 
wind force   


F  and the weight 

   M
g  of the mass. 

       

Tafter =


F + Mg  

 Notice that this forms a right 
triangle: 

 

 The relationship between the driving frequency and the string tension 
is 

   
  
f =

n
2L

T
µ

 

 Before and after the application of the wind force, the frequency f, 
string mass density µ, and string length L are all held constant. Thus, 
the string tension T is a function of only one variable, n. 

   
  
f =

n1

2L
T1

µ
,     

  
f =

n2

2L
T2

µ
;     thus      2Lf µ = n1 T1 = n2 T2  

 where n1 = 2 and n2 = 1:  

 
  
Tafter = T2  = T1  

n1

n2

⎛
⎝⎜

⎞
⎠⎟

2

 = Mg  
n1

n2

⎛
⎝⎜

⎞
⎠⎟

2

= Mg
2
1

⎛
⎝⎜

⎞
⎠⎟

2

= 4Mg  

ANS. FIG. P18.87 
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 From the geometry of the right triangle, 

   

  

T2
2 = F2 + Mg( )2

4Mg( )2 = F2 + Mg( )2 → F2 = 16 Mg( )2 − Mg( )2 = 15 Mg( )2

F = 15Mg

 

P18.88  Equation 18.13 is 
   

  

y t( ) = An sin 2π fnt + Bn cos2π fnt( )∑
= An sin nωt + Bn cosnωt( )∑

 

 (a) Multiplying by sin mωt gives: 
   

  y t( )sin mωt = sin mωt An sin nωt + Bn cosnωt( )∑  

  Integrating over one period T gives: 

   

  

y t( )sin mωt
0

T
∫ dt = An sin nωt( )

0

T

∫ sin mωt( )dt∑

                                              + Bn cosnωt( )
0

T

∫∑ sin mωt( )dt
 

[1]
 

  Inspecting the left-hand side of the equation, we note that y(t) is a 
positive constant A for half of the period T, and an equal but 
negative constant –A for the other half period: 

   

  
y t( )sin mωt

0

T

∫ dt = Asin mωt
0

T/2

∫ dt + −Asin mωt
T/2

T

∫ dt
 

  If we look at the first of the two integrals on the right:  
   

  

Asin mωt
0

T/2

∫ dt = − A
mω

cosmωt
0

T/2

= − A
mω

cosmω T
2

⎛
⎝⎜

⎞
⎠⎟ − cosmω 0( )⎡

⎣⎢
⎤
⎦⎥

 

  which gives different answers depending on whether m is even or 
odd: 

   If m is odd: 
  
= −

A
mω

−1( ) − 1( )⎡⎣ ⎤⎦ =
2A
mω

 

   If m is even: 
  
= −

A
mω

1( ) − 1( )⎡⎣ ⎤⎦ = 0     

  (because we are integrating over half periods). 
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 (a) (b) 

ANS. FIG. P18.88 

  The second of the two integrals on the right gives a similar result:  
   

  

−Asin mωt
T/2

T

∫ dt = − − A
mω

⎛
⎝⎜

⎞
⎠⎟ cosmωt

T/2

T

                          = + A
mω

cosmω T( )− cosmω T
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

                          =
2A
mω

⎛
⎝⎜

⎞
⎠⎟   odd

(0) even

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 

  Thus, 
   

  

y t( )sin mωt
0

T

∫ dt = Asin mωt
0

T/2

∫ dt + −Asin mωt
T/2

T

∫ dt

=
2A
mω

  m odd

0       m even

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+

2A
mω

 m odd

0      m even

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 

  Putting everything together, we have shown that 

   

  

y t( )sin mωt
0

T

∫ dt =
4A
mω

   m odd

0        m even

⎧
⎨
⎪

⎩⎪
 

 (b) We can analyze the terms involving Bn on the right hand side of 
eqn. [1] above: 

   

  
Bn cosnωt( )

0

T

∫∑ sin mωt( )dt
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  Using the trigonometric identity  
   

 
cosα sinβ = 1

2
sin(α + β)− 1

2
sin(α − β)

  

  we have 
   

  

Bn cosnωt( )
0

T

∫∑ sin mωt( )dt

               = 1
2

Bn sin(nωt + mωt)− sin(nωt − mωt)⎡⎣ ⎤⎦
0

T

∫∑ dt

               = 1
2

Bn sin(n + m)ωt − sin(n− m)ωt⎡⎣ ⎤⎦
0

T

∫∑ dt

 

  The sine function, whether the terms are (n + m) or (n – m), it 
will always integrate to zero over any full multiple of a period: 

   

  
= 1

2
Bn∑ sin(n + m)ωt − sin(n− m)ωt⎡⎣ ⎤⎦ 0

T
= 1

2
Bn∑ 0( ) = 0

 

  Thus, all the terms involving Bn on the right hand side of eqn. [1] 
are equal to zero:  

   

  
Bn cosnωt( )

0

T

∫∑ sin mωt( )dt = 0
 

 (c) For all the terms on the right hand side of eqn.(1) with An: 
   

  
An sin nωt ( )

0

T

∫ sin mωt( )dt∑
 

  Using the trigonometric identity  
   

 
sinα sinβ = 1

2
cos(α − β)− 1

2
cos(α + β)

  

  we have  
    

  

An sin nωt ( )
0

T

∫ sin mωt( )dt∑

                       = 1
2

An cos(nωt − mωt)− cos(nωt + mωt)[ ]
0

T

∫∑ dt

                       = 1
2

An cos(n− m)ωt − cos(n + m)ωt[ ]
0

T

∫∑ dt

 

  which can be integrated and evaluated at 0 and T: 
   

  
= 1

2
An

1
(n−m)ω

sin (n−m)ωt− 1
(n+ m)ω

sin (n+ m)ωt
⎡

⎣
⎢

⎤

⎦
⎥∑

0

T
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  The second term, when evaluated at 0 and T, always gives zero. 
The same is true for the first term for all values of n except where 
n = m. Thus, all the terms on the right hand side of eqn. (1) with 
An are zero except when m = n.  

 (d) For n = m, we will do the integration separately:  
   

  

An sin nωt( )
0

T

∫ sin mωt( )dt + Bn cosnωt( )
0

T

∫∑ sin mωt( )dt∑

= An sin nωt( )
0

T

∫ sin mωt( )dt∑ + 0

= 1
2

An=m [cos(n− m)ωt]dt
0

T

∫ = 1
2

Am cos 0( )0

T
∫ dt⎡⎣ ⎤⎦

= 1
2

Am 1( )0

T
∫ dt = Am

2
T − 0[ ]= 1

2
AmT

 

  Thus, the entire right side reduces to 
  

1
2

AmT.  

 (e) Starting with our original Equation 18.13: 

     y t( ) = An sin nωt + Bn cosnωt( )∑  

  notice that y(t) is an odd function of t: y(t) = –y(t), and the sine 
function is also odd, but the cosine function is even. From these 
observations, we can conclude that there are no cosine terms in 
the Fourier series expansion of y(t); therefore, all the Bn = 0. Thus,  

     y t( ) = An sin nωt∑  

  But we have shown in part (a) above that: 

      
  

y t( )sin mωt
0

T

∫ dt =
4A
mω

     

  where m must be odd, and in part (d) that: 
   

  

y t( )sin mωt
0

T
∫ dt = sin mωt An sin nωt + Bn cosnωt( )

0

T

∫ dt∑

= 1
2

AmT

 

  where n = m.  

  Thus, for each An term: 
  

1
2

AnT =
4A
nω

. And because 
  
ω = 2π

T
,  

   
  

4A
nω

=
1
2

AnT → An =
8A

nωT
=

4A
nπ

2π
ωT

⎛
⎝⎜

⎞
⎠⎟ =

4A
nπ
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  which we substitute in to give: 
   

  
y t( ) =  4A

nπ
sin nωt

n
∑

  

  where the summation is only over odd values of n. 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 
P18.2 See ANS. FIG. P18.2. 

P18.4 (a) See ANS. FIG. P18.4 (a-e); (b) See ANS. FIG. P18.4 (f-j) 

P18.6 (a) λ/4 = 0.113 m; (b) λ/2 = 0.227 m 

P18.8 (a) 3.33 rad; (b) 283 Hz 

P18.10 The man walks only through two minima; a third minimum is 
impossible. 

P18.12 0.500 s 

P18.14 (a) The separation of adjacent nodes is 
  
Δx =

π
k
=
λ
2

. The nodes are still 

separated by half a wavelength; (b) Yes. The nodes are located at 

  
kx +

φ
2

= nπ ,  so that 
  
x = nπ

k
− φ

2k
,  which means that each node is 

shifted 
  

φ
2k

 to the left by the phase difference between the traveling 

waves in comparison to the case in which  φ = 0.  

P18.16 See P18.16 for full verification. 

P18.18 (a) See ANS. FIG. P18.18; (b) In any one picture, the wavelength is the 
smallest distance along the x axis that contains a nonrepeating shape. 
The wavelength is λ = 4 m; (c) The frequency is the inverse of the 
period. The period is the time the wave takes to go from a full 
amplitude starting shape to the inversion of that shape and then back 
to the original shape. The period is the time interval between the top 
and bottom graphs: 20 ms. The frequency is 1/0.020 s = 50 Hz; (d) 4 m. 
By comparison with the wave function   y = 2Asin kx( )cosωt , we 
identify   k = π /2,  and then compute   λ = 2π / k ;  (e) 50 Hz. By 
comparison with the wave function   y = 2Asin kx( )cosωt , we identify 

  ω = 2π f = 100π . 

P18.20  (a) 0.600 m; (b) 30.0 Hz 

P18.22 (a) 495 Hz; (b) 990 Hz 

P18.24 (a) 5.20 m; (b) No. We do not know the speed of waves on the string. 

P18.26 (a) 78.6 Hz; (b) 157 Hz, 236 Hz, 314 Hz 

P18.28 (a) 4.90 × 10–3 kg/m; (b) 2; (c) no standing wave will form 

P18.30 
  
m =

Mg cos θ
4 f 2L
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P18.32 291 Hz 

P18.34 12 h, 24 min. The natural frequency of the water sloshing in the bay 
agrees precisely with that of lunar excitation, so we identify the extra-
high tides as amplified by resonance. 

P18.36 9.00 Hz 

P18.38 2.94 cm 

P18.40 (a) 536 Hz; (b) 42.9 mm 

P18.42 (a) 17.0 Hz; (b) 33.9 Hz; (c) 17.6 Hz, 35.1 Hz 

P18.44 0.502 m and 0.837 m 

P18.46 n(206 Hz) and n(84.5 Hz) 

P18.48 (a) 0.085 8n Hz, with n = 1, 2, 3 . . . ; (b) It is a good rule. A car horn 
would produce several or many of the closely-spaced resonance 
frequencies of the air in the tunnel, so it would be great amplified. 

P18.50 
  

πr2v
2Rf

 

P18.52 It is impossible because a single column could not produce both 
frequencies. 

P18.54 1.16 m 

P18.56 (a) 521 Hz or 525 Hz; (b) 526 Hz; (c) reduced by 1.14% 

P18.58 85.7 Hz 

P18.60 See P18.60 for a table of the frequencies of the harmonics of each note. 
The second harmonic of E is close to the third harmonic of A, and the 
fourth harmonic of C# is close to the fifth harmonic of A. 

P18.62 (a) 0.522 m; (b) 316 Hz 

P18.64 146 Hz 

P18.66 (a) 5.0 Hz, 10.0 Hz, 15.0 Hz; (b) The frequency could be the fifth state at 
25.0 Hz or any integer multiple, such as the tenth state at 50.0 Hz, the 
fifteenth state at 75.0 Hz, and so on. 

P18.68 (a) larger; (b) 2.43 

P18.70 (a) the particle under constant acceleration model; (b) waves under 

boundary conditions model; (c)   Mg sin θ ;  (d) 
  
h

1 + sin θ
sin θ

⎛
⎝⎜

⎞
⎠⎟

;  

(e) 
  

m sin θ
h 1 + sin θ( ) ; (f) 

  

Mgh
m

1 + sin θ( ) ; (g) 
  

Mg
4mh

1 + sin θ( ) ; (h) 121 Hz; 

(i) 60.6 Hz 
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P18.72 (a) 
  
greatest integer ≤ d

f
v

⎛
⎝

⎞
⎠ + 1

2
;  

(b) 

   

Ln =
d2 − n− 1

2( )2 v
f

⎛
⎝⎜

⎞
⎠⎟

2

2 n− 1
2( ) v

f
⎛
⎝⎜

⎞
⎠⎟

,  where n = 1, 2, …, nmax  

P18.74 (a) 
  

dλ
dt

=
d
dt

2L( ) =
d
dt

2 L0 +
1
2

at2⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= 2at = 2 0.800 m/s2( ) 1.20 s( ) = 1.92 

m/s; (b) 0.960 m/s, half as much as for the first harmonic; (c) Yes. A 
yo-yo of different mass will hold the string under different tension to 
make each string wave vibrate with a different frequency, but the 
geometrical argument given in part (a) still applies to the wavelength; 
(d) Yes, for the same reason as (c); the geometrical argument given in 
part (b) still applies to the wavelength. 

P18.76 (a) 14.3 m/s; (b) 86.0 cm, 28.7 cm, 17.2 cm; (c) 4.14 Hz, 12.4 Hz, 20.7 Hz 

P18.78 (a) 3.99 Hz; (b) 3.99 Hz 

P18.80 (a) 59.9 Hz; (b) 20.0 cm 

P18.82 (a) frequency should be halved; (b) 
  

n
n + 1

⎡
⎣⎢

⎤
⎦⎥

2

T ;  (c) 
  

′T
T

=
9

16
 

P18.84 (a) 0.656 m; (b) 13.5° C 

P18.86 (a) 
  

mg L − d( )
2 L2 − 2dL

; (b) 
  

3
2d

mg L − d( )
2µ L2 − 2dL

 

P18.88 (a) see P18.88(a) for full explanation; (b) see P18.88(b) for full 
explanation; (c) See P18.88(c) for full explanation; (d) see P18.88(d) for 
full explanation; (e) see P18.88(e) for full explanation. 
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19 
Temperature  

 

CHAPTER OUTLINE 
 

19.1  Temperature and the Zeroth Law of Thermodynamics 

19.2  Thermometers and the Celsius Temperature Scale 

19.3 The Constant-Volume Gas Thermometer  
and the Absolute Temperature Scale 

19.4  Thermal Expansion of Solids and Liquids 

19.5  Macroscopic Description of an Ideal Gas 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ19.1 Answer (b). The markings are now farther apart than intended, so 
measurements made with the heated steel tape will be too short—but 
only by a factor of 5 × 10−5 of the measured length. 

OQ19.2 Answer (d). Remember that one must use absolute temperatures and 
pressures in the ideal gas law. Thus, the original temperature is  
TK = TC + 273.15 = 25 + 273.15 = 298 K, and with the mass of the gas 
constant, the ideal gas law gives 

   
  
T2 =

P2

P1

⎛
⎝⎜

⎞
⎠⎟

V2

V1

⎛
⎝⎜

⎞
⎠⎟

T1 =
1.07 × 106  Pa
5.00 × 106  Pa

⎛
⎝⎜

⎞
⎠⎟

3.00( ) 298 K( ) = 191 K  

OQ19.3 Answer (d). From the ideal gas law, with the mass of the gas 
constant, P2V2/T2 = P1V2/T1. Thus, 

   

  
P2 =

V1

V2

⎛
⎝⎜

⎞
⎠⎟

T2

T1

⎛
⎝⎜

⎞
⎠⎟

P1 =
1
2

⎛
⎝⎜

⎞
⎠⎟ 4( )P1 = 2P1

 

OQ19.4 Answer (a). As the temperature increases, the brass expands. This 
would effectively increase the distance d from the pivot point to the 
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center of mass of the pendulum, and also increase the moment of 
inertia of the pendulum. Since the moment of inertia is proportional 

to d2, and the period of a physical pendulum is 
  
T = 2π I

mgd
, the 

period would increase, and the clock would run slow.  

OQ19.5 Answer (c). 
  
TC =

5
9

TF − 32( ) =
5
9

162 − 32( ) = 72.2°C,  then, 

   TK = TC + 273.15 = 72.2 + 273.15 = 345 K 

OQ19.6 Answer (c). From the ideal gas law, with the mass of the gas 
constant, P2V2/T2 = P1V2/T1. Thus,  

   

  
V2 =

P1

P2

⎛
⎝⎜

⎞
⎠⎟

T2

T1

⎛
⎝⎜

⎞
⎠⎟

V1 = 4( ) 1( ) 0.50 m3( ) = 2.0 m3
 

OQ19.7 Answer (d). If glass were to expand more than the liquid, the liquid 
level would fall relative to the tube wall as the thermometer is 
warmed. If the liquid and the tube material were to expand by equal 
amounts, the thermometer could not be used because the liquid level 
would not change with temperature. 

OQ19.8 The ranking is (a) = (b) = (d) > (e) > (c). We think about nRT/V in 
each case. Since R is constant, we need only think about nT/V, and 
units of mmol⋅K/cm3 are as convenient as any: (a) 2⋅3/1 = 6, (b) 6, (c) 
4, (d) 6, (e) 5.  

OQ19.9 Answer (d). Cylinder A must be at lower pressure. If the gas is thin, 
PV = nRT applies to both with the same value of nRT for both. Then 
A will be at one-third the absolute pressure of B.  

OQ19.10 (i) Answer (a). Call the process isobaric cooling or isobaric 
contraction. The rubber wall is easy to stretch. The air inside is 
nearly at atmospheric pressure originally and stays at 
atmospheric pressure as the wall moves in, just maintaining 
equality of pressure outside and inside. The air is nearly an 
ideal gas to start with, and stays fairly ideal—fairly far from 
liquefaction—even at 100 K. The water vapor liquefies and then 
freezes, and the carbon dioxide turns to dry ice, but these are 
minor constituents of the air. Thus, as the absolute temperature 
drops to 1/3 of its original value and the volume will drop to 
1/3 of what it was. 

 (ii) Answer (c). As noted above, the pressure stays nearly constant 
at 1 atm.  

OQ19.11 Answer (c). For a quick approximation, multiply 93 m and 17 and 
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1/(1 000 000 °C) and say 5°C for the temperature increase. To 
simplify, multiply 100 and 100 and 1/1 000 000 for an answer in 
meters: it is on the order of 1 cm.  

OQ19.12 Answer (b). Around atmospheric pressure, 0°C is the only 
temperature at which liquid water and solid water can both exist. 

OQ19.13 Answer (b). When a solid, containing a cavity, is heated, the cavity 
expands in the same way as it would if filled with the material 
making up the rest of the object.  

OQ19.14 Answer (e). 
   

  
TF = 9

5
TC + 32 = 9

5
−25°( )+ 32° = −13° F

 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ19.1 The coefficient of linear expansion must be greater for mercury than 
for glass, otherwise the interior of a glass thermomter would expand 
more and the mercury level would drop. See OQ19.7. 

CQ19.2  (a) The copper’s temperature drops and the water temperature rises 
until both temperatures are the same. (b) The water and copper are 
in thermal equilibrium when their temperatures are the same.  

CQ19.3 (a) PV = nRT predicts V going to zero as T goes to zero.  

 (b) The ideal-gas model does not apply when the material gets 
close to liquefaction and then turns into a liquid or solid. The 
molecules start to interact all the time, not just in brief collisions. 
The molecules start to take up a significant portion of the 
volume of the container.  

CQ19.4 Air pressure decreases with altitude while the pressure inside the 
bags stays the same; thus, that inside pressure is greater than the 
outside pressure.  

CQ19.5 (a) No. The thermometer will only measure the temperature of 
whatever is in contact with the thermometer. The thermometer 
would need to be brought to the surface in order to measure its 
temperature, since there is no atmosphere on the Moon to maintain a 
relatively consistent ambient temperature above the surface. (b) It 
would read the temperature of the glove, since it is in contact with 
the glove.  

CQ19.6 The coefficient of expansion of metal is larger than that of glass. 
When hot water is run over the jar, both the glass and the lid expand, 
but at different rates. Since all dimensions expand, the inner 
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diameter of the lid expands more than the top of the jar, and the lid 
will be easier to remove. 

CQ19.7 (a) As the water rises in temperature, it expands or rises in pressure 
or both. The excess volume would spill out of the cooling 
system, or else the pressure would rise very high indeed.  

 (b) Modern cooling systems have an overflow reservoir to accept 
the excess volume when the coolant heats up and expands. 

CQ19.8 (a) The sphere expands when heated, so that it no longer fits 
through the ring. With the sphere still hot, you can separate the 
sphere and ring by heating the ring. This more surprising result 
occurs because the thermal expansion of the ring is not like the 
inflation of a blood-pressure cuff. Rather, it is like a 
photographic enlargement; every linear dimension, including 
the hole diameter, increases by the same factor. The reason for 
this is that the atoms everywhere, including those around the 
inner circumference, push away from each other. The only way 
that the atoms can accommodate the greater distances is for the 
circumference—and corresponding diameter—to grow. This 
property was once used to fit metal rims to wooden wagon 
wheels. If the ring is heated and the sphere left at room 
temperature, the sphere would pass through the ring with more 
space to spare. 

 

ANS. FIG. CQ19.8 

 (b) Heating the ring increases its diameter, the sphere can pass 
through it easily. The hole in the ring expands as if it were filled 
with the material of the ring. 

CQ19.9 Two objects in thermal equilibrium need not be in contact. Consider 
the two objects that are in thermal equilibrium in Figure 16.1(c). The 
act of separating them by a small distance does not affect how the 
molecules are moving inside either object, so they will still be in 
thermal equilibrium. 

CQ19.10 (a) One mole of H2 has a mass of 2.016 0 g. 

 (b) One mole of He has a mass of 4.002 6 g. 

 (c) One mole of CO has a mass of 28.010 g. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 19.2 Thermometers and the Celsius Temperature Scale	  
Section 19.3 The Constant-Volume Gas Thermometer  

and the Absolute Temperature Scale	  
P19.1 (a) By Equation 19.2,  

   
  
TF =

9
5

TC + 32 =
9
5

41.5°C( ) + 32 = 74.7 + 32( )°F = 107°F  

 (b) 

 

Yes. The normal body temperature is 98.6°F, so the patient has
a high fever and needs immediate attention.

 

P19.2 (a) Consider the freezing and boiling points of water in each scale: 
0°C and 100°C; 32°F and 212°F. We see that there are 100 Celsius 
units for every 180 Fahrenheit units: 

   

  

ΔTC

ΔTF

= 100°C
180°F

     →      ΔTC = 5
9

ΔTF( ) = 5
9

57.0( )°C = 31.7°C
 

 (b) The Kelvin unit is the same size as the Celsius unit:  
   

  T = TC + 273.15     →      ΔT = ΔTC
 

   

  
ΔT = ΔTC

1 K
1 oC

⎛
⎝⎜

⎞
⎠⎟ = 31.7 K

1 K
1 oC

⎛
⎝⎜

⎞
⎠⎟ = 31.7 K

 

P19.3 (a) By Equation 19.2,  

   
  
TF =

9
5

TC + 32 =
9
5

−78.5( ) + 32 = −109°F  

  And, from Equation 19.1, 
   

  T = TC + 273.15 = −78.5 + 273.15( )  K = 195 K  

 (b) Again, 

   
  
TF =

9
5

TC + 32 =
9
5

37.0( ) + 32 = 98.6°F  

   
  T = TC + 273.15 = 37.0 + 273.15( )  K = 310 K  

P19.4 (a) The relationship between the Kelvin and Celsius scales is given 
by Equation 19.1: 

   
  T = TC + 273.15   
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  Thus 20.3 K converts to  
   

  TC = T − 273.15 = 20.3 K − 273.15 K = −253°C  

 (b) The relationship between the Celsius and Fahrenheit scales is, 
from Equation 19.2,  

   
  
TF =

9
5

TC + 32°F  

  Thus –253°C converts to 
   

  
TF = 9

5
TC + 32°F = 9

5
−253°C( )+ 32°F = −423°F

 

P19.5 (a) By Equation 19.2,  

   
  
TF =

9
5

TC + 32.0°F =
9
5

−195.81°C( ) + 32.0 = −320°F  

 (b) Applying Equation 19.1, 

     T = TC + 273.15 = −195.81°C + 273.15 = 77.3 K  

*P19.6 (a) To convert from Fahrenheit to Celsius, we use 

   
  
TC = 5

9
TF − 32.0( )  

  The temperature at Furnace Creek Ranch in Death Valley is  

   
  
TC = 5

9
TF − 32.0( ) = 5

9
134°F − 32.0( ) = 56.7°C  

  and the temperature at Prospect Creek Camp in Alaska is  

   
  
TC = 5

9
TF − 32.0( ) = 5

9
−79.8°F − 32.0( ) = –62.1°C  

 (b) We find the Kelvin temperature from Equation 19.1, 
T = TC + 273.15. The record temperature on the Kelvin scale at 
Furnace Creek Ranch in Death Valley is 

     T = TC + 273.15 = 56.7°C + 273.15 = 330 K  

  and the temperature at Prospect Creek Camp in Alaska is  

     T = TC + 273.15 = −62.11°C + 273.15 = 211 K  

P19.7 Since we have a linear graph, we know that the pressure is related to 
the temperature as P = A + BTC , where A and B are constants. To find 
A and B, we use the given data:  

     0.900 atm = A + B −78.5°C( )  [1] 
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 and 

     1.635 atm = A + B 78.0°C( )  [2] 

 Solving Equations [1] and [2] simultaneously, we find: 
   

  A = 1.27 atm     and     B = 4.70× 10−3  atm °C  

 Therefore, 

   
  P = 1.27 atm + 4.70 × 10−3  atm °C( )TC  

 (a) At absolute zero the gas exerts zero pressure (P = 0 ), so 

   
  
TC =

−1.27 atm
4.70 × 10−3  atm °C

= − 270°C  

 (b) At the freezing point of water, TC = 0 and 

   
  
P = 1.27 atm + 0 = 1.27 atm  

  At the boiling point of water, TC = 100°C, so 
   

  
P = 1.27 atm + 4.70× 10−3  atm °C( ) 100°C( ) = 1.74 atm

 

 
 

	  

Section 19.4 Thermal Expansion of Solids and Liquids 
P19.8 Each section can expand into the joint space to the north of it. We need 

think of only one section expanding. Using Equation 19.4, 
  

  

ΔL = Liα ΔT = 25.0 m( ) 12.0× 10−6  °C( )−1⎡⎣ ⎤⎦ 40.0°C( )
= 1.20 cm

 

: (a) By Equation 19.4,  
    

  

ΔL =αLiΔT = 9.00× 10−6 °C( )−1⎡⎣ ⎤⎦ 30.0 cm( ) 65.0°C( )
= 0.176 mm

 

 (b) The diameter is a linear dimension, so Equation 19.4 still applies:  
   

  

ΔL =αLiΔT = 9.00× 10−6  °C( )−1⎡⎣ ⎤⎦ 1.50 cm( ) 65.0°C( )

= 8.78× 10−4  cm = 8.78 µm

 

 (c) Using the volumetric coefficient of expansion β, and   Vi = πd2L/ 4,  
   

  ΔV = βViΔT ≈ 3αVΔT  



1004     Temperature 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

   

  

ΔV = βViΔT ≈ 3αViΔT

= 3 9.00× 10−6  °C( )−1⎡⎣ ⎤⎦
30.0 π( ) 1.50( )2

4
 cm3⎛

⎝⎜
⎞
⎠⎟

65.0°C( )

= 0.093 0 cm3

 

P19.10 The horizontal section expands according to   ΔL = αLiΔT.  
   

  

Δx = 17 × 10−6  °C( )−1⎡⎣ ⎤⎦ 28.0 cm( ) 46.5°C− 18.0°C( )
= 1.36× 10−2  cm

 

 

ANS. FIG. P19.10 

 The vertical section expands similarly by 
   

  
Δy = 17 × 10−6 °C( )−1⎡⎣ ⎤⎦ 134 cm( ) 28.5°C( ) = 6.49× 10−2  cm

 

 The vector displacement of the pipe elbow has magnitude 

     
  Δr = Δx2 + Δy2 = 0.136 mm( )2 + 0.649 mm( )2 = 0.663 mm  

 and is directed to the right below the horizontal at angle 
     

  
θ = tan−1 Δy

Δx
⎛
⎝⎜

⎞
⎠⎟ = tan−1 0.649 mm

0.136 mm
⎛
⎝⎜

⎞
⎠⎟ = 78.2°

 

 
  
Δr = 0.663 mm to the right at 78.2° below the horizontal

 

P19.11 The wire is 35.0 m long when TC = −20.0°C. 

     ΔL = Liα T −Ti( )  

 Since  α = α 20.0°C( ) = 1.70 × 10−5  °C( )−1  for Cu,  
    

  

ΔL = 35.0 m( ) 1.70× 10−5  °C( )−1⎡⎣ ⎤⎦ 35.0°C− −20.0°C( )[ ]
= +3.27 cm

 

*P19.12 For the dimensions to increase,   ΔL = α LiΔT:  
   

  

1.00× 10−2  cm = 1.30× 10−4  °C( )−1[ ] 2.20 cm( ) T − 20.0°C( )

T = 55.0°C
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*P19.13 By Equation 19.4, 

   
  

ΔL =α LiΔT = 11× 10−6  °C( )−1[ ] 1 300 km( ) 35°C− −73°C( )[ ]

= 1.54 km
 

 The expansion can be compensated for by mounting the pipeline on 
rollers and placing Ω -shaped loops between straight sections. They 
bend as the steel changes length. 

*P19.14 By Equation 19.4, 

   
  

ΔL =α LiΔT = 22 × 10−6  °C( )−1[ ] 2.40 cm( ) 30.0°C( )

= 1.58× 10−3  cm
 

*P19.15 (a) Following the logic in the textbook for obtaining Equation 19.6 
from Equation 19.4, we can express an expansion in area as 

     

ΔA = 2α AiΔT

= 2 17.0× 10−6 °C( )−1[ ] 0.080 0 m( )2 50.0°C( )

= 1.09× 10−5  m2 = 0.109 cm2

 
 (b) The length of each side of the hole has increased. Thus, this 

represents an  increase  in the area of the hole. 

*P19.16 By Equation 19.6, 
   

  

ΔV = β − 3α( )ViΔT

= 5.81× 10−4 °C( )−1 − 3 11.0× 10−6 °C( )−1( )[ ]
                                                    × 50.0 gal( ) 20.0°C( )

= 0.548 gal

 

*P19.17 (a) By Equation 19.4,   L = Li 1 +αΔT( ) , and  
     

  
5.050 cm = 5.000 cm 1 + 24.0 × 10−6 °C( )−1( ) T − 20.0°C( )⎡

⎣
⎤
⎦

 

   which gives 
  
T = 437°C  

 (b) We must get LAl = LBrass for some   ΔT ,  or 
    

  

Li ,  Al 1 +αAlΔT( ) = Li ,  Brass 1 +αBrassΔT( )
5.000 cm 1 + 24.0 × 10−6 °C( )−1( )ΔT⎡

⎣
⎤
⎦

             = 5.050 cm 1 + 19.0 × 10−6 °C( )−1( )ΔT⎡
⎣

⎤
⎦
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   Solving for   ΔT ,   
       ΔT = 2 080°C  

   so  
  

T = 2 .1× 103°C  

 (c) 

 

No. Aluminum melts at 660°C (Table 17.2). Also, although it is
not in Table 17.2, internet research shows that brass (an alloy of
copper and zinc) melts at about 900°C.

 

P19.18 We solve for the temperature T at which the brass ring would fit over 
the aluminum cylinder.  

   
  LAl 1 +αAlΔT( ) = LBrass 1 +αBrassΔT( )  

   

  

ΔT = T −Ti =
LAl − LBrass

LBrassαBrass − LAlαAl

ΔT =
10.02 cm − 10.00 cm

10.00 cm( ) 19.0 × 10−6  °C( )−1( ) − 10.02 cm( ) 24.0 × 10−6  °C( )−1( )
ΔT = −396 = T − 20.0     →      T = −376°C 

 

 The situation is impossible because the 

  
required T = –376°C is below absolute zero.  

P19.19 (a) The original volume of the acetone we take as precisely 100 mL. 
After it is finally cooled to 20.0°C, its volume is 

   

  

Vf = Vi 1+ βΔT( ) = 100 ml( ) 1+ 1.50× 10−4 °C( )−1⎡⎣ ⎤⎦ −15.0°C( ){ }
= 99.8 mL

 

 (b) Initially, the volume of the acetone reaches the 100-mL mark on 
the flask, but the acetone cools and the flask warms to a 
temperature of 32.0 °C. Thus, the volume of the acetone 
decreases and the volume of the flask increases. This means the 
acetone will be below the 100-mL mark on the flask. 

P19.20 (a) The material would expand by   ΔL =αLiΔT ,  or 
  

ΔL
Li

=αΔT ,  but 

instead feels stress  
    

  

F
A

= YΔL
Li

= YαΔT = 7.00× 109  N m2( ) 12.0× 10−6 C°( )−1⎡⎣ ⎤⎦ 30.0°C( )

= 2.52 × 106  N m2
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 (b) The stress is less than the compressive strength, so 

 the concrete will not fracture.  

P19.21 (a) The amount of turpentine that overflows equals the difference in 
the change in volume of the cylinder and the turpentine:  

    

  

ΔV = VtβtΔT −VAlβAlΔT = βt − 3αAl( )ViΔT

= 9.00 × 10−4 °C( )−1 − 3 24.0 × 10−6 °C( )−1( )⎡
⎣

⎤
⎦

                                            × 2 000 cm3( ) 60.0°C( )
ΔV = 99.4 cm3  overflows.

 

 (b) Find the volume of the turpentine remaining in the cylinder at 
80.0°C, which is the same as the volume of the aluminum cylinder 
at 80.0°C:  

    

  

Vt  = VAl = VAli + βAlVAliΔT  = VAli + 3αAlVAliΔT  

= VAli 1 + 3αAlΔT( )
    =  2 000 cm3( ) 1 + 3 24 × 10−6 °C( )−1( ) 60.0°C( )⎡

⎣
⎤
⎦

= 2 008.64 cm3 = 2.01 L

 

 (c) Find the volume of the turpentine in the cylinder after it cools 
back to 20.0°C: 

    

  

V  = Vti  + βtVtiΔT  = Vti 1 + βtΔT( ) 
= 2 008.64 cm3( ) 1 +  9 × 10−4 °C( )−1( ) −60.0°C( )⎡⎣ ⎤⎦ 

= 1 900.17  cm3

 

   Find the percentage of the cylinder that is empty at 20.0°C: 
    

 

2 000 cm3  − 1 900.17  cm3

2 000 cm3  = 4.99%
 

  Find the empty height of the cylinder above the turpentine: 

     4.99%( ) 20.0 cm( ) =  0.998 cm  

P19.22 We model the wire as contracting according to  ΔL = αLiΔT  and then 
stretching according to 

    
  
stress =

F
A

= Y
ΔL
Li

=
Y
Li

αLiΔT = YαΔT  
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 (a) We find the tension from 

    

  

F = YAαΔT

= 20.0× 1010  N m2( ) 4.00× 10−6  m2( )
                                         × 11× 10−6  °C( )−1⎡⎣ ⎤⎦ 45.0°C( )

= 396 N

 

 (b) 
  
ΔT =

stress
Yα

=
3.00 × 108  N m2

20.0 × 1010  N m2( ) 11× 10−6 C°( ) = 136°C  

  To increase the stress the temperature must decrease to 

 
35°C − 136°C = −101°C . 

 (c) 
 
The original length divides out, so the answers would not change.  

P19.23 (a) The density of a sample of lead of mass m = 20.0 kg, volume V0, at 
temperature T0 is  

   
  
ρ0 =

m
V0

= 11.3 × 103  kg m3  

  For a temperature change   ΔT = T −T0 ,  the same mass m occupies 
a larger volume   V = V0 1 + βΔT( ) ; therefore, the density is  

   
  
ρ =

m
V0 1 + βΔT( ) =

ρ0

1 + βΔT( )  

  where  β = 3α ,  and  α = 29 × 10−6 (°C)−1.  

  For a temperature change of from 0.00°C to 90.0°C,  
   

  

ρ =
ρ0

1 + βΔT( ) =
11.3 × 103 kg m3

1 + 3 29 × 10−6  o C( )−1( ) 90.0 oC( )
= 11.2 × 103  kg m3

 

 (b) The mass is still the same, 
 
20.0 kg ,  because a temperature 

change would not change the mass. 

P19.24 (a) The density of a solid substance of mass m, volume V0, at 
temperature T0 is  

    
  
ρ0 =

m
V0
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  For a temperature change   ΔT = T −T0 ,  the same mass m occupies 
a larger volume   V = V0 1 + βΔT( ) ; therefore, the density is  

    

  
ρ = m

V0 1+ βΔT( ) = ρ0

1+ βΔT

 

 (b) The mass is still the same,   m ,  because a temperature change 
would not change the mass.  

P19.25 From Equation 19.3, the difference in Celsius temperature in the 
underground tank and the tanker truck is  

  

  
ΔTC = 5

9
ΔTF( ) = 5

9
95.0°F − 52.0°F( ) = 23.9°C

 

 If V52.0°F is the volume of gasoline that fills the tank at 52.0°F, the 
volume this quantity of gas would occupy on the tanker truck at 95.0°F 
is 

  

  

V95.0°F = V52.0°F + ΔV = V52.0°F + βV52.0°FΔT = V52.0°F 1+ βΔT( )
= 1.00× 103  gal( ) 1+ 9.6× 10−4  °C( )−1⎡⎣ ⎤⎦ 23.9°C( ){ }
= 1.02 × 103  gal

  

 
 

	  

Section 19.5 Macroscopic Description of an Ideal Gas 
P19.26 If the volume and the temperature are both constant, the ideal gas law 

gives 

   
 

Pf Vf

Pi Vi

=
nf RTf

ni RTi

     

 or  
  
nf =

Pf

Pi

⎛
⎝⎜

⎞
⎠⎟

ni =
5.00 atm
25.0 atm

⎛
⎝⎜

⎞
⎠⎟ 1.50 mol( ) = 0.300 mol  

 so the amount of gas to be withdrawn is  
   

  Δn = ni − nf = 1.50 mol − 0.300 mol = 1.20 mol
 

P19.27 The initial and final absolute temperatures are 

     Ti = TC,i + 273 = 25.0 + 273( )  K = 298 K  

 and  

     Tf = TC, f + 273 = 75.0 + 273( )  K = 348 K  
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 The volume of the tank is assumed to be unchanged, or Vf = Vi . Also, 
since two-thirds of the gas is withdrawn, nf = ni /3. Thus, from the 
ideal gas law, we obtain 

   

 

Pf Vf

Pi Vi

=
nf RTf

ni RTi

 

 or 
   

  
Pf =

nf

ni

⎛
⎝⎜

⎞
⎠⎟

Tf

Ti

⎛
⎝⎜

⎞
⎠⎟

Pi = 1
3

⎛
⎝⎜

⎞
⎠⎟

348 K
298 K

⎛
⎝⎜

⎞
⎠⎟ 11.0 atm( ) = 4.28 atm

 

    

P19.28 When the tank has been prepared and is ready to use it contains 1.00 L 
of air and 4.00 L of water. Consider the air in the tank during one 
discharge process. We suppose that the process is slow enough that the 
temperature remains constant. Then as the pressure drops from 2.40 
atm to 1.20 atm, the volume of the air doubles (PV ≈ constant) resulting 
in 1.00 L of water expelled and 3.00 L remaining. In the second 
discharge, the air volume doubles from 2.00 L to 4.00 L and 2.00 L of 
water is sprayed out. In the third discharge, only the last 1.00 L of 
water comes out.  

 

 

In each pump-up-and-discharge cycle, the volume of air in the tank
doubles. Thus 1.00 L of water is driven out by the air injected at the
first pumping, 2.00 L by the second, and only the remaining 1.00 L by
the third. Each person could more efficiently use his device by starting
with the tank half full of water, instead of 80% full.

 

P19.29 (a) From the ideal gas law, 

     

  

n =
PV
RT

=
9.00 atm( ) 1.013 × 105  Pa atm( ) 8.00 × 10−3  m3( )

8.314 N ⋅mol K( ) 293 K( )
= 2.99 mol

 

 (b) The number of molecules is  

     

  

N = nNA = 2.99 mol( ) 6.02 × 1023  molecules mol( )
= 1.80 × 1024  molecules
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P19.30 (a) From PV = nRT, we obtain  
 
n =

PV
RT

. Then  

    

  

m = nM = PVM
RT

=
1.013× 105  Pa( ) 0.100 m( )3 28.9× 10−3  kg mol( )

8.314 J mol ⋅K( ) 300 K( )

= 1.17 × 10−3  kg

 

 (b) 
  
Fg = mg = 1.17 × 10−3  kg( ) 9.80 m s2( ) = 11.5 mN  

 (c) 
  
F = PA = 1.013 × 105  N m2( ) 0.100 m( )2 = 1.01 kN  

 (d) The 
 

molecules must be moving very fast  to hit the walls hard. 

P19.31 The equation of state of an ideal gas is PV = nRT, so we need to solve 
for the number of moles to find N. 

    

  

n = PV
RT

=
1.01× 105  N m2( ) 10.0 m( ) 20.0 m( ) 30.0 m( )[ ]

8.314 J mol ⋅K( ) 293 K( )
= 2.49× 105  mol

 

 Then, 

    

  

N = nNA = 2.49× 105  mol( ) 6.022 × 1023  molecules mol( )
= 1.50× 1029  molecules

 

P19.32 From the ideal gas law, PV = nRT, and  

     
 

mf

mi

=
nf

ni

=
Pf Vf

RTf

RTi

PiVi

=
Pf

Pi

 

 so   
 
mf = mi

Pf

Pi

⎛
⎝⎜

⎞
⎠⎟

 

 and   

  

Δm = mi − mf = mi

Pi − Pf

Pi

⎛
⎝⎜

⎞
⎠⎟
= 12.0 kg

41.0 atm − 26.0 atm
41.0 atm

⎛
⎝⎜

⎞
⎠⎟

= 4.39 kg

 

P19.33 (a) From the ideal gas law, PV = nRT, so 

    
  
n =

PV
RT

=
1.013 × 105  Pa( ) 1.00 m3( )
8.314 J mol ⋅K( ) 293 K( ) = 41.6 mol  
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 (b) 
  
m = nM = 41.6 mol( ) 28.9 g mol( ) = 1.20 kg  

 (c) 
 
This value agrees with the tabulated density  of 1.20 kg/m3 at 

20.0°C. 

*P19.34 One mole of helium contains Avogadro’s number of molecules and has 
a mass of 4.00 g. Let us call   m0  the mass of one atom, and we have 

   
  NAm0 = 4.00 g mol  

 or  
   

  

m0 =
4.00 g mol

6.02 × 1023  molecules mol
= 6.64 × 10−24  g molecule

= 6.64 × 10−27  kg

 

*P19.35 The  CO2  is far from liquefaction, so after it comes out of solution it 
behaves as an ideal gas. Its molar mass is M = 12.0 g/mol +  
2(16.0 g/mol) = 44.0 g/mol. The quantity of gas in the cylinder is  

   
  
n =

msample

M
= 6.50 g

44.0 g mol
= 0.148 mol   

 Then PV = nRT gives  

   

  

V = nRT
P

= 0.148 mol 8.314 J mol ⋅K( ) 273.15 K + 20°C( )
1.013× 105  N m2

                                                             × 1 N ⋅m
1 J

⎛
⎝⎜

⎞
⎠⎟

103  L
1 m3

⎛
⎝⎜

⎞
⎠⎟

= 3.55 L

 

P19.36 We use Equation 19.10, PV = NkBT: 

    
  
N =

PV
kBT

=
1.00 × 10−9  Pa( ) 1.00 m3( )
1.38 × 10−23  J/K( ) 300 K( )

= 2.42 × 1011  molecules  

P19.37 (a) Initially,  PiVi = niRTi :   1.00 atm( )Vi = niR 10.0°C + 273.15( )  K[ ]  [1] 

  Finally,  Pf Vf = nf RTf :   Pf 0.280Vi( ) = niR 40.0°C + 273.15( )  K[ ]  [2] 

  Dividing [2] by [1]: 
  

0.280Pf

1.00 atm
=

313.15 K
283.15 K

 

  giving 
  
Pf =  3.95 atm = 4.00 × 105  Pa  
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 (b) After being driven,   Pd 1.02( ) 0.280Vi( ) = niR 85.0°C + 273.15( )  K  [3] 

  Dividing [3] by [1]: 
  

1.02( ) 0.280( )Pd

1.00 atm
=

358.15 K
283.15 K

 

   
  
Pd = 4.43 atm = 4.49 × 105  Pa  

P19.38 The air in the tube is far from liquefaction, so it behaves as an ideal 
gas. At the ocean surface it is described by PtVt = nRT, where Pt =  
1 atm, Vt = A (6.50 cm), and A is the cross-sectional area of the interior 
of the tube. At the bottom of the dive,  

    
  PbVb = nRT = PbA 6.50 cm − 2.70 cm( )  

 By division, 
    

  

Pb 3.80 cm( )
1 atm( ) 6.50 cm( ) = 1

Pb = 1.013 × 105  N m2( ) 6.50 cm
3.80 cm

⎛
⎝⎜

⎞
⎠⎟ = 1.73 × 105  N m2

 

 The salt water enters the tube until the air pressure is equal to the 
water pressure at depth, which is described by 

   

  

Pb = Pt + ρ gh

1.73× 105  N m2 = 1.013× 105  N m2

                                           + 1 030 kg m3( ) 9.80 m s2( )h

 

 solving for the depth h of the dive gives 
   

  
h = 7.20× 104  kg ⋅m ⋅m2 ⋅s2

1.01× 104  s2 ⋅m2 ⋅kg
= 7.13 m

 

P19.39 The density of the air inside the balloon,  ρin ,  must be reduced until the 
buoyant force of the outside air is at least equal to the weight of the 
balloon plus the weight of the air inside it: 

    
  Fy∑ = 0:     B−Wair inside −Wballoon = 0  

      ρout gV − ρin gV − mb g = 0     →      ρout − ρin( )V = mb  

 where  ρout = 1.244 kg/m3 ,  V = 400 m3, and mb = 200 kg. 

 From PV = nRT, 
 

n
V

=
P

RT
. This equation means that at constant 

pressure the density is inversely proportional to the temperature. 
Thus, the density of the hot air inside the balloon is 

    
  
ρin = ρout

283 K
Tin

⎛
⎝⎜

⎞
⎠⎟
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 Substituting this result into the condition   ρout − ρin( )V = mb  gives 

    

  

 ρout 1−
283 K

Tin

⎛
⎝⎜

⎞
⎠⎟

=
mb

V
     →    

283 K
Tin

= 1−
mb

 ρoutV
     

→    Tin =
283 K

1− mb

 ρoutV
⎛
⎝⎜

⎞
⎠⎟

Tin =
283 K

1− 200 kg
 1.244 kg m3( ) 400 m3( )

⎛

⎝
⎜

⎞

⎠
⎟

= 473 K

 

*P19.40 To compute the mass of air leaving the room, we begin with the ideal 
gas law: 

   
  
P0V = n1RT1 = m1

M( )RT1  

 As the temperature is increased at constant pressure, 
   

  
P0V = n2RT2 = m2

M( )RT2

 

 Subtracting the two equations gives 
   

  
m1 − m2 =

P0VM
R

1
T1

− 1
T2

⎛
⎝⎜

⎞
⎠⎟

  

P19.41 At depth,   P = P0 + ρgh    and    PVi = nRTi  

 At the surface,   P0Vf = nRTf :      
  

P0Vf

P0 + ρgh( )Vi

=
Tf

Ti

 

 Therefore, 
  
Vf = Vi

Tf

Ti

⎛
⎝⎜

⎞
⎠⎟

P0 + ρgh
P0

⎛
⎝⎜

⎞
⎠⎟

 and 

  

  

Vf = 1.00 cm3 293 K
278 K

⎛
⎝⎜

⎞
⎠⎟

            ×
1.013 × 105  Pa( ) + 1 030 kg m3( ) 9.80 m s2( ) 25.0 m( )

1.013 × 105  Pa

⎛

⎝
⎜

⎞

⎠
⎟

Vf = 3.68 cm3

 

P19.42 My bedroom is 4 m long, 4 m wide, and 2.4 m high, enclosing air at  
100 kPa and 20°C = 293 K. Think of the air as 80.0% N2 and 20.0% O2. 
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 Avogadro’s number of molecules has mass 
    

 0.800( ) 28.0 g mol( ) + 0.200( ) 32.0 g mol( ) = 0.028 8 kg mol  

 Then 
 
PV = nRT =

m
M

⎛
⎝⎜

⎞
⎠⎟ RT  gives 

     

  

m =
PVM
RT

=
1.00 × 105  N m2( ) 38.4 m3( ) 0.028 8 kg mol( )

8.314 J mol ⋅K( ) 293 K( )
= 45.4 kg ~102  kg

 

P19.43 Pressure inside the cooker is due to the pressure of water vapor plus 
the air trapped inside. The pressure of the water vapor is 

    

  

Pv =
nRT

V
= 9.00 g

18.0 g mol
⎛
⎝⎜

⎞
⎠⎟

8.314 J
mol K

⎛
⎝⎜

⎞
⎠⎟

773 K
2.00× 10−3  m3

⎛
⎝⎜

⎞
⎠⎟

= 1.61 MPa

 

 We find the pressure of the air at constant volume, assuming the initial 
temperature is 10°C: 

    

  

Pa2

Pa1

=
T2

T1

     →      Pa2 = Pa1
T2

T1

= 101 kPa( ) 773 K
283 K

                                   = 276 kPa = 0.276 MPa

 

 The total pressure is 
     

  P = Pv + Pa2 = 1.61 MPa + 0.276 MPa = 1.89 MPa  

P19.44 If Pgi is the initial gauge pressure of the gas in the cylinder, the initial 
absolute pressure is Pi,abs = Pgi + P0, where P0 is the exterior pressure. 
Likewise, the final absolute pressure in the cylinder is Pf,abs = Pgf + P0, 
where Pgf is the final gauge pressure. The initial and final masses of gas 
in the cylinder are mi = ni M and mf = nf M, where n is the number of 
moles of gas present and M is the molecular weight of this gas. Thus, 

 mf mi = nf ni . 

 We assume the cylinder is a rigid container whose volume does not 
vary with internal pressure. Also, since the temperature of the cylinder 
is constant, its volume does not expand or contract. Then, the ideal gas 
law (using absolute pressures) with both temperature and volume 
constant gives 

  
  

Pf,abs V
Pi,abs V

=
nf RT

ni RT
=

mf

mi

        or       
  
mf = mi

Pf,abs

Pi,abs

⎛

⎝⎜
⎞

⎠⎟
 

 and in terms of gauge pressures, 
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mf = mi

Pgf + P0

Pgi + P0

⎛

⎝
⎜

⎞

⎠
⎟  

 
 

	  

Additional Problems 
P19.45 The astronauts exhale this much  CO2:  

  

  

n =
msample

M

  = 1.09 kg
astronaut ⋅day

⎛
⎝⎜

⎞
⎠⎟

1 000 g
1 kg

⎛
⎝⎜

⎞
⎠⎟

                    × 3 astronauts( ) 7 days( ) 1 mol
44.0 g

⎛
⎝⎜

⎞
⎠⎟

= 520 mol

 

 Then 520 mol of methane is generated. It is far from liquefaction and 
behaves as an ideal gas, so the pressure is 

   

  

P = nRT
V

= 520 mol( ) 8.314 J mol ⋅K( ) 273.15 K − 45 K( )
150 × 10−3  m3

= 6.57 × 106  Pa

 

P19.46 We must first convert both the initial and final temperatures to Celsius: 

   
  
TC =

5
9

TF − 32( )  

 Thus, 
  
Tinitial =

5
9

TF , initial − 32( ) =
5
9

15.000 − 32.000( ) = −9.444°C   

   
  
Tfinal =

5
9

TF , final − 32( ) =
5
9

90.000 − 32.000( ) = 32.222°C  

 The length of the steel beam after heating is Lf , and the linear 
expansion of the beam follows the equation:  ΔL = Lf − Li = αLiΔT   

 Thus, 
   

  

L f =αLi Tf −Ti( ) + Li

= 11× 10−6°C−1( ) 35.000 m( ) 32.222°C− −9.444°C( )[ ]
                                                                     + 35.000 m

= 0.016 m + 35.000 m = 35.016 m
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P19.47 (a) The diameter is a linear dimension, so we consider the linear 
expansion of steel: 

   

  

d = d0 1+α ΔT( )[ ]
= 2.540 cm( ) 1+ 11× 10−6  °C( )−1( ) 100.00°C− 25.00°C( )⎡⎣ ⎤⎦
= 2.542 cm

 

 (b) If the volume increases by 1%, then   ΔV = (1.000 × 10−2) V0 . Then, 
using   ΔV = βV0 ΔT( ) , where  β = 3α  is the volume expansion 
coefficient, we find 

   
  

ΔT =
ΔV V0

β
=

1.000 × 10−2

3 11.0 × 10−6  °C( )−1⎡⎣ ⎤⎦
= 3.0 × 102  °C  

P19.48 The ideal gas law will be used to find the pressure in the tire at the 
higher temperature. However, one must always be careful to use 
absolute temperatures and absolute pressures in all ideal gas law 
calculations. 

 The initial absolute pressure is  

     Pi = Pi ,gauge + Patm = 2.50 atm + 1.00 atm = 3.50 atm  

 The initial absolute temperature is  

     Ti = Ti ,C + 273.15 = 15.0 + 273.15( )  K = 288.2 K  

 and the final absolute temperature is  
   

  Tf = Tf ,C + 273.15 = 45 + 273.15( )  K = 318.2 K  

 The ideal gas law, with volume and quantity of gas constant, gives the 
final absolute pressure as 

    

  

Pf Vf

Pi V i

=
nf RTf

niRTi

  
 

    

  
⇒    Pf =

Tf

Ti

⎛
⎝⎜

⎞
⎠⎟

Pi = 318.2 K
288.2 K

⎛
⎝⎜

⎞
⎠⎟ 3.50 atm( ) = 3.86 atm

 

 The final gauge pressure in the tire is  

   
  Pf ,gauge = Pf − Patm = 3.86 atm − 1.00 atm = 2.86 atm  
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*P19.49 Some gas will pass through the porous plug from the reaction chamber 
1 to the reservoir 2 as the reaction chamber is heated, but the net 
quantity of gas stays constant according to   ni1 + ni2 = nf 1 + nf 2 .  

Assuming the gas is ideal, we apply 
 
n = PV

RT
 to each term: 

   

  

PiV0

300 K( )R
+ Pi 4V0( )

300 K( )R
=

Pf V0

673 K( )R
+

Pf 4V0( )
300 K( )R

 

 
   

  
1 atm

5
300 K( ) = Pf

1
673 K

+ 4
300 K( )    

   

  
Pf = 1.12 atm

 

P19.50 Let us follow the cycle, assuming that the conditions for ideal gases 
apply. (That is, that the gas never comes near the conditions for which 
a phase transition would occur.) 

 We may use the ideal gas law:  

   PV = nRT 

 in which the pressure and temperature must be total pressure (in 
pascals or atm, depending on the units of R chosen), and absolute 
temperature (in K). 

 For stage (1) of the cycle, the process is: 
    PV = nRT → VΔP = nRΔT  

 And, because only T and P vary: 
   

  

ΔT
ΔP

=
V
nR

= const.
 

 Thus: 
  

Tf

Pf

=
Ti

Pi

=
V
nR

= const.  

 

ANS. FIG. P16.70 
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 However, when we substitute into the temperature–pressure relation 
for stage (1), we obtain: 

   

   

Tf

Pf

= Ti

Pi

   →    TB = Tf =
Pf

Pi

Ti = 0.870 atm
1.000 atm

150°C + 273.15( )

                             = 368.14 K = 95.0°C

 

 

  

T  falls below 100°C, so steam condenses and the expensive 
apparatus falls (assuming that the boiling point does not change 
significantly with the change in pressure).

 

P19.51 We assume the dimensions of the capillary tube do not change.  

 For mercury,  β = 1.82 × 10−4 °C( )−1  

 and for Pyrex glass,  α = 3.20 × 10−6 °C( )−1  

 The volume of the liquid increases as    ΔV = VβΔT.  

 The volume of the shell increases as   ΔVg = 3αVΔT.  

 Therefore, the overflow in the capillary is   ΔVc = VΔT β − 3α( ) ,  and in 
the capillary   ΔVc = AΔh.  

 

  

ΔVc = AΔh = VΔT β − 3α( )      →     Δh =
β − 3α( )VΔT

A
 

Δh =
1

π 0.004 00 × 10−2  m
2

⎛
⎝⎜

⎞
⎠⎟

2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1.82 × 10−4 °C( )−1 − 3 3.20 × 10−6 °C( )−1( )⎡
⎣

⎤
⎦

                                                              ×
4
3
π 0.250 × 10−2  m

2
⎛
⎝⎜

⎞
⎠⎟

3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

30.0o C( )

Δh = 3.37 × 10−2  m = 3.37 cm

 

 

ANS. FIG. P19.51 
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P19.52 We assume the dimensions of the capillary do not change. The volume 
of the liquid increases by    ΔV = VβΔT.  The volume of the shell 
increases by   ΔVg = 3αVΔT.  Therefore, the overflow in the capillary is 

  ΔVc = VΔT β − 3α( ) ;  and in the capillary   ΔVc = AΔh.  

 Therefore, 
  
Δh = β − 3α( )VΔT

A
. 

P19.53 The fundamental frequency played by the cold-walled flute is  
   

  
fi =

v
λi

=
v

2Li

 

 Assuming the change in the speed of sound as a function of 
temperature is negligible, when the instrument warms up 

   

  
f f =

v
λ f

=
v

2Lf

=
v

2Li 1 +αΔT( ) =
fi

1 +αΔT

 

 The final frequency is lower. The change in frequency is 

   

  

Δf = f f − fi = fi
1

1+αΔT
− 1⎛

⎝⎜
⎞
⎠⎟

Δf =
343 m s( )

2 0.655 m( )
1

1+ 24.0× 10−6 C°( ) 15.0°C( )
− 1

⎛

⎝
⎜

⎞

⎠
⎟

= −0.0942 Hz

 

 This change in frequency is imperceptibly small. 

P19.54 Let L0 represent the length of each bar at 0°C. 

 (a) In the diagram consider the right triangle that each invar bar 
makes with one half of the aluminum bar. We have 

   

  
sin

θ
2

⎛
⎝⎜

⎞
⎠⎟ =

L0(1 +αAlΔT) 2
L0

=
L0(1 +αAlΔT)

2L0

. 

  Solving gives  
   

  
θ = 2sin−1 1 +αAlTC

2
⎛
⎝⎜

⎞
⎠⎟

 

  where TC is the Celsius temperature. 

 (b)  Yes.  If the temperature drops, the negative value of Celsius 
temperature describes the contraction. So the answer is accurate.  
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 (c)  Yes.  At TC = 0 we have θ  = 2sin–1(1/2) = 60.0°, and this is 
accurate. 

 (d) From the same triangle we have 
   

  
sin

θ
2

⎛
⎝⎜

⎞
⎠⎟ =

L0(1 +αAlΔT)
2L0(1 +α invarΔT)

     

  giving     
   

  
θ = 2sin−1 1 +αAlTC

2(1 + α invarTC )
⎛
⎝⎜

⎞
⎠⎟

 

 (e) The greatest angle is at 660°C,  
   

  

θ = 2sin−1 1 +αAlTC

2(1 + α invarTC )
⎛
⎝⎜

⎞
⎠⎟

= 2sin−1 1 + (24 × 10−6 )660
2(1 + [0.9 × 10−6 ]660)

⎛
⎝⎜

⎞
⎠⎟

 = 2sin−1 1.015 84
2.0011 88

⎛
⎝⎜

⎞
⎠⎟

= 2sin−1 0.508 = 61.0°

 

 (f) The smallest angle is at –273°C,  
   

 

θ = 2sin−1 1+ (24× 10−6) −273( )
2(1 + [0.9× 10−6][−273])

⎛
⎝⎜

⎞
⎠⎟

= 2sin−1 0.9934
1.9995

⎛
⎝⎜

⎞
⎠⎟ = 2sin−1 0.497 = 59.6°

 

P19.55 The excess expansion of the brass is  
   

  ΔLrod − ΔLtape = α brass −α steel( )LiΔT  

 

  

Δ ΔL( ) = 19.0 − 11.0( ) × 10−6  °C( )−1 0.950 m( ) 35.0°C( )
Δ ΔL( ) = 2.66 × 10−4  m

 

 (a) The rod contracts more than the tape to a length reading  
   

 0.950 0 m − 0.000 266 m = 94.97 cm
 

 (b)  0.950 0 m + 0.000 266 m = 95.03 cm  

P19.56 At 0°C, mass m of gasoline occupies volume   V0°C ;  the density of the 
gasoline is 

   

  
ρ0°C =

m
V0°C

= 730 kg m3
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 At temperature  ΔT  above 0°C, the same mass of gasoline occupies a 
larger volume   V = V0°C 1 + βΔT( ):  the density of the gasoline is 

  
ρ = m

V0°C 1+ βΔT( ) =
ρ0o C

1+ βΔT
,  which is slightly smaller than  ρ0°C.  

 For the same volume of gasoline, the difference in mass between 
gasoline at 0°C and gasoline at 20.0°C is  

   

  

Δm = ρ0°CV − ρV = ρ0°CV − ρ0°C

1+ βΔT
V

Δm = ρ0°CV 1− 1
1+ βΔT

⎛
⎝⎜

⎞
⎠⎟

 

   

  

Δm = 730 kg m3( ) 10.0 gal( ) 0.003 80 m3

1.00 gal
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

                              × 1− 1
1+ 9.60× 10–4(°C)−1( ) 20.0°C( )

⎛

⎝
⎜

⎞

⎠
⎟

Δm = 0.523 kg

 

P19.57 (a) 
 
ρ =

m
V

 and 
  
dρ = −

m
V 2 dV  

  For very small changes in V and ρ, this can be expressed as 
   

  
Δρ = −

m
V

ΔV
V

= −ρβΔT      →      
Δρ
ρ

= −βΔT
 

 (b) 
 
As the temperature increases, the density decreases.  

 (c) For water we have 

  

β = −
Δρ
ρΔT

= −
0.999 7 g cm3 −  1.000 0  g cm3

1.000 0 g cm3( ) 10.0°C − 4.0°C( )

= 5 × 10−5 °C( )−1

  

 (d) 

  

β = −
Δρ
ρΔT

= −
1.000 0 g cm3 − 0.999 9 g cm3

1.000 0 g cm3( ) 4.00°C − 0.00°C( )
 

=  −2.5 × 10−5 °C( )−1

 

P19.58 (a) From PV = nRT, the volume is 
  
V =

nR
P

⎛
⎝⎜

⎞
⎠⎟T.  

  Therefore, when pressure is held constant, 
  

dV
dT

=
nR
P

=
V
T

.  
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  Thus, 
  
β ≡

1
V

⎛
⎝⎜

⎞
⎠⎟

dV
dT

=
1
V

⎛
⎝⎜

⎞
⎠⎟

V
T

 or 
  
β =

1
T

 

 (b) At T = 0°C = 273.15 K, this predicts 
 
β =

1
273 K

= 3.66 × 10−3  K−1 .  

 Experimental values are: 

 (c) 

 

βHe = 3.665 × 10−3  K−1 ,  this agrees within 0.06% 
of the tabulated value.

 

 (d) 

 

βair = 3.67 × 10−3  K−1 ,  this agrees within 0.2% 
of the tabulated value.

 

P19.59 (a) Using the expression for the period TP of a pendulum, we have 
   

  

TP = 2π L
g

     →      dTP = 2π 1
g

 
1
2

⎛
⎝⎜

⎞
⎠⎟

dL
L

 

                                        = 2π L
g

 
1
2

⎛
⎝⎜

⎞
⎠⎟

dL
L

 =TP
1
2

⎛
⎝⎜

⎞
⎠⎟

dL
L

dTP

TP

=
1
2

⎛
⎝⎜

⎞
⎠⎟

dL
L

 

  and   ΔL = αLiΔT ,  so, for temperature change dT, 
   

  

dTP = TP
1
2

dL
L

= TP
αdT

2

= 1.000 s 
19.0 × 10−6 °C( )−1( ) 10.0°C( )

2
= 9.50 × 10−5  s

 

 (b) In one week, the time lost = 1 week (9.50 × 10−5 s lost per second) 

  time lost 
 
= 7.00 d week( ) 86 400 s

1.00 d
⎛
⎝⎜

⎞
⎠⎟ 9.50 × 10−5  

s lost
s

⎛
⎝⎜

⎞
⎠⎟

 

  time lost 
 
= 57.5 s lost  

P19.60 The angle of bending θ, between tangents to the two 
ends of the strip, is equal to the angle the strip 
subtends at its center of curvature. (The angles are 
equal because their sides are perpendicular, right side 
to the right side and left side to left side.) 

 ANS. FIG. P19.60 
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 (a) The definition of radian measure gives   Li + ΔL1 = θ r1  

  and   Li + ΔL2 = θ r2 .  By subtraction,  
   

  ΔL2 − ΔL1 = θ r2 − r1( )  

   

  

α2LiΔT −α1LiΔT = θ Δr

θ =
α2 −α1( )LiΔT

Δr

 

 (b) In the expression from part (a), θ is directly proportional to  ΔT  
and also to  α2 −α1( ) . Therefore, θ is zero when either of these 
quantities becomes zero. 

 (c) The material that expands more when heated contracts more 
when cooled, so 

 
the bimetallic strip bends the other way .  It is fun 

to demonstrate this with liquid nitrogen. 

P19.61 (a) From ANS. FIG. P19.61, we see that the change in area is 
   

  ΔA = Δw + wΔ + ΔwΔ  

  Since  Δ  and Δw are each small quantities, 
the product   ΔwΔ  will be very small. 
Therefore, we assume    ΔwΔ ≈ 0 . 

  Since    Δw = wαΔT    and      Δ = αΔT ,  

  we then have    ΔA = wαΔT + wαΔT ,  

  and since    A = w,  
  
ΔA = 2αAΔT  

 (b) The approximation assumes    ΔwΔ ≈ 0,  or   αΔT ≈ 0.  Another way 
of stating this is   αΔT << 1 .  

P19.62  Let ρ0 represent the density of the liquid at 0°C. At temperature TC, the 
volume of a sample has changed according to   ΔV = βVΔT = βVTC ,  so 
the density has become 

   

  
ρ =

m
V + βVTC

= ρ0
1

1 + βTC

     

 so        ρ 1 + βTC( ) = ρ0  

 Now the pressure at the bottom of the U tube is the same, whichever 
column it supports: 

   P0 + ρ0gh0 = P0 + ρght  

 Simplifying,  

   ρ0h0 = ρht  

ANS. FIG. P19.61 
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and substituting,  

  ρ(1 + βTC)h0 = ρht 
   

  
1 + βTC( )h0 = ht → β =

1
TC

ht

h0

− 1
⎛
⎝⎜

⎞
⎠⎟

 

P19.63 (a) 
 
Yes, so long as the coefficients of expansion remain constant.  

 (b) The coefficient of linear expansion of copper, 17.0 × 10–6 °C–1, is 
greater than that of steel, 11.0 × 10–6 °C–1, so the copper rod should 
start with a smaller length. Since the difference between the 
lengths of the two rods is to remain constant, we require 

   

  

ΔLCu = ΔLS

αCuLCuΔT =αSLSΔT

17.0× 10−6  °C( )−1( )LCuΔT = 11.0× 10−6  °C( )−1( )LSΔT

 

  which gives 
   

  17.0LCu = 11.0LS
 

  Now, with   LCu + 5.00 cm = LS  at 0°C, we obtain by substitution, 
   

  
LCu + 5.00 cm = 17.0

11.0
⎛
⎝⎜

⎞
⎠⎟ LCu

  

  or 
  
LCu = 11.0

6.00
⎛
⎝⎜

⎞
⎠⎟ 5.00 cm( ) = 9.17 cm  

  

  

With LS − LC = 5.00 cm, the only possibility is LS = 14.17 cm
and LC = 9.17 cm.

 

P19.64 (a) 
 
Particle in equilibrium model  

 (b) On the piston, 
   

  

F∑ = Fgas − Fg − Fair = 0:        

F∑ = PA− mg − P0A = 0

   

 (c) In equilibrium, 
  
Pgas =

mg
A

+ P0.  

  Therefore, 
  

nRT
hA

=
mg
A

+ P0 ,  

  or 
  

h =
nRT

mg + P0A
,  

  where we have used V = hA as the volume of the gas. 

ANS. FIG. P19.64 
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P19.65 We compute the moment of inertia from 

   
  
I = r2dm∫  

 and since   r T( ) = r Ti( ) 1 +αΔT( ) ,  
   

  

I T( )
I Ti( ) = 1 +αΔT( )2

 

 Thus  
  

ΔI
I

=
I T( ) − I Ti( )

I Ti( ) =  1 +αΔT( )2 − 1.  

 (a) With  α = 17.0 × 10−6 °C( )−1  and   ΔT = 100°C , we find for Cu:  
   

  

ΔI
I

= 1 +  17.0 × 10−6 °C( )−1( ) 100°C( )⎡
⎣

⎤
⎦

2
− 1 = 0.340%

 

 (b) With  α = 24.0 × 10−6 °C( )−1  and   ΔT = 100°C , we find for Al:  
   

  

ΔI
I

= 1 +  24.0 × 10−6 °C( )−1( ) 100°C( )⎡
⎣

⎤
⎦

2
− 1 = 0.481%

 

P19.66 (a) Let m represent the sample mass. The number of moles is 
 
n =

m
M

 

and the density is 
 
ρ =

m
V

. So PV = nRT becomes 
 
PV =

m
M

RT   or  

  
PM =

m
V

RT.
 

  Then, 
 
ρ =

m
V

=
PM
RT

 

 (b) 
  
ρ =

PM
RT

=
1.013 × 105  N m2( ) 0.032 0 kg mol( )

8.314 J mol ⋅K( ) 293 K( ) = 1.33 kg m3  

P19.67 After expansion, the length of one of the spans is 
 

  

L f = Li 1+αΔT( ) = 125 m( ) 1+ 12 × 10−6 °C( )−1 20.0°C( )⎡⎣ ⎤⎦
= 125.03 m

 

 Lf , y, and the original 125-m length of this span form a right triangle 
with y as the altitude. Using the Pythagorean theorem gives 

   
  125.03 m( )2 = y2 + 125 m( )2  

 yielding   y = 2.74 m .  
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P19.68 Let     = L/2  represent the original length of one of the concrete slabs. 
After expansion, the length of each one of the spans is     f =  1 +αΔT( ).  
Now,     f ,  y, and the original length    of this span form a right triangle 
with y as the altitude. Using the Pythagorean theorem gives 

   
    f

2 = 2 + y2  

 or     
   

   
y =  f

2 − 2 =  1 +αΔT( )2 − 1 = L / 2( ) 2αΔT + αΔT( )2  

 Since   αΔT << 1,  we have   
  

y ≈ L αΔT / 2  

P19.69 (a) Let V’ represent the compressed volume at depth 
    

  

B = ρg ′V           ′P = P0 + ρgd            ′P ′V = P0Vi

B = ρgP0Vi

′P
= ρgP0Vi

P0 + ρgd

 

 (b) Since d is in the denominator, B must 
 

decrease  as the depth 

increases. (The volume of the balloon becomes smaller with 
increasing pressure.) 

 (c) To find the depth at which the buoyant force is half that at the 
surface, we write 

    

  

1
2

=
B d( )
B 0( ) =

ρgP0 Vi P0 + ρgd( )
ρgP0Vi P0

=
P0

P0 + ρgd

 

  Then, solve for d from   P0 + ρgd = 2P0:  
    

  
d = P0

ρg
= 1.013× 105  N m2

1.00× 103  kg m3( ) 9.80 m s2( ) = 10.3 m
 

P19.70 (a) 

 

No torque acts on the disk so its angular momentum is 
constant.  Yes: it increases. As the disk cools, its radius and, 
hence, its moment of inertia decrease. Conservation of 
angular momentum then requires that its angular speed 
increase.

 

 (b) 

  

Iiω i = I fω f = 1
2

MRi
2ω i = 1

2
MR f

2ω f = 1
2

M Ri + RiαΔT[ ]2ω f

= 1
2

MRi
2 1−α ΔT[ ]2ω f
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ω f =ω i 1−α ΔT[ ]−2 = 25.0 rad s

1− 17 × 10−6 °C( )−1( ) 830°C( )⎡⎣ ⎤⎦
2 = 25.0 rad s

0.972

= 25.7 rad s

 

P19.71 Visualize the molecules of various species all moving randomly. The 
net force on any section of wall is the sum of the forces of all of the 
molecules pounding on it.  

 For each gas alone, 
  
P1 =

N1kT
V

 and 
  
P2 =

N2kT
V

 and 
  
P3 =

N3kT
V

,  etc. 

 For all gases, 
  

   

P1V1 + P2V2 + P3V3…  N1 + N2 + N3…( )kT  and

N1 + N2 + N3…( )kT = PV

 

 Also,    V1 = V2 = V3 =…= V ;  therefore, 
   

P = P1 + P2 + P3…  

 
 

	  

Challenge Problems 
P19.72 (a) At 20.0°C, the unstretched lengths of the steel and copper wires 

are 
    

  

Ls 20.0°C( ) = 2.000 m( ) 1+ 11.0× 10−6  °C−1( ) −20.0°C( )⎡⎣ ⎤⎦
= 1.999 56 m

Lc 20.0°C( ) = 2.000 m( ) 1+ 17.0× 10−6  °C−1( ) −20.0°C( )⎡⎣ ⎤⎦
= 1.999 32 m

 

  Under a tension F, the length of the steel and copper wires are 
    

  
′Ls = Ls 1+ F

YA
⎡
⎣⎢

⎤
⎦⎥s

and     ′Lc = Lc 1+ F
YA

⎡
⎣⎢

⎤
⎦⎥c

       

  where   ′Ls + ′Lc = 4.000 m  

  Since the tension F must be the same in each wire, we solve for F: 
    

 
F =

′Ls + ′Lc( ) − Ls + Lc( )
Ls YsAs + Lc YcAc
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  When the wires are stretched, their areas become 
    

  

As = π 1.000× 10−3  m( )2
1+ 11.0× 10−6  °C–1( ) −20.0( )⎡⎣ ⎤⎦

2

= 3.140× 10−6  m2

Ac = π 1.000× 10−3  m( )2
1+ 17.0× 10−6  °C–1( ) −20.0( )⎡⎣ ⎤⎦

2

= 3.139× 10−6  m2

 

  Recall   Ys = 20.0 × 1010  Pa  and   Yc = 11.0× 1010  Pa.  Substituting into 
the equation for F, we obtain 

  

F = 4.000 m − 1.999 56 m + 1.999 32 m( )⎡⎣ ⎤⎦

            × 1
1.999 56 m

20.0× 1010  Pa( ) 3.140× 10−6( )  m2 + 1.999 32 m
11.0× 1010  Pa( ) 3.139× 10−6( )  m2

F = 125 N

 

 (b) To find the x coordinate of the junction, 
    

  

′Ls = 1.999 56 m( ) 1+ 125 N
20.0× 1010  N m2( ) 3.140× 10−6  m2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 1.999958 m

 

  Thus the x coordinate is 
 
−2.000 + 1.999958 = −4.20 × 10−5  m  

P19.73 (a) We find the linear density from the volume density as the mass-
per-volume multiplied by the volume-per-length, which is the 
cross-sectional area. 

   

  

µ = 1
4
ρ πd2( ) = 1

4
π (1.00× 10−3 m)2 7.86× 103  kg/m3( )

= 6.17 × 10−3  kg/m

 

 (b) Since 
  
f1 = v

2L
 and v = T

µ
,  then f1 = 1

2L
T
µ

,  and we have for the 

tension 
   

  

F = T = µ 2Lf1( )2 = 6.17 × 10−3  kg/m( ) 2 0.800 m( ) 200 s−1( )⎡⎣ ⎤⎦
2

= 632 N

   

 (c) At 0°C, the length of the guitar string will be 

   
   
Lactual = L

0C
 1 + F

AY( ) = 0.800 m  
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  Where L0°C is the unstressed length at the low temperature. We 
know the string’s cross-sectional area 

   

  
A = π

4( )(1.00× 10−3  m)2 = 7.85× 10−7  m2
 

  and modulus  Y = 20.0 × 1010 N/m2 

  Therefore, 
   

  

F
AY = 632 N

7.85 × 10–7  m2( ) 20.0 × 1010  N m2( ) = 4.02 × 10−3
 

  and 
   
L

0C
= 0.800 m

1 + 4.02 × 10–3 = 0.796 8 m  

  Then at 30°C, the unstressed length is 
   

  

L30°C = (0.796 8 m) 1+ (30.0°C) 11.0× 10−6  °C−1( )⎡⎣ ⎤⎦
= 0.797 1 m

 

  With the same clamping arrangement,  
   

  
0.800 m = 0.797 1 m( ) 1+ ′F

′A Y
⎡
⎣⎢

⎤
⎦⎥

 

  where  ′F  and  ′A  are the new tension and the new (expanded) 
cross-sectional area. Then  

   
  

′F
′A Y = 0.800 0

0.797 1 – 1 = 3.693 × 10–3    

   and     

     ′F = ′A Y(3.693× 10−3)   

    ′F  = (7.85 × 10–7 m2)(20.0 × 1010 N/m2)(3.693 × 10–3)  (1 +αΔT)2  

    ′F  = (580 N)(1 + 3.30 × 10−4)2 =  580 N  

 (d) Also the new frequency   ′f1
 is given by 

  

′f1

f1
= ′F

F ,  

  so  
  
′f1 = (200 Hz)

580 N
632 N

= 192 Hz  

P19.74 (a) 
  

P0V
T

= ′P ′V
′T

 because the amount of gas remains constant. 

  The volume increases by Ah when the piston rises:  
    ′V = V + Ah  
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  When the piston compresses the piston by h, so the spring force 
increases by F = kx = kh, increasing the external pressure on the 
piston by kh/A: 

    ′V = V + Ah  

 

ANS. FIG. P19.74 

  Using the particle in equilibrium model applied to the piston,  
   

  
P0 +

kh
A

⎛
⎝⎜

⎞
⎠⎟ V + Ah( ) = P0V

′T
T

⎛
⎝⎜

⎞
⎠⎟

 

   

  

1.013 × 105  N m2 + 2.00 × 105  N m3 h( )
× 5.00 × 10−3  m3 + 0.010 0 m2( )h( )
= 1.013 × 105  N m2( ) 5.00 × 10−3  m3( ) 523 K

293 K
⎛
⎝⎜

⎞
⎠⎟

2 000h2 + 2 013h − 397 = 0

 

  Taking the positive root, 
  
h =

−2 013 + 2 689
4 000

= 0.169 m  

 (b) 
  
′P = P +

kh
A

= 1.013 × 105  Pa +
2.00 × 103  N m( ) 0.169 m( )

0.010 0 m2  

  
  
′P = 1.35 × 105  Pa

 

P19.75 Each half of the spherical container is a particle in equilibrium. 
Therefore, using the result of Problem 14.58, 

   

   

F∑  = 0   →   Ffrom gas  = Fholding hemispheres together

→   P πr2( ) =  F
A

A = σ 2πrt( )   →   t =  Pr
2σ

 

 

 where σ is the yield strength of the steel. Find the mass of the steel 
sphere: 

   

  
mSt  = ρStV  = ρSt 4πr2t( ) = ρSt 4πr2 Pr

2σ
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
 = 2πρSt

Pr3

σ
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 Find the pressure of the helium in the tank: 
   

  

PV  = nRT     →    P = nRT
V

 =  mHe

MHe

RT
4
3
πr3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

 

 Substitute into the previous equation: 
   

  

mSt  = 2πρSt
r3

σ
 

mHe

MHe

RT
4
3
πr3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 = 3

2
ρSt

σ
mHe

MHe

RT

 

 Find the buoyant force on the balloon: 
   

  
B = ρair gVballoon  = ρair g

PV
P0

 = ρair g
nRT

P0

 = ρair g
mHe

MHe

RT
P0

 

 where we use the pressure of helium in the balloon P = P0 = 
atmospheric pressure. 

 Find the net force on the balloon and tank: 
   

  

F∑  = B − mHeg  − mSt g  

= ρair g
mHe

MHe

RT
P0

 − mHeg  − 3
2
ρSt

σ
mHeg
MHe

RT

        = mHeg ρair
RT

P0MHe

− 1 − 3
2
ρSt

σ
RT
MHe

⎛
⎝⎜

⎞
⎠⎟

        = mHeg
RT
MHe

ρair

P0

− 3
2
ρSt

σ
⎛
⎝⎜

⎞
⎠⎟
 − 1

⎡

⎣
⎢

⎤

⎦
⎥

 

 Evaluate the brackets: 
   

  

RT
MHe

ρair

P0

 − 3
2
ρSt

σ
⎛
⎝⎜

⎞
⎠⎟
 − 1

⎡

⎣
⎢

⎤

⎦
⎥ 

         =  8.314 J/mol ⋅K( ) 293 K( )
4  ×  10–3  kg/mol

⎡

⎣
⎢

⎧
⎨
⎪

⎩⎪

                      
1.20 kg/m3

1.013 × 105  Pa
 − 3

2
7  860 kg/m3

5 × 108  N/m2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎤

⎦
⎥ − 1

⎫
⎬
⎪

⎭⎪

         = 6.09 × 105  m2/s2( )⎡⎣{
              × 1.184 6 × 10−5  s2/m2  − 2.358 × 10−5  s2/m2( )⎤⎦ − 1}
         = −8.146
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 Because the net force is negative, the balloon cannot lift the tank. If we 
can vary the strength of the steel, let’s find out how strong the steel 
must be by evaluating σ to make the net force positive. We want the 
following to be true: 

   

  

RT
MHe

ρair

P0

 − 3
2
ρSt

σ
⎛
⎝⎜

⎞
⎠⎟
 − 1 > 0

 

 Manipulating this inequality gives, 
  

  

RT
MHe

ρair

P0

 − 3
2
ρSt

σ
⎛
⎝⎜

⎞
⎠⎟
 > 1

    →   
ρair

P0

 − 3
2
ρSt

σ
 > MHe

RT
    →    − 3

2
ρSt

σ
 > MHe

RT
 −  ρair

P0

    →     
3
2
ρSt

σ
 < − MHe

RT
 +  ρair

P0

 = −MHeP0  + ρairRT
P0RT

 

    →     
2
3
σ
ρSt

 >  P0RT
−MHeP0  + ρairRT

    →    σ  > 3
2

ρStP0RT
−MHeP0  + ρairRT

  

 

 
= 3

2
7 860 kg/m3( ) 1.013 × 105  Pa( ) 8.314 J/mol ⋅K( ) 293 K( )

– 4  ×  10–3  kg/mol( ) 1.013 × 105  Pa( ) +  1.20 kg/m3( ) 8.314 J/mol ⋅K( ) 293 K( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 

 

 

σ = 11.6 × 108  N/m2  = 2.3σ actual   

No, the steel would need to be 2.3 times stronger.

 

P19.76 With piston alone, T = constant, so   PV = P0V0  or   P Ahi( ) = P0 Ah0( ).  

 With A = constant, 
  
P = P0

h0

hi

⎛
⎝⎜

⎞
⎠⎟

.  

 But, 
  
P = P0 +

mp g

A
,  

 where mp is the mass of the piston. 

 Thus 
  
P0 +

mp g

A
= P0

h0

hi

⎛
⎝⎜

⎞
⎠⎟

, which reduces to 
  
hi =

h0

1 + mp g / P0A
.  
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 With the dog of mass M on the piston, a very similar calculation 
(replacing mp by mp + M) gives 

  

  
′h =

h0

1 + mp + M( ) g / P0A

 

 Thus, when the dog steps on the piston, it moves downward by 
  

  

Δh = hi − ′h

= 50.0 cm
1+ 20.0 kg( ) 9.80 m s2( ) 1.013× 105  Pa( )π 0.400 m( )2⎡⎣ ⎤⎦

        − 50.0 cm
1+ 45.0 kg( ) 9.80 m s2( ) 1.013× 105  Pa( )π 0.400 m( )2⎡⎣ ⎤⎦

Δh = 2.38 mm

 

 (b) P = const, so 
 

V
T

= ′V
Ti

     or     
  

Ahi

T
=

A ′h
Ti

,  

  giving 

  

  

T = Ti
hi

′h
⎛
⎝⎜

⎞
⎠⎟ = Ti

1 + mp + M( ) g / P0A

1 + mp g / P0A

= 293 K 
1 + 45.0 kg( ) 9.80 m s2( ) 1.013 × 105  Pa( )π 0.400 m( )2⎡⎣ ⎤⎦
1 + 20.0 kg( ) 9.80 m s2( ) 1.013 × 105  Pa( )π 0.400 m( )2⎡⎣ ⎤⎦

T = 294.4 K = 21.4 oC

 

P19.77 (a) 
  

dL
L

=αdT:      α dT
Ti

Ti

∫ = dL
LLi

Li

∫ ⇒ ln
Lf

Li

⎛
⎝⎜

⎞
⎠⎟
=αΔT ⇒ Lf = Lie

αΔT  

 (b)   L f = 1.00 m( )e 2.00×10−5 °C−1( ) 100°C( )⎡
⎣

⎤
⎦ = 1.002 002 m  

  
  
′Lf = 1.00 m 1 + 2.00 × 10−5 °C−1( ) 100°C( )⎡

⎣
⎤
⎦ = 1.002 000 :

 

  

  

L f − ′Lf

Lf

= 2.00 × 10−6 = 2.00 × 10−4%
 

 (c)   L f = 1.00 m( )e 2.00×10−2 °C−1( ) 100°C( )⎡
⎣

⎤
⎦ = 7.389 m  

  
  
′Lf = 1.00 m 1+ 0.020 0°C−1( ) 100°C( )⎡⎣ ⎤⎦ = 3.000 m
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L f − ′Lf

Lf

= 59.4%
 

 (d) P19.21 redone:  

  We start with  
    

  
dV = βVdT      →      

dV
V

= βdT      →      Vf =Vie
βΔT

 

  where we assume β (and α) remains constant over the 
temperature range ΔT. 

  Thus, for the turpentine,  
    

   Vt, final =Vte
βtΔT  

  and for the aluminum cylinder,   VAl, final =VAle
3αAlΔT ,  where we 

assume α remains constant over the temperature range ΔT. 

  new (a):  
    

  

ΔV = Vte
βtΔT −VAle

3αAlΔT

ΔV = Vi eβtΔT − e3αAlΔT( )
= 2 000 cm3( ) e 9.00×10−4 C−1( ) 60.0°C( ) − e3 24.0×10−6°C−1( ) 60.0°C( )⎡

⎣⎢
⎤
⎦⎥

 

    
  
ΔV = 102 mL of turpentine spills,

 

  new (b):  

  The volume of the turpentine remaining in the cylinder at 80.0°C 
is the same as the volume of the aluminum cylinder at 80.0°C: 

    

  

Vt ,remaining = VAl, final = VAle
3αAlΔT

= 2 000 cm3( )e3 24.0×10−6 °C( )−1( ) 60.0°C( )

= 2 009 cm3

  

  
 
2.01 L remains in the cylinder at 80.0 °C

 

  new (c):  

  The volume of turpentine at 80.0°C we found in part new (b), 

  Vt, remaining =VAle
3αAlΔT ,  shrinks when the temperature changes by  

–ΔT: 
    

  Vt, final = Vt, remaininge−βtΔT = VAle
3αAlΔTe−βtΔT = VAle

3αAl−βt( )ΔT  



1036     Temperature 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

    

   

Vt, final = VAle
3αAlΔTe−βtΔT = VAle

3αAl−βt( )ΔT

= 2 000 cm3( )e
3 24.0×10−6°C−1( )− 9.00×10−4 C−1( )⎡
⎣

⎤
⎦ 60.0°C( )

Vt, final  1 903 cm3

 

  Find the percentage of the cylinder that is empty at 20.0°C: 
    

  

VAl −VAle
3αAl −βt( )ΔT

VAle
= 1− e 3αAl −βt( )ΔT

 

  Find the empty height of the cylinder above the turpentine: 
   

  
1− e 3αAl −βt( )ΔT( ) 20.0 cm( ) = 0.969 cm

 

  

 

and the turpentine level at 20.0°C is 0.969 cm below the 
cylinder’s rim.

 

P19.78 (a) Let xL represent the distance of the stationary line below the top 
edge of the plate. The normal force on the lower part of the plate 
is   mg 1− x( )cosθ  and the force of kinetic friction on it is 

  µkmg 1− x( )cosθ  up the roof. Again,   µkmgxcosθ  acts down the 
roof on the upper part of the plate. The near-equilibrium of the 
plate requires 

  
Fx = 0∑ .  

   

  

−µkmgxcosθ + µkmg 1− x( )cosθ − mg sinθ = 0
−2µkmgxcosθ = mg sinθ − µkmg cosθ
2µkx = µk − tanθ

x =
1
2
−

tanθ
2µk

 

 

ANS. FIG. P19.78(a) 

  and the stationary line is indeed below the top edge by  

   
  
xL =

L
2

1−
tanθ
µk

⎛
⎝⎜

⎞
⎠⎟
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 (b) With the temperature falling, the plate contracts faster than the 
roof. The upper part slides down and feels an upward frictional 
force   µkmg 1− x( )cosθ .  The lower part slides up and feels 
downward frictional force   µkmgxcosθ .  The equation   Fx = 0∑  is 
then the same as in part (a) and the stationary line is above the 

bottom edge by 
  
xL =

L
2

1−
tanθ
µk

⎛
⎝⎜

⎞
⎠⎟

. 

 

ANS. FIG. P19.78(b) 

 (c) Start thinking about the plate at dawn, as the temperature starts 
to rise. As in part (a), a line at distance xL below the top edge of 
the plate stays stationary relative to the roof as long as the 
temperature rises. The point P on the plate at distance xL above 
the bottom edge is destined to become the fixed point when the 
temperature starts falling. As the temperature rises, point P on 
the plate slides down the roof relative to the upper fixed line from 
(L – xL – xL) to   L − xL − xL( ) 1 +α2ΔT( ) , a change of 

  ΔLplate = L− xL− xL( )α 2ΔT.  The point on the roof originally under 
point P at the beginning of the expansion moves down not quite 
as much from (L – xL – xL) to   L − xL − xL( ) 1 +α1ΔT( )  relative to 
the upper fixed line; a change of   ΔLroof = L 1− x − x( )α1ΔT.  When 
the temperature drops, point P remains stationary on the roof 
while the roof contracts, pulling point P back by approximately 

  ΔLroof . Therefore, relative to the upper fixed line, point P has 
moved down the roof   ΔLplate − ΔLroof .  Its displacement for the day 
is 

   

  

ΔL = ΔLplate − ΔLroof = α2 −α1( ) L − xL − xL( )ΔT

= α2 −α1( ) L − 2
L
2

1−
tanθ
µk

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ Th −Tc( )

= α2 −α1( ) L tanθ
µk

⎛
⎝⎜

⎞
⎠⎟

Th −Tc( )
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ANS. FIG. P19.78(c) 

  At dawn the next day the point P is farther down the roof by the 
distance   ΔL.  It represents the displacement of every other point 
on the plate. 

 (d) 

  

α 2 −α1( ) L tanθ
µk

⎛
⎝⎜

⎞
⎠⎟

Th −Tc( )

           = 24× 10−6  °C−1 − 15× 10−6  °C−1( )
                                      × (1.20 m)tan18.5°

0.42
⎡
⎣⎢

⎤
⎦⎥

32.0°C( )

           = 0.275 mm

 

 (e) If  α2 <α1 , the forces of friction reverse direction relative to parts 
(a) and (b) because the roof expands more than the plate as the 
temperature rises and less as the temperature falls. The diagram 
in part (a) then applies to temperature falling and the diagram in 
part (b) applies to temperature rising. A point on the plate xL 
from the top of the plate (which becomes the upper fixed line 
later when the plate contracts) moves upward from the lower 
fixed line by   ΔLplate , and when the temperature drops, the upper 
fixed line of the plate is carried down the roof by   ΔLroof ,  so the net 
change in the plate’s position is   ΔLroof − ΔLplate ,  same as before (up 
to a sign because now   ΔLroof > ΔLplate ).  

  
 

The plate creeps down the roof each day by an amount given by
the same expression (with α2  and α1  interchanged).

 

P19.79 See ANS. FIG. P19.79. Let 2θ represent the angle the curved rail 
subtends. We have 

     Li + ΔL = 2θR = Li 1 +αΔT( )  

 and   
  
sinθ =

Li 2
R

=
Li

2R
.  

 Thus,  
  
θ = Li

2R
1+αΔT( ) = 1+αΔT( )sinθ  
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 From Table 19.1,  α = 11× 10−6 o C( )−1
,  and ΔT = 25.0°C – 20.0°C = 

5.00°C. We must solve the transcendental equation  

     θ = 1 +αΔT( )sinθ =   1.000 005 5( )sinθ  

 If your calculator is designed to solve such an equation, it may find the 
zero solution. Homing in on the nonzero solution gives, to five digits, 

 θ = 0.018 165 rad = 1.040 8°.  

 Now,  
  
h = R − Rcosθ = Li 1− cosθ( )

2sinθ
 

 This yields 
  

h = 4.54 m , a remarkably large value compared to 

  ΔL = 5.50 cm.  

 

ANS. FIG. P19.79 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 
P19.2 (a) 31.7° C; (b) 31.7 K 

P19.4 (a) −253° C; (b) −423° F 

P19.6 (a) 56.7°C and –62.1°C; (b) 330 K and 211 K 

P19.8 1.20 cm 

P19.10   Δr = 0.663 mm  to the right at 78.2° below the horizontal 

P19.12 55.0°C 

P19.14 1.58 × 10–3 cm  

P19.16 0.548 gal 

P19.18 Required T = −376° C is below absolute zero. 

P19.20 (a) 2.52 × 106 N/m2; (b) the concrete will not fracture  

P19.22 (a) 396 N; (b) −101° C; (c) The original length divides out, so the 
answers would not change 

P19.24 (a) 
  

ρ0

1+ βΔT
;  (b) m 

P19.26 1.20 mol 

P19.28 In each pump-up-and-discharge cycle, the volume of air in the tank 
doubles. Thus 1.00 L of water is driven out by the air injected at the 
first pumping, 2.00 L by the second, and only the remaining 1.00 L by 
the third. Each person could more efficiently use his device by starting 
with the tank half full of water, instead of 80% full. 

P19.30 (a) 1.17 × 10−3 kg; (b) 11.5 mN; (c) 1.01 kN; (d) molecules must be 
moving very fast 

P19.32 4.39 kg 

P19.34 6.64 × 10–27 kg 

P19.36 2.42 × 1011 molecules 

P19.38 7.13 m 

P19.40 
  
m1 − m2 =

P0VM
R

1
T1

− 1
T2

⎛
⎝⎜

⎞
⎠⎟

 

P19.42 ~102 kg 

P19.44 
  
mf = mi

Pgf + P0

Pgi + P0

⎛

⎝
⎜

⎞

⎠
⎟  
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P19.46 35.016 m 

P19.48 2.86 atm 

P19.50 95.0°; T falls below 100°C, so steam condenses, and the expensive 
apparatus falls (assuming that the boiling point does not change 
significantly with the change in pressure). 

P19.52 
  
Δh = β − 3α( )VΔT

A
 

P19.54 (a) 
  
θ = 2sin−1 1 +αAlTC

2
⎛
⎝⎜

⎞
⎠⎟

; (b) Yes; (c) Yes,  

(d) 
  
θ = 2sin−1 1 +αAlTC

2 1 +α invarTC( )
⎛

⎝⎜
⎞

⎠⎟
; (e) 61.0°; (f) 59.6° 

P19.56 0.523 kg 

P19.58 (a) 
  
β =

1
T

; (b) 3.66 × 10−3 K−1; (c)  βHe = 3.665 × 10−3  K−1 ,  this agrees 

within 0.06% of the tabulated value; (d)  βHe = 3.67 × 10−3  K−1 , this 
agrees within 0.2% of the tabulated value 

P19.60 
  
θ =

α2 −α1( )LiΔT
Δr

; (b) In the expression from part (a), θ is directly 

proportional to  ΔT  and also to  α2 −α1( ) . Therefore, θ is zero when 
either of these quantities becomes zero; (c) the bimetallic strip bends 
the other way 

P19.62 See P19.62 for the full solution. 

P19.64 (a) Particle in equilibrium model; (b) On the piston, 

  F = Fgas − Fg − Fair = 0∑ : F = PA− mg − P0A = 0∑ ;  (c) 
  
h =

nRT
mg + P0A

 

P19.66 (a) 
 

PM
RT

; (b) 1.33 kg/m3 

P19.68   y ≈ L αΔT/2  

P19.70 (a) No torque acts on the disk so its angular momentum is constant. 
Yes: it increases. As the disk cools, its radius, and hence, its moment of 
inertia decrease. Conservation of angular momentum then requires 
that its angular speed increase; (b) 25.7 rad/s 

P19.72 (a) 125 N; (b) −4.20 × 10−5 m 

P19.74 (a) 0.169 m; (b) 1.35 × 105 Pa 

P19.76 (a) 2.38 mm; (b) 294.4 K = 21.4° C 
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P19.78 (a)   Fx = 0∑ ;  (b) With the temperature falling, the plate contracts faster 
than the roof. The upper part slides down and feels an upward 
frictional force   µkmg 1− x( )cosθ .  The lower part slides up and feels 
downward frictional force   µkmgxcosθ .  The equation   Fx = 0∑  is then 
the same as in part (a), and the stationary line is above the bottom edge 

by 
  
xL =

L
2

1−
tanθ
µk

⎛
⎝⎜

⎞
⎠⎟

; (c) See P19.78(c) for the full explanation; (d) 

0.275 mm; (e) The plate creeps down the roof each day by an amount 
given by the same expression (with α2 and α1 interchanged). 
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20 
The First Law of Thermodynamics 

 

CHAPTER OUTLINE 
 

20.1  Heat and Internal Energy 

20.2  Specific Heat and Calorimetry 

20.3  Latent Heat 

20.4 Work and Heat in Thermodynamic Processes 

20.5  The First Law of Thermodynamics 

20.6 Some Applications of the First Law of Thermodynamics 

20.7 Energy Transfer Mechanisms in Thermal Processes 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ20.1 Answer (b). The work done on a gas 
equals the area under the process 
curve in a PV diagram. In an isobaric 
process, the pressure is constant, so Pf 
= Pi and the work done is the area 
under curve 1–2 in ANS. FIG. OQ20.1. 
For an isothermal process, the ideal 
gas law gives PfVf = PiVi , so Pf = 
(Vi/Vf) Pi = 2Pi   and the work done is 
the area under curve 1–3 in ANS. FIG. 
OQ20.1. For an adiabatic process, 

  PfVf
γ = PiVi

γ = constant (see Ch. 21),  so 

  Pf = (Vi Vf )
γ Pi   and   Pf = 2γ Pi > 2Pi  since γ > 1 for all ideal gases. The 

work done in an adiabatic process is the area under curve 1–4, which 
exceeds that done in either of the other processes. 

ANS. FIG. OQ20.1 
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OQ20.2 Answer (d). The high specific heat will keep the end in the fire from 
warming up very fast. The low conductivity will make the handle 
end warm up only very slowly. 

OQ20.3 Answer (a). Do a few trials with water at different original 
temperatures and choose the one where room temperature is 
halfway between the original and the final temperature of the water. 
Then you can reasonably assume that the contents of the calorimeter 
gained and lost equal quantities of heat to the surroundings, for net 
transfer zero. James Joule did it like this in his basement in London. 

OQ20.4 Answer (c). Since less energy was required to produce a 5°C rise in 
the temperature of the ice than was required to produce a 5°C rise in 
temperature of an equal mass of water, we conclude that the specific 
heat of ice   c = Q/m ΔT( )[ ]  is less than that of water. 

OQ20.5 Answer (e). The required energy input is 
    

  

Q = mc ΔT( ) = 5.00 kg( ) 128 J kg ⋅ °C( ) 327°C − 20.0°C( )
= 1.96 × 105  J 

 

OQ20.6 Answer (c). With a specific heat half as large, the  ΔT is twice as great 
in the ethyl alcohol. 

OQ20.7 Answer (d). From the relation   Q = mcΔT ,  the change in temperature 
of a substance depends on the quantity of energy Q added to that 
substance, and its specific heat and mass:  ΔT  = Q/mc. The masses of 
the substances are not given. 

OQ20.8 Rankings (e) > (a) = (b) = (c) > (d). We think of the product  mcΔT in 
each case, with c = 1 for water and about 0.5 for beryllium: (a) 1 · 1 · 6 
= 6, (b) 2 · 1 · 3 = 6, (c) 2 · 1 · 3 = 6, (d) 2(0.5)3 = 3, (e) > 6 because a 
large quantity of energy input is required to melt the ice. 

OQ20.9 (i) Answer (d). (ii) Answer (d). Internal energy and temperature both 
increase by minuscule amounts due to the work input. 

OQ20.10 Answer (b). The total change in internal energy is zero. 

    

  

QCu + Qwater + QAl = 0

100 g( ) 0.092
cal

g °C
⎛
⎝⎜

⎞
⎠⎟

Tf − 95.0°C( )

+ 200 g( ) 1.00
cal

g °C
⎛
⎝⎜

⎞
⎠⎟

Tf − 15.0°C( )

+ 280 g( ) 0.215
cal

g °C
⎛
⎝⎜

⎞
⎠⎟

Tf − 15.0°C( ) = 0
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9.20Tf − 874°C + 200Tf − 3 000°C + 60.2Tf − 903°C = 0

269.4Tf = 4 777°C

Tf = 17.7°C

 

OQ20.11 Answer (e). Twice the radius means four times the surface area. 
Twice the absolute temperature makes T4 sixteen times larger in 
Stefan’s law. The total effect is 4 × 16 = 64. 

OQ20.12 Answer (d). During istothermal compression, the temperature 
remains unchanged. The internal energy of an ideal gas is 
proportional to its absolute temperature. As the gas is compressed, 
positive work is done on the gas but also energy is transferred from 
the gas by heat because the total change in internal energy is zero. 

OQ20.13 Answer (c) only. By definition, in an adiabatic process, no energy is 
transferred to or from the gas by heat. In an expansion process, the 
gas does work on the environment. Since there is no energy input by 
heat, the first law of thermodynamics says that the internal energy of 
the ideal gas must decrease, meaning the temperature will decrease. 
Also, in an adiabatic process, PVγ = constant, meaning that the 
pressure must decrease as the volume increases. 

OQ20.14 Answer (b) only. In an isobaric process on an ideal gas, pressure is 
constant while the gas either expands or is compressed. Since the 
volume of the gas is changing, work is done either on or by the gas. 
Also, from the ideal gas law with pressure constant,   PΔV = nRΔT ;  
thus, the gas must undergo a change in temperature having the same 
sign as the change in volume. If  ΔV  > 0, then both  ΔT  and the 
change in the internal energy of the gas are positive ( ΔU  > 0). 
However, when  ΔV > 0, the work done on the gas is negative ( ΔW  < 
0), and the first law of thermodynamics says that there must be a 
positive transfer of energy by heat to the gas (Q =  ΔU  – W > 0). 
When  ΔV < 0, a similar argument shows that  ΔU < 0, W > 0, and Q = 
 ΔU  – W < 0. Thus, all of the other listed choices are false statements. 

OQ20.15 Answer (d). The temperature of the ice must be raised to the melting 
point,   ΔT = +20.0°C,  before it will start to melt. The total energy 
input required to melt the 1.00 kg of ice is 

    

  

Q = mcice ΔT( )+ mLf = 1.00 kg( ) 2 090 J kg ⋅°C( ) 20.0°C( )⎡⎣
                                                   + 3.33× 105  J/kg⎤⎦ = 3.75× 105  J 

 

 The time the heating element will need to supply this quantity of 
energy is 

    
  
Δt = Q

P
= 3.75× 105  J

1.00× 103  J s
= 375 s( ) 1 min

60 s
⎛
⎝⎜

⎞
⎠⎟ = 6.25 min  
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ20.1 Rubbing a surface results in friction converting kinetic energy to 
thermal energy. Metal, being a good thermal conductor, allows 
energy to transfer swiftly out of the rubbed area to the surrounding 
areas, resulting in a swift fall in temperature. Wood, being a poor 
conductor, permits a slower rate of transfer, so the temperature of the 
rubbed area does not fall as swiftly.  

CQ20.2 Keep them dry. The air pockets in the pad conduct energy by heat, 
but only slowly. Wet pads would absorb some energy in warming up 
themselves, but the pot would still be hot and the water would 
quickly conduct a lot of energy right into you. 

CQ20.3 Heat is a method of transferring energy, not energy contained in an 
object. Further, a low-temperature object with large mass, or an 
object made of a material with high specific heat, can contain more 
internal energy than a higher-temperature object.  

CQ20.4 There are three properties to consider here: thermal conductivity, 
specific heat, and mass. With dry aluminum, the thermal 
conductivity of aluminum is much greater than that of (dry) skin. 
This means that the internal energy in the aluminum can more 
readily be transferred to the atmosphere than to your fingers. In 
essence, your skin acts as a thermal insulator. If the aluminum is wet, 
it can wet the outer layer of your skin to make it into a good thermal 
conductor; then more energy from the aluminum can transfer to you. 
Further, the water itself, with additional mass and with a relatively 
large specific heat compared to aluminum, can be a significant source 
of extra energy to burn you. In practical terms, when you let go of a 
hot, dry piece of aluminum foil, the energy transfer by heat 
immediately ends. When you let go of a hot and wet piece of 
aluminum foil, the hot water sticks to your skin, continuing the heat 
transfer, and resulting in more energy transfer by heat to you! 

CQ20.5 If the system is isolated, no energy enters or leaves the system by 
heat, work, or other transfer processes. Within the system energy can 
change from one form to another, but since energy is conserved these 
transformations cannot affect the total amount of energy. The total 
energy is constant. 

CQ20.6 (a) Warm a pot of coffee on a hot stove. 

 (b) Place an ice cube at 0ºC in warm water—the ice will absorb 
energy while melting, but not increase in temperature. 

 (c) Let a high-pressure gas at room temperature slowly expand by 
pushing on a piston. Energy comes out of the gas by work in a 
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constant-temperature expansion as the same quantity of energy 
flows by heat in from the surroundings. 

 (d) Warm your hands by rubbing them together. Heat your tepid 
coffee in a microwave oven. Energy input by work, by 
electromagnetic radiation, or by other means, can all alike 
produce a temperature increase. 

 (e) Davy’s experiment is an example of this process. 
CQ20.7 (a) Yes, wrap the blanket around the ice chest. The environment is 

warmer than the ice, so the blanket prevents energy transfer by 
heat from the environment to the ice.  

 (b) Explain to your little sister that her body is warmer than the 
environment and requires energy transfer by heat into the air to 
remain at a fixed temperature. The blanket will prevent this 
conduction and cause her to feel warmer, not cool like the ice. 

CQ20.8 Ice is a poor thermal conductor, and it has a high specific heat. The 
idea behind wetting fruit is that a coating of ice prevents the fruit 
from cooling below the freezing temperature even as the air outside 
is colder, and also to protect plants from frost. When frost melts it 
takes its heat from the fruit, and kills it. When ice melts it takes heat 
from the air, so it acts as insulation for the fruit.  

CQ20.9 The person should add the cream immediately when the coffee is 
poured. Then the smaller temperature difference between coffee and 
environment will reduce the rate of energy transfer out of the cup 
during the several minutes. 

CQ20.10 The sunlight hitting the peaks warms the air immediately around 
them. This air, which is slightly warmer and less dense than the 
surrounding air, rises, as it is buoyed up by cooler air from the valley 
below. The air from the valley flows up toward the sunny peaks, 
creating the morning breeze.  

CQ20.11 Because water has a high specific heat, it can absorb or lose quite a 
bit of energy and not experience much change in temperature. The 
water would act as a means of preventing the temperature in the 
cellar from varying much so that stored goods would neither freeze 
nor become too warm. 

CQ20.12 The steam locomotive engine is one perfect example of turning 
internal energy into mechanical energy. Liquid water is heated past 
the point of vaporization. Through a controlled mechanical process, 
the expanding water vapor is allowed to push a piston. The 
translational kinetic energy of the piston is usually turned into 
rotational kinetic energy of the drive wheel. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 20.1 Heat and Internal Energy	  
P20.1 (a) The energy equivalent of 540 Calories is found from  

   
  
Q = 540 Cal

103  cal
1 Cal

⎛
⎝⎜

⎞
⎠⎟

4.186 J
1 cal

⎛
⎝⎜

⎞
⎠⎟
= 2.26 × 106  J  

 (b) The work done lifting her weight mg up one stair of height h is  
W1 = mgh. Thus, the total work done in climbing N stairs is  
W = Nmgh, and we have Q = Nmgh, or 

   
   
N =

Q
mgh

=
2.26 × 106  J

55.0 kg( ) 9.80 m s2( ) 0.150 m( )
 2.80 × 104  stairs  

 (c) If only 25% of the energy from the donut goes into mechanical 
energy, we have 

   

  

N =
0.25Q
mgh

= 0.25
Q

mgh
⎛
⎝⎜

⎞
⎠⎟

= 0.25 2.80 × 104  stairs( )

= 6.99 × 103  stairs

 

 
 

	  

Section 17.2 Specific Heat and Calorimetry 
P20.2 The container is thermally insulated, so no energy is transferred by 

heat:  

   Q = 0 

 and    ΔEint = Q + Winput = 0 + Winput = 2mgh  

 The work on the falling weights is equal to the work done on the water 
in the container by the rotating blades. This work results in an increase 
in internal energy of the water: 

     2mgh = ΔEint = mwatercΔT  
   

  

ΔT =
2mgh
mwaterc

=
2 1.50 kg( ) 9.80 m s2( ) 3.00 m( )

0.200 kg( ) 4 186 J kg ⋅ °C( ) =
88.2 J

837 J °C

= 0.105°C
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P20.3 The system is thermally isolated, so 

  

  

Qwater + QAl + QCu = 0

0.250 kg( )  4 186
J

kg °C
⎛
⎝⎜

⎞
⎠⎟

Tf − 20.0°C( )

+ 0.400 kg( )  900
J

kg °C
⎛
⎝⎜

⎞
⎠⎟

Tf − 26.0°C( )

+ 0.100 kg( )  387
J

kg °C
⎛
⎝⎜

⎞
⎠⎟

Tf − 100°C( ) = 0

1 046.5Tf − 20 930°C + 360Tf − 9 360°C + 38.7Tf − 3 870°C = 0

1 445.2Tf = 34 160°C

Tf = 23.6°C

 

P20.4 As mass m of water drops from top to bottom of the falls, the 
gravitational potential energy given up (and hence, the kinetic energy 
gained) is Q = mgh. If all of this goes into raising the temperature,  

  Q = mcΔT ,  and the rise in temperature will be 

  
  
ΔT =

Q
mcwater

=
m gh

mcwater

=
9.80 m s2( ) 807 m( )

4 186 J kg ⋅ °C
= 1.89°C  

 and the final temperature is  

     Tf = Ti + ΔT = 15.0°C + 1.89°C = 16.9°C  

P20.5 When thermal equilibrium is reached, the water and aluminum will 
have a common temperature of Tf = 65.0ºC. Assuming that the water-
aluminum system is thermally isolated from the environment,  
Qcold = –Qhot: 

  
  
mwcw Tf −Ti ,w( ) = −mAlcAl Tf −Ti ,Al( )   

 or 

 

  

mw =
−mAlcAl Tf −Ti ,Al( )

cw Tf −Ti ,w( )
     =

− 1.85 kg( ) 900 J kg ⋅ °C( ) 65.0°C − 150°C( )
4 186 J kg ⋅ °C( ) 65.0°C − 25.0°C( ) = 0.845 kg
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P20.6 We find its specific heat from the definition, which is contained in the 
equation   Q = mcsilverΔT  for energy input by heat to produce a 
temperature change. Solving, we have 

   
  
csilver =

Q
mΔT

 

   

  
csilver =

1.23× 103 J
(0.525 kg)(10.0°C)

= 234 J/kg ⋅°C
 

P20.7 We imagine the stone energy reservoir has a large area in contact with 
air and is always at nearly the same temperature as the air. Its 
overnight loss of energy is described by 

   

 
P =

Q
Δt

=
mcΔT
Δt

 

   

  

m =
PΔt
cΔT

=
−6 000 J s( ) 14 h( ) 3 600 s h( )

850 J kg ⋅ °C( ) 18.0°C − 38.0°C( )

=
3.02 × 108  J

850 J kg ⋅ °C( ) 20.0°C( ) = 1.78 × 104  kg

 

*P20.8 From  Q = mcΔT  we find 
   

  
ΔT = Q

mc
= 1 200 J

0.050 0 kg( ) 387 J kg ⋅ °C( ) = 62.0°C
 

 Thus, the final temperature is  25.0°C + 62.0°C = 87.0°C .  

P20.9 Let us find the energy transferred in one minute: 
   

  

Q = mcupccup + mwatercwater⎡⎣ ⎤⎦ΔT

Q = 0.200 kg( ) 900 J kg ⋅°C( ) + 0.800 kg( ) 4 186 J kg ⋅°C( )⎡⎣ ⎤⎦
                                                                     × −1.50°C( ) = −5 290 J

 

 If this much energy is removed from the system each minute, the rate 
of removal is 

   
  
P =

Q
Δt

=
5 290 J
60.0 s

= 88.2 J s = 88.2 W  

P20.10 We use   Qcold = −Qhot  to find the equilibrium temperature: 
   

  mAlcAl Tf −Tc( ) + mccw Tf −Tc( ) = −mhcw Tf −Th( )  

   
  mAlcAl + mccw( )Tf − mAlcAl + mccw( )Tc = −mhcwTf + mhcwTh

 

   
  mAlcAl + mccw + mhcw( )Tf = mAlcAl + mccw( )Tc + mhcwTh
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 solving for the final temperature gives 
   

  
Tf =

mAlcAl + mccw( )Tc + mhcwTh

mAlcAl + mccw + mhcw

 

P20.11 We assume that the water-horseshoe system is thermally isolated 
(insulated) from the environment for the short time required for the 
horseshoe to cool off and the water to warm up. Then the total energy 
input from the surroundings is zero, as expressed by QFe  + Qwater = 0: 

   
  (mcΔT)Fe + (mcΔT)water = 0  

   
  mFecFe(T − 600°C) + mwcw(T − 25.0°C) = 0   

 Note that the first term in this equation is a negative number of joules, 
representing energy lost by the originally hot subsystem, and the 
second term is a positive number with the same absolute value, 
representing energy gained by heat by the cold stuff. Solving for the 
final temperature gives 

   

  
T =

mwcw(25.0o C) +  mFecFe(600o C)
mFecFe +  mwcw

 

 Substituting cw = 4 186 J/kg . °C and cFe = 448 J/kg . °C and 
suppressing units, we obtain 

   

  

T = (20.0)(4 186)(25.0°C) + (1.50)(448)(600°C)
(1.50)(448) + (20.0 kg)(4 186)

= 29.6°C

 

P20.12 (a) The work that the bit does in deforming the block, breaking chips 
off, and giving them kinetic energy is not a final destination for 
energy. All of this work turns entirely into internal energy as soon 
as the chips stop their macroscopic motion. The amount of energy 
input to the steel is the work done by the bit: 

   
    W =


F ⋅ Δr = 3.20 N( ) 40.0 m s( ) 15.0 s( )cos0.00° = 1 920 J  

  To evaluate the temperature change produced by this energy we 
imagine injecting the same quantity of energy as heat from a 
stove. The bit, chips, and block all undergo the same temperature 
change. Any difference in temperature between one bit of steel 
and another would erase itself by causing an energy transfer by 
heat from the temporarily hotter to the colder region. 

   

  

Q = mcΔT

ΔT =
Q
mc

=
1 920 J

0.267 kg( ) 448 J kg ⋅ °C( ) = 16.1°C
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 (b) See part (a). The same amount of work is done.  16.1°C  

 (c) 

 

It makes no difference whether the drill bit is dull or sharp, 
or how far into the block it cuts. The answers to (a) and (b) 
are the same because all of the work done by the bit on the 
block constitutes energy being transferred into the internal 
energy of the steel.

 

P20.13 (a) To find the specific heat of the unknown sample, we start with 
Qcold = – Qhot and substitute: 

   
  
mwcw + mccc( ) Tf −Tc( ) = −mCucCu Tf −TCu( ) − munkcunk Tf −Tunk( )  

  where w is for water, c the calorimeter, Cu the copper sample, and 
“unk” the unknown. 

   

  

0.250 kg( ) 4 186 J kg ⋅ °C( ) + 0.100 kg( ) 900 J kg ⋅ °C( )⎡⎣ ⎤⎦
                                                                        20.0°C − 10.0°C( )

= − 0.050 0 kg( ) 387 J kg ⋅ °C( ) 20.0 − 80.0( )°C

                                           − 0.070 0 kg( )cunk 20.0°C − 100°C( )
1.020 4 × 104  J = 5.60 kg ⋅ °C( )cunk

cunk = 1.82 × 103  J kg ⋅ °C

  

 (b) 
 
We cannot make definite identification. It might be beryllium.  

 (c) 

 

The material might be an unknown alloy or a material 
not listed in the table.

 

P20.14 (a) Expressing the percentage change as f = 0.60, we have  

   
  

f( ) mgh( ) = mcΔT      →      ΔT =
fgh
c

 

   

  
ΔT =

0.600( ) 9.80 m s2( ) 50.0 m( )
387 J kg ⋅°C

= 0.760°C = T − 25.0°C
 

 which gives    T = 25.8°C  

 (b) 

 

As shown above, the symbolic result from part (a) shows 
no dependence on mass. Both the change in gravitational 
potential energy and the change in internal energy of the 
system depend on the mass, so the mass cancels.
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P20.15 (a) The gas comes to an equilibrium temperature according to 

   
  

mcΔT( )cold = − mcΔT( )hot

n1Mc Tf − 300 K( ) + n2Mc Tf − 450 K( ) = 0
 

  The molar mass M and specific heat divide out, and we can 
express n in terms of P, V, and T, using PV = nRT:  

   

  

P1V1

T1

Mc Tf −T1( ) +
P2V2

T2

Mc Tf −T2( ) = 0

P1V1

T1

Tf −
P1V1

T1

T1 +
P2V2

T2

Tf −
P2V2

T2

T2 = 0

Tf
P1V1

T1

+
P2V2

T2

⎛
⎝⎜

⎞
⎠⎟

= P1V1 + P2V2

 

  

  

Tf = P1V1 + P2V2

P1V1

T1

+ P2V2

T2

⎛
⎝⎜

⎞
⎠⎟

= 1.75 atm( ) 16.8 L( )+ 2.25 atm( ) 22.4 L( )
1.75 atm( ) 16.8 L( )

300 K
+ 2.25 atm( ) 22.4 L( )

450 K
⎛
⎝⎜

⎞
⎠⎟

= 380 K

 

 (b) The pressure of the whole sample in its final state is 

   

  

Pf = n1 + n2( ) R
Vf

Tf = P1V1

RT1

+ P2V2

RT2

⎛
⎝⎜

⎞
⎠⎟

R
V1 + V2

⎛
⎝⎜

⎞
⎠⎟

P1V1 + P2V2

P1V1

T1

+ P2V2

T2

⎛
⎝⎜

⎞
⎠⎟

Pf = P1V1 + P2V2

V1 + V2

⎛
⎝⎜

⎞
⎠⎟

= 1.75 atm( ) 16.8 L( )+ 2.25 atm( ) 22.4 L( )
16.8 L + 22.4 L

⎛
⎝⎜

⎞
⎠⎟

= 2.04 atm

 

 
 

	  

Section 20.3 Latent Heat 
*P20.16 To find the amount of steam to be condensed, we begin with  

     Qcold = −Qhot  

 With the steam at 100°C, this becomes 
   

  mwcw + mccc( ) Tf −Ti( ) = −ms −Lv + cw Tf − 100( )⎡⎣ ⎤⎦
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 Substituting numerical values, 
   

  

0.250 kg( ) 4 186 J kg ⋅°C( ) + 0.050 0 kg( ) 387 J kg ⋅°C( )[ ]
50.0°C− 20.0°C( )

   = −ms −2.26× 106  J kg + 4 186 J kg ⋅°C( ) 50.0°C− 100°C( )[ ]

 

 Solving for the mass of steam gives 
   

  
ms =

3.20 × 104  J
2.47 × 106  J kg

= 0.012 9 kg = 12.9 g steam
 

*20.17 We assume that all work done against friction is used to melt the snow. 
Equation 8.2 for conservation of energy then gives 

  
  Wskier = Qsnow

  

 or   f ⋅d = msnowLf   

 where   f = µkn = µk mskier g( )   

 Substituting and solving for the distance gives 
  

  

d =
msnowLf

µk mskier g( ) =
1.00 kg( ) 3.33× 105  J/kg( )

0.200 75.0 kg( ) 9.80 m/s2( )
= 2.27 × 103  m = 2.27 km

 

P20.18 The energy input needed is the sum of the following terms: 
   

  

Qneeded = energy to reach melting point( ) + energy to melt( )
+ energy to reach boiling point( )

 + energy to vaporize( )
+ energy to reach 110°C( )

 

 Thus, we have 
   

  

Qneeded = 0.040 0 kg( ) 2 090 J kg ⋅°C( ) 10.0°C( )⎡⎣
+ 3.33× 105  J kg( ) + 4 186 J kg ⋅°C( ) 100°C( )
+ 2.26× 106  J kg( ) + 2 010 J kg ⋅°C( ) 10.0°C( )⎤⎦

Qneeded = 1.22 × 105  J

 

P20.19 Remember that energy must be supplied to melt the ice before its 
temperature will begin to rise. Then, assuming a thermally isolated 
system, Qcold = –Qhot, or 

 
  
miceLf + micecwater Tf − 0°C( ) = −mwcwater Tf − 25°C( )  



Chapter 20     1055 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 and 

  

   

Tf =
mwcwater 25°C( ) − miceLf

mice + mw( )cwater

   =
825 g( ) 4 186 J kg ⋅ °C( ) 25°C( ) − 75 g( ) 3.33 × 105  J kg( )

75 g + 825 g( ) 4 186 J kg ⋅ °C( )

 

 yielding  
  
Tf = 16.3°C  

P20.20 The bullet will not melt all the ice, so its final temperature is 0°C. 

 Then, conservation of energy gives 
   

  

1
2

mv2 + mc ΔT⎛
⎝⎜

⎞
⎠⎟ bullet

= mwLf

 

 where mw is the mass of melted ice. Solving for mw gives, 
   

  

mw =
3.00 × 10−3  kg

3.33 × 105  J kg
⎛
⎝⎜

⎞
⎠⎟

                    × 0.500( ) 240 m s( )2 + 128 J kg ⋅ °C( ) 30.0°C( )⎡
⎣

⎤
⎦

mw =
86.4 J + 11.5 J
333 000 J kg

= 0.294 g

 

P20.21 (a) With 10.0 g of steam added to 50.0 g of ice, we first compute the 
energy required to melt all the ice: 

   

  

Q1 = energy to melt all the ice( )
= 50.0× 10−3  kg( ) 3.33× 105  J kg( ) = 1.67 × 104  J

 

  Also, the energy required to raise the temperature of the melted 
ice to 100°C is  

   

  

Q2 = energy to raise temp of ice to 100°C( )
= 50.0× 10−3  kg( ) 4 186 J kg ⋅°C( ) 100°C( ) = 2.09× 104  J

 

  Thus, the total energy to melt all of the ice and raise its 
temperature to 100°C is 

   
  Q1 + Q2 = 1.67 × 104  J + 2.09× 104  J = 3.76× 104  J   

  The energy available from the condensation of 10.0 g of steam is 

   
  

Q3 = energy available as steam condenses( )
= 10.0× 10−3  kg( ) 2.26× 106  J kg( ) = 2.26× 104  J  
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  Thus, we see that   Q3 > Q1 ,  but Q3 < Q1 + Q2, which means that all 

of the ice will melt, 
  
Δmice = 50.0 g , but the final temperature of 

the mixture will be Tf < 100ºC. To find the final temperature Tf, we 
use   Qcold = −Qhot ,  or 

   
  miceLf + micecwΔTice = −msteamLv − msteamcwΔTsteam

 

  Substituting numerical values, 
  

  

50.0× 10−3  kg( ) 3.33× 105  J kg( )
   + 50.0× 10−3  kg( ) 4 186 J kg ⋅°C( ) Tf − 0°C( )
                       = − 10.0× 10−3  kg( ) −2.26× 106  J kg( )

                            − 10.0× 10−3  kg( ) 4 186 J kg ⋅°C( ) Tf − 100°C( )

 

  From which we obtain 

   
  

Tf = 40.4°C  

 (b) Since the mass of steam is much smaller than in part (a), we know 
that the condensation of steam will not be sufficient to melt all of 
the ice and raise its temperature to 100°C. We do need to 
determine whether the condensation of steam can supply 
sufficient energy to melt all of the ice. Recall from part (a) that 

     Q1 = energy to melt all the ice( ) = 1.67 × 104  J  

  The energy given up as the 1.00 g of steam condenses is 
   

  

Q2 =
energy given up

as steam condenses
⎧
⎨
⎩

⎫
⎬
⎭

= 10−3  kg( ) 2.26× 106  J kg( )
= 2.26× 103  J

 

  Also, 
   

  

Q3 =
energy given up as condensed

steam cools to 0°C
⎧
⎨
⎩

⎫
⎬
⎭

= 10−3  kg( ) 4 186 J kg ⋅°C( ) 100°C( ) = 419 J

 

  Since 
  
Q2 + Q3 < Q1 , therefore all of the steam will cool to 0°C, 

and 
  
Tf = 0°C  with some ice remaining. Let us now find the mass 

of ice which must melt to condense the steam and cool the 
condensate to 0°C. Again from   Qcold = −Qhot ,  

   
  miceLf = Q2 + Q3 = 2.68× 103  J  
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  Thus, 
   

  
mice =

2.68× 103  J
3.33× 105  J kg

= 8.04× 10−3  kg = 8.04 g  of ice melts
 

  Therefore, there is 42.0 g of ice left over, also at 0ºC. 

P20.22 The boiling point of nitrogen is 77.3 K. Using units of joules, we have 

   
  
Q = mCucCuΔT = mN2

Lvap( )
N2

 

 Substituting numerical values, 
   

  

1.00 kg( ) 387 J kg ⋅ °C( ) 293 − 77.3( )°C = m 2.01× 105  J kg( )
m = 0.415 kg

 

P20.23 (a) Since the heat required to melt 250 g of ice at 0°C exceeds the heat 
required to cool 600 g of water from 18°C to 0°C, the final 
temperature of the system (water + ice) must be  0°C .  

 (b) Let m represent the mass of ice that melts before the system 
reaches equilibrium at 0°C. 

   

  

Qcold = −Qhot

mLf = −mwcw 0°C −Ti( )
m 3.33 × 105  J kg( ) = − 0.600 kg( ) 4 186 J kg ⋅ °C( )

0°C − 18.0°C( )
m = 136 g, so the ice remaining = 250 g − 136 g = 114 g

 

P20.24 (a) Let n represent the number of stops. Follow the energy: 
   

  

nK = mcΔT

n
1
2

(1 500 kg)(25.0 m/s)2⎡
⎣⎢

⎤
⎦⎥

                       = 6.00 kg( )(900 J/kg ⋅ °C)(660°C − 20.0°C)

n =
3.46 × 106  J
4.69 × 105  J

= 7.37

 

  Thus  7  stops can happen before melting begins. 
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 (b) 

 

As the car stops it transforms part of its kinetic energy into
internal energy due to air resistance. As soon as the brakes
rise above the air temperature they transfer energy by heat
into the air, and transfer it very fast if they attain a high
temperature.

 

 
 

 

Section 20.4 Work and Heat in Thermodynamic Processes 

P20.25 For constant pressure, 
  
W = − PdV

Vi

Vf∫ = −PΔV = −P(Vf −Vi ).  Rather than 

evaluating the pressure numerically from atmospheric pressure plus 
the pressure due to the weight of the piston, we can just use the ideal 
gas law to write in the volumes, obtaining 

   
 
W = −P

nRTh

P
−

nRTc

P
⎛
⎝⎜

⎞
⎠⎟

= −nR Th −Tc( )  

 Therefore,  
   

  
W = −nRΔT = − 0.200 mol( ) 8.314 J/mol ⋅K( ) 280 K( ) = −466 J

  

P20.26 
  
W = − PdV

i

f

∫ = −P dV
i

f

∫ = −PΔV = −nRΔT = −nR T2 −T1( )   

 The negative sign for work on the sample indicates that the expanding 
gas does positive work. The quantity of work is directly proportional to 
the quantity of gas and to the temperature change. 

P20.27 During the warming process 
  
P =

Pi

Vi

⎛
⎝⎜

⎞
⎠⎟

V.  

 (a) 
  
W = − PdV

i

f

∫ = −
Pi

Vi

⎛
⎝⎜

⎞
⎠⎟

VdV
Vi

3Vi

∫  

  
  
W = −

Pi

Vi

⎛
⎝⎜

⎞
⎠⎟

V 2

2 Vi

3Vi

= −
Pi

2Vi

9Vi
2 −Vi

2( ) = −4PiVi  

 (b) PV = nRT gives 

   
  

Pi

Vi

⎛
⎝⎜

⎞
⎠⎟

V
⎡

⎣
⎢

⎤

⎦
⎥V = nRT → T =

Pi

nRVi

⎛
⎝⎜

⎞
⎠⎟

V 2  
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It is proportional to the square of the volume, according to

T = (Pi/nRVi )V
2 .

 

P20.28 (a) 
 
W = − PdV∫  

  

  

W = − 6.00 × 106  Pa( ) 2.00 m3 − 1.00 m3( ) +

− 4.00 × 106  Pa( ) 3.00 m3 − 2.00 m3( ) +

− 2.00 × 106  Pa( ) 4.00 m3 − 3.00 m3( )
Wi→ f = −12.0 MJ

 

 (b) 
  
Wf → i = +12.0 MJ  

 

 

ANS. FIG. P20.28 

P20.29 The work done on the gas is the negative of 
the area under the curve P =   αV 2 ,  from Vi to 
Vf . The work on the gas is negative, to mean 
that the expanding gas does positive work. We 
will find its amount by doing the integral 

   
 
W = − PdV

i

f

∫  

   

  

W = − αV 2dV
i

f

∫ = −
1
3
α Vf

3 −Vi
3( )

Vf = 2Vi = 2 1.00 m3( ) = 2.00 m3

 

   

  

W = −
1
3

5.00 atm m6( ) 1.013 × 105  Pa atm( )⎡⎣ ⎤⎦

                                         × 2.00 m3( )3
− 1.00 m3( )3⎡

⎣
⎤
⎦

= −1.18 MJ

 

ANS. FIG. P20.29 
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Section 20.5 The First Law of Thermodynamics 
P20.30 (a) Refer to ANS. FIG. P20.30. From the first law, for a cyclic process, 

Q = –W = Area of triangle, so 
   

  

Q =
1
2

4.00 m3( ) 6.00 kPa( )

= 12.0 kJ

 

 (b) 
  
Q = −W = −12.0 kJ  

 

ANS. FIG. P20.30 

P20.31 Refer to ANS. FIG. P20.30. We tabulate the signs for Q, W, and   ΔEint  
below: 

 Q W   ΔEint   

BC – 0 –   Q = ΔEint  since WBC = 0( )  

CA – + –   ΔEint < 0 and W > 0,  so Q < 0( )  

AB + – + 

  

(W < 0, ΔEint > 0 since ΔEint < 0 
for B→ C → A; so Q > 0)

 

 

P20.32 From the first law of thermodynamics, 

     ΔEint  = Q + W  = 10.0 J + 12.0 J = +22.0 J  

 The change in internal energy is a positive number, which would be 
consistent with an increase in temperature of the gas, but the problem 
statement indicates a decrease in temperature. 
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P20.33 From the first law of thermodynamics,   ΔEint = Q + W ,  so 

 
  
Q = ΔEint −W = −500 J − 220 J = −720 J  

 The negative sign indicates that positive energy is transferred from the 
system by heat. 

P20.34 Because the gas goes through a cycle, the overall change in internal 
energy must be zero: 

   
  

ΔEint  = ΔEint, AB  + ΔEint,BC  + ΔEint,CD  + ΔEint,DA  = 0 
         →   ΔEint, AB  = −ΔEint,BC  − ΔEint,CD  − ΔEint,DA

 

 Recognize that ∆Eint = 0 for the isothermal process CD and substitute 
from the first law for the other internal energy changes: 

 

 

ANS. FIG. P20.34 
   

  

ΔEint,AB  = − QBC  + WBC( ) −  QDA  + WDA( )
             = − QBC  − PBΔVBC( ) −  QDA  − PDΔVDA( )
             = − QBC  + QDA( ) +  PBΔVBC  + PDΔVDA( )
             = − 345 kJ − 371 kJ( ) 

+  3.00 atm( ) 0.310 m3( ) +  1.00 atm( ) −1.00 m3( )⎡⎣ ⎤⎦

× 1.013 × 105  Pa
1 atm

⎛
⎝⎜

⎞
⎠⎟

= 4.29× 104 J
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Section 20.6 Some Applications of the  
First Law of Thermodynamics 

P20.35 (a) Rearranging  PV = nRT  we get 
 
Vi =

nRT
Pi

 

  The initial volume is 
   

  
Vi = (2.00 mol)(8.314 J/mol ⋅K)(300 K) 

(0.400 atm) 1.013 × 105  Pa/atm( )  
1 Pa

N m2
⎛
⎝⎜

⎞
⎠⎟

= 0.123 m3
 

  For isothermal compression, PV is constant, so  PiVi = PfVf  and the 
final volume is 

   

  
Vf = Vi

Pi

Pf

⎛
⎝⎜

⎞
⎠⎟

= 0.123 m3( ) 0.400 atm
1.20 atm

⎛
⎝⎜

⎞
⎠⎟ = 0.041 0 m3

 

 (b) 
  
W = − PdV∫ = −nRT ln

Vf

Vi

⎛
⎝⎜

⎞
⎠⎟

= − 4.99 × 103  J( )ln
1
3

⎛
⎝⎜

⎞
⎠⎟ = +5.48 kJ  

  (c) The ideal gas keeps constant temperature so   ΔEint = 0 = Q + W  

and the heat is 
  
Q = −5.48 kJ .   

P20.36 (a) We choose as a system the H2O molecules that all participate in 
the phase change. For a constant-pressure process,  

   
 W = −PΔV = −P Vs −Vw( )   

  where Vs is the volume of the steam and Vw is the volume of the 
liquid water. We can find them respectively from 

   
  

PVs = nRT and Vw = m/p = nM/p.
 

  Calculating each work term, 
   

  

PVs = (1.00 mol) 8.314
J

K·mol
⎛
⎝⎜

⎞
⎠⎟ (373 K) = 3 101 J

PVw = (1.00 mol)(18.0 g/mol)
1.013 × 105  N m2

1.00 × 106  g m3

⎛
⎝⎜

⎞
⎠⎟
= 1.82 J

 

  Thus the work done is   

   W = −3 101 J + 1.82 J = 
 
−3.10 kJ  

 (b) The energy input by heat is  
   

  Q = LvΔm = 18.0 g( ) 2.26× 106  J/kg( ) = 40.7 kJ  
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  so the change in internal energy is  
   

  
ΔEint = Q + W = 40.7 kJ − 3.10 kJ = 37.6 kJ

 

P20.37 (a) We use the energy version of the nonisolated system model. 
   

  ΔEint = Q + W  

  where  W = −PΔV  for a constant-pressure process so that  
   

  

ΔEint = Q − PΔV

= 12.5 kJ − 2.50 kPa 3.00 m3 − 1.00 m3( ) = 7.50 kJ

 

 (b) Since pressure and quantity of gas are constant, we have from the 
equation of state 

   
  

V1

T1

=
V2

T2

  

  and 
   

  
T2 =

V2

V1

T1 =
3.00 m3

1.00 m3

⎛
⎝⎜

⎞
⎠⎟

300 K( ) = 900 K
 

P20.38 (a) 
  
W = −nRT ln

Vf

Vi

⎛
⎝⎜

⎞
⎠⎟
= −Pf Vf ln

Vf

Vi

⎛
⎝⎜

⎞
⎠⎟

 

  Suppressing units,   

   

  

Vi = Vf exp +
W

Pf Vf

⎛

⎝
⎜

⎞

⎠
⎟ = 0.025 0( )exp

−3 000
0.025 0 1.013 × 105( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 0.007 65 m3

 

 (b) 
  
Tf =

Pf Vf

nR
=

1.013 × 105  Pa 0.025 0 m3( )
1.00 mol 8.314 J K ⋅mol( ) = 305 K  

P20.39 (a) 

  

W = −PΔV = −P 3αVΔT[ ]
= − 1.013 × 105  N m2( )
            × 3 24.0 × 10−6°C−1( ) 1.00 kg

2.70 × 103  kg m3

⎛
⎝⎜

⎞
⎠⎟

18.0°C( )
⎡

⎣
⎢

⎤

⎦
⎥

W = −0.048 6 J

 

 (b) 
  
Q = cmΔT = 900 J kg ⋅ °C( ) 1.00 kg( ) 18.0°C( ) = 16.2 kJ  

 (c) 
  
ΔEint = Q + W = 16.2 kJ − 48.6 mJ = 16.2 kJ  



1064     The First Law of Thermodynamics 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

P20.40 From conservation of energy,  ΔEint, ABC = ΔEint, AC .  

 (a) From the first law of thermodynamics, we have 

     ΔEint, ABC = QABC + WABC   

  Then, 

   
  
QABC = ΔEint, ABC −WABC = 800 J + 500 J = 1 300 J  

 (b)   WCD = −PCΔVCD ,    ΔVAB = −ΔVCD ,  and   PA = 5PC  

  Then, 
  
WCD =

1
5

PAΔVAB = −
1
5

WAB = 100 J .  

  (+ means that work is done on the system) 

 (c) WCDA = WCD so that  
   

  
QCA =ΔEint, CA −WCDA = −800 J − 100 J = −900 J

 

  (– means that energy must be removed from the system by heat) 

 (d)   ΔEint, CD = ΔEint, CDA − ΔEint, DA = −800 J − 500 J = −1 300 J  

  and 
  
QCD = ΔEint, CD −WCD = −1 300 J − 100 J = −1 400 J .  

 

 

ANS. FIG. P20.40 
 

P20.41 (a) The work done during each step of the cycle equals the negative 
of the area under that segment of the PV curve. 

   

  

W = WAB + WBC + WCD + WDA

W = 0 − 3Pi 3Vi −Vi( ) + 0 − Pi Vi − 3Vi( ) + 0
W = −4PiVi = −4nRTi

W = −4 1.00 mol( ) 8.314 J mol ⋅K( ) 273 K( ) = 9.08 kJ
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 (b) The initial and final values of T for the system are equal. 

  Therefore,   ΔEint = 0  and 
  
Q = −W = 9.08 kJ .  

 

ANS. FIG. P20.41 
 

P20.42 (a) The work done during each step of the cycle equals the negative 
of the area under that segment of the PV curve shown in ANS. 
FIG. P20.41. 

   
  

W = WAB + WBC + WCD + WDA

W = 0 − 3Pi 3Vi −Vi( ) + 0 − Pi Vi − 3Vi( ) + 0 = −4PiVi

 

 (b) The initial and final values of T for the system are equal. 

  Therefore,   ΔEint = 0  and 
  
Q = −W = 4PiVi .  

 
 

	  

Section 20.7 Energy Transfer Mechanisms in Thermal Processes 
P20.43 (a) The rate of energy transfer by conduction through a material of 

area A, thickness L, with thermal conductivity k, and 
temperatures Th > Tc on opposite sides is P = kA (Th –  Tc)/L. For 
the given windowpane, this is 

    

   

P = 0.8 W m ⋅ C( ) 1.0 m( ) 2.0 m( )[ ] 25.0°C− 0°C( )
0.620× 10−2  m

= 6.45× 103  W

 

 (b) The total energy lost per day is 

    
  E = P ⋅ Δt = 6.45 × 103  J s( ) 8.64 × 104  s( ) = 5.57 × 108  J  
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P20.44 The thermal conductivity of concrete is k = 1.3 J/s · m · ºC, so the 
energy transfer rate through the slab is 

    

   

P = kA
Th −Tc( )

L
= 0.8 W m ⋅ C( ) 5.00 m2( ) 20°C( )

12.0× 10−2  m
= 667 W

 

P20.45 The net rate of energy transfer from his skin is 
   

  

Pnet = σAe T 4 −T0
4( )

      = 5.67 × 10−8  W m2 ⋅K4( ) 1.50 m2( )
                           × 0.900( ) 308 K( )4 − 293 K( )4⎡⎣ ⎤⎦ = 125 W

 

 Note that the temperatures must be in kelvins. The energy loss in ten 
minutes is 

 
  
TER = PnetΔt = 125 J s( ) 600 s( ) = 74.8 kJ  

 In the infrared, the person shines brighter than a hundred-watt light 
bulb. 

P20.46 We find the power output of the Sun from Equation 20.19, Stefan’s 
law: 

   

  

P =σAeT 4

= 5.669 6× 10−8  W m2 ⋅K4( ) 4π 6.96× 108  m( )2⎡
⎣

⎤
⎦

                                                         × 0.986( ) 5 800 K( )4

= 3.85× 1026  W

 

P20.47 From Stefan’s law, 

    P = σAeT 4  

  

  

2.00 W = 5.67 × 10−8  W m2 ⋅K4( ) 0.250 × 10−6  m2( ) 0.950( )T 4

T = 1.49 × 1014  K4( )1 4
= 3.49 × 103  K

 

P20.48 We suppose the Earth below is an insulator. The square meter must 
radiate in the infrared as much energy as it absorbs,   P = σAeT 4.  
Assuming that e = 1.00 for blackbody blacktop: 

   
  1 000 W = 5.67 × 10−8  W m2 ⋅K4( ) 1.00 m2( ) 1.00( )T 4  

   
  
T = 1.76 × 1010  K4( )1 4

= 364 K  (You can cook an egg on it.)  
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P20.49 (a) Because the bulb is evacuated, the filament loses energy by 
radiation but not by convection; we ignore energy loss by 
conduction. We convert the temperatures given in Celsius to 
Kelvin, with Th = 2 100°C = 2 373 K and Tc = 2 000°C = 2 273 K. 
Then, from Stefan’s law, the power ratio is 

   
  eσATh

4/eσATc
4 = 2 373/2 273( )4 = 1.19  

 (b) The radiating area is the lateral surface area of the cylindrical 
filament,    2πr.  Now we want 

   
   eσ 2πrhTh

4 = eσ 2πrcTc
4  

  so   rc/rh = 1.19  

*P20.50 We use Equation 20.16 for the rate of energy transfer by conduction: 

   

  

P = kA
Th −Tc( )

L
= 0.210 W m ⋅ °C( ) 1.40 m2( ) 37.0°C − 34.0°C

0.025 0 m( )
= 35.3 W = 35.3 J s( ) 1 kcal

4 186 J
⎛
⎝⎜

⎞
⎠⎟

3 600 s
1 h( ) = 30.3 kcal h

 

 Since this is much less than 240 kcal/h, blood flow is essential to cool 
the body. 

*P20.51 When the temperature of the junction stabilizes, the energy transfer 
rate must be the same for each of the rods, or PCu = PAl. The cross-
sectional areas of the rods are equal, and if the temperature of the 
junction is 50.0°C, the temperature difference is   ΔT = 50.0°C  for each 
rod. Thus, 

  

  
PCu = kCuA

ΔT
LCu

⎛
⎝⎜

⎞
⎠⎟
= kAlA

ΔT
LAl

⎛
⎝⎜

⎞
⎠⎟
= PAl  

 which gives 

  
  
LAl = kAl

kCu

⎛
⎝⎜

⎞
⎠⎟

LCu = 238 W/m ⋅°C
397 W/m ⋅°C

⎛
⎝

⎞
⎠ 15.0 cm( ) = 9.00 cm

 

*P20.52 From 
  
P = k A

ΔT
L

,  we have 

   

  
k = PL

AΔT
= 10.0 W( ) 0.040 0 m( )

1.20 m2( ) 15.0°C( )
= 2.22 × 10−2  W m ⋅ °C
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P20.53 (a) The R-value of the window is the sum of the R-values for the two 
0.125-in window panes, which Table 20.4 lists as 0.890, plus the 
layer of air in between. Since the Table 20.4 lists the R-value for an 
air space of 3.50 in, the total R-value becomes 

   

  

R = 0.890 + 0.250
3.50

⎛
⎝⎜

⎞
⎠⎟ 1.01+ 0.890⎡

⎣⎢
⎤
⎦⎥

ft2 ⋅°F ⋅h
Btu

⎛
⎝⎜

⎞
⎠⎟

= 1.85 
ft2 ⋅°F ⋅h

Btu

 

 (b) Since A and (T2 – T1) are constants, heat flow is reduced by a 

factor of 
 

1.85
0.890

= 2.08 .  

P20.54 (a) 

 

  

Intensity is defined as power per area perpendicular to 
the direction of energy flow. The direction of sunlight is 
along the line from the Sun to the object. The perpendicular
area is the projected flat circular area enclosed by the 
terminator—the line that separates day from night on the 
object. The object radiates infrared light outward in all
directions. The area perpendicular to this energy flow 
is its spherical surface area.

 

 (b) The sphere of radius R absorbs sunlight over area π R2. It radiates 
over area 4π R2. Then, in steady state, 

   
  

Pin = Pout

e 1 370 W m2( )π R2 = eσ 4π R2( )T 4  

  The emissivity e, the radius R, and π all cancel. Therefore, 

   

  
T =

1 370 W m2

4 5.67 × 10−8  W m2 ⋅K4( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 4

= 279 K = 6°C  

  
 
It is chilly, well below temperatures we find comfortable.

 

P20.55 Call the gold bar Object 1 and the silver bar Object 2. Each is a 
nonisolated system in steady state. When energy transfer by heat 
reaches a steady state, the flow rate through each will be the same, so 
that the junction can stay at constant temperature thereafter, with as 
much heat coming in through the gold as goes out through the silver. 

   

   
P1 = P2 or

k1A1ΔT1

L1
= k2A2ΔT2

L2
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 In this case, L1 = L2 and A1= A2, so   k1ΔT1 = k2ΔT2.  

 Let T3 be the temperature at the junction; then 

   k1(80.0°C − T3) = k2(T3 − 30.0°C) 

 Rearranging, we find 

   
  
T3 =

(80.0°C) k1 + (30.0°C)k2

k1 + k2

 

   

  

T3 =
(80.0°C)(314 W/m ⋅ °C) + (30.0°C)(427 W/m ⋅°C) 

314 W/m ⋅ °C + 427 W/m ⋅°C

= 51.2°C

 

P20.56 (a) The heat leaving the box during the day is given by  
   

 
P = kA

TH −Tc( )
L

= Q
Δ t

 

   

  

Q = 0.012 0
W

m°C
⎛
⎝⎜

⎞
⎠⎟ 0.490 m2( ) 37.0°C − 23.0°C

0.045 0 m
⎛
⎝⎜

⎞
⎠⎟

                                                        × 12 h( ) 3 600 s
1 h

⎛
⎝⎜

⎞
⎠⎟

= 7.90 × 104  J

 

  The heat lost at night is 

   

  

Q = 0.012 0
W

m°C
⎛
⎝⎜

⎞
⎠⎟ 0.490 m2( ) 37.0°C − 16.0°C

0.045 0 m
⎛
⎝⎜

⎞
⎠⎟

                                                        × 12 h( ) 3 600 s
1 h

⎛
⎝⎜

⎞
⎠⎟

= 1.19 × 105  J

 

  The total heat is 1.19 × 105 J + 7.90 × 104 J = 1.98 × 105 J. It must be 
supplied by the solidifying wax: Q = mL 

   
  
m =

Q
L
=

1.98 × 105  J
205 × 103  J kg

= 0.964 kg or more  

 (b) 

 

The test samples and the inner surface of the insulation can be
prewarmed to 37.0°C as the box is assembled. Then nothing
changes in temperature during the test period and the masses
of the test samples and insulation make no difference.
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P20.57 (a) Suppose the pizza is 60 cm in diameter and    = 2.0 cm  thick, 
sizzling at 100°C. It cannot transfer energy by conduction or 
convection. It radiates according to  P =σAeT 4.  Here, A is its 
surface area, given by 

   

   

A = 2π r2 + 2π r = 2π 0.30 m( )2 + 2π 0.30 m( ) 0.02 m( )
= 0.60 m2

 

  Suppose it is dark in the infrared, with emissivity about 0.8. Then 
   

  

P = 5.67 × 10−8  W m2 ⋅K4( ) 0.60 m2( ) 0.80( ) 373 K( )4

= 530 W ~ 103  W

 

 (b) If the density of the pizza is half that of water, its mass is 
   

   m = ρV = ρπ r2 = 500 kg m3( )π 0.30 m( )2 0.02 m( ) = 2.8 kg
 

  There’s a lot of water in the cheese, but a lot of air in the crust, so 
we estimate a specific heat for the pizza between that of water 
and that of air. Suppose its specific heat is   c = 3 000 J kg ⋅°C.  The 
drop in temperature of the pizza is described by 

   

  

TER = mc Tf −Ti( )
P = dTER

dt
= mc

dTf

dt
− 0

dTf

dt
= P

mc
= 530 J s

2.8 kg( ) 3000 J kg ⋅°C( )
= 0.063 °C s  ~ 10−1  K s

 

 
 

	  

Additional Problems 
*P20.58 (a) Along the direct path IF (ANS. FIG. P20.58), the work done on the 

gas is the negative of the area under the curve, or 
   

  

W = − 1.00 atm( ) 4.00 L − 2.00 L( )[
              + 1

2
4.00 atm − 1.00 atm( ) 4.00 L − 2.00 L( )]

= −5.00 atm ⋅L( ) 1.013× 105  Pa
1 atm

⎛
⎝⎜

⎞
⎠⎟

10−3  m3

1 L
⎛
⎝⎜

⎞
⎠⎟

= −507 J
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  Thus, 
   

  
ΔU = Q + W = 418 J − 507 J = −88.5 J

  

 (b) Along path IAF, the work done on the gas is 
   

  

W = − 4.00 atm( ) 4.00 L − 2.00 L( ) 1.013× 105  Pa
1 atm

⎛
⎝⎜

⎞
⎠⎟

10−3  m3

1 L
⎛
⎝⎜

⎞
⎠⎟

= −810 J

 

  From the first law,  
   

  
Q = ΔU −W = −88.5 J − −810 J( ) = 722 J

 

 

ANS. FIG. P20.58 

*P20.59 The constant pressure is 
   

  
P = 1.50 atm( ) 1.013× 105  Pa

1 atm
⎛
⎝⎜

⎞
⎠⎟

= 1.52 × 105  Pa
 

 and the work done on the gas is   W = −P ΔV( ).  

 (a) Here,   ΔV = 4.00 m3  and 
   

  
W = −P ΔV( ) = − 1.52 × 105  Pa( ) 4.00 m3( ) = −6.08× 105  J

 

 (b) In this case,   ΔV = −3.00 m3 ,  so  
   

  
W = −P ΔV( ) = − 1.52 × 105  Pa( ) −3.00 m3( ) = 4.56× 105  J

 

P20.60 The mass of nitrogen vaporized in a 4.00 h period is 
  

   
m = Q

Lf

=
P ⋅ Δt( )

Lf

=
25.0 J s( ) 4.00 h( ) 3 600 s h( )

2.01× 105  J kg
= 1.79 kg

 

P20.61 (a) Before conduction has time to become important, the energy lost 
by the rod equals the energy gained by the helium. Therefore, 

   
  mLv( )He

= mc ΔT( )Al

 

  or   ρVLv( )He
= ρVc ΔT( )Al

,  
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  so  
  
VHe =

ρVc ΔT( )Al

ρLv( )He

:  

   

  

VHe =
2 700 kg m3( ) 6.25 × 10−5   m3( )
125 kg m3( ) 2.09 × 104  J kg( )

                                × 900 J/kg ⋅ °C( ) 295.8 K( ) 1°C
1 K

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

   

  
VHe = 1.72 × 10−2  m3( ) 1 L

10−3  m3
⎛
⎝⎜

⎞
⎠⎟ = 17.2 liters

 

 (b) The rate at which energy is supplied to the rod in order to 
maintain constant temperatures is given by 

   

  

P = kA
dT
dx

⎛
⎝⎜

⎞
⎠⎟ = 3 100 W/m ⋅K( ) 2.50 × 10−4  m2( ) 295.8 K

0.250 m
⎛
⎝⎜

⎞
⎠⎟

= 917 W

 

  This power supplied to the helium will produce a “boil-off” rate 
of 

   

  

P
ρLv

=
917 W

125 kg m3( ) 2.09 × 104  J kg( ) = 3.51 × 10−4 m3 s

= 0.351 L s

 

P20.62 (a) Isolated system (momentum). The collision is a perfectly inelastic 
collision, where momentum is conserved, but kinetic energy is 
not (it is transformed into internal energy). 

 (b) Momentum is conserved; thus: 
   

    
m1

v1 + m2


v2 = m1 + m2( ) v → v = m1


v1 + m2


v2

m1 + m2

 

  Substituting in numerically (positive to the right): 

   

    


v = m1


v1 + m2


v2

m1 + m2

=
12.0 g( ) +300 m/s( ) + 8.00 g( ) −400 m/s( )

12.0 g + 8.00 g
= +20.0 m/s

 

  The final velocity is 
 
20.0 m/s to the right .  
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 (c) The initial kinetic energy is 
   

  
Ki =

1
2

m1v1
2 +

1
2

m1v1
2

 

   

  

Ki =
1
2

12.0 × 10−3  kg( ) 300.0 m/s( )2

             +
1
2

8.00 × 10−3  kg( ) −400.0 m/s( )2 = 1 180 J

 

  The final kinetic energy is: 
     

  
K f =

1
2

m1 + m2( )v2
 

    

  
K f =

1
2

12.0 × 10−3  kg + 8.00 × 10−3  kg( ) 20.0 m/s( )2 = 4.00 J
 

  The amount of kinetic energy transformed into internal energy is 
   

  
ΔK = K f − Ki = 4.00 J − 1180 J = −1176 J = 1.18 × 103  J

 

 (d)  No .  If this amount of heat is added to the mass of the bullets, the 
following amount will be needed to heat the bullets to their 
melting temperature: 

   

  

Q = mcΔT

= 20.0 × 10−3  kg( ) 128 J/kg ⋅ °C( ) 327.3°C − 30.0°C( )
= 761 J

 

  At the beginning of the process, 1 176 joules are generated by the 
collision; therefore, the bullets will be heated to the melting point, 
with heat still available to start the melting process: 

   
 1 176 J − 761 J = 415 J  

  Therefore, 415 J are available to melt the bullets. The amount of 
heat needed to melt all of the combined mass of the two bullets is: 

   
  Q = mL = 20.0 × 10−3  kg( ) 2.45 × 104  J/kg( ) = 490 J

 

  There are only 415 J available; so the lead does not entirely melt 
due to the collision. 

 (e) Because there is not enough energy available to melt all the mass 
of the bullets, the final temperature is the melting point of lead, 

 327.3°C .  
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 (f) The total mass of the melted lead is: 
   

  
Q = mL → m =

Q
L

=
415 J

2.45 × 104  J/kg( ) = 0.016 94 kg = 16.9 g
 

  leaving behind 20.0 g – 16.9 g = 3.10 g of unmelted solid lead: 
   

 
3.10 g of solid lead and 16.9 g of liquid lead

 

P20.63  Q = mcΔT = ρV( )cΔT  so that when a constant temperature difference 
 ΔT  is maintained, the rate of adding energy to the liquid is 

 
P =

dQ
dt

= ρ dV
dt

⎛
⎝⎜

⎞
⎠⎟ cΔT   = ρRcΔT  and the specific heat of the liquid is 

   

  

c = P
ρRΔT

= 200 W

900 kg/m3 2.00 L/min( ) 1 min
60 s

⎛
⎝

⎞
⎠ 3.50°C( )

1 L
10−3  m3

⎛
⎝⎜

⎞
⎠⎟

= 1.90× 103  
J

kg ⋅°C

 

P20.64  Q = mcΔT = ρV( )cΔT  so that when a constant temperature difference 
 ΔT  is maintained, the rate of adding energy to the liquid is 

  
P =

dQ
dt

= ρ dV
dt

⎛
⎝⎜

⎞
⎠⎟ cΔT   = ρRcΔT  and the specific heat of the liquid is 

  
c =

P
ρRΔT

.
 

P20.65 The disk is isolated, so angular momentum is conserved by the disk 
system. The initial moment of inertia of the disk is 

   

  

1
2

MR2 =
1
2
ρVR2 =

1
2
ρ πR2t( )R2

=
1
2

8 920 kg m3( )π 28 m( )4 1.2 m

= 1.033 × 1010  kg ⋅m2

 

 The rotation speeds up as the disk cools off, according to 
   

  

Iiω i = I fω f

1
2

MRi
2ω i =

1
2

MR f
2ω f =

1
2

MRi
2 1−α ΔT( )2ω f
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ω f =ω i
1

1−α ΔT( )2

= 25 rad s( ) 1

1− 17 × 10−6  °C( )−1( ) 830°C( )⎡⎣ ⎤⎦
2

= 25.720 7 rad s

 

 (a) The kinetic energy increases by 
   

  

1
2

I fω f
2 −

1
2

Iiω i
2 =

1
2

Iiω i( )ω f −
1
2

Iiω i
2 =

1
2

Iiω i ω f −ω i( )
=

1
2

1.033 × 1010  kg ⋅m2 25 rad s( )⎡⎣ ⎤⎦

                                     × 0.720 7 rad s( )
= 9.31× 1010  J

 

 (b) 

  

ΔEint = mcΔT = 2.64 × 107  kg 387 J kg ⋅ °C( ) 20°C − 850°C( )
= −8.47 × 1012  J

 

 (c) Solve the appropriate reduction of Equation 8.2 for the energy 
radiated by the disk: 

   
  ΔK  + ΔEint  = TER  

 

  

  

TER  = ΔK  + ΔEint  = 9.31 × 1010 J  − 8.47  × 1012 J

=  −8.38 × 1012 J

 

P20.66 (a) 

 

First, energy must be removed from the liquid water to cool it
to 0ºC. Next, energy must be removed from the water at 0ºC to
freeze it, which corresponds to a liquid-to-solid phase transition.
Finally, once all the water has frozen, additional energy must
be removed from the ice to cool it from 0ºC to – 8.00º C.

 

 (b) The total energy that must be removed is 

    

  

Q = Qcool water
to 0°C

+ Qfreeze
at 0°C

+ Qcool ice
to −8.00°C

= mwcw 0°C −Ti + mwLf + mwcice Tf − 0°C
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  or 
    

  

Q = 75.0× 10−3 kg( ) 4 186 J/kg ⋅°C( ) −20.0°C⎡⎣
              + 3.33× 105  J/kg + 2 090 J/kg ⋅°C( ) −8.00°C ⎤⎦

= 3.25× 104  J = 32.5 kJ

 

*P20.67 (a) The energy thus far gained by the copper equals the energy lost 
by the silver. Your down parka is an excellent insulator. 

     Qcold = −Qhot  

  or 
  
mCucCu Tf −Ti( )Cu

= −mAgcAg Tf −Ti( )Ag
:  

   

  

9.00 g( ) 387 J kg ⋅ °C( ) 16.0°C( ) = − 14.0 g( ) 234 J kg ⋅ °C( )
                                                                            × Tf − 30.0°C( )Ag

Tf − 30.0°C( )Ag
= −17.0°C

 

  so   Tf ,  Ag = 13.0°C .  

 (b) Differentiating the energy gain-and-loss equation gives 

  
mAgcAg

dT
dt( )

Ag
= −mCucCu

dT
dt( )

Cu
 

   

  

dT
dt( )

Ag
= − mCucCu

mAgcAg

dT
dt( )

Cu

= − 9.00 g( ) 387 J kg ⋅ °C( )
14.0 g( ) 234 J kg ⋅ °C( ) +0.500°C s( )

dT
dt( )

Ag
= −0.532°C s  

negative sign ⇒  decreasing temperature( )

 

*P20.68 (a) The chemical energy input becomes partly work output and 
partly internal energy. The energy flow each second is described 
by 

   

  

400  kcal h = 60  J s + mL
Δt

= 400  kcal h( ) 4 186 J
1 kcal( ) 1 h

3 600 s( )
= 465 W

m
Δt

L = 465 W − 60 W = 405  J s

m
Δt

= 405  J s
2.26 × 106  J kg

⎛
⎝⎜

⎞
⎠⎟

3 600 s
1 h( ) = 0.645  kg h
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  (b) The rate of fat burning is ideally 
 

400 kcal h
9 kcal g

= 0.044 4 kg h.
 
The 

0.044 4 kg/h of water produced by metabolism is this fraction of 

the water needed for cooling: 
 

0.044 4 kg h
0.645 kg h

= 0.068 9 = 6.89%.  

Moral: drink plenty of water while you exercise. 

*P20.69 (a) The rate of energy conversion is given by  

   
  
Fv = 50.0 N( ) 40.0 m s( ) = 2 000 W  

 (b) Energy received by each object is (1 000 W)(10 s) = 104 J  
= 2 389 cal. The specific heat of iron is 0.107 cal/g . °C, so the heat 
capacity of each object is  5.00 × 103 × 0.107 = 535.0 cal °C.  

   
  
ΔT = 2 389 cal

535.0 cal °C
= 4.47°C  

*P20.70 We find the quantity of water vapor in one exhaled breath. 
   PV = nRT:  

   

  

n = PV
RT

=
3.20× 103  N m2( ) 0.600× 10−3  m3( )

8.314 J mol ⋅K( ) 273 K + 37°C( )

= 7.45× 10−4  mol

 

 The molar mass of water ( H2O ) is M = [2(1.00)+16.0] g/mol  
= 0.018 0 kg/mol. The mass of water vapor exhaled in one breath is  

   

  

msample = nM = 7.45× 10−4  mol( ) 0.0180 kg mol( )
= 1.34× 10−5  kg

 

 The energy absorbed from your body as the water evaporates can be 
estimated as  

   
  Q = mL = 1.34 × 10−5  kg 2.26 × 106  J kg( ) = 30.3 J  

 Your rate of energy loss is  
   

  
P = Q

Δt
= 30.3 J

breath( ) 22.0 breath
min( ) 1 min

60 s( ) = 11.1 W
 

 Note that unlike a human, a dog does not perspire. Instead, the dog 
pants, and maximizes energy loss through the pathway considered 
here. 
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*P20.71 The energy conservation equation is    Qcold = −Qhot ,  or 

  
  

miceLf + mice + mw( )cw + mcupcCu⎡⎣ ⎤⎦ 12.0°C− 0°C( )
                                                = −mPbcPb 12.0°C− 98.0°C( )

 

 This gives 
  

  

mPb = 1
cPb 86.0°C( )

⎡

⎣
⎢

⎤

⎦
⎥ miceLf + mice + mw( )cw + mcupcCu⎡⎣ ⎤⎦ 12.0°C( ){ }

= 1
128 J/kg ⋅°C( ) 86.0°C( )

⎡

⎣
⎢

⎤

⎦
⎥ 0.040 0 kg( ) 3.33× 105  J/kg( ){

                                                

                          + 0.240 kg( ) 4 186 J/kg ⋅°C( )⎡⎣

                          + 0.100 kg( ) 387 J/kg ⋅°C( )⎤⎦ 12.0°C( )}
= 2.35 kg

 

P20.72  (a) Work done on the gas is the negative of the 
area under the PV curve: 

   
  
W = −Pi

Vi

2
−Vi

⎛
⎝⎜

⎞
⎠⎟ = +

PiVi

2
 

  

  

Put the cylinder into a refrigerator at 
absolute temperature Ti/2. Let the 
piston move freely as the gas cools.

 

 (b) In this case the area under the curve is 

  
W = − PdV∫ .  Since the process is isothermal, 

   
  
PV = PiVi = 4Pi

Vi

4
⎛
⎝⎜

⎞
⎠⎟ = nRTi  

  and 
   

  

W = −
dV
V

⎛
⎝⎜

⎞
⎠⎟ PiVi( )

Vi

Vi 4

∫ = −PiVi ln
Vi 4
Vi

⎛
⎝⎜

⎞
⎠⎟

= PiVi ln 4

= +1.39PiVi

 

  
  

With the gas in a constant-temperature bath at Ti , slowly push
the piston in.

 

 

ANS. FIG. P20.72 
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 (c) The area under the curve is 0 and 
  

W = 0 . 

  

  

Lock the piston in place and hold the cylinder over 
a hotplate at 3Ti .

 

  The student may be confused that the integral in part (c) is not 
explicitly covered in calculus class. Mathematicians ordinarily 
study integrals of functions, but the pressure is not a single-
valued function of volume in a isovolumetric process. Our 
physics idea of an integral is more general. It still corresponds to 
the idea of area under the graph line. 

P20.73 From Equation 8.2, for the isolated system of the meteorite and the 
Earth and for the time interval from when the meteorite is very far 
from Earth until just after it hits the Earth’s surface, 

     ΔK  + ΔUg  + ΔEint  = 0     →     ΔEint  = −ΔK  − ΔUg  

 The problem statement says that the internal energy increase of the 
system is shared equally by the meteorite and the Earth, so the change 
in internal energy for the meteorite alone is 

   

  
ΔEint,meteorite  =

1
2
ΔEint  = −

1
2
ΔK  −  1

2
ΔUg

 

 Substitute for the energies: 
   

  

ΔEint,meteorite  =  −
1
2

0 −  1
2

mvi
2⎛

⎝⎜
⎞
⎠⎟  − 

1
2

−GMEm
RE

 − 0
⎛
⎝⎜

⎞
⎠⎟
 

=  1
4

mvi
2  + GMEm

2RE

 

 Given the large amount of energy available for a meteorite falling to 
Earth, we expect the meteorite to both melt and vaporize as its 
temperature rises. Therefore, the internal energy change for the 
meteorite can be expressed as 

   

  

ΔEint,meteorite  =  mcΔT solid  + Lf m + mcΔT liquid  + Lvm + mcΔT gas

                  =  m cΔT solid  + Lf  + cΔT liquid  + Lv  + cΔT gas( )  

 Setting the two expressions for the internal energy change of the 
meteorite equal gives us 

   

  
ΔT gas  =

1
4

vi
2 + GME

2RE

 − cΔT solid  − Lf  − cΔT liquid  − Lv

cgas
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 Substitute numerical values: 

   

  

ΔT gas  =
1

1170 J/kg  ⋅  °C
⎛
⎝⎜

⎞
⎠⎟
 

                        × 1
4

1.40 × 104  m/s( )2⎡
⎣⎢

                               

                           + 
6.67 × 10−11  N ⋅m2/kg2( ) 5.98× 1024  kg( )

2 6.37 × 106  m( )
                               −  900 J/kg  ⋅  °C( ) 660°C + 15.0°C ( )
                                − 3.97  × 105  J/kg 

                                −  1 170 J/kg  ⋅  °C( ) 2 450°C − 660°C ( ) 
                                − 1.14 × 107  J/kg
           = 56 247°C

 

 This is the change in temperature from the boiling point of aluminum, 
so to find the final temperature, add 2 450°C and express to three 
significant figures: 

  
  Tf  = 56 247°C + 2 450°C =  5.87  ×  104°C

 

P20.74 The time interval to boil the water is related to the solar power P 
absorbed by the water and the energy transfer TER required: 

   
  
Δt = 

TER

P
 

 The energy transfer required is 

     TER  = mcΔT  

 The solar power is 
   

  
P =  fIA =  fI π d2

4
⎛
⎝⎜

⎞
⎠⎟
 = 1

4
πd2 fI

 

 Combining all three equations, 

   

  

Δt =  mcΔT
1
4
πd2 fI⎛

⎝
⎞
⎠

 =  4mcΔT
πd2 fI

 

= 
4 1.50 kg( ) 4 186 J/kg ⋅°C( ) 80.0°C( )
π 0.600 m( )2 0.400( ) 600 W/m2( )

     = 7.40 × 103  s  = 2.06 h
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 If we include setup time and coffee brewing time, this time interval 
approaches 2.5 hours. In the morning, the solar intensity is not the 
maximum amount, which occurs later in the day. Therefore, the 
reduced intensity in the morning will increase the time interval 
further. Furthermore, we have not included the energy transfer 
necessary to raise the temperature of the container in which the water 
resides. These considerations will push the required time interval even 
higher, so that most of the morning is used in making coffee and there 
is no time left for a morning hike. 

P20.75 (a) The power radiated by the quiet Sun is given by Stefan’s law: 
    

  

P =σAeT 4

= 5.67 × 10−8  W m2K4( ) 5.1× 1014  m2⎡⎣ ⎤⎦ 0.965( ) 5 800 K( )4

= 3.16× 1022  W

 

 (b) The power output of the patch of sunspot is 
    

  

P = 5.67 × 10−8  W m2 ⋅K4( )
            × 0.100 5.10× 1014  m2( )⎡⎣ ⎤⎦ 0.965( ) 4 800 K( )4{
            + 0.900 5.10× 1014  m2( )⎡⎣ ⎤⎦ 0.965( ) 5 890 K( )4}

= 3.17 × 1022  W

 

 (c) 
 
This is larger than 3.158 × 1022  W by 

1.29 × 1020  W
3.16 × 1022  W

= 0.408%  

 (d)   Tavg = 0.100 4 800 K( ) + 0.900 5 890 K( ) = 5.78× 103  K  

P20.76 (a) The block starts with 
  
Ki =

1
2

mvi
2 =

1
2

1.60 kg( ) 2.50 m s( )2 = 5.00 J.  

  Write the appropriate reduction of Equation 8.2 for the isolated 
copper-ice system: 

   

  

ΔK  + ΔEint  = 0     →     

0 −  1
2

mCuv2⎛
⎝⎜

⎞
⎠⎟  + LfΔm = 0   →   

Δm = mCuv2

2Lf

 

  Substitute numerical values: 

   
  
Δm = 

1.60 kg( ) 2.50 m/s( )2

2 3.33 × 105  J/kg( )  = 1.50 × 10−5  kg =  15.0 mg  
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 (b) For the block as a system: Q = 0 (no energy transfers by heat since 
there is no temperature difference),   ΔEint = 0  (no temperature or 
change of state). 

  For the block-ice system,  
  
 ΔEmech = −ΔK   =  −5.00 J .  

 (c) For the ice as a system: Q = 0 (no energy transfers by heat since 
there is no temperature difference),   ΔEint = ΔmLf = 5.00 J  
(change of state—some ice melts). 

 (d) This is basically the same system as treated in part (a), treated in 
the same manner: 

      Ki = 5.00 J   and  
  
mice = 15.0 mg  

 (e) For the block of ice as the system: Q = 0 (no energy transfers by 
heat since there is no temperature difference), 

  ΔEint = ΔmLf = 5.00 J  (change of state—some ice melts). 

  For the block-ice system, 
  
 ΔEmech = −ΔK   =  −5.00 J .  

 (f) For the metal sheet as a system, Q = 0 (no temperature difference), 

  
ΔEint = 0  (no change in state or temperature). 

 (g) Write the appropriate reduction of Equation 8.2 for the isolated 
copper-copper system: 

      ΔK  + ΔEint  = 0     →     ΔEint  = −ΔK  

  Because of the symmetry of the system, each copper slab 
possesses half of the internal energy change of the system: 

    

  
ΔEint,copper  =  

1
2
ΔEint  = −

1
2
ΔK  = − 1

2
0 −  1

2
mv2⎛

⎝⎜
⎞
⎠⎟  =

1
4

mv2
 

  The internal energy change of the copper slab is related to its 
temperature change: 

    
  
ΔEint,copper = mcΔT = 1

4
mv2    →   ΔT = v2

4c
 

  Substitute numerical values: 

    
  
ΔT  = 

2.50 m/s( )2

4 387  J/kg  ⋅  °C( )  =  4.04 × 10−3  °C  

 (h) For the sliding slab, 
  
Q = 0  (no temperature difference), 

  
ΔEint = 2.50 J  (friction transfers kinetic energy into internal 

energy). 

  For the two-slab system, 
  
ΔEmech = −5.00 J (ΔK = −5.00 J).  
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 (i) For the stationary slab, 
  
Q = 0  (no temperature difference), 

  
ΔEint = 2.50 J  (friction transfers kinetic energy into internal 

energy). 

  For each object in each situation, the general continuity equation 
for energy, in the form   ΔK + ΔEint = Q , correctly describes the 
relationship between energy transfers and changes in the object’s 
energy content. 

P20.77 From   Q = LvΔm,  the rate of boiling is described by 
   

 
Power = Q

Δt
= LvΔm

Δt

  

 so that the mass flow rate of steam from the kettle is 
   

 

Δm
Δt

= Power
Lv

 

 The symbols  Δm  for mass vaporized and m for mass leaving the kettle 
have the same meaning, but recall that M represents the molar mass. 
Even though it is on the point of liquefaction, we model the water 
vapor as an ideal gas. The volume flow rate   V /Δt  of the fluid is the 
cross-sectional area of the spout multiplied by the speed of flow, 
forming the product Av. 

   

  

P0V = nRT = m
M

⎛
⎝⎜

⎞
⎠⎟ RT

P0V
Δt

= m
Δt

RT
M

⎛
⎝⎜

⎞
⎠⎟

P0Av = Power
Lv

RT
M

⎛
⎝⎜

⎞
⎠⎟

 

   

  
v = Power( )RT

MLvP0A

 

 Suppressing units,  
  

  
v = 1 000( ) 8.314( ) 373( )

0.018 0( ) 2.26× 106( ) 1.013× 105( ) 2.00× 10−4( ) = 3.76 m/s
 

P20.78   A = Aend walls + Aends of attic + Aside walls + Aroof  

 

  

A = 2 8.00 m × 5.00 m( )+ 2 2 × 1
2
× 4.00 m × 4.00 m( )tan 37.0°⎡

⎣⎢
⎤
⎦⎥

+ 2 10.0 m × 5.00 m( )+ 2 10.0 m( ) 4.00 m
cos 37.0°

⎛
⎝⎜

⎞
⎠⎟
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A = 304 m2

P = kAΔT
L

=
4.80× 10−4  kW m ⋅°C( ) 304 m2( ) 25.0°C( )

0.210 m
= 17.4 kW

= 4.15 kcal s

 

 Thus, the energy transferred through the walls per day by heat is 

   4.15 kcal s( ) 86 400 s( ) = 3.59 × 105  kcal day  

 The gas needed to replace this transfer is 
 

3.59 × 105  kcal day
9 300 kcal m3  

 
= 38.6 m3 day  

P20.79 Energy goes in at a constant rate P. For the period from 50.0 min to 
60.0 min, after the ice has melted, 

   PΔt = Q = mcΔT  

    P 10.0 min( ) = 10 kg + mi( ) 4 186 J kg ⋅ °C( ) 2.00°C − 0°C( )  

    P 10.0 min( ) = 83.7 kJ + 8.37 kJ kg( )mi  [1] 

 For the period from 0 to 50.0 min, as the ice is melting, 

   PΔt = Q = miLf  

  
  P 50.0 min( ) = mi 3.33 × 105  J kg( )  

 Substitute 
  
P =

mi 3.33 × 105  J kg( )
50.0 min

 into equation [1] to find 

  

  

mi 3.33 × 105  J kg( )
5.00

= 83.7 kJ + 8.37 kJ kg( )mi

mi =
83.7 kJ

66.6 − 8.37( )  kJ kg
= 1.44 kg

 

 

ANS. FIG. P20.79 
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P20.80 (a) From conservation of energy, where the subscript w is for water 
and the subscript c is for the calorimeter, 

     Qcold = −Qhot  or   QAl = − Qw + Qc( )  
   

  

mAlcAl Tf −Ti( )
Al

= − mwcw + mccc( ) Tf −Ti( )
w

0.200 kg( )cAl +39.3°C( )
                          = − 0.400 kg( ) 4 186 J kg ⋅ °C( )⎡⎣
                                  + 0.040 0 kg( ) 630 J kg ⋅ °C( )⎤⎦ −3.70°C( )

cAl =
6.29 × 103  J
7.86 kg ⋅ °C

= 800 J kg ⋅ °C

 

 (b) 
 

900 − 800
900

= 11%  

  
 

This differs from the tabulated value by 11%, so the values agree
within 15%.

 

 
 

	  

Challenge Problems 
P20.81 (a) The speed of rise of the piston is the same as the rate at which the 

height h of the steam above the water is increasing due to the 
boiling process. The volume of the gas is the area A of the 
cylinder times the height h: 

  

  

v = dh
dt

 =  d
dt

V
A

⎛
⎝⎜

⎞
⎠⎟

The volume of steam can be replaced using the ideal gas law, in
which the pressure P and temperature T  are constant:

v =  1
A

d
dt

nRT
P

⎛
⎝⎜

⎞
⎠⎟  = 

RT
PA

dn
dt

The combination PA is the force applied by the gas on the piston.
Assuming that the speed of the piston is constant, the piston is in
equilibrium so this force is equal to the product of atmospheric
pressure P0  and the area of the piston plus the weight mp g  of the

piston.

F = P0A + mp g
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  The number of moles n is the ratio of the mass 
mg of the gas to the molecular mass Mw: 

    
 
n =

mg

Mw

⎛
⎝⎜

⎞
⎠⎟

 

  which may both be substituted into our velocity 
equation: 

    

  

v =  RT
mp g + P0A

⎛

⎝
⎜

⎞

⎠
⎟

d
dt

mg

Mw

⎛
⎝⎜

⎞
⎠⎟

 =  RT
mp g + P0A( )Mw

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dmg

dt

 

  The change in the mass of the steam is related to the latent heat of 
vaporization by Equation 20.7: 

    

 
Q = ± Δm( )L →

dmg

dt
= d

dt
Q
Lv

⎛
⎝⎜

⎞
⎠⎟

 

    
  
v = 

RT
mp g + P0A( )Mw

d
dt

Q
Lv

⎛
⎝⎜

⎞
⎠⎟

= 
RT

mp g + P0A( )MwLv

dQ
dt

 

  Finally, the rate at which energy is entering the cylinder is the 
power, (Power): (Notice that here we are careful to distinguish 
power from pressure P which normally would use the same 
symbols.) 

    
  
v = 

RT Power( )
mp g + P0A( )MwLv

 

  Now we substitute numerical values, suppressing units: 
   

  

v =  8.314( ) 373( ) 100( )
3.00( ) 9.80( )+ 1.013× 105( ) π( ) 0.0750( )2⎡⎣ ⎤⎦ 0.0180( ) 2.26× 106( )

   = 4.19 × 10−3  m/s =  4.19 mm/s

 

 (b) Begin the same way as part (a): 

    
  
v = 

dh
dt

 = 
d
dt

V
A

⎛
⎝⎜

⎞
⎠⎟  = 

1
A

d
dt

nRT
P

⎛
⎝⎜

⎞
⎠⎟

 

ANS. FIG. P20.81 
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  In this situation, however, the number of moles n is fixed and the 
temperature T changes: 

   
  
v =  nR

PA
⎛
⎝⎜

⎞
⎠⎟

dT
dt

 =  nR
mp g + P0A( )  

  The temperature change is related to the energy input by means 
of Equation 20.4: 

   
 
Q = mcΔT →

dT
dt

=
d
dt

Q
mgc

⎛

⎝
⎜

⎞

⎠
⎟  

  which may be substituted into our velocity equation: 

   

  

v = 
nR

mp g + P0A( )
d
dt

Q
mgc

⎛

⎝
⎜

⎞

⎠
⎟  = 

mgR

mp g + P0A( )mgcMw

dQ
dt

v = 
R Power( )

mp g + P0A( )cMw

 

  Substitute numerical values, suppressing units, 
   

  

v =  8.314( ) 100( )
3.00( ) 9.80( )+ 1.013× 105( ) π( ) 0.0750( )2⎡⎣ ⎤⎦ 2 010( ) 0.018 0( )

 

   = 0.012 6 m/s  =  12.6 mm/s

 

P20.82 (a) If the energy transfer P through one spherical surface within the 
shell were different from the energy transfer through another 
sphere, the temperature would be changing at a radius between 
the layers, so the steady state would not yet be established. 

  

  

The equation dT/dr = P/4π kr2  represents the law of 
thermal conduction, incorporating the definition of 
thermal conductivity, applied to a spherical surface 
within the shell. The rate of energy transfer P must be 
the same for all radii so that each bit of material
stays at a temperature that is constant in time.

 

 (b) we separate the variables T and r in the thermal conduction 
equation and integrate the equation between points on the 
interior and exterior surfaces. 

   
  

dT =
P

4πk
dr
r20.03

0.07

∫5

40

∫  

  where T is in degrees Celsius, P is in watts, and r is in meters. 
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 (c) The integral yields 
   

  

T 5
40 = P

4π k
 

r−1

−1
⎛
⎝⎜

⎞
⎠⎟

0.03

0.07

40− 5 = P
4π 0.8( ) − 1

0.07
+ 1

0.03
⎛
⎝⎜

⎞
⎠⎟

 

     P = 18.5 W  

 (d) With P now known, we separate the variables again and integrate 
between a point on the interior surface and any point within the 
shell. 

   
  

dT =
P

4πk
dr
r20.03

r

∫5

T

∫   

 (e) Integrating, we find 

   
  
T 5

T =
P

4πk
r−1

−1
⎛
⎝⎜

⎞
⎠⎟

0.03

r

    →        T −  5 =
18.5

4π 0.8( ) −
1
r

+
1

0.0300
⎛
⎝⎜

⎞
⎠⎟

 

   

  

T  = 5 + 1.84
1

0.030 0
 − 1

r
⎛
⎝⎜

⎞
⎠⎟

Where T  is in degrees Celsius and r  is in meters

 

 (f) 
  
T  = 5 + 1.84

1
0.0300

 − 
1
r

⎛
⎝⎜

⎞
⎠⎟ = 5 + 1.84

1
0.0300

 − 
1

0.0500
⎛
⎝⎜

⎞
⎠⎟ = 29.5o C  

P20.83 
 

LρAdx
dt

= kA
ΔT
x

⎛
⎝⎜

⎞
⎠⎟

 

 

  

Lρ xdx
4.00

8.00

∫ = kΔT dt
0

Δt

∫

Lρ x2

2 4.00

8.00

= kΔTΔt

3.33 × 105  J kg( ) 917 kg m3( ) 0.080 0 m( )2 − 0.040 0 m( )2

2

⎛

⎝
⎜

⎞

⎠
⎟ =

2.00 W m ⋅ °C( ) 10.0°C( )Δt

Δt = 3.66 × 104  s = 10.2 h
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P20.84 (a) See ANS. FIG. P20.84. For a cylindrical shell of radius r, height L, 
and thickness dr, the equation for thermal conduction, 

   
 

dQ
dt

= −kA
dT
dx

     becomes     
  

dQ
dt

= −k 2π rL( ) dT
dr

 

  Under equilibrium conditions, 
 

dQ
dt

 is constant; therefore, 

   
  
dT = −

dQ
dt

1
2π kL

⎛
⎝⎜

⎞
⎠⎟

dr
r

⎛
⎝⎜

⎞
⎠⎟

     and     
  

dT
Ta

Tb∫ = −
dQ
dt

1
2π kL

⎛
⎝⎜

⎞
⎠⎟

dr
ra

b

∫  

   
  
Tb −Ta = −

dQ
dt

1
2π kL

⎛
⎝⎜

⎞
⎠⎟

ln
b
a

⎛
⎝⎜

⎞
⎠⎟

 

  But Ta > Tb, so  

  

dQ
dt

= 2π kL
Ta −Tb( )
ln b a( )

⎡

⎣
⎢

⎤

⎦
⎥  

 (b) From part (a), the rate of energy flow through the wall is 

   

  

dQ
dt

=
2π kL Ta −Tb( )

ln b a( )
dQ
dt

=
2π 4.00 × 10−5  cal s ⋅ cm ⋅ °C( ) 3 500 cm( ) 60.0°C( )

ln 256 cm 250 cm( )
dQ
dt

= 2.23 × 103  cal s = 9.32 kW

 

  This is the rate of energy loss from the plane by heat, and 
consequently is the rate at which energy must be supplied in 
order to maintain a constant temperature. 

 

ANS. FIG. P20.84(b) 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 
P20.2 0.105° C 

P20.4 16.9° C 

P20.6 0.234 kJ/kg ⋅ °C 

P20.8 87.0°C 

P20.10 
  

mAlcAl + mccw( )Tc + mhcwTh

mAlcAl + mccw + mhcw

 

P20.12 (a) 16.1°C; (b) 16.1°C; (c) It makes no difference whether the drill bit is 
dull or sharp, or how far into the block it cuts. The answers to (a) and 
(b) are the same because all of the work done by the bit on the block 
constitutes energy being transferred into the internal energy of the 
steel. 

P20.14 (a) T = 25.8°C; (b) The symbolic result from part (a) shows no 
dependence on mass. Both the change in gravitational potential energy 
and the change in internal energy of the system depend on the mass, 
so the mass cancels. 

P20.16 12.9 g steam 

P20.18 1.22 × 105 J 

P20.20 0.294 g 

P20.22 0.415 kg 

P20.24 (a) 7; (b) As the car stops, it transforms part of its kinetic energy into 
internal energy due to air resistance. As soon as the brakes rise above 
the air temperature, they transfer energy by heat into the air and 
transfer it very fast if they attain a high temperature. 

P20.26 –nR(T2 – T1) 

P20.28 (a) −12.0 MJ; (b) + 12.0 MJ 

P20.30 (a) 12.0 kJ; (b) −12.0 kJ 

P20.32 From the first law of thermodynamics, ∆Eint = Q + W = 10.0 J + 12.0 J = 
+22.0 J. The change in internal energy is a positive number, which 
would be consistent with an increase in temperature of the gas, but the 
problem statement indicates a decrease in temperature. 

P20.34 4.29 × 104 J 

P20.36 (a) −3.10 kJ; (b) 37.6 kJ 

P20.38 (a) 0.007 65 m3; (b) 305 K 
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P20.40 (a) 1 300 J; (b) 100 J; (c) −900 J; (d) −1 400 J 

P20.42 (a) −4 PiVi; (b) 4 PiVi 

P20.44 667 W 

P20.46 3.85 × 1026 W 

P20.48 364 K 

P20.50 30.3 kcal/h 

P20.52 2.22 × 10–2 W/m . °C 

P20.54 (a) Intensity is defined as power per area perpendicular to the 
direction of energy flow. The direction of sunlight is along the line 
from the Sun to an object. The perpendicular area is the projected flat 
circular area enclosed by the terminator. The object radiates infrared 
light outward in all directions. The area perpendicular to this energy 
flow is its spherical surface area; (b) 279 K, it is chilly, well below room 
temperatures we find comfortable. 

P20.56 (a) 0.964 kg or more; (b) The test samples and the inner surface of the 
insulation can be pre-warmed to 37.0° as the box is assembled. Then, 
nothing changes in temperature during the test period and the masses 
of the test samples and insulation make no difference. 

P20.58 (a) –88.5 J; (b) 722 J 

P20.60 1.79 kg 

P20.62 (a) Isolated system (momentum). The collision is a perfectly inelastic 
collision, where momentum is conserved, but kinetic energy is not. (It 
is transformed to internal energy); (b) 20.0 m/s to the right; (c) 1.18 × 
103 J; (d) No; (e) 327.3°C; (f) 3.1 g of solid lead and 16.9 g of liquid lead 

P20.64 
  

P
ρRΔT

 

P20.66 (a) First, energy must be removed from the liquid water to cool it to  
0° C. Next, energy must be removed from the water at 0° C to freeze it, 
which corresponds to a liquid-to-solid phase transition. Finally, once 
all the water has frozen, additional energy must be removed from the 
ice to cool it from 0° to −8.00°C; (b) 32.5 kJ  

P20.68 (a) 0.645 kg/h; (b) 0.068 9 

P20.70 11.1 W 

P20.72 (a) 
  
+

PiVi

2
; Put the cylinder into a refrigerator at absolute temperature 

T/2. Let the piston move freely as the gas cools; (b) +1.39PiVi; With the 
gas in a constant-temperature bath at Tf , slowly push the piston in; (c) 
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W = 0; Lock the piston in place and hold the cylinder over at hotplate 
at 3Tf . 

P20.74 Most of the morning is used in making coffee, and there is no time left 
for a morning hike. 

P20.76 (a) 15.0 mg; (b) −5.00 J; (c) 5.00 J; (d) 15.0 mg; (e) 5.00 J; (f)   ΔEint = 0;  
(g) 4.04 × 10−3 °C; (h) Q = 0;   ΔEint = 250 J; ΔEmech = −5.00 J;  (i) Q = 0; 

  ΔEint = 2.50 J  

P20.78 38.6 m3/day 

P20.80 (a) 800 J/kg ∙ °C; (b) This differs from the tabulated value by 11%, so 
the values agree within 15%. 

P20.82 (a) The equation dT/dr = P/4πkr2 represents the law of thermal 
conduction, incorporating the definition of thermal conductivity, 
applied to a spherical surface within the shell. The rate of energy 
transfer P must be the same for all radii so that each bit of material 
stays at a temperature that is constant in time; (b) See P20.70(b) for full 
proof; (c) 18.5 W; (d) See P20.70(d) for full proof;  

(e) 
  
T  = 5 + 1.84

1
0.030 0

 − 1
r

⎛
⎝⎜

⎞
⎠⎟ ,  where T is in degrees Celsius and r is in 

meters; (f) 29.5° C 

P20.84 (a) 
  

dQ
dt

= 2πkL
Ta −Tb( )

ln b / a( )
⎡

⎣
⎢

⎤

⎦
⎥ ; (b) 9.32 kW 
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21 
The Kinetic Theory of Gases 

 

CHAPTER OUTLINE 
 

21.1  Molecular Model of an Ideal Gas 

21.2  Molar Specific Heat of an Ideal Gas 

21.3  The Equipartition of Energy 

21.4  Adiabatic Processes for an Ideal Gas 

21.5  Distribution of Molecular Speeds 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ21.1 Answer (c). The molecular mass of nitrogen (N2, 28 u) is smaller than 
the molecular mass of oxygen (O2, 32 u), and the rms speed of a gas is 
(3RT/M)1/2. Since the rms speeds are the same, the temperature of 
nitrogen is smaller than the temperature of oxygen. The average 
kinetic energy is proportional to the molecular mass and the square 

of the rms speed (
  
K =

1
2

mvrms
2 ), so the average kinetic energy of 

nitrogen is smaller.  

OQ21.2 Answer (d). The rms speed of molecules in the gas is   vrms = 3RT M .  
Thus, the ratio of the final speed to the original speed would be 

   

  

vrms( ) f

vrms( )0

=
3RTf M

3RT0 M
=

Tf

T0

=
600 K
200 K

= 3
 

OQ21.3 Answer (b). The gases are the same so they have the same molecular 
mass, M. If the two samples have the same density, then their ratios 
of number of moles to volume, n/V, are the same because their  
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densities, (nM)/V, are the same. The pressures are the same; thus, 
their temperatures are the same:  

   
  
PV = nRT → p =

n
V

RT =  constant → T =  constant  

 Therefore the rms speed of their molecules, (3RT/M)1/2, is the same. 

OQ21.4 (i) Answer (b). The volume of the balloon will decrease because 
the gas cools.  

 (ii) Answer (c). The pressure inside the balloon is nearly equal to 
the constant exterior atmospheric pressure. Snap the mouth of 
the balloon over an absolute pressure gauge to demonstrate 
this fact. Then from PV = nRT, volume must decrease in 
proportion to the absolute temperature. Call the process 
isobaric contraction. 

OQ21.5  Answer (d). At 200 K, 
  

1
2

m0vrms0
2 =

3
2

kBT0 . At the higher temperature,  

   

  

1
2

m0 2vrms0( )2 = 3
2

kBT
  

 Then T = 4T0 = 4(200 K) = 800 K. 

OQ21.6 Answer (c) > (a) > (b) > (d). The average vector velocity is zero in a 
sample macroscopically at rest. As adjacent equations in the text 
note, the asymmetric distribution of molecular speeds makes the 
average speed greater than the most probable speed, and the rms 
speed greater still. The most probable speed is (2RT/M)1/2, the 
average speed is (8RT/πM)1/2 ≅ (2.55RT/M)1/2, and the rms speed is 
(3RT/M)1/2. 

OQ21.7 (i) Statements (a) and (e) are correct statements that describe the 
temperature increase of a gas. 

 (ii) Statement (f) is a correct statement but does not apply to the 
situation. Statement (b) is true if the molecules have any size at 
all, but molecular collisions with other molecules have nothing 
to do with the temperature increase. 

 (iii) Statements (c) and (d) are incorrect. The molecular collisions are 
perfectly elastic. Temperature is determined by how fast 
molecules are moving through space, not by anything going on 
inside a molecule. 

OQ21.8 (i) Answer (b). Average molecular kinetic energy, 3kT/2, increases 
by a factor of 3.  
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 (ii) Answer (c). The rms speed, (3RT/M)1/2, increases by a factor of 

 3.  

 (iii) Answer (c). Average momentum change increases by  3:   

  Δpavg = −2m0vavg.   

 (iv) Answer (c). Rate of collisions increases by a factor of  3:   

  Δtavg = 2d/ vavg.  

 (v) Answer (b). Pressure increases by a factor of 3. See Equation 
21.15: 

    

  
P = 2

3
Ni

V
⎛
⎝⎜

⎞
⎠⎟

1
2

m0 v2⎛
⎝⎜

⎞
⎠⎟ = 2

3
Ni

V
⎛
⎝⎜

⎞
⎠⎟ K( )

 

OQ21.9 Answer (c). The kinetic theory of gases assumes that the molecules 
do not interact with each other. 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ21.1 As a parcel of air is pushed upward, it moves into a region of lower 
pressure, so it expands and does work on its surroundings. Its fund 
of internal energy drops, and so does its temperature. As mentioned 
in the question, the low thermal conductivity of air means that very 
little energy will be conducted by heat into the now-cool parcel from 
the denser but warmer air below it.  

CQ21.2 A diatomic gas has more degrees of freedom—those of molecular 
vibration and rotation—than a monatomic gas. The energy content 
per mole is proportional to the number of degrees of freedom. 

CQ21.3 Alcohol evaporates rapidly, so that high-speed molecules leave the 
liquid, reducing the average kinetic energy of the remaining 
molecules of the liquid and therefore reducing the temperature of 
the liquid. Then, because the alcohol is cool, energy transfers from 
the skin, reducing its temperature. 

CQ21.4 As the balloon rises into the air, the air cannot be uniform in pressure 
because the lower layers support the weight of all the air above 
them. The rubber in a typical balloon is easy to stretch and stretches 
or contracts until interior and exterior pressures are nearly equal. So 
as the balloon rises it expands. This is an adiabatic expansion (see 
Section 21.4), with P decreasing as V increases (PVγ = constant). If the 
rubber wall is very strong it will eventually contain the helium at 
higher pressure than the air outside but at the same density, so that 
the balloon will stop rising. More likely, the rubber will stretch and 
break, releasing the helium to keep rising and “boil out” of the 
Earth’s atmosphere. 



1096     The Kinetic Theory of Gases 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

CQ21.5 The dry air is more dense. Since the air and the water vapor are at 
the same temperature, the gases have the same average molecular 
kinetic energy. Imagine a controlled experiment in which equal-
volume containers, one with humid air and one with dry air, are at 
the same pressure. The number of molecules must be the same for 
both containers (PV = NkT). The water molecule has a smaller 
molecular mass (18.0 u) than any of the gases that make up the air, 
so the humid air must have the smaller mass per unit volume. 

CQ21.6 The helium must have the higher rms speed. According to Equation 
21.22 for the rms speed, (3RT/M)1/2, for the same temperature, the 
gas with the smaller mass per atom must have the higher average 
speed squared and thus the higher rms speed. 

CQ21.7 The molecules of all different kinds collide with the walls of the 
container, so molecules of all different kinds exert partial pressures 
that contribute to the total pressure. The molecules can be so small 
that they collide with one another relatively rarely and each kind 
exerts partial pressure as if the other kinds of molecules were absent. 
If the molecules collide with one another often, the collisions exactly 
conserve momentum and so do not affect the net force on the walls.  

 The partial pressure Pi of one of the gases can be expressed with 
Equation 21.15: 

   

  
Pi = 2

3
Ni

V
⎛
⎝⎜

⎞
⎠⎟

1
2

m0 v2⎛
⎝⎜

⎞
⎠⎟ = 2

3
Ni

V
⎛
⎝⎜

⎞
⎠⎟ K( )

 

 where Ni is the number of molecules of the ith gas and  K  is the 
average kinetic energy of the molecules. Let us add up these 
pressures for all the gases in the container: 

   

  
P = Pi

i
∑ = 2

3
Ni

V
⎛
⎝⎜

⎞
⎠⎟ K( )

i
∑  = 2

3
K
V

Ni
i
∑ = 2

3
N
V

⎛
⎝⎜

⎞
⎠⎟ K( )

 

 where N is the total number of molecules of all types and we have 
used the fact that the average kinetic energies of all types of 
molecules are the same because all the gases have the same 
temperature. The final expression for the pressure is the same as that 
of a single gas with N molecules in the same volume V and at the 
given temperature. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 21.1 Molecular Model of an Ideal Gas	  

P21.1 (a) The volume is 
  
V =

4
3
πr3 =

4
3
π 0.150 m( )3 = 1.41× 10−2  m3.  The 

quantity of gas can be obtained from PV = nRT: 
   

  
n = PV

RT
=

1.013 × 105  N/m2( ) 1.41× 10−2  m3( )
8.314 N ⋅m/mol ⋅K( ) 293 K( ) = 0.588 mol

 

 The number of molecules is 
   

  N = nNA = 0.588 mol( ) 6.02 × 1023  molecules/mol( )  

   
  
N = 3.54× 1023 helium atoms

  

 (b) The kinetic energy is given by 
  
K =

1
2

m0 v2 =
3
2

kBT:  

   

  
K = 3

2
1.38× 10−23  J/K( ) 293 K( ) = 6.07 × 10−21  J

  

 (c) An atom of He has mass 
   

  

m0 =
M
NA

= 4.002 6 g/mol
6.02 × 1023  molecules/mol

= 6.65× 10−24  g = 6.65× 10−27  kg

 

  So the root-mean-square speed is given by 
   

  
vrms = v2 = 2K

m0

= 2 × 6.07 × 10−27  J
6.65× 10−27  kg

= 1.35 km/s
 

P21.2 (a) Both kinds of molecules have the same average kinetic energy. It 
is 

   
  
K =

3
2

kBT =
3
2

1.38 × 10−23  J K( ) 423 K( ) = 8.76 × 10−21  J  

 (b) The root-mean square velocity can be calculated from the kinetic 
energy:  

   
  
vrms = v2 =

2K
m0
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  so    
  
vrms =

1.75 × 10−20  J
m0

 [1] 

  For helium,  

   
  
m0 =

4.00 g mol
6.02 × 1023  molecules mol

= 6.64 × 10−24  g molecule  

     m0 = 6.64 × 10−27  kg molecule  

  Similarly for argon, 

  

m0 =
39.9 g mol

6.02 × 1023  molecules mol

= 6.63 × 10−23  g molecule

 

     m0 = 6.63 × 10−26  kg molecule  

  Substituting into [1] above, 

  we find for helium,  
  

vrms = 1.62 km s  

  and for argon, 
  

vrms = 514 m s  

P21.3 (a) From Newton’s second law, the average force is given by  

   

  

F = Nm
Δv
Δt

= 500 5.00 × 10−3  kg( )

               ×
8.00sin 45.0° − −8.00sin 45.0°( )[ ]  m s

30.0 s
= 0.943 N

 

 (b) We find the pressure from 

   
  
P =

F
A

=
0.943 N
0.600 m2 = 1.57 N m2 = 1.57 Pa  

P21.4 The equation of state for an ideal gas can be used with the given 
information to find the number of molecules in a specific volume. 

  
 
PV = N

NA

⎛
⎝⎜

⎞
⎠⎟

RT  means 
  
N = PVNA

RT
,   

 so that, suppressing units, 
  

  

N =
1.00× 10−10( ) 133( ) 1.00( ) 6.02 × 1023( )

(8.314) 300( )
= 3.21× 1012 molecules
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P21.5 The gas temperature must be that implied by 
  

1
2

m0 v2 =
3
2

kBT  for a 

monatomic gas like helium. 
  

  

T = 2
3

1
2

m0 v2

kB

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= 2

3
3.60 × 10–22 J

1.38 × 10–23 J/K
⎛
⎝⎜

⎞
⎠⎟
= 17.4 K

 

 Now PV = nRT gives 
  

  
n = PV

RT =
1.20 × 105  N m2( ) 4.00 × 10–3 m3( )

(8.314 J/mol ⋅ K)(17.4 K) = 3.32 mol
  

P21.6 
  
P =

2
3

N
V

K  from the kinetic-theory account for pressure. 

 

  

N =
3
2

PV
K

n =
N

NA

=
3
2

PV
KNA

 

P21.7 Use the equation describing the kinetic-theory account for pressure: 

  
P =

2N
3V

m0 v2

2

⎛

⎝
⎜

⎞

⎠
⎟ . Then 

   

  

K =
m0 v2

2
=

3PV
2N

,  where N = nNA

K =
3PV

2nNA

=
3 8.00 atm( ) 1.013 × 105  Pa atm( ) 5.00 × 10−3  m3( )

2 2 mol( ) 6.02 × 1023  molecules mol( )
K = 5.05 × 10−21  J

 

P21.8 The molar mass of diatomic oxygen is 32.0 g. The rms speed of oxygen 
molecules is 

  
  
vrms =

3RT
M

     

 and 

  

  

prms = mvrms =
M
NA

3RT
M

=
1

NA

3RTM  

=
1

6.02 × 1023 3 8.314 J mol ⋅K( ) 350 K( ) 32.0 × 10−3  kg( )
prms = 2.78 × 10−23  kg ⋅m/s
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P21.9 We use 1 u = 1.66 × 10−24 g.  

 (a) For He, 
  
m0 = 4.00 u

1.66× 10−24  g
1 u

⎛
⎝⎜

⎞
⎠⎟
=  6.64× 10−27  kg  

 (b) For Fe, 
  
m0 = 55.9 u

1.66× 10−24  g
1 u

⎛
⎝⎜

⎞
⎠⎟
= 9.28× 10−26  kg  

 (c) For Pb, 
  
m0 = 207 u

1.66× 10−24  g
1 u

⎛
⎝⎜

⎞
⎠⎟
= 3.44× 10−25  kg  

P21.10 The rms speed of molecules in a gas of molecular weight M and 
absolute temperature T is   vrms = 3RT M .  Thus, if vrms = 625 m/s for 
molecules in oxygen (O2), for which M = 32.0 g/mol = 
32.0 × 10−3 kg/mol, the temperature of the gas is 

  
  
T =

Mvrms
2

3R
=

32.0 × 10−3  kg mol( ) 625 m s( )2

3 8.31 J mol ⋅K( ) = 501 K  

*P21.11 (a) From the ideal gas law, 

   
  
PV = nRT = Nm0v2

3
 

  The total translational kinetic energy is 
  
Nm0v

2

2
= Etrans :  

   

  

Etrans = 3
2

PV = 3
2

3.00 × 1.013 × 105  Pa( ) 5.00 × 10−3  m3( )
= 2.28 kJ

 

 (b) 
  

m0v
2

2
= 3kBT

2
= 3RT

2NA

= 3 8.314 J/mol ⋅K( ) 300 K( )
2 6.02 × 1023( ) = 6.21× 10−21  J  

P21.12 (a) The volume occupied by this gas is 

    
  V = 7.00 L 103  cm3 1 L( ) 1 m3 106  cm3( ) = 7.00 × 10−3  m3  

  Then, the ideal gas law gives 

    
  
T =

PV
nR

=
1.60 × 106  Pa( ) 7.00 × 10−3  m3( )

3.50 mol( ) 8.31 J mol ⋅K( ) = 385 K  

 (b) The average kinetic energy per molecule in this gas is 

    
  
KEmolecule =

3
2

kBT =
3
2

1.38 × 10−23  J K( ) 385 K( ) = 7.97 × 10−21  J  
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 (c) You would need to know the mass of the gas molecule to find its 
average speed, which in turn requires knowledge of 

 
the molecular mass of the gas .  

P21.13 To find the pressure exerted by the nitrogen molecules, we first 
calculated the average force exerted by the molecules: 

  
  
F = Nm0

Δv
Δt

=
5.00 × 1023( ) 4.65 × 10−26  kg( )2 300 m s( )⎡⎣ ⎤⎦

1.00 s
= 14.0 N  

 the pressure is then 

  
  
P =

F
A

=
14.0 N

8.00 × 10−4  m2 = 17.4 kPa  

 
 

	  

Section 21.2 Molar Specific Heat of an Ideal Gas 
P21.14 n = 1.00 mol, Ti = 300 K 

 (a) Since V = constant,   W = 0 .  

 (b) 
  
ΔEint = Q + W = 209 J + 0 = 209 J  

 (c) 
  
ΔEint = nCVΔT = n

3
2

R⎛
⎝⎜

⎞
⎠⎟ ΔT  

  so   
  
ΔT =

2ΔEint

3nR
=

2 209 J( )
3 1.00 mol( ) 8.314 J mol ⋅K( ) = 16.8 K  

   
  
T = Ti + ΔT = 300 K + 16.8 K = 317 K  

P21.15   Q = nCPΔT( )isobaric
+ nCVΔT( )isovolumetric  

 In the isobaric process, V doubles so T must double, to 2Ti. 

 In the isovolumetric process, P triples so T changes from 2Ti to 6Ti. 
   

  

Q = n
7
2

R⎛
⎝⎜

⎞
⎠⎟ 2Ti −Ti( ) + n

5
2

R⎛
⎝⎜

⎞
⎠⎟ 6Ti − 2Ti( ) = 13.5nRTi

= 13.5PV
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P21.16 (a) Consider warming it at constant pressure. Oxygen and nitrogen 

are diatomic, so 
  
CP =

7R
2

. Then, 

    

  

Q = nCPΔT =
7
2

nRΔT =
7
2

PV
T

⎛
⎝⎜

⎞
⎠⎟ ΔT

Q =
7
2

1.013 × 105  N m2( ) 100 m3( )
300 K

1.00 K( ) = 118 kJ

 

 (b) We use the definition of gravitational potential energy, 
    

 
Ug = mgy

 

  from which, 
    

  
m =

Ug

gy
= 1.18× 105  J

9.80 m s2( ) 2.00 m( )
= 6.03× 103  kg

 

P21.17 We use the tabulated values for CP and CV: 

  (a) Since this is a constant-pressure process,   Q = nCPΔT.  

   The temperature rises by  ΔT  = 420 K – 300 K = 120 K: 
    

  

Q = nCPΔT = 1.00 mol( ) 28.8 J mol ⋅K( ) 420 K − 300 K( )
= 3.46 kJ

 

  (b) For any gas   ΔEint = nCVΔT ,  so 

    
  
ΔEint = nCVΔT = 1.00 mol( ) 20.4 J mol ⋅K( ) 120 K( ) = 2.45 kJ  

  (c) The first law says   ΔEint = Q + W ,  so 

    
  
W = −Q + ΔEint = −3.46 kJ + 2.45 kJ = −1.01 kJ  

P21.18 (a) Molar specific heat is 
  
CV =

5
2

R.  

  Specific heat at constant volume per unit mass is given by  

   

  

cV =
CV

M
=

5
2

R
1
M

⎛
⎝⎜

⎞
⎠⎟

   =
5
2

8.314 J mol ⋅K( ) 1.00 mol
0.028 9 kg

⎛
⎝⎜

⎞
⎠⎟

   = 719 J kg ⋅K = 0.719 kJ kg ⋅K
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 (b) 
 
m = Mn = M

PV
RT

⎛
⎝⎜

⎞
⎠⎟

 

  

  
m = 0.028 9 kg mol( ) 200 × 103  Pa( ) 0.350 m3( )

8.314 J mol ⋅K( ) 300 K( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 0.811 kg
 

 (c) We consider a constant-volume process where no work is done. 
   

  

Q = mcVΔT

= 0.811 kg( ) 0.719 kJ kg ⋅K( ) 700 K − 300 K( )
= 233 kJ

 

 (d) We now consider a constant-pressure process where the internal 
energy of the gas is increased and work is done. 

   

  

Q = nCPΔT =
m
M

CV + R( )ΔT =
m
M

5
2

R + R⎛
⎝⎜

⎞
⎠⎟ ΔT =

m
M

7
2

R⎛
⎝⎜

⎞
⎠⎟ ΔT

   = m
7
5

⎛
⎝⎜

⎞
⎠⎟

5
2

R

M

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
ΔT = m

7
5

⎛
⎝⎜

⎞
⎠⎟

CV

M
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
ΔT

 

  

  
→ Q = 0.811 kg( ) 7

5
0.719 kJ kg ⋅K( )⎡

⎣⎢
⎤
⎦⎥

400 K( ) = 327 kJ
 

*P21.19 
  
ΔEint = 3

2
nRΔT = 3

2
3.00 mol( ) 8.314 J mol ⋅K( ) 2.00 K( ) = 74.8 J  

P21.20 Consider 800 cm3 of tea (flavored water) at 90.0°C mixing with 200 cm3 
of diatomic ideal gas at 20.0°C: 

     Qcold = −Qhot  

 or  
  
maircP , air Tf −Ti ,  air( ) = −mwcw ΔT( )w  

   
  
ΔT( )w =

−maircP , air Tf −Ti ,  air( )
mwcw

=
− ρV( )air cP , air 90.0°C − 20.0°C( )

ρwVw( )cw

 

 where we have anticipated that the final temperature of the mixture 
will be close to 90.0°C. 

 The molar specific heat of air is   
  
CP ,  air =

7
2

R.  
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 So the specific heat per gram is  
   

  
cP , air =

7
2

R
M

⎛
⎝⎜

⎞
⎠⎟ =

7
2

8.314 J mol ⋅K( ) 1.00 mol
28.9 g

⎛
⎝⎜

⎞
⎠⎟

= 1.01 J g ⋅ °C
  

 and 

  

  
ΔT( )w = −

1.20 × 10−3  g cm3( ) 200 cm3( )⎡⎣ ⎤⎦ 1.01 J g ⋅ °C( ) 70.0°C( )
1.00 g cm3( ) 800 cm3( )⎡⎣ ⎤⎦ 4.186 J g ⋅ °C( )

 

 or    ΔT( )w ≈ −5.05 × 10−3°C  

 The change of temperature for the water is 

 
between 10−3 °C and 10−2 °C .  

*P21.21 (a) The air is far from liquefaction so it behaves as an ideal gas. From 

PV = nRT we have 
  
PV = m

M
RT ,  or 

  
PM = m

V
RT = ρRT.  For the 

samples of air in the balloon at 10.0°C (cold) and at the elevated 
temperature (hot) we have  PM = ρcRTc  and   PM = ρhRTh.  Then 

 ρhTh = ρcTc  and 
  
ρh =

ρcTc

Th

.  For equilibrium of the balloon on the 

point of rising, 

   

  

Fy∑ = may : + B − Fg  hot air − Fg  cargo = 0

+ρcVg − ρhVg − mg = 0

+ρcV − ρcTc

Th

V − m = 0

1.25 kg m3( ) 400 m3( ) − 1.25 kg m3( ) 283 K
Th

⎛
⎝⎜

⎞
⎠⎟

400 m3( )
                                                                                  − 200 kg = 0

300 kg = 500 kg( ) 283 K
Th

⎛
⎝⎜

⎞
⎠⎟

Th = 500
300( ) 283 K( ) = 472 K
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  The quantity of air that must be warmed is given by   PV = nhRTh ,  

or 
  
nh =

PV
RTh

.  The heat input required is 

   

  

Q = nCpΔT

= − PV
RTh

7
2

R Th −Tc( )

= 7
2( ) 1.013 × 105  N/m2( ) 400 m3( ) 472 K − 283 K( )

 472 K

= 5.66 × 107  J

 

 (b) Q = mH, so 
  
m = Q

H
= 5.66 × 107  J

5.03 × 107  J kg
= 1.12 kg  

 
 

	  

Section 21.3 The Equipartition of Energy 

P21.22 (a) 
  
Eint = Nf

kBT
2

⎛
⎝⎜

⎞
⎠⎟ = f

nRT
2

⎛
⎝⎜

⎞
⎠⎟

 

 (b) 
  
CV =

1
n

dEint

dT
⎛
⎝⎜

⎞
⎠⎟ =

1
2

fR  

 (c) 
  
CP = CV + R =

1
2

f + 2( )R  

 (d) 
  
γ =

CP

CV

=
f + 2

f
 

P21.23 The rotational kinetic energy of the molecule  

is given by 
  
Krot =

1
2

Iω 2.  We determine the  

moment of inertia from   I = 2m0r
2 ,  with  

 
  m0 = 35.0× 1.67 × 10−27  kg  and  r = 10−10  m:   

   

  

I = 2m0r
2 = 2 35.0× 1.67 × 10−27  kg( ) 10−10  m( )2

= 1.17 × 10−45  kg ⋅m2

         
ANS. FIG. P21.23 
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 Then, 

   

  

Krot = 1
2

Iω 2 = 1
2

1.17 × 10−45  kg ⋅m2( ) 2.00× 1012  s−1( )2

= 2.34× 10−21  J
 

P21.24 We must have the difference of molar specific heats given by Equation 
21.31: CP − CV = R. The value of γ  tells us that CP = 1.75CV, so 

  
  
1.75CV  − CV  = R     →     CV  = 

R
0.75

 = 
4
3

R  

 

  

The maximum possible value of γ =1+
R

CV

= 1.67 occurs 

for the lowest possible value for CV = 3
2

R. Therefore the

claim of  γ = 1.75 for the newly discovered gas cannot be 
true.

 

P21.25 The sample’s total heat capacity at constant volume is nCv. An ideal 
gas of diatomic molecules has three degrees of freedom for translation 
in the x, y, and z directions. If we take the y axis along the axis of a 
molecule, then outside forces cannot excite rotation about this axis, 
since they have no lever arms. Collisions will set the molecule spinning 
only about the x and z axes. 

 (a) If the molecules do not vibrate, they have five degrees of freedom. 

Random collisions put equal amounts of energy 
  

1
2

kBT  into all 

five kinds of motion. The average energy of one molecule is 

  

5
2

kBT.  The internal energy of the two-mole sample is 

   
  
N

5
2

kBT
⎛
⎝⎜

⎞
⎠⎟ = nNA

5
2

kBT⎛
⎝⎜

⎞
⎠⎟ = n

5
2

R⎛
⎝⎜

⎞
⎠⎟T = nCVT  

  The molar heat capacity is 
  
CV =

5
2

R,  and the sample’s heat 

capacity is 
   

  

nCV = n
5
2

R⎛
⎝⎜

⎞
⎠⎟ = 2.00 mol( ) 5

2
8.314 J mol ⋅K( )⎡

⎣⎢
⎤
⎦⎥

nCV = 41.6 J K
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 (b) For the heat capacity at constant pressure, we have 

   

  

nCP = n CV + R( ) = n
5
2

R + R⎛
⎝⎜

⎞
⎠⎟ =

7
2

nR

= 2.00 mol( ) 7
2

8.314 J mol ⋅K( )⎡
⎣⎢

⎤
⎦⎥

nCP = 58.2 J K

 

 (c) Vibration adds two more degrees of freedom for two more terms 
in the molecular energy, for kinetic and for elastic potential 
energy. We have 

   
  
nCV = n

7
2

R⎛
⎝⎜

⎞
⎠⎟ = 58.2 J K  

  and 
  
nCP = n

9
2

R⎛
⎝⎜

⎞
⎠⎟ = 74.8 J K .  

 
 

	  

Section 21.4 Adiabatic Processes for an Ideal Gas 

P21.26 (a) In an adiabatic process   PiVi
γ = Pf Vf

γ :  

   

  
Pf = Pi

Vi

Vf

⎛

⎝
⎜

⎞

⎠
⎟

γ

= 5.00 atm( ) 12.0
30.0

⎛
⎝⎜

⎞
⎠⎟

1.40

= 1.39 atm

 

 (b) The initial temperature is  

   
  
Ti =

PiVi

nR
=

5.00 1.013 × 105  Pa( ) 12.0 × 10−3  m3( )
2.00 mol( ) 8.314 J mol ⋅K( ) = 366 K  

  and similarly the final temperature is  

   
  
Tf =

Pf Vf

nR
=

1.39 1.013 × 105  Pa( ) 30.0 × 10−3  m3( )
2.00 mol( ) 8.314 J mol ⋅K( ) = 253 K  

 (c) The process is adiabatic, so by definition, 
  

Q = 0 .  

 (d) For any process,   ΔEint = nCVΔT ,  

  and for this diatomic ideal gas, 
  
CV =

R
γ − 1

=
5
2

R  
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  Thus, 
    

  

ΔEint = nCVΔT

= 2.00 mol( ) 5
2

8.314 J mol ⋅K( )⎡
⎣⎢

⎤
⎦⎥

253 K − 366 K( )

= −4.66 kJ

 

 (e) 
  
W = ΔEint −Q = −4.66 kJ − 0 = −4.66 kJ  

P21.27 (a)  PiVi
γ = Pf Vf

γ     so    
  

Vf

Vi

=
Pi

Pf

⎛

⎝
⎜

⎞

⎠
⎟

1 γ

=
1.00
20.0

⎛
⎝⎜

⎞
⎠⎟

5 7

= 0.118 .  

 (b) 
  

Tf

Ti

=
PfVf

PiVi

=
Pf

Pi

⎛
⎝⎜

⎞
⎠⎟

Vf

Vi

⎛
⎝⎜

⎞
⎠⎟

= 20.0( ) 0.118( )    →    
Tf

Ti

= 2.35       

 (c) Since the process is adiabatic, 
  

Q = 0 . 

 (d) Since  
  
γ = 1.40 =

CP

CV

=
R + CV

CV

, 
  
CV =

5
2

R    

  and   ΔT = 2.35Ti −Ti = 1.35Ti , then 
   

  

ΔEint = nCVΔT

= 0.016 0 mol( ) 5
2

⎛
⎝⎜

⎞
⎠⎟ 8.314 J mol ⋅K( ) 1.35 300 K( )[ ]

= 135 J

 

 (e) 
  
W = −Q + ΔEint = 0 + 135 J = +135 J  

P21.28 (a) The work done on the gas is 

   
 
Wab = − PdV

Va

Vb

∫  

  For the isothermal process, 

   

  

Wa ′b = −nRTa
1
V

⎛
⎝⎜

⎞
⎠⎟ dV

Va

V ′b

∫

Wa ′b = −nRTa ln
V ′b

Va

⎛
⎝⎜

⎞
⎠⎟
= nRT ln

Va

V ′b

⎛
⎝⎜

⎞
⎠⎟

 

  Thus,  
   

  
Wa ′b = 5.00 mol( ) 8.314 J mol ⋅K( ) 293 K( )ln 10.0( ) = 28.0 kJ
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ANS. FIG. P21.28 
 

 (b) For the adiabatic process, we must first find the final temperature, 
Tb. Since air consists primarily of diatomic molecules, we shall use  

    γ air = 1.40      and    
  
CV , air =

5R
2

=
5 8.314( )

2
= 20.8 J mol ⋅K  

  Then, for the adiabatic process, 
   

  
Tb = Ta

Va

Vb

⎛
⎝⎜

⎞
⎠⎟

γ −1

= 293 K( ) 10.0( )0.400 = 736 K
 

  Thus, the work done on the gas during the adiabatic process is 

     Wab −Q + ΔEint( )ab
= −0 + nCVΔT( )ab

= nCV Tb −Ta( )  

  or 
  
Wab = 5.00 mol( ) 20.8 J mol ⋅K( ) 736 K − 293 K( ) = 46.0 kJ  

 (c) For the isothermal process, we have   P ′b V ′b = PaVa .  

  Thus, 
  
P ′b = Pa

Va

V ′b

⎛
⎝⎜

⎞
⎠⎟

= 1.00 atm( ) 10.0( ) = 10.0 atm .  

 (d) For the adiabatic process, we have   PbVb
γ = PaVa

γ .  

  Thus, 
  
Pb = Pa

Va

Vb

⎛
⎝⎜

⎞
⎠⎟

γ

= 1.00 atm( ) 10.0( )1.40 = 25.1 atm .  

P21.29 Combining PVγ = constant with the ideal gas law gives one of the 
textbook equations describing adiabatic processes,   T1V1

γ −1 = T2V2
γ −1.  

   

  
T2 = T1

V1

V2

⎛
⎝⎜

⎞
⎠⎟

γ −1

= 300 K( ) 1
2

⎛
⎝⎜

⎞
⎠⎟

(1.40−1)

= 227 K
 



1110     The Kinetic Theory of Gases 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

P21.30 Use Equation 21.37 for an adiabatic process to find the temperature of 
the compressed fuel-air mixture at the end of the compression stroke, 
before ignition: 

     TiVi
γ −1  = TfVf

γ −1       

 which gives 

   
  
Tf  = Ti  

Vi

Vf

⎛

⎝
⎜

⎞

⎠
⎟

γ −1

 =  323 K( ) 14.5( )1.40−1  = 941 K  

 

 

This is equivalent to 668°C, which is higher than the melting 
point of aluminum which is 660°C. Also, the temperature will 
rise much more when ignition occurs. The engine will melt when 
put into operation!Therefore, the claim of improved efficiency 
using an engine fabricated out of aluminum cannot be true.

  

P21.31 We suppose the air plus burnt gasoline behaves like a diatomic ideal 
gas. We find its final absolute pressure: 

   

  

21.0 atm( ) 50.0 cm3( )7 5
= Pf 400 cm3( )7 5

Pf = 21.0 atm( ) 1
8

⎛
⎝⎜

⎞
⎠⎟

7 5

= 1.14 atm

 

 Now  Q = 0    and   
  
W = ΔEint = nCV Tf −Ti( ) ,  

 so   
  
W =

5
2

nRTf −
5
2

nRTi =
5
2

Pf Vf − PiVi( )  

   

  

W =
5
2

[ 1.14 atm( )(400 cm3) − 21.0 atm( )(50.0 cm3)]

= −1 485 atm ⋅ cm3( ) 1.013 × 105  N m2

1 atm
⎛
⎝⎜

⎞
⎠⎟

10−6  m3 cm3( ) 
= −150 J

 

 

ANS. FIG. P21.31 
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 The output work is −W = +150 J 

 The time for this stroke is 
 

1
4

1 min
2 500

⎛
⎝⎜

⎞
⎠⎟

60 s
1 min

⎛
⎝⎜

⎞
⎠⎟ = 6.00 × 10−3  s  

   
  
P =

−W
Δt

=
150 J

6.00 × 10−3  s
=  25.0 kW  

P21.32 (a) 
  
Vi = π 2.50 × 10−2  m

2
⎛
⎝⎜

⎞
⎠⎟

2

0.500 m( ) = 2.45 × 10−4  m3  

 (b) The quantity of air we find from PiVi = nRTi: 
   

  

n = PiVi

RTi

=
1.013× 105  Pa( ) 2.45× 10−4  m3( )

8.314 J mol ⋅K( ) 300 K( )

n = 9.97 × 10−3  mol

 

 (c) Absolute pressure = gauge pressure + external pressure: 

   
  Pf = 101.3 kPa + 800 kPa = 901.3 kPa = 9.01× 105  Pa  

 (d) Adiabatic compression:  PiVi
γ = Pf Vf

γ  

   

  

Vf = Vi
Pi

Pf

⎛

⎝
⎜

⎞

⎠
⎟

1 γ

= 2.45 × 10−4  m3( ) 101.3
901.3

⎛
⎝⎜

⎞
⎠⎟

5 7

Vf = 5.15 × 10−5  m3

 

 (e) PfVf = nRTf 
  

  
Tf = Ti

Pf Vf

PiVi

= Ti

Pf

Pi

Pi

Pf

⎛

⎝
⎜

⎞

⎠
⎟

1 γ

= Ti
Pi

Pf

⎛

⎝
⎜

⎞

⎠
⎟

1 γ −1( )  

  

  
Tf = 300 K

101.3
901.3

⎛
⎝⎜

⎞
⎠⎟

5 7−1( )
= 560 K

 

 (f) The work done on the gas in compressing it is   W = ΔEint = nCVΔT:  
   

  

ΔEint = W = nCVΔT

= 9.97 × 10−3  mol( ) 5
2

8.314 J mol ⋅K( ) 560 K − 300 K( )

ΔEint = 53.9 J
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 (g) The pump wall has outer diameter 25.0 mm + 2.00 mm + 2.00 mm 
= 29.0 mm, and volume 

   

 

π 14.5 × 10−3  m( )2
− π 12.5 × 10−3  m( )2⎡

⎣
⎤
⎦

                          × 4.00 × 10−2  m( ) = 6.79 × 10−6  m3

 

 (h) The mass of the pump is given by 

   
  
ρV = 7.86 × 103  kg m3( ) 6.79 × 10−6  m3( ) = 53.3 g  

 (i) Now imagine this energy being shared with the inner wall as the 
gas is held at constant volume. The overall warming process is 
described by  

   

  
ΔEint  = W  = nCVΔT  + mcΔT     →    ΔT  = 

W
nCV  + mc

 

  Suppressing the units of R, 
  

  

  ΔT  =  53.9 J

9.97  × 10−3  mol( ) 5
2

8.314( ) +  0.053 3 kg( ) 448 J/kg ⋅°C( )
         = 2.24°C =  2.24 K

 

P21.33 (a) See ANS. FIG. P21.33(a) on the 
right. 

 (b)  PBVB
γ = PCVC

γ  

  

  

3PiVi
γ = PiVC

γ

VC = 31 γ( )Vi = 35 7( )Vi = 2.19Vi

VC = 2.19 4.00 L( ) = 8.77 L

 

 (c)   PBVB = nRTB = 3PiVi = 3nRTi  

  
  
TB = 3Ti = 3 300 K( ) = 900 K  

 (d) After one whole cycle,   TA = Ti = 300 K .  

 (e) In AB, 
  
QAB = nCVΔV = n

5
2

R⎛
⎝⎜

⎞
⎠⎟ 3Ti −Ti( ) = 5.00( )nRTi  

   QBC = 0 as this process is adiabatic. 

     PCVC = nRTC = Pi 2.19Vi( ) = 2.19( )nRTi  

ANS. FIG. P21.33(a) 
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  so TC = 2.19Ti , and  

   
  
QCA = nCPΔT = n

7
2

R⎛
⎝⎜

⎞
⎠⎟ Ti − 2.19Ti( ) = −4.17( )nRTi  

  For the whole cycle, 
   

  

QABCA = QAB + QBC + QCA = 5.00 − 4.17( )nRTi = 0.829( )nRTi

ΔEint( )ABCA
= 0 = QABCA + WABCA

 

   

  

WABCA = −QABCA = − 0.829( )nRTi = − 0.829( )PiVi

WABCA = − 0.829( ) 1.013 × 105  Pa( ) 4.00 × 10−3  m3( ) = −336 J

 

P21.34 (a) Refer to ANS. FIG. P21.34(a).  

 (b)  PBVB
γ = PCVC

γ  

  

  

3PiVi
γ = PiVC

γ

VC = 31 γ( )Vi

 

 (c) PBVB = nRTB = 3PiVi = 3nRTi 

  
  
TB = 3Ti  

 (d) After one whole cycle, 

  
TA = Ti .  

 (e) For AB,  
   

  
QAB = nCvΔT = n

R
γ − 1

ΔT = n
R

γ − 1
3Ti −Ti( ) =

2nRTi

γ − 1
=

2PiVi

γ − 1

 

  
  QBC = 0 as this process is abiabatic.  

  
  PCVC = nRTC = Pi 31 γ( )Vi = 31 γ( )nRTi  so TC = 31 γ( )Ti

 

   

  

QCA = nCPΔT = nγ CV Ti − 31 γ( )Ti⎡⎣ ⎤⎦ = γ R
γ − 1

nTi 1− 31 γ( )⎡⎣ ⎤⎦

= PiViγ
1

γ − 1
⎛
⎝⎜

⎞
⎠⎟

1− 31 γ( )⎡⎣ ⎤⎦

 

  For the whole cycle, 
   

  
QABCA = QAB + QBC + QCA =

2PiVi

γ − 1
+ 0 + PiViγ

1
γ − 1

⎛
⎝⎜

⎞
⎠⎟

1− 31 γ⎡⎣ ⎤⎦

 

ANS. FIG. P21.34(a) 



1114     The Kinetic Theory of Gases 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

   

  

QABCA = PiVi
2

γ − 1
+ γ 1

γ − 1
⎛
⎝⎜

⎞
⎠⎟

1− 31 γ⎡⎣ ⎤⎦
⎡

⎣
⎢

⎤

⎦
⎥

= PiVi
2

γ − 1
+

γ − 1 + 1
γ − 1

⎛
⎝⎜

⎞
⎠⎟

1− 31 γ⎡⎣ ⎤⎦
⎡

⎣
⎢

⎤

⎦
⎥

 

   

  

QABCA = PiVi
2

γ − 1
+ 1− 31 γ( ) +

1− 31 γ

γ − 1
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= PiVi 1− 31 γ( ) +
3 − 31 γ

γ − 1
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

 

  

  

ΔEint( )ABCA
= 0 = QABCA + WABCA

WABCA = −QABCA = −PiVi
1

γ − 1
⎛
⎝⎜

⎞
⎠⎟

1− 31 γ( ) + 1− 31 γ( )⎡

⎣
⎢

⎤

⎦
⎥

 

 
 

	  

Section 21.5 Distribution of Molecular Speeds 
*P21.35 The most probable speed is  
   

  
vmp = 2kBT

m0

=
2 1.38 × 10−23  J K( ) 4.20 K( )

6.64 × 10−27  kg
= 132 m s

 

P21.36 (a) The average is 
   

  

v =
nivi∑
ni∑

= 1(2.00) + 2(3.00) + 3(5.00) + 4(7.00) + 3(9.00) + 2(12.0)
1 + 2 + 3 + 4 + 3 + 2 m/s

 

   
  
v = 6.80 m/s  

 (b) To find the average squared speed we work out 

   

  

v2 =
nivi

2∑
ni∑

v2 = 1
15

⎛
⎝⎜

⎞
⎠⎟ 1 2.002( ) + 2 3.002( ) + 3 5.002( ) + 4 7.002( )⎡⎣

                                                + 3 9.002( ) + 2 12.02( ) m2 s2 ⎤⎦

v2 = 54.9 m2 s2

 



Chapter 21     1115 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  Then the rms speed is  

   
  
vrms = v2 = 54.9 m2 s2 = 7.41 m/s   

 (c) More particles have 
  
vmp = 7.00 m/s  than any other speed.  

P21.37 (a) The ratio of the number at higher energy to the number at lower 
energy is   e

−ΔE kBT ,  where  ΔE  is the energy difference. Here, 
   

  
ΔE = 10.2 eV( ) 1.60× 10−19  J

1 eV
⎛
⎝⎜

⎞
⎠⎟

= 1.63× 10−18  J
 

  and at 0°C, 

   
  kBT = 1.38 × 10−23  J K( ) 273 K( ) = 3.77 × 10−21  J  

  Since this is much less than the excitation energy, nearly all the 
atoms will be in the ground state and the number excited is 

   
  
2.70 × 1025( )exp

−1.63 × 10−18  J
3.77 × 10−21  J

⎛
⎝⎜

⎞
⎠⎟

= 2.70 × 1025( )e−433  

  This number is much less than one, so 

 almost all of the time no atom is excited.  

 (b) At 10 000°C, 
   

  kBT = 1.38× 10−23  J K( ) 10 273 K( ) = 1.42 × 10−19  J
 

  The number excited is 
   

  

2.70× 1025( )exp
−1.63× 10−18  J
1.42 × 10−19  J

⎛
⎝⎜

⎞
⎠⎟

                                   = 2.70× 1025( )e−11.5 = 2.70× 1020

 

P21.38 (a) 
  

Vrms, 35

Vrms, 37

=
3RT / M35

3RT / M37

=
37.0 g mol
35.0 g mol

⎛
⎝⎜

⎞
⎠⎟

1 2

= 1.03  

 (b) The lighter atom, 
 

35 Cl , moves faster. 

P21.39 (a) From 
  
vavg =

8kBT
π m0

 we find the temperature as  

   
  
T =

π 6.64 × 10−27  kg( ) 1.12 × 104  m s( )2

8 1.38 × 10−23  J mol ⋅K( )
 
 
= 2.37 × 104  K  
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 (b) 
  
T =

π 6.64 × 10−27  kg( ) 2.37 × 103  m s( )2

8 1.38 × 10−23  J mol ⋅K( ) = 1.06 × 103  K  

P21.40 For a molecule of diatomic nitrogen the mass is  
   

  

m0 =
M
NA

= 28.0× 10−3  kg/mol
6.02 × 1023  molecules/mol

= 4.65× 10−26  kg/molecule

  

 (a) 
  
vmp =

2kBT
m0

=
2(1.38 × 10−23  J/molecule ⋅K)(900 K)

4.65 × 10−26  kg/molecule
= 731 m s  

 (b) 
  
vavg =

8kBT
πm0

=
8(1.38 × 10−23  J/molecule ⋅K)(900 K)

π ⋅ 4.65 × 10−26  kg/molecule
= 825 m s  

 (c) 
  
vrms =

3kBT
m0

=
3(1.38 × 10−23  J/molecule ⋅K)(900 K)

4.65 × 10−26  kg/molecule
= 895 m s  

 (d) 
 
The graph appears to be drawn correctly within about 10 m s.  

P21.41 (a) From the Boltzmann distribution law, the number density of 
molecules with height y so that the gravitational potential energy 
of the molecule-Earth system is m0gy is   n0e

−m0gy/kBT .  These are the 
molecules with height y, so this is the number per volume at 
height y as a function of y. 

 (b) 
  

n y( )
n0

= e−m0 gy kBT = e−Mgy NAkBT = e−Mgy RT  

   

  

= e− 28.9×10−3  kg mol( ) 9.8 m s2( ) 11×103  m( ) 8.314 J mol⋅K( ) 293 K( )

= e−1.279 = 0.278
 

P21.42 In the Maxwell-Boltzmann speed distribution function take 
  

dNv

dv
= 0  to 

find  

   
  
4π N

m0

2π kBT
⎛
⎝⎜

⎞
⎠⎟

3 2

exp  −
m0v

2

2kBT
⎛
⎝⎜

⎞
⎠⎟
  2v −

2m0v
3

2kBT
⎛
⎝⎜

⎞
⎠⎟
= 0  

 and solve for v to find the most probable speed. Reject as solutions  
v = 0 and   v = ∞.  They describe minimally probable speeds. 
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  Retain only 
  
2 −

m0v
2

kBT
= 0.  

  Then, 
  
vmp =

2kBT
m0

.  

P21.43 It is convenient in the following to define 
  
a = 

m0 g
kBT

. 

 (a) We calculate 
   

  

e−m0gy kBT dy
0

∞

∫ = e−ay dy
0

∞

∫ = e−ay −ady( ) − 1
a

⎛
⎝⎜

⎞
⎠⎟

y=0

∞

∫

= − 1
a

⎛
⎝⎜

⎞
⎠⎟ e−ay

0

∞
= − 1

a
⎛
⎝⎜

⎞
⎠⎟ 0− 1( ) = 1

a

 

  Using Table B.6 in the appendix, 

   
  

ye−aydy
0

∞

∫ =
1!
a( )2 =

1
a

⎛
⎝⎜

⎞
⎠⎟

2

 

  Then, 

   

  

yavg =
ye−aydy

0

∞

∫

e−aydy
0

∞

∫
=

1 a( )2

1 a
=

1
a

=
kBT
m0g

 

 (b) 
  
yavg =

kBT
M NA( ) g

=
RT
Mg

=
8.314 J/mol ⋅K( ) 283 K( )

28.9 × 10−3  kg( ) 9.8 m/s2( ) = 8.31 km  

 
 

	  



1118     The Kinetic Theory of Gases 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

Additional Problems 

P21.44 (a) The average speed is given by 
  
vavg =

vi
i

N

∑
N

 

  which may be solved numerically for the values given. 
Suppressing units, 

 

  

vavg =
vi

i

N

∑
N

=
3.00( )+ 4.00( )+ 5.80( )+ 2.50( )+ 3.60( )+ 1.90( )+ 3.80( )+ 6.60( )[ ]

8

= 31.2 km/s
8

= 3.90 km/s

 

 (b) The rms speed of the molecules is given by  
  
vrms =

vi
2

i

N

∑
N

 

  which may be solved numerically for the values given. 
Suppressing units, 

  

vrms =
vi

2

i

N

∑
N

       =
3.00( )2 + 4.00( )2 + 5.80( )2 + 2.50( )2 + 3.60( )2 + 1.90( )2 + 3.80( )2 + 6.60( )2⎡⎣ ⎤⎦

8

=
9.00( )+ 16.00( )+ 33.64( )+ 6.25( )+ 12.96( )+ 3.61( )+ 14.44( )+ 43.56( )[ ]

8

       = 139.46 km2 /s2

8
= 17.43 km2 /s2 = 4.18 km/s

 

P21.45 (a) The total amount of oxygen in the tank is (using PV = nRT) 

   
  
n =

PV
RT

=
125 atm( ) 6.88 L( )

0.0821 L ⋅atm/mol ⋅K( ) 21.0°C + 273( ) = 35.6 mol  
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  The rate at which the tank is being depleted (in moles/sec; again 
using PV = nRT) is 

   

  

Δn Δt( ) =
P ΔV Δt( )

RT

= 1 atm( ) 8.50 L/min( ) 1min/60sec( )
0.082 1 L ⋅atm/mol ⋅K( ) 21.0°C + 273( )

= 0.005 87 mol/s

 

  The time interval to deplete the tank is the total molar mass 
divided by the molar rate: 

   

  
Δt = n Δn/Δt( ) = 35.6 mol

5.87 × 10−3  mol/s
1 h

3 600 s
⎛
⎝⎜

⎞
⎠⎟ = 1.70 h

 

 (b) Because the rms speed is dependent only on the molecular mass 
and the temperature, i.e.,  

   
  
vrms =

3kT
m

 

  and because the masses of the molecule inside and at the outlet 
are the same, and the temperatures are the same (21.0°C), the rms 
speeds will be identical: the requested ratio is equal to  1.00 .  

P21.46 (a) 
  
n =

PV
RT

=
(1.013 × 105

 Pa)(4.20 m)(3.00 m)(2.50 m)
(8.314 J mol ⋅K)(293 K)

= 1.31× 103  mol  

  

  

N = nNA = 1.31× 103
 mol( ) 6.02 × 1023

 molecules mol( )
N = 7.89 × 1026

 molecules
 

 (b) 
  
m = nM = 1.31× 103  mol( ) 0.028 9 kg mol( ) = 37.9 kg  

 (c) 
  

1
2

m0v
2 =

3
2

kBT =
3
2

1.38 × 10−23
 J k( ) 293 K( ) =  6.07 × 10−21

 J  

 (d) For one molecule, 

  

  

m0 =
M
NA

=
0.028 9 kg mol

6.02 × 1023  molecules mol
= 4.80 × 10−26  kg molecule

vrms =
3kT
m

=
2 6.07 × 10−21  J molecule( )
4.80 × 10−26  kg molecule

= 503 m s

 

 (e)  0  
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 (f) 

 

When the furnace operates, air expands and some of it 
leaves the room. The smaller mass of warmer air left in 
the room contains the same internal energy as the cooler 
air initially in the room.

 

P21.47 (a) The rms speed of molecules in a gas is related to the temperature 
by 

   
  
vrms =

3kT
m

 

  which can be rearranged and solved numerically for the 
temperature: 

   

  

T = mvrms
2

3k
=

32 1.66× 10−27  kg( ) 535 m/s( )2

3 1.38× 10−23  J/K( )
= 367 K

 

 (b) The rms speed is inversely related to the mass of the gas molecule 
(the mass is in the denominator of the square-root function 
above). The rms speed of nitrogen would be higher because the 
molar mass of nitrogen is less than that of oxygen. 

 (c) The rms speed of the nitrogen molecules is: 

   

  
vrms =

3kT
m

=
3 1.38 × 10−23  J/K( )(367 K)

28 1.66 × 10−27  kg( ) = 572 m/s  

P21.48 (a) The mean free path is given by:  

   
   
 = 

1
2πd2NV

 

  which can be solved numerically (noting that the pressure must 
be given as total pressure, not gauge pressure, and the 
temperature must be given in kelvins). Using PV = nRT: 

   

  

NV = NA
n
V

⎛
⎝⎜

⎞
⎠⎟ = NA

P
RT

⎛
⎝⎜

⎞
⎠⎟

= 6.02 × 1023  mol-1( )
100 atm + 1 atm( ) 1.013× 105  N/m2

atm( )
8.314 J/mol ⋅K( ) 25.0°C + 273.15°( )

= 2.48× 1027  molecules/m3
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  which can then be inserted into the mean free path equation: 

   

   

 = 
1

2πd2NV

=
1

2π 2.00 × 10−10 m( )2
2.48 × 1027 mol/m3( )

= 2.26 × 10−9  m

 

 (b) The average time interval between collisions is the inverse of the 
collision frequency: 

   

   

tcollision = 1
f
= 1

vavg


⎛
⎝⎜

⎞
⎠⎟
= 

vavg  

  which can be solved numerically (where the value of vave is 
obtained from eqn. 21.26): 

   

   

tcollision = 
vavg

= 
8kbT
πm0

= 2.26× 10−9  m

8 1.38× 10−23  J/K( ) 298.15 K( )
π ⋅32 1.66× 10−27  kg( )

= 2.26× 10−9  m
444.1 m/s( ) = 5.09× 10−12  seconds

 

P21.49 For the system of the bullet, Equation 8.2 becomes 

    Won bullet  = ΔK  

 For the system of the gas undergoing an adiabatic process, so that Q = 
0, Equation 8.2 becomes 

    Won gas  = ΔEint  

 Recognizing that   Won bullet  =  −Won gas , we see that  

    ΔEint  = −ΔK  

 Substituting for the internal energy, we find 
  

  

nCVΔT  = −ΔK        

n
5
2

R⎛
⎝⎜

⎞
⎠⎟ ΔT  = −ΔK      →    

5
2

nR Tf  − Ti( ) = −ΔK

 

 Now use Equation 21.20 to substitute for Tf : 
  

  

5
2

nR
Vi

Vf

⎛

⎝
⎜

⎞

⎠
⎟

γ  −  1

Ti  − Ti

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 = −ΔK  
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5
2

nRTi
Vi

Vf

⎛

⎝
⎜

⎞

⎠
⎟

γ  −  1

 − 1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 = −ΔK

5
2

PiVi
Vi

Vf

⎛

⎝
⎜

⎞

⎠
⎟

γ  −  1

 − 1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
 = − 1

2
mv2  − 0⎛

⎝⎜
⎞
⎠⎟

Pi  = 
mv2

5Vi 1 −  Vi

Vf

⎛

⎝
⎜

⎞

⎠
⎟

γ  −  1⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 The final volume of the gas is equal to the initial volume plus the 
volume of the rifle barrel: 

  
  Vf = Vi + Ah = 12.0 cm3 + 0.0300 cm2( ) 50.0 cm( ) = 13.5 cm3  

 Substituting numerical values,  
  

  

Pi  = 
0.001 10 kg( ) 120 m/s( )2

5 12 × 10−6  m3( ) 1 −  12.0 cm3

13.5 cm3

⎛
⎝⎜

⎞
⎠⎟

0.400⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

= 5.74 × 106  Pa =  56.6 atm

 

P21.50 (a) For a pure metallic element, one atom is one molecule. Its energy 
can be represented as  

    

  

1
2

m0vx
2 + 1

2
m0vy

2 + 1
2

m0vz
2 + 1

2
kxx2 + 1

2
kyy2 + 1

2
kzz

2
  

  Its average value is   
    

  

1
2

kBT + 1
2

kBT + 1
2

kBT + 1
2

kBT + 1
2

kBT + 1
2

kBT = 3kBT
  

 

  The energy of one mole is obtained by multiplying by Avogadro’s 
number, Eint/n = 3RT, and the molar heat capacity at constant 
volume is Eint/nT = 3R. 

 (b) We calculate the specific heat from 
    

 
3 8.314 J/mol ⋅K( ) = 3 8.314 J( )

55.845× 10−3  kg( ) ⋅K = 447 J/kg ⋅K
  

  This agrees with the tabulated value of 448 J/kg ⋅ °C within 0.3%. 
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 (c) For gold, 
    

 
3 8.314 J/mol ⋅K( ) = 3 8.314 J( )

197 × 10−3  kg( ) ⋅K = 127 J/kg ⋅K
 

  This agrees with the tabulated value of 129 J/kg ⋅ °C within 2%. 

P21.51 (i) (a) 
  
Pf = 100 kPa  

  (b) 
 
Vf =

nRTf

Pf

 

   

 
    =

2.00 mol 8.314 J mol ⋅K( ) 400 K( )
100 × 103  Pa

= 0.066 5 m3 =  66.5 L
 

  (c) 
  
Tf = 400 K  

  (d) 

  

ΔEint =
7
2

nRΔT =
7
2

2.00 mol( ) 8.314 J mol ⋅K( ) 100 K( )

= 5.82 kJ

 

  (e) 

  

Q = nCPΔT =
9
2

2.00 mol( ) 8.314 J mol ⋅K( ) 100 K( )

= 7.48 kJ

 

  (f) 

  

W = −PΔV = −nRΔT = − 2.00 mol( ) 8.314 J mol ⋅K( ) 100 K( )
= −1.66 kJ

 

 (ii) (a) For an isovolumetric process:  
    

  

Pf

Tf

=
Pi

Ti

→ Pf = Pi

Tf

Ti

 = 1.00 × 105  Pa( ) 400 K
300 K

⎛
⎝⎜

⎞
⎠⎟ = 133 kPa

 

  (b) 

  

Vf = Vi =
nRTi

Pi

=
2.00 mol( ) 8.314 J mol ⋅K( ) 300 K( )

100 × 103  Pa
= 0.049 9 m3

= 49.9 L

 

  (c)  
  
Tf = 400 K  
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  (d) 
  
ΔEint =

7
2

nRΔT = 5.82 kJ  as in (i) part (d).  

  (e) 

  

Q = nCVΔT =
7
2

nRΔT =
7
2

2.00 mol( ) 8.314 J mol ⋅K( ) 100 K( )

= 5.82 kJ

 

  (f)  
  
W = − PdV∫ = 0  since V = constant 

 (iii) (a) 
  
Pf = 120 kPa  

  (b)  
  
Vf = Vi

Pi

Pf

⎛

⎝
⎜

⎞

⎠
⎟ = 49.9 L( ) 100 kPa

120 kPa
⎛
⎝⎜

⎞
⎠⎟ = 41.6 L  

  (c)  
  
Tf = Ti = 300 K  

  (d) 
  
ΔEint =

7
2

nRΔT = 0  since T = constant 

  (e) From (f), 
  
Q = ΔEint −W = 0 − 909 J = −909 J  

  (f) 
  
W = − PdV∫ = −nRTi

dV
VVi

Vf

∫ = −nRTi ln
Vf

Vi

⎛
⎝⎜

⎞
⎠⎟
= −nRTi ln

Pi

Pf

⎛

⎝
⎜

⎞

⎠
⎟  

   

  

W = − 2.00 mol( ) 8.314 J mol ⋅K( ) 300 K( )ln
100 kPa
120 kPa

⎛
⎝⎜

⎞
⎠⎟

= +909 J

 

 (iv)  (a) 
  
Pf = 120 kPa  

  (b) 

  

γ =
CP

CV

=
CV + R

CV

=

7
2

R + R

7
2

R
=

9
2
7
2

=
9
7

 

     Pf Vf
γ = PiVi

γ ,   so   

  
Vf = Vi

Pi

Pf

⎛

⎝
⎜

⎞

⎠
⎟

1 γ

= 49.9 L( ) 100 kPa
120 kPa

⎛
⎝⎜

⎞
⎠⎟

7 9

= 43.3 L  

  (c) 
 
PV = nRT →

Ti

PiVi

=
Tf

Pf Vf
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→ Tf = Ti

Pf Vf

PiVi

⎛
⎝⎜

⎞
⎠⎟

= 300 K( ) 120 kPa
100 kPa

⎛
⎝⎜

⎞
⎠⎟

43.3 L
49.9 L

⎛
⎝⎜

⎞
⎠⎟ = 312 K  

  (d) 

  

ΔEint =
7
2

nRΔT =
7
2

2.00 mol( ) 8.314 J mol ⋅K( ) 12.4 K( )

= +722 J

 

  (e)   Q = 0  

  (f) 
  
W = −Q + ΔEint = 0 + 722 J = +722 J  

P21.52 (a) The 
 

pressure increases as volume decreases  (and vice versa), so 

dV/dP is always negative. 

  In equation form, 
  

dV
dP

< 0 and – 1
V( ) dV

dP( ) > 0    

 (b) For an ideal gas, 
  
V = nRT

P
and κ 1 = –

1
V

d
dP

nRT
P( )  

  For isothermal compression, T is constant and the derivative 
gives us 

   
  
κ 1 = –

nRT
V

–1
P2

⎛
⎝

⎞
⎠ = 1

P
 

 (c) For an adiabatic compression,  PVγ = C  (where C is a constant) 
and we evaluate dV/dP as follows: 

   
  
κ 2 = – 1

V( ) d
dP

C
P( )1/γ

= 1
Vγ

⎛
⎝⎜

⎞
⎠⎟

C1/γ

P1/γ +1( ) = V
Vγ P

= 1
γ P  

 (d) 
  
κ 1 =

1
P

=
1

2.00 atm( ) = 0.500 atm−1  

 (e) For a monatomic ideal gas, 
  
γ = CP

CV

= 5
3

,  so 

   

  

κ 2 = 1
γ P

= 1
5
3

2.00 atm( )
= 0.300 atm−1

 

P21.53 The pressure of the gas in the lungs of the diver must be the same as 
the absolute pressure of the water at this depth of 50.0 meters. This is: 

   

  

P = P0 + ρgh

= 1.00 atm + 1.03× 103  kg m3( ) 9.80 m s2( ) 50.0 m( )
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 or  
  
P = 1.00 atm + 5.05 × 105  Pa

1.00 atm
1.013 × 105  Pa

⎛
⎝⎜

⎞
⎠⎟ = 5.98 atm  

 If the partial pressure due to the oxygen in the gas mixture is to be 1.00 

atmosphere (or the fraction 
 

1
5.98

 of the total pressure), oxygen 

molecules should make up only 
 

1
5.98

 of the total number of molecules. 

This will be true if 1.00 mole of oxygen is used for every 4.98 mole of 
helium. The ratio by weight is then 

 
  

4.98 mol He( ) 4.003 g mol He( ) g
1.00 mol O2( ) 2 × 15.999 g mol O2( ) g

= 0.623  

P21.54 

 

Sulfur dioxide is the gas with the greatest molecular mass of
those listed. If the effective spring constants for various chemical
bonds are comparable, SO2  can then be expected to have low
frequencies of atomic vibration. Vibration can be excited at lower
temperature than for the other gases. Some vibration may be
going on at 300 K. With more degrees of freedom for molecular
motion, the material has higher specific heat.

 

P21.55 
  
n =

m
M

=
1.20 kg

0.028 9 kg mol
= 41.5 mol  

 (a) 
  
Vi =

nRTi

Pi

=
41.5 mol( ) 8.314 J mol ⋅K( ) 298 K( )

200 × 103  Pa
= 0.514 m3  

(b) 
 

Pf

Pi

=
Vf

Vi

    so    
  
Vf = Vi

Pf

Pi

⎛
⎝⎜

⎞
⎠⎟

2

= 0.514 m3( ) 400
200

⎛
⎝⎜

⎞
⎠⎟

2

= 2.06 m3  

 (c) 
  
Tf =

Pf Vf

nR
=

400 × 103  Pa( ) 2.06 m3( )
41.5 mol( ) 8.314 J mol ⋅K( ) = 2.38 × 103  K  

 (d) 

  

W = − PdV
Vi

Vf

∫ = −C V1 2 dV
Vi

Vf

∫ = − Pi

Vi
1 2

⎛
⎝⎜

⎞
⎠⎟

2V 3 2

3 Vi

Vf

= − 2
3

Pi

Vi
1 2

⎛
⎝⎜

⎞
⎠⎟

Vf
3 2 −Vi

3 2( )

 

  
  
W = −

2
3

200 × 103  Pa

0.514 m3

⎛
⎝⎜

⎞
⎠⎟

2.06 m3( )3 2
− 0.514 m3( )3 2⎡

⎣
⎤
⎦ = −480 kJ  
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 (e) 

  

ΔEint = nCVΔT = 41.5 mol( ) 5
2

8.314 J mol ⋅K( )⎡
⎣⎢

⎤
⎦⎥

2.38× 103 − 298( )  K

= 1.80× 106  J

 

  
  
Q = ΔEint −W = 1.80× 106  J + 4.80× 105  J = 2.28× 106  J = 2.28 MJ

 

P21.56 (a) Begin with Equation 17.8 and substitute the definition of bulk 
modulus from Equation 12.8: 

   
  
v = 

B
ρ
 = 

1
ρ

−V
dP
dV

⎛
⎝⎜

⎞
⎠⎟

 

  Now substitute using Equation 21.37 with the constant on the 
right hand side represented by K: 

   

  

v =  
−V
ρ

d
dV

KV−γ( )  =  −KV
ρ

−γV−γ −1( )  =  γ
ρ

KV−γ( )

   = 
γ P
ρ

 = 
γ
ρ

nRT
V

 = 
γ m/M( )RT

m
 = 

γ RT
M

 

 (b) 
  
v =

1.40 8.314 J mol ⋅K( ) 293 K( )
0.028 9 kg mol

= 344 m s  

  
 
This agrees within 0.2% with the 343 m/s listed in Table 17.1.  

 (c) We use 
 
kB =

R
NA

 and   M = m0NA : 
  
v =

γ RT
M

=
γ kBNAT

m0NA

=
γ kBT

m0

 

 (d) The most probable molecular speed is 
  

2kBT
m0

, the average speed 

is 
  

8kBT
π m0

, and the rms speed is 
  

3kBT
m0

. 

  

 

The speed of sound is somewhat less than each measure of
molecular speed. Sound propagation is orderly motion overlaid
on the disorder of molecular motion.

 

P21.57 (a) The average speed vavg is just the weighted average of all the 
speeds. 

   

  

vavg = 2 v( )+ 3 2v( )+ 5 3v( )+ 4 4v( )+ 3 5v( )+ 2 6v( )+ 1 7v( )
2 + 3 + 5 + 4 + 3 + 2 + 1

= 3.65v
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 (b) First find the average of the square of the speeds, 
  

  

(v2 )avg = 2 v( )2 + 3 2v( )2 + 5 3v( )2 + 4 4v( )2 + 3 5v( )2 + 2 6v( )2 + 1 7v( )2

2 + 3 + 5 + 4 + 3 + 2 + 1
= 15.95v2

 

  The root-mean square speed is then 
  
vrms = (vavg )2 = 3.99v  

 (c) The most probable speed is the one that most of the particles 
have; i.e., five particles have speed 

  
3.00v . 

 (d) 
  
PV =

1
3

Nm0vav
2  

  Therefore,    
  
P =

20
3

m0 15.95( )v2⎡⎣ ⎤⎦
V

= 106
m0v

2

V
⎛
⎝⎜

⎞
⎠⎟

 

 (e) The average kinetic energy for each particle is 

   
  
K =

1
2

m0vav
2 =

1
2

m0 15.95v2( ) = 7.98m0v2  

P21.58 (a) For the adiabatic process PVγ = k, a constant. The work is 

   

  
W = – PdV = –k

i

f

∫
dV
VγVi

Vf∫ = – kV1–γ

1 – γ
Vi

Vf

    

  

 

  For k we can substitute  PiVi
γ  and also 

 
Pf Vf

γ to have 

   

  
W = –

Pf Vf
γVf

1–γ – PiVi
γVi

1–γ

1 – γ =
Pf Vf – PiVi

γ – 1

 

 (b) For an adiabatic process   ΔEint = Q + W  and Q = 0. Therefore,  
   

  
W = ΔEint = nCVΔT = nCV Tf −Ti( )  

. (c) 

  

The expressions are equal because PV = nRT  and 
γ = (CV + R)/CV = 1+ R/CV  give R = (γ − 1)CV , so 
PV = n(γ − 1)CVT  and PV/(γ − 1) = nCVT.

 

P21.59 (a) 
  
ΔEint = Q + W = 0 + W      →      W = nCV Tf −Ti( )  

  

  
−2 500 J = 1 mol( ) 3

2
⎛
⎝⎜

⎞
⎠⎟ 8.314 J mol ⋅K( ) Tf − 500 K( )

 

  
  
Tf = 300 K  
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 (b)  PiVi
γ = Pf Vf

γ  

  

 
Pi

nRTi

Pi

⎛
⎝⎜

⎞
⎠⎟

γ

= Pf

nRTf

Pf

⎛

⎝
⎜

⎞

⎠
⎟

γ

  

    Ti
γ Pi

1−γ = Tf
γ Pf

1−γ  

  
  

Ti
γ γ −1( )

Pi

=
Tf

γ γ −1( )

Pf

  

  
  
Pf = Pi

Tf

Ti

⎛
⎝⎜

⎞
⎠⎟

γ γ −1( )
 

  

  
Pf = Pi

Tf

Ti

⎛
⎝⎜

⎞
⎠⎟

5 3( ) 3 2( )
= 3.60 atm( ) 300

500
⎛
⎝⎜

⎞
⎠⎟

5 2

= 1.00 atm
 

P21.60 (a) The process is adiabatic:  

   
  
ΔEint = Q + W = 0 + W   →   W = nCV Tf −Ti( )  

  For an ideal gas,  
   

  
W = nCV Tf −Ti( ) = n

3
2

⎛
⎝⎜

⎞
⎠⎟  R Tf −Ti( )

 

  Solving for final temperature, we get  
   

  
 Tf = Ti +

2
3

W
nR

 

 (b)  PiVi
γ = Pf Vf

γ  

  

  
Pi

nRTi

Pi

⎛
⎝⎜

⎞
⎠⎟

γ

= Pf

nRTf

Pf

⎛

⎝
⎜

⎞

⎠
⎟

γ

→ Ti
γ Pi

1−γ = Tf
γ Pf

1−γ  

  
  
→

Ti
γ γ −1( )

Pi

=
Tf

γ γ −1( )

Pf

→ Pf = Pi

Tf

Ti

⎛
⎝⎜

⎞
⎠⎟

γ γ −1( )
 

  where 
  
γ =

Cp

CV

=
5
3

 for an ideal gas, and 

 

γ
γ − 1

=

5
3

5
3
− 1

=

5
3
2
3

=
5
2

. 
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  Substituting this and the result from part (a) gives  
   

  

Pf = Pi

Ti + 2
3

W
nR

Ti

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

5 2

= Pi 1+ 2
3

W
nRTi

⎛
⎝⎜

⎞
⎠⎟

5 2

 

*P21.61 (a) Let d = 2r represent the diameter of the particle. Its mass is 

  
m = ρV = ρ 4

3
π r3 = ρ 4

3
π d

2
⎛
⎝⎜

⎞
⎠⎟

3

=
ρπ d3

6
. Then 

  

1
2

mvrms
2 =

3
2

kT  gives  

    
  

ρπ d3

6
vrms

2 = 3kT  

  so 
    

  

vrms = 18kT
ρπ d3

⎛
⎝⎜

⎞
⎠⎟

1 2

=
18 1.38× 10−23  J/K( ) 293 K( )

π 1 000 kg/m3( )
⎛

⎝
⎜

⎞

⎠
⎟

1/2

d−3/2

= 4.81× 10−12( )d−3/2

 

  where vrms is in meters per second and d is in meters. 

 (b)   v = d/Δt → (4.81× 10−12  m5/2/s)d
−3/2

= d/Δt  
    

  

Δt = d
(4.81 ×  10−12  m5/2/s)d−3/2

= 2.08× 1011( )d5/2

 

  where  Δt  is in seconds and d is in meters. 

 (c) 

  

vrms = 18kT
ρπ d3

⎛
⎝⎜

⎞
⎠⎟

1 2

=
18 1.38× 10−23  J/K( ) 293 K( )
1 000 kg/m3( )π 3× 10−6  m( )3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1 2

= 0.926 mm s

 

    
  
v =

x
Δt

→ Δt =
x
v
=

3 × 10−6  m
9.26 × 10−4  m s

= 3.24 ms  

 (d) 
  
70 kg = 1 000 kg m3( )π d3

6
→ d = 0.511 m  

    

  

vrms = 18kT
ρπ d3

⎛
⎝⎜

⎞
⎠⎟

1 2

=
18 1.38× 10−23  J/K( ) 293 K( )
1 000 kg/m3( )π 0.511 m( )3

⎛

⎝
⎜

⎞

⎠
⎟

1 2

= 1.32 × 10−11  m s
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Δt =

0.511 m
1.32 × 10−11  m s

= 3.88 × 1010  s = 1 230 yr     

   This motion is too slow to observe. 

P21.62 (a) Maxwell’s speed distribution function is 

   
  
Nv = 4π N

m0

2π kBT
⎛
⎝⎜

⎞
⎠⎟

3 2

v2e−m0v2 2kBT  

  With     N = 1.00 × 104 ,  
  
m0 =

M
NA

=
0.032 kg

6.02 × 1023 = 5.32 × 10−26  kg,  

  T = 500 K, and   kB = 1.38 × 10−23  J molecule ⋅K ,  this becomes     

   
  Nv = 1.71× 10−4( )v2e− 3.85× 10−6( )v2  

  ANS. FIG. P21.62(a) below is a plot of this function for the range 

  0 ≤ v ≤ 1 500 m s . 

 

ANS. FIG. P21.62(a) 

 (b) The most probable speed occurs where Nv is a maximum. 

  From the graph, 
  

vmp ≈ 510 m s .  

 (c) 

  

vavg =
8kBT
π m0

=
8 1.38 × 10−23  J/molecule ⋅K( ) 500 K( )

π 5.32 × 10−26  kg( ) = 575 m s
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  Also, 

   

  

vrms = 3kBT
m0

=
3 1.38× 10−23  J/molecule ⋅K( ) 500 K( )

5.32 × 10−26  kg

= 624 m s

 

 (d) The fraction of particles in the range     300 m s ≤ v ≤ 600 m s  

  is  

   
  

Nv dv
300

600

∫
N

 

  where N = 104 and the integral of Nv is read from the graph as the 
area under the curve. This is approximately the area of a large 
rectangle 11 s/m high and 300 m/s wide [corners at (300, 0),  
(300, 11), (600, 11), and (600, 0)], plus a smaller rectangle 5.5 s/m 
high and 100 m/s wide [corners at (500, 11), (500, 16.6), (600, 
16.5), and (600, 11)], plus a triangle 5.5 s/m high with a 200 m/s 
base [vertices at (300, 11), (500, 16.5), and (500, 11)]: 

   (11)(300) + (5.5)(100) + (1/2)(5.5)(200) = 4 400  

  and the fraction is 0.44 or 
 

44% . 

P21.63 For the system of the ball and the air, Equation 8.2 gives us, 

     ΔK  + ΔEint  = 0  

 Substitute for the internal energy and solve for the temperature 
increase of the air: 

   

  

ΔK  + nCVΔT  = 0  →   ΔT  = −ΔK
nCV

=  −ΔK

m/M( ) 5
2

R⎛
⎝

⎞
⎠

= − 2MΔK
5mR  

 Express the mass m of the air in terms of the density and volume of the 
cylinder through which the ball passes, and evaluate the change in 
kinetic energy of the ball: 

   

   

ΔT  =  − 2MΔK
5ρVR

 =  −
2M

1
2

mballv f
2  −  1

2
mballvi

2⎛
⎝

⎞
⎠

5ρ πr2( )R
 

= 
Mmball vi

2  − v f
2( )

5πρr2R
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 Substitute numerical values: 

 

  

ΔT  = 
28.9 × 10−3  kg/mol( ) 0.142 kg( ) 47.2 m/s( )2  −  42.5 m/s( )2⎡⎣ ⎤⎦

5π 1.20 kg/m3( ) 0.037  0 m( )2 16.8 m( ) 8.314 J/mol ⋅ °C( )
      =  0.480°C

 

P21.64 (a) The latent heat of evaporation per molecule is  
   

 

2 430 J/g = 2430 J/g( ) 18.0 g
1 mol

⎛
⎝⎜

⎞
⎠⎟

1 mol
6.02 × 1023  molecule

⎛
⎝⎜

⎞
⎠⎟

= 7.27 × 10−20  J/molecule

 

  If the molecule is about to break free, we assume that it possesses 
the energy as translational kinetic energy.  

 (b) Consider one gram of these molecules. From 
  
K = 1

2
mv2  we obtain 

   

  
v = 2K

m
= 2 2 430 J( )

10−3  kg
= 2.20× 103  m/s = 2.20 km/s

 

 (c) The total translational kinetic energy of an ideal gas is 
  

3
2

nrT ,  so 

we have 
   

  
2 430 J/g( ) 18.0 g

1 mol
⎛
⎝⎜

⎞
⎠⎟ = 3

2
1 mol( ) 8.314 J/mol ⋅K( )T

 

  which gives 
   

  
T = 3.51 × 103  K

 

 (d) 

 

The evaporating particles emerge with much less kinetic energy,
as negative work is performed on them by restraining forces as
they leave the liquid. Much of the initial kinetic energy is used
up in overcoming the latent heat of vaporization. There are also
very few of these escaping at any moment in time.

 

P21.65 (a) 

  

n =
PV
RT

=
1.013 × 105  Pa( ) 5.00 × 10−3  m3( )

8.314 J mol ⋅K( ) 300 K( )
= 0.203 mol

 

 (b) 
  
TB = TA

PB

PA

⎛
⎝⎜

⎞
⎠⎟

= 300 K( ) 3.00
1.00

⎛
⎝⎜

⎞
⎠⎟ = 900 K  
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 (c) 
  
TC = TB = 900 K  

 (d) 
  
VC = VA

TC

TA

⎛
⎝⎜

⎞
⎠⎟

= 5.00 L( ) 900
300

⎛
⎝⎜

⎞
⎠⎟ = 15.0 L  

 

ANS. FIG. P21.65 

 (e) 

  

A → B: lock the piston in place and put the cylinder into an oven
at 900 K, gradually heating the gas. B→ C: keep the sample in
the oven while gradually letting the gas expand to lift a load on
the piston as far as it can. C → A: carry the cylinder back into the
room at 300 K and let the gas gradually cool and contract with-
out touching the piston.

 

 (f) For A→B: 
  
W = 0  

   

  

ΔEint = nCVΔT = n
3
2

⎛
⎝⎜

⎞
⎠⎟ RΔT = Q + W

ΔEint = 0.203 mol( ) 3
2

⎛
⎝⎜

⎞
⎠⎟ 8.314 J/mol ⋅K( ) 600 K( ) = 1.52 kJ

Q = ΔEint −W = 1.52 kJ

 

  For B→C:  
  
ΔEint = 0 , because  ΔT  = 0;  

   

  

W = −nRTB ln
VC

VB

⎛
⎝⎜

⎞
⎠⎟

W = − 0.203 mol( ) 8.314 J mol ⋅K( ) 900 K( )ln 3.00( )
= −1.67 kJ

Q = ΔEint −W = 1.67 kJ
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  For C→A:   ΔEint = nCVΔT  
   

  

ΔEint = 0.203 mol( ) 3
2

⎛
⎝⎜

⎞
⎠⎟ 8.314 J/mol ⋅K( ) −600 K( ) J

= −1.52 kJ

 

   

  

W = −PΔV = −nRΔT

= − 0.203 mol( ) 8.314 J mol ⋅K( ) −600 K( )
    = 1.01 kJ

 

   
  
Q = ΔEint −W = −1.52 kJ − 1.01 kJ = −2.53 kJ

 

 (g) We add the amounts of energy for each process to find them for 
the whole cycle. 

   

  

QABCA = +1.52 kJ + 1.67 kJ − 2.53 kJ = 0.656 kJ

WABCA = 0 − 1.67 kJ + 1.01 kJ = −0.656 kJ

ΔEint( )ABCA
= QABCA + WABCA = +1.52 kJ + 0 − 1.52 kJ = 0

 

  For any cyclic process,   ΔEint = 0.  

P21.66 (a) The effect of large centripetal acceleration is like the effect of a 
very high gravitational field on an atmosphere. The result is: 

  
 

The larger-mass molecules settle to the outside  while the region 

at smaller r has a higher concentration of low-mass molecules. 

 (b) Consider a single kind of molecule, all of mass m0. To cause the 
centripetal acceleration of the molecules between r and r + dr, the 
inward force must increase with increasing distance from the 
center according to   Fr∑ = m0ar .  Taking the positive direction 
toward the center of the centrifuge, we have  

    
  P + dP( )A − PA = nV m0Adr( ) rω 2( )  

  where  nV = nV r( ) = N V , the number of molecules per unit 
volume, is an implicit function of r, and A is the area of any 
cylindrical shell of thickness dr and radius r. The equation 
reduces to 

   dP = nVm0ω
2rdr  [1] 
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  But also within any small cylindrical shell,  

    

 

PV = NkBT → P =
N
V

⎛
⎝⎜

⎞
⎠⎟ kBT

→ dP = d
N
V

⎛
⎝⎜

⎞
⎠⎟ kBT = d nV( )kBT = dnV kBT

 

  Therefore, equation [1] becomes  

      dnV kBT = nVm0ω
2rdr     →      

  

dnV

nV

=
m0ω

2

kBT
rdr  

  giving   
  

dnV

nVn0

n

∫ =
m0ω

2

kBT
rdr

0

r

∫ ,   where     nV r = 0( ) = n0 . 

  Integrating, we find  

    
  
ln nV( )

n0

nV =
m0ω

2

kBT
r2

2
⎛
⎝⎜

⎞
⎠⎟

0

r

→ ln
nV

n0

⎛
⎝⎜

⎞
⎠⎟

=
m0ω

2

2kBT
r2  

  and solving for  n ≡ nV , we have 
  

n = n0e
m0r2ω 2 2kBT . 

P21.67 
  
Nv v( ) = 4π N

m0

2π kBT
⎛
⎝⎜

⎞
⎠⎟

3 2

v2 exp
−m0v2

2kBT
⎛
⎝⎜

⎞
⎠⎟

,  where exp(x) represents ex 

 Note that    
  
vmp =

2kBT
m0

⎛
⎝⎜

⎞
⎠⎟

1 2

.  

 Thus,    
  
Nv v( ) = 4π N

m0

2π kBT
⎛
⎝⎜

⎞
⎠⎟

3 2

v2e −v2 vmp
2( )  

 and 

  

Nv v( )
Nv vmp( ) =

v
vmp

⎛

⎝
⎜

⎞

⎠
⎟

2

e 1−v2 vmp
2( ).  

 For    
  
v =

vmp

50
,  

  
  

Nv v( )
Nv vmp( ) =

1
50

⎛
⎝⎜

⎞
⎠⎟

2

e
1− 1 50( )2⎡
⎣

⎤
⎦ = 1.09 × 10−3  
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 The other values are computed similarly, with the following results: 

 

  

v
vmp

 
  

Nv v( )
Nv vmp( )  

(a) 
 

1
50

 1.09 × 10−3 

(b) 
 

1
10

 2.69 × 10−2 

(c) 
 

1
2

 0.529 

(d) 1 1.00 

(e) 2 0.199 

(f) 10 1.01 × 10−41 

(g) 50 1.25 × 10−1 082 

 

 To find the last value, we note: 
  

  

50( )2 e1−2 500 = 2 500e−2 499

10log 2 500 e ln 10( ) −2 499 ln 10( ) = 10log 2 50010−2 499 ln 10 = 10log 2 500−2 499 ln 10

                                  = 10−1 081.904 = 100.096 × 10−1082

 

P21.68 (a) The energy of one molecule can be represented as  
    

  

1
2

m0vx
2 + 1

2
m0vy

2 + 1
2

m0vz
2 + 1

2
Iω x

2 + 1
2

Iω z
2

  

  Its average value is   
    

  

1
2

kBT + 1
2

kBT + 1
2

kBT + 1
2

kBT + 1
2

kBT = 5
2

kBT
  

  The energy of one mole is obtained by multiplying by Avogadro’s 

number, 
  
Eint /n = 5

2
RT.  

  And the molar heat capacity at constant volume is 

  
Eint /nT = 5

2
R .
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 (b) The energy of one molecule can be represented as  
   

  

1
2

m0vx
2 + 1

2
m0vy

2 + 1
2

m0vz
2 + 1

2
Iω x

2 + 1
2

Iω z
2 + 1

2
Iω y

2
 

  Its average value is  
   

  

1
2

kBT + 1
2

kBT + 1
2

kBT + 1
2

kBT + 1
2

kBT + 1
2

kBT = 3kBT
 

  The energy of one mole is obtained by multiplying by Avogadro’s 
number, Eint/n = 3RT. 

  And the molar heat capacity at constant volume is Eint/nT =   3R . 

 (c) Let the modes of vibration be denoted by 1 and 2. The energy of 
one molecule can be represented as  

   

  

1
2

m0 vx
2 +0 vy

2 + vz
2( ) + 1

2
Iω x

2 + 1
2

Iω z
2

                              + 1
2

µvrel
2 + 1

2
kx2⎛

⎝⎜
⎞
⎠⎟ 1

+ 1
2

µvrel
2 + 1

2
kx2⎛

⎝⎜
⎞
⎠⎟ 2

 

  Its average value is 
    

  

3
2

kBT + 1
2

kBT + 1
2

kBT + 1
2

kBT + 1
2

kBT + 1
2

kBT + 1
2

kBT = 9
2

kBT
 

  The energy of one mole is obtained by multiplying by Avogadro’s 

number, 
  
Eint /n = 9

2
RT.  

  And the molar heat capacity at constant volume is 

  
Eint /nT = 9

2
R .

 

 (d) The energy of one molecule can be represented as 
    

  

1
2

m0 vx
2 +0 vy

2 + vz
2( ) + 1

2
Iω x

2 + 1
2

Iω z
2 + 1

2
Iω y

2

                              + 1
2

µvrel
2 + 1

2
kx2⎛

⎝⎜
⎞
⎠⎟ 1

+ 1
2

µvrel
2 + 1

2
kx2⎛

⎝⎜
⎞
⎠⎟ 2

 

  Its average value is  
    

  

3
2

kBT + 3
2

kBT + 1
2

kBT + 1
2

kBT + 1
2

kBT + 1
2

kBT = 5kBT
 

  The energy of one mole is obtained by multiplying by Avogadro’s 
number, Eint/n = 5RT. 

  And the molar heat capacity at constant volume is Eint/nT =   5R .  
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 (e) 

  

Measure the constant-volume specific heat of the gas as a
function of temperature and look for plateaus on the graph.

If the first jump goes from 
3
2

R to 
5
2

R, the molecules can be

diagnosed as linear. If the first jump goes from 
3
2

R to 3R,

the molecules must be nonlinear. The tabulated  data at one
temperature are insufficient for the determination. At room
temperature some of the heavier molecules appear to be 
vibrating.

 

P21.69 (a) First find   v
2  as 

  
v2 = 1

N
v2Nv dv

0

∞

∫ .  Let 
  
a = m0

2kBT
.  

  Then, 
  
v2 =

4Nπ −1 2a3 2⎡⎣ ⎤⎦
N

v4e−av2dv

0

∞

∫ = 4a3 2π −1 2⎡⎣ ⎤⎦
3

8a2

π
a
= 3kBT

m
 

  The root-mean square speed is then 
  
vrms = v2 =

3kBT
m0

 

 (b) To find the average speed, we have  
   

  

vavg = 1
N

vNv dv
0

∞

∫ =
4Na3 2π −1 2( )

N
v3e−av2

dv
0

∞

∫ = 4a3 2π −1 2

2a2

=
8kBT
π m0

 

P21.70 We want to evaluate 
 

dP
dV

 for the function implied by  

PV = nRT = constant, and also for the different function implied by 

  PVγ = constant.  We can use implicit differentiation: 

 From PV = constant 
  
P

dV
dV

+ V
dP
dV

= 0   →    
dP
dV

⎛
⎝⎜

⎞
⎠⎟ isotherm

= − P
V

  

 From PVγ = constant 
  
PγVγ −1 + Vγ dP

dV
= 0   →    

dP
dV

⎛
⎝⎜

⎞
⎠⎟ adiabat

= − γ P
V

 

 Therefore, 
  

dP
dV

⎛
⎝⎜

⎞
⎠⎟ adiabat

= γ dP
dV

⎛
⎝⎜

⎞
⎠⎟ isotherm

 

 The theorem is proved. 
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P21.71 (a) The number of molecules in the pot is given by 
   

 

10 000 g( ) 1.00 mol
18.0 g

⎛
⎝⎜

⎞
⎠⎟

6.02 × 1023  molecules
1.00 mol

⎛
⎝⎜

⎞
⎠⎟

                                                    = 3.34× 1026  molecules

 

 (b) Each day, 
 

1
10

 of the original molecules are left in the pot. Let us 

find out how many days are required for there to be one molecule 
left. We solve the following equation for nd, the number of days: 

   
  
Number left  = 1 =  1

10( )nd N     →    
1
N
 =  1

10( )nd  

  where N is the original number of molecules. Take the logarithm 
of both sides: 

   

  

log
1
N
 = − log N  = log 1

10( )nd = nd log 1
10( ) = −nd log10  = −nd

              →    nd  = log N
 

  Substitute the numerical value for N: 

   
  nd  = log 3.34 × 1026( ) = 26.5  

  
 

Therefore, the last molecule is ladled out after the 26th day and
so during the 27th day.

 

 (c) The soup is this fraction of the hydrosphere: 
 

10.0 kg
1.32 × 1021  kg

⎛
⎝⎜

⎞
⎠⎟

 

  Therefore, today’s soup likely contains this fraction of the original 
molecules. The number of original molecules likely in the pot 
again today is 

   

 

10.0 kg
1.32 × 1021  kg

⎛
⎝⎜

⎞
⎠⎟

3.34× 1026  molecules( )

                                                     = 2.53× 106  molecules

 

P21.72 (a) Consider the molecule-Earth system to be isolated. Treat an 
escaping molecule as going from r = RE, v = v0, to r = ∞, v = 0:  

   

  

ΔK + ΔU = 0

0 −
1
2

m0v2⎛
⎝⎜

⎞
⎠⎟ + 0 − −

Gm0M
RE

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = 0     →

1
2

m0v2 =
Gm0M

RE
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  Since the free-fall acceleration at the surface is, 
  
g =

GM
RE

2 , this can 

also be written as: 
  

1
2

m0v2 =
Gm0M

RE

= m0gRE  

 (b) For O2, the mass of one molecule is 

    
  
m0 =

0.0320 kg mol
6.02 × 1023  molecules mol

= 5.32 × 10−26  kg molecule  

  Then, if 
  
m0gRE = 10

3kBT
2

⎛
⎝⎜

⎞
⎠⎟

, the temperature is  

    

  

T = m0gRE

15kB

=
5.32 × 10−26  kg( ) 9.80 m s2( ) 6.37 × 106  m( )

15 1.38× 10−23  J mol ⋅K( )
= 1.60× 104  K

 

P21.73 (a) For sodium atoms (with a molar mass M = 23.0 g/mol): 
    

  

1
2

m0v
2 = 3

2
kBT

1
2

M
NA

⎛
⎝⎜

⎞
⎠⎟

v2 = 3
2

kBT

 

    

  

vrms = 3RT
M

=
3 8.314 J mol ⋅K( ) 2.40× 10−4  K( )

23.0× 10−3  kg

= 0.510 m s

 

 (b) 
  
Δt = d

vrms

= 0.010 0 m
0.510 m s

= 19.6 ms ≈ 20 ms  

 
 

 

Challenge Problems 
P21.74 (a) The average value of a collection of particle speeds is 

    
  
vavg =

vi
i

N
∑
N

 

  Use this equation to find the average for the two speeds given in 
the problem: 

    
  
vavg =

v1 + v2

2
=

avavg + 2− a( )vavg

2
= vavg
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 (b) The rms average value of a collection of particle speeds is 

    
  
vrms =

vi
2

i

N
∑

N

 

  Use this equation to find the square of the rms average for the 
two speeds given in the problem: 

    

  

v2
rms =

v1
2 + v2

2

2
=

avavg( )2
+ 2− a( )vavg⎡⎣ ⎤⎦

2

2

=
vavg

2

2
a2 + 4 − 4a + a2( )⎡⎣ ⎤⎦

= vavg
2 2− 2a + a2( )

 

      v
2
rms = vavg

2 2− 2a + a2( )  [1] 

 (c) The graph of (2 – 2a + a2) versus a appears below, over the range 
of possible values 0 ≤ a ≤ 2. 

 

ANS. FIG. P21.74(c) 

  Because the factor (2 – 2a + a2) is generally larger than 1, equation 
[1] tells us that vrms > vavg except at one point in the graph.   

 (d) From the graph, we see that that vrms = vavg when the factor  
(2 – 2a + a2) = 1, which occurs at   a = 1 .  

P21.75 Let the subscripts “1” and “2” refer to the hot and cold compartments, 
respectively. The pressure is higher in the hot compartment, therefore 
the hot compartment expands and the cold compartment contracts. 
Because the walls of the cylinder are insulating, the total internal 
energy of the system must remain constant: 

   

  

ΔEint  = 0:  
ΔEint,1  + ΔEint,2  = 0
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nCVΔT1  + nCVΔT2  = 0

T1 f  − T1i( ) +  T2 f  − T2 i( ) = 0
T1 f  + T2 f  = T1i  + T2 i  = 550 K  + 250 K  = 800 K

 

[1]

 

 Consider the adiabatic changes of the gases. 

     P1iV1i
γ = P1 f V1 f

γ  and    P2 iV2 i
γ = P2 f V2 f

γ  

 or  
  

P1iV1i
γ

P2 iV2 i
γ =

P1 fV1 f
γ

P2 fV2 f
γ  

 The initial volumes are equal:   V1i = V2 i . Applying the particle in 
equilibrium model to the piston, the final force on each side of the 
piston must be the same, and the areas on each side are equal, 
therefore   P1 f = P2 f . The equation simplifies to  

   

  

P1i

P2 i

=
V1 f

V2 f

⎛

⎝
⎜

⎞

⎠
⎟

γ  

 Using the ideal gas law: 
   

  

nRT1i V1i

nRT2 i V2 i

=
nRT1 f P1 f

nRT2 f P2 f

⎛

⎝
⎜

⎞

⎠
⎟

γ   

 Simplifying, this gives 

   
  

T1i

T2 i

=
T1 f

T2 f

⎛

⎝
⎜

⎞

⎠
⎟

γ

 

 since   V1i = V2 i  and   P1 f = P2 f ,  substituting values, we get 

   
  

T1 f

T2 f

= T1i

T2 i

⎛
⎝⎜

⎞
⎠⎟

1 γ

= 550 K
250 K

⎛
⎝⎜

⎞
⎠⎟

1 1.4

= 1.756  [2] 

 Solving equations [1] and [2] simultaneously gives  

  
T1 f = 510 K, T2 f = 290 K  
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P21.2 (a) 8.76 × 10−21 J; (b) For helium, vrms = 1.62 km/s and for argon,  
vrms = 514 m/s 

P21.4 3.21 × 1021 molecules 

P121.6 
  

3
2

PV
KNA

 

P21.8 2.78 × 10−23 kg ⋅ m/s 

P21.10 501 K 

P21.12 (a) 385 K; (b) 7.97 × 10−21 J; (c) the molecular mass of the gas 

P21.14 (a) W = 0; (b)   ΔEint = 209 J;  (c) 317 K 

P21.16 (a) 118 kJ; (b) 6.03 × 103 kg 

P21.18 (a) 0.719 kJ/kg . K; (b) 0.811 kg; (c) 233 kJ; (d) 327 kJ 

P21.20 Between 10–3 °C and 10–2 °C 

P21.22 (a) See P21.22(a) for full explanation; (b) See P21.22(b) for full 
explanation; (c) See P21.22(c) for full explanation 

P21.24 The maximum possible value of 
  
γ = 1 + R

CV
= 1.67  occurs for the lowest 

possible value for   CV = 3
2 R.  Therefore the claim of  γ = 1.75  for the 

newly discovered gas cannot be true. 

P21.26 (a) 1.39 atm; (b) 366 K and 253 K; (c) Q = 0; (d) −4.66 kJ; (e) −4.66 kJ 

P21.28 (a) 28.0 kJ; (b) 46.0 kJ; (c) 10.0 atm; (d) 25.1 atm 

P21.30 The compressed gas would reach a temperature of 941 K, exceeding 
the melting point of aluminum.  Therefore, the claim of improved 
efficiency using an engine fabricated out of aluminum cannot be true. 

P21.32 (a) 2.45 × 10−4 m3; (b) 9.97 × 10−3 mol; (c) 9.01 × 105 Pa; (d) 5.15 × 10−5 m3; 
(e) 560 K; (f) 53.9 J; (g) 6.79 × 10−6 m3 ; (h) 53.3 g; (i) 2.24 K 

P21.34 (a) See ANS. FIG. P21.34(a); (b) 
  31/γ( )Vi ; (c) 3Ti; (d) Ti;  

(e) 
  
−PiVi

1
γ − 1

⎛
⎝⎜

⎞
⎠⎟

1− 31/γ( ) + 1− 31/γ( )⎡

⎣
⎢

⎤

⎦
⎥  

P21.36 (a) 6.80 m/s; (b) 7.41 m/s; (c) 7.00 m/s 

P21.38 (a) 1.03; (b) 35Cl 
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P21.40 (a) 731 m/s; (b) 825 m/s; (c) 895 m/s; (d) The graph appears to be 
drawn correctly within about 10 m/s. 

P21.42 See P21.42 for the full explanation. 

P21.44 (a) 3.90 km/s; (b) 4.18 km/s 

P21.46 (a) 7.89 × 1026 molecules; (b) 37.9 kg; (c) 6.07 × 10−21 J; (d) 503 m/s; (e) 0; 
(f) When the furnace operates, air expands and some of it leaves the 
room. The smaller mass of warmer air left in the room contains the 
same internal energy as the cooler air initially in the room. 

P21.48 (a) 2.26 × 10−9 m; (b) 5.09 × 10−12 seconds 

P21.50 (a) See P21.50(a) for the full explanation; (b) 447 J/kg ⋅ °C.  This agrees 
with the tabulated value of 448 J/kg ⋅ °C within 0.3%; (c) 127 J/kg ⋅ °C.  
This agrees with the tabulated value of 129 J/kg ⋅ °C within 2% 

P21.52 (a) pressure increases as volume decreases; (b) See P21.52(b) for full 
answer; (c) See P21.52(c) for full answer; (d) 0.500 atm−1; (e) 0.300 atm−1 

P21.54 Sulfur dioxide is the gas with the greatest molecular mass of those 
listed. If the effective spring constants for various chemical bonds are 
comparable, SO2 can then be expected to have low frequencies of 
atomic vibration.  Vibration can be excited at lower temperature than 
for other gases. Some vibration may be going on at 300 K. With more 
degrees of freedom for molecular motion, the material has higher 
specific heat. 

P21.56 (a) See P21.56(a) for full explanation; (b) This agrees within 0.2% with 
the 343 m/s listed in the Table 17.1; (c) See P21.56(c) for full answer; 
(d) The speed of sound is somewhat less than each measure of 
molecular speed. Sound propagation is orderly motion overlaid on the 
disorder of molecular motion. 

P21.58 (a) See P21.58(a) for full explanation; (b) See P21.58(b) for full 
explanation; (c) The expressions are equal because PV = nRT and 

  γ = CV + R( )/CV = 1 + R/CV  give   R = γ − 1( )CV , so   PV = n γ − 1( )CVT  

and   PV/ γ − 1( ) = nCVT.  

P21.60 (a) 
  
Ti +

2
3

W
nR

; (b) 
  
Pi 1 +

2
3

W
nRTi

⎛
⎝⎜

⎞
⎠⎟

5/2

 

P21.62 (a) See ANS. FIG. P21.62(a); (b)   vmp ≈ 510 m/s ; (c) 575 m/s, 624 m/s; 
(d) 44% 

P21.64 (a) 7.27 × 10−20 J/molecule; (b) 2.20 km/s; (c) 3.51 × 103 K; (d) The 
evaporating particles emerge with much less kinetic energy, as 
negative work is performed on them by restraining forces as they leave 
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the liquid. Much of the initial kinetic energy is used up in overcoming 
the latent heat of vaporization. There are also very few of these 
escaping at any moment in time. 

P21.66  (a) The larger-mass molecules settle to the outside; (b)   n = n0e
m0r2ω 2 /2kBT  

P21.68 (a) 
  

5
2

R;  (b) 3R; (c) 
  

9
2

R;  (d) 5R; (e) Measure the constant-volume 

specific heat of the gas as a function of temperature and look for 

plateaus on the graph. If the first jump goes from 
  

3
2

R to 
5
2

R,  the 

molecules can be diagnosed as linear. If the first jump goes from 
  

3
2

R  to 

3R, the molecules must be nonlinear. The tabulated data at one 
temperature are insufficient for the determination. At room 
temperature some of the heavier molecules appear to be vibrating. 

P21.70 See P21.70 for full explanation. 

P21.72 (a) mogRE; (b) 1.60 × 104 K 

P21.74 (a) See P21.74(a) for full explanation; (b) See P21.74(b) for full 
explanation; (c) See ANS FIG P21. 74(c); (d) a = 1 
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22 
Heat Engines, Entropy, and the 

Second Law of Thermodynamics 
 

CHAPTER OUTLINE 
 

22.1  Heat Engines and the Second Law of Thermodynamics 

22.2 Heat Pumps and Refrigerators 

22.3  Reversible and Irreversible Processes 

22.4  The Carnot Engine 

22.5  Gasoline and Diesel Engines 

22.6 Entropy 

22.7 Changes in Entropy for Thermodynamic Systems 

22.8 Entropy and the Second Law 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ22.1 Answer (d). The second law says that you must put in some work to 
pump heat from a lower-temperature to a higher-temperature 
location. But it can be very little work if the two temperatures are 
very nearly equal. 

OQ22.2 Answer (d). Heat input will not necessarily produce an entropy 
increase, because a heat input could go on simultaneously with a 
larger work output, to carry the gas to a lower-temperature, lower-
entropy final state. Work input will not necessarily produce an 
entropy increase, because work input could go on simultaneously 
with heat output to carry the gas to a lower-volume, lower-entropy 
final state. Either temperature increase at constant volume, or 
volume increase at constant temperature, or simultaneous increases 
in both temperature and volume, will necessarily end in a higher-
entropy final state.  
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OQ22.3 Answer (c). The coefficient of performance of this refrigerator is 
   

  
COP =

Qc

W
=

115 kJ
18.0 kJ

= 6.39
 

OQ22.4 Answer (c). Choice (c) is a statement of the first law of 
thermodynamics, not the second law. Choices (a), (b), (d), and (e) are 
alternative statements of the second law, (a) being the Kelvin-Planck 
formulation, (b) the Carnot statement, (d) the Clausius statement, 
and (e) summarizes the primary consequence of all these various 
statements. 

OQ22.5 (i) Answer (b). (ii) Answer (a). (iii) Answer (b). (iv) Answer (a). (v) 
Answer (c). (vi) Answer (a). For any cyclic process the total input 
energy must be equal to the total output energy. This is a 
consequence of the first law of thermodynamics. It is satisfied by 
processes (ii), (iv), (v), and (vi) but not by processes (i) and (iii). The 
second law says that a cyclic process that takes in energy by heat 
must put out some of the energy by heat. This is not satisfied for 
process (v). 

OQ22.6 Answer (a). The air conditioner operates on a cyclic process so the 
change in the internal energy of the refrigerant is zero. Then, the 
conservation of energy gives the thermal energy exhausted to the 
room as Qh = Qc + Weng, where Qc is the thermal energy the air 
conditioner removes from the room and Weng is the work done to 
operate the device. Since Weng > 0, the air conditioner is returning 
more thermal energy to the room than it is removing, so the average 
temperature in the room will increase. 

OQ22.7 Answer (c). The maximum theoretical efficiency (the Carnot 
efficiency) of a device operating between absolute temperatures Tc < 
Th is ec = 1 − Tc/Th. For the given steam turbine, this is 

   
  
ec = 1−

3.0 × 102  K
450 K

= 0.33 or 33%.  

OQ22.8 Answer (d). The whole Universe must have an entropy change of 
zero or more. The environment around the system comprises the rest 
of the Universe, and must have an entropy change of +8.0 J/K, or 
more. 

OQ22.9 Answer: E > D > C > B > A. Recall that for and ideal gas, PV = nRT, 
and Cv = 3R/2 and Cp = 5R/2. 

 Process A: isobaric, volume V goes to 0.5V, so temperature T goes to 

0.5T, dQ = nCpdT, so dS = nCpdT/T; therefore 
  
ΔS = − 5

2
nR ln 2.   
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 Process B: isothermal, volume V goes to 0.5V, so temperature T is 
constant and pressure P goes to 2P, dQ = pdV = nRT(dV/V), so dS =  
nR(dV/V); therefore  ΔS  = –nR ln 2. 

 Process C: adiabatic, Q = 0; therefore  ΔS  = 0. 

 Process D: isovolumetric, pressure P goes to 2P, so temperature T 

goes to 2T, dQ = nCvdT, so dS = n Cv dT/T; therefore 
  
ΔS = 3

2
nR ln 2.  

 Process E: isobaric, volume V goes to 2V; therefore 
  
ΔS = 5

2
nR ln 2.  

OQ22.10 Answer (b). From conservation of energy, the energy input to the 
engine must be 

     Qh = Weng + Qc = 15.0 kJ + 37.0 kJ = 52.0 kJ  

 so the efficiency is 

   
  
e =

Weng

Qc

=
15.0 kJ
52.0 kJ

= 0.288 or 28.8%.  

OQ22.11 Answer (b). In the reversible adiabatic expansion OA, the gas does 
work against a piston, takes in no energy by heat, and so drops in 
internal energy and in temperature. In the free adiabatic expansion 
OB, there is no piston, no work output, constant internal energy, and 
constant temperature for the ideal gas. Point A is at a lower 
temperature than O and point C is at an even lower temperature. The 
only point that could possibly have the same temperature as O is 
point B. 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ22.1 (a) The reduced flow rate of ‘cooling water’ reduces the amount of 
heat exhaust Qc that the plant can put out each second. Even 
with constant efficiency, the rate at which the turbines can take 
in heat is reduced and so is the rate at which they can put out 
work to the generators. If anything, the efficiency will drop, 
because the smaller amount of water carrying the heat exhaust 
will tend to run hotter. The steam going through the turbines 
will undergo a smaller temperature change. Thus there are two 
reasons for the work output to drop. 

 (b) The engineer’s version of events, as seen from inside the plant, 
is complete and correct. Hot steam pushes hard on the front of a 
turbine blade. Still-warm steam pushes less hard on the back of 
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the blade, which turns in response to the pressure difference. 
Higher temperature at the heat exhaust port in the lake works 
its way back to a corresponding higher temperature of the 
steam leaving a turbine blade, a smaller temperature drop 
across the blade, and a lower work output. 

CQ22.2 One: Energy flows by heat from a hot bowl of chili into the cooler 
surrounding air. Heat lost by the hot stuff is equal to heat gained by 
the cold stuff, but the entropy decrease of the hot stuff is less than the 
entropy increase of the cold stuff. 

 Two: As you inflate a soft car tire at a service station, air from a tank 
at high pressure expands to fill a larger volume. That air increases in 
entropy and the surrounding atmosphere undergoes no significant 
entropy change. 

 Three: The brakes of your car get warm as you come to a stop. The 
shoes and drums increase in entropy and nothing loses energy by 
heat, so nothing decreases in entropy. 

CQ22.3 No. The first law of thermodynamics is a statement about energy 
conservation, while the second is a statement about stable thermal 
equilibrium. They are by no means mutually exclusive. For the 
particular case of a cycling heat engine, the first law implies 

  Qh = Weng + Qc , and the second law implies   Qc > 0 . 

CQ22.4 Take an automobile as an example. According to the first law or the 
idea of energy conservation, it must take in all the energy it puts out. 
Its energy source is chemical energy in gasoline. During the 
combustion process, some of that energy goes into moving the 
pistons and eventually into the mechanical motion of the car. The 
chemical potential energy turning into internal energy can be 
modeled as energy input by heat. The second law says that not all of 
the energy input can become output mechanical energy. Much of the 
input energy must and does become energy output by heat, which, 
through the cooling system, is dissipated into the atmosphere. 
Moreover, there are numerous places where friction, both mechanical 
and fluid, turns mechanical energy into internal energy. In even the 
most efficient internal combustion engine cars, less than 30% of the 
energy from the fuel actually goes into moving the car. The rest ends 
up as useless internal energy in the atmosphere. 

CQ22.5 Either statement can be considered an instructive analogy. We 
choose to take the first view. All processes require energy, either as 
energy content or as energy input. The kinetic energy that it 
possessed at its formation continues to make the Earth go around. 
Energy released by nuclear reactions in the core of the Sun drives 
weather on the Earth and essentially all processes in the biosphere. 
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The energy intensity of sunlight controls how lush a forest or jungle 
can be and how warm a planet is. Continuous energy input is not 
required for the motion of the planet. Continuous energy input is 
required for life because energy tends to be continuously degraded, 
as heat flows into lower-temperature sinks. The continuously 
increasing entropy of the Universe is the index to energy-transfers 
completed.  

CQ22.6 (a) A slice of hot pizza cools off. Road friction brings a skidding car 
to a stop. A cup falls to the floor and shatters. Your cat dies. Any 
process is irreversible if it looks funny or frightening when shown in 
a videotape running backwards. (b) The free flight of a projectile is 
nearly reversible. 

CQ22.7 (a) When the two sides of the semiconductor are at different 
temperatures, an electric potential (voltage) is generated across 
the material, which can drive electric current through an 
external circuit. The two cups at 50°C contain the same amount 
of internal energy as the pair of hot and cold cups. But no 
energy flows by heat through the converter bridging between 
them and no voltage is generated across the semiconductors. 

 (b) A heat engine must put out exhaust energy by heat. The cold 
cup provides a sink to absorb output or wasted energy by heat, 
which has nowhere to go between two cups of equally warm 
water. 

CQ22.8 A higher steam temperature means that more energy can be 
extracted from the steam. For a constant temperature heat sink at Tc, 
and steam at Th, the efficiency of the power plant goes as 

  

Th −Tc

Th

= 1−
Tc

Th

 and is maximized for a high Th. 

CQ22.9 (a) For an expanding ideal gas at constant temperature, the internal 
energy stays constant. The gas must absorb by heat the same 
amount of energy that it puts out by work. Then its entropy 

change is 
  
ΔS =

ΔQ
T

= nR ln
V2

V1

⎛
⎝⎜

⎞
⎠⎟

.  

 (b) For a reversible adiabatic expansion,  ΔQ = 0 and  ΔS  = 0. An 
ideal gas undergoing an irreversible adiabatic expansion can 
have any positive value for  ΔS  up to the value given in part (a). 

CQ22.10 No. Your roommate creates “order” locally, but as she works, she 
transfers energy by heat to the room, causing the net entropy to 
increase. An analogy used by Carnot is instructive: A waterfall 
continuously converts mechanical energy into internal energy. It 
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continuously creates entropy as the motion of the falling water turns 
into molecular motion at the bottom of the falls. We humans put 
turbines into the waterfall, diverting some of the energy stream to 
our use. Water flows spontaneously from high to low elevation and 
energy spontaneously flows by heat from high to low temperature. 
Into the great flow of solar radiation from Sun to Earth, living things 
put themselves. They live on energy flow, more than just on energy. 
A basking snake diverts energy from a high-temperature source (the 
Sun) through itself temporarily, before the energy inevitably is 
radiated from the body of the snake to a low-temperature sink (outer 
space). A tree builds cellulose molecules and we build libraries and 
babies who look like their grandmothers, all out of a thin diverted 
stream in the universal flow of energy. We do not violate the second 
law, for we build local reductions in the entropy of one thing within 
the inexorable increase in the total entropy of the Universe. 

CQ22.11 No. An engine with no thermal pollution would absorb energy from 
a reservoir and convert it completely into work; this is a clear 
violation of the second law of thermodynamics. 

CQ22.12 (a) Shaking opens up spaces between jellybeans. The smaller ones 
more often can fall down into spaces below them. (b) The 
accumulation of larger candies on top and smaller ones on the 
bottom implies a small decrease in one contribution to the total 
entropy, but the second law is not violated. The total entropy 
increases as the system warms up, its increase in internal energy 
coming from the work put into shaking the box and also from a small 
decrease in gravitational potential energy as the beans settle 
compactly together. 

CQ22.13 First, the efficiency of the automobile engine cannot exceed the 
Carnot efficiency: it is limited by the temperature of burning fuel and 
the temperature of the environment into which the exhaust is 
dumped. Second, the engine block cannot be allowed to go over a 
certain temperature. Third, any practical engine has friction, 
incomplete burning of fuel, and limits set by timing and energy 
transfer by heat. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 22.1 Heat Engines and the  
Second Law of Thermodynamics	  

P22.1 (a) We have 
  
e =

Weng

Qh

= 1−
Qc

Qh

    →     
Qc

Qh

= 1− e    →     Qh =
Qc

1− e
 

  With   Qc = 8 000 J,  we have 
  
Qh =

Qc

1− e
=

8 000 J
1− 0.250

=  10.7 kJ  

 (b) The work per cycle is  

   
  
Weng = Qh – Qc = 2 667  J  

  From the definition of output power,  
   

  
P =

Weng

Δt

 

  we have the time for one cycle: 
   

  
Δt =

Weng

P =
2 667 J

5 000 J/s = 0.533 s
 

P22.2 (a) The efficiency of a heat engine is   e = Wenv Qh , where Wenv is the 

work done by the engine and  Qh  is the energy absorbed from 

the higher temperature reservoir. Thus, if   Wenv = Qh 4 , the 

efficiency is   e = 1 4 = 0.25  or  25% . 

 (b) From conservation of energy, the energy exhausted to the lower 
temperature reservoir is   Qc = Qh −Wenv.  Therefore, if 

  Wenv = Qh 4 , we have   Qc = 3 Qh 4  or 
  
Qc Qh = 3 4 .  

P22.3 (a) The efficiency of the engine is 

    
  
e =

Weng

Qh

=
25.0 J
360 J

= 0.069 4  or 
 

6.94%  

 (b) The energy expelled to the cold reservoir during each cycle is 

   
  
Qc = Qh −Weng = 360 J − 25.0 J = 335 J  
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P22.4 The engine’s output work we identify with the kinetic energy of the 
bullet: 

   

  

Weng = K =
1
2

mv2 =
1
2

0.002 4 kg( ) 320 m s( )2 = 123 J

e =
Weng

Qh

Qh =
Weng

e
=

123 J
0.011

= 1.12 × 104  J

Qh = Weng + Qc

 

 The energy exhaust is 
   

  

Qc = Qh −Weng = 1.12 × 104  J − 123 J = 1.10 × 104  J

Q = mcΔT

ΔT =
Q
mc

=
1.10 × 104  J ⋅kg°C

(1.80 kg)(448 J)
= 13.7°C

 

P22.5 (a) The engine’s efficiency is given by 
    

  

e =
Weng

Qh

=
Qh − Qc

Qh

= 1−
Qc

Qh

= 1− 1.20 kJ
1.70 kJ

= 0.294 (or 29.4%)

 

 (b) During each cycle, the work done by the engine is 

   
  
Weng = Qh − Qc = 1.70 kJ − 1.20 kJ = 5.00 × 102  J  

 (c) The power transferred out of the engine is 

   
  
P =

Weng

Δt
=

5.00 × 102  J
0.300 s

= 1.67 × 103  W = 1.67 kW  

P22.6 (a) The input energy each hour is 
   

 

7.89 × 103  J revolution( ) 2 500 rev min( ) 60 min
1 h

⎛
⎝⎜

⎞
⎠⎟

                                                                  = 1.18 × 109  J h

 

  implying fuel input 
 
1.18 × 109  J h( ) 1 L

4.03 × 107  J
⎛
⎝⎜

⎞
⎠⎟

= 29.4 L h .  
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 (b)   Qh = Weng + Qc .  For a continuous-transfer process we may divide 
by time to have 

   
  

Qh

Δt
=

Weng

Δt
+

Qc

Δt
 

  
  
Useful power output =

Weng

Δt
=

Qh

Δt
−

Qc

Δt
 

  

  

=
7.89 × 103  J
revolution

−
4.58 × 103  J
revolution

⎛
⎝⎜

⎞
⎠⎟

2 500 rev
1 min

⎛
⎝⎜

⎞
⎠⎟

1 min
60 s

⎛
⎝⎜

⎞
⎠⎟

= 1.38 × 105  W

Peng = 1.38 × 105  W( ) 1 hp
746 W

⎛
⎝⎜

⎞
⎠⎟ = 185 hp

 

 (c) 
  
Peng = τω ⇒τ =

Peng

ω
=

1.38 × 105  J s
2 500 rev 60 s

⎛
⎝⎜

⎞
⎠⎟

1 rev
2π  rad

⎛
⎝⎜

⎞
⎠⎟ = 527 N ⋅m  

 (d) 
  

Qc

Δt
=

4.58 × 103  J
revolution

⎛
⎝⎜

⎞
⎠⎟

2 500 rev
60 s

⎛
⎝⎜

⎞
⎠⎟ = 1.91× 105  W  

P22.7 The energy to melt a mass   ΔmHg  of Hg is   Qc = mHgLf .  The energy 

absorbed to freeze   ΔmAl  of aluminum is   Qh = mAlLf .  The efficiency is 
   

  

e = 1−
Qc

Qh

= 1−
ΔmHgLHg

ΔmAlLAl

= 1−
15.0 g( ) 1.18× 104  J kg( )
1.00 g( ) 3.97 × 105  J kg( )

= 0.554 = 55.4%

 

 
 

	  

Section 22.2 Heat Pumps and Refrigerators 

P22.8 
  
COP refrigerator( ) =

Qc

W
 

 (a) If   Qc = 120 J  and COP = 5.00, then 
  
W = 24.0 J .  

 (b) 
  
Qh = Qc + W = 120 J + 24 J = 144 J  

P22.9 (a) The work done on the refrigerant in each cycle is  

   
  W = QH −QL = 625 kJ − 550 kJ = 75.0 kJ  
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 (b) The coefficient of performance of a refrigerator is: 

   
  
COP =

QL

W
=

QL

QH −QL

 

  Solving numerically: 
   

  
COP = QL

W
= QL

QH −QL

= 550 kJ
625 kJ − 550 kJ

= 7.33
 

P22.10 (a) The coefficient of performance of a heat pump is   COP = Qh W ,  

where  Qh  is the thermal energy delivered to the warm space and 
W is the work input required to operate the heat pump. 
Therefore, 

   

  

Qh = W ⋅COP = P ⋅ Δt( ) ⋅COP

= 7.03 × 103  
J
s

⎛
⎝⎜

⎞
⎠⎟

8.00 h( ) 3 600 s
1 h

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥3.80 = 7.69 × 108  J

 

 (b) The energy extracted from the cold space (outside air) is 

   
  
Qc = Qh −W = Qh −

Qh

COP
= Qh 1−

1
COP

⎛
⎝⎜

⎞
⎠⎟

 

  or 
  
Qc = 7.69 × 108  J( ) 1−

1
3.80

⎛
⎝⎜

⎞
⎠⎟ = 5.67 × 108  J  

*P22.11 
  
COP = 3.00 = Qc

W
. Therefore, 

  
W = Qc

3.00
. 

 The heat removed each minute is 
   

  

QC

t
= 0.030 0 kg( ) 4 186 J kg°C( ) 22.0°C( )

     + 0.030 0 kg( ) 3.33 × 105  J kg( )
     + 0.030 0 kg( ) 2 090 J kg°C( ) 20.0°C( )

= 1.40 × 104  J min = 233 J/s

 

 Thus, the work done per second 
  
= P = 233 J/s

3.00
= 77.8 W .  

P22.12 (a) The coefficient of performance of a heat pump is 

    
  
COPh.p. =

QH

W
=

QH

QH −QL
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  Because work (energy) is power times time   W = PΔt( ),  the 
equation above may be rearranged to obtain the heat added to the 
home: 

    

  

QH = COP ⋅W = COP ⋅PΔt

= 4.20( ) 1.75× 103  J/s( ) 3600 s( ) = 2.65× 107  J

 

 (b) The coefficient of performance of a refrigerator or air conditioner 
is 

    
  
COPrefr. =

QL

W
=

QL

QH −QL

 

  and can be written in terms of the coefficient of performance of a 
heat pump because: 

    
  W = QH −QL:  

    

  
COPrefr. = QL

W
= QH −W

QH −QL

= QH

QH −QL

+ W
QH −QL

 

  Where the first term on the far right is identically the coefficient 
of performance of the heat pump, and the second term is 
identically one (because  W = QH −QL ). Thus, 

    

  

COPrefr. = QH

QH −QL

+ W
QH −QL

= COPh.p. − 1 = 4.20( )− 1

= 3.20

 

P22.13 (a) The energy use by the freezer each day is 
    

  

W = P ⋅ Δt = 457 
kWh

y

⎛

⎝
⎜

⎞

⎠
⎟

3.60× 106  J
1 kWh

⎛
⎝⎜

⎞
⎠⎟

 1 y
365 d

⎛

⎝
⎜

⎞

⎠
⎟ ⋅ 1 d( )

= 4.51× 106  J

 

  (b) From the definition of the coefficient of performance for a 
refrigerator,   COP( )R = Qc W ,  the thermal energy removed from 
the cold space each day is 

    
  Qc = COP( )R ⋅W = 6.30 4.51× 106  J( ) = 2.84 × 107  J  
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  (c) The water must be cooled 20.0°C before it will start to freeze, so 
the thermal energy that must be removed from mass m of water 
to freeze it is   Qc = mcw ΔT + mLf .  The mass of water that can be 
frozen each day is then 

    

  

m =
Qc

cw ΔT + Lf

= 2.84× 107  J
4186 J kg ⋅°C( ) 20.0°C( )+ 3.33× 105  J kg

= 68.1 kg

 

 
 

	  

Section 22.3 Reversible and Irreversible Processes 

Section 22.4 The Carnot Engine 
P22.14 The maximum possible efficiency for a heat engine operating between 

reservoirs with absolute temperatures of Tc = 25° + 273 = 298 K and  
Th = 375° + 273 = 648 K is the Carnot efficiency: 

   

  
ec = 1− Tc

Th

= 1− 298 K
648 K

= 0.540 or 54.0%( )
 

P22.15 We use the Carnot expression for maximum possible efficiency, and 
the definition of efficiency to find the useful output. The engine is a 
steam turbine in an electric generating station with 

      Tc = 430°C = 703 K and Th = 1 870°C = 2 143 K  

 (a) 
  
eC =

ΔT
Th

=
1 440 K
2 143 K = 0.672 = 67.2%  

 (b) 
  
e = Weng/Qh = 0.420      and    Qh = 1.40 × 105  J  

  for one second of operation, so  

   
  
Weng = 0.420 Qh = 5.88 × 104  J  

  and the power is  

   
  
P =

Weng

Δt
=

5.88 × 104  J
1 s

= 58.8 kW  

P22.16 The efficiency of a Carnot engine operating between these 
temperatures is 

   

  
eC  = 1 − 

Tc

Th

 = 1 − 
273 K
293 K

 = 0.068 3 = 6.83%
 



Chapter 22     1159 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 Therefore, there is no way that the inventor’s engine can have an 
efficiency of 0.110 = 11.0%. 

P22.17 
   
e =

Weng

Qh

= ec = 1−
Tc

Th

     →      
Weng /Δt

Qh /Δt
=

P
Qh Δt

= 1−
Tc

Th

 

 (a) 
  
Qh =

Weng

e
=

PΔt
1− (Tc /Th)

=
1.50 × 105  W( ) 3 600 s( )

1− 293 K /773 K( ) = 8.70 × 108  J  

 (b) 

  

Qc = Qh −Weng = Qh − PΔt

= 8.70 × 108  J − 1.50 × 105  W( ) 3 600 s( )
= 3.30 × 108  J

 

P22.18 
  
e =

Weng

Qh

= ec = 1−
Tc

Th

     →      
Weng /Δt

Qh /Δt
=

P
Qh Δt

= 1−
Tc

Th

 

 (a) 
  
Qh =

Weng

e
=

PΔt
1− (Tc /Th)

= PΔt
Th

Th −Tc

⎛
⎝⎜

⎞
⎠⎟

 

 (b) 
  
Qc = Qh −Weng = Qh − PΔt = PΔt

Th

Th −Tc

⎛
⎝⎜

⎞
⎠⎟
− PΔt  

  
  
     = PΔt

Th

Th −Tc

− 1
⎛
⎝⎜

⎞
⎠⎟

= PΔt
Th − Th −Tc( )

Th −Tc

⎛
⎝⎜

⎞
⎠⎟

= PΔt
Tc

Th −Tc

⎛
⎝⎜

⎞
⎠⎟

 

P22.19 
  
COP( )refrig =

Tc

ΔT
=

270 K
30.0 K

= 9.00  

P22.20 (a) For a complete cycle,   ΔEint = 0  and    

   
  
W = Qh − Qc = Qc

Qh( )
Qc

− 1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

  The text shows that for a Carnot cycle (and only for a reversible 

cycle), 
 

Qh

Qc

=
Th

Tc

. Therefore, 
 
W =

Th −Tc

Tc

Qc . 

 (b) We have the definition of the coefficient of performance for a 

refrigerator, 
  
COP =

Qc

W
. Using the result from part (a), this 

becomes 
  
COP =

Tc

Th −Tc

. 
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P22.21 
  
COP( )heat pump =

Qc + W
W

=
Th

ΔT
=

295 K
25 K

= 11.8  

P22.22 
  
COP( )Carnot refrig =

Tc

ΔT
=

4.00 K
289 K

= 0.013 8 =
Qc

W
 

 
  
∴W = 72.2 J  per 1 J of energy removed by heat. 

P22.23 We wish to evaluate   COP = Qc W  for a refrigerator, which is a Carnot 
engine run in reverse. For a Carnot engine, 

   

  

Qh = Qc + W

e =
W
Qh

=
W

Qc + W

⎫

⎬
⎪

⎭
⎪
→

1
e

=
Qc + W

W
=

Qc

W
+ 1   

 

 which gives 
   

  
 COP =

Qc

W
=

1
e
− 1

 

 Therefore,  

   
  
 COP =

1
e
− 1 =

1
0.350

− 1 = 1.86 .  

*P22.24 The Carnot summer efficiency is 
   

  
ec , s = 1− Tc

Th

= 1− 273 K + 20.0°C( )
273 K + 350°C( )

= 0.530
 

 And in winter,  
   

  
ec ,w = 1− 283

623
= 0.546

 

 Then the actual winter efficiency is  
   

 
0.320

0.546
0.530( ) = 0.330    or   33.0%

  

P22.25 (a) The absolute temperature of the cold reservoir is  
Tc = 20.0° + 273 = 293 K. If the Carnot efficiency is to be  
eC = 0.650, it is necessary that 

   

  
1− Tc

Th

= 0.650     or     
Tc

Th

= 0.350     and     Th =
Tc

0.35

 

  Thus, 

   
  
Th =

293 K
0.35

= 837 K  or   Th = 837 − 273 = 564°C  
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 (b) 

  

No. A real engine will always have an efficiency less than the
Carnot efficiency because it operates in an irreversible manner.

 

P22.26 (a) 
  
eC = 1− Tc

Th

= 1− 350 K
500 K

= 0.300  

 (b) We differentiate   eC = 1−Tc/Th  to find  
   

  

dec

dTh

= 0−Tc −1( )Th
−2 = Tc

Th
2 = 350 K

500 K( )2 = 1.40× 10−3  K−1
  

 (c) We differentiate eC = 1 – Tc/Th to find  
   

  

dec

dTc

= 0− 1
Th

= − 1
500 K

= −2.00× 10−3  K−1
 

 (d) 
  
No. The derivative in part (c) depends only on Th.  

P22.27 Isothermal expansion at Th = 523 K 

 Isothermal compression at Tc = 323 K 

 Gas absorbs 1 200 J during expansion. 

 (a) For a Carnot cycle, 
  
ec = 1−

Tc

Th

 

  For any engine, 
  
e =

Weng

Qh

= 1−
Qc

Qh

 

  Therefore, for a Carnot engine, 
  
1−

Tc

Th

= 1−
Qc

Qh

 

  Then we have  
   

  
Qc = Qh

Tc

Th

⎛
⎝⎜

⎞
⎠⎟
= (1 200 J)

323 K
523 K

⎛
⎝⎜

⎞
⎠⎟ = 741 J

  

 (b) The work we can calculate as  
   

  
Weng = Qh − Qc = 1 200 J − 741 J( ) = 459 J

 

P22.28 (a) 
  
emax = 1− Tc

Th

= 1− 278 K
293 K

= 5.12 × 10−2 = 5.12%  

 (b) 
  
P =

Weng

Δt
= 75.0 × 106  J s  
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  Therefore,   Weng = 75.0 × 106  J s( ) 3 600 s h( ) = 2.70 × 1011  J h .  

  From 
  
e =

Weng

Qh

 we find  

    
  
Qh =

Weng

e
=

2.70 × 1011  J h
5.12 × 10−2 = 5.27 × 1012  J h  

 
= 5.27 TJ h  

 (c) 

 

As fossil-fuel prices rise, this way to use solar energy will become
a good buy.

 

*P22.29 (a) With reservoirs at absolute temperatures of Tc = 80.0°C + 273 = 
353 K and Th = 350°C + 273 = 623 K, the Carnot efficiency is 

   

  
eC = 1− Tc

Th

= 1− 353 K
623 K

= 0.433     or 43.3%( )
 

  so the maximum power output is 
   

  
Pmax =

Weng

Δt
=

eC Qh

Δt
= 0.433 21.0 kJ( )

1.00 s
= 9.10 kW

 

 (b) From 
  
e = 1−

Qc

Qh

,   the energy expelled by heat each cycle is 

   
  
Qc = Qh 1− e( ) = (21.0 kJ) 1− 0.433( ) = 11.9 kJ

 

P22.30 (a) 
  
e =

Weng1 + Weng2

Q1h

=
e1Q1h + e2Q2h

Q1h

 

  Now, Q2h = Q1c = Q1h − Weng1 = Q1h − e1Q1h, 

  so 

   
  
e =

e1Q1h + e2 Q1h − e1Q1h( )
Q1h

= e1 + e2 − e1e2  

 (b) 

  

e = e1 + e2 − e1e2 = 1−
Ti

Th

+ 1−
Tc

Ti

− 1−
Ti

Th

⎛
⎝⎜

⎞
⎠⎟

1−
Tc

Ti

⎛
⎝⎜

⎞
⎠⎟

= 2 −
Ti

Th

−
Tc

Ti

− 1 +
Ti

Th

+
Tc

Ti

−
Tc

Th

= 1−
Tc

Th

 

 (c) 

 

The combination of reversible engines is itself a reversible engine
so it has the Carnot efficiency. No improvement in net efficiency
has resulted.
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 (d) With   Weng2 = Weng1 ,  
  
e =

Weng1 + Weng2

Q1h

=
2Weng1

Q1h

= 2e1  

   

  

1−
Tc

Th

= 2 1−
Ti

Th

⎛
⎝⎜

⎞
⎠⎟

0 −
Tc

Th

= 1−
2Ti

Th

 

   

  

2Ti = Th + Tc

Ti =
1
2

Th + Tc( )

 

 (e) 
  
e1 = e2 = 1−

Ti

Th

= 1−
Tc

Ti

 

  

  

Ti
2 = TcTh

Ti = ThTc( )1 2  

P22.31 (a) In an adiabatic process,   Pf Vf
γ = PiVi

γ .  Also, 
  

PfVf

Tf

⎛

⎝
⎜

⎞

⎠
⎟

γ

= PiVi

Ti

⎛
⎝⎜

⎞
⎠⎟

γ

.  

  Dividing the second equation by the first yields 
  
Tf = Ti

Pf

Pi

⎛
⎝⎜

⎞
⎠⎟

γ −1( ) γ

.  

  Since 
 
γ =

5
3

 for argon, 
 

γ − 1
γ

=
2
5
= 0.400  and we have 

   

  
Tf = 1 073 K( ) 300 × 103

 Pa
1.50 × 106

 Pa
⎛
⎝⎜

⎞
⎠⎟

0.400

= 564 K
 

 (b)   ΔEint = nCVΔT = Q −Weng = 0 −Weng ,  so   Weng = −nCVΔT ,  

  and the power output is (suppressing the units of R) 

  

  

P =
Weng

Δt
= −nCVΔT

Δt

=
−80.0 kg( ) 1 mol 0.039 9 kg( ) 3

2
⎛
⎝

⎞
⎠ 8.314( ) 564 K − 1 073 K( )

60.0 s
P = 2.12 × 105  W = 212 kW

 

 (c) 
  
eC = 1−

Tc

Th

= 1−
564 K

1 073 K
= 0.475     or  

 
47.5%  
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P22.32 (a) First, consider the adiabatic process   D→ A:  

    PDVD
γ = PAVA

γ    so    
   

  
PD = PA

VA

VD

⎛
⎝⎜

⎞
⎠⎟

γ

= 1 400 kPa( ) 10.0 L
15.0 L

⎛
⎝⎜

⎞
⎠⎟

5 3

= 712 kPa
 

  Also, 
  

nRTD

VD

⎛
⎝⎜

⎞
⎠⎟

VD
γ =

nRTA

VA

⎛
⎝⎜

⎞
⎠⎟

VA
γ ,  

  or 
  
TD = TA

VA

VD

⎛
⎝⎜

⎞
⎠⎟

γ −1

= 720 K( ) 10.0
15.0

⎛
⎝⎜

⎞
⎠⎟

2 3

= 549 K .  

  Now, consider the isothermal process   C → D:  
  
TC = TD = 549 K  

   

  
PC = PD

VD

VC

⎛
⎝⎜

⎞
⎠⎟
= PA

VA

VD

⎛
⎝⎜

⎞
⎠⎟

γ⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

VD

VC

⎛
⎝⎜

⎞
⎠⎟
=

PAVA
γ

VCVD
γ −1  

   

  
PC =

1 400 kPa( ) 10.0 L( )5 3

24.0 L( ) 15.0 L( )2 3 = 445 kPa
 

  Next, consider the adiabatic process   B→ C:   PBVB
γ = PCVC

γ  

  But, 
  
PC =

PAVA
γ

VCVD
γ −1  from above. Also considering the isothermal 

process,  
 
PB = PA

VA

VB

⎛
⎝⎜

⎞
⎠⎟

. 

  Hence, 
  
PA

VA

VB

⎛
⎝⎜

⎞
⎠⎟

VB
γ =

PAVA
γ

VCVD
γ −1

⎛
⎝⎜

⎞
⎠⎟

VC
γ ,  which reduces to 

   

  
VB =

VAVC

VD

=
10.0 L( ) 24.0 L( )

15.0 L
= 16.0 L

 

  Finally, 
  
PB = PA

VA

VB

⎛
⎝⎜

⎞
⎠⎟

= 1 400 kPa( ) 10.0 L
16.0 L

⎛
⎝⎜

⎞
⎠⎟ = 875 kPa .  

State P (kPa) V (L) T (K) 

A 1 400 10.0 720 

B 875 16.0 720 

C 445 24.0 549 

D 712 15.0 549 

TABLE P22.32(a) 
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 (b) For the isothermal process   A→ B:   ΔEint = nCVΔT = 0  so  

   

  

Q = −W = nRT ln
VB

VA

⎛
⎝⎜

⎞
⎠⎟

= 2.34 mol( ) 8.314 J mol ⋅K( ) 720 K( )ln
16.0 L
10.0 L

⎛
⎝⎜

⎞
⎠⎟

= +6.58 kJ

 

  For the adiabatic process   B→ C:  
  
Q = 0  

   

  

ΔEint = nCV TC −TB( )
= 2.34 mol( ) 3

2
8.314 J mol ⋅K( )⎡

⎣⎢
⎤
⎦⎥

549 K − 720 K( )

= −4.98 kJ

 

  and 
  
W = −Q + ΔEint = 0 + −4.98 kJ( ) = −4.98 kJ .  

  For the isothermal process   C → D:  
  
ΔEint = nCVΔT = 0  and  

   

  

Q = −W = nRT ln
VD

VC

⎛
⎝⎜

⎞
⎠⎟

= 2.34 mol( ) 8.314 J mol ⋅K( ) 549 K( )ln
15.0 L
24.0 L

⎛
⎝⎜

⎞
⎠⎟

= −5.02 kJ

 

  Finally, for the adiabatic process   D→ A:   
  
Q = 0  

   

  

ΔEint = nCV TA −TD( )
= 2.34 mol( ) 3

2
8.314 J mol ⋅K( )⎡

⎣⎢
⎤
⎦⎥

720 K − 549 K( )

= +4.98 kJ

 

  and 
  
W = −Q + ΔEint = 0 + 4.98 kJ = +4.98 kJ  
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Process Q (kJ) W (kJ) ΔEint (kJ) 

 A → B  +6.58 –6.58 0 

 B→ C  0 –4.98 –4.98 

 C → D  –5.02 +5.02 0 

 D→ A  0 +4.98 +4.98 

ABCDA +1.56 –1.56 0 

TABLE P22.32(b) 

  The work done by the engine is the negative of the work input. 
The output work Weng is given by the work column in TABLE 
P22.32(b) with all signs reversed. 

 (c) 
  
e =

Weng

Qh

=
−WABCD

QA→B

=
1.56 kJ
6.58 kJ

= 0.237     or    
 

23.7%  

 (d) 
  
ec = 1−

Tc

Th

= 1−
549 K
720 K

= 0.237     or    
 

23.7%  

P22.33 (a) “The actual efficiency is two thirds the Carnot efficiency” reads as 
an equation 

   
  

Weng

Qh

=
Weng

Qc + Weng

=
2
3

1−
Tc

Th

⎛
⎝⎜

⎞
⎠⎟

=
2
3

Th −Tc

Th

 

  All the T’s represent absolute temperatures. Then 
   

  

Qc + Weng

Weng

=
1.5 Th

Th −Tc

   →     
Qc

Weng

=
1.5 Th

Th −Tc

− 1 =
1.5 Th −Th + Tc

Th −Tc

 

   
  
Qc = Weng

0.5 Th + Tc

Th −Tc

→
Qc

Δt
=

Weng

Δt
0.5 Th + Tc

Th −Tc

 

  

  

Qc

Δt
 = 1.40

0.5Th  + 383
Th  − 383

⎛
⎝⎜

⎞
⎠⎟

, where Qc/Δt is in megawatts and T  is

in kelvins.

 

 (b) 
 
The exhaust power decreases as the firebox temperature increases.  
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 (c) 

  

Qc

Δt
= 1.40 MW( ) 0.5 Th + 383 K

Th − 383 K
⎛
⎝⎜

⎞
⎠⎟

= 1.40 MW( ) 0.5(1 073 K) + 383 K
1 073 K − 383 K

⎛
⎝⎜

⎞
⎠⎟ = 1.87 MW

 

 (d) We require 
   

  

Qc

Δt
=

1
2

1.87 MW( )  = 1.40 MW( ) 0.5 Th + 383 K
Th − 383 K

⎛
⎝⎜

⎞
⎠⎟

0.5 Th + 383 K
Th − 383 K

= 0.666

0.5 Th + 383 K = 0.666Th − 255 K

Th = 638 K/0.166 = 3.84 × 103  K

 

 (e) The minimum possible heat exhaust power is approached as the 
firebox temperature goes to infinity, and it is   Qc /Δt =     
1.40 MW(0.5/1) = 0.700 MW. The heat exhaust power cannot be 
as small as (1/4)(1.87 MW) = 0.466 MW.  So no answer exists. The 
energy exhaust cannot be that small. 

P22.34 We determine the power required from 

   
  

Qc

W
= COPc  refrigerator( ) =

Tc

Th −Tc

=
Qc /Δt
W /Δt

 

   

  

0.150 W
W /Δt

=
260 K
40.0 K

P =
W
Δt

= 0.150 W( ) 40.0 K
260 K

⎛
⎝⎜

⎞
⎠⎟ = 23.1 mW

 

P22.35 The coefficient of performance of the device is 

   COP = 0.100 COPCarnot cycle  

 or 

 
  

Qh

W
= 0.100

Qh

W
⎛

⎝⎜
⎞

⎠⎟ Carnot cycle

= 0.100
1

Carnot efficiency
⎛
⎝⎜

⎞
⎠⎟

 

 
  

Qh

W
= 0.100

Th

Th −Tc

⎛
⎝⎜

⎞
⎠⎟
= 0.100

293 K
293 K − 268 K

⎛
⎝⎜

⎞
⎠⎟ = 1.17  

 Thus, 1.17 joules of energy enter the room by heat for each joule of 
work done. 

 
 



1168     Heat Engines, Entropy, and the Second Law of Thermodynamics 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

Section 22.5 Gasoline and Diesel Engines 
P22.36 Compression ratio = 6.00, γ = 1.40 

 (a) Efficiency of an Otto engine: 
  
e = 1−

V2

V1

⎛
⎝⎜

⎞
⎠⎟

γ −1

 

   
  
e = 1−

1
6.00

⎛
⎝⎜

⎞
⎠⎟

0.400

= 51.2%  

 (b) If actual efficiency e’ = 15.0%, the fraction of fuel wasted is 
(assuming complete combustion of the air-fuel mixture) 

  
e − ′e = 36.2% . 

P22.37 (a) For adiabatic expansion,   PiVi
γ = PfVf

γ .  Therefore, 

   

  

Pf = Pi
Vi

Vf

⎛

⎝
⎜

⎞

⎠
⎟

γ

= (3.00× 106  Pa)
50.0 cm3

300 cm3

⎛
⎝⎜

⎞
⎠⎟

1.40

= 2.44× 105  Pa

 
 

 (b) Since Q = 0, we have   Weng = Q − ΔE = −nCVΔT = −nCV (Tf −Ti).  

  From 
  
γ = CP

CV
= CV + R

CV
,   we get   (γ − 1)CV = R,  so that 

   

  
CV =

R
1.40 – 1 = 2.50 R

 

  The work done by the gas in expanding is then 
   

  

Weng = n(2.50 R)(Ti −Tf ) = 2.50PiVi − 2.50PfVf

= 2.50 3.00× 106  Pa( ) 50.0× 10−6  m3( )⎡⎣
                  − 2.44× 105  Pa( ) 300× 10−6  m3( )⎤⎦

= 192 J

 

P22.38 The energy transferred by heat over the  
paths CD and BA is zero since they are  
adiabatic.  

 Over path BC: QBC = nCP (TC − TB) > 0 

 Over path DA: QDA = nCV (TA − TD) < 0 

 Therefore,  Qc = QDA  and Qh = QBC. 

ANS. FIG. P22.38 
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 The efficiency is then 
   

  
e = 1−

Qc

Qh

= 1−
TD −TA( )CV

TC −TB( )CP

= 1− 1
γ

TD −TA

TC −TB

⎛
⎝⎜

⎞
⎠⎟

 

 
 

 

Section 22.6 Entropy 
P22.39 Each marble is returned to the bag before the next is drawn, so the 

probability of drawing a red one is the same as drawing a green one.  

 (a)  

Result Possible Combinations Total 

All red RRR 1 

2R, 1G RRG, RGR, GRR 3 

1R, 2G RGG, GRG, GGR 3 

All green GGG 1 

TABLE P22.39(a) 

 (b)  

Result Possible Combinations Total 

All red RRRRR 1 

4R, 1G RRRRG, RRRGR, RRGRR, RGRRR, 
GRRRR 

5 

3R, 2G RRRGG, RRGRG, RGRRG, GRRRG, 
RRGGR, RGRGR, GRRGR, RGGRR, 
GRGRR, GGRRR 

10 

2R, 3G GGGRR, GGRGR, GRGGR, RGGGR, 
GGRRG, GRGRG, RGGRG, GRRGG, 
RGRGG, RRGGG 

10 

1R, 4G RGGGG, GRGGG, GGRGG, GGGRG, 
GGGGR 

5 

All green GGGGG 1 

TABLE P22.39(b) 
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P22.40 (a) The table is shown in TABLE P22.40 below.  

 (b) On the basis of the table, the most probable recorded result of a 
toss is  2 heads and 2 tails .  

 

Result Possible Combinations Total 

All heads HHHH 1 

3H, 1T THHH, HTHH, HHTH, HHHT 4 

2H, 2T TTHH, THTH, THHT, HTTH, HTHT, 
HHTT 

6 

1H, 3T HTTT, THTT, TTHT, TTTH 4 

All tails TTTT 1 

TABLE P22.40 

P22.41 (a) A 12 can only be obtained 
 

one  way, as 6 + 6. 

 (b) A 7 can be obtained 
 

six  ways: 6 + 1, 5 + 2, 4 + 3, 3 + 4, 2 + 5, 

and 1 + 6. 

 
 

	  

Section 22.7 Changes in Entropy for Thermodynamic Systems 

Section 22.8 Entropy and the Second Law 
P22.42 For a freezing process, 

   
  
ΔS =

ΔQ
T

=
− 0.500 kg( ) 3.33 × 105  J kg( )

273 K
= −610 J K  

P22.43 The hot water has negative energy input by heat, given by   Q = mcΔT.  
The surrounding room has positive energy input of this same number 
of joules, which we can write as   Qroom = mc ΔT( )water

.  Imagine the room 
absorbing this energy reversibly by heat, from a stove at 20.001°C. Then 
its entropy increase is Qroom/T: 

  

  

ΔS = Qr

T
= mcw ΔT

T
=

0.125 kg( ) 4186 J kg ⋅°C( ) 80°C( )
293 K

= 143 J K
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*P22.44   ciron = 448 J kg ⋅ °C;    cwater = 4 186 J kg ⋅ °C  

 From   Qcold = −Qhot :  
   

  

4.00 kg( ) 4 186 J kg ⋅ °C( ) Tf − 10.0°C( )
                        = − 1.00 kg( ) 448 J kg ⋅ °C( ) Tf − 900°C( )

 

 which yields Tf = 33.2°C = 306.3 K. Then,  

   

  

ΔS = cwatermwaterdT
T283 K

306.3 K

∫ + cironmirondT
T1 173 K

306.3 K

∫

ΔS = cwatermwater ln
306.3 K
283 K( ) + cironmiron ln

306.3 K
1 173 K

⎛
⎝⎜

⎞
⎠⎟

ΔS = 4 186 J kg ⋅K( ) 4.00 kg( ) 0.078 7( )
                                 + 448 J kg ⋅K( ) 1.00 kg( ) −1.34( )

ΔS = 717 J K

 

*P22.45 The car ends up in the same thermodynamic state as it started, so it 
undergoes zero changes in entropy. The original kinetic energy of the 
car is transferred by heat to the surrounding air, adding to the internal 
energy of the air. Its change in entropy is 

   

  
ΔS =

1
2

mv2

T
=

1
2

1 500 kg( ) 20.0 m/s( )2

293 K
= 1.02 kJ K

 

P22.46 The total momentum before collision is zero, so the combined mass 
must be at rest after the collision. The energy dissipated by heat equals 
the total initial kinetic energy, 

  
  
Q = 2

1
2

mv2⎛
⎝⎜

⎞
⎠⎟ = 2000 kg( ) 20.0 m s( )2 = 8.00 × 105  J = 800 kJ  

 With the environment at an absolute temperature of T = 23 + 273 = 296 
K, the change in entropy is 

  
  
ΔS =

ΔQr

T
=

800 kJ
296 K

= 2.70 kJ K  

P22.47 The potential energy lost by the log is eventually transferred by heat 
into thermal energy of the environment, so Q = mgh, and the change in 
entropy is 

  
  
ΔS =

Q
T

=
mgh

T
=

70.0 kg( ) 9.80 m s2( ) 25.0 m( )
300 K

= 57.2 J K  
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P22.48 (a) This is a free expansion process. From Equation 22.17,  
   

  

ΔS = nR ln
Vf

Vi

⎛
⎝⎜

⎞
⎠⎟
= (1.00 mol)(8.314 J mol ⋅K) ln

2
1

⎛
⎝⎜

⎞
⎠⎟

= 5.76 J K

 

  (b) The gas is expanding into an evacuated region. Therefore, W = 0. 
It expands so fast that energy has no time to flow by heat: Q = 0. But 
ΔEint = Q + W, so in this case ΔEint = 0. For an ideal gas, the internal 
energy is a function of the temperature and no other variables, so 
with ΔEint = 0, there is 

 
no change in temperature . 

 

 

ANS. FIG. P22.48 

P22.49 Each gas expands into the other half of the container as though the 
other gas were not there; therefore, consider each gas to undergo a free 
expansion process in which its volume doubles. From Equation 22.17, 
the entropy change is twice that for a single gas: 

   

  

ΔS = 2 nR ln
Vf

Vi

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

    = 2 0.044 0( ) 8.314 J mol ⋅K( ) ln 2( )⎡⎣ ⎤⎦
    = 0.507 J K

 

 

ANS. FIG. P22.49 
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*P22.50 We take data from Tables 20.1 and 20.2, and we assume a constant 
specific heat for each phase. As the ice is warmed from –12.0°C to 0°C, 
its entropy increases by 

   

  

ΔS = dQ
Ti

f

∫ = mcicedT
T261 K

273 K

∫ = mcice T −1 dT
261 K

273 K

∫ = mcice lnT 261 K
273 K

ΔS = 0.027 9 kg( ) 2 090 J kg ⋅ °C( ) ln 273 K − ln 261 K( )

= 0.027 9 kg( ) 2 090 J kg ⋅ °C( ) ln
273 K
261 K( )⎡

⎣⎢
⎤
⎦⎥

ΔS = 2.62 J K

 

 As the ice melts its entropy change is 
   

  
ΔS = Q

T
=

mLf

T
=

0.027 9 kg( ) 3.33 × 105  J kg( )
273 K

= 34.0 J K
 

 As liquid water warms from 273 K to 373 K, 
   

  

ΔS =
mcliquiddT

Ti

f

∫ = mcliquid ln
Tf

Ti

⎛
⎝⎜

⎞
⎠⎟

= 0.027 9 kg( ) 4 186 J kg ⋅ °C( )ln
373 K
273 K( ) = 36.5 J K

 

 As the water boils and the steam warms, 
   

  
ΔS = mLv

T
+ mcsteam ln

Tf

Ti

⎛
⎝⎜

⎞
⎠⎟

 

   

  

ΔS =
0.027 9 kg( ) 2.26 × 106  J kg( )

373 K

                 + 0.027 9 kg( ) 2 010 J kg ⋅ °C( )ln
388 K
373 K( )

= 169 J K + 2.21 J K

 

 The total entropy change is 
   

  
ΔStot = 2.62 + 34.0 + 36.5 + 169 + 2.21( )  J K = 244 J K

 

 For steam at constant pressure, the molar specific heat in Table 20.1 

implies a specific heat of 
 
35.4 J mol ⋅K( ) 1 mol

0.018 kg
⎛
⎝⎜

⎞
⎠⎟

= 1 970 J kg ⋅K ,  

nearly agreeing with 2 010 J/kg . K. 

*P22.51 The change in entropy is given by  
  

 
ΔS = dQ

Ti

f

∫ = mc
dT
TTi

Tf

∫
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 Here T means the absolute temperature. We would ordinarily think of 
dT as the change in the Celsius temperature, but one Celsius degree of 
temperature change is the same size as one kelvin of change, so dT is 
also the change in absolute T. 

  

  

ΔS = mc lnT Ti

Tf = mc ln
Tf

Ti

⎛
⎝⎜

⎞
⎠⎟

= 0.250 kg( ) 4 186 J kg ⋅K( )ln
353 K
293 K

⎛
⎝⎜

⎞
⎠⎟ = 195 J K

 

P22.52 Sitting here writing, I convert chemical energy from molecules in food, 
into internal energy that leaves my body by heat into the room-
temperature surroundings. My rate of energy output is equal to my 
metabolic rate, 

   

 
2 500 kcal d =

2 500 × 103  cal
86 400 s

⎛
⎝⎜

⎞
⎠⎟

4.186 J
1 cal

⎛
⎝⎜

⎞
⎠⎟ = 120 W

 

 My body is in steady state, changing little in entropy, as the 
environment increases in entropy at the rate 

   

  

ΔS
Δt

=
Q T
Δt

=
Q Δt

T
=

120 W
293 K

= 0.4 W K ~ 1 W K
 

 When using powerful appliances or an automobile, my personal 
contribution to entropy production is much greater than the above 
estimate, based only on metabolism. 

P22.53 The change in entropy of a reservoir is   ΔS = Qr T ,  where Qr is the 
energy absorbed (Qr > 0) or expelled (Qr < 0) by the reservoir, and T is 
the absolute temperature of the reservoir. 

 (a) For the hot reservoir: 
  
ΔSh =

−2.50 × 103  J
725 K

= −3.45 J K  

 (b) For the cold reservoir: 
  
ΔSc =

+2.50 × 103  J
310 K

= +8.06 J K  

 (c) For the Universe:  

   
  
ΔSU = ΔSh + ΔSc = −3.45 J K + 8.06 J K = +4.61 J K  

P22.54 The change in entropy of a reservoir is   ΔS = Qr T ,  where Qr is the 
energy absorbed (Qr > 0) or expelled (Qr < 0) by the reservoir, and T is 
the absolute temperature of the reservoir. 

 (a) Energy is transferred from the hot reservoir by heat:   Qh = −Q,  



Chapter 22     1175 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

and 
 
ΔSh = −

Q
Th

. 

 (b) Energy is transferred to the cold reservoir by heat:   Qc = +Q,  and 

 
ΔSc =

Q
Tc

. 

 (c) For the Universe, 
  
ΔSU = ΔSh + ΔSc = Q

1
Tc

−
1

Th

⎛
⎝⎜

⎞
⎠⎟

. 

P22.55 
  
ΔS =

Q2

T2

−
Q1

T1

=
1 000 J
290 K

−
1 000 J
5 800 K

⎛
⎝⎜

⎞
⎠⎟ = 3.28 J K  

*P22.56 Define   T1 = Temp Cream = 5.00°C = 278 K.   

 Define   T2 = Temp Coffee = 60.0°C = 333 K.   

 The final temperature of the mixture is  
   

  
Tf = (20.0 g)T1 + (200 g)T2

220 g
= 55.0°C = 328 K

  

 The entropy change due to this mixing is  
   

  

ΔS = 20.0 g( ) cVdT
TT1

Tf∫ + 200 g( ) cVdT
TT2

Tf∫

= 84.0 J K( )ln
Tf

T1

⎛
⎝⎜

⎞
⎠⎟

+ 840 J K( )ln
Tf

T2

⎛
⎝⎜

⎞
⎠⎟

= 84.0 K J( )ln
328 K
278 K( ) + 840 J K( )ln

328 K
333 K( )

ΔS = +1.18 J K

 

*P22.57 We first determine the energy that must be extracted from tap water at 
10.0°C to produce ice at –20.0°C: 

    Qc = mcΔT + mL + mcΔT  
   

  

Qc = 0.500 kg( ) 4 186 J kg ⋅ °C( ) 10.0°C( )
                    + 0.500 kg( ) 3.33 × 105  J kg( )
                    + 0.500 kg( ) 2 090 J kg ⋅ °C( ) 20.0°C( )

= 2.08 × 105  J
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 The work required to accomplish this is then found from 
   

  

Qc

W
= COPc refrigerator( ) = Tc

Th −Tc

 

 or 
   

  

W = Qc Th −Tc( )
Tc

=
2.08× 105  J( ) 20.0°C− −20.0°C( )[ ]

273 K − 20.0°C

= 32.9 kJ

 

P22.58 We are given Tc = 273 K. 

 (a) For steam at 100°C, Th = 373 K and 

   
  
e = 1−

Tc

Th

= 1−
273 K
373 K

= 0.268  

 (b) For superheated steam at 200°C, Th = 473 K and 

   
  
e = 1−

Tc

Th

= 1−
273 K
473 K

= 0.423  

P22.59   Qh = 3W ,  and for an engine,   Qh = W + Qc = 3W     →     Qc = 2W.  

 (a) 
  
e =

W
Qh

=
W
3W

=
1
3

 

 (b) 
  

Qc

 Qh

  = 
2W
3W

 = 
2
3

 

P22.60 The conversion of gravitational potential energy into kinetic energy as 
the water falls is reversible. But the subsequent conversion into 
internal energy is not. We imagine arriving at the same final state by 
adding energy by heat, in amount mgy, to the water from a stove at a 
temperature infinitesimally above 20.0°C. Then, 

   

  

ΔS
Δt

=
dQr Δt

T∫ =
Q Δt

T
=

mgy Δt
T

=
5 000 m3 s( ) 1 000 kg m3( ) 9.80 m s2( ) 50.0 m( )

293 K

      =  8.36 × 106   J K  ⋅ s

 

P22.61 The maximum (Carnot) or ideal efficiency is 

   
  
eideal = 1−

Tc

Th
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 (where we note that the temperatures must be given in kelvin.) Thus, 
 

  

eideal = 1− Tc

Th

= 1− 185°C + 273°( )
545°C + 273°( ) = 1− 458.15K

818.15K

= 0.440 = 44.0%

 

P22.62 (a) 
 

10.0 
Btu h

W
⎛
⎝⎜

⎞
⎠⎟

1 055 J
1 Btu

⎛
⎝⎜

⎞
⎠⎟

1 h
3 600 s

⎛
⎝⎜

⎞
⎠⎟

1 W
1 J s

⎛
⎝⎜

⎞
⎠⎟
= 2.93  

 (b) The energy extracted by heat from the cold side divided by 
required work input is by definition the coefficient of 
performance for a refrigerator: 

 
COP( )refrigerator  

 (c) With an EER of 5,  
   

  
5 

Btu
h ⋅W

=
10 000 Btu h

P

  

  which gives 
   

  
P = 10 000 Btu h

5 Btu h ⋅W
= 2 000 W = 2.00 kW

 

  Energy purchased is   PΔt = 2.00 kW( ) 1 500 h( ) = 3.00 × 103  kWh.  

  
 Cost = 3.00 × 103  kWh( ) 0.170 $ kWh( ) = $510 :   

   
 
With EER 5, $510

 

  With EER 10,  
   

  

10 
Btu

h ⋅W
=

10 000 Btu h
P

→ P =
10 000 Btu h
10 Btu h ⋅W

= 1 000 W = 1.00 kW

  

  Energy purchased is   PΔt = 1.00 kW( ) 1 500 h( ) = 1.50 × 103  kWh  

  
 Cost = 1.50 × 103  kWh( ) 0.170 $ kWh( ) = $255 :   

   
 
With EER 10, $255  

  

 

Thus, the cost for air conditioning is half as much for an air
conditioner with EER 10 compared with an air conditioner
with EER 5.
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P22.63 (a) 
  
Pelectric =

HET

Δt
 so if all the electric energy is converted into internal 

energy, the steady-state condition of the house is described by 

 HET = Q . 

  Therefore,   
  
Pelectric =

Q
Δt

= 5.00 kW .  

  (b) For a heat pump,    
  
COP( )Carnot = Th

ΔT
= 295 K

27.0 K
= 10.93  

  Actual    
  
COP = 0.6 10.93( ) = 6.56 =

Qh

W
=

Qh Δt
W Δt

 

  Therefore, to bring 5 000 W of energy into the house only requires 
input power  

   

  
Pheat pump =

W
Δt

=
Qh Δt
COP

=
5 000 W

6.56
= 763 W

 

*P22.64 (a) The energy transferred to the gas by heat is 
   

  

Q = mcΔT = 1.00 mol( ) 20.79 J/mol ⋅K( ) 120 K( )
= 2.49× 103  J = 2.49 kJ

  

 (b) Treating the neon as a monatomic ideal gas, Equation 21.25 gives 

the change in internal energy as 
  
ΔU = 3

2
nRΔT ,  or 

   

  

ΔU = 3
2

1.00 mol( ) 8.314 J/mol ⋅K( ) 120 K( )

= 1.50× 103  J = 1.50 kJ

 

 (c) From the first law, the work done on the gas is 
   

  
W = ΔU −Q = 1.50× 103  J − 2.49× 103  J = −990 J

 

P22.65 Energy transfer by heat for infinitesimal temperature change dT is  
dQ = nCdT, where C is the molar specific heat for either constant 
volume (CV = 5R/2) or pressure (CP = 7R/2) for air, a diatomic gas. The 
corresponding entropy change is  

  
  
dS =

dQr

T
=

nCdT
T

     →      ΔS =
nCdT

TTi

Tf

∫ = nC ln
Tf

Ti

,  

 with   Ti = 25.0 + 273 = 298 K   and   Tf = −18.0 + 273 = 255 K . 
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 (a) 
  
ΔS = nCV  ln

Tf

Ti

= n
5
2

R ln
255 K
298 K

⎛
⎝⎜

⎞
⎠⎟ = −0.390nR  

 (b) 
  
ΔS = nCP  ln

Tf

Ti

= n
7
2

R ln
255 K
298 K

⎛
⎝⎜

⎞
⎠⎟ = −0.545nR  

P22.66 (a) The coefficient of performance of an air conditioner is defined as 

   
  
COP( )ac =

Qc

W
=

Qc

Qh − Qc

=
1

Qh Qc − 1
 

  But when a device operates on the Carnot cycle,   Qh Qc = Th Tc .  
Thus, the coefficient of performance for a Carnot heat pump 
would be 

   
  
COP( )ac =

1
Th Tc − 1

=
Tc

Th −Tc

 

 (b) From the result of part (a) above, we observe that the COP of a 
Carnot air conditioner would increase if the temperature 
difference Th – Tc becomes  smaller . 

 (c) If   Tc = 20° + 273 = 293 K and Th = 40° + 273 = 313 K,  the COP of a 
Carnot heat pump would be 

   
   
COP( )ac,C =

Tc

Th −Tc

=
293 K

313 K − 293 K
= 14.6  

P22.67 (a) For the constant volume process AB,  

   
   
QAB = ΔEint, AB =

3
2

nRΔT =
3
2

nR 3Ti −Ti( ) = 3nRTi  

 (b) For an isothermal process,    
  
Q = nRT ln

V2

V1

⎛
⎝⎜

⎞
⎠⎟

. 

  Therefore, for process BC,    
   
QBC = 3nRTi ln 2 . 

 (c) For the constant volume process CD,  

   
   
QCD = ΔEint, CD =

3
2

nRΔT =
3
2

nR Ti − 3Ti( ) = −3nRTi  
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ANS. FIG. P22.67 
 

 (d) For an isothermal process DA,    
   
QDA = nRTi ln

1
2
= −nRTi ln 2 .  

 (e)    
Qh = QAB + QBC = 3nRTi + 3nRTi ln 2 = 3nRTi 1 + ln 2( )  

 (f) Since the change in temperature for the complete cycle is zero,  

     ΔEint = 0   and    Weng = Q  

  and work done by the engine is  
   

  

W = Q = QAB + QBC + QCD + QDA

= 3nRTi + 3nRTi ln 2 − 3nRTi − nRTi ln 2

W = 2nRTi ln 2

 

 (g) The efficiency is     
   

  
ec =

Weng

Qh

= Q
Qh

= 2ln 2
3 1+ ln 2( ) = 0.273

 

P22.68 For the Carnot engine,      

  
  
ec = 1−

Tc

Th

= 1−
300 K
750 K

= 0.600  

 Also,    
  
ec =

Weng

Qh

,  

 so     
  
Qh  = 

Weng

ec

 = 
150 J
0.600

 = 250 J  

 and       Qc = Qh −Weng = 250 J − 150 J = 100 J.  

 (a) 
  
Qh =

Weng

eS

=
150 J
0.700

= 214 J  

ANS. FIG. P22.68 
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Qc = Qh −Weng =

Weng

eS

− 150 J = 64.3 J
 

 (b) When engine S delivers 150 J of work to the Carnot engine, the 
Carnot engine transfers 250 J to the firebox while engine S takes 
214 J from the firebox: 

   

  
Qh,net = −

Weng

eS

+ 250 J = 35.7 J
 

  and the Carnot engine removes 100 J from the environment while 
engine S returns 64.3 J:  

   
  
Qc ,net = 64.3 J − 100 J = 35.7 J  

  

 

The total energy the firebox puts out equals the total energy
transferred to the environment.

 

 

ANS. FIG. P22.68(a–b) 

 (c) 

 

The net flow of energy by heat from the cold to the hot reservoir
without work input is impossible.

 

 (d) For engine S:    
  
Qc ,S = Qh,S −Weng S =

Weng S

eS

−Weng S  

  so work output is   
  
Weng S =

Qc ,S

1
eS
− 1

=
100 J
1

0.700 − 1
= 233 J  

  and energy input to engine S is   

   
  
Qh,S = Qc ,S + Weng S = 233 J + 100 J  

 
= 333 J  

 (e) Engine S contributes 150 J out of 233 J to running the Carnot 
engine: 

   
  
Qh,net = Qh,S − 250 J = 333 J − 250 J = 83.3 J  

  This is the net energy lost by the firebox.  
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 (f) The remaining work output is 

   
  
Wnet = Weng S − 250 J = 233 J − 150 J = 83.3 J  

 (g) 
  
Qc ,net = 0  

 

ANS. FIG. P22.68(e–g) 

 (h) 

 

The output of 83.3 J of energy from the heat engine by work in
a cyclic process without any exhaust by heat is impossible.

 

 (i) Both engines operate in cycles, so      ΔSS = ΔSCarnot = 0.  

  For the reservoirs, 
 
ΔSh = −

Qh

Th

  and  
  
ΔSc = +

Qc

Tc

.  

  Thus,  
   

  

ΔStotal = ΔSS + ΔSCarnot + ΔSh + ΔSc = 0 + 0 −
83.3 J
750 K

+
0

300 K

= −0.111 J K

  

 (j) 
 
A decrease in total entropy is impossible.  

P22.69 (a) Let state i represent the gas before its compression and state f 

afterwards, 
  
Vf =

Vi

8
. For a diatomic ideal gas, 

  
CV =

5
2

R,  
  
Cp =

7
2

R,  

and 
  
γ =

Cp

CV

= 1.40.  Next, 

   

  

PiVi
γ = Pf Vf

γ

Pf = Pi
Vi

Vf

⎛

⎝
⎜

⎞

⎠
⎟

γ

= Pi 8
1.40 = 18.4Pi

PiVi = nRTi

Pf Vf =
18.4PiVi

8
= 2.30PiVi = 2.30nRTi = nRTf
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  so   Tf = 2.30Ti  

   

  

ΔEint = nCVΔT = n
5
2

R Tf −Ti( ) =
5
2

nR 1.30Ti( ) =
5
2

1.30PiVi( )

=
5
2

1.30( ) 1.013 × 105  N m2( ) 0.120 × 10−3  m3( ) = 39.4 J

 

  Since the process is adiabatic, Q = 0 and   ΔEint = Q + W  gives  

   
  
W = 39.4 J  

  (b) The moment of inertia of the wheel is  
   

  
I =

1
2

MR2 =
1
2

5.10 kg( ) 0.085 0 m( )2 = 0.018 4 kg ⋅m2
  

  We want the flywheel to do work 39.4 J, so the work on the 
flywheel should be –39.4 J: 

   

  

Krot i + W = Krot f

1
2

Iω i
2 − 39.4 J = 0

ω i =
2 39.4 J( )

0.018 4 kg ⋅m2

⎡

⎣
⎢

⎤

⎦
⎥

1 2

= 65.4 rad/s = 625 rev/min

 

 (c) Now we want   W = 0.05Krot i :  
  

  

39.4 J = 0.05
1
2

0.018 4 kg ⋅m2( )ω i
2⎡

⎣⎢
⎤
⎦⎥

ω i =
2 789 J( )

0.018 4 kg ⋅m2

⎛
⎝⎜

⎞
⎠⎟

1 2

= 293 rad/s = 2.79 × 103  rev/min

 

P22.70 Like a refrigerator, an air conditioner has as its purpose the removal of 
energy by heat from the cold reservoir. 

 Its ideal COP is 
  
COPCarnot =

Tc

Th −Tc

=
280 K
20.0 K

= 14.0.  

 (a) Its actual COP is  

   
  
0.400 14.0( ) = 5.60 =

Qc

Qh − Qc

=
Qc Δt

Qh Δt − Qc Δt
 

   
  
5.60

Qh

Δt
− 5.60

Qc

Δt
=

Qc

Δt
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5.60 10.0 kW( ) = 6.60

Qc

Δt
     and     

  

Qc

Δt
= 8.48 kW  

 (b)   Qh = Weng + Qc :  

  
  

Weng

Δt
=

Qh

Δt
−

Qc

Δt
= 10.0 kW − 8.48 kW = 1.52 kW  

 (c) The air conditioner operates in a cycle, so the entropy of the 
working fluid does not change. The hot reservoir increases in 
entropy by 

   

  

Qh

Th

=
10.0 × 103  J s( ) 3 600 s( )

300 K
= 1.20 × 105  J K

 

  The cold room decreases in entropy by 
   

  

ΔS = −
Qc

Tc

= −
8.48 × 103  J s( ) 3 600 s( )

280 K

    = −1.09 × 105  J K

 

  The net entropy change is positive, as it must be: 

   
 
+1.20 × 105  J K − 1.09 × 105  J K = 1.09 × 104  J K  

 (d) The new ideal COP is 
  
COPCarnot =

Tc

Th −Tc

=
280 K
25 K

= 11.2.  

  We suppose the actual COP is 0.400(11.2) = 4.48. 

  As a fraction of the original 5.60, this is 
 

4.48
5.60

= 0.800 , so the 

fractional change is to 
 

drop by 20.0% .  

P22.71 
  
eC = 1−

Tc

Th

=
Weng

Qh

=
Weng /Δt

Qh /Δt
:   

  

Qh

Δt
=

P
1−Tc Th( ) =

PTh

Th −Tc

 

   Qh = Weng + Qc :      
  

Qc

Δt
=

Qh

Δt
−

Weng

Δt
 

 
 

Qc

Δt
=

PTh

Th −Tc

− P =
PTc

Th −Tc

 

   Qc = mcΔT:        
 

Qc

Δt
=

Δm
Δt

⎛
⎝⎜

⎞
⎠⎟ cΔT =

PTc

Th −Tc
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Δm
Δt

=
PTc

Th −Tc( )cΔT
 

 

  

Δm
Δt

=
1.00 × 109  W( ) 300 K( )

200 K( ) 4 186 J kg ⋅ °C( ) 6.00°C( ) = 5.97 × 104  kg s
 

P22.72 
  
eC = 1−

Tc

Th

=
Weng

Qh

=
Weng /Δt

Qh /Δt
:     

  

Qh

Δt
=

P
1− (Tc /Th)

=
PTh

Th −Tc

 

 
 

Qc

Δt
=

Qh

Δt
⎛

⎝⎜
⎞

⎠⎟
− P =

PTc

Th −Tc

 

 But   Qc = mcΔT ,  where c is the specific heat of water. 

 Therefore, 
 

Qc

Δt
=

Δm
Δt

⎛
⎝⎜

⎞
⎠⎟ cΔT =

PTc

Th −Tc

 

 and     

  

Δm
Δt

=
PTc

Th −Tc( )cΔT
.  

P22.73 (a) For the isothermal process AB, the work on the gas is 

   

  

WAB = −PAVA ln
VB

VA

⎛
⎝⎜

⎞
⎠⎟

WAB = −5 1.013 × 105  Pa( ) 10.0 × 10−3  m3( )ln
50.0 L
10.0 L

⎛
⎝⎜

⎞
⎠⎟

WAB = −8.15 × 103  J

 

  where we have used 1.00 atm = 1.013 × 105 Pa and  
1.00 L = 1.00 × 10–3 m3. 

   

  

WBC = −PBΔV = − 1.013 × 105  Pa( ) 10.0 − 50.0( ) × 10−3⎡⎣ ⎤⎦m3

= +4.05 × 103  J

 

     WCA = 0      and     
  
Weng = −WAB −WBC = 4.10 × 103  J = 4.10 kJ  

 

ANS. FIG. P22.73 



1186     Heat Engines, Entropy, and the Second Law of Thermodynamics 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 

 (b) Since AB is an isothermal process,    ΔEint, AB = 0  

  and QAB = –WAB = 8.15 × 103 J. 

  For an ideal monatomic gas, 
  
CV =

3R
2

 and 
  
CP =

5R
2

.  

   

  
TB = TA =

PBVB

nR
=

1.013 × 105  Pa( ) 50.0 × 10−3  m3( )
R

=
5.06 × 103

R

 

  Also, 
  
TC =

PCVC

nR
=

1.013 × 105  Pa( ) 10.0 × 10−3  m3( )
R

=
1.01× 103

R
 

   
  
QCA = nCVΔT = 1.00

3
2

R⎛
⎝⎜

⎞
⎠⎟

5.06 × 103 − 1.01× 103

R
⎛
⎝⎜

⎞
⎠⎟
= 6.08 kJ  

  so the total energy absorbed by heat is  

     QAB + QCA = 8.15 kJ + 6.08 kJ  
 
= 1.42 × 104  J  

 (c) 
  
QBC = nCPΔT =

5
2

nRΔT( ) =
5
2

PBΔVBC  

  

  

QBC =
5
2

1.013 × 105( ) 10.0 − 50.0( ) × 10−3⎡⎣ ⎤⎦ = −1.01× 104  J

= 1.01× 104  J
 

 (d) 
  
e =

Weng

Qh

=
Weng

QAB + QCA

=
4.10 × 103  J
1.42 × 104  J

= 0.289    or 
 

28.9%  

 (e) A Carnot engine operating between Thot = TA = 5 060/R and Tcold = 
TC = 1 010/R has   eC = 1−Tc/Th = 1− 1/5 =   80.0%. The efficiency 
of the cycle is much lower than that of a Carnot engine operating 
between the same temperature extremes. 

P22.74 (a) The ideal gas at constant temperature keeps constant internal 
energy. As it puts out energy by work in expanding, it must take 
in an equal amount of energy by heat. Thus its entropy increases. 
Let Pi , Vi , and Ti represent the state of the gas before the 
isothermal expansion. Let PC , VC , and Ti represent the state after 
this process, so that PiVi = PCVC. Let Pi , 3Vi , and Tf  represent the 
state after the adiabatic compression. 

  Then    PCVC
γ = Pi 3Vi( )γ  
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  Substituting  
 
PC =

PiVi

VC

 

  gives    PiViVC
γ −1 = Pi 3γ Vi

γ( )  

  Then    VC
γ −1 = 3γ Vi

γ −1    and   
  

VC

Vi

= 3γ γ −1( )  

  The work output in the isothermal expansion is 

   

  

W = PdV
i

C

∫ = nRTi V−1 dV
i

C

∫
= nRTi ln

VC

Vi

⎛
⎝⎜

⎞
⎠⎟

= nRTi ln 3γ γ −1( )( ) = nRTi
γ

γ − 1
⎛
⎝⎜

⎞
⎠⎟

ln 3

 

  This is also the input heat, so the entropy change is 

     
ΔS =

Q
T

= nR
γ

γ − 1
⎛
⎝⎜

⎞
⎠⎟

ln 3
 

  Since      CP = γ CV = CV + R,  

  we have     γ − 1( )CV = R,  
  
CV =

R
γ − 1

 

  and    
  
CP =

γ R
γ − 1

.  

  Then the result is    
  
ΔS = nCP ln 3 .  

 (b) 

  

The pair of processes considered here carries the gas from the
initial state in P22.77 to the final state here. Entropy is a function
of state. Entropy change does not depend on path. Therefore the
entropy change in P22.77 equals ΔSisothermal + ΔSadiabatic  in this
problem. Since ΔSadiabatic = 0, the answers to P22.77 and P22.74(a)
must be the same.

 

P22.75 We recognize that Tc = T1 and Th = T2, and Qc = 350 J and Qh = –1 000 J. 

   

  

ΔShot =
Qh

Th

= −
Qh

T2

=
−1000 J
600 K

ΔScold =
Qc

Tc

=
Qc

T1

=
+750 J
350 K
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 (a) 
  
ΔSU = ΔShot + ΔScold = − 1 000 J

600 K
− 750 J

350 K
= 0.476 J K  

 (b) 
  
eC = 1− T1

T2

= 1− 350 K
600 K

= 0.417  

  
  
Weng = eC Qh = 0.417 1 000 J( ) = 417 J

 

 (c) 

  

ΔW  = WC  − Wreal  

= eC Qh  −  Qh  − Qc( ) 
=  1 − Tc

Th

⎛
⎝⎜

⎞
⎠⎟

Qh  −  Qh  − Qc( )

=  Qh  − 
Tc

Th

 Qh

⎛
⎝⎜

⎞
⎠⎟
  −  Qh  − Qc( ) 

= Qc  − 
Tc

Th

 Qh  = Tc  
Qc

Tc

 − 
Qh

Th

⎛
⎝⎜

⎞
⎠⎟

= TcΔSU  = T1ΔSU

 

P22.76 At point A,  PiVi = nRTi      and     n = 1.00 mol. 

 At point B,   3PiVi = nRTB      so       TB = 3Ti .  

 At point C,   3Pi( ) 2Vi( ) = nRTC    and    TC = 6Ti .  

 At point D,   Pi 2Vi( ) = nRTD      so       TD = 2Ti .  

 The heat for each step in the cycle is found 

using 
  
CV =

3R
2

 and 
  
CP =

5R
2

: 

  

  

QAB = nCV 3Ti −Ti( ) = 3nRTi

QBC = nCP 6Ti − 3Ti( ) = 7.50nRTi

QCD = nCV 2Ti − 6Ti( ) = −6nRTi

QDA = nCP Ti − 2Ti( ) = −2.50nRTi

 

 (a) Therefore, 
  
Qentering = Qh = QAB + QBC = 3nRTi + 7.5nRTi = 10.5nRTi .  

 (b) 
  
Qleaving = Qc = QCD + QDA = −6nRTi − 2.50nRTi = 8.50nRTi  

 (c) Actual efficiency: 
  
e =

Qh − Qc

Qh

= 10.5nRTi − 8.5nRTi

10.5nRTi

= 0.190  

ANS. FIG. P22.76 
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 (d) Carnot efficiency: 
  
eC = 1−

Tc

Th

= 1−
Ti

6Ti

= 0.833  

  
 
The Carnot efficiency is much higher.  

P22.77 

  

ΔS =
dQ
T

i

f

∫ =
nCPdT

T
= nCP

i

f

∫ T −1

i

f

∫ dT = nCP lnT
Ti

Tf = nCP lnTf − lnTi( )

= nCP ln
Tf

Ti

⎛
⎝⎜

⎞
⎠⎟

 

 

  
ΔS = nCP ln

PVf

nR
nR
PVi

⎛
⎝⎜

⎞
⎠⎟

= nCP ln
P 3Vi( )

nR
nR
PVi

⎡

⎣
⎢

⎤

⎦
⎥ = nCP ln 3

 

P22.78 (a) water:   

  

Twater = 35.0°F     →       
5
9

35.0 − 32.0( )°C

→      1.67 + 273.15( )  K = 274.82 K

 

  body:   

  

Tbody = 98.6°F     →      
5
9

98.6 − 32.0( )°C

→      37.0 + 273.15( )  K = 310.15 K 

 

  

  

ΔScold water =
dQ
T∫ = mwc ×

dT
T

Twater

Tbody

∫ = mwc × ln
Tbody

Twater

⎛
⎝⎜

⎞
⎠⎟

ΔSbody = −
Q

Tbody

= −
mwc Tbody −Twater( )

Tbody

ΔSsystem = ΔScold water + ΔSbody

            = 0.454 kg( ) 4 186 J kg ⋅K( ) × ln
310.15
274.82

⎛
⎝⎜

⎞
⎠⎟

− 0.454 kg( ) 4 186 J kg ⋅K( ) 310.15 − 274.82( )
310.15

= 13.4 J K

 

 (b) Conservation of energy,   Qhot = −Qcold ,  gives 
   

  

mw c TF −Twater( ) = −mAth c TF −Tbody( )
mw TF −Twater( ) = −mAth TF −Tbody( )
mwTF − mwTwater = −mAthTF + mAthTbody

mw + mAth( )TF = mwTwater + mAthTbody
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  Solving for TF, 

   

  

TF =
mwTwater + mAthTbody

mw + mAth

=
0.454 kg( ) 274.82 K( )+ 70.0 kg( ) 310.15 K( )

0.454 kg + 70.0 kg

= 309.92 K = 310 K

 

 (c) 

  

ΔS = Δ ′Sice water + Δ ′Sbody

= mwc × ln
TF

Twater

⎛
⎝⎜

⎞
⎠⎟

+ mAthc × ln
TF

Tbody

⎛

⎝
⎜

⎞

⎠
⎟

    = 0.454 kg( ) 4 186 J kg ⋅K( )ln
309.92
274.82

⎛
⎝⎜

⎞
⎠⎟

             + 70.0 kg( ) 4 186 J kg ⋅K( )ln
309.92
310.15

⎛
⎝⎜

⎞
⎠⎟

    = 11.1 J K

 

 (d) 
 
Smaller by less than 1%  

P22.79 (a) 

  

W = PdV
Vi

Vf

∫ = nRT
dV
V

Vi

2Vi

∫ = 1.00( )RT ln
2Vi

Vi

⎛
⎝⎜

⎞
⎠⎟

= RT ln 2  

 (b)  Yes.  

 (c) 

 

No. The second law refers to an engine operating in a cycle,
whereas this problem involves only a single process.

 

P22.80 When energy enters a substance by heat, we describe the process with 
Equation 20.4,   Q = mcΔT.  This is a reversible process; if energy leaves 
the substance, the temperature drops down again. Therefore, the 
entropy change for one of the samples of water is 

   
  
ΔS = 

dQ
T

 = 
mcdT

TTi

Tf

∫∫  = mc ln
Tf

Ti

⎛
⎝⎜

⎞
⎠⎟

 

 Consequently, the entropy change for both samples of water is 
   

  

ΔStotal  = ΔShot  + ΔScold  

= mc ln
Tf

Thi

⎛
⎝⎜

⎞
⎠⎟
 + mc ln

Tf

Tci

⎛
⎝⎜

⎞
⎠⎟
 = mc ln

Tf

Thi

⎛
⎝⎜

⎞
⎠⎟

Tf

Tci

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ 

 

   
 
1.00 kg( ) 4 186 J/kg ⋅ °C( )ln

293 K
303 K

⎛
⎝⎜

⎞
⎠⎟

293 K
283 K

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
 = 4.88 J/K  
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This is not zero. While the statements about energy transfer by heat
are true, the mixing process is irreversible. After the water has come
to equilibrium, it will not spontaneously separate again into warm
and cool water. Therefore, there is an entropy increase of the mixture
during this irreversible process.

 

 
 

	  

Challenge Problems 

P22.81 (a) Given:   PA = 25.0 atm  and   PC = 1.00 atm  

  Use the equation of state for an ideal gas:  
   

  

V =
nRT

P

VA =
1.00 8.314 J mol ⋅K( ) 600 K( )

25.0 1.013 × 105  Pa( ) = 1.97 × 10−3  m3

VC =
1.00 8.314 J mol ⋅K( ) 400 K( )

1.013 × 105  Pa
= 32.8 × 10−3  m3

 

  Since AB is isothermal, PAVA = PBVB , 

  and since BC is adiabatic,   PBVB
γ = PCVC

γ .  

 

ANS. FIG. P22.81 

  Combining these expressions,  

   

  

VB =
PC

PA

⎛
⎝⎜

⎞
⎠⎟

VC
γ

VA

⎡

⎣
⎢

⎤

⎦
⎥

1 γ −1( )

=
1.00 atm
25.0 atm

⎛
⎝⎜

⎞
⎠⎟

32.8 × 10−3  m3( )1.40

1.97 × 10−3  m3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1 0.400( )

= 11.9 × 10−3  m3
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  Similarly,  

   

  

VD =
PA

PC

⎛
⎝⎜

⎞
⎠⎟

VA
γ

VC

⎡

⎣
⎢

⎤

⎦
⎥

1 γ −1( )

=
25.0 atm
1.00 atm

⎛
⎝⎜

⎞
⎠⎟

1.97 × 10−3  m3( )1.40

32.8 × 10−3  m3

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1 0.400( )

= 5.44 × 10−3  m3

 

  Since AB is isothermal,     PAVA = PBVB  

  and 
  
PB = PA

VA

VB

⎛
⎝⎜

⎞
⎠⎟

= 25.0 atm( ) 1.97 × 10−3  m3

11.9 × 10−3  m3

⎛
⎝⎜

⎞
⎠⎟

= 4.14 atm  

  Also, CD is an isothermal and  
   

  
PD = PC

VC

VD

⎛
⎝⎜

⎞
⎠⎟

= 1.00 atm( ) 32.8× 10−3  m3

5.44× 10−3  m3

⎛
⎝⎜

⎞
⎠⎟

= 6.03 atm
  

 (b) Energy is added by heat to the gas during the process AB. For the 
isothermal process,   ΔEint = 0,  and the first law gives  

   
  
QAB = −WAB = nRTh ln

VB

VA

⎛
⎝⎜

⎞
⎠⎟

 

  or   
   

  

Qh = QAB = 1.00 mol( ) 8.314 J mol ⋅K( ) 600 K( )ln
11.9 atm
1.97 atm

⎛
⎝⎜

⎞
⎠⎟

= 8.97 kJ

 

  Then, from 
  
e =

Weng

Qh

, the net work done per cycle is  

   
  
Weng = ec Qh = 0.333 8.97 kJ( ) = 2.99 kJ  

P22.82 The quantity of gas is  
   

  
n = PAVA

RTA

=
100× 103  Pa( ) 500× 10−6  m3( )

8.314 J mol ⋅K( ) 293 K( ) = 0.020 5 mol
 

 (a) In process A→ B, 

   
  
PB = PA

VA

VB

⎛
⎝⎜

⎞
⎠⎟

γ

= 100 × 103  Pa( ) 8.00( )1.40 = 1.84 × 106  Pa  
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TB = PBVB

nR
=

1.84× 106  Pa( ) 500× 10−6  m3 8.00( )
0.020 5 mol( ) 8.314 J mol ⋅K( ) = 673 K

 

  VA VB = 8.00    →     VB = VA 8.00 = 500 8  =  62.5 cm3  

  State C: 

   VC = VB 
   

  

PC = nRTC

VC

=
0.020 5 mol( ) 8.314 J mol ⋅K( ) 1 023 K( )

62.5× 10−6  m3

= 2.79× 106  Pa

 

  State D:  

   VD = VA  

  In process C→D: 
  

  

PD = PC
VC

VD

⎛
⎝⎜

⎞
⎠⎟

γ

= 2.79× 106  Pa( ) 1
8.00

⎛
⎝⎜

⎞
⎠⎟

1.40

= 1.52 × 105  Pa

TD = PDVD

nR
=

1.52 × 105  Pa( ) 500× 10−6  m3( )
0.020 5 mol( ) 8.314 J mol ⋅K( ) = 445 K

 

  TABLE P22.82(a) tabulates these results: 

 T (K) P (kPa) V (cm3) 

A 293 100 500 

B 673 1.84 × 103 62.5 

C 1023 2.79 × 103 62.5 

D 445 152 500 

    TABLE P22.82(a) 

 (b) In the adiabatic process A→B, Q = 0, 

   

   

ΔEint, A→B = 5
2

nR TB −TA( )

              = 5
2

0.020 5 mol( ) 8.314 J mol ⋅K( ) 673 K – 293 K( )

= 162 J

 

  and   ΔEint, AB = 162 J = Q −Wout = 0 −Wout → WAB = −162 J  
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  In the isovolumetric process B→C, W = 0 
   

   

ΔEint, B→C = 5
2

nR TC −TB( )

              = 5
2

0.020 5 mol( ) 8.314 J mol ⋅K( ) 1 023 K − 673 K( )

= 149 J
ΔEint, B→C = 149 J = Q −Wout = Q − 0    →     QBC = 149 J

 

  In the adiabatic process C→D, Q = 0 
   

   

ΔEint, C→D = 5
2

nR TD −TC( )

                 = 5
2

0.020 5 mol( ) 8.314 J mol ⋅K( ) 445 K − 1 023 K( )

= −246 J
ΔEint, C→D = −246 J = Q −Wout = 0−Wout      →     WCD = 246 J

 

  For the entire cycle, 
  
ΔEint, net =

5
2

nRΔT = 0:  

   

  

Weng = −162 J + 0 + 246.3 J + 0 = 84.3 J

ΔEint = Qnet + Weng = 0     →       Qnet = −Weng = 84.3 J

 

  TABLE P22.82(b) tabulates these results:  

 Q Weng   ΔEint
 

A→B 0 –162 162 

B→C 149 0 149 

C→D 0 246 –246 

D→A –65.0 0 –65.0 

ABCD 84.3 84.3 0 

    TABLE P22.82(b) 

 (c) From B→C, the input energy is 
  
Qh = 149 J . 

 (d) From D→A, the energy exhaust is 
  
Qc = 65.0 J . 

 (e) From ABCDA, 
  
Weng = 84.3 J . 
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 (f) The efficiency is: 
  
e =

Weng

Qh

=
84.3 J
149 J

= 0.565  

 (g) Let f represent the angular speed of the crankshaft. Then 
  

f
2

 is the 

frequency at which we obtain work in the amount of 84.3 J/cycle: 
   

  

1 000 J s = f
2

⎛
⎝⎜

⎞
⎠⎟ 84.3 J cycle( )

f = 2 000 J s
84.3 J cycle

= 23.7 rev s = 1.42 × 103  rev min
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P22.2 (a) 0.25 or 25%; (b)   QC / Qh = 3/4  

P22.4 13.7°C 

P22.6 (a) 29.4 L/h; (b) 185 hp; (c) 527 N · m; (d) 1.91 × 105 W 

P22.8 (a) 24.0 J; (b) 144 J 

P22.10 (a) 7.69 × 108 J; (b) 5.67 × 108 J 

P22.12 (a) 2.65 × 107 J; (b) 3.20 

P22.14 0.540 or 54.0% 

P22.16 The efficiency of a Carnot engine operating between these 
temperatures is 6.83%. Therefore, there is no way that the inventor’s 
engine can have an efficiency of 0.110 = 11.0%. 

P22.18 (a) 
 
PΔt

Th

Th −Tc

⎛
⎝⎜

⎞
⎠⎟

; (b) 
 
PΔt

Tc

Th −Tc

⎛
⎝⎜

⎞
⎠⎟

 

P22.20 (a) See P22.20(a) for the full solution; (b) See P22.20(b) for the full 
solution. 

P22.22 72.2 J 

P22.24 0.330 or 33.0% 

P22.26 (a) 0.300; (b) 1.40 × 10−3 K−1; (c) −2.00 ×10−3 K−1; (d) No. The derivative 
in part (c) depends only on Th 

P22.28 (a) 5.12%; (b) 5.27 TJ/h; (c) As fossil-fuel prices rise, this way to use 
solar energy will become a good buy. 

P22.30 (a) See P22.30(a) for full explanation; (b) 
  
1−

Tc

Th

; (c) The combination of 

reversible engines is itself a reversible engine so it has the Carnot 
efficiency. No improvement in net efficiency has resulted; (d) 

  
Ti =

1
2

Th + Tc( ) ;  

(e)   Ti = ThTc( )1/2  

P22.32 (a) See TABLE P22.32(a); (b) See TABLE P22.32(b); (c) 23.7%; (d) 23.7% 

P22.34 23.1 mW 

P22.36 (a) 51.2%; (b) 36.2% 

P22.38 See P22.38 for the full derivation 
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P22.40 (a) See TABLE P22.40; (b) 2 heads and 2 tails 

P22.42 −610 J/K 

P22.44 717 J/K 

P22.46 2.70 kJ/K 

P22.48 (a) 5.76 J/K; (b) no change in temperature 

P22.50 244 J/K 

P22.52 1 W/K 

P22.54 (a) 
 
ΔSh = −

Q
Th

; (b) 
 
ΔSc = −

Q
Tc

; (c) 
  
Q

1
Tc

−
1

Th

⎛
⎝⎜

⎞
⎠⎟

 

P22.56 +1.18 J/K 

P22.58 (a) 0.268; (b) 0.423 

P22.60 8.36 × 106 J/K · s 

P22.62 (a) 2.93; (b) (COP)refrigerator; (c) with EER 5, $510, with EER 10, $255; 
Thus, the cost for air conditioning is half as much for an air conditioner 
with EER 10 compared with an air conditioner with EER 5. 

P22.64 (a) 2.49 kJ; (b) 1.50 kJ; (c) –990 J 

P22.66 (a) 
 

Tc

Th −Tc

; (b) smaller; (c) 14.6 

P22.68 (a) 214 J and 64.3 J; (b) 35.7 J and 35.7 J. The total energy the firebox 
puts out equals to the total energy transferred to the environment; (c) 
The net flow of energy by heat from the cold to the hot reservoir 
without work input is possible; (d)   Weng S  = 233 J, 

  
Qh,S = 333 J;  

(e) 83.3 J; (f) 83.3 J; (g) 0; (h) The output of 83.8 J of energy from the 
heat engine by work in a cyclic process without any exhaust by heat is 
impossible; (i) −0.111 J/K; (j) A decrease in total entropy is impossible. 

P22.70 (a) 8.48 kW; (b) 1.52 kW; (c) 1.09 × 104 J/K; (d) drop by 20.0% 

P22.72 
 

PTc

Th −Tc( )cΔT
 

P22.74 (a)   ΔS = nCp ln 3;  (b) The pair of processes considered here carries the 
gas from the initial state in P22.77 to the final state here. Entropy is a 
function of state. Entropy change does not depend on path. Therefore, 
the entropy change in P22.77 equals   ΔSisothermal + ΔSadiabatic  in this 
problem. Since   ΔSadiabatic = 0,  the answers to P22.77 and P22.74(a) must 
be the same. 
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P22.76 (a) 10.5 nRTi; (b) 8.50 nRTi; (c) 0.190; (d) 0.833; The Carnot efficiency is 
much higher. 

P22.78 (a) 13.4 J/K; (b) 310 K; (c) 11.1 J/K; (d) smaller by less than 1% 

P22.80 The computed change in entropy is 4.88 J/K, which is not zero. While 
the statements about energy transfer by heat are true, the mixing 
process is irreversible. After the water has come to equilibrium, it will 
not spontaneously separate again into warm and cool water. 
Therefore, there is an entropy increase of the mixture during the 
irreversible process. 

P22.82 (a) See TABLE P22.82(a); (b) See TABLE P22.82(b); (c) 149 J; (d) 65.0 J; 
(e) 84.3 J; (f) 0.565; (g) 1.42 × 103 rev/min 
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23 
Electric Fields 

 

CHAPTER OUTLINE 
 

23.1  Properties of Electric Charges 

23.2  Charging Objects by Induction 

23.3  Coulomb’s Law 

23.4 Analysis Model: Particle in a Field (Electric) 

23.5  Electric Field of a Continuous Charge Distribution 

23.6 Electric Field Lines 

23.7 Motion of a Charged Particle in a Uniform Electric Field 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ23.1 (i) Answer (c). The electron and proton have equal-magnitude 
charges.  

 (ii) Answer (b). The proton’s mass is 1836 times larger than the 
electron’s. 

OQ23.2 Answer (e). The outer regions of the atoms in your body and the 
atoms making up the ground both contain negatively charged 
electrons. When your body is in close proximity to the ground, these 
negatively charged regions exert repulsive forces on each other. Since 
the atoms in the solid ground are rigidly locked in position and 
cannot move away from your body, this repulsive force prevents 
your body from penetrating the ground.  
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OQ23.3 Answer (b). To balance the weight of the ball, the magnitude of the 
upward electric force must equal the magnitude of the downward 
gravitational force, or qE = mg, which gives 

    
  
E =

mg
q

=
5.0 × 10−3  kg( ) 9.80 m/s2( )

4.0 × 10−6  C
= 1.2 × 104  N/C  

OQ23.4 Answer (a). The electric force is opposite to the field direction, so it is 
opposite to the velocity of the electron. From Newton’s second law, 
the acceleration the electron will be  

   

  

ax =
Fx

m
=

qEx

m
=

−1.60 × 10−19  C( ) 1.00 × 103  N/C( )
9.11× 10−31  kg

= −1.76 × 1014  m/s2

 

 The kinematics equation   vx
2 = v0x

2 + 2ax Δx( ) ,  with vx = 0, gives the 
stopping distance as  

   
  
Δx =

−v0x
2

2ax

=
− 3.00 × 106  m/s( )2

2 −1.76 × 1014  m/s2( ) = 2.56 × 10−2  m = 2.56 cm  

OQ23.5 Answer (d). The displacement from the –4.00 nC charge at point  
(0, 1.00) m to the point (4.00, –2.00) m has components 

  
rx = x f − xi( ) = +4.00 m  and 

  
ry = y f − yi( ) = −3.00 m , so the magnitude 

of this displacement is 
  
r = rx

2 + ry
2 = 5.00 m  and its direction is 

  
θ = tan−1 ry

rx

⎛
⎝⎜

⎞
⎠⎟

= −36.9° . The x component of the electric field at point 

(4.00, –2.00) m is then 

   

  

Ex = Ecosθ =
keq
r2 cosθ

=
8.99 × 109  N ⋅m2 / C2( ) −4.00 × 10−9  C( )

5.00 m( )2 cos −36.9°( )

= −1.15 N/C

 

OQ23.6 Answer (a). The equal-magnitude radially directed field 
contributions add to zero. 

OQ23.7 Answer (b). When a charged insulator is brought near a metallic 
object, free charges within the metal move around, causing the 
metallic object to become polarized. Within the metallic object, the 
center of charge for the type of charge opposite to that on the 
insulator will be located closer to the charged insulator than will the 
center of charge for the same type of charge as that on the insulator. 
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This causes the attractive force between the charged insulator and the 
opposite type of charge in the metal to exceed the magnitude of the 
repulsive force between the insulator and the same type of charge in 
the metal. Thus, the net electric force between the insulator and an 
the metallic object is one of attraction.  

OQ23.8 Answer (e). The magnitude of the electric field at distance r from a 
point charge q is   E = keq/r 2 ,  so 

   

   

E =
8.99 × 109  N ⋅m2 / C2( ) 1.60 × 10−19  C( )

5.11× 10−11  m( )2

= 5.51× 1011  N/C   1012  N/C

 

 making (e) the best choice for this question.  

OQ23.9 (i) Answer (d). Suppose the positive charge has the large value 1 µC. 
The object has lost some of its conduction electrons, in number 

   10–6 C (1 e/1.60 × 10–19 C) = 6.25 × 1012 

 and in mass  

   6.25 × 1012 (9.11 × 10–31 kg) = 5.69 × 10–18 kg. 

 This is on the order of 1014 times smaller than the ~1 g mass of the 
coin, so it is an immeasurably small change.  

 (ii) Answer (b). The coin gains extra electrons, gaining mass on the 
order of 10–14 times its original mass for the charge –1 µC.  

OQ23.10 Answer (c). Each charge produces a field as if it were alone in the 
Universe.  

OQ23.11 (i) Answer (d). The charge at the upper left creates at the field point 
an electric field to the left, with magnitude we call E1. The charge at 
lower right creates a downward electric field with an equal 
magnitude E1. These two charges together create a field   2E1  
downward and to the left (at 45°). The positive charge has twice the 
charge but is  2  times farther from the field point, so it creates a 

field 
  
2E1 2( )2

= E1  upward and to the right. The fields from the 
two charges are opposite in direction, and the field from the negative 
charges is stronger, so the net field is then 

  
2 − 1( )E1 ,  which is 

downward and to the left (at 45°).  

 (ii) Answer (a). With the positive charge removed, the magnitude of 
the field becomes   2E1 ,  larger than before.  
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OQ23.12 Answer (a). The magnitude of the electric force between charges Q1 
and Q2, separated by distance ri is F = ke Q1 Q2 /r2. If changes are made 
so Q1 → Q1/3 and r → 2r, the magnitude of the new force F′ will be 

    
  
F ' = ke

Q1 3( )Q2

2r( )2 =
1

3 4( ) ke
Q1Q2

r2 =
1

12
ke

Q1Q2

r2 =
1

12
F  

OQ23.13 Answer (c). The charges nearer the center of the disk produce electric 
fields that make smaller angles with the central axis of the disk; 
therefore, these fields have smaller components perpendicular to the 
axis that cancel each other and larger components parallel to the axis 
which reinforce each other.  

OQ23.14 Answer (b). A negative charge experiences a force opposite to the 
direction of the electric field.  

OQ23.15 Answer (a). The magnitude of the electric force between two protons 
separated by distance r is   F = kee

2 r2 ,  so the distance of separation 
must be 

  

  
r =

kee
2

F
=

8.99 × 109  N ⋅m2 / C2( ) 1.60 × 10−19  C( )2

2.30 × 10−26  N
= 0.100 m

 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ23.1 No. Life would be no different if electrons were positively charged 
and protons were negatively charged. Opposite charges would still 
attract, and like charges would repel. The naming of positive and 
negative charge is merely a convention. 

CQ23.2 The dry paper is initially neutral. The comb attracts the paper 
because its electric field causes the molecules of the paper to become 
polarized—the paper as a whole cannot be polarized because it is an 
insulator. Each molecule is polarized so that its unlike-charged side 
is closer to the charged comb than its like-charged side, so the 
molecule experiences a net attractive force toward the comb. Once 
the paper comes in contact with the comb, like charge can be 
transferred from the comb to the paper, and if enough of this charge 
is transferred, the like-charged paper is then repelled by the like-
charged comb. 

CQ23.3 The answer depends on whether the person is initially (a) uncharged 
or (b) charged.  

 (a) No. If the person is uncharged, the electric field inside the 
sphere is zero. The interior wall of the shell carries no charge. 
The person is not harmed by touching this wall.  
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 (b) If the person carries a (small) charge q, the electric field inside the 
sphere is no longer zero. Charge –q is induced on the inner wall 
of the sphere. The person will get a (small) shock when touching 
the sphere, as all the charge on his body jumps to the metal.  

CQ23.4 All of the constituents of air are nonpolar except for water. The polar 
water molecules in the air quite readily “steal” charge from a 
charged object, as any physics teacher trying to perform electrostatics 
demonstrations in humid weather well knows. As a result—it is 
difficult to accumulate large amounts of excess charge on an object in 
a humid climate. During a North American winter, the cold, dry air 
allows accumulation of significant excess charge, giving the potential 
(pun intended) for a shocking (pun also intended) introduction to 
static electricity sparks. 

CQ23.5 No. Object A might have a charge opposite in sign to that of B, but it 
also might be neutral. In this latter case, object B causes object A (or the 
molecules of A if its material is an insulator) to be polarized, pulling 
unlike charge to the near face of A and pushing an equal amount of 
like charge to the far face. Then the force of attraction exerted by B on 
the induced unlike charge on the near side of A is slightly larger than 
the force of repulsion exerted by B on the induced like charge on the far 
side of A. Therefore, the net force on A is toward B.  

CQ23.6 (a) Yes. The positive charges create electric fields that extend in all 
directions from those charges. The total field at point A is the 
vector sum of the individual fields produced by the charges at 
that point.  

 (b) No, because there are no field lines emanating from or 
converging on point A.  

 (c) No. There must be a charged object present to experience a force.  

CQ23.7 The charge on the ground is negative because electric field lines 
produced by negative charge point toward their source.  

CQ23.8 Conducting shoes are worn to avoid the build up of a static charge 
on them as the wearer walks. Rubber-soled shoes acquire a charge by 
friction with the floor and could discharge with a spark, possibly 
causing an explosive burning situation, where the burning is 
enhanced by the oxygen. 

CQ23.9 (a) No. The balloon induces polarization of the molecules in the 
wall, so that a layer of positive charge exists near the balloon. 
This is just like the situation in Figure 23.4a, except that the 
signs of the charges are reversed. The attraction between these 
charges and the negative charges on the balloon is stronger 
than the repulsion between the negative charges on the balloon 
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and the negative charges in the polarized molecules (because 
they are farther from the balloon), so that there is a net 
attractive force toward the wall.  

 (b) Polar water molecules in the air surrounding the balloon are 
attracted to the excess electrons on the balloon. The water 
molecules can pick up and transfer electrons from the balloon, 
reducing the charge on the balloon and eventually causing the 
attractive force to be insufficient to support the weight of the 
balloon.  

CQ23.10 (a) Yes. (b) The situation is similar to that of magnetic bar magnets, 
which can attract or repel each other depending on their orientation.  

CQ23.11 Electrons have been removed from the glass object. Negative charge 
has been removed from the initially neutral rod, resulting in a net 
positive charge on the rod. The protons cannot be removed from the 
rod; protons are not mobile because they are within the nuclei of the 
atoms of the rod.  

 
 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 23.1 Properties of Electric Charges 
P23.1 (a) The charge due to loss of one electron is 
   

 0 − 1 −1.60 × 10−19  C( ) = +1.60 × 10−19  C
 

  The mass of an average neutral hydrogen atom is 1.007 9 u. 
Losing one electron reduces its mass by a negligible amount, to  

   

 
1.007 9 1.660 × 10−27  kg( ) − 9.11× 10−31  kg = 1.67 × 10−27  kg

 

 (b) By similar logic, charge 
 =

+1.60 × 10−19  C  

  

 
mass = 22.99 1.66 × 10−27  kg( ) − 9.11× 10−31  kg = 3.82 × 10−26  kg

 

 (c) Gain of one electron: charge of  Cl− = 1.60× 10−19  C   
  

 
mass = 35.453 1.66 × 10−27  kg( ) + 9.11× 10−31  kg = 5.89 × 10−26  kg

 

 (d) Loss of two electrons: charge of  Ca++ = −2 −1.60 × 10−19  C( ) =  

 
+3.20 × 10−19  C  

  

 

mass = 40.078 1.66 × 10−27  kg( ) − 2 9.11× 10−31  kg( )
= 6.65 × 10−26  kg
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 (e) Gain of three electrons: charge of  N
3− = 3 −1.60 × 10−19  C( ) =  

 
−4.80 × 10−19  C  

  

 

mass = 14.007 1.66 × 10−27  kg( ) + 3 9.11× 10−31  kg( )
= 2.33 × 10−26  kg

 

 (f) Loss of four electrons: charge of  N
4+ = 4 1.60 × 10−19  C( ) =  

 
+6.40 × 10−19  C  

  

 

mass = 14.007 1.66 × 10−27  kg( ) − 4 9.11× 10−31  kg( )
= 2.32 × 10−26  kg

 

 (g) We think of a nitrogen nucleus as a seven-times ionized nitrogen 

atom.  Charge = 7 1.60 × 10−19  C( ) = 1.12 × 10−18  C  
  

 

mass = 14.007 1.66 × 10−27  kg( ) − 7 9.11× 10−31  kg( )
= 2.32 × 10−26  kg

 

 (h) Gain of one electron: charge  = −1.60 × 10−19  C  
  

 

mass = 2 1.007 9( ) + 15.999⎡⎣ ⎤⎦1.66 × 10−27  kg + 9.11× 10−31  kg

= 2.99 × 10−26  kg

 

P23.2 (a) 

  

N =
10.0 grams

107.87 grams/mol
⎛
⎝⎜

⎞
⎠⎟

6.02 × 1023  
atoms
mol

⎛
⎝⎜

⎞
⎠⎟ 47 

electrons
atom

⎛
⎝⎜

⎞
⎠⎟

= 2.62 × 1024

 

 (b) 

  

#  electrons added =
Q
e
=

1.00 × 10−3  C added
1.60 × 10−19  C/electron

= 6.25 × 1015  electrons added

 

  Thus,  

   

 

6.25 × 1015  added( ) 1
2.62 × 1024  present

⎛
⎝⎜

⎞
⎠⎟

=
2.38 added
109  present

⎛
⎝⎜

⎞
⎠⎟

→  2.38 electrons for every 109  already present
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Section 23.2 Charging Objects by Induction 

Section 23.3 Coulomb’s Law 

*P23.3 The force on one proton is 
    


F = keq1q2

r2  away from the other proton. Its 

magnitude is 
   

 
8.99 × 109  N ⋅m C2( ) 1.60 × 10−19  C

2 × 10−15  m
⎛
⎝⎜

⎞
⎠⎟

2

= 57.5 N
 

*P23.4 In the first situation, 
    


FA  on B,1 =

ke qA qB

r1
2 î.  In the second situation,  qA  

and  qB  are the same. 
   

    


FB  on A ,2 = −


FA  on B = ke qA qB

r2
2 − î( )

F2

F1

= ke qA qB

r2
2

r1
2

ke qA qB

F2 = F1r1
2

r2
2 = 2.62 µN( ) 13.7 mm

17.7 mm( )2

= 1.57 µN

 

 Then 
    


FB  on A ,2 = 1.57 µN to the left .  

*P23.5 The electric force is given by 

   

  

F = ke
q1q2

r12( )2 = 8.99 × 109  N ⋅m2/C2( ) +40 C( ) −40 C( )
2 000 m( )2

= −3.60 × 106  N (attractive) = 3.60 × 106  N  downward

 

P23.6 (a) The two ions are both singly charged,   q = 1e , one positive and 
one negative. Thus, 

   

  

F =
ke q1 q2

r2 = kee
2

r2

=
8.99× 109  N ⋅m2 /C2( ) 1.60× 10−19  C( )2

0.500× 10−9  m( )2

= 9.21× 10−10  N

 

 (b) No. The electric force depends only on the magnitudes of the two 
charges and the distance between them. 
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P23.7 The end charges, of charge magnitude e, are distance r = 2.17 µm apart. 
The spring stretches by x = 0.010 0r, and the effective spring force 
balances the electrostatic attraction of the end charges: 

  

  

kx = ke
e2

r2 → k = ke
e2

xr2 = ke
e2

0.010 0r( )r2 = ke
e2

0.010 0( )r3

k = 8.99 × 109  N ⋅m2 /C2( ) 1.60 × 10−19  C( )2

0.010 0( ) 2.17 × 10−6  m( )3

= 2.25 × 10−9  N/m

 

P23.8 Suppose each person has mass 70 kg. In terms of elementary charges, 
each person consists of precisely equal numbers of protons and 
electrons and a nearly equal number of neutrons. The electrons 
comprise very little of the mass, so for each person we find the total 
number of protons and neutrons, taken together:  

   
 
(70 kg) 1 u

1.66 × 10–27 kg 

⎛

⎝⎜
⎞

⎠⎟
 =  4 × 1028 u  

 Of these, nearly one half, 2 ×  1028, are protons, and 1% of this is  
2 ×   1026, constituting a charge of (2 ×  1026)(1.60 ×  10–19 C) = 3 ×  107 C. 

 Thus, Feynman’s force has magnitude  
   

  
F  =  

keq1q1

r2  =  
(8.99 × 109  N ⋅m2/C2 )(3 × 107  C)2

(0.5 m)2 ~ 1026  N
 

 where we have used a half-meter arm’s length. According to the 
particle in a gravitational field model, if the Earth were in an 
externally-produced uniform gravitational field of magnitude  
9.80  m/s2, it would weigh Fg = mg = (6 ×  1024 kg)(10 m/s2) ~1026 N. 

 Thus, the forces are of the same order of magnitude.  

P23.9 (a) 
  
F =

ke q1 q2

r2  

  

  

F =
kee

2

r2 =
8.99 × 109  N ⋅m2 / C2( ) 7.50 × 10−9  C( ) 4.20 × 10−9  C( )

1.80 m( )2

= 8.74 × 10−8  N

 

 (b) The charges are like charges. 
 
The force is repulsive.  
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P23.10 (a) 

  

Fe =
keq1q2

r2 =
8.99 × 109  N ⋅m2 / C2( ) 1.60 × 10−19  C( )2

3.80 × 10−10  m( )2

= 1.59 × 10−9  N  repulsion( )

 

 (b) 

  

Fg =
Gm1m2

r2 =
6.67 × 10−11  N ⋅m2 / C2( ) 1.67 × 10−27  kg( )2

3.80 × 10−10  m( )2

= 1.29 × 10−45  N

 

  The electric force is 
 
larger by 1.24 × 1036  times .  

 (c) If 
  
ke

q1q2

r2 = G
m1m2

r2  with q1 = q2 = q and m1 = m2 = m, then 

   
  

q
m

=
G
ke

=
6.67 × 10−11  N ⋅m2 / kg2

8.99 × 109  N ⋅m2 / C2 = 8.61× 10−11  C/kg  

P23.11 The particle at the origin 
carries a positive charge of 
5.00 nC. The electric force 
between this particle and 
the –3.00-nC particle 
located on the –y axis will 
be attractive and point 
toward the –y direction 
and is shown with    


F3  in 

the diagram, while the electric force between this particle and the 6.00-
nC particle located on the x axis will be repulsive and point toward the 
–x direction, shown with    


F6  in the diagram. The resultant force should 

point toward the third quadrant, as shown in the diagram with    

FR.  

Although the charge on the x axis is greater in magnitude, its distance 
from the origin is three times larger than the –3.00-nC charge. We 
expect the resultant force to make a small angle with the –y axis and be 
approximately equal in magnitude with F3. 

 From the diagram in ANS. FIG. P23.11, the two forces are 
perpendicular, and the components of the resultant force are  

  

  

Fx = −F6 = − 8.99× 109  
N ⋅m2

C2

⎛
⎝⎜

⎞
⎠⎟

6.00× 10−9  C( ) 5.00× 10−9  C( )
0.300 m( )2

= −3.00× 10−6  N    to the left( )

 

ANS. FIG. P23.11 
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Fy = −F3 = − 8.99× 109  
N ⋅m2

C2

⎛
⎝⎜

⎞
⎠⎟

3.00× 10−9  C( ) 5.00× 10−9  C( )
0.100 m( )2

= −1.35× 10−5  N   downward( )

 

 (a) The forces are perpendicular, so the magnitude of the resultant is  

   
  FR = F6( )2 + F3( )2 = 1.38 × 10−5  N  

  (b) The magnitude of the angle of the resultant is  

   
  
θ = tan−1 F3

F6

⎛
⎝⎜

⎞
⎠⎟

= 77.5°  

  The resultant force is in the third quadrant, so the direction is  
   

  
77.5° below − x axis

 

P23.12 The forces are as shown in ANS. FIG. P23.12. 

 

ANS. FIG. P23.12 
  

  

F1 = keq1q2

r12
2 = 8.99× 109  

N ⋅m2

C2

⎛
⎝⎜

⎞
⎠⎟

6.00× 10−6  C( ) 1.50× 10−6  C( )
3.00× 10−2  m( )2

= 89.9 N

  

 

  

F2 =
keq1 q3

r13
2 = 8.99× 109  

N ⋅m2

C2

⎛
⎝⎜

⎞
⎠⎟

6.00× 10−6  C( ) 2.00× 10−6  C( )
5.00× 10−2  m( )2

= 43.2 N

 

 

  

F3 =
keq2 q3

r23
2 = 8.99× 109  

N ⋅m2

C2

⎛
⎝⎜

⎞
⎠⎟

1.50× 10−6  C( ) 2.00× 10−6  C( )
2.00× 10−2  m( )2

= 67.4 N

 

 (a) The net force on the 6 µC charge is  

   
  
F6µC( ) = F1 − F2 = 46.7 N  to the left  

 (b) The net force on the 1.5 µC charge is  
   

  
F1.5µC( ) = F1 + F3 = 157 N  to the right

  

 (c) The net force on the –2 µC charge is  

   
  
F −2µC( ) = F2 + F3 = 111 N  to the left   
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P23.13 (a) Let the third bead have charge Q and be located distance x from 
the left end of the rod. This bead will experience a net force given 
by 

   
    


F =

ke 3q( )Q
x2 î +

ke q( )Q
d − x( )2 − î( ) , where d = 1.50 m 

  The net force will be zero if 
  

3
x2 =

1
d − x( )2 , or 

  
d − x =

x
3

. 

  This gives an equilibrium position of the third bead of  

   x = 0.634d = 0.634(1.50 m) =  0.951 m  

 (b) 
 
Yes, if the third bead has positive charge.  The equilibrium would 

be stable because if charge Q were displaced either to the left or 
right on the rod, the new net force would be opposite to the 
direction Q has been displaced, causing it to be pushed back to its 
equilibrium position.  

P23.14 (a) Let the third bead have charge Q and be located distance x from 
the left end of the rod. This bead will experience a net force given 
by  

   
    


F =

keq1Q
x2 î +

keq2Q
d − x( )2 − î( )  

  The net force will be zero if 
  

q1

x2 =
q2

d − x( )2 :  

   
  

q1

x2 =
q2

d − x( )2     →     d − x( )2 = x2 q2

q1

⎛
⎝⎜

⎞
⎠⎟

    →     d − x = x
q2

q1

 

because d > x. Thus,  
   

  

d − x = x
q2

q1

    →     d = x + x
q2

q1

= x
q1 + q2

q1

⎛

⎝
⎜

⎞

⎠
⎟     

→     x =
q1

q1 + q2

d

 

 (b) 
 
Yes, if the third bead has positive charge.  The equilibrium would 

be stable because if charge Q were displaced either to the left or 
right on the rod, the new net force would be opposite to the 
direction Q has been displaced, causing it to be pushed back to its 
equilibrium position.  
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P23.15 The force exerted on the 7.00-µC charge by the 2.00-µC charge is  
     

    


F1 = ke

q1q2

r2 r̂

=
(8.99 × 109  N ⋅m2/C2 )(7.00 × 10–6  C)(2.00 × 10–6  C)

(0.500 m)2

                                                            × (cos 60°î + sin 60°ĵ)

F1 = (0.252 î + 0.436 ĵ) N

 

  Similarly, the force on the 7.00-µC charge by the –4.00-µC charge is 
    

     

F2 = ke
q1q3

r2 r̂

= –
(8.99× 109  N ⋅m2/C2 )(7.00× 10–6  C)(–4.00× 10–6  C)

(0.500 m)2

                                                              × (cos 60°î − sin 60°ĵ)

F2 = (0.503î − 0.872 ĵ) N

 

 Thus, the total force on the 7.00-µC charge is  

      

F =

F1 +

F2 = (0.755 î − 0.436 ĵ) N  

 We can also write the total force as:  
    

   


F = 0.755 N( ) î − 0.436 N( ) ĵ = 0.872 N at an angle of 330°

 

 

 ANS. FIG. P23.15 

P23.16 Consider the free-body diagram of one of the 
spheres shown in ANS. FIG. P23.16. Here, T is 
the tension in the string and Fe is the repulsive 
electrical force exerted by the other sphere.  

   
  Fy∑ = 0 ⇒  T cos5.0° = mg   

 or   
  
T =

mg
cos5.0°

 

   
  Fx∑ = 0 ⇒  Fe = T sin 5.0° = mg tan 5.0°  

 At equilibrium, the distance separating the two spheres is 

  r = 2Lsin 5.0°.  

 

ANS. FIG. P23.16 
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 Thus,    Fe = mg tan 5.0°  becomes 
  

keq
2

2 L sin 5.0°( )2 = mg tan 5.0° , which yields 

   

  

L =
keq

2

mg tan 5.0° 2 sin 5.0°( )2

=
8.99 × 109  N ⋅m2/C2( ) 7.20 × 10−9  C( )2

0.200 × 10−3  kg( ) 9.80 m/s2( )tan 5.0° 2 sin 5.0°( )2 = 0.299 m

 

P23.17 (a) 
  
F =

kee
2

r2 = 8.99 × 109  N ⋅m2/C2( ) 1.60 × 10−19  C( )2

0.529 × 10−10  m( )2 = 8.22 × 10−8  N  

toward the other particle.  

 (b) We have 
  
F =

mv2

r
 from which 

   

  

v =
Fr
m

=
8.22 × 10−8  N( ) 0.529 × 10−10  m( )

9.11× 10−31  kg

= 2.19 × 106  m/s

 

P23.18 Charge C is attracted to charge B and 
repelled by charge A, as shown in ANS. 
FIG. P23.18. In the sketch,  

  
  rBC = 4.00 m( )2 + 3.00 m( )2 = 5.00 m  

 and 

  
 
θ = tan−1 3.00 m

4.00 m
⎛
⎝⎜

⎞
⎠⎟ = 36.9°  

 (a)   FAC( )x
= 0  

 (b) 
  

FAC( )y
= FAC = ke

qA qC

rAC
2  

  

  

FAC( )y
= 8.99 × 109  N ⋅m2 / C2( ) 3.00 × 10−4  C( ) 1.00 × 10−4  C( )

3.00 m( )2

= 30.0 N

 

ANS. FIG. P23.18 
 



Chapter 23     15 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (c) 

  

FBC = ke

qB qC

rBC
2

= 8.99 × 109  N ⋅m2 / C2( ) 6.00 × 10−4  C( ) 1.00 × 10−4  C( )
5.00 m( )2

= 21.6 N

 

 (d)   FBC( )x
= FBC cosθ = 21.6 N( )cos 36.9°( ) = 17.3 N  

 (e) 
  

FBC( )y
= − FBC sinθ = − 21.6 N( )sin 36.9°( ) = −13.0 N  

 (f)   FR( )x
= FAC( )x

+ FBC( )x
= 0 + 17.3 N = 17.3 N  

 (g) 
  

FR( )y
= FAC( )y

+ FBC( )y
= 30.0 − 13.0 N = 17.0 N  

 (h) 
  
FR = FR( )x

2 + FR( )y

2 = 17.3 N( )2 + 17.0 N( )2 = 24.3 N  

  Both components are positive, placing the force in the first 
quadrant:  

   

  
ϕ = tan−1

FR( )y

FR( )x

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= tan−1 17.0 N
17.3 N

⎛
⎝⎜

⎞
⎠⎟ = 44.5°  

  Therefore,     F


R = 24.3 N at 44.5° above the +x direction .  

P23.19 The force due to the first charge is given by 
   

    


F1 =

keQ 2Q( )
d2 ĵ = keQ

2

d2 2 ĵ⎡⎣ ⎤⎦
 

 and the force due to the second charge is given 
by 

   

    


F2 =

keQ Q( )
d2 + d2( )

î − ĵ
2

⎡

⎣
⎢

⎤

⎦
⎥ = keQ

2

d2

î − ĵ
2 2

⎡

⎣
⎢

⎤

⎦
⎥

 

 thus the total force on the point charge +Q located at x = 0 and y = d is 

       


F1 +

F2 = keQ

2

d2 2 ĵ⎡⎣ ⎤⎦ + keQ
2

d2

î − ĵ
2 2

⎡

⎣
⎢

⎤

⎦
⎥ = ke

Q2

d2

1
2 2

î + 2 − 1
2 2

⎛
⎝⎜

⎞
⎠⎟ ĵ⎡

⎣⎢
⎤
⎦⎥

 

P23.20 Each charge exerts a force of magnitude 
  

keqQ
d/2( )2 + x2  on the negative 

charge –Q: the top charge exerts its force directed upward and to the 
left, and bottom charge exerts its force directed downward and to the 

 

ANS. FIG. P23.19 
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left, each at angle 
  
θ = tan−1 d

2x
⎛
⎝⎜

⎞
⎠⎟

, respectively, above and below the x 

axis. The two positive charges together exert a net force:  
  

    


F = −2

keqQ
d/2( )2 + x2 cosθ î

= −2
keqQ

d2 4 + x2( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x

d2 4 + x2( )1 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

î

= −2xkeqQ

d2 4 + x2( )3 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

î = m

a

 

 or for 
   
x

d
2

, 
    


a ≈ −

2keqQ
md3 8

⎛
⎝⎜

⎞
⎠⎟

x      →      


a ≈ −

16keqQ
md3

⎛
⎝⎜

⎞
⎠⎟

x  

 (a) 

    

The acceleration of the charge is equal to a negative
constant times its displacement from equilibrium, as in

a = −ω 2x,  so we have Simple Harmonic Motion with

ω 2 = 16keqQ
md3 .

 

 (b) 

  
ω 2 =

2π
T

⎛
⎝⎜

⎞
⎠⎟

2

=
16keqQ

md3  → T =
2π
ω

=
π
2

md3

keqQ
, where m is the 

mass of the object with charge –Q. 

 (c) 
  
vmax =ωA = 4a

keqQ
md3

 

P23.21 (a) The force is one of  attraction .  The distance r in Coulomb’s law 
is the distance between the centers of the spheres. The magnitude 
of the force is 

   

  

F =
keq1q2

r2

= 8.99 × 109  N ⋅m2 / C2( ) 12.0 × 10−9  C( ) 18.0 × 10−9  C( )
0.300 m( )2

= 2.16 × 10−5  N
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 (b) The net charge of –6.00 × 10–9 C will be equally split between the 
two spheres, or –3.00 × 10–9 C on each. The force is one of 

 
repulsion ,  and its magnitude is 

   

  

F =
keq1q2

r2

= 8.99 × 109  N ⋅m2 / C2( ) 3.00 × 10−9  C( ) 3.00 × 10−9  C( )
0.300 m( )2

= 8.99 × 10−7  N

 

P23.22 Each of the dust particles is a particle in equilibrium. Express this 
mathematically for one of the particles: 

   
    F


∑  = 0    →    Fe  − Fg  = 0    →    Fe  = Fg  
 

  where we have recognized that the gravitational force is attractive and 
the electric force is repulsive, so the forces on one particle are in 
opposite directions. Substitute for the forces from Coulomb’s law and 
Newton’s law of universal gravitation, and solve for q, the unknown 
charge on each dust particle: 

   
  
ke

q2

r2  = G
m2

r2     →     q = 
G
ke

 m  

 Substitute numerical values: 
   

  

q =  6.673 × 10−11  N ⋅m2/kg2

8.987  6 × 109  N ⋅m2/C2  
  1.00 × 10−9  kg( ) 

= 8.61 × 10−20  C

 

 This is about half of the smallest possible free charge, the charge of the 
electron. No such free charge exists. Therefore, the forces cannot 
balance. Even if the charge on each dust particle is due to one electron, 
the net force will be repulsive and the particles will move apart. 

 
 

 

Section 23.4 Analysis Model: Particle in a Field (Electric) 

*P23.23 For equilibrium,     

Fe = −


Fg   or  

    
q

E = −mg − ĵ( ).  Thus,   

   
    


E = mg

q
ĵ.    
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 (a) For an electron, 

   

    


E = mg

q
ĵ =

9.11× 10−31  kg( ) 9.80 m s2( )
−1.60× 10−19  C

ĵ

= − 5.58× 10−11  N C( ) ĵ

 

 (b) For a proton, which is 1 836 times more massive than an electron, 

   

    


E = mg

q
ĵ =

1.67 × 10−27  kg( ) 9.80 m s2( )
−1.60× 10−19  C

ĵ

= 1.02 × 10−7  N C( ) ĵ

 

P23.24 In order for the object to “float” in the electric field, the electric force 
exerted on the object by the field must be directed upward and have a 
magnitude equal to the weight of the object. Thus, Fe = qE = mg, and 
the magnitude of the electric field must be 

 
  
E =

mg
q

=
3.80 × 10−3  kg( ) 9.80 m/s2( )

18.0 × 10−6  C
= 2.07 × 103  N/C  

 The electric force on a negatively charged object is in the direction 
opposite to that of the electric field. Since the electric force must be 
directed upward, the electric field must be directed  downward .  

P23.25 We sum the electric fields from each of the other charges using 
Equation 23.7 for the definition of the electric field. 

 The field at charge q is given by   

  
    


E =

keq1

r1
2 r̂1 +

keq2

r2
2 r̂2 +

keq3

r3
2 r̂3  

 (a) Substituting for each of the charges gives 
   

    


E =

ke 2q( )
a2 î +

ke 3q( )
2a2 î cos 45.0° + ĵsin 45.0°( ) +

ke 4q( )
a2 ĵ

= keq
a2 2 + 3

2
cos 45.0°⎛

⎝⎜
⎞
⎠⎟ î + 3

2
sin 45.0° + 4⎛

⎝⎜
⎞
⎠⎟ ĵ⎡

⎣⎢
⎤
⎦⎥

= keq
a2 3.06î + 5.06 ĵ( )

  

 (b) The electric force on charge q is given by 
   

    


F = q


E = keq

2

a2 3.06î + 5.06 ĵ( )
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P23.26 Call the fields 
  
E =

keq
r2  and 

  
E′ =

ke 2q( )
r2 = 2E  (see ANS. FIG. P23.26). 

 

ANS. FIG. P23.26 

 The total field at the center of the circle has components  

  

     


E = Ecos30.0°−Ecos30.0°( ) î − E′ + 2Esin 30.0°( ) ĵ

= − E′ + 2Esin 30.0°( ) ĵ = − 2E + 2Esin 30.0°( ) ĵ

= −2E 1+ sin 30.0°( ) ĵ

= −2
keq
r2 1+ sin 30.0°( ) ĵ = −2

keq
r2 1.50( ) ĵ = −ke

3q
r2 ĵ

 

P23.27 (a) See ANS. FIG. P23.27(a). The 
distance from the +Q charge on 
the upper left is d, and the 
distance from the +Q charge on 
the lower right to point P is  

   
  

d 2( )2 + d 2( )2   

  The total electric field at point P 
is then 

   

    


EP = ke

Q
d2 î + ke

Q

d 2( )2 + d 2( )2⎡
⎣

⎤
⎦

− î + ĵ
2

⎛

⎝⎜
⎞

⎠⎟

     = ke
Q
d2 î +

Q
d2 2

− î + ĵ
2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

      = ke
Q
d2 1− 2( ) î + 2 ĵ⎡

⎣
⎤
⎦

 

 

 

ANS. FIG. P23.27(a) 
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 (b) See ANS. FIG. P23.27(b). The 
distance from the +Q charge on 
the lower right to point P’ is 2d, 
and the distance from the +Q 
charge on the upper right to 
point P′ is  

   
  

d 2( )2 + d 2( )2   

  The total electric field at point P’ is then 

 

    


EP′ = ke

Q

d 2( )2 + d 2( )2⎡
⎣

⎤
⎦

− î − ĵ
2

⎛

⎝⎜
⎞

⎠⎟
+ ke

Q
2d( )2 − î( )


E

P′ = −ke
Q

d2 2
î + ĵ

2

⎛

⎝⎜
⎞

⎠⎟
+

Q
4d2 − î( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −ke
Q

4d2

8
2

î + ĵ( ) + î( )⎡
⎣⎢

⎤
⎦⎥


EP′ = −ke

Q
4d2 1 + 4 2( ) î + 4 2 ĵ⎡

⎣
⎤
⎦

 

P23.28 (a) One of the charges creates at P a field  

   
    


E = Ex î =

keQ n( )
a2 + x2 î  

  at an angle θ to the x axis as shown in ANS. 
FIG. P23.28. When all the charges produce 
the field, for n > 1, by symmetry the 
components perpendicular to the x axis 
add to zero. 

  The total field is then 
   

    


E = nEx î = n

ke Q/n( ) î
a2 + x2 cosθ

⎛

⎝⎜
⎞

⎠⎟
= keQxî

a2 + x2( )3 2

 

 (b) 

  

A circle of charge corresponds to letting n grow beyond 
all bounds, but the result does not depend on n. Because
of the symmetrical arrangement of the charges, smearing
the charge around the circle does not change its amount 
or its distance from the field point, so it does not change 
the field.

 

 

ANS. FIG. P23.27(b) 

 

ANS. FIG. P23.28 
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P23.29 The field of the positively-charged 
object is everywhere pointing radially 
away from its location. The object with 
negative charge creates everywhere a 
field pointing toward its different 
location. These two fields are directed 
along different lines at any point in the 
plane except for points along the 
extended line joining the particles; so 
the two fields cannot be oppositely-
directed to add to zero except at some 
location along this line, which we take 
as the x axis. Observing the middle 
panel of ANS. FIG. P23.29, we see that 
at points to the left of the negatively-
charged object, this particle creates 
field pointing to the right and the 
positive object creates field to the left. 
At some point along this segment the 
fields will add to zero. At locations in 
between the objects, both create fields 
pointing toward the left, so the total field is not zero. At points to the 
right of the positive 6-µC object, its field is directed to the right and is 
stronger than the leftward field of the –2.5-µC object, so the two fields 
cannot be equal in magnitude to add to zero. We have argued that only 
at a certain point straight to the left of both charges can the fields they 
separately produce be opposite in direction and equal in strength to 
add to zero.  

Let x represent the distance from the negatively-charged particle (charge 
q–) to the zero-field point to its left. Then 1.00 m + x is the distance from 
the positive particle (of charge q+) to this point. Each field is separately 
described by  
 

    

E = keqr̂/x2  

so the equality in magnitude required for the two oppositely-directed 
vector fields to add to zero is described by 
  

  

ke q−

x2 =
ke q+

1 m + x( )2

 

It is convenient to solve by taking the square root of both sides and 
cross-multiplying to clear of fractions: 
  

  q−
1/2 1 m + x( ) = q+

1/2x
 

 

 

ANS. FIG. P23.29 
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1 m + x = 6.00

2.50
⎛
⎝⎜

⎞
⎠⎟

1 2

x= 1.55 x  

  1 m = 0.549x  

 and     x = 1.82 m  to the left of the negatively-charged object. 

P23.30 (a) Let s = 0.500 m be length of a side of the triangle. Call q1 = 7.00 µC 
and   q2 = −4.00 µC = 4.00 µC.  The electric field at the position of 
the 2.00- µC charge is the sum of the fields from the other two 
charges: 

   

    


E =

E1 +

E2 = ke

q1

r1
2 r̂1 + ke

q2

r2
2 r̂2

 

  substituting, 
   

    


E = ke

q1

s2 −cos60.0 î − sin60.0 ĵ( ) + ke
q2

s2 î

= ke

s2 q2 − q1 cos60.0( ) î − q1 sin60.0 ĵ⎡⎣ ⎤⎦

  

  substituting numerical values, 

   

   


E = 8.99× 109  N ⋅m2/C2

0.500 m( )2

⎡

⎣
⎢

⎤

⎦
⎥

            × 4.00× 10−6  C− 7.00× 10−6  C( )cos60.0⎡⎣ ⎤⎦ î

                                              − 7.00× 10−6  C( )sin60.0 ĵ

E = 1.80× 104  N/C( ) î − 2.18× 105  N/C( ) ĵ

= 18.0î − 218 ĵ( )  kN/C

 

 (b) The force on this charge is given by 
   

    


F = q


E = 2.00× 10−6  C( ) 18.0


i − 218 ĵ( )  kN/C

= 0.0360

i − 0.436 ĵ( )  N
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P23.31 Call Q = 3.00 nC and q = |–2.00 nC|= 2.00 nC,  
and r = 4.00 cm = 0.040 0 m. Then,  

  
  
E1 = E2 =

keQ
r2

  and  
  
E3 =

keq
r2

 

 Then,  
   

  

Ey = 0

Ex = Etotal = 2
keQ
r2 cos30.0°− keq

r2

Ex = ke

r2 2Qcos30.0°− q( )

Ex = 8.99× 109  N ⋅m2/C2

0.040 0 m( )2

⎡

⎣
⎢

⎤

⎦
⎥

                        × 2 3.00× 10−9  C( )cos30.0°− 2.00× 10−9  C⎡⎣ ⎤⎦
= 1.80× 104  N/C

 

 (a) 
 
1.80 × 104  N/C to the right  

 (b) The electric force on a point charge placed at point P is 
   

  
F = qE = −5.00× 10−9  C( )E = −8.98× 10−5  N (to the left)

  

P23.32  The first charge creates at the origin a field 

  

keQ
a2

 to the right. Both charges are on the x 

axis, so the total field cannot have a vertical 
component, but it can be either to the right or to the left. If the total 
field at the origin is to the right, then q must be negative:  

  
   

keQ
a2 î +

keq
3a( )2 − î( ) =

2keQ
a2 î   →   q = −9Q  

 In the alternative, if the total field at the origin is to the left, 

  
   

keQ
a2 î +

keq
9a2 − î( ) =

2keQ
a2 − î( )   →   q = +27Q  

 

  

The field at the origin can be to the right, if the unknown charge is − 9Q,
or the field can be to the left, if and only if the unknown charge is + 27Q.

 

 

ANS. FIG. P23.31 

ANS. FIG. P23.32 
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ANS. FIG. P23.34 

*23.33 From the free-body diagram shown in ANS. FIG. 
P23.33, 

   
  Fy∑ = 0:             T cos15.0° = 1.96 × 10−2  N  

 So    T = 2.03 × 10−2  N.  

 From   Fx∑ = 0,  we have   qE = T sin 15.0°,  

 or  
   

  

q = T sin 15.0°
E

=
2.03 × 10−2  N( )sin 15.0°

1.00 × 103  N C

= 5.25 × 10−6  C = 5.25 µC

 

*P23.34 (a) The distance from each charge to the 
point at y = 0.500 m is  

   
  d = 1.00 m( )2 + 0.500 m( )2 = 1.12 m

  

 the magnitude of the electric field from  
each charge at that point is then given by 

   
  
E = keq

r2 =
8.99 × 109  N ⋅m2/C2( ) 2.00 × 10−6  C( )

1.12 m( )2 = 14 400 N C  

  The x components of the two fields cancel and the y components 
add, giving  

     Ex = 0  and   Ey = 2 14 400 N/C( )sin 26.6° = 1.29 × 104  N C  

  so 
   


E = 1.29 × 104 ĵ N C .  

 (b) The electric force at this point  is given by 

   

    


F = q


E = −3.00 × 10−6  C( ) 1.29 × 104  N/Cĵ( )

= −3.86 × 10−2 ĵ N

 

*P23.35 (a) The electric field at the origin due to each of the charges is given by 

   

    


E1 = ke q1

r1
2 − ĵ( )

=
8.99 × 109  N ⋅m2/C2( ) 3.00 × 10−9  C( )

0.100 m( )2 − ĵ( )
= − 2.70 × 103  N C( ) ĵ

 

r
T

q
r
E

r
Fg = 0 019 6. N

r
E

r
E

ANS. FIG. P23.33 
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ANS. FIG. P23.37 
 

   

    


E2 = ke q2

r2
2 − î( )

=
8.99× 109  N ⋅m2/C2( ) 6.00× 10−9  C( )

0.300 m( )2 − î( )
= − 5.99× 102  N C( ) î

 

  and their sum is 
   

   


E =

E2 +


E1 = − 5.99× 102  N C( ) î − 2.70× 103  N C( ) ĵ

 

r
E

r
E1

r
E2

 

ANS. FIG. P23.35 

 (b) The vector electric force is 

   
    

F = q


E = 5.00 × 10−9  C( ) −599î − 2 700 ĵ( )  N C  

   
   


F = −3.00 × 10−6 î − 13.5 × 10−6 ĵ( )  N = −3.00î − 13.5 ĵ( )  µN  

*P23.36 The electric field at any point x is 
   

  
E = keq

x − a( )2 − keq
x − −a( )[ ]2 = keq 4ax( )

x2 − a2( )2

 

 When x is much, much greater than a, we find 
  
E ≈ 4a keq( )

x3 .  

 
 

 

Section 23.5 Electric Field of a Continuous Charge Distribution 
P23.37 (a) From Example 23.7, the magnitude of the 

electric field produced by the rod is 
   

   

E =
keλ

d  + d( ) =
ke Q / ( )
d  + d( ) =

keQ
d  + d( )

     =
8.99 × 109  N ⋅m2/C2( ) 22.0 × 10−6  C( )

0.290 m( ) 0.140 m + 0.290 m( )

 

    
  E = 1.59 × 106  N/C  
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 (b) The charge is negative, so the electric field is directed towards its 
source, 

 
to the right .  

P23.38 The electric field for the disk is given by 

   
  
E = 2π keσ 1−

x

x2 + R2

⎛
⎝⎜

⎞
⎠⎟

 

 in the positive x direction (away from the disk). Substituting, 
   

  

E = 2π 8.99× 109  N ⋅m2/C2( ) 7.90× 10−3  C/m2( )

                                                    × 1− x

x2 + 0.350( )2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= 4.46× 108  N/C( ) 1− x
x2 + 0.123

⎛
⎝⎜

⎞
⎠⎟

 

 (a) At x = 0.050 0 m,  

   
  E = 3.83 × 108  N/C = 383 MN/C  

 (b) At x = 0.100 m,  

   
  E = 3.24 × 108  N/C = 324 MN/C  

 (c) At x = 0.500 m,  

   
  E = 8.07 × 107  N/C = 80.7 MN/C  

 (d) At x = 2.000 m,  

   
  E = 6.68 × 108  N/C = 6.68 MN/C  

P23.39 We may particularize the result of Example 23.8 to

     

  

E = kexQ
x2 + a2( )3 2 =

8.99× 109  N ⋅m2/C2( ) 75.0× 10−6  C/m2( )x

x2 + 0.1002( )3 2

= 6.74× 105 x
x2 + 0.010 0( )3 2

  

 where we choose the x axis along the axis of the ring. The field is 
parallel to the axis, directed away from the center of the ring above 
and below it. 

 (a) At x = 0.010 0 m, 
   

E = 6.64 × 106 î N/C = 6.64î MN/C  
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 (b) At x = 0.050 0 m, 
   

E = 2.41× 107 î N/C = 24.1î MN/C  

 (c) At x = 0.300 m, 
   

E = 6.40 × 106 î N/C = 6.40î MN/C  

 (d) At x = 1.00 m, 
   

E = 6.64 × 105 î N/C = 0.664î MN/C  

P23.40 The electric field at a distance x is 
  
Ex = 2π keσ 1−

x

x2 + R2

⎡

⎣
⎢

⎤

⎦
⎥  

 This is equivalent to 
  
Ex = 2π keσ 1−

1

1 + R2 x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 For large x, 
  

R2

x2 << 1  and 
  

1 +
R2

x2 ≈ 1 +
R2

2x2  

 so   

  

Ex = 2π keσ 1−
1

1 + R2 2x2( )⎡⎣ ⎤⎦

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= 2π keσ
1 + R2 2x2( ) − 1( )

1 + R2 2x2( )⎡⎣ ⎤⎦
 

 Substitute 
  
σ =

Q
π R2 ,   

   

  
Ex =

keQ 1 x2( )
1+ R2 2x2( )⎡⎣ ⎤⎦

= keQ
x2 + R2 2

 

 But for  x >> R , 
  

1
x2 + R2 2

≈
1
x2 , so  

   
  

Ex ≈
keQ
x2  for a disk at large distances  

P23.41 (a) From Example 23.9,  

    
  
E = 2π keσ 1−

x

x2 + R2

⎛
⎝⎜

⎞
⎠⎟

 

  here, 
    

  
σ = Q

πR2 = 5.20× 10−6

π 0.0300( )2 = 1.84× 10−3  C/m2
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  the electric field is then 
    

  

E = 2π keσ 1− x
x2 + R2

⎛
⎝⎜

⎞
⎠⎟

E = 2π 8.99× 109( ) 1.84× 10−3( )

                              × 1− 0.00300

0.00300( )2 + 0.0300( )2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

E = 1.04× 108  N/C( ) 1− 0.00300

0.00300( )2 + 0.0300( )2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= 9.36× 107  N/C

 

 (b)  The near-field approximation gives:  
    

  
E = 2π keσ = 1.04× 108  N/C about 11% high( )

  

 (c) The electric field at this point is   
    

  

E = 1.04× 108  N/C( ) 1− 0.300

0.300( )2 + 0.0300( )2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= 5.16× 105  N/C

 

 (d) With this approximation, suppressing units, 
    

  

E = ke
Q
r2 = 8.99× 109( ) 5.20× 10−6

0.30( )2

⎡

⎣
⎢

⎤

⎦
⎥

= 5.19× 105  N/C about 0.6% high( )

 

P23.42 (a) The electric field at point P due to each 

element of length dx is 
  
dE =

kedq
x2 + d2

 and 

is directed along the line joining the 
element to point P. The charge element 
dq = Qdx/L. The x and y components are 

   
  
Ex = dEx∫ = dEsinθ∫     

  where   
  
sinθ =

x

d2 + x2
 

 

ANS. FIG. P23.42 
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  and 

   
  
Ey = dEy∫ = dEcosθ∫    where   

  
cosθ =

d

d2 + x2
 

  Therefore, 

   

  

Ex = −ke
Q
L

xdx

d2 + x2( )3 2
0

L

∫ = −ke
Q
L

−1
d2 + x2( )1 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0

L

Ex = −ke
Q
L

−1
d2 + L2( )1 2 −

−1
d2 + 0( )1 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   

Ex = −ke
Q
L

1
d
− 1

d2 + L2( )1 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

  and 

   

  

Ey = ke
Qd
L

dx

d2 + x2( )3 2
0

L

∫ = ke
Qd
L

x

d2 d2 + x2( )1 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0

L

Ey = ke
Q
Ld

L

d2 + L2( )1 2 − 0
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

     →      Ey = ke
Q
d

1

d2 + L2( )1 2

 

 (b) When d >> L,  

   

  

Ex = −ke
Q
L

1
d
−

1

d2 + L2( )1 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
→ −ke

Q
L

1
d
−

1

d2( )1 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
→ Ex ≈ 0  

  and 

   
  
Ey = ke

Q
d

1

d2 + L2( )1 2 → ke
Q
d

1

d2( )1 2 → Ey ≈ ke
Q
d2  

  

  

which is the field of a point charge Q at a distance d along the
y  axis above the charge.

 

P23.43 (a) Magnitude 
  
E =

kedq
x2∫ , where   dq = λ0dx  

   
  
E = keλ0

dx
x2

x0

∞

∫ = keλ0 −
1
x

⎛
⎝⎜

⎞
⎠⎟

x0

∞

=
keλ0

x0
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ANS. FIG. P23.44 
 

ANS. FIG.  

P23.45 
 

 (b) The charge is positive, so the electric field points away from its 
source,  to the left .  

P23.44 (a) The electric field at point P, due to each 

element of length dx, is 
  
dE = kedq

x2 + d2  and is 

directed along the line joining the element to 
point P. By symmetry, 

     Ex = dEx∫ = 0   

  and since   dq = λdx,  

     E = Ey = dEy∫ = dEcosθ∫   

  where 
  
cosθ = y

x2 + d2
.  

  Therefore, 
   
E = 2keλd

dx
x2 + d2( )3 2

0

 2

∫ = 2keλ sinθ0

d
 

  with 

   

sinθ0 =  2

 2( )2 + d2
.   

 (b) For a bar of infinite length,  θ0 = 90°  and 
  
Ey =

2keλ
d

.  

P23.45 Due to symmetry, 
  
Ey = dEy∫ = 0 , and 

  
Ex = − dEsinθ∫ = −ke

dqsinθ
r2∫  where  dq = λds = λrdθ ; the 

component Ex is negative because charge q = –7.50 µC, 
causing the net electric field to be directed to the left.  

   
  
Ex = −

keλ
r

sinθdθ
0

π

∫ = −
keλ
r

− cosθ( ) 0

π = −
2keλ

r
  

 where 
 
λ =

q
L

 and 
 
r =

L
π

. Thus, 

   

  

Ex = −
2ke q π

L2 = −
2 8.99× 109  N ⋅m2 /C2( ) 7.50× 10−6  C( )π

0.140 m( )2

Ex = −2.16× 107  N/C

 

 (a)  magnitude   E = 2.16 × 107  N/C  
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 (b)  to the left  

P23.46 (a) We define x = 0 at the point where we are to find the field. One 

ring, with thickness dx, has charge 
 

Qdx
h

 and produces, at the 

chosen point, a field 

   
    
d

E =

kex

x2 + R2( )3 2

Qdx
h

î  

  The total field is 
   

    


E = dE

all charge
∫ = keQxdx

h x2 + R2( )3 2 î
d

d+h

∫

= keQî
2h

x2 + R2( )−3 2
2xdx

x=d

d+h

∫

 

  integrating, 
    

    


E = keQî

2h
x2 + R2( )−1 2

−1 2( )
x=d

d+h

= keQî
h

1
d2 + R2( )1 2 −

1

d + h( )2 + R2( )1 2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 

 (b) Think of the cylinder as a stack of disks, each with thickness dx, 

charge 
 

Qdx
h

, and charge-per-area 
  
σ =

Qdx
π R2h

. One disk produces a 

field 

    

    

d

E =

2π keQdx
π R2h

1−
x

x2 + R2( )1 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

î  

  So, 

    


E = d


E

all charge
∫ =

2keQdx
R2hx=d

d+ h

∫ 1−
x

x2 + R2( )1 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

î  

    

    


E = 2keQî

R2h
dx

d

d+h

∫ − 1
2

x2 + R2( )−1 2
2xdx

x=d

d+h

∫
⎡
⎣⎢

⎤
⎦⎥

= 2keQî
R2h

x d
d+h − 1

2
x2 + R2( )1 2

1 2
d

d+h⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
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E = 2keQî

R2h
d + h− d − d + h( )2 + R2( )1 2

+ d2 + R2( )1 2⎡
⎣⎢

⎤
⎦⎥


E = 2keQî

R2h
h + d2 + R2( )1 2

− d + h( )2 + R2( )1 2⎡
⎣⎢

⎤
⎦⎥

 

 
 

 

Section 23.6 Electric Field Lines 
P23.47 The field lines are shown in ANS. FIG. 

P23.47, where we’ve followed the rules 
for drawing field lines where field lines 
point toward negative charge, meeting 
the rod perpendicularly and ending 
there. 

P23.48 For the positively charged disk, a side view of the field lines, 
pointing into the disk, is shown in ANS. FIG. P23.48. 

 

ANS. FIG. P23.48 

P23.49 Field lines emerge from positive charge and enter negative charge.  

 (a) The number of field lines emerging from positive q2 and entering 
negative charge q1 is proportional to their charges:  

   
  

q1

q2

=
−6
18

= −
1
3

 

 (b) From above, 
  

q1  is negative, q2  is positive .  

P23.50 (a) The electric field has the general appearance shown in ANS. FIG. 
P23.50 below. 

 (b) It is zero 
 

at the center , where (by symmetry) one can see that 

the three charges individually produce fields that cancel out. 

  In addition to the center of the triangle, the electric field lines in 
the second panel of ANS. FIG. P23.50 indicate three other points 
near the middle of each leg of the triangle where E = 0, but they 
are more difficult to find mathematically.  

 

ANS. FIG. P23.47 
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 (c) You may need to review vector addition in  
Chapter 1. The electric field at point P can  
be found by adding the electric field  
vectors due to each of the two lower point  
charges:    


E =

E1 +


E2 .  

  The electric field from a point charge is  

    


E = ke

q
r2 r̂.  

  As shown in the bottom panel of ANS. FIG.  
P23.50,  

    
    


E1 = ke

q
a2   

  to the right and upward at 60°, and 

    
    


E2 = ke

q
a2   

  to the left and upward at 60°. So, 

    

    


E =

E1 +


E2 = ke

q
a2 cos60°î + sin 60° ĵ( ) + − cos60°î + sin 60° ĵ( )⎡

⎣
⎤
⎦

= ke

q
a2 2 sin 60° ĵ( )⎡

⎣
⎤
⎦ = 1.73ke

q
a2 ĵ

 

 
 

 

Section 23.7 Motion of a Charged Particle in a  
Uniform Electric Field 

P23.51 (a) We obtain the acceleration of the proton from the particle under a 
net force model, with F = qE representing the electric force:  

    

  
a = F

m
= qE

m =
1.602 × 10–19  C( ) 640 N/C( )

1.67  × 10–27  kg
= 6.14× 1010  m/s2

  

 (b) The particle under constant acceleration model gives us 

  v f = vi + at,  from which we obtain 
   

  
t =

v f − 0
a = 1.20 × 106  m/s

6.14  × 1010  m/s2 = 19.5 µs
  

  (c) Again, from the particle under constant acceleration model, 

     

  

Δx = vit + 1
2

at2 = 0 + 1
2

(6.14 × 1010  m/s2 )(19.5 × 10–6  s)2

= 11.7 m
  

 

ANS. FIG. P23.50 
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 (d) The final kinetic energy of the proton is 
   

  
K = 1

2
mv2 = 1

2
(1.67 × 10–27  kg)(1.20× 106  m/s)2 = 1.20× 10–15  J

  

P23.52 (a) 
  
a =

qE
m

=
1.602 × 10−19  C( ) 6.00 × 105  N/C( )

1.67 × 10−27  kg
= 5.76 × 1013  m/s,  

  so    

a = −5.76 × 1013 î m/s2 .  

 (b) 
  
v

f

2 = v
i

2 + 2a x f − xi( )  

  

    

0 = vi
2 + 2 −5.76 × 1013  m/s2( ) 0.070 0 m( )  


v i = 2.84 × 106 î m/s

 

 (c)  v f = vi + at  

  
  0 = 2.84 × 106  m/s + −5.76 × 1013  m/s2( )t   →   t = 4.93 × 10−8  s

 

P23.53 We use   v f = vi + at,  where vi = 0, t = 48.0 × 10–9 s, and a = F/m = eE/m. 

 For the electron,   m = me = 9.11× 10−31  kg  

 and for the proton,   m = mp = 1.67 × 10−27  kg   

 The electric force on both particles is given by 
   

  F = eE = 1.60× 10−19  C( ) 5.20× 102  N/C( ) = 8.32 × 10−17  N
 

 Then, for the electron, 

   

  

v fe = vie + at = 0 + eE
me

⎛
⎝⎜

⎞
⎠⎟

t = 8.32 × 10−17  N
9.11× 10−31  kg

⎛
⎝⎜

⎞
⎠⎟

48.0× 10−9  s( )

= 4.38× 106  m/s

  

 and for the proton, 

   

  

v fp = vip + at = 0 + eE
mp

⎛

⎝
⎜

⎞

⎠
⎟ t = 8.32 × 10−17  N

1.67 × 10−27  kg
⎛
⎝⎜

⎞
⎠⎟

48.0× 10−9  s( )

= 2.39× 103  m/s

 

P23.54 (a) 
 
Particle under constant velocity  

 (b)  Particle under constant acceleration  

 (c) The vertical acceleration caused by the  ANS. FIG. P23.54 
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electric force is constant and downward;  
therefore, the proton moves in a parabolic path just like a 
projectile in a gravitational field. 

 (d) We may neglect the effect of the acceleration of gravity on the 
proton because the magnitude of the vertical acceleration caused 
by the electric force is  

   

  
ay =

eE
mp

=
1.60 × 10−19  C( ) 720 N/C( )

1.67 × 10−27  kg
= 6.90 × 1010  m/s2

 

  which is much greater than that of gravity.  

  Replacing acceleration g in Equation 4.13 with eE/mP, we have  

   
  
R =

vi
2 sin 2θ

eE / mp

=
mpvi

2 sin 2θ
eE

 

 (e) 

  

R =
mpvi

2 sin 2θ
eE

=
1.67 × 10−27  kg( ) 9.55 × 103  m/s( )2

sin 2θ
1.60 × 10−19  C( ) 720 N/C( )

= 1.27 × 10−3  m

 

  which gives  sin 2θ = 0.961,  or  

    
 
θ = 36.9°  or 

 
90.0° −θ = 53.1°  

 (f) 
  
Δt =

R
vix

=
R

vi cosθ
    

  If  θ = 36.9°,  
  
Δt = 166 ns .   If  θ = 53.1° ,   Δt = 221 ns .  

P23.55 The work done on the charge is    W =

F ⋅

d = q


E ⋅

d  and the kinetic 

energy changes according to W = Kf – Ki = 0 – K. 

 Assuming   

v  is in the +x direction, we have     (–e)


E ⋅ dî = −K.  

 Then, 
    
e

E ⋅ dî( ) = K ,  and 

  
    


E = K

ed
î  

 (a) 
 
E =

K
ed

 

 (b) Because a negative charge experiences an electric force opposite 
to the direction of an electric field, the required electric field will 
be 

 
in the direction of motion . 
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P23.56 (a) The positive charge experiences a constant downward force (in 
the direction of the electric field): 

   
    


F = q


E = 1.00× 10−6  C( ) 2 000 N C( ) − ĵ( ) = 2.00× 10−3 − ĵ( )  N

 

  and moves with acceleration: 
   

    


a =


F∑

m
=

2.00× 10−3  N( ) − ĵ( )
2.00× 10−16  kg

= 1.00× 1013 − ĵ( )  m s2

 

  Note that the gravitational acceleration is on the order of a trillion 
times smaller than the electrical acceleration of the particle. Thus, 
its trajectory is 

 
a parabola  opening downward.  

 (b) The maximum height the charge attains above the bottom 
negative plate is described by 

   
  
vyf

2 = vyi
2 + 2ay y f − yi( )  

  Solving for the height gives 
   

   

y f − yi =
vyf

2 − vyi
2

2ay

=
0− 1.00× 105  m/s( )sin 37.0⎡⎣ ⎤⎦

2

2 1.00× 1013  m/s2( )
= 1.81× 10−4  m = 0.181 mm

 

  Since this height is less than the 1.00 cm separation of the plates, 
the charge passes through its highest point and returns to strike 

 
the negative plate .  

 (c) The particle’s x-component of velocity is constant at  

   (1.00 × 105 m/s) cos 37° = 7.99 × 104 m/s 

  Starting at time t = 0, we find the time t when the particle returns 
to the negative plate from 

   

  
y f = yi + vyit + 1

2
ayt

2
 

  Substituting numerical values, 
   

   
0 = 0 + 1.00× 105  m/s( )sin 37.0⎡⎣ ⎤⎦t + 1

2
−1.00× 1013  m/s2( )t2

 

  since t > 0, the only valid solution to this quadratic equation is  
t = 1.20 × 10–8 s. The particle’s range is then 

   

  

x f = xi + vxt = 0 + 7.99× 104  m/s( ) 1.20× 10−8  s( )
= 9.61× 10−4  m
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The particle strikes the negative plate after moving a horizontal
distance of 0.961 mm.

 

P23.57   

E  is directed along the y direction; therefore, ax = 0 and x = vxit. 

  (a) 
  
t =

x
vxi

=
0.050 0 m

4.50 × 105  s
= 1.11× 10−7  s = 111 ns  

 (b) 
  
ay =

qE
m

=
1.602 × 10−19  C( ) 9.60 × 103  N/C( )

1.67 × 10−27  kg
= 9.21× 1011  m/s2  

  

  
y f − yi = vyit +

1
2

ayt
2 :

 

  

  

y f =
1
2

9.21× 1011  m/s2( ) 1.11× 10−7  s( )2

= 5.68 × 10−3  m = 5.67 mm

 

 (c)   vx = 4.50 × 105  m/s      
  

  vyf = vyi + ayt = 9.21× 1011  m/s2( ) 1.11× 10−7  s( ) = 1.02 × 105  m/s
 

  
   

v = 450î + 102 ĵ( ) km/s  

 
 

Additional Problems 

P23.58 (a) The whole surface area of the cylinder is 

  A = 2π r2 + 2π rL = 2π r r + L( ) . 
   

  

Q = σA

= 15.0 × 10−9  C/m2( )2π 0.025 0 m( ) 0.025 0 m + 0.060 0 m[ ]
    = 2.00 × 10−10  C

 

 (b) For the curved lateral surface only, A = 2π rL. 
   

  

Q = σA = 15.0 × 10−9  C/m2( ) 2π 0.025 0 m( ) 0.060 0 m( )⎡⎣ ⎤⎦

= 1.41× 10−10  C

 

 (c) 

  

Q = ρV = ρπ r2L = 500 × 10−9  C/m3( ) π 0.025 0 m( )2 0.060 0 m( )⎡
⎣

⎤
⎦

    = 5.89 × 10−11  C
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P23.59 The electric field is given by the sum of the fields due to each of the n 
particles: 

   

    


E = keq

r2 r̂∑ = keq
a2 − î( ) + keq

2a( )2 − î( ) + keq
3a( )2 − î( ) +

= −keqî
a2 1+ 1

22 + 1
32 +⎛

⎝⎜
⎞
⎠⎟

    = − π
2keq

6a2 î

 

P23.60 The positive charge, call it q, is 50.0 cm – 20.9 cm = 29.1 cm from charge 
Q. The force on q from the –3.00 nC charge balances the force on q from 
the –Q charge:  

   

  

ke 3.00 nC( )q
0.209 m( )2 = keQq

0.291 m( )2

 

 which then gives 
   

  
Q = 3.00 nC( ) 0.291 m

0.209 m
⎛
⎝⎜

⎞
⎠⎟

2

= 5.82 nC
 

P23.61 (a)  Take up the incline as the positive x direction. Newton’s second 
law along the incline gives 

   
  Fx∑ = −mg sinθ + Q E = 0  

  solving for the electric field gives 
   

  
E = mg

Q
sinθ

 

 (b) The electric force must be up the incline, so the electric field must 
point down the incline because the charge is negative. 

   

  

E = mg
Q

sinθ =
5.40× 10−3( ) 9.80( )

7.00× 10−6 sin 25.0°

= 3.19× 103  N/C, down the incline

 

P23.62 The downward electric force on the 0.800 µC charge is balanced by the 
upward spring force:  

   

  

keq1q2

r2 = kx  
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 solving for the spring constant gives 

   

  

k = keq1q2

xr2

=
8.99× 109  N ⋅m2 /C2( ) 0.800× 10−6  C( ) 0.600× 10−6  C( )

0.0350 m( ) 0.0500 m( )2

= 49.3 N/m

 

P23.63 We integrate the expression for the incremental electric field to obtain 

   

    


E = d


E∫ =

keλ0x0dx − î( )
x3

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥x0

∞

∫ = −keλ0x0î x−3 dx
x0

∞

∫

= −keλ0x0î − 1
2x2

x0

∞⎛

⎝⎜
⎞

⎠⎟

= keλ0

2x0

− î( )

 

*P23.64 (a) The gravitational force exerted on the upper  
sphere by the lower one is negligible in  
comparison to the gravitational force  
exerted by the Earth and the downward  
electrical force exerted by the lower sphere.  
Therefore, 

    
  Fy∑ = 0     →      T − mg − Fe = 0   

   or 
  
T = mg +

ke q1 q2

d2
  

  substituting numerical values, 
    

  

T = 7.50× 10−3  kg( ) 9.80 m/s2( )
   +

8.99× 109  N ⋅m2/C2( ) 32.0× 10−9  C( ) 58.0× 10−9  C( )
2.00× 10−2  m( )2

= 0.115 N

 

 (b) Once again, from the particle under a net force model, 
    

  Fy∑ = 0     →      T − mg − Fe = 0  

  or  
  

ke q1 q2

d2 = T − mg  

 

ANS. FIG. P23.64 
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  solving for the distance d then gives 
    

  
d =

ke q1 q2

T − mg

 

  substituting numerical values, with T = 0.180 N,  
    

  

d =
8.99× 109  N ⋅m2/C2( ) 32.0× 10−9  C( ) 58.0× 10−9  C( )

0.180 N − 7.50× 10−3  kg( ) 9.80 m/s2( )
= 1.25× 10−2  m = 1.25 cm

  

P23.65 The proton moves with acceleration 

   
  
ap =

qE
m

=
1.60 × 10−19  C( ) 640 N C( )

1.673 × 10−27  kg
= 6.13 × 1010  m/s2  

 while the electron has acceleration 

   
  
ae =

1.60 × 10−19  C( ) 640 N/C( )
9.110 × 10−31  kg

= 1.12 × 1014  m/s2 = 1 836ap  

 (a) We want to find the distance traveled by the proton (i.e., 

  
d =

1
2

apt
2 ), knowing: 

   

  
4.00 cm = 1

2
apt

2 + 1
2

aet
2 = 1 837( ) 1

2
apt

2⎛
⎝⎜

⎞
⎠⎟

 

  Thus,  

   
  
d =

1
2

apt
2 =

4.00 cm
1 837

= 2.18 × 10−5  m  

 (b) The distance from the positive plate to where the meeting occurs 

equals the distance the sodium ion travels (i.e., 
  
dNa =

1
2

aNat
2 ). This 

is found from: 

   
  
4.00 cm =

1
2

aNat
2 +

1
2

aClt
2 :  

    
  
4.00 cm =

1
2

eE
22.99 u

⎛
⎝⎜

⎞
⎠⎟ t2 +

1
2

eE
35.45 u

⎛
⎝⎜

⎞
⎠⎟ t2  

 This may be written as  

  
  
4.00 cm =

1
2

aNat
2 +

1
2

0.649aNa( )t2 = 1.65
1
2

aNat
2⎛

⎝⎜
⎞
⎠⎟

 

  so  
  
dNa =

1
2

aNat
2 =

4.00 cm
1.65

= 2.43 cm  
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P23.66 We find the equal-magnitude charges on both spheres: 

   
  
F = ke

q1q2

r2 = ke

q2

r2
  

 so  
  
q = r

F
ke

= 1.00 m( ) 1.00 × 104  N
8.99 × 109  N ⋅m2 / C2 = 1.05 × 10−3  C  

 The number of electrons transferred is then 

   
  
Nxfer =

1.05 × 10−3  C
1.60 × 10−19  C/e− = 6.59 × 1015  electrons  

 The whole number of electrons in each sphere is 
   

  

Ntot = 10.0 g
107.87 g/mol

⎛
⎝⎜

⎞
⎠⎟

6.02 × 1023  atoms/mol( ) 47 e− /atom( )
= 2.62 × 1024  e−

 

 The fraction transferred is then 
   

  
f = Nxfer

Ntot

= 6.59× 1015

2.62 × 1024

⎛
⎝⎜

⎞
⎠⎟
= 2.51× 10−9

  

 or 2.51 charges in every billion. 

P23.67 ANS. FIG. P23.67 shows the free-body diagram 
for Newton’s second law gives 

   
    

F∑ =


T + q


E +


Fg = 0  

 We are given  

   Ex = 3.00 ×  105 N/C  

 and Ey = 5.00 ×  105 N/C  

 Applying Newton’s second law or the first 
condition for equilibrium in the x and y 
directions,  

     Fx∑ = qEx −T sin 37.0° = 0   [1] 

     Fy∑ = qEy + T cos37.0°− mg = 0    [2] 

  (a) We solve for T from equation [1]: 
   

  
T = qEx

sin 37.0°

 

 

ANS. FIG. P23.67 
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   and substitute into equation [2] to obtain 
     

   

q = mg

Ey + Ex

tan 37.0

=
1.00 × 10–3 kg( ) 9.80 m/s2( )

5.00 × 105 N/C + 3.00 × 105 N/C
tan 37.0

⎛
⎝⎜

⎞
⎠⎟

 

     
  q = 1.09× 10–8   C

  

  (b) Using the above result for q in equation [1], we find that the 
tension is  

   

  

T = qEx

sin 37.0°
=

1.09× 10–8   C( ) 3.00× 105 N/C( )
sin 37.0°

= 5.44 × 10–3  N

 

P23.68 This is the general version of the preceding problem . The known 
quantities are A, B, m, g, and θ. The unknowns are q and T. 

 Refer to ANS. FIG. P23.67 above. The approach to this problem should 
be the same as for the last problem, but without numbers to substitute 
for the variables. Likewise, we can use the free body diagram given in 
the solution to problem 51. 

 Again, from Newton’s second law, 

     Fx∑ = −T sinθ + qA = 0   [1] 

 and    Fy∑ = +T cosθ + qB− mg = 0  [2] 

 (a) Substituting 
  
T =

qA
sinθ

 into equation [2], we obtain 

   
  

qAcosθ
sinθ

+ qB = mg  

  Isolating q on the left,  

   
  

q =
mg

Acotθ + B( )  

 (b) Substituting this value into equation [1], we obtain 

   
  

T =
mgA

Acosθ + Bsinθ( )  
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  If we had solved this general problem first, we would only need 
to substitute the appropriate values in the equations for q and T to 
find the numerical results needed for problem 51. If you find this 
problem more difficult than problem 51, the little list at the first 
step is useful. It shows what symbols to think of as known data, 
and what to consider unknown. The list is a guide for deciding 
what to solve for in the analysis step, and for recognizing when 
we have an answer. 

P23.69 (a) Refer to ANS. FIG. P23.69(a). The field, E1, due to the 4.00 × 10–9 C 
charge is in the –x direction. 

    

    


E1 =

keq
r2 r̂ =

8.99 × 109  N ⋅m2 / C2( ) −4.00 × 10−9  C( )
2.50 m( )2 î

= −5.75î N/C

 

 

ANS. FIG. P23.69(a) 

  Likewise, E2 and E3, due to the 5.00 × 10–9 C charge and the  
3.00 × 10–9 C charge, are 

    

    


E2 = keq

r2 r̂ =
8.99× 109  N ⋅m2 /C2( ) 5.00× 10−9  C( )

2.00 m( )2 î

= 11.2 N/C î

 

    
   


E3 =

8.99 × 109  N ⋅m2 / C2( ) 3.00 × 10−9  C( )
1.20 m( )2 î = 18.7 N/C î  

    
    


ER =


E1 +


E2 +


E3 = 24.2 N/C in +x direction  

 (b) In this case, referring to ANS. FIG. P23.69(b), 

    
    


E1 =

keq
r2 r̂ = −8.46 N/C( ) 0.243î + 0.970 ĵ( )  

    

    


E2 = keq

r2 r̂ = 11.2 N/C( ) + ĵ( )

E3 = keq

r2 r̂ = 5.81 N/C( ) −0.371î+0.928ĵ( )

 

  The components of the resultant electric field are 
   

   Ex = E1x + E3x = −4.21î N/C Ey = E1y + E2y + E3y = 8.43 ĵ N/C
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  then, the magnitude of the resultant electric field is 

   
  
ER = 9.42 N/C  

  and is directed at 
   

  

θ = tan−1
Ey

Ex

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= tan−1 8.43 N/C
4.21 N/C

⎛
⎝⎜

⎞
⎠⎟

= 63.4° above − x axis

 

 

ANS. FIG. P23.69(b) 

P23.70 (a) The two given charges exert equal-
size forces of attraction on each 
other. If a third charge, positive or 
negative, were placed between them 
they could not be in equilibrium. If 
the third charge were at a point  
x > 15.0 cm, it would exert a stronger force on the 45.0-µC charge 
than on the –12.0-µC charge, and could not produce equilibrium 
for both. Thus the third charge must be at x = –d < 0. 

 
It is possible in just one way.  

 (b)  The equilibrium of the third charge requires  
   

  

keq 12.0 µ C( )
d2 =

keq 45.0 µ C( )
15.0 cm + d( )2 →

15.0 cm + d
d

⎛
⎝⎜

⎞
⎠⎟

2

= 45.0
12.0

= 3.75
 

  Solving, 
     15.0 cm + d = 1.94d       →      d = 16.0 cm  

  The third charge is at 
  

x = −16.0 cm . 

 (c) The equilibrium of the –12.0-µC charge requires 
   

  

keq 12.0 µ C( )
16.0 cm( )2 =

ke 45.0 µ C( ) 12.0 µ C( )
15.0 cm( )2

 

  solving, 
   

  
q =  +51.3 µC

 

 

ANS. FIG. P23.70 
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ANS. FIG. P23.72 
 

  All six individual forces are now equal in magnitude, so we have 
equilibrium as required, and this is the only solution.  

P23.71 To find the force on the test charge at point P, we 
first determine the charge per unit length on the 
semicircle: 

  

   

Q = λ d∫ = λ0 cosθRdθ
−90.0°

90.0°

∫ = λ0Rsinθ
−90.0°

90.0°

= λ0R 1− −1( )[ ] = 2λ0R

 

 or   Q = 12.0 µC = 2λ0( ) 0.600( )  m,  

 which gives  λ0 = 10.0 µC/m.  

 The force on the charge from each incremental 
section of the semicircle is 

  

   
dFy =

keq λd( )cosθ
R2 =

keq λ0 cos2θRdθ( )
R2

 

 Integrating,  
  

  

Fy = keqλ0

R
cos2θ dθ

−90.0°

90.0°

∫ = keqλ0

R
1
2

+ 1
2

cos2θ⎛
⎝⎜

⎞
⎠⎟ dθ

−π 2

π 2

∫

Fy = keqλ0

R
1
2
θ + 1

4
sin 2θ⎛

⎝⎜
⎞
⎠⎟

−π 2

π 2

= keqλ0

R
π
4

+ 0⎛
⎝⎜

⎞
⎠⎟ −

−π
4

+ 0⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

Fy = keqλ0

R
π
2

⎛
⎝⎜

⎞
⎠⎟

 

  

   

Fy =
8.99× 109  N ⋅m2 /C2( ) 3.00× 10−6  C( ) 10.0× 10−6  C/m( ) π

2
⎛
⎝

⎞
⎠

0.600 m( )

Fy = 0.706 N, downward = −0.706î N

 

 Since the leftward and rightward forces due to the two halves of the 
semicircle cancel out, Fx = 0. 

P23.72 The magnitude of the electric force is 

given by 
  
F =

keq1q2

r2 . The angle θ  in  

ANS. FIG. P23.72 is found from 
  

 
θ = tan−1 15.0

60.0
⎛
⎝⎜

⎞
⎠⎟ = 14.0°

 

 

 

 

ANS. FIG. P23.71 
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F1 =
8.99 × 109  N ⋅m2/C2( ) 10.0 × 10−6  C( )2

0.150 m( )2

= 40.0 N

F2 =
8.99 × 109  N ⋅m2/C2( ) 10.0 × 10−6  C( )2

0.618 m( )2 = 2.35 N

F3 =
8.99 × 109  N ⋅m2/C2( ) 10.0 × 10−6  C( )2

0.600 m( )2 = 2.50 N

   

  

  

Fx = −F3 − F2 cos14.0° = −2.50 − 2.35cos14.0° = −4.78 N
Fy = −F1 − F2 sin 14.0° = −40.0 − 2.35sin 14.0° = −40.5 N

 

 (a) 
  
Fnet = Fx

2 + Fy
2 = −4.78 N( )2 + −40.5 N( )2 = 40.8 N  

 (b) 
   
tanφ =

Fy

Fx

=
−40.5 N
−4.78 N

 → φ = 263°  

P23.73 We model the spheres as particles. They have different charges. They 
exert on each other forces of equal magnitude. They have equal 
masses, so their strings make equal angles θ with the vertical. We 
define r as the distance between the centers of the two spheres. We 
find r from 

   

  
sinθ = r /2

40.0 cm

  

 from which we obtain 
   

  r = 80.0 cm( )sinθ   

 Now let T represent the string tension. We have, from the particle 
under a net force model, 

   
  

Fx∑ = 0:     
keq1q2

r2 −T sinθ = 0   →    
keq1q2

r2 = T sinθ   [1] 

     Fy∑ = 0:     T cosθ − mg = 0   →    mg = T cosθ   [2] 

 Dividing equation [1] by [2] to eliminate T gives 

    
  

keq1q2

r2mg
= tanθ =

r / 2

(40.0 cm)2 − r2 / 4
 

 Clearing the fractions,  

    
  keq1q2 (80.0 cm)2 − r2 = mgr3  
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 Substituting numerical values gives 

    

  

8.99× 109  N ⋅m2/C2( ) 200× 10–9  C( ) 300× 10–9  C( )
           × 0.800 m( )2 − r2 = 2.40× 10−3  kg( ) 9.80 m/s2( )r3

  

 Suppressing units, 

    (0.800)2 – r2 = 1 901 r6 

 Instead of attempting to solve this equation, we instead home in on a 
solution by trying values, tabulated below: 

 

r 0.640 – r2 – 1901 r6 

0 +0.64 

0.5 –29.3 

0.2 +0.48 

0.3 –0.84 

0.24 +0.22 

0.27 –0.17 

0.258 +0.013 

0.259 –0.001 

 Thus the distance to three digits is 0.259 m =  2.59 cm.  

P23.74 Use Figure 23.24 for guidance on the physical setup of this problem. 
Let the electron enter at the origin of coordinates at the left end and 
just under the upper plate, which we choose to be negative so that the 
electron accelerates downward. The electron is a particle under 
constant velocity in the horizontal direction: 

     x f  = vxit  

 The electron is a particle under constant acceleration in the vertical 
direction:  

   
  
y f  = 

1
2 ayt

2  

 Eliminate t between the equations:  

   
  
y f  = 

1
2 ay

x f

vxi

⎛
⎝⎜

⎞
⎠⎟

2

     →    y f  = 
ay

2vxi
2

⎛
⎝⎜

⎞
⎠⎟

x f
2  
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 Substitute for the acceleration of the particle in terms of the electric 
force:  

   
  
y f  = 

−eE
2vxi

2 me

⎛
⎝⎜

⎞
⎠⎟

x f
2  

 Substitute numerical values, letting the final horizontal position be at 
the right end of the plates:  

   

  

y f  = 
− 1.60 × 10−19  C( ) 200 N/C( )

2 3.00 × 106  m/s( )2
9.11 × 10−31  kg( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0.200 m( )2  

= −0.078 1  m

 

 Therefore, when the electron leaves the plates, its final position is well 
below that of the lower plate, which is at position y = –1.50 cm = 
 –0.015 m. Consequently, because we have let the electron enter the 
field at as high a position as possible, the electron will strike the lower 
plate long before it reaches the end, regardless of where it enters the 
field. 

P23.75 Charge Q resides on each of the blocks, which repel as point charges: 

   
  
F =

keQ
2

L2 = k L − Li( )  

 Solving for Q, we find 
   

  

Q = L
k L − Li( )

ke

= 0.500 m( ) 100 N/m( ) 0.500 m − 0.400 m( )
8.99 × 109  N ⋅m2/C2

= 1.67 × 10−5 C

 

P23.76 Charge Q resides on each of the blocks, which repel as point charges: 

   
  
F =

keQ
2

L2 = k L − Li( )  

 Solving for Q, we find 

   

 

Q = L
k L − Li( )

ke

 

P23.77 Consider the free-body diagram of the rightmost  
charge given in ANS. FIG. P23.77. Newton’s  
second law then gives 

  

  
Fy∑ = 0 ⇒  T cosθ = mg    or   T = mg

cosθ

 

 

ANS. FIG. P23.77 
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 and 
  

  

Fx∑ = 0 

     ⇒  Fe  = T sinθ  = mg
cosθ

⎛
⎝⎜

⎞
⎠⎟ sinθ = mg tanθ

 

 But,  

  
  
Fe =

keq
2

r1
2 +

keq
2

r2
2 =

keq
2

Lsinθ( )2 +
keq

2

2Lsinθ( )2 =
5keq

2

4L2 sin2θ
 

 Thus,  

  
  

5keq
2

4L2 sin2θ
= mg tanθ  or 

  
q =

4L2mg sin2θ tanθ
5ke

 

 If   θ = 45°,  m = 0.100 kg, and L = 0.300 m,  then 
  

  
q =

4 0.300 m( )2 0.100 kg( ) 9.80 m/s2( )sin2 45.0°( )tan 45.0°( )
5 8.99× 109  N ⋅m2 /C2( )

 

 or 
  
q = 1.98 × 10−6  C = 1.98 µC  

P23.78 From Example 23.8, the electric field due to a uniformly charged ring is 
given by 

  

  

E =
keQx

x2 + a2( )3 2  

 For a maximum, we differentiate E with respect to x and set the result 
equal to zero: 

  

  

dE
dx

= Qke

1

x2 + a2( )3 2 −
3x2

x2 + a2( )5 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= 0  

 solving for x gives 

    x
2 + a2 − 3x2 = 0   or  

  
x =

a

2
 

 Substituting into the expression for E gives 

  

  

E = keQa
2 3

2 a2( )3 2 = keQ
3 3

2 a2

= 2keQ
3 3a2 = Q

6 3π ∈0 a2
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P23.79 The charges are q and 2q. The magnitude of the  
repulsive force that one charge exerts on the other is  

  
  
Fe = 2ke

q2

r2
 

 From Figure P23.79 in the textbook, observe that  
the distance separating the two spheres is  

    r = d + 2Lsin 10°  

 From the free-body diagram of one sphere given  
in ANS. FIG. P23.79, observe that  

  
  Fy∑ = 0 ⇒  T cos10° = mg    or   T = mg /cos10°  

 and  
  

  
Fx∑ = 0 ⇒  Fe = T sin10° = mg

cos10°
⎛
⎝⎜

⎞
⎠⎟ sin10° = mg tan10°

 

 Thus,  

  
  

2ke

q2

r2 = mg tan 10°     →      2ke

q2

d + 2Lsin 10°( )2 = mg tan 10°  

 or  

 

  

q =
mg d + 2Lsinθ( )2 tan 10°

2ke

=
0.015 kg( ) 9.80 m/s2( ) 0.0300 m + 2 0.0500 m( )sin 10°[ ]2

tan 10°
2 8.99 × 109  N ⋅m2 / C2( )

= 5.69 × 10−8  C

 

 giving  
 
1.14 × 10−7 C on one sphere and 5.69 × 10−8 C on the other.  

P23.80 (a) The bowl exerts a normal force on each bead, directed along the 
radius line at angle θ above the horizontal. Consider the free-
body diagram shown in ANS. FIG. P23.80 for the bead on the left 
side of the bowl: 

   

  
Fy = nsinθ − mg = 0∑   →   n = mg

sinθ

 

  Also, 

     Fx∑ = −Fe + ncosθ = 0  

 

ANS. FIG. P23.79 



Chapter 23     51 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  which gives 
   

  
Fe = ncosθ = mg

sinθ
⎛
⎝⎜

⎞
⎠⎟ cosθ = mg

tanθ

 

  The electric force is 

    
  
Fe =

keq
2

d2
 

  And from ANS. FIG. P23.80,  
    

  
tanθ =

R2 − d 2( )2

d 2( ) = 4R2 − d2

d

 

  Therefore, 

   

  

Fe =
keq

2

d2 =
mg

tanθ
=

mg

4R2 − d2 d
    →     q =

mgd3

ke 4R2 − d2

⎛

⎝
⎜

⎞

⎠
⎟

1 2

 

 (b) As d → 2R,   4R2 − d2 → 0 ; therefore, 
  
q →∞  . 

P23.81 (a) From the 2Q charge we have   

     Fe −T2 sinθ2 = 0  and   mg −T2 cosθ2 = 0  

  Combining these we find  

   
  

Fe

mg
=

T2 sinθ2

T2 cosθ2

= tanθ2  

  From the Q charge we have 

     Fe = T1 sinθ1 = 0   and    mg −T1 cosθ1 = 0  

  Combining these we find 

   
  

Fe

mg
=

T1 sinθ1

T1 cosθ1

= tanθ1  or  θ2 = θ1  

 (b) 
  
Fe =

ke 2QQ
r2 =

2keQ
2

r2
. If we assume θ is small then 

   
tanθ ≈

r / 2


.  

  Substitute expressions for Fe and tan θ into either equation found 

in part (a) and solve for r. 
  

Fe

mg
= tanθ ,  then 

   

2keQ
2

r2

1
mg

⎛
⎝⎜

⎞
⎠⎟
≈

r
2

 and 

solving for r we find 
   
r ≈ 4keQ

2
mg

⎛
⎝⎜

⎞
⎠⎟

1 3

.  

 

ANS. FIG. P23.80 

ANS. FIG. P23.81 
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P23.82 The field on the axis of the ring is calculated in Example 19.6 in the 
chapter text as 

   

  

E = Ex =
kexQ

x2 + a2( )3 2  

 The force experienced by a charge –q placed along the axis of the ring 
is 

   

  

F = −keQq
x

x2 + a2( )3 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 and when   x << a,  this becomes 

   
  
F = −

keQq
a3

⎛
⎝⎜

⎞
⎠⎟

x  

 This expression for the force is in the form of Hooke’s law, with an 
effective spring constant of 

   
  
k =

keQq
a3

 

 Since 
  
ω = 2π f = k

m
,  we have 

   
  
f =

1
2π

keQq
ma3

 

P23.83 (a) The total non-contact force on the cork ball is:  

   
 
F = qE + mg = m g +

qE
m

⎛
⎝⎜

⎞
⎠⎟

 

  which is constant and directed downward. Therefore, it behaves 
like a simple pendulum in the presence of a modified uniform 
gravitational field with a period given by: 

   

  

T = 2π L
g + qE/m

= 2π 0.500 m

9.80 m/s2 +
2.00× 10−6 C( ) 1.00× 105 N/C( )

1.00× 10−3 kg
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   = 0.307 s
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 (b)  Yes . Without gravity in part (a), we get  

   
  
T = 2π L

qE / m
 

   

  

T = 2π 0.500 m
2.00× 10−6 C( ) 1.00× 105 N/C( )

1.00× 10−3 kg
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 0.314 s

 

(a 2.28% difference). 

 
 

 

Challenge Problems 

P23.84 According to the result of Example 23.7 in 
the textbook, the left-hand rod creates this 
field at a distance d from its right-hand end: 

  

  
E = keQ

d 2a + d( )
 

 The force per unit length exerted by the left-hand rod on the right-
hand rod is then 

  

  
dF = keQQ

2a
dx

d d + 2a( )
 

 Integrating, 
  

  

F = keQ
2

2a
dx

x x + 2a( )x=b−2a

b

∫ = keQ
2

2a
− 1

2a
 ln

2a + x
x

⎛
⎝⎜

⎞
⎠⎟

b−2a

b

= +keQ
2

4a2 − ln
2a + b

b
+ ln

b
b − 2a

⎛
⎝⎜

⎞
⎠⎟ = keQ

2

4a2 ln
b2

b − 2a( ) b + 2a( )

= keQ
2

4a2

⎛
⎝⎜

⎞
⎠⎟

ln
b2

b2 − 4a2

⎛
⎝⎜

⎞
⎠⎟

 

P23.85 First, we use unit vectors to find the total electric field at point A 
produced by the 7 other charges.  

 source charge vector field components equivalent field  

(1) lower left,  
front: 

    


E1 =

keq
r1

2 r̂1 =
keq

s2 + s2

ĵ + k̂

2     

1

2 2

⎛
⎝⎜

⎞
⎠⎟

keq
s2 ĵ + k̂( )

 

 

ANS FIG. P23.84 
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(2) lower right,  
front: 

    


E2 =

keq
r2

2 r̂2 =
keq
s2 k̂

    

keq
s2 k̂

 

(3)  lower right,  
back:  

    


E3 =

keq
r3

2 r̂3 =
keq

s2 + s2

î + k̂

2     

1

2 2

⎛
⎝⎜

⎞
⎠⎟

keq
s2 î + k̂( )

 

(4)  lower left,  
back: 

    


E4 =

keq
r4

2 r̂4 =
keq

s2 + s2 + s2

î + ĵ + k̂

3     

1

3 3

⎛
⎝⎜

⎞
⎠⎟

keq
s2 î + ĵ + k̂( )

 

(5)  upper right,  
back 

    


E5 =

keq
r5

2 r̂5 =
keq
s2 î

    

keq
s2 î

 

(6)  upper left,  
back 

    


E6 =

keq
r6

2 r̂6 =
keq

s2 + s2

î + ĵ

2     

1

2 2

⎛
⎝⎜

⎞
⎠⎟

keq
s2 î + ĵ( )

 

(7)  upper right,  
front 

    


E7 =

keq
r7

2 r̂7 =
keq
s2 ĵ

    

keq
s2 ĵ

 

total field 
    


Etotal = keq

s2 1+ 2
2 2

+ 1
3 3

⎡
⎣⎢

⎤
⎦⎥

î + ĵ + k̂( )  

 Notice that because of symmetry, the components of the field have the 
same magnitude.  

 (a) At point A, 
   

    


F = q


Etotal = keq

2

s2 1+ 2
2 2

+ 1
3 3

⎡
⎣⎢

⎤
⎦⎥

î + ĵ + k̂( )
= keq

2

s2 1.90( ) î + ĵ + k̂( )

 

  
  
→ Fx  = Fy  = Fz  = 1.90ke

q2

s2
 

 (b) 
  
F = Fx

2 + Fy
2 + Fz

2 = 3.29
keq

2

s2
 

 (c) 
 
away from the origin  
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P23.86 (a) Zero contribution from the same face due to 
symmetry, opposite face contributes 

   

  
E = 4

keq
r2 sinφ⎛

⎝⎜
⎞
⎠⎟

 

  where  

   

  
r =

s
2

⎛
⎝⎜

⎞
⎠⎟

2

+
s
2

⎛
⎝⎜

⎞
⎠⎟

2

+ s2 = 1.5s = 1.22s  

   
  
sinφ =

s
r

,  
  
E = 4

keqs
r3 =

4
1.22( )3

keq
s2 = 2.18

keq
s2

 

 (b) At the top face,   the electric field is in the k̂ direction.  

P23.87 (a)  The electrostatic forces exerted on the two 
charges result in a net torque  

      τ = −2Fasinθ = −2Eqasinθ  

  For small θ,  sinθ ≈ θ and using p = 2qa, we 
have  

     τ = −Epθ  

  The torque produces an angular 
acceleration given by  

    
  
τ = Iα = I

d2θ
dt2

 

  where the moment of inertia of the dipole is I = 2ma2 

  Combining the two expressions for torque, we have 

    
  

d2θ
dt2 = −

Ep
I

⎛
⎝⎜

⎞
⎠⎟
θ  

  This equation can be written in the form 
  

d2θ
dt2 = −ω 2θ  which is the 

standard equation characterizing simple harmonic motion, with  

    
  
ω 2 =

Ep
I

=
E 2qa( )
2ma2 =

qE
ma

 

  The frequency of oscillation is   f =ω /2π ,  so    

   
  
f =

1
2π

qE
ma

 

 

ANS. FIG. P23.87 

ANS. FIG. P23.86 
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 (b) If the masses are unequal, the dipole will oscillate about its center 
of mass (CM). Assume mass m2 is greater than mass m1, and treat 
the center of the dipole as being at the origin of an x axis, so that 
mass m1 is at x = –a and mass m2 is at x = +a. The coordinate of the 
CM of the dipole is then  

   
  
xcm =

m2a − m1a
m1 + m2

= a
m2 − m1

m1 + m2

⎛

⎝⎜
⎞

⎠⎟
 

  relative to the center of the dipole. Notice that the moment of 
inertia of the dipole about its center is  

     I = m1a
2 + m2a2  

  but its center is a distance xcm from its CM. By the parallel-axis 
theorem, the moment of inertia of the dipole about its center is 
related to its moment about its CM thus: 

   
  I = m1a

2 + m2a2 = ICM + m1 + m2( )xcm
2  

  therefore,  

   
  ICM = m1a

2 + m2a2 − m1 + m2( )xcm
2  

  The moment of inertia of the dipole about its CM is then  

   
  
ICM = m1a

2 + m2a2 − m1 + m2( )a2 m2 − m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

2

 

   

  
ICM = m1a

2 + m2a2 − a2 m2 − m1( )2

m1 + m2( )
 

   

  

ICM =
m1 + m2( ) m1a

2 + m2a2( ) − m2
2a2 − 2m1m2a2 + m1

2a2( )
m1 + m2( )

ICM =
m1

2a2 + 2m1m2a2 + m2
2a2( ) − m2

2a2 − 2m1m2a2 + m1
2a2( )

m1 + m2( )
ICM =

4m1m2a2

m1 + m2( )

 

  Therefore, from part (a),  

   

  

ω 2 =
Ep
ICM

=
E 2qa( )

4m1m2a2

m1 + m2( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
qE m1 + m2( )

2m1m2a
= 2π f( )2
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  and 

   
  
f =

1
2π

qE m1 + m2( )
2m1m2a

 

P23.88 From ANS. FIG. P23.88(a) we have    

     dcos30.0° = 15.0 cm  

 or   
  
d =

15.0 cm
cos30.0°

.  

 From ANS. FIG. P23.88(b) we have 

   
  
θ = sin−1 d

50.0 cm
⎛
⎝⎜

⎞
⎠⎟

 

   

 
θ = sin−1 15.0 cm

50.0 cm( ) cos30.0°( )
⎛
⎝⎜

⎞
⎠⎟

= 20.3°
 

   
  

Fq

mg
= tanθ   or  

  
Fq = mg tan 20.3°  [1] 

 From ANS. FIG. P23.88(c) we have 

   
  
Fq = 2F cos30.0°  

   

  

Fq = 2
keq

2

0.300 m( )2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
cos30.0°  [2] 

 Combining equations [1] and [2], 

   

  

2
keq

2

0.300 m( )2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

cos30.0° = mg tan 20.3°  

   

  

q2 =
mg 0.300 m( )2

tan 20.3°
2ke cos30.0°

q2 =
2.00 × 10−3  kg( ) 9.80 m/s2( ) 0.300 m( )2

tan 20.3°

2 8.99 × 109  N ⋅m2 / C2( )cos30.0°

 q = 4.20 × 10−14  C2 = 2.05 × 10−7  C = 0.205 µC

 

ANS. FIG. P23.88(a) 
 

ANS. FIG. P23.88(b) 
 

ANS. FIG. P23.88(c) 
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P23.89 

    

d

E =

kedq

x2 + 0.150 m( )2

−xî + 0.150 mĵ

x2 + 0.150 m( )2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

     =
keλ −xî + 0.150 mĵ( )dx

x2 + 0.150 m( )2⎡
⎣⎢

⎤
⎦⎥

3 2

 

 

    


E = d


E

all charge
∫ = keλ

−xî + 0.150 mĵ( )dx

x2 + 0.150 m( )2⎡⎣ ⎤⎦
3 2

x=0

0.400 m

∫  

 

    


E = keλ

+ î

x2 + 0.150 m( )2

0

0.400 m

+
0.150 m( ) ĵx

0.150 m( )2 x2 + 0.150 m( )2

0

0.400 m⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥


E = 8.99 × 109  N ⋅m2 / C2( ) 35.0 × 10−9  C/m( )
                                  × î 2.34 − 6.67( )  m−1 + ĵ 6.24 − 0( )  m−1⎡⎣ ⎤⎦

E = −1.36î + 1.96 ĵ( ) × 103  N/C = −1.36î + 1.96 ĵ( )  kN/C

 

P23.90 We work under the assumption that vx has the nearly constant value v. 
Initially, with the particle nearly at infinity, vx = v and vy = 0. As the 
moving charge travels toward and 
passes the fixed charge Q, the 
velocity component vy increases 
according to 

  

 
m

dvy

dt
= Fy

 

 or 
 
m

dvy

dx
dx
dt

= qEy  

 Now 
 

dx
dt

= vx  has the nearly constant value v; therefore, we have  

  
  
dvy =

q
mv

Eydx → vy = dvy
0

vy

∫ =
q

mv
Eydx

−∞

∞

∫  

 The radially outward component of the electric field varies along the x 
axis. We assume that the distance r between charges is does not 
depend significantly on y. 

ANS. FIG. P23.89 
 

 

ANS. FIG. P23.90 
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 From the figure, we see that 
  
E = keQ

r2 ,    r ≈ d 2 + x2 ,   Ey = Esinθ , and 

  
sin θ ≈

d

d2 + x2
. We evaluate the integral from above: 

  

  

Ey dx
−∞

∞

∫ = Esinθ dx
−∞

∞

∫ ≈ keQ
d2 + x2( )

d
d2 + x2

dx
−∞

∞

∫

= keQd
dx

d2 + x2( )3 2
−∞

∞

∫

= keQd( ) x
d2 d2 + x2( )1 2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−∞

∞

= keQd
d2 1− −1( )[ ] = 2keQ

d

 

 So, the vy is  
  

  
vy =

q
mv

Ey dx
−∞

∞

∫ = q
mv

2keQ
d

⎛
⎝⎜

⎞
⎠⎟ =

2keqQ
mvd

 

 The angle of deflection is described by 
  

  
tanθ =

vy

vx

≈
vy

v
= 2keqQ

mv2d
→ θ = tan−1 2keqQ

mv2d

 

P23.91 (a) The two charges create fields of equal magnitude, both with 
outward components along the x axis and with upward and 
downward y components that add to zero. The net field is then 

   

    


E =

keq
r2

x
r

î +
keq
r2

x
r

î = 2
keq
r2

x
r

î

  =
2(8.99 × 109) 52 × 10−9( )x î

(0.25)2 + x2⎡⎣ ⎤⎦
3/2

 

  

    


E =

935x

0.0625 + x2( )3/2 î  where 

E is in newtons per coulomb and x

is in meters.

 

 (b) At x = 0.36 m,  

    
   


E =

935 0.36( )   î
(0.0625 + (0.36)2 )3/2 = 4.00 kN/C î  

 (c) We solve 1 000 = (935 x)(0.0625 + x2)–3/2 by tabulating values for 
the field function: 
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  We see that there are two points where E = 1 000 N/C. We home 
in on them to determine their coordinates as (to three digits)  

 x = 0.016 8 m  and x = 0.916 m.  

 (d) The table in part (c) shows that 

 nowhere is the field so large as 16 000 N/C.  

x (935 x)(0.0625 + x2)–3/2 

0  0 

0.01  597 

0.02  1 185 

0.1  4 789 

0.2  5 698 

0.36  4 000 

0.9  1 032 

1  854 

∞  0 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P23.2 (a) 2.62 × 1024; (b) 2.38 electrons for every 109 already present 

P23.4 1.57 μN to the left 

P23.6 (a) 9.21 × 10–10 N; (b) No. The electric force depends only on the 
magnitudes of the two charges and the distance between them. 

P23.8 ~1026 N 

P23.10 (a) 1.59 × 10–9 N; (b) 1.29 × 10–45 N, larger by 1.24 × 1036 times;  
(c) 8.61 × 10–11 C/kg 

P23.12 (a) 46.7 N to the left; (b) 157 N to the right; (c) 111 N to the left 

P23.14 (a) 

  

q1

q1 + q2

d ; (b) Yes, if the third bead has a positive charge. 

P23.16 0.229 m 

P23.18 (a) 0; (b) 30.0 N; (c) 21.6 N; (d) 17.3 N; (e) –13.0 N; (f) 17.3 N; (g) 17.0 N; 
(h) 24.3 N at 44.5° above the +x direction 

P23.20 (a) The acceleration of the charge is equal to a negative constant times 
its displacement from equilibrium, as in    


a = −ω 2x , so we have Simple 

Harmonic Motion with 
  
ω 2 = 16keqQ

md3 ;  (b) 
  

π
2

md3

keqQ
; (c) 

  
4a

keqQ
md3

 

P23.22 The unknown charge on each dust particle is about half of the smallest 
possible free charge, the charge of the electron. No such free charge 
exists. Therefore, the forces cannot balance. 

P23.24 2.07 × 103 N/C; down 

P23.26 
   
−ke

3q
r2 ĵ  

P23.28 (a) 
   

keQxî

a2 + x2( )3 2 ; (b) A circle of charge corresponds to letting n grow 

beyond all bounds, but the result does not depend on n. Because of the 
symmetrical arrangement of the charges, smearing the charge around 
the circle does not change its amount or its distance from the field 
point, so it does not change the field. 

P23.30 (a) 
  
18.0î − 218 ĵ( )kN/C ; (b) 

  
0.0360î − 0.436 ĵ( )N  
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P23.32 The field at the origin can be to the right, if the unknown charge is  
–9Q, or the field can be to the left, if and only if the unknown charge is 
+27Q. 

P23.34 (a)   1.29 × 104 ĵ N C ; (b)   −3.86 × 10−2 ĵ N  

P23.36 
  

4a keq( )
x3

 

P23.38 (a) 383 MN/C; (b) 324 MN/C; (c) 80.7 MN/C; (d) 6.68 MN/C 

P23.40 
  
Ex ≈

keQ
x2  for a disk at large distances  

P23.42 (a) 

  

−ke

Q
L

1
d
−

1

d2 + L2( )1 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 and 

  

ke

Q
d

1

d2 + L2( )1 2 ; (b)   Ex ≈ 0  and 

  
Ey ≈ ke

Q
d2

 which is the field of a point charge Q at a distance d along 

the y axis above the charge. 

P23.44 (a) 
  

2keλ sinθ0

d
;  (b) 

  

2keλ
d

 

P23.46 (a) 

   

keQî
h

1

d2 + R2( )1 2 −
1

d + h( )2 + R2( )1 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

 (b) 
   

2keQî
R2h

h + d2 + R2( )1 2
− d + h( )2 + R2( )1 2⎡

⎣⎢
⎤
⎦⎥

 

P23.48 See ANS. FIG. P23.48. 

P23.50 (a) See ANS. FIG. P23.50; (b) At the center; (c) 
   
1.73ke

q
a2 ĵ  

P23.52 (a)   −5.76 × 1013 î m/s2 ; (b)     

vi = 2.84 × 106 î m/s ; (c) 4.93 × 10–8 s 

P23.54 (a) Particle under constant velocity; (b) Particle under constant 
acceleration; (c) the proton moves in a parabolic path just like a 

projectile in a gravitational field; (d) 
  

mpvi
2 sin 2θ
eE

; (e) 36.9° or 53.1°; (f) 

166 ns or 221 ns 

P23.56 (a) a parabola; (b) the negative plate; (c) The particle strikes the 
negative plate after moving a horizontal distance of 0.961 mm. 

P23.58 (a) 2.00 × 10–10 C; (b) 1.41 × 10–10 C; (c) 5.89 × 10–11 C 
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P23.60 5.81 nC 

P23.62 49.3 N/m 

P23.64 (a) 0.115 N; (b) 1.25 cm 

P23.66 2.51 × 10–9 

P23.68 (a) 
  
q =

mg
Acotθ + B( ) ; (b) 

  
T =

mgA
Acosθ + Bsinθ( )  

P23.70 (a) It is possible in just one way; (b) x = –16.0 cm; (c)  +51.3µC  

P23.72 (a) 40.9 N; (b) 263° 

P23.74 See P23.74 for complete solution 

P23.76 
 
L

k L − Li( )
ke

 

P23.78 
  

2keQ

3 3a2
=

Q

6 3π ∈0 a2
 

P23.80 (a) 

  

mgd3

ke 4R2 − d2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 2

; (b)  q →∞  

P23.82 
  

1
2π

keQq
ma3

 

P23.84 See P23.84 for full solution 

P23.86 (a) 
  
2.18

keq
s2

; (b)   the direction is the k̂ direction  

P23.88   0.205µC  

P23.90 
  
θ = tan−1 2keqQ

mv2d
⎛
⎝⎜

⎞
⎠⎟
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24 
Gauss’s Law 

 

CHAPTER OUTLINE 
 

24.1  Electric Flux 

24.2  Gauss’s Law 

24.3  Application of Gauss’s Law to Various Charge Distributions 

24.4 Conductors in Electrostatic Equilibrium 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ24.1 (i) Answer (a). The field is cylindrically radial to the filament, and is 
nowhere zero at any face of the gaussian surface.  

 (ii) Answer (b). The flux is zero through the two faces pierced by the 
filament because the field is parallel to those surfaces.  

OQ24.2 Answer (c). The outer wall of the conducting shell will become 
polarized to cancel out the external field. The interior field is the 
same as before.  

OQ24.3 Answer (e). The symmetry of a charge distribution and of its field is 
the same. Gauss’s law applies to these charge distributions because 
(a) has cylindrical symmetry, (b) has translational symmetry, (c) has 
spherical symmetry, and (d) has spherical symmetry.  

OQ24.4 (i) Answer (c). Equal amounts of flux pass through each of the six 
faces of the cube.  

 (ii) Answer (b). Move the charge to very close below the center of 
one face, so that half the flux passes through that face and half the 
flux passes through the other five faces.  
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OQ24.5 Answer (b). The electric flux through a closed surface equals   q ∈0 ,  
where q is the total charge contained within the surface:   

   

   

q ∈0 = 3.00− 2.00− 7.00 + 1.00( )× 10−9  C⎡⎣ ⎤⎦
                               8.85× 10−12  C2 / N ⋅m2( )
        = −5.65× 10−2  N ⋅m2/ C

 

OQ24.6 (i) Answer (e). The shell becomes polarized.  

 (ii) Answer (a). The net charge on the shell’s inner and outer 
surfaces is zero.  

 (iii) Answer (c). The charge has been transferred to the outer surface 
of the conductor.  

 (iv) Answer (c). The charge has been transferred to the outer surface 
of the conductor. 

 (v) Answer (a). The charge has been transferred to the outer surface 
of the conductor.  

OQ24.7 (i) Answer (c). Because the charge distributions are spherically 
symmetric, both spheres create equal fields at exterior points, 
like particles at the centers of the spheres.  

 (ii) Answer (e). The field within the conductor is zero. The field a 
distance r from the center of the insulator is proportional to r, so 
it is 4/5 of its value at the surface.  

OQ24.8 Answer (c). The electric field inside a conductor is zero.  

OQ24.9 (a) The ranking is A > B > D > C. Let q represent the charge of the 
insulating sphere. The field at A is   (4/5)3 q/[4π (4 cm)2 ∈0 ] .  The 
field at B is   q/[4π (8 cm)2 ∈0 ] .  The field at C is zero. The field at 

D is   q/[4π (16 cm)2 ∈0 ] .  

 (b) The ranking is B = D > A > C. The flux through the 4-cm sphere 
is (4/5)3q/ ∈0 . The flux through the 8-cm sphere and through the 
16-cm sphere is q/ ∈0  because they enclose the same amount of 
charge. The flux through the 12-cm sphere is 0 because the field 
is zero inside the conductor.  

OQ24.10 (i) Answer (a). The field is perpendicular to the sheet, and is 
nowhere zero at any face of the gaussian surface.  

 (ii) Answer (c). The flux is nonzero through the top and bottom 
faces because the field is perpendicular to them, and zero 
through the other four faces because the field is parallel to them.  

OQ24.11 The ranking is C > A = B > D. The total flux is proportional to the 
enclosed charge: 3Q > Q = Q > 0.  
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ24.1 (a) If the volume charge density is nonzero, the field cannot be 
uniform in magnitude. Consider a gaussian surface in the shape 
of a rectangular box with two faces perpendicular to the 
direction of the field. It encloses some charge, so the net flux out 
of the box is nonzero. The field must be stronger on one side 
than on the other. The field cannot be uniform in magnitude. 

 (b) Now the volume contains no charge. The net flux out of the box 
is zero. The flux entering is equal to the flux exiting. The field 
must be uniform in magnitude along any line in the direction of 
the field. It can vary between points in a plane perpendicular to 
the field lines. 

 

ANS. FIG. CQ24.1 

CQ24.2 The electric flux through a closed surface is proportional to the total 
charge contained within the surface: (a) the flux is doubled because 
the charge is doubled, (b) the flux remains the same because the 
charge is the same, (c) the flux remains the same because the charge 
is the same, (d) the flux remains the same because the charge is the 
same, (e) the flux becomes zero because the charge inside the surface 
is zero.  

CQ24.3 The net flux through any gaussian surface is zero. We can argue it 
two ways. Any surface contains zero charge, so Gauss’s law says the 
total flux is zero. The field is uniform, so the field lines entering one 
side of the closed surface come out the other side and the net flux is 
zero.  

CQ24.4 Gauss’s law cannot be used to find the electric field at different 
points on a surface if the field is not constant over that surface. If the 
symmetry of an electric field allows us to say that 

  
Ecosθ dA∫ = E cosθ dA∫ ,  where E is an unknown constant on the 

surface, then we can use Gauss’s law. When electric field is a general 
unknown function E(x, y, z), there can be no such simplification.  
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CQ24.5 The electric flux is independent of the size and shape of the closed 
surface that contains the charge because all the field lines from the 
enclosed charge pass through the surface.  

CQ24.6 The surface must enclose a positive total charge. Field lines emerge 
from positive charge and disappear into negative charge.  

CQ24.7 (a) No. If the person is uncharged, the electric field inside the 
sphere is zero. The interior wall of the shell carries no charge. 
The person is not harmed by touching this wall.  

 (b) If the person carries a (small) charge q, the electric field inside 
the sphere is no longer zero. Charge –q is induced on the inner 
wall of the sphere. The person will get a (small) shock when 
touching the sphere, as all the charge on his body jumps to the 
metal.  

CQ24.8 The sphere with large charge creates a strong field to polarize the 
other sphere. That means it pushes the excess like charge over to the 
far side, leaving charge of the opposite sign on the near side. This 
patch of opposite charge is smaller in amount but located in a 
stronger external field, so it can feel a force of attraction that is larger 
than the repelling force felt by the larger charge in the weaker field 
on the other side.  

CQ24.9 There is zero force. The huge charged sheet creates a uniform field. 
The field can polarize the neutral sheet, creating in effect a film of 
opposite charge on the near face and a film with an equal amount of 
like charge on the far face of the neutral sheet. Since the field is 
uniform, the films of charge feel equal-magnitude forces of attraction 
and repulsion to the charged sheet. The forces add to zero. 

CQ24.10 Inject some charge at arbitrary places within a conducting object. 
Every bit of the charge repels every other bit, so each bit runs away 
as far as it can, stopping only when it reaches the outer surface of the 
conductor.  

CQ24.11 (a) The luminous flux on a given area is less when the sun is low in 
the sky, because the angle between the rays of the sun and the 
local area vector,     d


A,  is greater than zero. The cosine of this 

angle is reduced.  

 (b) The decreased flux results, on the average, in colder weather. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 24.1 Electric Flux 
P24.1 For a uniform electric field passing through a plane surface, 

    ΦE =

E ⋅

A = EAcosθ ,  where θ is the angle between the electric field and 

the normal to the surface.  

 (a) The electric field is perpendicular to the surface, so θ = 0°: 

   

  

ΦE = 6.20 × 105  N/C( ) 3.20 m2( )cos0°

ΦE = 1.98 × 106  N ⋅m2/C
 

 (b) The electric field is parallel to the surface: θ = 90°, so cos θ = 0, and 
the flux is  zero.  

P24.2 The electric flux through the bottom of the car is given by 
   

  

ΦE = EAcosθ = 2.00× 104  N/C( ) 3.00 m( ) 6.00 m( )cos10.0°

= 355 kN ⋅m2 /C

 

P24.3 For a uniform field the flux is     Φ =

E ⋅

A = EAcosθ.  

 The maximum value of the flux occurs when θ = 0, or when the field is 
in the same direction as the area vector, which is defined as having the 
direction of the perpendicular to the area. Therefore, we can calculate 
the field strength at this point as      

   
  
E =

Φmax

A
=
Φmax

πr2
 

   

  
E =

5.20 × 105  N ⋅m2/C
π(0.200 m)2 = 4.14 × 106  N/C = 4.14 MN/C

 

P24.4 (a) For the vertical rectangular surface, the area (shown as A’ in ANS 
FIG. P24.4) is  

   
  ′A = 10.0 cm( ) 30.0 cm( ) = 300 cm2 = 0.030 0 m2  

  Since the electric field is perpendicular to the surface and is 
directed inward,  θ = 180°  and 

   

  

ΦE , ′A = E ′A cosθ

ΦE , ′A = 7.80× 104  N/C( ) 0.030 0 m2( )cos180°

ΦE , ′A = −2.34 kN ⋅m2 /C
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ANS. FIG. P24.4 

 (b) To find the area A of the slanted surface, we note that the side for 
which dimensions are not given has length (10.0 cm) =w cos 60.0°, 
so that 

   

  

A = 30.0 cm( ) w( ) = 30.0 cm( ) 10.0 cm
cos60.0°

⎛
⎝⎜

⎞
⎠⎟ = 600 cm2

= 0.060 0 m2

 

  The flux through this surface is then 
   

  

ΦE , A = EAcosθ = 7.80× 104( ) A( )cos60.0°

= 7.80× 104  N/C( ) 0.060 0 m2( )cos60.0°

= +2.34 kN ⋅m2 /C

 

 (c) The bottom and the two triangular sides all lie parallel to    

E,  so 

  ΦE = 0  for each of these. Thus, 

   
  
ΦE , total = −2.34 kN ⋅m2 / C + 2.34 kN ⋅m2 / C + 0 + 0 + 0 = 0  

P24.5 For a uniform electric field passing through a plane surface, 

    ΦE =

E ⋅

A = EAcosθ ,  where θ is the angle between the electric field and 

the normal to the surface.  

 (a) The electric field is perpendicular to the surface, so θ = 0°: 
   

  

ΦE = 3.50× 103  N/C( ) 0.350 m( ) 0.700 m( )[ ]cos0°

= 858 N ⋅m2/C

 

 (b)  The electric field is parallel to the surface: θ = 90°, so cosθ = 0, and 
the flux is  zero . 

 (c) For the specified plane,  
   

  

ΦE = 3.50× 103  N/C( ) 0.350 m( ) 0.700 m( )[ ]cos 40.0°

= 657 N ⋅m2/C
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P24.6 We are given an electric field in the 
general form  

   
    

E = ayî + bzĵ + cxk̂  

 In the xy plane, z = 0 so that the 
electric field reduces to 

        

E = ayî + cxk̂  

 To obtain the flux, we integrate (see ANS. FIG. P24.6 for the definition 
of dA): 

   

    

ΦE =

E ⋅d

A∫ = ayî + cxk̂( ) ⋅ k̂ dA∫

ΦE = ch xdx
x=0

w

∫ = ch
x2

2
x=0

w

=
chw2

2

 

 Where the   k̂  term was eliminated since   k̂ ⋅ k̂ = 0.   

 
 

 

Section 24.2 Gauss’s Law 

P24.7 The electric flux through the hole is given by Gauss’s Law (Equation 
24.6) as 

   

    

ΦE , hole =

E ⋅

Ahole = keQ

R2
⎛
⎝⎜

⎞
⎠⎟ π r2( )

=
8.99× 109  N ⋅m2 C2( ) 10.0× 10−6  C( )

0.100 m( )2

⎛

⎝
⎜

⎞

⎠
⎟

                                                    ×π 1.00× 10−3  m( )2

= 28.2 N ⋅m2 /C

 

P24.8 The gaussian surface encloses the +1.00-nC and –3.00-nC charges, but 
not the +2.00-nC charge. The electric flux is therefore  

  

  
ΦE = qin

∈0

=
1.00× 10−9  C− 3.00× 10−9  C( )

8.85 × 10−12  C2/N ⋅m2 = −226 N ⋅m2/C
 

 

ANS. FIG. P24.6 
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P24.9 The total charge within the closed surface is  

   5.00 µC − 9.00 µC + 27.0 µC − 84.0 µC = −61.0 µC 

 (a) So, from Equation 24.6, the total electric flux is  

   
  
ΦE = q

∈0
= –61.0 × 10–6  C

8.85× 10–12  C2/N ⋅m2( ) = −6.89 MN · m2/C  

 (b) 

 

Since the net electric flux is negative, more lines enter than leave
the surface.

 

P24.10 (a) From 
  
E =

keQ
r2 ,     

   

  
Q = Er2

ke

=
8.90× 102 N/C( ) 0.750 m( )2

8.99× 109  N ⋅m2 /C2( ) = 5.57 × 10−8  C
 

  But Q is negative since   

E  points inward, so  

   
  Q = −5.57 × 10−8  C = −55.7 nC

 

 (b) The 
 

negative  charge has a 
 

spherically symmetric  charge 

distribution, concentric with the spherical shell. 

P24.11 The electric flux through each of the surfaces is given by 
  
ΦE =

qin

∈0

. 

 Flux through S1: 
  
ΦE =

−2Q + Q
∈0

= −
Q
∈0

 

 Flux through S2: 
  
ΦE =

+Q −Q
∈0

= 0  

 Flux through S3: 
  
ΦE =

−2Q + Q −Q
∈0

= −
2Q
∈0

 

 Flux through S4:   
ΦE = 0  

P24.12 The total flux through the surface of the cube is  
   

  
ΦE =

qin

∈0

=
170 × 10−6  C

8.85 × 10−12  C2 / N ⋅m2 = 1.92 × 107  N ⋅m2 / C
 

 (a) By symmetry, the flux through each face of the cube is the same.  
   

  
ΦE( )one face

= 1
6
ΦE = 1

6
qin

∈0
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ΦE( )one face
= 1

6
170× 10−6  C

8.85× 10−12  C2 /N ⋅m2

⎛
⎝⎜

⎞
⎠⎟

= 3.20× 106  N ⋅m2 /C

 

 (b) 
  
ΦE =

qin

∈0

=
170 × 10−6  C

8.85 × 10−12  C2 / N ⋅m2

⎛
⎝⎜

⎞
⎠⎟
= 1.92 × 107  N ⋅m2/C  

 (c) 

 

The answer to part (a) would change because the charge could
now be at different distances from each face of the cube. The
answer to part (b) would be unchanged because the flux through
the entire closed surface depends only on the total charge inside
the surface.

 

P24.13 Consider as a gaussian surface a box with horizontal area A, lying 
between 500 and 600 m elevation. From Gauss’s Law, 

  

    


E ⋅d

A∫ = q

∈0

:
 

   

  
+120 N/C( )A + −100 N/C( )A = ρA 100 m( )

∈0

 

  

 
ρ =

20.0 N/C( ) 8.85× 10−12  C2 /N ⋅m2( )
100 m

= 1.77 × 10−12  C/m3
 

 The charge is 
 

positive , to produce the net outward flux of electric 

field. 

P24.14 (a) The total electric flux through the surface of the shell is 
   

  

ΦE , shell =
qin

∈0

= 12.0× 10−6

8.85× 10−12 = 1.36× 106  N ⋅m2 /C

= 1.36 MN ⋅m2 /C

 

 (b) Through any hemispherical urface of the shell, by symmetry, 

   

  

ΦE , half shell =
1
2

1.36 × 106  N ⋅m2 / C( ) = 6.78 × 105  N ⋅m2 / C

= 678
 
kN ⋅m2 / C

 

 (c) 
 

No , the same number of field lines will pass through each 

surface, no matter how the radius changes. 
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P24.15 (a) The gaussian surface encloses a charge of +3.00 nC. 
    

  
ΦE = qin

∈0

= 3.00× 10−9  C
8.85 × 10−12  C2/N ⋅m2 = 339 N ⋅m2/C

 

 (b) 

 

No. The electric field is not uniform on this surface. Gauss’s law
is only practical to use when all portions of the surface satisfy
one or more of the conditions listed in Section 24.3.

 

P24.16 (a) One-half of the total flux created by the charge q goes through the 
plane. Thus, 

    

  
ΦE , plane =

1
2
ΦE , total =

1
2

q
∈0

⎛
⎝⎜

⎞
⎠⎟
=

q
2∈0

 

 (b) The square looks like an infinite plane to a charge very close to the 
surface. Hence, 

    

  
ΦE , square ≈ ΦE , plane =

q
2∈0

 

 (c) 
 

The plane and the square look the same to the charge.  

P24.17 (a) If  R ≤ d , the sphere encloses no charge and 
  
ΦE = qin

∈0

= 0 .  

 (b) If R > d, the length of line falling within the sphere is   2 R2 − d2  

  so  
  
ΦE = 2λ R2 − d2

∈0

 

P24.18 (a) 

 

The net flux is zero through the sphere because the number of
field lines entering the sphere equals the number of lines leaving
the sphere.

 

 (b) The electric field through the curved side of the cylinder is zero 
because the field lines are parallel to that surface and do not pass 
through it. The electric field lines pass outward through the ends 
of the cylinder, so both have a positive flux. Because the field is 
uniform, the flux is πR2E for each end. 

  
The net flux is 2πR2E through the cylinder.  

 (c) The net flux is positive, so the charge in the cylinder is positive. 
To be a uniform field, the field lines must originate from a plane 
of charge. The net charge inside the cylinder is positive and is 
distributed on a plane parallel to the ends of the cylinder. 
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P24.19 The total charge is   Q − 6 q . The total outward flux from the cube is 

  

Q − 6 q
∈0

,  of which one-sixth goes through each face: 

   

  

ΦE( )one face
=

Q − 6 q
6∈0

ΦE( )one face
=

Q − 6 q
6∈0

=
5.00 − 6.00( ) × 10−6  C ⋅N ⋅m2

6 × 8.85 × 10−12  C2

= −18.8 kN ⋅m2 / C

 

P24.20 The total charge is   Q − 6 q . The total outward flux from the cube is 

  

Q − 6 q
∈0

,  of which one-sixth goes through each face: 

   

  
ΦE( )one face

=
Q − 6 q

6∈0

 

P24.21 (a) With δ very small, all points on the 
hemisphere are nearly at a distance R 
from the charge, so the field 
everywhere on the curved surface is 

  

keQ
R2

 radially outward (normal to the 

surface). Therefore, the flux is this field 
strength times the area of half a 
sphere: 

   

    

Φcurved =

E ⋅d

A∫ = ElocalAhemisphere

Φcurved = ke
Q
R2

⎛
⎝⎜

⎞
⎠⎟

1
2

4π R2⎛
⎝⎜

⎞
⎠⎟ =

1
4π∈0

Q 2π( ) =
+Q
2 ∈0

 

 (b) The closed surface encloses zero charge so Gauss’s law gives 

    Φcurved + Φflat = 0      or     
  
Φflat = −Φcurved =

−Q
2 ∈0

 

P24.22 For uniform electric field lines passing through a flat surface, the 
electric flux is   ΦE = EAcosθ , where θ is the angle between the electric 
field vector and the normal to the surface.  

 (a)   ΦE( )face 1
= EAcosθ  

ANS. FIG. P24.21 
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 (b) The normal points to the right; the angle between the electric field 
and the normal is 90° + θ :  

    
  ΦE( )face 2

= EAcos 90° +θ( ) = −EAsinθ  

 (c) The normal points downward in the figure, the angle between the 
electric field and the normal is 180° – θ :  

    
  ΦE( )face 3

= EAcos 180° −θ( ) = −EAcosθ  

 (d) The normal points to the left; the angle between the electric field 
and the normal is 90° – θ :  

    
  ΦE( )face 4

= EAcos 90° −θ( ) = EAsinθ  

 (e) The normal points in or out of the page; the angle between the 
electric field and the normal is 90°:  

    
  
ΦE( )top or bottom

= EAcos 90°( ) = 0  

 (f)   ΦE = ΦE( )faces∑ = EAcosθ −EAsinθ −EAcosθ + EAsinθ + 0 + 0 = 0  

 (g) 
  
ΦE = qin

∈0

→ qin = 0   

 
 

 

Section 24.3 Application of Gauss’s Law to  
Various Charge Distributions 

*P24.23 The distance between centers is  2 × 5.90 × 10−15  m.  Each produces a 
field as if it were a point charge at its center, and each feels a force as if 
all its charge were a point at its center. 

   

  

F = keq1q2

r2 = 8.99 × 109  N ⋅m2 C2( ) 46( )2 1.60 × 10−19  C( )2

2 × 5.90 × 10−15  m( )2

= 3.50 × 103  N = 3.50 kN

 

P24.24 Note that the electric field in each case is directed radially inward, 

toward the filament. We use 
  
E = 2keλ

r
 and substitute numerical values. 

 (a) At r = 10.0 cm = 0.100 m, 
   

  

E = 2keλ
r

=
2 8.99× 109  N ⋅m2 /C2( ) 90.0× 10−6  C/m( )

0.100 m
= 16.2 MN/C

 



76     Gauss’s Law 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (b) At r = 20.0 cm = 0.200 m, 
   

  

E = 2keλ
r

=
2 8.99× 109  N ⋅m2 /C2( ) 90.0× 10−6  C/m( )

0.200 m
= 8.09 MN/C

 

 (c) At r = 100 cm = 1.00 m,   
   

  

E = 2keλ
r

=
2 8.99× 109  N ⋅m2 /C2( ) 90.0× 10−6  C/m( )

1.00 m
= 1.62 MN/C

 

P24.25 The charge per unit area of the plastic sheet must be sufficiently large 
to result in an upward electric force on the Styrofoam that cancels the 
downward gravitational force: 

    
  
mg = qE = q

σ
2∈0

⎛
⎝⎜

⎞
⎠⎟
= q

Q A
2∈0

⎛
⎝⎜

⎞
⎠⎟

 

 Solving for the charge per unit area gives 

    

  

Q
A

=
2∈0 mg

q

=
2 8.85 × 10−12  C2 / N ⋅m2( ) 10.0 × 10−3  kg( ) 9.80 m/s2( )

−0.700 × 10−6  C

= 2.48 µC/m2

 

P24.26 The charge distributed through the nucleus creates a field at the 

surface equal to that of a point charge at its center: 
  
E =

keq
r2 . 

  

  

E =
8.99× 109  N ⋅m2 /C2( ) 82 × 1.60× 10−19  C( )

208( )1 3 1.20× 10−15  m( )⎡⎣ ⎤⎦
2

 

  
  
E = 2.33× 1021  N/C   away from the nucleus 

P24.27 For a large uniformly charged sheet,   

E  will be perpendicular to the 

sheet, and will have a magnitude of  
   

  

E = σ
2∈0

= 2π keσ

= (2π ) 8.99× 109 N ⋅m2/C2( ) 9.00× 10–6 C/m2( )

 

 so    

E = 5.08 × 105  N/C ĵ  
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P24.28 Consider two balloons of diameter 0.200 m, each 
with mass 1.00 g, hanging apart with a 0.050 0 m 
separation on the ends of strings making angles 
of 10.0° with the vertical. 

 (a) 
  

Fy∑ = T cos10°− mg = 0⇒T = mg
cos10°

 

  
  Fx∑ = T sin10°− Fe = 0⇒ Fe = T sin10°  

  

so

 

  

Fe = mg
cos10.0°

⎛
⎝⎜

⎞
⎠⎟ sin10.0° = mg tan10,0°

= 0.001 00 kg( ) 9.80 m/s2( )tan10.0°

Fe ≈ 2 × 10−3  N  ~10−3  N or 1 mN

 

 (b) The charge on each balloon can be found from 
  
Fe =

keq
2

r2 :  

   

  

q = Fer
2

ke

≈
2 × 10−3  N( ) 0.25 m( )2

8.99× 109  N ⋅m2 /C2

≈ 1.2 × 10−7  C ~10−7  C or 100 nC

 

 (c) 

  

E =
keq
r2 ≈

8.99 × 109  N ⋅m2 / C2( ) 1.2 × 10−7  C( )
0.25 m( )2 ≈ 1.7 × 104  N/C

~ 10kN/C

 

 (d) The electric flux created by each balloon is  
   

  

ΦE = q
∈0

≈ 1.2 × 10−7  C
8.85× 10−12  C2 /N ⋅m2 = 1.4× 104  N ⋅m2 /C

~ 10kN ⋅m2 /C

 

P24.29 (a) Consider the spherical symmetry of the situation. A gaussian 
sphere concentric wth the shell, with radius 10.0 cm, encloses 0 
charge. Then at the surface of this sphere, inside the charged 
shell, we have    


E = 0 .  

 (b) For a gaussian sphere of radius 20.0 cm, we apply 
    


E ⋅d

A =∫

qin

∈0
.  

The field is radially outward, and   4πr2E = q/∈0:  
    

  

E = keq
r2 =

8.99× 109  N ⋅m2/C2( ) 32.0× 10–6  C( )
0.200 m( )2

= 7.19× 106  N/C

 

 

ANS. FIG. P24.28 
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   so 
   


E = 7.19 MN/C radially outward  

P24.30 (a) The charge per unit area of the wall is 

   
 
σ = 8.60 × 10−6  C/cm2( ) 100 cm

m
⎛
⎝⎜

⎞
⎠⎟

2

= 8.60 × 10−2  C/m2  

  The electric field at a distance of 2.00 cm is then 
   

  

E = σ
2∈0

= 8.60× 10−2  C/m2

2 8.85× 10−12  C2 /N ⋅m2( )
= 4.86× 109 N/C away from the wall

 

 (b) 

 

So long as the distance from the wall is small compared to the
width and height of the wall, the distance does not affect the field.

 

P24.31 The approximation in this case is that the filament length is so large 
when compared to the cylinder length that the “infinite line” of charge 
can be assumed.  

  (a) We have  

    
  
E =

2keλ
r

 

   where the linear charge density is 

   
 
λ = 2.00 × 10–6  C

7.00 m
= 2.86 × 10–7 C/m  

  so  
   

  

E = (2)(8.99× 109 N ⋅m2 /C)(2.86× 10–7 C/m)
0.100 m

= 51.4 kN/C radially outward 

 

  (b) We can find the flux by multiplying the field and the lateral 
surface area of the cylinder:  

   

  
ΦE = 2πrLE =  2πrL

2keλ
r

⎛
⎝⎜

⎞
⎠⎟ = 4π keλL

 

  so  
   

  

ΦE = 4π (8.99× 109 N ⋅m2/C2 )(2.86× 10−7 C/m)(0.020 0 m)

= 6.46× 102 N ⋅m2 /C
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P24.32 (a) The area of each face is A = 1.00 m2.  

  For the left face, the angle between the electric field and the 
normal is 0°:  

    

  

ΦE( )left face
= EAcosθ = 20.0 N/C( ) 1.00 m2( )cos0°

= 20.0 N ⋅m2/C

 

  For the right face, the angle between the electric field and the 
normal is 180°:  

    

  

ΦE( )right face
= EAcosθ = 35.0 N/C( ) 1.00 m2( )cos180°

= −35.0 N ⋅m2/C

 

  For the top face, the angle between the electric field and the 
normal is 180°:  

    

  

ΦE( )top face
= EAcosθ = 25.0 N/C( ) 1.00 m2( )cos180°

= −25.0 N ⋅m2/C

 

  For the bottom face, the angle between the electric field and the 
normal is 0°:  

    

  

ΦE( )bottom face
= EAcosθ = 15.0 N/C( ) 1.00 m2( )cos0°

= 15.0 N ⋅m2/C

 

  For the front face, the angle between the electric field and the 
normal is 0°:  

    

  

ΦE( )front face
= EAcosθ = 20.0 N/C( ) 1.00 m2( )cos0°

= 20.0 N ⋅m2/C

 

  For the back face, the angle between the electric field and the 
normal is 0°:  

    

  

ΦE( )back face
= EAcosθ = 20.0 N/C( ) 1.00 m2( )cos0°

= 20.0 N ⋅m2/C

 

  The total flux is then 

    

  

ΦE = (20.0 − 35.0 − 25.0 + 15.0 + 20.0 + 20.0) N ⋅m2/C

= 15.0 N ⋅m2/C

 

 (b) 

  

ΦE = qin

∈0

→ qin =∈0 ΦE = 8.85 × 10−12  C2/N ⋅m2( ) 15.0 N ⋅m2/C( )

= 1.33 × 10−10  C

 

 (c)  No; fields on the faces would not be uniform.  
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P24.33 If ρ is positive, the field must be radially 
outward. Choose as the gaussian surface a 
cylinder of length L and radius r, contained 
inside the charged rod. Its volume is   π r2L   
and it encloses charge   ρπ r2L . Because the 
charge distribution is long, no electric flux 
passes through the circular end caps;     


E ⋅d

A = EdAcos90.0° = 0 . The 

curved surface has     

E ⋅d

A = EdAcos0° , and E must be the same 

strength everywhere over the curved surface. 

 Gauss’s law, 
    


E ⋅d

A∫ =

q
∈0

,     becomes    

  

E dA
Curved
Surface

∫ =
ρπr2L
∈0

.  

 Now the lateral surface area of the cylinder is 2πrL: 
   

  
E 2π r( )L = ρπ r2L

∈0

      

 Thus,    
    


E =

ρr
2∈0

 radially away from the cylinder axis .  

P24.34 (a) The electric field is given by 
   

   
E = 2keλ

r
=

2ke Q/( )
r

 

  Solving for the charge Q gives 
   

   
Q = Er

2ke

=
3.60× 104  N/C( ) 0.190 m( ) 2.40 m( )

2 8.99× 109 N ⋅m2 /C( ) =
 

   
  
Q = +9.13 × 10−7  C = +913 nC  

 (b) Since the charge is uniformly distributed on the surface of the 
cylindrical shell, a gaussian surface in the shape of a cylinder of 
4.00 cm in radius encloses no charge, and 

   


E = 0 . 

P24.35 (a) At the center of the sphere, the total charge is zero, so 

   
  
E =

keQr
a3 = 0  

 (b) At a distance of 10.0 cm = 0.100 m from the center, 

   

  

E = keQr
a3 =

8.99× 109 N ⋅m2 /C( ) 26.0× 10−6  C( ) 0.100 m( )
0.400 m( )3

= 365 kN/C

 

ANS. FIG. P24.33 
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 (c) At a distance of 40.0 cm = 0.400 m from the center, all of the 
charge is enclosed, so 

   

  

E = keQ
r2 =

8.99× 109 N ⋅m2 /C( ) 26.0× 10−6  C( )
0.400 m( )2

= 1.46 MN/C

 

 (d) At a distance of 60.0 cm = 0.600 m from the center, 
   

  

E = keQ
r2 =

8.99× 109 N ⋅m2 /C( ) 26.0× 10−6  C( )
0.600 m( )2

= 649 kN/C

 

 The direction for each electric field is 
 

radially outward . 

P24.36 The volume of the spherical shell is 

   
 

4
3
π 0.25 m( )3 − 0.20 m( )3⎡⎣ ⎤⎦ = 3.19 × 10−2  m3  

 Its charge is 

   
  ρV = −1.33 × 10−6  C/m3( ) 3.19 × 10−2  m3( ) = −4.25 × 10−8  C  

 The net charge inside a sphere containing the proton’s path as its 
equator is 

    −60 × 10−9  C − 4.25 × 10−8  C = −1.02 × 10−7  C  

 The electric field is radially inward with magnitude 
   

  

E =
ke q
r2 =

q
∈0 4π r2 =

8.99× 109  N ⋅m2/C2( ) 1.02 × 10−7  C( )
0.250 m( )2

= 1.47 × 104  N/C

 

 For the proton, Newton’s second law gives 
   

  
F∑ = ma: eE = mv2

r

 

 solving for the proton’s speed then gives 
   

  

v = eEr
m

⎛
⎝⎜

⎞
⎠⎟

1 2

=
1.60× 10−19  C( ) 1.47 × 104  N/C ( ) 0.250 m( )

1.67 × 10−27  kg

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

= 5.94× 105  m/s
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Section 24.4 Conductors in Electrostatic Equilibrium 

P24.37 
   

EdA∫ = E 2π rl( ) =
qin

∈0

 
  
E =

qin l
2π ∈0 r

=
λ

2π ∈0 r
 for the field outside the 

metal rod. 

 (a) At r = 3.00 cm, 
   


E = 0  

 (b) At r = 10.0 cm, 
   

   


E =

30.0 × 10−9  C
2π 8.85 × 10−12  C2 / N ⋅m2( ) 0.100 m( )

= 5 400 N/C, outward

 

 (c) At r = 100 cm, 
   

   


E =

30.0 × 10−9  C
2π 8.85 × 10−12  C2 / N ⋅m2( ) 1.00 m( )

= 540 N/C, outward

 

P24.38 Let’s calculate the electric field just outside the surface: 
   

  

E = ke

q
r2  =  8.99 × 109  N ⋅m2/C2( ) 40.0 × 10−9  C 

0.15 m( )2

⎡

⎣
⎢

⎤

⎦
⎥ 

= 1.60 × 104  N = 16.0 kN/C

 

 This should be the value of the electric field at the peak of the curve in 
Figure P24.38. We see, however, that the peak in the figure occurs at 
about 6.5 kN/C. Therefore, it is not possible that this figure represents 
the electric field for the given situation. 

P24.39 The surface area is A = 4πa2. The field is then  
  

  
E = keQ

a2 = Q
4π ∈0 a2 = Q

A∈0

= σ
∈0

 

 It is not equal to  σ/2∈0 .  At a point just outside, the uniformly 
charged surface looks just like a uniform flat sheet of charge. The 
distance to the field point is negligible compared to the radius of 
curvature of the surface. 

P24.40 An approximate sketch is given at the right. 
Note that the electric field lines should be 
perpendicular to the conductor both inside and 
outside. 

 

ANS. FIG. P24.40 
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P24.41 The fields are equal. The equation 
  
E =

σ conductor

∈0

 suggested in the 

chapter for the field outside the aluminum looks different from the 

equation 
  
E =

σ insulator

2 ∈0

 for the field around glass. But its charge will 

spread out to cover both sides of the aluminum plate, so the density is 

  
σ conductor =

Q
2A

. The glass carries charge only on area A, with 

  
σ insulator =

Q
A

. The two fields are 
  

Q
2A∈0

,  the same in magnitude, and 

both are perpendicular to the plates, vertically upward if Q is positive. 

P24.42 (a) Let a flat box have face area A perpendicular to its thickness dx.  

  The flux at x = 0.3 m is into the box is 

      ΦE = −EA = −(6 000 N/C ⋅  m2 )(0.3 m)2  A = −(540 N/C) A  

  The flux at x = 0.3 m + dx is out of the box is 
    

  

ΦE = +EA = +(6 000 N/C ⋅m2 )(0.3 m + dx)2  A
= +(540 N/C) A + (3 600 N/C ⋅m) dx A

 

  (The term in (dx)2 is negligible.) The charge in the box is ρA dx 

where ρ is the unknown. Applying Gauss’s law, 
  
ΦE = qin

∈0

,  we 

obtain 
    

  

−(540 N/C) A + (540 N/C) A
                         + (3 600 N/C ⋅  m) dx A = ρA dx/∈0

 

  Solving for ρ gives 
    

 

ρ = (3 600 N/C ⋅  m)∈0

= (3 600 N/C ⋅  m)(8.85× 10−12  C2/N ⋅  m2 )

= 31.9 nC/m3

  

 (b)  No; then the field would have to be zero.  

P24.43 The charge divides equally between the identical spheres, with charge  
Q/2 on each. Then, they repel like point charges at their centers:  

  

  

F =
ke Q 2( ) Q 2( )

L + R + R( )2 = keQ
2

4 L + 2R( )2

=
8.99× 109  N ⋅m2/C2( ) 60.0× 10−6  C( )2

4 2.01 m( )2 = 2.00 N
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P24.44 (a) 
  
E =

σ
∈0

,  so     

  

 

σ = 8.00 × 104  N/C( ) 8.85 × 10−12  C2 / N ⋅m2( )
= 7.08 × 10−7  C/m2

 

  
 
σ = 708 nC/m2 , positive on one face and negative on the other. 

 (b) 
 
σ =

Q
A

, so 

   

  

Q = σA = 7.08 × 10−7  C/m2( ) 0.500 m( )2

= 1.77 × 10−7  C = 177 nC

 

    positive on one face and negative on the other. 

P24.45 (a) Inside surface: consider a cylindrical gaussian surface of arbitrary 
length    within the metal. Since E inside the conducting shell is 
zero, the total charge inside the gaussian surface must be zero:  

   

    


E ⋅d

A∫ =

qin

∈0

     →      0 =
λ + λinner( )

∈0

 

  so   λinner = −λ . 

 (b) Outside surface: consider a cylindrical gaussian surface of 
arbitrary length    outside the metal. The total charge within the 
gaussian surface is 

   
   

qwire + qcylinder = qwire + qinner surface + qouter surface( )
λ + 2λ = λ + −λ + λouter( )      →      λouter = 3λ

 

 (c) Gauss’s law: 
   

    


E ⋅d

A∫ =

qin

∈0

 

   

   
E2πr = 3λ

∈0

     →      E = 2
3λ

4π ∈0 r
= 6ke

λ
r

, radially outward
 



Chapter 24     85 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

P24.46 (a) We ignore “edge” effects and assume that the total charge 
distributes itself uniformly over each side of the plate, with one 
half the total charge on each side. The charge density on each of 
the surfaces (upper and lower) of the plate is: 

   

  

σ =
1
2

q
A

⎛
⎝⎜

⎞
⎠⎟ =

1
2

4.00 × 10−8  C( )
0.500 m( )2 = 8.00 × 10−8  C/m2

= 80.0 nC/m2

 

 (b) Just above the plate, 
   

   


E =

σ
∈0

⎛
⎝⎜

⎞
⎠⎟

k̂ =
8.00 × 10−8  C/m2

8.85 × 10−12  C2 / N ⋅m2

⎛
⎝⎜

⎞
⎠⎟

k̂ = 9.04 kN/C( )k̂
 

 (c) Just below the plate, 
   


E = −9.04 kN/C( )k̂ .  

*P24.47 (a)    

E = 0  

 (b) 
  
E = keQ

r2 =
8.99 × 109  N ⋅m2/C2( ) 8.00 × 10−6  C( )

0.030 0 m( )2 = 7.99 × 107  N C   

  
   


E = 79.9 MN C  radially outward  

 (c)    

E = 0  

 (d) 
  
E = keQ

r2 =
8.99 × 109  N ⋅m2/C2( ) 4.00 × 10−6  C( )

0.070 0 m( )2 = 7.34 × 106  N C  

  
   


E = 7.34 MN C  radially outward  

 
 

 

Additional Problems 

P24.48 The electric field makes an angle of 70.0° to the normal. The square has 
side d = 5.00 cm. 

 

  

ΦE = EAcosθ = Ed2 cosθ

→ E =
ΦE

d2 cosθ
=

6.00 N ⋅m2/C
0.150 m( )2 cos70.0°

= 780 N/C
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P24.49 The electric field makes an angle of 60.0° with to the normal. The 
square has side d = 5.00 cm. 

 

  

ΦE = EAcosθ = 3.50 × 102  N/C( ) 5.00× 10−2  m( )2
cos60.0°

= 0.438 N ⋅m2/C

 

P24.50 (a) The field is zero within the metal of the shell. The exterior electric 
field lines end at equally spaced points on the outer surface 
because the surface of the conductor is an equipotential surface. 
The charge on the outer surface is distributed uniformly. Its 
amount is given by 

   
  EA = Q/∈0

 

  Solving for the charge Q gives 
   

  

Q = −(890 N/C) 4π  (0.750 m)2 8.85× 10−12  C2/N ⋅m2( )
= −55.7 nC

 

  

 

The charge on the exterior surface is − 55.7 nC distributed 
uniformly.

 

 (b) For the net charge of the shell to be zero, the shell must carry 
+55.7 nC on its inner surface, induced there by –55.7 nC in the 
cavity within the shell. The charge in the cavity could have any 
distribution and give any corresponding distribution to the 
charge on the inner surface of the shell. The charge on the interior 
surface is +55.7 nC. It can have any distribution. For example, a 
large positive charge might be within the cavity close to its 
topmost point, and a slightly larger negative charge near its 
easternmost point. The inner surface of the shell would then have 
plenty of negative charge near the top and even more positive 
charge centered on the eastern side.  

 (c) See the comments in (b). The charge within the shell is −55.7 nC. 
It can have any distribution. For example, the charge could be 
distributed on the surface of an insulator of arbitrary shape.  

P24.51 The   

E  field due to the point charge is uniform 

and points radially outward, so  ΦE = EA . The 
arc length of a small ring-shaped element of 
the sphere is ds = Rdθ, and its circumference is 

  2π r = 2π R sinθ . 

 

 

 

ANS. FIG. P24.51 
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 The area of the circular cap is 
  

  

A= 2π r ds∫ = 2πRsinθ( )Rdθ
0

θ

∫ = 2πR2 sinθ dθ
0

θ

∫

A =2πR2 −cosθ( ) 0

θ = 2πR2 1−cosθ( )

 

 The flux is then 
   

  

ΦE = EA = 1
4π ∈0

⎛
⎝⎜

⎞
⎠⎟

Q
R2 ⋅ 2π R2( ) 1− cosθ( )

= Q
2∈0

⎛
⎝⎜

⎞
⎠⎟

1− cosθ( )

ΦE = 50.0× 10−6  C
2 8.85× 10−12  C2 N ⋅m2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1− cos 45.0°( )

= 8.27 × 105  N ⋅m2/C

 

P24.52 Refer to ANS. FIG. P24.51 above. The   

E  field due to the point charge is 

uniform and points radially outward, so  ΦE = EA . The arc length of a 
small ring-shaped element of the sphere is  
ds = Rdθ, and its circumference is   2π r = 2π Rsinθ . 

 The area of the circular cap is 
  

  

A= 2π r ds∫ = 2πRsinθ( )Rdθ
0

θ

∫ = 2πR2 sinθ dθ
0

θ

∫

A =2πR2 −cosθ( ) 0

θ = 2πR2 1−cosθ( )

 

 The flux is then 
   

  

ΦE = EA = 1
4π ∈0

⎛
⎝⎜

⎞
⎠⎟

Q
R2 ⋅ 2π R2( ) 1− cosθ( )

= Q
2∈0

⎛
⎝⎜

⎞
⎠⎟

1− cosθ( )

 

*P24.53 Please review Example 23.9 in your textbook, emphazising the Finalize 
section. There, it is shown that the electric field due to a nonconducting 

plane sheet of charge has a constant magnitude given by 
  
Ez =

σ sheet

2∈0

,  

where  σ sheet  is the uniform charge per unit area on the sheet. This field 
is everywhere perpendicular to the xy plane, is directed away from the 
sheet if it has a positive charge density, and is directed toward the 
sheet if it has a negative charge density. 
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 In this problem, we have two plane sheets of charge, both parallel to 
the xy plane and separated by a distance of z0. The upper sheet has 
charge density  σ sheet = −2σ ,  while the lower sheet has  σ sheet = +σ .  
Taking upward as the positive z-direction, the fields due to each of the 
sheets in the three regions of interest are: 

 

 Lower sheet (at z = 0) Upper sheet (at z = z0) 

Region Electric Field Electric Field 

z < 0 
  
Ez = − +σ

2∈0

= − σ
2∈0

 

  
Ez = + −2σ

2∈0

= + σ
∈0

 

0 < z < z0 
  
Ez = + +σ

2∈0

= + σ
2∈0

 

  
Ez = + −2σ

2∈0

= + σ
∈0

 

z > z0 
  
Ez = + +σ

2∈0

= + σ
2∈0

 

  
Ez = − −2σ

2∈0

= − σ
∈0

 

  

 When both plane sheets of charge are present, the resultant electric 
field in each region is the vector sum of the fields due to the individual 
sheets for that region. 

 (a) For z < 0,  
   

  
Ez = Ez , lower + Ez , upper = − σ

2∈0

+ σ
∈0

= + σ
2∈0

 

 (b) For 0 < z < z0 ,  
   

  
Ez = Ez , lower + Ez , upper = + σ

2∈0

+ σ
∈0

= + 3σ
2∈0

 

 (c) For z > z0 ,  
   

  
Ez = Ez , lower + Ez , upper = + σ

2∈0

− σ
∈0

= − σ
2∈0
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P24.54 Choose as each gaussian surface a concentric 
sphere of radius r. The electric field will be 
perpendicular to its surface, and will be 
uniform in strength over its surface. The 
density of charge in the insulating sphere is  

   
  ρ = Q / 4

3 πa3( )  

 (a) The sphere of radius r < a encloses 
charge 

   

  

qin = ρ 4
3
π r3⎛

⎝⎜
⎞
⎠⎟ =

Q
4
3
π R3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

4
3
π r3⎛

⎝⎜
⎞
⎠⎟ = Q

r
R

⎛
⎝⎜

⎞
⎠⎟

3

 

 (b) Applying Gauss’s law to this sphere reveals the magnitude of the 
field at its surface. 

   

    


E ⋅d

A∫ =

qin

∈0

E 4π r2( ) =
Q
∈0

r
a

⎛
⎝⎜

⎞
⎠⎟

3

→ E =
1

4π ∈0

Qr
a3 = ke

Qr
a3

 

 (c) For a sphere of radius r with  a < r < b, the whole insulating 
sphere is enclosed, so the charge within is Q: 

  
qin = Q . 

 (d) Gauss’s law for this sphere becomes:  
   

    


E ⋅d

A∫ = qin

∈0

E 4π r2( ) = Q
∈0

→ E = 1
4π ∈0

Q
r2 = ke

Q
r2

 

 (e) For   b ≤ r ≤ c,  
  

E = 0  because there is no electric field inside a 

conductor. 

 (f) For   b ≤ r ≤ c,  we know E = 0. Assume the inner surface of the 
hollow sphere holds charge Qinner. By Gauss’s law, 

   

    


E ⋅d

A∫ =

qin

∈0

0 =
Q + Qinner

∈0

→ Qinner = −Q

 

ANS. FIG. P24.54 
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 (g) The total charge on the hollow sphere is zero; therefore, charge on 
the outer surface is opposite to that on the inner surface:  

   
  
Qouter = −Qinner = +Q  

 (h) A surface of area A holding charge Q has surface charge σ = q/A. 
The solid, insulating sphere has small surface charge because its 
total charge Q is uniformly distributed throughout its volume. 
The inner surface of radius b has smaller surface area, and 
therefore larger surface charge, than the outer surface of radius c.  

P24.55 The electric field has these values (consult the solution to P24.54(a)–(e) 
for details). Suppressing units, 

 For 0 < r < a, 
  
E = ke

Qr
a3 = 8.99× 109( ) 3.00× 10−6

0.050 0( )3 r  

 For a < r < b, 
  
E = ke

Q
r2 = 8.99 × 109( ) 3.00 × 10−6

r2  

 For b < r < c, E = 0 (inside conductor)  

 For r > c, from Gauss’s law (suppressing units):  
   

    


E ⋅d

A∫ = qin

∈0

→ E 4π r2( ) = Q + q
∈0

                     → E = 1
4π ∈0

Q + q
r2 = ke

Q + q
r2

                             = 8.99× 109( ) 3.00× 10−6 − 1.00× 10−6

r2

E = 8.99× 109( ) 2.00× 10−6

r2

 

 where r is in meters and E in N/C. The field is radially outward.  

 The graph appears in ANS. FIG. P24.55 below, with a = 0.050 0 m,  
b = 0.100 m, and c = 0.150 m. 

 

ANS. FIG. P24.55 
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P24.56 Consider the field due to a single sheet and let  
E+ and E– represent the fields due to the  
positive and negative sheets. The field at  
any distance from each sheet has a magnitude  
given by the textbook equation  

   

  
E+ = E− =

σ
2∈0

 

 (a) To the left of the positive sheet, E+ is  
directed toward the left and E– toward 
the right and the net field over this  
region is 

   


E = 0 . 

 (b) In the region between the sheets, E+  
and E– are both directed toward the  
right and the net field is 

   

   


E =

σ
∈0

 to the right
 

 (c) To the right of the negative sheet, E+ 
and E– are again oppositely directed and 

   

E = 0 .

  

 (d) Now, both sheets are positively 
charged. We find that  

  (1) To the left of both sheets, 
both fields are directed 
toward the left: 

    

   


E = 2

σ
∈0

 to the left
 

  (2) Between the sheets, the fields cancel because they are 
opposite to each other: 

   


E = 0 . 

  (3) To the right of both sheets, both fields are directed 
toward the right:  

    

   


E = 2

σ
∈0

 to the right
 

ANS. FIG. P24.56(a-c) 
 

ANS. FIG. P24.56(d) 
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P24.57 We have 
   

    


E ⋅d

A∫ = E 4π r2( ) = qin

∈0

 

 (a) Solving for the charge Q on the insulating sphere, we write, for 
the region a < r < b, 

   

  

Q =∈0 E 4π r2( )
= 8.85× 10−12 C2 /N ⋅m2( ) −3.60× 103  N C( )4π 0.100 m( )2

= −4.00× 10−9  C = −4.00 nC

 

 (b) We take Q′ to be the net charge on the hollow sphere. For r > c, 
   

  

Q + ′Q =∈0 E 4π r2( )
= 8.85× 10−12  C2/N ⋅m2( ) 2.00× 102  N/C( )
                                                         × 4π 0.500 m( )2

= 5.56× 10−9  C

 

  so 

   
  
′Q = +9.56 × 10−9  C = +9.56 nC  

 (c) For b < r < c, E = 0; therefore, 
    

E ⋅d

A∫ = qin ∈0 = 0  implies 

  qin = Q + Q1 = 0 , where Q1 is the total charge on the inner surface 

of the hollow sphere. Thus, 
  
Q1 = −Q = +4.00 nC . 

 (d) Let Q2 be the total charge on the outer surface of the hollow 
sphere; then,  

   
  ′Q = Q1 + Q2 →Q2 = ′Q −Q1 = 9.56 nC− 4.00 nC = +5.56 nC

 

P24.58 The charge density is determined by 
  
Q =

4
3
π a3ρ . Solving gives 

    
  
ρ =

3Q
4π a3  

 (a) The flux is that created by the enclosed charge within radius r: 
    

  
ΦE = qin

∈0

= 4π r3ρ
3∈0

= 4π r3 3Q
3∈0 4π a3 =

Qr3

∈0 a3

 

 (b) 
  
ΦE =

Q
∈0

.  Note that the answers to parts (a) and (b) agree at r = a. 
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 (c) ANS. FIG. P24.58(c) plots the flux vs. r. 

 

ANS. FIG. P24.58(c) 

P24.59 Consider the charge distribution to be an unbroken charged spherical 
shell with uniform charge density σ and a circular disk with charge per 
area –σ. The total field is that due to the whole sphere,  

   

  
Esphere =

Q
4π ∈0 R2 = 4π R2σ

4π ∈0 R2 = σ
∈0

 outward
  

 plus the field of the disk  
   

  
Edisk = − σ

2∈0

= σ
2∈0

 radially inward
 

 The total field is  
   

  
Esphere + Edisk = σ

∈0

− σ
2∈0

= σ
2∈0

 radially outward
 

P24.60 The cylindrical symmetry of the charge distribution implies that the 
field direction is radially outward perpendicular to the axis. The field 
strength depends on r but not on the other cylindrical coordinates θ or 
z. Choose a gaussian cylinder of radius r and length L; the electric field 

is normal to this surface. Recalling that 
  
ke =

1
4π∈0

→ 1
∈0

= 4π ke ,  we 

have 
  
ΦE = qin

∈0

= 4π keqin.  

 (a) If r < a, we have  

   

  

ΦE = 4πkeqin

E 2π rL( ) = 4πke( )λL → E = 2ke
λ
r

, outward
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 (b) If a < r < b, we have  
   

  

ΦE = 4π keqin

E 2π rL( ) = 4π ke( ) λL + ρπ r2 − a2( )L⎡⎣ ⎤⎦→

E = 2ke

r
λ + ρπ r2 − a2( )⎡⎣ ⎤⎦ , outward

 

 (c) If r > b, we have  
   

  

ΦE = 4π keqin

E 2π rL( ) = 4π ke( ) λL + ρπ b2 − a2( )L⎡⎣ ⎤⎦

E = 2ke

r
λ + ρπ b2 − a2( )⎡⎣ ⎤⎦ , outward

 

 
 

 

Challenge Problems 

P24.61 (a) Consider a cylindrical shaped gaussian 
surface perpendicular to the yz plane 
with its left end in the yz plane and its 
right end at distance x, as shown in 
ANS. FIG. P24.61. 

  Use Gauss’s law: 
    


E ⋅d

A∫ = qin

∈0

 

  By symmetry, the electric field is zero 
in the yz plane and is perpendicular to 

   d

A  over the wall of the gaussian 

cylinder. Therefore, the only 
contribution to the integral is over the 
end cap. 

  For 
  
x >

d
2

,

   dq = ρdV = ρAdx = CAx2dx  
   

    


E ⋅d

A∫ = 1

∈0

dq∫

EA = CA
∈0

x2 dx
0

d 2

∫ = 1
3

CA
∈0

⎛
⎝⎜

⎞
⎠⎟

d3

8
⎛
⎝⎜

⎞
⎠⎟

 

 

ANS. FIG. P24.61 
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  Then 
   

  
E = Cd3

24∈0

      

  or 
    


E = Cd3

24∈0

î for x > d
2

;     

E = − Cd3

24∈0

î for x < − d
2

 

 (b) For 
  
−

d
2

< x <
d
2

, 

   

    


E ⋅d

A∫ = 1

∈0

dq∫ = CA
∈0

x2 dx
0

x

∫ = CAx3

3∈0

 

   

    


E = Cx3

3∈0

î for x > 0;   

E = − Cx3

3∈0

î for x < 0
 

P24.62 First, consider the field at distance r < R from the center of a uniform 
sphere of positive charge (Q = +e) with radius R. From Gauss’s law,  

   

    


E ⋅d

A∫ = qin

∈0

4π r2( )E = qin

∈0

= 1
∈0

ρV = 1
∈0

+e
4
3
π R3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

4
3
π r3

→ 4π r2( )E = e
∈0 R3

⎛
⎝⎜

⎞
⎠⎟

r3

→ E = e
4π ∈0 R3

⎛
⎝⎜

⎞
⎠⎟

r, directed outward

 

 (a) The force exerted on a point charge q = –e located at distance r 
from the center is then 

   

  
F = qE = −e

e
4π ∈0 R3

⎛
⎝⎜

⎞
⎠⎟

r = − e2

4π ∈0 R3

⎛
⎝⎜

⎞
⎠⎟

r = −Kr
 

 (b) From (a),  
   

  
K = e2

4π ∈0 R3 = kee
2

R3
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 (c) 
  
Fr = mear = −

kee
2

R3

⎛
⎝⎜

⎞
⎠⎟

r , so 
  
ar = −

kee
2

meR
3

⎛
⎝⎜

⎞
⎠⎟

r = −ω 2r  

  Thus, the motion is simple harmonic with frequency  

   

  
f =

ω
2π

=
1

2π
kee

2

meR
3

 

 (d) 
  
f = 2.47 × 1015  Hz =

1
2π

8.99 × 109  N ⋅m2 / C2( ) 1.60 × 10−19  C( )2

9.11× 10−31  kg( )R3
 

  which yields   R
3 = 1.05 × 10−30  m3 , or   R = 1.02 × 10−10  m  

P24.63 (a) The electric field throughout the region is 
directed along x; therefore,   


E  will be 

perpendicular to normal dA over the four 
faces of the surface which are perpendicular 
to the yz plane, and E will be parallel to 
normal dA over the two faces which are 
parallel to the yz plane. Therefore, 

   

  

ΦE = − Ex x= a( )A + Ex x= a+c( )A

ΦE = − 3 + 2a2( )ab + 3 + 2 a + c( )2⎡⎣ ⎤⎦ ab

ΦE = 2abc 2a + c( )

 

  Substituting the given values for a, b, and c, and noting that the 
units of electric flux are N . m/C, we find  

    
  
ΦE = 0.269 N ⋅m2 /C

 

 (b) 
  
ΦE = qin

∈0

→ qin = ∈0 ΦE = 2.38× 10−12  C  

P24.64 The resultant field within the cavity is the  
superposition of two fields, one   


E+  due to a  

uniform sphere of positive charge of radius 2a,  
and the other   


E−  due to a sphere of negative  

charge of radius a centered within the cavity. 

   
  

4
3

π r3ρ
∈0

⎛
⎝⎜

⎞
⎠⎟

= 4π r2E+  

 

ANS. FIG. P24.63 

ra
rr

rr1

ANS. FIG. P24.64 
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 so  
    


E+ = ρ r

3∈0

r̂ = ρ r
3∈0

 

   

  
− 4

3
π r1

3ρ
∈0

⎛
⎝⎜

⎞
⎠⎟
= 4π r1

2E−

  

 so  
    


E− = ρ r1

3∈0

−r̂1( ) = −ρ
3∈0


r1  

 Substituting    

r = a + r1  gives  

   

   


E− = −ρ r − a( )

3∈0

 

 Adding the fields gives 
   

    


E =

E+ +


E− = ρ r

3∈0

− ρ r
3∈0

+ ρ a
3∈0

= ρ a
3∈0

= 0î + ρ a
3∈0

ĵ
 

 Thus, 
  

Ex = 0  and 
  

Ey =
ρ a

3∈0

 at all points within the cavity. 

P24.65 By symmetry, the electric field is radial and, therefore, uniform over 
the gaussian surface:  

   

    


E ⋅d

A∫ = qin

∈0

E 4π r2( ) = 1
∈0

ρ dV
0

r

∫ = 1
∈0

a
r

⎛
⎝⎜

⎞
⎠⎟ 4π r2 dr

0

r

∫ = a
∈0

4π r dr
0

r

∫

E 4π r2( ) = 2π a
∈0

r2

 

   
  
E = a

2∈0

,  radially outward  (if a is positive) 

P24.66 (a) We call the constant A’, reserving the symbol A to denote area. 
The whole charge of the ball is 

    
  
Q = dQ = ρ

ball
∫

ball
∫ dV = ′A

r = 0

R

∫ r2 4πr2dr = 4π ′A r5

5 0

R

= 4π ′A R5

5
 

  To find the electric field, consider as gaussian surface a concentric 
sphere of radius r outside the ball of charge: 

  In this case, 
    


E ⋅ d


A∫ = Q

∈0

reads EA cos 0° = Q
∈0

 



98     Gauss’s Law 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  Solving, 
  
E(4πr2 ) = 4π ′A R5

5∈0

 

  and the electric field is 
  
E = ′A R5

5∈0 r2  

 (b) Let the gaussian sphere lie inside the ball of charge: 
    

    


E ⋅ d


A

spherical surface,
radius  r

∫ = dQ /
spherical volume,
radius  r

∫ ∈0

 

  Now the integrals become  

    
   
E(cos 0) dA∫ = ∫ ρdV

∈0

or EA = ∫
0

r ′A r2 4πr2( )dr

∈0

 

  Performing the integration,  

    
  
E(4πr2 ) = ′A 4π

∈0

⎛
⎝⎜

⎞
⎠⎟

r5

5
⎛
⎝

⎞
⎠

0

r

= ′A 4πr5

5∈0

 

  and the field is 
  
E = ′A r3

5∈0
 

P24.67 In this case the charge density is not uniform, and Gauss’s law is 

written as 
    


E ⋅d

A∫ = 1

∈0

ρ dV∫ .  We use a gaussian surface which is a 

cylinder of radius r, length   , and is coaxial with the charge 
distribution. 

 (a) When r < R, this becomes 
   
E 2π r( ) = ρ0

∈0

a − r
b

⎛
⎝⎜

⎞
⎠⎟ dV

0

r

∫ .  The element 

of volume is a cylindrical shell of radius r, length   , and thickness 
dr so that    dV = 2π rdr . 

  
   
E 2π r( ) = 2π r2ρ0

∈0

⎛
⎝⎜

⎞
⎠⎟

a
2
− r

3b
⎛
⎝⎜

⎞
⎠⎟  so inside the cylinder,  

   

  
E = ρ0r

2∈0

a − 2r
3b

⎛
⎝⎜

⎞
⎠⎟

 

 (b) When r > R, Gauss’s law becomes 
   
E 2π r( ) = ρ0

∈0

a − r
b

⎛
⎝⎜

⎞
⎠⎟ 2π rdr( )

0

R

∫  

or outside the cylinder, 
  
E = ρ0R

2

2∈0 r
a − 2R

3b
⎛
⎝⎜

⎞
⎠⎟  
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P24.68 The total flux through a surface enclosing the 

charge Q is 
  

Q
∈0

.  The flux through the disk is 

  
    
Φdisk =


E ⋅d

A∫  

 where the integration covers the area of the disk. 
We must evaluate this integral and set it equal 

to 
  

1
4

Q
∈0

 to find how b and R are related. In the 

figure, take    d

A  to be the area of an annular ring of radius s and width 

ds. The flux through    d

A  is 

    

E ⋅d

A = EdAcosθ = E 2π sds( )cosθ . 

 The magnitude of the electric field has the same value at all points 
within the annular ring, 

  
  
E = 1

4π∈0

Q
r2 = 1

4π∈0

Q
s2 + b2      and     

  
cosθ =

b
r

=
b

s2 + b2( )1 2  

 Integrating from s = 0 to s = R to get the flux through the entire disk, 
  

  

ΦE , disk = Qb
2∈0

sds

s2 + b2( )3 2
0

R

∫ = Qb
2∈0

− s2 + b2( )−1 2⎡
⎣

⎤
⎦

0

R

= Q
2∈0

1− b

R2 + b2( )1 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 The flux through the disk equals 
  

Q
4∈0

 provided that 
  

b

R2 + b2( )1 2 =
1
2 . 

 This is satisfied if 
  

R = 3b . 

P24.69  (a) The slab has left-to-right symmetry, so its field must be equal in 
strength at x and at −x. The field points everywhere away from 
the central plane. Take as gaussian surface a rectangular box of 
thickness 2x and height and width L, centered on the x = 0 plane. 
The gaussian surface, shown shaded in the second panel of ANS. 
FIG. P24.69, lies inside the slab. The charge the surface contains is 

  ρV = ρ(2xL2 ) . The total flux leaving it is EL2 through the right face, 
EL2 through the left face, and zero through each of the other four 
sides.  

 

ANS. FIG. P24.68 
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  Thus Gauss’s law,  
   

    


E ⋅ d

A∫ = q

∈0

 

  becomes 
   

  
2EL2 = ρ2xL2

∈0

 

  so the field is    
  
E = ρx

∈0
  

 (b) The electron experiences a force 
opposite to    


E.  When displaced to x > 0, 

it experiences a restoring force to the 
left. For the electron, Newton’s second 
law gives 

    

    


F =  me


a∑ :

          q

E = me


a or –eρxî

∈0
= me

a

 

  Solving for the acceleration,  

   
    


a = – eρ

me ∈0

⎛
⎝⎜

⎞
⎠⎟

xî or

a = –ω 2xî   

  That is, its acceleration is proportional to its displacement and 
oppositely directed, as is required for simple harmonic motion.  

  Solving for the frequency, 
  
ω 2 = eρ

me ∈0
 and  

   

  
f = ω

2π = 1
2π

eρ
me ∈0

 

 

 

 

 

 

 

ANS. FIG. P24.69 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P24.2  355 kN ⋅m2/C  

P24.4 (a)  −2.34 kN ⋅m2/C ; (b)  +2.34 kN ⋅m2 / C ; (c) 0 

P24.6 chw2/2 

P24.8  −226 N ⋅m2 / C  

P24.10 (a) –55.7 nC; (b) negative, spherically symmetric 

P24.12 (a)  3.20 × 106  N ⋅m2 / C ; (b)  1.92 × 107  N ⋅m2 / C ; (c) The answer to 
part (a) would change because the charge could now be at different 
distances from each face of the cube. The answer to part (b) would be 
unchanged because the flux through the entire closed surface depends 
only on the total charge inside the surface. 

P24.14 (a)  1.36 MN ⋅m2 / C ; (b)  678 kN ⋅m2 / C ; (c) no 

P24.16 (a) 
  

q
2∈0

;  (b) 
  

q
2∈0

;  (c) The plane and the square look the same to the 

charge. 

P24.18 (a) The net flux is zero through the sphere because the number of field 
lines entering the sphere equals the number of lines leaving the sphere; 
(b) The net flux is 2πR2E through the cylinder; (c) The net charge inside 
the cylinder is positive and is distributed on a plane parallel to the 
ends of the cylinder. 

P24.20 
  

Q − 6 q
6∈0

 

P24.22 (a) EA cos θ ; (b) –EA sin θ ; (c) –EA cos θ ; (d) EA sin θ ; (e) 0; (f) 0; (g) 0 

P24.24 (a) 16.2 MN/C; (b) 8.09 MN/C; (c) 1.62 MN/C 

P24.26 2.33 ×1021 N/C 

P24.28 (a) ~10–3 N or 1 mN; (b) ~10–7 C or 100 nC; (c) ~10 kN/C;  
(d) ~ 10 kN ⋅m2 / C  

P24.30 (a) 4.86 × 109 N/C away from the wall; (b) So long as the distance from 
the wall is small compared to the width and height of the wall, the 
distance does not affect the field. 

P24.32 (a)  15.0 N ⋅m2 / C ; (b) 1.33 × 10–10 C; (c) No; fields on the faces would 
not be uniform. 

P24.34 (a) +913 nC; (b) 0 
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P24.36 5.94 × 105 m/s 

P24.38 The electric field just outside the surface occurs at 16.0 kN/C. The peak 
in the figure occurs at about 6.5 kN/C. Therefore, it is not possible that 
this figure represents the electric field for the given situation. 

P24.40 See ANS. FIG. P24.40. 

P24.42 (a) 31.9 nC/m3; (b) No; then the field would have to be zero. 

P24.44 (a) 708 nC/m2; (b) 177 nC 

P24.46 (a) 80.0 nC/m2; (b)   9.04 kN/C( )k̂ ; (c)   −9.04 kN/C( )k̂  

P24.48 780 N/C 

P24.50 (a) The charge on the exterior surface is –55.7 nC distributed 
uniformly; (b) The charge on the interior surface is +55.7 nC. It can 
have any distribution; (c) The charge within the shell is –55.7 nC. It can 
have any distribution. 

P24.52 
  

Q
2∈0

1− cosθ( )  

P24.54 (a) 
  
Q

r
R

⎛
⎝⎜

⎞
⎠⎟

3

;  (b) 
  
ke

Qr
a3 ;  (c) Q; (d) 

  
ke

Q
r2 ;  (e) E = 0; (f) –Q; (g) +Q; (h) inner 

surface of radius b 

P24.56 (a) 0; (b) 
 

σ
∈0

 to the right; (c) 0; (d) (1) 
 
2
σ
∈0

 to the left; (2) 0; (3) 
 
2
σ
∈0

 to 

the right 

P24.58 (a) 
  

Qr3

∈0 a3 ;  (b) 
  

Q
∈0

;  (c) See ANS. FIG. P24.58(c). 

P24.60 (a) 
  
2ke

λ
r

, outward;  (b) 
  

2ke

r
λ + ρπ r2 − a2( )⎡⎣ ⎤⎦ , outward;   

(c) 
  

2ke

r
λ + ρπ b2 − a2( )⎡⎣ ⎤⎦ , outward  

P24.62 (a) –Kr; (b) 
  

kee
2

R3
; (c) 

  

1
2π

kee
2

meR
3

; (d) 1.02 × 10–10 m 

P24.64 
  
Ex = 0  and  Ey =

ρ a
3∈0

  

P24.66 (a)   AR5 5∈0 r2 ;  (b)   AR5 5∈0  

P24.68   R = 3b  
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25 
Electric Potential 

 

CHAPTER OUTLINE 
 

25.1  Electric Potential and Potential Difference 

25.2  Potential Difference in a Uniform Electric Field 

25.3  Electric Potential and Potential Energy Due to Point Charges 

25.4 Obtaining the Value of the Electric Field 

 from the Electric Potential 

25.5  Electric Potential Due to Continuous Charge Distributions 

25.6 Electric Potential Due to a Charged Conductor 

25.7 The Millikan Oil-Drop Experiment 

25.8 Applications of Electrostatics 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ25.1 Answer (b). Taken without reference to any other point, the potential 
could have any value.  

OQ25.2 Answer (d). The potential is decreasing toward the bottom of the 
page, so the electric field is downward.  

OQ25.3 (i) Answer (c). The two spheres come to the same potential, so Q/R 
is the same for both. If charge q moves from A to B, we find the 
charge on B:  

  
  

QA

RA

=
QB

RB

→
450 nC − q

1.00 cm
=

q
2.00 cm

→ q =
900 nC

3
= 300 nC  

  Sphere A has charge 450 nC – 300 nC = 150 nC.  

 (ii) Answer (a). Contact between conductors allows all charge to 
flow to the exterior surface of sphere B.  
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OQ25.4 Answer (d).  
   

   
Ex = − ΔV

Δx
= −

1.90× 102 V − 1.20× 102 V( )
5.00 m − 3.00 m( ) = −35.0 N/C

  

OQ25.5 Ranking a > b = d > c. The potential energy of a system of two 
charges is   U = keq1q2 r .  The potential energies are: (a)   U = 2keQ

2 r ,  
(b)   U = keQ

2 r ,  (c)   U = −keQ
2 2r ,  (d)   U = keQ

2 r .  

OQ25.6 (i) Answer (a). The particle feels an electric force in the negative x 
direction. An outside agent pushes it uphill against this force, 
increasing the potential energy. 

 (ii) Answer (c). The potential decreases in the direction of the 
electric field. 

OQ25.7 Ranking D > C > B > A. Let L be length of a side of the square. The 
potentials are: 

   
  
VA =

keQ
L

+
2keQ

2L
= 1 + 2( ) keQ

L
 

   
  
VB =

2keQ
L

+
keQ

2L
= 2 +

1
2

⎛
⎝⎜

⎞
⎠⎟

keQ
L

 

   
  
VC =

keQ
2L 2

+
2keQ
2L 2

= 3 2
keQ
L

  

   
  
VD =

keQ
L 2

+
2keQ
L 2

= 6
keQ
L

 

OQ25.8 Answer (a). The change in kinetic energy is the negative of the 
change in electric potential energy: 

    
  ΔK = −qΔV = − −e( )V = e 1.00× 104  V( )= 1.00× 104  eV  

OQ25.9 Ranking c > a > d > b. We add the electric potential energies of all 
possible pairs. They are: 

 (a) 
  
3

keQ
2

d
  

 (b) 
  
−2

keQ
2

d
+

keQ
2

d
= −

keQ
2

d
 

 (c) 
  
4

keQ
2

d
+ 2

keQ
2

2d
= 4 + 2( ) keQ

2

d
 

 (d) 
  
2

keQ
2

d
+

keQ
2

2d
− 2

keQ
2

d
−

keQ
2

2d
= 0  
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OQ25.10 Answer (b). All charges are the same distance from the center. The 
potentials from the +1.50-µC, –1.00-µC, and –0.500-µC charges cancel.  

OQ25.11 Answer (b). The work done on the proton equals the negative of the 
change in electric potential energy: 

   

  

W = −qΔV → qΔV = −W = −qEscosθ

=− e 8.50 × 102  N/C( ) 2.50 m( ) 1( ) = −3.40 × 10−16  J

 

OQ25.12 (i) Answer (b). At points off the x axis the electric field has a 
nonzero y component. At points on the negative x axis the field 
is to the right and positive. At points to the right of x = 0.500 m 
the field is to the left and nonzero. The field is zero at one point 
between x = 0.250 m and x = 0.500 m. 

 (ii) Answer (c). The electric potential is negative at this and at all 
points because both charges are negative.  

 (iii) Answer (d). The potential cannot be zero at a finite distance 
because both charges are negative.  

OQ25.13 Answer (b). The same charges at the same distance away create the 
same contribution to the total potential.  

OQ25.14 The ranking is e > d > a = c > b. The change in kinetic energy is the 
negative of the change in electric potential energy, so we work out  

 
−qΔV = −q Vf −Vi( )  in each case. 

 (a)  –(–e)(60 V – 40 V) = +20 eV (b)  –(–e)(20 V – 40 V) = –20 eV 

 (c)  –(e)(20 V – 40 V) = +20 eV (d)  –(e)(10 V – 40 V) = +30 eV 

 (e)  –(–2e)(60 V – 40 V) = +40 eV  

OQ25.15 Answer (b). The change in kinetic energy is the negative of the 
change in electric potential energy: 

    
 ΔK = −qΔV → KB − KA = q VA −VB( )  

    

  

1
2

mvB
2 = 1

2
mvA

2 + 2e( ) VA −VB( )
 

 Solving for the speed gives 

  

  

vB = vA
2 +

4e VA −VB( )
m

    = 6.20× 105 m/s( )2
+

4 1.60× 10−19 C( ) 1.50× 103 V − 4.00× 103 V( )
6.63× 10−27 kg

= 3.78× 105  m/s
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ25.1 The main factor is the radius of the dome. One often overlooked 
aspect is also the humidity of the air—drier air has a larger dielectric 
breakdown strength, resulting in a higher attainable -electric 
potential. If other grounded objects are nearby, the maximum 
potential might be reduced. 

CQ25.2 (a) The proton accelerates in the direction of the electric field, (b) its 
kinetic energy increases as (c) the electric potential energy of the 
system decreases.  

CQ25.3 To move like charges together from an infinite separation, at which 
the potential energy of the system of two charges is zero, requires 
work to be done on the system by an outside agent. Hence energy is 
stored, and potential energy is positive. As charges with opposite 
signs move together from an infinite separation, energy is released, 
and the potential energy of the set of charges becomes negative. 

CQ25.4 (a) The grounding wire can be touched equally well to any point on 
the sphere. Electrons will drain away into the ground.  

 (b) The sphere will be left positively charged. The ground, wire, 
and sphere are all conducting. They together form an 
equipotential volume at zero volts during the contact. However 
close the grounding wire is to the negative charge, electrons 
have no difficulty in moving within the metal through the 
grounding wire to ground. The ground can act as an infinite 
source or sink of electrons. In this case, it is an electron sink. 

CQ25.5 When one object B with electric charge is immersed in the electric 
field of another charge or charges A, the system possesses electric 
potential energy. The energy can be measured by seeing how much 
work the field does on the charge B as it moves to a reference 
location. We choose not to visualize A’s effect on B as an action-at-a-
distance, but as the result of a two-step process: Charge A creates 
electric potential throughout the surrounding space. Then the 
potential acts on B to inject the system with energy. 

CQ25.6 (a) The electric field is cylindrically radial. The equipotential 
surfaces are nesting coaxial cylinders around an infinite line of 
charge. 

 (b) The electric field is spherically radial. The equipotential surfaces 
are nesting concentric spheres around a uniformly charged 
sphere. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 25.1 Electric Potential and Potential Difference 

Section 25.2 Potential Difference in a Uniform Electric Field 
*P25.1 (a) From Equation 25.6, 

   
  
E = ΔV

d
= 600 J/C

5.33× 10−3  m
= 1.13× 105  N/C   

 (b) The force on an electron is given by 
   

  F = q E = 1.60× 10−19  C( ) 1.13× 105  N/C( ) = 1.80× 10−14  N
 

 (c) Because the electron is repelled by the negative plate, the force 
used to move the electron must be applied in the direction of the 
electron's displacement. The work done to move the electron is 

   

  

W = F ⋅ scosθ = 1.80× 10−14  N( ) 5.33− 2.00( )× 10−3  m⎡⎣ ⎤⎦cos0°

= 4.37 × 10−17  J

 

*P25.2 (a) We follow the path from (0, 0) to (20.0 cm, 0) to (20.0 cm, 50.0 cm). 

     ΔU = − (work done) 

     ΔU = − [work from origin to (20.0 cm, 0)]  

      – [work from (20.0 cm, 0) to (20.0 cm, 50.0 cm)] 

  Note that the last term is equal to 0 because the force is 
perpendicular to the displacement. 

    
  

ΔU = − qEx( )Δx = − 12.0 × 10−6  C( ) 250 V m( ) 0.200 m( )

= −6.00 × 10−4  J
 

 (b) 
  
ΔV = ΔU

q
= − 6.00 × 10−4  J

12.0 × 10−6  C
= −50.0 J C = −50.0 V  

P25.3 (a) Energy of the proton-field system is conserved as the proton 
moves from high to low potential, which can be defined for this 
problem as moving from 120 V down to 0 V. 

   Ki + Ui = K f + U f : 
  
0 + qV =

1
2

mvp
2 + 0  

   

  

1.60 × 10−19  C( ) 120 V( ) 1 J
1 V ⋅C

⎛
⎝⎜

⎞
⎠⎟ =

1
2

1.67 × 10−27  kg( )vp
2

vp = 1.52 × 105  m/s
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 (b) The electron will gain speed in moving the other way,  

  from Vi = 0 to Vf = 120 V: Ki + Ui = Kf + Uf 

   

  

0 + 0 =
1
2

mve
2 + qV

0 =
1
2

9.11× 10−31  kg( )ve
2 + −1.60 × 10−19  C( ) 120 J/C( )

ve = 6.49 × 106  m/s

 

P25.4 The potential difference is 

     ΔV = Vf −Vi = −5.00 V − 9.00 V = −14.0 V       

 and the total charge to be moved is 
   

  Q = −NAe = − 6.02 × 1023( ) 1.60 × 10−19  C( ) = −9.63 × 104  C
 

 Now, from 
  
ΔV =

W
Q

,   we obtain 

   
  
W = QΔV = (−9.63× 104  C)(−14.0 J/C) =  1.35 MJ

 

P25.5 The electric field is uniform. By Equation 25.3,  

  

    

VB −VA = −

E ⋅ds

A

B

∫ = −

E ⋅ds

A

C

∫ −

E ⋅ds

C

B

∫

VB −VA = −Ecos180°( ) dy
−0.300

0.500

∫ − Ecos90.0°( ) dx
−0.200

0.400

∫
VB −VA = 325 V/m( ) 0.800 m( ) = +260 V

 

P25.6 Assume the opposite. Then at some point A on some equipotential 
surface the electric field has a nonzero component Ep in the plane of the 
surface. Let a test charge start from point A and move some distance 
on the surface in the direction of the field component. Then 

   
ΔV = −


E ⋅ds

A

B

∫  is nonzero. The electric potential charges across the 

surface and it is not an equipotential surface. The contradiction shows 
that our assumption is false, that Ep = 0, and that the field is 
perpendicular to the equipotential surface. 
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P25.7 We use the energy version of the isolated system model to equate the 
energy of the electron-field system when the electron is at x = 0 to the 
energy when the electron is at x = 2.00 cm. The unknown will be the 
difference in potential Vf – Vi . Thus, Ki + Ui = Kf + Uf  becomes 

   

  

1
2

mvi
2 + qVi =

1
2

mv f
2 + qVf

 

 or   
  

1
2

m vi
2 − v f

2( ) = q Vf −Vi( ) ,   

 so   
  
Vf −Vi = ΔV =

m vi
2 − v f

2( )
2q

.  

 (a) Noting that the electron’s charge is negative, and evaluating the 
potential difference, we have 

    

   

ΔV =
9.11× 10–31  kg( ) (3.70 × 106  m/s)2  – (1.40 × 105  m/s)2⎡⎣ ⎤⎦

2 –1.60 × 10–19  C( )
= −38.9 V

 

 (b) The negative sign means that the 2.00-cm location is lower in 
potential than the origin: 

    
 

The origin is at the higher potential.
 

P25.8 (a) The electron-electric field is an isolated system:  
   

  

Ki +Ui = K f +U f

1
2

mevi
2 + −e( )Vi = 0 + −e( )Vf

e Vf −Vi( ) = − 1
2

mevi
2      

 

  The potential difference is then 
   

  

ΔVe = − mevi
2

2e
= −

9.11× 10−31  kg( ) 2.85× 107  m/s( )2

2 1.60× 10−19  C( )
= −2.31× 103  V = −2.31 kV

 

 (b) From (a), we see that the stopping potential is proportional to the 
kinetic energy of the particle.  

  

 

Because a proton is more massive than an electron, a proton
traveling at the same speed as an electron has more initial kinetic
energy and requires a greater magnitude stopping potential.
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 (c) The proton-electric field is an isolated system:  
   

  

Ki +Ui = K f +U f

1
2

mpvi
2 + eVi = 0 + eVf

e Vf −Vi( ) = 1
2

mpvi
2  

 

  The potential difference is 
   

  
ΔVp =

mpvi
2

2e

 

  Therefore, from (a),  

   
  

ΔVp

ΔVe

=
mpvi

2 2e

−mevi
2 2e

     →      ΔVp ΔVe = −mp me  

P25.9 Arbitrarily take V = 0 at point P. Then the potential at the original 
position of the charge is (by Equation 25.3)  

      ΔV = V − 0 = V = −

E ⋅ s = −ELcosθ     (relative to P) 

 At the final point a,  

  V = –EL (relative to P) 

 Because the table is frictionless and the particle-field system is isolated, 
we have 

   
K + U( )i = K + U( ) f  

 or 
  
0− qELcosθ = 1

2
mv2 − qEL  

 solving for the speed gives 

  

   

v = 2qEL 1− cosθ( )
m

=
2 2.00× 10−6  C( ) 300 N/C( ) 1.50 m( ) 1− cos60.0°( )

0.010 0 kg

= 0.300 m/s

 

P25.10 (a) The system consisting of the mass-spring-electric field is 

 isolated.  

 (b) The system has both electric potential energy and elastic potential 
energy: Ue and Usp. 
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 (c) Taking the electric potential to be zero at the initial configuration, 
after the block has stretched the spring a distance x, the final 
electric potential is (from equation 25.3)  

       ΔV = V = −

E ⋅ s = −Ex  

  By energy conservation within the system,  

 

  

K + Usp + Ue( )
i
= K + Usp + Ue( )

f

0 + 0 + 0 = 0 +
1
2

kx2 + QV

0 =
1
2

kx2 + Q −Ex( )      →      x =
2QE

k

 

 (d) 
 
Particle in equilibrium  

 (e) 
  

F∑ = 0    →     − kx0 + QE = 0    →     x0 = QE
k

 

 (f) The particle is no longer in equilibrium; therefore, the force 
equation becomes  

    

  

F∑ = ma     →      − kx + QE = m
d2x
dt2

                          − k x − QE
k

⎛
⎝⎜

⎞
⎠⎟ = m

d2x
dt2

 

  Defining   ′x = x − x0 ,  we have 
  

d2 ′x
dt2 =

d2 x − x0( )
dt2 =

d2x
dt2

. 

  Substitute   ′x = x − x0  into the force equation:  
    

  

−k x −
QE
k

⎛
⎝⎜

⎞
⎠⎟ = m

d2x
dt2       →       − k ′x = m

d2 ′x
dt2

      →       
d2 ′x
dt2 = −

k ′x
m

 

 (g) The result of part (f) is the equation for simple harmonic motion 

  a ′x = −ω 2 ′x  with  

    
  
ω =

k
m

=
2π
T

     →      T =
2π
ω

= 2π m
k

 

 (h) 

 

The period does not depend on the electric field. The electric field
just shifts the equilibrium point for the spring, just like a gravita-
tional field does for an object hanging from a vertical spring.
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P25.11 Arbitrarily take V = 0 at the initial point. Then at distance d downfield, 
where L is the rod length, V = –Ed and  Ue = −λLEd . 

 (a) The rod-field system is isolated:   
   

  

Ki +Ui = K f +U f

0 + 0 = 1
2

mrodv2 − qV

0 = 1
2

µLv2 − λLEd

1
2

µLv2 = λLEd

 

  Solving for the speed gives 
   

  

v = 2λEd
µ

=
2 40.0× 10−6  C/m( ) 100 N/C( ) 2.00 m( )

0.100 kg/m( )
= 0.400 m/s

 

 (b) 
 

The same.  Each bit of the rod feels a force of the same size as 

before. 

 
 

 

Section 25.3 Electric Potential and Potential Energy  
Due to Point Charges 

P25.12 (a) At a distance of 0.250 cm from an electron, the electric potential is 
   

  

V = ke
q
r

= 8.99× 109  N ⋅m2/C2( ) −1.60× 10−19  C
0.250× 10−2  m

⎛
⎝⎜

⎞
⎠⎟

= −5.76× 10−7  V

 

 (b) The difference in potential between the two points is given by 

    
  
ΔV = ke

q
r2

− ke

q
r1

= keq
1
r2

−
1
r1

⎛
⎝⎜

⎞
⎠⎟

 

  Substituting numerical values, 

   

  

ΔV = 8.99× 109  N ⋅m2/C2( ) −1.60× 10−19  C( )
                                  × 1

0.250× 10−2  m
− 1

0.750× 10−2  m
⎛
⎝⎜

⎞
⎠⎟

ΔV = 3.84× 10−7  V
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 (c) 

 

Because the charge of the proton has the same magnitude 
as that of the electron, only the sign of the answer to part 
(a) would change.

 

P25.13 The total electric potential is the sum of the potentials from the 
individual charges, 

  

  
V = ke

qi

rii
∑ = ke

q1

r1

+ q2

r2

⎛
⎝⎜

⎞
⎠⎟

 

 (a) The 4.50-µC and –2.24-µC charges are distances 1.25 cm and 1.80 
cm, respectively, from the origin. The electric potential is then 

   

  

V = 8.99 × 109  N ⋅m2/C2( ) 4.50 × 10−6  C
1.25 × 10−2  m

+
−2.24 × 10−6  C
1.80 × 10−2  m

⎡

⎣
⎢

⎤

⎦
⎥

V = 2.12 × 106  V

 

 (b) The distance of the 4.50-µC charge to the point is   

   
  r1 = 0.0150 m( )2 + 0.0125 m( )2 = 0.0195 m ,  

  and the distance of the –2.24-µC charge to the point is 

   
   r2 = 0.0150 m( )2 + 0.0180 m( )2 = 0.0234 m  

  The potential is 

   

  

V = 8.99 × 109  N ⋅m2/C2( ) 4.50 × 10−6  C
r1

+
−2.24 × 10−6  C

r2

⎡

⎣
⎢

⎤

⎦
⎥

V = 1.21× 106  V

 

P25.14 The potential due to the two charges is given by 
  
V = ke

qi

rii
∑ .  

 (a) The electric potential at point A is 

   

  

V = ke
qi

rii
∑ = 8.99× 109  N ⋅m2/C2( )

                               × −15.0 × 10−9  C
2.00× 10−2  m

+ 27.0 × 10−9  C
2.00× 10−2  m

⎛
⎝⎜

⎞
⎠⎟

= 5.39 kV
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 (b) The electric potential at point B is 

   

  

V = ke
qi

rii
∑ = 8.99× 109  N ⋅m2/C2( )

                                 × −15.0 × 10−9  C
1.00× 10−2  m

+ 27.0 × 10−9  C
1.00× 10−2  m

⎛
⎝⎜

⎞
⎠⎟

= 10.8 kV

 

P25.15 By symmetry, a line from the center to each vertex 
forms a 30° angle with each side of the triangle. 
The figure shows the relationship between the 
length d of a side of the equilateral triangle and the 
distance r from a vertex to the center:  

   
   

r cos30.0° = d 2
→ r = d 2cos30.0°( )

 

 The electric potential at the center is  
   

   

V = ke
qi

rii
∑

= ke
Q

d 2cos30.0°( ) + Q
d 2cos30.0°( ) + 2Q

d 2cos30.0°( )
⎛
⎝⎜

⎞
⎠⎟

V = 4( ) 2cos30.0° ke
Q
d

⎛
⎝⎜

⎞
⎠⎟ = 6.93ke

Q
d

 

*P25.16 (a) From Equation 25.12, the electric potential due to the two charges is 
    

  

V = ke
qi

rii
∑ = 8.99× 109  N ⋅m2/C2( )

                         × 5.00 × 10−9  C
0.175 m

+ −3.00 × 10−9  C
0.175 m

⎛
⎝⎜

⎞
⎠⎟

= 103 V

 

 (b) The potential energy
 
of the pair of charges is

 
    

  

U = keq1q2

r12

= 8.99× 109  N ⋅m2/C2( )

                                  ×
5.00 × 10−9  C( ) −3.00 × 10−9  C( )

0.350 m

= −3.85 × 10−7  J                               

 

 
 The negative sign means that 

 
positive work must be done  to 

separate the charges by an infinite distance (that is, to bring them 
to a state of zero potential energy). 

 

ANS. FIG. P25.15 
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*P25.17 (a) In an empty universe, the 20.0-nC charge can be placed at its 
location with no energy investment. At a distance of 4.00 cm, it 
creates a potential 

   
  
V1 = keq1

r
=

8.99 × 109  N ⋅m2 C2( ) 20.0 × 10−9  C( )
0.040 0 m

= 4.50 kV  

  To place the 10.0-nC charge there we must put in energy 

     U12 = q2V1 = 10.0 × 10−9  C( ) 4.50 × 103  V( ) = 4.50 × 10−5  J  

  Next, to bring up the –20.0-nC charge requires energy 

   

  

U23 + U13 = q3V2 + q3V1 = q3 V2 + V1( )
= −20.0 × 10−9  C( ) 8.99 × 109  N ⋅m2 C2( )
                       × 10.0 × 10−9  C

0.040 0 m
+ 20.0 × 10−9  C

0.080 0 m
⎛
⎝⎜

⎞
⎠⎟

= −4.50 × 10−5  J − 4.50 × 10−5  J

 

  The total energy of the three charges is 

   
  
U12 + U23 + U13 = −4.50 × 10−5  J  

 (b) The three fixed charges create this potential at the location where 
the fourth is released: 

   

  

V = V1 + V2 + V3

= 8.99× 109  N ⋅m2 C2( )

   × 20.0× 10−9  C
0.040 0 m( )2 + 0.030 0 m( )2

⎛
⎝⎜

             + 10.0× 10−9  C
0.030 0 m

− 20.0× 10−9  C
0.040 0 m( )2 + 0.030 0 m( )2

⎞
⎠⎟

V = 3.00× 103  V

 

  Energy of the system of four charged objects is conserved as the 
fourth charge flies away: 

   

  

1
2

mv2 + qV( )
i
= 1

2
mv2 + qV( )

f

0 + 40.0 × 10−9  C( ) 3.00 × 103  V( ) = 1
2

2.00 × 10−13  kg( )v2 + 0

v =
2 1.20 × 10−4  J( )

2 × 10−13  kg
= 3.46 × 104  m s
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P25.18 (a) 
  
VA = ke

qi

rii
∑ = ke

Q
d

+ 2Q
d 2

⎛
⎝⎜

⎞
⎠⎟ = ke

Q
d

1+ 2( )  

  

  
V = 8.99× 109  N ⋅m2/C2( ) 5.00 × 10−9  C

2.00× 10−2  m
⎛
⎝⎜

⎞
⎠⎟

1+ 2( ) = 5.43 kV
 

 (b) 
  
VB = ke

qi

rii
∑ = ke

Q
d 2

+ 2Q
d

⎛
⎝⎜

⎞
⎠⎟ = ke

Q
d

1
2

+ 2⎛
⎝⎜

⎞
⎠⎟  

  

  
VB = 8.99× 109  N ⋅m2/C2( ) 5.00 × 10−9  C

2.00× 10−2  m
⎛
⎝⎜

⎞
⎠⎟

1
2

+ 2⎛
⎝⎜

⎞
⎠⎟ = 6.08 kV

 

 (c) 
  
VB −VA = ke

Q
d

1
2

+ 2⎛
⎝⎜

⎞
⎠⎟
− ke

Q
d

1 + 2( ) = ke
Q
d

1
2

+ 1− 2⎛
⎝⎜

⎞
⎠⎟

 

  

  

VB −VA = 8.99× 109  N ⋅m2/C2( ) 5.00 × 10−9  C
2.00× 10−2  m

⎛
⎝⎜

⎞
⎠⎟

1
2

+ 1− 2⎛
⎝⎜

⎞
⎠⎟

= 658 V

 

P25.19 (a) Since the charges are equal and placed 
symmetrically,   F = 0 .  

 (b) Since F = qE = 0,   E = 0 .  

 (c) 

  

V = 2ke

q
r

= 2 8.99 × 109  N ⋅m2 C2( ) 2.00 × 10−6  C
0.800 m

⎛
⎝⎜

⎞
⎠⎟

 

  
  
V = 4.50 × 104  V = 45.0 kV  

P25.20 At a distance r from a charged particle, the voltage is 
  
V = 

keQ
r

  and the 

field magnitude is 
  
E =

ke Q
r2 .  

  (a) 
  
r =

V
E

=
3.00 × 103  V

5.00 × 102  V m
= 6.00 m  

 (b) 
  
V = −3 000 V =

Q
4π ∈0 6.00 m( )  

  Then, 
   

  
Q = 6.00 m( ) −3 000 V( ) 4π ∈0( ) = −2.00 µC

 

 

 

ANS. FIG. P25.19 
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P25.21 (a) Each charge is a distance 
  a2 + a2 2 = a 2  from the center. 

    

  
V = ke

qi

rii
∑ = 4ke

Q
a 2

⎛
⎝⎜

⎞
⎠⎟
= 4 2ke

Q
a

 

 (b) The potential at infinity is zero. The work done by an external 
agent is  

    

  
W = qΔV = q Vf −Vi( ) = q 4 2ke

Q
a
− 0⎛

⎝⎜
⎞
⎠⎟ = 4 2ke

qQ
a

 

P25.22 The charges at the base vertices are d/2 = 0.010 0 m  
from point A, and the charge at the top vertex is  

  
  

2d( )2 −
d
2

⎛
⎝⎜

⎞
⎠⎟

2

=
15
2

d  

 from point A.  
  

  

V = ke
qi

rii
∑

= ke
−q
d 2

+ −q
d 2

+ q
d 15 2

⎛
⎝⎜

⎞
⎠⎟

= ke
q
d

−4 + 2
15

⎛
⎝⎜

⎞
⎠⎟

V = 8.99× 109  N ⋅m2 /C2( ) 7.00× 10−6  C
0.020 0 m

⎛
⎝⎜

⎞
⎠⎟

−4 + 2
15

⎛
⎝⎜

⎞
⎠⎟

= −1.10× 107  V

 

P25.23 (a) 
  
Ex =

keq1

x2 +
keq2

x − 2.00( )2 = 0   becomes 
  
Ex = ke

+q
x2 +

−2q
x − 2.00( )2

⎛

⎝⎜
⎞

⎠⎟
= 0  

  Dividing by ke,   2qx2 = q x − 2.00( )2   

  or   x2 + 4.00x – 4.00 = 0. 

  Therefore E = 0 when 
  
x =

−4.00 ± 16.0 + 16.0
2

= − −4.83 m .  

  (Note that the positive root does not correspond to a physically 
valid situation.) 

 (b) Assuming 0 < x < 2.00 m, the potential is zero when 

    
  
V = keq1

x
+ keq2

2.00− x
= 0   or   

V
ke

=
q( )
x

+
−2q( )

2.00− x
⎡

⎣
⎢

⎤

⎦
⎥ = 0   

 

ANS. FIG. P25.22 
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  giving 
  
q 2.00− x( ) = 2qx   or   x = 2.00

3
= 0.667 m  

  For x > 2.00 m , the potential is zero when  
    

  

V
ke

=
q( )
x

+
−2q( )

x − 2.00
⎡

⎣
⎢

⎤

⎦
⎥ = 0   or   q x − 2.00( ) = 2qx

 

  This has no positive x solution. Physically, the total potential 
cannot be zero for any point where x > 2.00 m because that point 
is closer to charge –2q, so its potential is always more negative 
than the potential from charge q is positive. For x < 0, the 

potential is zero when 
V
ke

=
q( )
x

+
−2q( )

2.00 + x
⎡

⎣
⎢

⎤

⎦
⎥ = 0 , giving  

    

  

q
x

< 2q
2.00 + x

   or   q 2.00 + x( ) = 2q x
 

  which has the solution |x| = 2.00 correspond to   x = −2.00 m .  

P25.24 The work required equals the sum of the 
potential energies for all pairs of charges. No 
energy is involved in placing q4 at a given position 
in empty space. When q3 is brought from far away 
and placed close to q4, the system potential energy 
can be expressed as q3V4, where V4 is the potential 
at the position of q3 established by charge q4. 
When q2 is brought into the system, it interacts 
with two other charges, so we have two additional terms q2V3 and q2V4 

in the total potential energy. Finally, when we bring the fourth charge 
q1 into the system, it interacts with three other charges, giving us three 
more energy terms. Thus, the complete expression for the energy is: 

   

  

U = U1 + U2 + U3 + U4

U = 0 + U12 + U13 + U23( ) + U14 + U24 + U34( )
 

   

  

U = 0 +
keQ

2

s
+

keQ
2

s
1
2

+ 1⎛
⎝⎜

⎞
⎠⎟

+
keQ

2

s
1 +

1
2

+ 1⎛
⎝⎜

⎞
⎠⎟

U =
keQ

2

s
4 +

2
2

⎛
⎝⎜

⎞
⎠⎟

= 5.41
keQ

2

s

 

 We can visualize the term 
 

4 +
2
2

⎛
⎝⎜

⎞
⎠⎟

 as arising directly from the 4 side 

pairs and 2 face diagonal pairs. 

 

ANS. FIG. P25.24 
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P25.25 (a) The electric potential at y = 0.500 m on the y axis is given by 

   
  
V =

keq1

r1

+
keq2

r2

= 2
keq
r

⎛
⎝⎜

⎞
⎠⎟  

   

  

V = 2
8.99 × 109  N ⋅m2 / C2( ) 2.00 × 10−6  C( )

1.00 m( )2 + 0.500 m( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

V = 3.22 × 104  V = 32.2 kV

 

 

ANS. FIG. P25.25 

 (b) The change in potential energy of the system when a third charge 
is brought to this point is 

   
  
U = qV = −3.00 × 10−6  C( ) 3.22 × 104  J/C( ) = −9.65 × 10−2  J  

P25.26 (a) The potential due to the two charges along the x axis is 

   
  
V x( ) =

keQ1

r1

+
keQ2

r2

=
ke +Q( )
x2 + a2

+
ke +Q( )

x2 + −a( )2  

   

  

V x( ) =
2keQ

x2 + a2
=

keQ
a

2

x a( )2 + 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

V x( )
keQ a( ) =

2

x a( )2 + 1

 

  ANS. FIG. P25.26(a) shows the plot of this function for |x/a| < 3.  

 

ANS. FIG. P25.26(a) 
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 (b) The potential due to the two charges along the y axis is 

   
  
V y( ) =

keQ1

r1

+
keQ2

r2

=
ke +Q( )
y − a

+
ke −Q( )
y + a

 

   

  

V y( ) =
keQ

a
1

y a − 1
−

1
y a + 1

⎛

⎝⎜
⎞

⎠⎟

V y( )
keQ a( ) =

1
y a − 1

−
1

y a + 1

⎛

⎝⎜
⎞

⎠⎟

 

  ANS. FIG. P25.26(b) shows the plot of this function for |y/a| < 4.  

 

ANS. FIG. P25.26(b) 

P25.27 The total change in potential energy is the sum of the change in 
potential energy of the q1 – q4 , q2 – q4 , and q3 – q4 particle systems: 

   
  
Ue = q4V1 + q4V2 + q4V3 = q4ke

q1

r1

+ q2

r2

+ q3

r3

⎛
⎝⎜

⎞
⎠⎟

 

   

  

Ue = 10.0 × 10−6  C( )2
8.99 × 109  N ⋅m2 / C2( )

×
1

0.600 m
+

1
0.150 m

+
1

0.600 m( )2 + 0.150 m( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Ue = 8.95 J

 

P25.28 (a) Each charge separately creates positive potential everywhere. The 
total potential produced by the three charges together is then the 
sum of three positive terms. There is 

 
no point , located at a finite 

distance from the charges, at which this total potential is zero. 

 (b) 
  
V =

keq
a

+
keq
a

=
2keq

a
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P25.29 Each charge creates equal potential at the center. The total potential is 

  
  
V = 5

ke −q( )
R

⎡

⎣
⎢

⎤

⎦
⎥ = −

5keq
R

 

P25.30 The original electrical potential energy is 

   
 
Ue = qV = q

keq
d

 

 In the final configuration we have mechanical equilibrium. The spring 
and electrostatic forces on each charge are 

   
  
Fspring + Fcharge = −k 2d( ) + q

keq
3d( )2 = 0  

 Then 
  
k =

keq
2

18d3  

 In the final configuration the total potential energy is 

   
  

1
2

kx2 + qV =
1
2

keq
2

18d3 2d( )2 + q
keq
3d

=
4
9

keq
2

d
 

 The missing energy must have become internal energy, as the system 
is isolated:  

   

  

ΔU + ΔEint = 0

4keq
2

9d
− keq

2

d
+ ΔEint = 0

 

 The increase in internal energy of the system is then 
   

  
ΔEint =

5keq
2

9d

 

P25.31 Consider the two spheres as a system. 
 (a) Conservation of momentum:    

    
   
0 = m1v1î + m2v2 − î( )   or  

  
v2 =

m1v1

m2

 

  By conservation of energy,   

   
  
0 =

ke −q1( )q2

d
=

1
2

m1v1
2 +

1
2

m2v2
2 +

ke −q1( )q2

r1 + r2

 

  and 
  

keq1q2

r1 + r2

−
keq1q2

d
=

1
2

m1v1
2 +

1
2

m1
2v1

2

m2

,  which yields 

   
  
v1 =

2m2keq1q2

m1 m1 + m2( )
1

r1 + r2

−
1
d

⎛
⎝⎜

⎞
⎠⎟
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  suppressing units, 
   

  

v1 =
2 0.700( ) 8.99 × 109( ) 2 × 10−6( ) 3 × 10−6( )

0.100( ) 0.800( )
1

8 × 10−3 −
1

1.00
⎛
⎝⎜

⎞
⎠⎟

= 10.8 m s

v2 =
m1v1

m2

=
0.100 kg( ) 10.8 m s( )

0.700 kg
= 1.55 m s

 

 (b) If the spheres are metal, electrons will move around on them with 
negligible energy loss to place the centers of excess charge on the 
insides of the spheres. Then just before they touch, the effective 
distance between charges will be less than r1 + r2 and the spheres 

will really be moving 
 

faster than calculated in (a) . 

P25.32 Consider the two spheres as a system. 

 (a) Conservation of momentum:   

    
   
0 = m1v1î + m2v2 − î( )  

  or 
  
v2 =

m1v1

m2

.  

  By conservation of energy,  

   

  

0 =
ke −q1( )q2

d
=

1
2

m1v1
2 +

1
2

m2v2
2 +

ke −q1( )q2

r1 + r2

 

  and 
  

keq1q2

r1 + r2

−
keq1q2

d
=

1
2

m1v1
2 +

1
2

m1
2v1

2

m2

.  

  

v1 =
2m2keq1q2

m1 m1 + m2( )
1

r1 + r2

−
1
d

⎛
⎝⎜

⎞
⎠⎟

v2 =
m1

m2

⎛
⎝⎜

⎞
⎠⎟

v1 =
2m1keq1q2

m2 m1 + m2( )
1

r1 + r2

−
1
d

⎛
⎝⎜

⎞
⎠⎟

 

 (b) If the spheres are metal, electrons will move around on them with 
negligible energy loss to place the centers of excess charge on the 
insides of the spheres. Then just before they touch, the effective 
distance between charges will be less than r1 + r2 and the spheres 

will really be moving 
 

faster than calculated in (a) . 
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P25.33 A cube has 12 edges and 6 faces. Consequently, there are 12 edge pairs 
separated by s, 2 × 6 = 12 face diagonal pairs separated by   2s , and 4 
interior diagonal pairs separated by   3s . 

  
  
U =

keq
2

s
12 +

12
2

+
4
3

⎡
⎣⎢

⎤
⎦⎥

= 22.8
keq

2

s
 

P25.34 Each charge moves off on its diagonal line. All charges have equal 
speeds. 

  

  

K +U( )i∑ = K +U( ) f∑

0 + 4keq
2

L
+ 2keq

2

2L
= 4

1
2

mv2⎛
⎝⎜

⎞
⎠⎟ + 4keq

2

2L
+ 2keq

2

2 2L

2 + 1
2

⎛
⎝⎜

⎞
⎠⎟

keq
2

L
= 2mv2

 

  Solving for the speed gives 
    

  
v = 1+ 1

8
⎛
⎝⎜

⎞
⎠⎟

keq
2

mL

 

P25.35 Using conservation of energy for the alpha particle-nucleus system, 

 we have   K f + U f = Ki + Ui .  

 But  
  
Ui =

keqαqgold

ri

   and     ri ≈ ∞.    Thus,    Ui = 0. 

 Also,  Kf = 0 (vf = 0 at turning point), 

 so  Uf = Ki 

 or  
  

keqαqgold

rmin

=
1
2

mαvα
2  

   

  

rmin =
2keqαqgold

mαvα
2

=
2 8.99 × 109  N ⋅m2 / C2( ) 2( ) 79( ) 1.60 × 10−19  C( )2

6.64 × 10−27  kg( ) 2.00 × 107  m/s( )2

= 2.74 × 10−14  m = 27.4 fm
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Section 25.4 Obtaining the Value of the Electric Field 
from the Electric Potential 

P25.36 
  
Ex = −

∂V
∂x

    →     Ex = −
ΔV
Δx

= − (slope of line)  

 The sign indicates the direction of the x component of the field. 

 x = 0 to 1 cm: 
  
Ex = −

ΔV
Δx

= −
20 V − 0

1 cm
= −20 V/cm  

 x = 1 to 3 cm: 
  
Ex = −

ΔV
Δx

= −
0

2 cm
= 0 V/m  

 x = 3 to 4 cm:  
  
Ex = −

ΔV
Δx

= −
0 − 20 V

1 cm
= +20 V/cm  

 

ANS. FIG. P25.36 

P25.37   V = a + bx = 10.0 V + −7.00 V/m( )x  

 (a) At x = 0, 
  
V = 10.0 V  

  At x = 3.00 m, 
  
V = −11.0 V  

  At x = 6.00 m, 
  
V = −32.0 V  

 (b) 
  
E = − dV

dx
= −b = − −7.00 V/m( ) = 7.00 N/C in the + x direction  

P25.38 
  
Ex = −

∂V
∂x

    →     Ex = −
ΔV
Δx

= − (slope of line)  

 

ANS. FIG. P25.38 
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 The sign indicates the direction of the x component of the field.  

x = 0 to 1 cm: 
  
Ex = −

ΔV
Δx

= −
30 V − 0

1 cm
= −30 V/cm  

x = 1 to 2 cm:  
  
Ex = −

ΔV
Δx

= −
0 − 30 V

2 cm
= 30 V/m  

x = 2 to 3 cm:  
  
Ex = −

ΔV
Δx

= −
0

1 cm
= 0 V/cm  

x = 3 to 4 cm:  
  
Ex = −

ΔV
Δx

= −
−30 V − 0

1 cm
= +30 V/cm  

 x = 4 to 5 cm:  
  
Ex = −

ΔV
Δx

= −
0 − −30 V( )

1 cm
= −30 V/cm  

P25.39 (a)   V = 5x − 3x2y + 2yz2 ,  where x, y and z are in meters and V is in 
volts. 

   

  

Ex = −
∂V
∂x

= −5 + 6xy

Ey = −
∂V
∂y

= +3x2 − 2z2

Ez = −
∂V
∂z

= −4yz

 

  which gives 
   

    
 

E = −5 + 6xy( ) î + 3x2 − 2z2( ) ĵ − 4yzk̂

 

 (b) Evaluate E at (1.00, 0, – 2.00) m, suppressing units, 
   

  

Ex = −5 + 6 1.00( ) 0( ) = −5.00

Ey = 3 1.00( )2 − 2 −2.00( )2 = −5.00

Ez = −4 0( ) −2.00( ) = 0

 

  which gives  
   

  
E = Ex

2 + Ey
2 + Ez

2 = −5.00( )2 + −5.00( )2 + 02 = 7.07 N C
 

P25.40 (a) 
  

EA > EB  since E =
ΔV
Δs

 

 (b) 
  
EB = −

ΔV
Δ s

= −
6 − 2( )  V

2 cm
= 200 N C  down 
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 (c) ANS. FIG. P25.40 shows a sketch of the field lines.  

 

ANS. FIG. P25.40 

P25.41 (a) For r < R, 
 
V =

keQ
R

 

   
  
Er = −

dV
dr

= 0  

 (b) For   r ≥ R,  
 
V =

keQ
r

 

   
  
Er = −

dV
dr

= − −
keQ
r2

⎛
⎝⎜

⎞
⎠⎟ =

keQ
r2

 

P25.42 For a general expression for the potential on the y-axis, replace the a 
with y. The y component of the electric field is  

  

   

Ey = −
∂V
∂y

= −
∂
∂y

keQ


ln
 + 2 + y2

y

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

  

   

Ey =
keQ
y

1−
y2

2 + y2 +  2 + y2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
keQ

y 2 + y2
 

 
 

 

Section 25.5 Electric Potential Due to  
Continuous Charge Distributions 

P25.43 The potential difference between the two points is  
   

  

ΔV = V2R −V0 = keQ

R2 + 2R( )2
− keQ

R
= keQ

R
1
5
− 1⎛

⎝⎜
⎞
⎠⎟

= −0.553
keQ
R
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P25.44 
  
V = dV∫ =

1
4π ∈0

dq
r∫  

 All bits of charge are at the same distance from O. So  
  

  

V =
1

4π ∈0

Q
R

⎛
⎝⎜

⎞
⎠⎟ = 8.99 × 109  N ⋅m2 / C2( ) −7.50 × 10−6  C

0.140 m π
⎛
⎝⎜

⎞
⎠⎟

= −1.51 MV

 

P25.45 (a) As a linear charge density, λ  has units of 
C/m. So   α = λ/x  must have units of C/m2: 

   
  
α[ ] =

λ
x

⎡
⎣⎢

⎤
⎦⎥

=
C
m

⋅
1
m

⎛
⎝⎜

⎞
⎠⎟ = C

m2
 

 (b) Consider a small segment of the rod at 
location x and of length dx. The amount of 
charge on it is   λ dx = (αx) dx.  Its distance 
from A is d + x, so its contribution to the electric potential at A is 

    
  
dV = ke

dq
r

 = ke

αxdx
d + x

 

  Relative to V = 0 infinitely far away, to find the potential at A we 
must integrate these contributions for the whole rod, from x = 0 to 

x  = L. Then 
   
V = dV

all q
∫  = 

keαx
d + x dx

0

L

∫ .  

  To perform the integral, make a change of variables to  

  u = d + x, du = dx, u(at x = 0) = d, and u(at x = L) = d + L: 

   
  
V =

keα(u – d)
ud

d+L

∫ du = keα du – 
d

d+L

∫ keαd 1
u( )d

d+L

∫  du  

   

   

V = keαu d
d+L – keαd ln  u d

d+L

= keα(d + L – d) – keαd ln(d + L) – ln  d[ ]

 

   

   
V = keα L – d ln 1 +

L
d

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

ANS. FIG. P25.45 
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P25.46 

  

V =
kedq

r∫ = ke
αxdx

b2 + L 2 − x( )2∫  

 Let 
  
z =

L
2
− x.  Then   

  
x =

L
2
− z,    and   dx = –dz. 

   

  

V = keα
L 2 − z( ) −dz( )

b2 + z2
= − keαL

2
dz

b2 + z2∫ + keα
zdz

b2 + z2∫∫

= − keαL
2

ln z + z2 + b2( ) + keα z2 + b2

 

   

  

V = − keαL
2

ln
L
2
− x⎛

⎝⎜
⎞
⎠⎟ + L

2
− x⎛

⎝⎜
⎞
⎠⎟

2

+ b2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0

L

+ keα
L
2
− x⎛

⎝⎜
⎞
⎠⎟

2

+ b2

0

L  

   

  

V = −
keαL

2
ln

L 2 − L + L 2( )2 + b2

L 2 + L 2( )2 + b2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

                         + keα
L
2
− L⎛

⎝⎜
⎞
⎠⎟

2

+ b2 −
L
2

⎛
⎝⎜

⎞
⎠⎟

2

+ b2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

V = −
keαL

2
ln

b2 + L2 4( ) − L 2

b2 + L2 4( ) + L 2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 

P25.47 
  
V = ke

dq
rall charge

∫ = ke
λdx
−x−3R

−R

∫ + ke
λds
Rsemicircle

∫ + ke
λdx

xR

3R

∫  

 

  

V = −keλ ln −x( ) −3R

−R +
keλ
R

π R + keλ ln x
R

3R

V = keλ ln
3R
R

+ keλπ + keλ ln 3 = keλ π + 2 ln 3( )

 

 
 

 

Section 25.6 Electric Potential Due to a Charged Conductor 

P25.48  No.  A conductor of any shape forms an equipotential surface. If the 
conductor is a sphere of radius R, and if it holds charge Q, the electric 
field at its surface is E = keQ/R2 and the –potential of the surface is  
V = keQ/R; thus, if we know E and R, we can find V. However, if the 
surface varies in shape, there is no clear way to relate electric field at a 
point on the surface to the potential of the surface. 
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P25.49 Substituting given values into 
  
V = keQ

r
,  with Q = Nq: 

   

  
7.50× 103  V =

8.99× 109  N ⋅m2 C2( )Q
0.300 m

 

 Substituting q = 2.50 × 10–7 C, 

   
  
N =

2.50 × 10−7  C
1.60 × 10−19  C e− = 1.56 × 1012  electrons  

P25.50 For points on the surface and outside, the sphere of charge behaves 
like a charged particle at its center, both for creating field and 
potential.  

 (a) Inside a conductor when charges are not moving, the electric field 
is zero and the potential is uniform, the same as on the surface, 
and 

  
E = 0 . 

   

  
V =

keq
R

=
8.99 × 109  N ⋅m2 / C2( ) 26.0 × 10−6  C( )

0.140 m
= 1.67 MV

 

 (b) 

  

E =
keq
r2 =

8.99 × 109  N ⋅m2 / C2( ) 26.0 × 10−6  C( )
0.200 m( )2

= 5.84 MN/C  away

 

  

  
V =

keq
R

=
8.99 × 109  N ⋅m2 / C2( ) 26.0 × 10−6  C( )

0.200 m
= 1.17 MV

 

 (c) 

  

E =
keq
R2 =

8.99 × 109  N ⋅m2 / C2( ) 26.0 × 10−6  C( )
0.140 m( )2

= 11.9 MN/C  away

 

  
  
V =

keq
R

= 1.67 MV  

P25.51 (a) Both spheres must be at the same potential according to  

  

keq1

r1

=
keq2

r2

,  where also   q1 + q2 = 1.20 × 10−6  C.  

  Then 
  
q1 =

q2r1

r2

 and  

   
  

q2r1

r2

+ q2 = 1.20× 10−6  C  
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q2 = 1.20× 10−6  C
1+ 6.00 cm 2.00 cm

= 0.300× 10−6  C 

                                              on the smaller sphere.

 

   

  

q1 = 1.20 × 10−6  C − 0.300 × 10−6  C = 0.900 × 10−6  C

V =
keq1

r1

=
8.99 × 109  N ⋅m2 / C2( ) 0.900 × 10−6  C( )

6.00 × 10−2  m

   = 1.35 × 105  V

 

 (b) Outside the larger sphere, 
   

    


E1 =

keq1

r1
2 r̂ =

V1

r1

r̂ =
1.35 × 105  V

0.060 0 m
r̂ = 2.25 × 106  V/m away

 

  Outside the smaller sphere, 
   

   


E2 =

1.35 × 105  V
0.020 0 m

r̂ = 6.74 × 106  V/m  away
 

  The smaller sphere carries less charge but creates a much stronger 
electric field than the larger sphere. 

 
 

 

Section 25.8 Applications of Electrostatics 
P25.52 From the maximum allowed electric field, we can find the charge and 

potential that would create this situation. Since we are only given the 
diameter of the dome, we will assume that the conductor is spherical, 
which allows us to use the electric field and potential equations for a 
spherical conductor.  

 (a) 
  
Emax = 3.00 × 106  V m =

keQ
r2 =

keQ
r

1
r

⎛
⎝⎜

⎞
⎠⎟ = Vmax

1
r

⎛
⎝⎜

⎞
⎠⎟

 

  
  Vmax = Emaxr = 3.00 × 106  V/m( ) 0.150 m( ) = 450 kV

 

 (b) 
  

keQmax

r2 = Emax or 
keQmax

r
= Vmax{ }  

   

  
Qmax =

Emaxr2

ke

=
3.00 × 106  V/m( ) 0.150 m( )2

8.99 × 109  N ⋅m2/C2 = 7.51 µC
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Additional Problems 
P25.53 From Equation 25.13, solve for the separation distance of the electron 

and proton: 

   
  
U  = ke

q1q2

r12

    →    r12  = ke

q1q2

U
 = −ke

e2

U
 

 The separation distance r12 between the electron and proton is the same 
as the radius r of the orbit of the electron. Substitute numerical values: 

   

  

r  = − 8.99 × 109  N ⋅m2/C2( ) 1.6 × 10−19  C( )2

−13.6 eV
1 eV

1.6 × 10−19  J
⎛
⎝⎜

⎞
⎠⎟
 

= 1.06 × 10−10  m

 

 Set this equal to r = n2(0.052 9 nm) and solve for n: 
   

  r  = n
2 0.052 9 nm( ) = 1.06 ×10−10  m = 0.106 nm  

 Which gives n = 1.42. Because n is not an integer, this is not possible. 
Therefore, the energy given cannot be possible for an allowed state of 
the atom. 

P25.54  (a) The field within the conducting Earth is zero. The field is 
downward, so the Earth is negatively charged. Treat the surface 
of Earth at this location as a charged conducting plane: thus, use  

   
  E = σ/∈  0

 

  which gives 
   

  

σ = E ∈  0 = (120 N/C) 8.85× 10−12 C2/N ⋅m2( )
= 1.06 nC/m2 , negative

 

  (b) 
 
  

Q = σA = σ 4πr2 = (−1.06 × 10−9  C/m2 ) 4π( )(6.37 × 106  m)2

= −542 kC

  

 (c) The Earth acts like a conducting sphere:  
   

  
V = keQ

R
=

8.99× 109  N ⋅m2/C2( )(−5.42 × 105  C)
6.37 × 106  m

= −764 MV
 

 (d) Electric potential decreases in the direction of the electric field; 
therefore, the potential is greater at greater heights:  

   Vhead – Vfeet = Ed = (120 N/C)(1.75 m) = 210 V.  

  
 
→ The person’s head is higher in potential by 210 V.  
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 (e) Like charges repel:  
   

  

FE =
keq1q2

r2 =
8.99 × 109  N ⋅m2/C2( )(5.42 × 105  C)2(0.273)

(3.84 × 108  m)2

FE = 4.88 × 103  N = 4.88 × 103  N  away from Earth

 

 (f) The gravitational force is  

   

  

FG =
GMEMM

r2

=
6.67 × 10−11  N ⋅m2/kg2( )(5.98 × 1024  kg)(7.36 × 1022  kg)

(3.84 × 108  m)2

FG = 1.99 × 1020  N

 

  Comparing the two forces,  

   
  

FG

FE

=
1.99 × 1020  N
4.88 × 103  N

= 4.08 × 1016  

  

 

The gravitational force is in the opposite direction and 4.08 × 1016

times larger. Electrical forces are negligible in accounting for
planetary motion.

 

P25.55 Assume the particles move along the x direction.  

 (a) Momentum is constant within the isolated system throughout the 
process. We equate it at the large-separation initial point and the 
point c of closest approach.  

   

    

m1

v1i + m2


v2 i = m1


v1c + m2


v2c

m1vî + 0 = m1

v c + m2


v c


v c =

m1v
m1 + m2

î =
2.00 × 10−3  kg( ) 21.0 m/s( )

7.00 × 10−3  kg
î = 6.00î m/s

 

 (b) Energy is conserved within the isolated system. Compare energy 
terms between the large-separation initial point and the point of 
closest approach:  

   

  

Ki + Ui = K f + U f

1
2

m1v1i
2 +

1
2

m2v2 i
2 + 0 =

1
2

m1 + m2( )vc
2 +

keq1q2

rc

1
2

m1v
2 + 0 =

1
2

m1 + m2( ) m1v
m1 + m2

⎛
⎝⎜

⎞
⎠⎟

2

+
keq1q2

rc
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→ m1v
2 + 0 =

m1
2v2

m1 + m2

+ 2
keq1q2

rc

→ m1 + m2( )m1v
2 − m1

2v2 = 2
keq1q2 m1 + m2( )

rc

m1m2v2 = 2
keq1q2 m1 + m2( )

rc

 

 

  

rc =
2keq1q2 m1 + m2( )

m1m2v2

=
2 8.99 × 109  N ⋅m2/C2( ) 15.0 × 10−6  C( ) 8.50 × 10−6  C( ) 7.00 × 10−3  kg( )

2.00 × 10−3  kg( ) 5.00 × 10−3  kg( ) 21.0 m/s( )2

= 3.64 m

 

 (c) The overall elastic collision is described by conservation of 
momentum: 

    
    

m1

v1i + m2


v2 i = m1


v1 f + m2


v2 f

m1vî + 0 = m1v1 f î + m2v2 f î
 

  and by the relative velocity equation:  

    
  

v1i − v2 i = v2 f − v1 f

v − 0 = v2 f − v1 f → v2 f = v + v1 f

 

  We substitute the expression for v2f into the momentum equation:  
    

  

m1v = m1v1 f + m2v2 f

m1v = m1v1 f + m2(v + v1 f )

m1v = m1v1 f + m2v + m2v1 f

m1v − m2v = m1v1 f + m2v1 f

m1 − m2( )v = m1 + m2( ) v1 f

 

    

   

v1 f =
m1 − m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v =
2.00g − 5.00g
2.00g + 5.00g

⎛
⎝⎜

⎞
⎠⎟

21.0 m/s( )

= −9.00 m/s

 

  Therefore, the velocity of the particle of mass m1 is   −9.00 î m/s .  

 (d) Substitute the expression for v1f back into v2f = v + v1f : 

      v2 f = v + v1 f = 21.0 m/s( ) + −9.00 m/s( ) = 12.0 m/s  

  Therefore, the velocity of the particle of mass m2 is   12.0 î m/s .  
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P25.56 Assume the particles move along the x direction.  

 (a) Momentum is constant within the isolated system throughout the 
process. We equate it at the large-separation initial point and the 
point c of closest approach.  

   

    

m1

v1i + m2


v2 i = m1


v1 f + m2


v2 f

m1vî + 0 = m1vcî + m2vcî     →     vc =
m1v

m1 + m2

 

 (b) Energy is conserved within the isolated system. Compare energy 
terms between the large-separation initial point and the point of 
closest approach: 

   

  

Ki + Ui = K f + U f

1
2

m1v1i
2 +

1
2

m2v2 i
2 + 0 =

1
2

m1 + m2( )vc
2 +

keq1q2

rc

1
2

m1v
2 + 0 =

1
2

m1 + m2( ) m1v
m1 + m2

⎛
⎝⎜

⎞
⎠⎟

2

+
keq1q2

rc

→ m1v
2 + 0 =

m1
2v2

m1 + m2

+ 2
keq1q2

rc

→ m1 + m2( )m1v
2 − m1

2v2 = 2
keq1q2 m1 + m2( )

rc

m1m2v2 = 2
keq1q2 m1 + m2( )

rc

→ rc =
2keq1q2 m1 + m2( )

m1m2v2

 

 (c) The overall elastic collision is described by conservation of 
momentum: 

   
    

m1

v1i + m2


v2 i = m1


v1 f + m2


v2 f

m1vî + 0 = m1v1 f î + m2v2 f î    →     m1v = m1v1 f + m2v2 f

 

  and by the relative velocity equation:  

   
  

v1i − v2 i = v2 f − v1 f

v − 0 = v2 f − v1 f     →     v2 f = v + v1 f

 

  We substitute the expression for v2f into the momentum equation:  
   

  

m1v = m1v1 f + m2v2 f

m1v = m1v1 f + m2 v + v1 f( )
m1v = m1v1 f + m2v + m2v1 f
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m1v− m2v = m1v1 f + m2v1 f

m1 − m2( )v = m1 + m2( )v1 f → v1 f = m1 − m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v

 

  Therefore, the velocity of the particle of mass m1 is 

   

m1 − m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v î .  

 (d) Substitute the expression for v1f back into v2f = v + v1f
 : 

   

  

v2 f = v + v1 f = v +
m1 − m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v

    =
m1 + m2( ) + m1 − m2( )

m1 + m2

⎡

⎣
⎢

⎤

⎦
⎥v =

2m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v

 

  Therefore, the velocity of the particle of mass m2 is 
   

2m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v î .  

P25.57 The two spheres of charge have together electric potential energy  

   

  

U = qV = ke
q1q2

r12

= 8.99× 109  N ⋅m2/C2( ) 38( ) 54( ) 1.60× 10−19  C( )2

5.50 + 6.20( )× 10−15  m

= 4.04× 10−11  J = 253 MeV

 

P25.58 (a) To make a spark 5 mm long in dry air between flat metal plates 
requires potential difference 

   
  
ΔV = Ed = 3 × 106  V/m( ) 5 × 10−3  m( ) = 1.5 × 104  V ~ 104  V  

 (b) The area of your skin is perhaps 1.5 m2, so model your body as a 
sphere with this surface area. Its radius is given by   1.5 m2 = 4π r2 , 
r = 0.35 m. We require that you are at the potential found in part 

(a), with 
 
V =

keq
r

. Then, 

   
  
q =

Vr
ke

=
1.5 × 104  V 0.35 m( )

8.99 × 109  N ⋅m2 / C2

J
V ⋅C

⎛
⎝⎜

⎞
⎠⎟

N ⋅m
J

⎛
⎝⎜

⎞
⎠⎟

 

   
  
q = 5.8 × 10−7  C ~ 10−6  C  
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P25.59 We have V1 = keQ/R = 200 V  and V2 = keQ/(R + 10 cm) = 150 V. 

 (a) 
  

V1

V2

=
R + 10 cm

R
=

200
150

→ 150 R + 10 cm( ) = 200R → R = 30.0 cm  

 (b) From 
  
V1 = ke

Q
R

,  we have 

   

  
Q = V1R

ke

= 200 V( ) 0.300 m( )
8.99× 109  N ⋅m2/C2 = 6.67 × 10−9  C = 6.67 nC

 

 (c) We have V = keQ/R = 210 V  and E = keQ/(R + 10 cm)2 = 400 V/m. 
Therefore,  

   
  

V
E

=
R + 10 cm( )2

R
=

210
400

=
21
40

→ 40 R + 0.100( )2 = 21R  

  where R is in meters.  

  Thus, we have  

   40R2 + 8R + 0.4 = 21R  → 40R2 – 13R + 0.4 = 0 

  There are two possibilities, according to  

   
  
R =

+13 ± 132 − 4(40) 0.4( )
80

=  either 0.291 m or 0.034 4 m     

    = 29.1 cm or 3.44 cm  

 (d) If the radius is 29.1 cm, 

   
  
Q =

VR
ke

=
210 V( ) 0.291 m( )

8.99 × 109  N ⋅m2/C2 = 6.79 × 10−9  C = 6.79 nC  

  If the radius is 3.44 cm,  

   
  
Q =

VR
ke

=
210 V( ) 0.0344 m( )

8.99 × 109  N ⋅m2/C2 = 8.04 × 10−10  C = 804 pC  

 (e) 
 
No; two answers exist for each part.  

P25.60 (a) The exact potential is  

   
  
+

keq
r + a

−
keq

r − a
= +

keq
3a + a

−
keq

3a − a
=

keq
4a

−
2keq
4a

= −
keq
4a

 

 (b) The approximate expression –2keqa/x2 gives  

   –2keqa/(3a)2 = –keq/4.5a 
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  Compare the exact to the approximate solution:  

   
 

1/ 4 − 1/ 4.5
1/ 4

=
0.5
4.5

  = 0.111 .  

  

  

The approximate expression − 2keqa/x2  gives − keq/4.5a, 
which is different by only 11.1%.

 

P25.61 
  
W = Vdq

0

Q

∫ ,  where 
 
V =

keq
R

. 

 Therefore, 
  
W =

keQ
2

2R
=

8.99 × 109  N ⋅m2/C2( ) 125 × 10−6  C( )2

2 0.100 m( ) = 702 J .  

P25.62 
  
W = Vdq

0

Q

∫ , where 
 
V =

keq
R

. Therefore, 
  
W =

keQ
2

2R
. 

P25.63 For a charge at (x = –1 m, y = 0), the radial distance away is given by 

  (x + 1)2 + y2 . So the first term will be the potential it creates if  

  (8.99 × 109 N ⋅ m2/C2)Q1 = 36 V⋅m    →    Q1 = 4.00 nC 

 The second term is the potential of a charge at (x = 0, y = 2 m) with  

  (8.99 × 109 N ⋅ m2/C2)Q2 = –45 V⋅m    →    Q2 = –5.01 nC 

 Thus we have 
 
4.00 nC at ( − 1.00 m, 0) and − 5.01 nC at (0, 2.00 m).  

P25.64 From Example 25.5, the potential along the x axis of a ring of charge of 
radius R is 

   
  
V  = 

keQ

R2  + x2
 

 Therefore, the potential at the center of the ring is 

   
  
V  = 

keQ

R2  +  0( )2
 = 

keQ
R  

 When we place the point charge Q at the center of the ring, the electric 
potential energy of the charge–ring system is 

   
  
U  = QV  = Q

keQ
R

⎛
⎝⎜

⎞
⎠⎟  = 

keQ
2

R
 

 Now, apply Equation 8.2 to the isolated system of the point charge and 
the ring with initial configuration being that with the point charge at 
the center of the ring and the final configuration having the point 
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charge infinitely far away and moving with its highest speed: 
   

  
ΔK  + ΔU  = 0    →    

1
2

mvmax
2  − 0⎛

⎝⎜
⎞
⎠⎟  +  0 −  keQ

2

R
⎛
⎝⎜

⎞
⎠⎟
 = 0

 

 Solve for the maximum speed: 

   
  
vmax =

2keQ
2

mR
⎛
⎝⎜

⎞
⎠⎟

1 / 2

 

 Substitute numerical values: 
   

  

vmax =
2 8.99 × 109  N ⋅m2/C2( ) 50.0 × 10−6  C( )2

0.100 kg( ) 0.500 m( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/2

= 30.0 m/s

 

 Therefore, even if the charge were to accelerate to infinity, it would 
only achieve a maximum speed of 30.0 m/s, so it cannot strike the wall 
of your laboratory at 40.0 m/s. 

P25.65 In Equation 25.3, 
    
V2 – V1 = ΔV = –


E ⋅ ds

1

2

∫ ,  think about stepping from 

distance r1 out to the larger distance r2 away from the charged line. 
Then     d


s = drr̂,  and we can make r the variable of integration:  

    
    
V2 – V1 = – λ

2π ∈0 r
 

r1

r2∫ r̂ ⋅ dr  r̂ with r̂ ⋅ r̂  =  1 ⋅ 1cos0 =  1  

 The potential difference is   

   
  
V2 – V1 = – λ

2π ∈0

dr
rr1

r2∫ = – λ
2π ∈0

ln r
r1

r2  

 and   
  
V2 – V1 = – λ

2π ∈0
ln r2 – ln r1( ) = – λ

2π ∈0
ln r2

r1
 

P25.66 (a) Modeling the filament as a single charged particle, we obtain 
   

  
V = keQ

r
=

8.99 × 109  N ⋅m2/C2( ) 1.60 × 10−9  C( )
2.00 m

= 7.19 V
 

 (b) Modeling the filament as two charged particles, we obtain  

    

  

V = keQ1

r1

+ keQ2

r2

= ke
Q1

r1

+ Q2

r2

⎛
⎝⎜

⎞
⎠⎟

= 8.99 × 109  N ⋅m2/C2( ) 0.800 × 10−9  C
1.50 m

+ 0.800 × 10−9  C
2.50 m

⎛
⎝⎜

⎞
⎠⎟

= 7.67 V
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 (c) Modeling the filament as four charged particles, we obtain 
   

  

V = ke
Q1

r1

+ Q2

r2

+ Q3

r3

+ Q4

r4

⎛
⎝⎜

⎞
⎠⎟

= 8.99 × 109  N ⋅m2/C2( )
               × 0.400 × 10−9  C

1.25 m
+ 0.400 × 10−9  C

1.75 m
⎛
⎝⎜

                               + 0.400 × 10−9  C
2.25 m

+ 0.400 × 10−9  C
2.75 m

⎞
⎠⎟

= 7.84 V

 

 (d) We represent the exact result as 

   

   

V = keQ


ln
+ a

a
⎛
⎝⎜

⎞
⎠⎟

=
8.99 × 109  N ⋅m2/C2( ) 1.60 × 10−9  C( )

2.00 m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ln

3
1

⎛
⎝⎜

⎞
⎠⎟

= 7.901 2 V

 

  Modeling the line as a set of points works nicely. The exact result, 
represented as 7.90 V, is approximated to within 0.8% by the 
four-particle version. 

P25.67 We obtain the electric potential at P by integrating:   
   

  

V = ke
λdx
x2 + b2

a

a+L

∫ = keλ ln x + x2 + b2( )⎡
⎣

⎤
⎦ a

a+L

= keλ ln
a + L + a + L( )2 + b2

a + a2 + b2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

P25.68 (a) 
   
VB −VA = −


E ⋅ds

A

B

∫  and the field at distance 

r from a uniformly charged rod (where  
r > radius of charged rod) is 

   

  
E = λ

2π∈0 r
= 2keλ

r

 

  In this case, the field between the central 
wire and the coaxial cylinder is directed  ANS. FIG. P25.68 
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perpendicular to the line of charge so that 

     
VB −VA = −

2keλ
r

dr
ra

rb

∫ = 2keλ ln
ra

rb

⎛
⎝⎜

⎞
⎠⎟  

  or 

  
ΔV = 2keλ ln

ra

rb

⎛
⎝⎜

⎞
⎠⎟

.  

 (b) From part (a), when the outer cylinder is considered to be at zero 
potential, the potential at a distance r from the axis is 

   
  
V = 2keλ ln

ra

r
⎛
⎝⎜

⎞
⎠⎟

 

  The field at r is given by 

   
  
E = −

∂V
∂r

= −2keλ
r
ra

⎛
⎝⎜

⎞
⎠⎟

−
ra

r2
⎛
⎝⎜

⎞
⎠⎟ =

2keλ
r

 

  But, from part (a), 
  
2keλ =

ΔV
ln ra rb( ) . 

  Therefore, 
  

E =
ΔV

ln ra rb( )
1
r

⎛
⎝⎜

⎞
⎠⎟ . 

P25.69 (a) The positive plate by itself creates a field  
   

  
E = σ

2∈0

= 36.0× 10−9  C m2

2 8.85× 10−12  C2 N ⋅m2( ) = 2.03 kN C
 

  away from the positive plate. The negative plate by itself creates 
the same size field and between the plates it is in the same 
direction. Together the plates create a uniform field 

 
4.07 kN C  

in the space between. 

 (b) Take V = 0 at the negative plate. The potential at the positive plate 
is then 

   
  
ΔV = V − 0 = − Exdx

xi

x f

∫ = − −4.07 kN C( )dx
0

12.0 cm

∫  

  The potential difference between the plates is  
   

  V = 4.07 × 103  N C( ) 0.120 m( ) = 488 V
 

 (c) The positive proton starts from rest and accelerates from higher to 
lower potential. Taking Vi = 488 V and Vf = 0, by energy 
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conservation, we find the proton’s final kinetic energy. 
    

 
K + qV( )i

= K + qV( ) f
→ K f = qVi

 

   
  

1
2

mv2 + qV⎛
⎝⎜

⎞
⎠⎟ i

=
1
2

mv2 + qV⎛
⎝⎜

⎞
⎠⎟ f

 

   
  
qVi = 1.60 × 10−19  C( ) 488 V( ) =

1
2

mv f
2 = 7.81× 10−17  J  

 (d) From the kinetic energy of part (c),  

    

  

K =
1
2

mv f
2

v f =
2K
m

=
2 7.81× 10−17  J( )
1.67 × 10−27  kg

= 3.06 × 105  m/s = 306 km/s
 

 (e) Using the constant-acceleration equation, 
  
v f

2 = vi
2 + 2a x f − xi( ) , 

   

  

a =
v f

2 − vi
2

2 x f − xi( ) =
3.06× 105  m/s( )2

− 0
2 0.120 m( )

= 3.90× 1011  m/s2  toward the negative plate

 

 (f) The net force on the proton is given by Newton’s second law: 
   

  

F∑ = ma = 1.67 × 10−27  kg( ) 3.90× 1011  m/s2( )
= 6.51× 10−16  N  toward the negative plate

 

 (g) The magnitude of the electric field is 

   
  
E =

F
q
=

6.51× 10−16  N
1.60 × 10−19  C

= 4.07 kN C  

 (h) 
 
They are the same.  

P25.70 (a) Inside the sphere, 
  
Ex = Ey = Ez = 0 .  

 (b) Outside,  

   

  

Ex = − ∂V
∂x

= − ∂
∂x

V0 −E0z + E0a
3z x2 + y2 + z2( )−3 2( ) 

   = − 0 + 0 + E0a
3z − 3

2
⎛
⎝⎜

⎞
⎠⎟ x2 + y2 + z2( )−5 2

2x( )⎡
⎣⎢

⎤
⎦⎥

 

Ex = 3E0a
3xz x2 + y2 + z2( )−5 2

 



142     Electric Potential 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

    

  

Ey = − ∂V
∂y

= − ∂
∂y

V0 −E0z + E0a
3z x2 + y2 + z2( )−3 2( )

= −E0a
3z − 3

2
⎛
⎝⎜

⎞
⎠⎟ x2 + y2 + z2( )−5 2

2y     

Ey = 3E0a
3yz x2 + y2 + z2( )−5 2

 

    

  

Ez = − ∂V
∂z

= − ∂
∂z

V0 −E0z + E0a
3z x2 + y2 + z2( )−3 2⎡

⎣
⎤
⎦

   = E0 −E0a
3z − 3

2
⎛
⎝⎜

⎞
⎠⎟ x2 + y2 + z2( )−5 2

2z( )−E0a
3 x2 + y2 + z2( )−3 2

Ez = E0 + E0a
3 2z2 − x2 − y2( ) x2 + y2 + z2( )−5 2

 

 
 

 

Challenge Problems 
P25.71 (a) The total potential is  

   
  
V =

keq
r1

−
keq
r2

=
keq
r1r2

r2 − r1( )  

  From the figure, for r >> a,   r2 − r1 ≈ 2acosθ.  
Note that r1 is approximately equal to r2. Then  

   
  
V ≈

keq
r1r2

2acosθ ≈
kepcosθ

r2  

 (b) 
  
Er = −

∂V
∂r

=
2kepcosθ

r3  

  In spherical coordinates, the θ component of the gradient  

is 
  
−

1
r

∂
∂θ

⎛
⎝⎜

⎞
⎠⎟

.  Therefore,  

   
  
Eθ = −

1
r

∂V
∂θ

⎛
⎝⎜

⎞
⎠⎟
=

kepsinθ
r3

 

 (c) For r >> a, θ = 90°:    Er 90°( ) = 0 , 
  
Eθ 90°( ) =

kep
r3  

  For r >> a, θ = 0°:   
  
Er 0°( ) =

2kep
r3 ,   Eθ 0°( ) = 0  

   Yes,  these results are reasonable.  

ANS. FIG. P25.71 
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 (d)  No,  because as r → 0, E → ∞. The magnitude of the electric field 
between the charges of the dipole is not infinite. 

 (e) Substituting   r1 ≈ r2 ≈ r = (x2 +  y2 )1/2  and 
  
cos  θ =

y

x2 + y2( )1/2  into 

  
V =

kepcosθ
r2  gives 

  

V =
kepy

x2 + y2( )3 2 .  

 (f) 

  

Ex = −
∂V
∂x

=
3kepxy

x2 + y2( )5 2   and 

  

Ey = −
∂V
∂y

=
kep 2y2 − x2( )

x2 + y2( )5 2  

P25.72 Following the problem’s suggestion, we use dU = Vdq, where the 

potential is given by 
 
V =

keq
r

. The element of charge in a shell is  

dq = ρ (volume element) or   dq = ρ 4π r2dr( )  and the charge q in a  
sphere of radius r is 

  
  
q = 4πρ r2dr

0

r

∫ = ρ
4π r3

3
⎛
⎝⎜

⎞
⎠⎟

 

 Substituting this into the expression for dU, we have 

  

  

dU =
keq
r

⎛
⎝⎜

⎞
⎠⎟ dq = keρ

4π r3

3
⎛
⎝⎜

⎞
⎠⎟

1
r

⎛
⎝⎜

⎞
⎠⎟ ρ 4π r2dr( ) = ke

16π 2

3
⎛
⎝⎜

⎞
⎠⎟
ρ2r4dr

U = dU∫ = ke
16π 2

3
⎛
⎝⎜

⎞
⎠⎟
ρ2 r4dr

0

R

∫ = ke
16π 2

15
⎛
⎝⎜

⎞
⎠⎟
ρ2R5

 

 But the total charge, 
  
Q = ρ 4

3
π R3 . Therefore, 

  
U =

3
5

keQ
2

R
. 

P25.73 For an element of area which is a ring of radius r and width dr, the 

incremental potential is given by 
  
dV =

kedq

r2 + x2
, where  

      dq = σdA = Cr 2π rdr( )  

 The electric potential is then given by 
    

  
V = C 2π ke( ) r2dr

r2 + x2
0

R

∫
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 From a table of integrals,  

   
  

r2dr
r2 + x2∫ = r

2
r2 + x2 − x2

2
ln r + r2 + x2( )  

 The potential then becomes, after substituting and rearranging, 

    

  

V = C 2π ke( ) r2dr
r2 + x2

0

R

∫

= π keC R R2 + x2 + x2 ln
x

R + R2 + x2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

 

P25.74 Take the illustration presented with the problem as an initial picture. 
No external horizontal forces act on the set of four balls, so its center of 
mass stays fixed at the location of the center of the square. As the 
charged balls 1 and 2 swing out and away from each other, balls 3 and 
4 move up with equal y-components of velocity. The maximum-
kinetic-energy point is illustrated. System 
energy is conserved because it is isolated: 

   

  

Ki + Ui = K f + U f

0 + Ui = K f + U f

→Ui = K f + U f

 

   

  

keq
2

a
=

1
2

mv2 +
1
2

mv2 +
1
2

mv2 +
1
2

mv2 +
keq

2

3a

2keq
2

3a
= 2mv2     →     v =

keq
2

3am

 

P25.75 (a) Take the origin at the point where we will find the potential. One 

ring, of width dx, has charge 
 

Qdx
h

 and, according to Example 

25.5, creates potential 

    
  
dV =

keQdx

h x2 + R2
 

  The whole stack of rings creates potential 

   

  

V = dV
all charge
∫ =

keQdx

h x2 + R2
d

d+ h

∫ =
keQ

h
ln x + x2 + R2( )

d

d+ h

=
keQ

h
ln

d + h + d + h( )2 + R2

d + d2 + R2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

ANS. FIG. P25.74 
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 (b) A disk of thickness dx has charge 
 

Qdx
h

 and charge-per-area 

  

Qdx
π R2h

. According to Example 25.6, it creates potential 

   
  
dV = 2π ke

Qdx
π R2h

x2 + R2 − x( )  

  Integrating, 

   

  

V = 2keQ
R2h

x2 + R2 dx − xdx( )
d

d+h

∫

= 2keQ
R2h

1
2

x x2 + R2 + R2

2
ln x + x2 + R2( )− x2

2
⎡
⎣⎢

⎤
⎦⎥d

d+h

V =

keQ
R2h

d + h( ) d + h( )2 + R2 − d d2 + R2⎡
⎣⎢

             − 2dh− h2 + R2 ln
d + h + d + h( )2 + R2

d + d2 + R2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎤

⎦
⎥
⎥

 

P25.76 The plates create a uniform electric field to the right in the picture, 
with magnitude  

   

  

V0 − −V0( )
d

= 2V0

d

  

 Assume the ball swings a small distance x to the right so that the 
thread is at angle θ from the vertical. The ball moves to a place where 
the voltage created by the plates is lower by  

   
  
−Ex = −

2V0

d
x  

 Because its ground connection maintains the ball at V = 0, charge q 
flows from ground onto the ball, so that  

   

  
− 2V0x

d
+ keq

R
= 0 → q = 2V0xR

ked

  

 Then the ball feels an electric force  

   
  
F = qE =

4V0
2xR

ked
2   
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 to the right. For equilibrium, the electric force must be balanced by the 
horizontal component of string tension according to  

   
  
T sinθ = qE =

4V0
2xR

ked
2   

 and the weight of the ball must be balanced by the vertical component 
of string tension according to T cosθ = mg. Dividing the expression for 
the horizontal component by that for the vertical component, we find 
that 

   

  
tanθ = 4V0

2xR
ked

2mg

  

 For very small angles, we can approximate 
   
tanθ  sinθ = x

L
,  so the 

above expression becomes 

   
  

x
L
= 4V0

2xR
ked

2mg
   →      V0 =

ked
2mg

4RL
⎛
⎝⎜

⎞
⎠⎟

1 2

 for small x  

 If V0 is less than this value, the only equilibrium position of the ball is 
hanging straight down. If V0 exceeds this value, the ball will swing 
over to one plate or the other. 

P25.77 For the given charge distribution,  

   
  
V x, y, z( ) =

ke q( )
r1

+
ke −2q( )

r2

 

 where   r1 = x + R( )2 + y2 + z2   

 and     r2 = x2 + y2 + z2  

 The surface on which V (x, y, z) = 0 is given by  

   
  
keq

1
r1

−
2
r2

⎛
⎝⎜

⎞
⎠⎟
= 0  or 2r1 = r2 

 This gives:  

     4 x + R( )2 + 4y2 + 4z2 = x2 + y2 + z2  

 which may be written in the form:  

   
  
x2 + y2 + z2 +

8
3

R⎛
⎝⎜

⎞
⎠⎟ x + 0( )y +  

  
0( )z +

4
3

R2⎛
⎝⎜

⎞
⎠⎟ = 0  [1] 
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 The general equation for a sphere of radius a centered at (x0, y0, z0) is: 

   
  x − x0( )2 + y − y0( )2 + z − z0( )2 − a2 = 0  

 or    

  

x2 + y2 + z2 + −2x0( )x + −2y0( )y + −2z0( )z

                                                       + x0
2 + y0

2 + z0
2 − a2( ) = 0

 

[2]

 

 Comparing equations [1] and [2], it is seen that the equipotential 
surface for which V = 0 is indeed a sphere and that: 

   

  
−2x0 = 8

3
R;  − 2y0 = 0;  − 2z0 = 0;  x0

2 + y0
2 + z0

2 − a2 = 4
3

R2
 

 Thus, 
  
x0 = −

4
3

R ,    y0 = z0 = 0 , and  
  
a2 =

16
9

−
4
3

⎛
⎝⎜

⎞
⎠⎟ R2 =

4
9

R2  

 The equipotential surface is therefore a sphere centered at 

  
−

4
3

R, 0, 0⎛
⎝⎜

⎞
⎠⎟ , having a radius 

  

2
3

R . 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 
P25.2 (a) –6.00 × 10–4 J; (b) –50.0 V 

P25.4 1.35 MJ 

P25.6 See P25.6 for full explanation. 

P25.8 (a) –2.31 kV; (b) Because a proton is more massive than an electron, a 
proton traveling at the same speed as an electron has more initial 
kinetic energy and requires a greater magnitude stopping potential; (c) 

 ΔVp ΔVe = −mp me  

P25.10 (a) isolated; (b) electric potential energy and elastic potential energy; 

(c) 
  

2QE
k

; (d) Particle in equilibrium; (e) 
 

QE
k

; (f) 
  

d2 ′x
dt2 = −

k ′x
m

;  

(g) 
  
2π m

k
; (h) The period does not depend on the electric field. The 

electric field just shifts the equilibrium point for the spring, just like a 
gravitational field does for an object hanging from a vertical spring. 

P25.12 (a) –5.76 × 10–7 V; (b) 3.84 × 10–7 V; (c) Because the charge of the proton 
has the same magnitude as that of the electron, only the sign of the 
answer to part (a) would change. 

P25.14 (a) 5.39 kV; (b) 10.8 kV 

P25.16 (a) 103 V; (b)  −3.85 × 10−7  J, positive work must be done  

P25.18 (a) 5.43 kV; (b) 6.08 kV; (c) 658 V 

P25.20 (a) 6.00 m; (b) –2.00 µC 

P25.22 –11.0 × 107 V 

P25.24 
  
5.41

keQ
2

s
 

P25.26 (a) 
  

2

x / a( )2 + 1
; (b) See ANS. FIG. P25.26(b). 

P25.28 (a)  no point; (b) 
  

2keq
a

 

P25.30 
  
ΔEint =

5keq
2

9d
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P25.32 (a) 
  
v1 =

2m2keq1q2

m1 m1 + m2( )
1

r1 + r2

−
1
d

⎛
⎝⎜

⎞
⎠⎟

 

 and 
  
v2 =

2m1keq1q2

m2 m1 + m2( )
1

r1 + r2

−
1
d

⎛
⎝⎜

⎞
⎠⎟

; (b) faster than calculated in (a) 

P25.34 
  
v = 1 +

1
8

⎛
⎝⎜

⎞
⎠⎟

keq
2

mL
 

P25.36 See ANS. FIG. P25.36. 

P25.38 See ANS. FIG. P25.38. 

P25.40 (a) EA > EB since 
 
E =

ΔV
Δs

; (b) 200 N/C; (c) See ANS. FIG. P25.40. 

P25.42 
   
Ey = keQ

y 2 + y2
 

P25.44 –1.51 MV 

P25.46 

  

− keαL
2

ln
b2 + L2 4( ) − L 2

b2 + L2 4( ) + L 2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 

P25.48 No. A conductor of any shape forms an equipotential surface. 
However, if the surface varies in shape, there is no clear way to relate 
electric field at a point on the surface to the potential of the surface. 

P25.50 (a) 0, 1.67 MV; (b) 5.84 MN/C away, 1.17 MV; (c) 11.9 MN/C away, 
1.67 MV 

P25.52 (a) 450 kV; 7.51 µC 

P25.54 (a) 1.06 nC/m2, negative; (b) –542 kC; (c) –764 MV; (d) The person’s 
head is higher in potential by 210 V; (e) 4.88 × 103 N away from Earth; 
(f) The gravitational force is in the opposite direction and 4.08 × 1016 

times larger. Electrical forces are negligible in accounting for planetary 
motion. 

P25.56 (a) 
  

m1v
m1 + m2

;  (b) 
  

2keq1q2 m1 + m2( )
m1m2v2 ;  (c) 

   

m1 − m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v î;  (d) 
   

2m1

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

v î  

P25.58 (a) ~104 V; (b) ~10–6 C 

P25.60 (a) 
  
−

keq
4a

; (b) The approximate expression –2keqa/x2 gives –keq/4.5, 

which is different by only 11.1%. 
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P25.62 
  

keQ
2

2R
 

P25.64 Even if the charge were to accelerate to infinity, it would only achieve 
a maximum speed of 30.0 m/s, so it cannot strike the wall of your 
laboratory at 40.0 m/s. 

P25.66 (a) 7.19 V; (b) 7.67 V; (c) 7.84 V; (d) The exact result, represented as 7.90 
V, is approximated to within 0.8% by the four-particle version. 

P25.68 (a) 
  
ΔV = 2keλ ln

ra

rb

⎛
⎝⎜

⎞
⎠⎟

; (b) 
  
E =

ΔV
ln ra rb( )

1
r

⎛
⎝⎜

⎞
⎠⎟  

P25.70 (a)   Ex = Ey = Ez = 0;  (b)   Ex =3E0a
3xz x2 + y2 + z2( )−5 2

,  

  Ey = 3E0a
3yz x2 + y2 + z2( )−5 2

,  Ez = E0 + E0a
3 2z2 − x2 − y2( ) x2 + y2 + z2( )−5 2   

P25.72 
  
U =

3
5

keQ
2

R
 

P25.74 
  
v =

keq
2

3am
 

P25.76 See P25.76 for full explanation. 
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26 
Capacitance and Dielectrics 

 

CHAPTER OUTLINE 
 

26.1  Definition of Capacitance 

26.2 Calculating Capacitance 

26.3 Combinations of Capacitors 

26.4  Energy Stored in a Charged Capacitor 

26.5  Capacitors with Dielectrics 

26.6 Electric Dipole in an Electric Field 

26.7 An Atomic Description of Dielectrics 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ26.1 (i) Answer (a). Because   C =κ ∈0 A d  and the dielectric constant κ 
increases.  

 (ii) Answer (a). Because  ΔV  is constant, and C increases, so 

 Q = CΔV  increases.  

 (iii) Answer (c). 

 (iv) Answer (a). Because  ΔV  is constant, and C increases,  

  
UE = 1

2
C ΔV( )2  increases.  

OQ26.2 Answer (b). The capacitance of a metal sphere is proportional to its 
radius (C = Q/V = R/ke), and its volume is proportional to radius 
cubed; therefore, the capacitance of a metal sphere is proportional to 
the cube root of the volume: 31/3. 
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OQ26.3 Answer (a).  

   

  

C = κ ∈0 A
d

=
1.00× 102( ) 8.85× 10−12  C2/N ⋅m2( ) 1.00× 10−4  m2( )

1.00× 10−3  m 
= 8.85× 10−11  F   or    88.5 pF

 

OQ26.4 Answer (c). The voltage remains constant, but C decreases by a factor 
of 2 because   C =κ∈0 A d →κ∈0 A 2d( ) = C 2.  Therefore,  

   

  
UE = 1

2
C ΔV( )2    →    

1
2

⎛
⎝⎜

⎞
⎠⎟

1
2

C⎛
⎝⎜

⎞
⎠⎟ ΔV( )2 = 1

2
UE

  

OQ26.5 Answer (b). Choice (a) is not true because 1/Ceq is always larger than 
1/C1 + 1/C2 + 1/C3. Choice (c) is not true because capacitors in series 
carry the same charge Q, and the voltage across capacitance Ci is  

  ΔVi = Q/Ci .  Choices (d) and (e) are not true because capacitors in 
series carry the same charge.  

OQ26.6 Answer (b). Let C = the capacitance of an individual capacitor, and 
CS represent the equivalent capacitance of the group in series. While 
being charged in parallel, each capacitor receives charge  

   
  Q = CΔVcharge = 5.00 × 10−4  F( ) 800 V( ) = 0.400 C

 

 While being discharged in series,  

   
  
ΔVdischarge =

Q
Cs

=
Q

C 10
=

0.400 C
5.00 × 10−5  F

= 8.00 kV  

 (or 10 times the original voltage). 

OQ26.7 (i) Answer (b), because   Q = CΔV.   

 (ii) Answer (a), because 
  
UE = 1

2
C ΔV( )2 .   

OQ26.8 Answer (d). Let C2 be the capacitance of the large capacitor and C1 
that of the small one. The equivalent capacitance is  

   

  

Ceq =
1

1 C1 + 1 C2

=
1

C1 + C2

C1C2

⎛
⎝⎜

⎞
⎠⎟

= C1
C2

C2 + C1

⎛
⎝⎜

⎞
⎠⎟  

 This is slightly less than C1.  
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OQ26.9 Answer (a). Charge Q remains fixed, but the capacitance doubles: 

  C =κ ∈0 A d → 2κ( )∈0 A d = 2C.  Therefore,   ΔV = Q/C→ Q/(2C) = 

 ΔV /2. 

OQ26.10 (i) Answer (c). For capacitors in parallel, choices (a), (b), (d), and (e) 
are not true because the potential difference ∆V is the same, and the 
charge across capacitance Ci is Qi = Ci ΔV .  

 (ii) Answer (e). Although the charges on capacitors in series are the 
same, the equivalent capacitance is less than the capacitance of any of 
the capacitors in the group, because 1/Ceq is always larger than 1/C1 
+ 1/C2 + 1/C3; therefore, choices (a) and (c) are not true. Choices (b), 
(c), and (d) are not true because the charge Q is the same, and choice 
(c) is also not true because the potential difference across capacitance 
Ci is  ΔVi  = Q/Ci.  

OQ26.11 Answer (b). The charge stays constant but C decreases by a factor of 2 
because   C =κ ∈0 A d→κ∈0 A 2d( ) = C 2.  Therefore,  

   

  

UE = Q2

2C
   →    

Q2

2 1
2

C⎛
⎝

⎞
⎠

= 2UE

 

OQ26.12 We find the capacitance, voltage, charge, and energy for each 
capacitor. 

 (a) C = 20 μF  ΔV  = 4 V  Q = CΔV = 80 μC  

  
UE = 1

2
QΔV =  160 μJ 

 (b) C = 30 μF  ΔV  = Q/C = 3 V Q = 90 μC  
UE = 135 μJ 

 (c) C = Q/∆V = 40 μF   ΔV  = 2 V Q = 80 μC  
UE = 80 μJ 

 (d) C = 10 μF  ΔV  = (2U/C)1/2 = 5 V Q = 50 μC  
UE = 125 μJ 

 (e)   C = 2UE / ΔV( )2 = 5 µF   ΔV  = 10 V Q = 50 μC  
UE = 250 μJ 

  (i) The ranking by capacitance is c > b > a > d > e. 

  (ii) The ranking by voltage  ΔV  is e > d > a > b > c. 

  (iii) The ranking by charge Q is b > a = c > d = e. 

  (iv) The ranking by energy UE is e > a > b > d > c. 
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OQ26.13 (a) False. (b) True. The equation   C = Q/ΔV  implies that as charge Q 
approaches zero, the voltage  ΔV also approaches zero so that their 
ratio remains constant.  

OQ26.14 (i) Answer (b). Because   C =κ ∈0 A d  and the plate separation d 
increases.  

 (ii) Answer (c).  

 (iii) Answer ( c). Because   E = Q/κ ∈0 A  remains the same.  

 (iv) Answer (a). Because  ΔV  = Ed and d increases.  

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ26.1 (a) The capacitor may be charged!  

 (b) Discharge the capacitor by connecting its terminals together.  

CQ26.2 Put a material with higher dielectric strength between the plates, or 
evacuate the space between the plates. At very high voltages, you 
may want to cool off the plates or choose to make them of a different 
chemically stable material, because atoms in the plates themselves 
can ionize, showing thermionic emission under high electric fields. 

CQ26.3 The primary choice would be the dielectric. You would want to 
choose a dielectric that has a large dielectric constant and dielectric 
strength, such as strontium titanate, where  κ ≈ 233  (Table 26.1). A 
convenient choice could be thick plastic or Mylar. Secondly, 
geometry would be a factor. To maximize capacitance, one would 
want the individual plates as close as possible, since the capacitance 
is proportional to the inverse of the plate separation—hence the need 
for a dielectric with a high dielectric strength. Also, one would want 
to build, instead of a single parallel plate capacitor, several capacitors 
in parallel. This could be achieved through “stacking” the plates of 
the capacitor. For example, you can alternately lay down sheets of a 
conducting material, such as aluminum foil, sandwiched between 
sheets of insulating dielectric. Making sure that none of the 
conducting sheets are in contact with their immediate neighbors, 
connect every other plate together. ANS. FIG. CQ26.3 illustrates this 
idea. 

 This technique is often used when “home-brewing” signal capacitors 
for radio applications, as they can withstand huge potential 
differences without flashover (without either discharge between 
plates around the dielectric or dielectric breakdown). One variation 
on this technique is to sandwich together flexible materials such as 
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aluminum roof flashing and thick plastic, so the whole product can 
be rolled up into a “capacitor burrito” and placed in an insulating 
tube, such as a PVC pipe, and then filled with motor oil (again to 
prevent flashover). 

 

 

ANS. FIG. CQ26.3 

CQ26.4 The dielectric decreases the electric field between the plates, causing 
the potential difference to decrease for the same amount of charge. 
More charge may be placed on the capacitor before the capacitor 
experiences dielectric breakdown (resulting in charge jumping from 
one plate to the other, and in a path being burned through the 
dielectric) because the electric forces between charges on opposite 
plates are smaller. The capacitor can have a higher maximum 
operating voltage, allowing it to hold more charge.  

CQ26.5 The work done,   W = QΔV ,  is the work done by an external agent, 
like a battery, to move a charge through a potential difference,   ΔV.  
To determine the energy in a charged capacitor, we must add the 
work done to move bits of charge from one plate to the other. 
Initially, there is no potential difference between the plates of an 
uncharged capacitor. As more charge is transferred from one plate to 
the other, the potential difference increases, meaning that more work 
is needed to transfer each additional bit of charge. The total work is 

given by 
  
W =

1
2

QΔV.  Another explanation is that the charge Q is 

moved through an average potential difference 
  

1
2
ΔV ,  requiring total 

work 
  
W =

1
2

QΔV.  

*CQ26.6 The potential difference must decrease. Since there is no external 
power supply, the charge on the capacitor, Q, will remain constant—
that is, assuming that the resistance of the meter is sufficiently large. 
Adding a dielectric increases the capacitance, which must therefore 
decrease the potential difference between the plates. 
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CQ26.7 A capacitor stores energy in the electric field between the plates. This 
is most easily seen when using a “dissectible” capacitor. If the 
capacitor is charged, carefully pull it apart into its component pieces. 
One will find that very little residual charge remains on each plate. 
When reassembled, the capacitor is suddenly “recharged”—by 
induction—due to the electric field set up and “stored” in the 
dielectric. This proves to be an instructive classroom demonstration, 
especially when you ask a student to reconstruct the capacitor 
without supplying him/her with any rubber gloves or other 
insulating material. (Of course, this is after they sign a liability 
waiver.) 

CQ26.8 The work you do to pull the plates apart becomes additional electric 
potential energy stored in the capacitor. The charge is constant and 
the capacitance decreases but the potential difference increases to 

drive up the potential energy 
  

1
2

QΔV.  The electric field between the 

plates is constant in strength but fills more volume as you pull the 
plates apart. 

 

 

 

 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 20.1 Definition of Capacitance 

P26.1 (a)  From Equation 26.1 for the definition of capacitance, 
  
C = Q

ΔV
,  we 

have 
   

  
ΔV = Q

C
= 27.0 µC

3.00 µF
= 9.00 V

 

 (b) Similarly, 

   
  
ΔV =

Q
C

=
36.0 µC
3.00 µF

= 12.0 V  

P26.2 (a) 
  
C =

Q
ΔV

=
10.0 × 10−6  C

10.0 V
= 1.00 × 10−6  F = 1.00 µF  

 (b) 
  
ΔV =

Q
C

=
100 × 10−6  C
1.00 × 10−6  F

= 100 V  
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P26.3 (a) 
  
Q = CΔV = 4.00 × 10−6  F( ) 12.0 V( ) = 4.80 × 10−5  C = 48.0 µC  

 (b) 
  
Q = CΔV = 4.00 × 10−6  F( ) 1.50 V( ) = 6.00 × 10−6  C = 6.00 µC  

 
 

 

Section 26.2 Calculating Capacitance 
P26.4 (a) For a spherical capacitor with inner radius a and outer radius b,  
     

  

C = ab
ke b − a( ) =

0.070 0 m( ) 0.140 m( )
8.99× 109  N ⋅m2/C2( ) 0.140 m − 0.070 0 m( )

= 15.6 pF

 

 (b) 
  
ΔV = Q

C = 4.00 ×  10–6 C  
1.56 ×  10–11 F

= 2.57 × 105 V = 257 kV  

P26.5 (a) The capacitance of a cylindrical capacitor is
     

   

C = 
2ke ln b/ a( )

= 50.0 m
2 8.99× 109  N ⋅m2/C2( )ln 7.27 mm/2.58 mm( )

= 2.68 nF

 

 (b) Method 1:  
  
ΔV = 2keλ ln

b
a

⎛
⎝⎜

⎞
⎠⎟

 

   

   
λ =

Q

=

8.10 × 10−6  C
50.0 m

= 1.62 × 10−7  C m
 

   

  

ΔV = 2 8.99 × 109  N ⋅m2/C2( ) 1.62 × 10−7  C/m( )ln
7.27 mm
2.58 mm

⎛
⎝⎜

⎞
⎠⎟

= 3.02 kV

 

  Method 2:  
  
ΔV =

Q
C

=
8.10 × 10−6  C
2.68 × 10−9  F

= 3.02 kV  

P26.6 (a) 

  

C =
κ∈0 A

d
=

1.00( ) 8.85 × 10−12  C2 / N ⋅m2( ) 1.00 × 103  m( )2

800 m
= 11.1 nF

 



158     Capacitance and Dielectrics 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (b) The potential between ground and cloud is 

   

  

ΔV = Ed = 3.00 × 106  N/C( ) 800 m( ) = 2.40 × 109  V

Q = C ΔV( ) = 11.1× 10−9  C/ V( ) 2.40 × 109  V( ) = 26.6 C
 

P26.7 We have   Q = CΔV  and C =∈0 A/d.  Thus,   Q =∈0 AΔV/d  

 The surface charge density on each plate has the same magnitude, given 
by  

  

  
σ = Q

A
= ∈0 ΔV

d
 

 Thus,  
  

  
d = ∈0 ΔV

Q/A =
8.85 × 10–12  C2/N ⋅m2( )(150 V)

30.0 × 10–9 C/cm2( )  

   

  
d = 4.43 × 10–2 V ⋅C ⋅ cm2

N ⋅ m2  
⎛
⎝⎜

⎞
⎠⎟

1 m2( )
104  cm2( )

J
V ⋅C

N ⋅m
J = 4.43 µm

 

P26.8 (a) 

  

C = κ ∈0 A
d

=
1.00( ) 8.85× 10−12  C2 N ⋅m2( ) 2.30× 10−4  m2( )

1.50× 10−3  m
= 1.36× 10−12  F = 1.36 pF

 

 (b) 
  
Q = CΔV = 1.36 pF( ) 12.0 V( ) = 16.3 pC   

 (c) 
  
E =

ΔV
d

=
12.0 V

1.50 × 10−3  m
= 8.00 × 103  V/m  

P26.9 (a) The potential difference between two points in a uniform electric 
field is   ΔV = Ed,  so  

   
  
E = ΔV

d
= 20.0 V

1.80 × 10–3 m
= 1.11× 104 V/m

  

 (b) The electric field between capacitor plates is 
  
E = σ

∈0

, so   σ =∈0 E:  

   

 

σ = 8.85× 10–12 C2/N ⋅m2( ) 1.11× 104 V/m( ) = 9.83× 10–8 C/m2

= 98.3 nC/m2

 



Chapter 26     159 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (c) For a parallel-plate capacitor, 
  
C = ∈0 A

d :  

   

  

C =
8.85× 10–12  C2/N ⋅m2( ) 7.60× 10–4  m2( )

1.80× 10–3 m 

= 3.74× 10–12  F = 3.74 pF

  

 (d) The charge on each plate is   Q = CΔV:  
   

  
Q = 3.74× 10−12  F( ) 20.0 V( ) = 74.7 pC

 

P26.10 With θ = π, the plates are out of mesh and the 
overlap area is zero. With θ = 0, the overlap area is 

that of a semi-circle, 
  

π R2

2
. By proportion, the 

effective area of a single sheet of charge is  

   
  

π −θ( )R2

2
 

 When there are two plates in each comb, the number of adjoining 
sheets of positive and negative charge is 3, as shown in the sketch. 
When there are N plates on each comb, the number of parallel 
capacitors is 2N – 1 and the total capacitance is 

   

  

C = 2N − 1( )∈0 Aeffective

distance
=

2N − 1( )∈0 π −θ( )R2 2
d 2

= 2N − 1( )∈0 π −θ( )R2

d

 

P26.11 (a) The electric field outside a spherical charge distribution of radius 
R is E = keq/r2. Therefore,  

    

  
q =

Er2

ke

=
4.90 × 104  N/C( ) 0.210 m( )2

8.99 × 109  N ⋅m2 / C2 = 0.240 µC
 

  Then 
    

  
σ =

q
A

=
0.240 × 10−6  C
4π 0.120 m( )2 = 1.33 µC/m2

 

  (b) For an isolated charged sphere of radius R,  
     

  
C = 4π ∈0 r = 4π 8.85 × 10−12  C2 N ⋅m2( ) 0.120 m( ) = 13.3 pF

 

ANS. FIG. P26.10 
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P26.12   Fy∑ = 0:    T cosθ − mg = 0  
 

  Fx∑ = 0:    T sinθ − Eq = 0  

 Dividing,  
  
tanθ =

Eq
mg

,  

 so  
  
E =

mg
q

tanθ  

 and 
  
ΔV = Ed =

mgd tanθ
q

.  

 
 

 

Section 26.3 Combinations of Capacitors 
P26.13 (a) Capacitors in parallel add. Thus, the equivalent capacitor has a 

value of 

   
  
Ceq = C1 + C2 = 5.00 µF + 12.0 µF = 17.0 µF  

 (b) The potential difference across each branch is the same and equal 
to the voltage of the battery. 

   
  
ΔV = 9.00 V  

 (c) 
  
Q5 = CΔV = 5.00 µF( ) 9.00 V( ) = 45.0 µC  

  
  
Q12 = CΔV = 12.0 µF( ) 9.00 V( ) = 108 µC  

P26.14 (a) In series capacitors add as    

   
  

1
Ceq

=
1

C1

+
1

C2

=
1

5.00 µF
+

1
12.0 µF  

   
  
Ceq = 3.53 µF  

 (c) We must answer part (c) first before we can answer part (b). The 
charge on the equivalent capacitor is  

     Qeq = CeqΔV = 3.53 µF( ) 9.00 V( ) = 31.8 µC  

  Each of the series capacitors has this same charge on it. 

  So 
  
Q1 = Q2 = 31.8 µC .  
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 (b) The potential difference across each is  

   
  
ΔV1 =

Q1

C1

=
31.8 µC
5.00 µF

= 6.35 V  

   
  
ΔV2 =

Q2

C2

=
31.8 µC
12.0 µF

= 2.65 V  

P26.15 (a) When connected in series, the equivalent capacitance is 

  

1
Ceq

=
1

C1

+
1

C2
, or 

   
  

1
Ceq

=
1

C1

+
1

C2

=
1

4.20 µF
+

1
8.50 µF

→ Ceq = 2.81 µF  

 (b) When connected in parallel, the equivalent capacitance is  

   
  
Ceq = C1 + C2 = 4.20 µF + 8.50 µF = 12.70 µF  

P26.16 (a) When connected in series, the equivalent capacitance is 

  

1
Ceq

=
1

C1

+
1

C2
, or 

   
  

1
Ceq

=
1

C1

+
1

C2

=
1

2.50 µF
+

1
6.25 µF

→ Ceq = 1.79 µF  

  Capacitors in series carry the same charge as their equivalent 
capacitance:  

   
  
Q = Ceq ΔV( ) = 1.79 µF( ) 6.00 V( ) = 10.7 µC  on each capacitor 

 (b) When connected in parallel, each capacitor has the same potential 
difference across it. The charge stored on each capacitor is then 

  For   C1 = 2.50 µF :   
  
Q1 = C1 ΔV( ) = 2.50 µF( ) 6.00 V( ) = 15.0 µC  

  For   C2 = 6.25 µF :   
  
Q2 = C2 ΔV( ) = 6.25 µF( ) 6.00 V( ) = 37.5 µC  

P26.17 (a) In 
 

series , to reduce the effective capacitance: 

   

  

1
32.0 µF

=
1

34.8 µF
+

1
Cs

→
1

Cs

=
1

32.0 µF
−

1
34.8 µF

→ Cs = 398 µF
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 (b) In 
 

parallel , to increase the total capacitance: 

   
  

29.8 µF + Cp = 32.0 µF

Cp = 2.20 µF
 

P26.18 The capacitance of the combination of extra capacitors must be 

  
7
3 C − C =  4

3 C.  The possible combinations are: one capacitor: C; two 

capacitors: 2C or 
  
1
2 C;  three capacitors: 3C, 

  
1
3 C,  

  
2
3 C  or 

  
3
2 C.  None of 

these is 
  
4
3 C,  so the desired capacitance cannot be achieved.  

P26.19 (a) The equivalent capacitance of the series combination in the upper 
branch is  

   
  

1
Cupper

=
1

C1

+
1

C2

=
1

3.00 µF
+

1
6.00 µF

→ Cupper = 2.00 µF  

  Likewise, the equivalent capacitance of the series combination in 
the lower branch is 

   
  

1
Clower

=
1

C1

+
1

C2

=
1

2.00 µF
+

1
4.00 µF

→ Clower = 1.33 µF  

  These two equivalent capacitances are connected in parallel with 
each other, so the equivalent capacitance for the entire circuit is 

   
  
Ceq = Cupper + Clower = 2.00 µF + 1.33 µF = 3.33 µF  

 (b) Note that the same potential difference, equal to the potential 
difference of the battery, exists across both the upper and lower 
branches. Each of the capacitors in series combination holds the 
same charge as that on the equivalent capacitor. For the upper 
branch:  

     Q3 = Q6 = Qupper = Cupper ΔV( ) = 2.00 µF( ) 90.0 V( ) = 180 µC  s 

  so, 
 
180 µC on the 3.00-µF and the 6.00-µF capacitors  

  For the lower branch: 

     Q2 = Q4 = Qlower = Clower ΔV( ) = 1.33 µF( ) 90.0 V( ) = 120 µC  

  so, 
 
120 µC on the 2.00-µF and 4.00-µF capacitors  
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 (c) The potential difference across each of the capacitors in the circuit 
is: 

   
  
ΔV2 =

Q2

C2

=
120 µC
2.00 µF

= 60.0 V       

   
  
ΔV3 =

Q3

C3

=
180 µC
3.00 µF

= 60.0 V  

   
 
60.0 V across the 3.00-µF and the 2.00-µF capacitors  

   
  
ΔV4 =

Q4

C4

=
120 µC
4.00 µF

= 30.0 V       

   
  
ΔV6 =

Q6

C6

=
180 µC
6.00 µF

= 30.0 V  

   
 
30.0 V across the 6.00-µF and the 4.00-µF capacitors  

P26.20 (a) Capacitors 2 and 3 are in parallel and present equivalent 
capacitance 6C. This is in series with capacitor 1, so the battery 

sees capacitance 
  

1
3C

+
1

6C
⎡
⎣⎢

⎤
⎦⎥

−1

= 2C . 

 (b) If they were initially uncharged, C1  stores the same charge as C2 
and C3 together. With greater capacitance, C3 stores more charge 

than C2. Then 
  

Q1 > Q3 > Q2 . 

 (c) The   C2 || C3( )  equivalent capacitor stores the same charge as C1. 

Since it has greater capacitance, 
 
ΔV =

Q
C

 implies that it has 

smaller potential difference across it than C1. In parallel with each 

other, C2 and C3 have equal voltages: 
  
ΔV1 > ΔV2 = ΔV3 . 

 (d) If C3 is increased, the overall equivalent capacitance increases. 
More charge moves through the battery and Q increases. As ∆V1 
increases, ∆V2 must decrease so Q2 decreases. Then Q3 must 

increase even more: 
  

Q3  and Q1  increase; Q2  decreases . 

P26.21 Call C the capacitance of one capacitor and n the number of capacitors. 
The equivalent capacitance for n capacitors in parallel is  

  Cp = C1 + C2 + . . . + Cn = nC 
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 The relationship for n capacitors in series is  

  
  

1
Cs

= 1
C1

+ 1
C2

+ . . . + 1
Cn

= n
C

 

 Therefore, 
   

  

Cp

Cs
= nC

C/n = n2 or n = Cp /Cs = 100 = 10
 

P26.22 (a) In the upper section, each C1-C2 pair, on either 
side of C3 , are in series:  

   
  
Cs =

1
5.00

+
1

10.0
⎛
⎝⎜

⎞
⎠⎟
−1

= 3.33 µF  

  and both C1-C2 pairs are in parallel to C3: 

     Cupper = 2 3.33( ) + 2.00 = 8.67 µF  

  In the lower section, the C2-C2 pair are in parallel:  

     Clower = 2 10.0( ) = 20.0 µF  

  The upper section is in series with the lower section: 

   
  
Ceq =

1
8.67

+
1

20.0
⎛
⎝⎜

⎞
⎠⎟
−1

= 6.05 µF  

 (b) Capacitors in series carry the same charge as their equivalent 
capacitor; therefore, the upper section, equivalent to a 8.67-µF 
capacitor, and the lower section, equivalent to a 20.0-µF capacitor, 
carry the same charge as a 6.05-µF capacitor:  

      Qupper = Qeq = CeqΔV = 6.05 µF( ) 60.0 V( )  363 µC  

  The upper section is equivalent to capacitor C3 and two 3.33-µF 
capacitors in parallel, and the voltage across each is the same as 
that across a 8.67-µF capacitor:  

   
   
ΔVupper =

Qeq

Ceq

=
363 µC
8.67 µF

 41.9 V  

  Therefore, the charge on C3 is  

      Q3 = C3ΔV3  2.00 µF( ) 41.9 V( ) =  
  
83.7 µC  

ANS. FIG. P26.22 
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P26.23  (a) We simplify the circuit of Figure P26.23 in three steps as shown in 
ANS. FIG. P26.23 panels (a), (b), and (c). First, the 15.0-µF and 
3.00-µF capacitors in series are equivalent to  

    
 

1
(1/15.0 µF) + (1/3.00 µF)  

= 2.50 µF 

   Next, the 2.50-µF capacitor combines 
in parallel with the 6.00-µF capacitor, 
creating an equivalent capacitance of 
8.50 µF. At last, this 8.50-µF equivalent 
capacitor and the 20.0-µF capacitor are 
in series, equivalent to  

   
 

1
(1/8.50 µF) + (1/20.00 µF) = 5.96 µF  

 

  (b) We find the charge on each capacitor 
and the voltage across each by working 
backwards through solution figures 
(c)–(a), alternately applying  Q = CΔV  
and   ΔV = Q/C  to every capacitor, real 
or equivalent. For the 5.96-µF capacitor, 
we have  

    

  

Q = CΔV = 5.96 µF( ) 15.0 V( )
= 89.5 µC

  

   Thus, if a is higher in potential than b, just 89.5 µC flows between 
the wires and the plates to charge the capacitors in each picture. In 
(b) we have, for the 8.5-µF capacitor, 

    
  
ΔVac = Q

C
= 89.5 µC

8.50 µF 
= 10.5 V  

   and for the 20.0-µF capacitor in (b), (a), and the original circuit, we 
have Q20 = 89.5 µC. Then  

    
  
ΔVcb = Q

C
= 89.5 µC

20.0 µF 
= 4.47 V  

   Next, the circuit in diagram (a) is equivalent to that in (b), so  

 ΔVcb  = 4.47 V and  ΔVac  = 10.5 V. 

   For the 2.50-µF capacitor,  ΔV  = 10.5 V and  
    

  
Q = CΔV = 2.50 µF( ) 10.5 V( ) = 26.3 µC

 

 

(a) 

 

(b) 

 

(c) 
ANS. FIG. P26.23 
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   For the 6.00-µF capacitor, ∆V = 10.5 V and  

    Q6  = C∆V = (6.00 µF)(10.5 V) = 
 

63.2 µC  

   Now, 26.3 µC having flowed in the upper parallel branch in (a), 
back in the original circuit we have Q15 = 26.3 µC and  
Q3 = 26.3 µC. 

P26.24 (a) 
 
C =

Q
ΔV

.
 
When S1 is closed, the charge on C1 

will be
    

  
Q = CΔV = 6.00 µF( ) 20.0 V( ) = 120 µC

 

 (b)  When S1 is opened and S2 is closed, the total 
charge will remain constant and be shared by 
the two capacitors. We let primed symbols represent the new 
charges on the capacitors, in   ′Q1 = 120µC − ′Q2 .  The potential 
differences across the two capacitors will be equal.  

   
  
Δ ′V =  

′Q1

C1

=
′Q2

C2

or
120 µC – ′Q2

6.00 µF
 =

′Q2

3.00 µF
 

  Then we do the algebra to find  
    

  
′Q2 =

360
9.00

 µC = 40.0 µC
 

  and  
  
′Q1 = 120 µC − 40.0 µC = 80.0 µC .  

P26.25 

  

Cs =
1

5.00
+

1
7.00

⎛
⎝⎜

⎞
⎠⎟
−1

= 2.92 µF

Cp = 2.92 + 4.00 + 6.00 = 12.9 µF
 

P26.26 (a) First, we replace the parallel combination 
between points b and c by its equivalent 
capacitance, 

  Cbc = 2.00 µF + 6.00 µF = 8.00 µF . 
Then, we have three capacitors in 
series between points a and d. The 
equivalent capacitance for this 
circuit is therefore 

   
  

1
Ceq

=
1

Cab

+
1

Cbc

+
1

Ccd

=
3

8.00 µF  

ANS. FIG. P26.24 
 

ANS. FIG. P26.25 
 

 

ANS. FIG. P26.26 
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  giving 

   
  
Ceq =

8.00 µF
3

= 2.67 µF  

 (b) The charge on each capacitor in the series is the same as the 
charge on the equivalent capacitor:  

     Qab = Qbc = Qcd = Ceq ΔVad( ) = 2.67 µF( ) 9.00 V( ) = 24.0 µC  

  Then, note that 
  
ΔVbc =

Qbc

Cbc

=
24.0 µC
8.00 µF

= 3.00 V . The charge on each 

capacitor in the original circuit is: 

  On the 8.00 µF between a and b:    

   
  
Q8 = Qab = 24.0 µC  

  On the 8.00 µF between c and d:    

   
  
Q8 = Qcd = 24.0 µC  

  On the 2.00 µF  between b and c:    

     Q2 = C2 ΔVbc( ) = 2.00 µF( ) 3.00 V( )  
 
= 6.00 µC  

  On the 6.00 µF between b and c:    

     Q6 = C6 ΔVbc( ) = 6.00 µF( ) 3.00 V( )  
 
= 18.0 µC  

 (c) We earlier found that   ΔVbc = 3.00 V . The two 8.00 µF capacitors 

have the same voltage: 
  
ΔV8 = ΔV8 =

Q
C

=
24.0 µC
8.00 µF

= 3.00 V , so we 

conclude that the potential difference across each capacitor is the 
same:   ΔV8 = ΔV2 = ΔV6 = ΔV8 = 3.00 V . 

P26.27 Cp = C1 + C2  and  
  

1
Cs

=
1

C1

+
1

C2

.  Substitute C2 = Cp – C1:       

   
  

1
Cs

=
1

C1

+
1

Cp − C1

=
Cp − C1 + C1

C1 Cp − C1( )  

 Simplifying,   

     C1
2 − C1Cp + CpCs = 0  

   
  
C1 =

Cp ± Cp
2 − 4CpCs

2
=

1
2

Cp ±
1
4

Cp
2 − CpCs
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 We choose arbitrarily the + sign. (This choice can be arbitrary, since 
with the case of the minus sign, we would get the same two answers 
with their names interchanged.) 

   

  

C1 = 1
2

Cp + 1
4

Cp
2 −CpCs

= 1
2

9.00 pF( ) + 1
4

9.00 pF( )2 − 9.00 pF( ) 2.00 pF( )
= 6.00 pF

C2 = Cp −C1 = 1
2

Cp −
1
4

Cp
2 −CpCs

= 1
2

9.00 pF( )− 1.50 pF = 3.00 pF

 

P26.28 Cp = C1 + C2  and  
  

1
Cs

=
1

C1

+
1

C2

.  

 Substitute   

   C2 = Cp – C1:     
  

1
Cs

=
1

C1

+
1

Cp − C1

=
Cp − C1 + C1

C1 Cp − C1( )  

 Simplifying,  

     C1
2 − C1Cp + CpCs = 0  

 and  
  
C1 =

Cp ± Cp
2 − 4CpCs

2
= 1

2
Cp + 1

4
Cp

2 −CpCs  

 where the positive sign was arbitrarily chosen (choosing the negative 
sign gives the same values for the capacitances, with the names 
reversed). Then, from C2 = Cp – C1, we obtain 

   
  
C2 =

1
2

Cp −
1
4

Cp
2 − CpCs

 

P26.29 For C1 connected by itself,   C1ΔV = 30.8 µC  where  ΔV  is the battery 

voltage: 
  
ΔV =

30.8 µC
C1

. 

 For C1 and C2 in series: 

   
  

1
1 C1 + 1 C2

⎛
⎝⎜

⎞
⎠⎟
ΔV = 23.1 µC  
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 substituting, 
  

30.8 µC
C1

=
23.1 µC

C1

+
23.1 µC

C2

   which gives  C1 = 0.333C2 

 For C1 and C3 in series: 

   
  

1
1 C1  +  1 C3

⎛
⎝⎜

⎞
⎠⎟
ΔV = 25.2 µC  

   
  

30.8 µC
C1

=
25.2 µC

C1

+
25.2 µC

C3

      which gives   C1 = 0.222C3 

 For all three: 
    

  

Q = 1
1 C1 + 1 C2 + 1 C3

⎛
⎝⎜

⎞
⎠⎟
ΔV = C1ΔV

1+ C1 C2 + C1 C3

= 30.8 µC
1+ 0.333 + 0.222

= 19.8 µC

 

 This is the charge on each one of the three. 

 
 

 

Section 26.4 Energy Stored in a Charged Capacitor 

P26.30 From 
  
UE = 1

2
CΔV 2 ,  we have 

   

  
ΔV = 2UE

C
= 2 300 J( )

30.0× 10−6  F
= 4.47 × 103  V

 

P26.31 The energy stored in the capacitor is given by  
  

  
UE = Q2

2C
= 1

2
QΔV = 1

2
54.0× 10−6  C( ) 12.0 V( ) = 3.24× 10−4  J

 

P26.32 (a) 
  
UE = 1

2
C ΔV( )2 = 1

2
3.00 µF( ) 12.0 V( )2 = 216 µJ  

 (b) 
  
UE = 1

2
C ΔV( )2 = 1

2
3.00 µF( ) 6.00 V( )2 = 54.0 µJ  

P26.33 (a) 
  
Q = CΔV = 150 × 10−12  F( ) 10 × 103  V( ) = 1.50 × 10−6  C = 1.50 µC  

 (b) From 
  
UE = 1

2
C ΔV( )2 ,  

   
  
ΔV = 2UE

C
=

2 250× 10−6  J( )
150× 10−12  F

= 1.83× 103  V = 1.83 kV  
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P26.34 (a) The equivalent capacitance of a series combination of C1 and C2 is 

   
  

1
Ceq

=
1
C1

+
1

C2

=
1

18.0 µF
+

1
36.0 µF

→ Ceq = 12.0 µF  

 (b) This series combination is connected to a 12.0-V battery, the total 
stored energy is  

   

  
UE , eq = 1

2
Ceq ΔV( )2 = 1

2
12.0× 10−6  F( ) 12.0 V( )2 = 8.64× 10−4  J

 

 (c) Capacitors in series carry the same charge as their equivalent 
capacitor. The charge stored on each of the two capacitors in the 
series combination is 

   

  

Q1 = Q2 = Qtotal = Ceq ΔV( ) = 12.0 µF( ) 12.0 V( )
= 144 µC = 1.44× 10−4  C

 

  and the energy stored in each of the individual capacitors is:  

  18.0 µF capacitor:
 

  
UE1 = Q1

2

2C1

=
1.44× 10−4  C( )2

2 18.0× 10−6  F( ) = 5.76× 10−4  J
 

  36.0 µF capacitor:  
   

  
UE2 = Q2

2

2C2

=
1.44× 10−4  C( )2

2 36.0× 10−6  F( ) = 2.88× 10−4  J
 

 (d) 

  

UE1 +UE2 = 5.76× 10−4  J + 2.88× 10−4  J = 8.64× 10−4  J = UE , eq , 

which is one reason why the 12.0 µF capacitor is considered 
to be equivalent to the two capacitors. 

 

 (e) 

 

The total energy of the equivalent capacitance will always equal
the sum of the energies stored in the individual capacitors.

 

 (f) If C1 and C2 were connected in parallel rather than in series, the 
equivalent capacitance would be Ceq = C1 + C2 = 18.0 µF + 36.0 µF 
= 54.0 µF. If the total energy stored in this parallel combination is 
to be the same as stored in the original series combination, it is 
necessary that  

   

  

1
2

Ceq ΔV( )2 = UE , eq
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  From which we obtain 
   

  
ΔV =

2UE , eq

Ceq

=
2 8.64× 10−4  J( )

54.0× 10−6  F
= 5.66 V

 

 (g) Because the potential difference is the same across the two 

capacitors when connected in parallel, and 
  
UE = 1

2
C ΔV( )2 ,  

  
the larger capacitor C2  stores more energy.  

P26.35 (a) Because the capacitors are connected in parallel, their voltage 
remains the same: 

   

  

UE = 1
2

C ΔV( )2 + 1
2

C ΔV( )2 = C ΔV( )2

= 10.0× 10−6  µF( ) 50.0 V( )2

= 2.50× 10−2  J

 

 (b) Because 
  
C =

κ∈0 A
d

 and d → 2d, the altered capacitor has new 

capacitance to 
  
′C =

C
2

. The total charge is the same as before:  

   

  

Qinitial = Qfinal

C ΔV( ) + C ΔV( ) = C Δ ′V( ) +
C
2

Δ ′V( )

2C ΔV( ) =
3
2

C Δ ′V( )    →    Δ ′V =
4
3
ΔV =

4
3

50.0 V( ) = 66.7 V

 

 (c) New 
  
′UE = 1

2
C ΔV′( )2 + 1

2
1
2

C⎛
⎝⎜

⎞
⎠⎟ ΔV ′( )2 = 3

4
C ΔV ′( )2 = 3

4
C

4ΔV
3

⎛
⎝⎜

⎞
⎠⎟

2

 

   

  
′UE = 4

3
C ΔV( )2 = 4

3
UE = 4

3
2.50× 10−2  J( ) = 3.30× 10−2  J

 

 (d) 
 
Positive work is done by the agent pulling the plates apart.  

P26.36 Before the capacitors are connected, each has voltage ∆V and charge Q.  

 (a) Connecting plates of like sign places the capacitors in parallel, so 
the voltage on each capacitor remains the same.  

   

  
UE , total = 1

2
C ΔV( )2 + 1

2
C ΔV( )2 = C ΔV( )2

 



172     Capacitance and Dielectrics 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (b) Because 
  
C =

∈0 A
d

,  the altered capacitor has new capacitance 

  
C′ =

∈0 A
2d

=
C
2

,  and this change in capacitance results in a new 

potential difference  Δ ′V  across the parallel capacitors. We can 
solve for the new potential difference because the total charge 
remains the same:  

   

  
2Q = C ΔV( )+ C ΔV( ) = C Δ ′V( )+ C

2
Δ ′V( )    →    Δ ′V = 4ΔV

3

 

 (c) Each capacitor has potential difference ∆V′:  
  

  

′UE , total = 1
2

C ΔV′( )2 + 1
2

C′ ΔV′( )2 = 1
2

C
4ΔV

3
⎛
⎝⎜

⎞
⎠⎟

2

+ 1
2

C
2

⎛
⎝⎜

⎞
⎠⎟

4ΔV
3

⎛
⎝⎜

⎞
⎠⎟

2

= 12
9

C ΔV( )2 = 4C
ΔV( )2

3

 

 (d) 
 
Positive work is done by the agent pulling the plates apart.  

P26.37 (a) The circuit diagram for capacitors connected 
in parallel is shown in ANS. FIG. P26.37(a).  

 (b) 
  
UE = 1

2
C ΔV( )2 ,  and  

  

  

Cp = C1 + C2 = 25.0 µF + 5.00 µF

= 30.0 µF

 

  

  
UE = 1

2
30.0× 10−6( ) 100( )2 = 0.150 J

 

 (c) 
  
Cs =

1
C1

+
1

C2

⎛
⎝⎜

⎞
⎠⎟

−1

=
1

25.0 µF
+

1
5.00 µF

⎛
⎝⎜

⎞
⎠⎟

−1

= 4.17 µF  

  

  

UE = 1
2

C ΔV( )2

ΔV = 2UE

C
= 2 0.150 J( )

4.17 × 10−6  F
= 268 V

 

 (d) The circuit diagram for capacitors 
connected in series is shown in ANS. 
FIG. P26.37(d). 

 

 

ANS. FIG. P26.37(a) 
 

 

ANS. FIG. P26.37(d) 
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P26.38 To prove this, we follow the hint, and calculate the work done in 
separating the plates, which equals the potential energy stored in the 
charged capacitor: 

   

  
UE = 1

2
Q2

C = F∫ dx
 

 Now from the fundamental theorem of calculus, dUE = Fdx  

 and  
  
F  =  d

dxUE = d
dx

Q2

2C
⎛
⎝⎜

⎞
⎠⎟
= 1

2
d
dx

Q2

A∈0 /x
⎛
⎝⎜

⎞
⎠⎟

.  

 Performing the differentiation,  
   

  
F  = 1

2
d
dx

Q2x
A∈0

⎛
⎝⎜

⎞
⎠⎟
= Q2

2∈0 A

 

P26.39 The energy transferred is  

   
  
TET =

1
2

QΔV =
1
2

50.0 C( ) 1.00 × 108  V( ) =   2.50 × 109  J  

 and 1% of this (or   ΔEint = 2.50 × 107  J ) is absorbed by the tree. If m is 
the amount of water boiled away, then   

   

  

ΔEint = m 4 186 J kg ⋅°C( ) 100°C− 30.0°C( )
                                              + m 2.26× 106  J kg( )

= 2.50× 107  J

  

 giving 
  
m = 9.79 kg .  

P26.40 (a) According to Equation 26.2, we may think of a sphere of radius R 

that holds charge Q as having a capacitance 
 
C =

R
ke

. The energy 

stored is  
   

  
UE = 1

2
C ΔV( )2 = 1

2
R
ke

⎛
⎝⎜

⎞
⎠⎟

keQ
R

⎛
⎝⎜

⎞
⎠⎟

2

= keQ
2

2R

 

 (b) The total energy is  

   

  

UE = UE1 +UE2 = 1
2

q1
2

C1

+ 1
2

q2
2

C2

= 1
2

q1
2

R1 ke

+ 1
2

Q − q1( )2

R2 ke

= keq1
2

2R1

+
ke Q − q1( )2

2R2
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 (c) For a minimum we set 
  

dU
E

dq1

= 0:  

   

  

2keq1

2R1

+
2ke Q − q1( )

2R2

−1( ) = 0   
 

  which gives 
   

  
R2q1 = R1Q − R1q1    →    q1 =

R1Q
R1 + R2

 

 (d) 
  
q2 = Q − q1 =

R2Q
R1 + R2

 

 (e) 
  
V1 =

keq1

R1

=
keR1Q

R1 R1 + R2( ) → V1 =
keQ

R1 + R2

, and  

  
  
V2 =

keq2

R2

=
keR2Q

R2 R1 + R2( ) → V2 =
keQ

R1 + R2

 

 (f)   V1 −V2 = 0  

P26.41 Originally, the capacitance of each pair of plates is 
  
C = ∈0 A

d
,  but after 

the switch is closed and the distance d is changed to d′ = 0.500d, the 
plates have new capacitance  

  

  
′C = ∈0 A

′d
= ∈0 A

d 2
= 2∈0 A

d
= 2C

 

 The capacitors are identical and in series, so each has half the total 
voltage   (ΔV)  = 100 V.  

 (a) The plates are in series, so each collects the same charge:  

   
  
Q = ′C ΔV( ) = 2C ΔV( ) = 2 2.00 µC( ) 100 V( ) = 400 µC  

 (b) Each plate contributes half of the total electric field between the 

plates, 
  

E
2
= σ

2∈0

= Q
2∈0 A

,  where Q = 2C  (ΔV)  is the magnitude of 

the charge on a plate, from (a) above. The electric force that each 
plate exerts on the charge of its neighboring plate is  

   

  
F = Q

E
2

= Q2

2∈0 A
=

2C ΔV( )[ ]2

2∈0 A
= 2C2 ΔV( )2

∈0 A d( )d
= 2C ΔV( )2

d

 

  and this force is balanced by the spring force F = kx on each plate. 
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Each spring stretches by distance 
  
x =

d
4

, so we obtain 

   

  

2C ΔV( )2

d
= k

d
4

 

  and solving for the force constant gives 
   

  
 k = 8C ΔV( )2

d2 =
8 2.00× 10−6  F( ) 100 V( )2

8.00× 10−3  m( )2 = 2.50 kN m
 

 
 

 

Section 26.5 Capacitors with Dielectrics 
P26.42 (a) Consider two sheets of aluminum foil, each 40 cm by 100 cm, with 

one sheet of plastic between them.  

 (b) Suppose the plastic has  κ ≈ 3,    Emax ~ 107  V/m,  and thickness  

1 mil 
 
=

2.54 cm
1 000

.  

  Then,  
  
C =

κ∈0 A
d

~
3 8.85 × 10−12  C2 / N ⋅m2( ) 0.400 m2( )

2.54 × 10−5  m
~ 10−6  F  

 (c) 
  
ΔVmax = Emaxd ~ 107  V/m( ) 2.54 × 10−5  m( ) ~ 102  V  

P26.43   Qmax = CΔVmax ,  but   ΔVmax = Emaxd.  

 Also, 
  
C =

κ∈0 A
d

.  

 Thus, 
  
Qmax =

κ∈0 A
d

Emaxd( ) =κ∈0 AEmax.  

 (a) With air between the plates, from Table 26.1, the dielectric 
constant is κ = 1.00, and the dielectric strength is 

  Emax = 3.00 × 106  V m.  Therefore, 
   

  

Qmax =κ∈0 AEmax

= 8.85 × 10−12  F/m( ) 5.00 × 10−4  m2( ) 3.00 × 106  V/m( )
= 13.3 nC
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 (b) With polystyrene between the plates, from Table 26.1, κ = 2.56 
and   Emax = 24.0 × 106  V/m.  

   

  

Qmax =κ ∈0 AEmax

= 2.56 8.85× 10−12  F/m( ) 5.00× 10−4  m2( )
                                                × 24.0× 106  V/m( )

 = 272 nC

 

P26.44 (a) Note that the charge on the plates remains constant at the original 
value, Q0, as the dielectric is inserted. Thus, the change in the 
potential difference,   ΔV = Q/C,  is due to a change in capacitance 
alone. The ratio of the final and initial capacitances is 

   

  

C f

Ci

= κ ∈0 A d
∈0 A d

=κ
    

  and 
  

C f

Ci

=
Q0 ΔV( ) f

Q0 ΔV( )i

=
ΔV( )i

ΔV( ) f

=
85.0 V
25.0 V

= 3.40  

  Thus, the dielectric constant of the inserted material is  κ = 3.40 . 

 (b) The material is probably 
 
nylon  (see Table 26.1). 

 (c) The presence of a dielectric weakens the field between plates, and 
the weaker field, for the same charge on the plates, results in a 
smaller potential difference. If the dielectric only partially filled 
the space between the plates, the field is weakened only within 
the dielectric and not in the remaining air-filled space, so the 
potential difference would not be as small. The voltage would lie 
somewhere between 25.0 V and 85.0 V. 

P26.45 (a) 

  

C =
κ∈0 A

d
=

2.10 8.85 × 10−12  F m( ) 1.75 × 10−4  m2( )
4.00 × 10−5  m

= 8.13 × 10−11F

= 81.3 pF

 

 (b) 
  
ΔVmax = Emaxd = 60.0 × 106  V/m( ) 4.00 × 10−5  m( ) = 2.40 kV  
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P26.46 ANS. FIG. P26.46 exaggerates how the 
strips can be offset to avoid contact 
between the two foils. It shows how a 
second paper strip can be used to roll the 
capacitor into a convenient cylindrical 
shape with electrical contacts at the two 
ends. We suppose that the overlapping 
width of the two metallic strips is still  
w = 7.00 cm. Then for the area of the plates 
we have   A = w  in    C =κ∈0 A/d =κ∈0 w/d.  
Solving the equation gives

    

   
 =

Cd
κ∈0 w

=
(9.50 × 10−8  F)(2.50 × 10−5  m)

3.70(8.85 × 10−12  C2/N ⋅m2 )(0.070 0 m)
= 1.04 m

 

P26.47 Originally, 
  
Ci =

∈0 A
d

=
Q
ΔV( )i

.  

 (a) The charge is the same before and after immersion, with value 
   

  
Q = Ci ΔV( )i =

∈0 A ΔV( )i

d

 

   

  

Q =
8.85 × 10−12  C2 / N ⋅m2( ) 25.0 × 10−4  m2( ) 250 V( )

1.50 × 10−2  m

= 369 pC

 

 (b) Finally, 

   
  
C f =

κ∈0 A
d

=
Q

ΔV( ) f

:  

   

  

C f =
80( ) 8.85 × 10−12  C2 / N ⋅m2( ) 25.0 × 10−4  m2( )

1.50 × 10−2  m
= 1.20 × 10−10  F

 

  and 

  

ΔV( ) f =
Q
C f

=
Ci ΔV( )i

C f

=
∈0 A / d( )
κ ∈0 A / d( ) ΔV( )i =

ΔV( )i

κ
=

250 V
80

= 3.10 V

  

 (c) Originally, 
  
Ui =

1
2

Ci ΔV( )i
2 =

∈0 A ΔV( )i
2

2d
.  

  Finally, 
  
U f =

1
2

C f ΔV( ) f
2 =

1
2

κ∈0 A
d

⎛
⎝⎜

⎞
⎠⎟

ΔV( )i

κ
⎛
⎝⎜

⎞
⎠⎟

2

=
∈0 A ΔV( )i

2

2dκ
,  

ANS. FIG. P26.46 
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  where, from Table 26.1, κ = 80 for distilled water. So,  
   

  

ΔU = U f −Ui

=
∈0 A ΔV( )i

2

2dκ
−
∈0 A ΔV( )i

2

2d

=
∈0 A ΔV( )i

2

2d
1
κ
− 1⎛

⎝⎜
⎞
⎠⎟ =

∈0 A ΔV( )i
2 1−κ( )

2dκ

 

   

  

ΔU =
8.85 × 10−12  C2 N ⋅m2( ) 25.0 × 10−4  m2( ) 250 V( )2 1− 80( )

2 1.50 × 10−2  m( ) 80( )
= –4.55 × 10−8  J = −45.5 nJ

 

P26.48 The given combination of capacitors is equivalent to the circuit 
diagram shown in ANS. FIG. P26.48. 

 

ANS. FIG. P26.48 

 Put charge Q on point A. Then, 

    Q = 40.0 µF( )ΔVAB = 10.0 µF( )ΔVBC = 40.0 µF( )ΔVCD  

 So,   ΔVBC = 4ΔVAB = 4ΔVCD , and the center capacitor will break down 
first, at ∆VBC = 15.0 V. When this occurs, 

  
  
ΔVAB = ΔVCD =

1
4

ΔVBC( ) = 3.75 V  

 and 
  
VAD = VAB + VBC + VCD = 3.75 V + 15.0 V + 3.75 V = 22.5 V . 

P26.49 (a) We use the equation UE = Q2/2C to find the potential energy of 
the capacitor. As we will see, the potential difference  ΔV changes 
as the dielectric is withdrawn. The initial and final energies are 

  
UE ,i =

Q2

2Ci

 and 
  
UE , f =

Q2

2C f

.  But the initial capacitance (with the 

dielectric) is 
 
Ci =κC f . Therefore, 

  
UE , f = κ

Q2

2Ci

=κUE ,i .  Since the 

work done by the external force in removing the dielectric equals 
the change in potential energy, we have 

   
  
W = U f −Ui =κUi −Ui = κ − 1( )Ui = κ − 1( ) Q2

2Ci
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  To express this relation in terms of potential difference   ΔVi ,  we 
substitute   Q = Ci ΔVi( ) ,  and evaluate:  

   

  

W = 1
2

Ci ΔVi( )2 κ − 1( ) = 1
2

2.00× 10−9  F( ) 100 V( )2 5.00− 1.00( )

= 4.00× 10−5  J = 40.0 µJ

 

  The positive result confirms that the final energy of the capacitor 
is greater than the initial energy. The extra energy comes from the 
work done on the system by the external force that pulled out the 
dielectric. 

 (b) The final potential difference across the capacitor is 
 
ΔVf =

Q
C f

. 

  Substituting 
 
C f =

Ci

κ
 and  Q = Ci ΔVi( )  gives  

   
  ΔVf = kΔVi = 5.00(100 V) = 500 V  

  Even though the capacitor is isolated and its charge remains 
constant, the potential difference across the plates does increase 
in this case. 

 
 

 

Section 26.6 Electric Dipole in an Electric Field 
P26.50 (a) The displacement from negative to positive charge is 
   

   

2

a = −1.20î + 1.10 ĵ( )  mm − 1.40î − 1.30 ĵ( )  mm

= −2.60î + 2.40 ĵ( )× 10−3  m

 

  The electric dipole moment is     

p = 2


aq  

   

   


p = 3.50× 10−9  C( ) −2.60î + 2.40 ĵ( )× 10−3  m

= −9.10î + 8.40 ĵ( )× 10−12  C ⋅m

  

 (b) The torque exerted by the field on the dipole is  

   

   


τ = p×


E

= −9.10î + 8.40 ĵ( )× 10−12  C ⋅m⎡
⎣

⎤
⎦ × 7.80î − 4.90 ĵ( )× 103  N C⎡

⎣
⎤
⎦

= +44.6k̂ − 65.5k̂( )× 10−9  N ⋅m = −2.09× 10−8 k̂ N ⋅m 
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 (c) Relative to zero energy when it is perpendicular to the field, the 
dipole has potential energy  

   

    

U = −p⋅

E

= − −9.10î + 8.40 ĵ( )× 10−12  C ⋅m⎡
⎣

⎤
⎦

                              ⋅ 7.80î − 4.90 ĵ( )× 103  N C⎡
⎣

⎤
⎦

= 71.0 + 41.2( )× 10−9  J = 112 nJ

  

 (d) For convenience we compute the magnitudes 

   
   

p = 9.10( )2

+ 8.40( )2
× 10−12  C ⋅m = 12.4 × 10−12  C ⋅m  

  and 
   

E = 7.80( )2 + 4.90( )2 × 103  N C = 9.21× 103  N C  

  The maximum potential energy occurs when the dipole moment 
is opposite in direction to the field, and is  

   
    
Umax = −p⋅


E = − p


E (−1) = p


E = 114 nJ  

 

  The minimum potential energy configuration is the stable 
equilibrium position with the dipole aligned with the field. The 
value is   Umin = −114 nJ  

  Then the difference, representing the range of potential energies 
available to the dipole, is 

  
Umax −Umin = 228 nJ .  

P26.51 (a) The electric field produced by the line 
of charge has radial symmetry about 
the y axis. According to Equation 24.7 
in Example 24.4, the electric field to 
the right of the y axis is  

   
    


E = E r( ) î = 2ke

λ
r

î  

  Let x = 25.0 cm represent the 
coordinate of the center of the dipole 
charge, and let 2a = 2.00 cm represent the distance between the 
charges. Then   r− = x − acosθ  is the coordinate of the negative 
charge and   r+ = x + acosθ  is the coordinate of the positive charge. 

  The force on the positive charge is  

   
    


F+ = qE r+( ) î = q 2ke

λ
r+

î
⎛
⎝⎜

⎞
⎠⎟

= 2ke

qλ
x + acosθ

î  

 

ANS. FIG. P26.51 
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  and the force on the negative charge is 

   
    


F− = −qE r−( ) î = −q 2ke

λ
r−

î
⎛
⎝⎜

⎞
⎠⎟

= −2ke

qλ
x − acosθ

î  

  The force on the dipole is  
   

    


F =

F+ +

F− = 2ke

qλ
x + acosθ

− 2ke
qλ

x − acosθ
⎛
⎝⎜

⎞
⎠⎟ î

= 2keqλ
1

x + acosθ
− 1

x − acosθ
⎛
⎝⎜

⎞
⎠⎟ î

= 2keqλ
x − acosθ( )− x + acosθ( )

x2 + acosθ( )2

⎡

⎣
⎢

⎤

⎦
⎥ î

= − 4keaqλ cosθ
x2 + acosθ( )2

⎡

⎣
⎢

⎤

⎦
⎥ î

 

  Substituting numerical values and suppressing units, 
   

   


F = −

4 8.99× 109( ) 0.010 0( ) 10.0× 10−6( ) 2.00× 10−6( )cos35.0°
0.250( )2 + 0.010 0( ) cos35.0°( )[ ]2 î

= −9.42 × 10−2 î N

 

P26.52 Let x represent the coordinate of the negative charge. Then   x + 2acosθ  
is the coordinate of the positive charge. The force on the negative 
charge is     


F− = −qE x( ) î . The force on the positive charge is 

  
    


F+ = +qE x + 2acosθ( ) î ≈ q E x( )+ dE

dx
⎛
⎝⎜

⎞
⎠⎟ 2acosθ( )⎡

⎣⎢
⎤
⎦⎥

î  

 

ANS. FIG. P26.52 

 The force on the dipole is altogether  
  

    


F =

F− +

F+ = q

dE
dx

2acosθ( ) î = p
dE
dx

cosθ î
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Section 26.7 An Atomic Description of Dielectrics 
P26.53 (a) Consider a gaussian surface in the form of a cylindrical pillbox 

with ends of area  ′A << A  parallel to the sheet. The side wall of 
the cylinder passes no flux of electric field since this surface is 
everywhere parallel to the field. Gauss’s law becomes 

  
E ′A + E ′A = Q

∈ A
′A ,  so 

  
E = Q

2∈ A
 directed away from the 

positive sheet. 

 (b) In the space between the sheets, each creates field 
  

Q
2∈ A

 away 

from the positive and toward the negative sheet. Together, they 
create a field of 

    

 
E = Q

∈ A

 

 (c) Assume that the field is in the positive x-direction. Then, the 
potential of the positive plate relative to the negative plate is 

    

    
ΔV = −


E ⋅ds

−plate

+plate

∫ = − Q
∈ A

î ⋅ − îdx( )
−plate

+plate

∫ = + Qd
∈ A

 

 (d) Capacitance is defined by: 
  
C = Q

ΔV
= Q

Qd ∈ A
= ∈ A

d
= κ ∈0 A

d
.  

 
 

 

Additional Problems 
P26.54 The stages for the reduction of this circuit are shown in ANS. FIG. 

P26.54 below.  

  

ANS. FIG. P26.54 

 Thus,    
  
Ceq = 6.25 µF  
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P26.55 (a) Each face of P2 carries charge, so the three-plate system is 
equivalent to what is shown in ANS. FIG. P26.55 below. 

 

ANS. FIG. P26.55 

 Each capacitor by itself has capacitance 
   

  

C = κ ∈0 A
d

=
1 8.85× 10−12  C2 /N ⋅m2( ) 7.50× 10−4  m2( )

1.19× 10−3  m
= 5.58 pF

 

  Then equivalent capacitance 
 
= 5.58 pF + 5.58 pF = 11.2 pF .  

 (b) 
  
Q = CΔV + CΔV = 11.2 × 10−12  F( ) 12 V( ) = 134 pC  

 (c) Now   P3
 has charge on two surfaces and in effect three capacitors 

are in parallel: 

   
  
C = 3 5.58 pF( ) = 16.7 pF  

 (d) Only one face of   P4
 carries charge: 

   
  
Q = CΔV = 5.58× 10−12  F( ) 12 V( ) = 66.9 pC

 

P26.56 The upper pair of capacitors, 3-µF and 6-µF, are in series. Their 
equivalent capacitance is  

  
 

1
3.00

+
1

6.00
⎛
⎝⎜

⎞
⎠⎟

−1

= 2.00 µF  

 The lower pair of capacitors, 2-µF and 4-µF, are in series. Their 
equivalent capacitance is  

  
 

1
2.00

+
1

4.00
⎛
⎝⎜

⎞
⎠⎟

−1

= 1.33 µF  

 The upper pair are in parallel to the lower pair, so the total capacitance 
is  

    Ceq = 2.00µF + 1.33µF = 3.33µF  

 (a) The total energy stored in the full circuit is then 

   

  

Energy stored( )total
=

1
2

Ceq ΔV( )2
=

1
2

3.33 × 10−6  F( ) 90.0 V( )2

= 1.35 × 10−2  J = 13.5 × 10−3  J = 13.5 mJ
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 (b) Refer to P26.19 for the calculation of the charges used below. The 
energy stored in each individual capacitor is 

  For 2.00 µF:   

  

Energy stored( )2
= Q2

2

2C2

=
120× 10−6  C( )2

2 2.00× 10−6  F( ) = 3.60× 10−3  J

= 3.60 mJ

 

  For 3.00 µF:    

  

Energy stored( )3
= Q3

2

2C3

=
180× 10−6  C( )2

2 3.00× 10−6  F( ) = 5.40× 10−3  J

= 5.40 mJ

 

  For 4.00 µF:     

  

Energy stored( )4
= Q4

2

2C4

=
120× 10−6  C( )2

2 4.00× 10−6  F( ) = 1.80× 10−3  J

= 1.80 mJ

 

  For 6.00 µF:    

  

Energy stored( )6
= Q6

2

2C6

=
180× 10−6  C( )2

2 6.00× 10−6  F( ) = 2.70× 10−3  J

= 2.70 mJ

 

 (c)  Energy stored = 3.60 + 5.40 + 1.80 + 2.70( )  mJ = 13.5 mJ =  

 Energy stored( )total
 

  
 

The total energy stored by the system equals the sum of the
energies stored in the individual capacitors.

 

*P26.57 From Equation 26.13,  
   

  
uE = UE

V
= 1

2
∈0 E2

 

 Solving for the volume gives 
   

  

V = UE

1
2
∈0 E2

= 1.00× 10−7  J
1
2

8.85× 10−12  C2/N ⋅m2( ) 3 000 V/m( )2

= 2.51× 10−3  m3 = 2.51× 10−3  m3( ) 1 000 L
m3( ) = 2.51 L
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P26.58 Imagine the center plate is split along its midplane 
and pulled apart. We have two capacitors in parallel, 
supporting the same ∆V and carrying total charge Q. 

The upper capacitor has capacitance 
  
C1 =

∈0 A
d

 and 

the lower 
  
C2 =

∈0 A
2d

.  Charge flows from ground onto 

each of the outside plates so that  

     Q1 + Q2 = Q   and     ΔV1 = ΔV2 = ΔV.  

 Then  
  

Q1

C1

=
Q2

C2

=
Q1d
∈0 A

=
Q2 2d
∈0 A

   →     Q1 = 2Q2    →      2Q2 + Q2 = Q.  

 (a) 
  
Q2 =

Q
3

. On the lower plate the charge is −
Q
3

.  

  

  
Q1 =

2Q
3

. On the upper plate the charge is −
2Q
3

 

 (b) 
  
ΔV =

Q1

C1

=
2Qd

3∈0 A
 

P26.59 The dielectric strength is Emax = 2.00 × 108 V/m = 
  

ΔVmax

d ,  

 so we have for the distance between plates 
  
d =

ΔVmax

Emax
.  

 Now to also satisfy 
  
C =  

κ ∈0A
d

= 0.250 × 10–6 F  with κ  = 3.00, we 

combine by substitution to solve for the plate area:  

   

  

A =  Cd
κ ∈0

=
CΔVmax

κ ∈0 Emax
= (0.250 × 10–6  F)(4 000 V)

(3.00)(8.85 × 10–12  F/m)(2.00 × 108  V/m)

= 0.188 m2

 

P26.60 We can use the energy UC stored in the capacitor to find the potential 
difference across the plates: 

   

  
UC  = 

1
2

C ΔV( )2    →    ΔV  =  2UC

C

 

ANS. FIG. P26.58 
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 When the particle moves between the plates, the change in potential 
energy of the charge-field system is 

   
  
ΔUsystem  = qΔV  = −q

2UC

C
 

 where we have noted that the potential difference is negative from the 
positive plate to the negative plate. Apply the isolated system (energy) 
model to the charge-field system: 

     
ΔK  + ΔUsystem  = 0   →  ΔK  = −ΔUsystem  = q

2UC

C
 

 Substitute numerical values: 

   
  
ΔK  =  −3.00 × 10−6  C( ) 2 0.050 0 J( )

10.0 × 10−6  F
 = −3.00 × 10−4  J  

 This decrease in kinetic energy of the particle is more than the energy 
with which it began. Therefore, the particle does not arrive at the 
negative plate but rather turns around and moves back to the positive 
plate.  

*P26.61 (a) 
  
V = m

ρ
= 1.00 × 10−12  kg

1 100 kg m3 = 9.09 × 10−16  m3  

  Since 
  
V = 4π r3

3
,  the radius is 

  
r = 3V

4π
⎡
⎣⎢

⎤
⎦⎥

1 3

,  and the surface area is  

   

  

A = 4π r2 = 4π 3V
4π

⎡
⎣⎢

⎤
⎦⎥

2 3

= 4π
3 9.09 × 10−16  m3( )

4π
⎡
⎣⎢

⎤
⎦⎥

2 3

= 4.54 × 10−10  m2

 

 (b) 

  

C = κ∈0 A
d

=
5.00( ) 8.85 × 10−12  C2 N ⋅m2( ) 4.54 × 10−10  m2( )

100 × 10−9  m
= 2.01× 10−13  F

 

 (c) 
  
Q = C ΔV( ) = 2.01× 10−13  F( ) 100 × 10−3  V( ) = 2.01× 10−14  C ,  

  and the number of electronic charges is 

   
  
n = Q

e
= 2.01× 10−14  C

1.60 × 10−19  C
= 1.26 × 105  
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P26.62 (a) With the liquid filling the space between the plates to height fd, 
the top of the fluid at the air-fluid interface develops an induced 
dipole layer of charge so that it acts as a thin plate with opposite 
charge on its upper and lower sides; thus, the partially filled 
capacitor behaves as two capacitors in series connected at the 
interface. The upper and lower capacitors have separate 
capacitances:  

   

  
Cup =

1∈0 A
d(1− f )

and Cdown = 6.5∈0 A
fd

 

  The equivalent series capacitance is  

   

  

C f = 1
d(1− f )
∈0 A

+ fd
6.5∈0 A

= 6.5∈0 A
6.5d − 6.5df + fd

= ∈0 A
d

⎛
⎝⎜

⎞
⎠⎟

6.5
6.5− 5.5 f

⎛
⎝⎜

⎞
⎠⎟

= 25.0 µF(1− 0.846 f )−1

 

 (b) For f = 0, the capacitor is empty so we can expect capacitance 

  
25.0 µF . For f = 0,  

   
  
C f = 25.0 µF(1− 0.846 f )−1 = 25.0 µF(1− 0)−1 = 25.0 µF  

  and 
 
the general expression agrees . 

 (c) For f = 1, we expect  6.5(25.0 µF) = 162 µF . For f = 1,  
    

  
C f = 25.0 µF(1− 0.846 f )−1 = 25.0 µF(1− 0.846)−1 = 162 µF

 

  and 
 
the general expression agrees . 

P26.63 The initial charge on the larger capacitor is 
   

  Q = CΔV = 10.0 µF( ) 15.0 V( ) = 150 µC  

 An additional charge q is pushed through the 50.0-V battery, giving the 
smaller capacitor charge q and the larger charge 150 µC + q. 

 Then 
  
50.0 V =

q
5.00 µF

+
150 µC + q

10.0 µF
.  

   
  

500 µC = 2q + 150 µC + q
q = 117 µC

 



188     Capacitance and Dielectrics 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 So across the 5.00-µF capacitor,  
   

  
ΔV = q

C
= 117 µC

5.00 µF
= 23.3 V

 

 Across the 10.0-µF capacitor,  
   

  
ΔV = 150 µC + 117 µC

10.0 µF
= 26.7 V

 

*P26.64 From Gauss's Law, for the electric field inside the 

cylinder, 
   
2π rE = qin

∈0

. 

 so  
  
E = λ

2π r ∈0

.  

   

    
ΔV = −


E ⋅d r

r1

r2

∫ = λ
2π r∈0

dr
r1

r2

∫ = λ
2π∈0

ln
r1

r2

⎛
⎝⎜

⎞
⎠⎟

 

 Recognizing that 
  

λmax

2π∈0

= Emaxrinner ,  we obtain 

   

  

ΔV = 1.20× 106  V m( ) 0.100× 10−3  m( )ln
25.0 m

0.200 m( )
ΔVmax = 579 V

 

P26.65 Where the metal block and the plates overlap, the electric field 
between the plates is zero. The plates do not lose charge in the 
overlapping region, but opposite charge induced on the surfaces  
of the inserted portion of the block cancels the field from charge  
on the plates. The unfilled portion of the capacitor has capacitance     

   

   
C = ∈0 A

d
= ∈0  − x( )

d

 

 The effective charge on this portion (the charge producing the 
remaining electric field between the plates) is proportional to the 
unblocked area:  

   
   
Q =

 − x( )Q0


 

 (a) The stored energy is 
   

   
U =

Q2

2C
=
 − x( )Q0 [ ]2

2∈0   − x( ) d
=

Q0
2d  − x( )
2∈0 

3

 

ANS. FIG. P26.64 
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 (b) 
   
F = −

dU
dx

= −
d
dx

Q0
2  − x( )d
2∈0 

3

⎛
⎝⎜

⎞
⎠⎟

= +
Q0

2d
2∈0 

3  

  
    


F =

Q0
2d

2∈0 
3  to the right  (into the capacitor: the block is pulled in) 

 (c) Stress 
   
=

F
d

=
Q0

2

2∈0 
4  

 (d) The energy density is 
   

   

uE = 1
2
∈0 E2 = 1

2
∈0

σ
∈0

⎛
⎝⎜

⎞
⎠⎟

2

= 1
2∈0

Q
A

⎛
⎝⎜

⎞
⎠⎟

2

= 1
2∈0

− x( )Q0 

 − x( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

=
Q0

2

2∈0 
4

 

  (e) 
 
They are precisely the same.  

P26.66 (a) Put charge Q on the sphere of radius a and –Q on the other 
sphere. Relative to V = 0 at infinity, because d is larger compared 
to a and to b. 

  The potential at the surface of a is approximately    
 
Va =

keQ
a

−
keQ
d

 

  and the potential of b is approximately    
 
Vb =

−keQ
b

+
keQ
d

. 

  The difference in potential is    
 
Va −Vb =

keQ
a

+
keQ
b

−
keQ
d

−
keQ
d

 

  and 

  

C = Q
Va −Vb

= 4π∈0

1
a

⎛
⎝

⎞
⎠ + 1

b
⎛
⎝

⎞
⎠ −

2
d

⎛
⎝

⎞
⎠

 

 (b) As  d →∞ , 
  

1
d

  becomes negligible compared to 
  

1
a

 and 
  

1
b

. Then, 

   

  

C = 4π∈0

1
a

⎛
⎝

⎞
⎠ + 1

b
⎛
⎝

⎞
⎠

   and   
1
C

= 1
4π∈0 a

+ 1
4π∈0 b

 

  as for two spheres in series. 
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P26.67 Call the unknown capacitance Cu. The charge remains the same:  

   

  

Q = Cu ΔVi( ) = Cu + C( ) ΔVf( )
Cu =

C ΔVf( )
ΔVi( ) − ΔVf( ) =

10.0 µF( ) 30.0 V( )
100 V − 30.0 V( ) = 4.29 µF

 

P26.68 (a) 
   
C0 =

∈0 A
d

= Q0

ΔV0

 for a capacitor with air or vacuum beteen its 

plates.  When the dielectric is inserted at constant voltage, 
   

  
C =κC0 =

Q
ΔV0

 

  The original energy is 
   

  
UE0 =

C0 ΔV0( )2

2

 

  and the final energy is 
   

  
UE =

C ΔV0( )2

2
=
κC0 ΔV0

2( )
2

 

  therefore, 
   

  

UE

UE0

=κ
 

 (b) The electric field between the plates polarizes molecules within the 
dielectric; therefore the field does work on charge within the 
molecules to create electric dipoles. The extra energy comes from 
(part of the) electrical work done by the battery in separating that 
charge. 

 (c) The charge on the plates increases because the voltage remains 
the same:  

     Q0 = C0ΔV0
 

  and   Q = CΔV0 =κC0ΔV0  

  so the charge increases according to 
  

Q
Q0

=κ . 
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P26.69 Initially (capacitors charged in parallel), 

   
  q1 = C1 ΔV( ) = 6.00 µF( ) 250 V( ) = 1 500 µC  

   
  q2 = C2 ΔV( ) = 2.00 µF( ) 250 V( ) = 500 µC   

 After reconnection (positive plate to negative plate), 

     ′qtotal = q1 − q2 = 1 000 µC       

 and   
  
Δ ′V =

′qtotal

Ctotal

=
1 000 µC
8.00 µF

= 125 V  

 Therefore, 

   
  
′q1 = C1 Δ ′V( ) = 6.00 µF( ) 125 V( ) = 750 µC  

   
  
′q2 = C2 Δ ′V( ) = 2.00 µF( ) 125 V( ) = 250 µC  

P26.70 The condition that we are testing is that the capacitance increases by 
less than 10%, or, 

   
  

′C
C

< 1.10  

 Substituting the expressions for C and C′ from Example 26.1, we have 

   

   

′C
C

=


2ke ln b 1.10a( )


2ke ln b a( )

=
ln b a( )

ln b 1.10a( ) < 1.10  

 This becomes 
   

  

ln
b
a

⎛
⎝⎜

⎞
⎠⎟ < 1.10ln

b
1.10a

⎛
⎝⎜

⎞
⎠⎟ = 1.10ln

b
a

⎛
⎝⎜

⎞
⎠⎟ + 1.10ln

1
1.10

⎛
⎝⎜

⎞
⎠⎟

= 1.10ln
b
a

⎛
⎝⎜

⎞
⎠⎟ − 1.10ln 1.10( )

 

 We can rewrite this as 

   

  

−0.10ln
b
a

⎛
⎝⎜

⎞
⎠⎟

< −1.10ln 1.10( )

ln
b
a

⎛
⎝⎜

⎞
⎠⎟

> 11.0ln 1.10( ) = ln 1.10( )11.0
 

 where we have reversed the direction of the inequality because we 
multiplied the whole expression by –1 to remove the negative signs. 
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Comparing the arguments of the logarithms on both sides of the 
inequality, we see that 

   
  

b
a

> 1.10( )11.0
= 2.85  

 Thus, if b > 2.85a, the increase in capacitance is less than 10% and it is 
more effective to increase   . 

P26.71 Placing two identical capacitor is series will split the voltage evenly 
between them, giving each a voltage of 45 V, but the total capacitance 
will be half of what is needed. To double the capacitance, another pair 
of series capacitors must be placed in parallel with the first pair, as 
shown in ANS. FIG. P26.71A. The equivalent capacitance is  

   
 

1
100 µF

+
1

100 µF
⎛
⎝⎜

⎞
⎠⎟

−1

+
1

100 µF
+

1
100 µF

⎛
⎝⎜

⎞
⎠⎟

−1

= 100 µF  

 Another possibility shown in ANS. FIG. P26.71B: two capacitors in 
parallel, connected in series to another pair of capacitors in parallel; the 
voltage across each parallel section is then 45 V. The equivalent 
capacitance is 

   
 

1

100 µF +  100 µF( )−1
+ 100 µF +  100 µF( )−1 = 100 µF  

 

ANS. FIG. P26.71A 

 

ANS. FIG. P26.71B 

 (a) 

 

One capacitor cannot be used by itself — it would burn out. She
can use two capacitors in series, connected in parallel to another
two capacitors in series. Another possibility is two capacitors in
parallel, connected in series to another two capacitors in parallel.
In either case, one capacitor will be left over.

 

 (b) 

 

Each of the four capacitors will be exposed to a maximum
voltage of 45 V.
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Challenge Problems 
P26.72 From Example 26.1, when there is a vacuum between the conductors, 

the voltage between them is 

   
  
ΔV = Vb – Va = 2keλ ln

b 
a

⎛
⎝⎜

⎞
⎠⎟
= λ  

2π ∈0

ln
b 
a

⎛
⎝⎜

⎞
⎠⎟

 

 With a dielectric, a factor  1/κ  must be included, and the equation 
becomes  

   

  
ΔV = λ  

2πκ ∈0
ln b

a( )  

 The electric field is  

   
  
E = λ  

2πκ ∈0 r
 

 So when E = Emax at r = a,  

   
  

λmax  

2πκ ∈0

= Emaxa and ΔVmax =
λmax  

2πκ ∈0

ln
b
a

⎛
⎝⎜

⎞
⎠⎟
= Emaxa ln

b
a

⎛
⎝⎜

⎞
⎠⎟

 

 Thus,  
  

  

ΔVmax = 18.0× 106  V/m( ) 0.800× 10−3  m( )ln
3.00 mm

0.800 mm
⎛
⎝⎜

⎞
⎠⎟

= 19.0 kV

 

P26.73 According to the suggestion, the combination of  
capacitors shown is equivalent to  

 Then, from ANS. FIG. P26.73, 
   

  

1
C

= 1
C0

+ 1
C + C0

+ 1
C0

= C + C0 + C0 + C + C0

C0 C + C0( )

 

   

  

C0C + C0
2 = 2C2 + 3C0C

2C2 + 2C0C − C0
2 = 0

C =
−2C0 ± 4C0

2 + 4 2C0
2( )

4

 

 Only the positive root is physical: 

   
  

C =
C0

2
3 − 1( )  

 

 

ANS. FIG. P26.73 
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P26.74 Let charge λ per length be on one wire and –λ be on the other. The 
electric field due to the charge on the positive wire is perpendicular to 
the wire, radial, and of magnitude 

  

  
E+ = λ

2π ∈0 r

 

 The potential difference between the surfaces of the wires due to the 
presence of this charge is 

  

    
ΔV1 = −


E ⋅dr

−wire

+wire

∫ = − λ
2π ∈0

dr
rD−r

r

∫ = λ
2π ∈0

ln
D− r

r
⎛
⎝⎜

⎞
⎠⎟

 

 The presence of the linear charge density –λ on the negative wire 
makes an identical contribution to the potential difference between the 
wires. Therefore, the total potential difference is 

  

  
ΔV = 2 ΔV1( ) = λ

π ∈0

ln
D− r

r
⎛
⎝⎜

⎞
⎠⎟

 

 With D much larger than r we have nearly 
  
ΔV = λ

π ∈0

ln
D
r

⎛
⎝⎜

⎞
⎠⎟  

 and the capacitance of this system of two wires, each of length   , is 
  

   
C = Q

ΔV
= λ
ΔV

= λ
λ π ∈0( )ln D r[ ] = π ∈0 

ln D r[ ]
 

 The capacitance per unit length is 

   

C


= π ∈0

ln D r[ ] .  

P26.75 By symmetry, the potential difference across 3C is zero, so the circuit 
reduces to (see ANS. FIG. P26.75): 

   
  
Ceq =

1
2C

+
1

4C
⎛
⎝⎜

⎞
⎠⎟

−1

=
8
6

C =
4
3

C  

 

ANS. FIG. P26.75 

P26.76 (a) Consider a strip of width dx and length W at position x from the 
front left corner. The capacitance of the lower portion of this strip 

is 
  

κ 1 ∈0 W  dx
t x L

.  The capacitance of the upper portion is 
  

κ 2 ∈0 W  dx
t 1− x L( ) .  
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The series combination of the two elements has capacitance 
    

  

1
tx

κ 1 ∈0 WL dx
+ t(L− x)
κ 2 ∈0 W  Ldx

= κ 1κ 2 ∈0 W  Ldx
κ 2tx +κ 1tL−κ 1tx

 

  The whole capacitance is a combination of elements in parallel:  
    

  

C = κ 1κ 2 ∈0 W  Ldx
κ 2 −κ 1( )tx +κ 1tL0

L

∫

   = 1
κ 2 −κ 1( )t

κ 1κ 2 ∈0 W  L κ 2 −κ 1( )tdx
κ 2 −κ 1( )tx +κ 1tL0

L

∫

  = κ 1κ 2 ∈0 W  L
κ 2 −κ 1( )t

ln κ 2 −κ 1( )tx +κ 1tL⎡⎣ ⎤⎦0

L

= κ 1κ 2 ∈0 WL
κ 2 −κ 1( )t

ln
κ 2 −κ 1( )tL +κ 1tL

0 +κ 1tL
⎡

⎣
⎢

⎤

⎦
⎥

= κ 1κ 2 ∈0 WL
κ 2 −κ 1( )t

ln
κ 2

κ 1

⎡

⎣
⎢

⎤

⎦
⎥ = κ 1κ 2 ∈0 WL

(−1) κ 2 −κ 1( )t
ln

κ 2

κ 1

⎛
⎝⎜

⎞
⎠⎟

−1⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= κ 1κ 2 ∈0 WL
κ 1 −κ 2( )t

ln
κ 1

κ 2

⎡

⎣
⎢

⎤

⎦
⎥

 

 (b) The capacitor physically has the same capacitance if it is turned 
upside down, so the answer should be the same with κ1 and κ2 
interchanged. We have proven that it has this property in the 
solution to part (a). 

 (c) Let κ1 = κ2 (1 + x). Then 
  
C = κ 2(1+ x)κ 2 ∈0 WL

κ 2xt
ln 1+ x[ ].   

  As x approaches zero we have 
  
C = κ (1+ 0)∈0 WL

xt
x = κ ∈0 WL

t
 as 

was to be shown. 
P26.77 Assume a potential difference across a and b, and notice that the 

potential difference across 8.00 µF the capacitor must be zero by 
symmetry. Then the equivalent capacitance can be determined from 

the circuit shown in ANS. FIG. P26.77, and is 
  
Cab = 3.00 µF . 

 

ANS. FIG. P26.77 
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P26.78 (a) The portion of the device containing the dielectric has plate area 

  x  and capacitance 
   
C1 =

κ∈0 x
d

.  The unfilled part has area 

    − x( )  and capacitance 
   
C2 =

∈0   − x( )
d

.  The total capacitance is 

   
C1 + C2 = ∈0 

d
+ x κ − 1( )[ ] .

 

 (b) The stored energy is 

   

U =
1
2

Q2

C
=

Q2d
2∈0   + x κ − 1( )[ ] .  

 (c) 
    


F = − dU

dx
⎛
⎝⎜

⎞
⎠⎟ î = Q2d κ − 1( )

2∈0  + x κ − 1( )[ ]2 î .  When x = 0, the original 

value of the force is 
    

Q2d κ − 1( )
2∈0 

3 î.  As the dielectric slides in, the 

charges on the plates redistribute themselves. The force decreases 

to its final value, when    x = ,  of 
    

Q2d κ − 1( )
2 ∈0 

3κ 2 î.  

 (d) At 
   
x =

2

, 
    


F =

2Q2d κ − 1( )
∈0 

3 κ + 1( )2 î.  

  For the constant charge on the capacitor and the initial voltage we 
have the relationship 

   

   
Q = C0ΔV =

∈0 
2ΔV
d

 

  Then the force is 
    


F =

2∈0  ΔV( )2 κ − 1( )
d κ + 1( )2 î.  

  

   


F =

2 8.85 × 10−12  C2/N ⋅m2( ) 0.050 0 m( ) 2.00 × 103  V( )2
4.50 − 1( )

0.002 00 m( ) 4.50 + 1( )2 î

= 205î  µN
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 
P26.2 (a) 1.00 µF; (b) 100 V 

P26.4 (a) 15.6 pF; (b) 257 kV 

P26.6 (a) 11.1 nF; (b) 26.6 C 

P26.8 (a) 1.36 pF; (b) 16.3 pC; (c) 8.00 × 103 V/m 

P26.10 
  

2N − 1( )∈0 π −θ( )R2

d
 

P26.12 
  

mgd tanθ
q

 

P26.14 (a) 3.53 µF; (b) 6.35 V and 2.65 V; (c) 31.8 µC 

P26.16 (a) 10.7 µC; (b) 15.0 µC  and 37.5 µC 

P26.18 None of the possible combinations of the extra capacitors is 
  

4
3

C , so the 

desired capacitance cannot be achieved. 

P26.20 (a) 2C; (b)   Q1 > Q3 > Q2 ;  (c)   ΔV1 > ΔV2 > ΔV3 ;  (d) Q3 and Q1 increase; Q2 
decreases 

P26.22 (a) 6.05 µF ; (b)  83.7 µC  

P26.24  120 µC ; (b)  40.0 µC  and  80.0 µC  

P26.26 (a)  2.67 µF ; (b)  24.0 µC ,  24.0 µC ,  6.00 µC ,  18.0 µC ; (c) 3.00 V 

P26.28 
  
C1 =

1
2

Cp +
1
4

Cp
2 − CpCs  and 

  
C2 =

1
2

Cp −
1
4

Cp
2 − CpCs  

P26.30 4.47 × 103 V 

P26.32 (a)  216 µJ ; (b)  54.0 µJ  

P26.34 (a)  12.0 µF ; (b) 8.64 × 10-4 J; (c) U1 = 5.76 × 10-4 J and U2 = 2.88 × 10-4 J; (d) 

  
U1 + U2 = 5.76 × 10−4 J + 2.88 × 10−4 J = 8.64 × 10−4 J = Ueq , which is one 

reason why the  12.0 µF capacitor is considered to be equivalent to the 
two capacitors; (e) The total energy of the equivalent capacitance will 
always equal the sum of the energies stored in the individual capacitors; 
(f) 5.66 V; (g) The larger capacitor C2 stores more energy. 

P26.36 (a)   C ΔV( )2 ;  (b) 
  
Δ ′V =

4ΔV
3

;  (c) 
  
4C

ΔV( )2

3
;  (d) Positive work is done by 

the agent pulling the plates apart. 
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P26.38 
  

Q2

2∈0 A
 

P26.40 (a) 
  

keQ
2

2R
;  (b) 

  

keq1
2

2R1

+
ke Q − q1( )2

2R2

;  (c) 
  

R1Q
R1 + R2

;  (d) 
  

R2Q
R1 + R2

;  

 (e) 
  
V1 =

keQ
R1 + R2

 and 
  
V2 =

keQ
R1 + R2

;  (f) 0 

P26.42 (a) Consider two sheets of aluminum foil, each 40 cm by 100 cm, with 
one sheet of plastic between them; (b) 10–6 F; (c) 102 V 

P26.44 (a)  κ = 3.40 ; (b) nylon; (c) The voltage would lie somewhere between 
25.0 V and 85.0 V. 

P26.46 1.04 m 

P26.48 22.5 V 

P26.50 (a) 
  
−9.10î + 8.40 ĵ( )× 10−12  C ⋅m;  (b)   −2.09× 10−8 k̂ N ⋅m;  (c) 112 nJ;  

(d) 228 nJ 

     

P26.52 
   
p

dE
dx

cosθ î  

P26.54  6.25 µF  

P26.56 (a) 13.5 mJ; (b) 3.60 mJ, 5.40 mJ, 1.80 mJ, 2.70 mJ; (c) The total energy 
stored by the system equals the sum of the energies stored in the 
individual capacitors. 

P26.58 (a) On the lower plate the charge is 
  
−

Q
3

, and on the upper plate the 

charge is 
  
− 2Q

3
;  (b) 

  

2Qd
3∈0 A

 

P26.60 The decrease in kinetic energy of the particle is more than the energy 
with which it began. Therefore, the particle does not arrive at the 
negative plate but rather turns around and moves back to the positive 
plate.  

P26.62 (a)   2.50µF 1− 0.846 f( )−1 ;  (b)  25.0µF , the general expression agrees;  
(c)  162 µF;  The general expression agrees. 

P26.64 579 V 
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P26.66 (a) See P26.66(a) for full explanation; (b) 
  

1
4π ∈0 a

+ 1
4π ∈0 b

 

P26.68 (a) See P26.68(a) for full explanation; (b) The electric field between the 
plates polarizes molecules within the dielectric; therefore the field does 
work on charge within the molecules to create electric dipoles. The extra 
energy comes from (part of the) electrical work done by the battery in 

separating that charge; (c) 
  

Q
Q0

=κ  

P26.70 See P26.70 for full mathematical verification. 

P26.72 19.0 kV 

P26.74 
   

C


= π ∈0

1n D r[ ]  

P26.76 (a) 
  

κ 1κ 2 ∈0 WL
κ 1 −κ 2( )t

ln
κ 1

κ 2

⎡

⎣
⎢

⎤

⎦
⎥ ;  (b) The capacitor physically has the same 

capacitance if it is turned upside down, so the answer should be the 
same with  κ 1  and  κ 2  interchanged. We have proven that it has this 
property in the solution to part (a); (c) See P26.76(c) for full explanation. 

P26.78 (a) 
   

∈0 
d
+ x κ − 1( )[ ] ;  (b) 

   

Q2d
2∈0  + x κ − 1( )[ ] ;  (c) 

    

Q2d κ − 1( )
2∈0  + x κ − 1( )[ ]2 î;  

 (d)   205î  µN  
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27 
Current and Resistance 

 

CHAPTER OUTLINE 
 

27.1  Electric Current 

27.2  Resistance  

27.3 A Model for Electrical Conduction 

27.4 Resistance and Temperature 

27.5 Superconductors 

27.6 Electrical Power 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ27.1 Answer (d). One ampere–hour is (1 C/s)(3 600 s) = 3 600 coulombs. 
The ampere–hour rating is the quantity of charge that the battery can 
lift though its nominal potential difference.  

OQ27.2 (i) Answer (e). We require ρL/AA = 3ρL/AB . Then AA /AB = 1/3. 

 (ii) Answer (d). π rA
2/π rB

2 = 1/3 gives  rA/rB =  1/ 3 .  

OQ27.3 The ranking is c > a > b > d > e. Because 

 (a)   I = ΔV /R,  so the current becomes 3 times larger. 

 (b)   P = IΔV = I 2R,  so the current is  3  times larger.  

 (c) R is 1/4 as large, so the current is 4 times larger. 

 (d) R is 2 times larger, so the current is 1/2 as large. 

 (e) R increases by a small percentage, so the current has a small 
decrease.  

OQ27.4 (i) Answer (a). The cross-sectional area decreases, so the current 
density increases, thus the drift speed must increase. 
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 (ii) Answer (a). The cross-sectional area decreases, so the resistance 
per unit length, R/L = ρ/A, increases. 

OQ27.5 Answer (c).   I = ΔV /R = 1.00 V/10.0 Ω = 0.100 A = 0.100 C/s.  
Because current is constant,   I = dq/dt = Δq/Δt,  and we find that  

   
  Δq = IΔt = 0.100 C/s( ) 20.0 s( ) = 2.00 C  

OQ27.6 Answer (c). The resistances are:   R1 = ρL A = ρL πr2 , 

  R2 = ρL π 2r( )2 = 1 4( )ρL πr2 ,   R3 = ρ 2L( ) π 3r( )2 = 2 / 9( )ρL πr2 . 

OQ27.7 Answer (a). The new cross-sectional area is three times the original. 

Originally, 
  
R =

ρL
A

.  Finally, 
  
R f =

ρ L 3( )
3A

=
ρL
9A

=
R
9

.  

OQ27.8 Answer (b). Using R0 = 10.0 Ω at T = 20.0 °C, we have 

  R = R0 1+αΔT( )  or  
  

  
α = R R0 − 1

ΔT
= 10.6 10.0− 1

90.0°C− 20.0°C( ) = 8.57 × 10−4 °C−1
 

 At T = –20.0°C, we have  
  

  

R = R0 1+αΔT( )
= 10.0 Ω( ) 1+ 8.57 × 10−4 °C−1 −20.0°C− 20.0°C( )⎡⎣ ⎤⎦ = 9.66 Ω

 

OQ27.9 Answer (a). R = V/I = 2 V/2 A = 1 Ω. 

OQ27.10 Answer (c). Compare resistances:  

   
  

RA

RB

=
ρLA π(dA / 2)2

ρLB π(dB / 2)2 =
LA

LB

dB
2

dA
2 =

2LB( )
LB

dB
2

2dB( )2  
 
=

2
4
=

1
2

 

 Compare powers: 
  

PA

PB

=
ΔV 2 RA

ΔV 2 RB

=
RB

RA

= 2 . 

OQ27.11 Answer (e). 
  
RA =

ρAL
A

=
2ρB( )L

A
= 2RB . Therefore,  

   
  

PA

PB

=
ΔV 2 RA

ΔV 2 RB

=
RB

RA

=
1
2

 

OQ27.12 (i) Answer (a). P = ∆V2/R, and ∆V is the same for both bulbs, so the 
25 W bulb must have higher resistance so that it will have lower 
power.  

 (ii) Answer (b). ∆V is the same for both bulbs, so the 100 W bulb 
must have lower resistance so that it will have more current.  



202     Current and Resistance 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

OQ27.13 Answer (d). Because wire B has twice the radius, it has four times the 
cross-sectional area of wire A. For wire A, RA = R = ρL/A. For wire B, 
RB = ρ(2L)/(4A) = (1/2)ρL/A = R/2.  

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ27.1 Choose the voltage of the power supply you will use to drive the 

heater. Next calculate the required resistance R as 
  

ΔV 2

P
. Knowing 

the resistivity ρ of the material, choose a combination of wire length 

and cross-sectional area to make 
  


A

⎛
⎝⎜

⎞
⎠⎟ =

R
ρ

⎛
⎝⎜

⎞
⎠⎟

. You will have to pay 

for less material if you make both    and A smaller, but if you go too 
far the wire will have too little surface area to radiate away the 
energy; then the resistor will melt. 

CQ27.2 Geometry and resistivity. In turn, the resistivity of the material 
depends on the temperature. 

CQ27.3 The conductor does not follow Ohm’s law, and must have a 
resistivity that is current-dependent, or more likely temperature-
dependent. 

CQ27.4 In a normal metal, suppose that we could proceed to a limit of zero 
resistance by lengthening the average time between collisions. The 
classical model of conduction then suggests that a constant applied 
voltage would cause constant acceleration of the free electrons. The 
drift speed and the current would increase steadily in time. 

 It is not the situation envisioned in the question, but we can actually 
switch to zero resistance by substituting a superconducting wire for 
the normal metal. In this case, the drift velocity of electrons is 
established by vibrations of atoms in the crystal lattice; the maximum 
current is limited; and it becomes impossible to establish a potential 
difference across the superconductor. 

CQ27.5 The resistance of copper increases with temperature, while the 
resistance of silicon decreases with increasing temperature. The 
conduction electrons are scattered more by vibrating atoms when 
copper heats up. Silicon’s charge carrier density increases as 
temperature increases and more atomic electrons are promoted to 
become conduction electrons. 

CQ27.6 The amplitude of atomic vibrations increases with temperature. 
Atoms can then scatter electrons more efficiently. 
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CQ27.7 Because there are so many electrons in a conductor (approximately 
1028 electrons/m3) the average velocity of charges is very slow. When 
you connect a wire to a potential difference, you establish an electric 
field everywhere in the wire nearly instantaneously, to make 
electrons start drifting everywhere all at once. 

CQ27.8 Voltage is a measure of potential difference, not of current. “Surge” 
implies a flow—and only charge, in coulombs, can flow through a 
system. It would also be correct to say that the victim carried a 
certain current, in amperes. 

 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 21.1 Electric Current 
*P27.1 The drift speed of electrons in the line is 
   

  
vd = I

nqa
= I

n e πd2 / 4( )
  

 The time to travel the 200-km length of the line is then 
   

  
Δt = L

vd

=
Ln e πd2( )

4I

  

 Substituting numerical values, 
   

  

Δt =
200× 103  m( ) 8.50× 1028  m−3( ) 1.60× 10−19  C( )π 0.02 m( )2

4 1 000 A( )

= 8.55× 108  s( ) 1 yr
3.156× 107  s

⎛
⎝⎜

⎞
⎠⎟ = 27.1 yr

 

*P27.2 The period of revolution for the sphere is 
  
T = 2π

ω
,  and the average 

current represented by this revolving charge is 
  
I = q

T
= qω

2π
.  

P27.3 We use I = nqAvd, where n is the number of charge carriers per unit 
volume, and is identical to the number of atoms per unit volume. We 
assume a contribution of 1 free electron per atom in the relationship 
above. For aluminum, which has a molar mass of 27, we know that 
Avogadro’s number of atoms, NA, has a mass of 27.0 g. Thus, the mass 
per atom is 

   
  
m =

27.0 g
NA

=
27.0 g

6.02 × 1023 = 4.49 × 10−23  g atom  
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 Thus,  

  
  
n =

ρ
m

=
density of aluminum

mass per atom
=

2.70 g cm3

4.49 × 10−23  g atom
 

    n = 6.02 × 1022  atoms cm3 = 6.02 × 1028  atoms m3  

 Therefore,     

  

  

vd =
I

nqA
=

5.00 A
6.02 × 1028  m−3( ) 1.60 × 10−19  C( ) 4.00 × 10−6  m2( )

= 1.30 × 10−4  m s

 

 or,   
  
vd = 0.130 mm s .  

P27.4 The period of the electron in its orbit is T = 2πr/v, and the current 
represented by the orbiting electron is 

  

  

I = ΔQ
Δt

= e
T

= v e
2πr

=
2.19× 106  m s( ) 1.60× 10−19  C( )

2π 5.29× 10−11  m( )

= 1.05× 10−3  C s = 1.05 mA

 

P27.5 If N is the number of protons, each with charge e, that hit the target in 
time ∆t, the average current in the beam is   I = ΔQ/Δt = Ne/Δt,  giving 

   
  
N =

I Δt( )
e

=
125 × 10−6  C/s( ) 23.0 s( )
1.60 × 10−19  C/proton

= 1.80 × 1016  protons  

P27.6 (a) From Example 27.1 in the textbook, the density of charge carriers 
(electrons) in a copper wire is n = 8.46 × 1028 electrons/m3. With 

  A = πr2  and q = e , the drift speed of electrons in this wire is 

   

  

vd = I
n q A

= I
ne πr2( )

= 3.70 C s
8.46× 1028  m−3( ) 1.60× 10−19  C( )π 1.25× 10−3  m( )2

= 5.57 × 10−5  m s

 

 (b) The drift speed is smaller because more electrons are being 
conducted.  To create the same current, therefore, the drift speed 
need not be as great. 
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P27.7 From 
  
I = dQ

dt ,  we have dQ = I dt. 

 From this, we derive the general integral: 
  
Q = dQ∫ = I  dt∫  

 In all three cases, define an end-time, T: 
  
Q = I0e

–t/τ

0

T

∫ dt  

 Integrating from time t = 0 to time t = T:  
  
Q = –I0τ( )e–t/τ

0

T

∫ –
dt
τ

⎛
⎝⎜

⎞
⎠⎟

 

 We perform the integral and set  Q = 0 at t = 0 to obtain 

   
  
Q = –I0τ e–T/τ – e0( ) = I0τ 1 – e–T/τ( )  

 (a) If T =  τ :  
  
Q τ( ) = I0τ 1− e−1( ) = 0.632( ) I0τ  

 (b) If T = 10 τ :   
  
Q 10τ( ) = I0τ 1− e−10( ) = 0.999 95( ) I0τ  

 (c) If T =  ∞:  
  
Q ∞( ) = I0τ 1− e−∞( ) = I0τ  

P27.8 (a) 
  
J =

I
A

=
5.00 A

π 4.00 × 10−3  m( )2 = 99.5 kA m2  

 (b)  Current is the same.  

 (c) The cross-sectional area is greater; therefore the current density is 
smaller.  

 (d)   A2 = 4A1      or    πr2
2 = 4πr1

2          so          r2 = 2r1 = 0.800 cm .  

 (e)   I  = 5.00 A  

 (f) 
  
J2 =

1
4

J1 =
1
4

9.95 × 104  A/m2( ) = 2.49 × 104  A/m2  

P27.9 We are given q = 4t3 + 5t + 6. The area is 

   
  
A = 2.00 cm2( ) 1.00 m

100 cm
⎛
⎝⎜

⎞
⎠⎟

2

= 2.00 × 10−4  m2  

 (a) 
  
I 1.00 s( ) =

dq
dt t=1.00 s

= 12t2 + 5( )
t=1.00 s

= 17.0 A  

 (b) 
  
J =

I
A

=
17.0 A

2.00 × 10−4  m2 = 85.0 kA m2  
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P27.10 (a) We obtain the speed of each deuteron from 
  
K =

1
2

mv2 : 

    

  
v = 2K

m
=

2 2.00× 106( ) 1.60× 10−19  J( )
2 1.67 × 10−27  kg( ) = 1.38× 107  m/s

  

  The time between deuterons passing a stationary point is t in 

 
I =

q
t

, so 

   

  
t = q

I
= 1.60× 10−19  C

10.0× 10−6  C s
= 1.60× 10−14  s

  

  So the distance between individual deuterons is  

   vt = (1.38 × 107 m/s)(1.60 × 10–14 s) = 
 

2.21× 10−7  m  

 (b) One nucleus will put its nearest neighbor at potential 
   

  

V = keq
r

=
8.99× 109  N ⋅m2 C2( ) 1.60× 10−19  C( )

2.21× 10−7  m
= 6.49× 10−3  V

 

  This is very small compared to the 2 MV accelerating potential, so 
repulsion within the beam is a small effect. 

P27.11 (a) 
  
J =

I
A

=
8.00 × 10−6  A

π 1.00 × 10−3  m( )2 = 2.55 A m2  

 (b) From J = nevd, we have  

   
  
n =

J
evd

=
2.55 A m2

1.60 × 10−19  C( ) 3.00 × 108  m s( ) =  
 

5.31× 1010  m−3  

 (c) From 
  
I =

ΔQ
Δt

,  we have  

   

  

Δt =
ΔQ
I

=
NAe

I
=

6.02 × 1023( ) 1.60 × 10−19  C( )
8.00 × 10−6  A

= 1.20 × 1010  s

 

  (This is about 382 years!) 
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P27.12 To find the total charge passing a point in a given amount of time, we 

use 
 
I =

dq
dt

, from which we can write 

  

  

q = dq∫ = I dt∫ = 100 A( )sin
120π t

s
⎛
⎝⎜

⎞
⎠⎟

dt
0

1 240 s

∫

q =
−100 C
120π

cos
π
2

⎛
⎝⎜

⎞
⎠⎟
− cos0

⎡

⎣
⎢

⎤

⎦
⎥ =

+100 C
120π

= 0.265 C
 

P27.13 The molar mass of silver = 107.9 g/mole and the volume V is  
  

  

V = area( ) thickness( ) = 700× 10−4  m2( ) 0.133× 10−3  m( )
= 9.31× 10−6  m3

 

 The mass of silver deposited is 
  

  

mAg = ρV = 10.5× 103  kg m3( ) 9.31× 10−6  m3( )
= 9.78× 10−2  kg

 

 And the number of silver atoms deposited is 
  

  

N = 9.78× 10−2  kg( ) 6.02 × 1023  atoms
107.9 g

⎛
⎝⎜

⎞
⎠⎟

1 000 g
1 kg

⎛
⎝⎜

⎞
⎠⎟

= 5.45× 1023  atoms

 

 The current is then 
  

  
I = ΔV

R
= 12.0 V

1.80 Ω
= 6.67 A = 6.67 C s

 

 The time interval required for the silver coating is 
  

  

Δt = ΔQ
I

= Ne
I

=
5.45× 1023( ) 1.60× 10−19  C( )

6.67 C s

= 1.31× 104  s = 3.64 h

 

 
 

 

Section 27.2 Resistance 
P27.14 From Equation 27.7, we obtain 

   
  
I =

ΔV
R

=
120 V
240 Ω

= 0.500 A = 500 mA  
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*P27.15 From Ohm’s law,   R = ΔV / I ,  and from Equation 27.10,  
   

   R = ρ/ A = ρ/ πd2 / 4( )   

 Solving for the resistivity gives 
   

   

ρ = πd2

4
⎛
⎝⎜

⎞
⎠⎟

R = πd2

4
⎛
⎝⎜

⎞
⎠⎟

ΔV
I

⎛
⎝⎜

⎞
⎠⎟ =

π 2.00× 10−3  m( )2

4 50.0 m( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

9.11 V
36.0 A

⎛
⎝⎜

⎞
⎠⎟

= 1.59× 10−8  Ω⋅m

 

 Then, from Table 27.2, we see that the wire is made of  silver .  

P27.16  ΔV = IR   and   
   
R = ρ

A
.  The area is   

   

  
A = 0.600 mm2( ) 1.00 m

1 000 mm
⎛
⎝⎜

⎞
⎠⎟

2

= 6.00 × 10−7  m2
 

 From the potential difference, we can solve for the current, which gives 
   

   
ΔV =

Iρ
A

   →    I =
ΔVA
ρ

=
0.900 V( ) 6.00 × 10−7  m2( )

5.60 × 10−8  Ω⋅m( ) 1.50 m( )

 

   
  
I = 6.43 A  

P27.17 From the definition of resistance, 

  
  
R =

ΔV
I

=
120 V
13.5 A

= 8.89 Ω  

P27.18 Using 
 
R =

ρL
A

 and data from Table 27.2, we have  

  
  
ρCu

LCu

πrCu
2 = ρAl

LAl

πrAl
2 →

rAl
2

rCu
2 =

ρAl

ρCu

 

 which yields 

  
  

rAl

rCu

=
ρAl

ρCu

=
2.82 × 10−8  Ω⋅m
1.70 × 10−8  Ω⋅m

= 1.29  

P27.19 (a) Given total mass 
   
m = ρmV = ρmA    →     A =

m
ρm

,  where  

 ρm ≡  mass density. 

  Taking ρ ≡  resistivity, 
   
R =

ρ
A

=
ρ

m ρm
=
ρρm

2

m
.  
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  Thus,   
   

   

 =
mR
ρρm

=
1.00 × 10−3  kg( ) 0.500 Ω( )

1.70 × 10−8  Ω⋅m( ) 8.92 × 103  kg/m3( )
= 1.82 m

 

 (b) 
 
V =

m
ρm

,   or   
   
π r2 =

m
ρm

 

  Thus,  
   

   
r =

m
πρm

=
1.00 × 10−3  kg

π 8.92 × 103  kg/m3( ) 1.82 m( )
= 1.40 × 10−4  m

 

  The diameter is twice this distance: diameter 
 
= 280 µm  

P27.20 (a) Given total mass 
   
m = ρmV = ρmA    →     A =

m
ρm

,     where    

   ρm ≡  mass density. 

  Taking ρ ≡  resistivity, 
   
R =

ρ
A

=
ρ

m ρm
=
ρρm

2

m
.  

  Thus, 

   
 =

mR
ρρm

.  

 (b) Volume 
  
V =

m
ρm

,     or  

   

   

1
4
π d2 =

m
ρm

d =
4
π

m
ρm

1


⎛
⎝⎜

⎞
⎠⎟

1 2

=
4
π

m
ρm

ρρm

mR
⎛
⎝⎜

⎞
⎠⎟

1 2

=
4
π

m2

ρm
2

ρρm

mR

⎛

⎝
⎜

⎞

⎠
⎟

1 2

  =
4
π

ρm
ρmR

⎛
⎝⎜

⎞
⎠⎟

1 4

 

P27.21 (a) From the definition of resistance, 
   

  
R = ΔV

I
= 120 V

9.25 A
= 13.0 Ω

 

 (b) The resistivity of Nichrome (from Table 27.2) is 1.50 × 10–6 Ω ⋅ m. 
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We find the length of wire from 
   

   
R = ρ

A
= ρ
πr2

 

  solving for the length    gives 
   

   
 = Rπr2

ρ
=

13.0 Ω( )π 2.50× 10−3  m( )2

1.50× 10−6  Ω⋅m( ) = 170 m
  

 
 

 

Section 27.3 A Model for Electrical Conduction 

*P27.22 (a) n is  unaffected .  

 (b) 
  
J = I

A
∝ I  so it  doubles .  

 (c)   J = nevd  so  vd   doubles .  

 (d) 
  
τ = mσ

nq2  is 
 

unchanged as long as σ  does not change due to a 

temperature change in the conductor. 

*P27.23   J = σE  so 
   
σ = J

E
= 6.00 × 10−13  A m2

100 V m
= 6.00 × 10−15  Ω⋅m( )−1 .  

P27.24 (a) From Appendix C, the molar mass of iron is  
    

  

MFe = 55.85 g mol = 55.85 g mol( ) 1 kg 103  g( )
= 5.58 × 10−2  kg mol

 

 (b) From Table 14.1, the density of iron is  ρFe = 7.86 × 103  kg m3 ,  so 
the molar density is 

    

  

molar density( )Fe
=

ρFe

MFe

=
7.86 × 103  kg m3

5.58 × 10−2  kg mol

= 1.41× 105  mol m3

 

 (c) The density of iron atoms is 

    

  

density of atoms = NA molar density( )
= 6.02 × 1023  

atoms
mol

⎛
⎝⎜

⎞
⎠⎟ 1.41× 105  

mol
m3

⎛
⎝⎜

⎞
⎠⎟

= 8.49 × 1028  
atoms

m3
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 (d) With two conduction electrons per iron atom, the density of 
charge carriers is  

   

  

n = charge carriers atom( ) density of atoms( )
= 2 

electrons
atom

⎛
⎝⎜

⎞
⎠⎟ 8.49 × 1028  

atoms
m3

⎛
⎝⎜

⎞
⎠⎟

= 1.70 × 1029  electrons m3

 

 (e) With a current of I = 30.0 A and cross-sectional area  
A = 5.00 × 10–6 m2, the drift speed of the conduction electrons in 
this wire is 

   

  

vd =
I

nqA
=

30.0 C s
1.70 × 1029  m−3( ) 1.60 × 10−19  C( ) 5.00 × 10−6  m3( )

= 2.21× 10−4  m s

 

P27.25 From Equations 27.16 and 27.13, the resistivity and drift velocity can be 
related to the electric field within the copper wire: 

   

  
ρ =

m
ne2τ

→ τ =
m

ρne2

 

 and 
   

  
vd =

eE
m
τ =

eE
m

m
ρne2 =

E
ρne

→ E = ρnevd

 

 where n is the electron density. From Example 27.1,  
   

  
n = NAρCu

M
=

6.02×1023
 mol−1( ) 8 920 kg/m3( )

0.063 5 kg/mol
= 8.46 × 1028

 m−3
 

 The electric field is then 
   

  

E = ρnevd

E = 1.7 × 10−8  Ω⋅m( ) 8.46 × 1028  m−3( )
                    × 1.60 × 10−19  C( ) 7.84 × 10−4  m/s( )

= 0.18 V/m
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Section 27.4 Resistance and Temperature 

P27.26   R = R0 1 +α ΔT( )[ ]  gives

 
  
140 Ω = 19.0 Ω( ) 1 + 4.50 × 10−3 °C( )ΔT⎡⎣ ⎤⎦  

 Solving,  

    ΔT = 1.42 × 103  °C = T − 20.0°C  

 And the final temperature is 
  

T = 1.44 × 103  °C  

P27.27 If we ignore thermal expansion, the change in the material’s resistivity 
with temperature   ρ = ρ0[1 +αΔT]  implies that the change in resistance 
is   R − R0 = R0αΔT.  The fractional change in resistance is defined by  
f = (R – R0)/R0. Therefore,  

  

  
f = R0αΔT

R0
=αΔT = 5.00× 10−3  °C−1( ) 50.0°C− 25.0°C( ) = 0.12

 

*P27.28 At the low temperature TC  we write  
   

  
RC = ΔV

IC

= R0 1 +α TC −T0( )[ ]
  

 where T0 = 20.0°C. At the high temperature Th, 

  
Rh = ΔV

Ih

= ΔV
1 A

= R0 1 +α Th −T0( )[ ]
 

 Then,  
   

  

ΔV( ) 1.00 A( )
ΔV( ) IC

=
1 + 3.90 × 10−3  °C( )−1( ) 58.0°C − 20.0°C( )

1 + 3.90 × 10−3  °C( )−1( ) −88.0°C − 20.0°C( )

 

 and  
  
IC = 1.00 A( ) 1.15

0.579( ) = 1.98 A .  

P27.29 We use Equation 27.20 and refer to Table 27.2: 

  

  

R = R0 1 +α T −T0( )⎡⎣ ⎤⎦

= 6.00 Ω( ) 1 + 3.8 × 10−3  °C( )−1( ) 34.0°C − 20.0°C( )⎡
⎣

⎤
⎦

= 6.32 Ω

 

P27.30 (a) From R = ρL/A, the initial resistance of the mercury is 

   
  
Ri =

ρLi

Ai

=
ρLi

πdi
2 4

=
9.58 × 10−7  Ω⋅m( ) 1.000 0 m( )

π 1.00 × 10−3  m( )2
4

= 1.22 Ω  
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 (b) Since the volume of mercury is constant,  V = Af ⋅Lf = Ai ⋅Li  gives 

the final cross-sectional area as 
 
Af = Ai ⋅ Li Lf( ) . Thus, the final 

resistance is given by 
  
R f =

ρLf

Af

=
ρLf

2

Ai ⋅Li

. The fractional change in 

the resistance is then 

   

  

ΔR
R

=
R f − Ri

Ri

=
R f

Ri

− 1 =
ρLf

2 Ai ⋅Li( )
ρLi Ai

− 1 =
Lf

Li

⎛
⎝⎜

⎞
⎠⎟

2

− 1

ΔR
R

=
100.040 0cm
100.000 0cm

⎛
⎝⎜

⎞
⎠⎟

2

− 1 = 8.00 × 10−4 increase

 

*P27.31 (a) The resistance at 20.0°C is 
   

   
R0 = ρ

A
=

1.7 × 10−8  Ω⋅m( ) 34.5 m( )
π 0.25× 10−3  m( )2 = 2.99 Ω

 

  and the current is 
   

  
I = ΔV

R0

= 9.00 V
3.00 Ω

= 3.01 A
  

 (b) At 30.0°C, from Equation 27.20,  
   

  

R = R0 1+α ΔT( )[ ]
= 2.99 Ω( ) 1+ 3.9× 10−3  °C( )−1( ) 30.0°C− 20.0°C( )⎡⎣ ⎤⎦ = 3.10 Ω

 

  The current is then 
   

  
I = ΔV

R0

= 9.00 V
3.10 Ω

= 2.90 A
 

P27.32 (a) We require two conditions: 

   
   
R =

ρ11

πr2 +
ρ22

πr2  [1] 

  where carbon = 1 and Nichrome = 2, and for any  ΔT   

   
   
R =

ρ11

πr2 1 +α1ΔT( ) +
ρ22

πr2 1 +α2ΔT( )  [2] 

  Setting equations [1] and [2] equal to each other, we have  
   

   

ρ11

πr2 + ρ22

πr2 = ρ11

πr2 1+α1ΔT( ) + ρ22

πr2 1+α 2ΔT( )
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  simplifying, 
    

   

ρ11

πr2 + ρ22

πr2 = ρ11

πr2 + ρ11

πr2 α1ΔT + ρ22

πr2 + ρ22

πr2 α 2ΔT
 

  or 
   

ρ22

πr2 α 2ΔT = − ρ11

πr2 α1ΔT ,  which gives 

      ρ22α2 = −ρ11α1  [3] 

  The two equations [1] and [3] are just sufficient to determine   1  
and   2 . 

 
The design goal can be met.  

 (b) From Table 27.2,  α1 = −0.5 × 10−3 °C( )−1  and  α2 = 0.4 × 10−3 °C( )−1 . 

  Use equation [3] to solve for   2  in terms of   1 : 

   
  
2 = −

ρ1

ρ2

α1

α2

1  

  then substitute this into equation [1]: 

   

   

R =
ρ11

πr2 +
ρ2

πr2 −
ρ1

ρ2

α1

α2

1

⎛

⎝
⎜

⎞

⎠
⎟ =

ρ1

πr2 1−
α1

α2

⎛
⎝⎜

⎞
⎠⎟
1

10.0 Ω =
3.5 × 10−5Ω⋅m( )  
π(1.50 × 10−3 m)2 1−

−0.5 × 10−3

0.4 × 10−3

⎛
⎝⎜

⎞
⎠⎟
1

→ 1 = 0.898 m

 

  and so 

  
2 = −

ρ1

ρ2

α1

α2

1 = −
3.5 × 10−5Ω⋅m( )

1.50 × 10−6Ω⋅m( )
−0.5 × 10−3

0.4 × 10−3

⎛
⎝⎜

⎞
⎠⎟
1 = 26.2 m  

  Therefore, 
  
1 = 0.898 m and 2 = 26.2 m.  

P27.33 (a) The resistivity is computed from   ρ = ρ0 1+α T – T0( )⎡⎣ ⎤⎦:  
     

 

ρ = 2.82 × 10–8  Ω⋅m( ) 1+ 3.90× 10–3  °C–1( ) 30.0°C( )⎡⎣ ⎤⎦

= 3.15× 10–8  Ω⋅m

  

 (b)  The current density is  
     

  
J =σE = E

ρ = 0.200 V/m
3.15× 10–8  Ω⋅m

⎛
⎝⎜

⎞
⎠⎟

1 Ω⋅A
V

⎛
⎝⎜

⎞
⎠⎟ = 6.35× 106  A/m2

  

 (c) The current density is related to the current by 
  
J =

I
A

=
I

πr2 .   

     
  
I = J πr2( ) = 6.35× 106  A/m2( ) π 5.00× 10−5  m( )2⎡

⎣
⎤
⎦ = 49.9 mA   
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 (d) The mass density gives the number-density of free electrons; we 
assume that each atom donates one conduction electron: 

     

  

n = 2.70 × 103 kg
m3

⎛
⎝⎜

⎞
⎠⎟

1 mol
26.98 g

⎛
⎝⎜

⎞
⎠⎟

103g
kg

⎛
⎝⎜

⎞
⎠⎟

6.02 × 1023 free e−

1 mol
⎛
⎝⎜

⎞
⎠⎟

= 6.02 × 1028  e−/m3

 

  Now J = nqvd gives the drift speed as 
    

  

vd = J
nq = 6.35× 106  A/m2  

6.02 × 1028  e–/m3( ) –1.60× 10–19  C/e–( )
= −6.59× 10−4  m/s

 

  The sign indicates that the electrons drift opposite to the field and 
current.  

 (e) The applied voltage is    ΔV = E = 0.200 V/m( ) 2.00 m( ) = 0.400 V .  

P27.34 For aluminum,  

     αE = 3.90 × 10−3  °C−1    (Table 27.2) 

 and   α = 24.0 × 10−6  °C−1     (Table 19.1) 

 The resistance is then 

   

   

R = ρ
A

=
ρ0 1+αEΔT( ) 1+αΔT( )

A 1+αΔT( )2 = R0

1+αEΔT( )
1+αΔT( )

= 1.23 Ω( )
1+ 3.90× 10−3  °C( )−1( ) 120°C− 20.0°C( )
1+ 24.0× 10−6  °C( )−1( ) 120°C− 20.0°C( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 1.71 Ω

 

P27.35 Room temperature is T0 = 20.0°. From Equation 27.19, 
  

  
ρAl = ρ0( )Al

1+αAl T −T0( )⎡⎣ ⎤⎦ = 3 ρ0( )Cu

 

 Then, substituting numerical values from Table 27.2 gives 

  

  

T −T0 = 1
αAl

3 ρ0( )Cu

ρ0( )Al

− 1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 1
3.9× 10−3  °C( )−1

3 1.7 × 10−8  Ω⋅m( )
2.82 × 10−8  Ω⋅m

− 1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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 and solving for the temperature gives 
  

  

T − 20.0 °C = 207°C

T = 227°C

 

 where we have assumed three significant figures throughout.  

 
 

 

Section 27.6 Electrical Power 

*P27.36 (a)   P = ΔV( ) I = 300 × 103  J C( ) 1.00 × 103  C s( ) = 3.00 × 108  W  

 A large electric generating station, fed by a trainload of coal each 
day, converts energy faster. 

  (b) 
  
I =

P
A

=
P
πr2  

    P = I π r2( ) = 1 370 W m2( ) π(6.37 × 106  m)2[ ] = 1.75 × 1017  W  

  Terrestrial solar power is immense compared to lightning and 
compared to all human energy conversions. 

*P27.37   P = 0.800 1 500 hp( ) 746 W hp( ) = 8.95 × 105  W  

 Then, from   P = IΔV ,   
   

  
I =

P
ΔV

=
8.95 × 105  W

2 000 V
= 448 A

  

P27.38 From Equation 27.21, 

   
  
P = IΔV = 500 × 10−6  A 15 × 103  V( ) = 7.50 W  

P27.39 (a) From Equation 27.21, 

   
  P = IΔV → I = P ΔV = 1.00 × 103  W( ) 120 V( ) = 8.33 A  

 (b) From Equation 27.23, 

   
  P = ΔV 2 R → R = ΔV 2 P = 120 V( )2 1.00 × 103  W( ) = 14.4 Ω  

P27.40 From Equation 27.21, 
   

  

P = IΔV = 0.200× 10−3  A( ) 75.0× 10−3  V( )
= 15.0× 10−6  W = 15.0 µW
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P27.41 From Equation 27.21, 

   
  P = IΔV = 350 × 10−3  A( ) 6.00 V( ) = 2.10 W  

P27.42 If the tank has good insulation, essentially all of the energy electrically 
transmitted to the heating element becomes internal energy in the 
water: 

  
ΔE internal( ) = E electrical( ).   Our symbol E(electrical) represents the same 

thing as the textbook’s TET, namely electrically transmitted energy. 

  Since 
  
ΔE internal( ) = mcΔT   and  E electrical( ) = PΔt = ΔV( )2 Δt/R  

  where c = 4 186 J/kg · °C 

  the resistance is 
    

  
R = (ΔV)2Δt

cmΔT = 240 V( )2 1 500 s( )
4 186 J/kg ⋅°C( ) 109 kg( ) 29.0°C( ) = 6.53Ω

 

P27.43 From   P = ΔV( )2 /R,  we find that  

  
  
R =

ΔVi( )2

P = (120 V)2

100 W = 144Ω  

  The final current is  

   
  
I f =

ΔVf

R
= 140 V

144 Ω
=  0.972 A  

  The power during the surge is  

   
  
P =

ΔVf( )2

R
= 140 V( )2

144 Ω
= 136 V  

 So the percentage increase is  
    

 
136 W – 100 W

100 W = 0.361= 36.1%
 

P27.44 You pay the electric company for energy transferred in the amount  
  E = PΔt.   

 (a) 

  

PΔt = 40 W( ) 2 weeks( ) 7 d
1 week

⎛
⎝⎜

⎞
⎠⎟

24 h
1 d

⎛
⎝⎜

⎞
⎠⎟

k
1 000

⎛
⎝⎜

⎞
⎠⎟

0.110 $
kWh

⎛
⎝⎜

⎞
⎠⎟

= $1.48

 

 (b) 
  
PΔt = 970 W( ) 3 min( ) 1 h

60 min
⎛
⎝⎜

⎞
⎠⎟

k
1 000

⎛
⎝⎜

⎞
⎠⎟

0.110 $
kWh

⎛
⎝⎜

⎞
⎠⎟ = $0.005 34  
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 (c) 
  
PΔt = 5 200 W( ) 40 min( ) 1 h

60 min
⎛
⎝⎜

⎞
⎠⎟

k
1 000

⎛
⎝⎜

⎞
⎠⎟

0.110 $
kWh

⎛
⎝⎜

⎞
⎠⎟ = $0.381  

P27.45 (a) The total energy stored in the battery is 
   

  

ΔUE = q ΔV( ) = It ΔV( )

= 55.0 A ⋅h( ) 12.0 V( ) 1 C
1 A ⋅s

⎛
⎝⎜

⎞
⎠⎟

1 J
1 V ⋅C

⎛
⎝⎜

⎞
⎠⎟

1 W ⋅s
1 J

⎛
⎝⎜

⎞
⎠⎟

= 660 W ⋅h = 0.660 kWh

 

 (b) The value of the electricity is 
   

 
Cost = 0.660 kWh( ) $0.110

1 kWh
⎛
⎝⎜

⎞
⎠⎟ = $0.072 6

 

P27.46 (a) The resistance of 1.00 m of 12-gauge copper wire is  
   

   

R =
ρ 
A

=
ρ 

π d 2( )2 =
4ρ 
π d2 =

4 1.7 × 10−8  Ω⋅m( ) 1.00 m( )
π 0.205 × 10−2  m( )2

= 5.2 × 10−3  Ω

 

  The rate of internal energy production is 
   

  P = IΔV = I 2R = 20.0 A( )2 5.2 × 10−3  Ω( ) = 2.1 W
 

 (b) 
   
R =

4ρ 
π d2 =

4 2.82 × 10−8  Ω⋅m( ) 1.00 m( )
π 0.205 × 10−2  m( )2 = 8.54 × 10−3  Ω  

  
  P = IΔV = I 2R = 20.0 A( )2 8.54 × 10−3  Ω( ) = 3.42 W

 

 (c) 

 

It would not be as safe. If surrounded by thermal insulation, it
would get much hotter than a copper wire.

 

P27.47 The power of the lamp is   P = IΔV =U /Δt,  where U is the energy 
transformed. Then the energy you buy, in standard units, is  

  

  

U = ΔVIΔt

= 110 V( ) 1.70 A( ) 1 day( ) 24 h
1 day

⎛
⎝⎜

⎞
⎠⎟

3 600 s
h

⎛
⎝⎜

⎞
⎠⎟

1 J
V ⋅C

⎛
⎝⎜

⎞
⎠⎟

1 C
A ⋅ s

⎛
⎝⎜

⎞
⎠⎟

= 16.2 MJ
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 In kilowatt hours, the energy is 
  

  

U = ΔVIΔt

= 110 V( ) 1.70 A( ) 1 day( ) 24 h
1 day

⎛
⎝⎜

⎞
⎠⎟

1 J
V ⋅C

⎛
⎝⎜

⎞
⎠⎟

1 C
A ⋅ s

⎛
⎝⎜

⎞
⎠⎟

W ⋅ s
J

⎛
⎝⎜

⎞
⎠⎟

= 4.49 kWh

 

 So operating the lamp costs (4.49 kWh)($0.110/kWh) = 
 
$0.494 /day .  

P27.48 The energy taken in by electric transmission for the fluorescent bulb is 

   

  

PΔt = 11 J s 100 h( ) 3 600 s
1 h

⎛
⎝⎜

⎞
⎠⎟ = 3.96 × 106  J

cost = 3.96 × 106  J
$0.110
kWh

⎛
⎝⎜

⎞
⎠⎟

k
1 000

⎛
⎝⎜

⎞
⎠⎟

W ⋅ s
J

⎛
⎝⎜

⎞
⎠⎟

h
3 600 s

⎛
⎝⎜

⎞
⎠⎟

= $0.121
 

 For the incandescent bulb, 

   

  

PΔt = 40 W 100 h( ) 3 600 s
1 h

⎛
⎝⎜

⎞
⎠⎟ = 1.44× 107  J

cost = 1.44× 107  J
$0.110

3.6× 106  J
⎛
⎝⎜

⎞
⎠⎟

= $0.440

savings = $0.440− $0.121 = $0.319

 

P27.49 First, we compute the resistance of the wire: 

   
   
R =

ρ
A

=
1.50 × 10−6  Ω⋅m( )25.0 m

π 0.200 × 10−3  m( )2 = 298 Ω  

 The potential drop across the wire is then 

     ΔV = IR = 0.500 A( ) 298 Ω( ) = 149 V  

 (a) The magnitude of the electric field in the wire is 

   
   
E =

ΔV


=
149 V
25.0 m

= 5.97 V m  

 (b) The power delivered to the wire is 

   
  
P = ΔV( ) I = 149 V( ) 0.500 A( ) = 74.6 W  

 (c) We use Equation 27.20 and Table 27.2: 
   

  

R = R0 1+α T −T0( )⎡⎣ ⎤⎦ = 298 Ω( ) 1+ 0.400× 10−3 °C( )320°C⎡⎣ ⎤⎦
= 337 Ω
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  To find the power delivered, we first compute the current flowing 
through the wire: 

   

  
I = ΔV

R
= 149 V

337 Ω
= 0.443 A

 

  then, 

  P = ΔV( )I = 149 V( ) 0.443 A( ) = 66.1 W
 

P27.50 The battery takes in energy by electric transmission: 
   

  

PΔt = ΔV( )I Δt( ) = 2.3 J C( ) 13.5× 10−3  C s( ) 4.2 h( ) 3 600 s
1 h

⎛
⎝⎜

⎞
⎠⎟

= 469 J

 

 It puts out energy by electric transmission: 
   

  
ΔV( )I Δt( ) = 1.6 J C( ) 18× 10−3  C s( ) 2.4 h( ) 3 600 s

1 h
⎛
⎝⎜

⎞
⎠⎟ = 249 J

 

 (a) efficiency 
 
=

useful output
total input

=
249 J
469 J

= 0.530  

 (b) The only place for the missing energy to go is into internal 
energy: 

   
  

469 J = 249 J + ΔEint

ΔEint = 221 J
 

 (c) We imagine toasting the battery over a fire with 221 J of heat 
input: 

   

  

Q = mcΔT

ΔT =
Q
mc

=
221 J

0.015 kg( ) 975 J/kg ⋅ °C( ) = 15.1°C

 

P27.51 We compute the resistance of the wire from 
   

  
P = ΔV( )2

R
→ R = ΔV( )2

P
= 110 V( )2

500 W
= 24.2 Ω

 

 (a) Then, Equation 27.10,
  
R =

ρ
A
 , gives us the length of wire used:    

   
   
 =

RA
ρ

=
24.2 Ω( )π 2.50 × 10−4  m( )2

1.50 × 10−6  Ω⋅m
= 3.17 m  
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 (b) From Equation 27.20, the resistance of the wire at this 
temperature is 

   
  

R = R0 1+αΔT[ ] = 24.2 Ω 1+ 0.400× 10−3( ) 1 200− 20( )⎡⎣ ⎤⎦
= 35.6 Ω

 

  The power delivered to the coil is then 
   

  
P = ΔV( )2

R
= 110 V( )2

35.6 Ω
= 340 W

 

P27.52 We find the energy transferred into a number N of these clocks in one 
year: 

  

  

TET  = PtotalΔt = NPone clockΔt 

      =  270 × 106  clocks( ) 2.50 W/clock( )
                            × 365 d/yr( ) 24 h/d( ) 1 kW/1000 W( )
      = 5.91 × 109  kWh

 

 Divide this energy into the total cost claimed by the politician to find 
the cost of the electricity:  

  
 
cost = 

$100  ×  106

5.91 × 109  kWh
 = $0.017 / kWh  

 This is significantly lower than the average cost of electricity in the 
United States. While the situation is not actually impossible, the 
politician would have a better argument by using the actual average 
cost of electricity in the United States, which would raise his estimate 
of the total cost to operate the clocks to about $650 million every year. 

P27.53 At operating temperature, 

 (a) 
  
P = IΔV = 1.53 A( ) 120 V( ) = 184 W  

 (b) Use the change in resistance to find the final operating 
temperature of the toaster. 

     R = R0 1 +αΔT( )  
   

  

120 V
1.53 A

=
120 V
1.80 A

⎛
⎝⎜

⎞
⎠⎟ 1 + 0.400 × 10−3  °C( )−1( )ΔT⎡
⎣

⎤
⎦

 

  which gives 
     ΔT = 441°C   

  and   T = 20.0°C + 441°C = 461°C  
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P27.54 Consider a 400-W blow dryer used for ten minutes daily for a year. 
The energy transferred to the dryer is 

   

  

PΔt = 400 J s( ) 600 s d( ) 365 d( )

≈ 9× 107  J
1 kWh

3.6× 106  J
⎛
⎝⎜

⎞
⎠⎟
≈ 20 kWh

 

 We suppose that electrically transmitted energy costs on the order of 
ten cents per kilowatt-hour. Then the cost of using the dryer for a year 
is on the order of 

   
 
Cost ≈ 20 kWh( ) $0.10 kWh( ) = $2 ~ $1  

P27.55 We first compute the power delivered to the resistor: 
   

  P = IΔV = 2.00 A( ) 120 V( ) = 240 W   

 The change in internal energy of the water as it is heated from 23.0°C 
to 100°C is 

   
  ΔEint = 0.500 kg( ) 4 186 J kg ⋅°C( ) 77.0°C( ) = 161 kJ  

 The time interval required to heat the water is then 
   

  
Δt = ΔEint

P
= 1.61× 105  J

240 W
= 672 s

 

P27.56 (a) We know that 
   

  

efficiency = mechanical power output
total power input

= 0.900 =
2.50 hp( )(746 W/1 hp)

(120 V) I

 

  from which, we calculate the current as 
   

  
I = 1 860 J/s

0.9(120 V)
= 2 070 J/s

120 V
= 17.3 A

 

 (b) The energy delivered to the motor in 3.00 h is  
   

  

energy input = PinputΔt = 2 070 J/s( ) 3.00 3 600 s( )[ ]
= 2.24× 107  J = 22.4 MJ

  

 (c) At $0.110/kWh, the cost of running the motor for 3.00 h is 

   
 
cost = 2.24 × 107  J( )  $0.110

1 kWh
⎛
⎝⎜

⎞
⎠⎟

k
103

J
W s

h
3 600 s

⎛
⎝⎜

⎞
⎠⎟ = $0.684  
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Additional Problems 

*P27.57 From Equation 27.22, 
  
P = ΔV( )2

R
,  we find that the total resistance 

needed in the wire is 
   

  
R = ΔV( )2

P
= 20 V( )2

48 W
= 8.3 Ω

 

 We then solve for the length of the wire from Equation 27.10: 
   

   
 = RA

ρ
=

8.3 Ω( ) 4.0× 10−6  m2( )
3.0× 10−8  Ω⋅m

= 1.1× 103  m = 1.1 km
  

P27.58 At T0 = 20.0°, R = R0.  Then, from Equation 27.20, 
   

  
R = R0 1+α T −T0( )⎡⎣ ⎤⎦ = 2R0

 

 Solving for the change in temperature gives 
   

  

T −T0 = 1
α

= 1
3.9× 10−3  °C( )−1

T − 20.0°C = 256°C    →     T = 276°C

 

P27.59 We find the amount of current each headlight draws:  
   

  
P = IΔV → I = P

ΔV
= 36.0 W

12.0 V
= 3.00 A

 

 For two headlights, the total current from battery is 6.00 A. The battery 
rating is the total amount of charge the battery can deliver, without 
being recharged, over a time interval  Δt  at a rate (current) I: 

   
  ΔQ = IΔt = 90.0 A ⋅h  

 The total time interval to discharge the battery is then 

   
  
Δt =

ΔQ
I

=
90.0 A ⋅h

6.00 A
= 15.0 h  

P27.60 (a) 
  
P = IΔV =

ΔV( )2

R
→ R =

ΔV( )2

P
 

  Lightbulb A:  
  
R =

ΔV( )2

P
=

120 V( )2

25.0 W
= 576 Ω  

  Lightbulb B: 
  
R =

ΔV( )2

P
=

120 V( )2

100 W
= 144 Ω  

 (b) 
  
I =

Q
Δt

=
P
ΔV

→ Δt =
QΔV

P
=

1.00 C( ) 120 V( )
25.0 W

= 4.80 s  
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 (c) 
 
The charge is the same. It is at a location that is lower in potential.  

 (d) 
  
P =

ΔU
Δt

→ Δt =
ΔU
P

=
1.00 J

25.0 W
= 0.040 0 s  

 (e) 

 

Because of energy conservation, the energy entering and leaving
the lightbulb is the same. Energy enters the lightbulb by electric
transmission and leaves by heat and electromagnetic radiation.

  

 (f)   ΔU = PΔt = 25.0 J s( ) 86 400 s d( ) 30.0 d( ) = 64.8 × 106  J  
  

 
Cost = 64.8 × 106  J( ) $0.110 0

kWh
⎛
⎝⎜

⎞
⎠⎟

k
1 000

⎛
⎝⎜

⎞
⎠⎟

W ⋅ s
J

⎛
⎝⎜

⎞
⎠⎟

h
3 600 s

⎛
⎝⎜

⎞
⎠⎟

= $1.98
 

P27.61 The resistance of one wire is 
 

0.500 Ω
mi

⎛
⎝⎜

⎞
⎠⎟ 100 mi( ) = 50.0 Ω . 

 The whole wire is at nominal 700 kV away from ground potential, but 
the potential difference between its two ends is 

    IR = 1 000 A( ) 50.0 Ω( ) = 50.0 kV  

 Then it radiates as heat power  
  

  P = IΔV = 1 000 A( ) 50.0× 103  V( ) = 50.0 MW
  

P27.62 (a) From 
  
ρ =

RA


=
ΔV( )

I
A


 we compute 

   

   

 (m) R (Ω) ρ (Ω⋅m)

0.540

1.028

1.543

7.25

14.1

21.1

9.80 × 10−7

9.98 × 10−7

1.00 × 10−6

 

 (b)  ρ = 9.93 × 10−7  Ω⋅m  

 (c) 

 

The average value is within 1% of the tabulated value of

1.00× 10−6  Ω⋅m given in Table 27.2.
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P27.63 The original stored energy is 
  
UE ,i =

1
2

QΔVi =
1
2

Q2

C
. 

 (a) When the switch is closed, charge Q distributes itself over the 
plates of C and 3C in parallel, presenting equivalent capacitance 

4C. Then the final potential difference is 
  
ΔVf =

Q
4C

 for both. 

 (b) The smaller capacitor then carries charge 
  
CΔVf =

Q
4C

C =
Q
4

. 

The larger capacitor carries charge 
  
3C

Q
4C

=
3Q
4

. 

 (c) The smaller capacitor stores final energy 
  

1
2

C ΔVf( )2
=

1
2

C
Q
4C

⎛
⎝⎜

⎞
⎠⎟

2

=  

  

Q2

32C
. The larger capacitor possesses energy 

  

1
2

3C
Q
4C

⎛
⎝⎜

⎞
⎠⎟

2

=
3Q2

32C
. 

 (d) The total final energy is 
  

Q2

32C
+

3Q2

32C
=

Q2

8C
. The loss of potential 

energy is the energy appearing as internal energy in the resistor:  

   
  

Q2

2C
=

Q2

8C
+ ΔEint    so   

  
ΔEint =

3Q2

8C
 

P27.64 (a) The heater should put out constant power 

   

  

P = Q
Δt

=
mc Tf −Ti( )

Δt

=
0.250 kg( ) 4 186 J/kg ⋅°C( ) 100°C− 20°C( )

4 min( )
1 min
60 s

⎛
⎝⎜

⎞
⎠⎟

= 349 J s

 

  Then its resistance should be described by 

   
  
P =

ΔV( )2

R
→ R =

ΔV( )2

P
=

120 J C( )2

349 J s
= 41.3 Ω  
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  Its resistivity at 100 °C is given by 
   

  

ρ = ρ0 1+α T −T0( )⎡⎣ ⎤⎦ = 1.50× 10−6  Ω⋅m( ) 1+ 0.4× 10−3 80( )⎡⎣ ⎤⎦
= 1.55× 10−6  Ω⋅m

 

  Then for a wire of circular cross section, from Equation 27.10, 
   

   

R = ρ 
A

= ρ 
π r2 = ρ 4

π d2

41.3 Ω = 1.55× 10−6  Ω⋅m( ) 4
π d2


d2 = 2.09× 10+7 m      or         d2 = 4.77 × 10−8  m( )

 

  One possible choice is    = 0.900 m  and d = 2.07 × 10–4 m. If    and 
d are made too small, the surface area will be inadequate to 
transfer heat into the water fast enough to prevent overheating of 
the filament. To make the volume less than 0.5 cm3, we want    

and d less than those described by 
   

π d2

4
 = 0.5 × 10−6  m3 . 

Substituting    d
2 = 4.77 × 10−8  m( )  gives 

  

π
4

4.77 × 10−8  m( )2 = 0.5 × 10−6  m3 ,    = 3.65 m  and  

d = 4.18 × 10–4 m. Thus our answer is:  

  
   

Any diameter d and length  related by d2 = (4.77 × 10−8 ),
where d and  are in meters.

 

 (b) 
   
Yes; for V = 0.500 cm3  of Nichrome,  = 3.65 m and d = 0.418 mm.  

*P27.65 The power the beam delivers to the target is 
     

  P = IΔV = 25.0× 10−3  A( ) 4.00× 106  V( ) = 1.00× 105  W
  

 The mass of cooling water that must flow through the tube each 
second if the rise in the water temperature is not to exceed 50°C is 
found from 

     
 Q = PΔt = Δm( )cΔT   

 Therefore, 
     

  

Δm
Δt

= P
cΔT

= 1.00× 105  J/s
4 186 J/kg ⋅°C( ) 50.0°C( ) = 0.478 kg/s
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P27.66 (a) Since   P = IΔV ,  we have 

   
  
I =

P
ΔV

=
8.00 × 103  W

12.0 V
= 667 A  

 (b) From   P =U /Δt,  the time the car runs is  

   
  
Δt =

ΔU
P

=
2.00 × 107  J

8.00 × 103  W
= 2.50 × 103  s  

  So it moves a distance of   

   
  
Δx = vΔt = 20.0 m s( ) 2.50 × 103  s( ) = 50.0 km  

P27.67 (a) Assuming the change in V is uniform:  

   
  
Ex = −

dV x( )
dx

→ Ex = −
ΔV
Δx

= −
0 − 4.00 V( )

0.500 m − 0( ) = +8.00 V/m   

  or 
  
8.00 V/m in the positive x direction.  

 (b) From Equation 27.10, we have  

   
   
R =

ρ
A

=
4.00 × 10−8  Ω⋅m( ) 0.500 m( )

π 1.00 × 10−4  m( )2 = 0.637 Ω  

 (c) From Equation 27.7,  

   
  
I =

ΔV
R

=
4.00 V

0.637 Ω
= 6.28 A  

 (d) From Equation 27.5, the current density is given by 

   
  
J =

I
A

=
6.28 A

π 1.00 × 10−4  m( )2 = 2.00 × 108 A m2 = 200  MA m2   

  The field and the current are both in the x direction. 

 (e) We intend to derive the equivalent of Equation 27.6. We start with 
the definition of current density, J = I/A, and, using Equations 
27.7 and 27.10, note that the current is given by  

   

  
I = ΔV

R
= E

R
= EA

ρ

  

  Then,  
   

  
J = I

A
= EA/ρ

A
= E
ρ
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  so   
   

  E = ρJ = 4.00× 10−8  Ω⋅m( ) 2.00× 108  A m2( ) = 8.00 V/m
 

P27.68 (a) Assuming the change in V is uniform:  

   
 
Ex = −

dV x( )
dx

→ Ex = −
ΔV
Δx

=  
  
−

0 −V
L − 0

= +
V
L

 

  Therefore, the electric field is 
  
V/L in the positive x direction.  

 (b) From Equation 27.10, we have  

   
   
R =

ρ
A

=
ρL

π d2 4
= 4ρL π d2  

 (c) From Equation 27.7,  

   
  
I = ΔV R = Vπ d2 4ρL  

 (d) From Equation 27.5, the current density is given by  

   
  
J =

I
A

=
Vπ d2 4ρL

π d2 4
= V ρL in the positive x direction  

  The field and the current both have the same direction. 

 (e) We intend to derive the equivalent of Equation 27.6. We start with 
the definition of current density, J = I/A, and, using Equations 
27.7 and 27.10, note that the current is given by  

   
  
I = ΔV

R
= E

R
= EA

ρ
  

  Then,  

   
  
J = I

A
= EA/ρ

A
= E
ρ

 

  so  
 
E = ρ J = ρ V

ρL
⎛
⎝⎜

⎞
⎠⎟
= V

L
 

P27.69 Since there are 2 wires, the total length is    = 100 m.  The resistance of 
the wires is 

   

  
R = 0.108 Ω

300 m
⎛
⎝⎜

⎞
⎠⎟ 100 m( ) = 0.036 0 Ω

 

 (a) We find the potential difference at the customer’s house from 
   

  ΔV( )home = ΔV( )line − IR = 120 V − 110 A( ) 0.036 0 Ω( ) = 116 V
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 (b) The power delivered to the customer is 
   

  P = I ΔV( ) = 110 A( ) 116 V( ) = 12.8 kW
 

 (c) The power dissipated in the wires, or the energy produced in the 
wires, is 

   
  Pwires = I 2R = 110 A( )2 0.036 0 Ω( ) = 436 W

 

P27.70 The original resistance is Ri = ρLi/Ai. The new length is  

  L = Li + δ Li = Li(1 + δ ) 

 (a) Constancy of volume implies AL = AiLi so   
   

  
A = AiLi

L
= AiLi

Li(1+δ )
= Ai

(1+δ )

 

  The new resistance is  

   
  
R =

ρL
A

=
ρLi(1 + δ )
Ai /(1 + δ )

= Ri(1 + δ )2 = Ri(1 + 2δ + δ 2 )  

 (b) The result is exact if the assumptions are precisely true. Our 
derivation contains no approximation steps where delta is 
assumed to be small. 

P27.71 (a) A thin cylindrical shell of radius r, thickness dr, and length L 
contributes resistance 

   
   
dR =

ρd
A

=
ρdr

2π r( )L
=

ρ
2π L

⎛
⎝⎜

⎞
⎠⎟

dr
r

 

  The resistance of the whole annulus is the series summation of the 
contributions of the thin shells: 

   

  
R =

ρ
2π L

dr
rrc

rb

∫ =
ρ

2π L
ln

rb

ra

⎛
⎝⎜

⎞
⎠⎟

 

 (b) In this equation 
  

ΔV
I

=
ρ

2π L
ln

rb

ra

⎛
⎝⎜

⎞
⎠⎟

.  

  Solving, we get 

  
ρ =

2π LΔV
I ln rb ra( ) .  
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P27.72 The value of 11.4 A is what results from substituting the given voltage 
and resistance into Equation 27.7. However, the resistance measured 
for a lightbulb with an ohmmeter is not the resistance at which it 
operates because of the change in resistivity with temperature. The 
higher resistance of the filament at the operating temperature brings 
the current down significantly.  

P27.73 Let α be the temperature coefficient at 20.0°C, and α′ be the 
temperature coefficient at 0°C. Then   ρ = ρ0 1 +α T − 20.0°C( )[ ]  and 

  ρ = ′ρ 1 + ′α T − 0°C( )[ ]  must both give the correct resistivity at any 
temperature T. That is, we must have:  

      ρ0 1 +α T − 20.0°C( )[ ] = ′ρ 1 + ′α T − 0°C( )[ ]  [1] 

 Setting T = 0 in equation [1] yields:  

    ′ρ = ρ0 1−α 20.0°C( )[ ]  

 and setting T = 20.0°C in equation [1] gives: 

    ρ0 = ′ρ 1 + ′α 20.0°C( )[ ]  

 Substitute ρ′ from the first of these results into the second to obtain:  

    ρ0 = ρ0 1−α 20.0°C( )[ ] 1 + ′α 20.0°C( )[ ]  

 Therefore, 

   
 
1 + ′α 20.0°C( ) =

1
1−α 20.0°C( )  

 which simplifies:  
   

 

′α 20.0°C( ) = 1
1−α 20.0°C( ) − 1 =

1− 1−α 20.0°C( )[ ]
1−α 20.0°C( )

′α 20.0°C( ) = α 20.0°C( )
1−α 20.0°C( ) → ′α = α

1−α 20.0°C( )

 

 Therefore,  
    

 

′α = α
1−α 20.0°C( )[ ] = 3.8× 10−3  °C( )−1

1− 3.8× 10−3  °C( )−1( ) 20.0°C( )⎡⎣ ⎤⎦

= 4.1× 10−3  °C( )−1
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P27.74 (a) We begin from   ΔV = −E ⋅    or   dV = −E ⋅dx . Then, 
   

  ΔV = −IR = −E ⋅  

  and the current is 

   
  
I = dq

dt
= E ⋅

R
= A
ρ

E ⋅ = A
ρ

E = −σA
dV
dx

= σA
dV
dx

 

 (b) Current flows in the direction of decreasing voltage. Energy flows 
by heat in the direction of decreasing temperature. 

P27.75 We begin with  

   

   

R = ρ
A

=
ρ0 1+α T −T0( )⎡⎣ ⎤⎦0 1+ ′α T −T0( )⎡⎣ ⎤⎦

A0 1+ ′α T −T0( )⎡⎣ ⎤⎦
2

= ρ00

A0

1+α T −T0( )
1+ ′α T −T0( )

. 

 For copper (for T0 = 20.0°C):  ρ0 = 1.700 × 10−8  Ω⋅m , 

 α = 3.900 × 10−3  °C−1 , and  ′α = 17.00 × 10−6  °C−1 . Then,  

   

   

R =
ρ00

A0

1 +α T −T0( )
1 + ′α T −T0( )

R =
1.700 × 10−8( ) 2.000( )
π 0.1000 × 10−3( )2

1 + 3.900 × 10−3  °C−1( ) 80.00°C( )
1 + 17.00 × 10−6  °C−1( ) 80.00°C( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R = 1.418 Ω

 

P27.76 The wire has length   , and radius r; its cross-sectional area is A (πr2, if 
circular), which is proportional to r2. Because both    and r change with 
a temperature variation  ΔT  according to   L = L0 1 + ′α ΔT( ) , the cross-
sectional area changes according to 

  A = A0 1+ ′α ΔT( )2 .  

 Calling 
   
R0 =

ρ00

A0

 at temperature T0, we have  

  

   

R0 = ρ00

A0

→ R =
ρ0 1+α T −T0( )⎡⎣ ⎤⎦0 1+ ′α T −T0( )⎡⎣ ⎤⎦

A0 1+ ′α T −T0( )⎡⎣ ⎤⎦
2

= ρ0

A0

1+α T −T0( )⎡⎣ ⎤⎦
1+ ′α T −T0( )⎡⎣ ⎤⎦

x
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 which gives 
   

  
R = R0

1+α T −T0( )
1+ ′α T −T0( )

 

P27.77 (a) Think of the device as two capacitors in parallel. The one on the 

left has  κ 1 = 1 , 
   
A1 =


2

+ x⎛
⎝⎜

⎞
⎠⎟ 

. The equivalent capacitance is 

   

   

κ 1 ∈0 A1

d
+κ 2 ∈0 A2

d
= ∈0 

d

2

+ x⎛
⎝⎜

⎞
⎠⎟ +κ ∈0 

d

2
− x⎛

⎝⎜
⎞
⎠⎟

= ∈0 
2d
+ 2x +κ − 2κ x( )

 

 (b) The charge on the capacitor is  Q = CΔV  
   

   
Q = ∈0 ΔV

2d
+ 2x +κ − 2κ x( )

 

  The current is 
   

   
I = dQ

dt
= dQ

dx
dx
dt

= ∈0 ΔV
2d

0 + 2 + 0− 2κ( )v = −∈0 ΔVv
d

κ − 1( )
 

  The negative value indicates that the current drains charge from 

the capacitor. Positive current is 
   

clockwise 
∈0 ΔVv

d
κ − 1( ) .  

P27.78 (a) The resistance of the dielectric block is 
  
R =

ρ
A

=
d

σA
. 

  The capacitance of the capacitor is 
  
C = κ ∈0 A

d
.  

  Then 
  
RC = d

σA
κ ∈0 A

d
= κ ∈0

σ
 is a characteristic of the material 

only. 

 (b) The resistance between the plates of the capacitor is 

   

  

R = κ ∈0

σ C
= ρκ ∈0

C

=
75× 1016  Ω⋅m( ) 3.78( ) 8.85× 10−12  C2 N ⋅m2( )

14.0× 10−9  F
= 1.79× 1015  Ω
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P27.79 The volume of the gram of gold is given by 
 
ρ =

m
V

. 

  

  
V = m

ρ
= 10−3  kg

19.3× 103  kg m3 = 5.18× 10−8  m3 = A 2.40× 103  m( )
 

 Then,   A = 2.16× 10−11  m2  and the resistance is 
  

   
R = ρ 

A
=

2.44× 10−8  Ω⋅m( ) 2.4× 103  m( )
2.16× 10−11  m2 = 2.71× 106  Ω

 

P27.80 Evaluate 
  
I = I0 exp

eΔV
kBT

⎛
⎝⎜

⎞
⎠⎟
− 1

⎡

⎣
⎢

⎤

⎦
⎥  and 

 
R =

ΔV
I

 with 

 I0 = 1.00 × 10–9 A, e = 1.60 × 10–19 C, and kB = 1.38 × 10–23 J/K. 
 

 

Parts (a) and (b): The following includes a partial table of calculated
values and a graph for each of the specified temperatures.

 

 (i) For T = 280 K: 

   

  

ΔV V( ) I A( ) R Ω( )
0.400 0.015 6 25.6
0.440 0.081 8 5.38
0.480 0.429 1.12
0.520 2.25 0.232
0.560 11.8 0.047 6
0.600 61.6 0.009 7

 

 

ANS. FIG. P27.80(i) 
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 (ii) For T = 300 K: 

   

  

ΔV V( ) I A( ) R Ω( )
0.400 0.005 77.3
0.440 0.024 18.1
0.480 0.114 4.22
0.520 0.534 0.973
0.560 2.51 0.223
0.600 11.8 0.051

 

 

ANS. FIG. P27.80(ii) 

 (iii) For T = 320 K: 

   

  

ΔV V( ) I A( ) R Ω( )
0.400 0.002 0 203
0.440 0.008 4 52.5
0.480 0.035 7 13.4
0.520 0.152 3.42
0.560 0.648 0.864
0.600 2.76 0.217

 

 

ANS. FIG. P27.80(iii) 
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P27.81 To find the final operating temperature, we begin with 

   
  R = R0 1 +α T −T0( )⎡⎣ ⎤⎦  

 and solve for the temperature T: 

   
  
T = T0 +

1
α

R
R0

− 1
⎡

⎣
⎢

⎤

⎦
⎥ = T0 +

1
α

I0

I
− 1⎡

⎣⎢
⎤
⎦⎥

 

 In this case, 
  
I =

I0

10
 , so  

   
  
T = T0 +

1
α

9( ) = 20° +
9

0.004 50 °C
= 2 020°C  

 
 

 

Challenge Problems 

P27.82 (a) We are given  
  
α =

1
ρ

dρ
dT

 

  Separating variables, 
  

dρ
ρρ0

ρ

∫ = α  dT
T0

T

∫ . We integrate, on both 

sides, from the physical situation at temperature T0 to that at 
temperature T. 

  Integrating both sides,    ln(ρ/ρ0 ) = α(T – T0 )  

  Thus  
  
ρ = ρ0e

α T−T0( )  

 (b) From the series expansion   e
x ≈ 1 + x,  with x much less than 1,  

   
  
ρ ≈ ρ0 1 +α T −T0( )⎡⎣ ⎤⎦  

P27.83 A spherical layer within the shell, with radius r and thickness dr, has 
resistance 

  
  
dR =

ρdr
4πr2

 

 The whole resistance is the absolute value of the quantity 

  
  
R = dR =

ρdr
4πr2 =

ra

rb∫a

b
∫

ρ
4π

r−1

−1 ra

rb

= −
ρ

4π
−

1
ra

+
1
rb

⎛
⎝⎜

⎞
⎠⎟

=
ρ

4π
1
ra

−
1
rb

⎛
⎝⎜

⎞
⎠⎟
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P27.84 Refer to ANS. FIG. P27.84. The current flows 
generally parallel to L. Consider a slice of the 
material perpendicular to this current, of 
thickness dx, and at distance x from face A. 
Then the other dimensions of the slice are w 

and y, where by proportion 
  
y – y1

x = y2 – y1

L  

so 
  
y = y1 + (y2 − y1)

x
L

.  The bit of resistance which this slice contributes is  

  
  
dR = ρdx

A
= ρdx

wy
= ρdx

w y1 + y2 – y1( ) x / L( )( )  

 The whole resistance is that of all the slices:  

  

  

R = dR =
x=0

L

∫ ∫0
L ρdx

w y1 + y2 – y1( ) x / L( )( )

= ρ
w 

L
y2 – y1

∫x=0

L y2 – y1( )/ L( )dx

y1 + y2 – y1( ) x / L( )

 

 With 
  
u = y1 + y2 – y1( ) x

L 
 this is of the form 

  
du
u ∫ ,  so 

  

  

R = ρL
w y2 – y1( ) ln y1 + y2 – y1( ) x/L( )⎡⎣ ⎤⎦x=0

L

= ρL
w y2 – y1( ) ln  y2 – ln  y1( ) = ρL

w y2 – y1( ) ln
y2

y1

 

P27.85 From the geometry of the longitudinal section of  
the resistor shown in ANS. FIG. P27.85, we see that 

    
 

b − r( )
y

=
b − a( )

h
 

 From this, the radius at a distance y from the base  

is 
 
r = a − b( ) y

h
+ b . For a disk-shaped element of volume 

  
dR =

ρdy
π r2 :  

  
  
R =

ρ
π

dy

a − b( ) y h( ) + b⎡⎣ ⎤⎦
2

0

h

∫  

 Using the integral formula 
  

du
au + b( )2∫ = −

1
a au + b( ) , 

 
R =

ρ
π

h
ab

 

 
 

 

ANS. FIG. P27.84 

 

ANS. FIG. P27.85 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P27.2 
  

qω
2π

  

P27.4 1.05 mA 

P27.6 (a) 5.57 × 10–5 m/s; (b) The drift speed is smaller because more 
electrons are being conducted. 

P27.8 (a) 99.5 kA/m2; (b) The current is the same; (c) The current density is 
smaller; (d) 0.800 cm; (e) I = 5.00 A; (f) 2.49 × 104 A/m2 

P27.10 (a) 2.21 × 10–7 m; (b) The potential of the nearest neighbor is very small 
compared to the 2 MV accelerating potential, so repulsion within the 
beam is a small effect. 

P27.12 0.256 C 

P27.14 500 mA 

P27.16 6.43 A 

P27.18 1.29 

P27.20 (a) 
  

mR
ρρm

;  (b) 
  

4
π

ρm
ρmR

⎛
⎝⎜

⎞
⎠⎟

1/4

 

P27.22 (a) unaffected; (b) doubles; (c) doubles; (d) unchanged 

P27.24 (a) 5.58 × 10–2 kg/mol; (b) 1.41 × 105 mol/m3; (c) 8.49 × 1028 
 

atoms
m3

;  

(d) 1.70 × 1029 electrons/m3; (e) 2.21 × 10–4 m/s 

P27.26 T = 1.44 × 103 °C 

P27.28 1.98 A 

P27.30 (a) 1.22 Ω; (b) 8.00 × 10–4 increase 

P27.32 (a) The design goal can be met; (b)   1 = 0.898 m and 2 = 26.2 m  

P27.34 1.71 Ω 

P27.36 (a) 3.00 × 108 W; (b) 1.75 × 1017 W 

P27.38 7.50 W 

P27.40 15.0 µW 

P27.42 6.53 Ω 

P27.44 (a) $1.48; (b) $0.005 34; (c) $0.381 
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P27.46 (a) 2.1 W; (b) 3.42 W; (c) It would not be as safe. If surrounded by 
thermal insulation, it would get much hotter than a copper wire. 

P27.48 $0.319 

P27.50 (a) 0.530; (b) 221 J; (c) 15.1°C 

P27.52 See P27.52 for full explanation. 

P27.54 ~ $1 

P27.56 (a) 17.3 A; (b) 22.4 MJ; (c) $0.684 

P27.58 276°C 

P27.60 (a) Lightbulb A = 576 Ω and Lightbulb B = 144 Ω; (b) 4.80 s; (c) The 
charge is the same. It is at a location that is lower in potential;  
(d) 0.040 0 s; (e) The energy is the same. Energy enters the lightbulb by 
electric transmission and leaves by heat and electromagnetic radiation; 
(f) $1.98 

P27.62 (a) See the table in P27.62(a); (b)  9.93 × 10−7  Ω⋅m;  (c) The average value 
is within 1% of the tabulated value of  1.00 × 10−6  Ω⋅m  given in Table 
27.2. 

P27.64 (a) Any diameter d and length    related by    d
2 = 4.77 × 10−8( ) , where d 

and    are in meters; (b) Yes; for V = 0.500 cm3 of Nichrome,    = 3.65 m  
and d = 0.418 mm. 

P27.66 (a) 667 A; (b) 50.0 km 

P27.68 (a) V/L in the positive x direction; (b) 4 ρL/π d2; (c)  Vπd2 / 4ρL;   

(d) V/ρL in the positive x direction; (e) 
 
ρJ = ρ V

ρL
⎛
⎝⎜

⎞
⎠⎟
=

V
L
= E  

P27.70 See P27.70(a) for the full explanation; (b) The result is exact if the 
assumptions are precisely true. Our derivation contains no 
approximation steps where delta is assumed to be small. 

P27.72 The value of 11.4 A is what results from substituting the given voltage 
and resistance into Equation 27.7. However, the resistance measured 
for a lightbulb with an ohmmeter is not the resistance at which it 
operates because of the change in resistivity with temperature. The 
higher resistance of the filament at the operating temperature brings 
the current down significantly. 

P27.74 (a) 
 
σA

dV
dx

; (b) Current flows in the direction of decreasing voltage. 

Energy flows by heat in the direction of decreasing temperature. 
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P27.76 
  
R = R0

1 +α T −T0( )
1 + ′α T −T0( )  

P27.78 (a) See P27.78 for full explanation; (b) 1.79 × 1015 Ω 

P27.80 (a) See Table P27.80 (i), (ii), and (iii); (b) See ANS. FIG. P27.80 (i), (ii), 
and (iii). 

P27.82 (a)   ρ = ρ0e
α T−T0( ) ; (b)   ρ ≈ ρ0 1 +α T −T0( )⎡⎣ ⎤⎦  

P27.84 
  

ρL
w y2 − y1( ) ln

y2

y1

⎛
⎝⎜

⎞
⎠⎟
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28 
Direct-Current Circuits 

 

CHAPTER OUTLINE 
 

28.1  Electromotive Force 

28.2  Resistors in Series and Parallel 

28.3  Kirchhoff ’s Rules 

28.4 RC Circuits 

28.5 Household Wiring and Electrical Safety 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ28.1 Answer (a). When the breaker trips to off, current does not go 
through the device. 

OQ28.2 (i) Answer (d). The terminal potential difference is   ΔV = ε − Ir,  
where current I within the battery is considered positive when it 
flows from the negative to the positive terminal. When I = 0,  ΔV = ε  

 (ii) Answer (b). When the battery is absorbing electrical energy, the 
current within the battery flows from the positive to the negative 
terminal; in this case, I is considered negative, making 

  ΔV = ε − Ir = ε + I r > ε.  

OQ28.3 Answer (c). In a series connection, the same current exists in each 
element. The potential difference across a resistor in this series 
connection is directly proportional to the resistance of that resistor, 
  ΔV = IR,  and independent of its location within the series 
connection. 

OQ28.4 Answer (b). because the appliances are connected in parallel, the 
total power used is proportion to the total current: 

   
 

Pi∑ = IiΔV∑ = ΔV Ii∑ → Ii∑ = Pi∑
ΔV
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 or  
   

  

Ii∑ = Pheater + Ptoaster + Poven

ΔV

=
1.30× 103 + 1.00× 103 + 1.54× 103( )  W

120 V
= 32.0 A

 

OQ28.5 Answer (b). When the two identical resistors are in series, the current 
supplied by the battery is   I = ΔV/2R,  and the total power delivered 
is   Ps = ΔV( )I = ΔV( )2 2R .  With the resistors connected in parallel, the 
potential difference across each resistor is ∆V and the power 
delivered to each resistor is   P1 = ΔV( )2 R .  Thus, the total power 
delivered in this case is 

   
  
Pp = 2P1 = 2

ΔV( )2

R
= 4

ΔV( )2

2R
⎡

⎣
⎢

⎤

⎦
⎥ = 4Ps = 4 8.0 W( ) = 32 W  

OQ28.6 Answer (a), (d). According to the relationship for resistors in series, 

      Req = R1 + R2 +  

 the sum Req is always larger than any of the resistances R1, R2, etc. 

OQ28.7 Answer (d). The equivalent resistance for the series combination of 
five identical resistors is Req = 5R, and the equivalent capacitance of 
five identical capacitors in parallel is Ceq = 5C. The time constant for 
the circuit is therefore   τ = ReqCeq = 5R( ) 5C( ) = 25RC . 

OQ28.8 Answers (b) and (d). The current is the same in each series resistor, as 
described by Kirchhoff’s junction rule. The potential difference in 
each resistor is different because  ΔV = IR  and each R is different. 

OQ28.9 Answer (a). The potential is the same across each parallel resistor, 
but the current and power in each resistor is different because 
  I = ΔV/R  and  P = IΔV  and each R is different. 

OQ28.10 Answer (b) and (c). The same potential difference exists across all 
elements connected in parallel with each other, while the current 
through each element is inversely proportional to the resistance of 
that element   I = ΔV/R( ).  

OQ28.11 Answer (b). Each headlight’s terminals are connected to the positive 
and negative terminals of the battery so that each headlight can 
operate if the other is burned out. 

OQ28.12 (i) The ranking of potentials are: a > d > b = c > e. For both batteries to 
be delivering electric energy, currents are in the direction a to b, and d 
to c, and so current flows downward through e. Point e is at zero 
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potential. Points b and c are at the same higher potential, d (equal to 9 
V) is still higher, and a (equal to 12 V) is highest of all. 

 (ii) The ranking of magnitudes of current are: e > a = b > c = d. The 
current through e must be the sum of the other two currents. The 
change in potential from a to b is greater than the change in potential 
from d to c, so the current from a to b must be greater. 

OQ28.13 Answer (b). According to the relationship for resistors in parallel, 

   
   

1
Req

=
1

R1

+
1

R2

+  

 the larger the sum on the right-hand side of the equation, 

   1/R1 + 1/R2 + , the smaller the equivalent resistance Req; therefore, 
Req is always smaller than any of the resistances R1, R2, etc. 

OQ28.14 Answers: (i) (b) (ii) (a) (iii) (a) (iv) (b) (v) (a) (vi) (a). Closing the 
switch lights lamp C. The action increases the battery current so it 
decreases the terminal voltage of the battery. Lamps A and B are in 
series, so they carry the same current, but when the terminal voltage 
of the battery drops, the total voltage drops across lamps A and B 
combined, thus reducing the potential difference across each. Total 
power delivered to the lamps increases because the current through 
the battery increases. 

OQ28.15 Answers: (i) (a) (ii) (d) (iii) (a) (iv) (a) (v) d (vi) (a). Closing the switch 
removes lamp C from the circuit, decreasing the resistance seen by 
the battery, and so increasing the current in the battery. Lamps A and 
B are in series, so the potential difference across each is proportional 
to the current. Total power delivered to the lamps increases because 
the current through the battery increases. 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ28.1 (a) No. As is the case with the bird in CQ28.3, the resistance of a 
small length of wire is small, so the potential change along that 
length is small. 

 (b) No! When she eventually touches the ground, she will act as a 
connection to ground, resulting in perhaps several thousand 
volts across her. 

CQ28.2 Answer their question with a challenge. If the student is just looking 
at a diagram, provide the materials to build the circuit. If you are 
looking at a circuit where the second bulb really is fainter, get the 
student to unscrew them both and interchange them. But check that 
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the student’s understanding of potential has not been impaired: if 
you add wires to bypass and short out the first bulb, the second gets 
brighter. 

CQ28.3 Because the resistance of a short length of wire is small, the change in 
potential along that length is small; therefore, there is essentially zero 
difference in potential between the bird’s feet. Then negligible current 
goes through the bird. The resistance through the bird’s body 
between its feet is much larger than the resistance through the wire 
between the same two points. 

CQ28.4  

  

CQ28.5 Two runs in series:  = one run down one slope followed 
by a second run down a second slope. 

 Three runs in parallel:  = parallel runs down the same hill 

so that the change in elevation is the same for each. 

 Junction of one lift and two runs: . 

 Gustav Robert Kirchhoff, Professor of Physics at Heidelberg and 
Berlin, was master of the obvious. A junction rule: The number of 
skiers coming into any junction must be equal to the number of 
skiers leaving. A loop rule: the total change in altitude must be zero 
for any skier completing a closed path. 

CQ28.6 The bulb will light up for a while immediately after the switch is 
closed. As the capacitor charges, the bulb gets progressively dimmer. 
When the capacitor is fully charged the current in the circuit is zero 
and the bulb does not glow at all. If the value of RC is small, this 
whole process might occupy a very short time interval. 

CQ28.7 (a) The hospital maintenance worker is right. A hospital room is 
full of electrical grounds, including the bed frame. If your 
grandmother touched the faulty knob and the bed frame at the 
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same time, she could receive quite a jolt, as there would be a 
potential difference of 120 V across her. If the 120 V is DC, the 
shock could send her into ventricular fibrillation, and the 
hospital staff could use the defibrillator you read about in 
Chapter 26. If the 120 V is AC, which is most likely, the current 
could produce external and internal burns along the path of 
conduction. 

 (b) Likely no one got a shock from the radio back at home because 
her bedroom contained no electrical grounds—no conductors 
connected to zero volts. Just like the bird in CQ28.3, granny 
could touch the “hot” knob without getting a shock so long as 
there was no path to ground to supply a potential difference 
across her. A new appliance in the bedroom or a flood could 
make the radio lethal. Repair it or discard it. Enjoy the news 
from Lake Wobegon on the new plastic radio. 

CQ28.8 (a) Both 120-V and 240-V lines can deliver injurious or lethal 
shocks, but there is a somewhat better safety factor with the 
lower voltage. To say it a different way, the insulation on a 120-
V line can be thinner. 

 (b) On the other hand, a 240-V device carries less current to operate 
a device with the same power, so the conductor itself can be 
thinner. Finally, the last step-down transformer can also be 
somewhat smaller if it has to go down only to 240 volts from the 
high voltage of the main power line. 

CQ28.9 No. If there is one battery in a circuit, the current inside it will be 
from its negative terminal to its positive terminal. Whenever a 
battery is delivering energy to a circuit, it will carry current in this 
direction. On the other hand, when another source of emf is charging 
the battery in question, it will have a current pushed through it from 
its positive terminal to its negative terminal. 

CQ28.10 In Figure 20.13, temperature is similar to electric potential, and 
temperature difference  ΔT = Th −Tc  is similar to voltage   ΔV.  Energy 
transfer is similar to electric current. The upper picture is similar to a 
series circuit, where the resistors (rods) carry the same current 
(energy transfer by conduction), and the sum of the voltages 
(temperature differences) across the rods equals the total voltage 
(total temperature difference) across both resistors (rods). The lower 
picture is similar to a parallel circuit, where the resistors (rods) have 
the same voltage (temperature difference) but carry different currents 
(energy transfer by conduction). 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 28.1 Electromotive Force 
P28.1 (a) Combining Joule’s law,   P = IΔV ,  and 

the definition of resistance,   ΔV = IR,  gives  
   

  
R = ΔV( )2

P = 11.6 V( )2

20.0 W = 6.73 Ω
 

 (b) The electromotive force of the battery must 
equal the voltage drops across the 
resistances: ε  = IR + Ir, where   I = ΔV/R.   

   

  

r =
ε – IR( )

I =
ε – ΔV( )R

ΔV

=
15.0 V – 11.6 V( ) 6.73 Ω( )

11.6 V = 1.97  Ω

 

P28.2 The total resistance is 
  
R =

3.00 V
0.600 A

= 5.00 Ω.  

 

 

ANS. FIG. P28.2 

 (a) 
  
Rlamp = R − rbatteries = 5.00 Ω− 0.408 Ω = 4.59 Ω  

 (b) 
  

Pbatteries

Ptotal

=
0.408 Ω( ) I 2

5.00 Ω( ) I 2 = 0.081 6 = 8.16%  

P28.3 (a) Here ε  = I (R + r), 

  so     
   

  

I = ε
R + r

= 12.6 V
5.00 Ω+ 0.080 0 Ω( )

= 2.48 A.

 

  Then,  
   

  

ΔV = IR = 2.48 A( ) 5.00 Ω( )
= 12.4 V

 

ANS. FIG. P28.1 
 

R 

 0.255  Ω   0.153  Ω  

1.50 V 1.50 V 

ANS. FIG. P28.3(a) 
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 (b) Let I1 and I2 be the currents  
flowing through the battery  
and the headlights, respectively. 

  Then,  

   I1 = I2 + 35.0 A 

  and   ε − I1R − I2R = 0  

  so  
   

  

ε = I2 + 35.0 A( ) 0.080 0 Ω( )
                + I2 5.00 Ω( ) = 12.6 V

 

  giving I2 = 1.93 A. 

  Thus,  

   
  
ΔV2 = 1.93 A( ) 5.00 Ω( ) = 9.65 V  

P28.4 (a) At maximum power transfer, r = R. Equal powers are delivered to 
r and R. The efficiency is 50.0%. 

 (b) For maximum fractional energy transfer to R, we want zero 
energy absorbed by r, so we want r = 0. 

 (c) High efficiency. The electric company’s economic interest is to 
minimize internal energy production in its power lines, so that it 
can sell a large fraction of the energy output of its generators to 
the customers. 

 (d) High power transfer. Energy by electric transmission is so cheap 
compared to the sound system that she does not spend extra 
money to buy an efficient amplifier. 

 
 

 

Section 28.2 Resistors in Series and Parallel 
P28.5 (a) Since all the current in the circuit must pass 

through the series 100-Ω resistor, 

     Pmax = Imax
2 R  

  so 
  
Imax =

P
R

=
25.0 W
100 Ω

= 0.500 A.  

   
  
Req = 100 Ω+ 1

100
+ 1

100
⎛
⎝⎜

⎞
⎠⎟
−1

Ω = 150 Ω  

ANS. FIG. P28.3(b) 
 

ANS. FIG. P28.5 
 

a 
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  ΔVmax = ReqImax = 75.0 V  

 (b) From a to b in the circuit, the power delivered is 

    
  
Pseries = 25.0 W  for the first resistor, and 

    
  
Pparallel = I 2R = 0.250 A( )2 100 Ω( ) = 6.25 W  

  for each of the two parallel resistors. 

 (c) 
  
P = IΔV = 0.500 A( ) 75.0 V( ) = 37.5 W  

P28.6 (a) 

 

The 120-V potential difference is applied across the series
combination of the two conductors in the extension cord and
the lightbulb. The potential difference across the lightbulb is
less than 120 V, and its power is less than 75 W.

 

 (b) See the circuit diagram in ANS. FIG. P28.6; 
the 192-Ω resistor is the lightbulb (see 
below). 

 (c) First, find the operating resistance of the 
lightbulb: 

   

  
P =

ΔV( )2

R
  

 

  or 
  
 R =

ΔV( )2

P
=

120 V( )2

75.0 W
= 192 Ω  

  From the circuit, the total resistance is 193.6 Ω. The current is 

   
  
I =

120 V
193.6 Ω

= 0.620 A  

  so the power delivered to the lightbulb is 
   

  P = I 2ΔR = 0.620 A( )2 192 Ω( ) = 73.8 W  

P28.7 The equivalent resistance of the parallel combination of three identical 
resistors is 

  
  

1
Rp

=
1

R1

+
1

R2

+
1

R3

=
3
R

   or   
  
Rp =

R
3

 

 The total resistance of the series combination between points a and b is 
then 

  
  
Rab = R + Rp + R = 2R +

R
3

=
7
3

R  

ANS. FIG. P28.6 
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P28.8 (a)  By Ohm’s law, the current in A is 
  
IA = ε/R .  The equivalent 

resistance of the series combination of bulbs B and C is 2R. Thus, 
the current in each of these bulbs is 

  
IB = IC = ε 2R .  

 (b) 

 

B and C have the same brightness because they carry the same
current.

 

 (c) 
 
A is brighter than B or C because it carries twice as much current.  

P28.9 If we turn the given diagram on its side and change the lengths of the 
wires, we find that it is the same as ANS. FIG. P28.9(a). The 20.0-Ω and 
5.00-Ω resistors are in series, so the first reduction is 
shown in ANS. FIG. P28.9(b). In addition, since the 
10.0-Ω, 5.00-Ω, and 25.0-Ω resistors are then in 
parallel, we can solve  
for their equivalent resistance as: 

  
  

1
Req

= 1
10.0 Ω + 1

5.00 Ω + 1
25.0 Ω → Req = 2.94 Ω  

 This is shown in ANS. FIG. P28.9(c), which in turn 
reduces to the circuit shown in ANS. FIG. P28.9(d), 
from which we see that the total resistance of the 
circuit is 12.94 Ω. 

 Next, we work backwards through the diagrams 

applying 
 
I =

ΔV
R

 and  ΔV = IR  alternately to every 

resistor, real and equivalent. The total 12.94-Ω 
resistor is connected across 25.0 V, so the current 
through the battery in every diagram is 

  
  
I =

ΔV
R

=
25.0 V

12.94 Ω
= 1.93 A  

 In ANS. FIG. P28.9(c), this 1.93 A goes through 
the 2.94-Ω equivalent resistor to give a potential 
difference of: 

    ΔV = IR = 1.93 A( ) 2.94 Ω( ) = 5.68 V  

 From ANS. FIG. P28.9(b), we see that this potential difference is the 
same as the potential difference  ΔVab  across the 10-Ω resistor and the 
5.00-Ω resistor. 

ANS. FIG. P28.9 
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 Thus we have first found the answer to part (b), which is 

  
  
ΔVab = 5.68 V  

 Since the current through the 20.0-Ω resistor is also the current through 
the 25.0-Ω line ab, 

  
  
I =

ΔVab

Rab

=
5.68 V
25.0 Ω

= 0.227 A = 227 mA  

P28.10 (a) 

 

Connect two 50-Ω resistors in parallel to get 25 Ω. Then
connect that parallel combination in series with a 20-Ω for
a total resistance of 45 Ω.

 

 (b) 

 

Connect two 50-Ω resistors in parallel to get 25 Ω. Also, connect
two 20-Ω resistors in parallel to get 10 Ω. Then, connect these two
combinations in series with each other to obtain 35 Ω.

 

P28.11 When S is open, R1, R2, and R3 are in series with the battery. Thus, 

   
  
R1 + R2 + R3 =

6 V
10−3  A

= 6 kΩ  [1] 

 When S is closed in position a, the parallel combination of the two R2’s 
is in series with R1, R3, and the battery. Thus, 

  
  
R1 +

1
2

R2 + R3 =
6 V

1.2 × 10−3  A
= 5 kΩ  [2] 

 When S is closed in position b, R1 and R2 are in series with the battery 
and R3 is shorted. Thus, 

  
  
R1 + R2 =

6 V
2 × 10−3  A

= 3 kΩ  [3] 

 Subtracting [3] from [1] gives  R3 = 3 kΩ. 

 Subtracting [2] from [1] gives  R2 = 2 kΩ. 

 Then, from [3],    R1 = 1 kΩ. 

 Answers: (a) 
  
R1 = 1.00 kΩ    (b) 

  
R2 = 2.00 kΩ    (c) 

  
R3 = 3.00 kΩ  

P28.12 When S is open, R1, R2, and R3 are in series with the battery. Thus, 

   
  
R1 + R2 + R3 = ε

I0

 [1] 
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 When S is closed in position a, the parallel combination of the two R2’s 
is in series with R1, R3, and the battery. Thus, 

   
  
R1 + 1

2
R2 + R3 = ε

Ia

 [2] 

 When S is closed in position b, R1 and R2 are in series with the battery. 
R3 is shorted. Thus: 

   
  
R1 + R2 = ε

Ib

  [3] 

 Subtracting [3] from [1] gives 
   

  

R1 + R2 + R3( )− R1 + R2( ) = ε
I0

− ε
Ib

R3 = ε 1
I0

− 1
Ib

⎛
⎝⎜

⎞
⎠⎟

 

 Subtracting [2] from [1] gives 
   

  

R1 + R2 + R3( )− R1 + 1
2

R2 + R3
⎛
⎝⎜

⎞
⎠⎟ = ε

I0

− ε
Ia

1
2

R2 = ε 1
I0

− 1
Ia

⎛
⎝⎜

⎞
⎠⎟

R2 = 2ε 1
I0

− 1
Ia

⎛
⎝⎜

⎞
⎠⎟

 

 Then, from [3], 
   

  

R1 + R2 = ε
Ib

R1 = ε
Ib

− R2

R1 = ε
Ib

− 2ε 1
I0

− 1
Ia

⎛
⎝⎜

⎞
⎠⎟

R1 = ε − 2
I0

+ 2
Ia

+ 1
Ib

⎛
⎝⎜

⎞
⎠⎟

 

 Answers: (a) 

  
R1 = ε − 2

I0

+ 2
Ia

+ 1
Ib

⎛
⎝⎜

⎞
⎠⎟

  (b) 

  
R2 = 2ε 1

I0

− 1
Ia

⎛
⎝⎜

⎞
⎠⎟

  

(c) 

  
R3 = ε

1
I0

− 1
Ib

⎛
⎝⎜

⎞
⎠⎟
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*P28.13 (a) The equivalent resistance of the two 
parallel resistors is  

   
  
Rp = 1

1 7.00 Ω( ) + 1 10.0 Ω( ) = 4.12 Ω  

  Thus, 

   
  

Rs = R1 + R2 + R3 = 4.00 + 4.12 + 9.00

= 17.1 Ω
 

 (b)  ΔV = IR  

    34.0 V = I 17.1 Ω( )  

     I = 1.99 A  for the  4.00-Ω  and  9.00-Ω  resistors. 

  Applying   ΔV = IR,  

    1.99 A( ) 4.12 Ω( ) = 8.18 V  

     8.18 V = I 7.00 Ω( )  

  so   I = 1.17 A  for the  7.00-Ω  resistor. Finally,  

     8.18 V = I 10.0 Ω( )  

  so   I = 0.818 A  for the  10.0-Ω  resistor. 

P28.14 (a) The resistance between a and b decreases. The original resistance 
is 

   

  

R +
1

1

90 + 10
+

1

10 + 90

= R + 50 Ω  

  Closing the switch changes the resistance to 

   

  

R +
1

1

90
+

1

10

+
1

1

10
+

1

90

= R + 18 Ω  

 (b) We require R + 18 Ω = 0.50(R + 50 Ω), so R = 14.0 Ω. 

P28.15 Denoting the two resistors as x and y, and suppressing units, 

   x + y = 690, and 
  

1
150

=
1
x

+
1
y

 

   

  

1
150

= 1
x

+ 1
690− x

= 690− x( )+ x
x 690− x( )

 

ANS. FIG. P28.13 
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x2 − 690x + 103 500 = 0

x =
690 ± 690( )2 − 414 000

2
x = 470 Ω y = 220 Ω

 

P28.16 (a) The resistors 2, 3, and 4 can be combined to a single 2R resistor. 
This is in series with resistor 1, with resistance R, so the 
equivalent resistance of the whole circuit is 3R. In series, potential 
difference is shared in proportion to the resistance, so resistor 1 

gets 
 
1
3

 of the battery voltage and the 2-3-4 parallel combination 

gets 
 
2
3

 of the battery voltage. This is the potential difference 

across resistor 4, but resistors 2 and 3 must share this voltage. 
 
1
3

 

goes to 2 and 
 
2
3

 to 3. The ranking by potential difference is  

     ΔV4 > ΔV3 > ΔV1 > ΔV2  

  Based on the reasoning above the potential differences are  

   
  
ΔV1 =

ε
3

, ΔV2 =
2ε
9

, ΔV3 =
4ε
9

, ΔV4 =
2ε
3

 

 (b) All the current goes through resistor 1, so it gets the most. The 
current then splits at the parallel combination. Resistor 4 gets 
more than half, because the resistance in that branch is less than 
in the other branch. Resistors 2 and 3 have equal currents because 
they are in series. The ranking by current is  

     I1 > I4 > I2 = I3  

  Resistor 1 has a current of I. Because the resistance of 2 and 3 in 
series is twice that of resistor 4, twice as much current goes 
through 4 as through 2 and 3. The current through the resistors 
are  

   
  

I1 = I , I2 = I3 =
I
3

, I4 =
2I
3

 

 (c) Increasing resistor 3 increases the equivalent resistance of the 
entire circuit. The current in the circuit, which is the current 
through resistor 1, decreases. This decreases the potential 
difference across resistor 1, increasing the potential difference 
across the parallel combination. With a larger potential difference 
the current through resistor 4 is increased. With more current 



Chapter 28     253 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

through 4, and less in the circuit to start with, the current through 
resistors 2 and 3 must decrease. To summarize,  

   
  

I4  increases and I1 , I2 , and I3  decrease  

 (d) If resistor 3 has an infinite resistance it blocks any current from 
passing through that branch, and the circuit effectively is just 
resistor 1 and resistor 4 in series with the battery. The circuit now 
has an equivalent resistance of 4R. The current in the circuit drops 

to 
 
3
4

 of the original current because the resistance has increased 

by 
 
4
3

. All this current passes through resistors 1 and 4, and none 

passes through 2 or 3. Therefore, 

   
  

I1 =
3I
4

, I2 = I3 = 0, I4 =
3I
4

 

P28.17 (a) The parallel combination of the 6.0 Ω and 12 Ω resistors has an 
equivalent resistance of 

   
  

1
Rp1

=
1

6.0 Ω
+

1
12 Ω

=
2 + 1
12 Ω     

  or 
  
Rp1 =

12 Ω
3

= 4.0 Ω  

  Similarly, the equivalent resistance of the 4.0 Ω and 8.0 Ω parallel 
combination is 

   
  

1
Rp2

=
1

4.0 Ω
+

1
8.0 Ω

=
2 + 1
8.0 Ω     

  or  
  
Rp2 =

8 Ω
3

 

  The total resistance of the series combination between points a 
and b is then 

   

  

Rab = Rp1 + 5.0 Ω+ Rp2 = 4.0 Ω+ 5.0 Ω+ 8.0
3

 Ω

= 35
3

 Ω = 11.7 Ω
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 (b) If  ΔVab  = 35 V, the total current from a to b is  Iab = ΔVab Rab =  

 35 V 35 Ω 3( ) = 3.0 A  and the potential differences across the two 
parallel combinations are 

     ΔVp1 = IabRp1 = 3.0 A( ) 4.0 Ω( ) = 12 V   

  and   ΔVp2 = IabRp2 = 3.0 A( )  
 

8.0
3

 Ω⎛
⎝⎜

⎞
⎠⎟ = 8.0 V  

  so the individual currents through the various resistors are: 

   
  I12 = ΔVp1 12 Ω = 1.0 A     

   
  I6 = ΔVp1 6.0 Ω = 2.0 A  

     I5 = Iab = 3.0 A  

   
  I8 = ΔVp2 8.0 Ω = 1.0 A    

  and   I4 = ΔVp2 4.0 Ω = 2.0 A  

P28.18 We assume that the metal wand makes low-resistance contact with the 
person’s hand and that the resistance through the person’s body is 
negligible compared to the resistance Rshoes of the shoe soles. The 
equivalent resistance seen by the power supply is 1.00 MΩ + Rshoes. The 

current through both resistors is 
  

50.0 V
1.00 MΩ + Rshoes

.  The voltmeter 

displays 
   

  

ΔV = I 1.00 MΩ( )

ΔV =
50.0 V

1.00 MΩ + Rshoes

= 1.00 MΩ

 

 (a) We solve to obtain 

     50.0 V 1.00 MΩ( ) = ΔV 1.00 MΩ( ) + ΔV Rshoes( )  

   

  
Rshoes =

1.00 MΩ( ) 50.0 − ΔV( )
ΔV

 

  or 

   
  
Rshoes =

50.0 − ΔV
ΔV

 

  where resistance is measured in MΩ. 
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 (b) With   Rshoes → 0 , the current through the person’s body is 

   
 

50.0 V
1.00 MΩ

= 50.0 µA     
 

The current will never exceed 50 µA.  

P28.19 To find the current in each resistor, we find the resistance seen by the 
battery. The given circuit reduces as shown in ANS. FIG. P28.19(a), 
since  

   
 

1
(1/1.00 Ω) + (1/3.00 Ω )  

= 0.750 Ω  

 In ANS. FIG. P28.19(b),  

   I = 18.0 V/6.75 Ω = 2.67 A 

 This is also the current in ANS. FIG. P28.19(a), so 
 the 2.00-Ω and 4.00-Ω resistors convert powers  

  
  P2 = IΔV = I 2R = 2.67 A( )2 2.00 Ω( ) = 14.2 W   

 and   P4 = I 2R = 2.67 A( )2 4.00 Ω( ) = 28.4 W  

 The voltage across the 0.750-Ω resistor in  
ANS. FIG. P28.19(a), and across both the 3.00-Ω  
and the 1.00-Ω resistors in Figure P28.19, is  

  
  ΔV = IR = 2.67 A( ) 0.750 Ω( ) = 2.00 V  

 Then for the 3.00-Ω resistor, 

  
  
I = ΔV

R
= 2.00 V

3.00 Ω
 

 and the power is 
  

  
P3 = IΔV =

2.00 V
3.00 Ω

⎛
⎝⎜

⎞
⎠⎟ (2.00 V) = 1.33 W

 

 For the 1.00-Ω resistor, 
  

  
I =

2.00 V
1.00 Ω and P1 =

2.00 V
1.00 Ω

⎛
⎝⎜

⎞
⎠⎟ (2.00 V) = 4.00 W

 

P28.20 The resistance of the combination of extra resistors must be 

  
7
3 R − R =  4

3 R.  The possible combinations are: one resistor: R; two 

resistors: 2R, 
  
1
2 R;  three resistors: 3R, 

  
1
3 R,  2

3 R,  3
2 R.  None of these is 

  
4
3 R,  so the desired resistance cannot be achieved. 

 

 

ANS. FIG. P28.19 
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P28.21 (a) The equivalent resistance of this first parallel combination is 

   
  

1
Rp1

=
1

10.0 Ω
+

1
5.00 Ω    or     Rp1 = 3.33 Ω  

 

ANS. FIG. P28.21 

  For this series combination, 

     Rupper = Rp1 + 4.00 Ω = 7.33 Ω  

  For the second parallel combination, 

   
  

1
Rp2

=
1

Rupper

+
1

3.00 Ω
=

1
7.33 Ω

+
1

3.00 Ω   or    Rp2 = 2.13 Ω  

  For the second series combination (and hence the entire resistor 
network) 

     Rtotal = 2.00 Ω + Rp2 = 2.00 Ω + 2.13 Ω = 4.13 Ω  

  The total current supplied by the battery is   

  
Itotal =

ΔV
Rtotal

=
8.00 V
4.13 Ω

= 1.94 A  

  The potential drop across the 2.00 Ω resistor is 

     ΔV2 = R2Itotal = 2.00 Ω( ) 1.94 A( ) = 3.88 V  

  The potential drop across the second parallel combination must 
be 

   
  ΔVp2 = ΔV − ΔV2 = 8.00 V − 3.88 V = 4.12 V  

 (b) So the current through the 3.00 Ω resistor is  
   

  
Itotal =

ΔVp2

R3

= 4.12 V
3.00 Ω

= 1.38 A
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Section 28.3 Kirchhoff ’s Rules 
*P28.22  We need one voltmeter across each resistor 

and each battery. These are shown with  V   in 
ANS. FIG. P28.22. From Kirchhoff’s junction 
rule, we need one ammeter in each segment 
of the circuit. Ammeters are shown with  A  in 
ANS. FIG. P28.22. ANS. FIG. P28.22 is the 
complete answer to this problem.  

 

 

P28.23 We name currents I1, I2, and I3 as shown in  
ANS. FIG. P28.23. From Kirchhoff’s current  
rule, I3 = I1 + I2. 

 Applying Kirchhoff’s voltage rule to the  
loop containing I2 and I3, 

   

  

12.0 V − 4.00 Ω( ) I3

                  − 6.00 Ω( ) I2 − 4.00 V = 0
8.00 = 4.00( ) I3 + 6.00( ) I2

 

 Applying Kirchhoff’s voltage rule to the loop containing I1 and I2, 
   

  − 6.00 Ω( ) I2 − 4.00 V + 8.00 Ω( ) I1 = 0  

 or    8.00 Ω( ) I1 = 4.00 + 6.00 Ω( ) I2  

 Solving the above linear system (by substituting I1 + I2 for I3), we 
proceed to the pair of simultaneous equations: 

   
  

8 = 4I1 + 4I2 + 6I2

8I1 = 4 + 6I2

⎧
⎨
⎩

   or   

  

8 = 4I1 + 10I2

I2 =
4
3

I1 −
2
3

⎧
⎨
⎪

⎩⎪
 

 and to the single equation 
   

  
8 = 4I1 + 10

4
3

I1 −
2
3

⎛
⎝⎜

⎞
⎠⎟ = 52

3
I1 −

20
3

    
 

 which gives 

   
  
I1 = 3

52
8 + 20

3
⎛
⎝⎜

⎞
⎠⎟ = 0.846 A  

 Then 
  
I2 = I2 =

4
3

0.846( ) − 2
3

= 0.462  

ANS. FIG. P28.23 
 

 

ANS. FIG. P28.22  
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 and    I3 = I1 + I2 = 1.31 A   

 give  
  

I1 = 846 mA, I2 = 462 mA, I3 = 1.31 A  

 (a) The results are: 0.846 A down in the 8.00-Ω resistor; 0.462 A down 
in the middle branch; 1.31 A up in the right-hand branch. 

 (b) For 4.00-V battery:    
   

  ΔU = PΔt = ΔV( ) IΔt = 4.00 V( ) −0.462 A( ) 120 s( ) = −222 J   

  For 12.0-V battery:  
   

  ΔU = 12.0 V( ) 1.31 A( ) 120 s( ) = 1.88 kJ  

  The results are: –222 J by the 4.00-V battery and 1.88 kJ by the 
12.0-V battery. 

 (c) To the 8.00-Ω resistor:   
   

  
ΔU = I 2RΔt = 0.846 A( )2 8.00 Ω( ) 120 s( ) = 687 J

 

  To the 5.00-Ω resistor:   
   

  
ΔU = 0.462 A( )2 5.00 Ω( ) 120 s( ) = 128 J

 

  To the 1.00-Ω resistor in the center branch:   
   

 
0.462 A( )2 1.00 Ω( ) 120 s( ) = 25.6 J

  

  To the 3.00-Ω resistor:    
   

 
1.31 A( )2 3.00 Ω( ) 120 s( ) = 616 J

 

  To the 1.00-Ω resistor in the right-hand branch:  
   

 
1.31 A( )2 1.00 Ω( ) 120 s( ) = 205 J

 

 (d) 

 

Chemical energy in the 12.0-V battery is transformed 
into internal energy in the resistors. The 4.00-V battery 
is being charged, so its chemical potential energy is 
increasing at the expense of some of the chemical 
potential energy in the 12.0-V battery.

 

 (e) Either sum the results in part (b):   –222 J + 1.88 kJ = 1.66 kJ, 

  or in part (c):  687 J + 128 J + 25.6 J + 616 J +205 J = 1.66 kJ 

  The total amount of energy transformed is 1.66 kJ. 
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P28.24 We name the currents I1, I2, and I3 and arbitrarily choose current 
directions as labeled in ANS. FIG. P28.24. 

 

ANS FIG. P28.24 

  (a) From the point rule for the junction below point b, 

    –I1 + I2 + I3 = 0 [1] 

   Traversing the top loop counterclockwise gives the voltage loop 
equation 

    +12.0 V – (2.00 ) I3 – (4.00 ) I1 = 0 [2] 

   Traversing the bottom loop CCW,  

    +8.00 V – (6.00 ) I2 + (2.00 )I3 = 0 [3] 

   Solving for I1 from equation [2],  
    

  
I1 = 12.0 V − 2.00 Ω( )I3

4.00 Ω

  

   Solving for I2 from equation [3],  
    

  
I2 = 8.00 V + 2.00 Ω( )I3

6.00 Ω

  

   Substituting both of these values into equation [1], we find  
   

  − 3.00 V − 0.500I3( ) + 1.33 V+0.333I3 + I3 = 0   

   so   −1.67 V + 1.833I3 = 0  

   and the current in the 2.00-Ω  resistor is 
  

I3 = 909 mA  

   (b) Through the center wire,  
     

  Va − 0.909 A( ) 2.00 Ω( ) = Vb
  

   Therefore,  
    

  Vb −Va = −1.82 V , with Va > Vb
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P28.25 (a) Let I6 represent the current in the ammeter and the top 6-Ω 
resistor. The bottom 6-Ω resistor has the same potential difference 
across it, so it carries an equal current. 

  We assume both I6 in the upper branch and I6 in the lower branch 
flow to the right. We assume current I10 flows to the left through 
the 10-Ω resistor. For the top loop we have 

   6.00 – 10.0I10 – 6.00I6 = 0   →   I10 = 0.6 – 0.6 I6  [1] 

  We assume current I5 flows to the left through the 5-Ω resistor. 
For the bottom loop, 

   4.50 – 5.00I5 – 6.00I6 = 0   →   I5 = 0.9 – 1.2 I6 [2] 

  For the junctions on the left side, taken together, 

   +I10 + I5 – I6 – I6 = 0  [3] 

  Substituting I10 and I5 into [3], we have 

   (0.6 – 0.6 I6) + (0.9 – 1.2 I6) – 2 I6 = 0 → I6 = 1.5/3.8 = 0.395 A 

 (b) The loop theorem for the little loop containing the voltmeter gives 

   + 6.00 V – ∆V – 4.50 V = 0  
  
→ ΔV = 1.50 V  

P28.26 (a) The first equation represents 
Kirchhoff’s loop theorem. We 
choose to think of it as 
describing a clockwise trip 
around the left-hand loop in a 
circuit; see ANS. FIG. P28.26(a).  

  For the right-hand loop see  
ANS. FIG. P28.26(b). The  
junctions must be between the  
5.80-V emf and the 370-Ω resistor 
and between the 370-Ω resistor 
and the 150-Ω resistor. Then we  
have ANS. FIG. P28.26(c).  
This is consistent with the  
third equation, 

   
  

I1 + I3 − I2 = 0
I2 = I1 + I3

 

ANS. FIG. P28.26(a) 
 

ANS. FIG. P28.26(b) 
 

ANS. FIG. P28.26(c) 
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 (b) Suppressing units, we substitute: 
   

  

−220I1 + 5.80 − 370I1 − 370I3 = 0
+370I1 + 370I3 + 150I3 − 3.10 = 0

 

  Next , 
  
I3 =

5.80 − 590I1

370
 

   

  

370I1 +
520
370

5.80 − 590I1( ) − 3.1 = 0

370I1 + 8.15 − 829I1 − 3.10 = 0

I1 =
5.05 V
459 Ω

=
11.0 mA in the 220-Ω resistor and out of
the positive pole of the 5.80-V battery

I3 =
5.80 − 590 0.011 0( )

370
= −1.87 mA

The current is 1.87 mA in the 150-Ω resistor and out of the
negative pole of the 3.10-V battery. 

I2 = 11.0 − 1.87 = 9.13 mA in the 370-Ω resistor

 

P28.27 Label the currents in the branches as shown in 
ANS. FIG. P28.27(a). Reduce the circuit by 
combining the two parallel resistors as shown in 
ANS. FIG. P28.27(b). 

 Apply Kirchhoff’s loop rule to both loops in ANS. 
FIG. P28.27(b) to obtain: 

   
  2.71R( ) I1 + 1.71R( ) I2 = 250 V  

     1.71R( ) I1 + 3.71R( ) I2 = 500 V  

 With R = 1 000 Ω, simultaneous solution of these 
equations yields: 

   I1 = 10.0 mA 

   I2 = 130.0 mA 

 From ANS. FIG. P28.27(b),   Vc −Va = I1 + I2( ) 1.71R( ) = 240 V.  

 Thus, from ANS. FIG. P28.27(a), 
  
I4 =

Vc −Va

4R
=

240 V
4 000 Ω

= 60.0 mA.  

 Finally, applying Kirchhoff’s point rule at point a in ANS. FIG. 
P28.27(a) gives: 

     I = I4 − I1 = 60.0 mA − 10.0 mA = +50.0 mA  

 

ANS. FIG. P28.27(a) 

 

ANS. FIG. P28.27(b) 
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 or 
  
I = 50.0 mA from point a to point e .  

P28.28 Using Kirchhoff’s rules and suppressing units, 

     12.0 − 0.01( ) I1 − 0.06( ) I3 = 0  [1] 

     12.0 + 1.00( ) I2 − 0.06( ) I3 = 0  [2] 

 and  I1 = I2 + I3. [3] 

 Substitute [3] into [1]: 

   
  

12.0 − 0.01( ) I2 + I3( ) − 0.06( ) I3 = 0

12.0 − 0.01( ) I2 − 0.07( ) I3 = 0      
 

[4]
 

 

ANS. FIG. P28.28 

 Solving [4] and [2] simultaneously gives 

 (a)   I3 = 172A = 172 A downward  in the starter. 

 (b) 
  
I2 = −1.70A = 1.70 A upward in the dead battery. 

 (c) 

 

No, the current in the dead battery is upward in Figure 
P28.28, so it is not being charged. The dead battery is 
providing a small amount of power to operate the starter, 
so it is not really “dead.”

 

P28.29 (a) For the upper loop:  
   

  

+15.0 V − 7.00 Ω( ) I1

          − 2.00 A( ) 5.00 Ω( ) = 0

 

   5.00 = 7.00I1   so  
  

I1 = 0.714 A  

 (b) For the center-left junction: 

    I3 = I1 + I2 = 2.00 A 

ANS. FIG. P28.29 
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  where I3 is the current through the ammeter (assumed to travel to 
the right): 

   0.714 + I2 = 2.00   so   
  

I2 = 1.29 A  

 (c) For the lower loop:  
   

 +ε − 2.00 Ω( ) 1.29 A( ) − 5.00 Ω( ) 2.00 A( ) = 0→ ε = 12.6 V
 

P28.30 Name the currents as shown in ANS. FIG. P28.30. Then  

   y = w + x + z 

 

ANS. FIG. P28.30 

 The loop equations are (suppressing units): 

   

  

−200w − 40.0 + 80.0x = 0
−80.0x + 40.0 + 360 − 20.0y = 0
+360 − 20.0y − 70.0z + 80.0 = 0

⎫

⎬
⎪

⎭⎪
   →     

x = 2.50w + 0.500
20.0 = 4.00x + 1.00y
22.0 = 1.00y + 3.50z

⎧

⎨
⎪

⎩⎪
 

 Use y = w + x + z to eliminate y by substitution: 
   

  

x = 2.50w + 0.500
20.0 = 4.00x + 1.00y → 20.0 = 4.00x + 1.00(w + x + z)
22.0 = 1.00y + 3.50z → 22.0 = 1.00(w + x + z) + 3.50z

⎫

⎬
⎪

⎭⎪

 

  

  

                                        →
x = 2.50w + 0.500
20.0 = 5.00x + 1.00w + 1.00z
22.0 = 1.00w + 1.00x + 4.50z

⎧

⎨
⎪

⎩⎪

 

 Eliminate x: 
   

  

20.0 = 5.00 2.50w + 0.500( ) + 1.00w + 1.00z

22.0 = 1.00w + 1.00 2.50w + 0.500( ) + 4.50z
⎫
⎬
⎭⎪

 

                                                 →    
17.5 = 13.5w + 1.00z
21.5 = 3.50w + 4.50z

⎧
⎨
⎩

 

 Eliminate z = 17.5 – 13.5w to obtain 
   

  

21.5 = 3.50w + 4.50 17.5 − 13.5w( )
21.5 = 3.50w + 4.50 17.5( ) − 4.50 13.5w( )
→ 57.25 = 57.25w → w = 1.00

 

 (a) 
  
w = 1.00 A upward in the 200-Ω resistor  
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z = 17.5 − 13.5w = 17.5 − 13.5 1.00( )
= 4.00 A upward in the 70.0-Ω resisor

 

  

  

x = 2.50w + 0.500 = 2.50 1.00( ) + 0.500

= 3.00 A upward in the 80.0-Ω resistor

 

  

  

y = w + x + z = 1.00 + 3.00 + 4.00

= 8.00 A downward in the 20.0-Ω resistor

 

 (b) For the 200-Ω resistor, 
  
ΔV = IR = 1.00 A( ) 200 Ω( ) = 200 V  

*P28.31 (a) We name the currents I1, I2, and I3 as  
shown in ANS. FIG. P28.31.  
Applying Kirchhoff’s loop rule to  
loop abcfa gives 

   
  +ε1 −ε2 − R2I2 − R1I1 = 0   

  or, 
   

  

70.0 V − 60.0 V
     − 3.00 kΩ( )I2 − 2.00 kΩ( )I1 = 0

 

  which gives 
   

  3I2 + 2I1 = 10.0 mA  

  or   I1 = 5.00 mA − 1.50I2  [1] 

  Applying the loop rule to loop  yields 
   

  +ε3 − R3I3 −ε2 − R2I2 = 0  

  which gives 
   

  80.0 V − 4.00 kΩ( )I3 − 60.0 V − 3.00 kΩ( )I2 = 0  

  or   3I2 + 4I3 = 20.0 mA  

  and   I3 = 5.00 mA − 0.750I2  [2] 

   Finally, applying Kirchhoff’s junction rule at junction c gives 

     I2 = I1 + I3  [3] 

   Substituting equations [1] and [2] into [3] yields 
   

  I2 = 5.00 mA − 1.50I2 + 5.00 mA − 0.750I2
 

  or   3.25I2 = 10.0 mA  

 

ANS. FIG. P28.31 
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  This gives 
  
I2 =

10.0 mA
3.25

= 3.08 mA .  Then, equation [1] yields 

   
  I1 = 5.00 mA − 1.50I2 = 5.00 mA − 1.50 3.08 mA( ) = 0.385 mA  

  and from equation [2], 
   

  

I3 = 5.00 mA − 0.750I2 = 5.00 mA − 0.750 3.08 mA( )

= 2.69 mA

 

 (b) Start at point c and go to point f, recording changes in potential to 
obtain 

    

  

Vf −Vc = −ε2 − R2I2

= −60.0 V − 3.00× 103  Ω( ) 3.08× 10−3  A( ) = −69.2 V

  

   or 
  
ΔV cf = 69.2 V and point c is at the higher potential .  

P28.32 Following the path of I1 from a to b, and recording changes in potential 
gives 

     Vb −Va = + 24.0 V − 6.00 Ω( ) 3.00 A( ) =+6.00 V  

 

ANS. FIG. P28.32 

 Now, following the path of I2 from a to b, and recording changes in 
potential gives 

     Vb −Va = − 3.00 Ω( ) I2 = +6.00 V   →    I2 =−2.00 A  

 which means the initial choice of the direction of I2 in Figure P28.32 
was incorrect. Applying Kirchhoff’s junction rule at point a gives 

     I3 = I1 + I2 = 3.00 A + −2.00 A( )=1.00 A  

 The results are: 

 (a) 
  
I2  is directed from b toward a and has a magnitude of 2.00 A.  

 (b) 
  
I3 = 1.00 A  and flows in the direction shown in Figure P28.32. 
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 (c) 

  

No. Neither of the equations used to find I2  and I3  
contained ε  and R. The third equation that we could 
generate from Kirchhoff’s rules contains both the 
unknowns. Therefore, we have only one equation 
with two unknowns.

 

P28.33 (a) Applying Kirchhoff’s junction rule at point a gives 

   I3 = I1 + I2   [1] 

  Using the loop rule on the lower loop yields 

     +12.0 − 12.0I2 − 16.0I3 = 0    or   
  
I2 = 1.00 −

4.00I3

3.00
 [2] 

 

ANS. FIG. P28.33 

  Applying the loop rule to loop forming the outer perimeter of the 
circuit gives 

     +24.0 − 28.0I1 − 16.0I3 = 0    or    
  
I1 =

24.0 − 16.0I3

28.0
 [3] 

  Substituting equations [2] and [3] into [1] yields  
   

  
I3 = 24.0− 16.0I3

28.0
+ 1.00− 4.00I3

3.00

  

  and multiplying by 84 to eliminate fractions: 
   

  

84.0I3 = 72.0− 48.0I3 + 84.0− 112I3  
244I3 = 156 

I3 = 0.639 A

 

  Then, equation [2] gives 
  
I2 = 0.148 A  and equation [3] yields   

  
I1 = 0.492 A . 

  (b) The power delivered to each of the resistors in this circuit is: 
   

  P28.0 Ω = I1
2R28.0 Ω = 0.492 A( )2 28.0 Ω( ) = 6.77 W  
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  P12.0 Ω = I2
2R12.0 Ω = 0.148 A( )2 12.0 Ω( ) = 0.261 W  

   
  P16.0 Ω = I3

2R16.0 Ω = 0.639 A( )2 16.0 Ω( ) = 6.54 W  

P28.34 (a) Going counterclockwise around the upper loop and suppressing 
units, Kirchhoff’s loop rule gives 

     −11.0I2 + 12.0− 7.00I2 − 5.00I1 + 18.0 − 8.00I1 = 0  

  or  
  
13.0I1 + 18.0I2 = 30.0 .  [1] 

 

ANS. FIG. P28.34 

 (b) Going counterclockwise around the lower loop: 

     −5.00I3 + 36.0 + 7.00I2 − 12.0 + 11.0I2 = 0  

  or 
  
18.0I2 − 5.00I3 = −24.0 .  [2] 

 (c) Applying the junction rule at the node in the left end of the circuit 
gives 

  
I1 − I2 − I3 = 0  [3] 

 (d) Solving equation [3] for I3 yields     
  
I3 = I1 − I2  [4] 

 (e) Substituting equation [4] into [2] gives 

     5.00 I1 − I2( ) − 18.0I2 = 24.0  

  or 
  
5.00I1 − 23.0I2 = 24.0 .  [5] 

 (f) Solving equation [5] for I1 yields   I1 = 24.0 + 23.0I2( ) 5 . 
Substituting this into equation [1] gives 

   
  13.0I1 + 18.0I2 = 30.0  

   

  

13.0
24.0 + 23.0I2( )

5.00
+ 18.0I2 = 30.0

13.0 24.0 + 23.0I2( ) + 5.00 18.0I2( ) = 5.00 30.0( )

 

   
  
389I2 = −162   →    I2 = −162 389    →    I2 = −0.416 A
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  Then, from equation [2],   I1 = 30 − 18I2( ) 13  which yields   

   
  
I1 = 2.88 A  

 (g) Equation [4] gives  

   
  
I3 = I1 − I2 = 2.88 A − −0.416 A( )    →    I3 = 3.30 A  

 (h) 

  

The negative sign in the answer for I2  means that this 
current flows in the opposite direction to that shown in 
the circuit diagram and assumed during the solution. 
That is, the actual current in the middle branch of the 
circuit flows from right to left and has a magnitude of 
0.416 A.

 

*P28.35 Refer to ANS. FIG. P28.35.  
Applying Kirchhoff’s junction  
rule at junction a gives 

   I3 = I1 + I2   [1] 

 Using Kirchhoff’s loop rule on  
the leftmost loop yields 

    
  −3.00 V − 4.00 Ω( )I3 − 5.00 Ω( )I1 + 12.0 V = 0  

 so  
  
I1 =

9.00 A − 4.00I3

5.00
= 1.80 A − 0.800I3  [2] 

 For the rightmost loop, 
   

  −3.00 V − 4.00 Ω( )I3 − 3.00 Ω+ 2.00 Ω( )I2 + 18.0 V = 0  

 and  
  
I2 =

15.0 A − 4.00I3

5.00
= 3.00 A − 0.800I3  [3] 

 Substituting equations [2] and [3] into [1] and simplifying gives 

  2.60I3 = 4.80 A and I3 = 1.846 A.  Then equations [2] and [3] yield 

  I1 = 0.323 A and I2 = 1.523 A.  

 Therefore, the potential differences across the resistors are 
   

  ΔV2 = I2 2.00 Ω( ) = 1.523 A( ) 2.00 Ω( ) = 3.05 V   

   
  ΔV3 = I2 3.00 Ω( ) = 1.523 A( ) 3.00 Ω( ) = 4.57 V  

   
  ΔV4 = I3 4.00 Ω( ) = 1.846 A( ) 4.00 Ω( ) = 7.38 V  

   
  ΔV5 = I1 5.00 Ω( ) = 0.323 A( ) 5.00 Ω( ) = 1.62 V  

 

ANS. FIG. P28.35 
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P28.36 (a)  No.  Some simplification could be made by recognizing that the 
2.0 Ω and 4.0 Ω resistors are in series, adding to give a total of 6.0 
Ω; and the 5.0 Ω and 1.0 Ω resistors form a series combination 
with a total resistance of 6.0 Ω. 

 

The circuit cannot be simplified any further, and Kirchhoff’s
rules must be used to analyze it.

 

 

ANS. FIG. P28.36 

 (b) Applying Kirchhoff’s junction rule at junction a gives 

   I1 = I2 + I3  [1] 

  Using Kirchhoff’s loop rule on the upper loop yields 

     + 24.0 V − 2.00 + 4.0( ) I1 − 3.00( ) I3 = 0  

  or   I3 = 8.00 A − 2.00 I1  [2] 

  and for the lower loop, 

     +12.0 V + 3.00( ) I3 − 1.00 + 5.00( ) I2 = 0  

  Using equation [2], this reduces to 

   
  
I2 =

12.0 V + 3.00 8.00 A − 2.00 I1( )
6.00

 

  giving  

     I2 = 6.00 A − 1.00I1  [3] 

  Substituting equations [2] and [3] into [1] gives 
  
I1 = 3.50 A  

 (c) Then, equation [3] gives 
  
I2 = 2.50 A , and 

 (d) Equation [2] yields 
  
I3 = 1.00 A  
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Section 28.4 RC Circuits 
P28.37 (a) The time constant of the circuit is 

   
  
τ = RC = 100 Ω( ) 20.0 × 10−6  F( ) = 2.00 × 10−3  s = 2.00 ms  

 (b) The maximum charge on the capacitor is given by Equation 28.13: 
   

  
Qmax = Cε = 20.0 × 10−6  F( ) 9.00 V( ) = 1.80 × 10−4  C

 

 (c) We use   q t( ) = Qmax 1− e−t RC( ) , when t = RC. Then, 

   

  

q t( ) = Qmax 1− e−RC RC( ) = Qmax 1− e−1( ) = 1.80 × 10−4  C( ) 1− e−1( )
= 1.14 × 10−4  C

 

P28.38 (a) The time constant is  

   
  
RC = 1.00 × 106  Ω( ) 5.00 × 10−6  F( ) = 5.00 s  

 (b) After a long time interval, the capacitor is “charged to thirty volts,” 
separating charges of  

   
  
Q = Cε = 5.00 × 10−6  C( ) 30.0 V( ) = 150 µC  

 (c) 

  

I t( ) =
ε
R

e−t RC =
30.0 V

1.00 × 106  Ω
⎛
⎝⎜

⎞
⎠⎟ exp

−10.0 s
1.00 × 106  Ω( ) 5.00 × 10−6  F( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 4.06 µA

 

P28.39 (a) From   I t( ) = −I0e
−t RC , 

   

  

I0 =
Q

RC
=

5.10 × 10−6  C
1 300 Ω( ) 2.00 × 10−9  F( ) = 1.96 A

I t( ) = − 1.96 A( )exp
−9.00 × 10−6  s

1 300 Ω( ) 2.00 × 10−9  F( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −61.6 mA

 

 (b) 

  

q t( ) = Qe−t RC = 5.10 µC( )exp
−8.00 × 10−6  s

1 300 Ω( ) 2.00 × 10−9  F( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 0.235 µC

 

 (c) The magnitude of the maximum current is   I0 = 1.96 A .  

P28.40 The potential difference across the capacitor is 

   
  ΔV t( ) = ΔVmax 1− e−t RC( )  
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 Using 1 farad = 1 s/Ω,  

   
  
4.00 V = 10.0 V( ) 1− e

− 3.00 s( ) R 10.0×10−6 s Ω( )⎡
⎣

⎤
⎦⎡

⎣⎢
⎤
⎦⎥

 

 Therefore,  

     0.400 = 1.00 − e− 3.00×105 Ω( ) R  

 or    e
− 3.00×105 Ω( ) R = 0.600.  

 Taking the natural logarithm of both sides,   
    

  
−

3.00 × 105  Ω
R

= ln 0.600( )
 

 and    
  
R = −

3.00 × 105  Ω
ln 0.600( ) = +5.87 × 105  Ω = 587 kΩ .  

P28.41 (a) Before the switch is closed, the two resistors are in series. The 
time constant is 

   
  
τ = R1 + R2( )C = 1.50 × 105  Ω( ) 10.0 × 10−6  F( ) = 1.50 s  

 (b) After the switch is closed, the capacitor discharges through 
resistor R2. The time constant is 

   
 
τ = 1.00 × 105  Ω( ) 10.0 × 10−6  F( ) = 1.00 s  

 (c) Before the switch is closed, there is no current in the circuit 
because the capacitor is fully charged, and the voltage across the 
capacitor is  ε.  After the switch is closed, current flows clockwise 
from the battery to resistor R1 and down through the switch, and 
current from the capacitor flows counterclockwise and down 
through the switch to resistor R2; the result is that the total current 
through the switch is I1 + I2. 

  Going clockwise around the left loop, 
   

  
ε − I1R1 = 0→ I1 =

ε
R1

 

  so the battery carries current     
  
I1 =

10.0 V
50.0 × 103  Ω

= 200 µA.  

  Going counterclockwise around the right loop, 
   

  

q
C
− I2R2 = 0→ I2 =

q
R2C

=
ε
R2

e−t R2C( )
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  so the 100-kΩ resistor carries current of magnitude  
    

  
I2 =

ε
R2

e−t RC =
10.0 V

100 × 103  Ω
⎛
⎝⎜

⎞
⎠⎟ e−t 1.00 s

 

  and the switch carries downward current    
    

  
I1 + I2 = 200 µA + 100 µA( )e−t 1.00 s

 

P28.42 (a) Before the switch is closed, the two resistors are in series. The 
time constant is 

    
  
τ = R1 + R2( )C  

 (b) After the switch is closed, the capacitor discharges through 
resistor R2. The time constant is 

    
  
τ = R2C  

 (c) Before the switch is closed, there is no current in the circuit 
because the capacitor is fully charged, and the voltage across the 
capacitor is  ε.  After the switch is closed, current flows clockwise 
from the battery to resistor R1 and down through the switch, and 
current from the capacitor flows counterclockwise and down 
through the switch to resistor R2; the result is that the total current 
through the switch is I1 + I2. Going clockwise around the left loop, 

    
  
ε − I1R1 = 0→ I1 =

ε
R1

 is the current in the battery. 

  Going counterclockwise around the right loop, 

    
  

q
C
− I2R2 = 0→ I2 =

q
R2C

=
ε
R2

e−t R2C( )   

  is the magnitude of the current in R2. The total current through 
the switch is 

    

  
I1 + I2 =

ε
R1

+
ε
R2

e−t R2C( ) = ε 1
R1

+
1

R2

e−t R2C( )⎛
⎝⎜

⎞
⎠⎟

 

P28.43 (a) Call the potential at the left junction VL and at 
the right VR. After a “long” time, the capacitor 
is fully charged.  

   

  

IL =
10.0 V
5.00 Ω

= 2.00 A

VL = 10.0 V − 2.00 A( ) 1.00 Ω( ) = 8.00 V
 ANS. FIG. P28.43(a) 
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IR =

10.0 V
10.0 Ω

= 1.00 A  

      VR = 10.0 V( ) − 8.00 Ω( ) 1.00 A( ) = 2.00 V  

  Therefore,  
  
ΔV = VL −VR = 8.00 − 2.00 = 6.00 V  

 (b) We suppose the battery is pulled out 
leaving an open circuit. We are left 
with ANS. FIG. P28.43(b), which can be 
reduced to the equivalent circuits 
shown in ANS. FIG. P28.43(c) and 
ANS. FIG. P28.43(d).  From ANS. FIG.  
P28.43(d), we can see that the capacitor discharges through a  
3.60-Ω equivalent resistance.  

  According to q = Qe–t/RC, 

  we calculate that qC = QCe–t/RC 

  and   ΔV = ΔVie
−t/RC .  

  We proceed to solve for t: 

    
  

ΔV
ΔVi

= e−t/RC    or    
ΔVi

ΔV
= e+t/RC  

  Take natural logarithms of both sides: 
   

  
ln

ΔVi

ΔV
⎛
⎝⎜

⎞
⎠⎟ = t/RC

 

  so 

  

t = RC ln
ΔVi

ΔV
⎛
⎝⎜

⎞
⎠⎟

= 3.60 Ω( ) 1.00× 10−6  F( )ln
ΔVi

0.100ΔVi

⎛
⎝⎜

⎞
⎠⎟

= 3.60× 10−6  s( )ln10

= 8.29 µs

 

P28.44 We are to calculate 

    

  

e−2t RC dt
0

∞

∫ = − RC
2

e−2t RC − 2dt
RC

⎛
⎝⎜

⎞
⎠⎟

0

∞

∫

= − RC
2

e−2t RC

0

∞
= − RC

2
e−∞ − e0⎡⎣ ⎤⎦

= − RC
2

0− 1[ ] = + RC
2

 

ANS. FIG. P28.43(b) 
 

ANS. FIG. P28.43(c) 
 

ANS. FIG. P28.43(d) 
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P28.45 (a) The charge remaining on the capacitor after time t is  q = Qe−t τ . 

  Thus, if q = 0.750Q, then 

   

  

0.750Q = Qe−t/τ

e−t/τ = 0.750

t = −τ ln 0.750( ) = − 1.50 s( )ln 0.750( ) = 0.432 s

 

 (b) τ = RC, so    

   
  
C =

τ
R

=
1.50 s

250 × 103  Ω
= 6.00 × 10−6  F = 6.00 µF  

 
 

 

Section 28.5 Household Wiring and Electrical Safety 

P28.46 (a)   P = IΔV:  So for the heater, 
  
I =

P
ΔV

=
1 500 W
120 V

= 12.5 A .  

  For the toaster,    
  
I =

750 W
120 V

= 6.25 A .  

  And for the grill, 
  
I =

1 000 W
120 V

= 8.33 A .  

 (b) The total current drawn is 12.5 A + 6.25 A + 8.33 A = 27.1 A. 

  
 

The current draw is greater than 25.0 amps, so this circuit will
trip the circuit breaker.

 

*P28.47 From   P = ΔV( )2 /R,  the resistance of the element is 
   

  
R = ΔV( )2

P
= 240 V( )2

3 000 W
= 19.2 Ω

 

 When the element is connected to a 120-V source, we find that 

 (a) 
  
I = ΔV

R
= 120 V

19.2 Ω
= 6.25 A  

 (b)   P = IΔV = 6.25 A( ) 120 V( ) = 750 W  

P28.48 (a) Suppose that the insulation between either of your fingers and the 
conductor adjacent is a chunk of rubber with contact area 4 mm2 
and thickness 1 mm. Its resistance is 

   
   
R =

ρ
A

≈
1013  Ω⋅m( ) 10−3  m( )

4 × 10−6  m2 ≈ 2 × 1015  Ω  
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  The current will be driven by 120 V through total resistance 
(series) 

    2 × 1015  Ω + 104  Ω + 2 × 1015  Ω ≈ 5 × 1015  Ω  

  It is: 
  
I =

ΔV
R

~
120 V

5 × 1015  Ω
~ 10−14  A  

 (b) The resistors form a voltage divider, with the center of your hand 

at potential 
  

Vh

2
, where Vh is the potential of the “hot” wire. The 

potential difference between your finger and thumb is  

   
  ΔV = IR ~ 10−14  A( ) 104  Ω( ) ~ 10−10  V  

  So the points where the rubber meets your fingers are at 
potentials of 

   
  

~
Vh

2
+ 10−10  V    and   

  
~

Vh

2
− 10−10  V  

 
 

 

Additional Problems 
P28.49 (a) With the lightbulbs in series, the equivalent resistance is Req = 3R, 

and the current is given by 
  
I = ε

3R
.  Then, 

   

  
Pseries = ε I = ε 2

3R

 

 (b) With the lightbulbs in parallel, the equivalent resistance is  

   
  
Req =

1
1 R( ) + 1 R( ) + 1 R( ) =

R
3

  

  the current is given by 
  
I = 3ε

R
.  Then, 

   

  
Pparallel = ε I = 3ε 2

R

 

 (c) Nine times more power is converted in the 
 

parallel  connection. 
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P28.50 The resistive network between a an b reduces, in the stages shown in 
ANS. FIG. P28.50, to an equivalent resistance of 

  
Req = 7.49 Ω . 

 

ANS. FIG. P28.50 

P28.51 The set of four batteries boosts the electric potential of each bit of 
charge that goes through them by 4 × 1.50 V = 6.00 V. The chemical 
energy they store is 

   
  ΔU = qΔV = 240 C( ) 6.00 J/C( ) = 1 440 J   

 The radio draws current     

   
  
I =

ΔV
R

=
6.00 V
200 Ω

= 0.030 0 A.  

 So, its power is  
   

  P = IΔV = 0.030 0 A( ) 6.00 V( ) = 0.180 J/s  

 Then for the time the energy lasts, we have 
  
P =

E
Δ t

:       

   
  
Δ t =

E
P
=

1 440 J
0.180 J s

= 8.00 × 103  s  

 We could also compute this from 
  
I =

Q
Δ t

:      

   
  
Δ t =

Q
I
=

240 C
0.030 0 A

= 8.00 × 103  s = 2.22 h  

P28.52 The battery current is 

    150 + 45.0 + 14.0 + 4.00( )  mA = 213 mA  

 

ANS. FIG. P28.52 

 (a) The resistor with highest resistance is that carrying 4.00 mA. 
Doubling its resistance will reduce the current it carries to  
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2.00 mA. Then the total current is (150 + 45 + 14 + 2) mA =  

211 mA, nearly the same as before. The ratio is 
 

211
213

= 0.991 .  

 (b) The resistor with least resistance carries 150 mA. Doubling its 
resistance changes this current to 75 mA and changes the total to 

  (75 + 45 + 14 + 4) mA = 138 mA. The ratio is 
 

138
213

= 0.648 .  

 (c) 

  

The energy flows are precisely analogous to the currents 
in parts (a) and (b). The ceiling has the smallest R value 
of the thermal resistors in parallel, so increasing its thermal 
resistance will produce the biggest reduction in the total 
energy flow.

 

P28.53 Several seconds is many time constants, so the capacitor is fully 
charged and (d) the current in its branch is zero. 

 For the center loop, Kirchhoff’s loop rule gives 

    +8 + (3 Ω) I2 – (5 Ω)I1 = 0          

 or  I1 = 1.6 + 0.6I2 [1] 

 For the right-hand loop, Kirchhoff’s loop rule gives  

   +4 V – (3 Ω) I2 – (5 Ω) I3 = 0     

 or  I3 = 0.8 – 0.6I2 [2] 

 For the top junction, Kirchhoff’s junction rule gives 

   + I1 + I2 – I3 = 0 [3] 

 Now we eliminate I1 and I3 by substituting [1] and [2] into [3]. 
Suppressing units, 

   1.6 + 0.6I2 + I2 – 0.8 + 0.6I2 = 0  →  I2 = –0.8/2.2 = –0.3636 

 (b)  The current in 3 Ω is 0.364 A down.  

 (a) Now, from [2], we find I3 = 0.8 – 0.6(– 0.364) = 1.02 A down in 4 V 
and in 5 Ω. 

 (c) From [1] we have I1 = 1.6 + 0.6(– 0.364) = 1.38 A up in the 8 V 
battery. 

 (e) For the left loop  +3 V – (Q/6 µF) + 8 V = 0,   so   Q = (6 µF) (11 V) 
= 66.0 µC 
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P28.54 The current in the battery is 

 

15 V

10 Ω + 1
1

5 Ω + 1
8 Ω

= 1.15 A.  

 The voltage across 5 Ω is 15 V – (10 Ω) (1.15 A) = 3.53 V. 

 (a) The current in it is 3.53 V/5 Ω = 0.706 A. 

 (b) P = (3.53 V) (0.706 A) = 2.49 W. 

 (c) 

 

Only the circuit in Figure P28.54(c) requires the use of Kirchhoff’s
rules for solution. In the other circuits the 5-Ω and 8-Ω resistors
are still in parallel with each other.

 

 (d) 

 

The power is lowest in Figure P28.54 c( ). The circuits in 

Figures P28.54 b( )  and P28.54 d( )  have in effect 30-V 
batteries driving the current. The power is lowest in 
Figure P28.54(c) because the current in the 10-W resistor 
is lowest because the battery voltage driving the current 
is lowest.

  

P28.55 (a) 
  
R =

ΔV
I

=
6.00 V

3.00 × 10−3  A
= 2.00 × 103  Ω = 2.00 kΩ  

 (b) The resistance in the circuit consists of a series combination with 
an equivalent resistance of Req = 5.00 Ω. The emf of the battery is 
then 

   
  ε = IReq = 3.00× 10−3  A( ) 5.00× 103  Ω( ) = 15.0 V

 

 

ANS. FIG. P28.55 

 (c)   ΔV3 = IR3 = 3.00× 10−3  A( ) 3.00× 103  Ω( ) = 9.00 V  
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P28.56 The equivalent resistance is Req = R + Rp, where Rp is the total resistance 
of the three parallel branches; 

   

  

Rp = 1
120 Ω

+ 1
40.0 Ω

+ 1
R + 5.00 Ω

⎛
⎝⎜

⎞
⎠⎟
−1

= 1
30.0 Ω

+ 1
R + 5.00 Ω

⎛
⎝⎜

⎞
⎠⎟
−1

= 30.0 Ω( ) R + 5.00 Ω( )
R + 35.0 Ω

 

 Thus,    
   

  
75.0 Ω = R + 30.0 Ω( ) R + 5.00 Ω( )

R + 35.0 Ω
= R2 + 65.0 Ω( )R + 150 Ω2

R + 35.0 Ω

 

 which reduces to  
   

  R
2 − 10.0 Ω( )R − 2 475 Ω2 = 0   

 or     R − 55 Ω( ) R + 45 Ω( ) = 0  

 Only the positive solution is physically acceptable, so 
  
R = 55.0 Ω . 

P28.57 (a) Using Kirchhoff’s loop rule for the closed loop,  

   +12.0 – 2.00I – 4.00I = 0 

  so  I = 2.00 A 

  Then, 

     Vb −Va = +4.00 V − 2.00 A( ) 4.00 Ω( ) − 0( ) 10.0 Ω( ) = −4.00 V  

  Thus, 
  
ΔVab = 4.00 V  

 (b)   Vb −Va = −4.00 V  →   Va = Vb + 4.00 V ; thus, 

  
a is at the higher potential . 

P28.58 Find an expression for the power delivered to the load resistance R: 
   

  
P = I 2R =  ε

r  + R
⎛
⎝⎜

⎞
⎠⎟

2

R     →      r  + R( )2  = ε
2

P
R = aR

 

 where 
  
a = 

ε 2

P
 

 Carry out the squaring process: 
   

  r
2  + 2rR + R2  = aR    

   
  

R2  +  2r  − a( )R + r2  = 0    

R2  + bR + r2  = 0
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 where 
  
b = 2r  − a = 2r  − 

ε 2

P
. 

 Solve the quadratic equation: 

   
  
R = 

−b ±  b2  − 4r2

2
 

 Evaluate b: 

   
  
b = 2 1.20 Ω( ) −  9.20 V( )2

21.2 W
 = −1.59 Ω  

 Substitute numerical values into the expression for R: 
   

  

R = 
− −1.59 Ω( ) ±  −1.59 Ω( )2  − 4 1.20 Ω( )2

2
 

= 1.59 Ω ±  −3.22 Ω2

2

 

 There is no real solution to this expression for R. Therefore, no load 
resistor can extract 21.2 W from this battery. 

P28.59 The charging circuit is shown in the left-hand panel of ANS. FIG. P28.59. 
Kirchhoff’s loop rule gives  

  +14.7 V – 13.2 V – I (0.850 Ω ) = 0 

  so the charging current is  

   I  = 1.5 V/0.850 Ω  = 1.76 A.  

  The charge passing through the battery as it charges is  
   

  q = IΔt = 1.76 A( ) 1.80 h( ) = 3.18 A ⋅h = 11.4 kC  

   

ANS. FIG. P28.59 

  We can think of this charge as indexing a certain number of 
chemical reactions, producing a certain quantity of high-energy 
molecules in the battery. When the battery returns to its original state 
in discharging, we assume that the same number of reverse reactions 
uses up all of the high-energy chemical. In our model, the same charge 
passes through the battery in discharging, in the opposite direction.  
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The discharge current is then 

   
  
I = q

Δt
= 3.18 A ⋅h

7.30 h
= 0.435 A  

  In the discharge circuit , shown in the right-hand panel of ANS. FIG. 
P28.59, the loop rule gives 

   13.2 V – (0.435 A)(0.850 Ω ) – (0.435 A)R = 0 

  so the load resistance R is 12.8 V/0.435 A = 29.5  Ω.  Now we can get 
around to thinking about energy. The energy output of the 14.7-V 
power supply is  

  
  qΔV = 3.18 A ⋅h( ) 14.7 V( ) = 46.7 W ⋅h = 168 kJ  

  The energy delivered to the load during discharge is  
  

  qΔV = qIR = 3.18 A ⋅h( ) 0.435 A( ) 29.5 Ω( ) = 40.8 W ⋅h = 147 kJ   

 The storage efficiency is 
 

40.8 W ⋅h
46.7 W ⋅h

= 0.873 = 87.3% .   

P28.60 (a) The resistors combine to an equivalent resistance of   Req = 15.0 Ω  
as shown in ANS. FIGs P28.60(a-e). 

 

ANS. FIG. P28.60(a) 

 

ANS. FIG. P28.60(b) 

 

ANS. FIG. P28.60(c) 
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ANS. FIG. P28.60(d) 

 

ANS. FIG. P28.60(e) 

  From ANS. FIG. P28.60(e),  

    
  
I1 =

ΔVab

Req

=
15.0 V
15.0 Ω

=1.00 A  

  Then, from ANS. FIG. P28.60(d), 

      ΔVac = ΔVdb = I1 6.00 Ω( ) = 6.00 V   

  and   ΔVcd = I1 3.00 Ω( ) = 3.00 V  

  From ANS. FIG. P28.60(c), 

    
  
I2 = I3 =

ΔVcd

6.00 Ω
=

3.00 V
6.00 Ω

=0.500 A  

  From ANS. FIG. P28.60(b),  

      ΔVed = I3 3.60 Ω( ) = 1.80 V  

  Then, from ANS. FIG. P28.60(a),  

    
  
I4 =

ΔVed

6.00 Ω
=

1.80 V
6.00 Ω

=0.300 A  

  and 
  
I5 =

ΔVfd

9.00 Ω
=

ΔVed

9.00 Ω
=

1.80 V
9.00 Ω

=0.200 A  

  From ANS. FIG. P28.60(b),  

    
  ΔVce = I3 2.40 Ω( ) =1.20 V.  

  The collected results are: 

 (b) 

  

ΔVac = ΔVdb = 6.00 V, ΔVce = 1.20 V, ΔVfd = ΔVed = 1.80 V, 

ΔVcd = 3.00 V
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 (c) 
  
I1 = 1.00 A, I2 = 0.500 A, I3 = 0.500 A, I4 = 0.300 A, I5 = 0.200 A  

 (d) The power dissipated in each resistor is found from   P = ΔV( )2 R  
with the following results: 

   
  
Pac =

ΔV( )ac
2

Rac

=
6.00 V( )2

6.00 Ω
= 6.00 W      

   
  
Pce =

ΔV( )ce
2

Rce

=
1.20 V( )2

2.40 Ω
= 0.600 W  

   
  
Ped =

ΔV( )ed
2

Red

=
1.80 V( )2

6.00 Ω
= 0.540 W     

   
  
Pfd =

ΔV( ) fd
2

R fd

=
1.80 V( )2

9.00 Ω
= 0.360 W  

   
  
Pcd =

ΔV( )cd
2

Rcd

=
3.00 V( )2

6.00 Ω
= 1.50 W      

   
  
Pdb =

ΔV( )db
2

Rdb

=
6.00 V( )2

6.00 Ω
= 6.00 W  

P28.61 Let the two resistances be x and y. 

 

ANS. FIG. P28.61 

 Then,  

   
   
Rs = x + y =

Ps
I 2 =

225 W
5.00 A( )2 = 9.00 Ω→ y = 9.00 Ω− x  

 and  
  
Rp =

xy
x + y

=
Pp

I 2 =
50.0 W
5.00 A( )2 = 2.00 Ω  

 so  
  

x 9.00 Ω− x( )
x + 9.00 Ω− x( ) = 2.00 Ω   

     x
2 − 9.00x + 18.0 = 0  
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 Factoring the second equation,  

     x − 6.00( ) x − 3.00( ) = 0  

 so  x = 6.00 Ω    or     x = 3.00 Ω 

 Then, y = 9.00 Ω – x gives  

   y = 3.00 Ω    or    y = 6.00 Ω 

 There is only one physical answer: The two resistances are 
 

6.00 Ω  

and 
 

3.00 Ω . 

P28.62 Refer to ANS. FIG. P28.61 above. Let the two resistances be x and y. 

 Then, 
  
Rs = x + y =

Ps

I 2     and    
  
Rp =

xy
x + y

=
Pp

I 2 . 

 From the first equation, 
  
y = Ps

I 2 − x,  and the second 

 becomes 
  

x Ps I 2 − x( )
x + Ps I 2 − x( ) =

Pp

I 2  or 
  
x2 −

Ps

I 2
⎛
⎝⎜

⎞
⎠⎟ x +

PsPp

I 4 = 0 . 

 Using the quadratic formula, 
  
x =

Ps ± Ps
2 − 4PsPp

2I 2 . 

 Then, 
   
y =

Ps

I 2 − x  gives 
   
y =

Ps  Ps
2 − 4PsPp

2I 2 . 

 The two resistances are 

  

Ps + Ps
2 − 4PsPp

2I 2
 and 

  

Ps − Ps
2 − 4PsPp

2I 2
. 

P28.63 (a) The equivalent capacitance of this parallel combination is 

     Ceq = C1 + C2 = 3.00 µF+2.00 µF=5.00 µF  

  When fully charged by a 12.0-V battery, the total stored charge 
before the switch is closed is 

     Q0 = Ceq ΔV( ) = 5.00 µF( ) 12.0 V( ) = 60.0 µC  

  Once the switch is closed, the time constant of the resulting RC 
circuit is 

   
  τ = RCeq = 5.00 × 102  Ω( ) 5.00 µF( ) = 2.50 × 10−3  s = 2.50 ms  

  Thus, at t = 1.00 ms after closing the switch, the remaining total 
stored charge is 

     q = Q0e
−t τ = 60.0 µC( )e−1.00 ms 2.50 ms = 60.0 µC( )e−0.400 = 40.2 µC  
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  The potential difference across the parallel combination of 
capacitors is then 

   
  
ΔV =

q
Ceq

=
40.2 µC
5.00 µF 

= 8.04 V  

  and the charge remaining on the 3.00 µF capacitor will be 

   
  
q3 = C3 ΔV( ) = 3.00 µF( ) 8.04 V( ) = 24.1 µC  

 (b) The charge remaining on the 2.00 µF at this time is 

   
  
q2 = q − q3 = 40.2 µC − 24.1 µC = 16.1 µC  

  or, alternately,      

   
  
q2 = C2 ΔV( ) = 2.00 µF( ) 8.04 V( ) = 16.1 µC  

 (c) Since the resistor is in parallel with the capacitors, it has the same 
potential difference across it as do the capacitors at all times. 
Thus, Ohm’s law gives 

   
  
I =

ΔV
R

=
8.04 V

5.00 × 102  Ω
= 1.61× 10−2  A = 16.1 mA  

P28.64 (a) Around the circuit, 

     ε − I R∑( )− ε1 + ε2( ) = 0  

  Substituting numerical values, 
   

  

40.0 V − 4.00 A( ) 2.00 + 0.300 + 0.300 + R( )Ω[ ]
                                                         − 6.00 + 6.00( )  V = 0

 

   so 
  
R = 4.40 Ω  

 (b) Inside the supply, 

      P = I 2R = 4.00 A( )2 2.00 Ω( ) = 32.0 W  

 (c) Inside both batteries together,
    P = I 2R = 4.00 A( )2 0.600 Ω( ) = 9.60 W  

 (d) For the limiting resistor,  

     P = 4.00 A( )2 4.40 Ω( ) = 70.4 W  

 (e) 
  
P = I ε1 + ε2( ) = 4.00 A( ) 6.00 + 6.00( )  V[ ] = 48.0 W  
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P28.65 The total resistance in the circuit is 

   
  
R =

1
R1

+
1

R2

⎛
⎝⎜

⎞
⎠⎟

−1

=
1

2.00 kΩ
+

1
3.00 kΩ

⎛
⎝⎜

⎞
⎠⎟

−1

= 1.20 kΩ  

 and the total capacitance is  

     C = C1 + C2 = 2.00 µF + 3.00 µF = 5.00 µF  

 Thus,   Qmax = Cε = 5.0 µF( ) 120 V( ) = 600 µC  

 and    
  
τ = RC = 1.2 × 103  Ω( ) 5.0 × 10−6  F( ) = 6.0 × 10−3  s =

6.0 s
1 000

 

 The total stored charge at any time t is then 

    
  q = q1 + q2 = Qmax 1− e−t τ( )     

 or       q1 + q2 = 600 µC( ) 1− e−1 000 t 6.0 s( )  [1] 

 Since the capacitors are in parallel with each other, the same potential 
difference exists across both at any time. 

 Therefore,  

  
  
ΔV( )C =

q1

C1

=
q2

C2

→ q2 =
C2

C1

⎛
⎝⎜

⎞
⎠⎟

q1 = 1.5q1  [2] 

 (a) Substituting equation [2] into [1] gives 
   

  

2.5q1 = 600 µC( ) 1− e−1 000t 6.0 s( )
q1 = 600 µC

2.5
⎛
⎝⎜

⎞
⎠⎟ 1− e−t 6.0 s 1 000( )( )

q1 = 240 µC 1− e−t 6 ms( )

 

  or   
  
q = 240 1− e−t 6( ) , where q is in microcoulombs and t is in 

milliseconds. 

 (b) and from equation [2], 

   
  
q2 = 1.5q1 = 1.5 240 µC 1− e−t 6 ms( )⎡⎣ ⎤⎦ = 360 µC 1− e−t 6 ms( )  

  or,  
  
q = 360 1− e−t 6( ) , where q is in microcoulombs and t is in 

milliseconds. 
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P28.66 (a) In the diagram we could show the two 
resistors connected top end to top end 
and bottom end to bottom end with 
wires; we represent this connection 
instead by showing the bottom ends of 
both resistors connected to ground. The 
ground represents a conductor that is 
always at zero volts, and also can carry 
any current. Think of I, R1, and R2 as 
known quantities. We represent the 
current in R1 as the unknown I1. Then 
the current in the second resistor must by I – I1. The total potential 
difference clockwise around the little loop containing both resistors 
must be zero: 

    –(I – I1)R2 + I1R1 + 0 

   We can already solve for I1 in terms of the total current: 
    

  
−IR2 + I1R2 + I1R1 = 0     →      I1 = IR2 / R1 + R2( )   

   Then the current in the second resistor is  

    I2 = I – I1 = I – IR2 /(R1 + R2) = I(R1 + R2 – R2)/(R1 + R2) 
    

  
I2 = IR1 / R1 + R2( )   

  (b) Continue to think of I, R1, and R2 as known quantities and I1 as an 
unknown. The power being converted by both resistors together 
is P = I1

2R1 + (I – I1)
2R2. Because the current is squared, the power 

would be extra large if all of the current went through either one 
of the resistors with zero current in the other. The minimum 
power condition must be with a more equitable division of 
current, and we find it by taking the derivative of P with respect 
to I1 and setting the derivative equal to zero:  

    dP/dI1 = 2 I1R1 + 2(I – I1)(0 – 1)R2 = 0 

   Again we can solve directly for the real value of I1 in 

     I1R1 – IR2 + I1R2 = 0 as I1 = IR2/(R1 + R2)  

   So then again 

      I2 = I – I1 = IR1/(R1 + R2)  

   This power-minimizing division of current is the same as the 
voltage-equalizing division of current that we found in part (a), so 
the proof is complete. 

 

 

ANS. FIG. P28.66 
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P28.67 (a) The charge on the capacitor at this instant is  

     q = CΔV 1− e−t RC( )  
   

  

q = 1.00 × 10−6  F( ) 10.0 V( ) 1− e
−10.0  s 2.00×106  Ω( ) 1.00×10−6  F( )⎡

⎣
⎤
⎦⎡

⎣⎢
⎤
⎦⎥

= 9.93 µC

 

 (b) The current in the resistor is given by  

   
 
I =

dq
dt

=
ΔV
R

⎛
⎝⎜

⎞
⎠⎟ e−t RC  

   
  
I =

10.0 V
2.00 × 106  Ω

⎛
⎝⎜

⎞
⎠⎟ e−5.00 = 3.37 × 10−8  A = 33.7 nA  

 (c) Since the energy stored in the capacitor is U = q2/2C, the rate of 
storing energy is  

   
  

dU
dt

=
d
dt

1
2

q2

C
⎛
⎝⎜

⎞
⎠⎟
=

q
C

⎛
⎝⎜

⎞
⎠⎟

dq
dt

=
q
C

⎛
⎝⎜

⎞
⎠⎟ I  

   

  

dU
dt

= 9.93× 10−6  C
1.00× 10−6  C V

⎛
⎝⎜

⎞
⎠⎟

3.37 × 10−8  A( )

= 3.34× 10−7  W = 334 nW

 

 (d)   Pbattery = Iε = 3.37 × 10−8  A( ) 10.0 V( ) = 3.37 × 10−7  W = 337 nW  

  The battery power could also be computed as the sum of the 
instantaneous powers delivered to the resistor and to the 
capacitor: 

   

  
I 2R + dU

dt
= 33.7 × 10−9  A( ) 2.00× 106  Ω( ) + 334 nW = 337 nW

  

P28.68 The battery supplies energy at a changing rate  
   

 

dE
dt

= P = ε I = ε ε
R

e−t RC⎛
⎝⎜

⎞
⎠⎟

 

 Then the total energy put out by the battery is 
 

  
dE∫ = ε 2

R
exp − t

RC
⎛
⎝⎜

⎞
⎠⎟ d

t=0

∞

∫
 

   

  

dE∫ = ε
2

R
−RC( ) exp − t

RC
⎛
⎝⎜

⎞
⎠⎟ − dt

RC
⎛
⎝⎜

⎞
⎠⎟

0

∞

∫

= −ε 2Cexp − t
RC

⎛
⎝⎜

⎞
⎠⎟

0

∞

= −ε 2C 0− 1[ ] = ε 2C
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 The power delivered to the resistor is  
    

  

dE
dt

= P = ΔVRI = I 2R = R
ε 2

R2 exp − 2t
RC

⎛
⎝⎜

⎞
⎠⎟

 

 So the total internal energy appearing in the resistor is   

  
dE∫ = ε 2

R
exp − 2t

RC
⎛
⎝⎜

⎞
⎠⎟ dt

0

∞

∫
 

   

  

dE∫ = ε
2

R
− RC

2
⎛
⎝⎜

⎞
⎠⎟ exp − 2t

RC
⎛
⎝⎜

⎞
⎠⎟ − 2dt

RC
⎛
⎝⎜

⎞
⎠⎟

0

∞

∫

= − ε
2C
2

exp − 2t
RC

⎛
⎝⎜

⎞
⎠⎟

0

∞

= − ε
2C
2

0− 1[ ] = ε
2C
2

 

 The energy finally stored in the capacitor is 
  
U = 1

2
C ΔV( )2 = 1

2
Cε 2.  

Thus, energy of the circuit is conserved, 
  
ε 2C = 1

2
ε 2C + 1

2
ε 2C,  and 

resistor and capacitor share equally in the energy from the battery. 

P28.69 (a) We find the resistance intrinsic to the vacuum cleaner: 

   

  

P = IΔV =
ΔV( )2

R

R =
ΔV( )2

P
=

120 V( )2

535 W
= 26.9 Ω

 

  with the inexpensive cord, the equivalent resistance is 

   
  

RTot = R + 2r

= 26.9 Ω + 2 0.9 Ω( ) = 28.7 Ω
 

  so the current throughout the circuit is 

   
  
I =

ΔV
RTot

=
120 V
28.7 Ω

= 4.18 A  

  and the cleaner power is 

   
  
Pcleaner = I ΔV( )cleaner = I 2R = 4.18 A( )2 26.9 Ω( ) = 470 W  

  In symbols,  

     Rtot = R + 2r , 
  
I =

ΔV
R + 2r

 and 
  
Pcleaner = I 2R =

ΔV( )2 R
R + 2r( )2  
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ANS. FIG. P28.69 

 (b) Using 
  
Pcleaner = I 2R =

ΔV( )2 R
R + 2r( )2 , we find that 

   

  
R + 2r = ΔV( )2 R

Pcleaner

⎛
⎝⎜

⎞
⎠⎟

1 2  

  solving for r gives 
   

   

r = ΔV
2

R
Pcleaner

⎛
⎝⎜

⎞
⎠⎟

1 2

− R
2
= 120 V

2
26.9 Ω
525 W

⎛
⎝⎜

⎞
⎠⎟

1 2

− 26.9 Ω
2

= 0.128 Ω = ρ
A

= ρ4
π d2

 

  then, 
   

   

d = 4ρ
π r

⎛
⎝⎜

⎞
⎠⎟

1 2

=
4 1.7 × 10−8  Ω⋅m( ) 15 m( )

π 0.128 Ω( )
⎛

⎝
⎜

⎞

⎠
⎟

1 2

= 1.60 mm or more

 

 (c) To move from 525 W to 532 W will require a lot more copper: 
   

   

r = ΔV
2

R
Pcleaner

⎛
⎝⎜

⎞
⎠⎟

1 2

− R
2

= 120 V
2

26.9 Ω
532 W

⎛
⎝⎜

⎞
⎠⎟

1 2

− 26.9 Ω
2

= 0.037 9 Ω

d = 4ρ
π r

⎛
⎝⎜

⎞
⎠⎟

1 2

=
4 1.7 × 10−8  Ω⋅m( ) 15 m( )

π 0.037 9 Ω( )
⎛

⎝
⎜

⎞

⎠
⎟

1 2

= 2.93 mm or more
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P28.70 (a) When the capacitor is fully charged, no current exists in its 
branch. The current in the left resistors is IL = 5.00 V/83.0Ω. The 
current in the right resistors is IR = 5.00 V/(2.00 Ω + R). 

  Relative to the positive side of the battery, the left capacitor plate 
is at voltage 

   

  
VL = 5.00 V − 3.00 Ω( ) 5.00 V

83.0 Ω
⎛
⎝⎜

⎞
⎠⎟ = 5.00 V( ) 1− 3.00

83.0
⎛
⎝⎜

⎞
⎠⎟

  

  and the right plate is at voltage 
   

  
VR = 5.00 V − 2.00 Ω( ) 5.00 V( )

2.00 Ω+ R
= 5.00 V( ) 1− 2.00

2.00 + R
⎛
⎝⎜

⎞
⎠⎟

 

 where R is in ohms.  The voltage across the capacitor is 
   

  

ΔV = VL −VR = 5.00 V( ) 1− 3.00
83.0

⎛
⎝⎜

⎞
⎠⎟

                                       − 5.00 V( ) 1− 2.00
2.00 + R

⎛
⎝⎜

⎞
⎠⎟

ΔV = 5.00 V( ) 2.00
2.00 + R

− 3.00
83.0

⎛
⎝⎜

⎞
⎠⎟

 

  The charge on the capacitor is 
   

  

q = CΔV = 3.00 µC( ) 5.00 V( ) 2.00
2.00 + R

− 3.00
83.0

⎛
⎝⎜

⎞
⎠⎟

q = 15.0 µC( ) 2.00
2.00 + R

− 3.00
83.0

⎛
⎝⎜

⎞
⎠⎟

 

   

  

q = 30.0
2.00 + R

− 0.542, where q is in microcoulombs 

                                   and R is in ohms.

 

 (b) With R = 10.0 Ω,  
   

  
q = 30.0

2.00 + R
− 0.542 = 30.0

2.00 + 10.0
− 0.542 = 1.96 µC

 

 (c)  Yes.  Setting q = 0, and solving for R, 
   

  
q = 15.0 µC( ) 2.00

2.00 + R
− 3.00

83.0
⎡
⎣⎢

⎤
⎦⎥

= 0
  

   

  
R = 2.00 83.0( )

3.00
− 2.00 = 53.3 Ω
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 (d) By inspection, the maximum charge occurs for R = 0. It is 

   
  
q = 15.0 µC( ) 2.00

2.00 + 0
−

3.00
83.0

⎡
⎣⎢

⎤
⎦⎥

= 14.5 µC  

 (e) 
  
Yes. Taking R = ∞ corresponds to disconnecting the wire  to 

remove the branch containing R: 

   
  
q = 15.0 µC( ) 2.00

2.00 + ∞
−

3.00
83.0

= 15.0 µC( ) 3.00
83.0

= 0.542 µC  

P28.71 (a) With the switch closed, current exists in a simple series circuit as 
shown. The capacitors carry no current. For R2 we have 

     P = I 2R2   and  
  
I =

P
R2

=
2.40 V ⋅A
7 000 V A

= 18.5 mA  

 

ANS. FIG. P28.71(a) 

  The potential difference across R1 and C1 is 

   
  ΔV = IR1 = 1.85 × 10−2  A( ) 4 000 V A( ) = 74.1 V  

  The charge on C1 is 

   
  
Q = C1ΔV = 3.00 × 10−6  C V( ) 74.1 V( ) = 222 µC  

  The potential difference across R2 and C2 is 

   
  ΔV = IR2 = 1.85 × 10−2  A( ) 7 000 Ω( ) = 130 V  

  The charge on C2 

   
  Q = C2ΔV = 6.00 × 10−6  C V( ) 130 V( ) = 778 µC  

  The battery emf is 
   

  IReq = I R1 + R2( ) = 1.85 × 10−2  A( ) 4 000 Ω + 7  000 Ω( ) = 204 V
 

 (b) In equilibrium after the switch has been opened, no current exists. 
The potential difference across each resistor is zero. The full 204 V 
appears across both capacitors. The new charge on C2 is 

   
  Q = C2ΔV = 6.00 × 10−6  C V( ) 204 V( ) = 1 222 µC  
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  for a change of 
 
1 222 µC − 778 µC = 444 µC .  

 

ANS. FIG. P28.71(b) 

P28.72 (a) First determine the resistance of each light bulb. From 
  
P =

ΔV( )2

R
, 

we have 

   
  
R =

ΔV( )2

P
=

120 V( )2

60.0 W
= 240 Ω  

  We obtain the equivalent resistance Req of the network of light 
bulbs by identifying series and parallel equivalent resistances: 

   
  
Req = R1 +

1
1 R2( ) + 1 R3( ) = 240 Ω + 120 Ω = 360 Ω  

  The total power dissipated in the 360 Ω is     

   
  
P =

ΔV( )2

Req

=
120 V( )2

360 Ω
=  

 
40.0 W  

 (b) The current through the network is given by   ΔV = IReq :   

   
  
I =

120 V
360 Ω

=
1
3

 A  

  The potential difference across R1 is     
   

  
ΔV1 = IR1 = 1

3
 A⎛

⎝⎜
⎞
⎠⎟ 240 Ω( ) = 80.0 V

  

  The potential difference   ΔV23  across the parallel combination of 
R2 and R3 is 

   
  
ΔV23 = IR23 =

1
3

 A⎛
⎝⎜

⎞
⎠⎟

1
1 240 Ω( ) + 1 240 Ω( )

⎛

⎝⎜
⎞

⎠⎟
= 40.0 V  

P28.73 (a) First let us flatten the circuit on a 2-D plane as shown in ANS. 
FIG. P28.73; then reorganize it to a format easier to read. Notice 
that the two resistors shown in the top horizontal branch carry 
the same current as the resistors in the horizontal branch second 
from the top. The center junctions in these two branches are at the 
same potential. The vertical resistor between these two junctions 
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has no potential difference across it and carries no current. This 
middle resistor can be removed without affecting the circuit. The 
remaining resistors over the three parallel branches have 
equivalent resistance 

   
  
Req =

1
20

+
1

20
+

1
10

⎛
⎝⎜

⎞
⎠⎟
−1

= 5.00 Ω  

 

ANS. FIG. P28.73 

 (b) So the current through the battery is 

   
  

ΔV
Req

=
12.0 V
5.00 Ω

= 2.40 A  

P28.74 (a) The emf of the battery is  9.30 V .  

 (b) Its internal resistance is given by  
   

  ΔV = 9.30 V − 3.70 A( )r = 0     →      r = 2.51 Ω   

 (c) The batteries are in series: Total emf = 2(9.30 V) = 18.6 V. 

 (d) The batteries are in series, so their total internal resistance is  
2r = 5.03 Ω. The maximum current is given by 

   

  
I = ΔV

R
= 18.6 V

5.03 Ω
= 3.70 A

  

 (e) For the circuit the total series resistance is  

   Req = 2r + 12.0 Ω = 17.0 Ω 
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  and 
    

  
I = ΔV

R
= 18.6 V

17.0 Ω
= 1.09 A

 

 (f)   P = I 2R = 1.09 A( )2 12.0 Ω( ) = 14.3 W   

 (g) The two 12.0-Ω resistors in parallel are equivalent to one 6.00-Ω, 
Resistor, and this is in series with the internal resistances of the 
batteries: Req = 6.00 Ω + 2r = 11.0 Ω. Therefore, the current in the 
batteries is 

    

  
I = ΔV

R
= 18.6 V

11.0 Ω
= 1.69 A

 

  and the terminal voltage across both batteries is 
    

  ΔV = ε − I 2r( ) = 18.6 V − 1.69 A( ) 5.03 Ω( ) = 10.1 V  

  The power delivered to each resistor is  
    

  
P = ΔV( )2

R
= 10.1 V( )2

12.0 Ω
= 8.54 W

 

 (h) 

 

Because of the internal resistance of the batteries, the terminal
voltage of the pair of batteries is not the same in both cases.

 

P28.75 (a) After steady-state conditions have been reached, there is no DC 
current through the capacitor. 

  Thus, for R3  :     
IR3

= 0 steady-state( )  

  For the other two resistors, the steady-state current is simply 
determined by the 9.00-V emf across the 12-kΩ and 15-kΩ 
resistors in series: 

  For R1 and R2:     
   

  

I R1+R2( ) = ε
R1 + R2

= 9.00 V
12.0 kΩ+ 15.0 kΩ( )

= 333 µA steady-state( )

 

  (b) After the transient currents have ceased, the potential difference 
across C is the same as the potential difference across R2(= IR2) 
because there is no voltage drop across R3. Therefore, the charge 
Q on C is 

   

  

Q = C ΔV( )R2
= C IR2( ) = 10.0 µF( ) 333 µA( ) 15.0 kΩ( )

= 50.0 µC
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ANS. FIG. P28.75(b) 

  (c) When the switch is opened, the branch containing R1 is no longer 
part of the circuit. The capacitor discharges through (R2 + R3) with 
a time constant of  

   (R2 + R3)C = (15.0 kΩ + 3.00 kΩ)(10.0 µF) = 0.180 s 

  The initial current Ii in this discharge circuit is determined by the 
initial potential difference across the capacitor applied to (R2 + R3) 
in series: 

   
  
Ii =

ΔV( )C

R2 + R3( ) =
IR2

R2 + R3( ) =
333 µA( ) 15.0 kΩ( )
15.0 kΩ + 3.00 kΩ( ) = 278 µA  

 

ANS. FIG. P28.75(c) 

  Thus, when the switch is opened, the current through R2 changes 
instantaneously from 333 µA (downward) to 278 µA (downward) 
as shown in the graph. Thereafter, it decays according to 

   
  
IR2

= Iie
−t R2 +R3( )C = 278 µA( )e−t 0.180 s( )  for t > 0( )  

 (d) The charge q on the capacitor decays from Qi to 
  

Qi

5
 according to 

   

  

q = Qie
−t R2 +R3( )C

Qi

5
= Qie

−t 0.180 s( )

5 = et 0.180 s

ln 5 =
t

180 ms
t = 0.180 s( ) ln 5( ) = 290 ms
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P28.76 From the hint, the equivalent resistance of   

 

 That is, 
  
RT +

1
1 RL + 1 Req

= Req  

   

  

RT +
RLReq

RL + Req

= Req

RTRL + RTReq + RLReq = RLReq + Req
2

Req
2 − RTReq − RTRL = 0

Req =
RT ± RT

2 − 4 1( ) −RTRL( )
2 1( )

 

 Only the + sign is physical: 

   
  
Req =

1
2

4RTRL + RT
2 + RT( )  

 For example, if   RT = 1 Ω and RL = 20 Ω, then Req = 5 Ω. 

P28.77 (a) For the first measurement, the equivalent circuit is as shown in 
the top panel of ANS. FIG. P28.77. 

      Rab = R1 = Ry + Ry = 2Ry  

  so 
  
Ry =

1
2

R1.  [1] 

  For the second measurement, the  
equivalent circuit is shown in the  
bottom panel of ANS. FIG. P28.77. 
Thus,  

    
  
Rac = R2 =

1
2

Ry + Rx  [2] 

  Substitute [1] into [2] to obtain: 

    
  
R2 =

1
2

1
2

R1
⎛
⎝⎜

⎞
⎠⎟ + Rx ,   or   

  
Rx = R2 −

1
4

R1  

 (b) If R1 = 13.0 Ω and R2 = 6.00 Ω, then 
  

Rx = 2.75 Ω .  

  
 

The antenna is inadequately grounded  since this exceeds the 

limit of 2.00 Ω. 

ANS. FIG. P28.77 
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P28.78  ΔV = ε e−t RC   so   
  
ln

ε
ΔV

⎛
⎝⎜

⎞
⎠⎟ =

1
RC

⎛
⎝⎜

⎞
⎠⎟ t.  

 A plot of 
  
ln

ε
ΔV

⎛
⎝⎜

⎞
⎠⎟  versus t should be a straight line with slope equal to 

  

1
RC

, as shown in ANS. FIG. P28.78. 

 

ANS. FIG. P28.78 

 Using the given data values: 

 (a) A least-square fit to this data yields the graph shown in ANS. 
FIG. P28.78. 

     xi∑ = 282 ,   xi
2∑ = 1.86 × 104 , 

     xiyi∑ = 244 ,   yi∑ = 4.03 , N = 8 

   
  
Slope =

N xiyi∑( ) − xi∑( ) yi∑( )
N xi

2∑( ) − xi∑( )2 = 0.011 8  

 

t (s) ∆V (V) ln(ε/∆V) 

0 6.19 0 

4.87 5.55 0.109 

11.1 4.93 0.228 

19.4 4.34 0.355 

30.8 3.72 0.509 

46.6 3.09 0.695 

67.3 2.47 0.919 

102.2 1.83 1.219 
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Intercept =

xi
2∑( ) yi∑( ) − xi∑( ) xiyi∑( )
N xi

2∑( ) − xi∑( )2 = 0.088 2  

  The equation of the best fit line is: 
  

ln
ε
ΔV

⎛
⎝⎜

⎞
⎠⎟ = 0.011 8( )t + 0.088 2  

 (b) Thus, the time constant is 

   
  
τ = RC =

1
slope

=
1

0.011 8
= 84.7 s  

  and the capacitance is   
   

  
C = τ

R
= 84.7 s

10.0× 106  Ω
= 8.47 µF

 

P28.79 A certain quantity of energy   ΔEint = PΔt  is required to raise the 
temperature of the water to 100°C in time interval   Δt.  For the power 

delivered to the heaters we have 
  
P = IΔV =

(ΔV)2

R
 where   ΔV  is a 

constant. Thus, comparing coils 1 and 2, we have for the energy 

  
ΔEint =

(ΔV)2Δt
R1

=
(ΔV)2 2Δt

R2

. Therefore, R2 = 2R1. 

 (a) When connected in parallel, the coils present equivalent 
resistance 

   
  

1
Rp

=
1

R1

+
1

R2

=
1

R1

+
1

2R1

=
3

2R1

→ Rp =
2
3

R1 . 

  Now,     

   
  
ΔEint =

(ΔV)2Δt
R1

=
(ΔV)2Δtp

2
3 R1

→ Δtp =
2
3
Δt  

 (b) For the series connection,   Rs = R1 + R2 = R1 + 2R1 = 3R1  and 

   
  
ΔEint =

(ΔV)2Δt
R1

=
(ΔV)2Δts

3R1

→ Δts = 3Δt  

P28.80 When connected in series, the equivalent resistance is 

   Req = R1 + R2 ++ Rn   = nR . Thus, the current is   Is = (ΔV) Req , and the 
power consumed by the series configuration is 

   
  
Ps = IsΔV =

(ΔV)2

Req

=
(ΔV)2

nR
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 For the parallel connection, the power consumed by each individual 

resistor is 
  
P1 =

(ΔV)2

R
, and the total power consumption is 

   
  
Pp = nP1 =

n(ΔV)2

R
 

 Therefore, 
  

Ps

Pp

=
ΔV( )2

nR
⋅

R
n ΔV( )2 =

1
n2    or   

  
Ps =

1
n2 Pp  

P28.81 We model the person’s body and street shoes as shown in ANS. FIG. 
P28.81. For the discharge to reach 100 V, 

     q t( ) = Qe−t RC = CΔV t( ) = CΔV0e
−t RC  

   
  

ΔV
ΔV0

= e−t RC →
ΔV0

ΔV
= e+t RC  

   
  
→

t
RC

= ln
ΔV0

ΔV
⎛
⎝⎜

⎞
⎠⎟

 

 

ANS. FIG. P28.81 

 The equivalent capacitance for parallel capacitors is  

   150 pF + 80.0 pF = 230 pF. 

 (a) For R = 5.00 MΩ, a change from 3 000 V to 100 V requires that 
   

  

t = RC ln
ΔV0

ΔV
⎛
⎝⎜

⎞
⎠⎟ = 5 000 × 106  Ω( ) 230 × 10−12  F( )ln

3 000 V
100 V

⎛
⎝⎜

⎞
⎠⎟

= 3.91 s

 

 (b) For R = 1.00 MΩ, the same change requires that 
   

  

t = RC ln
ΔV0

ΔV
⎛
⎝⎜

⎞
⎠⎟ = 1.00 × 106  Ω( ) 230 × 10−12  F( )ln

3 000 V
100 V

⎛
⎝⎜

⎞
⎠⎟

= 7.82 × 10−4  s = 782 µs
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Challenge Problems 
P28.82 Start at the point when the 

voltage has just reached 
  

2
3
ΔV  

and the switch has just closed. 

The voltage is 
  

2
3
ΔV  and is 

decaying towards 0 V with a 
time constant R2C. 

  

  
ΔVC t( ) = 2

3
ΔV⎡

⎣⎢
⎤
⎦⎥
e−t R2C

 

 We want to know when   ΔVC(t)  

will reach 
  

1
3
ΔV.  

 Therefore, 
  

1
3
ΔV =

2
3
ΔV⎡

⎣⎢
⎤
⎦⎥
e−t R2C  

   
  
e−t R2C =

1
2

 

     t1 = R2C ln 2  

 After the switch opens, the voltage is 
  

1
3
ΔV ,  increasing toward  ΔV  

with time constant (R1 + R2)C: 

   
  
ΔVC t( ) = ΔV −

2
3
ΔV⎡

⎣⎢
⎤
⎦⎥

e−t R1 +R2( )C  

 When  
  
ΔVC t( ) =

2
3
ΔV ,  

   
  

2
3
ΔV = ΔV −

2
3
ΔVe−t R1 +R2( )C    or   

  
e−t R1+R2( )C = 1

2
 

 so    t2 = R1 + R2( )C ln 2   and  
  
T = t1 + t2 = R1 + 2R2( )C ln 2  

P28.83 Assume a set of currents as shown in the circuit diagram in ANS. FIG. 
P28.83. Applying Kirchhoff’s loop rule to the leftmost loop and 
suppressing units gives 

   
  

+75.0 − 5.00( ) I − 30.0( ) I − I1( ) = 0
75.0 − 35.0 I + 30.0 I1 = 0

 

 or      7 I – 6 I1 = 15 [1] 

 

ANS. FIG. P28.82 
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ANS. FIG. P28.83 

 For the rightmost loop, the loop rule gives, suppressing units, 

   
  

− 40.0 + R( ) I1 + 30.0( ) I − I1( ) = 0

− 70.0 + R( ) I1 + 30.0 I = 0
 

 or      
  
I =

7
3

+
R
30

⎛
⎝⎜

⎞
⎠⎟ I1  [2] 

 Substituting equation [2] into [1] and simplifying gives 

   (310 + 7 R) I1 = 450 [3] 

 Also, it is known that   PR = I1
2R = 20.0 W , 

 so       
  
R =

20.0 W
I1

2  [4] 

 Substituting equation [4] into [3] yields 

   
  
310 I1 +

140
I1

= 450  

 or    310 I1
2 − 450 I1 + 140 = 0  

 Using the quadratic formula, 

      
  
I1 =

− −450( ) ± −450( )2 − 4 310( ) 140( )
2 310( ) =  

 

450 ± 170
620

 

 yielding I1 = 1.00 A and I1 = 0.452 A. Then, from 
  
R =

20.0 W
I1

2 , we find 

two possible values for the resistance R. These are:   

    
  

R = 20.0 Ω   or   R = 98.1 Ω  
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P28.2 (a) 4.59 Ω; (b) 8.16% 

P28.4 (a) 50%; (b) 0; (c) High efficiency; (d) High power transfer 

P28.6 (a) The 120-V potential difference is applied across the series 
combination of the two conductors in the extension cord and the 
lightbulb. The potential difference across the lightbulb is less than 120 
V, and its power is less than 75 W; (b) See ANS. FIG. P28.6; (c) 73.8 W 

P28.8 (a)   IA = ε/R,  IB = IC = ε/2R;  (b) B and C have the same brightness 
because they carry the same current; (c) A is brighter than B or C 
because it carries twice as much current. 

P28.10 (a) Connect two 50-Ω resistors in parallel to get 25 Ω. Then connect that 
parallel combination in series with a 20 Ω for a total resistance of 45 Ω; 
(b) Connect two 50-Ω resistors in parallel to get 2 Ω. Also, connect two 
20 Ω resistors in parallel to get 10 Ω. Then connect these two 
combinations in a series with each other to obtain 35 Ω. 

P28.12 (a) 
  
R1 = ε − 2

I0

+ 2
Ia

+ 1
Ib

⎛
⎝⎜

⎞
⎠⎟

;  (b) 
  
R2 = 2ε 1

I0

− 1
Ia

⎛
⎝⎜

⎞
⎠⎟

;  (c) 
  
R3 = ε

1
I0

− 1
Ib

⎛
⎝⎜

⎞
⎠⎟

 

P28.14 (a) decreases; (b) 14 Ω 

P28.16 (a) 
  
ΔV1 =

ε
3

, ΔV2 =
2ε
9

,
  
ΔV3 =

4ε
9

,  
  
ΔV4 =

2ε
3

;  

(b) 
  
I1 = I , I2 = I3 =

I
3

, I4 =
2I
3

; (c) I4 increases and I1, I2, and I3 decrease; 

(d) 
  
I1 =

3I
4

, I2 = I3 = 0, I4 =
3I
4

 

P28.18 (a) See P28.18(a) for the full solution; (b) The current never exceeds  
50 µA. 

P28.20 None of these is 
  

4
3

R,  so the desired resistance cannot be achieved. 

P28.22 (a) See ANS. FIG. P28.22 

P28.24 (a) I3 = 909 mA; (b) –1.82 V 

P28.26 (a) See ANS. FIG. P28.26; (b) 11.0 mA in the 220-Ω resistor and out of 
the positive pole of the 5.80-V battery; The current is 1.87 mA in the 
150-Ω resistor and out of the negative pole of the 3.10-V battery;  
9.13 mA in the 370-Ω resistor 
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P28.28 (a) 172 A downward; (b) 1.70 A downward; (c) No, the current in the 
dead battery is upward in Figure P28.28, so it is not being charged. The 
dead  battery is providing a small amount of power to operate the 
starter, so it is not really "dead." 

P28.30 (a) w = 1.00 A upward in 200 Ω; z = 4.00 A upward in 70.0 Ω; x = 3.00 A 
upward in 80.0 Ω; y = 8.00 A downward in 20.0 Ω; (b) 200 V 

P28.32 (a) I2 is directed from b toward a and has a magnitude of 2.00 A;  
(b) I3 = 1.00 A; (c) No. Neither of the equations used to find I2 and I3 
contained ε  and R. The third equation that we could generate from 
Kirchhoff’s rules contains both the unknowns. Therefore, we have only 
one equation with two unknowns. 

P28.34 (a)   13.0I1 + 18.0I2 = 30.0 ; (b)   18.0I2 − 5.00I3 = −24.0;  (c)   I1 − I2 − I3 = 0 ; 
(d)   I3 = I1 − I2 ; (e)   5.00I1 − 23.0I2 = 24.0;  (f)   I2 = −0.416 A  and  
I1 = 2.88 A; (g) I3 = 3.30 A; (h) The negative sign in the answer for I2 
means that this current flows in the opposite direction to that shown in 
the circuit diagram and assumed during the solution. That is, the 
actual current in the middle branch of the circuit flows from right to 
left and has a magnitude of 0.416 A. 

P28.36 (a) No. The circuit cannot be simplified further, and Kirchhoff’s rules 
must be used to analyze it; (b) I1 = 3.50 A; (c) I2 = 2.50 A; (d) I3 = 1.00 A 

P28.38 (a) 5.00 s; (b) 150 µC; (c) 4.06 µA 

P28.40 587 kΩ 

P28.42 (a) (R1 + R2)C; (b) R2C; (c) 
  
ε 1

R1

+ 1
R2

e−t R2C( )⎛
⎝⎜

⎞
⎠⎟

 

P28.44 
  
+

RC
2

 

P28.46 (a) For the heater, 12.5 A; For the toaster, 6.25 A; For the grill, 8.33 A; 
(b) The current draw is greater than 25.0 amps, so this circuit will trip 
the circuit breaker. 

P28.48 (a) ~10–14; (b) 
  
~

Vh

2
+ 10−10  V and ~

Vh

2
− 10−10  V  

P28.50 7.49 Ω 

P28.52 (a) 0.991; (b) 0.648; (c) The energy flows are precisely analogous to the 
currents in parts (a) and (b). The ceiling has the smallest R value of the 
thermal resistors in parallel, so increasing its thermal resistance will 
produce the biggest reduction in the total energy flow. 
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P28.54 (a) 0.706 A; (b) 2.49 W; (c) Only the circuit in Figure P28.54(c) requires 
the use of Kirchhoff’s rules for solution. In the other circuits, the 5-Ω 
and 8-Ω resistors are still in parallel with each other; (c) The power is 
lowest in Figure P28.54(c). The circuits in Figures P28.54(b) and 
P28.54(d) have in effect 30-V batteries driving the current. 

P28.56 55.0 Ω 

P28.58 See P28.58 for full explanation. 

P28.60 (a) 15.0 Ω; (b)   ΔVac = ΔVdb = 6.00 V,    ΔVce = 1.20 V,    ΔVfd = ΔVed = 1.80 V,  

  ΔVcd = 3.00 V;  (c) I1 = 1.00 A, I2 = 0.500 A, I3 = 0.500 A, I4 = 0.300 A,  
I5 = 0.200 A; (d) Pac = 6.00 W, Pce = 0.600 W, Ped = 0.540 W, Pfd = 0.360 W, 
Pcd = 1.50 W, Pdb = 6.00 W 

P28.62 
  

Ps + Ps
2 − 4PsPp

2I 2
 and 

  

Ps − Ps
2 − 4PsPp

2I 2
 

P28.64 (a) 4.40 Ω; (b) 32.0 W; (c) 9.60 W; (d) 70.4 W; (e) 48.0 W 

P28.66 (a) 
  
I1 =

IR2

R1 + R2

 and 
  

IR1

R1 + R2

= I2 ; (b) See P28.66(b) for full proof. 

P28.68 See P28.68 for full explanation. 

P28.70 (a) 
  
q =

30.0
2.00 + R

− 0.542 , where q is in microcoulombs and R is in ohms; 

(b) 1.96 µC; (c) Yes; 53.3 Ω; (d) 14.5 µC; (e) Yes. Taking R = ∞ 
corresponds to disconnecting the wire; 0.542 µC 

P28.72 (a) 40.0 W; (b) 80.0 V and 40.0 V 

P28.74 (a) 9.30 V; (b) 2.51 Ω; (c) 18.6 V; (d) 3.70 A; (e) 1.09 A; (f) 14.3 W;  
(g) 8.54 W; (h) Because of the internal resistance of the batteries, the 
terminal voltage of the pair of batteries is not the same in both cases. 

P28.76 See P28.76 for full explanation. 

P28.78 (a) 
  
ln

ε
ΔV

⎛
⎝⎜

⎞
⎠⎟ = 0.011 8( )t + 0.088 2;  (b) The time constant is 84.7 s and the 

capacitance is 8.47 µF. 

P28.80 
  
Ps =

1
n2 Pp  

P28.82   R1 + 2R2( )C ln 2  
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29 
Magnetic Fields 

 

CHAPTER OUTLINE 
 

29.1  Analysis Model: Particle in a Field (Magnetic) 

29.2  Motion of a Charged Particle in a Uniform Magnetic Field 

29.3 Applications Involving Charged Particles Moving in a Magnetic Field 

29.4  Magnetic Force on a Current-Carrying Conductor 

29.5 Torque on a Current Loop in a Uniform Magnetic Field 

22.6 The Hall Effect 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ29.1 Answers (c) and (e). The magnitude of the magnetic force 
experienced by a charged particle in a magnetic field is given by 

  FB = q vBsinθ ,  where v is the speed of the particle and θ is the angle 
between the direction of the particle’s velocity and the direction of 
the magnetic field. If either v = 0 [choice (e)] or sin θ = 0 [choice (c)], 
this force has zero magnitude.  

OQ29.2 The ranking is (c) > (a) = (d) > (e) > (b). We consider the quantity  
FB = |qvB sin θ|, in units of e (m/s)(T). (a) θ = 90° and FB =  
(1 × 106) (10–3) (1) = 1 000. (b) θ = 0° and FB = (1 × 106) (10–3) (0) = 0.  
(c) θ = 90° and FB = (2 × 106 )(10–3) (1) = 2 000. For (d) θ = 90° and  
FB = (1 × 106)(1 × 10–3)(1) = 1 000 (e) θ = 45° and  
FB = (1 × 106)(10–3)(0.707) = 707.  

OQ29.3 Answer (c). It is not necessarily zero. If the magnetic field is parallel 
or antiparallel to the velocity of the charged particle, then the particle 
will experience no magnetic force. 
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OQ29.4 Answer (c). Use the right-hand rule for the cross produce to 
determine the direction of the magnetic force,    


FB = q


v ×

B . When the 

proton first enters the field, it experiences a force directed upward, 
toward the top of the page. This will deflect the proton upward, and 
as the proton’s velocity changes direction, the force changes direction 
always staying perpendicular to the velocity. The force, being 
perpendicular to the motion, causes the particle to follow a circular 
path, with no change in speed, as long as it is in the field. After 
completing a half circle, the proton will exit the field traveling 
toward the left. 

OQ29.5 Answer (c).    

FB = q


v ×

B  and   î × (−k̂) = ĵ.  

OQ29.6 Answer (c). The magnetic force must balance the weight of the rod. 
From Equation 29.10,  

   
     

FB = I


L ×

B → FB = ILBsinθ

 

 For maximum current, θ = 90°, and we have ILB sin 90° = mg, from 
which we obtain  

   

  
I = mg

LB
=

0.050 0 kg( ) 9.80 m/s2( )
1.00 m( ) 0.100 T( ) = 4.90 A

 

OQ29.7 (i) Answer (b). The magnitude of the magnetic force experienced by 
the electron is given by   FB = q vBsinθ = evB  because  q = −e = e , and 

the angle between the electron’s velocity and the magnetic field is θ = 
90°. We see that force is proportion to speed. 

 (ii) Answer (a). According to Equation 29.3, r = mv/qB; thus, electron 
A has a smaller radius of curvature.  

OQ29.8 (i) Answer (c).  

 (ii) Answer (c).  FE = q E  and   FB = q vBsinθ . 

 (iii) Answer (c).    

F = q


E  and    


FB = q


v ×

B .  

 (iv) Answer (a).    

F = q


E  and    


FB = q


v ×

B . 

 (v)  Answer (d). But   FB = q vBsinθ  is zero if θ = ±90°.  

 (vi) Answer (b).   FB = q vBsinθ  is non-zero unless θ = ±90°. 

 (vii) Answer (b). Because    

FB = q


v ×

B  is perpendicular to the 

particle’s velocity.  

 (viii) Answer (b).   FB = q vBsinθ . 
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OQ29.9 Answer (c). The magnitude of the magnetic force experienced by the 
electron is given by   FB = q vBsinθ , where the angle between the 
electron’s velocity and the magnetic field is θ = 55.0°, and the 
magnitude of the electron’s (negative) charge is  q = −e = e . The 
magnitude of the force is  

     

  

FB = q vBsinθ

= 1.60× 10−19  C( ) 2.50× 106  m/s( ) 3.00× 10−5  T( )sin 55.0°

= 9.83× 10−18  N

. 

 Use the right-hand rule for the cross produce to determine the 
direction of the magnetic force,    


FB = q


v ×

B . The force is upward on a 

positive charge but downward on a negative charge.  

OQ29.10 Answers (d) and (e). The force that a magnetic field exerts on a 
moving charge is always perpendicular to both the direction of the 
field and the direction of the particle’s motion. Since the force is 
perpendicular to the direction of motion, it does no work on the 
particle and hence does not alter its speed. Because the speed is 
unchanged, both the kinetic energy and the magnitude of the linear 
momentum will be constant.  

OQ29.11 Answer (d). The electrons will feel a constant electric force and a 
magnetic force that will change in direction and in magnitude as 
their speed changes. 

OQ29.12 (a) Yes, as described by     

F = q


E.  (b) No, because, as described by  

      

FB = q


v ×

B , when v = 0, FB = 0. 

 (c) Yes.    

F = q


E  does not depend upon velocity. (d) Yes, because the 

velocity and magnetic field are perpendicular. (e) No, because the 
wire is uncharged. (f) Yes, because the current and magnetic field are 
perpendicular. (g) Yes. (h) Yes.  

OQ22.13 Ranking AA > AC > AB. The torque exerted on a single turn coil 
carrying current I by a magnetic field B is   τ = BIAsinθ.  The normal 
perpendicular to the plane of each coil is also perpendicular to the 
direction of the magnetic field (i.e., θ = 90°). Since B and I are the 
same for all three coils, the torques exerted on them are proportional 
to the area A enclosed by each of the coils. Coil A is rectangular with 
the largest area AA = (1 m)(2 m) = 2 m2. Coil C is triangular with area 

  
AC =

1
2

1 m( ) 3 m( ) = 1.5 m2.  By inspection of the figure, coil B 

encloses the smallest area. 
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ29.1 No. Changing the velocity of a particle requires an accelerating force. 
The magnetic force is proportional to the speed of the particle. If the 
particle is not moving, there can be no magnetic force on it. 

CQ29.2 If you can hook a spring balance to the particle and measure the force 
on it in a known electric field, then q = F/E  will tell you its charge. 
You cannot hook a spring balance to an electron. Measuring the 
acceleration of small particles by observing their deflection in known 
electric and magnetic fields can tell you the charge-to-mass ratio, but 
not separately the charge or mass. Both an acceleration produced by 
an electric field and an acceleration caused by a magnetic field 
depend on the properties of the particle only by being proportional 
to the ratio q/m. 

CQ29.3 Yes. If the magnetic field is perpendicular to the plane of the loop, 
then it exerts no torque on the loop. 

CQ29.4 Send the particle through the uniform field and look at its path. If the 
path of the particle is parabolic, then the field must be electric, as the 
electric field exerts a constant force on a charged particle, 
independent of its velocity. If you shoot a proton through an electric 
field, it will feel a constant force in the same direction as the electric 
field—it’s similar to throwing a ball through a gravitational field.  

 If the path of the particle is helical or circular, then the field is 
magnetic.  

 If the path of the particle is straight, then observe the speed of the 
particle. If the particle accelerates, then the field is electric, as a 
constant force on a proton with or against its motion will make its 
speed change. If the speed remains constant, then the field is 
magnetic. 

CQ29.5 If the current loop feels a torque, it must be caused by a magnetic 
field. If the current loop feels no torque, try a different orientation—
the torque is zero if the field is along the axis of the loop. 

CQ29.6 The Earth’s magnetic field exerts force on a  
charged incoming cosmic ray, tending to make it  
spiral around a magnetic field line. If the particle  
energy is low enough, the spiral will be tight  
enough that the particle will first hit some matter  
as it follows a field line down into the atmosphere  
or to the surface at a high geographic latitude. 

CQ29.7 If they are projected in the same direction into the same magnetic 
field, the charges are of opposite sign.  

 

 

ANS. FIG. P29.6 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 29.1 Analysis Model: Particle in a Field (Magnetic) 
*P29.1 Gravitational force: 
   

  

Fg = mg = 9.11× 10−31  kg( ) 9.80 m s2( )
= 8.93× 10−30  N down

 

 Electric force:  
   

  

Fe = qE = −1.60× 10−19  C( ) 100 N C down( )
= 1.60× 10−17  N up

 

 Magnetic force:  
   

    


FB = q


v ×

B = −1.60 × 10−19  C( ) 6.00 × 106  m s  Ê( )

                                        × 50.0 × 10−6  N ⋅ s C ⋅m  N̂( )
= −4.80 × 10−17  N up = 4.80 × 10−17  N down

 

P29.2 See ANS. FIG. P29.2 for right-hand rule diagrams for each of the 
situations. 

 (a) up 

 (b) out of the page, since the charge is negative. 

 (c) no deflection 

 (d) into the page 

 

ANS. FIG. P29.2 
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P29.3 To find the direction of the magnetic field, we use    

FB = q


v ×

B . Since 

the particle is positively charged, we can use the right hand rule. In 
this case, we start with the fingers of the right hand in the direction of 
  

v  and the thumb pointing in the direction of   


F . As we start closing the 

hand, our fingers point in the direction of   

B  after they have moved 

90°. The results are 

 (a) 
 

into the page   (b) 
 

toward the right   

(c) 
 

toward the bottom of the page  

P29.4 At the equator, the Earth’s  
magnetic field is horizontally  
north. Because an electron has  
negative charge,    


F = q


v ×

B  is  

opposite in direction to    

v ×

B.   

Figures are drawn looking down. 

 (a) Down × North = East, so the force is directed  West .  

 (b) North × North = sin 0° = 0:  Zero deflection .  

 (c) West × North = Down, so the force is directed 
 

Up .  

 (d) Southeast × North = Up, so the force is  Down .  

P29.5 We use    

FB = q


v ×

B . Consider a three-dimensional coordinate system 

with the xy plane in the plane of this page, the +x direction toward the 
right edge of the page and the +y direction toward the top of the page. 
Then, the z axis is perpendicular to the page with the +z direction 
being upward, out of the page. The magnetic field is directed in the  
+x direction, toward the right. 

 (a) When a proton (positively charged) moves in the +y direction, the 
right-hand rule gives the direction of the magnetic force as into 
the page or in the   −z direction .  

 (b) With velocity in the –y direction, the right-hand rule gives the 
direction of the force on the proton as out of the page, in 

  the +z direction .  

 (c) When the proton moves in the +x direction, parallel to the 
magnetic field, the magnitude of the magnetic force it experiences 
is F = qvB sin (0°) = 0. The magnetic force is zero in this case. 

ANS. FIG. P29.4 
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P29.6 The magnitude of the force on a moving charge in a magnetic field is  

  FB = qvBsinθ ,  so 
    

  
θ = sin−1 FB

qvB
⎡
⎣⎢

⎤
⎦⎥

 

    

 

θ = sin−1 8.20× 10–13  N  
1.60× 10–19  C( ) 4.00× 106  m/s( ) 1.70 T( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 48.9° or 131°

 

P29.7 We first find the speed of the electron from the isolated system model: 

   
  
ΔK + ΔU( )i = ΔK + ΔU( ) f →

1
2

mv2 = eΔV : 

   

  
v =

2eΔV
m

=
2 1.60 × 10−19  C( ) 2 400 J C( )

9.11× 10−31  kg
= 2.90 × 107  m s

 

 (a) 

  

FB,  max = qvB = 1.60 × 10−19  C( ) 2.90 × 107  m s( ) 1.70 T( )
= 7.90 × 10−12  N

 

 (b) 
  
FB, min = 0  occurs when   


v  is either parallel to or anti-parallel to    


B.  

P29.8 The force on a charged particle is proportional to the vector product of 
the velocity and the magnetic field:  

   
    


FB = q


v ×

B = (1.60× 10–19  C) (2î – 4ĵ + k̂)(m/s)× (î + 2ĵ – k̂) T⎡⎣ ⎤⎦

 

  Since 1 C · m · T/s = 1 N, we can write this in determinant form as:  
   

    


FB = (1.60× 10−19  N) 

î ĵ k̂
2 –4 1
1 2 –1

 

  Expanding the determinant as described in Equation 11.8, we have 
   

    

FB,x = (1.60 × 10–19  N) ( – 4)( – 1) – (1)(2)[ ] î

 

   
    

FB,y = (1.60 × 10–19  N) (1)(1) – (2)(–1)[ ] ĵ

 

   
    

FB,z = (1.60 ×  10–19  N) (2)(2) – (1)(–4)⎡⎣ ⎤⎦ k̂  
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  Again in unit-vector notation,  
   

    


FB = (1.60× 10–19  N)(2î + 3ĵ + 8k̂)

= 3.20î + 4.80 ĵ + 12.8k̂( )× 10–19 N

 

   

    


FB = 3.202 + 4.802 + 12.82( ) × 10–19  N = 13.2 × 10–19  N

 

P29.9 (a) The magnetic force is given by 
   

  

F = qvBsinθ

= 1.60× 10−19  C( ) 5.02 × 106  m s( ) 0.180 T( )sin 60.0°( )

= 1.25× 10−13  N

  

 (b) From Newton’s second law, 

   
  
a =

F
m

=
1.25 × 10−13  N
1.67 × 10−27  kg

= 7.50 × 1013  m s2  

P29.10 (a) The proton experiences maximum force when it moves 
perpendicular to the magnetic field, and the magnitude of this 
maximum force is 

 

  

Fmax = qvBsin 90°

= 1.60× 10−19  C( ) 6.00× 106  m s( ) 1.50 T( ) 1( )

= 1.44× 10−12  N

 

 (b) From Newton’s second law, 

   
  
amax =

Fmax

mp

=
1.44 × 10−12  N
1.67 × 10−27  kg

= 8.62 × 1014  m s2  

 (c) Since the magnitude of the charge of an electron is the same as 
that of a proton, a force would be exerted on the electron that had 
the same magnitude as the force on a proton, but in the opposite 
direction because of its negative charge.  

 (d) 

 

The acceleration of the electron would be much greater than that
of the proton because the mass of the electron is much smaller.

 

P29.11   F = ma = 1.67 × 10−27  kg( ) 2.00 × 1013  m s2( ) = 3.34 × 10−14  N = qvBsin 90°  

 

  

B =
F
qv

=
3.34 × 10−14  N

1.60 × 10−19  C( ) 1.00 × 107 m s( ) = 2.09 × 10−2  T = 20.9 × 10−3  T

= 20.9 mT
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 From ANS. FIG. P29.11, the right-hand rule 
shows that B must be in the –y direction to 
yield a force in the +x direction when v is in 
the z direction. Therefore, 

   

   


B = −20.9 ĵ mT

 

P29.12 The problem implies that the particle undergoes a deflection 
perpendicular to its motion as if the force direction remained constant. 
Treat this as a projectile motion problem where the particle travels in 
the horizontal direction but is displaced vertically 0.150 m at a constant 
acceleration.  

 We find the acceleration from 

  
  
Δy =

1
2

ayΔt2 → ay =
2Δy
Δt2 =

2 0.150 m( )
1.00 s( )2 = 0.300 m s2  

 Then, from Newton’s second law,  

  

  

Fy = may = qvB

q =
may

vB
=

1.50 × 10−3  kg( ) 0.300 m s2( )
1.50 × 104  m/s( ) 0.150 × 10−3  T( )

= 2.00 × 10−4  C = 200. × 10−6  C = 200 µC

 

 
 

 

Section 29.2 Motion of a Charged Particle  
in a Uniform Magnetic Field 

P29.13 (a) The magnetic force acting on the electron provides the centripetal 
acceleration, holding the electron in the circular path. Therefore, 

  F = q vBsin 90° = me v2 r , or  
   

  

r = mev
eB

=
9.11× 10−31  kg( ) 1.50× 107  m s( )

1.60× 10−19  C( ) 2.00× 10−3  T( )
= 0.042 7 m = 4.27 cm

 

 (b) The time to complete one revolution around the orbit (i.e., the 
period) is 

   
  
T = distance traveled

constant speed
= 2πr

v
= 2π 0.042 7 m( )

1.50× 107  m s
= 1.79× 10−8  s  

 

ANS. FIG. P29.11 
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P29.14 Find the initial horizontal velocity component of an electron in the 
beam: 

  

  

1
2

mvxi
2 = q ΔV

  

  

  

vxi = v =
2 q ΔV

m
=

2(1.60 × 10−19 C) 2 500 V( )
9.11× 10−31  kg

= 2.96 × 107  m/s

 

 Gravitational deflection: The electron’s horizontal component of 
velocity does not change, so its time of flight to the screen is  

  

  
Δt = Δx

v
= 0.350 m

2.96× 107  m/s
= 1.18× 10−8  s

  

 Its vertical deflection is downward:  
  

  
y = 1

2
g Δt( )2 = 1

2
9.80 m/s2( ) 1.18× 10−8  s( )2

= 6.84× 10−16  m
 

 which is unobservably small. 

 (a) 
 
6.84 × 10−16 m  

 (b)  down  

  Magnetic deflection: Use the cross 
product to find the initial direction of 
the magnetic force on an electron:  

  velocity (north) × magnetic field 
(down) = –west = east. 

  Because the direction of the magnetic 
force direction is always perpendicular 
to the velocity, the electron is deflected 
so that it curves toward the east in a 
circular path with radius r—see ANS. 
FIG. 29.14(a):  

   

   

r = mv
q B

= m
q B

2 q ΔV
m

= 1
B

2mΔV
q

= 1
20.0× 10–6  T

2 9.11× 10−31  kg( ) 2 500 V( )
1.60× 10−19  C( )  

 8.44 m

 

  The path of the beam to the screen  

 

ANS. FIG. P29.14(a) 
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subtends at the center of curvature an  
angle θ, as shown in ANS. FIG. 29.14(b): 

   

  
θ = sin−1 x

r
⎛
⎝⎜

⎞
⎠⎟ = sin−1 0.350 m

8.44 m
⎛
⎝⎜

⎞
⎠⎟ = 2.38°

  

  The deflection to the east is  
   

  

Δy = r 1− cosθ( )
= 8.44 m( ) 1− cos2.38°( )
= 0.007 26 m = 7.26 mm

  

 (c)  7.26 mm  

 (d)  east  

  The speed of an electron in the beam remains constant, but its 
velocity direction changes as it travels along the path, and the 
force direction changes because it is always perpendicular to the 
velocity; therefore an electron does not move as a projectile with 
constant vector acceleration perpendicular to a constant 
northward component of velocity.  

 (e) 
 
The beam moves on an arc of a circle rather than on a parabola.  

  However, an electron’s northward velocity component stays 
nearly constant, changing from vx = v to vx = v cos 2.38°. The 
relative change is 

   

   

Δvx

vx

= vcos2.38°− v
v

= 1− cos2.38°( ) = 0.000 863  0.000 9
 

  that is, 

 (f) 

 

Its northward velocity component stays constant within 0.09%.
It is a good approximation to think of it as moving on a parabola
as it really moves on a circle.

 

P29.15 An electric field changes the speed of each particle according to  
(K + U)i = (K + U)f. Therefore, noting that the particles start from rest, 
we can write 

    
  
qΔV = 1

2
mv2  

  After they are fired, the particles have the magnetic field change their 
direction as described by     


F∑ = m


a:  

    
  
qvB sin 90° = mv2

r thus r = mv
qB = m

qB
2qΔV

m = 1
B

2mΔV
q

 

 

ANS. FIG. P29.14(b) 
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  For the protons, 
  
rp = 1

B

2mpΔV

e
 

 (a) For the deuterons,  
    

  
rd = 1

B
2 2mp( )ΔV

e = 2rp

 

 (b) For the alpha particles,  

     

  
rα = 1

B
2 4mp( )ΔV

2e = 2rp

 

P29.16 (a) The magnetic force provides the centripetal force to keep the 
particle moving on a circle:  

   
  

F∑ = ma     →      qvBsin 90.0° = mv2

R
 [1] 

  and the kinetic energy of the particle is  

   
  
K =

1
2

mv2  [2] 

  Both equations have the same term mv2 in common:  

  From [1], mv2 = qvBR, and from [2], mv2 = 2K. 

  Setting these equal to each other gives 

   
  
mv2 = qvBR = 2K      →      v =

2K
qBR

 

 (b) From [1], we have 
 
m =

qBR
v

. Using our result from (a), we get  

   
  
m =

qBR
v

= qBR
qBR
2K

⎛
⎝⎜

⎞
⎠⎟ =

q2B2R2

2K
 

P29.17 For each electron, 
  
q vBsin 90.0° =

mv2

r
 and 

  
v =

eBr
m

.  

 The electrons have no internal structure to absorb energy, so the 
collision must be perfectly elastic: 

   

  

K = 1
2

mev1i
2 + 0 = 1

2
mev1 f

2 + 1
2

mev2 f
2
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K = 1
2

me
e2B2R1

2

me
2

⎛
⎝⎜

⎞
⎠⎟

+ 1
2

m
e2B2R2

2

me
2

⎛
⎝⎜

⎞
⎠⎟

= e2B2

2me

R1
2 + R2

2( )

K =
1.60× 10−19  C( )2

0.044 0 T( )2

2 9.11× 10−31  kg( )
                          × 0.010 0 m( )2 + 0.024 0 m( )2⎡⎣ ⎤⎦

= 1.84× 10−14  J = 115 keV

 

P29.18 For each electron, 
  
q vBsin 90.0° =

mv2

r
 and 

  
v =

eBr
m

.  

 The electrons have no internal structure to absorb energy, so the 
collision must be perfectly elastic: 

   

  

K =
1
2

mev1i
2 + 0 =

1
2

mev1 f
2 +

1
2

mev2 f
2

K =
1
2

me
e2B2r1

2

me
2

⎛
⎝⎜

⎞
⎠⎟

+
1
2

me
e2B2r2

2

me
2

⎛
⎝⎜

⎞
⎠⎟

=
e2B2

2me

r1
2 + r2

2( )
 

P29.19 (a) We begin with 
  
qvB =

mv2

R
, or qRB = mv. 

  But, L = mvR = qR2B. 

  Therefore,    

   

  

R =
L
qB

=
4.00 × 10−25  J ⋅ s

1.60 × 10−19  C( ) 1.00 × 10−3  T( ) = 0.050 0 m

= 5.00 cm

 

 (b) Thus,    
   

  
v = L

mR
= 4.00× 10−25  J ⋅s

9.11× 10−31  kg( ) 0.050 0 m( ) = 8.78× 106  m s
 

P29.20 (a) We must use a right-handed coordinate system, so treat north as 
the positive x direction, up as the positive y direction, and east as 
the positive z direction. The ball’s initial velocity is north, and is 
given by 

   
    

v i = vxi î + vyi ĵ = vî  

  and the magnetic field is west, 

       

B = −Bk̂  
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  The trajectory of the ball is that of an object moving under the 
influence of gravity: projectile motion. The ball’s final velocity is  

   
    

v f = vxf î + vyf ĵ = vî + vyf ĵ  

  where v = 20.0 m/s, because under gravity, the horizontal 
component of velocity does not change.  

  We find the final y component of velocity of the ball after it falls a 
distance h and just before it hits the ground:  

   
  
vyf

2 = vyi
2 + 2ay y f − yi( )  

  Substituting and solving, 
   

  vyf
2 = 0 + 2 −g( ) −h( )    →    vyf = − 2gh

 

  The force on the ball just before it hits the ground is  
   

     


FB = Q


v ×

B = Q vî + vyf ĵ( )× −Bk̂( ) = Q vî − 2gh ĵ( )× −Bk̂( )

= −QBv î × k̂( ) + QB 2gh ĵ× k̂( ) = −QBv − ĵ( ) + QB 2gh î( )
= QB 2ghî + vĵ⎡⎣ ⎤⎦
= 5.00× 10−6  C( ) 0.010 0 T( )

                   × 2 9.80  m/s2( ) 20.0 m( )î + 20.0 m/s( ) ĵ⎡
⎣

⎤
⎦

= 0.990× 10−6 î + 1.00× 10−6 ĵ( ) N

 

 (b) We find the time interval the ball takes to reach the ground under 
the acceleration due to gravity:  

   
  
Δy = h =

1
2

gΔt2 → Δt =
2h
g

=
2 20.0 m( )
9.80 m/s2 = 2.02 s  

  We can estimate an extreme upper bound in the change in the 
ball’s horizontal velocity caused by the magnetic force by 
assuming the average horizontal component of the force to be half 
its final maximum horizontal value of 0.990 × 10–6 N. For such an 
average horizontal component over the entire fall, the change in 
the horizontal velocity would be less than  

   

  

Δvx = axΔt = Fx

m
Δt =

0.5 0.990× 10−6  N( )
0.0300 kg

2.02 s( )

= 3.33× 10−5  m/s
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  Compare this to the initial value of 20.0 m/s:  

   
 

20.0 m/s
3.33 × 10−5  m/s

≈ 106  

  

 

Yes. In the vertical direction, the gravitational force on the ball
is 0.294 N, five orders of magnitude larger than the magnetic
force. In the horizontal direction, the change in the horizontal
component of velocity due to the magnetic force is six orders of
magnitude smaller than the horizontal velocity component.

 

P29.21 By conservation of energy for the proton-electric field system in the 
process that set the proton moving, its kinetic energy is  

   

  
E = 1

2
mv2 = eΔV

 

 so its speed is 
   

  
v = 2eΔV

m

 

 Now Newton’s second law for its circular motion in the magnetic field 
gives 

     F∑ = ma  which becomes  
   
mv2

R = evB sin 90.  

  so  
  
B =

mv
eR =

m
eR

2eΔV
m = 1

R
2mΔV

e .  

 and  

   

  

B =
1

5.80 × 1010  m
⎛
⎝⎜

⎞
⎠⎟

2 1.67 × 10−27  kg( ) 10.0 × 106  V( )
1.60 × 10−19  C

= 7.88 × 10−12  T

 

P29.22 (a) The boundary between a region of strong magnetic field and a 
region of zero field cannot be perfectly sharp, but we ignore the 
thickness of the transition zone. In the field the electron moves on 
an arc of a circle: 

   

  
F∑ = ma:     q vBsin 90° = mv2

r

 

   

  

v
r

= ω =
q B
m

=
1.60 × 10−19  C( ) 10−3  N ⋅ s C ⋅m( )

9.11× 10−31  kg

= 1.76 × 108  rad/s
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  The time for one half revolution is, from   Δθ =ωΔt,  

   
  
Δt =

Δθ
ω

=
π  rad

1.76 × 108  rad s
= 1.79 × 10−8  s  

 (b) The maximum depth of penetration is the radius of the path. The 
magnetic force cannot alter the kinetic energy of the electron.  

  Then, 

     v = ω r = 1.76 × 108  s−1( ) 0.020 0 m( ) = 3.51× 106  m/s  

  and 
   

  

K = 1
2

mv2 = 1
2

9.11× 10−31  kg( ) 3.51× 106  m/s( )2

= 5.62 × 10−18  J = 5.62 × 10−18  J
1.60× 10−19  J/eV

= 35.1 eV

 

P29.23 To find the ratio of the masses, we first use conservation of energy to 
find the velocity of each particle after it has been accelerated by the 
potential drop: 

  
  

1
2

mv2 = q ΔV( )     so    
  
v =

2q ΔV( )
m

 

 The radius of the particles’ orbits is given by 
  

  
r = mv

qB
=

m 2q ΔV( ) m
qB

 

 Squaring gives, for the first particle, 

  
  
r2 =

m
q
⋅
2 ΔV( )

B2   

 and, for the second particle, 

  
  
′r( )2 = ′m

′q
⋅
2 ΔV( )

B2  

 Solving for the masses gives 

  
  
m =

qB2r2

2 ΔV( )
  and  

  
′m( ) =

′q( )B2 ′r( )2

2 ΔV( )
   

 so   
  

′m
m

=
′q

q
⋅

′r( )2

r2 =
2e
e

⎛
⎝⎜

⎞
⎠⎟

2R
R

⎛
⎝⎜

⎞
⎠⎟

2

= 8  
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Section 29.3 Applications Involving Charged Particles  
Moving in a Magnetic Field 

P29.24 (a) The name “cyclotron frequency” refers to the angular frequency 
or angular speed  

    
 
ω =

qB
m

 

  For protons,  
    

 
ω =

1.60 × 10–19  C( ) 0.450 T( )
1.67 × 10–27  kg 

= 4.31× 107  rad/s
  

 (b) The path radius is  
  
R = mv

Bq .  

   Just before the protons escape, their speed is  
   

  
v = BqR

m =
0.450 T( ) 1.60× 10–19  C( ) 1.20 m( )

1.67 × 10–27  kg 
= 5.17 × 107  m/s

 

P29.25 In the velocity selector, 

    
  
v =

E
B
=

2 500 V m
0.035 0 T

= 7.14 × 104  m/s  

 In the deflection chamber,  

   
  
r =

mv
qB

=
2.18 × 10−26  kg( ) 7.14 × 104  m/s( )

1.60 × 10−19  C( ) 0.035 0 T( ) =  
 

0.278 m  

P29.26 We first determine the velocity of the particles from 

   
  
K =

1
2

mv2 = q ΔV( )      

 so    
  
v =

2q ΔV( )
m

 

 Then, from 

   
    


FB = q


v ×

B =

mv2

r
       

 we solve for the radius: 

   
  
r =

mv
qB

=
m
q

2q ΔV( ) m
B

=
1
B

2m ΔV( )
q
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 (a) Substituting numerical values for uranium-238, 

   

  

r238 = 1
1.20 T

⎛
⎝⎜

⎞
⎠⎟

2 238 1.66× 10−27 kg( )⎡⎣ ⎤⎦ 2 000 V( )
1.60× 10−19 C

= 8.28× 10−2  m = 8.28 cm

 

 (b) For uranium-235 ions, 
   

  

r235 = 1
1.20 T

⎛
⎝⎜

⎞
⎠⎟

2 235 1.66× 10−27 kg( )⎡⎣ ⎤⎦ 2 000 V( )
1.60× 10−19 C

= 8.23× 10−2  m = 8.23 cm

 

 (c) 

  

From r =
1
B

2m ΔV( )
q

, we see for two different masses mA  and

mB  of the same charge q, the ratio of the path radii is 
rB

rA

=
mB

mA

.

 

 (d) 
  
The ratio of the path radii is independent of ΔV.  

 (e) 
  
The ratio of the path radii is independent of B.  

P29.27 Note that the “cyclotron frequency” is an angular speed. The motion of 
the proton is described by 

  
  F∑ = ma:  

   

  

q vBsin 90° =
mv2

r

q B = m
v
r

= mω
 

 (a) 

  

ω =
q B
m

=
1.60 × 10−19  C( ) 0.800 N ⋅ s/C ⋅m( )

1.67 × 10−27  kg( )
kg ⋅m
N ⋅ s2

⎛
⎝⎜

⎞
⎠⎟

= 7.66 × 107  rad/s

 

 (b) 
  
v = ω r = 7.66 × 107  rad/s( ) 0.350 m( ) 1

1 rad
⎛
⎝⎜

⎞
⎠⎟ = 2.68 × 107  m/s  

 (c) 

  

K =
1
2

mv2 =
1
2

1.67 × 10−27  kg( ) 2.68 × 107  m/s( )2 1 eV
1.6 × 10−19  J

⎛
⎝⎜

⎞
⎠⎟

= 3.76 × 106  eV

  



324     Magnetic Fields 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (d) The kinetic energy of the proton changes by ∆K = e∆V = e(600 V) = 
600 eV twice during each revolution, so the number of 
revolutions is 

   
 

3.76 × 106  eV
2 600 eV( ) = 3.13 × 103  revolutions  

 (e) From   θ =ω Δt,    

   
  
Δt =

θ
ω

=
3.13 × 103  rev

7.66 × 107  rad/s
2π  rad
1 rev

⎛
⎝⎜

⎞
⎠⎟ =

2.57 × 10−4  s  

P29.28 (a) The path radius is r = mv/qB, which we can write in terms of the 
(kinetic) energy E of the particle: 

    
  
E = K =

1
2

mv2 → v =
2E
m

⎛
⎝⎜

⎞
⎠⎟

1 2

 

  so 
  
r =

mv
qB

=
m
qB

2E
m

⎛
⎝⎜

⎞
⎠⎟

1 2

=
m
qB

2
m

⎛
⎝⎜

⎞
⎠⎟

1 2

E1 2 =
m1 2 21 2

qB
E1 2  

  Differentiating, we get, 
    

  

dr
dt

= m1 2 21 2

qB
d E1 2( )

dt
= m1 2 21 2

qB
1
2

E−1 2( ) dE
dt

⎡
⎣⎢

⎤
⎦⎥

= m1 2 21 2

qB
1
2

1
2

mv2⎛
⎝⎜

⎞
⎠⎟
−1 2⎡

⎣
⎢

⎤

⎦
⎥

dE
dt

= m1 2 21 2

qB
1
2

21 2

m1 2v
⎡
⎣
⎢

⎤
⎦
⎥

dE
dt

= 1
qBv

dE
dt

 

  From the relation r = mv/qB, we have v = qBr/m, which we 
substitute: 

    
  

dr
dt

=
1

qBv
dE
dt

=
1

qB
m

qBr
dE
dt

=
m

q2B2

1
r

dE
dt

 

  From the relation for the particle’s average rate of increase in 
energy (given in the problem), we have 

    
  

dr
dt

=
m

q2B2

1
r

q2BΔV
πm

⎛
⎝⎜

⎞
⎠⎟
=

1
r
ΔV
πB

 

 (b) 

  

The dashed red line in Figure 29.16a spirals around many times,
with its turns relatively far apart on the inside and closer together
on the outside. This demonstrates the 1/r  behavior of the rate of
change in radius exhibited by the result in part (a).
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 (c) 
  

dr
dt

=
1
r
ΔV
πB

=
1

0.350 m
600 V

 π  0.800 T( ) = 682 m/s  

 (d) We use the approximation 

   

   

Δr 
dr
dt

Δt =
dr
dt

T =
1
r
ΔV
πB

⎛
⎝⎜

⎞
⎠⎟

2πm
qB

⎛
⎝⎜

⎞
⎠⎟

=
2ΔVm
rqB2

=
2 600 V( ) 1.67 × 10−27  kg( )

0.350 m( ) 1.60 × 10−19  C( ) 0.800 T( )2

= 5.59 × 10−5  m = 55.9 µm

 

P29.29 Fro the electron to travel undeflected, we require FB = Fe, so     

   qvB = qE 

 where 
  
v =

2K
m

 and K is kinetic energy of the electron. Then, 

   

  

E = vB =
2K
m

B =
2 750 eV( ) 1.60 × 10−19  J/eV( )

9.11× 10−31  kg
0.015 0 T( )

= 244 kV/m

 

P29.30 (a) 
 
Yes: The constituent of the beam is present in all kinds of atoms.  

 (b) 
 
Yes: Everything in the beam has a single charge-to-mass ratio.  

 (c) 

  

In a charged macroscopic object most of the atoms are 
uncharged. A molecule never has all of its atoms ionized. 
Any atom other than hydrogen contains neutrons and so 
has more mass per charge if it is ionized than hydrogen 
does. The greatest charge-to-mass ratio Thomson could 
expect was then for ionized hydrogen, 

          1.6× 10−19  C/1.67 × 10–27  kg 
smaller than the value e/m he measured, 

          1.6× 10–19  C/9.11× 10–31  kg 
by 1 836 times. The particles in his beam could not be 
whole atoms, but rather must be much smaller in mass.

 

 (d) With kinetic energy 100 eV, an electron has speed given by  
   

  

1
2

mv2 = 100 eV
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  from which we obtain 
   

  
v =

2 100 eV( ) 1.6× 10−19  J/eV( )  
9.11× 10−31  kg

= 5.93× 106  m/s
 

  The time interval to travel 40.0 cm is  
   

  
Δt = Δx

v
= 0.400 m

5.93× 106  m/s
= 6.75× 10−8  s

  

  If it is fired horizontally it will fall vertically by  
   

  
y = 1

2
gt2 = 1

2
9.80 m/s2( ) 6.75× 10−8  s( )2

= 2.24× 10−14  m
  

  an immeasurably small amount. An electron with higher energy 
falls by a smaller amount.  

  

 

No. The particles move with speed on the order of ten million
meters per second, so they fall by an immeasurably small
amount over a distance of less than 1 m.

 

P29.31 From the large triangle in ANS. FIG. P29.31(a):  

   
 
θ = tan−1 25.0

10.0
⎛
⎝⎜

⎞
⎠⎟ = 68.2°  

 The electron beam, at the point where it  
enters the magnetic field region, travels to  
the right, but the beam, at the point it where  
emerges from the magnetic field region, has  
been deflected from its original direction by  
angle θ. Because the radius R is always  
perpendicular to the path, the radii drawn  
to these points form the same angle θ with  
each other. The length of the hypotenuse of  
the small right triangle appearing in ANS.  
FIG. P29.31(a) – shown in close-up in  
ANS. FIG. P29.31(b) – equals the radius R,  
and the base of the triangle equals the width  
of the magnetic field region, 1.00 cm. Therefore,  

   
  
R =

1.00 cm
sin 68.2°

= 1.08 cm  

 Ignoring relativistic correction, the kinetic energy of the electrons is 

   
  

1
2

mv2 = qΔV      

ANS. FIG. P29.31(a) 
 

ANS. FIG. P29.31(b) 
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 so  

  

v = 2qΔV
m

=
2 1.60× 10−19  C( ) 50.0× 103  V( )ΔV

9.11× 10−31  kg

= 1.33× 108  m/s

 

 From Newton’s second law, 
  

mv2

R
= qvB , we find the magnetic field: 

   
  
B =

mv
q R

=
9.11× 10−31  kg( ) 1.33 × 108  m/s( )

1.60 × 10−19  C( ) 1.08 × 10−2  m( ) = 70.0 mT  

 
 

 

Section 29.4 Magnetic Force on a Current-Carrying Conductor 
P29.32 (a) The magnitude of the magnetic force is given by 

     F = ILBsinθ = 3.00 A( ) 0.140 m( ) 0.280 T( )sin 90° = 0.118 N  

 (b) Neither the direction of the magnetic field nor that of the current 
is given. Both must be known in order to determine the direction 
of the magnetic force. In this problem, you can only say that the 
force is perpendicular to both the wire and the field. 

P29.33 (a) From   F = BILsinθ , the magnetic field is 

   
  
B =

F L
I sinθ

=
0.120 N/m

15.0 A( )sin 90°
= 8.00 × 10−3  T  

 (b) 

  

The magnetic field must be in the +z direction  to produce a

force in the –y  direction when the current is in the +x direction.

 

P29.34 (a) 
  
FB = ILBsinθ = 5.00 A( ) 2.80 m( ) 0.390 T( )sin 60.0° = 4.73 N  

 (b) 
  
FB = 5.00 A( ) 2.80 m( ) 0.390 T( )sin 90.0° = 5.46 N  

 (c) 
  
FB = 5.00 A( ) 2.80 m( ) 0.390 T( )sin 120° = 4.73 N  

P22.35 The vector magnetic force on the wire is 

    
    


FB = I


 ×

B = 2.40 A( ) 0.750 m( ) î × 1.60 T( )k̂ = −2.88 ĵ( )  N  
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P22.36 At all points on the wire, the magnetic force is upward and the 
gravitational force is downward. For the entire length L of the wire, 
apply the particle in equilibrium model, assuming that the wire is 
levitated as claimed, and then solve for the required magnetic field B: 

   
  

F  = FB  − Fg∑  = 0     →    mg  = ILB     →    B = mg
IL

 

 Express the mass of the wire in terms of the density of copper and its 
volume and the current in terms of the power delivered to the wire of 
resistance R: 

   
  
B = 

ρCuV( ) g

P R( )L
 = 

ρCuVg
L

R
P

 

 Substitute for the volume of the wire and its resistance in terms of its 
length L and area A: 

   
  
B = 

ρCu AL( ) g
L

ρL A
P

 = ρCu g
ρLA

P
 

 where ρ is the resistivity of copper. Express the length L of the wire in 
terms of the radius of the Earth and the area A of the wire in terms of 
its radius: 

   
  
B = ρCu g

ρ 2πRE( ) πr2( )
P

 = πρCu gr
2ρRE

P
 

 Substitute numerical values: 

   

  

B = π 8.92 × 103  kg/m3( ) 9.80 m/s2( ) 1.00× 10−3  m( )

                                 ×
2 1.7  × 10−8  Ω⋅m( ) 6.37 × 106  m( )

100× 106  W
= 1.28 × 10−2  T

 

 This field magnitude is far larger than that of the Earth, which is about 
30 µT at the equator. Therefore, this wire could not be levitated in the 
Earth’s magnetic field as described. 

P29.37 Refer to ANS. FIG. P29.37. The rod feels 
force  

  
    


FB = I


L ×

B( ) = Id k̂( ) × B − ĵ( ) = IdB î( )  

 From the work-energy theorem, we have 

  
  

Ktrans + Krot( )i
+ ΔE = Ktrans + Krot( ) f  

 

ANS. FIG. P29.37 
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0 + 0 + FBLcosθ = 1

2
mv2 + 1

2
Iω 2

 

 or  
  
IdBLcos0° =

1
2

mv2 +
1
2

1
2

mR2⎛
⎝⎜

⎞
⎠⎟

v
R

⎛
⎝⎜

⎞
⎠⎟

2

  

 and   
  
IdBL =

3
4

mv2  

   

  

v = 4IdBL
3m

= 4 48.0 A( ) 0.120 m( ) 0.240 T( ) 0.450 m( )
3 0.720 kg( )

= 1.07 m/s

 

P29.38 Refer to ANS. FIG. P29.37 above. The rod feels force  

   
    


FB = I


d ×

B( ) = Id k̂( ) × B − ĵ( ) = IdB î( )  

 From the work-energy theorem, we have 
   

  

Ktrans + Krot( )i
+ ΔE = Ktrans + Krot( ) f

0 + 0 + FBLcosθ = 1
2

mv2 + 1
2

Iω 2

IBL( )dcos0° = 1
2

mv2 + 1
2

1
2

mR2⎛
⎝⎜

⎞
⎠⎟

v
R

⎛
⎝⎜

⎞
⎠⎟

2

 

 Solving for the velocity gives 
   

  
v = 4IdBL

3m

 

P29.39 (a) The magnetic force must be upward to lift 
the wire. For current in the south direction, 
the magnetic field must be  east  to 
produce an upward force, as shown by the 
right-hand rule in the figure.  

 (b)   FB = ILBsinθ     with    FB = Fg = mg 

    mg = ILBsinθ     so    
  

m
L

g = IBsinθ    →    B =
m
L

g
I sinθ

 

  

  
B =

m
L

g
I sinθ

=
0.500 × 10−3  kg
1.00 × 10−2  m

⎛
⎝⎜

⎞
⎠⎟

9.80 m/s2

2.00 A( )sin 90.0°
⎛
⎝⎜

⎞
⎠⎟

= 0.245 T
 

ANS. FIG. P29.39 
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P29.40 (a) 

 

The magnetic force and the gravitational force both act 
on the wire.

 

 (b) 

 

When the magnetic force is upward and balances the downward
gravitational force, the net force on the wire is zero, and the wire
can move upward at constant velocity.

 

 (c) The minimum magnetic filed would be perpendicular to the 
current in the wire so that the magnetic force is a maximum. For 
the magnetic force to be directed upward when the current is 
toward the left,   B


 must be directed out of the page. Then, 

   
  FB = ILBmin sin 90° = mg   

  from which we obtain 
   

  

Bmin = mg
I L

=
0.015 0 kg( ) 9.80 m/s2( )

5.00 A( ) 0.150 m( )
= 0.196 T, out of the page

 

 (d) If the field exceeds 0.200 T, the upward magnetic force exceeds 
the downward gravitational force, so the wire accelerates 
upward. 

P29.41 (a) The magnitude of the force is 
   

  

F = ILBsinθ

= 2.20× 103  A( ) 58.0 m( ) 5.00× 10−5  N( )sin65.0°

= 5.78 N

 

 (b) By the right-hand rule, the direction of the magnetic force is 

 
into the page .

 

P29.42 (a) Refer to ANS. FIG. P29.42. The magnetic field is perpendicular to 
all line elements    d


s  on the ring, so the magnetic force    d


F = Id


s ×

B  

on each element has magnitude 
   
I d

s ×

B = IdsB  and is radially 

inward and upward, at angle θ above the radial line. The radially 
inward components IdsB cos θ tend to squeeze the ring but all 
cancel out because forces on opposite sides of the ring cancel in 
pairs. The upward components IdsB sin θ all add to   I 2πr( )Bsinθ .  

 (a) magnitude: 
  
2πrIB sin θ  

 (b) direction: 
 
up, away from magnet  
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ANS. FIG. P29.42 

P29.43 Take the x axis east, the y axis up, and the z axis  
south. The field is 

   

   


B = 52.0 µT( )cos60.0° −k̂( )
            + 52.0 µT( )sin60.0° − ĵ( )

 

 The current then has equivalent length:  

   
   
′

L = 1.40 m −k̂( ) + 0.850 m ĵ( )  

 The magnetic force is then 
  

    


FB = I ′


L ×

B = 0.035 0 A( ) 0.850 ĵ− 1.40k̂( )  m

                                                × −45.0 ĵ− 26.0k̂( )10−6  T

FB = 3.50× 10−8  N −22.1î − 63.0î( ) = 2.98× 10−6  N − î( )

= 2.98 µN west

 

P29.44 For each segment, I = 5.00 A and    

B = 0.020 0 ĵ T.   

 Segment  

  

   

FB = I


 ×

B( )  

(a) ab   −0.400 m ĵ  
 

0  

(b) bc   0.400 m k̂  
  
−40.0î mN  

(c) cd   −0.400 m î + 0.400 m ĵ  
  
−40.0k̂ mN  

(d) da   0.400 m î − 0.400 m k̂  
  

40.0î + 40.0k̂( )  mN  

 

ANS. FIG. P29.43 
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 (e) 

 

The forces on the four segments must add to zero, so the force
on the fourth segment must be the negative of the resultant of
the forces on the other three.

 

 

ANS. FIG. P29.44 

 
 

 

Section 29.5 Torque on a Current Loop in a  
Uniform Magnetic Field 

*P29.45 (a) From Equation 29.17, we have  

      

τ =

µ ×

B  

  so  τ = 0.10 A ⋅m2( ) 0.080 T( )sin 30° = 4.0 mN ⋅m .  

 (b) The potential energy of a system of a magnetic moment in a 
magnetic field is given by Equation 29.18: 

   
    

U = −

µ ⋅

B = µBcosφ = 0.10 A ⋅m2( ) 0.080 T( )cos30°

= −6.9 mJ
 

*P29.46 The torque on a current loop in a magnetic field is   τ = BIAN sinθ , and 
maximum torque occurs when the field is directed parallel to the plane 
of the loop (θ = 90°). Thus, 

   

 

τmax = 0.500 T( ) 25.0× 10−3  A( )
                  × π 5.00× 10−2  m( )2⎡

⎣
⎤
⎦ 50.0( )sin 90.0°

= 4.91× 10−3  N ⋅m

 

P29.47 (a) The field exerts torque on the needle tending to align it with the 
field, so the minimum energy orientation of the needle is: 

  
 

pointing north at 48.0° below the horizontal  

  where its energy is   

   
  

Umin = −µBcos0° = − 9.70 × 10−3  A ⋅m2( ) 55.0 × 10−6  T( )
= −5.34 × 10−7  J
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 (b) It has maximum energy when pointing in the opposite direction, 

 
south at 48.0° above the horizontal  

  where its energy is  

   
  

Umax = −µBcos180° = + 9.70 × 10−3  A ⋅m2( ) 55.0 × 10−6  T( )
= +5.34 × 10−7  J

  

 (c) From   Umin + W = Umax , we have  

   

  

W = Umax −Umin = +5.34 × 10−7  J − −5.34 × 10−7  J( )
= 1.07 µJ

 

P29.48 (a) From the circumference of the loop, 2 π r = 2.00 m, we find its 
radius to be r = 0.318 m. The magnitude of the magnetic moment 
is then 

   
  
µ = IA = 17.0 × 10−3  A( ) π 0.318( )2  m2⎡⎣ ⎤⎦ = 5.41 mA ⋅m2  

 (b) The torque on the loop is given by Equation 29.17,   

τ =

µ ×

B , and 

its magnitude is 

   
 
τ = 5.41× 10−3  A ⋅m2( ) 0.800 T( ) = 4.33 mN ⋅m  

*P29.49 The area of the elliptical loop is given by   A = π ab,  where a = 0.200 m 
and b = 0.150 m. Since the field is parallel to the plane of the loop,  
θ = 90° and the magnitude of the torque is 

  

  

τ = NBIAsinθ

= 8 2.00× 10−4  T( ) 6.00 A( ) π 0.200 m( ) 0.150 m( )[ ]sin 90.0°

= 9.05× 10−4  N ⋅m

  

 The torque is directed to make the left-hand side of the loop move 
toward you and the right-hand side move away. 

P29.50 (a) 
    

τ =

µ ×

B = NIABsinθ  

  

 

τmax = 80 10.0 × 10−3  A( ) 0.025 0 m( ) 0.040 0 m( ) 0.800 T( )sin 90.0°

= 6.40 × 10−4  N ⋅m

 

 (b) 

  

Pmax = τmaxω = 6.40 × 10−4  N ⋅m( ) 3 600 rev/min( ) 2π  rad
1 rev

⎛
⎝⎜

⎞
⎠⎟

1 min
60 s

⎛
⎝⎜

⎞
⎠⎟

= 0.241 W
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 (c) In one half revolution the work is 

   
  

W = Umax −Umin = −µBcos180° − −µBcos0°( ) = 2µB

= 2NIAB = 2 6.40 × 10−4  N ⋅m( ) = 1.28 × 10−3  J
 

  In one full revolution, 
  
W = 2 1.28 × 10−3  J( ) = 2.56 × 10−3  J .  

 (d) The time for one revolution is 
  
Δ t =

60 s
3600 rev

=
1

60
 s.  

   
  
Pavg =

W
Δ t

=
2.56 × 10−3  J

1 60( )  s
= 0.154 W  

  The peak power in (b) is greater by the factor 
 

π
2

. 

P29.51 (a)   τ = NBAI sinφ  
  

 

τ = 100 0.800 T( ) 0.400 × 0.300 m2( ) × 1.20 A( )sin 60°

τ = 9.98 N ⋅m

 

 (b) Note that φ is the angle between the magnetic moment and the   

B  

field. The loop will rotate so as to align the magnetic moment 
with the   


B  field, clockwise as seen looking down from a position 

on the positive y axis. 

 

ANS. FIG. P29.51 

P29.52 (a) The current in segment ab is in the +y  
direction. Thus, by the right-hand rule, the  
magnetic force on it is in the   +x direction .  

 (b) Imagine the force on segment ab being  
concentrated at its center. Then, with a  
pivot at point a (a point on the x axis), this 
force would tend to rotate segment ab in a clockwise direction 
about the z axis, so the direction of this 

  
torque is in the − z direction .  

ANS. FIG. P29.52 
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 (c) The current in segment cd is in the –y direction, and the right-
hand rule gives the direction of the magnetic force as the 

  −x direction .  

 (d) With a pivot at point d (a point on the x axis), the force on 
segment cd (to the left, in –x direction) would tend to rotate it 
counterclockwise about the z axis, and the direction of this 

  
torque is in the + z direction .

 

 (e)  No.  

 (f) 

 

Both the forces and the torques are equal in magnitude and
opposite in direction, so they sum to zero and cannot affect
the motion of the loop.

 

 (g) The magnetic force is perpendicular to both the direction of the 
current in bc (the +x direction) and the magnetic field. As given 
by the right-hand rule, this places it 

  
in the yz plane at 130° counterclockwise from the +y  axis.

 

 (h) The force acting on segment bc tends to rotate it counterclockwise 
about the x axis, so the torque is in   the +x direction .  

 (i)  Zero.  There is no torque about the x axis because the lever arm 
of the force on segment ad is zero.   

 (j) From the answers to (b), (d), (f), and (h), the loop tends to rotate 

 counterclockwise  about the x axis.  

 (k)   µ = IAN = 0.900 A( ) 0.500 m( ) 0.300 m( )[ ] 1( ) = 0.135 A ⋅m2  

 (l) The magnetic moment vector is perpendicular to the plane of the 
loop (the xy plane), and is therefore parallel to the z axis. Because 
the current flows clockwise around the loop, the magnetic 
moment vector is directed downward, in the negative z direction. 
This means that the angle between it and the direction of the 
magnetic field is  θ = 90.0° + 40.0° = 130° .  

 (m)   τ = µBsinθ = 0.135 A ⋅m2( ) 1.50 T( )sin 130°( ) = 0.155 N ⋅m  

P29.53 (a) From Equation 29.17,   

τ =

µ ×

B , so the maximum magnitude of 

the torque on the loop is    

   
    
τ =

µ ×

B = µBsinθ = NIABsinθ  
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τmax = NIABsin 90.0°

= 1 5.00 A( ) π 0.050 0 m( )2⎡
⎣

⎤
⎦ 3.00× 10−3  T( )

= 118 µN ⋅m

 

 (b) The potential energy is given by  

      U = −

µ ⋅

B   

  so   −µB ≤U ≤ +µB  

  Now, since  
   

  

µB = NIA( )B

= 1 5.00 A( ) π 0.050 0 m( )2⎡
⎣

⎤
⎦ 3.00× 10−3  T( )

= 118 µJ

 

  the range of the potential energy is: 
  
−118 µJ ≤U ≤ +118 µJ . 

 
 

 

Section 29.6 The Hall Effect 

P29.54 (a) 
  
ΔVH =

IB
nqt

   so   
  

nqt
I

=
B

ΔVH

=
0.080 0 T

0.700 × 10−6  V
= 1.14 × 105  T V  

  Then, the unknown field is    
   

  

B = nqt
I

⎛
⎝⎜

⎞
⎠⎟ ΔVH( )

= 1.14× 105  T V( ) 0.330× 10−6  V( ) = 0.037 7 T = 37.7 mT

 

 (b) 
  

nqt
I

= 1.14 × 105  T V     so     

   

  

n = 1.14× 105  T V( ) I
qt

= 1.14× 105  T V( ) 0.120 A
1.60× 10−19  C( ) 2.00× 10−3  m( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 4.29× 1025  m−3
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P29.55 The magnetic field can be found from the Hall effect voltage, Equation 
29.22: 

  

  
ΔVH = IB

nqt

 

 Solving for the magnetic field gives 

 

  

B =
nqt ΔVH( )

I

=
8.46× 1028  m−3( ) 1.60× 10−19  C( ) 0.500× 10−2  m( ) 5.10× 10−12  V( )

8.00 A

B = 4.31× 10−5  T = 43.1 µT

 

 
 

 

Additional Problems 
P29.56 From  F∑ = ma , we have 

   
  
qvBsin 90.0° =

mv2

r
 

 therefore, the angular frequency for each ion is  

   
  

v
r
=ω =

qB
m

= 2π f   

 and 

   

  

Δω = ω12 −ω14 = qB
1

m12

−
1

m14

⎛
⎝⎜

⎞
⎠⎟

=
1.60 × 10−19  C( ) 2.40 T( )

1.66 × 10−27  kg u( )
1

12.0 u
−

1
14.0 u

⎛
⎝⎜

⎞
⎠⎟

Δω = 2.75 × 106  s−1 = 2.75 Mrad/s

 

P29.57 (a) The current carried by the electron is 

  
I =

ev
2π r

, and the magnetic moment is 

given by      

   

  

µ = IA = ev
2π r

⎛
⎝⎜

⎞
⎠⎟
π r2

= 9.27 × 10−24  A ⋅m2

 

 

ANS. FIG. P29.57 



338     Magnetic Fields 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  The Bohr model predicts the correct magnetic moment. 
However, the “planetary model” is seriously deficient in other 
regards. 

 (b) Because the electron is (–), its [conventional] current is 
clockwise, as seen from above, and µ points 

 
downward . 

P29.58 (a) Define vector   

h  to have the downward direction of the current, 

and vector   

L  to be along the pipe into the page as shown. The 

 
electric current experiences a magnetic force : 

   
   
I

h ×

B( )  in the direction of    


L.  

 

ANS. FIG. P29.58 

 (b) The sodium, consisting of ions and electrons, flows along the pipe 
transporting no net charge. But inside the section of length L, 
electrons drift upward to constitute downward electric current  
J × (area) = J Lw. 

  The current then feels a magnetic force 
     
I

h ×

B = JLwhBsin 90°.  

  This force along the pipe axis will make the fluid move, exerting 
pressure 

   
   

F
area

=
JLwhB

hw
= JLB  

 (c) 

  

Charge moves within the fluid inside the length L, but 
charge does not accumulate: the fluid is not charged 
after it leaves the pump.

 

 (d) 
 
It is not current-carrying,  and 

 (e) 
 
it is not magnetized.  
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P29.59 (a) The net force is the Lorentz force given by 
   

    


F = q


E + q


v ×

B = q


E + v ×


B( )


F = 3.20 × 10−19( )

         4î − 1ĵ − 2k̂( ) + 2î + 3 ĵ − 1k̂( ) × 2î + 4 ĵ + 1k̂( )⎡
⎣

⎤
⎦  N

 

  Carrying out the indicated operations, we find: 

   
   


F = 3.52î − 1.60 ĵ( ) × 10−18  N  

 (b) 

  

θ = cos−1 Fx

F
⎛
⎝⎜

⎞
⎠⎟ = cos−1 3.52

3.52( )2 + 1.60( )2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= 24.4°   

  below the +x axis.  

P29.60 (a) At the moment shown in Figure 29.11, the particle must be 

moving upward in order for the magnetic force on it to be  

into the page, toward the center of this turn of its spiral path. 
Throughout its motion it circulates clockwise. 

 

ANS. FIG. P29.60(a) 

 (b) After the particle has passed the middle of the bottle and moves 
into the region of increasing magnetic field, the magnetic force on 
it has a component to the left (as well as a radially inward 
component) as shown. This force in the –x direction slows and 
reverses the particle’s motion along the axis. 

 

ANS. FIG. P29.60(b) 

 (c) The magnetic force is perpendicular to the velocity and does no 
work on the particle. The particle keeps constant kinetic energy. 
As its axial velocity component decreases, its tangential velocity 
component increases. 
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 (d) The orbiting particle constitutes a loop of current in the yz plane 

and therefore a magnetic dipole moment 
 
IA =

q
T

A  in the –x 

direction. It is like a little bar magnet with its N pole on the left. 

 

ANS. FIG. P29.60(d) 

P29.61 Let   Δx1 be the elongation due to the weight of the wire and let   Δx2  be 
the additional elongation of the springs when the magnetic field is 
turned on. Then   Fmagnetic = 2kΔx2  where k is the force constant of the 

spring and can be determined from 
  
k =

mg
2Δx1

. (The factor 2 is included 

in the two previous equations since there are 2 springs in parallel.) 
Combining these two equations, we find 

  
  
Fmagnetic = 2

mg
2Δx1

⎛
⎝⎜

⎞
⎠⎟
Δx2 =

mgΔx2

Δx1

; but 
   

FB = I


L ×

B = ILB  

 

ANS. FIG. P29.61 

 Therefore, where 
  
I =

24.0 V
12.0 Ω

= 2.00 A , 

  

  

B = mgΔx2

ILΔx1

=
0.100 kg( ) 9.80 m/s2( ) 3.00× 10−3 m( )

2.00 A( ) 0.050 0 m( ) 5.00× 10−3 m( )
= 0.588 T

 

P29.62 (a) The particle moves in an arc of a circle with radius 

   
  
r =

mv
qB

=
1.67 × 10−27  kg  3 × 107  m/s  C m

1.6 × 10−19  C  25 × 10−6  N s  
= 12.5 km  

 (b) 

 

It will not arrive at the center, but will perform a hairpin turn
and go back parallel to its original direction.
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P29.63 Let vi represent the original speed of the alpha particle. Let  vα  and vp 
represent the particles’ speeds after the collision. We have 
conservation of momentum  

    4mpvi = 4mpvα + mpvp     →     4vi = 4vα + vp  

 and the relative velocity equation  

    v1i − v2 i = v2 f − v1 f      →      vi − 0 = vp − vα  

 Eliminating vi, 

  
  
4vp − 4vα = 4vα + vp     →     3vp = 8vα     →     vα =

3
8

vp  

 For the proton’s motion in the magnetic field, 
  

  
F∑ = ma    →     evpBsin 90° =

mpvp
2

R
    →     

eBR
mp

= vp

 

 For the alpha particle, 
  

  
2evαBsin 90° =

4mpvα
2

rα
    

 

 and the radius of the alpha particle’s trajectory is given by 
  

  
rα =

2mpvα

eB
=

2mp

eB
3
8

vp =
2mp

eB
3
8

eBR
mp

= 3
4

R
 

P29.64 (a) If 
    

B = Bx î + By ĵ + Bzk̂ , then 

   

    


FB = q


v ×

B = e vi î( )× Bx î + By ĵ + Bzk̂( ) = 0 + eviByk̂ − eviBz ĵ

  

  Since the force actually experienced is     

FB = Fi ĵ , observe that 

  
  

Bx  could have any value , 
  

By = 0 , and 
 

Bz = −
Fi

evi

. 

 (b) If     

v = −vi î , then    

   
    


FB = q


v ×

B = e −vi î( ) × Bx î + 0 ĵ −

Fi

evi

k̂
⎛
⎝⎜

⎞
⎠⎟

= −Fi ĵ  

 (c) If q = –e and     

v = −vi î , then   

   
    


FB = q


v ×

B = −e −vi î( ) × Bx î + 0 ĵ −

Fi

evi

k̂
⎛
⎝⎜

⎞
⎠⎟

 
   
= +Fi ĵ  

  Reversing either the velocity or the sign of the charge reverses the 
force. 
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P29.65 From the particle in equilibrium model, 
   

  Fy∑ = 0:     + n− mg = 0  

   
  Fx∑ = 0:     − fk + FB = −µkn + IBdsin 90.0° = 0  

 Solving for the magnetic field gives 

   
  
B =

µkmg
Id

=
0.100 0.200 kg( ) 9.80 m s2( )

10.0 A( ) 0.500 m( ) = 39.2 mT  

P29.66 From the particle in equilibrium model, 
   

  Fy∑ = 0:     + n− mg = 0  

   
  Fx∑ = 0:     − fk + FB = −µkn + IBdsin 90.0° = 0  

 Solving for the magnetic field gives 

   
 
B =

µkmg
Id

 

P29.67 (a) The field should be in the +z-direction, perpendicular to the final 
as well as to the initial velocity, and with   î × k̂ = − ĵ  as the 
direction of the initial force.   

 (b) 
  
r =

mv
qB

=
1.67 × 10−27  kg( ) 20 × 106  m s( )
1.60 × 10−19  C( ) 0.3 N ⋅ s C ⋅m( ) = 0.696 m  

 (c) The path is a quarter circle, of length  

   
  
s = θr =

π
2

⎛
⎝⎜

⎞
⎠⎟ 0.696 m( ) = 1.09 m  

 (d) 
  
Δt =

1.09 m
20.0 × 106  m/s

= 54.7 ns  

P29.68 Suppose the input power is 120 W = (120 V)I, which gives a current of  

   
  

I ~ 1 A = 100  A  

 Also suppose  

   
 
ω = 2 000 rev min

1 min
60 s

⎛
⎝⎜

⎞
⎠⎟

2π  rad
1 rev

⎛
⎝⎜

⎞
⎠⎟ ~ 200 rad s  

 and the output power is  

    20 W = τω = τ 200 rad s( )  

 The torque is then 
 
τ ~ 10−1  N ⋅m  
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 Suppose the area is about (3 cm) × (4 cm),   or   
  

A ~ 10−3  m2  

 Suppose that the field is 
  

B ~ 10−1  T  

 Then, the number of turns in the coil may be found from  

     τ ≅ NIAB : 

     
  0.1 N ⋅m ~ N 1 C/s( ) 10−3  m2( ) 10−1  N ⋅ s/C ⋅m( )  

 giving    
  

N ~ 103  

 The results are:  

 (a)  
  

B ~ 10−1  T   (b)  
 
τ ~ 10−1  N ⋅m   (c)  

  
I ~ 1 A = 100  A  

(d)  
  

A ~ 10−3  m2   (e)  
  

N ~ 103  

P29.69 The sphere is in translational equilibrium; 
thus  

    fs − Mg sinθ = 0  [1] 

 The sphere is also in rotational 
equilibrium. If torques are taken about 
the center of the sphere, the magnetic 
field produces a clockwise torque of 
magnitude   µBsinθ , and the frictional 
force a counterclockwise torque of 
magnitude fsR, where R is the radius of the sphere. Thus, 

    fsR − µBsinθ = 0  [2] 

 From [1], we obtain fs = Mg sin θ. Substituting this into [2], the sin θ 
term will cancel—see part (b) below. One obtains 

  µB = MgR [3] 

 Now,   µ = NIπ R2 . Thus [3] gives 

 (a) 
  
I = Mg

π NBR
=

0.080 0 kg( ) 9.80 m s2( )
π 5( ) 0.350 T( ) 0.200 m( ) =  

 
0.713 A counterclockwise as seen from above  

 (b) Substitute [1] into [2] and use   µ = NIA = NIπ R2:  

   

  

fsR − µBsinθ = 0

Mg sinθ( )R = µB sinθ

MgR = µB = NIπ R2( )B

 

 

ANS. FIG. P29.69 
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  solving for the current gives 
   

 
I = Mg

π NBR

 

  The current is clearly independent of θ. 

P29.70 The radius of the circular path followed by the particle is 

   
  
r  = 

mv
qB

 = 
2.00 × 10−13  kg( ) 2.00 × 105  m/s( )

1.00 × 10−6  C( ) 0.400 T( )
 = 0.100 m  

 This is exactly equal to the length h of the field region. Therefore, the 
particle will not exit the field at the top, but rather will complete a 
semicircle in the magnetic field region and will exit at the bottom, 
traveling in the opposite direction with the same speed. 

P29.71 (a) When switch S is closed, a total current NI 
(current I in a total of N conductors) flows 
toward the right through the lower side of 
the coil. This results in a downward force 
of magnitude Fm = B(NI)w being exerted on 
the coil by the magnetic field, with the 
requirement that the balance exert a 
upward force F′ = mg on the coil to bring 
the system back into balance. 

  For the system to be restored to balance, it is necessary that 

   Fm = F′     or     B(NI)w = mg,   giving   
 
B = mg NIw  

 (b) 

 

The magnetic field exerts forces of equal magnitude and opposite
directions on the two sides of the coils, so the forces cancel each
other and do not affect the balance of the system. Hence, the
vertical dimension of the coil is not needed.

 

 (c) 
  
B =

mg
NIw

=
20.0 × 10−3  kg( ) 9.80 m s2( )

50( ) 0.300 A( ) 5.00 × 10−2  m( ) = 0.261 T  

P29.72 (a) The magnetic force acting on ions in the blood stream will deflect 
positive charges toward point A and negative charges toward 
point B. This separation of charges produces an electric field 
directed from A toward B. At equilibrium, the electric force 
caused by this field must balance the magnetic force, so 

   

  
qvB = qE = q

ΔV
d

⎛
⎝⎜

⎞
⎠⎟    

 

 

ANS. FIG. P29.71 
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  which gives 
   

  
v =

ΔV
Bd

=
160 × 10−6  V

0.040 0 T( ) 3.00 × 10−3  m( ) = 1.33 m s
 

 (b) 

  

Positive ions carried by the blood flow experience an upward
force resulting in the upper wall of the blood vessel at electrode
A becoming positively charged and the lower wall of the blood
vessel at electrode B becoming negatively charged.

 

 (c) 

  

No. Negative ions moving in the direction of v would be
deflected toward point B, giving A a higher potential than B.
Positive ions moving in the direction of v would be deflected
toward A, again giving A a higher potential than B. Therefore,
the sign of the potential difference does not depend on whether
the ions in the blood are positively or negatively charged.

 

P29.73 Let vx and  v⊥  be the components of the velocity of the positron parallel 
to and perpendicular to the direction of the magnetic field. 

 

ANS. FIG. P29.73 

 (a) The pitch of trajectory is the distance moved along x by the 
positron during each period, T (determined by the cyclotron 
frequency):  

   

  

p = vxT = vcos85.0°( ) 2π m
Bq

⎛
⎝⎜

⎞
⎠⎟

p =
5.00 × 106( ) cos85.0°( ) 2π( ) 9.11× 10−31( )

0.150 1.60 × 10−19( ) = 1.04 × 10−4  m

 

 (b) The equation about circular motion in a magnetic field still 
applies to the radius of the spiral: 

   
  
r =

mv⊥

Bq
=

mvsin 85.0°
Bq
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r =

9.11× 10−31( ) 5.00 × 106( ) sin 85.0°( )
0.150( ) 1.60 × 10−19( ) = 1.89 × 10−4  m  

P29.74 (a) The torque on the dipole   

τ =

µ ×

B  has magnitude µB sin θ  ≈ µBθ, 

proportional to the angular displacement if the angle is small. It is 
a restoring torque, tending to turn the dipole toward its 
equilibrium orientation. Then the statement that its motion is 
simple harmonic is true for small angular displacements.  

 (b) The statement is true only for small angular displacements for 
which sin θ ≈ θ. 

 (c)  τ = Iα   becomes    

     −µBθ = I d2θ/dt2 → d2θ/dt2 = −(µB/I)θ = −ω 2θ  

  where   ω = (µB/I)1/2  is the angular frequency and  

   
  
f = ω/2π =

1
2π

µB
I

  

  is the frequency in hertz. 

 (d) The equilibrium orientation of the needle shows the direction of 
the field. In a stronger field, the frequency is higher.  The 
frequency is easy to measure precisely over a wide range of 
values.   

 (e) From part (c), we see that the frequency is proportional to the 
square root of the magnetic field strength:  

   
  

f2

f1

=
B2

B1

→
B2

B1

= f2

f1

⎛
⎝⎜

⎞
⎠⎟

2

 

  Therefore,  
   

  

B2 = B1
f2

f1

⎛
⎝⎜

⎞
⎠⎟

2

= 39.2 × 10−6  T( ) 4.90 Hz
0.680 Hz

⎛
⎝⎜

⎞
⎠⎟

2

= 2.04× 10−3  T = 2.04 mT

 

P29.75 (a) See the graph in ANS. FIG. P29.75. The Hall voltage is directly 
proportional to the magnetic field. A least-square fit to the data 
gives the equation of the best fitting line as: 

   

  

ΔVH = (1.00 × 10−4 )B

where ΔVH  is in volts and B is in teslas.
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ANS. FIG. P29.75 

 (b) Comparing the equation of the line which fits the data to 

   
  
ΔVH =

1
nqt

⎛
⎝⎜

⎞
⎠⎟

B  

  observe that the slope: 
  

I
nqt

= 1.00 × 10−4 , or  

   
  
t =

I
nq 1.00 × 10−4( )  

  Then, if I = 0.200 A, q = 1.60 × 10–19 C, and n = 1.00 × 1026 m–3, the 
thickness of the sample is 

   

  

t = 0.200 A
1.00× 1026  m−3( ) 1.60× 10−19  C( ) 1.00× 10−4  V T( )

= 1.25× 10−4  m = 0.125 mm

 

P29.76 Call the length of the rod L and the tension in each wire alone 
  

T
2

. 

Then, at equilibrium: 

     Fx∑ = T sinθ − ILBsin 90.0° = 0  or   T sin θ = ILB 

     Fy∑ = T cosθ − mg = 0  or   T cos θ = mg 

 combining the equations gives 

   
  
tanθ =

ILB
mg

=
IB

m L( ) g
  

 solving for the magnetic field, 

      
  
B =

m L( ) g
I

tanθ =
λ g
I

tanθ  
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Challenge Problems 
P29.77  τ = IAB  where the effective current due to the orbiting electrons is 

 
I =

Δq
Δt

=
q
T

 and the period of the motion is 
  
T =

2π R
v

. 

 The electron’s speed in its orbit is found by requiring 
  

keq
2

R2 =
mv2

R
 or  

   
 
v = q

ke

mR
 

 Substituting this expression for v into the equation for T, we find  

   

  

T = 2π mR3

q2ke

= 2π
9.11× 10−31  kg( ) 5.29× 10−11  m( )3

1.60× 10−19  C( )2
8.99× 109  N ⋅m2/C2( )

= 1.52 × 10−16  s

 

 Therefore, 
   

  

τ = q
T

⎛
⎝⎜

⎞
⎠⎟ AB = 1.60× 10−19  C

1.52 × 10−16  s
⎛
⎝⎜

⎞
⎠⎟

π 5.29× 10−11  m( )2⎡
⎣

⎤
⎦ 0.400 T( )

= 3.70× 10−24  N ⋅m

 

P29.78 The magnetic force on each proton, 

    

FB = q


v ×

B = qvBsin 90°  downward and 

perpendicular to the velocity vector, causes 
centripetal acceleration, guiding it into a circular path 
of radius r, with 

   
  
qvB =

mv2

r
 

 and  
 
r =

mv
qB

 

 We compute this radius by first finding the proton’s speed from 

  
K = 1

2
mv2:

 

   

  

v = 2K
m

=
2 5.00× 106  eV( ) 1.60× 10−19  J eV( )

1.67 × 10−27  kg

= 3.10× 107  m s

 

ANS. FIG. P29.78 
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 Now,  
  
r =

mv
qB

=
1.67 × 10−27  kg( ) 3.10 × 107  m s( )

1.60 × 10−19  C( ) 0.050 0 N ⋅ s C ⋅m( ) = 6.46 m.  

 (a) From ANS. FIG. P29.78 observe that 

   

  

sinα =
1.00 m

r
=

1 m
6.46 m

α = 8.90°
 

 (b) The magnitude of the proton momentum stays constant, and its 
final y component is 

   

 

− 1.67 × 10−27  kg( ) 3.10 × 107  m s( )sin 8.90°

                                           = −8.00 × 10−21  kg ⋅m s

 

P29.79 A key to solving this problem is that reducing the 
normal force will reduce the friction force:  

FB = BIL or 
 
B =

FB

IL
. 

 When the wire is just able to move,  

     Fy∑ = n + FB cosθ − mg = 0  

 so        n = mg − FB cosθ  

 and       f = µ mg − FB cosθ( )  

 Also,   Fx∑ = FB sinθ − f = 0  

 so        FB sinθ = f :   FB sinθ = µ mg − FB cosθ( )  and 
  
FB =

µmg
sinθ + µ cosθ

 

 We minimize B by minimizing FB:  

   
  

dFB

dθ
= − µmg( ) cosθ − µ sinθ

sinθ + µ cosθ( )2 =   0 ⇒ µ sinθ = cosθ  

 Thus, 
 
θ = tan−1 1

µ
⎛
⎝⎜

⎞
⎠⎟

= tan−1 5.00( ) = 78.7°  for the smallest field, and 

   

  

B = FB

IL
= µg

I
⎛
⎝⎜

⎞
⎠⎟

m L( )
sinθ + µ cosθ

Bmin =
0.200( ) 9.80 m s2( )

1.50 A

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

0.100 kg m
sin78.7° + 0.200( )cos78.7°

       = 0.128 T

 

 

ANS. FIG. P29.79 
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 The answers are 

 (a) magnitude:  0.128 T  and  

 (b) direction:  78.7° below the horizontal  

P29.80 (a) The kinetic energy of the proton in joules is 
   

  

K = 1
2

mv2 = 6.00 MeV = 6.00× 106  eV( ) 1.60× 10−19  J eV( )
= 9.60× 10−13  J

 

  From which we find the proton’s velocity to be 
   

  
v =

2 9.60× 10−13  J( )
1.67 × 10−27  kg

= 3.39× 107  m s
 

  We can find the radius of the proton’s orbit from 

   
  
FB = qvB =

mv2

R
   

  so 
  
R =

mv
qB

=
1.67 × 10−27  kg( ) 3.39 × 107  m s( )

1.60 × 10−19  C( ) 1.00 T( )
= 0.354 m  

  Then, from the diagram,   x = 2Rsin 45.0° = 2 0.354 m( )sin 45.0° =  

 
0.501 m . 

 

ANS. FIG. P29.80 

 (b) From ANS. FIG. P29.80, observe that 
 
′θ = 45.0° . 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 
P29.2 (a) up; (b) out of the page, since the charge is negative; (c) no 

deflection; (d) into the page 

P29.4 (a) west; (b) zero deflection; (c) up; (d) down 

P29.6 48.9° or 131° 

P29.8 13.2 × 10–19 N 

P29.10 (a) 1.44 × 10–12 N; (b) 8.62 × 1014 m/s2; (c) A force would be exerted on 
the electron that had the same magnitude as the force on a proton but 
in the opposite direction because of its negative charge; (d) The 
acceleration of the electron would be much greater than that of the 
proton because the mass of the electron is much smaller. 

P29.12 200 μC 

P29.14 (a) 6.84 × 10–16 m; (b) down; (c) 7.26 mm; (d) east; (e) The beam moves 
on an arc of a circle rather than on a parabola; (f) Its northward 
velocity component stays constant within 0.09%. It is a good 
approximation to think of it as moving on a parabola as it really moves 
on a circle. 

P29.16 (a) 
  
v =

2K
qBR

; (b) 
  

q2B2R2

2K
 

P29.18 
  

e2B2

2me

r1
2 + r2

2( )  

P29.20 (a) 
   
0.990× 10−6 î + 1.00× 10−6 ĵ( ) N;  (b) Yes. In the vertical direction, the 

gravitational force on the ball is 0.294 N, five orders of magnitude 
larger than the magnetic force. In the horizontal direction, the change 
in the horizontal component of velocity due to the magnetic force is six 
orders of magnitude smaller than the horizontal velocity component. 

P29.22 1.79 × 10–8 s; (b) 35.1 eV 

P29.24 4.31 × 107 rad/s; (b) 5.17 × 107 m/s 

P29.26 (a) 8.28 cm; (b) 8.23 cm; (c) From 
  
r =

1
B

2m ΔV( )
q

, we see for two 

different masses mA and mB of the same charge q, the ratio of the path 

radii is 
 

rB

rA

=
mB

mB

; (d) The ratio of the path radii is independent of   ΔV ;  

(e) The ratio of the path radii is independent of B. 
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P29.28 (a) See P29.28 for full explanation; (b) The dashed red line in Figure 
P29.16(a) spirals around many times, with it turns relatively far apart 
on the inside and closer together on the outside. This demonstrates the 
1/r behavior of the rate of change in radius exhibited by the result in 
part (a); (c) 682 m/s; (d) 55.9 µm 

P29.30 (a) Yes. The constituent of the beam is present in all kinds of atoms;  
(b) Yes. Everything in the beam has single charge-to-mass ratio; (c) In a 
charged macroscopic object most of the atoms are uncharged. A 
molecule never has all of its atoms ionized. Any atoms other than 
hydrogen contain neutrons and so has more mass per charge if it is 
ionized than hydrogen does. The greatest charge-to-mass ratio 
Thomson could expect was then for ionized  hydrogen,  
1.6 × 10–19 C/1.67 × 10–27 kg, smaller than the value e/m he measured, 
1.6 × 10–19 C/9.11 × 10–31 kg, by 1 836 times. The particles in his beam 
could not be whole atoms but rather must be much smaller in mass;  
(d) No. The particles move with speed on the order of ten million 
meters per second, so they fall by an immeasurably small amount over 
a distance of less than 1 m. 

P29.32 (a) 0.118 N; (b) Neither the direction of the magnetic field nor that of 
the current is given. Both must be known in order to determine the 
direction of the magnetic force. 

P29.34 (a) 4.73 N; (b) 5.46 N; (c) 4.73 N 

P29.36 See P29.36 for full explanation. 

P29.38 
  

4IdBL
3m

 

P29.40 The magnetic force and the gravitational force both act on the wire; (b) 
When the magnetic force is upward and balances the downward 
gravitational force, the net force on the wire is zero, and the wire can 
move can move upward at constant velocity; (c) 0.196 T, out of the 
page; (d) If the field exceeds 0.20 T, the upward magnetic force exceeds 
the downward gravitational force, so the wire accelerates upward. 

P29.42 (a)   2πrIB sin θ ;  (b) up, away from magnet 

P29.44 (a) 0; (b)   −40.0î mN ; (c)   −40.0k̂ mN ; (d) 
  

40.0î + 40.0k̂( )  mN ; (e) The 

forces on the four segments must add to zero, so the force on the 
fourth segment must be the negative of the resultant of the forces on 
the other three. 

P29.46  4.91× 10−3  N ⋅m  

P29.48 (a)  5.41 mA ⋅m2 ; (b)  4.33 mN ⋅m  
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P29.50 (a)  6.40 × 10−4  N ⋅m;  (b) 0.241 W; (c) 2.56 × 10–3 J; (d) 0.154 W 

P29.52 (a) +x direction; (b) torque is in the –z direction; (c) –x direction;  
(d) torque is in the +z direction; (e) No; (f) Both the forces and the 
torques are equal in magnitude and opposite in direction, so they sum 
to zero and cannot affect the motion of the loop; (g) in the yz plane at 
130° counterclockwise from the +y axis; (h) the +x direction; (i) zero; (j) 
counterclockwise; (k)  0.135 A ⋅m2 ;  (l) 130°; (m)  0.155 N ⋅m  

P29.54 (a) 37.7 mT; (b) 4.29 × 1025 m–3 

P29.56 2.75 Mrad/s 

P29.58 (a) The electric current experiences a magnetic force; (b) JLB; (c) Charge 
moves within the fluid inside the length L, but charge does not 
accumulate: the fluid is not charged after it leaves the pump; (d) It is 
not current-carrying; (e) It is not magnetized. 

P29.60 (a–d) See P29.60 for full explanation. 

P29.62 (a) 12.5 km; (b) It will not arrive at the center but will perform a 
hairpin turn and go back parallel to its original direction. 

P29.64 (a) Bx could have any value, By = 0, 
 
Bz = −

Fi

evi

; (b)    −Fi ĵ ; (c)    +Fi ĵ  

P29.66 
 

µkmg
Id

 

P29.68 (a) B ~ 10–1 T; (b)  τ ~ 10−1  N ⋅m;  (c) I ~ 1 A = 100 A; (d) A ~ 10–3 m2;  
(e) N ~ 103 

P29.70 The particle will not exit the field at the top but rather will complete a 
semicircle in the magnetic field region and will exit at the bottom, 
traveling in the opposite direction with the same speed. 

P29.72 (a) 1.33 m/s; (b) Positive ions carried by the blood flow experience an 
upward force resulting in the upper wall of the blood vessel at 
electrode A becoming positively charged and the lower wall of the 
blood vessel at electrode B becoming negatively charged; (b) No. 
Negative ions moving in the direction of v would be deflected toward 
point B, giving A a higher potential than B. Positive ions moving in the 
direction of v would be deflected toward A, again giving A a higher 
potential than B. Therefore, the sign of the potential difference does not 
depend on whether the ions in the blood are positively or negatively 
charged. 
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P29.74 (a) See P29.74(a) for full explanation; (b) The statement is true only for 
small angular displacements for which sin θ  ≈ θ ; (c) See P29.74(c) for 
full explanation; (d) The equilibrium orientation of the needle shows 
the direction of the field. In a stronger field, the frequency is higher. 
The frequency is easy to measure precisely over a wide range of 
values; (e) 2.04 mT 

P29.76 
  

λ g
I

tanθ  

P29.78 (a)  α = 8.90° ; (b)  −8.00 × 10−21  kg ⋅m s  

P29.80 (a) 0.501 m; (b) 45.0° 
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30 
Sources of the Magnetic Field 

 

CHAPTER OUTLINE 
 

30.1  The Biot–Savart Law 

30.2 The Magnetic Force Between Two Parallel Conductors 

30.3  Ampère’s Law 

30.4  The Magnetic Field of a Solenoid 

30.5 Gauss’s Law in Magnetism 

30.6 Magnetism in Matter 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ30.1 (i) Answer (b). The field is proportional to the current. (ii) Answer 
(d). The field is inversely proportional to the length of the solenoid. 
(iii) Answer (b). The field is proportional to the number of turns.  
(iv) Answer (c). The field does not depend on the radius of the 
solenoid. All the questions can be answered by referring to Equation 

30.17, 
   
B = µ0NI


. 

OQ30.2 Answer (c). Newton’s third law describes the relationship.  

OQ30.3 (a) No. At least two would be of like sign, so they would repel. (b) 
Yes, if all are alike in sign. (c) Yes, if all carry current in the same 
direction. (d) No. If one current-carrying wire repelled the other two, 
those two would attract each other.  

OQ30.4 Answer (a). The contribution made to the magnetic field at point P 
by the lower wire is directed out of the page, while the contribution 
due to the upper wire is directed into the page. Since point P is 
equidistant from the two wires, and the wires carry the same 
magnitude currents, these two oppositely directed contributions to 
the magnetic field have equal magnitudes and cancel each other.  
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OQ30.5 Answer (a) and (c). The magnetic field due to the current in the 
vertical wire is directed into the page on the right side of the wire 
and out of the page on the left side. The field due to the current in the 
horizontal wire is out of the page above this wire and into the page 
below the wire. Thus, the two contributions to the total magnetic 
field have the same directions at points B (both out of the page) and 
D (both contributions into the page), while the two contributions 
have opposite directions at points A and C. The magnitude of the 
total magnetic field will be greatest at points B and D where the two 
contributions are in the same direction, and smallest at points A and 
C where the two contributions are in opposite directions and tend to 
cancel.  

OQ30.6 (i) Answer (b). Magnetic field lines lie in horizontal planes and go 
around the wire clockwise as seen from above. East of the wire the 
field points horizontally south. 

 (ii) Answer (b). The direction of the magnetic field at a given point is 
determined by the direction of the conventional current that creates 
it. 

*OQ30.7 (i) Answer (d). (ii) Answer (c). Current on each side of the frame 
produces magnetic field lines that wrap around the tubes. The field 
lines pass into the plane enclosed by the frame (away from you) and 
then return to pass back through the plane outside the frame (toward 
you).  

OQ30.8 Answer (a). According to the right-hand rule, the magnetic field at 
point P due to the current in the wire is directed out of the page, and 
the magnitude of this field is given by Equation 30.14:   B = µ0I 2πr .  

OQ30.9 Answers (c) and (d). Any point in region I is closer to the upper wire, 
which carries the larger current. At all points in this region, the 
outward directed field due the upper wire will have a greater 
magnitude than will the inward directed field due to the lower wire. 
Thus, the resultant field in region I will be nonzero and out of the 
page, meaning that choice (d) is a true statement and choice (a) is 
false. In region II, the field due to each wire is directed into the page, 
so their magnitudes add and the resultant field cannot be zero at any 
point in this region. This means that choice (b) is false. In region III, 
the field due to the upper wire is directed into the page while that 
due to the lower wire is out of the page. Since points in this region 
are closer to the wire carrying the smaller current, there are points in 
this region where the magnitudes of the oppositely directed fields 
due to the two wires will have equal magnitudes, canceling each 
other and producing a zero resultant field. Thus, choice (c) is true 
and choice (e) is false.  
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OQ30.10 Answer (b). Wires carrying currents in opposite directions repel. In 
regions II and III, the field due to the upper wire is directed into the 
page. The lower wire, with its current to the left, experiences a 
downward force in the field of the upper wire.  

OQ30.11 Answers (b) and (c). In each case, electric charge is moving. 

OQ30.12 Answer (a). The adjacent wires carry currents in the same direction. 

OQ30.13 Answer (c). Conceptually, for there to be magnetic flux through a 
coil, magnetic field lines must pass through the area enclosed by the 
coil. The magnetic field lines do not pass through the areas of the 
coils in the xy and xz planes, but they do through the area of the coil 
in the yz plane. Mathematically, the magnetic flux is ΦB = BA cosθ, 
where θ is the angle between the normal to the area enclosed by the 
coil and the magnetic field. The flux is maximum when the field is 
perpendicular to the area of the coil. The flux is zero when there is no 
component of magnetic field perpendicular to the loop—that is, 
when the plane of the loop contains the x axis. 

OQ30.14 The ranking is e > c > b > a > d. Express the fields in units of µ0 
(ampere/cm):  

 (a) for a long, straight wire,  

    
  
µ0I 2πr = µ0 3 2π 2( )⎡⎣ ⎤⎦= µ0 0.75 π[ ] (ampere/cm) 

 (b) for a circular coil,  

    
  
Nµ0I 2r = µ0 10( ) 0.3( ) 2 2( )⎡⎣ ⎤⎦= µ0 0.75[ ]  (ampere/cm) 

 (c) for a solenoid,  

    
   
Nµ0I  = µ0 1 000( ) 0.3( ) 200⎡⎣ ⎤⎦= µ0 1.5[ ]  (ampere/cm) 

   which is also  

    
 

4π × 10−7  T ⋅m/A( ) 1.5 A/ 0.01 m( )⎡⎣ ⎤⎦= 0.19× 10−3  T = 0.19 mT  

 (d) The field is zero at the center of a current-carrying wire.  

 (e) 1 mT is larger than 0.19 mT, so it is largest of all.  

OQ30.15 The ranking is C > A > B. The magnetic field inside a solenoid, 

carrying current I, with N turns and length L, is 
  
B = µ0nI = µ0

N
L

⎛
⎝⎜

⎞
⎠⎟ I.  

Thus, 
  
BA = µ0NAI

LA

, 
  
BB = µ0NAI

2LA

= 1
2

BA , and 
  
BC =

µ0 2NA( ) I
LA 2

= 4BA.  
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ30.1 No. The magnetic field created by a single current loop resembles 
that of a bar magnet – strongest inside the loop, and decreasing in 
strength as you move away from the loop. Neither is the field 
uniform in direction – the magnetic field lines loop through the loop. 

CQ30.2 Yes. Either pole of the magnet creates a field that turns the atoms of 
the domains inside the iron to align their magnetic moments with the 
external field. Then the nonuniform field exerts a net force on each 
domain toward the direction in which the field is getting stronger. 

 A magnet on a refrigerator door goes through the same steps to exert 
a strong normal force on the door. Then the magnet is supported by a 
frictional force.  

CQ30.3 The Biot-Savart law considers the contribution of each element of 
current in a conductor to determine the magnetic field, while for 
Ampère’s law, one need only know the current passing through a 
given surface. Given situations of high degrees of symmetry, 
Ampère’s law is more convenient to use, even though both laws are 
equally valid in all situations. 

CQ30.4 Apply Ampère’s law to the circular path 
labeled 1 in the picture. Because the current 
has a cylindrical symmetry about its central 
axis, the line integral reduces to the 
magnitude of the magnetic field times the 
circumference of the path, but this is equal to 
zero because there is no current inside this 
path; therefore, the magnetic field inside the 
tube must be zero. On the other hand, the 
current through path 2 is the current carried 
by the conductor; then the line integral is not equal to zero, so the 
magnetic field outside the tube is nonzero. 

CQ30.5 Magnetic field lines come out of north magnetic poles. The Earth’s 
north magnetic pole is off the coast of Antarctica, near the south 
geographic pole. Straight up.  

CQ30.6 Ampère’s law is valid for all closed paths surrounding a conductor, 
but not always convenient. There are many paths along which the 
integral is cumbersome to calculate, although not impossible. 
Consider a circular path around but not coaxial with a long, straight 
current-carrying wire. Ampère’s law is useful in calculating   


B  if the 

current in a conductor has sufficient symmetry that the line integral 
can be reduced to the magnitude of   


B  times an integral.  

 

ANS. FIG. CQ30.4 
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CQ30.7 Magnetic domain alignment within the magnet creates an external 
magnetic field, which in turn induces domain alignment within the 
first piece of iron, creating another external magnetic field. The field 
of the first piece of iron in turn can align domains in another iron 
sample. A nonuniform magnetic field exerts a net force of attraction 
on the magnetic dipoles of the domains aligned with the field. 

CQ30.8 The shock misaligns the domains. Heating will also decrease 
magnetism (see Curie Temperature). 

CQ30.9 Zero in each case. The fields have no component perpendicular to 
the area. 

CQ30.10 (a) The third magnet from the top repels the second one with a 
force equal to the weight of the top two. The yellow magnet 
repels the blue one with a force equal to the weight of the blue 
one. 

 (b) The rods (or a pencil) prevent motion to the side and prevents 
the magnets from rotating under their mutual torques. Its 
constraint changes unstable equilibrium into stable. 

 (c) Most likely, the disks are magnetized perpendicular to their flat 
faces, making one face a north pole and the other a south pole. 
One disk has its north pole on the top side and the adjacent 
magnets have their north poles on their bottom sides. 

 (d) If the blue magnet were inverted, it and the yellow one would 
stick firmly together. The pair would still produce an external 
field and would float together above the red magnets. 

CQ30.11 In the figure, the magnetic field created by 
wire 1 at the position of wire 2 is into the 
paper. Hence, the magnetic force on wire 2 is 
in direction (current down) × (field into the 
paper) = (force to the right), away from wire 
1. Now wire 2 creates a magnetic field into 
the page at the location of wire 1, so wire 1 
feels force (current up) × (field into the 
paper) = (force to the left), away from wire 2. 

CQ30.12 (a) The field can be uniform in magnitude. 
Gauss’s law for magnetism implies that magnetic field lines never 
start or stop. If the field is uniform in direction, the lines are parallel 
and their density stays constant along any one bundle of lines. 
Therefore, the magnitude of the field has the same value at all points 
along a line in the direction of the field. (b) The magnitude of the 
field could vary over a plane perpendicular to the lines, or it could be 
constant throughout the volume.  

 

 

ANS. FIG. CQ30.11 



360     Sources of the Magnetic Field 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 30.1 The Biot–Savart Law 

*P30.1 (a) Each coil separately produces field given by 
  
B = Nµ0IR

2

2 R2 + x2( )3 2  at 

the point halfway between them. Together they produce field 

   

  

2B = Nµ0IR
2

R2 + x2( )3 2 = 4.50 × 10−5  T

=
50 4π × 10−7  T ⋅m/A( ) I 0.012 m( )2

0.012 m( )2 + 0.011 m( )2⎡⎣ ⎤⎦
3 2

= 9.05 × 10−9  T ⋅m3/A
4.31× 10−6  m3 I

 

   
  
→ I = 4.50 × 10−5  T A

2.10 × 10−3  T
= 21.5 mA  

 (b)   ΔV = IR = 0.021 5 A( ) 210 Ω( ) = 4.51 V  

 (c)   P = ΔV( ) I = 4.51 V( ) 0.021 5 A( ) = 96.7 mW  

P30.2 Imagine grasping the conductor with the right hand so the fingers curl 
around the conductor in the direction of the magnetic field. The thumb 
then points along the conductor in the direction of the current. The 
results are 

 (a)  toward the left  (b) 
 
out of the page  (c) 

 
lower left to upper right  

P30.3 The magnetic field is given by 

   
  
B = µ0I

2π r
=

4π × 10−7  T ⋅m/A( ) 2.00 A( )
2π 0.250 m( )

= 1.60× 10−6  T  

P30.4 Model the tornado as a long, straight, vertical conductor and imagine 
grasping it with the right hand so the fingers point northward on the 
western side of the tornado (that is, at the observatory’s location). The 
thumb is directed downward, meaning that the conventional current is 
downward. The magnitude of the current is found from   B = µ0I 2πr a  as 

   
  
I = 2πrB

µ0

=
2π 9.00× 103  m( ) 1.50× 10−8  T( )

4π × 10−7  T ⋅m A
=675 A  

 Thus, the current is  675 A, downward . 
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P30.5 (a) Use Equation 30.4 for the field produced by each side of the 
square.  

   
  
B = µ0I

4π a
sinθ1 − sinθ2( )   

  where 
   
θ1 = 45.0°,  θ2 = −45.0°,  and a = 

2
 

 

ANS. FIG. P30.5 

  Each side produces a field into the page. The four sides altogether 
produce  

   

   

Bcenter = 4B = 4
µ0I
4π a

sinθ1 − sinθ2( )

= µ0I
π  2

sin 45.0°− sin −45.0°( )[ ]

= 2µ0I
π 

2
2

⎡
⎣⎢

⎤
⎦⎥

= 2 2µ0I
π 

 

    

  

B =
2 2 4π × 10−7  T ⋅m/A( ) 10.0 A( )

π 0.400 m( )
= 2 2 × 10−5  T = 28.3 µT into the page

 

 (b) For a single circular turn with    4 = 2πR , 
   

   

B = µ0I
2R

= µ0π I
4

=
4π × 10−7  T ⋅m/A( ) 10.0 A( )

4 0.400 m( )
= 24.7 µT into the page

 

P30.6 Treat the magnetic field as that produced in the center of a ring of 

radius R carrying current I: from Equation 30.8, the field is 
  
B =

µ0I
2R

.  

The current due to the electron is  
   

  
I = Δq

Δt
= e

2πR v
= ev

2πR
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 so the magnetic field is  

   

  

B = µ0I
2R

= µ0

2R
ev

2πR
⎛
⎝⎜

⎞
⎠⎟ = µ0

4π
ev
R2

= 4π × 10−7  T ⋅m/A
4π

⎛
⎝⎜

⎞
⎠⎟

1.60× 10−19  C( ) 2.19× 106  m/s( )
5.29× 10−11  m( )2

= 12.5 T

 

P30.7 We can think of the total magnetic field as the superposition of the 

field due to the long straight wire, having magnitude 
  

µ0I
2π R

 and 

directed into the page, and the field due to the circular loop, having 

magnitude 
  

µ0I
2R

 and directed into the page. The resultant magnetic 

field is:  
   

    


B = 1 +

1
π

⎛
⎝⎜

⎞
⎠⎟

µ0I
2R

= 1 +
1
π

⎛
⎝⎜

⎞
⎠⎟

4π × 10−7  T ⋅m/A( ) 1.00 A( )
2 0.150 m( )

= 5.52 × 10−6 = 5.52 µT  into the page

 

P30.8 We can think of the total magnetic field as the superposition of the 

field due to the long straight wire (having magnitude 
  

µ0I
2π R

 and 

directed into the page) and the field due to the circular loop (having 

magnitude 
  

µ0I
2R

 and directed into the page). The resultant magnetic 

field is:  

   
    


B = 1+ 1

π
⎛
⎝
⎜

⎞
⎠
⎟
µ0I
2R

 directed into the page( )  

P30.9 Wire 1 creates at the origin magnetic field: 

   
    


B1 = µ0I

2π r
 right hand rule 

  
= µ0I1

2π a
    

   
= µ0I1

2π a
ĵ  

 (a) If the total field at the origin is 
    

2µ0I1

2π a
ĵ = µ0I1

2π a
ĵ +

B2  then the second 

wire must create field according to 
    


B2 = µ0I1

2π a
ĵ = µ0I2

2π 2a( )
  . 

  Then 
  
I2 = 2I1 out of the paper .  



Chapter 30     363 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (b) The other possibility is 
    


B1 +


B2 =

2µ0I1

2π a
− ĵ( ) =

µ0I1

2π a
ĵ +

B2 .  Then, 

   
    


B2 = 3µ0I1

2π a
− ĵ( ) = µ0I2

2π 2a( )
    and 

  
I2 = 6I1  into the paper .  

P30.10 The vertical section of wire constitutes one half of an infinitely long, 
straight wire at distance x from P, so it creates a field equal to  

  

  
B =

1
2

µ0I
2πx

⎛
⎝⎜

⎞
⎠⎟

 

 Hold your right hand with extended thumb in the direction of the 
current; the field is away from you, into the paper.  

 For each bit of the horizontal section of wire    d

s  is to the left and   ̂r  is 

to the right, so     d

s × r̂ = 0.  The horizontal current produces zero field at 

P. Thus, 
  

  
B = µ0I

4π x
 into the paper

 

P30.11 Every element of current creates magnetic field in the same direction, 
into the page, at the center of the arc. The upper straight portion 
creates one-half of the field that an infinitely long straight wire would 
create. The curved portion creates one-quarter of the field that a 
circular loop produces at its center. The lower straight segment also 

creates field 
  

1
2

µ0I
2π r

. 

 The total field is 

    


B = 1

2
µ0I
2π r

+ 1
4

µ0I
2r

+ 1
2

µ0I
2π r

⎛
⎝⎜

⎞
⎠⎟

 into the page

= µ0I
2r

1
π

+ 1
4

⎛
⎝⎜

⎞
⎠⎟  into the plane of the paper

= 0.284 15µ0I
r

⎛
⎝⎜

⎞
⎠⎟  into the page

 

P30.12 Along the axis of a circular loop of radius R, 
   

  

B = µ0IR
2

2 x2 + R2( )3 2
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 or  
  

B
B0

=
1

x R( )2 + 1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

3 2

,  

 where 
  
B0 ≡

µ0I
2R

.  

 

ANS. FIG. P30.12 

 

x/R B/B0 

0.00 1.00 

1.00 0.354 

2.00 0.089 4 

3.00 0.031 6 

4.00 0.014 3 

5.00 0.007 54 

 

P30.13 We use the Biot-Savart law. For bits of wire along the straight-line 
sections,    d


s  is at 0° or 180° to   ̂r,  so     d


s× r̂ = 0.  Thus, only the curved 

section of wire contributes to   

B  at P. Hence,    d


s  is tangent to the arc and 

  ̂r  is radially inward; so     d

s× r̂ = ds 1sin 90°⊗ = ds ⊗ .  All points along 

the curve are the same distance r = 0.600 m from the field point, so 

   
    
B= d


B∫

all current

= µ0

4π
∫

I d

s × r̂
r2 = µ0

4π
I
r2 ds∫ = µ0

4π
I
r2 s  

 where s is the arc length of the curved wire, 

   
  
s = rθ = 0.600 m( ) 30.0°( ) 2π

360°
⎛
⎝
⎜

⎞
⎠
⎟ = 0.314 m  
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 Then,  

   
  
B = 10−7  T ⋅m A( ) 3.00 A( )

0.600 m( )2 0.314 m( )  

   
  
B = 262 nT  into the page  

 

ANS. FIG. P30.13 

P30.14 (a) Above the pair of wires, the field out of the page of the 50.0-A 
current will be stronger than the 

  
−k̂( )  field of the 30.0-A current, 

so they cannot add to zero. Between the wires, both produce 
fields into the page. They can only add to zero below the wires, at 
coordinate y = –⎮y⎮. Here the total field is 

   
    


B = µ0I

2π r
    

  
+ µ0I

2π r
  : 

   

   

0 =
µ0

2π
50.0 A

y + 0.280 m( ) −k̂( ) +
30.0 A

y
k̂( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

50.0 y = 30.0 y + 0.280 m( )
50.0 −y( ) = 30.0 0.280 m − y( )
−20.0y = 30.0 0.280 m( )

y = −0.420 m

 

 

ANS. FIG. P30.14 

 (b) At y = 0.100 m the total field is  

   
    


B = µ0I

2π r
    

  
+ µ0I

2π r
  : 
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ANS. FIG. P30.15(a) 
 

 

 

ANS. FIG. P30.15(b) 
 

 

 

ANS. FIG. P30.15(c) 

    

   


B =

4π × 10−7  T ⋅m A
2π

⎛
⎝⎜

⎞
⎠⎟

                  ×
50.0 A

0.280 − 0.100( )  m
−k̂( ) +

30.0 A
0.100 m

−k̂( )⎛
⎝⎜

⎞
⎠⎟

= 1.16 × 10−4  T −k̂( )

 

  The force on the particle is 
    

    


F = q


v ×

B

= −2 × 10−6  C( ) 150 × 106  m s( ) î( )
                         × 1.16 × 10−4  N ⋅ s C ⋅m( ) −k̂( )

= 3.47 × 10−2  N − ĵ( )

 

 (c) We require 
    


Fe = 3.47 × 10−2  N + ĵ( ) = q


E = −2 × 10−6  C( ) E,  

  so 
   


E = −1.73 × 104 ĵ N C .  

P30.15 Label the wires 1, 2, and 3 as shown in  
ANS. FIG. P30.15(a) and let the magnetic  
field created by the currents in these  
wires be    


B1 ,  

B2 ,  and 


B3 ,  respectively. 

 (a) At point A:  

    
  
B1 = B2 = µ0I

2π a 2( )   

  and 
  
B3 =

µ0I
2π 3a( ) .  

  The directions of these fields are  
shown in ANS. FIG. P30.15(b).  
Observe that the horizontal  
components of    


B1  and    


B2  cancel  

while their vertical components  
both add onto    


B3. Therefore, the  

net field at point A is: 

   

  

BA = B1 cos 45.0° + B2 cos 45.0° + B3

=
µ0I
2π a

2
2

cos 45.0° +
1
3

⎡
⎣⎢

⎤
⎦⎥
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BA =
4π × 10−7  T ⋅m A( ) 2.00 A( )

2π 1.00 × 10−2  m( )
2
2

cos 45° +
1
3

⎡
⎣⎢

⎤
⎦⎥

BA = 53.3 µT toward the bottom of the page

 

 (b) At point B:    

B1  and    


B2  cancel, leaving 

   

  

BB = B3 = µ0I
2π 2a( )

BB =
4π × 10−7  T ⋅m A( ) 2.00 A( )

2π 2( ) 1.00× 10−2  m( )
= 20.0 µT toward the bottom of the page

 

 (c) At point C: 
  
B1 = B2 = µ0I

2π a 2( ) and 
  
B3 = µ0I

2π a
 with the directions 

shown in ANS. FIG. P30.15(c). Again, the horizontal components 
of    

B1  and    


B2  cancel. The vertical components both oppose    


B3  

giving 

   

  

BC = 2 µ0I
2π a 2( ) cos 45.0°
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− µ0I

2π a
= µ0I

2π a
2
2

cos 45.0°− 1
⎡
⎣⎢

⎤
⎦⎥
= 0  

P30.16 (a) ANS. FIG. P30.16 shows the various vectors.   

 

ANS. FIG. P30.16 

  (b) The upward lightning current creates field lines in 
counterclockwise horizontal circles. 
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B = µ0I
2πr

 righthand rule[ ]  

=
4π × 10−7  T ⋅m/A( ) 20.0× 103  A( )

2π 50.0 m( )  north 

= 8.00× 10−5  T north

 

  The force on the electron is 
   

    


F = q


v ×

B

= −1.6× 10−19  C( )(300 m/s west)× 8.00× 10−5  T  north( )
= − 3.84× 10−21  N down( ) = 3.84× 10−21  N up

 

 (c) From Equation 29.3, 

  
r = mv

qB
=

9.11× 10−31  kg( )  300 m/s( )
1.60× 10−19  C( )  8.00× 10−5  T( ) = 2.14× 10−5  m .  

 (d) 
 
This distance is negligible compared to 50 m, so the electron does  

 move in a uniform field.  

 (e) Use Equation 29.4, ω = qB/m, which is equal to   2πN/Δt,  where N 
is the number of revolutions:  

   

  

N = qBΔt
2πm

=
1.60× 10−19  C( ) 8.00× 10−5  T( ) 60.0× 10−6  s( )

2π  9.11× 10−31  kg( )
= 134 revolutions

 

P30.17 Apply the Equation 30.4, 
  
B = µ0I

4π d
sinθ1 − sinθ2( ) , to each of the wires. 

For the horizontal wire (H), 
  
sinθ1 = − a

d2 + a2
and 

  
sinθ2 = a

d2 + a2
 

because  θ1  measures to the wire’s end point on the –x-axis and  θ2   
measures to the wire’s end point on the +x-axis. For the left vertical 

wire (VL) and the right vertical wire (VR), 
  
sinθ1 = d

d2 + a2
 and sin  θ2 = 

1 because both angles measure to the wire’s end points on the +y-axis. 

 

ANS. FIG. P30.17 
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 Take out of the page as the positive direction, and into the page as the 
negative direction. The field at the origin is  

  

  

BO = BVL − BH + BVR

= µ0I
4π a

1− d
d2 + a2

⎛
⎝⎜

⎞
⎠⎟
− µ0I

4π d
a

d2 + a2
− − a

d2 + a2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

+ µ0I
4π a

1− d
d2 + a2

⎛
⎝⎜

⎞
⎠⎟

= µ0I
4π a

2 − 2d
d2 + a2

⎛
⎝⎜

⎞
⎠⎟
− µ0I

4π d
2a

d2 + a2

⎛
⎝⎜

⎞
⎠⎟

= µ0I
2π ad

d − d2

d2 + a2
− a2

d2 + a2

⎛
⎝⎜

⎞
⎠⎟

= µ0I
2π ad

d − d2 + a2

d2 + a2

⎛
⎝⎜

⎞
⎠⎟

= µ0I
2π ad

d − a2 + d2( )
= − µ0I

2π ad
a2 + d2 − d( )

 

 The field is negative: magnetic field at the origin is 
  

µ0I
2π ad

a2 + d2 − d( )  

into the page.  

P30.18 (a) We use Equation 30.4 in the chapter text  
for the field created by a straight wire of  
limited length. The sines of the angles  
appearing in that equation are equal to  
the cosines of the complementary angles  
shown in our diagram. For the distance a  
from the wire to the field point we have  

  
tan 30° = a

L 2
, a = 0.288 7L. One wire  

contributes to the field at P 

    

  

B = µ0I
4π a

cosθ1 − cosθ2( ) = µ0I
4π 0.288 7L( )

cos30°− cos150°( )

=
µ0I 1.732( )

4π 0.288 7L( )
= 1.50µ0I

π L

 

 

ANS. FIG. P30.18(a) 
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  Each side contributes the same amount of field in the same 
direction, which is perpendicularly into the paper in the picture. 

So the total field is 
  
3 1.50µ0I

π L

⎛

⎝
⎜

⎞

⎠
⎟ = 4.50µ0I

π L
. 

 (b) As we showed in part (a), one whole side of the triangle creates 

field at the center 
  

µ0I 1.732( )
4π a

. Now one-half of one nearby side of 

the triangle will be half as far away from point Pb and have a 
geometrically similar situation. Then it creates at Pb field  

   
  

µ0I 1.732( )
4π a 2( )

=
2µ0I 1.732( )

4π a
 

  The two half-sides shown crosshatched in the picture create at Pb 
field  

   
  
2

2µ0I 1.732( )
4π a

⎛

⎝
⎜

⎞

⎠
⎟ =

4µ0I 1.732( )
4π 0.288 7L( )

= 6µ0I
π L

 

  The rest of the triangle will contribute somewhat more field in the 
same direction, so we already have a proof that the field at Pb is 

 
stronger . 

 

ANS. FIG. P30.18(b) 

P30.19 Assume that the wire on the right is wire 1 and that on the left is wire 
2. Also, choose the positive direction for the magnetic field to be out of 
the page and negative into the page. 

 (a) At the point half way between the two wires, 

   

  

Bnet = −B1 −B2 = − µ0I1

2πr1

+ µ0I2

2πr2

⎡

⎣
⎢

⎤

⎦
⎥= − µ0

2πr
I1 + I2( )

= −
4π × 10−7  T ⋅m A( )
2π 5.00× 10−2  m( ) 10.0 A( ) = −4.00× 10−5  T

 

  or   
Bnet = 40.0 µT  into the page  
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 (b) At point P1,  

   
  
Bnet = +B1 −B2 = µ0

2π
+ I1

r1

− I2

r2

⎡

⎣
⎢

⎤

⎦
⎥  

   

  

Bnet = 4π × 10−7  T ⋅m A
2π

5.00 A
0.100 m

− 5.00 A
0.200 m

⎡
⎣⎢

⎤
⎦⎥

= 5.00 µT out of page

 

 (c) At point P2,  

   
  
Bnet = −B1 + B2 = µ0

2π
− I1

r1

+ I2

r2

⎡

⎣
⎢

⎤

⎦
⎥  

   

  

Bnet = 4π × 10−7  T ⋅m A
2π

− 5.00 A
0.300 m

+ 5.00 A
0.200 m

⎡
⎣⎢

⎤
⎦⎥

= 1.67 µT out of page
 

P30.20 Call the wire carrying a current of 3.00 A wire 1 and the other wire 2. 
Also, choose the line running from wire 1 to wire 2 as the positive x 
direction. 

 

ANS. FIG. P30.20(a) 

 (a) At the point midway between the wires, the field due to each 
wire is parallel to the y-axis and the net field is 

     Bnet = +B1y −B2y = µ0 I1 − I2( ) 2πr  

  Thus,  

   
  
Bnet =

4π × 10−7  T ⋅m A( )
2π 0.100 m( )

3.00 A − 5.00 A( ) = −4.00× 10−6  T  

  or   
Bnet = 4.00 µT toward the bottom of the page  

 (b) Refer to ANS. FIG. P30.20(b). At point P,   r1 = 0.200 m( ) 2  and B1 
is directed at  θ1  = +135°. The magnitude of B1 is 

   
  
B1 = µ0I1

2πr1

=
4π × 10−7  T ⋅m A( ) 3.00 A( )

2π 0.200 2  m( ) = 2.12 µT  
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ANS. FIG. P30.20(b) 

  The contribution from wire 2 is in the –x direction and has 
magnitude 

   
  
B2 = µ0I2

2πr2

=
4π × 10−7  T ⋅m A( ) 5.00 A( )

2π 0.200 m( )
= 5.00 µT  

 

ANS. FIG. P30.20(c) 

  Therefore, the components of the net field at point P are: 

   

  

Bx = B1 cos135° + B2 cos180°

= 2.12 µT( )cos135° + 5.00 µT( )cos180° = −6.50 µT
 

  and  

     By = B1 sin 135° + B2 sin 180° = 2.12 µT( )sin 135° + 0 = +1.50 µT  

  Therefore,  

   
  
Bnet = Bx

2 + By
2 = 6.67 µT   

  at 
  
θ = tan−1 Bx

By

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = tan−1 6.50 µT

1.50 µT

⎛

⎝
⎜

⎞

⎠
⎟ = 77.0°   

  in ANS. FIG. P30.20(c), which is 77.0° + 90.0° = 167.0° from the 
positive x axis. Therefore, 

       
B


net = 6.67 µT at 167.0° from the positive x axis . 
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Section 30.2 The Magnetic Force Between  
Two Parallel Conductors 

P30.21 Let both wires carry current in the x direction, the first at y = 0 and the 
second at y = 10.0 cm. 

 (a) 
    


B = µ0I

2π r
k̂ =

4π × 10−7  T ⋅m A( ) 5.00 A( )
2π 0.100 m( )

k̂  

  
   


B = 1.00× 10−5  T out of the page  

   

ANS. FIG. P30.21(a) 

 (b) 

    


FB = I2


 ×

B = 8.00 A( ) 1.00 m( ) î × 1.00 × 10−5  T( )k̂⎡⎣ ⎤⎦

= 8.00 × 10−5  N( ) − ĵ( )
  

 

ANS. FIG. P30.21(b) 

  
    


FB = 8.00× 10−5  N toward the first wire  

 (c) 

    


B =

µ0I
2π r

−k̂( ) =
4π × 10−7  T ⋅m A( ) 8.00 A( )

2π 0.100 m( ) −k̂( )
= 1.60 × 10−5  T( ) −k̂( )

  

 

ANS. FIG. P30.21(c) 

  
   

B = 1.60× 10−5 T into the page  

 (d) 

    


FB = I1


 ×

B = 5.00 A( ) 1.00 m( ) î × 1.60 × 10−5  T( ) −k̂( )⎡

⎣
⎤
⎦

= 8.00 × 10−5  N( ) + ĵ( )
  

 

ANS. FIG. P30.21(d) 
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FB = 8.00× 10−5 N towards the second wire  

P30.22 (a) The force per unit length that parallel conductors exert on each 
other is, from Equation 30.12,    F  = µ0I1I2 2πd . Thus, if 

   F  = 2.00× 10−4  N m , I1 = 5.00 A, and d = 4.00 cm, the current in 
the second wire must be 

    

   

I2 = 2πd
µ0I1

F


⎛
⎝⎜

⎞
⎠⎟

=
2π 4.00× 10−2  m( )

4π × 10−7  T ⋅m A( ) 5.00 A( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2.00× 10−4  N m( )

= 8.00 A

 

 (b) Since parallel conductors carrying currents in the same direction 
attract each other (see Section 30.2 in the textbook), the currents in 
these conductors which repel each other must be in 

 
opposite directions.  

 (c) From Equation 30.12, the force is directly proportional to the 
product of the currents. The result of reversing the direction of 
either of the currents and doubling the magnitude would be that 
the 

 
force of interaction would be attractive and the magnitude  

 of the force would double .  

P30.23 (a) From Equation 30.12, the force per unit length that one wire 
exerts on the other is    F  = µ0I1I2 2πd , where d is the distance 
separating the two wires. In this case, the value of this force is 

    
   

F


=
4π × 10−7  T ⋅m A( ) 3.00 A( )2

2π 6.00× 10−2  m( ) = 3.00× 10−5  N m  

 (b) We can answer this question by consulting Section 30.2 in the 
textbook, or we can reason it out. Imagine these two wires lying 
side by side on a table with the two currents flowing toward you, 
wire 1 on the left and wire 2 on the right. The right-hand rule that 
relates current to field direction shows the magnetic field due to 
wire 1 at the location of wire 2 is directed vertically upward. 
Then, the right-hand rule that relates current and field to force 
gives the direction of the force experienced by wire 2, with its 
current flowing through this field, as being to the left, back 
toward wire 1. Thus, the force one wire exerts on the other is an 

 attractive  force. 
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P30.24 Carrying oppositely directed currents, wires 1 and 2 repel each other. 
If wire 3 were between them, it would have to repel either 1 or 2, so the 
force on that wire could not be zero. If wire 3 were to the right of wire 
2, it would feel a larger force exerted by 2 than that exerted by 1, so the 
total force on 3 could not be zero. Therefore wire 3 must be to the left 
of both other wires as shown. It must carry downward current so that 
it can attract wire 2. We answer part (b) first. 

 

ANS. FIG. P30.24 

 (b) For the equilibrium of wire 3 we have 
   

  
F1 on 3 = F2 on 3:         

µ0 1.50 A( ) I3

2π d
=

µ0 4.00 A( ) I3

2π 20.0 cm + d( )

 

   1.50(20.0 cm + d) = 4.00d 
   

  
d =

30.0 cm
2.50

= 12.0 cm to the left of wire 1
 

 (a) Thus the situation is possible in just one way. 

 (c) For the equilibrium of wire 1, 
   

  

µ0I3 1.50 A( )
2π 12.0 cm( ) =

µ0 4.00 A( ) 1.50 A( )
2π 20.0 cm( )

  

   

  
I3 =

12
20

4.00 A( ) = 2.40 A down
 

  We know that wire 2 must be in equilibrium because the forces on 
it are equal in magnitude to the forces that it exerts on wires 1 and 
3, which are equal because they both balance the equal-
magnitude forces that 1 exerts on 3 and that 3 exerts on 1. 

P30.25 To the right of the long, straight wire, current I1 creates a magnetic 
field into the page. By symmetry, we note that the magnetic forces on 
the top and bottom segments of the rectangle cancel. The net force on 
the vertical segments of the rectangle is (from Equation 30.12):  

  

    


F =

F1 +

F2 = µ0I1I2

2π
1

c + a
− 1

c
⎛
⎝⎜

⎞
⎠⎟ î = µ0I1I2

2π
−a

c c + a( )
⎡

⎣
⎢

⎤

⎦
⎥ î
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F =

4π × 10−7  N A2( ) 5.00 A( ) 10.0 A( ) 0.450 m( )
2π

                                                    × −0.150 m
0.100 m( ) 0.250 m( )

⎛
⎝⎜

⎞
⎠⎟

î


F = −2.70× 10−5 î( )  N = −27.0× 10−6 î( )  N = −27.0î µN

 

 

ANS. FIG. P30.25 

P30.26 See ANS. FIG. P30.25. By symmetry, we note that the magnetic forces 
on the top and bottom segments of the rectangle cancel. The net force 
on the vertical segments of the rectangle is (from Equation 30.12) 

   
    


F =

F1 +

F2 = µ0I1I2

2π
1

c + a
− 1

c
⎛
⎝
⎜

⎞
⎠
⎟ î = µ0I1I2

2π
−a

c c + a( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ î  

   
    


F = µ0I1I2

2π
a

c c + a( )
⎡

⎣
⎢

⎤

⎦
⎥ to the left  

P30.27 To attract, both currents (I1 = 20.0 A, and I2) must be to the right. The 
attraction is described by (from Equation 30.12)  

  
   

F


= µ0I1I2

2π a
 

 So 

   

I2 = F


2π a
µ0I1

= 320× 10−6  N m( ) 2π 0.500 m( )
4π × 10−7  T ⋅m/A( ) 20.0 A( )

⎛

⎝
⎜

⎞

⎠
⎟ = 40.0 A

 

 

ANS. FIG. P30.27 
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 The zero-field point must lie between the two wires: this point cannot 
be above the upper wire or below the lower wire because the fields in 
these regions have the same direction, out of the page above the upper 
wire, and into the page below the lower wire. Let y represent the 
coordinate of the zero-field point above the lower wire; then,  
r1 = (0.500 m) – y and r2 = y represent the respective distances of 
currents I1 and I2 to the zero-field point. Taking the positive direction 
to be out of the page, at the zero-field point,  

  

  

B = −B1 + B2

0 = − µ0I1

2π r1

+ µ0I2

2π r2

 

 Eliminating and solving for r1,  
  

  

I1

r1

= I2

r2

   →     r1 = r2
I1

I2

  →   0.500 m( )− y = y
I1

I2

 

 Then, 
  

  

0.500 m( ) = y
I1

I2

+ 1
⎛
⎝⎜

⎞
⎠⎟

     

 y = 0.500 m( )
I1

I2

+ 1
⎛
⎝⎜

⎞
⎠⎟

= 0.500 m( )
20.0 A
40.0 A

+ 1⎛
⎝

⎞
⎠

= 0.333 m

 

P30.28 From Equation 30.12, we find the separation distance between the 
wires as 

   
   

FB


 = µ0I1I2

2πa
       →       a = µ0I1I2

2πFB

 

 Substituting numerical values, 
 

  

a = 
4π  × 10−7  T · m/A( ) 10.0 A( ) 10.0 A( ) 0.500 m( )

2π 1.00 N( )  

= 1.00 × 10−5 m = 10.0 µm

 

 This is the required center-to-center separation distance of the wires, 
but the wires cannot be this close together. Their minimum possible 
center-to-center separation distance occurs if the wires are touching, 
but this value is 2r = 2(250 μm) = 500 μm, which is much larger than 
the required value above. We could try to obtain this force between 
wires of smaller diameter, but these wires would have higher 
resistance and less surface area for radiating energy. It is likely that the 
wires would melt very shortly after the current begins. 
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P30.29 This is almost a standard equilibrium 
problem involving tension, weight, and a 
horizontal repulsive force; however, here 
we must consider the magnetic force per 
unit length and the weight per unit 
length. The tension makes an angle θ/2 = 
8.00° with the vertical. The mass per unit 
length is λ = mg/L. The separation 
between the wires is    a = 2 sinθ 2 . 

 (a) Because the wires repel, the currents are in 
 

opposite directions .  

 (b) For balance, the ratio of the horizontal tension component  
T sin θ/2 to the vertical tension component T cos θ/2 is equal to 
the ratio of the horizontal magnetic force per unit length   FB/L  to 
the vertical weight per unit length   Fg/L:  

   
  

T sinθ 2
T cosθ 2

= FB L
Fg L

 

  But, 
   

  

FB/L = IBsin 90.0° = IB = I
µ0I
2π a

= µ0I
2

2π a
Fg/L = λg

 

  Rearranging and substituting gives  
   

   
tanθ 2 = µ0I

2 2π a
λg

=
µ0I

2

2π 2 sinθ 2( )λg

 

  Solving, 

   
   
I 2 = 4πλg

µ0

tanθ 2( ) sinθ 2( )  

   

  

I 2 =
4π 0.060 0 m( ) 40.0× 10−3  kg( ) 9.80 m/s2( )

4π × 10−7  T ⋅m/A( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                                                           × tan 8.00°( ) sin 8.00°( )
I = 67.8 A

 

 (c) 

 

Smaller. A smaller gravitational force would be pulling down on
the wires, requiring less magnetic force to raise the wires to the
same angle and therefore less current.

 

 
 

 

ANS. FIG. P30.29 
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Section 30.3 Ampère’s Law 

P30.30 From     

B ⋅d

∫ = µ0I , 

  
I =

2π rB
µ0

=
2π 1.00 × 10−3  m( ) 0.100 T( )

4π × 10−7  T ⋅m A
= 500 A .  

P30.31 (a) From Ampère’s law, the magnetic field at point a is given by 

  
Ba =

µ0Ia

2π ra

,  where Ia is the net current through the area of the 

circle of radius ra. In this case, Ia = 1.00 A out of the page (the 
current in the inner conductor), so 

   

  

Ba =
4π × 10−7  T ⋅m A( ) 1.00 A( )

2π 1.00 × 10−3  m( )
= 200 µT toward top of page

 

 (b) Similarly at point b: 
  
Bb =

µ0Ib

2π rb

,  where Ib is the net current through 

the area of the circle having radius rb. Taking out of the page as 
positive, Ib = 1.00 A – 3.00 A = –2.00 A, or Ib = 2.00 A into the page. 
Therefore, 

   

  

Bb =
4π × 10−7  T ⋅m A( ) 2.00 A( )

2π 3.00 × 10−3  m( )
= 133 µT toward bottom of page

 

P30.32 (a) 
  
Binner = µ0NI

2π r
=

4π × 10−7  T ⋅m A( ) 900( ) 14.0× 103  A( )
2π 0.700 m( )

= 3.60 T  

 (b) 
  
Bouter =

µ0NI
2π r

=
4π × 10−7  T ⋅m A( ) 900( ) 14.0 × 103  A( )

2π 1.30 m( ) = 1.94 T  

P30.33 Let the current I be to the right, in the positive x direction. The proton 
travels to the left, and is a distance d above the wire. Take up as the 
positive y direction. At the proton’s location, the current creates a field 

  
B = µ0I

2π d
 in the positive z direction. The weight of the proton and the 

magnetic force are in balance:  

   

   

mg − ĵ( ) + qv −î( )× µ0I
2π d

k̂( ) = 0

mg − ĵ( ) + qvµ0I
2π d

ĵ( ) = 0
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d =
qvµ0I
2π mg

=
1.60 × 10−19  C( ) 2.30 × 104  m s( ) 4π × 10−7  T ⋅m A( ) 1.20 × 10−6  A( )

2π 1.67 × 10−27  kg( ) 9.80 m s2( )
= 5.40 cm

 

P30.34 We may regard the sheet as being 
composed of filaments of current    Jsd


s  

directed out of the page. According to the 
Biot-Savart law, the field contribution at a 
point has the direction     d


s × r̂,  where   ̂r  

points from the current filament to the 
point. Consider the field contributions at an 
arbitrary point P to the right of the sheet. 
Draw a line normal to the sheet that passes 
through P. Consider the contributions to 
the field at P from two filaments that lie 
along the same vertical line and are 
equidistant from the normal (and P). The 
upper filament contributes +z and +x field components, but the lower 
filament +z and –x field components. The resulting field from both 
filaments points in the +z-direction. By similar reasoning, the magnetic 
field at any point on the left side of the sheet points in the –z direction. 
These same arguments hold for any point within the sheet. Also, the 
same reasoning shows that for any pair of filaments that lie on the 
same vertical line, the magnetic field at a point midway between them 
is zero. Thus, the field has no horizontal component within the sheet.  

 Therefore, each filament of current creates a contribution to the total 
field that is parallel to the sheet and perpendicular to the current 
direction. They create field lines straight up to the right of the sheet 
and straight down to the left of the sheet. 

 From Ampère’s law applied to the suggested rectangle, 
   

     

B ⋅d∫
s = µ0I:     B ⋅2+ 0 = µ0J s

 

 Therefore the field is uniform in space, with the magnitude  

   
   

B = µ0J s

2
 

P30.35 (a) In 
  
B = µ0I

2π r
, the field will be one-tenth as large at a ten-times 

larger distance:  400 cm .  

ANS. FIG. P30.34 
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 (b) 
    


B = µ0I

2π r1

k̂ + µ0I
2π r2

−k̂( )  

  so 

  

B =
4π × 10−7  T ⋅m/A( ) 2.00 A( )

2π
1

0.398 5 m
−

1
0.401 5 m

⎛
⎝⎜

⎞
⎠⎟

= 7.50 nT

 

 (c) Call r the distance from cord center to field point and  
2d = 3.00 mm the distance between conductors. 

    
  
B = µ0I

2π
1

r − d
− 1

r + d
⎛
⎝
⎜

⎞
⎠
⎟ = µ0I

2π
2d

r2 − d2
 

    

  

7.50 × 10−10  T

     = 2.00 × 10−7  T ⋅m A( ) 2.00 A( )
3.00 × 10−3  m( )

r2 − 2.25 × 10−6  m( )2

  

  so   r = 1.26 m .  

  The field of the two-conductor cord is weak to start with and falls 
off rapidly with distance. 

 (d) The cable creates 
 

zero  field at exterior points, since a loop in 

Ampère’s law encloses zero total current. Shall we sell coaxial-
cable power cords to people who worry about biological damage 
from weak magnetic fields? 

P30.36 By Ampère’s law, the field at the position of the wire at distance r from 
the center is due to the fraction of the other 99 wires that lie within the 
radius r.  
 

    

B ⋅d∫
s = µ0I:

  

  
  
B ⋅ 2πr = µ0 99I πr2

πR2

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥    →     B =

µ0 99I( )
2πr

r2

R2

⎛

⎝
⎜

⎞

⎠
⎟ =

µ0 99I( )
2πR

r
R

⎛
⎝
⎜

⎞
⎠
⎟  

 

ANS. FIG. P30.36 
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 The field is proportional to r, as shown in ANS. FIG. P30.36. This field 
points tangent to a circle of radius r and exerts a force    


F = I

×

B  on the 

wire toward the center of the bundle. The magnitude of the force is  

  

   

F


= IBsinθ = I
µ0 99( )I

2πR
r
R

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
sin 90° = µ0 99( )I 2

2πR
r
R

⎛
⎝⎜

⎞
⎠⎟

=
4π × 10−7  T ⋅m/A( ) 99( ) 2.00 A( )2

2π 0.500× 10−2  m( )  
0.400( )

= 6.34× 10−3  N m

 

 (a)  
 
6.34× 10−3  N m  

 (b) Referring to the figure, the field is clockwise, so at the position of 
the wire, the field is downward, and the force is 

 inward toward the center of the bundle .  

 (c) B ∝ r, so B is greatest at the outside of the bundle. Since each wire 
carries the same current, F is 

 
greatest at the outer surface . 

P30.37 We assume the current is vertically upward. 

 (a) Consider a circle of radius r slightly less than R. It 
encloses no current, so from 

       

B ⋅ ds∫ = µ0Iinside  gives   B 2π r( ) = 0 , 

  we conclude that the magnetic field is  zero .  

 (b) Now let the r be barely larger than R. Ampère’s 
law becomes 

   
  B 2π R( ) = µ0I , 

  so 
  

B =
µ0I

2π R
   tangent to the wall .  

  By the right-hand rule, the field direction is 
counterclockwise  (as seen from above). 

 (c) Consider a strip of the wall of horizontal width ds 
and length   .  Its width is so small compared to  
2π R that the field at its location would be essentially unchanged if 
the current in the strip were turned off.  

  The current it carries is 
  
Is =

Ids
2π R

 up. 

ANS. FIG. 

P30.37(a) 

ANS. FIG. 

P30.37(b) 
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  The force on it is  
   

     

d

F = Is


 ×

B =

Ids
2π R


µ0I

2π R
⎛
⎝⎜

⎞
⎠⎟

 up × intopage⎡⎣ ⎤⎦

=
µ0I

2ds
2πR( )2 radiallyinward

 

  The pressure on the strip, and therefore, everywhere on the 
cylinder, is 

   
   

P = dF
dA

= µ0I 2ds
2πR( )2

1
ds

= µ0I 2

2π R( )2  inward  

  The pinch effect makes an effective demonstration when an 
aluminum can crushes itself as it carries a large current along its 
length. 

P30.38 Take a circle of radius r1 or r2 to apply 

    

B ⋅ d


s = µ0I∫ ,  where for nonuniform 

current density 
  
I = JdA∫ .  In this case   


B  

is parallel to    d

s  and the direction of J is 

straight through the area element dA, so 
Ampère’s law gives  

   
   

Bds = µ0 JdA∫∫  

 (a) For r1 < R,  

   
  
2πr1B = µ0 br

0

r1∫ (2πrdr) = µ0 2πb
r1

3

3
− 0

⎡

⎣
⎢

⎤

⎦
⎥   

  and 
  
B = 1

3
µ0br1

2( )  (inside)  

 (b) For r2 > R, 

    
  
2πr2B = µ0 br

0

R

∫ (2πrdr)   

   and 
  
B = µ0bR3

3r2
 (outside)  

 

 
ANS. FIG. P30.38 
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P30.39 Each wire is distant from P by 

  ( = 0.200 m)  

   
   r =  2 +  2 2 =  2  

 and each wire produces a field at P of 
equal magnitude  

   
  
B = µ0I

2π r
 

 Carrying currents into the page, A 
produces at P a field to the left and 
downward at –135°, while B creates a field to the right and downward 
at –45°. Carrying currents out of the page, C produces a field downward 
and to the right at –45°, while D’s contribution is downward and to the 
left. All horizontal components cancel; thus, all remaining components 
are vertically downward. The magnitude of the resulting field is 

   

   

BP = 4Bcos 45.0° = 4 µ0I
2π r

cos 45.0° = 4 µ0I
2π  2( )

1
2

= 2µ0I
π

=
2 4π × 10−7  T ⋅m A( ) 5.00 A( )

π 0.200 m( )
= 2.00× 10−5  T

 

 The magnetic field is 
 

20.0 µT  toward the bottom of the page .  

 
 

 

Section 30.4 The Magnetic Field of a Solenoid 
P30.40 The magnetic field inside of a solenoid is   B = µ0nI = µ0 N/L( )I.  Thus, 

the number of turns on this solenoid must be 

  
  
N = BL

µ0I
=

9.00 T( ) 0.500 m( )
4π × 10−7  T ⋅m A( ) 75.0 A( )

= 4.77 × 104  turns  

P30.41 The magnetic field at the center of a solenoid is 
   
B = µ0

N


I ,  so 
   

  
I =

B
µ0n

=
1.00 × 10−4  T( ) 0.400 m( )

4π × 10−7  T ⋅m A( ) 1 000( ) = 31.8 mA
 

P30.42 In the expression    B = Nµ0I/  for the field within a solenoid with 
radius much less than 20 cm, all we want to do is increase N.  

 (a) Make the wire as long and thin as possible without melting when 
it carries the 5-A current. Then the solenoid can have many turns.  

ANS. FIG. P30.39 
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 (b) As small in radius as possible with your experiment fitting inside. 
Then with a smaller circumference the wire can form a solenoid 
with more turns. 

P30.43 (a) The field produced by the solenoid in its interior is given by 

    
    


B = µ0nI −î( ) = 4π × 10−7  T ⋅m A( ) 30.0

10−2  m
⎛
⎝
⎜

⎞
⎠
⎟ 15.0 A( ) −î( )  

    
   

B = − 5.65× 10−2  T( ) î   

  The force exerted on side AB of the square current loop is 
    

    


FB( )AB

= I

L ×

B = 0.200 A( )

              ×  2.00 × 10−2  m( ) ĵ × 5.65 × 10−2  T( ) − î( )⎡
⎣

⎤
⎦

 

    
    


FB( )AB

= 2.26 × 10−4  N( )k̂
   

 

 

ANS. FIG. P30.43 

  Similarly, each side of the square loop experiences a force, lying 
in the plane of the loop, of  

 
226 µN directed away from the center of the loop .  

 (b) From the above result, it is seen that the net torque exerted on the 
square loop by the field of the solenoid is  zero .  More formally, 
the magnetic dipole moment of the square loop is given by 

   
    

µ = I


A = 0.200 A( ) 2.00 × 10−2  m( )2

− î( ) = −80.0 µA ⋅m2 î   

  The torque exerted on the loop is then 

   
   

τ =

µ ×

B = −80.0 µA ⋅m2 î( ) × −5.65 × 10−2  T î( ) = 0  
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P30.44 The number of turns is 
  
N =

75.0 cm
0.100 cm

= 750.  We assume that the 

solenoid is long enough to qualify as a long solenoid. Then the field 

within it (not close to the ends) is 
   
B =

Nµ0I


,  so  

   

   
I =

B
Nµ0

=
8.00 × 10−3  T( ) 0.750 m( )
750 4π × 10−7  T ⋅m/A( ) = 6.37 A

 

 The resistance of the wire is 
   

   
R =

ρwire

A
=

1.7 × 10−8  Ω⋅m( )2π 0.050 0 m( )750

π 0.050 0 × 10−2  m( )2 = 5.10 Ω
 

 The power delivered is  

   
  
P = IΔV = I 2R = 6.37 A( )2 5.10 Ω( ) = 207 W  

 The power required would be smaller if wire were wrapped in several 
layers. 

P30.45 (a) From R = ρL/A, the required length of wire to be used is 

 
L = R ⋅ A

ρ
. The total number of turns on the solenoid (that is, the 

number of times this length of wire will go around a 1.00 cm 
radius cylinder) is 

   

  

N = L
2πr

= R ⋅A
2πrρ

=
5.00 Ω( ) π 0.500× 10−3  m( )2

4⎡
⎣

⎤
⎦

2π 1.00× 10−2  m( ) 1.7 × 10−8  Ω⋅m( )
= 9.2 × 102  turns

 

 (b) From B = µ0nI, the number of turns per unit length on the 
solenoid is 

   
  
n = B

µ0I
= 4.00× 10−2  T

4π × 10−7  T ⋅m A( ) 4.00 A( )
= 7.96× 103  turns m  

  Thus, the required length of the solenoid is 

   
  
L = N

n
= 9.2 × 102  turns

7.96× 103  turns m
= 0.12 m = 12 cm  
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Section 30.5 Gauss’s Law in Magnetism 
P30.46 (a) The magnetic flux through the flat surface S1 is 

   
    
ΦB( )flat

=

B ⋅

A = Bπ R2 cos 180 −θ( ) = −Bπ R2 cosθ  

 (b) The net flux out of the closed surface is zero: 

  ΦB( )flat
+ ΦB( )curved

= 0  

  Therefore, 

   
  
ΦB( )curved

= Bπ R2 cosθ  

P30.47 The flux is defined as    ΦB =

B ⋅

A  

  (a) The flux through the shaded face is ΦB = BxAx + By Ay + Bz Az. The 
shaded square’s area is in the yz plane, so it counts as an x 
component of area. Here  
Ay = Az = 0. Then,  

    
    
ΦB =


B ⋅ d

A∫ =

B ⋅

A = 5î + 4 ĵ + 3k̂( )  T ⋅ 2.50× 10−2  m( )2

î  

    
  
ΦB = 3.12 × 10−3  T ⋅m2 = 3.12 × 10−3  Wb = 3.12 mWb  

 (b) For a closed surface, 
    

B ⋅ d

A∫ = 0,  so 

    
ΦB( )total

=

B ⋅ d

A∫ = 0  

P30.48 (a)    ΦB =

B ⋅

A = BA  where A is the cross-sectional area of the 

solenoid. Then, 

    

   

ΦB = µ0NI


⎛
⎝
⎜

⎞
⎠
⎟ π r2( )

=
4π × 10−7  T ⋅m/A( ) 300( ) 12.0 A( )

0.300 m
π 0.012 5 m( )2⎡
⎣

⎤
⎦

= 7.40× 10−7  Wb = 7.40 µWb

 

 (b) 
    
ΦB =


B ⋅

A = BA = µ0NI


⎛
⎝⎜

⎞
⎠⎟ π r2

2 − r1
2( )⎡⎣ ⎤⎦  

  

  

ΦB =
4π × 10−7  T ⋅m A( ) 300( ) 12.0 A( )

0.300 m( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                                           ×π 8.00( )2 − 4.00( )2⎡⎣ ⎤⎦ 10−3  m( )2

= 2.27 µWb

 

 
 



388     Sources of the Magnetic Field 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

Section 30.6 Magnetism in Matter 
P30.49 (a) The Bohr magneton is 
   

  

µB = 9.27 × 10–24  J
T

⎛
⎝⎜

⎞
⎠⎟

N ⋅m 
1 J 

⎛
⎝⎜

⎞
⎠⎟

1 T 
N ⋅ s/C ⋅m 

⎛
⎝⎜

⎞
⎠⎟

1 A 
C/s 

⎛
⎝⎜

⎞
⎠⎟

= 9.27 × 10−24 A ⋅m2

 

  The number of unpaired electrons is  
   

  
N =

8.00 × 1022  A ⋅m2  
9.27 × 10–24  A ⋅m2 = 8.63 × 1045  e−

 

 (b) Each iron atom has two unpaired electrons, so the number of iron 
atoms required is  

   

  

1
2

N = 1
2

(8.63× 1045) = 4.31× 1045  iron atoms
 

  Thus, 
   

  
MFe =

(4.31× 1045  atoms)(7 900 kg/m3)
8.50 × 1028  atoms/m3 = 4.01× 1020  kg

 

P30.50 The magnetic moment of one electron is taken as one Bohr magneton 
μB. Let x represent the number of electrons per atom contributing and n 
the number of atoms per unit volume. Then  nxµB  is the magnetic 
moment per volume and the magnetic field (in the absence of any 
currents in wires) is   B = µ0nxµB = 2.00 T. . Then 

  

  

x = B
µ0µBn

= 2.00 T
8.50× 1028  m−3( ) 4π × 10−7  T ⋅m A( ) 9.27 × 10−24  N ⋅m T( )

= 2.02

 

 
 

 

Additional Problems 
P30.51 The magnetic field inside of a solenoid is   B = µ0nI = µ0 N/L( )I.  Thus, 

the current in this solenoid must be 
 

  
I = BL

µ0N
=

2.00× 10−3  T( ) 6.00× 10−2  m( )
4π × 10−7  T ⋅m A( ) 30.0( )

= 3.18 A
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*P30.52 Call the wire along the x-axis wire 1 and the other wire 2. Also, choose 
the positive direction for the magnetic fields at point P to be out of the 
page. At point P,  

  

  
Bnet = +B1 − B2 = µ0I1

2πr1

− µ0I2

2πr2

= µ0

2π
I1

r1

− I2

r2

⎛
⎝⎜

⎞
⎠⎟

  

 Substituting numerical values, 
  

  
Bnet =

4π × 10−7  T ⋅m A( )
2π

7.00 A
3.00 m

− 6.00 A
4.00 m

⎛
⎝⎜

⎞
⎠⎟ = +1.67 × 10−7  T

 

  
   


Bnet = 0.167 µT out of the page

 

P30.53 (a) Suppose you have two 100-W headlights running from a 12-V 

battery, with the whole 
  
I = P

ΔV
= 200 W

12 V
= 17 A  current going 

through the switch 60 cm from the compass. Suppose the 
dashboard contains little iron, so  µ ≈ µ0.  Model the current as 
being from a long, straight wire. Then, 

    
  
B = µ0I

2π r
=

4π × 10−7  T ⋅m/A( ) 17 A( )
2π 0.6 m( )

~ 10−5  T  

 (b) If the local geomagnetic field is 5 × 10–5 T, this is 

 
~ 10−1  times as large,  enough to affect the compass noticeably. 

P30.54 Use Equation 30.7 to find the field at a distance from a current loop 
equal to the radius of the loop: 

   

  

B =  µ0Ia
2

2 a2  + x2( )3/2  = 
µ0Ia

2

2 a2  + a2( )3/2  = 
µ0Ia

2

2 2a2( )3/2  

=  µ0Ia
2

25/2 a3  = 
µ0I

25/2 a

 

 Solve for the current: 

   
  
I  = 2

5/2 aB
µ0

 

 Let a be the radius of the Earth and substitute numerical values: 
   

  

I  = 2
5/2 REB

µ0

 = 
25/2 6.37  × 106  m( ) 7.00 × 10−5  T( )

4π  × 10−7  T ⋅m/A
 

= 2.01 × 109 A
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 This current would instantly vaporize any wire of reasonable size. For 
example, if we imagine a 1.00-m segment of copper wire 10 cm in 
diameter, a huge wire, this current delivers over a terawatt of power to 
this short segment! Furthermore, the power delivered to such a wire 
wrapped around the Earth is on the order of 1020 W, which is larger 
than all of the solar power delivered to the Earth by the Sun. 

P30.55 On the axis of a current loop, the magnetic field is given by  

   
  

B = µ0IR
2

2 x2 + R2( )3 2  

 where in this case 
  
I =

q
2π ω( ) .  The magnetic field is directed away 

from the center, with a magnitude of 
   

  

B =
µ0ωR2q

4π x2 + R2( )3 2

=
µ0 20.0 rad/s( ) 0.100 m( )2 10.0 × 10−6  C( )

4π 0.050 0 m( )2 + 0.100 m( )2⎡
⎣

⎤
⎦

3 2

= 1.43 × 10−10  T = 143 pT

 

P30.56 On the axis of a current loop, the magnetic field is given by  

   
  

B = µ0IR
2

2 x2 + R2( )3 2  

 where in this case 
  
I =

q
2π ω( ) .  Therefore,  

   
  

B = µ0ωR2q

4π x2 + R2( )3 2  

 when 
  
x =

R
2

, then 

   
  

B = µ0ωR2q

4π 5
4 R2( )3 2 = µ0qω

2.5 5πR
 

P30.57 Consider a longitudinal filament of the strip of width dr as shown in 
the sketch. The contribution to the field at point P due to the current dI 
in the element dr is 

   
  
dB = µ0dI

2π r
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 where 
 
dI = I dr

w
⎛
⎝
⎜

⎞
⎠
⎟ . Then, 

   
    


B = d


B∫ = µ0I

2πw
dr
r

k̂
b

b+w

∫ = µ0I
2π w

ln 1+ w
b

⎛
⎝
⎜

⎞
⎠
⎟k̂  

 

ANS. FIG. P30.57 

P30.58 (a) The horizontal component of Earth’s magnetic field is given by 
   

  

Bh = Bcoil = µ0NI
2R

=
4π × 10−7  T ⋅m/A( ) 5( ) 0.600 A( )

0.300 m
= 12.6 µT

 

 (b) Refer to ANS. FIG. P30.58. We obtain the total magnetic field from 

   
  
Bh = Bsinφ → B = Bh

sinφ
= 12.6 µT

sin 13.0°
= 56.0 µT  

 

ANS. FIG. P30.58 

P30.59 In ANS FIG. P30.59(a), the upper sheet acts as conventional current to 
the right. Consider a patch of the sheet of width w parallel to the z axis 
and length d parallel to the x axis. The charge on it,   Δq =σwd,  passes a 
point in time interval   Δt = d/v,  so the current it constitutes is 

  Δq/Δt =σwd/ d/v( ) =σwv  and the linear current density is 

  Js =σwv/w =σ v.  

 

ANS. FIG. P30.59(a) 
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 We may use Ampere’s law to find the magnitude of the magnetic field 
produced by a sheet because of the translational symmetry along the z 
axis. In ANS. FIG. P30.59(b), we look at the upper sheet as it 
approaches us: the upper sheet (and z-axis) lies in a horizontal plane 
and the conventional current is out of the page. Choose a closed 
rectangular path of width w centered about the upper sheet. Because 
the current it out on the page, we expect the field to point to the right 
below the sheet and to the left above the sheet.  

 For the loop, the term    

B ⋅ ds  is non-zero along the sides parallel to the 

sheet and zero along the sides perpendicular to the sheet. From 
Ampere’s law, we find the magnitude of the magnetic field on either 
side of the sheet:  

  

    


B ⋅ ds∫ = µ0I

B 2w( ) = µ0 Jsw( )

B = µ0Js

2
= µ0σ v

2

 

 

ANS. FIG. P30.59(b) 

 Therefore, the upper sheet creates field 
    


B = µ0Js

2
k̂  above it and 

   

µ0 Js

2
−k̂( )  below it. Similarly, the lower sheet in its motion toward the 

right constitutes conventional current toward the left. It creates 

magnetic field 
   

1
2

µ0σ v −k̂( )  above it and 
   

1
2

µ0σ vk̂  below it.  

 (a) Between the plates, their fields add to  

   
   
µ0σ v −k̂( ) = µ0σ v into the page .  

 (b) Above both sheets and below both, their equal-magnitude fields 
add to 

 
zero . 
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 (c) The upper plate exerts no force on itself. The field of the lower 

plate, 
   

1
2

µ0σ v −k̂( )  will exert a force on the current in the w by d 

section, given by 

    
      


FB = I


 ×

B =σ wvdî × 1

2
µ0σ v −k̂( ) = 1

2
µ0σ

2v2wdĵ  

  The force per area is  
    

     


FB

wd
= 1

2
µ0σ

2v2wd
wd

ĵ

= 1
2

µ0σ
2v2   up toward the top of the page

 

 (d) The electrical force on our section of the upper plate is  
    

    
q

Elower = σ wd( ) σ

2∈0

− ĵ( ) = σ 2wd
2∈0

− ĵ( )
 

  The electrical force per area is 
  

σ 2wd
2∈0 wd

 down = σ 2

2∈0

 down.  To 

have 
  

1
2

µ0σ
2v2 = σ 2

2∈0

 we require  

  

  

v = 1
µ0 ∈0

. We will find out in Chapter 34 that this speed

is the speed of light. We will find out in Chapter 39 that this
speed is not possible for the capacitor plates.

  

P30.60 (a) Use Equation 30.7 twice for the field created by a current loop 

    
  

Bx = µ0IR2

2 x2 + R2( )3 2  

 

ANS. FIG. P30.60 
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  If each coil has N turns, the field is just N times larger. 

    

  

B = Bx1 + Bx2 = Nµ0IR
2

2
1

x2 + R2( )3 2 + 1

R − x( )2 + R2⎡⎣ ⎤⎦
3 2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 

   

  

B = Nµ0IR
2

2
1

R2 + x2( )3 2 + 1
2R2 + x2 − 2xR( )3 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 (b) 
  

dB
dx

= Nµ0IR
2

2
− 3

2
2x( ) x2 + R2( )−5 2

− 3
2

2R2 + x2 − 2xR( )−5 2
2x − 2R( )⎡

⎣⎢
⎤
⎦⎥

 

  Substituting 
  
x = R

2
 and canceling terms, 

  

dB
dx

= 0 . 

   

  

d2B
dx2 = −3Nµ0IR

2

2
x2 + R2( )−5 2

− 5x2 x2 + R2( )−7 2⎡
⎣

    + 2R2 + x2 − 2xR( )−5 2
−5 x − R( )2 2R2 + x2 − 2xR( )−7 2 ⎤

⎦

 

  Again substituting 
  
x = R

2
 and canceling terms, 

  

d2B
dx2 = 0 . 

P30.61 We have a pair of Helmholtz coils whose separation distance is equal 
to their radius R. To find the magnetic field halfway between the coils 
on their common axis, we use Equation 30.7 to find the field produced 
on the axis of a loop the distance x = R/2 from its center:  

   

  

B = 2 µ0IR
2

2 R 2( )2 + R2⎡
⎣

⎤
⎦

3 2 = µ0IR
2

1
4 + 1[ ]3 2 R3

= µ0I
1.40R  for 1 turn 

 For N turns in each coil,  
   

  

B = µ0NI
1.40R

=
4π × 10−7  T ⋅m/A( )100 10.0 A( )

1.40 0.500 m( )
= 1.80× 10−3  T = 1.80 mT

 

P30.62 Model the two wires as straight parallel wires (!). From the treatment 
of this situation in the chapter text (refer to Equation 30.12), we have 

 (a) 
   
FB = µ0I

2
2π a

 

  

  

FB =
4π × 10−7  T ⋅m/A( ) 140 A( )2 2π( ) 0.100 m( )⎡⎣ ⎤⎦

2π 1.00× 10−3  m( )
= 2.46 N   upward
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ANS. FIG. P30.62 

 (b) 

   

Equation 30.7, Bx = µ0Ia
2

2 a2 + x2( )3/2  is the expression for 

the magnetic field produced a distance x above the 
center of a loop. The magnetic field at the center of the 
loop or on its axis is much weaker than the magnetic 
field just outside the wire. The wire has negligible 
curvature on the scale of 1 mm, so we model the lower 
loop as a long straight wire to find the field it creates at 
the location of the upper wire.

 

 (c) The acceleration of the upper loop is found from Newton’s 
second law: 

   
  F∑ = mloopaloop = FB − mloopg:   

    

  

aloop =
FB − mloopg

mloop

=
2.46 N − 0.021 0 kg( ) 9.80 m/s2( )

0.021 0 kg( )
= 107 m s2    upward

 

P30.63 In the textbook Figure P30.63, wire 1 carries current along the x axis 
and wire 2 carries current along the y axis. 

 Choosing out of the page as the positive field direction, the field at 
point P is 

   

  

B = B1 − B2 = µ0

2π
I1

r1

− I2

r2

⎛
⎝⎜

⎞
⎠⎟

=
4π × 10−7  T ⋅m A( )

2π
5.00 A

0.400 m
− 3.00 A

0.300 m
⎛
⎝⎜

⎞
⎠⎟ = 5.00× 10−7  T

 

 The result is positive; therefore, the field at P is 

 (a) 
 

0.500 µT  

 (b)  
out of the page  
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 (c) At 30.0 cm above the intersection of the wires, the field 
components are as shown in ANS. FIG. P30.63, where 

   

  

By = −B1 = −µ0I1

2πr

= −
4π × 10−7  T ⋅m A( ) 5.00 A( )

2π 0.300 m( )
= −3.33× 10−6  T

 

  and 
  
Bx = B2 = µ0I2

2πr
=

4π × 10−7  T ⋅m A( ) 3.00 A( )
2π 0.300 m( )

= 2.00× 10−6  T  

 

ANS. FIG. P30.63 

  The resultant field is 

   
  
B = Bx

2 + By
2 = 3.89× 10−6  T  at 

  
θ=tan−1 By

Bx

⎛

⎝
⎜

⎞

⎠
⎟ = −59.0°  

  or 

    


B = 3.89 µT  in the xy  plane and at 59.0° clockwise  

      from the +x direction

 

P30.64 (a) The magnetic field at the center of a circular current loop of 
radius R and carrying current I is   B = µ0I /2R.  The direction of 
the field at this center is given by the right-hand rule. Taking out 
of the page (toward the reader) as positive, the net magnetic field 
at the common center of these coplanar loops is 

   

  

Bnet = B2 − B1 = µ0I2

2r2

− µ0I1

2r1

=
4π × 10−7  T ⋅m A( )

2
3.00 A

9.00× 10−2  m
− 5.00 A

12.0× 10−2  m
⎛
⎝⎜

⎞
⎠⎟

= −5.24× 10−6  T → Bnet = 5.24 µT

 

 (b) By our convention above (out of the page is positive), the result of 
part (a) tells us that the net magnetic field is 

 
into the page . 
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 (c) To have Bnet = 0, it is necessary that I2/r2 = I1/r1, or 

   
  
r2 = I2

I1

⎛

⎝
⎜

⎞

⎠
⎟r1 = 3.00 A

5.00 A
⎛
⎝
⎜

⎞
⎠
⎟ 12.0 cm( ) = 7.20 cm  

P30.65 (a) In 
    
d

B = µ0

4π r2 Id

s × r̂ , the moving charge constitutes a bit of current 

as in I = nqvA. For a positive charge the direction of    d

s  is the 

direction of   

v , so 

    
d

B = µ0

4π r2 nqA ds( ) v × r̂ . Next, A (ds) is the 

volume occupied by the moving charge, and nA (ds) = 1 for just 
one charge. Then,  

   
    


B = µ0

4π
q

v × r̂
r2  

 (b) The magnitude of the field is 
  

  

B =
4π × 10−7  T ⋅m A( ) 1.60× 10−19  C( ) 2.00× 107  m s( )

4π 1.00× 10−3  m( )2 sin 90.0°

= 3.20× 10−13  T

 

 (c) The magnetic force on a second proton moving in the opposite 
direction is 

   

    

FB = q

v ×

B = 1.60× 10−19  C( ) 2.00× 107  m s( )

                                               × 3.20× 10−13  T( )sin 90.0°

FB = 1.02 × 10−24  N  directed away from the first proton

 

 (d) The electric force on a second proton moving in the opposite 
direction is 

   

  

Fe = qE = keq1q2

r2 =
8.99× 109  N ⋅m2 C2( ) 1.60× 10−19  C( )2

1.00× 10−3( )2  

   
  
Fe = 2.30× 10−22  N  directed away from the first proton  

P30.66 (a) 
  
B = µ0I

2π r
=

4π × 10−7  T ⋅m A( ) 24.0 A( )
2π 0.017 5 m( )

= 2.74× 10−4  T  

 (b) Because current is diverted through the bar, only half of each rail 
carries current, so the field produced by each rail is half what an 
infinitely long wire produces.  
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  Therefore, at point C, conductor AB produces a field  

   
  

1
2

2.74× 10−4  T( ) − ĵ( ) ,   

conductor DE produces a field of 
  

1
2

2.74× 10−4  T( ) − ĵ( ) ,  BD 

produces no field, and AE produces negligible field. The total 

field at C is 
  

2.74 × 10−4  T − ĵ( ) .  

 

ANS. FIG. P30.66 

 (c) 

 

Under the assumption that the rails are infinitely long, the
length of rail to the left of the bar does not depend on the
location of the bar.

  

  The force on the bar is  
   

     


FB = I


 ×

B = 24.0 A( ) 0.035 0 mk̂( ) × 5 2.74 × 10−4  T( ) − ĵ( )⎡

⎣
⎤
⎦

= 1.15 × 10−3 î N

 

  The field has magnitude  

 (d)  1.15× 10−3  N  in the 

 (e)   +x direction.  

 (f) The bar is already so far from AE that it moves through nearly 
constant magnetic field. 

 

Yes, length of the bar, current, and field are constant, 
so force is constant.
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 (g) The acceleration is 
    


a =


F∑

m
=

1.15 × 10−3  N( ) î

3.00 × 10−3  kg
= 0.384 m s2( ) î:  

   
  
v f

2 = vi
2 + 2ax = 0 + 2 0.384 m s2( ) 1.30 m( )  

   so 
    

v f = 0.999 m s( ) î .  

P30.67 Each turn creates a field of 
  

µ0I
2R

 at the center of the coil. In all, they 

create the field 

  
   
B = µ0I

2
1

R1

+ 1
R2

++ 1
R50

⎛

⎝
⎜

⎞

⎠
⎟  

 

ANS. FIG. P30.67 

 Using a spreadsheet to calculate the sum, we have  
  

   

B = µ0I
2

1
5.05

+ 1
5.15

++ 1
9.95

⎛
⎝⎜

⎞
⎠⎟

1
10−2  m

⎛
⎝⎜

⎞
⎠⎟

=
4π × 10−7  T ⋅m/A( )I

2
6.931347( ) 100 m−1( )

 

 Therefore,   
B = 4.36× 10−4 I , where B is in teslas and I  is in amperes.  

P30.68 The central wire creates field 
    


B = µ0I1

2π R
 counterclockwise. The curved 

portions of the loop feel no force since     

 ×

B = 0  there. The straight 

portions both feel     I

 ×

B  forces to the right, amounting to  

  
    


FB = I2 2L µ0I1

2π R
= µ0I1I2L

π R
 to the right  
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Challenge Problems 
P30.69 (a) Let the axis of the solenoid lie along the y axis from   y = −  to y = 

0. We will determine the field at position y = x: this point will be 
inside the solenoid if    − < x < 0  and outside if   x < −  or x > 0. We 
think of solenoid as formed of rings, each of thickness dy. Now I 
is the symbol for the current in each turn of wire and the number 

of turns per length is 
  

N


⎛
⎝
⎜

⎞
⎠
⎟ . So the number of turns in the ring is 

  

N


⎛
⎝
⎜

⎞
⎠
⎟dy  and the current in the ring is 

   
Iring = I

N


⎛
⎝⎜

⎞
⎠⎟ dy.  Now, we use 

Equation 30.7 for the field created by one ring: 

    

  

Bring =
µ0Iringa2

2 x − y( )2 + a2⎡
⎣

⎤
⎦

3 2  

  where x – y is the distance from the center of the ring, at location 
y, to the field point (note that y is negative, so x – y = x + |y|). 
Each ring creates a field in the same direction, along the y axis, so 
the whole field of the solenoid is 

    

   

B = Bring
all rings
∑ =

µ0Iringa2

2 x − y( )2 + a2⎡
⎣

⎤
⎦

3 2 →∑
µ0I N ( )a2dy

2 x − y( )2 + a2⎡
⎣

⎤
⎦

3 2
−

0

∫

=
µ0INa2

2
dy

x − y( )2 + a2⎡
⎣

⎤
⎦

3 2
−

0

∫

 

  To perform the integral we change variables to u = x – y and  
dy = –du. Then, 

    

   
B = −

µ0INa2

2
du

u2 + a2( )3 2
x+

x

∫
 

  and then using the table of integrals in the appendix, 

    

   

B = − µ0INa2

2
u

a2 u2 + a2
x+

x

= − µ0IN
2

x
x2 + a2

− x + 

x + ( )2 + a2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= µ0IN
2

x + 

x + ( )2 + a2
− x

x2 + a2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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 (b) If    is much larger than a and x = 0, we have 

   
   
B ≅ µ0IN

2


2
+ 0

⎡

⎣
⎢

⎤

⎦
⎥= µ0IN

2
 

  This is just half the magnitude of the field deep within the 
solenoid. We would get the same result by substituting   x = −  to 
describe the other end. 

P30.70 Consider first a solid cylindrical rod of radius R carrying current 
toward you, uniformly distributed over its cross-sectional area. To find 
the field at distance r from its center we consider a circular loop of 
radius r: 

   

    


B ⋅ ds∫ = µ0Iinside

B2π r = µ0π r2 J B = µ0 Jr
2


B = µ0J

2
k̂ × r

 

 

ANS. FIG. P30.70 

 Now the total field at P inside the saddle coils is the field due to a solid 
rod carrying current toward you, centered at the head of vector   


d , plus 

the field of a solid rod centered at the tail of vector   

d  carrying current 

away from you. 

   
    


B1 +


B2 = µ0J

2
k̂ × r1 + µ0J

2
−k̂( )× r2  

 Now note     

d + r1 = r2 . Then, 

   

     


B1 +


B2 = µ0J

2
k̂ × r1 −

µ0J
2

k̂ ×

d + r1( ) = µ0J

2

d× k̂

= µ0Jd
2

 down in the diagram
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P30.71 At a point at distance x from the left end of the bar, current I2 creates 

magnetic field 
    


B = µ0I2

2π h2 + x2
 to the left and above the horizontal at 

angle θ where 
  
tanθ = x

h
. This field exerts force on an element of the 

rod of length dx 

   

    

d

F = I1


×

B = I1

µ0I2dx

2π h2 + x2
sinθ

right hand rule

= µ0I1I2dx

2π h2 + x2

x

h2 + x2
 into the page

   

   
    
d

F = µ0I1I2xdx

2π h2 + x2( ) −k̂( )  

 

ANS. FIG. P30.71 

 The whole force is the sum of the forces on all of the elements of the 
bar: 

   

    


F = µ0I1I2xdx

2π h2 + x2( ) −k̂( )
x=0



∫ =
µ0I1I2 −k̂( )

4π
2xdx

h2 + x2
0



∫

=
µ0I1I2 −k̂( )

4π
ln h2 + x2( )

0



=
µ0I1I2 −k̂( )

4π
ln h2 + 2( )− ln h2⎡⎣ ⎤⎦

=
10−7  N( ) 100 A( ) 200 A( ) −k̂( )

A2 ln
0.500 cm( )2 + 10.0 cm( )2

0.500 cm( )2

⎡

⎣
⎢

⎤

⎦
⎥

= 2 × 10−3  N −k̂( )ln 401 = 1.20× 10−2  N −k̂( )
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P30.72  (a) See ANS. FIG. P30.72(a). 

 

(currents are into the paper) 

ANS. FIG. P30.72(a) 

 

at a distance z above the plane of the conductors 

ANS. FIG. P30.72(b) 

 (b)  By symmetry, the contribution of each wire to the magnetic field 
at the origin is the same, but the directions of the fields are 
opposite, so the total field is  zero . We can see this from 
cancellation of the separate fields in ANS. FIG. P30.72(a).  

 (d) We choose to do part (d) first. At a point on the z axis, the 

contribution from each wire has magnitude 
  
B = µ0I

2π a2 + z2
 and is 

perpendicular to the line from this point to the wire as shown in 
ANS. FIG. P30.72(b). Combining fields, the vertical components 
cancel while the horizontal components add, yielding 

   
  
By = 2 µ0I

2π a2 + z2
sinθ

⎛

⎝
⎜

⎞

⎠
⎟ = µ0I

π a2 + z2

z

a2 + z2

⎛

⎝
⎜

⎞

⎠
⎟ = µ0Iz

π a2 + z2( )  

    
  
By =

4π × 10−7( ) 8.00( )z

π (0.0300)2 + z2⎡⎣ ⎤⎦
  so 

   
     


B = 32 × 10−7 z

9× 10−4 + z2 ĵ, where 

B is in teslas and z is in meters.  

 (c) From part (d), taking the limit z → ∞ gives 1/z → 0; so, the field is 

 zero , as we should expect. 

 (e) The condition for a maximum is: 

   

  

dBy

dz
=

−µ0Iz 2z( )
π a2 + z2( )2 + µ0I

π a2 + z2( ) = 0   or  

  

µ0I
π

a2 − z2( )
a2 + z2( )2 = 0  
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  Thus, along the z axis, the field is a maximum at 

  
d = a = 3.00 cm . 

 (f) Using the equation derived in part (d), the value of the maximum 
field is  

   

   


B =

32 × 10−7( ) 0.030 0( )
9× 10−4 + (0.030 0)2 ĵ T = 5.33× 10−5  T = 53.3 ĵ µT

 

P30.73 (a) From the shape of the wire, 

   
  
r = f (θ) = eθ     →     dr

dθ
= eθ = r  

  and so we have  

   
  
tan β = r

dr / dθ
= r

r
= 1→β = 45° = π 4  

 

 

ANS. FIG. P30.73 

 (b) At the origin, there is no contribution from the straight portion of 
the wire since     d


s × r̂ = 0 . For the field contribution from the spiral, 

refer to the figure. The direction of     d

s × r̂  is out of the page. The 

magnitude     d

s × r̂ = sin 3π 4( )  because the angle between    d


s  and 

  ̂r  is always 180° – 45° = 135° = 3π/4. 

  Also, from the figure,  

     dr = dssinπ 4 = ds 2 → ds = 2dr  

  The contribution to the magnetic field is then  
   

    

dB = d

B = µ0I

4π( )
d

s × r̂( )
r2 = µ0I

4π( )
d

s sinθ r̂

r2

= µ0I
4π( )

2dr
r2 sin

3π
4

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
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  The total magnetic field is  

   
  
B = µ0I

4π
2 dr
r2

1

2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
r2

θ=0

2π

∫ = µ0I
4π

r−2dr
θ=0

2π

∫ = −µ0I
4π

r−1( )
θ=0

2π

 

  Substitute  r = eθ : 
  
B = −µ0I

4π
e−θ⎡⎣ ⎤⎦0

2π
= −µ0I

4π
e−2π − e0⎡⎣ ⎤⎦= µ0I

4π
1− e−2π( )  

 
out of the page.  

P30.74 (a)  Consider the sphere as being built up of little spinning ring 
elements of radius r, thickness dr, and height dx, centered on the 
rotation axis. Each ring holds charge dQ:  

     dQ = ρdV = ρ 2π rdr( ) dx( )  

 

ANS. FIG. P30.74 

  Each ring, with angular speed ω, takes a period   T =ω/2π  to 
complete one rotation. Thus, each ring carries current 

   
  
dI = dQ

T
= ω

2π
ρ 2π rdr( ) dx( )⎡⎣ ⎤⎦= ρωrdrdx  

  The contribution of each ring element to the magnetic field at a 
point on the rotation axis a distance x from the center of the 
sphere is given by Equation 30.7:  

   
  

dB = µ0r
2dI

2 x2 + r2( )3 2  

  Combining the above terms, the field contribution is of a ring 
element is 

   
  

dB = µ0ρω r3drdx

2 x2 + r2( )3 2  
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  The contributions of all rings gives  

    
  

B = µ0ρω
2

r3drdx

x2 + r2( )3 2
r=0

R2 −x2

∫
x=−R

+R

∫  

  To evaluate the integral, let v = r2 + x2, dv = 2rdr, and r2 = v – x2. 
    

  

B = µ0ρω
2

v − x2( )dv
2v3 2 dx

v=x2

R2

∫
x=−R

+R

∫

= µ0ρω
4

v−1 2 dv − x2 v−3 2 dv
v=x2

R2

∫
v=x2

R2

∫
⎡

⎣
⎢

⎤

⎦
⎥dx

x=−R

R

∫

B = µ0ρω
4

2v1 2
x2

R2

+ 2x2( )v−1 2
x2

R2⎡
⎣⎢

⎤
⎦⎥
dx

x=−R

R

∫

= µ0ρω
4

2 R − x( ) + 2x2 1
R
− 1

x
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥dx

x=−R

R

∫

B = µ0ρω
4

2
x2

R
− 4 x + 2R

⎡
⎣⎢

⎤
⎦⎥
dx

−R

R

∫

= 2µ0ρω
4

2
x2

R
− 4x + 2R

⎡
⎣⎢

⎤
⎦⎥
dx

0

R

∫

B = 2µ0ρω
4

2R3

3R
− 4R2

2
+ 2R2⎛

⎝⎜
⎞
⎠⎟

= µ0ρωR2

3

 

 (b) From part (a), the current associated with each rotating ring of 
charge is 

   
 dI = ρωrdrdx   

  The magnetic moment contributed by this ring is 
   

  dµ = A dI( ) = πr2( ) ρωrdrdx( ) = πωρr3drdx
 

  The total magnetic moment is  

   

  

µ = πωρ r3 dr
r=0

R2−x2

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dx

x=−R

+R

∫ = πωρ
R2 − x2( )4

4
dx

x=−R

+R

∫

= πωρ
R2 − x2( )2

4
dx

x=−R

+R

∫
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µ = πωρ
4

R4 − 2R2x2 + x4( )dx
x=−R

+R

∫

= πωρ
4

R4 2R( )− 2R2 2R3

3
⎛
⎝⎜

⎞
⎠⎟

+ 2R5

5
⎡

⎣
⎢

⎤

⎦
⎥

 

   
  
µ = πωρ

4
R5 2 − 4

3
+ 2

5
⎛
⎝⎜

⎞
⎠⎟ = πωρR5

4
16
15

⎛
⎝⎜

⎞
⎠⎟ = 4πωρR5

15
 

P30.75 Note that the current I exists in the conductor with a current density 

 
J = I

A
, where 

   
  
A = π a2 − a2

4
− a2

4

⎡

⎣
⎢

⎤

⎦
⎥=

π a2

2
 

 Therefore 
  
J = 2I

π a2 . 

 

ANS. FIG. P30.75 

 To find the field at either point P1 or P2, find Bs which would exist if the 
conductor were solid, using Ampère’s law. Next, find B1 and B2 that 

would be due to the conductors of radius 
  

a
2

 that could occupy the void 

where the holes exist. Then use the superposition principle and 
subtract the field that would be due to the part of the conductor where 
the holes exist from the field of the solid conductor. 

 (a) At point P1,  

   
  
Bs =

µ0J π a2( )
2π r

, 
  
B1 =

µ0 Jπ a 2( )2

2π r − a 2( )( )
, and 

  
B2 =

µ0Jπ a 2( )2

2π r + a 2( )( )
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B = Bs − B1 − B2

= µ Jπ a2

2π
1
r
− 1

4 r − a 2( )( ) −
1

4 r + a 2( )( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

B = µ0 2I( )
2π

4r2 − a2 − 2r2

4r r2 − a2 4( )( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= µ0I
π r

2r2 − a2

4r2 − a2

⎡
⎣⎢

⎤
⎦⎥

 directed to the left

 

 (b) At point P2,  

   
  
Bs =

µ0J π a2( )
2π r

 and 

  

′B1 = ′B2 =
µ0J π a 2( )2

2π r2 + a 2( )2
 

  The horizontal components of   ′B1  and   ′B2  cancel while their 
vertical components add. 

   

  

B = Bs − ′B1 cosθ − ′B2 cosθ

=
µ0J π a2( )

2π r
− 2

µ0Jπ a2 4

2π r2 + a2 4( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

r

r2 + a2 4( )

B =
µ0J π a2( )

2π r
1− r2

2 r2 + a2 4( )( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= µ0 2I( )
2π r

1− 2r2

4r2 + a2

⎡
⎣⎢

⎤
⎦⎥

= µ0I
π r

2r2 + a2

4r2 + a2

⎡
⎣⎢

⎤
⎦⎥

 directed toward the top of the page

 

P30.76 By symmetry of the arrangement, the magnitude of the net magnetic 
field at point P is BP = 8B0x where B0 is the contribution to the field due 

to current in an edge length equal to 
  

L
2

. In order to calculate B0, we use 

the Biot-Savart law and consider the plane of the square to be the yz 
plane with point P on the x-axis. The contribution to the magnetic field 
at point P due to a current element of length dz and located a distance z 
along the axis is given by the integral form of the Biot-Savart law as 

   
     


B0 = µ0I

4π
d

 × r̂
r2∫  
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ANS. FIG. P30.76 

 From ANS. FIG. P30.76 we see that  

     r = x2 + L2 4 + z2  and 
     
d

 × r̂ = dzsinθ = dz L2 4 + x2

L2 4 + x2 + z2  

 By symmetry all components of the field   

B  at P cancel except the 

components along x (perpendicular to the plane of the square); and 

     B0x = B0 cosφ   where  

  
cosφ = L 2

L2 4 + x2
 

 Therefore,  

   
    


B0 = B0x = µ0I

4π
sinθ cosφdz

r2
0

L 2

∫  

 and at P, BP = 8B0x.  

 Using the expressions given above for sinθ, cosφ, and r, we find 
   

  

BP = 8
µ0I
4π

⎛
⎝⎜

⎞
⎠⎟

1
L2 4 + x2 + z2

0

L 2

∫
L2 4 + x2

L2 4 + x2 + z2

L 2
L2 4 + x2

dz

= µ0IL
π

dz

L2 4 + x2 + z2( )3
20

L 2

∫

= µ0IL
8π

1
L2 4 + x2( )

z
L2 4 + x2 + z2

0

L 2

= µ0IL
π

1
L2 4 + x2( )

L 2
L2 4 + x2 + L2 4

− 0
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 Therefore,  

   
  

BP = µ0IL
2

2π x2 + L2 4( ) x2 + L2 2
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P30.77 (a) From Equation 30.9, the magnetic field produced by one loop at 
the center of the second loop is given by  

   
  
B = µ0IR2

2x3 =
µ0I π R2( )

2π x3 = µ0µ
2π x3

  

  where the magnetic moment of either loop is 
  
µ = I π R2( ) . 

Therefore,  
   

  

Fx = µ dB
dx

= µ d
dx

µ0µ
2π x3

⎛
⎝⎜

⎞
⎠⎟

= µ µ0µ
2π

⎛
⎝⎜

⎞
⎠⎟

3
x4

⎛
⎝⎜

⎞
⎠⎟

=
3µ0 Iπ R2( )2

2π x4 = 3π
2

µ0I
2R4

x4

 

 (b) 

  

Fx = 3π
2

µ0I
2R4

x4 = 3π
2

4π × 10−7  T ⋅m A( ) 10.0 A( )2 5.00× 10−3  m( )4

5.00× 10−2  m( )4

= 5.92 × 10−8  N

 

 
 

 

 

 



Chapter 30     411 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 

ANSWERS TO EVEN-NUMBERED PROBLEMS 
 
P30.2 (a) toward the left; (b) out of the page; (c) lower left to upper right 

P30.4 675 A, downward 

P30.6 12.5 T 

P30.8 
    


B = 1+ 1

π
⎛
⎝
⎜

⎞
⎠
⎟
µ0I
2R

 directed into the page( )  

P30.10 
  

µ0I
4π x

 into the paper  

P30.12 See ANS. FIG. P30.12 

P30.14 (a) at y = –0.420 m; (b) 
  
3.47 × 10−2  N − ĵ( ) ; (c)   −1.73× 104 ĵ N C  

P30.16 (a) See ANS. FIG. P30.16; (b) 3.84 × 10–21 N up; (c) 2.14 × 10–5 m; (d) This 
distance is negligible compared to 50 m, so the electron does move in a 
uniform field; (e) 134 revolutions 

P30.18 (a) 
  

4.50µ0I
π L

; (b) stronger 

P30.20 (a) 4.00 µT toward the bottom of the page; (b) 6.67 µT at 167.0° from the 
positive x axis 

P30.22 (a) 8.00 A; (b) opposite directions; (c) force of interaction would be 
attractive and the magnitude of the force would double 

P30.24 (a) The situation is possible in just one way; (b) 12.0 cm to the left of 
wire 1; (c) 2.40 A down 

P30.26 
   

µ0I1I2
2π

a
c c + a( )
⎡

⎣
⎢

⎤

⎦
⎥ to the left  

P30.28 This is the required center-to-center separation distance of the wires, 
but the wires cannot be this close together. Their minimum possible 
center-to-center separation distance occurs if the wires are touching, 
but this value is 2r = 2(25.0 μm) = 50.0 μm, which is much larger than 
the required value above.  We could try to obtain this force between 
wires of smaller diameter, but these wires would have higher 
resistance and less surface area for radiating energy.  It is likely that 
the wires would melt very shortly after the current begins. 

P30.30 500 A 

P30.32 (a) 3.60 T; (b) 1.94 T 
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P30.34 
  

µ0Js

2
 

P30.36 (a) 6.34 × 10–3 N/m; (b) inward toward the center of the bundle;  
(c) greatest at the outer surface 

P30.38 (a) 
  

µ0br1
2

3
 for r1 < R or inside the cylinder( ) ; 

(b) 
  

µ0bR3

3r2

 for r2 > R or outside the cylinder( )  

P30.40 4.77 × 104 turns 

P30.42 (a) Make the wire as long and thin as possible without melting when it 
carries the 5-A current; (b) As small in radius as possible with your 
experiment fitting inside. Then with a smaller circumference, the wire 
can form a solenoid with more turns. 

P30.44 207 W 

P30.46 (a) –Bπ R2 cosθ ; (b) Bπ R2 cosθ 

P30.48 (a) 7.40 µWb; (b) 2.27 µWb 
P30.50 2.02 

P30.52 0.167 µT out of the page 

P30.54 This current would instantly vaporize any wire of reasonable size.  For 
example, if we imagine a 1.00-m segment of copper wire 10 cm in 
diameter, a huge wire, this current delivers over a terawatt of power to 
this short segment! Furthermore, the power delivered to such a wire 
wrapped around the Earth is on the order of 1020 W, which is larger 
than all of the solar power delivered to the Earth by the Sun. 

P30.56 
  

µ0qω
2.5 5πR

 

P30.58 (a) 12.6 µT; (b) 56.0 µT 

P30.60 (a) 

  

B = Bx1 + Bx2 = Nµ0IR2

2
1

x2 + R2( )3 2 + 1

R − x( )2 + R2⎡
⎣

⎤
⎦

3 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

; (b) See 

P30.60(b)  for full explanation. 

P30.62 (a) 2.46 N upward; (b) Equation 30.7 is the expression for the magnetic 
field produced a distance x above the center of a loop. The magnetic 
field at the center of the loop or on its axis is much weaker than the 
magnetic field just outside the wire. The wire has negligible curvature 
on the scale of 1 mm, so we model the lower loop as a long straight 
wire to find the field it creates at the location of the upper wire; (c) 107 
m/s2 upward 
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P30.64 (a) 5.24 µT; (b) into the page; (c) 7.20 cm 

P30.66 (a) 2.74 × 10–4 T; (b) 
  
2.74× 10−4  T − ĵ( ) ; (c) Under the assumption that the 

rails are infinitely long, the length of rail to the left of the bar does not 
depend on the location of the bar; (d) 1.15 × 10–3 N; (e) +x direction;  
(f) Yes, length of the bar, current, and field are constant, so force is 
constant; (g)   0.999 m s( ) î  

P30.68 
  

µ0I1I2L
π R

 to the right   

P30.70 See P30.70 for full explanation. 

P30.72 (a) See ANS FIG P30.72(a); (b) zero; (c) zero; (d) 
    


B = 32 × 10−7 z

9× 10−4 + z2 ĵ , 

where   

B  is in teslas and z is in meters; (e) d = a = 3.00 cm; (f)   53.3 ĵ µT  

P30.74 (a) 
  

µ0ρωR2

3
; (b) 

  

4πωρR5

15
 

P30.76 See P30.76 for full explanation. 
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31 
Faraday’s Law and Inductance 

 

CHAPTER OUTLINE 
 

31.1  Faraday’s Law of Induction 

31.2  Motional emf 

31.3  Lenz’s Law 

31.4 Induced emf and Electric Fields 

31.5  Generators and Motors 

31.6 Eddy Currents 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ31.1 The ranking is E > A > B = D = 0 > C. The emf is given by the 
negative of the time derivative of the magnetic flux. We pick out the 
steepest downward slope at instant E as marking the moment of 
largest emf. Next comes A. At B and at D the graph line is horizontal 
so the emf is zero. At C the emf has its greatest negative value. 

OQ31.2 (i) Answer (c). (ii) Answers (a) and (b). The magnetic flux is 

  ΦB = BAcosθ.  Therefore the flux is a maximum when   

B  is 

perpendicular to the loop of wire and zero when there is no 
component of magnetic field perpendicular to the loop. The flux is 
zero when the loop is turned so that the field lies in the plane of its 
area. 

OQ31.3 Answer (b). With the current in the long wire flowing in the direction 
shown in Figure OQ31.3, the magnetic flux through the rectangular 
loop is directed into the page. If this current is decreasing in time, the 
change in the flux is directed opposite to the flux itself (or out of the 
page). The induced current will then flow clockwise around the loop, 
producing a flux directed into the page through the loop and 



Chapter 31     415 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

opposing the change in flux due to the decreasing current in the long 
wire.  

OQ31.4 Answer (a). Treating the original flux as positive (i.e., choosing the 
normal to have the same direction as the original field), the flux 
changes from 

    ΦBi = BiAcosθi = BiAcos0° = BiA    

 to     ΦBf = Bf Acosθ f = Bf Acos180° = −Bf A.  

   

  

ε = − ΔΦB

Δt
= −

−Bf A( )− BiA( )
Δt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
2 Bf + Bi( )A

Δt

= 2
0.060 T( )+ 0.040 T( )

0.50 s
⎡
⎣⎢

⎤
⎦⎥
π 0.040 m( )2⎡⎣ ⎤⎦ = 2.0× 10−3  V

= 2.0 mV

 

OQ31.5 Answers (c) and (d). The magnetic flux through the coil is constant in 
time, so the induced emf is zero, but positive test charges in the 
leading and trailing sides of the square experience a 

   

F = q


v ×

B( )  

force that is in direction (velocity to the right) × (field 
perpendicularly into the page away from you) = (force toward the 
top of the square). The charges migrate upward to give positive 
charge to the top of the square until there is a downward electric 
field large enough to prevent more charge separation.  

OQ31.6 Answers (b) and (d). By the magnetic force law 
    

F = q


v ×

B( ):  the 

positive charges in the moving bar will feel a magnetic force in 
direction (velocity to the right) × (field perpendicularly out of the 
page) = (force downward toward the bottom end of the bar). These 
charges will move downward and therefore clockwise in the circuit. 
The current induced in the bar experiences a force in the magnetic 
field that tends to slow the bar: (current downward) × (field 
perpendicularly out of the page) = (force to the left); therefore, an 
external force is required to keep the bar moving at constant speed to 
the right.  

OQ31.7 Answer (a). As the bar magnet approaches the loop 
from above, with its south end downward as shown 
in the figure, the magnetic flux through the area 
enclosed by the loop is directed upward and 
increasing in magnitude. To oppose this increasing 
upward flux, the induced current in the loop will 
flow clockwise, as seen from above, producing a 
flux directed downward through the area enclosed 

ANS. FIG.  

OQ31.7 
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by the loop. After the bar magnet has passed through the plane of the 
loop, and is departing with its north end upward, a decreasing flux is 
directed upward through the loop. To oppose this decreasing 
upward flux, the induced current in the loop flows counterclockwise 
as seen from above, producing flux directed upward through the 
area enclosed by the loop. From this analysis, we see that (a) is the 
only true statement among the listed choices. 

OQ31.8 Answer (b). The maximum induced emf in a generator is 
proportional to the rate of rotation. The rate of change of flux of the 
external magnetic field through the turns of the coil is doubled, so 
the maximum induced emf is doubled.  

OQ31.9 (i) Answer (b). The battery makes counterclockwise current I1 in the 
primary coil, so its magnetic field    


B1  is to the right and increasing 

just after the switch is closed. The secondary coil will oppose the 
change with a leftward field    


B2 ,  which comes from an induced 

clockwise current I2 that goes to the right in the resistor. The upper 
pair of hands in ANS. FIG. OQ31.9 represent this effect. 

 

ANS. FIG. OQ31.9 

 (ii) Answer (c). At steady state the primary magnetic field is 
unchanging, so no emf is induced in the secondary. 

 (iii) Answer (a). The primary’s field is to the right and decreasing as 
the switch is opened. The secondary coil opposes this decrease by 
making its own field to the right, carrying counterclockwise current 
to the left in the resistor. The lower pair of hands shown in ANS. FIG. 
OQ31.9 represent this chain of events. 

OQ31.10 Answers (a), (b), (c), and (d). With the magnetic field perpendicular 
to the plane of the page in the figure, the flux through the closed loop 
to the left of the bar is given by   ΦB = BA,  where B is the magnitude 
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of the field and A is the area enclosed by the loop. Any action which 
produces a change in this product, BA, will induce a current in the 
loop and cause the bulb to light. Such actions include increasing or 
decreasing the magnitude of the field B, and moving the bar to the 
right or left and changing the enclosed area A. Thus, the bulb will 
light during all of the actions in choices (a), (b), (c), and (d).  

 

ANS. FIG. OQ31.10 

OQ31.11 Answers (b) and (d). A current flowing 
counterclockwise in the outer loop of the 
figure produces a magnetic flux through the 
inner loop that is directed out of the page. If 
this current is increasing in time, the change 
in the flux is in the same direction as the  
flux itself (or out of the page). The induced  
current in the inner loop will then flow  
clockwise around the loop, producing a flux through the loop 
directed into the page, opposing the change in flux due to the 
increasing current in the outer loop. The flux through the inner loop 
is given by  ΦB = BA , where B is the magnitude of the field and A is 
the area enclosed by the loop. The magnitude of the flux, and thus 
the magnitude of the rate of change of the flux, depends on the size 
of the area A.  

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ31.1 Recall that the net work done by a conservative force on an object is 
path independent; thus, if an object moves so that it starts and ends at 
the same place, the net conservative work done on it is zero. A positive 
electric charge carried around a circular electric field line in the 
direction of the field gains energy from the field every step of the way. 
It can be a test charge imagined to exist in vacuum or it can be an actual 
free charge participating in a current driven by an induced emf. By 
doing net work on an object carried around a closed path to its starting 
point, the magnetically-induced electric field exerts by definition a 
nonconservative force. We can get a larger and larger voltage just by 
looping a wire around into a coil with more and more turns.  

ANS. FIG. 
OQ31.11 
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CQ31.2 The spacecraft is traveling through the magnetic field of the Earth. 
The magnetic flux through the coil must be changing to produce an 
emf, and thus a current. The orientation of the coil could be changing 
relative to the external magnetic field, or the field is changing 
through the coil because it is not uniform, or both.  

CQ31.3 As water falls, it gains speed and kinetic energy. It then pushes 
against turbine blades, transferring its energy to the rotor coils of a 
large AC generator. The rotor of the generator turns within a strong 
magnetic field. Because the rotor is spinning, the magnetic flux 
through its coils changes in time as   ΦB = BAcosω t.  Generated in the 

rotor is an induced emf of 
  
ε =

−NdΦB

dt
.  This induced emf is the 

voltage driving the current in our electric power lines. 

CQ31.4 Let us assume the north pole of the magnet faces the ring. As the bar 
magnet falls toward the conducting ring, a magnetic field is induced 
in the ring pointing upward. This upward directed field will oppose 
the motion of the magnet, preventing it from moving as a freely-
falling body. Try it for yourself to show that an upward force also 
acts on the falling magnet if the south end faces the ring. 

CQ31.5 To produce an emf, the magnetic flux through the loop must change. 
The flux cannot change if the orientation of the loop remains fixed in 
space because the magnetic field is uniform and constant. The flux 
does change if the loop is rotated so that the angle between the 
normal to the surface and the direction of the magnetic field changes.  

CQ31.6 Yes. The induced eddy currents on the surface of the aluminum will 
slow the descent of the aluminum. In a strong field the piece may fall 
very slowly. 

CQ31.7 Magnetic flux measures the “flow” of the magnetic field through a 
given area of a loop—even though the field does not actually flow. 
By changing the size of the loop, or the orientation of the loop and 
the field, one can change the magnetic flux through the loop, but the 
magnetic field will not change. 

CQ31.8 The increasing counterclockwise current in the solenoid coil 
produces an upward magnetic field that increases rapidly. The 
increasing upward flux of this field through the ring induces an emf 
to produce clockwise current in the ring. The magnetic field of the 
solenoid has a radially outward component at each point on the ring. 
This field component exerts upward force on the current in the ring 
there. The whole ring feels a total upward force larger than its 
weight. 
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CQ31.9 Oscillating current in the solenoid produces an always-changing 
magnetic field. Vertical flux through the ring, alternately increasing 
and decreasing, produces current in it with a direction that is 
alternately clockwise and counterclockwise. The current through the 
ring’s resistance converts electrically transmitted energy into internal 
energy at the rate I2R. 

CQ31.10 (a) Counterclockwise. With the current in 
the long wire flowing in the direction 
shown in the figure, the magnetic flux 
through the rectangular loop is directed 
out of the page. As the loop moves away 
from the wire, the magnetic field 
through the loop becomes weaker, so  
the magnetic flux through the  
loop is decreasing in time, and the change in  
the flux is directed opposite to the flux itself (or into the page). 
The induced current will then flow counterclockwise around 
the loop, producing a flux directed out of the page through the 
loop and opposing the change in flux due to the decreasing flux 
through the loop.  

 (b) Clockwise. In this case, as the loop moves toward from the wire, 
the magnetic field through the loop becomes stronger, so the 
magnetic flux through the loop is increasing in time, and the 
change in the flux has the same direction as the flux itself (or out 
of the page). The induced current will then flow clockwise 
around the loop, producing a flux directed into the page 
through the loop and opposing the change in flux due to the 
increasing flux through the loop. 

 

 
 

 

ANS. FIG. CQ31.10 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 31.1 Faraday’s Law of Induction 
*P31.1 From Equation 31.1, the induced emf is given by 

   

    

ε = ΔΦB

Δt
=
Δ

B ⋅

A( )

Δt

=
2.50 T − 0.500 T( ) 8.00× 10−4  m2( )

1.00 s
1 N ⋅s

1 T ⋅C ⋅m( ) 1 V ⋅C
1 N ⋅m( )

= 1.60 mV

 

 We then find the current induced in the loop from 
   

  
Iloop =

ε
R
= 1.60 mV

2.00 Ω
= 0.800 mA

 

*P31.2 (a) Each coil has a pulse of voltage  
tending to produce counterclockwise  
current as the projectile approaches,  
and then a pulse of clockwise voltage  
as the projectile recedes. 

 (b) 
  
v = d

t
= 1.50 m

2.40 × 10−3  s
= 625 m s  

P31.3 (a) From Faraday’s law, 
   

  
ε = −N

ΔΦ
Δt

= −N
ΔB
Δt

⎛
⎝⎜

⎞
⎠⎟ Acosθ

 

   

  

ε = − 1( )
Bf − Bi

Δt
⎛
⎝⎜

⎞
⎠⎟
π r2( )cosθ

= 1.50 T − 0
0.120 s

⎛
⎝⎜

⎞
⎠⎟ π 0.001 60 m( )2⎡⎣ ⎤⎦ 1( )

= 12.5 T/s( ) π 0.001 60 m( )2⎡⎣ ⎤⎦ = 1.01× 10−4  T

=
101 µV tending to produce clockwise current 
as seen from above

 

 (b) In case (a), the rate of change of the magnetic field was +12.5 T/s. 
In this case, the rate of change of the magnetic field is  
(–0.5 T – 1.5 T)/ 0.08 s = –25.0 T/s: it is twice as large in 
magnitude and in the opposite sense from the rate of change in 
case (a), so the emf is also 

 
twice as large in magnitude and in the opposite sense .  

V1 V2

t0

∆V

ANS. FIG. P31.2 
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P31.4 From Equation 31.2, 

   

  

ε = −N
Δ BAcosθ( )

Δt
= −NBπ r2 cosθ f − cosθ i

Δt
⎛
⎝⎜

⎞
⎠⎟

= −25.0 50.0× 10−6  T( ) π 0.500 m( )2⎡⎣ ⎤⎦
cos180°− cos0°

0.200 s
⎛
⎝⎜

⎞
⎠⎟

ε = +9.82 mV

 

P31.5 With the field directed perpendicular to the plane of the coil, the flux 
through the coil is   ΦB = BAcos0° = BA . For a single loop,  

  

  

ε = ΔΦB

Δt
= B ΔA( )

Δt

=
0.150 T( ) π 0.120 m( )2 − 0⎡⎣ ⎤⎦

0.200 s
= 3.39× 10−2  V = 33.9 mV

 

P31.6 With the field directed perpendicular to the plane of the coil, the flux 
through the coil is   ΦB = BAcos0° = BA . As the magnitude of the field 
increases, the magnitude of the induced emf in the coil is 

  

  

ε =
ΔΦB

Δt
= ΔB

Δt
⎛
⎝⎜

⎞
⎠⎟ A = 0.050 0 T s( ) π 0.120 m( )2⎡⎣ ⎤⎦

= 2.26× 10−3  V = 2.26 mV

 

P31.7 The angle between the normal to the coil and the magnetic field is  
90.0° – 28.0° = 62.0°. For a loop of N turns,  

   

  

ε = −N
dΦB

dt
= −N

d
dt

BAcosθ( )

ε = −NBcosθ ΔA
Δ t

⎛
⎝⎜

⎞
⎠⎟

= −200 50.0× 10−6  T( ) cos62.0°( ) 39.0× 10−4  m2

1.80 s
⎛
⎝⎜

⎞
⎠⎟

= −10.2 µV

 

P31.8 For a loop of N turns, the induced voltage is 
  

    

ε = −N
d

B ⋅

A( )

dt
= −N

0− BiAcosθ
Δt

⎛
⎝⎜

⎞
⎠⎟

=
+200 1.60 T( ) 0.200 m2( )cos0°

20.0× 10−3  s
= 3 200 V
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 The induced current is then 
   

  
I = ε

R
= 3 200 V

20.0 Ω
= 160 A

 

P31.9 Faradays law gives 

   
  
ε = ΔΦB

Δt
= N

dB
dt

⎛
⎝⎜

⎞
⎠⎟ A = N

d
dt

0.010 0t + 0.040 0t2( )⎡
⎣⎢

⎤
⎦⎥

A  

 or    ε = N 0.010 0 + 0.080 0t( )A  

 where ε  is in volts, A is in meters squared, and t is in seconds. At  
t = 5.00 s, suppressing units, 

   

 

ε = 30.0 0.010 0 + 0.080 0 5.00( )[ ] π 0.040 0( )2⎡⎣ ⎤⎦
= 6.18× 10−2 = 61.8 mV

 

P31.10 We have a stationary loop in an oscillating magnetic field that varies 
sinusoidally in time:   B = Bmax sinω t,  where   Bmax = 1.00 × 10−8  T,  

  ω = 2π f ,  and f = 60.0 Hz. The loop consists of a single band (N = 1) 
around the perimeter of a red blood cell with diameter  
d = 8.00 × 10–6 m and area A = π d2/4. The induced emf is then 

  

  

ε = − dΦB

dt
= −N

dB
dt

⎛
⎝⎜

⎞
⎠⎟ A

= −N
d
dt

Bmax sinωt( )A = −ωNABmax cosωt

 

 Comparing this expression to   ε = εmax cosωt,  we see that 

  εmax =ωNABmax.  Therefore,  
  

  

εmax =ωNABmax

= 2π 60.0 Hz( )[ ] 1( ) π 8.00× 10−6  m( )2

4

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1.00× 10−3  T( )

= 1.89× 10−11  V

 

P31.11 The symbol for the radius of the ring is r1, and we use R to represent its 
resistance. The emf induced in the ring is  

   

  
ε = –

d
dt

(BAcosθ) = –
d
dt

(0.500µ0nIA cos0°) = – 0.500µ0nA
dI
dt
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 Note that A must be interpreted as the area A =   πr2
2  of the solenoid, 

where the field is strong:  

   
 

ε = −0.500(4π × 10−7  T ⋅m/A)(1 000 turns/m)

                                              × [π (0.030 0 m)2 ] 270 A/s( )
 

   

 
ε = –4.80 ×  10–4 T ⋅m2

s
⎛
⎝⎜

⎞
⎠⎟

1 N ⋅ s
C ⋅m ⋅T

⎛
⎝⎜

⎞
⎠⎟

1 V ⋅C
N ⋅m

⎛
⎝⎜

⎞
⎠⎟
= −4.80× 10−4 V

 

 (a) The negative sign means that the current in the ring is 
counterclockwise, opposite to the current in the solenoid. Its 
magnitude is 

    

  
Iring =

ε
R

= 0.000 480 V 
0.000 300 Ω

= 1.60 A
 

 (b) 

  

Bring =
µ0I
2r1

=
4π × 10−7  T ⋅m A( ) 1.60 A( )

2 0.050 0 m( )
= 2.01× 10−5  T = 20.1 µT

 

 (c) The solenoid’s field points to the right through the ring, and is 
increasing, so to oppose the increasing field, Bring points to the 

 left .  

 

ANS. FIG. P31.11 

P31.12 See ANS. FIG. P31.11. The emf induced in the ring is 
   

  
ε = d BA( )

dt
= 1

2
d
dt

µ0nI( )A = 1
2

µ0n
dI
dt

π r2
2 = 1

2
µ0nπ r2

2 ΔI
Δt

 

 (a) 
  
Iring =

ε
R

= µ0nπ r2
2

2R
ΔI
Δt

,  counterclockwise as viewed from the left 

end. 

 (b) 
  
B =

µ0I
2r1

=
µ0

2nπ r2
2

4r1R
ΔI
Δt
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 (c) The solenoid’s field points to the right through the ring, and is 
increasing, so to oppose the increasing field, Bring points to the 

 left .  

P31.13 (a) At a distance x from the long, straight 

wire, the magnetic field is 
  
B =

µ0I
2πx

.   

The flux through a small rectangular 
element of length L and width dx 
within the loop is  

   
    
dΦB =


B ⋅d

A =

µ0I
2π x

Ldx:   

   
  
ΦB =

µ0IL
2π

dx
xh

h+w

∫ =
µ0IL
2π

ln
h + w

h
⎛
⎝⎜

⎞
⎠⎟

 

 (b) 
  
ε = − dΦB

dt
= − d

dt
µ0IL
2π

ln
h + w

h
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= − µ0L
2π

ln
h + w

h
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

dI
dt

 

  where 
  

dI
dt

=
d
dt

a + bt( ) = b:  

   

 

ε = −
4π × 10−7  T ⋅m A( ) 1.00 m( )

2π

                       × ln
0.010 0 m + 0.100 m 

0.010 0 m
⎛
⎝⎜

⎞
⎠⎟ 10.0 A/s( )

= −4.80× 10−6  V

 

  Therefore, the emf induced in the loop is 
 

4.80 µV .  

 (c) The long, straight wire produces magnetic flux into the page 
through the rectangle, shown in ANS. FIG. P31.13. As the 
magnetic flux increases, the rectangle produces its own magnetic 
field out of the page to oppose the increase in flux. The induced 
current creates this opposing field by traveling  counterclockwise  
around the loop. 

P31.14 The magnetic field lines are confined to the interior of the solenoid, so 
even though the coil has a larger area, the flux through the coil is the 
same as the flux through the solenoid:  

   
  ΦB = µ0nI( )Asolenoid

 

ANS. FIG. P31.13 
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ε = −N
dΦB

dt
= −Nµ0n π rsolenoid

2( ) dI
dt

= − 15( ) 4π × 10−7  T ⋅m/A( ) 1.00× 103  m−1( )
                                ×π 0.020 0 m( )2 600( )cos 120t( )

= −0.014 2cos 120t( )

 

   

  

ε = − 1.42 × 10−2( )cos 120t( ), 

where t is in seconds and ε  is in V.

 

P31.15 The initial magnetic field inside the solenoid is 
   

  

B = µ0nI = 4π × 10−7 T ⋅m A( ) 100
0.200 m

⎛
⎝⎜

⎞
⎠⎟ 3.00 A( )

= 1.88× 10−3  T

 

 (a) 

  

ΦB = BAcosθ = 1.88 × 10−3  T( ) 1.00 × 10−2  m( )2
cos0°

= 1.88 × 10−7  T ⋅m2

 

 (b) When the current is zero, the flux through the loop is   ΦB = 0  and 
the average induced emf has been 

   

  
ε =

ΔΦB

Δt
=

0− 1.88× 10−7  T ⋅m2

3.00 s
= 6.28× 10−8  V

 

P31.16 The solenoid creates a magnetic field  

   B =   µ0nI  = ( 4π × 10−7  N/A2)(400 turns/m)(30.0 A)(1 – e–1.60 t) 

   B = (1.51 ×  10–2 N/m · A)(1 – e–1.60 t)  

 The magnetic flux through one turn of the flat coil is 
  
ΦB = BdA∫ cosθ ,  

but since dA cosθ  refers to the area perpendicular to the flux, and the 
magnetic field is uniform over the area A of the flat coil, this integral 
simplifies to 

    

  

ΦB = B dA = B πR2( )∫
= 1.51× 10−2  N/m ⋅A( ) 1− e−1.60t( ) π 0.060 0 m( )2⎡⎣ ⎤⎦

= 1.71× 10−4  N/m ⋅A( ) 1− e−1.60t( )
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 The emf generated in the N-turn coil is   ε = −N dΦB/dt.  Because t has 
the standard unit of seconds, the factor 1.60 must have the unit s–1. 

   

  

ε = –(250) 1.71× 10– 4 N ⋅m
A

⎛
⎝⎜

⎞
⎠⎟

d 1 – e–1.60 t( )
dt

  

=  – 0.042 6
N ⋅m

A
⎛
⎝⎜

⎞
⎠⎟ (1.60 s–1)et−1.60

 

   
  ε = 68.2e−1.60t ,  where t is in seconds and ε  is in mV.

  

 

ANS. FIG. P31.16 

P31.17 Faraday’s law, 
  
ε = – N

dΦB

dt
, becomes here   

   
  
ε = – N

d
dt

BAcosθ( ) = – NAcosθ dB
dt

 

 The magnitude of the emf is  
   

  
ε = NAcosθ ΔB

Δt
⎛
⎝⎜

⎞
⎠⎟

 

 The area is  
  

  

A =  ε  

N cosθ ΔB
Δt

⎛
⎝⎜

⎞
⎠⎟

 

  

  

A =  
80.0 × 10–3  V

50 cos30.0o( ) 600 × 10–6  T – 200 × 10–6  T
0.400 s

⎛
⎝⎜

⎞
⎠⎟

= 1.85 m2

 

 Each side of the coil has length  d = A , so the total length of the wire 
is  

   

  L = N(4d) = 4N A = (4)(50) 1.85 m2 = 272 m
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P31.18 (a) Suppose, first, that the central wire is long and straight. The 
enclosed current of unknown amplitude creates a circular 
magnetic field around it, with the magnitude of the field given by 
Ampère’s law. 

     
    

B ⋅ds∫ = µ0I :  

  
B =

µ0Imax sinω t
2π R

 

  at the location of the Rogowski coil, which we assume is centered 
on the wire. This field passes perpendicularly through each turn 
of the toroid, producing flux 

    
    


B ⋅

A =

µ0ImaxA
2π R

sinω t  

  The toroid has 2 π Rn turns. As the magnetic field varies, the emf 
induced in it is 

    

    

ε = −N
d
dt


B ⋅

A = −2π Rn

µ0ImaxA
2π R

d
dt

sinω t

= −µ0ImaxnAω cosω t

 

  This is an alternating voltage with amplitude   εmax = µ0nAω Imax.  
Measuring the amplitude determines the size Imax of the central 
current. Our assumptions that the central wire is long and 
straight and passes perpendicularly through the center of the 
Rogowski coil are all unnecessary. 

 (b) If the wire is not centered, the coil will respond to stronger 
magnetic fields on one side, but to correspondingly weaker fields 
on the opposite side. The emf induced in the coil is proportional 
to the line integral of the magnetic field around the circular axis 
of the toroid. Ampère’s law says that this line integral depends 
only on the amount of current the coil encloses. It does not 
depend on the shape or location of the current within the coil, or 
on any currents outside the coil. 

P31.17 In a toroid, all the flux is confined to the inside of the toroid. From 
Equation 30.16, the field inside the toroid at a distance r from its center is  

  
  
B =

µ0NI
2π r

 

 The magnetic flux is then 

  

  

ΦB = BdA∫ = µ0NImax

2π
sinω t

adr
r∫

= µ0NImax

2π
asinω t ln

b + R
R

⎛
⎝⎜

⎞
⎠⎟
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 and the induced emf is 
  

  
ε = N′ dΦB

dt
= N′ µ0NImax

2π
⎛
⎝⎜

⎞
⎠⎟ω a ln

b + R
R

⎛
⎝⎜

⎞
⎠⎟ cosω t

 

 Substituting numerical values and suppressing units, 
  

  

ε = 20
4π × 10−7( ) 500( ) 50.0( )

2π

              × 2π 60.0( )[ ] 0.020 0( )ln
0.030 0 + 0.040 0

0.040 0
⎛
⎝⎜

⎞
⎠⎟

cosω t

 

  
  
ε = 0.422cosω t  where ε  is in volts and t is in seconds.

 

 

ANS. FIG. P31.19 

P31.20 In Figure P31.20, the original magnetic field points into the page and is 
increasing. The induced emf in the upper loop attempts to generate a 
counterclockwise current in order to produce a magnetic field out of 
the page that opposes the increasing external magnetic flux. The 
induced emf in the lower loop also must attempt to generate a 
counterclockwise current in order to produce a magnetic field out of 
the page that opposes the increasing external magnetic flux. Because of 
the crossing over between the two loops, the emf generated in the 
loops will be in opposite directions. Therefore, the magnitude of the 
net emf generated is  

   

  

εnet = ε2 −ε1 = A2
dB
dt

− A1
dB
dt

= πr2
2  − πr1

2( ) dB
dt

= π dB
dt

r2
2  − r1

2( )

 

 where the upper loop is loop 1 and the lower one is loop 2.  
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 (a) The induced current will be the ratio of the net emf to the total 
resistance of the loops:  

   

   

I  = εnet

R
 = 

π dB
dt

r2
2  − r1

2( )
R


⎛
⎝

⎞
⎠  total

 = 
π dB

dt
r2

2  − r1
2( )

R


⎛
⎝

⎞
⎠ 2πr2  + 2πr1( )

= 

dB
dt

r2
2  − r1

2( )
2 R


⎛
⎝

⎞
⎠ r2  + r1( )

= 

dB
dt

r2  − r1( ) r2  + r1( )

2 R


⎛
⎝

⎞
⎠ r2  + r1( )

 

= 

dB
dt

r2  − r1( )

2 R


⎛
⎝

⎞
⎠

 

  Substitute numerical values: 
   

  
I  = 

2.00 T/s( ) 0.090 0 m − 0.050 0 m( )
2 3.00 Ω/m( )  =  0.013 3 A

 

 (b) The emf in each loop is trying to push charge in opposite directions 
through the wire, but the emf in the lower loop is larger because its 
area is larger (changing flux is proportional to the area of the loop), 
so the lower loop “wins”: the current is counterclockwise in the 
lower loop and clockwise in the upper loop.  

 
 

 

Section 31.2 Motional emf  

Section 31.3 Lenz’s Law 
*P31.21 The angular speed of the rotor blades is  
   

 ω = 2.00 rev s( ) 2π  rad rev( ) = 4.00π  rad s  

 Thus, the motional emf is then 
   

   

ε = 1
2

Bω2 = 1
2

50.0× 10−6  T( ) 4.00π  rad/s( ) 3.00 m( )2

= 2.83 mV

 

P31.22 (a)     

Bext = Bext î  and Bext decreases; therefore, the induced field is 

    

Binduced = Binduced î  (to the right) and the current in the resistor is 

directed from a to b, 
 

to the right .  
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 (b) 
    


Bext = Bext − î( )  increases; therefore, the induced field    


Binduced =  

   
Binduced + î( )  is to the right, and the current in the resistor is 

directed from a to b, 
 
out of the page  in the textbook picture. 

 (c) 
    


Bext = Bext −k̂( )  into the paper and Bext decreases; therefore, the 

induced field is 
    


Binduced = Binduced −k̂( )  into the paper, and the 

current in the resistor is directed from a to b, 
 

to the right .  

P31.23 The motional emf induced in a conductor is proportional to the 
component of the magnetic field perpendicular to the conductor and to 
its velocity. 

  

   

ε = B v = 35.0× 10−6  T( ) 15.0 m( ) 25.0 m/s( )
= 1.31× 10−2  V = 13.1 mV

 

P31.24 (a) The potential difference is equal to the motional emf and is given 
by 

   

   

ε = Bv = 1.20× 10−6  T( ) 14.0 m( ) 70.0 m/s( )
= 1.18× 10−3  V = 11.8 mV

 

 (b) A free positive test charge in the wing feels a magnetic force in 
direction   


v ×

B  = (north) × (down) = (west): it migrates west. The 

wingtip on the pilot’s left is positive. 

 (c) 
 
No change . A positive test charge in the wing feels a magnetic 

force in direction   

v ×

B  = (east) × (down) = (north): it migrates 

north. The left wingtip is north of the pilot.  

 (d) 

 

No. If you try to connect the wings to a circuit containing the light
bulb, you must run an extra insulated wire along the wing. In a
uniform field the total emf generated in the one-turn coil is zero.

 

P31.25 (a) The motional emf induced in a conductor is proportional to the 
component of the magnetic field perpendicular to the conductor 
and to its velocity; in this case, the vertical component of the 
Earth’s magnetic field is perpendicular to both. Thus, the 
magnitude of the motional emf induced in the wire is 

   

   

ε = B⊥v = 50.0× 10−6  T( )sin 53.0°⎡⎣ ⎤⎦ 2.00 m( ) 0.500 m/s( )
= 3.99× 10−5  V = 39.9 µV
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 (b) Imagine holding your right hand horizontal with the fingers 
pointing north (the direction of the wire’s velocity), such that 
when you close your hand the fingers curl downward (in the 
direction of  B⊥ ). Your thumb will then be pointing westward. By 
the right-hand rule, the magnetic force on charges in the wire 
would tend to move positive charges westward. 

 
The west end is positive.  

*P31.26 See ANS. FIG. P31.26. The current is given by 
   

  
I = ε

R
= Bv

R

 

 Solving for the velocity gives 
   

   
v =

IR
B

=
0.500 A( ) 6.00 Ω( )
2.50 T( ) 1.20 m( ) = 1.00 m/s

 

 

ANS. FIG. P31.26 

P31.27 (a) Refer to ANS. FIG. P31.26 above. At constant speed, the net force 
on the moving bar equals zero, or 

   
   


Fapp = I


L ×

B  

  where the current in the bar is   I = ε/R  and the motional emf is 

   ε = B v.  Therefore,  
   

   

FB =
Bv
R
B( ) =

B22v
R

=
2.50 T( )2 1.20 m( )2 2.00 m/s( )

6.00 Ω
= 3.00 N

 

  The applied force is 
 

3.00 N to the right .  

 (b) 
   
P = I 2R =

B22v2

R
= 6.00 W     or    

  
P = Fv = 6.00 W  
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*P31.28 With v representing the initial speed of the bar, let u represent its 
speed at any later time. The motional emf induced in the bar is 

   ε = Bu.  The induced current is 
   
I = ε

R
= Bu

R
.  The magnetic force on 

the bar is backward 
   
F = −IB = − B22u

R
= mdu

dt
.  

 Method one: To find u as a function of time, we separate variables 
thus: 

   

   

− B22

Rm
dt = du

u

− B22

Rm
dt

0

t

∫ = du
uv

u

∫

 

   

   

− B22

Rm
t − 0( ) = ln u − ln v = ln

u
v

e−B22t Rm = u
v

u = ve−B22t Rm = dx
dt

 

 The distance traveled is given by 
   

   

dx
0

xmax

∫ = ve−B22t Rm dt
0

∞

∫ = v − Rm
B22( ) e−B22t Rm − −B22dt

Rm
⎛
⎝⎜

⎞
⎠⎟0

∞

∫

xmax − 0 = − Rmv
B22 e−∞ − e−0[ ] = Rmv

B22

 

 Method two: Newton’s second law is  
   

   

− B22u
R

= − B22

R
dx
dt

= m
du
dt

mdu = − B22

R
dx

 

 Direct integration from the initial to the stopping point gives 
   

   

mdu
v

0

∫ = − B22

R
dx

0

xmax

∫

m 0 − v( ) = − B22

R
xmax − 0( )

xmax = mvR
B22
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*P31.29 The magnetic force on the rod is given by 
   

  FB = IB  

 and the motional emf by 
   

  ε = Bv  

 The current is given by 
   
I = ε

R
= Bv

R
,  so 

   
B = IR
v

.  

 (a) 
   
FB = I 2R

v
 and 

  
I = FBv

R
= 1.00 N( ) 2.00 m/s( )

8.00 Ω
= 0.500 A  

 (b) The rate at which energy is delivered to the resistor is the power 
delivered, given by 

     P = I 2R = 0.500 A( )2 8.00 Ω( ) = 2.00 W  

 (c) For constant force,     P =

F ⋅ v = 1.00 N( ) 2.00 m s( ) = 2.00 W .  

P31.30 To maximize the motional emf, the automobile must be moving east or 
west. Only the component of the magnetic field to the north generates 
an emf in the moving antenna. Therefore, the maximum motional emf is 

   
   εmax  = Bvcosθ  

 Let’s solve for the unknown speed of the car: 
   

   
v =  εmax

Bcosθ

 

 Substitute numerical values:  

   
  
v = 

4.50 × 10−3  V
50.0 × 10−6  T( ) 1.20 m( )cos65.0°

 = 177  m/s  

 This is equivalent to about 640 km/h or 400 mi/h, much faster than the 
car could drive on the curvy road and much faster than any standard 
automobile could drive in general. 

P31.31 The motional emf induced in a conductor is proportional to the 
component of the magnetic field perpendicular to the conductor and to 
its velocity. The total field is perpendicular to the conductor, but not to 
its velocity. As shown in the left figure, the component of the field 
perpendicular to the velocity is   B⊥ = Bcosθ . The motion of the bar 
down the rails produces an induced emf    ε = B⊥ v = B vcosθ  that 
pushes charge into the page. The induced emf produces a current 

   I = ε R = B vcosθ R , where we assume that significant resistance is 
present only in the resistor. Because current in the bar travels into the 
page, and the field is downward, a magnetic force acts on the bar to 
the left: its magnitude is    F = IBsin 90.0° = IB =     B

2 2vcosθ R . 
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  ANS. FIG. P31.31(a) ANS. FIG. P31.31(b) 

 In the free-body diagram shown in ANS. FIG. P31.31(b), it is 
convenient to use a coordinate system with axes vertical and 
horizontal. The force relationships are 

   

   

Fx∑ = −F + nsinθ = 0  →   nsinθ = F = B2 2vcosθ R

Fy∑ = −mg + ncosθ = 0   →    ncosθ = mg

 

 Dividing the first by the second equation, we get  

   
   

n sinθ
n cosθ

=
B2 2vcosθ R

mg
     →      v =

mgRsinθ
B2 2 cos2θ

 

 Substituting numerical values, 

   
  
v =

0.200 kg( ) 9.80 m/s2( ) 1.00 Ω( )sin 25.0°
0.500 T( )2 1.20 m( )2 cos2 25.0°

= 2.80 m/s  

P31.32  Refer to ANS. FIG. P31.31 above. The motional emf induced in a 
conductor is proportional to the component of the magnetic field 
perpendicular to the conductor and to its velocity. The total field is 
perpendicular to the conductor, but not to its velocity. As shown in the 
left figure, the component of the field perpendicular to the velocity is 

  B⊥ = Bcosθ . The motion of the bar down the rails produces an induced 
emf    ε = B⊥ v = B vcosθ  that pushes charge into the page. The induced 
emf produces a current    I = ε R = B vcosθ R , where we assume that 
significant resistance is present only in the resistor. Because current in 
the bar travels into the page, and the field is downward, a magnetic 
force acts on the bar to the left: its magnitude is    F = IBsin 90.0° = IB =  

   B
2 2vcosθ R . In the free-body diagram shown in ANS. FIG. P31.31(b), 

it is convenient to use a coordinate system with axes vertical and 
horizontal. The force relationships are 

   
   

Fx∑ = −F + nsinθ = 0  →   nsinθ = F = B2 2vcosθ R

Fy∑ = −mg + ncosθ = 0   →    ncosθ = mg
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 Dividing the first by the second equation, we get  
   

   

n sinθ
n cosθ

= B2 2vcosθ R
mg

   →     v = mgRsinθ
B2 2 cos2θ

 

P31.33  From Example 31.4, the magnitude of the emf is 
  

  

ε = B
1
2

r2ω⎛
⎝⎜

⎞
⎠⎟

= 0.9 N ⋅s C ⋅m( ) 1
2

0.4 m( )2 3 200 rev min( )⎡
⎣⎢

⎤
⎦⎥

2π  rad rev
60 s min

⎛
⎝⎜

⎞
⎠⎟

 

   
 ε = 24.1 V   

 A free positive charge q, represented in our version of the diagram, 

turning with the disk, feels a magnetic force    q

v ×

B   radially 

inward. Thus the outer contact is 
 
negative .  

 
ANS. FIG. P31.33 

P31.34 (a) The motional emf induced in the bar must be   ε = IR,  where I is 
the current in this series circuit. Since    ε = Bv,  the speed of the 
moving bar must be 

   

   
v = ε

B
= IR

B
=

8.50× 10−3  A( ) 9.00 Ω( )
0.300 T( ) 0.350 m( ) = 0.729 m/s

 

 (b) The flux through the closed loop formed by the rails, the bar, and 
the resistor is directed into the page and is increasing in 
magnitude. To oppose this change in flux, the current must flow 
in a manner so as to produce flux out of the page through the area 
enclosed by the loop. This means the current will flow 

 counterclockwise . 
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 (c) The rate at which energy is delivered to the resistor is 
   

  

P = I 2R = 8.50× 10−3  A( )2
9.00 Ω( )

= 6.50× 10−4  W = 0.650 mW

 

 (d) 

 

Work is being done by the external force, which is transformed
into internal energy in the resistor.

 

P31.35 The speed of waves on the wire is 

   
  
v =

T
µ

=
mg
µ

=
267 N

3.00 × 10−3  kg/m
= 298 m/s  

 In the simplest standing-wave vibration state, 

   
  
dNN = 0.64 m =

λ
2
→ λ = 1.28 m  

 and  
  
f =

v
λ
=

298 m/s
1.28 m

= 233 Hz  

 (a) The changing flux of magnetic field through the circuit containing 
the wire will drive current to the left in the wire as it moves up 
and to the right as it moves down. The emf will have this same 
frequency of 

 
233 Hz . 

 (b) The vertical coordinate of the center of the wire is described by 

     x = Acosω t = Acos2π ft  

  Its velocity is 
  
v =

dx
dt

= −2π fAsin 2π ft . 

  Its maximum speed is   vmax = 2π fA . 

  The induced emf is    ε = −Bv,  with amplitude 
   

   

εmax = Bvmax = B2π fA

= 4.50× 10−3  T( ) 0.0200 m( )2π 233 Hz( ) 0.015 0 m( )
= 1.98× 10−3  V = 1.98 mV
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P31.36 (a) The force on the side of the coil entering 
the field (consisting of N wires) is 

    F = N ILB( ) = N IwB( )  

  The induced emf in the coil is 
   

 
ε = N

dΦB

dt
= N

d Bwx( )
dt

= NBwv
 

  so the current is 
 
I = ε

R
= NBwv

R
 

counterclockwise. 

  The force on the leading side of the coil 
is then: 

   

  

F = N
NBwv

R
⎛
⎝⎜

⎞
⎠⎟ wB

=
N 2B2w2v

R
 to the left

 

 (b) Once the coil is entirely inside the field,  

     ΦB = NBA = constant  

  so  ε = 0,  I = 0,   and     F = 0 .  

 (c) As the coil starts to leave the field, the flux decreases at the rate 
Bwv, so the magnitude of the current is the same as in part (a), but 
now the current is clockwise. Thus, the force exerted on the 
trailing side of the coil is: 

   
  
F =

N 2B2w2v
R

 to the left again  

P31.37 The emfs induced in the rods are proportional to the lengths of the 
sections of the rods between the rails. The emfs are    ε1 = Bv1  with 
positive end downward, and    ε2 = Bv2  with positive end upward, 
where    = d = 10.0 cm is the distance between the rails.  

 We apply Kirchhoff’s laws. We assume current I1 travels downward in 
the left rod, current I2 travels upward in the right rod, and current I3 
travels upward in the resisitor R3.  

 For the left loop,    +Bv1 − I1R1 − I3R3 = 0  [1] 

 For the right loop,    +Bv2 − I2R2 + I3R3 = 0  [2] 

 At the top junction,  I1 = I2 + I3 [3] 

ANS. FIG. P31.36 
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 Substituting [3] into [1] gives 
   

   Bv1 − I1R1 − I3R3 = 0  

  
   Bv1 − I2 + I3( )R1 − I3R3 = 0         

 

  
   I2R1 + I3 R1 + R3( ) = Bv1   [4] 

 Now using [2] and [4] to solve for I2,  
  

   
I2 = Bv2 + I3R3

R2

=
Bv1 − I3 R1 + R3( )

R1

 

 then equating gives 
  

   

Bv2 + I3R3( )R1 = Bv1 − I3 R1 + R3( )⎡⎣ ⎤⎦R2

I3 R3R1 + R1 + R3( )R2⎡⎣ ⎤⎦ = Bv1R2 − Bv2R1

 

 Solving for I3 gives 
  

   
I3 = B

v1R2 − v2R1( )
R1R2 + R1R3 + R2R3

 

 Substituting numerical values, and noting that  
  

  

R1R2 + R1R3 + R2R3 = 10.0 Ω( ) 15.0 Ω( )
     + 10.0 Ω( ) 5.00 Ω( )+ 15.0 Ω( ) 5.00 Ω( )

= 275 Ω2

 

 we obtain 
  

  

I3 = 0.010 0 T( ) 0.100 m( )

                ×
4.00 m/s( ) 15.0 Ω( )− 2.00 m/s( ) 10.0 Ω( )[ ]

275 Ω2

    = 1.45× 10−4  A

 

 Therefore, 
  
I3 = 145 µA upward in the picture , as was originally 

chosen. 

P31.38 (a) The induced emf is     ε = Bv,  where B is the magnitude of the 
component of the magnetic field perpendicular to the tether, 
which, in this case, is the vertical component of the Earth’s 
magnetic field at this location:  

   

   

Bvertical = B⊥ = ε
v

= 1.17 V
25.0 m( ) 7.80× 103  m/s( )

= 6.00× 10−6  T = 6.00 µT
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 (b) 

 

Yes. The magnitude and direction of the Earth’s field varies
from one location to the other, so the induced voltage in the
wire changes. Furthermore, the voltage will change if the tether
cord or its velocity changes their orientations relative to the
Earth’s field.

 

 (c) 

 

Either the long dimension of the tether or the velocity vector
could be parallel to the magnetic field at some instant.

 

 
 

 

Section 31.4 Induced emf and Electric Fields 

P31.39 Point P1 lies outside the region of the uniform magnetic field. The rate 
of change of the field, in teslas per second, is  

   
  

dB
dt

=
d
dt

2.00t3 − 4.00t2 + 0.800( ) = 6.00t2 − 8.00t  

 where t is in seconds. At t = 2.00 s, we see that the field is increasing:  

   
  

dB
dt

= 6.00 2.00( )2 − 8.00 2.00( ) = 8.00 T/s  

 

ANS. FIG. P31.39 

 The magnetic flux is increasing into the page; therefore, by the right-
hand rule (see figure), the induced electric field lines are counter-
clockwise. [Also, if a conductor of radius r1 were placed concentric 
with the field region, by Lenz’s law, the induced current would be 
counterclockwise. Therefore, the direction of the induced electric field 
lines are counterclockwise.] The electric field at point P1 is tangent to 
the electric field line passing through it. 

 (a) The magnitude of the electric field is (refer to Section 31.4 and 
Equation 31.8)  

    

  

E =
r
2

dB
dt

=
r
2

6.00t2 − 8.00t( )
=

0.050 0
2

6.00 2.00( )2 − 8.00 2.00( )⎡⎣ ⎤⎦ = 0.200 N/C
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  The magnitude of the force on the electron is  
   

  F = qE = eE = 1.60 × 10−19  C( ) 0.200 N/C( ) = 3.20 × 10−20  N
 

 (b) Because the electron holds a negative charge, the direction of the 
force is opposite to the field direction. The force is tangent to the 
electric field line passing through at point P1 and clockwise. 

 (c) The force is zero when the rate of change of the magnetic field is 
zero:  

   
  

dB
dt

= 6.00t2 − 8.00t = 0→ t = 0  or t =
8.00
6.00

= 1.33 s  

P31.40 Point P2 lies inside the region of the uniform magnetic field. The rate of 
change of the field, in teslas per second, is  

   

  

dB
dt

=
d
dt

0.030 0t2 + 1.40( ) = 0.060 0t
 

 where t is in seconds. At t = 3.00 s, we see that the field is increasing:  
   

  

dB
dt

= 0.060 0 3.00( ) = 0.180 T/s
 

 

ANS. FIG. P31.40 

 The magnetic flux is increasing into the page; therefore, by the right-
hand rule (see figure), the induced electric field lines are 
counterclockwise. The electric field at point P2 is tangent to the electric 
field line passing through it.  

 (a) The situation is similar to that of Example 31.7.  
   

    


E ⋅d

∫ = −

dΦB

dt

E2πr = −
dΦB

dt
= −

d BπR2( )
dt

= −πR2 dB
dt

E = −
R2

2r
0.060 0t( )
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  For r = r2 = 0.020 0 m,  
   

  

E =
R2

2r
0.060 0t( )

=
0.025 0 m( )2

2 0.020 0 m( ) 0.060 0 3.00( )[ ] = 2.81× 10−3  N/C

 

 (b) The field is tangent to the electric field line passing through at 
point P2 and counterclockwise.  

P31.41 A problem similar to this is discussed in Example 31.7.  

 (a) 
   


E ⋅d

∫ =

dΦB

dt
    where      ΦB = BA = µ0nI πr2( )  

   

  

2π rE = µ0n πr2( ) dI
dt

2π rE = µ0n πr2( ) d
dt

5.00sin100πt( )

= µ0n πr2( ) 5.00( ) 100π( )cos100πt

 

  Solving for the electric field gives 
   

  

E =
µ0n πr2( ) 5.00( ) 100π( ) cos100πt( )

2π r
= 250µ0nπr cos100πt

 

  Substituting numerical values and suppressing units, 
   

  

E = 250 4π × 10−7( ) 1.00× 103( )π 0.0100( )cos100πt

= 9.87 × 10−3( )cos100πt

 

   

  

E = 9.87 cos100πt where E is in 
millivolts/meter and t is in seconds.

 

 (b) If a viewer looks at the solenoid along its axis, and if the current is 
increasing in the counterclockwise direction, the magnetic flux is 
increasing toward the viewer; the electric field always opposes 
increasing magnetic flux; therefore, by the right-hand rule, the 
electric field lines are 

 
clockwise . 
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Section 31.5 Generators and Motors 

P31.42  (a) Use Equation 31.11, where B is the horizontal component of the 
magnetic field because the coil rotates about a vertical axis:  

   

  

εmax = NBhorizontalAω

= 100 2.00× 10−5  T( ) 0.200 m( )2

                       × 1500 
rev
min

⎛
⎝⎜

⎞
⎠⎟

2π  rad
1 rev

⎛
⎝⎜

⎞
⎠⎟

1 min
60 s

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= 1.26× 10−2  V = 12.6 mV

 

 (b) Maximum emf occurs when the magnetic flux through the coil is 
changing the fastest. This occurs at the moment when the flux is 
zero, which is when the plane of the coil is parallel to the 
magnetic field.  

P31.43 The emf induced in a rotating coil is directly proportional to the 
angular speed of the coil. Thus,  

   

 

ε2

ε1

= ω 2

ω1

     

 or      
 
ε2 = ω 2

ω1

⎛
⎝⎜

⎞
⎠⎟
ε1 = 500 rev/min

900 rev/min
⎛
⎝⎜

⎞
⎠⎟

24.0 V( ) = 13.3 V  

P31.44 The induced emf is proportional to the number of turns and the 
angular speed.  

 (a) Doubling the number of turns has this effect: 
  

 
amplitude doubles and period is unchanged

 

 

ANS FIG. P31.44 

 (b) Doubling the angular velocity has this effect: 

  
 

doubles the amplitude and cuts the period in half  

 (c) Doubling the angular velocity while reducing the number of 
turns to one half the original value has this effect: 

  
 

amplitude unchanged and period is cut in half
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P31.45 For the alternator,  

   
 
ω = 3 000 rev/min( ) 2π  rad

1 rev
⎛
⎝⎜

⎞
⎠⎟

1 min
60 s

⎛
⎝⎜

⎞
⎠⎟ = 314 rad/s   

 so  
   

  

ε = −N
dΦB

dt
= −250

d
dt

2.50× 10−4( )cos 314t( )⎡⎣ ⎤⎦

= +250 2.50× 10−4( ) 314( )sin 314t( )

 

 (a)   ε = 19.6sin 314t( )  where ε  is in volts and t is in seconds.  

 (b) 
 
εmax = 19.6 V  

P31.46 Think of the semicircular conductor as enclosing half a coil of area 

  
A = 1

2
πR2.  There is no emf induced in the conductor until the magnetic 

flux through the area of the coil begins to change. The conductor is in 
the field region for only half a turn, so the flux changes over half a 

period 
  

1
2

T = 1
2

2π
ω

⎛
⎝⎜

⎞
⎠⎟ =

π
ω

.  If we consider t = 0 to correspond to the time 

when the conductor is in the position shown in Figure P31.46 of the 
textbook, then there is no change in flux for a quarter of a turn, from t = 
0 to   t = π 2ω , then the flux has a periodic behavior 

  
ΦB = ABcosωt = 1

2
πR2Bcosωt  for a half a turn, from   t = π 2ω  to 

  t = 3π 2ω , then there is no change in flux for the final quarter of a turn, 
from   t = 3π 2ω  to   t = 2π ω , at the end of which the coil has returned to 
its starting position. While in the field region, the induced emf is  

   

  
ε = − dΦB

dt
= − 1

2
πR2B

d
dt

cosωt = 1
2
πR2ωBsinωt = εmax sinωt

 

 (a) The maximum emf is  

   

  

εmax = 1
2
ωπR2B

= 1
2

120 rev
min

⎛
⎝⎜

⎞
⎠⎟

2π  rad
rev

⎛
⎝⎜

⎞
⎠⎟

1 min
60 s

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
π 0.250 m( )2 1.30 T( )

= 1.60 V

 

 (b) During the time period that the coil travels in the field region, the 
emf varies as   εmax sinωt  for half a period, from  +εmax ,  at 

  t = π 2ω , to  −εmax ,  at   t = 3π 2ω ; therefore, the average emf is 

 zero .  
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 (c) The flux could also be written as 
  
ΦB = 1

2
πR2Bcosωt  so that it is a 

maximum at t = 0, but, in this case, the time period over which 
the flux changes would be from t = 0 to   t = 2π ω , and the 
amplitude of the emf and its average would be the same as in the 
previous case; therefore, 

 
no change in either answer .  

 (d) The graph is  

 

ANS. FIG. P31.46(d) 

 (e) If the time axis is chose so that the maximum emf occurs at the 
same time as it does in the figure of part (d) the graph is 

 

ANS. FIG. P31.46(e) 

P31.47 The magnetic field of the solenoid is given by 
   

  

B = µ0nI = 4π × 10−7  T ⋅m/A( ) 200 m−1( ) 15.0 A( )
= 3.77 × 10−3  T

 

 For the small coil,     ΦB = N

B ⋅

A = NBAcosω t = NB π r2( )cosω t.  

 Thus, 
  
ε = − dΦB

dt
= NBπ r2ω sinω t  

 Substituting numerical values, 
   

  

ε = 30.0( ) 3.77 × 10−3  T( )π 0.080 0 m( )2 4.00π  s−1( )sin 4.00π t( )
= 28.6 mV( )sin 4.00π t( )
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P31.48 To analyze the actual circuit, we model it as the lower circuit diagram 
in ANS. FIG. P31.48. 

 (a) Kirchhoff’s loop rule gives  
   

 

+ 120 V − 0.850 A( ) 11.8 Ω( )−ε back = 0    

→     ε back = 110 V

 

 

ANS. FIG. P31.48 

 (b) The resistor is the device changing electrical work input into 
internal energy: 

    
  
P = I 2R = 0.850 A( )2 11.8 Ω( ) = 8.53 W  

 (c) With no motion, the motor does not function as a generator, and 

 ε back = 0 . Then 

    
  

120 V − Ic 11.8 Ω( ) = 0→ Ic = 10.2 A

Pc = Ic
2R = 10.2 A( )2 11.8 Ω( ) = 1.22 kW

 

P31.49 (a) The flux through the loop is 
   

  

ΦB = BAcosθ = BAcosω t

= 0.800 T( ) 0.010 0 m2( )cos2π 60.0( )t

= 8.00 mT ⋅m2( )cos 377t( )

 

 (b) 
  
ε = − dΦB

dt
= 3.02 V( )sin 377t( )  

 (c) 
  
I = ε

R
= 3.02 A( )sin 377t( )  

 (d) 
  
P = I 2R = 9.10 W( )sin2 377t( )  

 (e)  P = Fv = τω  so 
  
τ =

P
ω

= 24.1 mN ⋅m( )sin2 377t( )  
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Section 31.6 Eddy Currents  

P31.50 The current in the magnet creates an  upward magnetic field, so 

the N and S poles on the solenoid core are shown correctly. On the rail 
in front of the brake, the upward flux of   


B  increases as the coil 

approaches, so a current is induced here to create a downward 

magnetic field. This is  clockwise current, so the S pole on the 

rail is shown correctly. On the rail behind the brake, the upward 
magnetic flux is decreasing. The induced current in the rail will 

produce upward magnetic field by being  counterclockwise as the 

picture correctly shows. 

 
 

 

Additional Problems 

*P31.51 (a) From Faraday’s law of induction, 

   

  

ε = dΦB

dt
= d

dt
BAcosθ( ) = d

dt
BA( ) = A

dB
dt

= π (0.060 0 m)2 1.00× 104  T/s( )
= 113 V

 

 (b) From Section 31.4, the electric field induced along the 
circumference of the circular area is given by 

   
  
E = ε

2πr
= 113 V

2π (0.060 0 m)
= 300 V/m  

*P31.52 Suppose we wrap twenty turns of wire into a flat compact circular coil 
of diameter 3 cm. Suppose we use a bar magnet to produce field 
 10−3  T  through the coil in one direction along its axis. Suppose we then 
flip the magnet to reverse the flux in 10–1 s. The average induced emf is 
then 

   

  

ε = −N
ΔΦB

Δt
= −N

Δ BAcosθ[ ]
Δt

= −NB π r2( ) cos180°− cos0°
Δt( )

ε = − 20( ) 10−3  T( )π 0.015 0 m( )2 −2
10−1  s( ) ~ 10−4  V
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*P31.53 The magnitude of the average emf is given by 
  

  

ε = N
ΔΦB

Δt
= NBA Δcosθ( )

Δt

=
200 1.1 T( ) 100× 10−4  m2( ) cos180°− cos0°

0.10 s
= 44 V

 

 The average current induced in the coil is therefore 
  

  
I = ε

R
= 44 V

5.0 Ω
= 8.8 A

 

P31.54 (a) If the magnetic field were increasing, the flux would be increasing 
out of the page, so the induced current would tend to oppose the 
increase by generating a field into the page. The direction of such 
a current would be clockwise. This is the case here, so the field is 

 
increasing .  

 (b) The normal to the enclosed area can be taken to be parallel to the 
magnetic field, so the flux through the loop is  

     ΦB = BAcos0.00° = BA  

  The rate of change of the flux is  

   
  

dΦB

dt
=

d
dt

BAcos0.00°( ) = A
dB
dt

 

  and the induced emf is  
   

  
ε = − dΦB

dt
     →      IR = A

dB
dt

= πr2 dB
dt

 

  Therefore,  

   

  

dB
dt

= IR
πr2 =

2.50× 10−3  A( ) 0.500 Ω( )
π 0.080 0 m( )2

= 0.062 2 T/s

= 62.2 mT/s

 

P31.55 The emf through the hoop is given by 
    

  

ε = − dΦB

dt
= −A

dB
dt

= −0.160
d
dt

0.350e−t 200( )

= 1.60( ) 0.350( )
200

e−t 200

 

 where ε  is in volts and t in seconds. For t = 4.00 s,  

   
  
ε =

0.160 m2( ) 0.350 T( )
2.00 s

e−4.00 2.00 = 3.79 mV  
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P31.56 The emf through the hoop is given by  

   
  
ε = − dΦB

dt
= −A

dB
dt

= −A
d
dt

Bmaxe
−t τ( ) = ABmax

τ
e−t τ  

P31.57 

  

ε = −N
Δ
Δt

BAcosθ( ) = −N π r2( )cos0° ΔB
Δt

= −1 0.005 00 m2( ) 1( ) 1.50 T − 5.00 T
20.0× 10−3  s

⎛
⎝⎜

⎞
⎠⎟ = 0.875 V

  

 (a) 
  
I = ε

R
= 0.875 V

0.020 0 Ω
= 43.8 A  

 (b)   P = ε I = 0.875 V( ) 43.8 A( ) = 38.3 W  

P31.58 (a) Motional emf produces a current 
   
I = ε

R
= Bv

R
.  

 (b) 
 
Particle in equilibrium  

 (c) The circuit encloses increasing flux of magnetic field into the 
page, so it tries to make its own field out of the page, by carrying 
counterclockwise current. The current flows upward in the bar, so 
the magnetic field produces a backward magnetic force    FB = IB  
(to the left) on the bar. This force increases until the bar has 
reached a speed when the backward force balances the applied 
force F: 

   

   

F = FB = IB = ε
R
B = Bv( )

R
B = B22

R
v

v = FR
B22 = 0.600 N( ) 48.0 Ω( )

0.400 T( )2 0.800 m( )2 = 281 m/s

 

 (d) 
   
I = ε

R
= Bv

R
= B

R
FR

B22 = F
B

= 0.600 N
0.400 T( ) 0.800 m( ) = 1.88 A  

 (e) 
   
P = I 2R =

F
B

⎛
⎝⎜

⎞
⎠⎟

2

R =
0.600 N

0.400 T( ) 0.800 m( )
⎡

⎣
⎢

⎤

⎦
⎥

2

48.0 Ω( ) = 169 W  

 (f) 
   
P = Fv = F

FR
B22 =

F2R
B22 =

0.600 N( )2 48.0 Ω( )
0.400 T( )2 0.800 m( )2 = 169 W  

 (g)  Yes.  

 (h)  Increase  because the speed is proportional to the resistance, as 
shown in part (c).  
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 (i)  Yes.  

 (j) 
 
Larger  because the speed is greater. 

P31.59 
  
ε = −N

d
dt

BAcosθ( ) = −N π r2( )cos0° dB
dt

⎛
⎝⎜

⎞
⎠⎟  

 

  

ε = − 30.0( ) π 2.70× 10−3( )2⎡
⎣

⎤
⎦ 1( )

                           × d
dt

50.0× 10−3 + 3.20× 10−3( )sin 1 046πt( )⎡⎣ ⎤⎦

ε = − 30.0( ) π 2.70× 10−3( )2⎡
⎣

⎤
⎦ 3.20× 10−3( ) 1 046π( )cos 1 046πt( )⎡⎣ ⎤⎦

= − 7.22 × 10−3( )cos 1 046πt( )

 

 
  
ε = −7.22cos 1 046πt( )  where ε  is in millivolts and t is in seconds.

 

P31.60 Model the loop as a particle under a net force. The two forces on the 
loop are the gravitational force in the downward direction and the 
magnetic force in the upward direction. The magnetic force arises from 
the current generated in the loop due to the motion of its lower edge 
through the magnetic field. As the loop falls, the motional emf 
 ε = Bwv  induced in the bottom side of the loop produces a current  
I = Bwv/R in the loop. From Newton’s second law, 

  

  

Fy∑  = may  → FB  − Fg  = May  → IwB − Mg  = May

     →  
Bwv

R
⎛
⎝⎜

⎞
⎠⎟ wB − Mg  = May → 

B2w2v
MR

 − g  = ay

 

 The largest possible value of v, the terminal speed vT, will occur when 
ay = 0. Set ay = 0 and solve for the terminal speed: 

  
  

B2w2vT

MR
 − g  = 0    →     vT  = 

MgR
B2w2

 

 Substituting numerical values, 

  
  
vT  = 

0.100 kg( ) 9.80 m/s2( ) 1.00 Ω( )
1.00 T( )2 0.500 m( )2  = 3.92 m/s  

 This is the highest speed the loop can have while the upper edge is 
above the field, so it cannot possibly be moving at 4.00 m/s. 

P31.61 For a counterclockwise trip around the left-hand loop, with B = At, 

  
  

d
dt

At 2a2( )cos0°⎡⎣ ⎤⎦ − I1 5R( ) − IPQR = 0  
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 and for the right-hand loop, 

  
  

d
dt

Ata2⎡⎣ ⎤⎦ + IPQR − I2 3R( ) = 0  

 where    IPQ = I1 − I2  is the upward current in QP. 

 Thus, 
  
2Aa2 − 5R IPQ + I2( ) − IPQR = 0  

 and   Aa2 + IPQR = I2 3R( )  

  
  
2Aa2 − 6RIPQ −

5
3

Aa2 + IPQR( ) = 0  

 solving, 
  
IPQ =

Aa2

23R
 upward 

  and since   R = 0.100 Ω/m( ) 0.650 m( ) = 0.650 0 Ω,   

  
  
IPQ =

1.00 × 10−3  T s( ) 0.650 m( )2

23 0.065 0 Ω( ) = 283 µA upward  

 

ANS. FIG. P31.61 

P31.62 (a) 
 
I = dq

dt
= ε

R
 where 

 
ε = −N

dΦB

dt
   so   

  
dq∫ =

N
R

dΦB
Φ1

Φ2

∫  

  and the charge passing any point in the circuit will be 

  
Q =

N
R

Φ2 − Φ1( ) . 

 (b) 
  
Q =

N
R

BAcos0 − BAcos
π
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
=

BAN
R

 

  so 
  
B =

RQ
NA

=
200 Ω( ) 5.00 × 10−4  C( )
100( ) 40.0 × 10−4  m2( ) = 0.250 T  

P31.63 The emf induced between the ends of the moving bar is 
  

   ε = Bv = 2.50 T( ) 0.350 m( ) 8.00 m s( ) = 7.00 V  
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 The left-hand loop contains decreasing flux away from you, so the 

induced current in it will be  clockwise, to produce its own field 

directed away from you. Let I1 represent the current flowing upward 
through the 2.00-Ω resistor. The right-hand loop will carry 
counterclockwise current. Let I3 be the upward current in the 5.00-Ω 
resistor. 

 (a) Kirchhoff’s loop rule then gives:  

   +7.00 V – I1 (2.00 Ω) = 0   or 
  
I1 = 3.50 A  

  and +7.00 V – I3 (5.00 Ω) = 0    or 
  
I3 = 1.40 A  

 (b) The total power converted in the resistors of the circuit is 
   

  

P = ε I1 +ε I3 = ε I1 + I3( ) = 7.00 V( ) 3.50 A + 1.40 A( )
= 34.3 W

 

 (c) Method 1: The current in the sliding conductor is downward with 
value I2 = 3.50 A + 1.40 A = 4.90 A. The magnetic field exerts a 
force of    Fm = IB = 4.90 A( ) 0.350 m( ) 2.50 T( ) = 4.29 N  directed 

 toward the right on this conductor. An outside agent must 

then exert a force of 
 

4.29 N  to the left to keep the bar moving. 

  Method 2: The agent moving the bar must supply the power 
according to     P =


F ⋅ v = Fvcos0°.  The force required is then: 

   
  
F =

P
v
=

34.3 W
8.00 m s

= 4.29 N  

P31.64 The enclosed flux is   ΦB = BA = Bπ r2.   The particle moves according to 
   

    


F∑ = m


a:     qvBsin 90° = mv2

r
   →   r = mv

qB

 

 Thus, 
  
ΦB =

Bπ m2v2

q2B2 . 

 (a) 

  

v =
ΦBq2B
π m2 =

15 × 10−6  T ⋅m2( ) 30 × 10−9  C( )2
0.6 T( )

π 2 × 10−16  kg( )2

= 2.54 × 105  m s
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 (b) Energy for the particle-electric field system is conserved in the 
firing process: 

   Ui = Kf :    
  
qΔV =

1
2

mv2  

  From which we obtain 

   
  
ΔV =

mv2

2q
=

2 × 10−16  kg( ) 2.54 × 105  m s( )2

2 30 × 10−9  C( ) = 215 V  

P31.65 The normal to the loop is horizontally north, at 35.0° to the magnetic 
field. We assume that 0.500 Ω  is the total resistance around the circuit, 
including the ammeter. 

  

  

Q = I∫ dt = εdt
R∫ = 1

R
–∫

dΦB

dt
⎛
⎝⎜

⎞
⎠⎟ dt = –

1
R

d∫ ΦB

= –
1
R

d∫ BAcosθ( ) = –
Bcosθ

R
dA

A1=a2

A2 =0

∫

 

  

  

Q = –
B cosθ

R
A⎡

⎣⎢
⎤
⎦⎥A1=a2

A2=0

= B cosθ a2

R

= (35.0× 10–6  T)( cos35.0°)(0.200 m)2

0.500 Ω

= 2.29× 10−6  C

 

P31.66 (a) To find the induced current, we first compute the induced emf, 

      ε = Bv = 0.0800 T( ) 1.50 m( ) 3.00 m/s( ) = 0.360 V .  

  Then,  
   

  
I = ε

R
= 0.360 V

0.400 Ω
= 0.900 A

 

 (b) The applied force must balance the magnetic force 

   
   

F = FB = IB

= 0.900 A( ) 1.50 m( ) 0.0800 T( ) = 0.108 N
 

 

ANS. FIG. P31.66 
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 (c) Since the magnetic flux   

B ⋅

A  between the axle and the resistor is 

in effect decreasing, the induced current is clockwise so that it 
produces a downward magnetic field to oppose the decrease in 
flux: thus, current flows through R from b to a. 

  
Point b  is at the 

higher potential. 

 (d) 
 

No . Magnetic flux will increase through a loop between the 

axle and the resistor to the left of ab. Here counterclockwise 
current will flow to produce an upward magnetic field to oppose 
the increase in flux. The current in R is still from b to a. 

*P31.67 (a) From Equation 31.3, the emf induced in the loop is given by 

   

  

ε = −N
d
dt

BAcosθ = −1
d
dt

B
θ a2

2
cos0°⎛

⎝⎜
⎞
⎠⎟

= − Ba2

2
dθ
dt

= − 1
2

Ba2ω
 

  Substituting numerical values, 

   

 

ε = − 1
2

0.500 T( ) 0.500 m( )2 2.00 rad s( )

= −0.125 V = 0.125 V clockwise
  

  The minus sign indicates that the induced emf produces 
clockwise current, to make its own magnetic field into the page. 

 (b) At this instant, 

     θ =ω t = 2.00 rad s( ) 0.250 s( ) = 0.500 rad  

  The arc PQ has length  

     rθ = 0.500 rad( ) 0.500 m( ) = 0.250 m   

  The length of the circuit is  

   0.500 m + 0.500 m + 0.250 m = 1.25 m 

  Its resistance is  

    1.25 m( ) 5.00 Ω m( ) = 6.25 Ω   

  The current is then 

   
  
I = ε

R
= 0.125 V

6.25 Ω
= 0.020 0 A clockwise  
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P31.68 At a distance r from wire, 
  
B =

µ0I
2π r

. Using    ε = Bv,  we find that 

    

   
ε = µ0vI

2π r

 

 

ANS. FIG. P31.68 
 

P31.69 (a) We use 
  
ε = −N

ΔΦB

Δt
,  with N = 1. 

  Taking a = 5.00 × 10–3 m to be the radius of the washer, and h = 
0.500 m, the change in flux through the washer from the time it is 
released until it hits the tabletop is  

    

  

ΔΦB = Bf A− BiA = A Bf − Bi( ) = π a2 µ0I
2π h + a( ) −

µ0I
2π a

⎛
⎝⎜

⎞
⎠⎟

= a2µ0I
2

1
h + a

− 1
a

⎛
⎝⎜

⎞
⎠⎟ = −µ0ahI

2 h + a( )

 

  The time for the washer to drop a distance h (from rest) is: 

  
Δt =

2h
g

. Therefore, 

    

  
ε = − ΔΦB

Δt
= µ0ahI

2 h + a( )Δt
= µ0ahI

2 h + a( )
g

2h
= µ0aI

2 h + a( )
gh
2

 

  Substituting numerical values, 

    

 

ε =
4π × 10−7  T ⋅m A( ) 5.00× 10−3  m( ) 10.0 A( )

2 0.500 m + 0.005 00 m( )

                                                   ×
9.80 m s2( ) 0.500 m( )

2

= 97.4 nV
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 (b) Since the magnetic flux going through the washer (into the plane 
of the page in the figure) is decreasing in time, a current will form 
in the washer so as to oppose that decrease. To oppose the 
decrease, the magnetic field from the induced current also must 
point into the plane of the page. Therefore, the current will flow 
in a 

 
clockwise direction . 

P31.70 (a) We would need to know whether the field is increasing or 
decreasing. 

 (b) To find the resistance at maximum power, we note that 

    

  
P = ε I = ε

2

R
=

N
dB
dt

πr2 cos0°⎛
⎝⎜

⎞
⎠⎟

2

R

 

  Solving for the resistance then gives 

    

  
R =

N
dB
dt

πr2⎛
⎝⎜

⎞
⎠⎟

2

P
=

220(0.020 T/s)π (0.120 m)2⎡⎣ ⎤⎦
2

160 W
= 248 µΩ

 

 (c) 
 
Higher resistance would reduce the power delivered.  

P31.71 Let θ  represent the angle between the perpendicular to the coil and 
the magnetic field. Then θ  = 0 at t = 0 and θ =ωt  at all later times.  

 (a) The emf induced in the coil is given by 

   
  
ε = –N

d
dt

(BA cosθ) = −NBA
d
dt

(cosωt) = +NBAω sinωt  

  The maximum value of sinθ  is 1, so the maximum voltage is 
   

  

εmax = NBAω = 60( ) 1.00 T( ) 0.020 0 m2( ) 30.0 rad/s( )
= 36.0 V

  

 (b) The rate of change of magnetic flux is 

   
  

dΦB

dt
= d

dt
BAcosθ( ) = −BAω sinωt   

  The minimum value of sinθ  is –1, so the maximum of   dΦB/dt  is 
   

  

dΦB

dt
⎛
⎝⎜

⎞
⎠⎟max

= + BAω = (1.00 T)(0.020 0 m2 )(30.0 rad/s) 

=  0.600 T ⋅m2/s
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 (c) At t = 0.050 0 s, 
   

  

ε = NBAω sinω t = (36.0 V)sin (30.0 rad/s)(0.050 0 s)[ ]
= (36.0 V)sin(1.50 rad) = (36.0 V)(sin  85.9o ) = 35.9 V

 

 (d) The emf is maximum when θ  = 90°, and    

τ =

µ ×

B,  so  

   
  
τmax = µB sin 90o = NIAB = Nεmax

AB
R

 

  and 
 
τmax = (60)(36.0 V)

(0.020 0 m2 )(1.00 T)
10.0 Ω

= 4.32 N ⋅m  

P31.72 The emf induced in the loop is 
   

  
ε = − d

dt
NBA( ) = −1

dB
dt

⎛
⎝⎜

⎞
⎠⎟ π a2 = π a2K

 

 (a) The charge on the fully-charged capacitor is 
   

  
Q = Cε = Cπ a2K

 

 (b)   

B  into the paper is decreasing; therefore, current will attempt to 
counteract this by producing a magnetic field into the page to 
oppose the decrease in flux. To do this, the current must be 
clockwise, so positive charge will go to the 

 
upper plate . 

 (c) 

 

The changing magnetic field through the enclosed area of the
loop induces a clockwise electric field within the loop, and this
causes electric force to push on charges in the wire.

 

P31.73 (a) The time interval required for the coil to move distance    and exit 
the field is   Δt =  v , where v is the constant speed of the coil. 
Since the speed of the coil is constant, the flux through the area 
enclosed by the coil decreases at a constant rate. Thus, the 
instantaneous induced emf is the same as the average emf over 
the interval   Δt,  or  

   

   
ε = −N

ΔΦ
Δt

= −N
0− BA( )
t − 0

= N
B2

t
= NB2

 v
= NBv

 

 (b) The current induced in the coil is     
   

  
I = ε

R
= NBv

R
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 (c) The power delivered to the coil is given by P = I2R, or 

   
   
P =

N 2B22v2

R2

⎛
⎝⎜

⎞
⎠⎟

R =
N 2B22v2

R
 

 (d) The rate that the applied force does work must equal the power 
delivered to the coil, so   Fapp ⋅ v = P  or  

   
   
Fapp =

P
v
=

N 2B22v2 R
v

=
N 2B22v

R
 

 (e) As the coil is emerging from the field, the flux through the area it 
encloses is directed into the page and decreasing in magnitude. 
Thus, the change in the flux through the coil is directed out of the 
page. The induced current must then flow around the coil in such 
a direction as to produce flux into the page through the enclosed 
area, opposing the change that is occurring. This means that the 
current must flow  clockwise  around the coil. 

 (f) As the coil is emerging from the field, the left side of the coil is 
carrying an induced current directed toward the top of the page 
through a magnetic field that is directed into the page. By the 
right-hand rule, this side of the coil will experience a magnetic 
force  directed to the left , opposing the motion of the coil. 

P31.74 The magnetic field at a distance x from wire is 

   
  
B =

µ0I
2π x

 

 The emf induced in an element in the bar of length dx is   dε = Bvdx.  
The total emf induced along the entire length of the bar is then  

  

   

ε = Bvdx
r

r+

∫ = µ0I
2π x

vdx
r

r+

∫ = µ0Iv
2π

dx
xr

r+

∫ = µ0Iv
2π

ln x
r

r+

ε = µ0Iv
2π

ln
r + 

r
⎛
⎝⎜

⎞
⎠⎟

 

 

ANS. FIG. P31.74 
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P31.75 We are given    
   

  ΦB = 6.00t3 − 18.0t2( )  

 Thus, 

   
  
ε = − dΦB

dt
= −18.0t2 + 36.0t  

 Maximum ε occurs when 
  

dε
dt

= −36.0t + 36.0 = 0,  which gives t = 1.00 s. 

 Therefore, the maximum current (at t = 1.00 s) is   
   

  
I = ε

R
= −18.0 + 36.0( )  V

3.00 Ω
= 6.00 A

  

P31.76 The magnetic field at a distance x from a long wire is 
  
B =

µ0I
2π x

. We 

find an expression for the flux through the loop. 

   
   
dΦB =

µ0I
2π x

dx( )     

 so  
   
ΦB =

µ0I
2π

dx
xr

r+w

∫ =
µ0I
2π

ln 1 +
w
r

⎛
⎝⎜

⎞
⎠⎟

 

 Therefore,  
   

   
ε = − dΦB

dt
= µ0Iv

2π r
w

r + w( )

    

 and  
   
I = ε

R
= µ0Iv

2π Rr
w

r + w( )  

P31.77 The magnetic field produced by the current in the 
straight wire is perpendicular to the plane of the 
coil at all points within the coil. At a distance r 
from the wire, the magnitude of the field is 

  
B =

µ0I
2π r

. Thus, the flux through an element of 

length L and width dr is 

   
  
dΦB = BLdr =

µ0IL
2π

dr
r

 

 The total flux through the coil is  

   
  
ΦB =

µ0IL
2π

dr
rh

h+w

∫ =
µ0ImaxL

2π
ln

h + w
h

⎛
⎝⎜

⎞
⎠⎟ sin ω t + φ( )  

ANS. FIG. P31.77 
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 Finally, the induced emf is 
  

  

ε = −N
dΦB

dt

= − µ0NImaxLω
2π

ln 1+ w
h

⎛
⎝⎜

⎞
⎠⎟ cos ω t +φ( )

ε = −
4π × 10−7  T ⋅m/A( ) 100( ) 50.0 A( ) 0.200 m( ) 200π  rad/s( )

2π

                                                × ln 1+ 0.050 0 m
0.050 0 m

⎛
⎝⎜

⎞
⎠⎟ cos ω t +φ( )

ε = −87.1cos 200π t +φ( ) ,  where ε  is in millivolts and

                                                t is in seconds

 

 The term   sin ω t + φ( )  in the expression for the current in the straight 
wire does not change appreciably when ω t changes by 0.10 rad or less. 
Thus, the current does not change appreciably during a time interval 

   

  
Δt <

0.10
200π  s−1( ) = 1.6 × 10−4  s

 

 We define a critical length, 
    

  cΔt = 3.00× 108  m/s( ) 1.6× 10−4  s( ) = 4.8× 104  m
 

 equal to the distance to which field changes could be propagated 
during an interval of 1.6 × 10–4 s. This length is so much larger than any 
dimension of the coil or its distance from the wire that, although we 
consider the straight wire to be infinitely long, we can also safely 
ignore the field propagation effects in the vicinity of the coil. 
Moreover, the phase angle can be considered to be constant along the 
wire in the vicinity of the coil. 

 If the angular frequency ω were much larger, say, 200π × 105 s–1, the 
corresponding critical length would be only 48 cm. In this situation 
propagation effects would be important and the above expression for 
ε  would require modification. As a general rule we can consider field 
propagation effects for circuits of laboratory size to be negligible for 

frequencies, 
  
f =

ω
2π

, that are less than about 106 Hz. 
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P31.78 (a) The induced emf is    ε = Bv,  where 
  
B =

µ0I
2π y

,    = 0.800 ,  

vf = vi + gt = 9.80t, and 
  
y = y f = yi −

1
2

gt2 = 0.800 − 4.90( )t2  where I 

is in amperes,    and y are in meters, v is in meters per second, 
and t in seconds. 

  Thus, 
 

  
ε =

4π × 10−7( ) 200( )
2π 0.800− 4.90t2( ) 0.300( ) 9.80( )t = 1.18× 10−4( )t

0.800− 4.90t2

 

  where ε  is in volts and t in seconds.  

 (b) The emf is zero when t = 0.  

 (c) As   0.800 − 4.90t2   →  0 ,   t  →   0.404 s  and the emf diverges to 

 
infinity . 

 (d) At t = 0.300 s,    
   

 

ε =
1.18× 10−4( ) 0.300( )

0.800− 4.90 0.300( )2⎡⎣ ⎤⎦
 V = 98.3 µV

 

 
 

 

Challenge Problems 

P31.79 In the loop on the left, the induced emf is 
   

  
ε = dΦB

dt
= A

dB
dt

= π 0.100 m( )2 100 T s( ) = π  V
 

 and it attempts to produce a counterclockwise current in this loop. 

 

ANS. FIG. P31.79 
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 In the loop on the right, the induced emf is 
   

  
ε = dΦB

dt
= π 0.150 m( )2 100 T s( ) = 2.25π  V

 

 and it attempts to produce a clockwise current. Assume that I1 flows 
down through the 6.00-Ω resistor, I2 flows down through the 5.00-Ω 
resistor, and that I3 flows up through the 3.00-Ω resistor. 

 From Kirchhoff’s junction rule:  I3 = I1 + I2 [1] 

 Using the loop rule on the left loop:  6.00I1 + 3.00I3 = π [2] 

 Using the loop rule on the right loop:  5.00I2 + 3.00I3 = 2.25π [3] 

 Solving these three equations simultaneously,  
   

  
I3 =

π − 3I3( )
6

+
2.25π − 3I3( )

5

  

 which then gives 

   
  
I1 = 0.062 3 A , 

  
I2 = 0.860 A , and 

  
I3 = 0.923 A  

P31.80 (a) Consider an annulus of radius r, width dr, thickness b, and 
resistivity ρ. Around its circumference, a voltage is induced 
according to 

   

    
ε = −N

d
dt


B ⋅

A = − 1( ) d

dt
Bmax cosω t( )⎡

⎣⎢
⎤
⎦⎥
π r2 = +Bmaxπ r2ω sinω t

 

  The resistance around the loop is 
   

ρ
dA

=
ρ 2π r( )

bdr
.  The eddy current 

in the ring is  
   

  
dI = ε

resistance
=

Bmaxπ r2ω sinω t( )
ρ 2π r( ) bdr

= Bmaxrbω sinω t
2ρ

dr
  

  The instantaneous power is    
   

  
dP = ε dI = Bmax

2 π r3bω 2 sin2ω t
2ρ

dr
 

  The time average of the function 
  
sin2ω t =

1
2
−

1
2

cos2ω t  is 

 

1
2
− 0 =

1
2

, so the time-averaged power delivered to the annulus is 

   
  
dP =

Bmax
2 π r3bω 2

4ρ
dr  
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  The average power delivered to the disk is 

  
P = dP∫ =

Bmax
2 πbω 2

4ρ
r3dr

0

R

∫  

   
  
P =

Bmax
2 π bω 2

4ρ
R4

4
− 0

⎛
⎝⎜

⎞
⎠⎟
=

π Bmax
2 R4bω 2

16ρ
 

 (b) When Bmax doubles,   Bmax
2  and P become 

 
4  times larger. 

 (c) When f doubles,   ω = 2π f  doubles, and  ω
2  and P become 

 
4  

times larger. 

 (d) When R doubles, R4 and P become 
 
24 = 16  times larger. 

P31.81 The current in the rod is 
   

  
I = ε +ε induced

R

 

 where    ε induced = −Bdv,  because the induced 
emf opposes the emf of the battery.  The force 
on the rod is related to the current and the 
velocity:  

   

 
F = m

dv
dt

= IBd
 

   

  

dv
dt

= IBd
m

= Bd
mR

ε +ε induced( ) = Bd
mR

ε − Bvd( )
 

 To solve the differential equation, let 
  
u = ε − Bvd   →    

du
dt

= −Bd
dv
dt

:  

  

  

dv
dt

= Bd
mR

ε − Bvd( )

− 1
Bd

du
dt

= Bd
mR

u    →    
du
uu0

u

∫ = − Bd( )2

mR
dt

0

t

∫

 

 Integrating from t = 0 to t = t gives  
  
ln

u
u0

= −
Bd( )2

mR
t   or  

  

u
u0

= e−B2d2t mR .  

 Since v = 0 when t = 0,   u0 = ε ;  substituting  u = ε − Bvd  gives  

   
  ε − Bvd = ε e−B2d2t mR  

 Therefore,   
  

v = ε
Bd

1− e−B2d2t mR( ) .  

ANS. FIG. P31.81 
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P31.82 Suppose the magnetic field is vertically down. When an electron is 
moving away from you the force on it is in the direction given by 

      q

v ×

Bc     as   – (away) × (down) = –  = – (left) = (right) 

 Therefore, the electrons circulate clockwise. 

 

ANS. FIG. P31.82 

 (a) As the downward field increases, an emf is induced to produce 
some current that in turn produces an upward field to oppose the 

increasing downward field. This current is directed  

counterclockwise, carried by negative electrons moving 
clockwise. Therefore the electric force on the electrons is 
clockwise and the original electron motion speeds up. 

 (b) At the circumference, we have  
   

  
Fc∑ = mac → q vBc sin 90° = mv2

r
    →    mv = q rBc

 

  where Bc is the magnetic field at the circle’s circumference.  

  The increasing magnetic field    

Bav  in the area enclosed by the orbit 

produces a tangential electric field according to 
   

   
E∫ ⋅ds = −

d
dt


Bav ⋅


A

 

  or 
   

  
E 2π r( ) = π r2 dBav

dt
→ E =

r
2

dBav

dt

 

  Using this expression for E, we find the tangential force on the 
electron:  

   

  

Ft∑ = mat    →     q E = m
dv
dt

q
r
2

dBav

dt
= m

dv
dt
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  If the electron starts at rest and increases to final speed v as the 
magnetic field builds from zero to final value Bav, then integration 
of the last equation gives  

   
  
q

r
2

dBav

dt
dt

0

Bav

∫ = m
dv
dt

dt
0

v

∫      →      q
r
2

Bav = mv  

  Thus, from the two expressions for mv, we have 

  
q

r
2

Bav = mv = q rBc    → Bav = 2Bc  

P31.83 For the suspended mass, M:  
  

 F∑ = Mg −T = Ma  

 For the sliding bar, m:  

     F∑ = T − IB = ma,    where   
  
I = ε

R
= Bv

R
 

 Substituting the expression for current I, the first equation gives us  

  
   
Mg −

B22v
R

= m + M( )a    →     a =
dv
dt

=
Mg

m + M
−

B22v
R M + m( )

 

 The above equation can be written as 

  
  

dv
α − βv( )0

v

∫ = dt
0

t

∫    where   
 
α =

Mg
M + m

   and   
   
β =

B22

R M + m( )
 

 Integrating, 
  

  

dv
α − βv( )0

v

∫ = dt
0

t

∫     →     
−1
β

ln α − βv( )
0

v

= t   
 

 Then, 
  

  ln α − βv( )− ln α( )⎡⎣ ⎤⎦ = −βt   

 Solving for v gives 
  

   

ln
α − βv( )

α
= −βt    →       1− β

α
v = e−βt     

v = α
β

1− e−βt( ) = MgR
B22 1− e−B22t R M+m( )⎡⎣ ⎤⎦
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 
P31.2 (a) Each coil has a pulse of voltage tending to produce 

counterclockwise current as the projectile approaches, and then a pulse 
of clockwise voltage as the projectile recedes; (b) 625 m/s 

P31.4 +9.82 mV 

P31.6 2.26 mV 

P31.8 160 A 

P31.10 1.89 × 10–11 V 

P31.12 (a) 
  

µ0nπ r2
2

2R
ΔI
Δt

;  (b) 
  

µ0
2nπ r2

2

4r1R
ΔI
Δt

; (c) left 

P31.14   ε = − 1.42 × 10−2( )cos 120t( ),  where t is in seconds and ε  is in V 

P31.16   ε = 68.2e−1.60t ,  where t is in seconds and ε  is in mV 

P31.18 (a) See P31.18(a) for full explanation; (b) The emf induced in the coil is 
proportional to the line integral of the magnetic field around the 
circular axis of the toroid. Ampère’s law says that this line integral 
depends only on the amount of current the coil encloses. 

P31.20 (a) 0.013 3 A; (b) The current is counterclockwise in the lower loop and 
clockwise in the upper loop. 

P31.22 (a) to the right; (b) out of the page; (c) to the right 

P31.24 (a) 11.8 mV; (b) The wingtip on the pilot’s left is positive; (c) no change; 
(d) No. If you try to connect the wings to a circuit containing the light 
bulb, you must run an extra insulated wire along the wing. In a 
uniform field the total emf generated in the one-turn coil is zero. 

P31.26 1.00 m/s 

P31.28 
   
Rmv
B22  

P31.30 The speed of the car is equivalent to about 640 km/h or 400 mi/h, 
much faster than the car could drive on the curvy road and much 
faster than any standard automobile could drive in general. 

P31.32 
   

mgR sinθ
B22 cos2θ

 

P31.34 (a) 0.729 m/s; (b) counterclockwise; (c) 0.650 mW; (d) Work is being 
done by the external force, which is transformed into internal energy 
in the resistor. 
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P31.36 (a) 
  

N 2B2w2v
R

 to the left;  (b) 0; (c) 
  

N 2B2w2v
R

 to the left again  

P31.38 (a) 6.00 µT; (b) Yes. The magnitude and direction of the Earth’s field 
varies from one location to the other, so the induced voltage in the 
wire changes. Furthermore, the voltage will change if the tether cord or 
its velocity changes their orientation relative to the Earth’s field;  
(c) Either the long dimension of the tether or the velocity vector could 
be parallel to the magnetic field at some instant. 

P31.40 (a) 2.81 × 10–3 N/C; (b) tangent to the electric field line passing through 
at point P2 and counterclockwise 

P31.42 (a) 12.6 mV; (b) when the plane of the coil is parallel to the magnetic 
field 

P31.44 (a) amplitude doubles and period is unchanged; (b) doubles the 
amplitude and cuts the period in half; (c) amplitude unchanged and 
period is cut in half 

P31.46 (a) 1.60 V; (b) zero; (c) no change in either answer; (d) See ANS. FIG. 
P31.46(d); (e) See ANS. FIG. P31.46(e). 

P31.48 (a) 110 V; (b) 8.53 W; (c) 1.22 kW 

P31.50 See P31.50 for full explanation. 

P31.52 ~10–4 V 

P31.54 (a) increasing; (b) 62.6 mT/s 

P31.56 
  

ABmax

τ
e−t τ  

P31.58 (a) 
  

Bv
R

; (b) particle in equilibrium; (c) 281 m/s; (d) 1.88 A; (e) 169 W; 

(f) 169 W; (g) yes; (h) increase; (i) yes; (j) larger 

P31.60 3.92 m/s is the highest speed the loop can have while the upper edge 
is above the field, so it cannot possibly be moving at 4.00 m/s. 

P31.62 (a) See P31.62(a) for full explanation; (b) 0.250 T 

P31.64 (a) 2.54 × 105 m/s; (b) 215 V 

P31.66 (a) 0.900 A; (b) 0.108 N; (c) Point b; (d) no 

P31.68 See P31.68 for full explanation. 

P31.70 (a) We would need to know if the field is increasing or decreasing;  
(b) 248 µΩ; (c) Higher resistance would reduce the power delivered. 
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P31.72 (a)   Cπ a2K ;  (b) upper plate; (c) The changing magnetic field through 
the enclosed area of the loop induces a clockwise electric field within 
the loop, and this causes electric force to push on charges in the wire 

P31.74 See P31.74 for full explanation. 

P31.76 
   

µ0Iv
2π Rr

w
r + w( )  

P31.78 (a) 
  

1.18× 10−4( )t
0.800− 4.90t2 ;  (b) zero; (c) infinity; (d) 98.3 µV 

P31.80 (a) 
  

π Bmax
2 R4bω 2

16ρ
;  (b) 4; (c) 4; (d) 16 

P31.82 (a) See P31.82(a) for full description; (b) See P31.82(b) for full 
description. 
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32 
Inductance 

 

CHAPTER OUTLINE 
 

32.1  Self-Induction and Inductance 

32.2 RL Circuits 

32.3 Energy in a Magnetic Field 

32.4 Mutual Inductance 

32.5 Oscillations in an LC Circuit 

32.6 The RLC Circuit 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ32.1 (i) Answer (a). The mutual inductance of two loops in free space—
that is, ignoring the use of cores—is a maximum if the loops are 
coaxial. In this way, the maximum flux of the primary loop will 
pass through the secondary loop, generating the largest possible 
emf given the changing magnetic field due to the first.  

 (ii)  Answer (c). The mutual inductance is a minimum if the 
magnetic field of the first coil lies in the plane of the second coil, 
producing no flux through the area the second coil encloses. 

OQ32.2 Answer (c). The fine wire has considerable resistance, so a few seconds 
is many time constants. The final current depends on the resistance of 
the wire, which has not changed; the current is not affected by the 
inductance of the coil because the current is not changing. 

OQ32.3 Answer (b). The inductance of a solenoid is proportional to the number 
of turns squared, so cutting the number of turns in half makes the 
inductance four times smaller. Doubling the current would by itself 

make the stored energy 
  
(
1
2

Li2 ) four times larger, to just compensate.  
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OQ32.4 The ranking is   ΔVL > ΔV1 200 Ω > 12.0 V > ΔV12 Ω.  Just before the switch 
is thrown, the voltage across the 12-Ω resistor is very nearly 12 V (we 
assume the resistance of the inductor is small). Just after the switch is 
thrown, the current is nearly the same, maintained by the inductor, 
but this current is diverted through the 1 200-Ω resistor; thus, the 
voltage across the 1 200-Ω resistor is much more than 12 V, about  
1 200 V, because the same current in the 12-Ω resistor now passes 
through a resistor 100 times as large. By Kirchhoff’s loop rule, the 
voltage across the coil is larger still.  

OQ32.5 Answer (d). The inductance of a solenoid is proportional to the 
number of turns squared (N2), to the cross-sectional area (A), and to 
the reciprocal of the length of its axis (L). Coil A has twice as many 
turns with the same length of wire, so its circumference must be half 
as large as that of coil B: therefore, its radius is half as large and its 
area one quarter as large. For coil A the inductance will be different 
by the factor N2A/L ~ [22(1/4)]/2 = 1/2.  

OQ32.6 Answer (a). The energy stored in the magnetic field of an inductor is 
proportional to the square of the current. Doubling I makes 

  
UB =

1
2

Li2  get four times larger.  

OQ32.7 Answer (d). The emf across an inductor is zero whenever the current 
is constant (unchanging), large or small. 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ32.1 (a) We can think of Henry’s discovery of self-inductance as 
fundamentally new. Before a certain school vacation at the 
Albany Academy about 1830, one could visualize the universe 
as consisting of only one thing, matter. All the forms of energy 
then known (kinetic, gravitational, elastic, internal, electrical) 
belonged to chunks of matter. But the energy that temporarily 
maintains a current in a coil after the battery is removed is not 
energy that belongs to any bit of matter. This energy is vastly 
larger than the kinetic energy of the drifting electrons in the 
wires. This energy belongs to the magnetic field around the coil. 
Beginning in 1830, Nature has forced us to admit that the 
universe consists of matter and also of fields, massless and 
invisible, known only by their effects.  

  The idea of a field was not due to Henry, but rather to Faraday, 
to whom Henry personally demonstrated self-induction. Still 
the thesis stated in the question has an important germ of truth. 



470     Inductance 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

Henry precipitated a basic change if he did not cause it.  

 (b) A list today of what makes up the Universe might include 
quarks, electrons, muons, tauons, and neutrinos of matter; 
photons of electric and magnetic fields; W and Z particles; 
gluons; energy; charge; baryon number; three different lepton 
numbers; upness; downness; strangeness; charm; topness; and 
bottomness. Alternatively, the relativistic interconvertibility of 
mass and energy, and of electric and magnetic fields, can be 
used to make the list look shorter. Some might think of the 
conserved quantities energy, charge, . . . bottomness as 
properties of matter, rather than as things with their own 
existence.  

CQ32.2 (a)  The inductance of a coil is determined by (a) the geometry of the 
coil and (b) the “contents” of the coil. This is similar to the 
parameters that determine the capacitance of a capacitor and the 
resistance of a resistor. With an inductor, the most important 
factor in the geometry is the number of turns of wire, or turns 
per unit length. By the “contents” we refer to the material in 
which the inductor establishes a magnetic field, notably the 
magnetic properties of the core around which the wire is 
wrapped.  

 (b)  No. The inductance of a coil is proportional to the flux through 
the coil per unit current, Φ/I, and the flux is proportional to the 
current I, so the inductance is independent of the current.  

CQ32.3 When it is being opened. When the switch is initially standing open, 
there is no current in the circuit. Just after the switch is then closed, 
the inductor tends to maintain the zero-current condition, and there 
is very little chance of sparking. When the switch is standing closed, 
there is current in the circuit. When the switch is then opened, the 
current rapidly decreases. The induced emf is created in the inductor, 
and this emf tends to maintain the original current. Sparking occurs 
as the current bridges the air gap between the contacts of the switch. 

CQ32.4 (i) (a) The bulb glows brightly right away, and then more and 
more faintly as the capacitor charges up. (b) The bulb gradually 
gets brighter and brighter, changing rapidly at first and then 
more and more slowly. (c) The bulb immediately becomes 
bright. (d) The bulb glows brightly right away, and then more 
and more faintly as the inductor starts carrying more and more 
current (the inductor eventually acts as a short). 

 (ii) (a) The bulb goes out immediately because current stops 
immediately (charge ceases to flow). (b) The bulb glows for a 
moment as a spark jumps across the switch. (c) The bulb stays 
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lit for a while, gradually getting fainter and fainter as the 
capacitor discharges through the bulb. (d) The bulb suddenly 
glows brightly. Then its brightness decreases to zero, changing 
rapidly at first and then more and more slowly.  

CQ32.5 (a) The coil has an inductance regardless of the nature of the 
current in the circuit. Inductance depends only on the coil 
geometry and its construction.  

 (b) Since the current is constant, the self-induced emf in the coil is 
zero, and the coil does not affect the steady-state current. (We 
assume the resistance of the coil is negligible.) 

CQ32.6 (a) An object cannot exert a net force on itself. An object cannot 
create momentum out of nothing. 

 (b) A coil can induce an emf in itself. When it does so, the actual 
forces acting on charges in different parts of the loop add as 
vectors to zero. The term electromotive force does not refer to a 
force, but to a voltage. 

CQ32.7 (a) The instant after the switch is  
closed, the capacitor acts as a  
closed switch, and the inductor  
acts to maintain zero current in  
itself. The situation is as shown  
in the circuit diagram of ANS.  
FIG. CQ32.7(a). The requested  
quantities are: 

   

  

IL = 0, IC = ε0

R
, IR = ε0

R

ΔVL = ε0 , ΔVC = 0, ΔVR = ε0

 

 (b) After the switch has been closed a 
long time, the capacitor acts as an 
open switch. The steady-state 
conditions shown in ANS.  
FIG. CQ32.7 (b) will exist. The 
currents and voltages are: 

  

  

IL = 0, IC = 0, IR = 0

ΔVL = 0, ΔVC = ε0 , ΔVR = 0

 

CQ32.8 When the capacitor is fully discharged, the current in the circuit is a 
maximum. The inductance of the coil is making the current continue 
to flow. At this time the magnetic field of the coil contains all the 

 

ANS. FIG. CQ32.7(a) 

 

ANS. FIG. CQ32.7(b) 
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energy that was originally stored in the charged capacitor. The 
current has just finished discharging the capacitor and is proceeding 
to charge it up again with the opposite polarity. 

CQ32.9 According to Equations 32.31 and 32.32, the oscillator is overdamped 

if 
  
R > RC =

4L
C

: it will not oscillate. If R < RC, then the oscillator is 

underdamped and can go through several cycles of oscillation before 
the current falls below background noise.  

CQ32.10 The energy stored in a capacitor is proportional to the square of the 
electric field, and the energy stored in an induction coil is 
proportional to the square of the magnetic field. The capacitor’s 
energy is proportional to its capacitance, which depends on its 
geometry and the dielectric material inside. The coil’s energy is 
proportional to its inductance, which depends on its geometry and 
the core material. The capacitor’s energy is proportional to the charge 
it stores, the coil’s energy is proportional to the current it holds. 

 
 

 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 32.1 Self-Induction and Induction 
*P32.1 The magnitude of the average induced emf for this coil is 
   

  

ε = L
Δi
Δt

= 3.00× 10−3  H( ) 1.50 A − 0.200 A
0.200 s( ) = 1.95× 10−2  V

= 19.5 mV

 

*P32.2 Treating the telephone cord as a solenoid, we have: 
  

   

L = µ0N
2A


=
4π × 10−7  T ⋅m A( ) 70.0( )2 π 6.50 × 10−3  m( )2

0.600 m
= 1.36 µH

 

P32.3 The self-induced emf at any instant is  
    

  
εL = – L

di
dt

 

 Its average value is 
   

  

εL ,ave = – L
I f – Ii

t
⎛
⎝⎜

⎞
⎠⎟

= (–2.00 H)
0 – 0.500 A
1.00 × 10–2 s

⎛
⎝⎜

⎞
⎠⎟

V ⋅s/A
1 H

⎛
⎝⎜

⎞
⎠⎟

= +100 V
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P32.4 (a) The inductance of the solenoid is 

   

   

L =
µ0N 2A


=
4π × 10−7  T ⋅m A( ) 400( )2 π 2.50 × 10−2  m( )2⎡

⎣
⎤
⎦

0.200 m

= 1.97 × 10−3  H = 1.97 mH

 

 (b) From   ε = L Δi Δt( ) ,  

   

  

ΔI
Δt

= ε
L

= 75.0× 10−6  V
1.97 × 10−3  H

= 38.0× 10−3  A/s = 38.0 mA s
  

P32.5 From 
  
ε = L

Δi
Δt

⎛
⎝⎜

⎞
⎠⎟ ,  we have 

   

  
L = ε

Δi Δt( ) = 24.0× 10−3  V
10.0 A s

= 2.40× 10−3  H
 

 From 
  
L = NΦB

i
,  we have  

    

  

ΦB = Li
N

=
2.40× 10−3  H( ) 4.00 A( )

500

= 19.2 µT ⋅m2

 

P32.6 (a) 
  
B = µ0ni = 4π × 10−7  T ⋅m A( ) 450

0.120 m
⎛
⎝⎜

⎞
⎠⎟ 0.040 0 A( ) = 188 µT  

 (b) 
   
ΦB = BA = Bπ 15.0× 10−3 m

2
⎛
⎝⎜

⎞
⎠⎟

2

= 3.33× 10−8  T ⋅m2  

 (c) 
  
L = NΦB

i
= 450ΦB

0.040 0 A
= 0.375 mH  

 (d) 

  

B and ΦB  are proportional to current; L is independent 
of current.

 

P32.7 From 
  
ε = L

Δi
Δt

⎛
⎝⎜

⎞
⎠⎟ ,  we have 

   

  

L = ε
Δi Δt

= ε Δt( )
Δi

=
12.0× 10−3  V( ) 0.500 s( )

2.00 A − 3.50 A

= 4.00× 10−3  H = 4.00 mH
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P32.8 (a) In terms of its cross-sectional area (A), length (  ), and number of 
turns (N), the self inductance of a solenoid is given as 

   L = µ0N
2A  . Thus, for the given solenoid, 

   

   

L =
µ0N

2 πd2 4( )


=
4π × 10−7  T ⋅m A( ) 580( )2 π 8.00× 10−2  m( )2

4⎡
⎣

⎤
⎦

0.36 m( )
= 5.90× 10−3  H = 5.90 mH

 

 (b) 

  

ε = −L
Δi
Δt

⎛
⎝⎜

⎞
⎠⎟ = 5.90× 10−3  H( ) +4.00 A s( )

= 23.6× 10−3  V = 23.6 mV

 

P32.9 
  
ε = L

di
dt

= 90.0× 10−3( ) d
dt

1.00t2 − 6.00t( ) = 90.0( ) 2.00t − 6.00( ) ,  where ε  

is in millivolts (mV) and t in seconds.  

 (a) At t = 1.00 s,  ε = 360 mV  

 (b) At t = 4.00 s,  ε = 180 mV  

 (c)   ε = 90.0( ) 2t − 6( ) = 0    when   
  

t = 3.00 s  

P32.10 The inductance is 
   
L =

µ0N
2A


 with   A = πr2 .  The induced emf as a 

function of time is 
  
εL = – L

di
dt

.  By substitution we have  

  

   
εL = −L

di
dt

= − µ0N
2πr2


di
dt

   and   r = −εL
µ0N

2π di/dt
⎛
⎝⎜

⎞
⎠⎟

1/2  

 Then 
  
r = −(175× 10−6  V)(0.160 m)

(4π × 10−7  N/A2 )(420)2π (−0.421 A/s)
⎛
⎝⎜

⎞
⎠⎟

1/2

= 9.77 mm  

P32.11 The emf is given by 
  

  
ε = ε0e

−kt = −L
di
dt

 

 from which we obtain 
  

  
di = − ε0

L
e−ktdt
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 If we require   i→ 0  as  t →∞ , the solution is 
  
i = ε0

Lk
e−kt = dq

dt
,  so 

  

  
Q = idt∫ = ε0

Lk
e−kt dt

0

∞

∫ = − ε0

Lk2      →      Q = ε0

Lk2

 

P32.12 The inductance of a solenoid is 
   
L =

µ0N
2A


.  

 The long solenoid is bent into a circle of radius R, so its length 

    ≈ 2π R;  therefore, the inductance of the toroid is  
   

   
L =

µ0N
2A


≈
µ0N 2 πr2( )

2π R
=

1
2

µ0N
2 r2

R

 

 

 

ANS. FIG. P32.12 

P32.13 Using the definition of self-inductance, 
  
ε = −L

di
dt

,  we obtain      

   

  

ε = −L
d
dt

Ii sinω t( ) = −Lω Ii cosω t( )
= − 10.0× 10−3( ) 2π 60.0( )[ ] 5.00( )cosω t

 

  
  ε = −18.8cos120πt,  where ε  is in volts and t is in seconds.

 

P32.14 The current change is linear, so 
  
ε = −L

di
dt

= −L
Δi
Δt

.   

 t = 0 to 4 ms:  

   
 
ε = − 4.00 mH( )−2.00 mA

4.00 ms
= +2.00 mV  

 t = 4 to 8 ms:  

   
 
ε = − 4.00 mH( ) +5.00 mA

4.00 ms
= −5.00 mV  

 t = 8 to 10 ms:  

   
 
ε = − 4.00 mH( ) 0

2.00 ms
= 0.00 mV  
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 t = 10 to 12 ms:   

   
 
ε = − 4.00 mH( )−3.00 mA

2.00 ms
= +6.00 mV  

 

ANS. FIG. P32.14 

 
 

 

Section 32.2 RL Circuits 
P32.15 (a) The inductance of a solenoid is  
   

   

L = µ0N
2A


= µ0N
2πr2


=

µ0 510( )2 π 8.00× 10−3  m( )2

0.140 m
= 4.69× 10−4  H = 0.469 mH

 

 (b) The time constant of the circuit is 

   
  
τ =

L
R
=

4.69 × 10−4  H
2.50 Ω

= 1.88 × 10−4  s = 0.188 ms  

P32.16 (a) At time t,  
   

  
i t( ) = ε

R
1− e−t τ( )

 

  where  

   
  
τ =

L
R
=

2.00 H
10.0 Ω

= 0.200 s  

  After a long time,  
   

  
Ii = ε

R
1− e−∞( ) = ε

R

 

 

ANS. FIG. P32.16 
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  At i(t) = 0.500Ii  

   
  
0.500( )ε

R
= ε

R
1− e−t τ( )  

  so   0.500 = 1− e−t τ  

  Isolating the constants on the right, 

   

  

e−t τ = 0.500

ln e−t τ( ) = ln 0.500( )
t = τ − ln 0.500( )[ ] = 0.200 s( ) − ln 0.500( )[ ] = 0.139 s

 

 (b) Similarly, to reach 90% of Ii,    0.900 = 1− e−t τ    →    e−t τ =0.100  

  and   t = −τ ln 0.100( )  

  Thus,  

   
  
t = − 0.200 s( )ln 0.100( ) = 0.461 s  

P32.17 (a) Using 
 
τ = RC =

L
R

, we get  

   
  
R =

L
C

=
3.00 H

3.00 × 10−6  F
= 1.00 × 103  Ω =  

 
1.00 kΩ . 

 (b) The time constant is 
   

  

τ = RC = 1.00× 103  Ω( ) 3.00× 10−6  F( )
= 3.00× 10−3  s = 3.00 ms

 

P32.18 The current builds exponentially according to:  
   

  

i t( ) = ε
R

1− e−t τ( ) = 12.0 V
24.0 Ω

1− e−t τ( )
= 0.500 1− e−t τ( )

 

 where current I is in amperes (A) and time t is in seconds (s).  
The current increases from 0 to  asymptotically approach 0.500 A. In 
case (a) the current jumps up essentially instantaneously. In case (b) it 
increases with a longer time constant, and in case (c) the increase is still 
slower. 



478     Inductance 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (a) With “essentially zero” inductance, we take 
  
τ = L

R
= 0.01. ANS. 

FIG. P32.18(a) graphs I(t) for this case. 

 

 

ANS. FIG. P32.18(a) 

 (b) We take 
  
τ =

L
R
= 1 . ANS. FIG. P32.18(b) graphs I(t) for this case.  

 

ANS. FIG. P32.18(b) 

 (c) We take 
  
τ =

L
R
= 10 . ANS. FIG. P32.18(c) graphs I(t) for this case.  

 

ANS. FIG. P32.18(c) 
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P32.19 (a) The two resistors are in parallel. Their resistance values 450 Ω and 
R are related to their equivalent resistance Req by  

   
  

1
Req

=
1
R

+
1

450Ω  

  and the equivalent resistance is related to the time constant of the 
circuit by  

   
  
τ =

L
Req

→
1

Req

=
τ
L

 

  Thus,  
   

  

1
Req

= 1
R

+ 1
450 Ω

= τ
L

 

  Solving for R, 
   

  

1
R
= τ

L
− 1

450 Ω
= 15.0× 10−6  s

5.00× 10−3  H
− 1

450 Ω

 

  which gives 
   

  R = 1 290 Ω = 1.29 kΩ  

 (b) The current will immediately begin to die from the value it had 
just before the switch was thrown to position b. Before the switch 
position was changed, the current was constant in time, so there 
was no emf induced in the inductor. The current was just  

   

  

i = ΔV
Req

= ΔV
τ
L

= 24.0 V( ) 15.0× 10−6  s
5.00× 10−3  H

= 0.072 0 A = 72.0 mA

 

*P32.20 The current increases as a function of time as 
   

  i = Ii 1− e−t τ( )  

 Substituting,
  

   
  0.980 = 1− e−3.00×10−3 τ  

     0.020 0 = e−3.00×10−3 τ  

 Solving for the time constant gives 
   

 
τ = − 3.00× 10−3

ln 0.020 0( ) = 7.67 × 10−4  s  

ANS. FIG. P32.20 
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 and since 
  
τ = L

R
,   

     L = τ R = 7.67 × 10−4  s( ) 10.0 Ω( ) = 7.67 mH  

*P32.21 For the increasing current 
  
i = ε

R
1− e−Lt R( ).  The final value is 

  
ε
R

,  so the 

condition on  Δt  is 
   

  

0.800
ε
R

= ε
R

1− e−LΔt R( )
e−LΔt R = 0.200

e+LΔt R = 5.00
LΔt
R

= ln 5.00

Δt = R ln 5.00
L

 

 At the moment when the battery is removed, the current in the coil is 

quite precisely 
  
ε
R

.  During the decrease, 
  
i = Iie

−Lt R = ε
R

e−Lt R .  

 (a) at 
  
t = Δt = R ln 5.00

L
,    

   
  

i
Ii

= e−LΔt R = 0.200 = 20.0%  

 (b) at   t = 2Δt,   

   
  

i
Ii

= e−L2Δt R = e−LΔt R( )2 = 0.200( )2 = 0.040 0 = 4.00%  

P32.22 Taking 
  
τ = L

R
,  and i = Iie

−t τ :   
di
dt

= Iie
−t τ − 1

τ
⎛
⎝⎜

⎞
⎠⎟  

 
  
iR + L

di
dt

= 0  will be true if 
  
IiR e−t τ + L Iie

−t τ( ) −
1
τ

⎛
⎝⎜

⎞
⎠⎟ = 0  

 We have agreement because 
  
τ = L

R
.  

P32.23 The current at this time is given by 
  

  
i = ε

R
1− e−t τ( ) = 120 V

9.00 Ω
1− e−0.200 7.00 9.00( )⎡⎣ ⎤⎦ = 3.02 A

 

 Then,   ΔVR = iR = 3.02( ) 9.00( ) = 27.2 V  

 and   ΔVL = ε − ΔVR = 120− 27.2 = 92.8 V  
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P32.24 (a) 
  
τ =

L
R
=

8.00 × 10−3  H
4.00 Ω

= 2.00 × 10−3  s = 2.00 ms  

 (b) 
  
i = ε

R
1− e−t τ( ) = 6.00 V

4.00 Ω
⎛
⎝⎜

⎞
⎠⎟ 1− e−0.250 2.00( ) = 0.176 A  

 (c) 
  
Ii =

ε
R
= 6.00 V

4.00 Ω
= 1.50 A  

 (d) 
  
0.800 = 1− e−t 2.00 ms → t = − 2.00 ms( )ln 0.200( ) = 3.22 ms  

 

ANS. FIG. P32.24 

P32.25 Name the currents as shown in ANS. FIG. P32.25. By Kirchhoff’s laws: 

   i1 = i2 + i3  [1] 

   +10.0 V – 4.00i1 – 4.00i2 = 0 [2] 

   
  
+10.0 V − 4.00i1 − 8.00i3 − 1.00( ) di3

dt
= 0  [3] 

 

ANS. FIG. P32.25 

 From [1] and [2],     

   +10.0 – 4.00i1 – 4.00i1 + 4.00i3  = 0 

   i1 = 0.500i3 + 1.25 A 

 Then [3] becomes 
  
10.0 V − 4.00 0.500i3 + 1.25 A( )− 8.00i3 − 1.00( ) di3

dt
= 0  

   

  
1.00 H( ) di3

dt
⎛
⎝⎜

⎞
⎠⎟ + 10.0 Ω( )i3 = 5.00 V

 

 or  
  
5.00 V − 10.0 Ω( )i3 − 1.00 H( ) di3

dt
⎛
⎝⎜

⎞
⎠⎟ = 0  
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 which can be compared to the general form (Equation 32.6)  
   

  
ε − iR − L

di
dt

= 0
 

 which has the solution (from Equation 32.7) 
  
i = ε

R
1− e−Rt L( ).  

 Thus, we have:  

 (a) 
  
i3 = 5.00 V

10.0 Ω
⎛
⎝⎜

⎞
⎠⎟ 1− e− 10.0 Ω( )t 1.00 H⎡⎣ ⎤⎦ = 0.500 A( ) 1− e−10t s⎡⎣ ⎤⎦  

 (b) 
  
i1 = 1.25 + 0.500I3 = 1.50 A − 0.250 A( )e−10t s  

P32.26 Refer to ANS. FIG. P32.25 above. Name the currents as shown. By 
Kirchhoff’s laws:  

   i1 = i2 + i3  [1] 

     ε − Ri1 − Ri2 = 0   [2] 

   
  
ε − Ri1 − 2Ri3 − L

di3

dt
= 0  [3] 

 From [1] and [2],  
   

  

ε − Ri1 − R i1 − i3( ) = 0
ε − Ri1 − Ri1 + Ri3 = 0

 

   

  
i1 = 1

2
i3 + ε

2R

 

 Then [3] becomes  
   

  
ε − R

1
2

i3 + ε
2R

⎛
⎝⎜

⎞
⎠⎟ − 2Ri3 − L

di3

dt
= 0

 

   

  

L
di3

dt
+ 2.5Ri3 = ε

2
ε
2
− 2.5Ri3 − L

di3

dt
= 0

 

 which can be compared to the general form (Equation 32.6)  
   

  
ε − iR − L

di
dt

= 0
 

 which has the solution (from Equation 32.7)  
   

  
i = ε

R
1− e−Rt L( )
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 Thus, we have:  

 (a) 
  
i3 = ε 2

2.5R
⎛
⎝⎜

⎞
⎠⎟ 1− e−2.5Rt L⎡⎣ ⎤⎦ = ε

5R
1− e−5Rt 2L( )  

 (b) 
  
i1 = 1

2
i3 + ε

2R
= 1

2
ε
5R

1− e−5Rt 2L( )⎡
⎣⎢

⎤
⎦⎥
+ ε

2R
 

  

  
i1 = ε

10R
1− e−5Rt 2L( ) + 5ε

10R
= ε

10R
6− e−5Rt 2L( )

 

P32.27 (a) When i = 2.00 A, the voltage across the resistor is 
   

  ΔVR = iR = 2.00 A( ) 8.00 Ω( ) = 16.0 V  

  Kirchhoff’s loop rule tells us that the sum of the changes in 
potential around the loop must be zero:  

   
  ε − ΔVR −εL = 36.0 V − 16.0 V −εL = 0  

  so   εL = 20.0 V    

  and 
  

ΔVR

εL

= 16.0 V
20.0 V

= 0.800   

 (b) Similarly, for i = 4.50 A,   ΔVR = iR = 4.50 A( ) 8.00 Ω( ) = 36.0 V  and 
   

  ε − ΔVR −εL = 36.0 V − 36.0 V −εL = 0  

  so   εL = 0   

P32.28 For   t ≤ 0 , the current in the inductor is 
 

zero . 

 For   0 ≤ t ≤ 200 µs , there will be current iR in the 
resistor and IL in the inductor so that i = iR + iL = 
Ii = 10.0 A. Assuming both currents are 
downward in ANS. FIG. P32.28, we apply 
Kirchhoff’s loop rule going counterclockwise 
around the loop, and we find that  

  

  
−iRR + L

diL

dt
= 0

 

 Using   Ii = iR + iL  →  iR = Ii − iL ,  we have 
  

  
− Ii − iL( )R + L

diL

dt
= 0

 

 

ANS. FIG. P32.28 
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 Then, 

  
  
L

dIL

dt
= Imax − IL( )R  

  

  

diL

Ii − IL( )0

I

∫ = R
L

dt
0

t

∫

− ln
Ii − iL( )

Ii

= R
L

t 

 

 which gives 
  

  iL = Ii 1− e−Rt L( )  

 We see that t = 0, iL = 0 as we expect because of the back emf induced 
in the inductor. With the time constant  

  
  
τ =

L
R

=
10.0 mH( )

100 Ω( ) = 1.00 × 10−4  s  

 we have 
  

  
iL = Ii 1− e−t τ( ) = 10.0 A( ) 1− e−10 000t s( )      0 ≤ t ≤ 200 µs( )

 

 At t = 200 µs,   i = 10.00 A( ) 1− e−2.00( ) = 8.65 A;  thereafter, the current 
decays. The loop rule gives the same result,  

  

  
−iRR + L

diL

dt
= 0

 

 but now   iR + iL = 0 →  iR = −iL ,  so we have  
  

  

iLR + L
diL

dt
= 0 →  L

diL

dt
= −iLR

diL

iLIi

I

∫ = − R
L

dt
200 µs

t

∫

ln
iL

Ii

= − R
L

t − 200 µs( )  →   iL = Iie
−R t−200µs( ) L

 

 For t = 200 µs, ii = 8.65 A, and for   t ≥ 200 µs ,  
  

  

i = 8.65 A( )e−10 000 t−200 µs( ) s = 8.65 A( )e−10 000t s+2.00

= 8.65e2.00  A( )e−10 000t s = 63.9 A( )e−10 000t s      t ≥ 200 µs( )
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P32.29 From Equation 32.7, 
  i = Ii 1− e−t τ( ).  Therefore, 

  

  

di
dt

= −Ii e−t τ( ) − 1
τ

⎛
⎝⎜

⎞
⎠⎟

 

 where 

  
  
τ =

L
R
=

15.0 H
30.0 Ω

= 0.500 s  

 Then, 
 

di
dt

= R
L

Iie
−t τ    with   

 
Ii =

ε
R

 

 (a) At t = 0, 
    

  

di
dt

= R
L

Iie
0 = ε

L
= 100 V

15.0 H
= 6.67 A s

 

 (b) At t = 1.50 s, 
    

  

di
dt

= ε
L

e−t τ = 6.67 A s( )e−1.50 0.500( ) = 6.67 A s( )e−3.00

= 0.332 A s

 

P32.30 (a) For a series connection, both inductors carry equal currents at 

every instant, so 
 

di
dt

 is the same for both. The voltage across the 

pair is 
   

  
Leq

di
dt

= L1
di
dt

+ L2
di
dt

     →      Leq = L1 + L2

 

 (b) For a parallel connection, the voltage across each inductor is the 
same for both. 

   

  
Leq

di
dt

= L1
di1

dt
= L2

di2

dt
= ΔVL

 

  where the currents are related by i = i1 + i2. Therefore,  
   

  

di
dt

= di1

dt
+ di2

dt
ΔVL

Leq

= ΔVL

L1

+ ΔVL

L2

     →      
1

Leq

= 1
L1

+ 1
L2
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 (c) 
  
Leq

di
dt

+ Reqi = L1
di
dt

+ iR1 + L2
di
dt

+ iR2  

  Now i and 
 

di
dt

 are independent quantities under our control, so 

functional equality requires both Leq = L1 + L2  and Req = R1 + R2. 

 (d) Yes. The relations 
  
ΔV = Leq

di
dt

+ Reqi = L1
di1

dt
+ R1i1 = L2

di2

dt
+ R2i2 , 

where i = i1 + i2 and 
  

di
dt

= di1

dt
+ di2

dt
,  must always be true. 

  We may choose to keep the currents constant in time. Then, from  
i = i1 + i2, we have 

   
  

ΔVL

Req

=
ΔVL

R1

+
ΔVL

R2

     →      
1

Req

=
1

R1

+
1

R2
 

  We may choose to make the current oscillate so that at a given 

moment it is zero. Then, from 
  

di
dt

= di1

dt
+ di2

dt
,  as in part (b), we 

have 
  

1
Leq

=
1
L1

+
1
L2

. 

P32.31 (a) The equation for current buildup is obtained by combining 
Equations 32.7 and 32.8: 

   

  
i =

ε 1 – e–Rt/L( )
R

 

  We proceed step-by-step to solve for t in terms of the other 
quantities, all of which are given: 

     iR/ε = 1 – e–Rt/L     

  so   e–Rt/L = 1 –   iR/ε     

  and  –Rt/L = ln(1 –   iR/ε ) 

  then, 

   t = –(L/R) ln(1 –   iR/ε )  

   t = –(0.140 H/4.90 Ω ) ln[1 – (0.220 A)(4.90 Ω )/6.00 V]  

    = –(0.028 6 s) ln(0.820) 
   

  t = − 0.028 6 s( ) −0.198( ) = 5.66 ms   
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 (b) We now make the general equation refer to a different instant. 
The current after ten seconds is 

   

  
i = 6.00 V

4.90 Ω
⎛
⎝⎜

⎞
⎠⎟ 1− e(–35.0  s–1 )(10.0  s)( ) = 1.22 A( )(1− e−350) = 1.22 A

  

 (c) The equation for current decrease after the battery is removed is 

  
i = ε

R
e–Rt/L.  We solve for t:  

   
  

iR
ε = e−Rt/L     or     

ε
iR

= e+Rt/L  

  Then,   

   
  ln ε iR( ) = Rt L     and    t = L R( )  ln ε iR( )  

  Substituting,    
   

  

t = (0.140 H/4.90 Ω) ln[6.00 V/(0.160 A ⋅4.90 Ω)]

= 0.028 6 s( ) ln 7.65( ) = 58.1 ms  

  

 
 

 

Section 32.3 Energy in a Magnetic Field 
P32.32 The inductance of the solenoid is  
  

  
L = N

ΦB

i
= 200

3.70× 10−4  Wb
1.75 A

= 0.042 3 H
 

 The energy stored is  
  

  
UB = 1

2
Li2 = 1

2
0.042 3 H( ) 1.75 A( )2 = 0.064 8 J = 64.8 mJ

 

P32.33 For a solenoid of length   ,  the inductance is 
   
L = µ0N

2A


.  

 Thus, since 
   
UB = 1

2
Li2 = µ0N

2Ai2

2
,  the stored energy is 

  

  

UB = (4π × 10–7  N/A2 )(68)2π (6.00 × 10–3 m)2(0.770 A)2

2 (0.080 0) m

= 2.44× 10−6  J
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P32.34 From Equation 32.7, 
  
i = ε

R
1− e−Rt L( ):  

 (a) The maximum current, after a long time t, is 
  
i = Ii =

ε
R
= 2.00 A.  

  At that time, the inductor is fully energized and 
   

  P = i ΔV( ) = 2.00 A( ) 10.0 V( ) = 20.0 W
 

 (b)   Plost = i2R = 2.00 A( )2 5.00 Ω( ) = 20.0 W  

 (c) The inductor has no resistance: 
  
Pinductor = i ΔVdrop( ) = 0  

 (d) 
  
UB = 1

2
Li2 = 1

2
10.0 H( ) 2.00 A( )2 = 20.0 J  

P32.35 (a) The energy density stored by the electric field is 
   

  

uE =∈0
E2

2
= 8.85 × 10−12  

C2

N ⋅m2

⎛
⎝⎜

⎞
⎠⎟

100 V m( )2

2
J C
V

⎛
⎝⎜

⎞
⎠⎟

2 N ⋅m
J

⎛
⎝⎜

⎞
⎠⎟

= 4.43 × 10−8 J
m3 = 44.3 nJ m3

 

 (b) The energy density stored by the magnetic field is 
   

  

uB = B2

2µ0

=
0.500× 10−4  T( )2

2 4π × 10−7  T ⋅m/A( )
N/A ⋅m

T
⎛
⎝⎜

⎞
⎠⎟

= 9.95× 10−4 N
m2

m
m

⎛
⎝⎜

⎞
⎠⎟ = 9.95× 10−4  

N ⋅m
m3 = 995 µJ m3

 

P32.36 We compute the integral: 

   

  

e−2Rt L dt
0

∞

∫ = −
L

2R
e−2Rt L −2Rdt

L
⎛
⎝⎜

⎞
⎠⎟0

∞

∫ = −
L

2R
e−2Rt L

0

∞

= −
L

2R
e−∞ − e0( ) =

L
2R

0 − 1( ) = L
2R

  

*P32.37 The current in the circuit at time t is   i = Ii 1− e−t τ( ) ,  where 
  
Ii =

ε
R

,  and 

the energy stored in the inductor is 
  
UB =

1
2

Li2.  

 (a) As 
  
t→∞,  I → Ii =

ε
R
= 24.0 V

8.00 Ω
= 3.00 A, and    

   
  
UB = 1

2
LIi

2 = 1
2

4.00 H( ) 3.00 A( )2 = 18.0 J  
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 (b) At   t = τ ,  I = Ii 1− e−1( ) = 3.00 A( ) 1− 0.368( ) = 1.90 A, and  

   

  
UB = 1

2
Li2 = 1

2
4.00 H( ) 1.90 A( )2 = 7.19 J

 

P32.38 (a)   P = iΔV = 3.00 A( ) 22.0 V( ) = 66.0 W   

 (b)   P = iΔVR = i2R = 3.00 A( )2 5.00 Ω( ) = 45.0 W  

 (c) METHOD 1: We treat the real inductor as an ideal inductor (with 
no resistance) in series with an ideal resistor (with no inductance).  
When the current is 3.00 A, Kirchhoff’s loop rule reads  

    

  

+22.0 V − 3.00 A( ) 5.00 Ω( ) − ΔVL = 0    
ΔVL = 7.00 V

 

  The power being stored in the inductor is  
    

  iΔVL = 3.00 A( ) 7.00 V( ) = 21.0 W
 

  METHOD 2: We do not treat the real inductor as an ideal 
inductor in series with an ideal resistor.  

  We wish to find the rate at which energy is being delivered to the 

inductor. As discussed in Section 32.3, 
  
UB =

1
2

Li2 → dUB

dt
= Li

di
dt

. 

We know L (0.040 0 H) and i (3.00 A); we need to evaluate the 

term 
  

di
dt

.  From Equations 32.7 and 32.8 (or Equation 32.9),  

    

  
i = ε

R
1− e−t τ( )→ di

dt
= ε

L
e−t τ

  

  because 
 
τ =

L
R

. Also,  

    

  
i = ε

R
1− e−t τ( )→ e−t τ = 1− iR

ε
 

  Therefore,  
    

  

dUB

dt
= Li

di
dt

= Li
ε
L

e−t τ⎛
⎝⎜

⎞
⎠⎟ = iεe−t τ = iε 1− iR

ε
⎛
⎝⎜

⎞
⎠⎟ = i ε − iR( )

 

  When i = 3.00 A,  
    

  

dUB

dt
= i ε − iR( ) = 3.00 A( ) 22.0 V − 3.00 A( ) 5.00 Ω( )[ ]
= 21.0 W
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 (d) 

 

The power supplied by the battery is equal to the sum of the
power delivered to the internal resistance of the coil and the
power stored in the magnetic field.

 

 (e)  Yes.  

 (f) 

  

Just after t = 0, the current is very small, so the power delivered

to the internal resistance of the coil (iR2 ) is nearly zero, but the
rate of the change of the current is large, so the power delivered
to the magnetic field (Ldi/dt) is large, and nearly all the battery
power is being stored in the magnetic field. Long after the
connection is made, the current is not changing, so no power is
being stored in the magnetic field, and all the battery power is
being delivered to the internal resistance of the coil.

 

P32.39 (a) The magnetic energy density is given by 
    

  
uB = B2

2µ0

= 4.50 T( )2

2 4π × 10−7 T ⋅m A( ) = 8.06× 106 J m3 = 8.06 MJ
 

 (b) The magnetic energy stored in the field equals u times the volume 
of the solenoid (the volume in which B is non-zero). 

    

  

UB = uBV = 8.06× 106  J m3( ) 0.260 m( )π 0.031 0 m( )2⎡
⎣

⎤
⎦

= 6.32 kJ

 

 
 

 

Section 32.4 Mutual Inductance 

P32.40 We use Equation 32.17, 
  
ε2 = −M

di1

dt
,  from which we obtain the 

mutual inductance: 
   

  
M =

ε2

di1 dt
= 0.096 0 V

1.20 A s
= 0.080 0 H = 80.0 mH
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P32.41 Let the changing current in coil 1 induce an emf in coil 2. Then,  

   

  

ε2 = −M
di1

dt
= − 100× 10−6( ) d

dt
10.0sin 1.00× 103t( )⎡⎣ ⎤⎦

= − 100× 10−6( ) 10.0( ) 1.00× 103( )cos 1.00× 103t( )
= − 1.00( )cos 1.00× 103t( )

 

 Therefore, the peak emf is  ε2( )max
= 1.00 V . 

P32.42 The current is given by   i = Iie
−αt sinω t,  with Ii = 5.00,  α = 0.025 0 , and 

 ω = 120π .  Then, 

   

  

di
dt

= d
dt

Iie
−α t sinω t⎡⎣ ⎤⎦

= Ii −α e−α t( )sinω t + Iie
−α t ω cosω t( )

= Iie
−α t −α sinω t +ω cosω t( )

 

 where 
 

di
dt

 is in amperes per second, Ii is in amperes, and t in seconds.  

 At t = 0.800 s,  

    

  

di
dt

= 5.00( )e−0.020 0 − 0.025 0( )sin 0.800 120π( )[ ]{
                                            + 120π cos 0.800 120π( )[ ]}

= 1.85× 103  A s

 

 Thus, from 
  
ε2 = −M

di1

dt
,     

   

  
M = −ε2

di1 dt
= +3.20 V

1.85× 103  A s
= 1.73 mH

 

P32.43 (a) The mutual inductance of the coils is  
   

  
M = NBΦBA

iA

=
700 90.0× 10−6 Wb( )

3.50 A
= 18.0 mH

 

 (b) The inductance of coil A is  
   

  
LA = ΦA

iA

=
400 300× 10−6 Wb( )

3.50 A
= 34.3 mH

 

 (c) The emf induced in the other coil is  
   

  
εB = −M

diA

dt
= 18.0 mH( ) 0.500 A s( ) = 9.00 mV
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P32.44 (a) Solenoid S1 creates a nearly uniform field everywhere inside it, 
given by    B1 = µ0N1i/.  The flux through one turn of solenoid S2 is  

   
   µ0πR2

2N1i/
 

  The emf induced in solenoid S2 is  
   

   −(µ0πR2
2N1N2/)(di/dt)  

  The mutual inductance is  
   

   
M12 = µ0πR2

2N1N2/
 

 (b) Solenoid S2 creates a nearly uniform field everywhere inside it, 
given by    B2 = µ0N2i2/  and nearly zero field outside. The flux 
through one turn of solenoid 1 is  

   
   µ0πR2

2N2i2/  

  The emf induced in solenoid 1 is  
   

   −(µ0πR2
2N1N2/)(di2/dt)  

  The mutual inductance is  

   
   
M12 = µ0πR2

2N1N2/.  

 (c) 
 
They are the same.  

P32.45 Assume the long wire carries current I. Then the magnitude of the 

magnetic field it generates at distance x from the wire is 
  
B =

µ0I
2π x

, and 

this field passes perpendicularly through the plane of the loop. The 
flux through the loop is 

   

    

ΦB =

B ⋅d

A∫ = BdA∫ = B dx( )∫ = µ0I

2π
dx
x0.400 mm

1.70 mm

∫

= µ0I
2π

ln
1.70
0.400

⎛
⎝⎜

⎞
⎠⎟

 

 The mutual inductance between the wire and the loop is then 

   

   

M = N2Φ12

I1

= N2µ0 I 
2π I

ln
1.70
0.400

⎛
⎝⎜

⎞
⎠⎟

=
1 4π × 10−7  T ⋅m A( ) 2.70× 10−3  m( )

2π
ln

1.70
0.400

⎛
⎝⎜

⎞
⎠⎟

M = 7.81× 10−10  H = 781 pH
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P32.46 (a) A current i in the large loop of radius R produces a magnetic field 

of magnitude 
  
B = µ0i

2R
 at its center. Because the radius of the small 

loop r<< R, we may treat the flux through the small loop as being 

approximately 
  
ΦB = BAcos0.00° = µ0i

2R
⎛
⎝⎜

⎞
⎠⎟ A = µ0πr2i

2R
.  The mutual 

inductance of the loops is then  
    

  
M = ΦB

i
= µ0πr2

2R

 

 (b) 

  

M = µ0πr2

2R
=

4π × 10−7  T ⋅m/A( )π 0.020 0 m( )2

2 0.200 m( ) = 3.95× 10−9  H

= 3.95 nH

 

 
 

 

Section 32.5 Oscillations in an LC Circuit 
P32.47 When the switch has been closed for a long 

time, battery, resistor, and coil carry constant 

current 
  
Ii =

ε
R

.  When the switch is opened, 

current in battery and resistor drops to zero, 
but the coil carries this same current for a 
moment as oscillations begin in the LC loop. 

 We interpret the problem to mean that the voltage amplitude of these 

oscillations is   ΔV ,  in 
  

1
2

C ΔV( )2 = 1
2

LIi
2.  

 Then, 
  

  

L = C ΔV( )2

Ii
2 = C ΔV( )2 R2

ε 2 =
0.500× 10−6  F( ) 150 V( )2 250 Ω( )2

50.0 V( )2

= 0.281 H = 281 mH

 

P32.48 This radio is a radiotelephone on a ship, according to frequency 
assignments made by international treaties, laws, and decisions of the 
National Telecommunications and Information Administration. 

The resonance frequency is 
  
f0 =

1
2π LC

.  

 Thus, 

  

C =
1

2π f0( )2
L

=
1

2π 6.30 × 106  Hz( )⎡⎣ ⎤⎦
2

1.05 × 10−6  H( )
= 608 pF  

 

ANS. FIG. P32.47 
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P32.49 At different times,   UC( )max
= UL( )max

, so  
  

  

1
2

C ΔV( )2⎡
⎣⎢

⎤
⎦⎥max

= 1
2

LIi
2

 

 Then, 
  

  

Ii = C
L

ΔV( )max = 1.00× 10−6  F
10.0× 10−3  H

40.0 V( )

= 0.400 A = 400 mA

 

P32.50 From the angular frequency of oscillation of the circuit, we have  

  
  
ω = 1

LC
= 2π f  

 Solving for the inductance gives 

  

  

L = 1
C 2π f( )2 = 1

8.00× 10−6  F( ) 2π 120 Hz( )[ ]2

= 0.220 H

 

P32.51 At different times, the maximum energy stored in the capacitor is 
equal to the maximum energy stored in the inductor.  

  

  

1
2

C ΔV( )2⎡
⎣⎢

⎤
⎦⎥max

= 1
2

LIi
2

 

 so  
  

  
ΔVC( )max

= L
C

Ii = 20.0× 10−3  H
0.500× 10−6  F

0.100 A( ) = 20.0 V
 

P32.52  Find the energy stored in the circuit from Equation 32.27:  

  
  
U  = 

Qmax
2

2C
 = 

200 × 10−6  C( )2

2 50.0 × 10−6  F( )  = 4.00 × 10−4  J = 400 µJ  

 If the energy is split equally between the capacitor and inductor at 
some instant, the energy would be half this value, or 200 µJ. Therefore, 
there would be no time when each component stores 250 µJ.  

P32.53 (a) The frequency of oscillation of the circuit is 

   

  

f =
1

2π LC
=

1

2π 0.100 H( ) 1.00 × 10−6  F( )
= 503 Hz  
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 (b) The maximum charge on the capacitor is 
   

  
Q = Cε = 1.00× 10−6  F( ) 12.0 V( ) = 12.0 µC

 

 (c) To find the maximum current Ii , we equate 
   

  

1
2

Cε 2 = 1
2

LIi
2

 

  Then solve for Ii to obtain 

   

  
Ii = ε

C
L
= 12.0 V

1.00× 10−6  F
0.100 H

= 37.9 mA
 

 (d) The total energy the circuit possesses at t = 3.00 s and at all times is   
   

  
U = 1

2
Cε 2 = 1

2
1.00× 10−6  F( ) 12.0 V( )2 = 72.0 µJ

 

P32.54 At t = 0 the capacitor charge is at its maximum value, so φ  = 0 in  

    
  
Q = Qmax cos(ωt + φ) = Qmax cos

t

LC

⎛
⎝⎜

⎞
⎠⎟

 

 Substituting the given information, the charge at 2 ms is  

    

  

Q = (105× 10−6 C)cos
2.00 × 10–3  s 

(3.30 H)(840 × 10–12 F) 

⎛

⎝
⎜

⎞

⎠
⎟

= (105× 10−6 C)cos 38.0 rad( )
= 1.01× 10−4 C

 

 (a) Then the energy in the capacitor is  
    

  
UC = Q2

2C
=

1.01 × 10–4  C( )2

2 840 × 10–12  F( ) = 6.03 J
 

 (c) The constant total energy is that originally of the capacitor:  
    

  
U =

Q2
max

2C
=

1.05 × 10–4  C( )2

2 840 × 10–12  F( ) = 6.56 J
  

 (b) So the inductor’s energy is the remaining  
   

  
UL = 6.56 J − 6.03 J = 0.529 J
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P32.55 (a) The angular frequency of oscillations is 

   
  

ω = 1
LC

= 1

0.082 0 H( ) 17.0× 10−6  F( )
= 847 rad/s = 2π f  

  so   f = 135 Hz  

 (b) The charge on the capacitor is 

   

  

Q = Qmax cosω t = 180 µC( )cos 847 rad/s( ) 0.001 00 s( )⎡⎣ ⎤⎦
= 119 µC

 

 (c) The current in the circuit is given by Equation 32.23: 

   

  

i = dq
dt

= −ωQmax sinω t

= − 847 rad/s( ) 180 µC( ) sin 847 Hz( ) 0.001 00 s( )⎡⎣ ⎤⎦
= −114 mA

 

 
 

 

Section 32.6 The RLC Circuit 
P32.56 We choose to call positive current clockwise in Figure 32.15. It drains 

charge from the capacitor according to 
  
i = − dq

dt
.  A clockwise trip 

around the circuit then gives 
   

  
+ q

C
− iR − L

di
dt

= 0
 

 or   
  
+ q

C
+ dq

dt
R + L

d
dt

dq
dt

= 0,  identical to Equation 32.28. 

P32.57 (a) The frequency of damped oscillations is given by Equation 32.32: 

  

   

ω d = 1
LC

− R
2L

⎛
⎝⎜

⎞
⎠⎟

2

= 1
2.20× 10−3 H( ) 1.80× 10−6 F( ) −

7.60
2 2.20× 10−3 H( )

⎛

⎝
⎜

⎞

⎠
⎟

2

= 1.58× 104  rad s

 

  Therefore, 
  
fd =

ω d

2π
= 1.58× 104  rad s

2π
= 2.51 kHz . 
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 (b) Critical damping occurs when   ωd = 0 , or when  

   
   
Rc = 4L

C
=

4 2.20× 10−3 H( )
1.80× 10−6 F

= 69.9 Ω  

P32.58 (a) The angular frequency of undamped oscillations is  
   

  

ω 0 = 1
LC

= 1

0.500 H( ) 0.100× 10−6 F( )
= 4.47 × 103 rad s

= 4.47 krad s

 

 (b) The frequency of the damped oscillations is  

   

  

ω d = 1
LC

− R
2L

⎛
⎝⎜

⎞
⎠⎟

2

= 1
0.500 H( ) 0.100× 10−6  F( ) −

1.00× 103  Ω
2 0.500 H( )

⎡

⎣
⎢

⎤

⎦
⎥

2

= 4.36 krad s

 

 (c) 
  

Δω
ω 0

× 100% = ω d −ω 0

ω 0

× 100% = 4.36− 4.47
4.47

× 100% = −2.53%  

P32.59 (a) The charge on the capacitor is given by Equation 32.31: 

     q = Qmaxe
−Rt 2L cosω dt  so   Ii ∝ e−Rt 2L  

  When the amplitude of the oscillation falls to 50.0% of its initial 
value, we have 

     0.500 = e−Rt 2L  and 
  

Rt
2L

= − ln 0.500( )  

  Then, 

   
  
t = −

2L
R

ln 0.500( ) = 0.693
2L
R

⎛
⎝⎜

⎞
⎠⎟

 

 (b) The initial energy of the circuit is   U0 ∝Qmax
2 . When U = 0.500U0,  

   
  q = 0.500Qmax = 0.707Qmax

 

  Then, 

   
  
t = −

2L
R

ln 0.707( ) = 0.347
2L
R

⎛
⎝⎜

⎞
⎠⎟

  (half as long as part (a)) 
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Additional Problems 
P32.60 (a) Let Q represent the magnitude of the opposite charges on the 

plates of a parallel plate capacitor, the two plates having area A 
and separation d. The negative plate creates an electric field 

    


E = Q

2∈0 A
 toward itself. It exerts on the positive plate force 

    


F = Q2

2∈0 A
 toward the negative plate. The total field between the 

plates is 
  

Q
∈0 A

.  The energy density is 

  
uE = 1

2
∈0 E2 = 1

2
∈0

Q2

∈0
2 A2 = Q2

2∈0 A2 .  Modeling this as a negative or 

inward pressure, we have for the force on one plate 

  
F = PA = Q2

2∈0 A
,  in agreement with our first analysis. 

 (b) The lower of the two current sheets shown creates above it 

magnetic field 
    


B =

µ0Js

2
−k̂( ) . Let    and w represent the length 

and width of each sheet. The upper sheet carries current Jsw and 
feels force 

   
     


F = I


 ×

B = Jsw î × −

µ0 Js

2
k̂⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

=
µ0wJs

2

2
ĵ  

  The force per area is 
   
P =

F
w

=
µ0 J s

2

2
. 

 

ANS. FIG. P32.60(b) 

 (c) Between the two sheets, each sheet contributes the same field, so 

the total magnetic field is 
   

µ0Js

2
−k̂( ) +

µ0Js

2
−k̂( ) = µ0Jsk̂ , with 

magnitude 
  

B = µ0Js . Outside the space they enclose, the fields 

of the separate sheets are in opposite directions and add to  zero .  
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 (d) 
  
uB =

1
2µ0

B2 =
µ0

2 Js
2

2µ0

=
µ0 Js

2

2
 

 (e) 

 

The energy density found in part (d) agrees with the magnetic
pressure found in part (b).

  

P32.61 (a) The voltage across the inductor is given by 
   

  
εL = −L

di
dt

= − 1.00 mH( ) d 20.0t( )
dt

= −20.0 mV
 

 (b) The charge that flows into the capacitor is  
   

  
q = I dt

0

t

∫ = 20.0t( )dt
0

t

∫ = 10.0t2
 

  Going across the capacitor in the directon of the current, the 
potential drops from the positive to the negative side, so  

   

  
ΔVC = −q

C
= −10.0t2

1.00× 10−6  F
= −10.0t2

  

  where  ΔVC is in megavolts and t is in seconds.  

 (c) When 
  

q2

2C
≥ 1

2
Li2 ,  or    

   
  

−10.0t2( )2

2 1.00 × 10−6( ) ≥
1
2

1.00 × 10−3( ) 20.0t( )2 ,  

  then   100t4 ≥ 400 × 10−9( )t2  

  The earliest time this is true is at  

   
   
t = 4.00 × 10−9  s = 63.2 µs  

P32.62 (a) The voltage across the inductor is given by  
   

 
εL = −L

di
dt

= −L
d
dt

Kt( ) = −LK
 

 (b) The current into the capacitor is 
  
i = dq

dt
,  so the charge that flows 

into the capacitor is  
   

  
q = idt

0

t

∫ = Ktdt
0

t

∫ = 1
2

Kt2
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  Going across the capacitor in the direction of the current, the 
potential drops from the positive to the negative side, so  

   

  
ΔVC = −q

C
= − Kt2

2C

 

 (c) When 
  

1
2

C ΔVC( )2 ≥
1
2

LI 2 ,     

   
  

1
2

C
K 2t4

4C2

⎛
⎝⎜

⎞
⎠⎟
≥

1
2

L K 2t2( )  

  Thus, the energy in the capacitor begins to exceed the energy in 

the inductor after 
  
t = 2 LC . 

P32.63 The total energy equals the energy in the capacitor and inductor:  
   

  

1
2

Q2

C
= 1

2C
Q
2

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
2

Li2
    

 so     
  
i = 3Q2

4CL
 

 The flux through each turn of the coil is  
   

  
ΦB =

Li
N

= q
2N

3L
C

 

 where N is the number of turns. 

P32.64 (a) The inductor has no resistance, therefore it has voltage across it. It 
behaves as a  short circuit .  

 (b) The battery sees an equivalent resistance  
   

 
4.00 Ω+ 1

4.00 Ω
+ 1

8.00 Ω
⎛
⎝⎜

⎞
⎠⎟
−1

= 6.67 Ω
  

  The battery current is  
   

 

10.0 V
6.67 Ω

= 1.50 A
 

  The voltage across the parallel combination of resistors is  
   

 10.0 V − 1.50 A( ) 4.00 Ω( ) = 4.00 V  
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  The current in the 8-Ω resistor and the inductor is  
   

 

4.00 V
8.00 Ω

= 500 mA
 

 (c) The energy stored in the inductor for t < 0 is 
   

  
UB = 1

2
Li2 = 1

2
1.00 H( ) 0.500 A( )2 = 125 mJ

  

 (d) 

 

The energy becomes 125 mJ of additional internal energy in
the 8-Ω resistor and the 4-Ω resistor in the middle branch.

 

 (e) See ANS. FIG. P32.64(e). The current decreases from 500 mA 
toward zero, showing exponential decay with a time constant  

   

  
τ = L

R
= 1.00 H

3 4.00 Ω( ) = 0.083 3 s = 8.33 ms
 

 

ANS. FIG. P32.64(e) 

P32.65 The voltages are related as  
   

  
ε − iR − L

di
dt

= 0     →    ε = iR + L
di
dt

= 0
 

 When the current is increasing:   

   9.00 V = (2.00 A) R + L (0.500 A/s)  [1] 

 When the current is decreasing:   

   5.00 V = (2.00 A) R + L (–0.500 A/s) [2] 

 (a) Subtracting [2] from [1] gives  

    9.00 V – 5.00 V = L (1.00 A/s)   →     L  = 4.00 H  

 (b) Substituting the value for L in either equation gives  

   7.00 V = (2.00 A) R   →     R = 3.50 Ω  

P32.66 (a) Initially, the current is zero because of the emf induced in the coil 
resists an increase in the current. Just after the circuit is 
connected, the potential difference across the resistor is 0 and the 
emf across the coil is 24.0 V. 
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 (b) After several seconds, the current has reached a steady value and 
does not change. After several seconds, the potential difference 
across the resistor is 24.0 V and that across the coil is 0. 

 (c) The resistor voltage and inductor voltage always add to 24 V. The 
resistor voltage increases monotonically, so the two voltages are 
equal to each other, both being 12.0 V, just once. The time is given by  

    
  V = iR = Rε/R(1 – e–Rt/L)  

  Substituting, 
   

  

12 V = 24 V(1 –  e–6Ωt/0.005 H )

0.5 = e–1 200 t → 1 200 t = ln  2 → t = 0.578 ms

 

  
 

The two voltages are equal to each other, both being 12.0 V,
just once, at 0.578 ms after the circuit is connected.

 

 (d) There is now no battery in the circuit, so the current decays to 
zero. The resistor and inductor are in parallel because they have 
common connections on each side. As the current decays the 
potential difference across the resistor is always equal to the emf 
across the coil. 

P32.67 (a) At the center,   
  
B ≈ Nµ0i

2R
.  

  So the coil creates flux through itself  
   

  
ΦB = BAcosθ = Nµ0i

2R
π R2 cos0° = 1

2
Nµ0π iR

 

  The inductance is  
   

  
L = N

ΦB

i
≈ N

Nµ0π IR
2i

⎛
⎝⎜

⎞
⎠⎟ ≈

1
2

µ0πN 2R
 

 (b) To find the inductance of the circuit, we compute its radius from 
   

  2π R = 3 0.300 m( )    →    R = 0.143 m     

  Then, from the expression found in part(a), the inductance is  

   

  

L ≈ 1
2

µ0πN 2R = 1
2

4π × 10−7  T ⋅m A( )π 12( ) 0.143 m( )

  = 2.83× 10−7  H

L ~ 10−7  H
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 (c) The time constant is 

   
  
τ =

L
R
≈

2.83 × 10−7  H
270 Ω

= 1.05 × 10−9  s ≈ 10−9  s  
  

L
R

~ 1 ns  

P32.68 We calculate the angular frequency of the circuit from Equation 32.32: 

 

  

ω d  = 
1

LC
 −  R

2L
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥

1/2

 

      =  1
32.0 × 10−3  H( ) 500 × 10−6  F( )  − 

16.0 Ω
2 32.0 × 10−3  H( )

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

= 0

 

 The fact that the angular frequency at which the circuit oscillates is 
zero tells you that the circuit is critically damped. There will be no 
decaying oscillations. The critical resistance is given by 

  
  
Rc  = 

4L
C

= 
4 32.0 × 10−3  H( )

500 × 10−6  F
 = 16.0 Ω  

 which is just the resistance that you are using for your experiment.  

P32.69 The emf across the inductor is given by 
  

  
ε = −L

di
dt

= −L
Δi
Δt

= −50
Δi
Δt

 

 where the rate of change of current 
 

Δi
Δt

 is in amperes per second (A/s), 

and the induced emf ε  is in millivolts (mV).  

 Between t = 0 and t = 1 ms: 
  

Δi
Δt

= 2  ε  = –100 mV  

 Between t = 1 ms and t = 2 ms:  
  

Δi
Δt

= 0  ε  = 0  

 Between t = 2 ms and t = 3 ms: 
  

Δi
Δt

= 1  ε   = –50 mV  

 Between t = 3 ms and t = 5 ms: 
  

Δi
Δt

= − 3
2

 ε  = +75 mV  

 Between t = 5 ms and t = 6 ms:   
  

Δi
Δt

= 0  ε   = 0  
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The graph of ε  is shown in ANS. FIG. P32.69. 

 

ANS. FIG. P32.69 

P32.70 (a) 
  
i1 = i2 + i  

 (b) For the left-hand loop, 
    

  
ε − i1R1 − i2R2 = 0

 

 (c) For the outside loop, 
    

  
ε − i1R1 − L

di
dt

= 0
 

 (d) Substitute the equation for i1 from part (a) into the equation in 
part (b):  

   

  
ε − i2 + i( )R1 − i2R2 = 0     →      i2 = ε − iR1

R1 + R2

 

  Substitute the equation for i1 from part (a) into the equation in 
part (c):  

   

  
ε − i2 + i( )R1 − L

di
dt

= 0     →      i2 =
ε − L

di
dt

R1

− i

 

  Equate the two expressions for i2: 

   

  

ε − iR1

R1 + R2

=
ε − L

di
dt

R1

− i

 

 

ANS. FIG. P32.70 
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  Expanding and solving, 
   

  

ε − L
di
dt

= ε − iR1

R1 + R2

+ i
⎛
⎝⎜

⎞
⎠⎟

R1

=
ε − iR1 + i R1 + R2( )

R1 + R2

⎡

⎣
⎢

⎤

⎦
⎥R1 = ε + iR2

R1 + R2

⎛
⎝⎜

⎞
⎠⎟

R1

 

   

  

L
di
dt

= ε − ε + iR2

R1 + R2

⎛
⎝⎜

⎞
⎠⎟

R1

=
ε R1 + R2( )− ε + iR2( )R1

R1 + R2

=
ε R2( )− iR2( )R1

R1 + R2

 

  And finally, 
   

  
ε R2

R1 + R2

− i
R1R2

R1 + R2

− L
di
dt

= 0
 

  Calling 
  
′ε = ε R2

R1 + R2

 and 
  
′R =

R1R2

R1 + R2

, the equation for i can be 

written  
   

  
′ε − i ′R − L

di
dt

= 0
 

 (e) This is of the same form as the Equation 32.6 in the text for a 
simple RL circuit, so its solution is of the same form as Equation 
32.7: 

   

  
i = ′ε

′R
1− e− ′R t L( )

 

  where   

   
  

′ε
′R

=
ε R2 R1 + R2( )
R1R2 R1 + R2( ) = ε

R1

 

  Thus,   

   
  
i = ε

R1

1− e− ′R t L( )     where    
  
′R =

R1R2

R1 + R2

 

P32.71 See ANS. FIG. 32.71. The magnetic field  
inside the toroid is given by 

  

  
B = µ0Ni

2π r

 

 

 

ANS. FIG. P32.71 
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The magnetic flux through a cross-sectional area A = h(b – a) is given 
by  

  

  
ΦB = BdA∫ = µ0Ni

2π r
hdr

a

b

∫ = µ0Nih
2π

dr
ra

b

∫ = µ0Nih
2π

ln
b
a

⎛
⎝⎜

⎞
⎠⎟

 

 Thus, the inductance is  
  

  
L = NΦB

i
= µ0N

2h
2π

ln
b
a

⎛
⎝⎜

⎞
⎠⎟

 

 Substituting numerical values, we obtain 
  

   
L = µ0 500( )2 0.010 0 m( )

2π
ln

12.0 cm
10.0 cm

⎛
⎝⎜

⎞
⎠⎟ = 91.2 µH

 

P32.72 See ANS. FIG. P23.71. 
  
B = µ0Ni

2π r
 inside the toroid. 

 Calculate the flux through a cross-sectional area A = h(b – a):  
   

  
ΦB = BdA∫ = µ0Ni

2π r
hdr

a

b

∫ = µ0Nih
2π

dr
ra

b

∫ = µ0Nih
2π

ln
b
a

⎛
⎝⎜

⎞
⎠⎟

 

 Thus, the inductance is 
   

  
L = NΦB

i
= µ0N

2h
2π

ln
b
a

⎛
⎝⎜

⎞
⎠⎟

 

P32.73 (a) 
  
UB = 1

2
Li2 = 1

2
50.0 H( ) 50.0× 103  A( )2

= 6.25× 1010  J  

 (b) Two adjacent turns are parallel wires carrying current in the same 
direction. Since the loops have such large radius, a one-meter 
section can be regarded as straight. 

  Then one wire creates a field of   
  
B = µ0i

2π r
.  

  This causes a force on the next wire of      F = iBsinθ ,  

  giving a force per unit length   
   

F


= i
µ0i

2π r
sin 90° = µ0i

2

2π r
.  

  Evaluating,  

   

F


= 4π × 10−7  T ⋅m/A( ) 50.0 × 103  A( )2

2π 0.250 m( ) = 2 000 N/m  
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P32.74 For an RL circuit,  i = Iie
− R L( )t  and      

   

  

i
Ii

= 1− 10−9 = e− R L( )t ≅ 1− R
L

t
 

   
  

R
L

t = 10−9      

 so     
  

  

Rmax =
L 10−9( )

t
=

3.14 × 10−8  H( ) 10−9( )
2.50 yr( )

1 yr
3.16 × 107 s

⎛
⎝⎜

⎞
⎠⎟

= 3.97 × 10−25  Ω

  

 (If the ring were of purest copper, of diameter 1 cm, and cross-sectional 
area 1 mm2, its resistance would be at least 10–6 Ω.) 

P32.75 Find the current in the cylinder.   
   

  
P = iΔV    →    i = P

ΔV
= 1.00× 109  W

200× 103  V
= 5.00× 103  A

 

 From Ampère’s law,  
   

  
B 2π r( ) = µ0ienclosed      or     B = µ0ienclosed

2π r

  

 

ANS. FIG. P32.75 

 (a) At r = a = 0.020 0 m,   ienclosed = 5.00× 103  A  and    
   

  
B =

4π × 10−7  T ⋅m A( ) 5.00 × 103  A( )
2π 0.020 0 m( ) = 0.050 0 T = 50.0 mT

 

 (b) At r = b = 0.050 0 m,   ienclosed = i = 5.00× 103  A  and 
   

  
B =

4π × 10−7  T ⋅m A( ) 5.00 × 103  A( )
2π 0.050 0 m( ) = 0.020 0 T = 20.0 mT
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 (c) The energy density is 
  
uB = B2

2µ0

:  

   

   

UB = udV∫ =
B r( )[ ]2 2π rdr( )

2µ0a

b

∫ = µ0i
2

4π
dr
ra

b

∫ = µ0i
2

4π
ln

b
a

⎛
⎝⎜

⎞
⎠⎟

UB =
4π × 10−7  T ⋅m A( ) 5.00× 103  A( )2

1 000× 103  m( )
4π

                                                                         × ln
5.00 cm
2.00 cm

⎛
⎝⎜

⎞
⎠⎟

= 2.29× 106  J = 2.29 MJ

 

 (d) The magnetic field created by the inner conductor exerts a force of 
repulsion on the current in the outer sheath. The strength of this 
field, from part (b), is 20.0 mT. Consider a small rectangular 
section of the outer cylinder of length    and width w. 

  It carries a current of 
  
5.00 × 103  A( ) w

2π 0.050 0 m( )
⎛

⎝⎜
⎞

⎠⎟
 

  and experiences an outward force 
   

   
F = iBsinθ =

5.00× 103  A( )w
2π 0.050 0 m( )  20.0× 10−3  T( )sin 90.0°

 

  The pressure on it is 

   
P =

F
A

=
F

w
=

5.00 × 103  A( ) 20.0 × 10−3  T( ) w

2π 0.050 0 m( ) w
 
 
= 318 Pa  

P32.76 (a) The magnetic field inside the solenoid is given by 
   
B = µ0Ni


:  

   

  

B =
4π × 10−7  T ⋅m A( ) 1 400( ) 2.00 A( )

1.20 m
= 2.93 × 10−3  T = 2.93 mT

 

 

ANS. FIG. P32.76 
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 (b) The energy density of the magnetic field is 
    

  

uB = B2

2µ0

=
2.93× 10−3  T( )2

2 4π × 10−7  T ⋅m A( ) = 3.42 J m3( ) 1 N ⋅m
1 J

⎛
⎝⎜

⎞
⎠⎟

= 3.42 N m2 = 3.42 Pa

  

 (c) 

 

The supercurrents must be clockwise to produce a downward
magnetic field to cancel the upward field of the current in the
windings.

 

 (d) The field of the windings is upward and radially outward around 
the top of the solenoid. It exerts a force radially inward and 
upward on each bit of the clockwise supercurrent. The total force 
on the supercurrents in the bar is upward. You can think of it as a 
force of repulsion between the solenoid with its north end 
pointing up, and the core, with its north end pointing down.  

 (e) 
  
F = PA = 3.42 Pa( ) π 1.10 × 10−2  m( )2⎡

⎣
⎤
⎦ = 1.30 × 10−3  N = 1.30 mN  

  Note that we have not proved that energy density is pressure. In 
fact, it is not in some cases. Chapter 21 proved that the pressure is 
two-thirds of the translational energy density in an ideal gas. 

P32.77 From Ampère’s law, the magnetic field at distance  r ≤ R  is found as: 

    
  
B 2π r( ) = µ0 j π r2( ) = µ0

i
π R2

⎛
⎝⎜

⎞
⎠⎟
π r2( ) , ,   or   

  
B = µ0ir

2π R2  

 The magnetic energy per unit length within the wire is then 
    

   

UB


= B2

2µ0

2π rdr( )
0

R

∫ = µ0i
2

4π R4 r3 dr
0

R

∫ = µ0i
2

4π R4

R4

4
⎛
⎝⎜

⎞
⎠⎟

= µ0i
2

16π

 

 This is independent of the radius of the wire. 

 
 

 

Challenge Problems 

P32.78 (a) 

  

It has a magnetic field, and it stores energy, so 

L = 2UB

i2  is non-zero.

 

 (b) 

 

Every field line goes through the rectangle between the 
conductors.
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 (c) When the wires carry current i, magnetic flux passes through the 
rectangle bordered by the wires (surface to surface of the wires):  

   

  
L = Φ

i
= 1

i
BdA

y=a

w−a

∫
 

  where y is measured from the center of the lower wire, dA is a 
rectangular area element of length x and width dy, and B is the 
magnitude of the net magnetic field generated by the upper and 
lower wires that passes through dA. The inductance is  

   

  
L = 1

i
µ0i

2π y
+ µ0i

2π w − y( )
⎡

⎣
⎢

⎤

⎦
⎥xdy

a

w−a

∫
 

  We can simplify this calculation by noting that by the symmetry 
of the arrangement, each conductor contributes equally to the 
field that passes through the area between them. Thus, the total 
inductance of both wires is twice the inductance of one wire. The 
inductance due to the lower wire is   

  

  

Llower = 1
i

µ0i
2π y

xdy
a

w−a

∫ = µ0x
2π

ln y
a

w−a

= µ0x
2π

ln w − a( )− ln a[ ]

= µ0x
2π

ln
w − a

a
⎛
⎝⎜

⎞
⎠⎟

 

  The inductance due to both wires is twice this: 
  
L =

µ0x
π

ln
w − a

a
⎛
⎝⎜

⎞
⎠⎟

. 

P32.79 The total magnetic energy is the volume integral of the energy density,  
   

  
uB = B2

2µ0

 

 Because B changes with position, uB is not constant. For 
  
B = B0

R
r

⎛
⎝⎜

⎞
⎠⎟

2

,  

   

  
uB = B0

2

2µ0

⎛
⎝⎜

⎞
⎠⎟

R
r

⎛
⎝⎜

⎞
⎠⎟

4  

 Next, we set up an expression for the magnetic energy in a spherical 
shell of radius r and thickness dr. Such a shell has a volume   4π r2dr , so 
the energy stored in it is 

  

  
dUB = uB 4π r2dr( ) = 2π B0

2R4

µ0

⎛
⎝⎜

⎞
⎠⎟

dr
r2
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 We integrate this expression for r = R to  r = ∞  to obtain the total 
magnetic energy outside the sphere. This gives 

  

  
UB = 2π B0

2R3

µ0

 

 Substituting numerical values, 
   

  

UB = 2π B0
2R3

µ0

=
2π 5.00× 10−5  T( )2

6.00× 106  m( )3

4π × 10−7  T ⋅m A( )
= 2.70× 1018  J

 

P32.80 (a) While steady-state conditions exist, a 9.00 mA flows clockwise 
around the right loop of the circuit. Immediately after the switch 
is opened, a 9.00 mA current will flow around the outer loop of 
the circuit. Applying Kirchhoff’s loop rule going clockwise 
around this loop gives: 

   

 

+ε − 2.00 + 6.00( )× 103  Ω⎡⎣ ⎤⎦ 9.00× 10−3  A( ) = 0

ε = 72.0 V

 

 (b) Starting at point a, the potential rises across the inductor then falls 
across resistors R2 and R1. The positive answer in part (a) means 
that 

 
point b  is the higher potential.  

 (c) The currents in R1 and R2 are shown in ANS. FIG. P32.80(c).below. 
After t = 0, the current in R1 decreases from an initial value of  
9.00 mA according to i = Ii e

–Rt/L. Taking the original current direction 
as positive in each resistor, the current decreases from +9.00 mA (to 
the right) to zero in R1. In R2 the current jumps from +3.00 mA 
(downward) to –9.00 mA (upward) and then decreases in 
magnitude to zero. The time constant of each decay is 0.4 H/8 000 
Ω  = 50 µs. Thus we draw each current dropping to 1/e = 36.8% of 
its original value = 3.3 µA at the 50 µs instant.    

 

 

ANS. FIG. P32.80(c) 
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 (d) After the switch is opened, the current around the outer loop 
decays as 

    i = Iie
−Rt L   

  with Ii = 9.00 mA, R = 8.00 kΩ, and L = 0.400 H. 

  Thus, when the current has reached a value i = 2.00 mA, the 
elapsed time is: 

 

  

t = L
R

⎛
⎝⎜

⎞
⎠⎟ ln

Ii

i
⎛
⎝⎜

⎞
⎠⎟ = 0.400 H

8.00× 103  Ω
⎛
⎝⎜

⎞
⎠⎟ ln

9.00 mA
2.00 mA

⎛
⎝⎜

⎞
⎠⎟

= 7.52 × 10−5  s = 75.2 µs

 

P32.81 When the switch is closed, as shown in ANS. FIG. P32.81(a), the 
current in the inductor is i: 

  
  12.0− 7.50i − 10.0 = 0 → i = 0.267 A  

 When the switch is opened, as shown in ANS. FIG. P32.81(b), the 
initial current in the inductor remains at 0.267 A. Across resistor R and 
the armature,  iR = ΔV  and 

  
  0.267 A( )R ≤ 80.0 V     →    R ≤ 300 Ω

 

 

ANS. FIG. P32.81 

*P32.82 (a) After a long time, 

   
  
i = ε

R
= 12.0 V

12.0 Ω
= 1.00 A  

 (b) With the switch thrown to position b, the  
emf is no longer part of the circuit. The  
initial current is 1.00 A: 

     ΔV12 = 1.00 A( ) 12.00 Ω( ) = 12.0 V  

     ΔV1 200 = 1.00 A( ) 1 200 Ω( ) = 1.20 kV  

     ΔVL = ΔVR = 1 200 V + 12.0 V = 1.21 kV  

 
ANS. FIG. P32.82 
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 (c) With the switch thrown to position b,  ε = 0,  so  
   

  ΔVL = ΔVR = iReff = i 1 200 Ω+ 12.0 Ω( ) = i 1.21 kΩ( )  

  Then, when the voltage across the inductor has reached 12.0 V, 
   

  
i = ΔVL

Reff

= 12.0 V
1.21 kΩ

= 9.90× 10−3  A
 

  The current in the inductor decays as   i = Iie
−Rt L.  Solving for the 

time t, 
   

  
t = L

R
ln

Ii

i
⎛
⎝⎜

⎞
⎠⎟ =

2.00 H
1.21 kΩ

⎛
⎝⎜

⎞
⎠⎟ ln

1.00 A
9.90× 10−3  A

⎛
⎝⎜

⎞
⎠⎟ = 7.62 × 10−3  s

 

P32.83 With i = i1 + i2, the voltage across the pair is: 

  
  
ΔV = −L1

di1

dt
− M

di2

dt
= −Leq

di
dt

 [1] 

 and 

  
  
ΔV = −L2

di2

dt
− M

di1

dt
= −Leq

di
dt

 [2] 

 

ANS. FIG. P32.83 

 So, from [1], we have      
  

  
− di1

dt
= ΔV

L1

+ M
L1

di2

dt

 

 which, when substituted into [2], gives  
  

  
−L2

di2

dt
+ M

ΔV( )
L1

+ M
L1

di2

dt
⎛
⎝⎜

⎞
⎠⎟

= ΔV
 

  
  
−L1L2 + M2( ) di2

dt
= ΔV L1 − M( )  [3] 

 From [2], 
  
− di2

dt
= ΔV

L2

+ M
L2

di1

dt
,  
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 which, when substituted into [1], gives  
  

  
−L1

di1

dt
+ M

ΔV
L2

+ M
L2

di1

dt
⎛
⎝⎜

⎞
⎠⎟

= ΔV
 

  
  
−L1L2 + M2( ) di1

dt
= ΔV L2 − M( )  [4] 

 Adding [3] to [4], we have  
  

  
−L1L2 + M2( ) di

dt
= ΔV L1 + L2 − 2M( )

 

 So, 
  
Leq = − ΔV

di dt
= L1L2 − M2

L1 + L2 − 2M
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 
P32.2 1.36 μH 

P32.4 (a) 1.97 mH; (b) 38.0 mA/s 

P32.6 (a) 188 µT; (b)  3.33× 10−8  T ⋅m2 ;  (c) 0.375 mH; (d) B and  ΦB  are 
proportional to current: L is independent of current. 

P32.8 (a) 5.90 mH; (b) 23.6 mV 

P32.10 9.77 mm 

P32.12 See P32.12 for full explanation. 

P32.14 See ANS. FIG. P32.14. 

P32.16 (a) 0.139 s; (b) 0.461 s 

P32.18 See ANS. FIGs. P32.18(a), (b), and (c). 

P32.20 7.67 mH 

P32.22 See P32.22 for full explanation. 

P32.24 (a) 2.00 ms; (b) 0.176 A; (c) 1.50 A; (d) 3.22 ms 

P32.26 (a) 
  

ε
5R

1− e−5Rt 2L( ) ;  (b) 
  

ε
10R

6− e−5Rt 2L( )  

P32.28 For   t ≤ 0 , the current in the inductor is zero; for   0 ≤ t ≤ 200 µs,  

  iL = 10.0 A( ) 1− e−10 000t s( ) ;  for   t ≥ 200 µs, ,   63.9 A( )e−10 000t s  

P32.30 (a) See P32.30(a) for full explanation; (b) See P32.30(b) for full 
explanation; (c) See P32.30(c) for full explanation; (d) Yes. See P32.30(d) 
for full explanation. 

P32.32 64.8 mJ 

P32.34 (a) 20.0 W; (b) 20.0 W; (c) 0; (d) 20.0 J 

P32.36 
  

L
2R

 

P32.38 (a) 66.0 W; (b) 45.0 W; (c) 21.0 W; (d) The power supplied by the 
battery is equal to the sum of the power delivered to the internal 
resistance of the coil and the power stored in the magnetic field;  
(e) Yes; (f) Just after t = 0, the current is very small, so the power 
delivered to the internal resistance of the coil (iR2) is nearly zero, but 
the rate of the change of the current is large, so the power delivered to 
the magnetic field (Ldi/dt) is large, and nearly all the battery power is 
being stored in the magnetic field.  Long after the connection is made, 
the current is not changing, so no power is being stored in the 
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magnetic field, and all the battery power is being delivered to the 
internal resistance of the coil. 

P32.40 80.0 mH 

P32.42 1.73 mH 

P32.44 (a)    M12 = µ0πR2
2N1N2/ ; (b)    M12 = µ0πR2

2N1N2/ ; (c) They are the 
same. 

P32.46 (a) See P32.46(a) for full explanation; (b) 3.95 nH 

P32.48 608 pF 

P32.50 0.220 H 

P32.52 If the energy is split equally between the capacitor and inductor at 
some instant, the energy would be half this value, or 200 µJ. Therefore, 
there would be no time when each component stores 250 µJ. 

P32.54 (a) 6.03 J; (b) 0.529 J; (c) 6.56 J 

P32.56 See P32.56 for full explanation. 

P32.58 (a) 4.47 krad/s; (b) 4.36 krad/s; (c) –2.53% 

P32.60 (a) See P32.60(a) for full explanation; (b) 
  

µ0Js
2

2
; (c)   B = µ0 Js , zero;  

(d) 
  

µ0 Js
2

2
; (e) The energy density found in part (d) agrees with the 

magnetic pressure found in part (b). 

P32.62 (a) –LK; (b) 
  
−

Kt2

2C
; (c)   2 LC  

P32.64 (a) short circuit; (b) 500 mA; (c) 125 mJ; (d) The energy becomes 125 mJ 
of additional internal energy in the 8-Ω resistor and the 4-Ω resistor in 
the middle branch; (e) See ANS FIG P32.64(e). 

P32.66 (a) Just after the circuit is connected, the potential difference across the 
register is 0, and the emf across the coil is 24.0 V; (b) After several 
seconds, the potential difference across the resistor is 24.0 V and that 
across the coil is 0; (c) The two voltages are equal to each other, both 
being 12.0 V, just once, at 0.578 ms after the circuit is connected; (d) As 
the current decays, the potential difference across the resistor is always 
equal to the emf across the coil. 

P32.68 See P32.68 for full explanation. 
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P32.70 (a) i1 = i2 + i; (b)   ε − i1R1 − i2R2 = 0;  (c) 
  
ε − i1R1 − L

di
dt

= 0;  

(d) 
  
′ε − i ′R − L

di
dt

= 0;  (e) See P32.70(e) for full explanation. 

P32.72 
  

µ0N 2h
2π

ln
b
a

⎛
⎝⎜

⎞
⎠⎟

 

P32.74  3.97 × 10−25  Ω  

P32.76 (a) 2.93 mT; (b) 3.42 Pa; (c) The supercurrents must be clockwise to 
produce a downward magnetic field to cancel the upward field of the 
current in the windings; (d) The field of the windings is upward and 
radially outward around the top of the solenoid. It exerts a force 
radially inward and upward on each bit of the clockwise supercurrent. 
The total force on the supercurrents in the bar is upward; (e) 1.30 mN 

P32.78 (a) It has a magnetic field, and it stores energy, so 
  
L = 2UB

i2  is non-zero; 

(b) Every field line goes through the rectangle between the conductors; 
(c) See P32.78(c) for full explanation. 

P32.80 (a) 72.0 V; (b) point b; (c) See ANS. FIG. P32.80(c); (d) 75.2 µs 

P32.82 (a) 1.00 A; (b)   ΔV12 = 12.0 V, ΔV1 200 = 1.20 kV, ΔVL = 1.21 kV  
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 33 
Alternating-Current Circuits 

 

CHAPTER OUTLINE 
 

33.1  AC Sources 

33.2 Resistors in an AC Circuit 

33.3 Inductors in an AC Circuit 

33.4 Capacitors in an AC Circuit 

33.5 The RLC Series Circuit 

33.6 Power in an AC Circuit 

33.7 Resonance in a Series RLC Circuit 

33.8 The Transformer and Power Transmission 

33.9 Rectifiers and Filters 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ33.1 Answer (c). When a power source, AC or DC, is first connected to a 
RL combination, the presence of the inductor impedes the buildup of 
a current in the circuit. The value of the current starts at zero and 
increases as the back emf induced across the inductor decreases in 
magnitude. 

OQ33.2 (i) Answer (e). Inductive reactance,  XL = ωL , doubles when the 
frequency doubles, so the rms current is halved 

  Irms = ΔVrms XL( ).  

 (ii) Answer (b). Capacitive reactance,   XC = 1 ωC , is cut in half 
when frequency doubles, so the rms current doubles 

  Irms = ΔVrms XC( ).  

 (iii) Answer (d). The resistance remains unchanged   Irms = ΔVrms R( ).  
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OQ33.3 Answer (a). The voltage across the capacitor is proportional to the 
stored charge. This charge, and hence the voltage   ΔVC ,  is a 
maximum when the current has zero value and is in the process of 
reversing direction after having been flowing in one direction for a 
half cycle. Thus, the voltage across the capacitor lags behind the 
current by 90°. The capacitive reactance,   XC = 1 ωC , decreases as 
frequency increases, causing the impedance to decrease and the 
current to increase. 

OQ33.4 (i) Answer (d). 
  
ΔVavg =

ΔVmax

2
. 

 (ii) Answer (c). The average of the squared voltage is 

  
ΔV[ ]2( )

avg
=

ΔVmax( )2

2
.  Then its square root is 

  
ΔVrms =

ΔVmax

2
. 

OQ33.5 Answer (d). If the voltage is a maximum when the current is zero, the 
voltage is either leading or lagging the current by 90° (or a quarter 
cycle) in phase. Thus, the element could be either an inductor or a 
capacitor. It could not be a resistor since the voltage across a resistor 
is always in phase with the current. If the current and voltage were 
out of phase by 180°, one would be a maximum in one direction 
when the other was a maximum value in the opposite direction.  

OQ33.6 (i)  Answer (e). The voltage varies between +170 V and –170 V. 

 (ii)  Answer (c). The average of a sine waveform is zero.  

 (iii) Answer (b).   ΔVrms = ΔVmax 2 = 170 V 2 = 120 V . 

OQ33.7 (i) Answer (a). We have:  
   

  

Z = R2 + XL − XC( )2 = R2 + ωL− 1
ωC

⎛
⎝⎜

⎞
⎠⎟

2

= 20.0 Ω( )2 + 2π 500 Hz( ) 120× 10−3  H( )⎡

⎣
⎢

⎧
⎨
⎪

⎩⎪

                              − 1
2π 500 Hz( ) 0.750× 10−6  F( )

⎤

⎦
⎥
⎥

⎫
⎬
⎪

⎭⎪

1/2

Z = 51.5 Ω

 

  and     Irms = ΔVrms Z = 120 V( ) 51.5 Ω( ) = 2.33 A . 

 (ii) Answer (b). At the resonance frequency, XL = XC and the 

impedance is 
  Z = R2 + XL − XC( )2 = R . Thus, the rms current is  

   
  Irms = ΔVrms Z = 120 V( ) 20.0 Ω( ) = 6.00 A  



520     Alternating-Current Circuits 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

OQ33.8 Answer (e) is false. In an RLC circuit, the instantaneous voltages   ΔvR ,  

  ΔvL ,  and  ΔvC  (across the resistance, inductance, and capacitance 
respectively) are not in phase with each other. The instantaneous 
voltage  ΔvR  is in phase with the current, ∆vL leads the current by 90°, 
while  ΔvC  lags behind the current by 90°. The instantaneous values 
of these three voltages do add algebraically to give the instantaneous 
voltages across the RLC combination, but the rms voltages across 
these components do not add algebraically. The rms voltages across 
the three components must be added as vectors (or phasors) to obtain 
the correct rms voltage across the RLC combination. 

OQ33.9 Answer (c). At resonance the inductive reactance and capacitive 
reactance cancel out.  

OQ33.10 Answer (c). At resonance the inductive reactance and capacitive 
reactance add to zero: φ = tan–1[(XL – XC)/R] = 0. 

OQ33.11 The ranking is (a) > (d) > (b) > (c) > (e). At the resonance frequency  
f0 = 1 000 Hz both XL and XC are equal: call their mutual value X. A 
high-Q value means the resonance has a small width, so XL and XC 
are also much larger than R at f0. Inductive reactance XL is 
proportional to frequency, and capacitive reactance XC is inversely 
proportional to frequency. In terms of X, the choices have the values: 
(a) f = f0 /2, so XC = 2X. (b) f = 3f0 /2, so XC = 2X/3. (c) f = f0 /2, so XL = 
X/2. (d) f = 3f0 /2, so XL = 3X/2. (e) R is independent of frequency, and 
R is less than X. Thus, we have (a) 2X > (d) 3X/2 > (b) 2X/3 > (c) X/2 > 
(e) less than X.  

OQ33.12 Answer (e). The battery produces a constant current in the primary 
coil, which generates a constant flux through the secondary coil. 
With no change in flux through the secondary coil, there is no 
induced voltage across the secondary coil. 

OQ33.13 Answer (c). AC ammeters and voltmeters read rms values. With an 
oscilloscope you can read a maximum voltage, or test whether the 
average is zero.  

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ33.1 (a) The Q factor determines the selectivity of the radio receiver. For 
example, a receiver with a very low Q factor will respond to a 
wide range of frequencies and might pick up several adjacent 
radio stations at the same time. To discriminate between  
102.5 MHz and 102.7 MHz requires a high-Q circuit. 
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 (b) Typically, lowering the resistance in the circuit is the way to get 
a higher quality resonance. 

CQ33.2 (a) The second letter in each word stands for the circuit element. 

For an inductor L, the emf ε leads the current I—thus ELI. For a 
capacitor C, the current leads the voltage across the device. In a 
circuit in which the capacitive reactance is larger than the 
inductive reactance, the current leads the source emf—thus ICE.  

 (b) CIVIL – in a capacitor C the current (I) leads voltage 
(represented by V), voltage leads current in an inductor L.  

CQ33.3 The voltages are not added in a scalar form, but in a vector form, as 
shown in the phasor diagrams throughout the chapter. Kirchhoff’s 
loop rule is true at any instant, but the voltages across different 
circuit elements are not simultaneously at their maximum values. Do 
not forget that an inductor can induce an emf in itself and that the 
voltage across it is 90° ahead of the current in the circuit in phase. 

CQ33.4 (a) In an RLC series circuit, the phase angle depends on the source 
frequency. At very low frequency, the capacitor dominates the 
impedance and the phase angle is near –90°. At very high 
frequencies, the inductor dominates the impedance and the 
phase angle is near –90°.  

 (b)  When the inductive reactance equals the capacitive reactance, 
the frequency is the resonance frequency; the phase angle is 
zero.  

CQ33.5 In 1881, an assassin shot President James Garfield. The bullet was lost 
in his body. Alexander Graham Bell invented the metal detector in an 
effort to save the President’s life. The coil is preserved in the 
Smithsonian Institution. The detector was thrown off by metal 
springs in Garfield’s mattress, a new invention itself. Surgeons went 
hunting for the bullet in the wrong place. Garfield died. 

CQ33.6 (a) The person is doing work at a rate of   P = Fv cosθ . 

 (b) Compare the previous equation to   P = ΔVrmsIrms cosφ . One can 
consider the emf as the “force” that moves the charges through 
the circuit, and the current as the “speed” of the moving 
charges. The cos θ factor measures the effectiveness of the cause 
in producing the effect. Theta is an angle in real space for the 
vacuum cleaner and phi is the analogous angle of phase 
difference between the emf and the current in the circuit. 

CQ33.7 The circuit can be considered an RLC series circuit.  

 (a) Yes. The circuit is in resonance because the inductive reactance 
and capcitive reactance are equal, so the total impedance Z = R. 
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 (b) Total power output by the emf Pemf = I2Rtotal, where Rtotal = 10 Ω 
(source resistance) + 10 Ω (load resistance) = 20 Ω. Power 
delivered to the load Pload = I2RL , where RL = 10 Ω. Fraction of 
average power delivered to the load to average power delivered 
by the source of emf:  

   
  

Pload

Pemf

=
I 2Rload

I 2Rtotal

=
RL

Rtotal

=
RL

Rsource + RL

=
10 Ω
20 Ω

= 0.5  

 (c) The resistance of the load could be increased to make a greater 
fraction of the emf’s power go to the load. Then the emf would 
put out a lot less power and less power would reach the load. 

CQ33.8 No. A voltage is only induced in the secondary coil if the flux 
through the core changes in time. No changing current, no changing 
flux, no induced voltage.  

CQ33.9 (a) The capacitive reactance is proportional to the inverse of the 
frequency. At higher and higher frequencies, the capacitive 
reactance approaches zero, making a capacitor behave like a 
wire.  

 (b) As the frequency goes to zero, the capacitive reactance 
approaches infinity—the resistance of an open circuit. 

CQ33.10 The ratio of turns indicates the ratio of voltages:   N1/N2 = ΔV1/ΔV2 ,  
where   ΔV2  = 120 V; therefore,   ΔV1  = 12 kV. In its intended use, the 
transformer takes in energy by electric transmission at 12 kV and 
puts out nearly the same energy by electric transmission at 120 V. 
With the small generator putting energy into the secondary side of 
the transformer at 120 V, the primary side has 12 kV induced across 
it. It is deadly dangerous for the repairman. 

 
 

 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 33.1 AC Sources 

Section 33.2 Resistors in an AC Circuit 
P33.1 (a) The rms voltage across the resistor is given by  

   
  ΔVR , rms = IrmsR = 8.00 A( ) 12.0 Ω( ) = 96.0 V  

 (b) From Equation 33.5, 

   
  
ΔVR ,max = 2 ΔVR , rms( ) = 2 96.0 V( ) = 136 V  
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 (c) From Equation 33.4, 

      Imax = 2Irms = 2 8.00 A( ) = 11.3 A  

 (d)   Pavg = Irms
2 R = 8.00 A( )2 12.0 Ω( ) = 768 W  

P33.2 The rms voltage is 

    
  
ΔVrms =

170 V
2

= 120 V  

 (a) 
  
P =

ΔVrms( )2

R
    →    R =

120 V( )2

75.0 W
= 193 Ω  

 (b) 
  
R =

120 V( )2

100 W
= 144 Ω  

P33.3 Each meter reads the rms value. 

 (a) 
  
Irms = ΔVrms

R
=

ΔVmax 2( )
R

=
100 V 2( )

24.0 Ω
= 2.95 A  

 (b) The voltage across the resistor is the same as that across the 
power supply:  

    
  
ΔVrms =

ΔVmax

2
=

100 V
2

= 70.7 V  

 

ANS. FIG. P33.3 

P33.4 (a) We compute the peak voltage from the rms voltage: 

    
  
ΔVR ,max = 2 ΔVR , rms( ) = 2 120 V( ) = 170 V  

 (b) From the definition of power, 
    

  
Pavg = Irms

2 R = ΔVrms
2

R

 

  Solving for the resistance, 

    
  
R = ΔVrms

2

Pavg

= 120 V( )2

60.0 W
= 2.40 × 102  Ω  
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 (c) 

  

Because Pavg =
ΔVrms( )2

R
    →    R =

ΔVrms( )2

Pavg

, a 100-W bulb has less

resistance than a 60.0-W bulb.

 

P33.5 The current as a function of time is 
  
i = Δv

R
=

ΔVmax

R
⎛
⎝⎜

⎞
⎠⎟

sinωt.  Given the 

value of t, we want to identify a point with 

    
  
0.600

ΔVmax

R
=
ΔVmax

R
sin(ω t)  

  or   ω t = sin–1 0.600 

  To find the lowest frequency we choose the smallest angle satisfying this 
relation: 

     0.007 00 s( )ω = sin−1 0.600( ) = 0.644 rad  

 Thus,   ω = 91.9 rad s = 2π f    so   
  

f = 14.6 Hz  

P33.6 (a) From Equation 33.3,   ΔvR = ΔVmax sinω t.  To find the angular 
frequency, we write 

     ΔvR = 0.250 ΔVmax( )  

  so   sinω t = 0.250  

  or   ω t = sin−1 0.250( )  

  The smallest angle for which this is true is   ω t = 0.253 rad . Thus, if 
t = 0.010 0 s, 

   
 
ω =

0.253 rad
0.010 0 s

= 25.3 rad s  

 (b) The second time when   ΔvR = 0.250 ΔVmax( ) ,   ω t = sin−1 0.250( )  
again. For this occurrence,   ω t = π − 0.253 rad = 2.89 rad  (to 
understand why this is true, recall the identity  sin π −θ( ) = sinθ  
from trigonometry). Thus, 

   
  
t =

2.89 rad
25.3 rad s

= 0.114 s  
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P33.7 We are given   ΔVmax  = 15.0 V and   Rtotal = 8.20 Ω + 10.4 Ω = 18.6 Ω . The 
maximum current in the circuit is 

  

  
Imax = ΔVmax

Rtotal

= 15.0 V
18.6 Ω

= 0.806 A = 2Irms

 

 And the power delivered to the speakers is 
   

  
Pspeaker = Irms

2 Rspeaker = 0.806 A
2

⎛
⎝⎜

⎞
⎠⎟

2

10.4 Ω( ) = 3.38 W
 

P33.8 All lamps are connected in parallel with the voltage source, so  

  ΔVrms = 120 V  for each lamp. Also, the current is   Irms = Pavg ΔVrms  and 
the resistance is   R = ΔVrms I rms . 

 (a) For the 150-W bulbs,  

   
  
Irms =

150 W
120 V

=1.25 A       

  For the 100-W bulb,  

   
  
Irms =

100 W
120 V

  = 0.833 A  

  The rms current in each 150-W bulb is 1.25 A. The rms current in 
the 100-W bulb is 0.833 A. 

 (b) The resistance in bulbs 1 and 2 is  

   
  
R1 = R2 =

120 V
1.25 A

= 96.0 Ω       

  and the resistance in bulb 3 is  

   
  
R3 =

120 V
0.833 A

=  
 

144 Ω  

 (c) The bulbs are in parallel, so  

   

  

1
Req

=
1

R1

+
1

R2

+
1

R3

=
1

96.0 Ω
+

1
96.0 Ω

+
1

144 Ω

Req = 36.0 Ω
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Section 33.3 Inductors in an AC Circuit 
P33.9 Inductive reactance is proportional to frequency. 

 At 50.0 Hz,  

  

X′L
XL

=
f ′
f

X′L = XL

f ′
f

=
50.0Hz
60.0Hz

54.0 Ω( ) = 45.0 Ω
 

 The maximum current is  

  
Imax =

ΔVmax

XL

=
2 ΔVrms( )

XL

=
2 100 V( )
45.0 Ω

= 3.14 A  

P33.10 (a) 
  
XL = ωL =

ΔVmax

Imax

 

  
L =

ΔVmax

ω Imax

=
100 V

2π 50.0 Hz( ) 7.50 A( ) = 0.0424 H  

 (b) From 
  
Imax =

ΔVmax

XL

=
ΔVmax

ωL
, we see that is current inversely 

proportional to angular frequency:  

  

Imax

I′max

=
ω′
ω

ω′ = ω Imax

I′max

= 2π 50.0 Hz( )[ ]7.50 A
2.50 A

= 942 rad/s
 

P33.11 The inductive reactance is  

  XL = ω L = (65.0 π s–1)(70.0 × 10–3 V · s/A) = 14.3 Ω   

 The amplitude of the current is 
  

  
Imax = ΔVmax

XL

= 80.0 V
14.3 Ω

= 5.60 A
 

 Equation 33.7 lets us evaluate the current: 
  

  

i = −Imax cosωt = − 5.60 A( )cos 65.0π  s−1( ) 0.015 5 s( )⎡⎣ ⎤⎦
= − 5.60 A( )cos 3.17 rad( ) = +5.60 A
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P33.12 The relationship between current, inductance, and maximum voltage 
is  

  
  
Irms =

ΔVL , rms

XL

=
ΔVL ,max 2( )

ωL
=

ΔVL ,max

2 2π( ) fL
 

 In order to restrict the current to   Irms < 2.00× 10−3  A,  we require  
  

  

ΔVL ,max

2 2π( ) fL
< 2.00× 10−3  A

 

 Solving for the inductance then gives 
  

  

L >
ΔVL ,max

2 2π( ) f 2.00× 10−3  A( )
                             = 4.00 V

2 2π( ) 300.0 Hz( ) 2.00× 10−3  A( )

 

 or    L > 0.750 H  

P33.13 (a) 
  XL = 2π f L = 2π 80.0 Hz( ) 25.0 × 10−3  H( ) = 12.6 Ω  

 (b) 
  
Irms =

ΔVL , rms

XL

=
78.0 V

XL

= 6.21 A  

 (c)   Imax = 2 Irms = 2 6.21 A( ) = 8.78 A  

P33.14 In the inductor, because 
  
UB = 1

2
LiL

2 = 0  when t = 0,   iL = Imax sin ω t( ) . 

Then, 
  

  
Irms = ΔVrms

XL

= ΔVrms

ω L
= 120 V

2π 60.0( )  s−1⎡⎣ ⎤⎦ 0.020 0 H( ) = 15.9 A
 

 and   Imax = 2Irms = 2 15.9 A( ) = 22.5 A  

 the current in the inductor is 
  

  

iL = Imax sinω t = 22.5 A( )sin 2π 60.0( )  s−1 ⋅ 1
180

 s⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= 22.5 A( )sin120° = 19.5 A

 

 and the energy stored is 
  

  
UB = 1

2
LiL

2 = 1
2

0.020 0 H( ) 19.5 A( )2 = 3.80 J
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P33.15 The flux  ΦB  through each turn of the inductor is related to the 
inductance by 

  

 
L = NΦB

i

  

 Then, for an N-turn inductor, 
  

  

NΦB, max = LImax = XL

ω
ΔVL , max( )

XL

=
ΔVL , max( )

ω

NΦB, max =
2 ΔVL , rms( )

2π f
= 120 V

2π 60.0 s−1( ) = 0.450 Wb

 

P33.16 We are given:   Δv = 120 sin 30.0πt  where  Δv  is in volts and t in 
seconds, and L = 0.500 H. 

 (a) By inspection,  ω = 30π  rad s , so  

   
  
f =

ω
2π

=
30π  rad s

2π
= 15.0 Hz . 

 (b) Also by inspection,   ΔVL ,max = 120 V,  so that  

   
  
ΔVL , rms =

ΔVL ,max

2
=

120 V
2

  = 84.9 V  

 (c) 
  XL = 2π fL = ωL = 30π  rad s( ) 0.500 H( ) = 47.1 Ω  

 (d) 
  
Irms =

ΔVL , rms

XL

=
84.9 V
47.1 Ω

= 1.80 A  

 (e)   Imax = 2 Irms = 2 1.80 A( ) = 2.55 A  

 
 

 

Section 33.4 Capacitors in an AC Circuit 
P33.17 Current leads voltage by 90° in a capacitor, and because charge is 

proportional to voltage, current leads charge by 90°. If  ΔvC =  

  ΔVmax sinω t , then   q = C ΔVmax( )sinω t  so that the stored energy is 

 
  
UC = q2

2C
= 0  when t = 0. Therefore, the current is given by 

  

  
iC = Imax sin ω t + 90°( ) = ΔVmax

XC

sin ω t + 90°( )
  

 The capacitive reactance is 
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XC = 1

ω C
= 1

2π 60.0 s( ) 1.00× 10−3  C V( ) = 2.65 Ω
 

 and the current at 
  
t = 1

180
 s  is 

  

  

iC = ΔVmax

XC

sin ω t +φ( )

= 2 120 V( )
2.65 Ω

sin 2π 60.0 s−1( ) ⋅ 1
180

 s⎛
⎝⎜

⎞
⎠⎟ + π

2
⎡
⎣⎢

⎤
⎦⎥

= −32.0 A

 

 The magnitude of the current is  32.0 A . 

P33.18 (a) 
  
XC =

1
2π fC

=
1

2π 60.0 Hz( ) 12.0 × 10−6  F( ) = 221 Ω  

 (b) 
  
Irms =

ΔVC , rms

XC

=
36.0 V
221 Ω

= 0.163 A  

 (c)   Imax = 2 Irms = 0.230 A   

 (d)  No.  Current leads voltage, and thus charge, by 90° in a 
capacitor. The current reaches its maximum value one-quarter 
cycle before the voltage reaches its maximum value. From the 
definition of capacitance, the capacitor reaches its maximum 
charge when the voltage across it is also a maximum. 
Consequently, the maximum charge and the maximum current 
do not occur at the same time.  

P33.19 (a) We require 
  
XC =

1
2π f C

< 175 Ω , or 

   
  

1
2π f 22.0 × 10−6  F( ) < 175 Ω  

  Solving, 
   

  

1
2π 22.0× 10−6  F( ) 175 Ω( )

< f
 

  or 
  

f > 41.3 Hz  
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 (b) As a function of capacitance C, 
  
XC C( )∝ 1

C
,  so 

   
  
XC C = 44.0 µF( ) =

1
2

XC C = 22.0 µF( )  

  or new 
  
XC =

1
2

 old XC. 

  Therefore, 
  

XC < 87.5 Ω  

P33.20 (a) By inspection,   ΔVC ,max  = 98.0 V, so  

   

  
ΔVC ,rms =

ΔVC ,max

2
= 98.0 V

2
= 69.3 V

. 

 (b) Also by inspection,  ω = 80π  rad s , so  

   
  
f =

ω
2π

=
80π  rad s

2π  rad
= 40.0 Hz  

 (c) We can find the capacitive reactance from 

    
  
XC =

ΔVC ,max

Imax

=
98.0 V

0.500 A
= 196 Ω  

  and since  

   
  
XC =

1
2π fC

=
1

ωC
 

  solving for the capacitance gives 

   
  
C =

1
ωXC

=
1

80π  rad s( ) 196 Ω( ) = 2.03 × 10−5  F = 20.3 µF  

P33.21 We combine the steps in the equation 

    
  
Imax =

ΔVmax

XC

= ΔVmaxωC = ΔVmax(2π fC)  

 Then, 
   

  Imax = 48.0 V( ) 2π( ) 90.0 Hz( ) 3.70× 10−6  F( ) = 100 mA  

P33.22 The maximum charge is given by 

  
  
Qmax = C ΔVmax( ) = C 2 ΔVrms( )⎡⎣ ⎤⎦ = 2C ΔVrms( )  
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P33.23 The maximum current in the capacitor is given by 

  
  
Imax = 2Irms =

2 ΔVrms( )
XC

= 2 ΔVrms( )2π f C  

 (a) For the North American electrical outlet, 

   
  
Imax = 2 120 V( )2π 60.0 s( ) 2.20 × 10−6  C V( ) = 141 mA  

 (b) For the European electrical outlet, 

   
  
Imax = 2 240 V( )2π 50.0 s( ) 2.20 × 10−6  F( ) = 235 mA  

 
 

 

Section 33.5 The RLC Series Circuit 
P33.24 We first determine the reactances of the circuit. The capacitive 

reactance is 
   

  
XC = 1

ω C
= 1

2π 50.0( ) 65.0× 10−6  F( ) = 49.0 Ω
 

 the inductive reactance is, 
   

  XL =ω L = 2π 50.0( ) 185× 10−3  H( ) = 58.1 Ω  

 and the impedance Z of the circuit is 
    

  

Z = R2 + XL − XC( )2 = 40.0 Ω( )2 + 58.1 Ω− 49.0 Ω( )2

= 41.0 Ω

 

 The current in the circuit is then 
    

  
Imax = ΔVmax

Z
= 150 V

41.0 Ω
= 3.66 A

 

 

ANS. FIG. P33.24 

 (a) The maximum voltage between points a and b is the potential 
drop across the resistor: 

   
  ΔVR = ImaxR = 3.66 A( ) 40.0 Ω( ) = 146 V

 

 (b) The maximum voltage between points b and c is the potential 
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drop across the coil: 
   

  ΔVL = ImaxXL = 3.66 A( ) 58.1 Ω( ) = 212.5 V = 212 V
 

 (c) The maximum voltage between points c and d is the potential 
drop across the capacitor: 

   
  ΔVC = ImaxXC = 3.66 A( ) 49.0 Ω( ) = 179.1 V = 179 V

 

 (d) The potential drop between points b and d is 
   

  ΔVL − ΔVC = 212.5 V − 179.1 V = 33.4 V
 

P33.25 The resistance of the circuit is R = 300 Ω. The inductive reactance of the 
circuit is 

   

  
XL =ω L = 2π 500

π
 s−1⎛

⎝⎜
⎞
⎠⎟ 0.200 H( ) = 200 Ω

 

 The capacitive reactance of the circuit is 
   

  
XC = 1

ω C
= 2π 500

π
 s−1⎛

⎝⎜
⎞
⎠⎟ 11.0× 10−6  F( )⎡

⎣⎢
⎤
⎦⎥

−1

= 90.9 Ω
 

 The impedance of the circuit is 
   

  
Z = R2 + XL − XC( )2 = 300 Ω( )2 + 200 Ω− 90.0 Ω( )2 = 319 Ω

 

  and 
   

  
φ = tan−1 XL − XC

R
⎛
⎝⎜

⎞
⎠⎟ = tan−1 200 Ω− 90.9 Ω

300 Ω
⎛
⎝⎜

⎞
⎠⎟ = 20.0°

 

 The phasor diagram is shown in ANS. FIG. P33.25. 

 

ANS. FIG. P33.25 

P33.26 (a) From the time dependence of the voltage, we recognize that 

 ω = 100 s−1.  The resistance of the circuit is   R = 68.0 Ω,  the 
inductive reactance of the circuit is 

   
  XL =ω L = 100 s−1( ) 0.160 H( ) = 16.0 Ω  
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 The capacitive reactance of the circuit is 
   

  
XC = 1

ω C
= 1

100 s−1( ) 99.0× 10−6  F( ) = 101 Ω
 

 Therefore, the impedance of the circuit is 
   

  

Z = R2 + XL − XC( )2

= 68.0 Ω( )2 + 16.0 Ω− 101 Ω( )2 = 109 Ω

 

 (b) The maximum current in the circuit is 

   
  
Imax =

ΔVmax

Z
=

40.0 V
109 Ω

= 0.367 A  

 (c) 
 
ω = 100 rad s  

 (d)  We find φ  from 
   

  

φ = tan−1 XL − XC

R
⎛
⎝⎜

⎞
⎠⎟ = tan−1 16.0 Ω− 101 Ω

68.0 Ω
⎛
⎝⎜

⎞
⎠⎟

= −0.896 rad = −51.3°

 

P33.27 (a) The inductive reactance of the circuit is 

   
  
XL = ω L = 2π 50.0 s−1( ) 150 × 10−3  H( ) = 47.1 Ω  

 (b) The capacitive reactance of the circuit is 

   
  
XC =

1
ω C

= 2π 50.0 s−1( ) 5.00 × 10−6  F( )⎡⎣ ⎤⎦
−1

= 637 Ω  

 (c) The impedance of the circuit is 

   
  
Z =

ΔVmax

Imax

=
240 V

0.100 A
= 2.40 × 103  Ω = 2.40 kΩ  

 (d) From the definition of impedance, 

   
  Z = R2 + XL − XC( )2  

  Solving for the resistance gives 

   

  

R = Z2 − XL − XC( )2

= 2.40× 103  Ω( )2
− 47.1 Ω− 637 Ω( )2

= 2.33× 103  Ω = 2.33 kΩ

 

 (e) 
  
φ = tan−1 XL − XC

R
⎡
⎣⎢

⎤
⎦⎥

= tan−1 47.1 Ω− 637 Ω
2.33× 103  Ω

⎛
⎝⎜

⎞
⎠⎟ = −14.2°  
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P33.28 From the definitions of inductive and capacitive reactance,  XL =ω L  

and 
  
XC = 1

ω C
.  Setting these equal and solving for the angular 

frequency gives 
   

  

ω L = 1
ω C

ω = 1
LC

= 1

57.0× 10−6( ) 57.0× 10−6( )
= 1.75× 104  rad s

 

 Then, 

  
  
f =

ω
2π

= 2.79 kHz  

P33.29 The reactance of the inductor is  
  

  XL = 2π f L = 2π 60.0 s−1( ) 0.460 H( ) = 173 Ω  

  The reactance of the capacitor is  
   

  
XC = 1

ωC
= 1

2π fC
= 1

2π 60.0 s–1( ) 21.0 × 10–6  F( ) = 126 Ω
  

  (a) 
  
φ = tan−1 XL – XC

R
⎛
⎝⎜

⎞
⎠⎟ = tan−1 173 Ω – 126 Ω

150 Ω
⎛
⎝⎜

⎞
⎠⎟ = 17.4°  

  (b) Since XL > XC, φ  is positive, so 
 

voltage leads the current .  This 

means that the power-supply or total voltage goes through each 
maximum, zero-crossing, and minimum earlier in time than the 
current does.   

P33.30 The Phasors for the three cases are shown in ANS. FIG. P33.30. 

 (a) 25.0 sin ωt  at ωt  = 90.0° 

 (b) 30.0 sin ωt  at ωt  = 60.0° 

 (c) 18.0 sin ωt  at ωt  = 300° 

 

ANS. FIG. P33.30 
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P33.31 (a) We first find the impedances of the inductor and the capacitor:  

   
  XL = ω L = 2π 50.0( ) 400 × 10−3( ) = 126 Ω  

  and 
  
XC = 1

ω C
= 1

2π 50.0( ) 4.43× 10−6( ) = 719 Ω  

    We then compute the impedance of the circuit:  
      

  
Z = R2 + XL − XC( )2 = 5002 + 126− 719( )2 = 776 Ω

 

    Then, from the equation for a series RLC circuit, 
   

  ΔVmax = ImaxZ = 250× 10−3( ) 776( ) = 194 V
 

 (b) 
  
φ = tan−1 XL − XC

R
⎛
⎝⎜

⎞
⎠⎟ = tan−1 126 − 719

500
⎛
⎝⎜

⎞
⎠⎟ = −49.9°  

  Thus, the 
 

current leads the voltage . 

 

ANS. FIG. P33.31 

P33.32 (a) The capacitive reactance of the circuit is 

   
  
XC =

1
2π f C

=
1

2π 60.0 Hz( ) 30.0 × 10−6  F( ) = 88.4 Ω  

 (b) The impedance of the circuit is 
   

  

Z = R2 + 0− XC( )2 = R2 + XC
2 = 60.0 Ω( )2 + 88.4 Ω( )2

= 107 Ω

 

 (c) 
  
Imax =

ΔVmax

Z
=

1.20 × 102  V
107 Ω

= 1.12 A  

 (d) The phase angle in this RC circuit is 
   

  
φ = tan−1 XL − XC

R
⎛
⎝⎜

⎞
⎠⎟ = tan−1 0− 88.4 Ω

60.0 Ω
⎛
⎝⎜

⎞
⎠⎟ = −55.8°

 

  Since  φ < 0 , 
 
the voltage lags behind the current by 55.8° . 
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 (e) 

  

Adding an inductor will change the impedance, and 
hence the current in the circuit. The current could be 
larger or smaller, depending on the inductance added. 
The largest current would result when the inductive 
reactance equals the capacitive reactance, the impedance 
has its minimum value, equal to 60.0 Ω, and the
current in the circuit is 

           Imax = ΔVmax

Z
= ΔVmax

R
= 1.20× 102  V

60.0 Ω
= 2.00 A

 

P33.33 Let XC represent the initial capacitive reactance. Moving the plates to 

half their original separation doubles the capacitance (
  
C =

∈0 A
d

) and 

cuts 
  
XC =

1
ω C

 in half.  

 For the current to double, the total impedance must be cut in half, or  
Zi = 2Zf . Then, 

   

  

R2 + XL − XC( )2 = 2 R2 + XL −
XC

2
⎛
⎝⎜

⎞
⎠⎟

2

    R2 + R − XC( )2 = 4 R2 + R −
XC

2
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥

2R2 − 2RXC + XC
2 = 8R2 − 4RXC + XC

2

XC = 3R

 

 
 

 

Section 33.6 Power in an AC Circuit 
P33.34 The power factor for a series RLC circuit is given by 

  
  

cosφ  = R
Z
 = 

R

R2  +  XL  − XC( )2  

 The circuit in this problem has no capacitance, so the power factor 
becomes 

  
  
cosφ  =  R

R2  + XL
2  
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 In order for the power factor to be equal to 1.00, we would have to 
have XL = 0, which would require either L or f to be zero. Because this 
is not the case, the situation is impossible. 

P33.35 From the definition of impedance, 
  
Z = R2 + XL − XC( )2 ,  we have 

   
  XL − XC( ) = Z2 − R2  

 Substituting numerical values, 
  

  XL − XC( ) = 75.0 Ω( )2 − 45.0 Ω( )2 = 60.0 Ω
 

 The phase angle of the circuit is then 
  

  
φ = tan−1 XL − XC

R
⎛
⎝⎜

⎞
⎠⎟ = tan−1 60.0 Ω

45.0 Ω
⎛
⎝⎜

⎞
⎠⎟ = 53.1°

 

 The rms current in the circuit is 
  

  
Irms = ΔVrms

Z
= 210 V

75.0 Ω
= 2.80 A

 

 Therefore, the power delivered to the circuit is 
  

  P = ΔVrms( )Irms cosφ = 210 V( ) 2.80 A( )cos 53.1°( ) = 353 W
 

P33.36 The rms voltage of the power supply is  

   
  
ΔVrms =

100 V

2
= 70.7 V  

 In order to calculate the impedance, we first need the capacitive and 
inductive reactances:  

   
  
XC =

1
ωC

=
1

1 000 s–1( ) 5.00 × 10–6  F( ) = 200 Ω  

   XL = ω L = (1 000 s–1)(0.500 H) = 500 Ω  

 Next, 
   

  

Z = R2 + (XL – XC )2

= (400 Ω)2 + (500 Ω – 200 Ω)2 = 500 Ω

  

 The rms current is 

   
  
Irms =

ΔVrms

Z
=

70.7  V
500 Ω

= 0.141 A  

 The average power is   Pavg = Irms
2 R = (0.141 A)2(400 Ω) = 8.00 W   
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P33.37 The rms current in the circuit is  

   
  
Irms =

ΔVrms

Z
=

160 V
80.0 Ω

= 2.00 A  

 and the average power delivered to the circuit is  
   

  Pavg = Irms
2 R = 2.00 A( )2 22.0 Ω( ) = 88.0 W

 

P33.38 Given   v = ΔVmax sin ωt( ) = 90.0 V( )sin 350t( ),  observe that 

  ΔVmax = 90.0 V  and ω = 350 rad/s. Also, the net reactance is  
   

  
XL − XC = 2π fL− 1

2π fC
=ωL− 1

ωC

 

 (a) To find the impedance, we first compute   

   

  

XL − XC =ωL− 1
ωC

= 350 rad s( ) 0.200 H( )− 1
350 rad s( ) 25.0× 10−6  F( )

= − 44.3 Ω

  

  so the impedance is 

   
  
Z = R2 + XL − XC( )2 = 50.0 Ω( )2 + − 44.3 Ω( )2 = 66.8 Ω  

 (b) The rms current in the circuit is 

   
  
Irms =

ΔVrms

Z
=
ΔVmax 2

Z
=

90.0 V
2 66.8 Ω( )

= 0.953 A  

 (c) The phase difference between the applied voltage and the current 
is 

   
  
φ = tan−1 XL − XC

R
⎛
⎝⎜

⎞
⎠⎟ = tan−1 − 44.3 Ω

50.0 Ω
⎛
⎝⎜

⎞
⎠⎟ = −41.5°  

  so the average power delivered to the circuit is  
   

  

Pavg = IrmsΔVrmscosφ = Irms
ΔVmax

2
⎛
⎝⎜

⎞
⎠⎟ cosφ

= 0.953 A( ) 90.0 V
2

⎛
⎝⎜

⎞
⎠⎟ cos −41.5°( ) = 45.4 W

 

P33.39 The power is given by 
  

  Pavg = IrmsΔVrmscosφ = Irms
2 R  
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 (a) Then, 
   

  

P = Irms ΔVrms( )cosφ = 9.00 A( ) 180 V( )cos −37.0°( )
= 1.29× 103  W

 

  Then, from   P = Irms
2 R ,  

   

  
R = P

Irms
2 = 1.29× 103  W

9.00 A( )2 = 16.0 Ω
  

 (b) From the definition of phase angle, 
  
tanφ =

XL − XC

R
,  

   
  XL − XC = R tanφ = 16.0 Ω( )tan −37.0°( ) = −12.0 Ω

 

P33.40 For this circuit, R = 20.0 Ω, the capacitive reactance is XC = 0, and the 
inductive reactance is 

   
  XL = ω L = 2π 60.0 s−1( ) 0.025 0 H( ) = 9.42 Ω  

 The impedance of the circuit is 
   

  
Z = R2 + XL − XC( )2 = 20.0 Ω( )2 + 9.42 Ω( )2 = 22.1 Ω

 

 (a) The rms current in the circuit is 

   
  
Irms =

ΔVrms

Z
=

120 V
22.1 Ω

= 5.43 A  

 (b) The phase angle of the circuit is 

   
 
φ = tan−1 9.42

20.0
⎛
⎝⎜

⎞
⎠⎟ = 25.2°   

  so the power factor is 
   

 cosφ = 0.905
 

 (c) For the power factor to equal 1, we require  φ = 0 , and this can 
only occur if XL = XC, or  

   
  
9.42 Ω =

1
2π 60.0 s−1( )C

→ C =  
 

281 µF  

 (d) For the power to equal that before the capacitor was installed, or 
Pb = Pd, we require  

   
  
ΔVrms( )b

Irms( )b
cosφb =

ΔVrms( )d

2

R
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  Solving for the rms voltage gives 
   

  

ΔVrms( )d
= R ΔVrms( )b

Irms( )b
cosφb

= 20.0 Ω( ) 120 V( ) 5.43 A( ) 0.905( )
= 109 V

 

P33.41 One-half of the time, the left side of the 
generator is positive, the top diode conducts, 
and the bottom diode switches off. The power 
supply sees resistance 

   
  

1
2R

+
1

2R
⎡
⎣⎢

⎤
⎦⎥

−1

= R  

 and the power is 
  

ΔVrms( )2

R
.  

 The other half of the time the right side of the generator is positive, the 
upper diode is an open circuit, and the lower diode has zero resistance. 
The equivalent resistance is then 

   
  
Req = R +

1
3R

+
1
R

⎡
⎣⎢

⎤
⎦⎥

−1

=
7R
4

     

 and  
  
P =

ΔVrms( )2

Req

=
4 ΔVrms( )2

7R
 

 The overall time average power is:  
   

  
Pavg =

ΔVrms( )2
R⎡

⎣
⎤
⎦ + 4 ΔVrms( )2 7R⎡

⎣
⎤
⎦

2
= 11 ΔVrms( )2

14R

 

 
 

 

Section 33.7 Resonance in a Series RLC Circuit 

P33.42 We are given L = 0.020 0 H, C = 100 × 10–9 F, R = 20.0 Ω, and  

  ΔVmax = 100 V.   

 (a) The resonant frequency for a series RLC circuit is  

   
  
f =

ω0

2π
=

1
2π

1
LC

=  
 

3.56 kHz  

 

ANS. FIG. P33.41 
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 (b) At resonance,  

   
  
Imax =

ΔVmax

R
= 5.00 A  

 (c) From Equation 33.38,  

   
  
Q =

ω0L
R

= 22.4  

 (d) At resonance, the amplitude of the voltage across the inductor is 

   
  
ΔVL ,  max = XLImax = ω0LImax = 2.24 kV  

P33.43 The circuit is to be in resonance when  
  

  
ω 0L = 1

ω 0C

 

 Solving for the capacitance gives 
   

  

C = 1
ω 0

2L
= 1

4π 2 f 2L
= 1

4π 2(99.7  MHz)2(1.40 µV ⋅ s/A)

= 1.82 pF

 

P33.44 (a) The resonance frequency of a RLC circuit is   f0 = 1 2π LC . Thus, 
the inductance is 

   

  

L = 1
4π 2 f0

2C
= 1

4π 2 9.00× 109  Hz( )2
2.00× 10−12  F( )

= 1.56× 10−10  H = 156 pH

 

 (b) At resonance,  
   

  

XL = XC = 1
2π f0C

= 1
2π 9.00× 109  Hz( ) 2.00× 10−12  F( )

= 8.84 Ω

  

P33.45 The resonance frequency is 
  
ω0 =

1
LC

. Thus, if  ω = 2ω0 , then 

    
  
XL = ω L =

2
LC

⎛
⎝⎜

⎞
⎠⎟

L = 2
L
C

    

  and  
  
XC =

1
ω C

=
LC

2C
=

1
2

L
C
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  The impedance of the circuit is  

   
  
Z = R2 + XL − XC( )2 = R2 + 2.25

L
C

⎛
⎝⎜

⎞
⎠⎟

    

 so the rms current in the circuit is 

  
  
Irms =

ΔVrms

Z
=

ΔVrms

R2 + 2.25 L C( )  

 The power delivered to the circuit is 

   
  
P= Irms( )2 R =

ΔVrms

Z
⎛
⎝⎜

⎞
⎠⎟

2

R =
ΔVrms( )2

Z2 R =
ΔVrms( )2 R

R2 + 2.25 L C( )
 

 and the energy delivered in one period is   E = PΔt:  
  

  

E = PΔt =
ΔVrms( )2

R
R2 + 2.25 L C( )

2π
ω

⎛
⎝⎜

⎞
⎠⎟ =

ΔVrms( )2
RC

R2C + 2.25L
π LC( )

=
4π ΔVrms( )2

RC LC
4R2C + 9L

 

 Substituting numerical values, 
 

  

E =
4π 50.0V( )2 10.0 Ω( ) 100× 10−6  F( ) 10.0× 10−3  H( ) 100× 10−6  F( )⎡⎣ ⎤⎦

1 2

4 10.0 Ω( )2 100× 10−6  F( ) + 9 10.0× 10−3  H( )
= 242 mJ

 

P33.46 The resonance frequency is 
  
ω0 =

1
LC

. Thus, if  ω = 2ω0 , then 

    
  
XL = ω L =

2
LC

⎛
⎝⎜

⎞
⎠⎟

L = 2
L
C

    

  and  
  
XC =

1
ω C

=
LC

2C
=

1
2

L
C

 

  The impedance of the circuit is  

   
  
Z = R2 + XL − XC( )2 = R2 + 2.25

L
C

⎛
⎝⎜

⎞
⎠⎟

    

 so the rms current in the circuit is 

  
  
Irms =

ΔVrms

Z
=

ΔVrms

R2 + 2.25 L C( )  
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 The power delivered to the circuit is 

   
  
P= Irms( )2 R =

ΔVrms

Z
⎛
⎝⎜

⎞
⎠⎟

2

R =
ΔVrms( )2

Z2 R =
ΔVrms( )2 R

R2 + 2.25 L C( )
 

 and the energy delivered in one period is   E = PΔt:  
  

  

E = PΔt =
ΔVrms( )2

R
R2 + 2.25 L C( )

2π
ω

⎛
⎝⎜

⎞
⎠⎟ =

ΔVrms( )2
RC

R2C + 2.25L
π LC( )

=
4π ΔVrms( )2

RC LC
4R2C + 9L

 

P33.47 (a) To find the capacitance, we note that
  
f = 1

2π LC
.  Solving for the 

capacitance C gives 
   

  

C = 1
4π 2 f 2L

= 1
4π 2 1.00× 1010  Hz( )2

400× 10−12  H( )
= 6.33× 10−13  F = 0.633 pF

 

 (b) From Equation 26.15 for the capacitance of parallel plates with a 
dielectric, we have  

   

   
C = κ ∈0 A

d
= κ ∈0 

2

d

 

  Solving for the edge length gives 
   

   

 = Cd
κ ∈0

⎛
⎝⎜

⎞
⎠⎟

1 2

=
6.33× 10−13  F( ) 1.00× 10−3  m( )

1( ) 8.85× 10−12  F( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

= 8.46× 10−3  m = 8.46 mm

 

 (c) The inductive reactance of the circuit at resonance, equal to the 
capacitive reactance, is 

   
  XL = 2π f L = 2π 1.00× 1010  Hz( ) 400× 10−12  H( ) = 25.1 Ω  
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Section 33.8 The Transformer and Power Transmission 

P33.48 (a) The output voltage is found from Equation 33.41, 
  
Δv2 = N2

N1

Δv1.  

Therefore, 
   

  
Δv2 = 1

13
120 V( ) = 9.23 V

 

 (b) Assuming an ideal transformer,   P2 = P1.  Therefore, 
   

  

     

ΔV2I2 = ΔV1I1 = 120 V( ) 0.0200A( ) = 2.40 W
 

P33.49 The rms primary voltage is 

    
  
ΔV1,rms =

170 V

2
= 120 V  

 The rms voltage across the bigger coil is 
   

  
ΔV2,rms = N2

N1

⎛
⎝⎜

⎞
⎠⎟
ΔV1,rms = 2000

350
⎛
⎝⎜

⎞
⎠⎟ (120 V) = 687  V

 

P33.50 (a) The total resistance of the transmission line is 
   

  R = 4.50× 10−4  Ω/m( ) 6.44× 105  m( ) = 290 Ω   

  and the rms current in the line is 
   

  
Irms = P

ΔVrms

= 5.00× 106  W
5.00× 105  V

= 10.0 A
 

  The power loss during transmission is 
   

  Ploss = Irms
2 R = 10.0 A( )2 290 Ω( ) = 29.0 kW

 

 (b) The fraction of input power lost is 

   
   

Ploss

P
=

2.90 × 104 W
5.00 × 106 W

= 5.80 × 10−3  

 (c) 
 
It is impossible to transmit so much power at such low voltage.  

Maximum power transfer occurs when load resistance equals the 

line resistance of 290 Ω, and is 
 

4.50× 103  V( )2

2 ⋅2 290 Ω( ) = 17.5 kW,  far 

below the required 5 000 kW.  
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P33.51 We find the voltage in the primary coil: 

   
  

ΔV1

ΔV2

=
N1

N2

  →  ΔV1 = ΔV2
N1

N2

= 25.0 V( ) 2.50( ) = 62.5 V  

 The (average) power delivered to the load resistance is  

   
  
P = I2ΔV2 =

ΔV2( )2

R2

=
25.0 V( )2

50.0 Ω
= 12.5 W  

 which is equal to the power delivered to the primary coil; thus, the 
(rms) current on the primary side is  

  
  
I1 =

P
ΔV1

=
12.5 W
62.5 V

= 0.200 A  

 On the primary side of the transformer, the voltages across the resistor 
and transformer (inductor) are 90° out of phase. Therefore,  

   

  

  ΔVrms( )2 = ΔVL , rms( )2
+ ΔVR , rms( )2

80.0 V( )2 = 62.5 V( )2 + ΔVR , rms( )2

    ΔVR , rms = 49.9 V

 

 and 

   

  

ΔVR , rms = 49.9 V = IrmsR

R =
ΔVR , rms

Irms

=
49.9 V

0.200 A
= 250 Ω

 

P33.52 The capacitive reactance of this “circuit” is 

    
  
XC =

1
2π f C

=
1

2π 60.0 Hz( ) 20.0 × 10−12  F( ) = 1.33 × 108  Ω  

 and the impedance is 
    

  
Z = 50.0× 103  Ω( )2

+ 1.33× 108  Ω( )2
≈ 1.33× 108  Ω

 

 The rms current is then 
    

  
Irms = ΔVrms

Z
= 5 000 V

1.33× 108  Ω
= 3.77 × 10−5  A

 

 and the rms voltage across the person’s body is 

    

  

ΔVrms( )body
= IrmsRbody = 3.77 × 10−5  A( ) 50.0× 103  Ω( )
= 1.88 V
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Section 33.9 Rectifiers and Filters 
P33.53 For this RC high-pass filter, the voltage gain ratio is 

  
  

ΔVout

ΔVin

=
ImaxR
ImaxZ

=
R

R2 + XC
2  

 With a capacitance of 613 µF and a frequency of 600 Hz, the capacitive 
reactance is 

  

  

XC = 1
2π 600 Hz( ) 6.13× 10−4  F( ) = 0.433 Ω

 

 and 
  

ΔVout

ΔVin

= R
R2 + XC

2
= 0.500 Ω

0.500 Ω( )2 + 0.433 Ω( )2
= 0.756  

P33.54 (a) The amplitude of the input voltage is  

   

  
ΔVin = ImaxZ = Imax R2 + XC

2 = Imax R2 +
1

ω C
⎛
⎝⎜

⎞
⎠⎟

2

 

  The amplitude of the output voltage is   ΔVout = ImaxR . The gain 
ratio is 

   

  

ΔVout

ΔVin

=
ImaxR

Imax R2 + 1 ω C( )2
=

R

R2 + 1 ω C( )2  

 (b) As 
  
ω → 0,  

1
ω C

→∞,  and 
ΔVout

ΔVin

→ 0 .  

 (c) As 
  
ω →∞,  

1
ω C

→ 0,  and 
ΔVout

ΔVin

→ R
R

= 1 .  

P33.55 (a) The input power is 8 W, and the useful output power is given by 
   

  IΔV = 0.3 A( ) 9 V( ) = 2.7 W  

  The efficiency is then 

   
 
efficiency =

useful output
total input

=
2.7 W
8 W

= 0.34→ 34%  

 (b) Total input power = Total output power 

   
 

8 W = 2.7 W + wasted power
wasted power = 5.3 W
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 (c) 

  

E = PΔt = 6 8 W( )[ ] 31 d( ) 86 400 s
1 d

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= 1.29 × 108  J
$0.110

3.6 × 106  J
⎛
⎝⎜

⎞
⎠⎟

= $3.9

 

P33.56 (a) The amplitude of the input voltage is  
   

  
ΔVin = IZ = Imax R2 + XC

2 = Imax R2 + 1 ω C( )2  

  The amplitude of the output voltage is  

   
  
ΔVout = ImaxXC =

Imax

ω C
. 

  The gain ratio is therefore  

   

  

ΔVout

ΔVin

=
Imax ω C

Imax R2 + 1 ω C( )2
=

1 ω C

R2 + 1 ω C( )2  

 (b) As  ω → 0 , 
  

1
ω C

→∞  and R becomes negligible in comparison. 

Then, 

   
  

ΔVout

ΔVin

→
1 ω C
1 ω C

= 1  

 (c) As ω → ∞ , 
  

1
ω C

→ 0  and 
  

ΔVout

ΔVin

→ 0 . 

 (d) We start  with 
    

  

1
2

= 1 ω C

R2 + 1 ω C( )2
 
 

  Solving,  
   

  
R2 + 1

ω C
⎛
⎝⎜

⎞
⎠⎟

2

= 4
ω 2C2

 

  or   R
2ω 2C2 = 3.   

  Then, 

   
  
ω = 2π f = 3

RC
   →    f = 3

2πRC
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Additional Problems 
P33.57 (a) We determine the number of turns from 
    

  
ΔV2, rms( ) = N2

N1

ΔV1, rms( )
 

  solving, 

    
  
N2 =

80( ) 2 200 V( )
110 V

= 1 600 windings  

 (b) Assuming ideal conditions, 

    
  
I1, rms ΔV1, rms( ) = I2, rms ΔV2, rms( )   

  Solving for the rms current in the primary then gives 

    
  
I1, rms =

1.50 A( ) 2 200 V( )
110 V

= 30.0 A  

 (c) For 95.0% efficiency, 

    
  
0.950I1, rms ΔV1, rms( ) = I2, rms ΔV2, rms( )   

  and the rms current in the primary  is 
    

  
I1, rms =

1.20 A( ) 2 200 V( )
0.950( ) 110 V( ) = 25.3 A

 

P33.58 From Equation 33.35, the resonance frequency for this circuit is 
    

  

f = ω
2π

= 1
2π LC

 

= 1

2π 2.80 × 10−6  H( ) 0.910 × 10−12  F( )
= 99.7 MHz

 

 This frequency is not in the range of North American AM frequencies, 
which can be found from Internet research to be 520 kHz – 1 610 kHz. 
The frequency above is appropriate for an North American FM radio 
station.  

P33.59 (a) The maximum voltage is given by 

    

  

ΔVmax = ΔVR( )2 + ΔVL − ΔVC( )2

= 20.0 V( )2 + 25.0 V − 15.0 V( )2

= 22.4 V
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 (b) 
  
φ = tan−1 ΔVL − ΔVC

ΔVR

⎛
⎝⎜

⎞
⎠⎟

= tan−1 25.0 V − 15.0 V
20.0 V

⎛
⎝⎜

⎞
⎠⎟ = 26.6°  

 (c) The current amplitude Imax determines the voltage amplitude in 
each component of the circuit. We know the resistance R, so  

    
  
ΔVR = ImaxR    →    Imax =

ΔVR

R
=

20.0 V
75.0 Ω

= 0.267 A  

 (d) For the entire circuit,  

    
  
ΔVmax = ImaxZ   →    Z =

ΔVmax

Imax

= 83.9 Ω  

 (e) For the capacitor,  
    

  
ΔVC = ImaxXC    →   XC = ΔVC

Imax

= 15.0 V
Imax

= 56.3 Ω = 1
2π fC

 

  therefore, 
    

  
C = 1

2π fXC

= 1
2π 60.0 Hz( )XC

= 4.72 × 10−5  F = 47.2 µF
 

 (f) For the inductor,  
    

  ΔVL = ImaxXL = Imax 2π fL( )   

  therefore, 
    

  
L = ΔVL

2π fImax

= 25.0 V
2π 60.0 Hz( )Imax

= 0.249 H
 

 (g) The average power delivered to the circuit is  

    
   
Pavg = Irms

2 R =
I max

2
⎛
⎝⎜

⎞
⎠⎟

2

R = 2.67 W  

P33.60 We identify that R = 200 Ω , L = 663 mH, C = 26.5  µF,  ω = 377 rad/s, 
and   ΔVmax = 50.0 V. So,  

    ω L = 250 Ω , and 1/ω C = 100 Ω  

  The impedance is 
    

  

Z = R2 + ω L –
1

ω C
⎛
⎝⎜

⎞
⎠⎟

2

= (200 Ω)2 + (250 Ω – 100 Ω)2

= 250 Ω

 

  (a) The amplitude of the current is  

     
  
Imax =

ΔVmax

Z
=

50.0 V
250 Ω

= 0.200 A  
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   The phase angle of the voltage relative to the current is  
     

   
φ = tan–1 XL – XC

R
⎛
⎝⎜

⎞
⎠⎟ = 36.8

  

   with   Δv  leading  i →  

 (b) 
  
ΔVR , max = ImaxR = 40.0 V  at 

 
φ = 0°  

 (c) 
  
ΔVC ,  max = ImaxXC = 20.0 V  at 

 
φ = −90.0°  (I leads  ΔV ) 

 (d) 
  
ΔVL ,  max = ImaxXL = 50.0 V  at 

 
φ = +90.0°  ( ΔV  leads I) 

P33.61 Consider a two-wire transmission line: each wire has resistance R, the 
total power transmitted is P, and the current in the wires is 

  
Irms =

P
ΔVrms

. The power loss is 1.00% of the transmitted power P. 

Therefore,  
  

  

Ploss = Irms
2 Rline = P

100

Ploss = P
ΔVrms

⎛
⎝⎜

⎞
⎠⎟

2

2R( ) = P
100

 

 Solving for the resistance gives 
  

  
R =

ΔVrms( )2

200P

 

 The resistance of one wire is  
  

   
R = ρCu

A
=

ΔVrms( )2

200P

 

 Solving for the area gives 
  

   
A = πd2

4
= 200ρCuP

ΔVrms( )2

 

 and the diameter is  

  

   

d = 800ρCuP
π ΔVrms( )2

= 800(1.7 × 10−8  Ω⋅m) 20 000 W( ) 18 000 m( )
π 1.50× 103  V( )2

= 0.026 m = 2.6 cm
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P33.62 Consider a two-wire transmission line: each wire has resistance R, the 
total power transmitted is P, and the current in the wires is 

  
Irms =

P
ΔVrms

. The fractional power loss is f of the transmitted power P. 

Therefore,  

    Ploss = Irms
2 Rline = fP  

  
  
Ploss =

P
ΔVrms

⎛
⎝⎜

⎞
⎠⎟

2

2R( ) = fP → R =
f ΔVrms( )2

2P
 

 The resistance of one wire is  
  

   
R = ρCu

A
=

ΔVrms( )2

200P

 

 Solving for the area gives 
  

   
A = πd2

4
= 200ρCuP

ΔVrms( )2

 

 and the diameter is  

  

   

d =
8ρCu P

π f ΔVrms( )2  

P33.63 (a) The impedance is given by  
   

  
Z = R2 + XL − XC( )2  

  From which we obtain 
   

  

XC = XL ± Z2 − R2

XC = XL + Z2 − R2

= 700 Ω+ 760 Ω( )2 − 400 Ω( )2 = 1 346 Ω = 1.35 kΩ

 

  or 
   

  

XC = XL − Z2 − R2

= 700 Ω− 760 Ω( )2 − 400 Ω( )2 = 53.8 Ω

 

  
  
X C  could be  53.8 Ω or it could be 1.35 kΩ.  
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 (b) The power delivered to the circuit is given by 

    
  
P = Irms( )2 R =

ΔVrms( )2

Z2 R  

  If the power is decreased as the frequency is raised, then the 
impedance is increased, so the inductive reactance is greater than 
the capacitive reactance, and the circuit must be above resonance:  

      XL > XC    →    ωL > 1 ωC    →    ω > 1 LC    →    ω >ω0  

  Therefore, the inductive reactance 700 Ω and the 

 
capacitive reactance is 53.8 Ω.  

 (c) Now, 

    
  XC = XL ± Z2 − R2 = 700 ± 760( )2 − 200( )2 = 700 ± 733  

  Here XC = 700 – 733 = –33 Ω is impossible, but  
XC = 700 + 733 = 1433 = 1.43 kΩ is possible. 

  
  
XC  must be 1.43 kΩ.  

P33.64 The equation for  Δv(t)  during the first period (using y = mx + b) is: 
  

  
Δv =

2 ΔVmax( )t
T

− ΔVmax = ΔVmax
2t
T

− 1⎡
⎣⎢

⎤
⎦⎥

 

 Therefore,  
  

  

Δv( )2⎡⎣ ⎤⎦avg
= 1

T
Δv t( )[ ]2 dt

0

T

∫ =
ΔVmax( )2

T
2
T

t − 1⎡
⎣⎢

⎤
⎦⎥

2

dt
0

T

∫
 

  

  

Δv( )2⎡⎣ ⎤⎦avg
=

ΔVmax( )2

T
T
2

⎛
⎝⎜

⎞
⎠⎟

2t T − 1[ ]3

3
t=0

t=T

=
ΔVmax( )2

6
+1( )3 − −1( )3⎡⎣ ⎤⎦ =

ΔVmax( )2

3

 

 Then, 
  
ΔVrms = Δv( )2⎡⎣ ⎤⎦avg

=
ΔVmax( )2

3
= ΔVmax

3
 

 

ANS. FIG. P33.64 
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P33.65 The turns ratio is the factor of change in voltage:  

   
  

N1

N2

=
ΔV1

ΔV2

 

 with 
  
Z1 =

ΔV1

I1

and Z2 =
ΔV2

I2
 

 we have 
  

N1

N2

=
Z1I1

Z2I2

 

  (a) Since 
  

I1

I2

=
N2

N1

, we find 

     

  

N1

N2

= Z1N2

Z2N1

so
N1

2

N2
2 = Z1

Z2

and
N1

N2

= Z1

Z2

 

 (b) 
  

N1

N2

= 8 000 Ω
8.00 Ω

= 31.6  

P33.66 (a) The angular frequency is  ω = 2π 60.0 Hz( ) =377 s−1 .  

  When S is open, R, L, and C are in series with the source, with 
impedance 

   
  
Z =

ΔVrms

Irms

 

  squaring both sides and substituting the definition of impedance 
gives 

    
  
R2 + XL − XC( )2 =

ΔVrms

Irms

⎛
⎝⎜

⎞
⎠⎟

2

=
20.0 V

0.183 A
⎛
⎝⎜

⎞
⎠⎟

2

= 1.194 × 104  Ω2  [1] 

  When S is in position a, a parallel combination of two R’s presents 

equivalent resistance 
  

R
2

, in series with L and C. The square of the 

impedance is then 

    
  

R
2

⎛
⎝⎜

⎞
⎠⎟

2

+ XL − XC( )2 =
20.0 V

0.298 A
⎛
⎝⎜

⎞
⎠⎟

2

= 4.504 × 103  Ω2  [2] 

  When S is in position b, the current bypasses the inductor. R and 
C are in series with the source, and the square of the impedance is 

   
  
R2 + XC

2 =
20.0 V

0.137 A
⎛
⎝⎜

⎞
⎠⎟

2

= 2.131× 104  Ω2  [3] 
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  Subtract equation [2] from equation [1]: 

   
  

3
4

R2 = 7.440 × 103  Ω2 → R = 99.6 Ω  

  Only the positive root is physical, thus there is only one value for R. 

 (b) We have shown than only one resistance value is possible. Now 
equation [3] gives 

   
  
XC = 2.131× 104  Ω2 − 99.6 Ω( )2⎡⎣ ⎤⎦

1 2
= 106.7 Ω =

1
ω C

 

  Only the positive root is physical, thus there is only one value for C.  
   

  

C = ωXC( )−1 = 377 s−1( )106.7 Ω⎡⎣ ⎤⎦
−1

= 2.49× 10−5  F = 24.9 µF

 

 (c) Now equation [1] gives 

   
  
XL − XC = ± 1.194 × 104  Ω2 − 99.6 Ω( )2⎡⎣ ⎤⎦

1 2
= ± 44.99 Ω  

  The equation shows us that there are two possible values for L.  

     XL = XC − 44.99 Ω = 106.7 Ω− 44.99 Ω = 61.74 Ω = ω L  

  or 
   

  XL = XC + 44.99 Ω = 106.7 Ω+ 44.99 Ω = 151.7 Ω =ω L  

  then 
   

  
L = XL

ω
= 0.164 H or 0.402 H = 164 mH or 402 mH

 

 (d) From the calculations above, we see that only one value for R and 
only one value for C are possible. Two values for L are possible. 

P33.67 (a) We can use 
  
sin A + sin B = 2sin

A
2
+

B
2

⎛
⎝⎜

⎞
⎠⎟ cos

A
2
−

B
2

⎛
⎝⎜

⎞
⎠⎟

 to find the 

sum of the two sine functions to be 

   
  

E1 + E2 = 24.0 cm( )sin 4.50t + 35.0°( )cos35.0°
E1 + E2 = 19.7 cm( )sin 4.50t + 35.0°( )

 

  Thus, the total wave has amplitude 
 

19.7 cm  and has a constant 

phase difference of 
 

35.0°  from the first wave. 
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 (b) Refer to ANS. FIG. P33.67(b). In units of cm, the resultant phasor 
is 

   

    


yR = y1 + y2 = 12.0î( ) + 12.0cos 70.0°( ) î + 12.0sin 70.0( ) ĵ( )

= 16.1î + 11.3 ĵ


yR = 16.1( )2 + 11.3( )2  at tan−1 11.3

16.1
⎛
⎝⎜

⎞
⎠⎟ = 19.7 cm at 35.0°

 

 

ANS. FIG. P33.67(b) 

 (c)  The answers are identical.  

 (d) Refer to ANS. FIG. P33.67(d). Adding the three waves yields 
   

     


yR = 12.0cos 70.0°( ) î + 12.0sin 70.0°( ) ĵ

     + 15.5cos −80.0°( ) î + 15.5sin −80.0°( ) ĵ

     + 17.0cos 160°( ) î + 17.0sin 160°( ) ĵ

yR = −9.18î + 1.83 ĵ = 9.36 cm at 169°

 

  The wave function of the total wave is  

     yR = 9.36 cm( )sin 15x − 4.5t + 169°( )  

 

ANS. FIG. P33.67(d) 

P33.68 (a) 

  

Higher. At the resonance frequency, XL = XC . As the frequency
increases, XL  goes up and XC  goes down.

 

 (b) 

  

It is possible. We have three independent equations in the three
unknowns L, C, and the certain f .
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 (c) The equations are 
  
ω 0

2 = 1
LC

= 2 000 s−1 ,  
  
XC = 1

ωC
= 8.00 Ω,  and 

  XL =ωL = 12.0 Ω.  From the inductive reactance,  
   

  
XL =ωL     →ω = XL

L

 

  then from the capacitive reactance, 
   

  
XCω = 1

ωC
XL

L

  

  solving for the angular frequency gives 
   

  
ω 2 = XL

XC

1
LC

= XL

XC

ω 0
2 = 12.0 Ω

8.00 Ω
⎛
⎝⎜

⎞
⎠⎟ 2 000 s−1( )2

 

  from which we obtain 
   

 ω = 2 450 s−1  

  Then, 
   

  

L = XL

ω
= 12.0 Ω

2 450 s−1 = 4.90× 10−3  H = 4.90 mH

C = 1
ωXC

= 1
2 450 s−1( ) 8.00 Ω( )

= 5.10× 10−5  F = 51.0 µF

 

P33.69 (a) The lowest-frequency standing-wave pattern is N-A-N. The 

distance between the clamps we represent as 
  
d = dNN =

λ
2

. The 

speed of transverse waves on the string is 
  
v = fλ =

T
µ

= f 2d . 

The magnetic force on the wire oscillates at 60 Hz, so the wire will 
oscillate in resonance at 60 Hz. From the speed of transverse 
waves, 

   

  
v = fλ = T

µ
= f 2d

 

  we obtain the period as 
   

  

T = 4µ f 2d2 = 4 19.0× 10−3  kg/m( ) 60.0 Hz( )2 d2

= 274 kg/m ⋅s2( )d2

 

  
  

Tension T  and separation d must be related by T = 274d2  where
T  is in newtons and d is in meters.
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 (b) 
  
One possibility is T = 10.9 N and d = 0.200 m.  Any values of T 

and d related according to this expression will work. We did not 
need to use the value of the current and magnetic field.  

P33.70 (a) See the graph in ANS. FIG. P33.70(a). 

 

ANS. FIG. P33.70(a) 

 (b) 
  
φ = tan−1 ωL − 1/ωC

R
⎛
⎝⎜

⎞
⎠⎟

 changes from –90° for ω = 0 to 0 at the 

resonance frequency to +90° as ω goes to infinity.  

  The slope of the graph is  dφ/dω : 

   

  

dφ
dω

=
1

1 + ωL − 1/ωC
R

⎛
⎝⎜

⎞
⎠⎟

2

1
R

L −
1
C

(−1)
1
ω 2

⎛
⎝⎜

⎞
⎠⎟

=
R

R2 + ωL − 1/ωC( )2 L +
1

ω 2C
⎛
⎝⎜

⎞
⎠⎟

 

 (c) At resonance we have   ω0
2 = 1 LC ; substituting, we find the slope 

at the resonance point is  

   
  

dφ
dω ω0

=
1

R + 02 L +
LC
C

⎛
⎝⎜

⎞
⎠⎟ =

2L
R

=
2Q
ω0

 

  where   Q = ω0L R . 

P33.71 (a) When ω L is very large, Z is large for the bottom branch, so it 

carries negligible current. Also, 
  

1
ω C

 will be negligible compared 

to R for the top branch, so  

   
  
I =

V
Z
≈

V
R

=
45.0 V
200 Ω

= 0.225 A   

  flows in the power supply and the top branch. 
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 (b) Now 
  

1
ω C

 is very large in the top branch and ω L is very small 

compared to R in the bottom branch; the generator and bottom 
branch carry  

   
  
I =

V
Z
≈

V
R

=
45.0 V
100 Ω

= 0.450 A  

P33.72 (a) With both switches closed, the current goes only through the 
generator and resistor. 

   

  
i = ΔVmax

R
cosω t

 

 (b) 
  

P =
1
2

ΔVmax( )2

R
 

 (c) 
  

i = ΔVmax

R2 +ω 2L2
cos ω t + tan−1 ω L

R
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

 (d) For 
  
0 = φ = tan−1 ω0L − 1 ω0C( )

R
⎛

⎝⎜
⎞

⎠⎟
,  

  We require 
  
ω0L =

1
ω0C

, so 
  

C =
1

ω0
2L

 

 (e) The frequency is the resonance frequency: 
 
Z = R  

  For parts (f) and (g), the circuit is at resonance, so Z = R and 

  XC = XL = ω0L . 

 (f) To find the maximum energy stored in the capacitor, we start 
with  

   
  
U =

1
2

C ΔVC( )2 =
1
2

C IXC( )2  

  When I = Imax,  

   
  

Umax =
1
2

CImax
2 XC

2 =
1
2

C
ΔVmax

R
⎛
⎝⎜

⎞
⎠⎟

2

ω0L( )2 = ΔVmax( )2 L
2R2

 

 (g) 
  
Umax =

1
2

LImax
2 =

1
2

L
ΔVmax( )2

R2  
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 (h) Now 
  
ω = 2ω0 =

2
LC

, so 

   

  

φ = tan−1 ω L− 1 ω C( )
R

⎛
⎝⎜

⎞
⎠⎟

= tan−1 2 L C − 1 2( ) L C
R

⎛

⎝⎜
⎞

⎠⎟

= tan−1 3
2R

L
C

⎛
⎝⎜

⎞
⎠⎟

 

 (i) Now 
  
ω L =

1
2

1
ω C

, so 
  
ω =

1
2LC

=
ω0

2
 

P33.73 (a) The inductive reactance of the circuit is 

      XL = 2π f L = 2π 50.0 Hz( ) 0.250 H( ) = 78.5 Ω  

 (b) The capacitive reactance of the circuit is  
    

  

XC = 1
2π f C

= 1
2π 50.0 Hz( ) 2.00× 10−6  F( )

= 1.59× 103  Ω = 1.59 kΩ

 

 (c) The impedance of the circuit is 
    

  

Z = R2 + XL − XC( )2 = 150 Ω( )2 + 78.5 Ω− 1590 Ω( )2

= 1.52 × 103  Ω = 1.52 kΩ

 

 (d) The maximum current is 

    
  
Imax =

ΔVmax

Z
=

2.10 × 102  V
1.52 × 103  Ω

= 0.138 A = 138 mA  

 (e) 
  
φ = tan−1 XL − XC

R
⎛
⎝⎜

⎞
⎠⎟ = tan−1 78.5 Ω− 1590 Ω

150 Ω
⎛
⎝⎜

⎞
⎠⎟ = −84.3°  

 (f) 
 
cosφ = cos tan−1 78.5 Ω− 1 590 Ω

150 Ω
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= 0.098 7  

 (g) The power input into the circuit is 

   

  

P = IrmsΔVrms cosφ =
ΔVrms( )2

Z
cosφ =

ΔVmax 2( )2

Z
cosφ

=
ΔVmax( )2

2Z
cosφ

P = 210 V( )2

2 1.52 × 103  Ω( ) 0.098 7( ) = 1.43 W
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P33.74 (a) We are given XL = XC = 1 884 Ω when f = 2 000 Hz. The impedance 
is then 

   
  
L =

XL

2π f
=

1 884 Ω
4 000π  rad s

= 0.150 H   

  and the capacitance is 

   

  

C =
1

2π f( )XC

=
1

4 000π  rad s( ) 1 884 Ω( )
 = 42.2 nF

 

  therefore,  

     XL = 2π f 0.150 H( )  

   
  
XC =

1
2π f( ) 4.22 × 10−8  F( )  

  and 

   
  Z = 40.0 Ω( )2 + XL − XC( )2  

  TABLE P33.74 lists the inductive reactance, the capacitive 
reactance, and the impedance for the frequencies listed in the 
problem statement.  

  

f (Hz) XL (Ω) XC (Ω) Z (Ω)

300
600
800

1 000
1 500
2 000
3 000
4 000
6 000

10 000

283
565
754
942

1 410
1 880
2 830
3 770
5 650
9 420

12 600
6 280
4 710
3 770
2 510
1 880
1 260

942
628
377

12 300
5 720
3 960
2 830
1 100

40
1 570
2 830
5 020
9 040

 

TABLE P33.74 
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 (b) ANS. FIG. P33.74(b) shows a graph of XL , XC , and Z as a function 
of the frequency f. 

 

ANS. FIG. P33.74(b) 

P33.75 The resonance frequency is  

   
  
f0 =

1

2π LC
=

1

2π (0.050 0 H)(5.00 × 10–6  F)
= 318 Hz  

 The operating frequency is  f = f0/2 = 159 Hz. We can calculate the 
impedance at this frequency. The inductive reactance is 

   XL = 2π f L = 2π (159 Hz)(0.050 0 H) = 50.0 Ω   

 The capacitive reactance is   

   
  
XC =

1
2π fC

=
1

2π(159 Hz)(5.00 ×  10–6  F)
= 200 Ω  

 The impedance is 

   
  
Z = R2 + XL – XC( )2

= 8.002 + (50.0 – 200)2  Ω = 150 Ω  

 So the current is  

   
  
Irms =

ΔVrms

Z
=

400 V
150 Ω

= 2.66 A  

 The power delivered by the source is the power delivered to the 
resistor:  

  
  P = 2.66 A( )2 8.00Ω( ) = 56.7 W

 

P33.76 (a) At resonance,  

    

  

ω =
1

LC
=

1

1.00 × 10–3 H( ) 1.00 × 10–9 F( )
= 1.00 × 106 rad/s   
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  At that point, 

    Z = R = 1.00 Ω  and 
  
I =

1.00 V
1.00 Ω

= 1.00 A  

  The power is  

    P = I2R = (1.00 A)2(1.00 Ω ) = 1.00 W 

  We compute the power at some other angular frequencies, listed 
in TABLE P33.76.  

  

ω
ω0

ωL Ω( ) 1
ω C

Ω( ) Z Ω( ) P = Irms
2  R W( )

0.9990
0.9991
0.9993
0.9995
0.9997
0.9999
1.0000
1.0001
1.0003
1.0005
1.0007
1.0009
1.0010

  999.0
  999.1
  999.3
  999.5
  999.7
  999.9
1000
1000.1
1000.3
1000.5
1000.7
1000.9
1001

1001.0
1000.9
1000.7
1000.5
1000.3
1000.1
1000.0
  999.9
  999.7
  999.5
  999.3
  999.1
  999.0

2.24
2.06
1.72
1.41
1.17
1.02
1.00
1.02
1.17
1.41
1.72
2.06
2.24

0.19984
0.23569
0.33768
0.49987
0.73524
0.96153
1.00000
0.96154
0.73535
0.50012
0.33799
0.23601
0.20016

 

TABLE P33.76 

  ANS. FIG. P33.76 shows a graph of the results tabulated above. 

 

ANS. FIG. P33.76 

 (b) The angular frequencies giving half the maximum power are  

    0.999 5 ×  106 rad/s and 1.000 5 ×  106 rad/s 
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  so the full width at half the maximum is  

    Δω  = (1.000 5 – 0.999 5) ×  106 rad/s 

    Δω  = 1.00 ×  103 rad/s 

  Since   Δω = 2π Δf ,       Δf = 159 Hz   

  and for comparison,  

    
  

R
2πL

= 1.00 Ω
2π 1.00 × 10–3 H( ) = 159 Hz   

  The two quantities agree. 

 
 

 

Challenge Problems 
P33.77 We start with 
   

  

Δvout

Δvin

= IR
IZ

= R
Z

= R

R2 + XL − XC( )2

= 8.00 Ω

8.00 Ω( )2 + 2π fL− 1 2π f C[ ]2

 

 Then, at 200 Hz,  

   
  

Δvout

Δvin

⎛
⎝⎜

⎞
⎠⎟

2

=
R
Z

⎛
⎝⎜

⎞
⎠⎟

2

=
1
4

=
8.00 Ω( )2

8.00 Ω( )2 + 400π L − 1 400π C[ ]2  

 and at 4 000 Hz, 

   
  

Δvout

Δvin

⎛
⎝⎜

⎞
⎠⎟

2

=
R
Z

⎛
⎝⎜

⎞
⎠⎟

2

=
1
4

=
8.00 Ω( )2

8.00 Ω( )2 + 8000π L − 1 8000π C[ ]2  

 At the low frequency, XL – XC < 0. This reduces to  

   
  
400π L− 1

400π C
= −13.9 Ω  [1] 

 For the high frequency half-voltage point,  

   
  
8 000π L −

1
8000π C

= +13.9 Ω  [2] 

 Solving equations [1] and [2] simultaneously gives  

 (a) 
  
L = 580 µH   
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ANS. FIG. P33.77(a) 

 (b) 
  
C = 54.6 µF  

 (c) When XL = XC, 
  

Δvout

Δvin

=
Δvout

Δvin

⎛
⎝⎜

⎞
⎠⎟max

= 1.00  

 (d) XL = XC requires  
   

  

f0 = 1
2π LC

= 1

2π 5.80× 10−4  H( ) 5.46× 10−5  F( )
= 894 Hz

  

 (e)  At 200 Hz , 
  

Δvout

Δvin

=
R
Z

=
1
2

 and XC > XL, so the phasor diagram is 

as shown in ANS. FIG. P33.77(e). 

   
  
φ = − cos−1 R

Z
⎛
⎝⎜

⎞
⎠⎟ = − cos−1 1

2
⎛
⎝⎜

⎞
⎠⎟ = −60.0°  

  so  
  
Δvout  leads Δvin( ) . 

  
  
At   f0 , XL = XC so 

   
  
φ = 0 (Δvout is in phase with Δvin ) . 

   At 4 000 Hz , 
  

Δvout

Δvin

=
R
Z

=
1
2

 and XL – XC > 0. 

 

ANS. FIG. P33.77(e) 

  Thus, 
 
φ = cos−1 1

2
⎛
⎝⎜

⎞
⎠⎟ = +60.0°  

  or  
  
Δvout  lags Δvin . 
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 (f) At 200 Hz and at 4 kHz,  
   

  

P =
Δvout, rms( )2

R
=

1 2( )Δvin, rms⎡⎣ ⎤⎦
2

R
=

1 4( ) Δvin, max 2( )2

R

=
1 2( ) 10.0 V( )2

4 8.00 Ω( ) = 1.56 W

 

  At f0,  

   

  

P =
Δvout, rms( )2

R
=

Δvin, rms( )2

R
=

Δvin, max 2( )2

R
=

1 2( ) 10.0 V( )2

8.00 Ω( )
= 6.25 W

 

 (g) We take  

   
  
Q =

ω0L
R

=
2π f0L

R
=

2π 894 Hz( ) 5.80 × 10−4  H( )
8.00 Ω

= 0.408  

P33.78 (a) 
  
IR ,  rms =

ΔVrms

R
=

100 V
80.0 Ω

= 1.25 A  

 (b) The total current will 
 

lag  the applied  

voltage as seen in the phasor diagram  
shown in ANS. FIG. P33.78. 

   

  

IL , rms = ΔVrms

XL

= 100 V
2π 60.0 s−1( ) 0.200 H( )

= 1.33 A

 

  Thus, the phase angle is:  

   
  
φ = tan−1 IL ,  rms

IR , rms

⎛

⎝⎜
⎞

⎠⎟
= tan−1 1.33 A

1.25 A
⎛
⎝⎜

⎞
⎠⎟ = 46.7°  

P33.79 We are given L = 2.00 H, C = 10.0 × 10–6 F, R = 10.0 Ω, and 

  Δv = 100sinω t( ).  

 (a) The resonance frequency  ω0  produces the maximum current and 
thus the maximum power delivery to the resistor. 

   
  

ω0 =
1
LC

=
1

2.00 H( ) 10.0 × 10−6  F( )
= 224 s−1

 

 

ANS. FIG. P33.78 
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 (b) At the resonance frequency  ω0 , the impedance Z = R, and  

    

  

P = Irms
2 R

=
ΔVrms

Z
⎛
⎝⎜

⎞
⎠⎟

2

R =
ΔVrms( )2

Z2 R =
ΔVrms( )2

R2 R =
ΔVmax 2( )2

R

=
100 V( )2

2 10.0 Ω( ) = 500 W

 

 (c) Now,  

    
  
P =

1
2

Pmax     →    
ΔVrms( )2

Z2 R =
1
2

ΔVrms( )2

R
 

  So, Z2 = 2R2, or  

    
  
R2 + ω L −

1
ω C

⎛
⎝⎜

⎞
⎠⎟

2

= 2R2  

  which is a fourth order equation in ω . But this can be simplified 
to two equations:  

    
   
ω L −

1
ω C

= ±R    →    ω 2 LC ω CR − 1 = 0  

  The angular frequency ω must be positive, so we solve for the 
positive roots. (In the following, we suppress all units.) 

  For   ω
2 LC −ω CR − 1 = 0,  

    

  

ω  =
− −CR( ) + −CR( )2 − 4LC −1( )

2LC

=
R + R2 + 4L C

2L

=
10.0 + 10.0( )2 + 4 2.00( ) 10.0× 10−6( )

2 2.00( ) = 226 s−1

 

  For   ω
2 LC +ω CR − 1= 0,  

   

  

ω  =
− CR( )+ −CR( )2 − 4LC −1( )

2LC

=
−R + R2 + 4L C

2L

=
−10.0 + 10.0( )2 + 4 2.00( ) 10.0× 10−6( )

2 2.00( ) = 221 s−1
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P33.80 The currents in the three components of the circuit are 
   

  
IR = ΔVrms

R
,  IL = ΔVrms

XL

= ΔVrms

ωL
,  and IC = ΔVrms

XC

= ΔVrms

ω C( )−1

 

 (a) Then, 

   

  

Irms = IR
2 + IC − IL( )2⎡

⎣
⎤
⎦

1 2
= ΔVrms

1
R2

⎛
⎝⎜

⎞
⎠⎟ + ω C −

1
ω L

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

 

 (b) 
  
tanφ =

IC − IL

IR

= ΔVrms
1

XC

−
1

XL

⎡

⎣
⎢

⎤

⎦
⎥

1
ΔVrms R

⎛
⎝⎜

⎞
⎠⎟

 

  

  
tanφ = R

1
XC

−
1

XL

⎛
⎝⎜

⎞
⎠⎟

 

 

 

ANS. FIG. P33.80 

P33.81 We have 
  
P = Irms

2 R =
ΔVrms

Z
⎛
⎝⎜

⎞
⎠⎟

2

R =
ΔVrms( )2

Z2 R , and  

   
  
Z = R2 + ω L −

1
ω C

⎛
⎝⎜

⎞
⎠⎟

2

 

 Therefore,   
   

  

Z2 =
ΔVrms( )2

R
P

→ R2 + ω L− 1
ω C

⎛
⎝⎜

⎞
⎠⎟

2

=
ΔVrms( )2

R
P

ω L− 1
ω C

⎛
⎝⎜

⎞
⎠⎟

2

=
ΔVrms( )2

R
P

− R2

 

 which is a fourth order equation in ω .  But this can be simplified to two 
equations: 

   
   
ω L −

1
ω C

= ±A → ω 2 LC ω CA − 1 = 0  



568     Alternating-Current Circuits 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 where 
  
A =

ΔVrms( )2 R
P

− R2 . 

 We will solve for ω when   ΔVrms  = 100 V and P = 250 W. From Figure 
P33.24, we have R = 40.0 Ω, L = 185 mH = 0.185 H, and C = 65.0 µF = 
65.0 × 10–6 F. 

 The quantity A is  
   

  

A =
ΔVrms( )2

R
P

− R2 = 120 V( )2 40.0 Ω( )
250 W

− 40.0 Ω( )2

= 704Ω

 

 The angular frequency ω must be positive, so we solve for the positive 
roots. (In the following, we suppress all units.) 

 For   ω
2 LC −ω CA− 1 = 0,  

   

  

ω =
− −CA( ) + −CA( )2 − 4LC −1( )

2LC

=
A + A2 + 4L C

2L

=
704 + 704 + 4 0.185( ) 65.0 × 10−6( )

2 0.185( )
= 226 s−1 = 2π f     →    f = 58.7 Hz

 

 For   ω
2 LC +ω CA− 1= 0,  

   

  

ω =
− CA( ) + −CA( )2 − 4LC −1( )

2LC

=
−A + A2 + 4L C

2L

=
− 704 + 704 + 4 0.185( ) 65.0 × 10−6( )

2 0.185( )
= 225 s−1 = 2π f     →     f = 35.9 Hz

 

 There are two answers because the circuit can be either above or below 
resonance. 

 
 



Chapter 33     569 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 

ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P33.2 (a) 193 Ω; (b) 144 Ω 

P33.4 (a) 170 V; (b) 2.40 × 102 Ω;  

(c) Because 
  
Pavg =

ΔVrms( )2

R
    →    R =

ΔVrms( )2

Pavg

, a 100-W bulb has less 

resistance than a 60.0-W bulb. 

P33.6 (a) 25.3 rad/s; (b) 0.114 s 

P33.8 (a) The rms current in each 150-W bulb is 1.25 A. The rms current in 
the 100-W bulb is 0.833 A; (b)   R1 = 96.0 Ω,  R2 = 96.0 Ω,  and R3 = 144 Ω;  
(c) 36.0 Ω 

P33.10 (a) 0.0424 H; (b) 942 rad/s 

P33.12 0.750 H 

P33.14 3.80 J 

P33.16 (a) 15.0 Hz; (b) 84.9 V; (c) 47.1 Ω; (d) 1.80 A; (e) 2.55 A 

P33.18 (a) 221 Ω; (b) 0.163 A; (c) 0.230 A; (d) no 

P33.20 (a) 69.3 V; (b) 40.0 Hz; (c) 20.3 µF 

P33.22   2C ΔVrms( )  

P33.24 (a) 146 V ; (b) 212 V; (c) 179 V; (d) 33.4 V 

P33.26 (a) 109 Ω; (b) Imax = 0.367 A; (c) ω = 100 rad/s;  
(d)  φ = −0.896 rad = −51.3°  

P33.28 2.79 kHz 

P33.30 See ANS. FIG P33.30. 

P33.32 (a) 88.4 Ω; (b) 107 Ω; (c) 1.12 A; (d) the voltage lags behind the current 
by 55.8°; (e) Adding an inductor will change the impedence, and hence 
the current in the circuit. The current could be larger or smaller, 
depending on the inductance added. The largest current would result 
when the inductive reactance equals the capacitive reactance, the 
impedance has its minimum value, equal to 60.0 Ω, and the current in 
the circuit is  

  
Imax =

ΔVmax

Z
=
ΔVmax

R
=

1.20 × 102  V
60.0 Ω

= 2.00 A  

P33.34 In order for the power factor to be equal to 1.00, we would have to 
have XL = 0, which would require either L or f  to be zero. Because this 
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is not the case, the situation is impossible. 

P33.36 8.00 W 

P33.38 (a) 66.8 Ω; (b) 0.953 A; (c) 45.4 W 

P33.40 (a) 5.43 A; (b) 0.905; (c) 281 µF; (d) 109 V 

P33.42 (a) 3.56 kHz; (b) 5.00 A; (c) 22.4; (d) 2.24 kV 

P33.44 (a) 156 pH; (b) 8.84 Ω 

P33.46 
  

4πRC LC ΔVrms( )2

4R2C + 9L
 

P33.48 (a) 9.23 V; (b) 2.40 W 

P33.50 (a) 29.0 kW; (b) 5.80 × 10–3; (c) It is impossible to transmit so much 
power at such low voltage. 

P33.52 1.88 V 

P33.54 (a) 

  

R

R2 + 1 ω C( )2
;  (b) 0; (c) 1 

P33.56 (a) 

  

1 ω C

R2 + 1 ω C( )2
;  (b) 1; (c) 0; (d) 

  

3
2πRC

 

P33.58 The resonance frequency for this circuit is not in the North American 
AM frequency range. 

P33.60 (a) 0.200 A, 36.8°; (b) 40.0 V at  φ = 0° ; (c) 20.0 V at  φ = −90.0° ; (d) 50.0 V 
at  φ = +90.0°  

P33.62 
   

8ρCu P
π f ΔVrms( )2  

P33.64 See P33.64 for full explanation. 

P33.66 (a) R = 99.6 Ω; (b) 24.9 µF; (c) 164 mH or 402 mH; (d) Only one value 
for R and only one value for C are possible. Two values for L are 
possible. 

P33.68 (a) Higher. At the resonance frequency, XL = XC. As the frequency 
increases, XL goes up and XC goes down; (b) It is possible. We have 
three independent equations in the three unknowns L, C, and the 
certain f ; (c) L = 4.90 mH and C = 51.0 µF 

P33.70 (a) See ANS. FIG. P33.70(a); (b) 
  

R
R2 + ωL − 1/ωC( )2 L +

1
ω 2C

⎛
⎝⎜

⎞
⎠⎟ ; (c) See 

P33.70(c) for full explanation. 
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P33.72 (a) 
  
i = ΔVmax

R
cosω t;  (b) 

  
P = 1

2
ΔVmax( )2

R
;   

 (c) 
  
i = ΔVmax

R2 +ω 2L2
cos ω t + tan−1 ω L

R
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

;  (d) 
  
C =

1
ω0

2L
; (e) R;  

(f) 
  

ΔVmax( )2
L

2R2 ;  (g) 
  

1
2

L
ΔVmax( )2

R2 ;  (h) 
  
tan−1 3

2R
L
C

⎛
⎝⎜

⎞
⎠⎟

;  (i) 
  

1
2LC

 

P33.74 (a) See Table P33.74; (b) See ANS. FIG. P33.74(b). 

P33.76 (a) See ANS. FIG. P33.76; (b) See P33.76 for full explanation. 

P33.78 (a) 1.25 A; (b) lag, 46.7° 

P33.80 (a) 

  
ΔVrms

1
R2

⎛
⎝⎜

⎞
⎠⎟ + ω C −

1
ω L

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

; (b) 
  
tanφ = R

1
XC

−
1

XL

⎛
⎝⎜

⎞
⎠⎟
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34 
Electromagnetic Waves 

 

CHAPTER OUTLINE 
 

34.1  Displacement Current and the General Form of Ampère’s Law 

34.2  Maxwell’s Equations and Hertz’s Discoveries 

34.3  Plane Electromagnetic Waves 

34.4 Energy Carried by Electromagnetic Waves 

34.5  Momentum and Radiation Pressure 

34.6 Production of Electromagnetic Waves by an Antenna 

34.7 The Spectrum of Electromagnetic Waves 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ34.1 (i) Answer (c). Both the light intensity and the gravitational force 
follow inverse-square laws.  

 (ii) Answer (a). The smaller grain presents less face area and feels a 
smaller force due to light pressure.  

OQ34.2 (i) Answer (c). (ii) Answer (c). (iii) Answer (c). (iv) Answer (b). (v) 
Answer (b). The same amount of energy passes through concentric 
spheres of increasing area as the wave travels outward from its 
source, so the amplitude and the intensity, which is proportional to 
the square of the amplitude, decrease.  

OQ34.3 Answer (b). Frequency, wavelength, and the speed of light are 
related:  

    
  
fλ = c    →     λ =

c
f

=
3.00 × 108  m/s
2.45 × 109  Hz

= 0.122 m =  12.2 cm  



Chapter 34     573 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

OQ34.4 (i) Answer (a). According to   f = 1 2π LC ,  to make f half as large, 
the capacitance should be made four times larger.  

 (ii) Answer (b). According to   fλ = c,  if frequency is halved, 
wavelength is doubled.  

OQ24.5 Answer (e). Accelerating charge, changing electric field, or changing 
magnetic field can be the source of a radiated electromagnetic wave.  

OQ34.6 Answers (c) and (d). The relationship between frequency, 
wavelength, and the speed of a wave is   fλ = v.  In a vacuum, all 
electromagnetic waves travel at the same speed: v = c. 
Electromagnetic waves, consisting of oscillating electric and 
magnetic fields, are transverse waves.  

OQ34.7 (i) through (v) have the same answer (c). The same amount of energy 
passes through equal areas parallel to the yz plane as the wave 
travels in the +x direction, so the amplitude and the intensity, which 
is proportional to the square of the amplitude, do not change.  

OQ34.8 (i) Answer (b). Electric and magnetic fields both carry the same 
energy, so their amplitudes are proportional to each other.  

 (ii) Answer (a). The intensity is proportional to the square of the 
amplitude.  

OQ34.9 Answer (d). The peak values of the electric and magnetic field 
components of an electromagnetic wave are related by   Emax Bmax = c,  
where c is the speed of light in vacuum. Thus,  

    
  Emax = cBmax = 3.00 × 108  m/s( ) 1.50 × 10−7  T( ) = 45.0 N/C

 

OQ34.10 (i) The ranking is c > b > d > e > a. Gamma rays have the shortest 
wavelength.  

 (ii) The ranking is a > e > d > b > c. According to   fλ = c,  as 
wavelength decreases, frequency increases.  

 (iii) The ranking is a = b = c = d = e. All electromagnetic waves 
travel at the speed of light c in vacuum, which is assumed here. 

OQ34.11 Answer (d). An electromagnetic wave travels in the direction of the 
Poynting vector:    


S =

E ×

B µ0 .  
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ34.1 The entire room and its contents have a soft glow. Incandescent light 
bulbs shine brightly in the infrared, but fluorescent lights do not. The 
top of a computer monitor glows brighter than the screen, which 
glows faintly. Windowpanes appear dark if they are cool, and a 
patch of wall where sunlight falls glows brighter than where the 
sunlight does not fall. Heating resistors or warm air outlets shine, 
and the air near to them has a faint glow, but cold air outlets are 
dark, and the nearby air has no glow.  

CQ34.2 Electromagnetic waves carry momentum. Recalling what we learned 
in Chapter 9, the impulse imparted by a particle that bounces 
elastically off a wall is twice that imparted by an object that sticks to 
a wall. Similarly, the impulse, and hence the pressure exerted by a 
wave reflecting from a surface, must be twice that exerted by a wave 
that is absorbed.  

CQ34.3 No. Radio waves travel at a finite speed, the speed of light. Radio 
waves can travel around the curved surface of the Earth, bouncing 
between the ground and the ionosphere, which has an altitude that is 
small when compared to the radius of the Earth. The distance across 
the lower forty-eight states is approximately 5 000 km, requiring a 

transit time of 
 

5 × 106  m
3 × 108  m/s

~ 10−2  s.  

CQ34.4  

Sound Light  

1) Sound is a longitudinal wave. 1) Light is a transverse wave. 

2) Sound requires a material 
medium. 

2) Light does not require a 
material medium.  

3) Sound in air moves at hundreds 
of meters per second. 

3) Light in air moves at hundreds 
of millions of meters per 
second.  

4) The speed of sound through a 
medium, depending the material 
of the medium, can be faster or 
slower than that in air. 

4) The speed of light through 
materials is less than in 
vacuum. 
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5) Sound propagates by a chain 
reaction of density and pressure 
disturbances recreating each 
other.  

5) Light propagates by a chain 
reaction of electric and 
magnetic fields recreating each 
other. 

6) Audible sound has frequencies 
over a range of three decades (ten 
octaves) from 20 Hz to 20 kHz. 

6) Visible light has frequencies 
over a range of less than one 
octave, from 430 to 700 THz 
(THz = Terahertz = 1012 Hz). 

7) Audible sound has wavelengths 
of ordinary size (1.7 cm to 17 m). 

7) Visible light has wavelengths of 
very small size (400 nm to 
750 nm). 

CQ34.5 The changing magnetic field of the solenoid induces eddy currents in 
the conducting core. This is accompanied by I2 R conversion by 
heating of electrically-transmitted energy into internal energy in the 
conductor.  

CQ34.6 (a) The electric and magnetic fields of the light wave oscillate in 
time at each point in space, like sports fans in a grandstand 
when the crowd does “the wave.” 

 (b) The wave transports energy.  

CQ34.7 An infrared photograph records the infrared light reflected, but also 
emitted by a person’s face. When a person blushes or exercises or 
becomes excited, warmer areas glow brighter in the infrared. A 
person’s nostrils and the openings of the ear canals are bright; 
brighter still are just the pupils of the eyes.  

CQ34.8 No, they do not. Specifically, Gauss’s law in magnetism prohibits 
magnetic monopoles. If magnetic monopoles existed, then the 
magnetic field lines would not have to be closed loops, but could 
begin or terminate on a magnetic monopole, as they can in Gauss’s 
law in electrostatics.  

CQ34.9 Different stations have transmitting antennas at different locations. 
For best reception align your rabbit ears perpendicular to the 
straight-line path from your TV to the transmitting antenna. The 
transmitted signals are also polarized. The polarization direction of 
the wave can be changed by reflection from surfaces—including the 
atmosphere—and through Kerr rotation—a change in polarization 
axis when passing through an organic substance. In your home, the 
plane of polarization is determined by your surroundings, so 
antennas need to be adjusted to align with the polarization of the 
wave.  
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CQ34.10 Consider a typical metal rod antenna for a car radio. Charges in the 
rod respond to the electric field portion of the carrier wave. 
Variations in the amplitude of the incoming radio wave cause the 
electrons in the rod to vibrate with amplitudes emulating those of the 
carrier wave. Likewise, for frequency modulation, the variations of 
the frequency of the carrier wave cause constant-amplitude 
vibrations of the electrons in the rod but at frequencies that imitate 
those of the carrier.  

CQ34.11 The Poynting vector   

S  describes the energy flow associated with an 

electromagnetic wave. The direction of   

S  is along the direction of 

propagation and the magnitude of   

S  is the rate at which 

electromagnetic energy crosses a unit surface area perpendicular to 
the direction of    


S.  

CQ24.12 The frequency of EM waves in a microwave oven, typically 2.45 
GHz, is chosen to be in a band of frequencies absorbed by water 
molecules. The plastic and the glass contain no water molecules. 
Plastic and glass have very different absorption frequencies from 
water, so they may not absorb any significant microwave energy and 
remain cool to the touch.  

CQ34.13 Maxwell included a term in Ampère’s law to account for the 
contributions to the magnetic field by changing electric fields, by 
treating those changing electric fields as “displacement currents.”  

 
 

 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 34.1 Displacement Current and the  
Generalized Form of Ampère’s Law 

P34.1 (a) We use the right-hand rule for both real and displacement 
currents. Thus, the direction of   


B  is counterclockwise, and the 

direction of   

B  at P is upwards.  

 (b) We use the extended form of Ampère’s 
law, Equation 34.7. Since no moving 
charges are present, I = 0 and we have 

   

    


B∫ ⋅d

 = µ0 ∈0

dΦE

dt

 

  In order to evaluate the integral, we 
make use of the symmetry of the 

ANS. FIG. P34.1 
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situation. Symmetry requires that no particular direction from the 
center can be any different from any other direction. Therefore, 
there must be circular symmetry about the central axis. We know 
the magnetic field lines are circles about the axis. Therefore, as we 
travel around such a magnetic field circle, the magnetic field 
remains constant in magnitude. Setting aside until later the 
determination of the direction of    


B,  we integrate 

   

B ⋅d

∫  around 

the circle at R = 0.150 m to obtain 2 π RB. 

  Differentiating the expression   ΦE = AE,  we have  

   
  

dΦE

dt
=

π d2

4
⎛
⎝⎜

⎞
⎠⎟

dE
dt

 

  Thus, 
    


B∫ ⋅d

 = 2π RB = µ0∈0

π d2

4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

dE
dt

→ B =
µ0 ∈0 d2

8R
dE
dt

 

  Substituting numerical values,  

   

  

B =
4π × 10−7  T ⋅m/A( ) 8.85 × 10−12  C2/N ⋅m2( ) 0.100 m( )2

8 0.150 m( )
                                                                            × 20.0 V/m ⋅ s( )
= 1.85 × 10−18  T

 

P34.2 For the capacitor, 

   
  

dΦE

dt
=

d
dt

EA( ) =
dQ dt
∈0

=
I
∈0

 

 (a) 

  

dE
dt

=
I

∈0 A
=

0.200 A
8.85 × 10−12  C2/N ⋅m2( ) π 10.0 × 10−2  m( )⎡⎣ ⎤⎦

= 7.19 × 1011  V m ⋅ s

 

 (b) 
   

B ⋅ds∫ = ∈0  µ0
dΦE

dt
:       

  
2π rB =  ∈0 µ0

d
dt

Q
∈

0
A
⋅π r2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

  

  

B =
µ0Ir
2A

=
µ0 0.200 A( ) 5.00 × 10−2  m( )

2 π 10.0 × 10−2  m( )2⎡
⎣

⎤
⎦

= 2.00 × 10−7  T  
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P34.3 The electric field in the space between the plates is 
  
E =

σ
∈0

=
Q

∈0 A
.  

 The flux of this field is  
   
ΦE =


E ⋅

A =

Q
∈0 A

⎛
⎝⎜

⎞
⎠⎟

A cos 0 =
Q
∈0

.  

 (a) The rate of change of flux is 
   

  

dΦE

dt
= dQ dt

∈0

= I
∈0

= 0.100 A
8.85× 10−12  C2/N ⋅m2

= 11.3× 109  V ⋅m/s

 

 (b) The displacement current is defined as  

   

  

Id = ∈0
dΦE

dt
= (8.85 × 10-12  C2 / N ⋅m2 )(1.13 × 1010  N ⋅m2 / C ⋅ s)

= 0.100 A

 

 
 

 

Section 34.2 Maxwell’s Equations and Hertz’s Discoveries 

P34.4    

F = m


a = q


E + q


v ×

B  so  

 
   


a =

−e
m


E + v ×


B⎡⎣ ⎤⎦  where  

   

   


v ×

B =

î ĵ k̂
10.0 0 0

0 0 0.400

= − 4.00 T ⋅m/s( ) ĵ

 

 Then 
   

   


a = −1.60× 10−19  C

9.11× 10−31  kg
⎛
⎝⎜

⎞
⎠⎟

          × 2.50 V/m( ) î + 5.00 V/m( ) ĵ− 4.00 T ⋅m/s( ) ĵ⎡⎣ ⎤⎦

= −1.76× 1011( ) 2.50î + 1.00 ĵ⎡⎣ ⎤⎦  m/s2


a = −4.39î − 1.76 ĵ( )× 1011  m/s2
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P34.5 The net force on the proton is the Lorentz force, as described by  
  

    


F∑ = m


a = q


E + q


v ×

B so that


a = e

m


E + v ×


B⎡⎣ ⎤⎦

  

 Taking the cross product of    

v  and 


B,  

  

    


v ×

B = 

î ĵ k̂
200 0 0
0.200 0.300 0.400

= –200(0.400)ĵ + 200(0.300)k̂

 

 Then, 

    


a = e

m


E + v ×


B⎡⎣ ⎤⎦ = 1.60× 10–19

1.67 × 10–27

⎛
⎝⎜

⎞
⎠⎟

50.0 ĵ – 80.0 ĵ + 60.0 k̂⎡⎣ ⎤⎦  m/s2

= –2.87 × 109 ĵ + 5.75× 109k̂( ) m/s2

 

P34.6 (a) The very long rod creates the same electric 
field that it would if stationary. We apply 
Gauss’s law to a cylinder, concentric with 
the rod, of radius r = 20.0 cm and length   :   

   
    


E ⋅d

A∫ = qinside

∈0

 

   

   
E 2π r( ) cos 0° = λ

∈0

 

   

    


E =

λ
2π∈0 r

 radially outward

=
35.0 × 10−9  C/m 

2π 8.85 × 10−12  C2/N ⋅m2( ) 0.200 m( )
ĵ

= 3.15 × 103 ĵ N/C

 

 (b) The charge in motion constitutes a current of  

   (35.0 × 10–9 C/m) × (15.0 × 106 m/s) = 0.525 A 

  This current creates a magnetic field.  

    
    


B =

µ0I
2π r

   

     

  
=

4π × 10−7  T ⋅m/A( ) 0.525 A( )
2π 0.200 m( ) k̂ = 5.25k̂ × 10−7  T

 

ANS. FIG. P34.6 
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 (c) The Lorentz force on the electron is     

F = q


E + q


v ×

B.  

   

   


F = −1.60 × 10−19  C( ) 3.15 × 103 ĵ N/C( )

                         + −1.60 × 10−19  C( ) 240 × 106 î m/s( )
                                                               × 5.25 × 10−7 k̂ T( )


F = 5.04 × 10−16 − ĵ( )  N + 2.02 × 10−17 + ĵ( )  N

= 4.83 − ĵ( ) × 10−16  N

 

 
 

 

Section 34.3 Plane Electromagnetic Waves 
*P34.7 (a) From Equation 34.20, 

   
  
λ = c

f
= 3.00 × 108  m s

1 150 × 103  s−1 = 261 m   

  so 

   
 

180 m
261 m

= 0.690 wavelengths  

 (b) From Equation 34.20, 

   
  
λ = c

f
= 3.00 × 108  m s

98.1× 106  s−1 = 3.06 m    

  so 

   
 

180 m
3.06 m

= 58.9 wavelengths  

*P34.8 From Equation 34.20, 

  
  
λ = c

f
= 3.00 × 108  m s

27.33 × 106  Hz
= 11.0 m  

P34.9 (a) Since the light from this star travels at 3.00 × 108 m/s, the last bit 
of light will hit the Earth in  

   
  
t = d

c
= 6.44× 1018  m

2.998× 108  m s
= 2.15× 1010  s = 681 years  
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 (b) From Table C.4 (in Appendix C of the textbook), the average 
Earth-Sun distance is d = 1.496 × 1011 m, giving the transit time as 

   

  
t = d

c
= 1.496× 1011  m

2.998× 108  m/s
⎛
⎝⎜

⎞
⎠⎟

1 min
60 s

⎛
⎝⎜

⎞
⎠⎟ = 8.32 min

 

 (c) Also from Table C.4, the average Earth-Moon distance is  
d = 3.84 × 108 m, giving the time for the round trip as  

   

  
t = 2d

c
=

2 3.84× 108  m( )
2.998× 108  m/s

= 2.56 s
 

P34.10 From   fλ = c,  we have  
  

  
 f = c

λ
= 2.998× 108  m/s

632.8× 10−9  m
= 4.738× 1014  Hz

 

P34.11 In the fundamental mode, there is a single loop in the standing wave 
between the plates. Therefore, the distance between the plates is equal 
to half a wavelength.  

     λ = 2L = 2 2.00 m( ) = 4.00 m  

 Thus,  
  
f =

c
λ

=
3.00 × 108  m/s

4.00 m
= 7.50 × 107  Hz = 75.0 MHz .  

P34.12 
 

E
B

= c    or   
  

220 V/m
B

= 3.00 × 108  m/s,  so    

   
  
B = 7.33 × 10−7  T = 733 nT  

P34.13 From Equation 34.17,  
   

  
v = 1

κµ0∈0

= 1
1.78

c = 0.750c = 2.25× 108  m/s
 

*P34.14 Time to reach object  

  
 
= 1

2
total time of flight( ) = 1

2
4.00 × 10−4  s( ) = 2.00 × 10−4  s  

 Thus, 
   

  d = vt = 3.00 × 108  m s( ) 2.00 × 10−4  s( ) = 6.00 × 104  m = 60.0 km
 

P34.15 (a)  c = fλ  gives the frequency as 
   

  
f = c

λ
= 3.00× 108  m/s

50.0 m 
= 6.00× 106  Hz
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 (b) c = E/B gives the magnetic field amplitude as  

    
  
B =

E
c

=
22.0 V/m

3.00 × 108  m/s
= 7.33 × 10−8  T = 73.3 nT  

   

B  must be directed along negative z direction when   


E  is in the 

negative y direction, so that    

S =

E ×

B/µ0  will propagate in the 

direction 
   – ĵ( ) × –k̂( ) = + î.  So, 

   
   


Bmax = −73.3k̂ nT

 

 (c) 
   
k =

2π
λ

=
2π

50.0m
= 0.126 m−1  

  and   ω = 2π f = 2π 6.00 × 106  s−1( ) = 3.77 × 107  rad/s.  

  Then, 

   
    


B =

Bmax cos kx −ω t( ) = −73.3k̂ cos 0.126x − 3.77 × 107 t( )  nT  

P34.16   E = Emax cos kx −ω t( )  

 

  

∂E
∂x

= −Emax sin kx −ω t( ) k( )   →   
∂2E
∂x2 = −Emax cos kx −ω t( ) k2( )

∂E
∂t

= −Emax sin kx −ω t( ) −ω( )   →   
∂2E
∂t2 = −Emax cos kx −ω t( ) −ω( )2

 

 We must show: 
  

∂2E
∂x2 = µ0 ∈0

∂2E
∂t2

 

 That is,   − k2( )Emax cos kx −ω t( ) = −µ0∈0 −ω( )2 Emax cos kx −ω t( ).  

 But this is true, because 
  

k2

ω 2 =
1
fλ

⎛
⎝⎜

⎞
⎠⎟

2

=
1
c2 = µ0∈0 .  

 The proof for the wave of the magnetic field follows precisely the same 
steps.  

P34.17 Since the separation of the burn marks is 
  
dA to A = 6 cm ± 5% =

λ
2

, then 

 λ = 12 cm ± 5%  and 
  

  

v = λ f = 0.12 m ± 5%( ) 2.45× 109  s−1( )
= 2.9× 108  m/s ± 5%
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P34.18 The amplitudes of the electric and magnetic fields are in the correct 
ratio so that Emax/Bmax = c. The ratio of ω to k, however, must also equal 
the speed of light:  

   
  

ω
k
 = 

3.00 × 1015  s−1

9.00 × 106  m−1  = 3.33 × 108  m/s  

 This value is higher than the speed of light in a vacuum, so the wave as 
described is impossible. 

P34.19 The wave is of the form   Ey = Emax sin kx −ωt( ) .  

 (a) 100 V/m is the amplitude of the electric field, so the amplitude of 
the magnetic field is 

    
  
Bmax =

Emax

c
=

100 V/m
3.00 × 108  m/s

= 3.33 × 10−7  T = 0.333 µT   

 (b) We compare the given wave function with y = A sin(kx – ω t) to 
see that the wave number is  k = 1.00 ×  107 m–1. With   k = 2π/λ,  
we then have the wavelength as 

     
  
λ =

2π
k

=
2π

1.00 × 107  m−1 = 0.628 µm   

 (c) The frequency is  

   
  
f =

c
λ

=
3.00 × 108  m/s
6.28 × 10−7  m

= 4.77 × 1014  Hz  

 
 

 

Section 34.4 Energy Carried by Electromagnetic Waves 
P34.20 From Equation 17.7, we recall that the intensity I a distance r from a 

point or spherical source is inversely proportional to the square of the 
distance:   I = P 4πr2 . At the Earth, r1 = 1.496 × 1011 m, the intensity is  
I1 = IE, then at distance r2, the intensity I2 = 3IE. Then,  

  

  

I1

I2

= r2

r1

⎛
⎝⎜

⎞
⎠⎟

2  

 and 
  

  
r2 = r1

I1

I2

= 1.496× 1011  m( ) 1
3

= 8.64× 1010  m
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P34.21 In time interval   Δt,  sunlight travels distance   Δx = cΔt.  The intensity of 
the sunlight passing into a volume  ΔV = AΔx  in time  Δt is  

   
 
S = I =

U
AΔt

=
U

AΔx c
=

Uc
V

= uc  

   
  

Energy
Unit Volume

= u =
I
c

=
1 000 W/m2

3.00 × 108  m/s
= 3.33 µJ/m3  

P34.22 (a) 
  

P
area

=
energy
Δt ⋅area

=
600 × 103  Wh

30 d( ) 13.0 m( ) 9.50 m( )
1 d
24 h

⎛
⎝⎜

⎞
⎠⎟ = 6.75 W/m2  

 (b) The car uses gasoline at the rate of 
 
55 mi/h( ) gal

25 mi
⎛
⎝⎜

⎞
⎠⎟ .  Its rate of 

energy conversion is 

   

  

P = 44.0 × 106  J/kg
2.54 kg

1 gal
⎛
⎝⎜

⎞
⎠⎟

55 mi/h( ) gal
25 mi

⎛
⎝⎜

⎞
⎠⎟

1 h
3 600 s

⎛
⎝⎜

⎞
⎠⎟

= 6.83 × 104  W

 

  Its power-per-footprint-area is  

   
  

P
area

=
6.83 × 104  W

2.10 m( ) 4.90 m( ) =  
 

6.64 × 103  W/m2  

 (c) 

 

A powerful automobile that is running on sunlight would have
to carry on its roof a solar panel huge compared with the size of
the car.

 

 (d) 

 

Agriculture and forestry for food and fuels, space heating of
large and small buildings, water heating, and heating for drying
and many other processes are current and potential applications
of solar energy.

 

P34.23 Power output = (power input)(efficiency).  

 Thus, 
 
Power input =

Power out
eff

=
1.00 × 106  W

0.300
= 3.33 × 106  W  

 and  
  
A = P

I
= 3.33× 106  W

1.00× 103  W/m2 = 3.33× 103  m2  

P34.24 (a) 
   


E ⋅

B = 80.0î + 32.0 ĵ − 64.0k̂( ) N/C( ) ⋅ 0.200î + 0.080 0 ĵ + 0.290k̂( )  µT  

  
   

E ⋅

B = 16.0 + 2.56 − 18.56( )  µT ⋅N/C2 = 0  
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 (b) 

   


S =

1
µ0


E ×

B

=
1

4π × 10−7  T ⋅m/A
⎛
⎝⎜

⎞
⎠⎟

80.0î + 32.0 ĵ − 64.0k̂( )  N/C⎡
⎣

⎤
⎦

                                           × 0.200î + 0.080 0 ĵ + 0.290k̂( )  µT⎡
⎣

⎤
⎦

 

  
   


S =

6.40k̂ − 23.2 ĵ − 6.40k̂ + 9.28î − 12.8 ĵ + 5.12î( ) × 10−6  W/m2

4π × 10−7
 

  

    


S = 11.5î − 28.6 ĵ( )  W/m2

= 30.9 W/m2  at – 68.1° from the + x axis

  

P34.25 (a) 
  
I =

Emax
2

2µ0c
=

3.00 × 106  V/m( )2

2 4π × 10−7  T ⋅m/A( ) 3.00 × 108  m/s( )  

  
  
I = 1.19 × 1010  W/m2  

 (b) 

  

P = IA = Iπr2 = 1.19 × 1010  W/m2( )π 5.00 × 10−3  m
2

⎛
⎝⎜

⎞
⎠⎟

2

= 2.34 × 105  W

 

P34.26 The energy put into the water in each container by electromagnetic 
radiation can be written as   ΔE = ePΔt = eIAΔt,  where e is the 
percentage absorption efficiency. This energy has the same effect as 
heat in raising the temperature of the water:  

  

   

eIAΔt = mcΔT = ρVcΔT

ΔT =
eI2Δt
ρ3c

=
eIΔt
ρc

 

 where    is the edge dimension of the container and c the specific heat 
of water. For the small container,  

  

  
ΔT =

0.700 25.0× 103  W/m2( ) 480 s( )
103  kg/m3( ) 0.060 0 m( ) 4 186 J/kg ⋅°C( ) = 33.4°C

 

 For the larger,  
  

  
ΔT =

0.910 25.0× 103  W/m2( ) 480 s( )
103  kg/m3( ) 0.120 m( ) 4 186 J/°C( ) = 21.7°C
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P34.27 (a) 
  
Bmax =

Emax

c
: 

  
Bmax = 7.00× 105  N/C

3.00× 108  m/s
= 2.33 mT  

 (b) 
  
I =

Emax
2

2µ0c
:  

  

  

I =
7.00 × 105  V/m( )2

2 4π × 10−7  T ⋅m/A( ) 3.00 × 108  m/s( ) = 6.50 × 108 W m2

= 650 MW m2

 

 (c) 
 
I =

P
A

:   
  
P = IA = 6.50 × 108  W/m2( ) π

4
1.00 × 10−3  m( )2⎡

⎣⎢
⎤
⎦⎥

= 511 W  

P34.28 (a) We assume that the starlight moves through space without any of 
it being absorbed. The radial distance is  

   

  

20 ly = 20c 1 yr( ) = 20 3.00 × 108  m/s( ) 3.16 × 107  s( )
= 1.89 × 1017  m

 

   

  

I =
P

4π r2 =
4.00 × 1028  W

4π 1.89 × 1017  m( )2 = 8.88 × 10−8  W/m2

= 88.8 nW/m2

 

 (b) The Earth presents the projected target area of a flat circle:  
   

  

P = IA = 8.88 × 10−8  W/m2( ) π 6.37 × 106  m( )2⎡
⎣

⎤
⎦

= 1.13 × 107  W= 11.3 MW

 

P34.29 The Poynting vector is  

  
  
Savg =

Power
A

=
Power
4πr2 .  

 In meters,  

     r = 5.00 mi( ) 1 609 m/mi( ) = 8.04 × 103  m  

 and the intensity of the wave is 
  

  
S = 250× 103  W

4π (8 045 m)2  
= 307 µW/m2

 

P34.30 (a) The intensity of the broadcast waves is 

   
  
I =

Bmax
2 c

2µ0

=
P

4π r2  
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  solving, 

   

  

Bmax = P
4π r2

⎛
⎝⎜

⎞
⎠⎟

2µ0

c
⎛
⎝⎜

⎞
⎠⎟

= P
2π r2

⎛
⎝⎜

⎞
⎠⎟

µ0

c
⎛
⎝⎜

⎞
⎠⎟

=
10.0 × 103  W( ) 4π × 10−7  T ⋅m/A( )

2π 5.00 × 103  m( )2
3.00 × 108  m/s( )

= 5.16 × 10−10  T

 

 (b) Since the magnetic field of the Earth is approximately 5 × 10–5 T, 
the Earth’s field is some 100 000 times stronger.  

P34.31 The average Poynting flux is 

   
  
Savg =

Pavg

4π r2 =
Emax

2

2µ0c
 

 solving, 

  

  

Emax = 2µ0cSavg = µ0c
Pavg

2π r2

= 4π × 10−7  T ⋅m/A( ) 3.00 × 108  m/s( ) 4.00 × 103  W
2π 4.00 1 609 m( )[ ]2

= 0.076 1 V/m

 

 The maximum emf (amplitude) induced in a length L of wire is  

   
  
ΔVmax = EmaxL = 76.1 mV m( ) 0.650 m( ) = 49.5 mV  

*P34.32 
  
Power = SA = Emax

2

2µ0c
4π r2( )  

 Solving for r,  
   

  

r = P µ0c
2π Emax

2 =
(100 W) 4π × 10−7  T ⋅m/A( ) 3.00 × 108  m/s( )

2π(15.0 V m)2

= 5.16 m

 

*P34.33 (a)   P = I 2R = 150 W  

    A = 2π rL = 2π 0.900 × 10−3  m( ) 0.080 0 m( ) = 4.52 × 10−4  m2  

  
  
S = P

A
= 150 W

4.52 × 10−4  m2 = 332 kW m2  (points radially inward) 

 (b) 
  
B = µ0I

2π r
=

1.00 A( ) 4π × 10−7  T ⋅m/A( )
2π 0.900 × 10−3  m( ) = 222 µT  
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E = ΔV

Δx
= IR

L
= 150 V

0.080 0 m
= 1.88 kV m  

 Note that these values yield 
  
S = EB

µ0

= 332 kW m2 ,  in agreement 

with the result from part (a). 

P34.34 (a) 
  
Erms = cBrms = 3.00 × 108  m/s( ) 1.80 × 10−6  T( ) = 540 V/m  

 (b) From Equation 34.25,  
   

  
uavg =

Bmax( )2

2µ0

=
Brms( )2

µ0

=
1.80× 10−6  T( )2

4π × 10−7  T ⋅m/A
= 2.58 µJ/m3

 

 (c)   Savg = cuavg = 3.00× 108  m/s( ) 2.58× 10−6  J/m3( ) = 773 W/m2  

 
 

 

Section 34.5 Momentum and Radiation Pressure 

P34.35 The intensity of the beam is 
  
I =

Ppower

π r2 , where r = 1.00 × 10–3 m. By 

Equation 34.29, the radiation pressure on the mirror is  
  

  

P = 2S
c

= 2I
c

=
2Ppower

π r2c

=
2 25.0× 10−3  W( )

π 1.00× 10−3  m( )2
3.00× 108  m/s( )

= 5.31× 10−5  N/m2

 

P34.36 For complete absorption, from equation 34.27,  
  

  
P = S

c
= 25.0 W/m2

3.00 × 108  m/s
= 8.33 × 10–8  N/m2 = 83.3 nPa

 

P34.37 (a) 
  
I =

P
π r2 =

Emax
2

2µ0c
, and r = 1.00 × 10–3 m: 

  

  

Emax =
2µ0cP
π r2

=
2 4π × 10−7  T ⋅m/A⎡⎣ ⎤⎦ 3.00 × 108  m/s( ) 15.0 × 10−3  W( )

π 1.00 × 10−3  m( )2

= 1.90 × 108  J= 1.90 kN/C
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 (b) The beam carries power P. The amount of energy ∆E in the length 
of a beam of length    is the amount of power that passes a point 
in time interval    Δt = /c:  

    

  
P =

ΔE
Δt

=
ΔE
 c

 

  or 
   
ΔE =

P
c

=
15.0 × 10−3  W

3.00 × 108  m/s
1.00 m( ) = 50.0 pJ .  

 (c) From Equation 34.27 and our result in part (b), the momentum 
and energy carried a light beam are related by  

    
  
p =

TER

c
=
ΔE
c

=
50.0 × 10−12  J

3.00 × 108  m/s
= 1.67 × 10−19  kg ⋅m/s  

P34.38 (a) 
  
I =

P
π r2 =

Emax
2

2µ0c
→ Emax =

2µ0cP
π r2  

 (b) The beam carries power P. The amount of energy ∆E in the length 
of a beam of length    is the amount of power that passes a point 
in time interval    Δt = /c:  

    
  
P =

ΔE
Δt

=
ΔE
 c

→ ΔE =
P
c

 

 (c) From Equation 34.27 and our result in part (b), the momentum 
and energy carried a light beam are related by  

    
   
p =

TER

c
=
ΔE
c

=
P
c2

 

P34.39 The radiation pressure on the disk is  

  
  
P =

S
c

=
I
c

=
F
A

=
F

π r2 . 

 Thus , 
  
F =

π r2I
c

 

 Because the force acts uniformly over the  
surface of the disk, we may consider it to be  
acting at the center of the disk when  
calculating its torque. Take torques about  
the hinge: 

   τ∑ = 0:  

  
  
Hx 0( ) + Hy 0( ) − mgr sinθ +

π r2Ir
c

= 0  

 

ANS. FIG. P34.39 
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 Solving for the angle gives 

  

  

θ = sin−1 π r2I
mgc

⎛
⎝⎜

⎞
⎠⎟

= sin−1 π 0.400 m( )2 10.0× 106  W/ m2( )
0.024 0 kg( ) 9.80 m/ s2( ) 3.00× 108  m/s( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= sin−1 0.071 2 = 4.09°

 

P34.40 (a) The light pressure on the absorbing Earth is 
 
P =

S
c

=
I
c

. 

  The force is  
   

  

F = PA = I
c
π R2( ) = (1 370 W/m2 )π (6.37 × 106  m)2

3.00× 108  m/s

= 5.82 × 108  N

  

  away from the Sun.  

 (b) The attractive gravitational force exerted on Earth by the Sun is  

   

  

Fg = GMSMM

rM
2

=
6.67 × 10−11  N ⋅m2 kg2( ) 1.991× 1030  kg( ) 5.98× 1024  kg( )

1.496× 1011  m( )2

= 3.55× 1022  N

 

  which is 
 

6.10 × 1013  times stronger  compared to the repulsive 

force in part (a).  

P34.41 (a) The magnitude of the momentum transferred to the assumed 
totally reflecting surface in time interval  Δt  is (from Equation 
34.29) 

   

  
Δp = 2TER

c
= 2SAΔt

c

  

  Then the momentum transfer is  
   

    
Δp = 2


SAΔt

c
= 2(6.00 î W/m2 )(40.0× 10−4  m2 )(1.00 s)

3.00× 108  m/s

 

   

   
Δp = 1.60× 10−10  î kg ⋅m/s each second
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 (b) The force is  

    

    


F = PA î = 2SA

c
î =

2 6.00 W/m2( ) 40.0× 10−4  m2( ) 1.00 s( )
3.00× 108  m/s

= 1.60× 10−10  î N

 

 (c) The answers are the same. Force is the time rate of momentum 
transfer. 

P34.42 (a) If PS is the total power radiated by the Sun, and rE and rM are the 
radii of the orbits of the planets Earth and Mars, then the 
intensities of the solar radiation at these planets are:  

    
  
IE =

PS

4π rE
2    and   

  
IM =

PS

4π rM
2  

  Thus,  
    

  

IM = IE
rE

rM

⎛
⎝⎜

⎞
⎠⎟

2

= 1 370 W/m2( ) 1.496× 1011  m
2.28× 1011  m

⎛
⎝⎜

⎞
⎠⎟

2

= 590 W/m2

 

 (b) Mars intercepts the power falling on its circular face:  
    

  

PM = IM π RM
2( ) = 590 W/m2( ) π 3.37 × 106  m( )2⎡

⎣
⎤
⎦

= 2.10× 1016  W

 

 (c) If Mars behaves as a perfect absorber, it feels pressure   

    
 
P =

SM

c
=

IM

c
, 

  so the light-pressure force is  

    
  
FL = PA =

IM

c
π RM

2( ) =
PM

c
=

2.10 × 1016  W
3.00 × 108  m/s

= 7.01× 107  N  

 (d) Using our results from above, we have 
  
FL = IM

π RM
2

c
 and 

  
IM = IE

rE
2

rM
2 , so the light-pressure force on Mars is 

  
FL = IE

rE
2

rM
2

π RM
2

c
. 

The attractive gravitational force exerted on Mars by the Sun is 

  
Fg =

GMSMM

rM
2 . Their ratio is  

    
  

Fg

FL

= GMSMM

rM
2

⋅ 1
IE

rM
2

rE
2

c
π RM

2 = cGMS

π IErE
2

⎛
⎝⎜

⎞
⎠⎟

MM

RM
2  
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  Suppressing units, 

   

  

Fg

FL

=
3.00× 108( ) 6.67 × 10−11( ) 1.991× 1030( )

π 1 370( ) 1.496× 1011( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

MM

RM
2

⎛
⎝⎜

⎞
⎠⎟

Fg

FL

= 414 m2/kg( ) MM

RM
2 = 414 m2/kg( ) 6.42 × 1023  kg( )

3.37 × 106  m( )2

= 2.34× 1013

 

  The attractive gravitational force exerted on Mars by the Sun is 

 
~1013  times stronger  than the repulsive light-pressure force of 

part (c).  
 (e) The expression for the ratio of the gravitational force to the light-

pressure force for Earth is similar to that used in part (d) for Mars 
(replace M with E):  

    

  

Fg

FL

= 414 m2/kg( ) ME

RE
2 = 414 m2/kg( ) 5.98× 1024  kg( )

6.37 × 106  m( )2

= 6.10× 1013

 

  

 

The values are similar for both planets because both the forces
follow inverse-square laws. The force ratios are not identical
for the two planets because of their different radii and masses.

 

P34.43 (a) The radiation pressure is  

    
  
P =

2S
c

=
2I
c

 

  The force on area A is  
    

  
F = PA =

2 1 370 W/m2( )
3.00 × 108  m/s

6.00 × 105  m2( ) = 5.48 N
 

 (b) The acceleration is: 
    

  

a =
F
m

=
5.48 N

6 000 kg
= 9.13 × 10−4  m/s2

= 913 µm/s2  away from the Sun

 

 (c) It will arrive at time t, where 
  
d =

1
2

at2  or, 

    

  
t =

2d
a

=
2 3.84 × 108  m( )
9.13 × 10−4  m/s2( ) = 9.17 × 105  s = 10.6 days  
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Section 34.6 Production of Electromagnetic Waves  
by an Antenna 

P34.44 (a) The wavelength of an ELF wave of frequency 75.0 Hz is  

   
  
λ =

c
f

=
3.00 × 108  m/s

75.0 Hz
= 4.00 × 106  m  

  The length of a quarter-wavelength antenna would be  

   
  
L = 1.00 × 106  m = 1.00 × 103  km  

  or  
  
L = 1 000 km( ) 0.621 mi

1.00 km
⎛
⎝⎜

⎞
⎠⎟ = 621 mi  

 (b) While the project may be theoretically possible, it is not very 
practical. 

P34.45 (a) 
  
h = λ

4
= c

4 f
= 3.00× 108  m/s

4 560× 103  Hz( ) = 134 m  

 (b) 
  
h = λ

4
= c

4 f
= 3.00× 108  m/s

4 1600× 103  Hz( ) = 46.9 m  

P34.46 (a) The magnetic field 
    


B =

1
2

µ0 Jmax cos kx −ω t( )k̂  applies for x > 0, 

since it describes a wave moving in the   ̂i  direction. The electric 

field direction must satisfy 
   


S =

1
µ0


E ×

B  as   î = ĵ × k̂  so the 

direction of the electric field is   ĵ  when the cosine is positive. For 
its magnitude we have E = cB, so altogether we have 

    


E =

1
2

µ0cJmax cos kx −ω t( ) ĵ . 

 (b) 
    


S =

1
µ0


E ×

B =

1
µ0

1
4

µ0
2cJmax

2 cos2 kx −ω t( ) î  

  
    


S =

1
4

µ0cJmax
2 cos2 kx −ω t( ) î  

 (c) The intensity is the magnitude of the Poynting vector averaged 
over one or more cycles. The average of the cosine-squared 

function is 
 

1
2

, so 
  

I =
1
8

µ0cJmax
2 . 
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 (d) 
  
Jmax =

8I
µ0c

=
8 570 W/m2( )

4π × 10−7 Tm A( )3 × 108  m/s
= 3.48 A/m  

*P34.47 For the proton, Newton’s second law gives 

   
  

F∑ = ma:       q vB sin 90.0° = mv2

R
.  

 The period and frequency of the proton’s circular motion are therefore: 
   

  
T = 2π R

v
= 2π m

qB
=

2π 1.67 × 10−27  kg( )
1.60 × 10 −19  C( ) 0.350 T( )

= 1.87 × 10−7  s
 

 and    f = 5.34 × 106  Hz.  

 The charge will radiate at this same frequency, with 
   

  
λ = c

f
= 3.00 × 108  m s

5.34 × 106  Hz
= 56.2 m

 

P34.48 For the proton,  F∑ = ma  yields  

  
  
qvBsin 90.0° =

mv2

R
→ v =

qBR
m

 

 The period of the proton’s circular motion is therefore:  

  
  
T =

2πR
v

=
2π m
qB

 

 The frequency of the proton’s motion is 
  
f =

1
T

 

 The charge will radiate electromagnetic waves at this frequency, with  

  
  
λ =

c
f

= cT =
2π mc

qB
 

P34.49 Refer to ANS. FIG. P34.49. For any wavelength: 

 (a) Constructive interference occurs when   dcosθ = nλ  for some 
integer n.  

   
  
cosθ = n

λ
d

= n
λ
λ 2

⎛
⎝⎜

⎞
⎠⎟

= 2n          n = 0, ± 1, ± 2, …  

   ∴ strong signal @ θ = cos−1 0 = 90°, 270° , or  

  
 

along the perpendicular bisector of the line segment joining
the antennas.
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 (b) Destructive interference occurs when  

   
  
d cosθ =

2n + 1
2

⎛
⎝⎜

⎞
⎠⎟ λ :       cosθ = 2n + 1  

   ∴weak signal @ θ = cos−1 ±1( ) = 0°, 180° , or 

  
 
along the extensions of the line segment joining the antennas.  

  

ANS. FIG. P34.49 

 
 

 

Section 34.7 The Spectrum of Electromagnetic Waves 

P34.50 (a) 
  
f =

c
λ

=
3 × 108  m/s

1.7 m
~ 108  Hz radio wave  

 (b) 1 000 pages, 500 sheets, is about 3 cm thick so one sheet is about  
6 × 10–5 m thick.  

   
  
f =

3.00 × 108  m/s
6 × 10−5  m

~ 1013  Hz infrared  

P34.51 (a)  fλ = c    gives    5.00 × 1019  Hz( )λ = 3.00 × 108  m/s:   

   
 
λ = 6.00 × 10−12  m = 6.00 pm  

 (b)  fλ = c    gives    4.00 × 109  Hz( )λ = 3.00 × 108  m/s:  
   

 λ = 0.075 0 m = 7.50 cm
 

P34.52 The time interval for the radio signal to travel 100 km is: 

   
  
Δtr =

100 × 103  m
3.00 × 108  m/s

= 3.33 × 10−4  s  

 The sound wave travels 3.00 m across the room in:  

   
  
Δts =

3.00 m
343 m/s

=   8.75 × 10−3  s  
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 Therefore, 
 

listeners 100 km away  will receive the news before the 

people in the newsroom by a total time difference of  
   

  Δt = 8.75 × 10−3  s − 3.33 × 10−4  s = 8.41× 10−3  s  

P34.53 From  fλ = c ,  

 Channel 3: f = 60.0 MHz to 66.0 MHz.  

 (a) Channel 4: f = 66.0 MHz to 72.0 MHz,  λ = 4.17 m to 4.55 m .  

  72.0–76.0 MHz is reserved for non-TV purposes.  

  Channel 5: f = 76.0 MHz to 82.0 MHz.  

 (b) Channel 6: f = 82.0 MHz to 88.0 MHz,  λ = 3.41 m to 3.66 m .  

  88.0–174 MHz is reserved for non-TV purposes.  

  Channel 7: f = 174 MHz to 180 MHz.  

 (c) Channel 8: f = 180 MHz to 186 MHz,  λ = 1.61 m to 1.67 m .  

 
 

 

Additional Problems 
*P34.54 From the electromagnetic spectrum chart and accompanying text 

discussion, the following identifications are made: 
 

 Frequency, f Wavelength, 
 
λ = c

f
 Classification 

 2 Hz = 2 × 100 Hz 150 Mm Radio 

 2 KHz = 2 × 103 Hz  150 km Radio 

 2 MHz = 2 × 106 Hz  150 m Radio 

 2 GHz = 2 × 109 Hz  15 cm Microwave 

 2 THz = 2 × 1012 Hz  150  µm  Infrared 

 2 PHz = 2 × 1015 Hz 150 nm Ultraviolet 

 2 EHz = 2 × 1018 Hz  150 pm X-ray 

 2 ZHz = 2 × 1021 Hz  150 fm Gamma ray 

 2 YHz = 2 × 1024 Hz  150 am Gamma ray 
 



Chapter 34     597 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 
Wavelength, λ  Frequency, 

 
f = c

λ
 Classification 

 2 km = 2 × 103 m  1.5 × 105 Hz Radio 

 2 m = 2 × 100 m  1.5 × 108 Hz  Radio 

 2 mm = 2 × 10–3 m  1.5 × 1011 Hz  Microwave 

 2  µm  = 2 × 10–6 m  1.5 × 1014 Hz  Infrared 

 2 nm = 2 × 10–9 m  1.5 × 1017 Hz  Ultraviolet/X-ray 

 2 pm = 2 × 10–12 m  1.5 × 1020 Hz  X-ray/Gamma ray 

 2 fm = 2 × 10–15 m  1.5 × 1023 Hz  Gamma ray 

 2 am = 2 × 10–18 m  1.5 × 1026 Hz  Gamma ray 

 
P34.55 (a) From P = SA, we have 

     
  
P = 1 370 W/m2( ) 4π 1.496 × 1011  m( )2⎡

⎣
⎤
⎦ = 3.85 × 1026  W   

 (b) 
  
S =

Emax
2

2µ0c
   so 

   

  

Emax = 2µ0cS

= 2 4π × 10−7  T ⋅m/A( ) 3.00× 108  m s( ) 1 370 W/m2( )
= 1.02 kV m

 

 (c) 
  
S =

cBmax
2

2µ0

   so  

   

  

Bmax =
2µ0S

c
=

2 4π × 10−7  T ⋅m/A( ) 1 370 W m2( )
3.00 × 108  m s

= 3.39 µT

  

P34.56 We use the relationship between energy density and electric field 
magnitude that we studied previously for a static field. The energy 
density can be written as  

   
  uE = 1

2 ∈0 Emax
2  
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 so  
  
Emax = 2uE

∈0

=
2 4.00 × 10–14  N ⋅m2( )
8.85 × 10–12  C2/N ⋅m2 =  95.1 mV/m .  

P34.57 The wavelength is found from 

  
  
fλ = c → λ =

c
f

=
3.00 × 108  m/s
5.45 × 1014  Hz

= 5.50 × 10−7  m  

P34.58 The angular frequency of the wave is 

  
  ω = 2π f = 2π 3.00 × 109  s−1( ) = 1.88 × 1010  s−1   

 and the wave number is 
  

  
k = 2π

λ
= ω

c
= 2π 3.00× 109  s−1

3.00× 108  m/s
⎛
⎝⎜

⎞
⎠⎟

= 20.0π  m−1 = 62.8 m−1
 

 Also, 
  

  
Bmax = E

c
= 300 V/m

3.00× 108  m/s
= 1.00 µT

 

 Then, 

  
  

E = 300cos 62.8x − 1.88 × 1010t( )     

 
  

B = 1.00cos 62.8x − 1.88 × 1010t( )  

 where E is in volts per meter (V/m), B is in microtesla (µT), x is in 
meters, and t is in seconds.  

*P34.59 (a) The power incident on the mirror is:  

     PI = IA = 1 370 W m2( ) π 100 m( )2⎡⎣ ⎤⎦ = 4.30 × 107  W . 

  The power reflected through the atmosphere is 

  PR = 0.746 4.30 × 107  W( ) = 3.21× 107  W  

 (b) 
  
S = PR

A
= 3.21× 107  W
π 4.00 × 103  m( )2 = 0.639 W m2  

 (c) Noon sunshine in St. Petersburg produces this power-per-area on 
a horizontal surface: 

   
  
PN

A
= 0.746 1 370 W m2( )sin 7.00° = 125 W m2  

  The radiation intensity received from the mirror is 

 

0.639 W m2

125 W m2

⎛
⎝⎜

⎞
⎠⎟

100% = 0.513%  of that from the noon Sun in 

January. 
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*P34.60 (a) 
  
λ = c

f
= 3.00 × 108  m s

20.0 × 109  s−1 = 1.50 cm  

 (b) 

  

U = P Δt( ) = 25.0 × 103  J s( ) 1.00 × 10−9  s( )
= 25.0 × 10−6  J = 25.0 µJ

 

 (c) 

   

uavg = U
V

= U
π r2( )

= U
π r2( )c Δt( )

= 25.0× 10−6  J
π 0.060 0 m( )2 3.00× 108  m s( ) 1.00× 10−9  s( )

 

  
  
uavg = 7.37 × 10−3  J m3 = 7.37 mJ m3  

 (d) 

  

Emax = 2uav

∈0

=
2 7.37 × 10−3  J m3( )

8.85 × 10−12  C2 N ⋅m2 = 4.08 × 104  V m

= 40.8 kV m

 

  
  
Bmax = Emax

c
= 4.08 × 104  V m

3.00 × 108  m s
= 1.36 × 10−4  T = 136 µT  

 (e) 

  

F = PA = S
c( )A = uavA = 7.37 × 10−3  J m3( )π 0.060 0 m( )2

= 8.33 × 10−5  N = 83.3 µN

 

P34.61 Suppose you cover a 1.7 m × 0.3 m section of beach blanket. Suppose 
the elevation angle of the Sun is 60°. Then the effective target area you 
fill in the Sun’s light is  

     A = 1.7 m( ) 0.3 m( )cos30° = 0.4 m2  

 Now 
  
I =

P
A

=
ΔE
AΔt

,   so 

    

  

ΔE = IAΔt = 0.5( ) 0.6( ) 1 370 W/m2( )⎡⎣ ⎤⎦ 0.4 m2( ) 3 600 s( )
~ 106  J

 

P34.62 
  
P = ΔV( )2

R
  or   P ∝ ΔV( )2  

 
   ΔV = −( )Ey ⋅ Δy = Ey ⋅ cosθ  

 
  ΔV ∝ cosθ    so   P ∝ cos2θ  

ANS. FIG. P34.60 
 

θ
l

receiving
antenna∆y

ANS. FIG. P34.62 
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 (a)   θ = 15.0°:  P = Pmax cos2 15.0°( ) = 0.933Pmax = 93.3%  

 (b)   θ = 45.0°:  P = Pmax cos2 45.0°( ) = 0.500Pmax = 50.0%   

 (c)   θ = 90.0°:  P = Pmax cos2 90.0°( ) = 0  

P34.63 The gravitational force exerted by the Sun on the particle is given by 

    
  
Fgrav =

GMSm
R2 =

GMS

R2
⎛
⎝⎜

⎞
⎠⎟ ρ 4

3
π r3⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

 where MS = mass of Sun, r = radius of particle, and R = distance from 
Sun to particle. The force exerted by solar radiation on the particle is 
given by   Frad = PA,  and since the particle absorbs all the radiation, by 
Equation 34.28, we have 

    

  
Frad = PA = S

c
π r2

 

 When the particle is in equilibrium, the gravitational force toward the 
Sun is balanced by the force of radiation away from the Sun, 

  Frad = Fgrav ,  so 
    

  

S
c
π r2 = GMS

R2
⎛
⎝⎜

⎞
⎠⎟ ρ 4

3
π r3⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

 Solving for r, the radius of the particle, then gives 
    

  
r = 3SR2

4cGMSρ

 

 Suppressing units,  
   

  

r =
3 214( ) 3.75 × 1011( )2

4 3.00 × 108( ) 6.67 × 10−11( ) 1.991× 1030( ) 1 500( )
= 3.78 × 10−7  m = 378 nm

  

P34.64 The gravitational force exerted by the Sun on the particle is given by 

    
  
Fgrav =

GMSm
R2 =

GMS

R2
⎛
⎝⎜

⎞
⎠⎟ ρ 4

3
π r3⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

 where MS = mass of Sun, r = radius of particle, and R = distance from 
Sun to particle. The force exerted by solar radiation on the particle is 
given by   Frad = PA,  and since the particle absorbs all the radiation, by 
Equation 34.28, we have 

    
  
Frad = PA = S

c
π r2  
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 When the particle is in equilibrium, the gravitational force toward the 
Sun is balanced by the force of radiation away from the Sun, 

  Frad = Fgrav ,  so 
    

  

S
c
π r2 = GMS

R2
⎛
⎝⎜

⎞
⎠⎟ ρ 4

3
π r3⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

 Solving for r, the radius of the particle, then gives 
    

  
r = 3SR2

4cGMSρ

 

P34.65 (a) The magnetic-field amplitude is  

   
  
Bmax =

Emax

c
=

0.200 × 10−6  V/m
3.00 × 108  m/s

= 6.67 × 10−16  T  

 (b) The intensity is the Poynting vector averaged over one or more 
cycles, given by  

    

  

Savg =
Emax

2

2µ0c
=

0.200 × 10−6  V/m( )2

2 4π × 10−7  T ⋅m/A( ) 3.00 × 108  m/s( )
= 5.31× 10−17  W/m2

 

 (c) The power tells how fast the antenna receives energy. It is
  

    

   

P = SavgA = Savgπ
d
2

⎛
⎝⎜

⎞
⎠⎟

2

= 5.31× 10−17  W/m2( )π 20.0 m
2

⎛
⎝⎜

⎞
⎠⎟

2

= 1.67 × 10−14  W

 

 (d) The force tells how fast the antenna receives momentum. It is 

    

  

F = PA =
Savg

c
⎛
⎝⎜

⎞
⎠⎟

A =
5.31× 10−17  W/m2

3.00 × 108  m/s
⎛
⎝⎜

⎞
⎠⎟
π 20.0 m

2
⎛
⎝⎜

⎞
⎠⎟

2

= 5.56 × 10−23  N

  

  (approximately the weight of 3 000 hydrogen atoms!) 

P34.66 Of the intensity S = 1 370 W/m2, the 38.0% that is reflected exerts a 
pressure  

  
  
P1 =

2Sr

c
=

2 0.380( )S
c

 

 The absorbed light exerts pressure 

  
  
P2 =

Sa

c
=

0.620S
c
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 Altogether the pressure at the subsolar point on Earth is 

 (a) 
  
Ptotal = P1 + P2 =

1.38S
c

=
1.38 1370 W/m2( )

3.00 × 108  m/s
= 6.30 × 10−6  Pa  

 (b) Compared to normal atmospheric pressure, 
   

  

Pa

Ptotal

= 1.01× 105  N/m2

6.30× 10−6  N/m2

= 1.60× 1010  times smaller than atmospheric pressure

  

P34.67 The mirror intercepts power  

   
  
P = I1A1 = 1.00 × 103  W/m2( ) π 0.500 m( )2⎡⎣ ⎤⎦   = 785 W . 

 (a) In the image, 
  
I2 = P

A2

,  so  

   
  
I2 =

785 W
π 0.020 0 m( )2 = 625 kW/m2  

 (b) 
  
I2 =

Emax
2

2µ0c
, so 

  

  

Emax = 2µ0cI2

= 2 4π × 10−7  T ⋅m/A( ) 3.00 × 108  m/s( ) 6.25 × 105  W/m2( )
= 21.7 kN C

 

 (c) 
  
Bmax =

Emax

c
= 72.4 µT  

 (d) We obtain the time interval from 
   

  0.400 PΔt( ) = mcΔT  

  solving, 
   

  

Δt = mcΔT
0.400P

=
1.00 kg( ) 4 186 J/kg ⋅°C( ) 100°C− 20.0°C( )

0.400 785 W( )
= 1.07 × 103  s = 17.8 min

 

P34.68 (a) In 
    


E =  q

4π∈0 r2 r̂ = Φ
4πr2 r̂ = 487 N ⋅m2/C

4πr2 r̂ , 

  
    


E =

38.8
r2 r̂  where 


E is in volts per meter and r  is in meters.  
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 (b) The radiated intensity is  
   

  
I = P

4πr2 = Emax
2

2µ0c

 

  solving, 
   

  

Emax = 2µ0cP
4πr2 = 1

r
µ0cP
2π

= 1
r

4π × 10−7  T ⋅m/A( ) 3.00× 108  m/s( ) 25.0 W( )
2π

 

   
  
Emax  = 

38.7
r

 where E is in volts per meter and r  is in meters.   

 (c) For 
  
Emax  = 

38.7
r

= 3.00 × 106 → r = 1.29 × 10−5 = 12.9 × 10−6 , so r is 

12.9 µm, but the expression in part (b) does not apply if this point 
is inside the source. 

 (d) From part (c), we see that in the radiated wave, the field 
amplitude is inversely proportional to distance. As the distance 
doubles, the amplitude is cut in half. 

 (e) 

 

In the static case, the field is inversely proportional to 
the square of the distance. As the distance doubles, the 
field is reduced by a factor of 4.

 

P34.69 (a) At steady state, Pin = Pout and the power radiated out is 

  Pout = eσAT 4.  Thus,    
   

  

T = Pout

eσA
⎡
⎣⎢

⎤
⎦⎥

1 4

= 900 W/m2

0.700 5.67 × 10−8  W/m2 ⋅K4( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 4

= 388 K = 115°C

  

 (b) The box of horizontal area A presents projected area A sin 50.0° 
perpendicular to the sunlight. Then by the same reasoning,  

   

  

0.900 1 000 W/m2( )Asin 50.0°

                            = 0.700 5.67 × 10−8  W/m2 ⋅K4( )AT 4

 

  or 
  
T =

900 W/m2( )sin 50.0°
0.700 5.67 × 10−8  W/m2 ⋅K4( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 4

= 363 K = 90.0°C  
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P34.70 (a) See ANS. FIG. P34.70 

 

ANS. FIG. P34.70 

 (b) 
  
uE =

1
2
∈0 E2 =

1
2
∈0 Emax

2 cos2(kx)  

 (c) 
  
uB =

1
2µ0

B2 =
1

2µ0

Bmax
2 cos2(kx)  

 (d) Note that  
   

  

uB =
1

2µ0

Emax
2

c2 cos2(kx) =
1

2µ0

Emax
2

1 µ0∈0( ) cos2(kx)

=
1
2
∈0 Emax

2 cos2(kx) = uE

 

  Therefore, 
  
u = uE + uB =  ∈0 Emax

2 cos2(kx) .  

 (e)  
  
Eλ =  uA dx

0

λ
∫  

  

  

Eλ = ∈0 Emax
2 cos2(kx)Adx

0

λ
∫ = ∈0 Emax

2 A
1
2

+
1
2

cos(2kx)⎡
⎣⎢

⎤
⎦⎥

Adx
0

λ
∫

=
1
2
∈0 Emax

2 A x 0
λ +

∈0 Emax
2

4k
Asin(2kx) 0

λ

=
1
2
∈0 Emax

2 Aλ +
∈0 Emax

2

4k
A sin(4π ) − sin(0)[ ]

=
1
2
∈0 Emax

2 λA

 

 (f) 
  
P =

Eλ

T
=

1
2
∈0 Emax

2 λA
1 f( ) =

1
2
∈0 Emax

2 λ f( )A =
1
2
∈0 cEmax

2 A  

 (g) 
  
I = P

A
=

1
2
∈0 cEmax

2 A

A
= 1

2
∈0 cEmax

2  
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 (h) From part (g), we have  
    

  

1
2
∈0 cEmax

2 = µ0

µ0

∈0 cEmax
2

2
= µ0 ∈0( ) cEmax

2

2µ0

= 1
c2

cEmax
2

2µ0

= Emax
2

2µ0c

  

  

  
The result in part (g) agrees with I  = Emax

2

2µ0c
 in Equation 34.24.

 

P34.71 The bead is black, so we assume it absorbs all light that strikes it. The 
bead presents an effective face of area A = π r2 to the light. Since we 
assume the bead to be perfectly absorbing, the light pressure, from 
Equation 34.28, is  

   
   
P =

Sav

c
=

I
c

=
F
A

 

 so the light force is 
  
F =

I
c

A . 

 (a) The light force balances the weight,   F = Fg ,  so  
   

  

I
c
π r2 = mg

 

  solving, 

    

  

I = mgc
π r2 =

ρ 4
3
πr3⎛

⎝
⎞
⎠ gc

πr2 = 4
3
ρcgr

= 4
3

0.200× 10−3  kg
10−6  m3

⎛
⎝⎜

⎞
⎠⎟

3.00× 108  m/s( ) 9.80 m/s2( )

                                                         × 0.500× 10−3  m( )
I = 3.92 × 108  W/m2

 

 (b) The minimum power required is 
   

  P = IA = 3.92 × 108  W/m2( )π 0.500× 10−3  m( )2
= 308 W

 

P34.72 The bead is black, so we assume it absorbs all light that strikes it. The 
bead presents an effective face of area A = π r2 to the light. Since we 
assume the bead to be perfectly absorbing, the light pressure, from 
Equation 34.28, is  

   
   
P =

Sav

c
=

I
c

=
F
A

 

 so the light force is 
  
F =

I
c

A . 
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 (a) The light force balances the weight,   F = Fg ,  so  
   

  

I
c
π r2 = mg

 

  solving, 

   

  
I = mgc

π r2 =
ρ 4

3
πr3⎛

⎝
⎞
⎠ gc

πr2 = 4
3
ρcgr

 

 (b) The minimum power required is 
   

  
P = IA = 4

3
ρcgr⎛

⎝⎜
⎞
⎠⎟ π r2( ) = 4

3
πρcgr3

 

P34.73 (a) A hemisphere is half a sphere:  

   
  
m = ρV = ρ 1

2
4
3
π r3⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 = 5.50 + 4(0.800) kg = 8.70 kg 

   

  
r =

6m
ρ4π

⎛
⎝⎜

⎞
⎠⎟

1 3

=
6 8.7 kg( )

990 kg/m3( )4π

⎛

⎝
⎜

⎞

⎠
⎟

1 3

= 0.161 m  

 (b) 
  
A =

1
2

4π r2 = 2π 0.161 m( )2 = 0.163 m2  

 (c)   P = eσ AT 4  and T = 31.0 + 273.0 = 304 K:  

   

  

P = 0.970 5.67 × 10−8  W/m2 ⋅K4( ) 0.163 m2( ) 304 K( )4

= 76.8 W
 

 (d) 

  

I =
P
A

= eσ T 4

I = 0.970 5.67 × 10−8 W m2 ⋅K4( ) 304 K( )4

= 470W m2

 

 (e) 
  
I =

Emax
2

2µ0c
 

  

  

Emax = 2µ0cI( )1 2

= 2 4π × 10−7  Tm/A( ) 3.00 × 108  m/s( ) 470 W/m2( )⎡⎣ ⎤⎦
1 2

= 595 N/C
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 (f) 
  
Emax = cBmax → Bmax =

595 N/C
3 × 108  m/s

= 1.98 µT  

 (g) Each kitten has radius 
  
rk =

6m
ρ4π

⎛
⎝⎜

⎞
⎠⎟

1 3

=
6 0.800( )
990 × 4π

⎡
⎣⎢

⎤
⎦⎥

1 3

= 0.072 8 m  

and radiating area  2π 0.072 8 m( )2 = 0.033 3 m2 . The mother cat 

has area 
 
2π

6 5.50( )
990 × 4π

⎡
⎣⎢

⎤
⎦⎥

2 3

= 0.120 m2 . The total glowing area is 

 0.120 m2 +   4 0.033 3 m2( ) = 0.254 m2  and has power output 

  P = IA = 470 W/m2( ) 0.254 m2( ) = 119 W .
 

P34.74 (a) On the right side of the equation,  

   
 

C2 m/s2( )2

C2 / N ⋅m2( ) m/s( )3 =
N ⋅m2 ⋅C2 ⋅m2 ⋅ s3

C2 ⋅ s4 ⋅m3 =
N ⋅m

s
=

J
s

= W  

 (b) F = ma = qE, or     

   
  
a =

qE
m

=
1.60 × 10−19  C( ) 100 N/C( )

9.11× 10−31  kg
=  

 
1.76 × 1013  m/s2  

 (c) The radiated power is then:  
   

  

P = q2a2

6π ∈0 c3 =
1.60× 10−19  C( )2

1.76× 1013  m/s2( )2

6π 8.85× 10−12  C2/N ⋅m2( ) 3.00× 108  m/s( )3

= 1.75× 10−27  W

 

 (d) 
  
F = mac = m

v2

r
⎛
⎝⎜

⎞
⎠⎟

= qvB , 

  so 
 
v =

qBr
m

 

  The proton accelerates at  
   

  

a = v2

r
= q2B2r

m2 =
1.60× 10−19  C( )2

0.350 T( )2 0.500 m( )
1.67 × 10−27  kg( )2

= 5.62 × 1014  m/s2
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  The proton then radiates  

   

  

P = q2a2

6π ∈0 c3 =
1.60× 10−19  C( )2

5.62 × 1014  m/s2( )2

6π 8.85× 10−12  C2/N ⋅m2( ) 3.00× 108  m/s( )3

= 1.80× 10−24  W

 

P34.75 We take R to be the planet’s distance from its star, and r to be the 
radius of the planet.  

 (a) The effective area of the planet over which it absorbs light is its 
projection onto a plane perpendicular to the light from its sun. 
The projected area of a planet of radius r is π r2, so the planet 
absorbs light over area π r2. 

 (b) The planet radiates over its entire surface area, 4π r2. 

 (c) At steady-state, Pin = Pout:  

   
  eIin π r2( ) = eσ 4π r2( )T 4  

   
  
e

6.00 × 1023  W
4π R2

⎛
⎝⎜

⎞
⎠⎟
π r2( ) = eσ 4π r2( )T 4 , so that  

     6.00 × 1023  W = 16πσR2T 4  

   

  

R =
6.00 × 1023  W

16πσ T 4

=
6.00 × 1023  W

16π 5.67 × 10−8  W/m2 ⋅K4( ) 310 K( )4 = 4.77 × 109  m

 

 
 

 

Challenge Problems 

P34.76 We are given f = 90.0 MHz and   Emax = 200 mV/m = 2.00 × 10−3  V/m  

 (a) The wavelength of the wave is 
  
λ =

c
f

= 3.33 m  

 (b) Its period is 
  
T = 1

f
= 1.11× 10−8  s = 11.1 ns  

 (c) We obtain the maximum value of the magnetic field from  

   
  
Bmax =

Emax

c
= 6.67 × 10−12  T = 6.67 pT  
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 (d) 
    


E = 2.00 × 10−3( )cos2π x

3.33
− 90.0 × 106t⎛

⎝⎜
⎞
⎠⎟ ĵ  

  
    


B = 6.67 × 10−12( )cos2π x

3.33
− 90.0 × 106t⎛

⎝⎜
⎞
⎠⎟ k̂  

  where   

E  is in V/m,   


B  in tesla, x in meters, and t in seconds.  

 (e) 

  

I = Emax
2

2µ0c
=

2.00× 10−3  V/m( )2

2 4π × 10−7  T ⋅m/A( ) 3.00× 108  m/s( )
= 5.31× 10−9  W m2

 

 (f) From Equation 34.26, I = cuavg   so   
  
uavg = I

c
= 1.77 × 10−17  J m3  

 (g) From Equation 34.30, the pressure is 
   

  
P = 2I

c
=

2( ) 5.31× 10−9  W m2( )
3.00× 108  m/s

= 3.54× 10−17  Pa
  

P34.77 (a) The magnetic field has amplitude  

   
  
Bmax =

Emax

c
=

175 V/m
3.00 × 108  m/s

= 5.83 × 10−7  T = 583 nT  

 (b) The wave number is  

   
  
k =

2π
λ

=
2π

0.015 0 m
= 419 m–1  

 (c) The angular frequency is  

     ω = kc = 419 m−1( ) 3.00 × 108  m/s( ) = 1.26 × 1011  s−1  

 (d)    

S ∝

E ×

B,  

S  is in the x direction, and   


E  vibrates in the y direction 

(xy plane), so   

B  must vibrate in the z direction, thus 

    


B vibrates in the xz plane .

 

 (e) The magnitude of the average Poynting vector is the wave 
intensity  

   

  
Savg =

EmaxBmax

2µ0

=
175 V/m( ) 5.83 × 10–7  T( )

2 4π × 10–7  N/A2( ) = 40.6 W/m2

 

  The Poynting vector itself points in the direction of energy 
transport: 

   
    

Savg = 40.6î W/m2  
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 (f) For perfect reflection, the pressure is  

   
  
Pr =

2S
c

=
2 40.6 W m2( )
3.00 × 108  m/s

= 2.71× 10−7  N m2 = 271 nPa  

 (g) From Newton’s second law, 
    

  

a = F∑
m

= PA
m

=
2.71× 10−7  N/m2( ) 0.750 m2( )

0.500 kg

= 4.07 × 10−7  m/s2

 

   
   

a = 407 î nm/s2  

P34.78 We can approximate the magnetic field as uniform over the area of the 
loop while it oscillates in time as B = Bmax cosω t. The induced voltage is 

   

   
ε = – dΦB

dt
= –

d
dt

 (BA cosθ) = –A
d
dt

 Bmax cosωtcosθ( )
 

 or  ε = ABmax ω (sin ω t cosθ ) 

 (a) Since the angular frequency is ω  = 2π f, and the area of the loop 
is   πr2 ,  the amplitude of this emf is  

   

  
εmax = 2π 2r2 f Bmax cosθ

 

  where θ  is the angle between the magnetic field and the normal 
to the loop.   

 (b) If   

E  is vertical,   


B  is horizontal, so the plane of the loop should be 

vertical and the plane should contain the line of sight of the 
transmitter. 

P34.79 (a) From the particle under a net force model, the acceleration of the 
astronaut is 

   
  
a = F

m
= 1

m
dp
dt

 

  where dp/dt is the rate of change of momentum of the astronaut.  
From the momentum version of the isolated system model, the 
rate of change of momentum of the astronaut is equal in 
magnitude to that of the radiation from the flashlight. The 
momentum of the radiation leaving the flashlight can be 
evaluated from Equation 34.27, assuming the same equation for 
complete absorption applies to complete emission. Therefore, the 
acceleration of the astronaut can be written as 

   
  
a = 1

m
d
dt

TER

c
⎛
⎝⎜

⎞
⎠⎟ = 1

mc
dTER

dt
= P

mc
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  where P is the power of the radiation leaving the flashlight. 
Because all three variables on the right side of this equation are 
constant, the acceleration of the astronaut is constant and we can 
use the particle under constant acceleration model. The position 
of the astronaut is given by,  

   
  
x = xi + vit +

1
2

at2 = 0+ 0+ 1
2

P
mc

⎛
⎝⎜

⎞
⎠⎟ t2  

  where we have defined the initial position of the astronaut as  
x = 0 and recognized that the astronaut begins from rest.  Solve 
for the time at which the astronaut is at a position x: 

   
  
t = 2mcx

P
 

  Substituting numerical values, 
   

  

t =
2 110 kg( ) 3.00 × 108 m/s( ) 10.0 m( )

100 W
= 8.12 × 104 s

= 22.6 h

  

 (b) There are no external forces on the astronaut–flashlight system, so 
the system is isolated for momentum. Apply the conservation of 
momentum principle along an axis parallel to the direction of 
travel of the astronaut and the flashlight: 

   
  
Δp = 0 → pi = p f → 0 = m− mf( )v − mf vrel − v( )  

  Solve for the speed of the astronaut: 

   
  
v =

mf

m
⎛
⎝⎜

⎞
⎠⎟

vrel  

  Because this speed is constant, we can use the particle under 
constant velocity model to find the time interval required for the 
astronaut to arrive back at her spacecraft: 

   
  
Δt = Δx

v
= m

mf

Δx
vrel

⎛
⎝⎜

⎞
⎠⎟

 

  Substituting numerical values, 
   

  
Δt = 110 kg

3.00 kg
⎛
⎝⎜

⎞
⎠⎟

10.0 m
12.0 m/s

= 30.6 s
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P34.2 (a)  7.19 × 1011  V m ⋅ s ; (b) 2.00 × 10–7 T 

P34.4 
  
−4.39î − 1.76 ĵ( ) × 1011  m/s2  

P34.6 (a)   3.15 × 103 ĵ N C ; (b)   5.25k̂ × 10−7  T ; (c) 
  
4.83 − ĵ( ) × 10−16  N  

P34.8 11.0 m 

P34.10 4.738 × 1014 Hz 

P34.12 733 nT 

P34.44 60.0 km 

P34.16 See P34.16 for full explanation. 

P34.18 The ratio of ω to k is higher than the speed of light in a vacuum, so the 
wave as described is impossible.  

P34.20 8.64 × 1010 m 

P34.22 (a) 6.75 W/m2; (b) 6.64 × 103 W/m2; (c) A powerful automobile running 
on sunlight would have to carry on its roof a solar panel that is huge 
compared to the size of the car; (d) Agriculture and forestry for food 
and fuels, space heating of large and small buildings, water heating, 
and heating for drying and many other processes are current and 
potential applications of solar energy. 

P34.24 (a) 0; (b) 
  
11.5î − 28.6 ĵ( )  W/m2  

P34.26 For the small container, 33.4° and for the larger container, 21.7° 

P34.28 (a) 88.8 nW/m2; (b) 11.3 MW 

P34.30 (a) 5.16 × 10–10 T; (b) Since the magnetic field of the Earth is 
approximately 5 × 10−10 T, the Earth’s field is some 100 000 times 
stronger. 

P34.32 5.16 m 

P34.34 (a) 540 V/m; (b) 2.58 µJ/m3; (c) 773 W/m2 

P34. 36 83.3 nPa 

P34.38 (a) 
  

2µ0cP
π r2 ; (b) 

  

P
c

; (c) 
   

P
c2

 

P34.40 (a) 5.82 × 108 N; (b) 6.10 × 1013 times stronger 
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P34.42 (a) 590 W/m2; (b) 2.10 × 1016 W; (c) 7.01 × 107 N; (d) ~1013 times 
stronger; (e) The values are similar for both planets because both the 
forces follow inverse-square laws. The force ratios are not identical for 
the two planets because of their different radii and masses.  

P34.44 (a) 1.00 × 103 km or 621 mi; (b) While the project may be theoretically 
possible, it is not very practical. 

P34.46 (a) 
   

1
2

µ0cJmax cos kx −ω t( ) ĵ;  (b) 
   

1
4

µ0cJmax
2 cos2 kx −ω t( ) î;  (c) 

  

1
8

µ0cJmax
2 ;   

(d) 3.48 A/m 

P34.48 
  

2π mc
qB

 

P34.50 (a) ~108 Hz radio wave; (b) ~1013 Hz infrared 

P34.52 Listeners 100 km away will receive the news before the people in the 
newsroom. 

P34.54 See table in P34.54 for full description. 

P34.56 95.1 mV/m 

P34.58   E = 300cos 62.8x − 1.88 × 1010t( )  and   B = 1.00cos 62.8x − 1.88 × 1010t( )  

P34.60 (a) 1.50 cm; (b) 25.0 μJ; (c) 7.37 mJ/m3; (d) Emax = 40.8 kV/m,  
Bmax = 136 μT; (e) 83.3 μN 

P34.62 (a) 93.3%; (b) 50.0%; (c) 0 

P34.64 
  

3SR2

4cGMSρ
 

P34.66 (a) 6.30 × 10–6 Pa; (b) 1.60 × 1010 times smaller than atmospheric 
pressure  

P34.68 (a) 
    


E = 38.8

r2 r̂,  where   

E  is in volts per meter and r is in meters;  

(b) 
  
Emax  = 

38.7
r

 where E is in volts per meter and r is in meters;  

(c) 12.9 μm, but the expression in part (b) does not apply if this point is 
inside the source; (d) From part (c), we see that in the radiated wave, 
the field amplitude is inversely proportional to distance. As the 
distance doubles, the amplitude is cut in half; (e) In the static case, the 
field is inversely proportional to the square of distance. As the distance 
doubles, the field is reduced by a factor of 4. 
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P34.70 (a) See ANS. FIG. P34.70; (b) 
  

1
2
∈0 Emax

2 cos2(kx);  (c) 
  

1
2µ0

Bmax
2 cos2(kx) ; 

(d)   ∈0 Emax
2 cos2(kx);  (e) 

  

1
2
∈0 Emax

2 λA;  (f) 
  

1
2
∈0 cEmax

2 A;  (g) 
  

1
2
∈0 cEmax

2 ;   

(h) The result in part (g) agrees with 
  
I  = 

Emax
2

2µ0c
  in Equation 34.24. 

P34.72 (a) 
  

4
3
ρcgr ; (b) 

  

4
3
πρcgr3  

P34.74 (a) See P34.74(a) for full proof; (b) 1.76 × 1013 m/s2; (c) 1.75 × 10−27 W;  
(d) 1.80 × 10−24 W  

P34.76 (a) 3.33 m; (b) 11.1 ns; (c) 6.67 pT;  

(d)    

E = 2.00 × 10−3( )cos2π  

   

x
3.33

− 90.0 × 106t⎛
⎝⎜

⎞
⎠⎟ ĵ  and 

    


B = 6.67 × 10−12( )cos2π x

3.33
− 90.0 × 106t⎛

⎝⎜
⎞
⎠⎟ k̂ ; (e) 5.31 × 10–9 W/m2;  

(f) 1.77 × 10–17 J/m2; (g) 3.54 × 10–17 Pa 

P34.78 (a)   εmax = 2π 2r2 f Bmax cosθ ;  (b) The plane of the loop should be vertical 
and the plane should contain the line of sight of the transmitter. 
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35 
The Nature of Light and 

the Principles of Ray Optics 
 

CHAPTER OUTLINE 
 

35.1  The Nature of Light 

35.2  Measurements of the Speed of Light 

35.3  The Ray Approximation in Ray Optics 

35.4  Analysis Model: Wave Under Reflection 

35.5 Analysis Model: Wave Under Refraction 

35.6 Huygens’s Principle 

35.7  Dispersion 

35.8 Total Internal Reflection 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ35.1 The ranking is answer e, c, b, a, d. We consider the quantity  λ d : the 
smaller it is, the better the ray approximation works. The quantity 

 λ d  is about (a) 0.34 m/1 m ≈ 0.3, (b) 0.7 µm/2 mm ≈ 0.000 3, (c) 0.4 
µm/2 mm ≈ 0.000 2, (d) 300 m/1 m ≈ 300, (e) 1 nm/1 mm ≈ 0.000 001. 

OQ35.2 Answer (c). As light travels from one medium to another, both the 
wavelength of the light and the index of refraction of the medium 
will change, but the product λn is constant:   λ2n2 = λairnair .  In going 
from air into a second medium of index n, according to Equation 
25.6,   n = λ λn = 495 nm 434 nm = 1.14.  
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OQ35.3 Answer (b). In going from carbon disulfide (n1 = 1.63) to crown glass 
(n2 = 1.52), the critical angle for total internal reflection is 

  
  
θc = sin−1 n2

n1

⎛
⎝⎜

⎞
⎠⎟

= sin−1 1.52
1.63

⎛
⎝⎜

⎞
⎠⎟ = 68.8°  

OQ35.4 Answers (a), (b), and (c) are all correct statements. The frequency of a 
wave does not change when it travels from one medium to another: 

  f1 = f2 → n1λ1 = n2λ2 ;  also, Snell’s law of refraction states 

  n1 sinθ1 = n2 sinθ2 .  By their definitions,  n = c v = c fλ  and 

 sinθ = 1 cscθ .  Thus, Snell’s law can take these alternate forms: 
 

  

sinθ1

v1

= sinθ2

v2

→ v1

sinθ1

= v2

sinθ2

→ cscθ1

n1

= cscθ2

n2

→ λ1

sinθ1

= λ2

sinθ2

 

 Snell originally stated his law in terms of cosecants. 

OQ35.5 Answer (e). The index of refraction of glass is greater than that of air, 
which means the speed of light in glass is slower than in air (n = c/v). 
The frequency does not change, but because the speed decreases, the 
wavelength also decreases. 

OQ35.6 Answer (b). When light is in water, the relationships between the 
values of its speed and wavelength to the values of the same 

quantities in air are 
  
nwater =

c
vwater

→ vwater =
c

nwater

=
3
4

c,  and 

  
nwaterλwater = nairλair → λwater =

nair

nwater

⎛
⎝⎜

⎞
⎠⎟
λair ≈

3
4
λair .

 

OQ35.7 Answer (c). Water has a greater index of refraction than air. In 
passing from one of these media into the other, light will be refracted 
(deviated in direction) unless the angle of incidence is zero (in which 
case, the angle of refraction is also zero). Because the angle of 
refraction can be zero only if the angle of incidence is zero, ray B 
cannot be correct. In refraction, the incident ray and the refracted ray 
are never on the same side of the line normal to the surface at the 
point of contact, so ray A cannot be correct. Also in refraction, 

  n2 sinθ2 = n1 sinθ1 ;  thus, if n2 > n1, then  θ2 < θ1:  the refracted ray 
makes a smaller angle with the normal in the medium having the 
higher index of refraction. Therefore, rays D and E cannot be correct, 
leaving only ray C as a likely path. 

OQ35.8 Answer (c). The time interval is 104 m/(3 × 108 m/s) = 33 µs. 

OQ35.9 Answer (c). For any medium, other than vacuum, the index of 
refraction for red light is slightly lower (closer to 1) than that for blue 
light. This means that when light goes from vacuum (or air) into 
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glass, the red light deviates from its original direction less than does 
the blue light. Also, as the light reemerges from the glass into 
vacuum (or air), the red light again deviates less than the blue light. 
If the two surfaces of the glass are parallel to each other, the red and 
blue rays will emerge traveling parallel to each other, but displaced 
laterally from one another. The sketch that best illustrates this 
process is C. 

OQ35.10 For a wave to experience total internal reflection, it must be traveling 
in the medium in which it moves slower, in which it has a greater 
index of refraction. 

 (i) Answer (a). Water has a greater index of refraction than air. 

 (ii) Answer (c). The sound travels slower in air than in water. 

OQ35.11 Answer (c). Consider the sketch in ANS. 
FIG. OQ35.11 and apply Snell’s law to the 
refraction at each of the three surfaces. 
Because the surfaces are parallel, the 
resulting equations are 

   1.00( )sinθ = n1 sinα  (Top surface) 

   n1 sinα = n2 sinβ  (Middle surface) 

   n2 sinβ = 1.00( )sinφ  (Bottom surface) 

 These equations allow us to equate the left side of the first equation 
with the right side of the last equation: 

    1.00( )sinθ = 1.00( )sinφ → φ = θ  

OQ35.12 Color A travels slower in the glass of the prism. Light with the 
greater change in speed will have the greater deviation in direction. 

OQ35.13 Answer (c). We want a big difference between indices of refraction to 
have total internal reflection under the widest range of conditions. 

OQ35.14 Answer (a). In a dispersive medium, the index of refraction is largest 
for the shortest wavelength. Thus, the violet light will be refracted (or 
bent) the most as it passes through a surface of the crown glass. 

OQ35.15 Answer (b). For a wave to experience total internal reflection, it must 
be traveling in the medium in which it moves slower, in which it has 
a greater index of refraction. A light ray, in attempting to go from a 
medium with index of refraction n1 into a second medium with index 
of refraction n2, will undergo total internal reflection if n2 < n1 and if 
the ray strikes the surface at an angle of incidence greater than or 
equal to the critical angle. 

ANS. FIG. OQ35.11 
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ35.1 The water level in a clear glass is observable because light is refracted 
as it passes from air to water to air. The index of liquid helium is very 
close to that of air, so very little refraction occurs as light travels from 
air to helium to the air. 

CQ35.2 At the altitude of the plane the surface of the Earth need not block off 
the lower half of the rainbow. Thus, the full circle can be seen. You 
can see such a rainbow by climbing on a stepladder above a garden 
sprinkler in the middle of a sunny day. Set the sprinkler for fine mist. 
Do not let the slippery children fall from the ladder. 

CQ35.3 (a) We assume that you and the child are 
always standing close together. For a flat 
wall to make an echo of a sound that you 
make, you must be standing along a 
normal to the wall. You must be on the 
order of 100 m away, to make the transit 
time sufficiently long that you can hear 
the echo separately from the original 
sound. Your sound must be loud enough 
so that you can hear it even at this 
considerable range. In ANS. FIG. 
CQ35.3(a), the circle represents an area in 
which you can be standing. The arrows 
represent rays of sound. 

 (b) Now suppose two vertical perpendicular 
walls form an inside corner that you can 
see. Some of the sound you radiate 
horizontally will be headed generally 
toward the corner. It will reflect from 
both walls with high efficiency to reverse 
in direction and come back to you, as 
shown in ANS. FIG. CQ35.3(b). You can 
stand anywhere reasonably far away to 
hear a retroreflected echo of sound you produce. 

 (c) If the two walls are not perpendicular, the inside corner will not 
produce retroreflection. You will generally hear no echo of your 
shout or clap. 

 (d) If two perpendicular walls have a reasonably narrow gap 
between them at the corner, you can still hear a clear echo. It is 
not the corner line itself that retroreflects the sound, but the 
perpendicular walls on both sides of the corner. [ANS. FIG. 
CQ35.3(b) applies also in this case.] 

 

 

 

ANS FIG. CQ35.3 
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 (e) At some angles, sound will reflect from the first wall but not the 
second; rather, it will pass into the breezeway, as shown in 
ANS. FIG. CQ35.3(c), so there will be no echo. 

CQ35.4 The stealth fighter is designed so that adjacent panels are not joined 
at right angles, to prevent any retroreflection of radar signals. This 
means that radar signals directed at the fighter will not be channeled 
back toward the detector by reflection. Just as with sound, radar 
signals can be treated as diverging rays, so that any ray that is by 
chance reflected back to the detector will be too weak in intensity to 
distinguish from background noise. 

CQ35.5 “Immediately around the dark shadow of my head, I see a halo 
brighter than the rest of the dewy grass.” It is called the heiligenschein. 
Cellini believed that it was a miraculous sign of divine favor 
pertaining to him alone. Apparently none of the people to whom he 
showed it told him that they could see halos around their own 
shadows but not around Cellini’s. Thoreau knew that each person 
had his own halo. He did not draw any ray diagrams but assumed 
that it was entirely natural. Between Cellini’s time and Thoreau’s, the 
Enlightenment and Newton’s explanation of the rainbow had 
happened. Today the effect is easy to see whenever your shadow 
falls on a retroreflecting traffic sign, license plate, or road stripe. 
When a bicyclist’s shadow falls on a paint stripe marking the edge of 
the road, her halo races along with her. 

CQ35.6 An echo is an example of the reflection of sound. Hearing the noise 
of a distant highway on a cold morning, when you cannot hear it 
after the ground warms up, is an example of acoustical refraction. 
You can use a rubber inner tube (or balloon of the same shape) 
inflated with helium as an acoustical lens to concentrate sound in the 
way a lens can focus light: the speed of sound is greater in helium, so 
wavefronts passing through the helium speed ahead of wavefronts 
passing through the air in the doughnut hole of the tube, so that the 
overall shape of the wavefronts changes from plane to concave, 
resulting in a focusing of the wave. At your next party, see if you can 
experimentally find the approximate focal point! 

CQ35.7 Highly silvered mirrors reflect about 98% of the incident light. With a 
2-mirror periscope, that results in approximately a 4% decrease in 
intensity of light as the light passes through the periscope. This may 
not seem like much, but in low-light conditions, that lost light may 
mean the difference between being able to distinguish an enemy 
armada or an iceberg from the sky beyond. Using prisms results in 
total internal reflection, meaning that 100% of the incident light is 
reflected through the periscope. That is the “total” in total internal 
reflection. 
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CQ35.8 Diamond has higher index of refraction than glass and consequently 
a smaller critical angle for total internal reflection. A brilliant-cut 
diamond is shaped to admit light from above, reflect it totally at the 
converging facets on the underside of the jewel, and let the light 
escape only at the top. Glass will have less light internally reflected. 

CQ35.9 If a laser beam enters a sugar solution with a concentration gradient 
(density and index of refraction increasing with depth), then the laser 
beam will be progressively bent downward (toward the normal) as it 
passes into regions of greater index of refraction. 

CQ35.10 With a vertical shop window, streetlights and his own reflection can 
impede the window shopper’s clear view of the display. The tilted 
shop window can put these reflections out of the way. Windows of 
airport control towers are also tilted like this, as are automobile 
windshields. 

         

 ANS. FIG. CQ35.10 

CQ35.11 (a) Light from the lamps along the edges of the sheet enters the 
plastic, and then the front and back faces of the plastic totally 
internally reflect it, wherever the plastic has an interface with air. 
If the refractive index of the grease is intermediate between 1.55 
and 1.00, some of this light can leave the plastic into the grease 
and leave the grease into the air. The surface of the grease is 
rough, so the grease can send out light in all directions. The 
customer sees the grease shining against a black background. 

 (b) The spotlight method of producing the same effect is much less 
efficient. With it, the blackboard absorbs much of the light from 
the spotlight. 

 (c) The refractive index of the grease must be less than 1.55. 
Perhaps the best choice would be  1.55 × 1.00 = 1.24.  

CQ35.12 A mirage occurs when light changes direction as it moves between 
batches of air having different indices of refraction because they 
have different densities at different temperatures. When the sun 
makes a blacktop road hot, an apparent wet spot is bright due to 
refraction of light from the bright sky. The light, originally headed a 
little below the horizontal, always bends up as it first enters and then 
leaves sequentially hotter, lower-density, lower-index layers of air 
closer to the road surface. 
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CQ35.13 Light rays coming from parts of the pencil under water are bent 
away from the normal as they emerge into the air above. The rays 
enter the eye (or camera) at angles closer to the horizontal, thus the 
parts of the pencil under water appear closer to the surface than they 
actually are, so the pencil appears bent. See CQ35.16 for an 
illustration of a related effect. 

CQ35.14 No. The speed of light v in any medium except vacuum is less than 
the speed of light c in vacuum. By definition, the index of refraction  
n = c/v, thus the index of any material medium is always greater 
than 1. A material with an index less than 1 is impossible. 

CQ35.15 Light travels through a vacuum at a speed of 300 000 km per second. 
Thus, an image we see from a distant star or galaxy must have been 
generated some time ago. For example, the star Altair is 16 light-
years away; if we look at an image of Altair today, we know only 
what was happening 16 years ago. This may not initially seem 
significant, but astronomers who look at other galaxies can gain an 
idea of what galaxies looked like when they were significantly 
younger. Thus, it actually makes sense to speak of “looking 
backward in time.” 

CQ35.16 With no water in the cup, light rays from the coin do not reach the 
eye because they are blocked by the side of the cup. With water in 
the cup, light rays are bent away from the normal as they leave the 
water so that some reach the eye. 

 

  

    ANS. FIG. CQ35.16(a) ANS. FIG. CQ35.16(b) 
 

 

 In ANS. FIG. CQ35.16(a), ray a is blocked by the side of the cup so it 
cannot enter the eye, and ray b misses the eye. In ANS. FIG. 
CQ35.16(b), ray a is still blocked by the side of the cup, but ray b 
refracts at the water’s surface so that it reaches the eye. Ray b seems 
to come from position B, directly above the coin at position A. 

CQ35.17 (a) Scattered light rays leave the center of the photograph, shown 
in ANS. FIG. CQ35.17(a), in all horizontal directions between  θ1 = 0°  
and 90° from the normal. When the light rays immediately enter the 
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water they are gathered into a fan, 
shown in ANS. FIG. CQ35.17(b), 
between 0° and  θ2 max  given by 

   

  

n1 sinθ1 = n2 sinθ2

1.00sin 90 = 1.333sinθ2 max

θ2 max = 48.6°
 

 The light rays leave the cylinder 
without deviation because they travel 
along the normal everywhere they 
strike the surface of the glass, so the 
viewer only receives light from the 
center of the photograph when he has 
turned by an angle less than 48.6°. 

 (b) When the paperweight is turned farther, light at the back 
surface undergoes total internal reflection, shown in ANS. FIG. 
CQ35.17(c). The viewer sees things outside the globe on the far side. 

 

 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 35.1 The Nature of Light 

Section 35.2 Measurements of the Speed of Light 
*P35.1 We find the energy of the photons from Equation 35.1, E = hf. 

 (a) 

  

E = hf = 6.63× 10−34  J ⋅s( ) 5.00× 1017  Hz( ) 1 eV
1.60× 10−19  J

⎛
⎝⎜

⎞
⎠⎟

= 2.07 × 103  eV = 2.07 keV

 

 (b) 

  

E = hf = hc
λ

=
6.63× 10−34  J ⋅s( ) 3.00× 108  m/s( )

3.00× 102  nm
1 nm

10−9  m
⎛
⎝⎜

⎞
⎠⎟

1 eV
1.60× 10−19  J

⎛
⎝⎜

⎞
⎠⎟

= 4.14 eV

 

P35.2 (a) The Moon’s radius is 1.74 × 106 m and the Earth’s radius is 6.37 × 
106 m. The total distance traveled by the light is: 

   
  

d = 2 3.84× 108  m − 1.74× 106  m − 6.37 × 106  m( )
= 7.52 × 108  m

 

 

 

 

ANS. FIG. CQ35.17 
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  This takes 2.51 s, so  

   
  
v =

7.52 × 108  m
2.51 s

= 3.00 × 108  m/s  

 (b) The sizes of the objects need to be taken into account. Otherwise 
the answer would be too large by 2%. 

P35.3 The experiment is most convincing if the wheel turns fast enough to 
pass outgoing light through one notch and returning light through the 

next. This requires 
   
Δt =

2
c

, or  

  
   
θ = ω Δt = ω 2

c
⎛
⎝⎜

⎞
⎠⎟

    

 so    
   
ω =

cθ
2

=
2.998 × 108  m/s( ) 2π 720( )[ ]

2 11.45 × 103  m( ) = 114 rad/s  

 The returning light would be blocked by a tooth at one-half the 
angular speed, giving another data point. 

P35.4 The difference is due to the extra time light takes to cross Earth’s orbit. 
From   Δx = cΔt,  we have 

  
  
c =

Δx
Δt

=
2 1.50 × 108  km( ) 1000 m/km( )

22.0 min( ) 60.0 s/min( ) = 2.27 × 108  m/s  

 
 

 

Section 35.3 The Ray Approximation in Ray Optics 

Section 35.4 Analysis Model: Wave Under Reflection 

Section 35.5 Analysis Model: Wave Under Refraction 

P35.5 (a) 
  
f =

c
λ

=
3.00 × 108  m/s
6.328 × 10−7  m

= 4.74 × 1014  Hz  

 (b) 
  
λglass =

λair

n
=

632.8 nm
1.50

= 422 nm  

 (c) 
  
vglass =

cair

n
=

3.00 × 108  m/s
1.50

= 2.00 × 108  m/s  

P35.6 Refracted light enters the diver’s eyes. The angle of refraction  θ2  is 
45.0°. From Snell’s law, 

   
  n1 sinθ1 = n2 sinθ2
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 Solving, 
  

 

θ1 = sin−1 1.333sin 45.0°( )
= 70.5° from the vertical→ 19.5° above the horizon

 

 

ANS. FIG. P35.6 

P35.7 We find the angle of incidence from Snell’s law,   n1 sinθ1 = n2 sinθ2.  
Solving, 

  
 1.333sinθ1 = 1.52sin19.6°    →     θ1 = 22.5°  

 The angle of reflection of the beam in water is then also  22.5° .  

P35.8 (a) The dashed lines are parallel, and alternate interior angles are 
equal between parallel lines, so the angle of refraction law at the 
air-oil interface is 20.0°. Applying Snell’s law, 

   
  

nair sinθ = noil sinα
1.00sinθ = 1.48sin 20.0°

 

  yields  θ = 30.4° .  

 (b) The angle of incidence α = 20.0°. Applying 
Snell’s law at the oil-water interface, 

   
  

nwater sin ′θ = noil sinα
1.33sin ′θ = 1.48sin 20.0°

 

  yields  ′θ = 22.3° .  

P35.9 (a) flint glass: 
   
v =

c
n

=
3.00 × 108  m/s

1.66
= 1.81× 108  m/s  

 (b) water: 
   
v =

c
n

=
3.00 × 108  m/s

1.333
= 2.25 × 108  m/s  

 (c) cubic zirconia: 
   
v =

c
n

=
3.00 × 108  m/s

2.20
= 1.36 × 108  m/s  

ANS. FIG. P35.8 
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P35.10 (a) Let AB be the originally horizontal 
ceiling, BC its originally vertical normal, 
AD the new ceiling, and DE its normal. 
Then angle BAD = φ. By definition DE is 
perpendicular to AD and BC is 
perpendicular to AB. Then the angle 
between DE extended and BC is φ 
because angles are equal when their sides 
are perpendicular, right side to right side 
and left side to left side. 

 (b) Now CBE = φ is the angle of incidence of 
the vertical light beam. Its angle of 
reflection is also φ. The angle between the 
vertical incident beam and the reflected beam is 2φ. 

 (c) 
 
tan 2φ =

1.40 cm
720 cm

= 0.001 94     
 
φ = 0.055 7°  

P35.11 From Snell’s law,   n2 sinθ2 = n1 sinθ1 . Thus, when  θ1 = 45.0°  and the 
first medium is air (n1 = 1.00), we have   sinθ2 = 1.00( )sin 45.0° n2 . 

 (a) For quartz, n2 = 1.458:

 
 
θ2 = sin−1 1.00( )sin 45.0°

1.458
⎛
⎝⎜

⎞
⎠⎟

= 29.0°  

 (b) For carbon disulfide, n2 = 1.628:

 
 
θ2 = sin−1 1.00( )sin 45.0°

1.628
⎛
⎝⎜

⎞
⎠⎟

= 25.7°  

 (c) For water, n2 = 1.333:

 
 
θ2 = sin−1 1.00( )sin 45.0°

1.333
⎛
⎝⎜

⎞
⎠⎟

= 32.0°  

P35.12 At entry, the wave under refraction model, expressed as  

  n1 sinθ1 =    n2 sinθ2 , gives 
  

  
θ2 = sin−1 n1 sinθ1

n2

⎛
⎝⎜

⎞
⎠⎟

= sin−1 1.000sin 30.0°
1.50

⎛
⎝⎜

⎞
⎠⎟ = 19.5°

  

 To do ray optics, you must remember some  
geometry. The surfaces of entry and exit are  
parallel so their normals are parallel. Then angle  

 θ2  of refraction at entry and the angle  θ3  of  
incidence at exit are alternate interior angles  
formed by the ray as a transversal cutting  

 

ANS. FIG. P35.10(a) 

 

ANS. FIG. P35.10(b) 

ANS. FIG. P35.12 
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parallel lines. Therefore,  θ3 = θ2 = 19.5° .   

 At the exit point,   n2 sinθ3 = n1 sinθ4  gives  
  

  
θ4 = sin−1 n2 sinθ3

n1

⎛
⎝⎜

⎞
⎠⎟

= sin−1 1.50sin19.5°
1.000

⎛
⎝⎜

⎞
⎠⎟ = 30.0°

 

 Because  θ1  and  θ4  are equal, the departing ray in air is parallel to the 
original ray. 

P35.13 Taking Φ  to be the apex angle and  δmin  to  
be the angle of minimum deviation (See  
ANS. FIG. P35.13), from Equation 35.9, the  
index of refraction of the prism material is 

  
  
n =

sin Φ + δmin( ) 2⎡⎣ ⎤⎦
sin Φ 2( )

 

 Solving for  δmin , 

  

  

δmin = 2sin−1 nsin
Φ
2

⎛
⎝⎜

⎞
⎠⎟ − Φ

= 2sin−1 2.20( )sin 25.0°( )[ ]− 50.0°

= 86.8°

 

P35.14 (a) The law of refraction   n1 sinθ1 = n2 sinθ2   
can be put into the more general form 

   

  

c
v1

sinθ1 =
c
v2

sinθ2

sinθ1

v1

=
sinθ2

v2

 

  This is equivalent to Equation 35.3. This form applies to all kinds 
of waves that move through space. 

  In air at 20°C, the speed of sound is 343 m/s. From Table 17.1, the 
speed of sound in water at 25.0°C is 1493 m/s. The angle of 
incidence is 13.0°: 

   

 

sin 13.0°
343 m/s

=
sinθ2

1 493 m/s

θ2 = 78.3°
 

 

Φ
2

 

Φ
2

 θ1  θ1

 θ2 θ2

 δmin

α α

ANS. FIG. P35.13 
 

ANS. FIG. P35.14 
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 (b) The wave keeps constant frequency in all media: 

   

   

f =
v1

λ1

=
v2

λ2

λ2 =
v2λ1

v1

=
1 493 m/s 0.589 m( )

343 m/s
= 2.56 m

 

 (c) Using Snell’s law, 
   

  

n2 sinθ2 = n1 sinθ1

1.333sinθ2 = 1.000 293sin13.0°

θ2 = 9.72°

 

 (d) 
   
λ2 =

v2λ1

v1

=
n1λ1

n2

=
1.000 293 589 nm( )

1.333
= 442 nm  

 (e) 

 

The light wave slows down as it moves from air to water, but
the sound wave speeds up by a large factor. The light wave
bends toward the normal and its wavelength shortens, but the
sound wave bends away from the normal and its wavelength
increases.

 

*P35.15 From the wave under refraction model,   n1 sinθ1 = n2 sinθ2 ,  we solve for 
the index of refraction n2 in the substance: 

   

  
n2 = 1.333sin 37.0°

sin 25.0°
= 1.90

 

 Then, from the definition of index of refraction, 
   

  
n2 = 1.90 = c

v
:      v = c

1.90
= 1.58× 108  m/s = 158 Mm/s

 

*P35.16 (a)   n1 sinθ1 = n2 sinθ2  

  
  

1.00sin 30.0° = nsin 19.24°

n = 1.52
 

 (c) 
  
f = c

λ
= 3.00 × 108  m s

6.328 × 10−7  m
= 4.74 × 1014  Hz  in air and in syrup. 

 (d) 
  
v = c

n
= 3.00 × 108  m s

1.52
= 1.98 × 108  m s = 198 Mm s  

 (b) 
  
λ = v

f
= 1.98 × 108  m s

4.74 × 1014  s−1 = 417 nm  
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*P35.17 (a) The angle of incidence at the first surface is   θ1i = 30.0° ,  and the 
angle of refraction is 

    
  
θ1r = sin−1 nair sinθ1i

nglass

⎛

⎝
⎜

⎞

⎠
⎟ = sin−1 1.0sin 30°

1.5
⎛
⎝⎜

⎞
⎠⎟ = 19°  

  Also,   α = 90°−θ1r = 71° and β = 180°− 60°−α = 49°.   

  Therefore, the angle of incidence at the second surface is 

  θ2 i = 90°− β = 41° .   The angle of refraction at this surface is 
    

  
θ2r = sin−1 nglass sinθ2 i

nair

⎛
⎝⎜

⎞
⎠⎟

= sin−1 1.5sin 41°
1.0

⎛
⎝⎜

⎞
⎠⎟ = 77°

 

  ANS. FIG. P35.17 traces the path of the ray of light.  

 

ANS. FIG. P35.17 

 (b) The angle of reflection at each surface equals the angle of 
incidence at that surface. Thus, 

      θ1( )reflection
= θ1i = 30° ,  and θ1( )reflection

= θ2 i = 41°   

*P35.18 ANS. FIG. P35.18 shows the path of the light ray. α  and γ  are angles 
of incidence at mirrors 1 and 2. 

 

ANS. FIG. P35.18 

 For triangle abca, 
   

 2α + 2γ + β = 180°  
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 or   β = 180° − 2 α + γ( ).  [1] 

 Now for triangle bcdb, 
   

 90.0° −α( ) + 90.0° − γ( ) +θ = 180°  

 or   θ = α + γ .  [2] 

 Substituting equation [2] into equation [1] gives 
 
β = 180° − 2θ .  

 Note: From equation [2],  γ = θ −α.  Thus, the ray will follow a path like 
that shown only if  α < θ.  For  α > θ ,  γ  is negative and multiple 
reflections from each mirror will occur before the incident and 
reflected rays intersect. 

*P35.19 Consider glass with an index of refraction of 1.50, which is 3.00 mm 
thick. The speed of light in the glass is 

   

 

3.00 × 108  m s
1.50

= 2.00 × 108  m s
 

 The extra travel time is  
   

 

3.00 × 10−3  m
2.00 × 108  m s

− 3.00 × 10−3  m
3.00 × 108  m s

~ 10−11  s
 

 For light of wavelength 600 nm in vacuum and wavelength 

 

600 nm
1.50

= 400 nm  in glass, the extra optical path, in wavelengths, is 

   

 

3 × 10−3  m
4 × 10−7  m

− 3 × 10−3  m
6 × 10−7  m

~ 103  wavelengths
 

P35.20 (a) Method One: 

  The incident ray makes angle  α = 90° −θ1  
with the first mirror. In ANS. FIG. P35.20, 
the law of reflection implies that  θ1 = ′θ1  

  Then,  

    β = 90° − ′θ1 = 90 −θ1 = α.  

  In the triangle made by the mirrors and the ray passing between 
them, 

   
 

β + 90° + γ = 180°
γ = 90° − β

 

  Further,  δ = 90° − γ = β = α  

  and  ∈ = δ = α.  

ANS. FIG. P35.20 
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  Thus the final ray makes the same angle with the first mirror as 
did the incident ray. Its direction is opposite to the incident ray. 

  Method Two: 

  The vector velocity of the incident light has a component vy 
perpendicular to the first mirror and a component vx 
perpendicular to the second. The vy component is reversed upon 
the first reflection, which leaves vx unchanged. The second 
reflection reverses vx and leaves vy unchanged. The doubly 
reflected ray then has velocity opposite to the incident ray. 

 (b) 

   

The incident ray has velocity vx î + vy ĵ + vzk̂. If all of these

components are non-zero, the light will reflect from each mirror
because each component carries the light into the mirror that is
perpendicular to that component: for example, the x component
of velocity carries the light into the mirror in the yz plane. Each
reflection reverses one component and leaves the other two
unchanged. After all the reflections, the light has velocity

−vx î − vy ĵ − vzk̂, opposite to the incident ray.

 

P35.21 (a) From geometry,  

   1.25 m = d sin 40.0° 

  so   d = 1.94 m .  

 (b) 
 

50.0° above the horizontal  

  or parallel to the incident 
ray. 

 

P35.22 (a) At entry,   n1 sinθ1 = n2 sinθ2 ,  

  or  1.00sin 30.0° = 1.50sinθ2 ,  

  which gives  θ2 = 19.5°.  

  The distance h the light travels in the medium is given by 

   
  
cosθ2 =

2.00 cm
h

 

  or 
  
h =

2.00 cm
cos19.5°

= 2.12 cm.  

ANS. FIG. P35.21 
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  The angle of deviation upon entry is 

    α = θ1 −θ2 = 30.0° − 19.5° = 10.5°  

  The offset distance comes from 
  
sinα =

d
h

:    

  d = 2.12 cm( )sin 10.5° =  
 

0.387 cm  

 

ANS. FIG. P35.22 

 (b) The speed of light in the material is 

   
   
v =

c
n

=
3.00 × 108  m/s

1.50
= 2.00 × 108  m/s  

  The distance h traveled by the light is h = 2.12 cm. The time 
interval is 

   

   
Δt =

h
v

=
2.12 × 10−2  m

2.00 × 108  m/s
= 1.06 × 10−10  s = 106 ps

 

P35.23 From Table 35.1, the index of refraction of ice is 1.309. The pulses are in 
step with each other until one enters the ice, then that pulse slows 
down. The difference in the times of arrival of the pulses is 

  

   

Δt =
L

vice

−
L

vair

=
L

c nice

−
L

c nair

= nice − nair( ) L
c

Δt = 1.309 − 1.000( ) 6.20 m
3.00 × 108  m/s

= 6.39 × 10−9  s = 6.39 ns
 

P35.24 Refraction proceeds according to      

   1.00( )sinθ1 = 1.66( )sinθ2  [1] 

 (a) For the normal component of velocity to be constant, 

     v1 cosθ1 = v2 cosθ2     or    
  
c( )cosθ1 =

c
1.66

⎛
⎝⎜

⎞
⎠⎟ cosθ2  [2] 

  We multiply equations [1] and [2], obtaining: 

    sinθ1 cosθ1 = sinθ2 cosθ2     or     sin 2θ1 = sin 2θ2  
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  We do not consider the case  θ1 = 0 . The physical solution is 

    2θ1 = 180° − 2θ2     or     θ2 = 90.0° −θ1  

  Then equation [1] becomes: 

   

 

sinθ1 = 1.66cosθ1

tanθ1 = 1.66
θ1 = 58.9°

 

  
 
Yes, if the angle of incidence is 58.9°.  

 (b) 

 

No. Both the reduction in speed and the bending toward
the normal reduce the component of velocity parallel to 
the interface. This component cannot remain constant for 
a nonzero angle of incidence.

 

P35.25 (a) As measured from the diagram, the incidence angle is 60°, and 

the refraction angle is 35°. From Snell’s law, 
  

sinθ2

sinθ1

=
n1

n2

=
v2

v1

,  then 

  

sin 35°
sin 60°

=
v2

c
 and the speed of light in the block is  2.0 × 108  m/s .  

 (b) The frequency of the light does not change upon refraction. 
Knowing the wavelength in a vacuum, we can use the speed of 
light in a vacuum to determine the frequency: c = fλ, thus 

  3.00 × 108 = f 632.8 × 10−9( ) ,  so the frequency is 
 
4.74 × 1014 Hz .  

 (c) To find the wavelength of light in the block, we use the same 
wave speed relation, v = fλ, so  2.0 × 108 = 4.74 × 1014( )λ,  so  

 λglass =   4.20 × 10−7 = 420 nm .  

P35.26 From Snell’s law, the angle of refraction θ inside the liver is 

   
  
sinθ =

nmedium

nliver

⎛
⎝⎜

⎞
⎠⎟

sin 50.0°  

 But    
  

nmedium

nliver

=
c vmedium

c vliver

=
vliver

vmedium

= 0.900,  

 so   θ = sin−1 0.900( )sin 50.0°[ ] = 43.6°.  

 From the law of reflection, 
   

  
d = 12.0 cm

2
= 6.00 cm
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 and    
  
h =

d
tanθ

=
6.00 cm
tan 43.6°

= 6.30 cm .  

 

ANS. FIG. P35.26 

P35.27 The refracted sunlight does not illuminate 
any part of the bottom when it strikes its far 
inside edge: 

    sinθ1 = nw sinθ2  
  

 

sinθ2 =
1

1.333
sinθ1

=
1

1.333
sin 90.0° − 28.0°( ) = 0.662

 

  

  

θ2 = sin−1 0.662( ) = 41.5°

h =
d

tanθ2

=
3.00 m

tan 41.5°
= 3.39 m

 

P35.28 Note for use in every part (refer to ANS. FIG. P35.28): from apex angle Φ , 

    Φ + 90.0° −θ2( ) + 90.0° −θ3( ) = 180°  

 so   θ3 = Φ−θ2  

 At the first surface the deviation is   

    α = θ1 −θ2  

 At exit, the deviation is     

    β = θ4 −θ3  

 The total deviation is therefore    

    δ = α + β = θ1 +θ4 −θ2 −θ3 = θ1 +θ4 − Φ  

 (a) At entry,     

     n1 sinθ1 = n2 sinθ2     or    
 
θ2 = sin−1 sin 48.6°

1.50
⎛
⎝⎜

⎞
⎠⎟ = 30.0°  

ANS. FIG. P35.27 
 

 

ANS. FIG. P35.28 
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  Thus,  θ3 = 60.0° − 30.0° = 30.0°  

  At exit, 

    1.50sin 30.0° = 1.00sinθ4    

  or    θ4 = sin−1 1.50sin 30.0°( )[ ] = 48.6°  

  so the path through the prism is symmetric when  θ1 = 48.6° . 

 (b) 
 
δ = 48.6° + 48.6° − 60.0° = 37.2°  

 (c) At entry, 

   
 
sinθ2 =

sin 45.6°
1.50

⇒θ2 = 28.4°  

    θ3 = 60.0° − 28.4° = 31.6°  

  At exit, 

    sinθ4 = 1.50sin 31.6°( )⇒θ4 = 51.7°  

   
 
δ = 45.6° + 51.7° − 60.0° = 37.3°  

 (d) At entry, 

   
 
sinθ2 =

sin 51.6°
1.50

⇒θ2 = 31.5°  

    θ3 = 60.0° − 31.5° = 28.5°  

  At exit,  

    sinθ4 = 1.50sin 28.5°( )⇒θ4 = 45.7°  

   
 
δ = 51.6° + 45.7° − 60.0° = 37.3°  

P35.29 The index of refraction at 700 nm is n(700 nm) = 1.458. 

 (a)  1.00( )sin 75.0° = 1.458sinθ2 ; 
 
θ2 = 41.5°  

 (b) Refer to ANS. FIG. P35.29. Let     

    θ3 + β = 90.0°  and  θ2 +α = 90.0°  

  then,  

    α + β + 60.0° = 180°  
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  So 
   

 

α + β + 60.0° = 180°

90.0°−θ2( ) + 90.0°−θ3( ) + 60.0° = 180°

60.0°−θ2 −θ3 = 0⇒ 60.0°− 41.5° = θ3 = 18.5°

 

 (c) 
 
1.458sin 18.5° = 1.00sinθ4 → θ4 = 27.6°  

 (d)  γ = θ1 −θ2( ) + θ4 −θ3( )  

  
 
γ = 75.0° − 41.5°( ) + 27.6° − 18.5°( ) = 42.6°  

 

ANS. FIG. P35.29 

P35.30 

 

The index of refraction of the atmosphere decreases with increasing
altitude because of the decrease in density of the atmosphere with
increasing altitude. As indicated in the ray diagram, the sun located
at S below the horizon appears to be located at ′S .

 

 

ANS. FIG. P35.30 

P35.31 For sheets 1 and 2 as described, 

   
  

n1 sin 26.5° = n2 sin 31.7°
0.849n1 = n2
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 For the trial with sheets 3 and 2, 

   
  

n3 sin 26.5° = n2 sin 36.7°
0.747n3 = n2

 

 Equate the two expressions for n2: 

   
  

0.747n3 = 0.849n1

n3 = 1.14n1

 

 For the third trial, 
   

  

n1 sin 26.5° = n3 sinθ3 = 1.14n1 sinθ3

θ3 = 23.1°

 

P35.32 (a) Before the container is filled, the  
ray’s path is as shown in ANS.  
FIG. P35.32(a). From this figure,  
observe that 

   

  

sinθ1 =
d
s1

=
d

h2 + d2

=
1

h d( )2 + 1

 

  After the container is filled, the  
ray’s path is shown in ANS. FIG.  
P35.32(b). From this figure, we find  
that 

   

  

sinθ2 =
d 2
s2

=
d 2

h2 + d 2( )2

=
1

4 h d( )2 + 1

 

  From Snell’s law, we have 
   

  

1.00sinθ1 = nsinθ2

1.00

h d( )2 + 1
= n

4 h d( )2 + 1

4 h d( )2 + 1 = n2 h d( )2 + n2

h d( )2 4− n2( ) = n2 − 1→ h
d

= n2 − 1
4− n2

 

ANS. FIG. P35.32(a) 
 

ANS. FIG. P35.32(b) 
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 (b) For water, n = 1.333. 
   

  

h
d

= n2 − 1
4− n2

h
8.00 cm

= 1.333( )2 − 1
4− 1.333( )2 = 4.73 cm

 

 (c)   For n = 1, h = 0. For n = 2, h = ∞. For n > 2, h has no real solution.  

P35.33 Since the light ray strikes the first surface at normal incidence, it passes 
into the prism without deviation. Thus, the angle of incidence at the 
second surface (hypotenuse of the triangular prism) is  θ1 = 45.0°  as 
shown in the sketch at the right. The angle of refraction is 

   θ2 = 45.0° + 15.0° = 60.0°  

 and Snell’s law gives the index of refraction of the prism material as 

  
  
n1 =

n2 sinθ2

sinθ1

=
1.00( )sin 60.0°( )

sin 45.0°( ) = 1.22  

 

ANS. FIG. P35.33 

P35.34 (a) A sketch illustrating the situation and the two triangles needed in 
the solution is given in ANS. FIG. P35.34. 

 

ANS. FIG. P35.34 
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 (b) From the triangle under water, the angle of incidence  θ1  at the 
water surface is 

   
 
tanθ1 =

90.0 m
100 m

→ θ1 = 42.0°  

 (c) Snell’s law gives the angle of refraction as 

   
  
θ2 = sin−1 nwater sinθ1

nair

⎛
⎝⎜

⎞
⎠⎟

= sin−1 1.333( )sin 42.0°
1.00

⎛
⎝⎜

⎞
⎠⎟

= 63.1°  

 (d) The refracted beam makes angle  φ = 90.0° −θ2 = 26.9°  with the 
horizontal. 

 (e) In the triangle above the water,  

     h = 210 m( )tanφ = 210 m( )tan 26.9°   = 107 m  

P35.35 The reflected ray and refracted ray are perpendicular to each other, 
and the angle of reflection  θ1  and the angle of refraction  θ2  are related 
by 

   θ1 + 90.0° +θ2 = 180.0° → θ2 = 90.0° −θ1  

 Then, from Snell’s law, 

  

  

sinθ1 =
ng sinθ2

nair

= ng sin 90° −θ1( ) = ng cosθ1

 

 Thus, 
  

sinθ1

cosθ1

= tanθ1 = ng     or    
  
θ1 = tan−1 ng( )  

 
 

 

Section 35.6 Huygens’s Principle 

Section 35.7 Dispersion 
P35.36 Using Snell’s law gives 

 (a) 
  
θred = sin−1 nair sinθi

nred

⎛
⎝⎜

⎞
⎠⎟

= sin−1 (1.000)sin 83.0°
1.331

⎛
⎝⎜

⎞
⎠⎟ = 48.2°  

 (b) 
  
θblue = sin−1 nair sinθi

nblue

⎛
⎝⎜

⎞
⎠⎟

= sin−1 (1.000)sin 83.0°
1.340

⎛
⎝⎜

⎞
⎠⎟ = 47.8°  
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P35.37 Using Snell’s law gives 

  
  
θred = sin−1 nair sinθi

nred

⎛
⎝⎜

⎞
⎠⎟

= sin−1 (1.000)sin 50.00°
1.455

⎛
⎝⎜

⎞
⎠⎟

 

 and 
  
θviolet = sin−1 nair sinθi

nviolet

⎛
⎝⎜

⎞
⎠⎟

= sin−1 (1.000)sin 50.00°
1.468

⎛
⎝⎜

⎞
⎠⎟

 

 Thus, the dispersion is  θred −θviolet = 0.314°  

P35.38 Recall that if a wave slows down as it passes from one medium into 
another, its rays tend to bend toward the normal, unless it has normal 
incidence. Example: the case when light passes from air into water. 

 (a) For the diagrams of contour lines and wave fronts and rays, see 
ANS. FIG. P35.38(a) below. 

 (b) As the waves move to shallower water, the wave fronts slow 
down, and those closer to shore slow down more. The rays tend 
to bend toward the normal of the contour lines; or equivalently, 
the wave fronts bend to become more nearly parallel to the 
contour lines. See ANS. FIG. P35.38(b) below. 

 (c) For the diagrams of contour lines and wave fronts and rays, see 
ANS. FIG. P35.38(c) below. 

 (d) We suppose that the headlands are steep underwater, as they are 
above water. The rays are everywhere perpendicular to the wave 
fronts of the incoming refracting waves. As shown, because the 
rays tend to bend toward the normal of the contour lines, the rays 
bend toward the headlands and deliver more energy per length at 
the headlands. See ANS. FIG. P35.38(d) below. 

 

ANS. FIG. P35.38 
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P35.39 For the incoming ray, 
  
sinθ2 =

sinθ1

n
.  

 Using ANS. FIG. P35.39, 
   

 

θ2( )violet
= sin−1 sin 50.0°

1.66
⎛
⎝⎜

⎞
⎠⎟ = 27.48°

θ2( )red
= sin−1 sin 50.0°

1.62
⎛
⎝⎜

⎞
⎠⎟ = 28.22°

 

 For the outgoing ray, 

   
 

90.0° −θ2( ) + 90.0° −θ3( ) + 60.0° = 180.0°
θ3 = 60.0° −θ2

 

 and 

     sinθ4 = nsinθ3 :     

 

θ4( )violet
= sin−1 1.66sin 32.52°[ ] = 63.17°

θ4( )red
= sin−1 1.62sin 31.78°[ ] = 58.56°

 

 The angular dispersion is the difference  
    

 Δθ4 = θ4( )violet
− θ4( )red

= 63.17° − 58.56° = 4.61°   

P35.40 For the incoming ray, 
  
sinθ2 =

sinθ1

n
.  Using ANS. FIG. P35.40,  

   
  
θ2( )violet

= sin−1 sinθ
nV

⎛
⎝⎜

⎞
⎠⎟

 

   
  
θ2( )red

= sin−1 sinθ
nR

⎛
⎝⎜

⎞
⎠⎟

 

 For the outgoing ray, 

   
 

90.0° −θ2( ) + 90.0° −θ3( ) + Φ = 180.0°
θ3 = Φ−θ2

 

 and 

     sinθ4 = nsinθ3 :    
  
θ4( )violet

= sin−1 nV sin Φ− sin−1 sinθ
nV

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

   
  
θ4( )red

= sin−1 nR sin Φ− sin−1 sinθ
nR

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

ANS. FIG. P35.39 
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 The angular dispersion is the difference 
   

  

Δθ4 = θ4( )violet
− θ4( )red

=

sin−1 nV sin Φ− sin−1 sinθ
nV

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

                     − sin−1 nR sin Φ− sin−1 sinθ
nR

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 

 
 

 

Section 35.8 Total Internal Reflection 
P35.41 From Equation 35.10, 

  
  
sinθc =

n2

n1

=
1.33
1.50

→ θc = 62.5°  

P35.42 From Equation 35.10, 
  
sinθc =

n2

n1

,  where n2 = 1.000 293. Values for n1 

come from Table 35.1, 

 (a) 
  
θc = sin−1 1.000 293

2.20
⎛
⎝⎜

⎞
⎠⎟ = 27.0°  

 (b) 
  
θc = sin−1 1.000 293

1.66
⎛
⎝⎜

⎞
⎠⎟ = 37.1°  

 (c) 
  
θc = sin−1 1.000 293

1.309
⎛
⎝⎜

⎞
⎠⎟ = 49.8°  

P35.43 The prism is in air, so at the first refraction, 

     1.00sinθ1 = nsinθ2  

 The angle of incidence  θ3  must be less than the 
critical angle at the second surface to emerge 
from the other side. 

   

  

θ3 < θc

θ3 < sin−1θc = sin−1 n2

n1

= sin−1 1.00
1.50

⎛
⎝⎜

⎞
⎠⎟

θ3 < 41.8°

 
ANS. FIG. P35.43 
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 The angles  θ2  and  θ3  are related by 

   
 

90.0° −θ2( ) + 90.0° −θ3( ) + 60.0° = 180.0°
θ2 = 60.0° −θ3

 

 Thus, to avoid total internal reflection at the second surface (i.e., have 

 θ3 < 41.8° ), it is necessary that  θ2 > 18.2°.  

 Since   sinθ1 = nsinθ2 ,  this becomes     

    sinθ1 > 1.50sin 18.2° = 0.468  

 or   θ1 > 27.9° .  

P35.44 The prism is in air, so at the first refraction, 

     1.00sinθ1 = nsinθ2  

 The angle of incidence  θ3  must be less than  
the critical angle at the second surface to  
emerge from the other side. 

   

  

θ3 < θc

θ3 < sin−1θc = sin−1 n2

n1

⎛
⎝⎜

⎞
⎠⎟

= sin−1 1.00
n

⎛
⎝⎜

⎞
⎠⎟

 

 The angles  θ2  and  θ3  are related: 

    90.0° −θ2( ) + 90.0° −θ3( ) + Φ = 180°  

 which gives  θ2 = Φ−θ3.  

 Thus, to have 
  
θ3 < sin−1 1.00

n
⎛
⎝⎜

⎞
⎠⎟

 and avoid total internal reflection at the 

second surface, it is necessary that 
  
θ2 > Φ− sin−1 1.00

n
⎛
⎝⎜

⎞
⎠⎟ .  

 Since   sinθ1 = nsinθ2 ,  this requirement becomes  

   
  
sinθ1 > nsin Φ− sin−1 1.00

n
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

 or  
  
θ1 > sin−1 nsin Φ− sin−1 1.00

n
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

.  

 Through the application of trigonometric identities,  

   
  
θ1 > sin−1 n2 − 1 sinΦ− cosΦ( )  

ANS. FIG. P35.44 
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P35.45 At the upper surface, 

   
  
sinθc =

nair

npipe

=
1.00
1.36

= 0.735 → θc = 47.3°  

 Geometry shows that the angle of refraction at the end is 

     φ = 90.0° −θc = 90.0° − 47.3° = 42.7°  

 Then, by Snell’s law at the end,      

    1.00sinθ = 1.36sin 42.7°  

 gives       θ = 67.2° .  

 The 2-µm diameter is unnecessary information. 

 

ANS. FIG. P35.45 

P35.46 (a) Using the index of refraction values listed in Table 35.1, we find 

   
  
sinθc =

n2

n1

=
1.000
2.419

→ θc = 24.42°  

 (b) 

  

Because the angle of incidence (35.0°) is greater than the critical
angle, the light is totally reflected at P.

 

 (c) 
  
sinθc =

n2

n1

=
1.333
2.419

→ θc = 33.44°  

 (d) The angle of incidence is 35.0°. Yes. In this case, the angle of 
incidence is just larger than the critical angle, so the light ray 
again undergoes total internal reflection at P. 

 (e) The angle of incidence must be reduced below the critical angle 
for light to exit the diamond, so the diamond should be rotated 
clockwise. 

 (f) Rotating the diamond by angle θ clockwise changes the angle of 
incidence  θ1  at point A from 0.00° to θ, causing the angle of 
refraction  θ2  inside the diamond to change from 0.00°: 

   

  

n1 sinθ1 = n2 sinθ2

1.333sinθ1 = 2.419sinθ2
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  Refer to ANS. FIG. P35.46. What is the angle of incidence at P? 
Extending a line from points A and P parallel to the surfaces of 
the diamond until they meet at point B, we form a triangle ABP. 

 

ANS. FIG. P35.46 

  The angle at vertex B is 35.0° because the extended line AB is 
parallel to the line EF extended from the base of the diamond. 
From the sum of the interior angles of ABP, we find the incident 
angle  θ3  at point P: 

   
 

90.0° −θ2( ) + 90.0° −θ3( ) + 35.0° = 180

θ3 = 35.0° −θ2

 

  At P, we require that the angle of incidence  θ3  results in an angle 
of refraction of 90.0°: 

   

 

2.419sinθ3 = 1.333sin 90.0°

2.419sin 35.0°−θ2( ) = 1.333

35.0°−θ2 = sin−1 1.333
2.419

 

  solving gives  θ2 = 1.561°.  Then, from above,  

    1.333sinθ1 = 2.419sinθ2 → θ = 2.83°  

P35.47 The line of sight is 1.20° below the horizontal, so the 
angle of reflection of the light reaching the truck 
driver’s eyes is 90.0° – 1.20° = 88.8°. 

   
  
sinθc =

n2

n1

 

   
  
n2 = n1 sin 88.8° = 1.000 293( )sin 88.8° = 1.000 07  

ANS. FIG. P35.47 
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 Note: Mirages are caused by a continuous variation in index of refraction 
of the air rather than by total internal reflection. In this problem, the 
intent is to recognize that the result of the variation in index of refraction 
is equivalent to the result of a total internal reflection occurring at a 
single layer of hot air just above the surface of the roadway. This 
problem MODELS the phenomenon as a total internal reflection. 

P35.48 (a) 
  

sinθ2

sinθ1

=
v2

v1

    and     θ2 = 90.0°  at the critical angle. 

  
  

sin 90.0°
sinθc

=
1 850 m/s
343 m/s

    so      θc = sin−1 0.185( ) = 10.7° .  

 (b) Sound can be totally reflected if it is traveling in the medium 
where it travels slower:  air .  

 (c) 

 

Sound in air falling on the wall from most directions
is 100% reflected,

 

so the wall is a good mirror. 

P35.49 (a) If any ray escapes it will be a ray along the inner edge, because it 
has the smallest angle of incidence. Its angle of incidence is 

described by 
  
sinθ =

R − d
R

 and by   nsinθ > 1sin 90°.  Then 

    

  

n R − d( )
R

> 1   →    nR − nd > R   

                       →    nR − R > nd   →   R > nd
n − 1

  

 

ANS. FIG. P35.49 

 (b) As   d→ 0 , 
  
Rmin → 0 . Yes: for very small d, the light strikes the 

interface at very large angles of incidence. 

 (c) As n increases, Rmin decreases. Yes: as n increases, the critical 
angle becomes smaller. 

 (d) As n decreases toward 1, Rmin increases.   Rmin →∞ . Yes: as   n→ 1 , 
the critical angle becomes close to 90° and any bend will allow the 
light to escape. 
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 (e) 
  
Rmin =

1.40 100 × 10−6  m( )
0.40

= 350 × 10−6  m = 350 µm  

P35.50 (a) In the gasoline gauge, skylight from above travels down the 
plastic. The rays close to the vertical are totally reflected from the 
sides of the slab and from both facets at the lower end of the 
plastic, where it is not immersed in gasoline. This light returns up 
inside the plastic and makes it look bright. Where the plastic is 
immersed in gasoline, with index of refraction of about 1.50, total 
internal reflection should not happen. The light passes out of the 
lower end of the plastic with little reflected, making this part of 
the gauge look dark. 

 (b) To ensure total internal reflection at the plastic-air interface, the 
critical angle must be less than the angle of incidence, about 45.0°. 
This places a lower limit on the index of refraction of the plastic: 

    

  

θc ≤ 45.0°

sinθc ≤ sin 45.0°

1
n
≤ sin 45.0° → n ≥ 1.41

 

  To prevent total internal reflection at the plastic-gasoline interface, 
the critical angle must be greater than the angle of incidence. This 
places an upper limit on the index of refraction of the plastic: 

    

  

θc ≥ 45.0°
sinθc ≥ sin 45.0°
1.50

n
≥ sin 45.0° → n ≤ 2.12

 

 
 

 

Additional Problems 
*P35.51 Using Snell’s law, the index of refraction of the liquid is found to be 
   

  
nliquid = nair sinθ i

sinθr

  

 Thus, the critical angle for light going from this liquid into air is 

   

  

θc = sin−1 nair

nliquid

⎛

⎝
⎜

⎞

⎠
⎟ = sin−1 nair

nair sinθ i/sinθr

⎛
⎝⎜

⎞
⎠⎟

= sin−1 sinθr

sinθ i

⎛
⎝⎜

⎞
⎠⎟

= sin−1 sin 22.0°
sin 30.0°

⎛
⎝⎜

⎞
⎠⎟ = 48.5°
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P35.52 (a) 
 
′θ1 = θ1 = 30.0°      

    n1 sinθ1 = n2 sinθ2  

  
 

1.00sin 30.0° = 1.55sinθ2

θ2 = 18.8°
 

 (b) 
 
′θ1 = θ1 = 30.0°  

  

  
θ2 = sin−1 n1 sinθ1

n2

⎛
⎝⎜

⎞
⎠⎟

= sin−1 1.55sin 30.0°
1

⎛
⎝⎜

⎞
⎠⎟ = 50.8°

 

 (c), (d)  The other entries are computed similarly, and are shown in 
Table P35.52 below. 

 (c) air into glass, angles in degrees (d) glass into air, angles in degrees 

incidence reflection refraction incidence reflection refraction 

0 0 0 0 0 0 

10.0 10.0 6.43 10.0 10.0 15.6 

20.0 20.0 12.7 20.0 20.0 32.0 

30.0 30.0 18.8 30.0 30.0 50.8 

40.0 40.0 24.5 40.0 40.0 85.1 

50.0 50.0 29.6 50.0 50.0 none* 

60.0 60.0 34.0 60.0 60.0 none* 

70.0 70.0 37.3 70.0 70.0 none* 

80.0 80.0 39.4 80.0 80.0 none* 

90.0 90.0 40.2 90.0 90.0 none* 

 *total internal reflection 

TABLE P35.52 

ANS. FIG. P35.52 
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P35.53 The critical angle is found by imagining the 
refracted ray just grazing the surface ( θ2  = 
90°). The index of refraction of water is n1 = 
1.333, and n2 = 1.00 for air, so n1sin θc  =  
n2 sin 90° gives  θc  = sin–1 (1/1.333) =  
sin–1(0.750) = 48.6°. 

  The radius then satisfies  
    

  
tanθc = r

1.00 m

 

 So the diameter is  

     d = 2 1.00 m( )tanθc[ ]  

   
  
d = 2.00 m( )tan 48.6° = 2.27 m  

P35.54 

 

If the light ray to the eyes of the scuba diver makes an angle of
38.0° with the horizontal, it makes an angle of 52.0° with the
normal to the water surface. This is larger than the critical angle
of 48.8° found in Example 35.6, however. Therefore, no light
from above the water will approach the scuba diver’s eyes from
this direction. The light approaching from this direction will be
that originating underwater and reflected downward from the
surface. The Sun will be seen somewhere within a circle whose
edge is 90.0° – 48.8° = 41.2° above the horizontal.

 

P35.55 From the textbook Figure P35.55, we have w = 2b + a, so 
   

  

b = w − a
2

= 700 µ m − 1 µ m
2

= 349.5 µ m

tanθ2 = b
t

= 349.5 µ m
1 200 µ m

= 0.291   →    θ2 = 16.2°

 

     n1 sinθ1 = n2 sinθ2  

 For refraction at entry, 
   

  
θ1 = sin−1 n2 sinθ2

n1

= sin−1 1.55sin 16.2°
1.00

⎛
⎝⎜

⎞
⎠⎟ = sin−1 0.433 = 25.7°

 

P35.56 The incident light reaches the left-hand mirror at distance 
   

 1.00 m( )tan 5.00° = 0.087 5 m  

ANS. FIG. P35.53 
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 above its bottom edge. The reflected light first reaches the right-hand 
mirror at height 

   
 2 0.087 5 m( ) = 0.175 m  

 It bounces between the mirrors with this 
distance between points of contact with 
either. Since  

   

 

1.00 m
0.175 m

= 5.72
 

 the light reflects 
 

 
five times from the right-hand mirror and six times from the left .

 

*P35.57 (a) The fraction reflected is 

   
  

′S1

S1

= n2 − n1

n2 + n1

⎡
⎣⎢

⎤
⎦⎥

2

= 1.52 − 1.00
1.52 + 1.00
⎡
⎣⎢

⎤
⎦⎥

2

= 0.042 6  

 (b) If medium 1 is glass and medium 2 is air,    

   
  

′S1

S1

= n2 − n1

n2 + n1

⎡
⎣⎢

⎤
⎦⎥

2

= 1.00 − 1.52
1.00 + 1.52
⎡
⎣⎢

⎤
⎦⎥

2

= 0.042 6  

  There is  no difference .  

*P35.58 (a) With  n1 = 1 and n2 = n, the reflected fractional intensity is 

   
  

′S1

S1

= n − 1
n + 1( )2

 

  The remaining intensity must be transmitted: 

   

  

S2

S1

= 1− n − 1
n + 1( )2

= n + 1( )2 − n − 1( )2

n + 1( )2 = n2 + 2n + 1− n2 + 2n − 1
n + 1( )2

= 4n
n + 1( )2

 

 (b) At entry, 
  

S2

S1

= 4n
n + 1( )2 = 4 2.419( )

2.419 + 1( )2 = 0.828.  

  At exit, 
  

S3

S2

= 0.828.  

  Overall, 
  

S3

S1

= S3

S2

⎛
⎝⎜

⎞
⎠⎟

S2

S1

⎛
⎝⎜

⎞
⎠⎟

= 0.828( )2 = 0.685  

  or   68.5% .  

Mirror Mirror

reflected beam
1.00 m

5.00°
1.00 m

ANS. FIG. P35.56 
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P35.59 Let n(x) be the index of refraction at distance x below the top of the 
atmosphere and n(x = h) = 1.00 293 be its value at Earth’s surface. Then,  

    

  

n x( ) = 1.000 00 +  
1.002 93 − 1.000 00

h
⎛
⎝⎜

⎞
⎠⎟ x 

=  1.000 00 +  
0.002 93

h
⎛
⎝⎜

⎞
⎠⎟ x

 

 (a) The total time interval required to traverse the atmosphere is  
   

  

Δt =
dx
v0

h

∫ =
n x( )

c
dx

0

h

∫ :     Δt =
1
c

1.000 00 +
0.002 93

h
⎛
⎝⎜

⎞
⎠⎟ x⎡

⎣⎢
⎤
⎦⎥

dx
0

h

∫

Δt =
h
c

+
0.002 93

ch
h2

2
⎛
⎝⎜

⎞
⎠⎟

=
h
c

2.002 93
2

⎛
⎝⎜

⎞
⎠⎟ =

100 × 103  m
3.00 × 108  m/s

2.002 93
2

⎛
⎝⎜

⎞
⎠⎟

= 3.33 × 10−4  s = 334 µs

 

 (b) The travel time in the absence of an atmosphere would be 
  

h
c

.  

Thus, the time in the presence of an atmosphere is  

   

  

h c
2.002 93

2
⎛
⎝⎜

⎞
⎠⎟ − h c

h c
=

0.002 93
2

⎛
⎝⎜

⎞
⎠⎟ × 100% = 0.147%

 

P35.60 Let n(x) be the index of refraction at distance x below the top of the 
atmosphere and n(x = h) = n be its value at the planet surface. 

 Then, 
  
n x( ) = 1.00 +

n − 1.00
h

⎛
⎝⎜

⎞
⎠⎟ x  

 (a) The total time interval required to traverse the atmosphere is  

   
  
Δt =

dx
v0

h

∫ =
n x( )

c
dx

0

h

∫ : Δt =
1
c

1.00 +
n − 1.00

h
⎛
⎝⎜

⎞
⎠⎟ x⎡

⎣⎢
⎤
⎦⎥

dx
0

h

∫  

   
  
Δt =

h
c

+
n − 1.00( )

ch
h2

2
⎛
⎝⎜

⎞
⎠⎟

=
h
c

n + 1.00
2

⎛
⎝⎜

⎞
⎠⎟

 

 (b) The travel time in the absence of an atmosphere would be 
 

h
c

. 

 Thus, the time in the presence of an atmosphere is  

   
  

n + 1.00
2

⎛
⎝⎜

⎞
⎠⎟  times larger  
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P35.61 Let the air and glass be medium 1 and 2, respectively. By Snell’s law,  

    n2 sinθ2 = n1 sinθ1  

 or  1.56sinθ2 = sinθ1  

 But the conditions of the problem are such that  θ1 = 2θ2 , so  1.56sinθ2 =  

 sin 2θ2  We now use the double-angle trig identity suggested: 

   1.56sinθ2 = 2sinθ2 cosθ2  

 or 
 
cosθ2 =

1.56
2

= 0.780  

 Thus,  θ2 = 38.7°  and 
 
θ1 = 2θ2 = 77.5° . 

P35.62 In ANS. FIG. P35.62, observe on the left side of the prism that 

 β = 90° −θ1  and  α = 90° −θ 1.  Thus,  β = α.  Similarly, on the right side 
of the prism,  δ = 90° −θ2  and  ε = 90° −θ2 , giving  δ = ε.  The incident 
rays are initially parallel, so observe that the angle between the 
reflected rays is γ = α + β( ) + ε + δ( ) , so  γ = 2 α + ε( ) . Finally, observe 
that the left side of the prism is sloped at angle α from the vertical, and 
the right side is sloped at angle ε. The angle φ is related to the other 
angles by 

    φ + 90° −α( ) + 90° − ε( ) = 180° → φ = α + ε  

 Thus, we obtain the result 

   
 
γ = 2 α + ε( ) = 2φ → φ =

1
2
γ  

 

ANS. FIG. P35.62 
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P35.63  Light from the diamond reflects totally 
at the water’s surface at incident angles 
greater than the critical angle  θc . The 
circular raft must cover the area of the 
surface through which light from the 
diamond could emerge. Thus, it must 
form the base of an inverted cone (with 
apex at the diamond) whose half angle is at least the critical angle. 

  

  

θ ≥ θc

tanθ ≥ tanθc

d 2
h

≥ tanθc → h ≤
d

2 tanθc

 

 The critical angle at the water-air boundary is  

  
  
θc = sin−1 nair

nwater

⎛
⎝⎜

⎞
⎠⎟

= sin−1 1.000
1.333

⎛
⎝⎜

⎞
⎠⎟ = 48.61°  

 Thus, the maximum depth of the water is  

  
  
hmax =

d
2 tanθc

=
4.54 m

2tan 48.61°
= 2.00 m  

*P35.64 Consider an insulated box with the imagined one-way mirror forming 
one face, installed so that 90% of the electromagnetic radiation incident 
from the outside is transmitted to the inside and only a lower 
percentage of the electromagnetic waves from the inside make it 
through to the outside. Suppose the interior and exterior of the box are 
originally at the same temperature. Objects within and without are 
radiating and absorbing electromagnetic waves. They would all 
maintain constant temperature if the box had an open window. With 
the glass letting more energy in than out, the interior of the box will 
rise in temperature. But this is impossible, according to Clausius’s 
statement of the second law. This reduction to a contradiction proves 
that it is impossible for the one-way mirror to exist. 

P35.65 Define n1 to be the index of refraction of the 
surrounding medium and n2 to be that for the 
prism material. We can use the critical angle of 

42.0° to find the ratio 
  

n2

n1

: 

     n2 sin 42.0° = n1 sin 90.0°  

 

ANS. FIG. P35.63 

ANS. FIG. P35.65 
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 So,  
  

n2

n1

=
1

sin 42.0°
= 1.49  

 Call the angle of refraction  θ2  at the surface 1. The ray inside the prism 
forms a triangle with surfaces 1 and 2, so the sum of the interior angles 
of this triangle must be 180°. 

 Thus,  90.0° −θ2( ) + 60.0° + 90.0° − 42.0°( ) = 180°  

 Therefore,  θ2 = 18.0°.  

 Applying Snell’s law at surface 1,   n1 sinθ1 = n2 sin 18.0° :  

   
  
sinθ1 =

n2

n1

⎛
⎝⎜

⎞
⎠⎟

sinθ2 = 1.49sin 18.0°       

 gives 
 
θ1 = 27.5°  

P35.66 The number N of reflections the beam makes before exiting at the other 
end is equal to the length of the slab divided by the component of the 
displacement of the beam for each reflection: 

   
  
N  = 

L
t / tanθ2( )  = 

L tanθ2

t
 

 where  θ2  is the refracted angle as the beam enters the material. 
Substitute for this refracted angle in terms of the incident angle by 
using Snell’s law: 

   
  
N  = 

L
t

tan sin−1 n1 sinθ1

n2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥  

 Substitute numerical values: 
   

  

N  = 
0.420 m

0.003 10 m
tan sin−1 1( )sin 50.0°

1.48
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ 

= 81.96 → 81 reflections

 

 Therefore, the beam will exit after making 81 reflections, so it does not 
make 85 reflections.  

P35.67 A light beam passing the top of the pole makes an angle θ of 40.0° with 
the horizontal, so its angle of incidence at the water is  φ1 = 90.0° −θ . It 
enters the water’s surface at distance from the pole 

   
  
s1 =

L − d
tanθ

 

 and has an angle of refraction  φ2  from   1.00sinφ1 = nsinφ2 . 
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ANS. FIG. P35.67 

 The beam reaches the bottom after traveling the horizontal distance  
     s2 = d tanφ2  

 The whole shadow length is 

   
  
s1 + s2 =

L − d
tanθ

+ d tan sin−1 sinφ1

n
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 Because  sinφ1 = sin 90.0° −θ( ) = cosθ ,  we find that  

   

  

s1 + s2 =
L − d
tanθ

+ d tan sin−1 cosθ
n

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

=
2.00 m

tan 40.0°
+ 2.00 m( )tan sin−1 cos 40.0°

1.33
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= 3.79 m
 

P35.68 From Table 35.1, the index of refraction of polystyrene is 1.49.  

 (a) For polystyrene surrounded by air, total internal reflection requires 

   
  
θ3 ≥θc = sin−1 1.00

1.49
⎛
⎝⎜

⎞
⎠⎟ = 42.2°  

  Then from geometry,  θ2 = 90.0° −θ3 ≤ 47.8°.  

  From Snell’s law, 

   
 

sinθ1 = 1.49sinθ2 ≤ 1.49sin 47.8°
sinθ1 ≤ 1.10

 

  Any angle  θ1  satisfies this equation. 
  

 

Total internal reflection occurs for all values of θ , 
or the maximum angle is 90°.

 

 (b) For polystyrene surrounded by water, 
 
θ3 = sin−1 1.33

1.49
⎛
⎝⎜

⎞
⎠⎟ = 63.2°  

ANS. FIG. P35.68 
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  and  θ2 = 26.8°.  

  From Snell’s law,  θ1 = 30.3° .  

 (c) From Table 35.1, the index of carbon disulfide is 1.628 > 1.49. 
Total internal reflection never occurs as the light moves from 
lower-index polystyrene into higher-index carbon disulfide. 

P35.69 From ANS. FIG. P35.69, observe that the angle of incidence at A is the 
same as the prism angle at point O. Given that θ = 60.0°, application of 
By Snell’s law at point A: 

  

 

1.50sinβ = 1.00( )sin 60.0°

sinβ =
sin 60.0°

1.50

 

 

ANS. FIG. P35.69 

 From triangle AOB, we calculate the angle of incidence and reflection, 
γ, at point B: 

   θ + 90.0° − β( ) + 90.0° − γ( ) = 180°    or    γ = θ − β  

 Now, we find the angle of incidence at point C using triangle BCQ: 

   90.0° − γ( ) + 90.0° − δ( ) + 90.0° −θ( ) = 180°  

 or 

   δ = 90.0° − θ + γ( ) = 90.0° − θ +θ − β( ) = 90.0° − 2θ + β  

 Finally, application of Snell’s law at point C gives 
  

 1.00( )sinφ = 1.50( )sinδ  

 or 
  

 

φ = sin−1 1.50sin 90.0°− 2θ + β( )⎡⎣ ⎤⎦

= sin−1 1.50sin 90.0°− 2 60.0°( )+ sin−1 sin60.0°
1.50

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

= 7.91°
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P35.70 (a) The optical day is longer. Incoming 
sunlight is refracted downward at 
the top of the atmosphere, so an 
observer can see the rising Sun 
when it is still geometrically below 
the horizon. Light from the setting Sun 
reaches her after the Sun is below the 
horizon geometrically. 

 (b) ANS. FIG. P35.70 illustrates optical sunrise. At the center of the 
Earth, 

   

 

cosφ =
6.37 × 106  m

6.37 × 106  m + 8 614

φ = 2.98°

θ2 = 90 − 2.98° = 87.0°

 

  At the top of the atmosphere 

   

  

n1 sinθ1 = n2 sinθ2

1sinθ1 = 1.000 293sin 87.0°

θ1 = 87.4°

 

  Deviation upon entry is 

   
 

δ = θ1 −θ2

δ = 87.364° − 87.022° = 0.342°
 

  Sunrise of the optical day is before geometric sunrise by 

 
0.342°

86 400 s
360°

⎛
⎝⎜

⎞
⎠⎟

= 82.2 s.  Optical sunset occurs later too, so the 

optical day is longer by 
 

164 s .  

P35.71 Observe in ANS. FIG. P35.71 that the angle of 
incidence at point P is γ, and using triangle 
OPQ: 

   
  
sinγ =

L
R

 

 Also, 
  
cosγ = 1− sin2 γ =

R2 − L2

R
 

 Apply Snell’s law at point P: 

     1.00sinγ = nsinφ  

ANS. FIG. P35.70 
 

ANS. FIG. P35.71 
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 Thus, 
  
sinφ =

sinγ
n

=
L

nR
 

 and  
  
cosφ = 1− sin2φ =

n2R2 − L2

nR
.  

 From triangle OPS,  φ + α + 90.0°( ) + 90.0° − γ( ) = 180°,  or the angle of 
incidence at point S is α = γ − φ . Then, applying Snell’s law at point S 

 gives      1.00sinθ = nsinα = nsin γ − φ( )  

 or  

  

sinθ = nsin γ − φ( )
= n sinγ cosφ − cosγ sinφ[ ]

= n
L
R

⎛
⎝⎜

⎞
⎠⎟

n2R2 − L2

nR
−

R2 − L2

R
L

nR
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
L

R2 n2R2 − L2 − R2 − L2( )

 

 thus,  
  
θ = sin−1 L

R2 n2R2 − L2 − R2 − L2( )⎡
⎣⎢

⎤
⎦⎥

;  

 or, using from above 
  
sinγ =

L
R
→γ = sin−1 L

R
 and 

  
φ = sin−1 L

nR
, 

   
  
sinθ = nsin γ − φ( ) = nsin sin−1 L

R
− sin−1 L

nR
⎛
⎝⎜

⎞
⎠⎟

 

   
  
θ = sin−1 nsin sin−1 L

R
− sin−1 L

nR
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

P35.72  δ = θ1 −θ2 = 10.0°     and      n1 sinθ1 = n2 sinθ2    with   n1 = 1, 
  
n2 =

4
3

.  

 Thus,     θ1 = sin−1 n2 sinθ2( ) = sin−1 n2 sin θ1 − 10.0°( )⎡⎣ ⎤⎦.  

 (You can use a calculator to home in on an approximate solution to this 
equation, testing different values of  θ1  until you find that  θ1 = 36.5° .  
Alternatively, you can solve for  θ1  exactly, as shown below.) 

 We are given that 
 
sinθ1 =

4
3

sin θ1 − 10.0°( ).  

 This is the sine of a difference, so   

   
 

3
4

sinθ1 = sinθ1 cos10.0° − cosθ1 sin 10.0°  
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 Rearranging, 
 
sin 10.0°cosθ1 = cos10.0° −

3
4

⎛
⎝⎜

⎞
⎠⎟ sinθ1 ,  

   
 

sin 10.0°
cos10.0° − 0.750

= tanθ1  

 and   θ1 = tan−1 0.740( ) = 36.5° .  

P35.73 (a) From the geometry shown in ANS. FIG. P35.73, observe that 

 θ1 = 60.0° . Also, from the law of reflection,  θ2 = θ1 = 60.0° . 

  Therefore,  α = 90.0° −θ2 = 30.0° , and  θ3 + 90.0° = 180 −α − 30.0°    
or  θ3 = 30.0° . 

 

ANS. FIG. P35.73 

  Then, since the prism is immersed in water (n2 = 1.333), Snell’s 
law gives 

   
  
θ4 = sin−1 nglass sinθ3

n2

⎛
⎝⎜

⎞
⎠⎟

= sin−1 1.66( )sin 30.0°
1.333

⎛
⎝⎜

⎞
⎠⎟

= 38.5°  

 (b) For refraction to occur at point P, it is necessary that   θc > θ1 . Thus, 

  
θc = sin−1 n2

nglass

⎛

⎝
⎜

⎞

⎠
⎟ > θ1 , which gives 

  n2 > nglass sinθ1 = 1.66( )sin 60.0° =  
 

1.44  

P35.74 As shown in ANS. FIG. P35.74, the angle of incidence at point A is: 

   
  
θ = sin−1 d 2

R
⎛
⎝⎜

⎞
⎠⎟ = sin−1 1.00 m

2.00 m
⎛
⎝⎜

⎞
⎠⎟ = 30.0°  

 

ANS. FIG. P35.74 



Chapter 35     659 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 If the emerging ray is to be parallel to the incident ray, the path must 
be symmetric about the centerline CB of the cylinder. In the isosceles 
triangle ABC, 

   γ = α     and    β = 180° −θ  

 Therefore,  α + β + γ = 180°  

 becomes  2α + 180° −θ = 180°  

 or   
 
α =

θ
2

= 15.0°.  

 Then, applying Snell’s law at point A, 

   

  

nsinα = 1.00sinθ

n =
sinθ
sinα

=
sin 30.0°
sin 15.0°

= 1.93
 

P35.75 Applying Snell’s law at points A, B, and C gives 

   1.40sinα = 1.60sinθ1  [1] 

   1.20sinβ = 1.40sinα  [2] 

 and  1.00sinθ2 = 1.20sinβ  [3] 

 Combining equations [1], [2], and [3] yields  

   sinθ2 = 1.60sinθ1  [4] 

 

ANS. FIG. P35.75 

 Note that equation [4] is exactly what Snell’s law would yield if the 
second and third layers of this “sandwich” were ignored. This will 
always be true if the surfaces of all the layers are parallel to each other. 

 (a) If  θ1 = 30.0° , then equation [4] gives  

   
 
θ2 = sin−1 1.60sin 30.0°( ) = 53.1°  
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 (b) At the critical angle of incidence on the lowest surface,  θ2 = 90.0° . 
Then, equation [4] gives  

   
 
θ1 = sin−1 sinθ2

1.60
⎛
⎝⎜

⎞
⎠⎟ = sin−1 sin 90.0°

1.60
⎛
⎝⎜

⎞
⎠⎟ = 38.7°  

  Total internal reflection will occur for 
 
θ1 ≥ 38.7° . 

P35.76 (a) At the boundary of the air and glass, the critical angle is given by 

   
  
sinθc =

1
n

 

 

ANS. FIG. P35.76 

  Consider the critical ray PBB′:  

   
  
tanθc =

d 4
t

    or    
  

sinθc

cosθc

=
d
4t

 

  Squaring the last equation gives: 

   
  

sin2θc

cos2θc

=
sin2θc

1− sin2θc

=
d
4t

⎛
⎝⎜

⎞
⎠⎟

2

 

  Since 
  
sinθc =

1
n

, this becomes   
  

1
n2 − 1

=
d
4t

⎛
⎝⎜

⎞
⎠⎟

2

   or     

   

  
n = 1+

4t
d

⎛
⎝⎜

⎞
⎠⎟

2

 

 (b) Solving for d,  

   
  
d =

4t

n2 − 1
 

  Thus, if n = 1.52 and t = 0.600 cm, 
  
d =

4 0.600 cm( )
1.52( )2 − 1

= 2.10 cm  

 (c) Since violet light has a larger index of refraction, it will lead to a 
smaller critical angle and the inner edge of the white halo will be 
tinged with 

 
violet  light. 
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P35.77  (a) Given that  θ1 = 45.0°     and     θ2 = 76.0°,  

  Snell’s law at the first surface gives 

     nsinα = 1.00sin 45.0°  [1] 

 

ANS. FIG. P35.77 

  Observe that the angle of incidence at the second surface is 
   

 β = 90.0° −α  

  Thus, Snell’s law at the second surface yields 

     nsinβ = nsin 90.0° −α( ) = 1.00sin 76.0°  

  or   ncosα = sin 76.0°.  [2] 

  Dividing equation [1] by equation [2], we obtain 

   
 
tanα =

sin 45.0°
sin 76.0°

= 0.729  

  or  α = 36.1°.  

  Then, from equation [1],  

   
  
n =

sin 45.0°
sinα

=
sin 45.0°
sin 36.1°

= 1.20  

 (b) From the sketch, observe that the distance the light travels in the 

plastic is 
  
d =

L
sinα

. Also, the speed of light in the plastic is 
  
v =

c
n

,  

so the time required to travel through the plastic is 
   

  

Δt = d
v

= nL
c sinα

= 1.20 0.500 m( )
3.00× 108  m/s( )sin 36.1°

= 3.40× 10−9  s = 3.40 ns
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P35.78 (a) See graph in ANS. FIG. P35.78. 

 

 

sinθ1 sinθ2
sinθ1

sinθ2

0.174
0.342
0.500
0.643
0.766
0.866
0.940
0.985

0.131
0.261
0.379
0.480
0.576
0.647
0.711
0.740

1.330 4
1.312 9
1.317 7
1.338 5
1.328 9
1.339 0
1.322 0
1.331 5

  

ANS. FIG. P35.78 

 (b) The straightness of the graph line demonstrates Snell’s 
proportionality of the sine of the angle of refraction to the sine of 
the angle of incidence. 

 (c) The slope of the line is   n = 1.327 6 ± 0.01  

  The equation   sinθ1 = nsinθ2  shows that this slope is the index of 

refraction, 
  
n = 1.328 ± 0.8%  

P35.79 (a) We see the Sun moving from east to west across the sky. Its 
angular speed is 

   
  
ω =

Δθ
Δt

=
2π  rad
86 400 s

= 7.27 × 10−5  rad/s  

  The direction of sunlight crossing the cell from the window 
changes at this rate, moving on the opposite wall at speed 

   

  

v = rω = 2.37 m( ) 7.27 × 10−5  rad/s( )
= 1.72 × 10−4  m/s = 0.172 mm/s

 

 (b) The mirror folds into the cell the motion that would occur in a 
room twice as wide: 

   
  
v = rω = 2 0.174 mm/s( ) = 0.345 mm/s

 

 (c), (d)  As the Sun moves southward and upward at 50.0°, we may 
regard the corner of the window as fixed, and both patches of 
light move  northward and downward at 50.0° .  
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P35.80 Because the enclosure is square and the beam enters at bottom center, 
and because a light beam travels the same path regardless of its 
direction on the path, we expect the beam pattern to be symmetric 
about a vertical line passing through the opening. Therefore, the beam 
enters the opening at the same angle it exits, the beam strikes each side 
mirror at the same height, and the beam forms a zigzag pattern that 
intersects itself at a point (or points) above the center opening; thus, 
the beam must reflect off the top mirror at its center. Also, because of 
the law of reflection, the path of the beam is symmetric about a 
horizontal line passing through the points where the beam reflects off 
a side mirror. 

 (a) Call the length of each side of the square L. If the beam is to strike 
each mirror once, the beam must strike each side mirror at its 
center, at height L/2 after traveling a horizontal distance L/2. 
Therefore,  

    
  
tanθ =

L 2
L 2

= 1 → θ = 45.0°  

  The beam will exit the enclosure if it enters at angle  45.0° ,  as 
shown in ANS. FIG. P35.80(a). 

    

 ANS. FIG. P35.80(a) ANS. FIG. P35.80(b) ANS. FIG. P35.80(c) 

 (b) Because the path of the beam is symmetric about a horizontal lines 
passing through the points where the beam reflects off a side mirror, 
we can divide the square enclosure into vertically stacked 
rectangular areas, each a mirror image of the one below. In each, the 
ray passes upward through the bottom center of the rectangle and 
exits at its top center until it reflects off the top mirror, then the ray 
passes back downward through each center until it exits the 
enclosure. The pattern of the ray’s path is repeated in each rectangle. 
If the enclosure is divided into n rectangles, the height of each 
rectangle is L/n, and the beam strikes a side mirror at height L/2n 
within each rectangle. Therefore, the angle of entry at the opening is  

   
  
tanθ =

L 2n
L 2

=
1
n
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  The cases for n = 2 and 3 are shown in ANS. FIG. 35.80(b) and (c) 
above. 

  

  

Yes. The ray will exit if it enters at an angle θ  that satisfies the

condition tanθ =
1
n

,  where n = 1,  2,  3,  …

 

 
 

 

Challenge Problems 
P35.81 Horizontal light rays from the setting Sun pass above the hiker. The 

light rays are twice refracted and once reflected, as in ANS. FIG. 
P35.81(b). The most intense light reaching the hiker, that which 
represents the visible rainbow, is located between angles of 40° and 42° 
from the hiker’s shadow. 

 

(a) 

 

(b) 

ANS. FIG. P35.81 

 The hiker sees a greater percentage of the violet inner edge, so we 
consider the red outer edge. The radius R of the circle of droplets is 

     R = 8.00 km( )sin 42.0° = 5.35 km  

 Then the angle φ, between the vertical and the radius where the bow 
touches the ground, is given by 

   
  
cosφ =

2.00 km
R

=
2.00 km
5.35 km

= 0.374  
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 or    φ = 68.1°.  

 The angle filled by the visible bow is  

    360° − 2 × 68.1°( ) = 224°  

 so the visible bow is 
 

224°
360°

= 62.2% of a circle .  

P35.82 The geometry of the situation is shown in 
ANS. FIG. P35.82, where P is the person 
and L is the lightbulb. 

 We have used the law of reflection to claim 
that the angles on either side of the dashed 
line at O are equal. From triangle OPC, we 
see that 

   
   
cosθ  =  d

1

    and    sinθ  =  x1

1

 

 which can be rearranged to give 

   
   
1  = 

d
cosθ

    and    x1  = 1 sinθ   [1] 

 Similarly, from triangle OLB,  

   
   
cosθ  = 2d

2

    and    sinθ  =  x2

2

 

 which can be rearranged to give 

   
   
2  = 

2d
cosθ

    and    x2  = 2 sinθ  [2] 

 Let n = 3.10 from the problem statement. The condition given in the 
problem is expressed as 

      1  + 2  = n  [3] 

 Substitute for   1  and   2  from equations [1] and [2]: 

   
   

d
cosθ

 + 
2d

cosθ
  = n →

3d
cosθ

  = n  [4] 

 From triangle APL, apply the Pythagorean theorem: 

   
   

2  = d2  +  x1  + x2( )2  

 Substitute for x1 and x2 from equations [1] and [2]: 

   
   

2  = d2  +  1 sinθ  + 2 sinθ( )2  = d2  +  1  + 2( )2 sin2θ  

ANS. FIG. P35.82 
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 Substitute from equation [3]: 

      
2  = d2  + n22 sin2θ → 2 1 − n2 sin2θ( ) = d2  [5] 

 Eliminate    between equations [4] and [5]: 

   
  

3d
ncosθ

⎛
⎝⎜

⎞
⎠⎟

2

1 − n2 sin2θ( ) = d2 → 9 − 9n2 sin2θ  = n2 cos2θ  

 Simplify this expression: 

   

  

 9 = 9n2 sin2θ  + n2 cos2θ  = 8n2 sin2θ  + n2 sin2θ + n2 cos2θ  

    = 8n2 sin2θ  + n2 → sinθ  =  9 − n2

8n2

 

 If we now substitute n = 3.10, we see that there is no real solution for 
sin θ. Therefore, it is impossible for the distances to be in this 
relationship. The largest value that n can have is 3.00, which leads to 
an incident angle of 0°. 

 In fact, we could have solved this problem more elegantly (and 
quickly!) by realizing that the largest ratio of distances would be 
obtained by bringing the person and the lightbulb as close together as 
possible given the condition on their distances from the mirror. This 
would be done by aligning them both above O in the figure so that the 
light strikes the mirror at normal incidence. Then, the person and 
lightbulb are separated by a distance d, and the light travels a distance 
3d. This gives a maximum ratio of 3.00 and we see that a ratio of 3.10 is 
impossible. 

P35.83 (a) Calling the angle between the dashed line in Figure P35.83 and 
the reflected laser beam θ, we see that 

   

  
tanθ  =  x

L / 2
 =  

2x
L

→ x = 
1
2

L tanθ
 

  Differentiate with respect to time to find the speed of the laser 
spot on the wall: 

   
  
v = 

dx
dt

 = 
d
dt

1
2

L tanθ⎛
⎝⎜

⎞
⎠⎟  = 

1
2

Lsec2θ dθ
dt

 [1] 

  From Figure P35.83, we see that 

   
  
secθ  =  1

cosθ
 = 

4x2  + L2

L
 [2] 

  Because the incident ray is stationary, as the mirror turns through 
angle φ, its normal rotates through angle φ, so the angle of 
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incidence increases by φ as does the angle of reflection. Therefore, 
the reflected ray rotates through 2φ. As a consequence, the 
angular speed of the reflected ray is twice that of the mirror: 

   
  
ω reflected ray  = 

dθ
dt

 = 2ω  [3] 

  Substitute equations [2] and [3] into equation [1]: 
   

  
v = 

1
2

L
4x2  + L2

L2

⎛
⎝⎜

⎞
⎠⎟

2ω  =  
4x2  + L2

L
⎛
⎝⎜

⎞
⎠⎟
ω

 

 (b) The variable in this expression is x, so we can minimize the speed 
by setting x = 0. 

 (c) Let x = 0 in the expression for v: 

   
  
v = 

4 0( )2  + L2

L

⎛

⎝⎜
⎞

⎠⎟
ω  =  Lω  

 (d) The maximum speed occurs when the reflected laser beam arrives 
at a corner of the room, where x = L/2: 

   
  
v = 

4 L / 2( )2  + L2

L

⎛

⎝⎜
⎞

⎠⎟
ω  =  2Lω  

 (e) Between the minimum and maximum speed, the reflected laser 
beam rotates through π/4 radians, so the mirror rotates through 
π/8 radians. Therefore,  

   
  
Δt = 

Δθ
ω

 =
π

8ω
 

P35.84 (a) In the textbook Figure P35.84, we have   r1 = a2 + x2  and 

  r2 = b2 + d − x( )2 . The speeds in the two media are v1 = c/n1 and 
v2 = c/n2 so the travel time for the light from P to Q is indeed 

   
  
Δt =

r1

v1

+
r2

v2

=
n1 a2 + x2

c
+

n2 b2 + (d − x)2

c
 

 (b) Now 
  

d Δt( )
dx

=
n1

2c
2x

a2 + x2
+

n2

2c
2(d − x)(−1)

b2 + (d − x)2
= 0  is the requirement 

for minimal travel time, which simplifies to  

   
  

n1x

a2 + x2
=

n2 d − x( )
b2 + d − x( )2  
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 (c) Now 
  
sinθ1 =

x

a2 + x2
 and 

  
sinθ2 =

d − x

b2 + d − x( )2 , so we have 

  n1 sinθ1 = n2 sinθ2 . 

P35.85 In ANS. FIG. P35.85, a ray travels along path AM from point A to the 
mirror, reflects and travels along path MB from the mirror to point B. 
Point A is a vertical distance a above the mirror, and point B is a 
vertical distance b above the mirror. Points A and B are a horizontal 
distance d apart. The ray strikes the mirror at point M which is a 
horizontal distance x from point A. The angle of incidence is  θ1  and the 
angle of reflection is  θ2 . 

 

ANS. FIG. P35.85 

 We have   AM = a2 + x2  and   MB = b2 + d − x( )2 . The travel time for 
the light from A to B is  

  
  
Δt =

AM
c

+
MB

c
=

a2 + x2

c
+

b2 + (d − x)2

c
 

 We require a minimal travel time, so  

  
  

d Δt( )
dx

=
1
2c

2x

a2 + x2
+

1
2c

2(d − x)(−1)

b2 + (d − x)2
= 0  

 which simplifies to 

  
  

x

a2 + x2
=

d − x( )
b2 + d − x( )2  

 This expression is equivalent to  

   sinθ1 = sinθ2 → θ1 = θ2  

P35.86 (a) Assume the viewer is far away to the right. In ANS. FIG. 
P35.86(a), a ray directed toward the viewer comes tangentially 
from the edge of the glowing sphere and emerges from the 
atmosphere at angle  θ2 . The apparent radius of the glowing 
sphere is R3 as shown. For the figure, we see that  

   

  
sinθ1 = R1

R2

   and   sinθ2 = R3

R2
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  Then, 
   

  nsinθ1 = 1.00sinθ2
 

  and 
   

  
n

R1

R2

= R3

R2

  →   R3 = nR1

 

 

ANS. FIG. P35.86(a) 

 (b) If a ray is to come tangentially from the edge of the glowing 
sphere and emerge from the atmosphere, the incident angle  θ1  
must be less than the critical angle,   θ1 <θc .  Then,  

   

  
sinθ1 < sinθc = 1

n

 

  and 
   

  

R1

R2

< 1
n

→ nR1 < R2 → R2 > nR1

 

  This is not so for the case we consider here. 

 

ANS. FIG. P35.86(b) 

  Thus, the ray considered in part (a) undergoes total internal 
reflection. In this case a ray traveling toward the viewer must 
emerge tangentially from the atmosphere, as shown in ANS. FIG. 
P35.86(b), so the apparent radius of the glowing sphere is the 
same as the radius of the atmosphere: 

  
R3 = R2 . 
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*P35.87 Define 
  
T = 4n

n + 1( )2  as the transmission coefficient for one encounter 

with an interface. For diamond and air, it is 0.828, as in Problem 
P35.58.  As shown in ANS. FIG. P35.87, the total amount transmitted is 

   

   

T 2 + T 2 1−T( )2 + T 2 1−T( )4

+T 2 1−T( )6 +…+ T 2 1−T( )2n +…

 

 We have   1−T = 1− 0.828 = 0.172,  so the total transmission is 
   

  0.828( )2 1+ 0.172( )2 + 0.172( )4 + 0.172( )6 +…[ ]  

 To sum this series, define  
    

   F = 1 + 0.172( )2 + 0.172( )4 + 0.172( )6 +…  

 Note that    0.172( )2 F = 0.172( )2 + 0.172( )4 + 0.172( )6 +…,  and  
   

   1 + 0.172( )2 F = 1 + 0.172( )2 + 0.172( )4 + 0.172( )6 +… = F  

 Then,   

   
  
1 = F − 0.172( )2 F   or  F = 1

1− 0.172( )2 .   

 The overall transmission is then 
 

0.828( )2

1− 0.172( )2 = 0.706  or   70.6% .   

 
ANS. FIG. P35.87 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P35.2 (a) 3.00 × 108 m/s; (b) The sizes of the objects need to be taken into 
account. Otherwise the answer would be too large by 2%. 

P35.4 2.27 × 108 m/s 

P35.6 19.5° above the horizon 

P35.8 (a) θ = 30.4°; (b) θ ′ = 22.3° 

P35.10 (a) See P35.10(a) for full explanation; (b) Now CBE = φ is the angle of 
incidence of the vertical light beam. Its angle of reflection is also φ. The 
angle between the vertical incident beam and the reflected beam is 2φ; 
(c) φ = 0.055 7° 

P35.12  θ2 = 19.5° ;  θ3 = 19.5° ;  θ4 = 30.0°  

P35.14 (a) 78.3°; (b) 2.56 m; (c) 9.72°; (d) 442 nm; (e) The light wave slows 
down as it moves from air to water, but the sound wave speeds up by 
a larger factor. The light wave bends toward the normal and its 
wavelength shortens, but the sound wave bends away from the normal 
and its wavelength increases. 

P35.16 (a) 1.52; (b) 417 nm; (c) 4.74 × 1014 Hz; (d) 198 Mm/s 

P35.18  β = 180° − 2θ  

P35.20 (a) See P35.20(a) for full explanation; (b) See P35.20(b) for full 
explanation. 

P35.22 (a) 0.387 cm; (b) 106 ps 

P35.24 (a) Yes, if the angle of incidence is 58.9°; (b) No. Both the reduction in 
speed and the bending toward the normal reduce the component of 
velocity parallel to the interface. This component cannot remain 
constant for a nonzero angle of incidence. 

P35.26 6.30 cm 

P35.28 (a) See P35.28(a) for full explanation; (b) 37.2°; (c) 37.3°; (d) 37.3° 

P35.30 The index of refraction of the atmosphere decreases with increasing 
altitude because of the decrease in density of the atmosphere with 
increasing altitude. As indicated in the ray diagram, the Sun located at 
S below the horizon appears to be located at S′. 

P35.32 (a) 
  

h
d

=
n2 − 1
4 − n2 ;  (b) 4.73 cm; (c) For n = 1, h = 0.  For n = 2, h = ∞. For  

n > 2, h has no real solution. 

P35.34 (a) See ANS. FIG. P35.34; (b) 42.0°; (c) 63.1°; (d) 26.9°; (e) 107 m 
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P35.36 (a) 48.2°; (b) 47.8° 

P35.38 (a) See ANS. FIG. P35.38(a); (b) As the waves move to shallower water, 
the wave fronts slow down, and those closer to shore slow down more. 
The rays tend to bend toward the normal of the contour lines; or 
equivalently, the wave fronts bend to become more nearly parallel to 
the contour lines; (c) See ANS. FIG. P35.38(c); (d) We suppose that the 
headlands are steep underwater, as they are above water. The rays are 
everywhere perpendicular to the wave fronts of the incoming 
refracting waves. As shown, because the rays tend to bend toward the 
normal of the contour lines, the rays bend toward the headlands and 
deliver more energy per length at the headlands.  

P35.40 
  
sin−1 nV sin Φ− sin−1 sinθ

nV

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
− sin−1 nR sin Φ− sin−1 sinθ

nR

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

P35.42 (a) 27.0°; (b) 37.1°; (c) 49.8° 

P35.44 
  
θ1 > sin−1 nsin Φ− sin−1 1.00

n
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

; 
  
θ1 > sin−1 n2 − 1 sinΦ− cosΦ( )  

P35.46 (a) 24.42°; (b) Because the angle of incidence (35.0°) is greater than the 
critical angle, the light is totally reflected at P; (c) 33.44°; (d) Yes. In this 
case, the angle of incidence is just larger than the critical angle, so the 
light ray again undergoes total internal reflection at P; (e) clockwise;  
(f) 2.83° 

P35.48 (a) 10.7°; (b) air; (c) Sound in air falling on the wall from directions is 
100% reflected. 

P35.50 (a) See P35.50(a) for full explanation; (b)   n ≥ 1.41  and   n ≤ 2.12  

P35.52 (a) angle of incidence: 30.0°, angle of refraction: 18.8°; (b) angle of 
incidence: 30.0°, angle of refraction: 50.8°; (c) and (d) See TABLE 
P35.52. 

P35.54 No light from above the water will approach the scuba diver’s eyes 
from 48.8° found in Example 35.6. 

P35.56 Five times from the right-hand mirror and six times from the left. 

P35.58 (a) 
  

4n
n + 1( )2 ;  (b) 68.5% 

P35.60 (a) 
  

h
c

n + 1.00
2

⎛
⎝⎜

⎞
⎠⎟

; (b) 
  

n + 1.00
2

⎛
⎝⎜

⎞
⎠⎟  times larger  

P35.62 See P35.62 for full explanation. 
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P35.64 Consider an insulated box with the imagined one-way mirror forming 
one face, installed so that 90% of the electromagnetic radiation incident 
from the outside is transmitted to the inside and only a lower 
percentage of the electromagnetic waves from the inside make it 
through to the outside. Suppose the interior and exterior of the box are 
originally at the same temperature. Objects within and without are 
radiating and absorbing electromagnetic waves. They would all 
maintain constant temperature if the box had an open window. With 
the glass letting more energy in than out, the interior of the box will 
rise in temperature. But this is impossible, according to Clausius’s 
statement of the second law. This reduction to a contradiction proves 
that it is impossible for the one-way mirror to exist. 

P35.66 The beam will exit after making 81 reflections, so it does not make 85 
reflections. 

P35.68 (a) Total internal reflection occurs for all values of θ, or the maximum 
angle is 90°; (b) 30.3°; (c) Total internal reflection never occurs as the 
light moves from lower-index polystyrene to higher-index carbon 
disulfide. 

P35.70 (a) The optical day is longer; (b) 164 s 

P35.72 36.5° 

P35.74 1.93 

P35.76 (a) 
  
n = 1+ 4t

d
⎛
⎝⎜

⎞
⎠⎟

2

;  (b) 2.10 cm; (c) violet 

P35.78 (a) See ANS. FIG. P35.78; (b) The straightness of the graph line 
demonstrates Snell’s proportionality of the sine of the angle of 
refraction to the sine of the angle of incidence; (c)  1.328 ± 0.8%  

P35.80 (a) 45.0°; (b) Yes. The ray will exit if it enters at an angle θ that satisfies 

the condition 
  
tanθ =

1
n

,  where n = 1, 2, 3, … 

P35.82 The person and lightbulb are separated by a distance d, and the light 
travels at a distance 3d. This gives a maximum ratio of 3.00, and we see 
that a ratio of 3.10 is impossible. 

P35.84 (a–c) See P35.84 for full explanations. 

P35.86 (a) R3 = nR1; (b) R3 = R2 
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36 
Image formation 

 

CHAPTER OUTLINE 
 

36.1  Images Formed by Flat Mirrors 

36.2  Images Formed by Spherical Mirrors 

36.3  Images Formed by Refraction 

36.4 Images Formed by Thin Lenses 

36.5 Lens Abberations 

36.6 The Camera 

36.7  The Eye 

36.8 The Simple Magnifier 

36.9 The Compound Microscope 

36.10 The Telescope 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ36.1 Answer (b). A change in the medium in contact with the outer 
surface will result in a change in refraction at the outer surface if the 
surface is curved. Refraction should be limited to the inner surface 
because the medium inside (air) does not change. The outer surface 
should be flat so that it will not produce a fuzzy or distorted image 
for the diver when the mask is used either in air or in water. 

OQ36.2 (i) Answer (c). The image is an upright and virtual at first then 
inverted and real. A concave (converging) mirror can produce 
real and virtual images depending on the object distance.  

 (ii) Answer (c).  When the object passes through the focal point, the 
image switches from virtual to real.  
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OQ36.3 Answer (b). A converging lens forms real, inverted images of real 
objects located outside the focal point.  

    

  

1
p
+

1
q
=

1
f

:
1

50.0cm
+

1
q
=

1
15.0cm

→ q = 21.4cm

M =
−q
p

=
−21.4 cm
50.0 cm

 = −0.429

 

 The positive image distance confirms that the image is real, and the 
negative magnification confirms that the image is inverted. Also,  
M = –0.429 tells us the image is smaller than the object.  

OQ36.4 (i) Answer (e). A converging lens forms real, inverted images of 
real objects located farther than the focal length (p > f), and 
virtual, upright images of real objects located closer than the 
focal length (p < f).  

 (ii) Answers (a) and (c). A diverging lens forms a virtual, upright, 
and diminished image of any real object located any distance 
from the lens. 

OQ36.5 Answer (d). The entire image is visible, but only at half the intensity. 
Each point on the object is a source of rays that travel in all 
directions. Thus, light from all parts of the object goes through all 
unblocked parts of the lens and forms an image. If you block part of 
the lens, you are blocking some of the rays, but the remaining ones 
still come from all parts of the object. 

OQ36.6 Answer (d). The image is upright, so the magnification is positive:  

    
  
M =

−q
p

: + 1.50 =
−q

30.0 cm
→ q = −45.0 cm  

    
  

1
p
+

1
q
=

1
f

:
1

30.0 cm
+

1
−45.0 cm

=
1
f

→ f = 90.0 cm  

OQ36.7 Answer (b). For lens 1, the object distance p1 = 50.0 cm: 

    
  

1
p1

+
1
q1

=
1
f1

:
1

50.0 cm
+

1
q1

=
1

15.0 cm
→ q1 = 21.4 cm  

 The image distance is positive, so the image is real and forms 21.4 cm 
to the right of lens 1.  

 The image of lens 1 is the object of lens 2. For lens 2, the object 
distance p2 = 35.0 cm – 21.4 cm = 13.6 cm: 

    
  

1
p2

+
1
q2

=
1
f2

:
1

13.6 cm
+

1
q2

=
1

10.0 cm
→ q2 = 38.0 cm  
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 The image distance is positive, so the image is real and forms 38.0 cm 
to the right of lens 2.  

 From Equation 36.18, the overall magnification is  

    
  
M = M1M2 =

−q1

p1

⎛
⎝⎜

⎞
⎠⎟

−q2

p2

⎛
⎝⎜

⎞
⎠⎟

=
−21.4cm
50.0cm

⎛
⎝⎜

⎞
⎠⎟

−38.0cm
13.6cm

⎛
⎝⎜

⎞
⎠⎟

= 1.20  

OQ36.8 Answer (c). The amount of light focused on the film by a camera is 
proportional to the area of the aperture through which the light 
enters the camera. Since the area of a circular opening varies as the 
square of the diameter of the opening, the light reaching the film is 
proportional to the square of the diameter of the aperture. Thus, 
increasing this diameter by a factor of 3 increases the amount of light 
by a factor of 9.  

OQ36.9 Answer (b). The angle of refraction for the light coming from the fish 
to the person is 60°. The angle of incidence is smaller, so the fish is 
deeper than it appears. [Refer to CQ35.16.]  

OQ36.10 The ranking is c > e > a > d > b. In case (c) the object distance is 
effectively infinite. In (e) the object distance is very large compared to 
the focal length, but not infinite. In (a) the object distance is a little 
larger than the focal length. In (d) the object distance is equal to the 
focal length.  In (b) the object distance is less than the focal length.   

OQ36.11 Answer (d). We can answer this question conceptually by noting that 
if the lens were surrounded by water, parallel light rays passing into 
and out of the lens would experience smaller changes in the index of 
refraction, so they would bend less, and so would focus farther from 
the lens.  

 We can answer this question quantitatively if we consider the 
derivation of the lens makers’ equation (Equation 36.15) for the 
general case of the lens being surrounded by a medium of index n0. 
We would conclude that Equation 36.15 takes the general form  

    
  

1
f

=
n
n0

− 1
⎛
⎝⎜

⎞
⎠⎟

1
R1

−
1

R2

⎛
⎝⎜

⎞
⎠⎟

 

 So, for a lens of crown glass (n = 1.52, from Table 35.1) surrounded 
by air, n0 = 1, we have  

    
  

1
f

= 1.52 − 1( ) 1
R1

−
1

R2

⎛
⎝⎜

⎞
⎠⎟
 = 

1
15.0 cm
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 but for a lens surrounded by water, n0 = 1.333, and we have  

    

  

1
f

=
1.52
1.333

− 1⎛
⎝⎜

⎞
⎠⎟

1
R1

−
1

R2

⎛
⎝⎜

⎞
⎠⎟

=

1.52
1.333

− 1⎛
⎝⎜

⎞
⎠⎟

1.52 − 1( ) 1.52 − 1( ) 1
R1

−
1

R2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =

1.52
1.333

− 1⎛
⎝⎜

⎞
⎠⎟

1.52 − 1( )
1

15.0 cm

f = 55.6 cm

 

OQ36.12 Answer (e).  At the smallest distance the object and image distances 
are equal, p = q:  

    

  

1
p
+

1
q
=

1
f

:
1
p
+

1
p
=

1
f

2
p
=

1
f

→ p = 2 f = q
 

OQ36.13 (i) Answers (a) and (c). The image of a real object formed by a 
plane mirror is always an upright and virtual image, which is 
the same size as the object and located as far behind the mirror 
as the object is in front of the mirror.  

 (ii) Answer (e). A concave (converging) mirror forms real, inverted 
images of real objects located outside the focal point (p > f), and 
virtual, upright images of real objects located inside the focal 
point (p < f) of the mirror.  

 (iii) Answer (a) and (c). With a real object in front of a convex 
(diverging) mirror, the image is always virtual, upright, and 
diminished in size, and located between the mirror and the focal 
point. 

OQ36.14 Answer (b). The image is upright, and corresponding parts of the 
object and image are the same distance from the mirror.  
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ36.1 (a) Yes. 

 (b) You have likely seen a 
Fresnel mirror for 
sound. The diagram 
represents first a side 
view of a band shell. It 
is a concave mirror for 
sound, designed to 
channel sound into a 
beam toward the 
audience in front of the 
band shell. Sections of its surface can be kept at the right 
orientations as they are pushed around inside a rectangular box 
to form an auditorium with good diffusion of sound from stage 
to audience, with a floor plan suggested by the second part of 
the diagram. 

CQ36.2 (a) The focal point is defined as the location of the image formed by 
rays originally parallel to the axis. An object at a large but finite 
distance will radiate rays nearly but not exactly parallel. Infinite 
object distance describes the definite limiting case in which 
these rays become parallel.  

 (b) To measure the focal length of a converging lens, set it up to 
form an image of the farthest object you can see outside a 
window. The image distance will be equal to the focal length 
within one percent or better if the object distance is a hundred 
times larger or more. 

CQ36.3 Because when you look at the  in your rear view 
mirror, the apparent left-right inversion clearly displays the name of 
the AMBULANCE behind you. Do not jam on your brakes when a 
MIAMI city bus is right behind you. 

CQ36.4 Chromatic aberration arises because a material medium’s refractive 
index can be wavelength dependent. A mirror changes the direction 
of light by reflection, not refraction. Light of all wavelengths follows 
the same path according to the law of reflection, so no chromatic 
aberration happens. 

CQ36.5 (a) Yes. If the converging lens is immersed in a liquid with an index 
of refraction significantly greater than that of the lens itself, it 
will make light from a distant source diverge.  

 

ANS. FIG. CQ36.1 
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 (b) No. This is not the case with a converging (concave) mirror, as 
the law of reflection has nothing to do with the indices of 
refraction. 

CQ36.6 As in the diagram, let the center of 
curvature C of the fishbowl and the 
bottom of the fish define the optical 
axis, intersecting the fishbowl at 
vertex V. A ray from the top of the 
fish that reaches the bowl surface 
along a radial line through C has 
angle of incidence zero and angle of 
refraction zero. This ray exits from the 
bowl unchanged in direction. A ray 
from the top of the fish to V is 
refracted to bend away from the normal. Its extension back inside 
the fishbowl determines the location of the image and the 
characteristics of the image. The image is upright, virtual, and 
enlarged. 

CQ36.7 (a) An infinite number.  In general, an infinite number of rays leave 
each point of any object and travel in all directions.  Note that 
the three principal rays that we use for imaging are just a subset 
of the infinite number of rays.   

 (b) All three principal rays can be drawn in a ray diagram, 
provided that we extend the plane of the lens as shown in 
Figure CQ36.7. 

 

ANS. FIG. CQ36.7 

CQ36.8 With the meniscus design, when you direct your gaze near the outer 
circumference of the lens you receive a ray that has passed through 
glass with more nearly parallel surfaces of entry and exit. Thus, the 
lens minimally distorts the direction to the object you are looking at. 
If you wear glasses, turn them around and look through them the 
wrong way to maximize this distortion. 

CQ36.9 Note that an object at infinity has an image at the focal point of a 
converging lens, and an object at the focal point of a converging lens 

 

ANS. FIG. CQ36.6 
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has its image at infinity, so we may conclude that the farther an 
object is from a lens, the closer the image is to the focal point of the 
lens. Therefore, we expect the image of the farther tree to form closer 
to the lens, so we conclude that the screen should be moved toward 
the lens.  

 We can verify our conclusion using the lens equation:  

   
  

1
p
+

1
q
=

1
f

  →   
1
q
=

1
f
−

1
p
=

p − f
fp

=
1− f p

f
  →   q =

f
1− f p

 

 For p = x, 
  
q =

f
1− f x

,  and for p′ = 2x, 
  
′q =

f
1− f 2x

< q,  so our 

conclusion is correct. 

CQ36.10 In the diagram, only two of the three principal rays have been used 
to locate images to reduce the amount of visual clutter. The upright 
shaded arrows are the objects, and the correspondingly numbered 
inverted arrows are the images. As you can see, object 2 is closer to 
the focal point than object 1, and image 2 is farther to the left than 
image 1. 

 

ANS. FIG. CQ36.10 

CQ36.11 The eyeglasses on the left are diverging lenses that correct for 
nearsightedness. If you look carefully at the edge of the person’s face 
through the lens, you will see that everything viewed through these 
glasses is reduced in size. The eyeglasses on the right are converging 
lenses, which correct for farsightedness. These lenses make 
everything that is viewed through them look larger.    

CQ36.12 The eyeglass wearer’s eye is at an object distance from the lens that is 
quite small—the eye is on the order of 10–2 meter from the lens. The 
focal length of an eyeglass lens is several decimeters, positive or 
negative. Therefore the image distance will be similar in magnitude 
to the object distance. The onlooker sees a sharp image of the eye 
behind the lens. Look closely at Figure CQ36.11a and notice that the 
wearer’s eyes seem not only to be smaller, but also positioned a bit 
behind the plane of his face—namely, behind where they would be if 
he were not wearing glasses. Similarly, in Figure CQ36.11b, his eyes 
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seem to be magnified and in front of the plane of his face. We as 
observers take the light information coming from the object through 
the lens and perceive or photograph the image as if it were an object.  

CQ36.13 Absolutely. Only absorbed light, not transmitted light, contributes 
internal energy to a transparent object. A clear lens can stay ice-cold 
and solid as megajoules of light energy pass through it. 

CQ36.14 Make the mirror an efficient reflector (shiny). Make it reflect to the 
image even rays far from the axis, by giving it a parabolic shape. 
Most important, make it large in diameter to intercept a lot of solar 
power. And you get higher temperature if the image is smaller, as 
you get with shorter focal length; and if the furnace enclosure is an 
efficient absorber (black). 

CQ36.15 The artist’s statements are accurate, perceptive, and eloquent. The 
image you see is “almost one’s whole surroundings,” including 
things behind you and things farther in front of you than the globe is, 
but nothing eclipsed by the opaque globe or by your head. For 
example, we cannot see Escher’s index and middle fingers or their 
reflections in the globe. 

 The point halfway between your eyes is indeed the focus in a 
figurative sense, but it is not an optical focus. The principal axis will 
always lie in a line that runs through the center of the sphere and the 
bridge of your nose (between your eyes). Outside the globe, you are 
at the center of your observable universe. If you close one eye, the 
center of the looking-glass world may hop over to the location of the 
image of your open eye (depending on which eye is dominant).  

CQ36.16 Both words are inverted, but the word OXIDE looks the same when 
inverted.   

CQ36.17 Yes, the mirror equation and the magnification equation apply to 
plane mirrors. A curved mirror is made flat by increasing its radius 
of curvature without bound, so that its focal length goes to infinity. 

From 
  

1
p
+

1
q
=

1
f
= 0  we have 

  

1
p

= −
1
q

; therefore, p = –q. The virtual 

image is as far behind the mirror as the object is in front. The 

magnification is 
  
M = −

q
p

=
p
p

= 1 . The image is right side up and 

actual size. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 36.1 Images Formed by Flat Mirrors 
P36.1 ANS. FIG. P36.1 shows the path of rays 

reflected by a mirror of minimum height: 
rays from the person’s feet and top of his 
head travel along the respective paths 
123 and 543 to his eyes. The rays reflect 
at the bottom and top of the mirror. 
Because of the law of reflection, the paths 
can be considered to form the 
hypotenuses of two pairs of right 
triangles with common base c: two large 
similar right triangles with height a, and 
two small similar right triangles with 
height b. 

  Rays from his feet enter his eyes a 
vertical distance 2a from the ground.  
The rays from the top of his head enter  
his eyes a distance 2b from the top of his head. His full height is H = 2a 
+ 2b. The mirror has height L = a + b. We see then that  

   
  
L = a + b =

H
2

=
178 cm

2
= 89 cm  

P36.2 The virtual image is as far behind the 
mirror as the choir is in front of the mirror. 
Thus, the image is 5.30 m behind the 
mirror. The image of the choir is 0.800 m + 
5.30 m = 6.10 m from the organist. Using 
similar triangles: 

   
  

′h
0.600 m

=
6.10 m
0.800 m

 

 or  
  
′h = 0.600 m( ) 6.10 m

0.800 m
⎛
⎝⎜

⎞
⎠⎟ = 4.58 m  

P36.3 (a) Younger. Light takes a finite time to travel from an object to the 
mirror and then to the eye. 

 (b) I stand about 40 cm from my bathroom mirror. I scatter light, 
which travels to the mirror and back to me in time interval  

   
  
Δt =

2d
c

=
0.8 m

3 × 108  m/s
~ 10−9  s ,  showing me a view of 

myself as I was then. 

ANS. FIG. P36.1 
 

ANS. FIG. P36.2 
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P36.4 The mirrors are 6.00 m apart. 

 (1) The first image in the left mirror is 2.00 m behind the mirror, or 
2.00 m + 2.00 m = 

 
4.00 m  from the position of the person. 

 (2) The first image in the right mirror is located 4.00 m behind the 
right mirror, but this location is 4.00 m + 6.00 m = 10.0 ft from the 
left mirror. Thus, the second image in the left mirror is 10.00 m 
behind the mirror, or 10.00 m + 2.00 m = 

 
12.00 m  from the 

person.  

 (3) The first image in the left mirror forms an image in the right 
mirror. This first image is 2.00 m + 6.00 m = 8.00 m from the right 
mirror, and, thus, an image 8.00 m behind the right mirror is 
formed. This image in the right mirror also forms an image in the 
left mirror. The distance from this image in the right mirror to the 
left mirror is 8.00 m + 6.00 m = 14.00 m. The third image in the left 
mirror is, thus, 14.00 m behind the mirror, or 14.00 m + 2.00 m = 

 
16.00 m  from the person. 

P36.5 For a plane mirror, q = –p. Recall from common experience that the 
position of an image does not shift as a viewer rotates. Thus, to a 
viewer looking toward a mirror that is turned by 45°, the image 
distance still follows this rule.  

 (a) The upper mirror M1 produces a virtual, actual-sized image I1 
according to  

   
  
M1 = −

q1

p1

= +1  

  As shown in ANS. FIG. P36.5, this image is a distance p1 above the 
upper mirror. It is the object for mirror M2, at object distance 

   p2 = p1 + h 

  The lower mirror produces a virtual, actual-sized, right-side-up 
image according to 

     q2 = −p2 = − p1 + h( )  

  with  

   
  
M2 = −

q2

p2

= +1     and      Moverall = M1M2 = 1.  

  Thus the final image is at distance p1 + h, behind the lower mirror. 

 (b) It is  virtual .  
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 (c) 
 
Upright  

 (d) With magnification 
 

+1.00 . 

 (e) No. Left and right are not reversed. In a top view of the 
periscope, parallel rays from the right and left sides of the object 
stay parallel and on the right and left. The first mirror switches 
left and right, but the second mirror switches them again; so, 
overall left and right are not reversed.  

 

 

ANS. FIG. P36.5 

*P36.6 A graphical construction, shown in ANS.  
FIG. P36.6, produces 5 images, with images I1  
and I2 directly into the mirrors from the  
object O, and (O, I3 , I4 ) and (I2 , I1 , I5 ) forming  
the vertices of equilateral triangles. 

 

 

P36.7 We assume that she looks only at images in the nearest mirror. The 
mirrors are 3.00 m apart.  

 (a) With her palm located 1.00 m in front of the nearest mirror, that 
she sees its image 1.00 m behind the nearest mirror. 

 (b) The nearest mirror shows the palm of her hand.  

 
ANS. FIG. P36.6 
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 (c) Her hand is 2.00 m from the farthest mirror, so its image forms 
2.00 m behind the farthest mirror, but this image is 2.00 m + 3.00 
m = 5.00 m from the nearest mirror, so the image she sees is 5.00 
m behind the nearest mirror. 

 (d) The image is that of the back of her hand reflected in the farthest 
mirror. 

 (e) The farthest mirror forms an image of the first image of part (a), 
which is 1.00 m + 3.00 m = 4.00 m from the farthest mirror; this 
image is then 4.00 m behind the farthest mirror, so it is 4.00 m + 
3.00 m = 7.00 m in front of the nearest mirror, so the image she 
sees is 7.00 m behind the nearest mirror.  

 (f) This is the image of the palm reflected back from the nearest to 
the farthest and back to the nearest mirror.  

 (g) Since all images are located behind the mirror, and all images 
result from light reflected in a mirror, 

 
all are virtual images . 

 
 

 

Section 36.2 Images Formed by Spherical Mirrors 
P36.8 (a) A concave mirror is a converging mirror, so the focal length  

f = +20.0 cm. Then, 
  

1
p
+

1
q
=

1
f

 gives     

   
  

1
50.0 cm

+
1
q
=

1
20.0 cm

→ q = +33.3 cm  

  Since q > 0, the image is located  33.3 cm in front of the mirror . 

 (b) 
  
M = − 

q
p
 = −  

33.3 cm( )
50.0 cm

= −0.666  

 (c) The image distance is positive, so the image is real.  

 (d) The magnification is negative, so the image is inverted. 
P36.9 We apply the mirror equation using the sign conventions listed in the 

textbook chapter.  
 (i) The mirror equation gives 

   
  

1
q

=
1
f
−

1
p

=
1

10.0 cm
−

1
40.0 cm

→ q = 13.3 cm  

   and 
  
M =

q
p

= −
13.3 cm
40.0 cm

= −0.333  

  (a) The image is 13.3 cm in front of the mirror.  



686     Image Formation 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  (b) The image distance is positive, so the image is  real. 

  (c) The magnification is negative, so the image is inverted. 

  (d) From above,   M = −0.333 .  The value of M indicates that the 
image is inverted and one-third the height of the object. 

 

ANS. FIG. P36.9(i) 

  The ray diagram traced in ANS. FIG. P36.9(i) shows this 
identification more clearly, and that the image is inverted.  

 (ii) Again, from the mirror equation, 

   
  

1
q

=
1
f
−

1
p

=
1

10.0 cm
−

1
20.0 cm

→ q = 20.0 cm  

  and 

   
  
M =

q
p

= −
20.0 cm
20.0 cm

= −1.00  

  The ray diagram for this case is shown in ANS. FIG. P36.9(ii). 

  (a) The image is 20.0 cm in front of the mirror.  

  (b) The image distance is positive, so the image is real. 

  (c) The magnification is negative, so the image is inverted.  

  (d) From above,   M = −1.00 .  The value of M indicates that the 
image is inverted and the same height as the object in this 
special case. 

 

ANS. FIG. P36.9(ii) 
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 (iii) (a) The object is now at the focal point of the mirror. Following 
the same steps gives 

    

  
q = 1

2/R − 1/ p
= 1

2/(20.0 cm)− 1/(10.0 cm)
= 1

0
=∞

 

   We can say that no image is formed, or that the image is at 
an infinite distance.  The ray diagram for this case is shown 
in ANS. FIG. P36.9(iii). 

 (b) In this special case the reflected rays do not intersect. We cannot 
classify the image as real or virtual as no image is formed  

 (c) We cannot classify the image as upright or inverted as no image 
is formed.  

  A screen placed at a large distance in front of the mirror can 
intercept the reflected light energy, showing the appearance of an 
upside-down real image, but it is not sharp for any finite distance. 
You can look into the mirror to view the image as a right side up 
virtual image, with your eye focused on infinity.  

 (d) The magnification is 
  
M = −

q
p

= −
∞

20.0 cm
= ∞.  

  In this special case, if we say no image is formed at a finite 
distance, it has no finite magnification. If we say the image is at 
infinity, then its height and its magnification are also infinite. 
There is no physical difference between  +∞  and  −∞ . 

 

ANS. FIG. P36.9(iii) 

P36.10 (a) To approximate paraxial rays, the rays should be drawn so that 
they reflect at the vertical plane that passes through the vertex of 
the mirror, rather than at the mirror’s surface, as done in the 
textbook. For this reason, the concave surface of the mirror 
appears flat in ANS. FIG. P36.10. 

 (b) q = –40.0 cm, so the image is behind the mirror. 
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ANS. FIG. P36.10 

 (c) M = +2.00, so the image is enlarged and upright. 

 (d) The mirror is concave (converging), so f = +40.0 cm. 

   
  

1
q

=
1
f
−

1
p

=
1

40.0 cm
−

1
20.0 m

    →    q = −40.0 cm  

  and 
  
M =

−q
p

=
− −40.0 cm( )

20.0 cm
= +2.00  

P36.11 The convex mirror is described by 
   

  
f =

R
2

=
–40.0 cm

2
= –20.0 cm

 

 ANS. FIG. P36.11 shows the ray diagram for this situation. 

 

ANS. FIG. P36.11 

 (a) Then 
  

1
p
 + 

1
q
 = 

1
f

 gives 

   

  
q = 1

1/ f − 1/ p
= 1

1/ −20.0 cm( )− 1/ 30.0 cm( ) = −12.0 cm
 

  The magnification factor is  
   

  
M = –

q
p
= –

–12.0 cm
30.0 cm

⎛
⎝⎜

⎞
⎠⎟ = +0.400
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  The image is behind the mirror, upright, virtual, and diminished.  

 (b) Following the same steps,  
   

  
q = 1

1/ f − 1/ p
= 1

1/ −20.0 cm( )− 1/ 60.0 cm( ) = −15.0 cm
  

  and 
  
M = –q

p
= –

–15.0 cm
60.0 cm

⎛
⎝⎜

⎞
⎠⎟ = +0.250 .  

 (c) Since M > 0, the images are 
 

both upright .  

P36.12 (a) The mirror is convex (diverging), so  

   
  
f = −

R
2

= −
0.550 m

2
= −0.275 m  

   
  

1
q

=
1
f
−

1
p

=
1

−0.275 m
−

1
10.0 m

     

  gives   q = −0.267 m = −26.7 cm .  

  The image distance is negative; thus, the image is virtual. The 
image is 26.7 cm behind the mirror.  

 (b) 
  
M =

−q
p

= −
−0.267
10.0 m

= +0.026 7  

  The magnification is positive, so the image is upright. 

 (c) From above,   M = 0.026 7 .  

P36.13 (a) The mirror is convex (diverging), so f = –10.0 cm. 

   
  

1
q

=
1
f
−

1
p

=
1

−10.0 cm
−

1
30.0 m

→ q = −7.50 cm  

  The image distance is negative; thus, the image is virtual. The 
image is 7.50 cm behind the mirror.  

 (b) From 
  
M =

−q
p

= −
−7.50

30.0 cm
= +0.250 , we see that the magnification 

is positive, so the image is upright. 

 (c) 
  
M =  ′h

h
→ ′h = Mh = +0.250 2.00 cm( ) = 0.500 cm  
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P36.14 (a) Since the object is in front of the mirror, p > 0, and p = 1.00 cm. 
With the image behind the mirror, the image is virtual, so q < 0, 
and q = –10.0 cm. The mirror equation gives for the radius of 
curvature  

    

  

1
f
=

2
R
=

1
p
+

1
q
=

1
1.00 cm

+
1

−10.0 cm
→ f =

R
2
= 1.11 cm

R = +2.22 cm

 

  A positive radius means the mirror is converging, so it is a 
concave mirror. 

 (b) The magnification is 
  
M = −

q
p

= −
−10.0 cm( )
1.00 cm

= +10.0 .  

P36.15 The niche acts as a cylindrical mirror that reflects sound. This is a 
mirror with a vertical axis and a radius R = 2.50 m: its focal length 

  
f =

R
2

= 1.25 m.  To the extent that we can treat sound as being 

composed of “rays of sound,” we can find the point of focus of sound 
waves by using the same method we use for rays of light.  

 In a vertical plane the sound disperses as usual, but that radiated in a 
horizontal plane is concentrated in a sound image at distance q from 
the back of the niche, where 

   
  

1
p
+

1
q
=

1
f

→
1

2.00 m
+

1
q
=

1
1.25 m

 

   
  
q = 3.33 m from the deepest point in the niche .  

P36.16 A convex mirror diverges light rays incident upon it, so the mirror in 
this problem cannot focus the Sun’s rays to a point.  

P36.17 From the definition of magnification, 
 
M = −

q
p

, which gives 

   
  q = −Mp = −0.013 0 30 cm( ) = −0.390 cm  

 Then, from the mirror-lens equation, 

   

  

1
p
+ 1

q
= 1

f
= 2

R

1
30.0 cm

+ 1
−0.390 cm

= 2
R

R = −0.790 cm

 

 The cornea is convex, with radius of curvature  0.790 cm .  
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P36.18 The ball is a convex mirror with a diameter of 8.50 cm: 

   R = –4.25 cm     and     
  
f =

R
2

= −2.125 cm  

 (a) We have 

   
  
M =

3
4

= −
q
p

→ q = −
3
4

p  

  By the mirror equation,  

   
  

1
p
+

1
q
=

1
f

 

   
  

1
p

+
1

− 3 4( )p
=

1
−2.125 cm

 

  or 
  

3
3p

−
4

3p
=

1
−2.125 cm

=
−1
3p

→ p = + 0.708 m  

  The object is 0.708 m in front of the sphere. 

 (b) From ANS. FIG. P36.18, the image is upright, virtual, and 
diminished. 

P36.19 (a) The image is inverted and 4.00 times larger, so the magnification 
is  

   
  
M = −4.00 = −

q
p

→ q = 4.00p  

  Thus the image is farther from the mirror than the object.  

  The object and images distances are related by  

     q − p = 0.600 m = 4.00p − p = 3.00p → p = 0.200 m,      

  and q = 0.800 m. 

  By the mirror equation,  

   
  

1
f
=

1
p
+

1
q
=

1
0.200 m

+
1

0.800 m
→ f = 0.160 m  

 (b) A convex (diverging) mirror forms an upright, virtual image, so 
the magnification is   

   
  
M = +0.500 = −

q
p

→ q = −0.500p  

  The image is virtual, so it is behind the mirror, and the image 
distance is negative. The object and images distances are related 

ANS. FIG. P36.18 
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by  

     q + p = 0.600 m = −q + p = − −0.500p( ) + p = 1.50p  

     p = 0.400 m → q = −0.200 m  

   
  

1
p
+

1
q
=

1
f
=

1
0.400 m

+
1

−0.200 m
→ f = −0.400 m  

P36.20 (a) The image is inverted, and a > 1 times larger, so the magnification is 

   
 
M = −a = −

q
p

→ q = ap  

  Thus the image is farther from the mirror than the object.  

  The object and image distances are related by  

   
  
q − p = d = ap − p = a − 1( )p → p =

d
a − 1

, q =
ad

a − 1
 

  By the mirror equation, 

   

  

1
f

=
1
p

+
1
q

=
a − 1

d
+

a − 1
ad

=
a a − 1( ) + a − 1( )

ad
=

a2 − 1
ad

f =
ad

a2 − 1

 

 (b) The image is upright, and a < 1, so the magnification is: 

   
 
M = a = −

q
p

→ q = −ap  

  The image is virtual, so it is behind the mirror, and the image 
distance is negative. The object and image distances are related by  

   

  

q + p = d = −q + p = − −ap( ) + p = a + 1( )p

p =
d

1 + a
and q = −ap =

−ad
1 + a

 

  By the mirror equation,  

   

  

1
f

=
1
p

+
1
q

=
1 + a

d
+

1 + a
−ad

=
a 1 + a( ) − 1 + a( )

ad
=

a2 − 1
ad

f =
ad

a2 − 1

 

P36.21 From the magnification equation,  

   
  
M = ′h

h
=
+4.00 cm
10.0 cm

= +0.400 = −
q
p
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 which gives q = –0.400p, so the image must be virtual. 

 (a) It is a (diverging) 
 

convex  mirror that produces a diminished, 

upright virtual image. 

 (b) We must have 

     p + q = 42.0 cm = p − q  

   p = 42.0 cm + q 

   p = 42.0 cm – 0.400p 

   
  
p =

42.0 cm
1.40

= 30.0 cm  

  The mirror is  at the 30.0-cm mark .  

 (c) 
  

1
p

+
1
q

=
1
f

=
1

30 cm
+

1
−0.400 30 cm( ) =

1
f

= −0.050 0 cm  

  
f = −20.0 cm  

  The ray diagram looks like Figure 36.13(c) in the text. 

P36.22 (a) Since the mirror is concave, R > 0, giving 
  
f =

R
2
= +12.0 cm . The 

magnification is positive because the image is upright: 

   
  
M = −

q
p
= +3 → q = −3p  

  The mirror equation is then 

   

  

1
p
+

1
q
=

1
f

1
p
−

1
3p

=
2

3p
=

1
12.0 cm

→ p = 8.00 cm
 

 (b) ANS. FIG. P36.22(b) shows the principal ray diagram for this 
situation. 

 

ANS. FIG. P36.22(b) 
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 (c) The image distance is negative, so the image is virtual. The rays 
of light do not actually come from the position of the image.  

P36.23 Assume that the object distance is the same in both cases (i.e., her face 
is the same distance from the hubcap regardless of which way it is 
turned). Also realize that the near image (q = –10.0 cm) occurs when 
using the convex side of the hubcap. Applying the mirror equation to 
both cases gives: 

 concave side:  R = R ,     q = –30.0 cm 

   
  

1
p
−

1
30.0

=
2
R

    or    
2
R

=
30.0 cm − p
30.0 cm( )p

 [1] 

 convex side:   R = − R ,     q = –10.0 cm 

   
  

1
p
−

1
10.0

= −
2
R

    or    
  

2
R

=
p − 10.0 cm
10.0 cm( )p

 [2] 

 (a) Equating equations [1] and [2] gives: 

   
  

30.0 cm − p
3.00

= p − 10.0 cm     or     p = 15.0 cm 

  Thus, her face is 
 

15.0 cm  from the hubcap. 

 (b) Using the above result (p = 15.0 cm) in equation [1] gives: 

   
  

2
R

=
30.0 cm − 15.0 cm
30.0 cm( ) 15.0 cm( )      or     

  

2
R

=
1

30.0 cm
      

  and   R = 60.0 cm.  

  The radius of the hubcap is  60.0 cm .  

P36.24 (a) We assume the object is real; thus the object distance p is positive. 
The mirror is convex, so it is a diverging mirror, and we have 

  f = − f = −8.00 cm . The image is virtual, so  q = − q . Since we 

also know that   q = p 3 , the mirror equation gives 

   
  

1
p
+

1
q
=

1
p
−

3
p
=

1
f

     or     
  
−

2
p

=
1

−8.00 cm
    

  so  p = +16.0 cm 

  This means that the object is 16.0 cm from the mirror. 

 (b) The magnification is   M = −q p = + q p = +1 3 = +0.333 . 

 (c) Thus, the image is 
 
upright  and one-third the size of the object. 
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P36.25 (a) The image forms on a screen, so it is real and in front of the mirror, 
so q = p + 5.00 m, because p is positive. The magnification is  

   
  
M = −

q
p

= −5.00      or     q = 5.00p 

  Therefore, 

   p + 5.00 m = 5.00p     →     p = 1.25 m      

  and     q = p + 5.00 m = 6.25 m. From 

   
  

1
p
+

1
q
=

1
f
=

1
1.25 m

+
1

6.25 m
→ f = +1.04 m  

  The focal length is positive, so the mirror is a converging mirror:  
concave. 

 (b) 
  
f = +1.04 m =

R
2

→ R = 2.08 m  

 (c) From part (a), p = 1.25 m; the mirror should be 1.25 m from the 
object. 

P36.26 (a) The image starts from a point whose height above the mirror 
vertex is given by 

   

  

1
p
+

1
q
=

1
f
=

2
R

 

   

  

1
3.00 m

+
1
q
=

1
0.500 m

→ q = 0.600 m
 

  As the ball falls, p decreases and q increases. Ball and image pass 
when q1 = p1. When this is true, 

   

  

1
p1

+
1
p1

=
1

0.500 m
=

2
p1

→ p1 = 1.00 m,
 

  which is at the focal point. 

  As the ball passes the focal point, the image switches from 
infinitely far above the mirror to infinitely far below the mirror. 
As the ball approaches the mirror from above, the virtual image 
approaches the mirror from below, reaching it together when  
p2 = q2 = 0. 

 (b) The falling ball passes its real image when it has fallen 

   
  
Δy = 3.00 m − 1.00 m = 2.00 m =

1
2

gt2  
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  which gives 
  
t = 2 2.00 m( )

9.80 m s2 = 0.639 s .  

  The ball reaches its virtual image when it reaches the surface of 
the mirror, which is when it has traversed  

   

  
Δy = 3.00 m − 0 = 3.00 m =

1
2

gt2
 

  which gives 
  
t =

2 3.00 m( )
9.80 m/s2 = 0.782 s .  

P36.27 (a) The flat mirror produces an image according to q = –p = –24.0 cm. 
The image is behind the mirror, with the distance from your eyes 
given by  

   
 
1.55 m + 24.0 m = 25.6 m  

 (b) The image is the same size as the object, so  

   
  
θ =

h
d

=
1.50 m
25.6 m

= 0.058 7 rad   

 (c) 
  

1
p
+

1
q
=

1
f
=

2
R

 

   
  

1
24 m

+
1
q

=
2

−2 m( ) → q = −0.960 m  

  This image is behind the mirror, distant from your eyes by  

    1.55 m + 0.960 m = 2.51 m  

 (d) The image size is given by 
 
M = ′h

h
= −

q
p

: 

   

  
′h = −h

q
p

= −1.50 m
−0.960 m

24 m
⎛
⎝⎜

⎞
⎠⎟ = 0.060 0 m

 

  So its angular size at your eye is 
  
′θ = ′h

d
=

0.06 m
2.51 m

= 0.023 9 rad .  

 (e) Your brain assumes that the car is 1.50 m high and calculates its 
distance as 

   

  
′d =

h
′θ

=
1.50 m
0.023 9

= 62.8 m
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*P36.28 The focal length of the mirror may be found from the given object and 
image distances as  

  

  

1
f
= 1

p
+ 1

q

 

 Solving for the focal length f gives 
  

  
f = pq

p + q
= 152 cm( ) 18.0 cm( )

152 cm + 18.0 cm
= +16.1 cm

  

 For an upright image twice the size of the object, the magnification is 
  

  
M = − q

p
= +2.00

 

 which gives q = –2.00p. 

 Then, using the mirror equation again, 
  

1
f
= 1

p
+ 1

q
 becomes 

  

  

1
p
+ 1

q
= 1

p
− 1

2.00p
= 2 − 1

2.00p
= 1

f

 

 or 
  
p = f

2.00
= 16.1 cm

2.00
= 8.05 cm  

 
 

 

Section 36.3 Images Formed by Refraction 
P36.29 The image forms within the rod.  
   

  

n1

p
+

n2

q
=

n2 − n1

R
   →    

1.00
p

+
1.50

q
=

1.50 − 1.00
6.00 cm

=
1

12.0 cm

 

 (a) 
  

1.00
20.0 cm

+
1.50

q
=

1
12.0 cm

→ q = 45.0 cm  

 (b) 
  

1.00
10.0 cm

+
1.50

q
=

1
12.0 cm

→ q = −90.0 cm  

 (c) 
  

1.00
3.0 cm

+
1.50

q
=

1
12.0 cm

→ q = −6.00 cm  

P36.30 
  

n1

p
+

n2

q
=

n2 − n1

R
= 0      and     R →∞  

 
  
q = −

n2

n1

p = −
1

1.309
50.0 cm( ) = −38.2 cm  
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 Thus, the virtual image of the dust speck is 

 
38.2 cm below the top surface  of the ice. 

P36.31 For a plane refracting (water) surface  R →∞( )  

   
  

n1

p
+

n2

q
=

n2 − n1

R
     becomes     

  
q =−

n2

n1

p  

 (a) When the pool is full, p = 2.00 m and 

  
q =−

1.00
1.333

⎛
⎝⎜

⎞
⎠⎟ 2.00 m( ) = −1.50 m   

  or the pool appears to be 1.50 m deep.  

 (b) If the pool is half filled, then p = 1.00 m and q = – 0.750 m. Thus, 
the bottom of the pool appears to be 0.750 m below the water 
surface or 1.75 m below ground level. 

P36.32 Since the center of curvature of the surface is on the side the light 
comes from, R < 0 giving R = –4.00 cm. For the line, p = 4.00 cm; then, 

   
  

n1

p
+

n2

q
=

n2 − n1

R
      

 becomes      

   
  

1.00
q

=
1.00 − 1.50
− 4.00 cm

−
1.50

4.00 cm
  

 or  q = –4.00 cm 

 Thus, the magnification 
  
M = ′h

h
=−

n1

n2

⎛
⎝⎜

⎞
⎠⎟

q
p

 gives  

   
  
′h = −

n1q
n2p

⎛
⎝⎜

⎞
⎠⎟

h = −
1.50 −4.00 cm( )
1.00 4.00 cm( ) 2.50 mm( ) = 3.75 mm  

P36.33 The water’s surface has no curvature. When   R →∞,  the equation 

  

n1

p
+

n2

q
=

n2 − n1

R
,  which describes image formation at a single 

refracting surface, becomes 
  
q = −p

n2

n1

⎛
⎝⎜

⎞
⎠⎟

.  We use this to locate the final 

images of the two surfaces of the glass plate. First, find the image the 
glass forms of the bottom of the plate. [From Table 35.1, for flint glass, 
n1 = 1.66.] 

   
  
qB1 = −

1.33
1.66

⎛
⎝⎜

⎞
⎠⎟ 8.00 cm( ) = −6.41 cm  
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 This virtual image is 6.41 cm below the top surface of the glass, or 
18.41 cm below the water surface. Next, use this image as an object and 
locate the image the water forms of the bottom of the plate. 

   

  

qB2 = − 1.00
1.33

⎛
⎝⎜

⎞
⎠⎟ 18.41 cm( ) = −13.84 cm

= 13.84 cm below the water surface

  

 Now find image the water forms of the top surface of the glass. 
   

  

q3 = − 1
1.33

⎛
⎝⎜

⎞
⎠⎟ 12.0 cm( ) = −9.02 cm

= 9.02 cm below the water surface

  

 Therefore, the apparent thickness of the glass is  
   

  Δt = 13.84 cm − 9.02 cm = 4.82 cm   

P36.34 Refer to Figure P36.34 in the textbook. In the right triangle lying 
between O and the center of the curved surface,   tanθ1 = h/p.  In the 
right triangle lying between I and the center of the surface, tan 

  θ2 = − ′h /q . We need the negative sign because the image height is 
counted as negative while the angle is not. We substitute into the given 

    n1 tan θ1 = n2 tan θ2  

 to obtain  

    n1 h/p = −n2 ′h /q  

 Then the magnification, defined by M = h′/h, is given by  

    M = ′h /h = –n1 q/n2 p  

P36.35 From Equation 36.8 for image formation by a single refracting surface, 

  
  

n1

p
+

n2

q
=

n2 – n1

R
 

 We solve for q to find  

  
  
q =

n2Rp
p n2 – n1( ) – n1R

.  

 In this case, n1 = 1.50, n2 = 1.00, p = 10.0 cm, and R = –15.0 cm. 

 So the image location is  

  
  
q =

(1.00)( – 15.0 cm)(10.0 cm)
 (10.0 cm)(1.00 – 1.50) – (1.50)( – 15.0 cm)

= −8.57 cm  

 
 

apparent depth is 8.57 cm  
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P36.36 The center of curvature is on the object side, so the radius of curvature 
is negative:   R = − R = −225 cm.  

 (a) (i) p = 5.00 cm: 

     

  

n1

p
+ n2

q
= n2 − n1

R
1.333

5.00 cm
+ 1.000

q
= 1.000− 1.333

−225 cm
→ q = −3.77 cm

 

   The image is virtual and 3.77 cm from the front wall, in the 
water. 

  (ii) p = 25.0 cm: 
    

  

n1

p
+ n2

q
= n2 − n1

R

1.333
25.0 cm

+ 1.000
q

= 1.000− 1.333
−225 cm

→ q = −19.3 cm

 

   The image is virtual and 19.3 cm from the front wall, in the 
water. 

 (b) From Problem 34, the magnification is 
  
M = −

n1q
n2p

. 

  (i) 
  
M = −

n1q
n2p

= −
1.333 −3.77 cm( )

1.00(5.00 cm)
= +1.01  

  (ii) 
  
M = −

n1q
n2p

= −
1.333 −19.2 cm( )
1.000(25.0 cm)

= +1.03  

 (c) 

 

The plastic has uniform thickness, so the surfaces of entry and
exit for any particular ray are very nearly parallel.  The ray is
slightly displaced, but it would not be changed in direction by
going through the plastic wall with air on both sides. Only the
difference between the air and water is responsible for the
refraction of the light.

 

 (d)  Yes  

 (e) If  p = R , from 
  

n1

p
+

n2

q
=

n2 − n1

R
=

n1 − n2

R
 we have  

   
  

n1

R
+

n2

q
=

n1 − n2

R
→

n2

q
=
−n2

R
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  then  q = − R . 

  If  p > R  (but also   p < 4.00 R , if the image is to be virtual—see 
NOTE below), then 

   
  
p > R →

1
R

>
1
p

→
1
R

−
1
p

> 0  

  and 
   

  

n1

p
+ n2

q
= n1 − n2

R
n2

q
= n1

R
− n2

R
− n1

p

1
q

= − 1
R

+ n1

n2

1
R

− 1
p

⎛
⎝⎜

⎞
⎠⎟

1
q

= − 1
R

+ 1.333( ) 1
R

− 1
p

⎛
⎝⎜

⎞
⎠⎟

1
q

= 1
R

− 1.333( ) 1
R

− 1
p

⎛
⎝⎜

⎞
⎠⎟

< 1
R

→ q > R

 

  [Assuming that   p < 4.00 R .] For example, if   p = 2 R , 

   

  

1
q

= −
1
R

+ 1.333( ) 1
R

−
1

2 R
⎛
⎝⎜

⎞
⎠⎟

=
1
R

−1 +
1.333

2
⎛
⎝⎜

⎞
⎠⎟ =

−0.3335
R

q = −3.00 R

M = −
n1q
n2p

= −
1.333 −3.00 R( )

1.000 2 R( ) = +2.00

 

 Summarizing our results:  

 

  

If p = R , then q = −p = − R ; if p > R , then q > R . For example, if

p = 2 R , then q = −3.00 R  and M = +2.00.
 

 NOTE: In the equation 
  

n1

p
+

n2

q
=

n2 − n1

R
=

n1 − n2

R
, the term 

  

n1 − n2

R
 is 

positive because n1 > n2. If the image is to be virtual, then q must be 
negative, and so the term   n1 − n2( ) R  must be less than n1/p: 

   
  

n1 − n2

R
<

n1

p
→ p <

n1

n1 − n2

R =
1.333

1.333 − 1.000
R = 4.00 R  
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P36.37 For a plane surface (R = ∞), 
  

n1

p
+

n2

q
=

n2 − n1

R
 becomes 

  
q = −

n2p
n1

.  

 Thus, the magnitudes of the rate of change in the image and object 
positions are related by 

   
  

dq
dt

=
n2

n1

dp
dt

 

 If the fish swims toward the wall with a speed of 2.00 cm/s, the speed 
of the image is given by 

   
   
vimage =

dq
dt

=
1.00
1.33

2.00 cm/s( ) = 1.50 cm/s  

 
 

 

Section 36.4 Images Formed by Thin Lenses 

*P36.38 (a) From 
  

1
q

= 1
f
− 1

p
= 1

25.0 cm
− 1

26.0 cm
,  we obtain 

  
  

q = 650 cm .  

  The image is 
 

real, inverted, and enlarged .  

  (b) From 
  

1
q

= 1
f
− 1

p
= 1

25.0 cm
− 1

24.0 cm
,  we obtain 

  
  

q = −600 cm .  

  The image is 
 

virtual, upright, and enlarged .  

*P36.39 (a) From the mirror-and-lens equation,  

   
  

1
p
+ 1

q
= 1

f
:       

1
32.0 cm

+ 1
8.00 cm

= 1
f

  

  so 
  

f = 6.40 cm .  

 (b) 
  
M = − q

p
= − 8.00 cm

32.0 cm
= −0.250  

  (c) Since f > 0, the lens is 
 

converging .  
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P36.40 (a) From the mirror-and-lens equation, 
  

1
p
+ 1

q
= 1

f
:  

   
  

1
20.0 cm

+
1
q

=
1

−32.0 cm( )  

   

  
→    q = −

1
20.0

+
1

32.0
⎛
⎝⎜

⎞
⎠⎟
−1

= −12.3 cm
 

 

ANS. FIG. P36.40 

  Refer to ANS. FIG. P36.40. The image distance is negative, hence 
the image is virtual; thus, it forms 12.3 cm to the left of the lens. 

 (b) 
  
M = −

q
p

= −
−12.3 cm( )
20.0 cm

= 0.615  

 (c) See the ray diagram shown in ANS. FIG. P36.40. 

P36.41 The image is inverted:  
   

  
M = ′h

h
=

−1.80 m
0.024 0 m

= −75.0 → q = 75.0p
 

 The distance from slide to screen d = p + q = 3.00 m: 
   

  

d = p + q = p + 75.0p = 76.0p

p =
d

76.0
=

3.00 m
76.0

= 0.039 5 m

 

   p = 39.5 mm 

 and  q = 75.0p = 2.96 m. 

 (a) 
  

1
f
=

1
p
+

1
q
=

1
0.039 5 m

+
1

2.96 m
→ f = 0.039 0 m= 39.0 mm  

 (b) From above,   p = 39.5 mm .  

P36.42 (a) We are told that p = 5f. From the thin lens equation, 
  

1
p
+ 1

q
= 1

f
,  

we have 
   

  

1
5.00 f

+ 1
q
= 1

f
→ 1

q
= 1

f
− 1

5.00 f
= 4.00

5.00 f
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  or 
  
q = 5.00

4.00
f = +1.25 f  

  The image distance is positive, hence the image is real. 
  

  

The image is in back of the lens at a distance of 1.25 f  
from the lens.

 

 (b) 
  
M = −

q
p

= −
1.25 f
5.00 f

= −0.250  

 (c) From part (a), the image distance is positive, hence the image is 

 real .  

P36.43 Let R1 = outer radius and R2 = inner radius: 
   

  

1
f

= n− 1( ) 1
R1

− 1
R2

⎡

⎣
⎢

⎤

⎦
⎥ = 1.50− 1( ) 1

2.00 m
− 1

2.50 cm
⎡
⎣⎢

⎤
⎦⎥

= 0.050 0 cm−1

 

 so   f = 20.0 cm .  

P36.44 Your scale drawings should look similar to those given below:  

 (i) See diagram in ANS. FIG. P36.44(i).  

  (a) A carefully drawn-to-scale version of ANS FIG. P36.44(i) 
should yield an inverted image 20.0 cm in back of the lens 
and the same size as the object. 

 

ANS. FIG. P36.44(i) 

  (b) The image forms behind the lens, so the image is real. 

  (c) The figure shows that the image is inverted. 

  (d) The height of the image is the same as the height of the 
object, so M = –1.00. 

  (e) 
  

1
p
+

1
q
=

1
f

:   
  

1
20.0cm

+
1
q
=

1
10.0cm

→ q = +20.0cm  

   A positive image distance means that the image is real.  

   The magnification is 
  
M = −

q
p
= −

+20.0cm
20.0cm

= −1.00  
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   A negative magnification means that the image is inverted.  

   
  

Algebraic answers agree, and we can express values to
three significant figures: q = 20.0 cm, M = –1.00.

 

 (ii) See diagram in ANS. FIG. P36.44(ii). 

 

ANS. FIG. P36.44(ii) 

   (a) A carefully drawn-to-scale version of ANS FIG. P36.44(ii) 
should yield an upright, virtual image located 10 cm in front 
of the lens and twice the size of the object.  

  (b) The image forms in front of the lens, so the image is virtual. 

  (c) The figure shows that the image is upright. 

  (d) The height of the image is twice that of the object, so  
M = +2.00. 

  (e) 
  

1
p
+

1
q
=

1
f

:    
  

1
5.00 cm

+
1
q
=

1
10.0 cm

→ q = −10.0 cm  

   A negative image distance means that the image is virtual. 

   The magnification is 
  
M = −

q
p

= −
−10.0 cm( )
5.00 cm

= +2.00  

   A positive magnification means that the image is upright. 

   
  

Algebraic answers agree, and we can express values to
three significant figures: q = –10.0 cm, M = +2.00.

 

  (f) 

 

Small variations from the correct directions of rays can
lead to significant errors in the intersection point of the
rays.  These variations may lead to the three principal
rays not intersecting at a single point.

 

P36.45 In parts (a) and (b), the images are real, so the image distances are 
positive. 

 (a) q = +20.0 cm:  

   
  

1
p
+ 1

q
= 1

f
:

1
p
+ 1

20.0 cm
= 1

10.0 cm
   →    p = +20.0 cm  



706     Image Formation 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  The object distance is positive, so the object is real.  

  The object is 20.0 cm from the lens on the front side. 

 (b) q = +50.0 cm:  

   

  

1
p
+

1
q
=

1
f

:
1
p
+

1
50.0 cm

=
1

10.0 cm

                      p = +12.5 cm

 

  The object distance is positive, so the object is real.  

  The object is 12.5 cm from the lens on the front side. 

 (c and d) Now, the images in parts (a) and (b) are virtual, so the image 
distances are negative. 

 (c) q = –20.0 cm:  

   

  

1
p
+

1
q
=

1
f

:
1
p
+

1
−20.0 cm

=
1

10.0 cm

                      p = +6.67 cm

 

  The object distance is positive, so the object is real.  

  The object is 6.67 cm from the lens on the front side. 

 (d) q = –50.0 cm:  

   

  

1
p
+

1
q
=

1
f

:
1
p
+

1
−50.0 cm

=
1

10.0 cm

                      p = +8.33 cm

 

  The object distance is positive, so the object is real.  

  The object is 8.33 cm from the lens on the front side. 

P36.46 Use the thin lens equation, 
  

1
p
+

1
q
=

1
f

. The magnification is 
 
M = −

q
p

. 

 (i) p = 40.0 cm:     
  

1
40.0 cm

+
1
q
=

1
−20.0 cm

→ q = −13.3 cm  

   
  
M = −

q
p

= −
−13.3 cm( )
40.0 cm

= +0.333  

  (a) The image forms 13.3 cm in front of the lens. 

  (b) The object distance is negative, so the image is virtual. 

  (c) The magnification is positive, so the image is upright. 

  (d) From above, 
  
M = +0.333  
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 (ii) p = 20.0 cm:     
  

1
20.0 cm

+
1
q
=

1
−20.0 cm

→ q = −10.0 cm  

   
  
M = −

q
p

= −
−10.0 cm( )
20.0 cm

= +0.500  

  (a) The image forms 10.0 cm in front of the lens.  

  (b)  The object distance is negative, so the image is virtual.  

  (c) The magnification is positive, so the image is upright.  

  (d) From above,   M = +0.500  

 (iii) p = 10.0 cm:     
  

1
10.0 cm

+
1
q
=

1
−20.0 cm

→ q = −6.67 cm  

   
  
M = −

q
p

= −
−6.67 cm( )
10.0 cm

= +0.667  

  (a) The image forms 6.67 cm in front of the lens.  

  (b) The object distance is negative, so the image is virtual.  

  (c) The magnification is positive, so the image is upright.  

  (d) From above,   M = +0.667  

P36.47 We are looking at an enlarged, upright,  
virtual image. Therefore, M = +2 and  
not –2. Looking through the lens, you  
see the image beyond the lens.  
Therefore, the image is virtual, with  
q = –2.84 cm.  

  Now,   
  
M = ′h

h
= 2 = –

q
p

  

 so  
  
p = –

q
2

= 1.42 cm  

  A check is that p is positive, as it must  
be for a real object. 

 Thus,  

   

  

f = 1
p
+ 1

q
⎛
⎝⎜

⎞
⎠⎟

–1

= 1
1.42 cm

+ 1
(–2.84 cm)

⎡

⎣
⎢

⎤

⎦
⎥

–1

= 2.84 cm

 

 

 

ANS. FIG. P36.47(a) 
 

 

 

ANS. FIG. P36.47(b) 
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P36.48 From the thin lens equation, since the focal length of the lens is 
constant, 

   
  

1
p
+

1
q
=

1
f

:   p
−1 + q−1 = constant  

 Differentiating both sides with respect to ρ  then gives 

  

−1p−2 − 1q−2 dq
dp

= 0

dq
dp

= −
q2

p2 → dq = −
q2

p2 dp
 

P36.49 We apply the lens maker’s equation. The centers of curvature of the 
lens surfaces are on opposite sides, so the second surface has a 
negative radius  

 (a) 
  

1
f

= n − 1( ) 1
R1

−
1

R2

⎡

⎣
⎢

⎤

⎦
⎥ = 0.440( ) 1

12.0 cm
−

1
−18.0 cm( )

⎡

⎣
⎢

⎤

⎦
⎥  

  
  
f = 16.4 cm  

 (b) 
  

1
f

= 0.440( ) 1
18.0 cm

−
1

−12.0 cm( )
⎡

⎣
⎢

⎤

⎦
⎥  

  
  
f = 16.4 cm  

 

ANS. FIG. P36.49 

P36.50 (a) 

  

1
pa

+
1
qa

=
1
f

becomes
1

30.0 cm
+

1
qa

=
1

14.0 cm
→ qa = 26.3 cm

1
pd

+
1
qd

=
1
f

becomes
1

20.0 cm
+

1
qd

=
1

14.0 cm
→ qd = 46.7  cm

 

  

  

′hb = hMa = h
−qa

pa

⎛
⎝⎜

⎞
⎠⎟

= 10.0 cm( ) −26.3 cm
30.0 cm

⎛
⎝⎜

⎞
⎠⎟ = −8.75 cm

′hc = hMd = h
−qd

pd

⎛
⎝⎜

⎞
⎠⎟

= 10.0 cm( ) −46.7  cm
20.0 cm

⎛
⎝⎜

⎞
⎠⎟ = −23.3 cm
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 (b) See ANS. FIG. P36.50(b). 

  

ANS. FIG. P36.50(b) 

  The square is imaged as a trapezoid. 

 (c) The equation follows from  h′ h= −q p  and   1 p + 1 q = 1 f .  

  
  

1
p
+

1
q
=

1
f

    becomes    
  

1
p
+

1
q
=

1
14 cm

    or    
  

1
p

=
1

14 cm
−

1
q

.  

  
  
′h = hM = h

−q
p

⎛
⎝⎜

⎞
⎠⎟

= 10.0 cm( )q
1

14 cm
−

1
q

⎛
⎝⎜

⎞
⎠⎟

 

 (d) 

  

The integral stated adds up the areas of ribbons covering 
the whole image, each with vertical dimension ′h  and 
horizontal width dq.

 

 (e) We have  

  

  

′h dq
qa

qd

∫ = 10.0 cm( ) q2

28.0 cm
− q

⎛
⎝⎜

⎞
⎠⎟

26.3   cm

46.7 cm

= 10.0 cm( ) 46.7  cm( )2 − 26.3 cm( )2

28.0 cm
− 46.7  cm + 26.3 cm

⎡

⎣
⎢

⎤

⎦
⎥  

= 328 cm2

 

P36.51 In 
  

1
p
+

1
q
=

1
f

   or   p–1 + q–1 = constant, we differentiate with respect to 

time: 

   

  

−1 p−2( ) dp
dt

− 1 q−2( ) dq
dt

= 0

dq
dt

=
−q2

p2

dp
dt
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 We must find the momentary image location q: 

   
  

1
20.0 m

+
1
q
=

1
0.300 m

 

   q = 0.305 m 

 Now    
  

dq
dt

= −
0.305 m( )2

20.0 m( )2 5.00 m/s( ) = −0.001 16 m/s = 1.16 mm/s.  

 (a) The speed is 1.16 mm/s. 

 (b) Increasing q is away from the lens, negative q is toward the lens. 
The motion of the image is towards the lens because dq/dt is 
negative.  

P36.52 Let the object distance be p. Then the image distance is d – p. Set up the 
lens equation: 

   
  

1
p
 + 

1
q
 = 

1
f

→
1
p
 + 

1
d − p

 = 
1
f

 

 Rearrange the equation to generate the following quadratic equation: 

     p
2  − dp + df  = 0  

 Solve with the quadratic formula: 

   
  
p = 

d ±  d2  − 4df
2

 [1] 

 Substitute numerical values: 
   

  

p = 
2.00 m ±  2.00 m( )2  − 4 2.00 m( ) 0.600 m( )

2
 

= 
2.00 m ±  −0.800 m2

2

 

 This expression has no real solutions. Therefore, we cannot find even 
one position between the object and the screen at which an image is 
formed on the screen. From equation [1], we see that a real value of p 
will result only if d2 > 4df, or d > 4f, in which case the plus/minus sign 
in equation [1] will give us two real values for p. 

*P36.53 From the thin lens equation, 
  

1
p
 + 1

q
 =  1

f
,  we obtain 

  

  
q1 = p1 f1

p1 − f1

= 4.00 cm( ) 8.00 cm( )
4.00 cm − 8.00 cm

= −8.00 cm
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 The magnification by the first lens is  
  

  
M1 = –

q1

p1

= − −8.00 cm( )
4.00 cm

= +2.00
 

 The virtual image formed by the first lens is the object for the second 
lens, so  

  
  p2 = 6.00 cm + q1 = 6.00 cm + 8.00 cm = +14.00 cm   

 and the thin lens equation gives 
  

  
q2 = p2 f2

p2 − f2

= 14.0 cm( ) −16.0 cm( )
14.0 cm − −16.0 cm( ) = −7.47 cm

 

 The magnification by the second lens is  
  

  
M2 = –

q2

p2

= − −7.47 cm( )
14.0 cm

= +0.533
 

 so the overall magnification is  
  

  M = M1M2 = +2.00( ) +0.533( ) = +1.07  

 The position of the final image is 7.47 cm in front of the second lens, 
and its height is  

  
  ′h = Mh = M1M2 = +1.07( ) 1.00 cm( ) = 1.07 cm  

 Since M > 0, the final image is upright, and since q2 < 0, this image is 
virtual. 

 
 

 

Section 36.5 Lens Abberations 
P36.54 Rays from a very distant object are effectively parallel, and the lens is 

diverging; therefore, the image is virtual and forms at the focal point.   

 (a) The focal length of the lens is given by 

   

  

1
f

= n − 1( ) 1
R1

−
1

R2

⎛
⎝⎜

⎞
⎠⎟

= 1.53 − 1.00( ) 1
−32.5 cm

−
1

42.5 cm
⎛
⎝⎜

⎞
⎠⎟

f = −34.7 cm

 

  Note that R1 is negative because the center of curvature of the first 
surface is on the virtual image side. 

  The violet image forms at 
 
−34.7 cm  
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ANS FIG. P36.54 

 (b) For red light,  

   

  

1
f

= 1.51− 1.00( ) 1
−32.5 cm

−
1

42.5 cm
⎛
⎝⎜

⎞
⎠⎟

f = −36.1 cm
 

  The red image forms at 
 
−36.1 cm . 

P36.55 Ray h1 is undeviated at the plane surface and strikes the second surface 
at angle of incidence given by 

  
  
θ1 = sin−1 h1

R
⎛
⎝⎜

⎞
⎠⎟ = sin−1 0.500 cm

20.0 cm
⎛
⎝⎜

⎞
⎠⎟ = 1.43°  

 Then,  

  

 

1.00sinθ2 = 1.60sinθ1 = 1.60( ) 0.500
20.0 cm

⎛
⎝⎜

⎞
⎠⎟

θ2 = 2.29°
 

 

ANS. FIG. P36.55 

 The angle this emerging ray makes with the horizontal is 

 θ2 −θ1 = 0.860° . 
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 The ray crosses the axis at a point farther out by f1 (the focal length):  

  
  
f1 =

h1

tan θ2 −θ1( ) =
0.500 cm

tan 0.860°( ) = 33.3 cm  

 Because of the curved surface of the lens, the point of exit for this ray is 
horizontally slightly to the left of the lens vertex (where the principal 
axis intersects the curved surface of the lens), by the distance  

    R 1− cosθ1( ) = 20.0 cm 1− cos 1.43°( )[ ] = 0.006 25 cm  

 Therefore, ray h1 crosses the axis at this distance from the vertex: 

    x1 = f1 − R 1− cosθ1( ) = 33.3 cm − 0.006 25 cm = 33.3 cm  

 Now we repeat the above calculation for ray h2: 
  

 
θ = sin−1 12.0 cm

20.0 cm
⎛
⎝⎜

⎞
⎠⎟ = 36.9°

 

 Then, 
  

 
1.00sinθ2 = 1.60sinθ1 = 1.60( ) 12.00

20.0
⎛
⎝⎜

⎞
⎠⎟ → θ2 = 73.7°

 

  

  

f2 = h2

tan θ1 −θ2( ) = 12.0 cm
tan 36.8°

= 16.0 cm

x2 = f2 − R 1− cosθ2( )
= 16.0 cm( )− 20.0 cm 1− cos 36.9°( )[ ] = 12.0 cm

 

 Now   Δx = x1 − x2 = 33.3 cm − 12.0 cm = 21.3 cm  

 
 

 

Section 36.6 The Camera 
P36.56 The same light intensity is received from the subject, and the same 

light energy on the film is required: 
  

  

IA1Δt1 = IA2Δt2

π d1
2

4
Δt1 = π d2

2

4
Δt2

 

 Substituting f-stops and shutter speeds, 
  

  

f
4

⎛
⎝⎜

⎞
⎠⎟

2 1
15

 s⎛
⎝⎜

⎞
⎠⎟ = d2

2 1
125

 s⎛
⎝⎜

⎞
⎠⎟
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 solving, 
  

  
d2 = 125

15
f
4

= f
1.39

= f
1.4

 

 We can verify this by noting that changing the shutter speed from 

 

1
15 s

 to 
1

125 s
 is approximately a factor of 8 decrease in the exposure 

time, and requires a three f-stop increase (each increasing the area by a 
factor of 2), from f-4 down to f-2.8, f-2.0, and f-1.4.  

*P36.57 To properly focus the image of a distant object, the lens must be at a 
distance equal to the focal length from the film (q1 = 65.0 mm). For the 
closer object: 

   

  

1
p2

+ 1
q2

= 1
f

 

 becomes 
  

1
2 000 mm

+ 1
q2

= 1
65.0 mm

, 

 and  
  
q2 = 65.0 mm( ) 2 000

2 000 − 65.0( ).  
 The lens must be moved 

 
away from the film  by a distance 

   

  
D = q2 − q1 = 65.0 mm( ) 2 000

2 000 − 65.0( ) − 65.0 mm = 2.18 mm
 

 
 

 

Section 36.7 The Eye 
P36.58 The lens should take parallel light rays from a very distant object  

(p = ∞) and make them diverge from a virtual image at the woman’s 
far point, which is 25.0 cm beyond the lens, at q = –25.0 cm. 

 (a) 
  
P =

1
f
=

1
p
+

1
q
=

1
∞
−

1
0.250 m

= −4.00 diopters  

 (b) The power is negative: a 
 
diverging lens .  

*P36.59 The corrective lens must form an upright, virtual image at the near 
point of the eye (i.e., q = –60.0 cm in this case) for objects located 25.0 
cm in front of the eye (p = +25.0 cm). From the thin-lens equation,  

   

  

1
p
+ 1

q
= 1

f
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 the required focal length of the corrective lens is 
   

  
f =

pq
p + q

=
25.0 cm( ) −60.0 cm( )
25.0 cm − 60.0 cm

= +42.9 cm
 

 and the power (in diopters) of this lens will be 
   

  
P =

1
fin meters

=
1

+0.429 m
= +2.33 diopters

 

*P36.60 (a) 
  
f =

1
P

=
1

−4.00 diopters
= −0.250 m = −25.0 cm  

 (b) The corrective lens forms virtual images of very distant objects 
( p →∞ ) at q = f = –25.0 cm. Thus, the person must be very 

 
nearsighted ,  unable to see objects clearly when they are more 

than 25.0 cm + 2.00 cm = 27.0 cm from the eye. 

 (c) If contact lenses are to be worn, the far point of the eye will be 
27.0 cm in front of the lens, so the needed focal length will be  
f = q = –27.0 cm, and the power is 

   

  
P =

1
fin meters

=
1

−0.270 m
= −3.70 diopters

 

P36.61 For starlight going through a nearsighted person’s glasses,  
   

  

1
p

+
1
q

=
1
f

1
∞

+
1

−0.800 m( ) =
1
f

= −1.25 diopters

 

 For a nearby object (the image is virtual),  

   
  

1
p

+
1

−0.180 m( ) = −1.25 m−1  

 so    p = 23.2 cm .  

*P36.62 (a) When the child clearly sees objects at her far point 

  pmax = 125 cm( ) ,  the lens-cornea combination has assumed a focal 
length suitable for forming the image on the retina (q = 2.00 cm). 
The thin-lens equation gives the optical power under these 
conditions as 

    

  

Pfar =
1

fin meters

= 1
p
+ 1

q
= 1

1.25 m
+ 1

0.020 0 m
= +50.8 diopters
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  When the eye is focused (q = 2.00 cm) on objects at her near point 

  pmin = 10.0 cm( ) , the optical power of the lens-cornea combination 
is 

    

  

Pnear =
1

fin meters

= 1
p
+ 1

q
= 1

0.100 m
+ 1

0.020 0 m
= +60.0 diopters

 

  Therefore, the range of the power of the lens-cornea combination 
is 

  
+50.8 diopters ≤ P ≤ 60.0 diopters .  

 (b) If the child is to see very distant objects ( p →∞ ) clearly, her 
eyeglass lens must form an erect, virtual image at the far point of 
her eye (q = –125 cm). The optical power of the required lens is 

    

  
P = 1

fin meters

= 1
p
+ 1

q
= 0+ 1

−0.125 m
= −0.800 diopters

 

  Since the power, and hence the focal length, of this lens is 
negative, it is 

 
diverging .   

*P36.63 (a) The upper portion of the lens should form an upright, virtual 
image of very distant objects  p ≈ ∞( )   at the far point of the eye  
(q = –1.50 m). The thin-lens equation then gives f = q = –1.50 m, so 
the needed power is 

   

  
P =

1
fin meters

=
1

−1.50 m
= −0.667 diopters

 

 (b) The lower part of the lens should form an upright, virtual image 
at the near point of the eye (q = –30.0 cm) when the object distance 
is p = 25.0 cm. From the thin-lens equation, 

   

  
f =

pq
p + q

=
25.0 cm( ) −30.0 cm( )
25.0 cm − 30.0 cm

= +1.50 × 102  cm = +1.50 m
 

  Therefore, the power is 
  
P =

1
f
=

1
+1.50 m

= +0.667 diopters .   

*P36.64 
  

n1

p
+ n2

q
= n2 − n1

R
    so 

 

1.00
∞

+ 1.40
21.0 mm

= 1.40 − 1.00
6.00 mm

 

 and 0.066 7 = 0.066 7. 

 They agree. 
 

The image is inverted, real, and diminished.  
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*P36.65 (a) 
 
Yes, a single lens can correct the patient's vision.  The patient 

needs corrective action in both the near vision (to allow clear 
viewing of objects between 45.0 cm and the normal near point of 
25.0 cm) and the distant vision (to allow clear viewing of objects 
more than 85.0 cm away). A single lens solution is for the patient 
to wear a bifocal or progressive lens. Alternately, the patient must 
purchase two pairs of glasses, one for reading, and one for distant 
vision. 

 (b) To correct the near vision, the lens must form an upright, virtual 
image at the patient’s near point (q = –45.0 cm) when a real object 
is at the normal near point (p = +25.0 cm). The thin-lens equation 
gives the needed focal length as 

    

  
f =

pq
p + q

=
25.0 cm( ) −45.0 cm( )
25.0 cm − 45.0 cm

= +56.3 cm
 

  so the required power in diopters is 
    

  
P =

1
fin meters

=
1

+0.563 m
= +1.78 diopters

 

 (c) To correct the distant vision, the lens must form an upright, 
virtual image at the patient’s far point (q = –85.0 cm) for the most 
distant objects ( p →∞ ). The thin-lens equation gives the needed 
focal length as f = q = –85.0 cm, so the needed power is 

    

  
P =

1
fin meters

=
1

−0.850 m
= −1.18 diopters

 

 
 

 

Section 36.8 The Simple Magnifyer 
P36.66 (a) Angular magnification is a maximum when the image is at the 

near point of the eye: q = 25.0 cm. From the thin lens equation:  

   
  

1
p

+
1

−25.0 cm( ) =
1

5.00 cm
    or    

  
p = 4.17 cm  

 (b) From Equation 36.24,  

   
  
M = −

q
p
= 1+

25.0 cm
f

= 1+
25.0 cm
5.00 cm

= 6.00  
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Section 36.9 The Compound Microscope 
P36.67 Using Equation 36.26,  
  

  
M ≈ − L

fo

⎛
⎝⎜

⎞
⎠⎟

25.0 cm
fe

⎛
⎝⎜

⎞
⎠⎟

= − 23.0 cm
0.400 cm

⎛
⎝⎜

⎞
⎠⎟

25.0 cm
2.50 cm

⎛
⎝⎜

⎞
⎠⎟ = −575

  

 
 

 

Section 36.10 The Telescope 
P36.68 fo = 20.0 m,   fe = 0.025 0 m 

 (a) From Equation 36.27, The angular magnification produced by this 
telescope is  

   
  
m = −

fo

fe

= −800  

 (b) Since m < 0, the image is 
 

inverted . 

P36.69 Let I0 represent the intensity of the light from the nebula and  θ0  its 
angular diameter. With the first telescope, the image diameter h′ on the 
film is given by  

   
 
θo = − ′h

fo

 as   ′h = −θo 2 000 mm( )  

 The light power captured by the telescope aperture is  

   
  
P1 = I0A1 = I0

π 200 mm( )2

4
⎡

⎣
⎢

⎤

⎦
⎥  

 and the light energy focused on the film during the exposure is  

   
  
E1 = P1Δt1 = I0

π 200 mm( )2

4
⎡

⎣
⎢

⎤

⎦
⎥ 1.50 min( )  

 Likewise, the light power captured by the aperture of the second 
telescope is  

   
  
P2 = I0A2 = I0

π 60.0 mm( )2

4
⎡

⎣
⎢

⎤

⎦
⎥   

 and the light energy is  

   
  
E2 = I0

π 60.0 mm( )2

4
⎡

⎣
⎢

⎤

⎦
⎥Δt2  
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 Therefore, to have the same light energy per unit area, it is necessary 
that 

   

  

I0 π 60.0 mm( )2 4⎡⎣ ⎤⎦Δt2

π θo 900 mm( )2 4⎡⎣ ⎤⎦
=

I0 π 200 mm( )2 4⎡⎣ ⎤⎦ 1.50 min( )
π θo 2 000 mm( )2 4⎡
⎣

⎤
⎦

 

 The required exposure time with the second telescope is 

   
  
Δt2 =

200 mm( )2 900 mm( )2

60.0 mm( )2 2 000 mm( )2 1.50 min( ) = 3.38 min  

P36.70 (a) The mirror-and-lens equation, 
  

1
p
+

1
q
=

1
f

, gives 

   
  
q =

1
1 f − 1 p

=
1

p − f( ) fp
=

fp
p − f

 

  Then,  

   
 
M = ′h

h
= −

q
p

= −
f

p − f
     

  gives 
 
′h =

f h
f − p

 

 (b) For p >> f,  f − p ≈ −p . Then, 
 
′h = −

hf
p

 

 (c) Suppose the telescope observes the space station at the zenith: 

   
  
′h = −

hf
p

= −
108.6 m( ) 4.00 m( )

407 × 103  m
= −1.07 mm  

 
 

 

Additional Problems 
P36.71 (a) For the lens in air, 
   

  

1
f

= n− 1( ) 1
R1

− 1
R2

⎛
⎝⎜

⎞
⎠⎟

1
79.0 cm

= 1.55− 1( ) 1
R1

− 1
R2

⎛
⎝⎜

⎞
⎠⎟

 

  For the same lens in water,  

   
  

1
′f
= n2

n1

− 1
⎛
⎝⎜

⎞
⎠⎟

1
R1

− 1
R2

⎛
⎝⎜

⎞
⎠⎟
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  Substituting, 
   

  

1
′f
= 1.55

1.333
− 1⎛

⎝⎜
⎞
⎠⎟

1
R1

− 1
R2

⎛
⎝⎜

⎞
⎠⎟

 

  By division, 

   

  

1 79.0 cm
1/ ′f

=
0.55

1.55
1.333

− 1⎛
⎝⎜

⎞
⎠⎟

=
′f

79.0 cm
→ ′f = 267 cm

 

 (b) The path of a reflected ray does not depend on the refractive 
index of the medium which the reflecting surface bounds. 
Therefore the focal length of a mirror does not change when it is 

put into a different medium: 
  
′f =

R
2

= f = 79.0 cm .  

P36.72 The real image formed by the concave mirror serves as a real object for 
the convex mirror with p = 50 cm and q = –10 cm. Therefore, 

   
  

1
f
=

1
p
+

1
q

     
  
→      

1
f

=
1

50.0 cm
+

1
−10.0 cm( )  

 gives     f = –12.5 cm    and      R = 2 f = −25.0 cm . 

P36.73 Only a diverging lens gives an upright, diminished image. Therefore, 
the image is virtual and between the object and the lens (the image is 
closer to the lens), and q < 0. We have   

    d = p − q = p + q ,    and    
  
M = −

q
p

,      

 so   q = –Mp    and    d = p – Mp. 

 Therefore, 
  
p =

d
1− M

: 

   

  

1
p

+
1
q

=
1
f

=
1
p

+
1

−Mp
=
−M + 1
−Mp

=
1− M( )2

−Md

f =
−Md

1− M( )2 =
− 0.500( ) 20.0 cm( )

1− 0.500( )2 = −40.0 cm

 

P36.74 For a single lens, an object and its image cannot be on opposite sides of 
the lens if the image is upright. The object and image must be on the 
same side of the lens; thus the image is virtual, and q < 0. Because the 
image is upright, M > 0.  
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 If the image is between the object and the lens (the image is closer to 
the lens), we have   

    d = p − q = p + q ,   so   q = d – p:  

   
 
M = −

q
p

    so    
  
q = −Mp = d − p → p =

d
1− M

 

 Substituting into the thin lens equation, 
  

1
p
+ 1

q
= 1

f
,  gives 

   

  

1
p

+ 1
−Mp( ) = 1

f

 

 Solving, 
   

  

M
Mp

+
1

−Mp( ) =
1
f

=
M − 1
Mp

=
M − 1

M
1− M

d
⎛
⎝⎜

⎞
⎠⎟ = −

1− M( )2

Md

 

   

  
→ f =

−Md
1− M( )2

 

 Since M is positive, the lens is diverging.  

 If the object is between the image and the lens (the object is closer to 
the lens), the lens is converging. We have   

     d = q − p = −q − p   →    q = −d − p  

 Substituting into the thin lens equation, 
  

1
p
+ 1

q
= 1

f
,  gives 

   

  

1
p

+ 1
−Mp( ) = 1

f

 

 Solving, 
   

  

M
Mp

+ 1
−Mp( ) = 1

f
= M − 1

Mp
= M − 1

M
M − 1

d
⎛
⎝⎜

⎞
⎠⎟ = M − 1( )2

Md

 

   

  
→ f =

Md
M − 1( )2

 

 Since M is positive, the lens is converging. 



722     Image Formation 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

*P36.75 The lens for the left eye forms an upright, virtual image at qL =  
–50.0 cm when the object distance is pL = 25.0 cm, so the thin lens 

equation 
  

1
p
+ 1

q
= 1

f
,  gives its focal length as 

   

  
fL = pLqL

pL + qL

= 25.0 cm( ) −50.0 cm( )
25.0 cm − 50.0 cm

= 50.0 cm
  

 Similarly for the other lens, qR = –100 cm when pR = 25.0 cm, and fR = 
33.3 cm.  

 (a) Using the lens for the left eye as the objective, 
   

  
m = fo

fc

= 50.0 cm
33.3 cm

= 1.50
  

 (b) Using the lens for the right eye as the eyepiece and, for maximum 
magnification, requiring that the final image be formed at the 
normal near point (qe =–25.0 cm) gives the object distance for the 
eyepiece as 

   

  
pe = qe fe

qe − fe

= −25.0 cm( ) 33.3 cm( )
−25.0 cm − 33.3 cm

= +14.3 cm
 

  The maximum magnification by the eyepiece is then 
   

  
me = 1+ 25.0 cm

fe

= 1+ 25.0 cm
33.3 cm

= +1.75
 

  and the image distance for the objective is 
   

  q1 = L− pe = 10.0 cm − 14.3 cm = −4.28 cm   

  The thin lens equation then gives the object distance for the 
objective as 

   

  
p1 = q1 f1

q1 − f1

= −4.28 cm( ) 50.0 cm( )
−4.28 cm − 50.0 cm

= +3.95 cm
 

  The magnification by the objective is then 
   

  
M1 = − q1

p1

= − −4.28 cm( )
3.95 cm

= +1.08
 

  and the overall magnification is  
   

  m = M1me = +1.08( ) +1.75( ) = 1.90   
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*P36.76 The image will be inverted. With h = 6.00 cm, we require  
h’ = –1.00 mm.  

 (a) 
 
M = ′h

h
= − q

p
 gives 

   
  
q = −p

′h
h

= − 50.0 mm( ) −1.00 mm
60.0 mm( ) = 0.833 mm  

 (b) From 
  

1
p
+ 1

q
= 1

f
= 1

50.0 mm
+ 1

0.833 mm
,  we obtain 

     f = 0.820 mm  

P36.77 (a) Start with the first pass through the lens. 

   
  

1
q1

=
1
f1

−
1
p1

=
1

80.0 cm
−

1
100 cm

  

  gives   q1 = +400 cm  or 400 cm to right of the lens.  

  The object of the mirror is 400 cm – 100 cm = 300 cm to the right 
of the mirror, so the object is virtual. Therefore, for the mirror,  
p2 = –300 cm: 

   
  

1
q2

=
1
f2

−
1
p2

=
1

(−50.0 cm)
−

1
(−300 cm)

  

  gives   q2 = –60.0 cm or 60.0 cm to the right of the mirror.  

  The image formed by the mirror is 100 cm + 60 cm = 160 cm to the 
right of the lens. Therefore, for the second pass through the lens, 
p3 = 160 cm:  

   
  

1
q3

=
1
f1

−
1
p3

=
1

80.0 cm
−

1
160 cm

     

  or   q3 = 160 cm to the left of lens .  

 (b) 
  
M1 = −

q1

p1

= −
400 cm
100 cm

= −4.00     
  
M2 = −

q2

p2

= −
(−60.0 cm)
(−300 cm)

= −
1
5

 

  
  
M3 = −

q3

p3

= −
160 cm
160 cm

= −1     
  
M = M1M2M3 = −0.800  

 (c) Since M < 0 the final image is 
 

inverted . 
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P36.78 (a) We start with the final image and work backward. From Figure 
P36.78, the final image is virtual (to left of lens 2) and x = 30.0 cm, 
so  

     q2 = − 50.0 cm − 30.0 cm( ) =−20.0 cm  

  The thin lens equation then gives 

   
  

1
p2

+
1
q2

=
1
f2

:
1
p2

+
1

−20.0 cm
=

1
20.0 cm

→ p2 = +10.0 cm  

  The image formed by the first lens serves as the object for the 
second lens and is located 10.0 cm in front of the second lens. 

  Thus, q1 = 50.0 cm – 10.0 cm = 40.0 cm and the thin lens equation 
gives 

   
  

1
p1

+
1
q1

=
1
f1

:
1
p1

+
1

40.0 cm
=

1
10.0 cm

→ p1 = +13.3 cm  

  The original object should be located 13.3 cm in front of the first 
lens . 

 (b) The overall magnification is 
   

  

M = M1M2 = − q1

p1

⎛
⎝⎜

⎞
⎠⎟

− q2

p2

⎛
⎝⎜

⎞
⎠⎟

= − 40.0 cm
13.3 cm

⎛
⎝⎜

⎞
⎠⎟ −

−20.0 cm( )
10.0 cm

⎛
⎝⎜

⎞
⎠⎟

= −6.00

 

 (c) Since M < 0, the final image is 
 

inverted . 

 (d) Since q2 < 0, it is 
 

virtual . 

P36.79 (a) With light going through the piece of glass from left to right, the 
radius of the first surface is positive and that of the second surface 
is negative according to the sign convention of Table 36.2. Thus, 

R1 = + 2.00 cm and R2 = – 4.00 cm. Applying 
  

n1

p
+

n2

q
=

n2 − n1

R
 to 

the first surface gives 

   
  

1.00
1.00 cm

+
1.50
q1

=
1.50 − 1.00
+2.00 cm

 

  which yields q1 = – 2.00 cm. The first surface forms a virtual image 
2.00 cm to the left of that surface and 16.0 cm to the left of the 
second surface. 
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  The image formed by the first surface is the object for the second 

surface, so p2 = + 16.0 cm    and    
  

n1

p
+

n2

q
=

n2 − n1

R
 gives 

   
  

1.50
16.0 cm

+
1.00
q2

=
1.00 − 1.50
− 4.00 cm

    or    q2 = + 32.0 cm 

  
 

32.0 cm to the right of the second surface  

 (b) The final image distance is positive, so the image is real. 

P36.80 (a) When the meterstick coordinate of the object is 0, its object 
distance is pi = 32 cm. When the meterstick coordinate of the 
object is x, its object distance is p = 32 cm – x. The image distance 

from the lens is given by the thin lens equation, 
  

1
p
+ 1

q
= 1

f
  (in the 

following, all variables are in units of cm, and units are 
suppressed). Substituting,  

    

  

1
32.0− x

+ 1
q
= 1

26.0

 

  Solving for q then gives 

    

  

1
q

= 1
26.0

− 1
32.0− x( ) = 32.0− x( )− 26.0

26.0 32.0− x( ) = 6.0− x
26.0 32.0− x( )

q = 832 − 26.0x
6.0− x

 

  The image distance q is measured from the position of the lens.  
The image coordinate on the meterstick is  

    
  
′x = 32.0 + q = 32.0 +

832 − 26.0x
6.0 − x

=
32.0 6.0 − x( ) + 832 − 26.0x

6.0 − x
 

    
  
′x =

1024 − 58.0x
6.0 − x

where x and x' are in centimeters.  

  (b) The image starts at the position xi' = 171 cm and moves in the 
positive x direction, faster and faster, and as the object 
approaches the position x = 6 cm (the focal point of the lens), the 
image goes out to infinity. At the instant the object is at x = 6 cm, 
the rays from the top of the object are parallel as they leave the 
lens: their intersection point can be described as at x' = ∞ to the 
right or equally well at x' = –∞ on the left. From x' = –∞ the image 
continues moving to the right, now slowing down. It reaches, for 
example, –280 cm when the object is at 8 cm, and –55 cm when 
the object is finally at 12 cm. 
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object position (cm) image position (cm) 

x x' 

0 170.7 

1 193.2 

2 227.0 

3 283.3 

4 396.0 

5 734.0 

6 infinity 

7 –618.0 

8 –280.0 

9 –167.3 

10 –111.0 

11 –77.2 

12 –54.7 
 

 (c) 

 

The image moves to infinity and beyond—meaning it moves
forward to infinity (on the right), jumps back to minus infinity
(on the left), and then proceeds forward again.

 

 (d) 

 

The image usually travels to the right, except when it jumps
from plus infinity (right) to minus infinity (left).

 

P36.81 (a) 
  

1
p1

+
1
q1

=
1
f1

=
2
R

→
1
q1

=
1
f1

−
1
p1

=
1

10.0 cm
−

1
12.5 cm

 

  so    q1 = 50.0 cm (a real image, to left of mirror).This serves as an 
object for the lens (a virtual object, to left of lens) with object 
distance p2 = 25.0 cm – 50.0 cm = –25.0 cm, so 

    
  

1
q2

=
1
f2

−
1
p2

=
1

−16.7 cm( ) −
1

−25.0 cm( )  
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  so q2 = –50.3 cm (a virtual image),  

  meaning 50.3 cm to the right of the lens. Thus, the final image is 
located 

 
25.3 cm to right of mirror . 

 (b) The final image distance is negative (–50.3 cm), so the image is 
virtual. 

  Calculate the overall magnification M = M1M2: 
   

  

M1 = −
q1

p1

= −
50.0 cm
12.5 cm

= −4.00

M2 = −
q2

p2

= −
−50.3 cm( )
−25.0 cm( ) = −2.01

 

  Then   M = M1M2 = 8.05.  

 (c) The magnification is positive, so the image is upright. 

 (d) From above,   M = M1M2 = 8.05 .  

P36.82 (a) Have the beam pass through the diverging lens first, then the 
converging lens. The rays of light entering the diverging lens are 
parallel, so they behave as though they come from an object at 
infinity (p = ∞):  

   
  

1
p
+

1
q
=

1
f

    
  

1
∞
+

1
q
=

1
−12.0 cm

 

  or q = –12.0 cm. 

 

ANS. FIG. P36.82 

  Use this image as a real object for the converging lens, placing it 
at the focal point on the object side of the lens, at p = 21.0 cm. 
Then 

   
  

1
p
+

1
q
=

1
f

→
1

21 cm
+

1
q
=

1
21 cm

 

  or q = ∞. 

  The exiting rays will be parallel. The lenses must be 21.0 cm –  
12.0 cm = 9.00 cm apart. 
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 (b) Refer to ANS. FIG. P36.82. By similar triangles,  

   
  

d2

d1

=
21.0 cm
12.0 cm

=  
 

1.75 times  

P36.83 (a) 
  
I =

P
4π r2 =

4.50 W

4π 1.60 × 10−2  m( )2 = 1.40 kW/m2  

 (b) 
  
I =

P
4πr2 =

4.50 W
4π 7.20 m( )2 = 6.91 mW/m2  

 (c) 
  

1
p
+

1
q
=

1
f

: 
  

1
7.20 m

+
1
q
=

1
0.350 m

 

  →  q = 0.368 m 

   
  
M = ′h

3.20 cm
= −

q
p

= −
0.368 m
7.20 m

 

  →  
  
′h = 0.164 cm  

 (d) The lens intercepts power given by 

   
  
P = IA = 6.91× 10−3  W/m2( ) π

4
0.150 m( )2⎡

⎣⎢
⎤
⎦⎥

 

  and puts it all onto the image where 

   
  
I =

P
A

=
6.91× 10−3  W/m2( ) π 15.0 cm( )2 4⎡⎣ ⎤⎦

π 0.164 cm( )2 4
 

   
  
I = 58.1 W/m2  

P36.84 A hemisphere is too thick to be described 
as a thin lens. The light is undeviated on 
entry into the flat face. We next consider 
the light’s exit from the second surface, 
for which R = –6.00 cm. The incident rays 
are parallel, so p = ∞. 

 Then, 
  

n1

p
+

n2

q
=

n2 − n1

R
 

 becomes 
  
0 +

1
q
=

1.00 − 1.56
−6.00 cm

 

 and 
  

q = 10.7 cm .  

 

ANS. FIG. P36.84 
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P36.85 Use the lens makers’ equation, Equation 36.15, and the conventions of 
Table 36.2. The first lens has focal length described by 

  
  

1
f1

= n1 − 1( ) 1
R1,1

−
1

R1,2

⎛

⎝⎜
⎞

⎠⎟
= n1 − 1( ) 1

∞
−

1
R

⎛
⎝⎜

⎞
⎠⎟ =

1− n1

R
 

 For the second lens 

  
  

1
f2

= n2 − 1( ) 1
R2,1

−
1

R2,2

⎛

⎝⎜
⎞

⎠⎟
= n2 − 1( ) 1

+R
−

1
−R

⎛
⎝⎜

⎞
⎠⎟ = +

2 n2 − 1( )
R

 

 Let an object be placed at any distance p1 large compared to the 
thickness of the doublet. The first lens forms an image according to 

  

  

1
p1

+ 1
q1

= 1
f1

1
q1

= 1− n1

R
− 1

p1

 

 This virtual (q1 < 0) image (to the left of lens 1) is a real object for the 
second lens at distance p2 = –q1. For the second lens 

  

  

1
p2

+ 1
q2

= 1
f2

1
q2

= 2n2 − 2
R

− 1
p2

= 2n2 − 2
R

+ 1
q1

= 2n2 − 2
R

+ 1− n1

R
− 1

p1

    = 2n2 − n1 − 1
R

− 1
p1

 

 Then 
  

1
p1

+
1
q2

=
2n2 − n1 − 1

R
 so the doublet behaves like a single lens 

with 
  

1
f

=
2n2 − n1 − 1

R
. 

P36.86 Find the image position for light traveling to the left through the lens: 

   
  

1
p
 + 

1
q
 = 

1
fL

→ q = 
pfL

p −  fL

 = 
0.300 m( ) 0.200 m( )
0.300 m − 0.200 m

 = 0.600 m  

 Therefore, this image forms 0.600 m to the left of the lens. Find the 
image formed by light traveling to the right toward the mirror from an 
object distance of 1.30 m – 0.300 m = 1.00 m: 

   

  

1
pM

 +  1
qM

 =  1
fM
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 Solving and substituting numerical values gives 
   

  
qM  =  pM fM

pM  −  fM

 =  1.00 m( ) 0.500 m( )
1.00 m − 0.500 m

 = 1.00 m
 

 This image forms at the position of the original object. Therefore, as 
light continues to the left through the lens, it will form an image at a 
position 0.600 m to the left of the lens. As a result, both images form at 
the same position and there are not two locations at which the student 
can hold a screen to see images formed by this system.  

P36.87 For the first lens, the thin lens equation gives  

   
  
q1 =

f1p1

p1 − f1

=
−6.00 cm( ) 12.0 cm( )

12.0 cm − −6.00 cm( ) = −4.00 cm  

 The first lens forms an image 4.00 cm to its left. The rays between the lenses 
diverge from this image, so the second lens receives diverging light. It 
sees a real object at distance 

   p2 = d – (–4.00 cm) = d + 4.00 cm 

 For the second lens, when we require that   q2 →∞,  the mirror-lens 
equation becomes p2 = f2 = 12.0 cm. 

 Since the object for the converging lens must be 12.0 cm to its left, and 
since this object is the image for the diverging lens, which is 4.00 cm to 
its left, the two lenses must be separated by 8.00 cm.  

 Mathematically,  

     d + 4.00 cm = f2 = 12.0 cm → d = 8.00 cm  

P36.88 For the first lens, the thin lens equation gives  

   
  
q1 =

f1p
p − f1

 

 We require that   q2 →∞  for the second lens; the thin lens equation 
gives p2 = f2, where, in this case, 

   
  
p2 = d − q1 = d −

f1p
p − f1

 

 Therefore, from   p2 = f2 ,   

   

  

d − f1p
p − f1

= f2

d = f1p
p − f1

+ f2 =
f1p + f2 p − f1( )

p − f1

=
p f1 + f2( )− f1 f2

p − f1
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P36.89 The inverted image is formed by light that leaves the object and goes 
directly through the lens, never having reflected from the mirror. For 
the formation of this inverted image, we have 

   
  
M = −

q1

p1

= −1.50   giving   q1 = +1.50p1  

 The thin lens equation then gives (with p and q in centimeters) 

   

  

1
p1

+
1

1.50p1

=
1

10.0
1.50

1.50p1

+
1

1.50p1

=
1

10.0
2.50

1.50p1

=
1

10.0

 

 giving  
  
p1 = 10.0

2.50
1.50

⎛
⎝⎜

⎞
⎠⎟ = 16.7 cm .  

 The upright image is formed by light that passes through the lens after 
reflecting from the mirror. The object for the lens in this upright image 
formation is the image formed by the mirror. In order for the lens to 
form the upright image at the same location as the inverted image, the 
image formed by the mirror must be located at the position of the 
original object (so the object distances, and hence image distances, are 
the same for both the inverted and upright images formed by the lens). 
Therefore, the object distance and the image distance for the mirror are 
equal, and their common value is 

     qmirror = pmirror = 40.0 − p1 = 40.0 − 16.7 = +23.3  

 The mirror equation, 
  

1
pmirror

+
1

qmirror

=
1

fmirror

,  then gives 

   
  

1
fmirror

=
1

23.3 cm
+

1
23.3 cm

=
2

23.3 cm
 

 or  
  
 fmirror = +

23.3 cm
2

= +11.7 cm .  

P36.90 (a) In the first situation, 
  

1
p1

+
1
q1

=
1
f

, and  

   
  p1 + q1 = 1.50 → q1 = 1.50− p1

 

  where f, p, and q are in meters.  

  Substituting, we have 
  

1
f
=

1
p1

+
1

1.50 − p1

. 
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ANS. FIG. P36.90 

 (b) In the second situation, 
  

1
p2

+
1
q2

=
1
f

,  

   p2 = p1 + 0.900 m  and  q2 = q1 – 0.900 m = 0.600 m – p1, 

  where f, p, and q are in meters. 

  Substituting, we have  
  

1
f
=

1
p1 + 0.900

+
1

0.600 − p1

.  

 (c) Both lens equation are equal: 
   

  

1
p1

+
1
q1

=
1
f
=

1
p2

+
1
q2

 

   

  

1
p1

+
1

1.50 − p1

=
1

p1 + 0.900
+

1
0.600 − p1

1.50 − p1 + p1

p1 1.50 − p1( ) =
0.600 − p1 + p1 + 0.900
p1 + 0.900( ) 0.600 − p1( )

1.50
p1 1.50 − p1( ) =

1.50
p1 + 0.900( ) 0.600 − p1( )

 

  Simplified, this becomes  

     p1 1.50 − p1( ) = p1 + 0.900( ) 0.600 − p1( )  

   

  

1.50p1 − p
1

2 = 0.600 − 0.900( )p1 + 0.900( ) 0.600( ) − p
1

2

1.80p1 = 0.540

p1 = 0.300 m

 

 (d) From part (a), 
  

1
f
=

1
p1

+
1

1.50 − p1

: 

   

  

1
f
=

1
0.300

+
1

1.50 − 0.300

f = 0.240 m
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P36.91 (a) For the mirror, 
  
f =

R
2
= +1.50 m.  In addition, because the distance 

to the Sun is so much larger than any other distances, we can take  
p = ∞. 

  The mirror equation, 
  

1
p
+

1
q
=

1
f

, then gives q = f = 1.50 m in front 

of the mirror. 

 (b) Now, in 
  
M = −

q
p

= ′h
h
 ,  

  the magnification is nearly zero, but we can be more precise: 

  

h
p

= 0.533°  is the angular diameter of the object. Thus,  

   

  

′h = −
h
p

q = − 0.533°( ) π  rad
180°

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

1.50 m( ) = −0.014 0 m

= −1.40 cm

 

  and the image diameter is 1.40 cm. 

P36.92 (a) For lens one, as shown in the top panel in ANS. FIG. P36.92, 

   

  

1
40.0 cm

+
1
q1

=
1

30.0 cm
q1 = 120 cm

 

  This real image is the object of the second lens: I1 = O2 ; it is behind 
the lens, as shown in the middle panel in ANS. FIG. P36.92, so it 
is a virtual object for the second lens. That is, the object distance is 

   

  

p2 = 110 cm − 120 cm = −10.0 cm

1
−10.0 cm

+
1
q2

=
1

−20.0 cm
:

q2 = 20.0 cm

 

 (b) From part (a),  

   
  
M1 = −

q1

p1

= −
120 cm
40.0 cm

= −3.00  

   
  
M2 = −

q2

p2

= −
20.0 cm
−10.0 cm( ) = +2.00  

   
  
Moverall = M1M2 = −6.00  
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 (c)   Moverall < 0 , so final image is 
 

inverted . 

 (d) If lens two is a converging lens (bottom panel in ANS. FIG. 
P36.92): 

    

  

1
−10.0 cm

+
1
q2

=
1

20.0 cm

q2 = 6.67 cm
 

    

  

M2 = −
6.67 cm
−10.0 cm( ) = +0.667

Moverall = M1M2 = −2.00

 

  Again,   Moverall < 0  and the final image is  inverted .  

 

ANS. FIG. P36.92 
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Challenge Problems 
P36.93 (a) For the light the mirror intercepts, the power is given by 
   

  P = I0A = I0π Ra
2  

  Substituting, 
   

  350 W = 1 000 W/m2( )π Ra
2  

  and 
  
Ra = 0.334 m or larger .  

 (b) In 
  

1
p
+

1
q
=

1
f
=

2
R

 we have   p →∞,  so 
  
q =

R
2

 and 

   
 
M = ′h

h
= −

q
p

, 

  so  
  
′h = −q

h
p

⎛
⎝⎜

⎞
⎠⎟

= −
R
2

⎛
⎝⎜

⎞
⎠⎟ 0.533°

π  rad
180°

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= −
R
2

⎛
⎝⎜

⎞
⎠⎟ 9.30 m rad( )  

  where 
 

h
p

 is the angle the Sun subtends. 

  The intensity at the image is then  
   

  

I =
P

π ′h 2 4
=

4I0π Ra
2

π ′h 2 =
4I0 Ra

2

′h 2

I =
4I0Ra

2

R 2( )2 9.30 × 10−3  rad( )2

120 × 103  W/m2 =
16 1 000 W/m2( )Ra

2

R2 9.30 × 10−3  rad( )2

Ra
2

R2 = 6.49 × 10−4

 

  So, 
  

Ra

R
= 0.025 5 or larger .  

P36.94 (a) From the thin lens equation, 

   
  

1
q1

=
1
f1

−
1
p1

=
1

5 cm
−

1
7.5 cm

→ q1 = 15 cm  

  and, from the definition of magnification, 
   

  
M1 = − q1

p1

= − 15 cm
7.5 cm

= −2
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  Then, for a combination of two lenses, 
   

  M = M1M2 : 1 = −2( )M2
 

  or 
   

  
M2 = − 1

2
= − q2

p2

→ p2 = 2q2

 

  From the thin lens equation for the second lens, 
   

  

1
p2

+ 1
q2

= 1
f2

:
1

2q2

+ 1
q2

= 1
10 cm

→ q2 = 15 cm, p2 = 30 cm
 

  So the distance between the object and the screen is 
   

  p1 + q1 + p2 + q2 = 7.5 cm + 15 cm + 30 cm + 15 cm = 67.5 cm
 

 (b) In the following, if no units are shown, assume all distances (p, q, 
and f) are in units of cm. 

  For lens 1, we have 
  

1
′p1

+
1
′q1

=
1
f1

=
1
5

. Solve for   ′q1  in terms of   ′p1 : 

   
  
′q1 =

5 ′p1

′p1 − 5
 [1] 

  Now we have 
  

′M1 = −
′q1

′p1

= −
5
′p1 − 5

, using [1]. From 

  ′M = ′M1 ′M2 = 3 , we have 

   
  

′M2 = ′M
′M1

= −
3
5

′p1 − 5( ) = −
′q2

′p2

 

   
  
′q2 =

3
5

′p2 ′p1 − 5( )  [2] 

  Substitute [2] into the lens equation for lens 2, 

  

1
′p2

+
1
′q2

=
1
f2

=
1

10 cm
, and obtain   ′p2  in terms of   ′p1 : 

   
  
′p2 =

10 3 ′p1 − 10( )
3 ′p1 − 5( )  [3] 

  Substitute [3] into [2], to obtain   ′q2  in terms of   ′p1 : 

     ′q2 = 2 3 ′p1 − 10( )  [4] 

  We know that the distance from object to the screen is a constant:   

     ′p1 + ′q1 + ′p2 + ′q2 =  a constant [5] 
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  Using [1], [3], and [4], and the value obtained in part (a), [5] 
becomes  

   
  
′p1 +

5 ′p1

′p1 − 5
+

10 3 ′p1 − 10( )
3 ′p − 5( ) + 2 3 ′p1 − 10( ) = 67.5  [6] 

  Multiplying equation [6] by   3 ′p1 − 5( ) , we have  

   

  

3 ′p1 − 5( )⎡⎣ ⎤⎦ ′p1 + 15 ′p1 + 10 3 ′p1 − 10( )
                        + 2 3 ′p1 − 10( ) 3 ′p1 − 5( )⎡⎣ ⎤⎦ = 67.5 3 ′p1 − 5( )⎡⎣ ⎤⎦

3 ′p1
2 −15 ′p1 + 15 ′p1 + 30 ′p1

                       − 100 + 6 3 ′p1
2 − 25 ′p1 + 50( ) = 202.5 ′p1 − 1012.5

3 ′p1
2 + 30 ′p1 − 100 + 18 ′p1

2 − 150 ′p1 + 300 − 202.5 ′p1 + 1012.5 = 0

 

  This reduces to the quadratic equation  

     21 ′p1
2 − 322.5 ′p1 + 1 212.5 = 0  

  which has solutions   ′p1 = 8.784 cm  and 6.573 cm. 

  Case 1:   ′p1 = 8.784 cm  
   

  ∴ ′p1 − p1 = 8.784 cm − 7.50 cm = 1.28 cm  

   From [4]:      ′q2 = 32.7 cm  
   

  ∴ ′q2 − q2 = 32.7 cm − 15.0 cm = 17.7 cm  

  Case 2:      ′p1 = 6.573 cm  
   

  ∴ ′p1 − p1 = 6.573 cm − 7.50 cm = −0.927 cm  

   From [4]:      ′q2 = 19.44 cm  
   

  ∴ ′q2 = q2 = 19.44 cm − 15.0 cm = 4.44 cm  

  From these results it is concluded that: 

  

 

The lenses can be displaced in two ways. The first lens can be
moved 1.28 cm farther from the object and the second lens
17.7 cm toward the object. Alternatively, the first lens can be
moved 0.927 cm toward the object and the second lens 4.44 cm
toward the object.
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P36.95 (a) The lens makers’ equation, 
  

1
f

= n − 1( ) 1
R1

+
1

R2

⎛
⎝⎜

⎞
⎠⎟

, becomes:  

    
  

1
5.00 cm

= n − 1( ) 1
9.00 cm

−
1

−11.0 cm( )
⎡

⎣
⎢

⎤

⎦
⎥  

  giving 
  
n = 1.99 . 

 (b) As the light passes through the lens for the first time, the thin lens 

equation, 
  

1
p1

+
1
q1

=
1
f

,  becomes: 

    
  

1
8.00 cm

+
1
q1

=
1

5.00 cm
 

  giving    q1 = 13.3 cm,    and    
  
M1 = −

q1

p1

= −
13.3 cm
8.00 cm

= −1.67.  

  This image becomes the object for the concave mirror with: 
      pM = 20.0 cm − q1 = 20.0 cm − 13.3 cm = 6.67 cm  

  and 
  
f =

R
2
= +4.00 cm.  

  The mirror equation becomes:  
  

1
6.67 cm

+
1

qM

=
1

4.00 cm
,  

  giving qM = 10.0 cm, 

  and  
  
M2 = −

qM

pM

= −
10.0 cm
6.67 cm

= −1.50.  

  The image formed by the mirror serves as a real object for the lens 
on the second pass of the light through the lens, with 

    
  p3 = 20.0 cm − qM = +10.0 cm  

  The thin lens equation yields: 
  

1
10.0 cm

+
1
q3

=
1

5.00 cm
,  

  or q3 = 10.0 cm 

  and 
  
M3 = −

q3

p3

= −
10.0 cm
10.0 cm

= −1.00.  

  The final image is a real image located 

 
10.0 cm to the left of the lens . 

 (c) From above, we find the overall magnification:  

      Mtotal = M1M2M3 =  
 
−2.50  
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 (d) The overall magnification is negative, so the final image is 
inverted.  

P36.96 (a) The object is located at the focal point of 
the upper mirror. Thus, the upper 
mirror creates an image at infinity (i.e., 
parallel rays leave this mirror). For the 
upper mirror, the object is real, and the 

mirror equation, 
  

1
p
+ 1

q
= 1

f
,  gives  

    

  

1
7.50 cm

+
1
q1

=
1

7.50 cm
→ q1 ≈ ∞ (very large)

 

  The lower mirror focuses these parallel 
rays at its focal point, located at the hole 
in the upper mirror. For the lower 
mirror, the object is virtual (behind the mirror),   p2 ≈ −∞ : 

    
  

1
−∞

+
1
q2

=
1

7.50 cm
→ q2 = 7.50 cm  

  The overall magnification is 

    
  
M = m1m2 =

−q1

p1

⎛
⎝⎜

⎞
⎠⎟

−q2

p2

⎛
⎝⎜

⎞
⎠⎟

=
∞

7.50 cm
⎛
⎝⎜

⎞
⎠⎟

7.50 cm
−∞

⎛
⎝⎜

⎞
⎠⎟ = −1  

  Thus, the 
 

image is real, inverted, and actual size . 

 (b) Light travels the same path regardless of direction, so light shined 
on the image is directed to the actual object inside, and the light 
then reflects and is directed back to the outside. Light directed 
into the hole in the upper mirror reflects as shown in the lower 
figure, to behave as if it were reflecting from the image. 

P36.97 First, we solve for the image formed by light traveling to the left 
through the lens. The object distance is pL = p, so  

  
  

1
pL

+
1
qL

=
1
fL

→
1
qL

=
1
fL

−
1
p

 

 Next, we solve for the image formed by light traveling to the right and 
reflecting off the mirror. The object distance is pM = d – p, so 

  

  

1
pM

+
1

qM

=
1
fM

→
1

qM

=
1
fM

−
1

pM

=
pM − fM

fM pM

qM =
fM pM

pM − fM

=
fM d − p( )

d − p − fM

 

ANS. FIG. P36.96 
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 If qM is positive (real image), the image formed by the mirror will be to 
its left, and if qM is negative (virtual image), the image formed by the 
mirror will be to its right; for either case, the image formed by the 
mirror acts as an object for the lens at a distance  ′pL

:  
  

 
′pL = d − qM = d −

fM d − p( )
d − p( )− fM

=
d d − p − fM( )− fM d − p( )

d − p − fM

 

 We solve for the position of the final image q′L: 

  
  

1
′qL

=
1
fL

−
1
′pL

=
1
fL

−
d − p − fM

d d − p − fM( ) − fM d − p( )  

 For the two images formed by the lens to be at the same place,  

  
  

1
qL

=
1
′qL

→
1
fL

−
1
pL

=
1
fL

−
1
′pL

→ ′pL = pL  

 Therefore,  

  

  

d d − p − fM( ) − fM d − p( )
d − p − fM

= p

d d − p − fM( ) − fM d − p( ) = p d − p − fM( )
d2 − pd − fMd − fMd + fM p = pd − p2 − fM p

d2 − 2 p + fM( )d + 2 fM p + p2( ) = 0

 

 Solving for d then gives  

  

  

d =
2 p + fM( ) ± 4 p + fM( )2 − 4 1( ) 2 fM p + p2( )

2 1( )

d =
2 p + fM( ) ± 4p2 + 8 fM p + 4 f

M

2 − 8 fM p − 4p2

2

d =
2 p + fM( ) ± 4 f

M

2

2
= p + fM( ) ± fM

 

 Therefore, 
  
d = p and d = p + 2 fM .  
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P36.2 4.58 m 

P36.4 (1) 4.00 m; (2) 12.00 m; (3) 16.00 m 

P36.6 See ANS. FIG. P36.6 for the locations of the five images. 

P36.8 (a) 33.3 cm in front of the mirror; (b) –0.666; (c) real; (d) inverted 

P36.10 (a) See ANS FIG P36.10; (b) q = –40.0 cm, so the image is behind the 
mirror; (c) M = +2.00, so the image is enlarged and upright; (d) See 
P36.10(d) for full explanation. 

P36.12 (a) –26.7 cm; (b) upright; (c) 0.026 7 

P36.14 (a) +2.22 cm; (b) +10.0  

P36.16 A convex mirror diverges light rays incident upon it, so the mirror in 
this problem cannot focus the Sun’s rays to a point. 

P36.18 (a) 0.708 m in front of the sphere; (b) upright 

P36.20 (a) 
  

ad
a2 − 1

; (b) 
  

ad
a2 − 1

 

P36.22 (a) 8.00 cm; (b) See ANS. FIG. P36.22(b); (c) virtual 

P36.24 (a) 16.0 cm from the mirror; (b) +0.333; (c) upright 

P36.26 (a) See P36.26(a) for full explanation; (b) real image at 0.639 s and 
virtual image at 0.782 s 

P36.28 8.05 cm 

P36.30 38.2 cm below the top surface 

P36.32 3.75 mm 

P36.34 See P36.34 for full explanation. 

P36.36 (a) (i) 3.77 cm from the front of the wall, in the water, (ii) 19.3 cm from 
the front wall, in the water; (b) (i) +1.01, (ii) +1.03; (c) The plastic has 
uniform thickness, so the surfaces of entry and exit for any particular 
ray are very nearly parallel. The ray is slightly displaced, but it would 
not be changed in direction by going through the plastic wall with air 
on both sides. Only the difference between the air and water is 
responsible for the refraction of the light; (d) yes; (e) If  p = R , then 

  q = –p = – R ; if  p > R , then  q > R . For example, if   p = 2 R , then 

  q = –3.00 R  and M = +2.00. 

P36.38 (a) 650 cm, real, inverted, enlarged; (b) –600 cm, virtual, upright, 
enlarged 
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P36.40 (a) 12.3 cm to the left of the lens; (b) 0.615; (c) See ANS. FIG. P36.40. 

P36.42 (a) The image is in back of the lens at a distance of 1.25f from the lens; 
(b) –0.250; (c) real 

P36.44 (i) See ANS. FIG P36.44(i): (a) 20.0 cm in back of the lens, (b) real,  
(c) inverted, (d) M = –1.00, (e) Algebraic answers agree, and we can 
express values to three significant figures: q = 20.0 cm, M = –1.00;  
(ii) See ANS. FIG. P36.44(ii): (a) 10 cm front of the lens, (b) virtual,  
(c) upright, (d) M = +2.00, (e) Algebraic answers agree, and we can 
express values to three significant figures: q = –10.0 cm, M = +2.00,  
(f) Small variations from the correct directions of rays can lead to 
significant errors in the intersection point of the rays. These variations 
may lead to the three principal rays not intersecting at a single point. 

P36.46 (i): (a) 13.3 cm in front of the lens, (b) virtual, (c) upright, (d) +0.333; 
(ii): (a) 10.0 cm in front of the lens, (b) virtual, (c) upright, (d) +0.500; 
(iii): (a) 6.67 cm in front of the lens, (b) virtual, (c) upright, (d) +0.667 

P36.48 
  
dq = −

q2

p2 dp  

P36.50 (a) qa = 26.3 cm, qd = 46.7 cm, –8.75 cm, –23.3 cm; (b) See ANS. FIG. 
P36.50(b); (c) See P36.50(c) for full explanation; (d) The integral stated 
adds up the areas of ribbons covering the whole image, each with 
vertical dimension |h′| and horizontal width dq; (e) 328 cm2. 

P36.52 See P36.52 for full explanation. 

P36.54 (a) –34.7 cm; (b) –36.1 cm 

P36.56 f/1.4 

P36.58 (a) –4.00 diopters; (b) diverging lens 

P36.60 (a) –25.0 cm; (b) nearsighted; (c) –3.70 diopters 

P36.62 (a)   +50.8 diopters ≤ P ≤ 60.0 diopters;  (b) –0.800 diopters, diverging 

P36.64 The image is inverted, real, and diminished. 

P36.66 (a) 4.17 cm; (b) 6.00 

P36.68 (a) –800; (b) inverted 

P36.70 (a) See P36.70(a) for full explanation; (b) 
 
−

hf
p

; (c) –1.07 mm 

P36.72 –25.0 cm 

P36.74 
  
f =

−Md
1− M( )2  when the lens is diverging; 

  
f =

Md
M − 1( )2  when the lens is 

converging 
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P36.76 (a) 0.833 mm; (b) 0.820 mm 

P36.78 (a) 13.3 cm in front of the first lens; (b) –6.00; (c) inverted; (d) virtual 

P36.80 (a) 
  
′x =

1024 − 58.0x
6.0 − x

 where x and x′ is are in centimeters; (b) See 

P36.80(b) for full explanation; (c) The image moves to infinity and 
beyond—meaning it moves forward to infinity (on the right), jumps 
back to minus infinity (on the left), and then proceeds forward again; 
(d) The image usually travels to the right, except when it jumps from 
plus infinity (right) to minus infinity (left). 

P36.82 (a) See P36.82(a) for full explanation; (b) 1.75 times 

P36.84 q = 10.7 cm 

P36.86 See P36.86 for full explanation 

P36.88 
  

p f1 + f2( ) − f1 f2

p − f1

 

P36.90 (a) 
  

1
f
=

1
p1

+
1

1.50 − p1

; (b) 
  

1
f
=

1
p1 + 0.900

+
1

0.600 − p1

; (c) 0.300 m;  

(d) 0.240 m 

P36.92 (a) 20.0 cm; (b) –6.00; (c) inverted; (d) q2 = 6.67 cm and Moverall = –2.00, 
inverted 

P36.94 (a) 67.5 cm; (b) The lenses can be displaced in two ways. The first lens 
can be moved 1.28 cm farther from the object and the second lens 17.7 
cm toward the object. Alternatively, the first lens can be moved 0.927 
cm toward the object and the second lens 4.44 cm toward the object. 

P36.96 (a) The image is real, inverted, and actual size; (b) Light travels the 
same path regardless of direction, so light shined on the image is 
directed to the actual object inside, and the light then reflects and is 
directed back to the outside. Light directed into the hole in the upper 
mirror reflects as shown in the lower figure, to behave as if it were 
reflecting from the image. 
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37 
Wave Optics 

 

CHAPTER OUTLINE 
 

27.1  Young’s Double-Slit Experiment 

27.2  Analysis Model: Waves in Interference 

27.3 Intensity Distribution of the Double-Slit Interference Pattern 

27.4 Change of Phase Due to Reflection 

27.5  Interference in Thin Films 

27.6 The Michelson Interferometer 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ37.1 (i) Answer (a). If the mirrors do not move the character of the 
interference stays the same. 

 (ii) Answer (c). The light waves destructively interfere so they are 
initially out of phase by 180°. Moving the mirror by λ/2 changes 
the path difference by 2(λ/2) = λ, so the waves go in phase then 
back out of phase to their original phase relation. 

OQ37.2 (i) The ranking is b > a > c = d. The angles in the interference 
pattern are small, so we can make a good approximation of their 
values:   dsinθ = mλ →θ ≈ mλ d .  Thus for m = 1,   θ ≈ λ d ,  which 
we estimate in each case: (a) 0.450 µm/400 µm ≈ 1.1 × 10−3 rad 
(b) 0.7 µm/400 µm ≈ 1.8 × 10−3 rad (c) and (d) 0.7 µm/800 µm ≈ 
0.9 × 10−3 rad. 

 (ii) The ranking is b = d > a > c. Now we consider the distance 

     y = L tanθ ≈ Lsinθ = L mλ d( )   →   y ≈ mLλ d  

  Thus for m = 1,    y ≈ Lλ d ,  which we estimate in each case:  
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(a) (4 m) (0.45 µm/400 µm) ≈ 4.5 mm; (b) (4 m)(0.7 µm/400 µm)  
≈ 7 mm; (c) (4 m)(0.7 µm/800 µm) ≈ 3.5 mm;  
(d) (8 m)(0.7 µm/800 µm) ≈ 7 mm. 

OQ37.3 Answer (c). Underwater, the wavelength of the light decreases 
according to   λwater = λair nwater .  Since the angles between positions of 
light and dark bands, being small, are approximately proportional to 
λ, the underwater fringe separations decrease. 

OQ37.4 (i) Answer (c). The distance between nodes is half a wavelength. 

 (ii) Answer (d). The reflected light travels through the same path 
twice because it reflects, so moving the mirror one-quarter 
wavelength, 125 nm, results in a path change of one-half 
wavelength, 250 nm, which results in destructive interference. 

 (iii) Answer (e). The wavelength of the light in the film is 500 nm/2 
= 250 nm. If the film is made 62.5 nm thicker (one-quarter 
wavelength in the film), the light reflecting inside the film has a 
path length 125 nm greater. This is half a wavelength, which 
reverses constructive into destructive interference. 

OQ37.5 Answer (d). There are 180° phase changes occurring in the reflections 
at both the air-oil boundary and the oil-water boundary; thus the 
relative phase change from reflection is zero. The condition for 
constructive interference in the reflected light is 

   
  
2t = m

λ
n

→ t = m
λ
2n

 

 where m is any integer. The minimum non-zero thickness of the oil 
which will strongly reflect 530-nm light is m = 1: 

   
  
t = m

λ
2n

= 1( ) 530 nm
2 1.25( ) = 212 nm  

O37.6 Answer (a). For the second-order bright fringe, 

   

  

dsinθ = 2λ

sinθ = 2
500 × 10−9  m
2.00 × 10−5  m

⎛
⎝⎜

⎞
⎠⎟

θ = 0.050 0 rad 

 

OQ37.7 (i) Answer (b). If the oil film is brightest where it is thinnest, then 
nair < noil < nflint glass. With this condition, light reflecting from both 
the top and the bottom surface of the oil film will undergo 180° 
phase changes. Then these two beams will be in phase with each 
other where the film is very thin. This is the condition for 
constructive interference as the thickness of the oil film 
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decreases toward zero. If the oil film is dark where it is thinnest, 
then nair < noil > ncrown glass. In this case, reflecting light undergoes 
a 180° phase change upon reflection from the top surface but no 
180° phase change upon reflection from the bottom surface of 
the oil. The two reflected beams are 180° out of phase and 
interfere destructively as the oil film thickness goes to zero. 

 (ii) Yes. It should have a lower refractive index than both kinds of 
glass. 

 (iii) Yes. It should have a higher refractive index than both kinds of 
glass. 

 (iv) No. Its refractive index cannot be both greater than 1.66 and less 
than 1.52. 

OQ37.8 Answer (b). With two fine slits separated by a distance d slightly less 
than λ, the equation   dsinθ = 0  has the usual solution θ = 0, but 
  dsinθ = λ  has no solution: there is no first-order maximum. 

However, 
  
dsinθ = 1

2
λ  has a solution: first-order minima flank the 

central maximum on each side. 

OQ37.9 (i) Answer (a). The angular position of the mth-order bright fringe 
in a double-slit interference pattern is given by   dsinθm = mλ.  
The distance ym of the mth-order bright fringe from the center of 
the pattern is given by   ym = L tanθm , where L is the distance to 
the screen. The spacing between successive bright fringes is 

   

  

Δy = ym+1 − ym = L tanθm+1 − tanθm( )
≈ L sinθm+1 − sinθm( )

= L
m + 1( )− m[ ]

d
λ = L

d
λ

 

  because the angles are small, and for small angles (in radians) 
  sinθ  tanθ.  As L increases, the spacing  Δy  increases. 

 (ii) Answer (b). From our result above, we see that as d increases, 
the spacing  Δy  decreases. 

OQ37.10 Answer (b). If the thickness of the oil film were smaller than half of 
the wavelengths of visible light, no colors would appear. If the 
thickness of the oil film were much larger, the colors would overlap 
to mix to white or gray. 
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ37.1 A camera lens will have more than one element, to correct (at least) 
for chromatic aberration. It will have several surfaces, each of which 
would reflect some fraction of the incident light. To maximize light 
throughout, the surfaces need antireflective coatings. The coating 
thickness is chosen to produce destructive interference for reflected 
light of a particular wavelength. 

CQ37.2 Due to gravity, the soap film tends to sag in its holder, being quite 
thin at the top and becoming thicker as one moves toward the 
bottom of the holding ring. Because light reflecting from the front 
surface of the film experiences a 180° phase change, and light 
reflecting from the back surface of the film does not (see Figure 37.10 
in the textbook), the film must be a minimum of a half wavelength 
thick before it can produce constructive interference in the reflected 
light. Thus, the light must be striking the film at some distance from 
the top of the ring before the thickness is sufficient to produce 
constructive interference for any wavelength in the visible portion of 
the spectrum. 

CQ37.3 The light from the flashlights consists of many different wavelengths 
(that’s why it’s white) with random time differences between the 
light waves. There is no coherence between the two sources. The light 
from the two flashlights does not maintain a constant phase 
relationship over time. These three equivalent statements mean no 
possibility of an interference pattern. 

CQ37.4 Typically, a thin air film forms between the lens and the glass plate. 
Light reflecting from the upper surface of the air film (lower surface 
of the lens) can interfere with light reflecting from the lower surface 
of the air film (upper surface of the flat glass plate). The light 
reflecting from the lower surface of the air film undergoes a 180° 
phase change on reflection while the light reflecting from the upper 
surface of the air film does not. (a) Where there is negligible distance 
between the surfaces, at the center of the pattern you will see a dark 
spot because of the destructive interference associated with the 180° 
phase shift. (b) Colored rings surround the dark spot. If the lens is a 
perfect sphere and the plate is perfectly flat, the rings are perfect 
circles. On the fine scale of the wavelength of visible light, distorted 
rings reveal bumps and hollows that cause variation in the air film 
between the glass surfaces. 

CQ37.5 The waves interfere destructively at some places and interfere 
constructively at others. The total energy is not lost, it is just 
rearranged. The energy that does not go into the dark fringes is 
shifted into the bright fringes. 
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CQ37.6 Every color produces its own double-slit interference pattern, so if 
white light is used, the central maximum is white and the first-order 
maxima are full spectra running from violet to red. Each higher-
order maximum is in principle a full spectrum, but it can partially 
overlap with the next order maximum, so the pattern for a specific 
color is hard to distinguish. Using monochromatic light eliminates 
this problem. 

CQ37.7 (a) Two waves interfere constructively if their path difference is 
zero, or an integral multiple of the wavelength, according to 
  δ = mλ,  with m = 0, 1, 2, 3,…. 

 (b) Two waves interfere destructively if their path difference is a 

half wavelength, or an odd multiple of 
 

λ
2

,  described by  

    
  
δ = m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ , with m = 0, 1, 2, 3,…. 

CQ37.8 Each liquid forms a film which causes interference of light reflected 
off the top and bottom surfaces of the film. Since the liquids would 
have an index greater than that of air, light reflected off the top 
surface of each film would undergo a 180° phase change. When the 
films become sufficiently thin, the type of interference that occurs, 
constructive or destructive, depends on whether the reflected wave 
does or does not undergo a 180° phase change. If the index of one 
liquid is less than that of water, light reflected off the bottom surface 
of the film (off the water surface) will be shifted by 180°, so the 
overall interference will be constructive, and the film will appear 
bright. If the index of the other liquid is greater than that of water, 
light reflected off the bottom surface of the film will not be shifted, so 
the overall interference will be destructive, and the film will appear 
dark. 

CQ37.9 Yes. A single beam of laser light going into the slits divides up into 
several fuzzy-edged beams diverging from the point halfway 
between the slits. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 27.1 Young’s Double-Slit Experiment 

Section 27.2 Analysis Model: Waves in Interference 
*P37.1 The angular locations of the bright fringes (or maxima) is given by 

Equation 37.2:  
     dsinθ = mλ  

 Solving for m and substituting 30.0° gives 
   

  
m = dsinθ

λ
=

3.20× 10−4  m( )sin 30.0°
500× 10−9  m

= 320
 

 There are 320 maxima to the right, 320 to the left, and one for m = 0  
straight ahead at  θ = 0.  There are therefore  641 maxima .  

P37.2 The location of the dark fringe of order m (measured from the position 
of the central maximum) is given by  

  

  
(ydark )m = m+ 1

2
⎛
⎝⎜

⎞
⎠⎟

Lλ
d

⎛
⎝⎜

⎞
⎠⎟

 

 where   m = 0, ± 1, ± 2,…  Thus, the spacing between the first and second 
dark fringes will be 

  

  

Δy = ydark( )m=1
− ydark( )m=0

= 1+ 1
2

⎛
⎝⎜

⎞
⎠⎟

Lλ
d

⎛
⎝⎜

⎞
⎠⎟ − 0 + 1

2
⎛
⎝⎜

⎞
⎠⎟

Lλ
d

⎛
⎝⎜

⎞
⎠⎟ = Lλ

d

 

 or 
  
Δy =

5.30 × 10−7  m( ) 2.00 m( )
0.300 × 10−3  m

= 3.53 × 10−3  m = 3.53 mm  

P37.3 The location of the bright fringe of order m (measured from the 
position of the central maximum) is 

    dsinθ = mλ m = 0, ± 1, ± 2,… . 

 For first bright fringe to the side, m = 1. Thus, the wavelength of the 
laser light must be 

  

  

λ = dsinθ = (0.200× 10−3 m)sin0.181°

= 6.32 × 10−7  m = 632 nm

 

P37.4 The location of the bright fringes for small angles is given by Equation 
37.7: 

   
  
ybright =

λL
d

m  
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 For m = 1,     

   
  
λ =

ybright

L
=

3.40 × 10−3  m( ) 0.500 × 10−3  m( )
3.30 m

= 515 nm  

P37.5 In the equation 
  
dsinθ = m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ,  the first minimum 

is described by m = 0 and the tenth by m = 9:     

   
  
sinθ =

λ
d

9 +
1
2

⎛
⎝⎜

⎞
⎠⎟ = 9.5

λ
d

 

 Also, 
  
tanθ =

y
L

.   But, for small θ,  sinθ ≈ tanθ.  

 Thus, 
  
d = 9.5λ

sinθ
= 9.5λL

y
:  

   

  
d =

9.5 5 890 × 10−10  m( ) 2.00 m( )
7.26 × 10−3  m

= 1.54 × 10−3  m = 1.54 mm
 

P37.6 We use Equation 37.2,   dsinθbright  = mλ ,   to find the angle for the m = 1 
fringe: 

   

  
sinθbright  = 

mλ
d

 = 
1( ) 1.00 × 10−2  m( )

8.00 × 10−3  m
 = 1.25

 

 The sine of the angle is greater than 1, which is impossible. Therefore, 
there is no m = 1 fringe on the screen whose position can be measured. 
In fact, there is no interference pattern at all, just a bright area of 
microwaves directly behind the double slit. 

P37.7 We do not use the small-angle approximation  sinθ ≈ tanθ  here 
because the angle is greater than 10°. For the first bright fringe, m = 1, 
and we have 

    dsinθ = mλ = λ  

 and 
  
d = λ

sinθ
= 620× 10−9  m

sin15.0°
= 2.40× 10−6  m = 240 µm  

P37.8 (a) For a bright fringe of order m, the path difference is  δ = mλ , 
where m = 0, 1, 2,… At the location of the third order bright 
fringe, 

   
  
δ = mλ = 3 589 × 10−9  m( ) = 1.77 × 10−6  m = 1.77 µm  

ANS. FIG. P37.5 
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 (b) For a dark fringe, the path difference is 
  
δ = m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ , where  

m = 0, 1, 2,…  At the third dark fringe, m = 2 and 

   
 
δ = 2 +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ =

5
2

589 nm( ) = 1.47 × 103  nm = 1.47 µm  

P37.9 (a) For the bright fringe,  

   
  
ybright =

mλL
d

, where m = 1 

   

  

y =
546.1× 10−9  m( ) 1.20 m( )

0.250 × 10−3  m
= 2.62 × 10−3  m

= 2.62 mm

 

 (b) If you have trouble remembering whether 
the equation with  mλ  or the equation with  

  
m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ  applies to a particular situation,  

you can remember that a zero-order bright 
 band is in the center, and dark bands are  
halfway between bright bands. Thus, the  
made-up equation   dsinθ = count( )λ  
describes them all, with count = 0, 1, 2, …  
for bright bands, and with count = 0.5,  
1.5, 2.5, … for dark bands. 

  Then, for the dark bands, 

  
ydark =

λL
d

m +
1
2

⎛
⎝⎜

⎞
⎠⎟

; m = 0, 1, 2, 3, … 

     

  

Δy = y2 − y1 = λL
d

1+ 1
2

⎛
⎝⎜

⎞
⎠⎟ − 0 + 1

2
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= λL
d

=
546.1× 10−9  m( ) 1.20 m( )

0.250× 10−3  m

Δy = 2.62 mm

 

P37.10 Taking m = 0 and y = 0.200 mm in Equations 37.3 and 37.4 gives 

  

  

L ≈
2dy
λ

=
2 0.400 × 10−3  m( ) 0.200 × 10−3  m( )

442 × 10−9  m
= 0.362 m

L ≈ 36.2 cm
 

ANS. FIG. P37.9 
 



752     Wave Optics 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 Geometric optics or a particle theory of light would incorrectly predict 
bright regions opposite the slits and darkness in between. But, as this 
example shows, interference can produce just the opposite. 

 

ANS. FIG. P37.10 

*P37.11 
 
λ = 340 m s

2 000 Hz
= 0.170 m  

 The maxima are located at   dsinθ = mλ:  

 m = 0 gives   θ = 0°  

 m = 1 gives  
  
θ = sin−1 λ

d
⎛
⎝

⎞
⎠ = sin−1 0.170 m

0.350 m( ) = 29.1°  

 m = 2 gives  
  
θ = sin−1 2λ

d
⎛
⎝

⎞
⎠ = sin−1 2 0.170 m( )

0.350 m
⎡
⎣⎢

⎤
⎦⎥

= 76.3°   

 m = 3 has no solution, since  sinθ > 1.  

 The minima are located at 
  
dsinθ = m + 1

2( )λ:  

 m = 0 gives  
  
θ = sin−1 λ

2d
⎛
⎝

⎞
⎠ = sin−1 0.170 m

2 0.350 m( )
⎡
⎣⎢

⎤
⎦⎥

= 14.1°  

 m = 1 gives  
  
θ = sin−1 3λ

2d
⎛
⎝

⎞
⎠ = sin−1 3 0.170 m( )

2 0.350 m( )
⎡
⎣⎢

⎤
⎦⎥

= 46.8°  

 m = 2 has no solution, since  sinθ > 1.  

 
  

We have maxima at 0°, 29.1°, and 76.3°; minima at 14.1° and 46.8° .  

P37.12 The wavelength 
  
λ =

v
f

=
343 m/s
2 000 s−1 = 0.171 5 m  is on the same order of 

size as the slit separation d = 0.300 m, so we may treat this as a double-
slit diffraction problem. 

 (a)   dsinθ = mλ     so     0.300 m( )sinθ = 1 0.171 5 m( )   and   θ = 34.9° .  

 (b)   dsinθ = mλ     so      dsin 34.9° = 1 0.030 0 m( )    and     d = 5.25 cm .  
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 (c)  1.00 × 10−6  m( )sin 34.9° = 1( )λ     so     λ = 572 nm.  

   
  
f =

c
λ

=
3.00 × 108  m/s
5.72 × 10−7  m

= 5.24 × 1014  Hz  

P37.13 Note, with the conditions given, the small-angle 
approximation does not work well. That is,  
sin θ, tan θ, and θ are significantly different. We 
treat the interference as a Fraunhofer pattern. 

 (a) At the m = 2 maximum,  
   

 
tanθ =

400 m
1 000 m

= 0.400 →θ = 21.8°
 

  So  
  
λ =

dsinθ
m

=
300 m( )sin 21.8°

2
= 55.7 m .  

 (b) The next minimum encountered is the m = 2 minimum, and at 
that point, 

   
  
dsinθ = m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ  

  which becomes 
  
dsinθ =

5
2
λ,  

  or 
  
sinθ =

5
2
λ
d

=
5
2

55.7 m
300 m

⎛
⎝⎜

⎞
⎠⎟ = 0.464 →θ = 27.7°,  

  so   y = 1 000 m( )tan 27.7° = 524 m.  

  Therefore, the car must travel an additional  

   524 m – 400 m = 
 

124 m  

  If we considered Fresnel interference, we would more precisely 
find 

  (a) 
 
λ =

1
2

5502 + 1 0002  m − 2502 + 1 0002  m( ) = 55.2 m  and  

(b) 123 m. 

P37.14 Location of A = central maximum, location of B = first minimum. 

 So,  
  
Δy = ymin − ymax[ ] =

λL
d

0 +
1
2

⎛
⎝⎜

⎞
⎠⎟ − 0 =

1
2
λL
d

= 20.0 m.  

 Thus,   
  
d =

λL
2 20.0 m( ) =

3.00 m( ) 150 m( )
40.0 m

= 11.3 m .  

ANS. FIG. P37.13 
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P37.15 The angle θ of the 50th-order fringe is given by 

   
  
dsinθ = mλ → θ = sin−1 50λ

d
⎛
⎝⎜

⎞
⎠⎟

 

 The distance x from the slit to the screen and the distance y of the mth-
order fringe from the center of the central maximum are related by 

  
tanθ =

y
x

.  As the student approaches the screen at speed v, the 

distances x and y decrease but their ratio stays the same. Therefore, 

   

  

tanθ =
y
x

→ y = x tanθ

dy
dt

=
dx
dt

tanθ = −v tanθ
 

 where dy/dt is negative because the distance y shrinks. The speed of the 
fringe is 

   
  
v50th-order =

dy
dt

= v tanθ = v tan sin−1 mλ
d

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

 Thus, the speed of the 50th-order fringe is 
   

  

v50th-order = 3.00 m/s( )tan sin−1 50 632.8× 10−9  m( )
0.300× 10−3  m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= 0.318 m/s

 

P37.16 The angle θ of the mth-order fringe is given by 

   
  
dsinθ = mλ → θ = sin−1 mλ

d
⎛
⎝⎜

⎞
⎠⎟

 

 The distance x from the slit to the screen and the distance y of the mth-
order fringe from the center of the central maximum are related by 

  
tanθ =

y
x

.  As the student approaches the screen at speed v, the 

distances x and y decrease but their ratio stays the same. Therefore, 
   

  

tanθ =
y
x

→ y = x tanθ

dy
dt

=
dx
dt

tanθ = −v tanθ

 

 where dy/dt is negative because the distance y shrinks. Thus, the speed 
of the mth-order fringe is 

   
  
vmth-order =

dy
dt

= v tanθ = v tan sin−1 mλ
d

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
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P37.17 As shown in the figure to the right, the height of the radio telescope 
dish is   h = d2 sinθ ,  and the path difference in the waves reaching the 
telescope is 

    δ = d2 − d1 = d2 1− sinα( )  

 where 

   θ +α +θ = 90° → α = 90° − 2θ  

 If the first minimum  δ = λ 2( )  occurs when θ = 25.0°, then 

   α = 90° − 2 25.0°( ) = 40.0° , and 

  
  
d2 =

δ
1− sinα

=
250 m( ) 2

1− sin 40.0°
= 350 m  

 Thus, the height 
  
h = d2sinθ = 350 m sin 25.0° = 148 m  

 

ANS. FIG. P37.17 

P37.18 For a double-slit system, the path difference of the two wave fronts 
arriving at a screen is   δ = dsinθ  and the phase difference is  

   
  
φ =

2π
λ

δ =
2π
λ

dsinθ ≈
2π
λ

d
y
L

⎛
⎝⎜

⎞
⎠⎟

 

 (a) For θ = 0.500°, 

   

  

φ =
2π
λ

d sinθ

φ =
2π

500 × 10−9  m( ) 0.120 × 10−3  m( )sin 0.500°( ) = 13.2 rad
 

 (b) 

  

φ ≈
2π
λ

d
y
L

⎛
⎝⎜

⎞
⎠⎟ =

2π
500 × 10−9  m( ) 0.120 × 10−3  m( ) 5.00 × 10−3  m

1.20 m
⎛
⎝⎜

⎞
⎠⎟

= 6.28 rad
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 (c) If 
  
φ = 0.333 rad =

2πdsinθ
λ

,  then  

   

  

θ = sin−1 λφ
2π d

⎛
⎝⎜

⎞
⎠⎟

= sin−1 500 × 10−9  m( ) 0.333 rad( )
2π 0.120 × 10−3  m( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

θ = 1.27 × 10−2 °

 

 (d) If 
  
dsinθ =

λ
4

,  then  

   

  
θ = sin−1 λ

4d
⎛
⎝⎜

⎞
⎠⎟

= sin−1 500 × 10−9  m
4 0.120 × 10−3  m( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

   
 
θ = 5.97 × 10−2 °  

P37.19 From the diagram, the path difference between rays 1 and 2 is 

     δ = d1 − d2 = dsinθ1 − dsinθ2  

 For constructive interference, this path difference must be equal to an 
integral number of wavelengths: 

   

  

dsinθ1 − dsinθ2 = mλ

sinθ1 − sinθ2 =
mλ
d

→ θ2 = sin−1 sinθ1 −
mλ
d

⎛
⎝⎜

⎞
⎠⎟

 

 

ANS. FIG. P37.19 

P37.20 (a)   y = 50ybright = 50 4.52 × 10−3  m( ) = 0.226 m = 22.6 cm  

 (b) 
  
tanθ1 =

ybright( )
m=1

L
=

4.52 × 10−3  m
1.80 m

= 2.51× 10−3  
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 (c) From (b), 
 
θ1 = tan−1 4.52 × 10−3  m

1.80 m
⎛
⎝⎜

⎞
⎠⎟

= 0.144°  

   → sinθ1 = 2.51× 10−3  

 

ANS. FIG. P37.20 

  The sine and the tangent are very nearly the same, but only 
because the angle is small. From   d sinθbright = mλ,  for m = 1: 

   
  
λ =

d sinθ1

1
=

2.40 × 10−4  m( )sin 0.144°( )
1

= 6.03 × 10−7  m  

 (d) From   δ = dsinθ = mλ  for the order m bright fringe, 
   

  

θ50 = sin−1 50λ
d

⎛
⎝⎜

⎞
⎠⎟

= sin−1 50sinθ1( ) = sin−1 50sin 0.144°( )[ ]
= 7.21°

 

 (e)   y5 = L tanθ5 = 1.80 m( )tan 7.21°( ) = 2.26 × 10−2  m = 2.28 cm  

 (f) 

 

The two answers are close but do not agree exactly. The fringes
are not laid out linearly on the screen as assumed in part (a),
and this nonlinearity is evident for relatively large angles such
as 7.21°.

 

P37.21 (a) The path difference   δ = dsinθ ,  and when L >> y: 
   

  

δ =
yd
L

=
1.80 × 10−2  m( ) 1.50 × 10−4  m( )

1.40 m
= 1.93 × 10−6  m = 1.93 µm

 

 (b) 
 

δ
λ

=
1.93 × 10−6  m
6.43 × 10−7  m

= 3.00 ,    or    
 
δ = 3.00λ  

 (c) Point P will be a 
 

maximum  because the path difference is an 

integer multiple of the wavelength. 
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P37.22 Observe that the pilot must not only home in on the airport, but must 
be headed in the right direction when she arrives at the end of the 
runway. 

 (a) 
  
λ =

c
f

=
3.00 × 108  m/s
30.0 × 106  s−1 = 10.0 m  

 (b) The first side maximum is at an angle given by   dsinθ = 1( )λ.  

    40.0 m( )sinθ = 10.0 m θ = 14.5°  

  The 2.00 km is the length of the hypotenuse of a triangle with 
angle θ : 

   
  
y = Lsinθ = 2 000 m( )sin 14.5° = 500 m  

 (c) The intent is to inform the pilot which signal corresponds to the 
central maximum. The signal of 10-m wavelength in parts (a) and 
(b) would show maxima at 0°, 14.5°, 30.0°, 48.6°, and 90°. A signal 
of wavelength, say, 11.23 m, would show maxima at 0°, 16.3°, 
34.2°, and 57.3°. The only value in common is 0°. A strong signal 
for both frequencies would indicate that the airplane was 
traveling along the central maximum, thus, straight on the 
runway. If  λ1  and  λ2  were related by a ratio of small integers in 

  

λ1

λ2

=
n1

n2

,  equivalent to 
  

f2

f1

=
n1

n2

,  then the equations   dsinθ = n2λ1  

and   dsinθ = n1λ2  would both be satisfied for the same nonzero 
angle. The pilot could approach on an inappropriate bearing, and 
run off the runway immediately after touchdown. 

 
 

 

Section 37.3 Intensity Distribution of the  
Double-Slit Interference Pattern 

P37.23 We use Equation 37.14,  

   
  
I = Imax cos2 π yd

λL
⎛
⎝⎜

⎞
⎠⎟

 

 Solving and substituting then gives  

   
  

I
Imax

= cos2 π 6.00 × 10−3  m( ) 1.80 × 10−4  m( )
656.3 × 10−9  m( ) 0.800 m( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 0.968  
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P37.24 We use trigonometric identities to write 
  

  

E1 + E2 = 6.00 sin (100π t)
             + 8.00 sin(100π t +π/2)

= 6.00 sin(100π t) + 8.00 sin(100π t)cos(π/2)[
                                   +8.00 cos(100π t)sin(π/2)]

E1 + E2 = 6.00 sin(100π t) + 8.00 cos(100π t)

 

 and 

    ER sin(100π t + φ) = ER sin(100π t)cosφ + ER cos(100π t)sinφ  

 The equation   E1 + E2 = ER sin(100π t + φ)  is satisfied if we require  

    600 = ER
− cosφ and 8.00 = ER sinφ  

 or  
  
(6.00)2 + (8.00)2 = ER

2(cos2φ + sin2φ)→ ER = 10.0  

 and  
 
tanφ = sinφ/cosφ = 8.00/6.00 = 1.33→ φ = 53.1°  

P37.25 We will use Equation 37.14 for 
intensity in a double-slit interference 
pattern, which is 

   
  
I = Imax cos2 πdsinθ

λ
⎡

⎣
⎢

⎤

⎦
⎥  

 For small  θ ,  from ANS. FIG. P37.25,  

   
  
sinθ ≈ y

L 
 

 Substituting and solving gives  

   
  
y =

λL
πd 

cos–1 I
Imax  

 

 Next, with I = 0.750Imax, we can substitute a value for each variable:  
   

  
y =

6.00 × 10–7 m( )(1.20 m)
π 2.50 × 10–3 m( )  

cos–1 0.750 = 48.0 µm
 

P37.26 (a) The resultant amplitude is 

     Er = E0 sinω t + E0 sin ω t + φ( ) + E0 sin ω t + 2φ( )  

  where 
  
φ =

2π
λ

dsinθ .  

 

ANS. FIG. P37.25 
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  Expanding, 
   

  

Er = E0 sinω t + sinω tcosφ + cosω tsinφ(
                                         + sinω tcos2φ + cosω tsin 2φ)

Er = E0 sinω t( ) 1+ cosφ + 2cos2φ − 1( )
                                    + E0 cosω t( ) sinφ + 2sinφ cosφ( )

Er = E0 1+ 2cosφ( ) sinω tcosφ + cosω tsinφ( )
= E0 1+ 2cosφ( )sin ω t +φ( )

 

  Then the intensity is  

   
  
I ∝Er

2 = E0
2 1 + 2cosφ( )2 1

2
⎛
⎝⎜

⎞
⎠⎟

 

  where we have substituted the time average of   sin2 ω t + φ( ) , 

which is 
 

1
2

. The maximum intensity occurs at  φ = 0 :  

   
  
Imax ∝E0

2 1 + 2cos0( )2 1
2

⎛
⎝⎜

⎞
⎠⎟ =  

  

9
2

E0
2  

  Therefore, the ratio of intensity to maximum intensity is 

   

  

I
Imax

=
E0

2 1 + 2cosφ( )2 1
2

⎛
⎝⎜

⎞
⎠⎟

9
2

E0
2

=
1 + 2cosφ( )2

9

I =
Imax

9
1 + 2cosφ( )2

I =
Imax

9
1 + 2cos

2π dsinθ
λ

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

2

 

 (b) Look at the N = 3 graph in the textbook Figure 37.7. The intensity 
is zero at two places between the relative maxima, attained where 

 
cosφ = −

1
2

. The relative secondary maximum in the middle 

occurs at  cosφ = −1.00 , where 
  
I =

Imax

9
[1− 2]2 =

Imax

9
. 

 (c) The larger local maximum happens where  cosφ = +1.00 , giving 

  
I =

Imax

9
[1+ 2]2 = Imax . The ratio of intensities at primary versus 

secondary maxima is 
 

9 : 1 . 
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P37.27 (a) From Equation 37.14,  
   

  
I = Imax cos2 π dsinθ

λ
⎛
⎝⎜

⎞
⎠⎟

 

  with 
  
φ =

2π
λ

dsinθ.   This gives 

   
  

I
Imax

= cos2 φ
2

⎛
⎝⎜

⎞
⎠⎟  

  Therefore, 
   

  
φ = 2cos−1 I

Imax

= 2cos−1 0.640 = 1.29 rad
 

P37.28 In 
  
Iavg = Imax cos2 π dsinθ

λ
⎛
⎝⎜

⎞
⎠⎟  for angles between −0.3° and +0.3° we may 

take sin θ = θ (in radians) to find 

   
  
I = Imax cos2 π 250 µm( )  θ

0.546 µm 
⎡

⎣
⎢

⎤

⎦
⎥  

 This equation is correct assuming θ is in radians; but we can then 
equally well substitute in values for θ in degrees and interpret the 
argument of the cosine function as a number of degrees. We get the 
same answers for θ negative and for θ positive. We evaluate  

θ degrees −0.30 −0.25 −0.20 −0.15 −0.10 −0.05 0.0 

I/Imax 0.101 1.00 0.092 0.659 0.652 0.096 1.00 

θ degrees 0.05 0.10 0.15 0.20 0.25 0.30  

I/Imax 0.096 0.652 0.659 0.092 1.00 0.101  

TABLE P37.28 

 

ANS. FIG. P37.28 
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 The cosine-squared function has maximum values of 1 at θ = 0, at  
θ = 0.125°, and at θ = 0.250°. It has minimum values of zero halfway 
between the maximum values. The graph then has the appearance 
shown. 

P37.29 (a) From Equation 37.9, 

   

  

φ =
2π d
λ

sinθ =
2π d
λ

⋅
y

y2 + D2

φ ≈
2π yd
λD

=
2π 0.850 × 10−3  m( ) 2.50 × 10−3  m( )

600 × 10−9  m( ) 2.80 m( )
= 7.95 rad

 

 (b) 
  

I
Imax

=
cos2 π d λ( )sinθ⎡⎣ ⎤⎦

cos2 π d λ( )sinθmax⎡⎣ ⎤⎦
=

cos2 φ 2( )
cos2 mπ

 

  
  

I
Imax

= cos2 φ
2

= cos2 7.95 rad
2

⎛
⎝⎜

⎞
⎠⎟ = 0.453  

 
 

 
 

Section 37.4 Change of Phase Due to Reflection 

Section 37.5 Interference in Thin Films 

P37.30 (a) With phase reversal in the reflection at the outer surface of the 
soap film and no reversal on reflection from the inner surface, the 
condition for constructive interference in the light reflected from 
the soap bubble is 

    

  

2t = m +
1
2

⎛
⎝⎜

⎞
⎠⎟ λn = m +

1
2

⎛
⎝⎜

⎞
⎠⎟
λ
n

→ 2nt = m +
1
2

⎛
⎝⎜

⎞
⎠⎟ λ

λ =
2nt

m + 1
2

⎛
⎝⎜

⎞
⎠⎟

 

  where m = 0, 1, 2,… . For the lowest order reflection (m = 0), and 
the wavelength is 

    
  
λ =

2nt
0 + 1 2( ) =

2 1.33( ) 120 nm( )
1 2

= 638 nm  

 (b) A thicker film would require a higher order of reflection, so use a 
larger value of m. 
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 (c) From (a) above, for a given wavelength, the thickness would be 

    
  
t = m +

1
2

⎛
⎝⎜

⎞
⎠⎟
λ
2n

= m +
1
2

⎛
⎝⎜

⎞
⎠⎟

638 nm
2 1.33( )  

  The next greater thickness of soap film that can strongly reflect 
638 nm light corresponds to m = 1, giving 

    
  
t = m +

1
2

⎛
⎝⎜

⎞
⎠⎟
λ
2n

= 1 +
1
2

⎛
⎝⎜

⎞
⎠⎟

638 nm
2 1.33( ) = 360 nm  

  and the third such thickness (corresponding to m = 2) is 

    
  
t = m +

1
2

⎛
⎝⎜

⎞
⎠⎟
λ
2n

= 2 +
1
2

⎛
⎝⎜

⎞
⎠⎟

638 nm
2 1.33( ) = 600 nm  

P37.31 The layers are air, oil, and water. Because 1 < 1.25 < 1.33, light reflected 
both from the top and from the bottom surface of the oil suffers phase 
reversal. For constructive interference we require     

  
  
2t =

mλcons

n
 

 and for destructive interference,     

  
  
2t =

m + 1 2( )⎡⎣ ⎤⎦λdes

n
 

 Then,  
  

λcons

λdest

= 1+
1

2m
=

640 nm
512 nm

= 1.25  and m = 2 

 Therefore, 
  
t =

2 640 nm( )
2 1.25( ) = 512 nm . 

P37.32 There are a total of two phase reversals caused by reflection, one at the 
top and one at the bottom surface of the coating. 

   
  
2nt = m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ     so    

  
t = m +

1
2

⎛
⎝⎜

⎞
⎠⎟
λ
2n

 

 The minimum thickness of the film is therefore 

   
  
t =

1
2

⎛
⎝⎜

⎞
⎠⎟

500 nm( )
2 1.30( ) = 96.2 nm  

P37.33 Treating the anti-reflectance coating like a camera-lens coating (two 
phase reversals caused by reflection, one at the top and one at the 
bottom surface of the coating), 

   
  
2t = m +

1
2

⎛
⎝⎜

⎞
⎠⎟
λ
n

→ 2nt = m +
1
2

⎛
⎝⎜

⎞
⎠⎟ λ   

   (destructive interference) 
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 Let m = 0. Then, 

   
  
t =

λ
4n

=
3.00 cm
4 1.50( ) = 0.500 cm  

 This anti-reflectance coating could be easily countered by changing the 
wavelength of the radar to 1.50 cm. Then the coating would exhibit 
maximum reflection! 

P37.34 (a) The film thickness is t = 1.00 × 10–5 cm = 1.00 × 10–7 m = 100 nm. 
Since the light undergoes a 180° phase change at each surface of 
the film, the condition for constructive interference is 

   
  
2t = m

λ
n

,    or    
  
λ =

2nt
m

=
2 1.38( ) 100 nm( )

m
=

276 nm
m

 

  Therefore, the wavelengths intensified in the reflected light are, 
for m = 1, 2, and 3: 

   
 λ = 276 nm,  138 nm,  92.0 nm  

 (b) 
 

No visible wavelengths are intensified.  Because   m ≥ 1 , all 

reflection maxima are in the ultraviolet and beyond. 

P37.35 If the path length difference  Δ = λ ,  the transmitted light will be bright. 
Since   Δ = 2d = λ ,  

   
  
dmin =

λ
2

=
580 nm

2
= 290 nm  

P37.36 (a) The light reflected from the top of the oil film undergoes phase 
reversal. Since 1.45 > 1.33, the light reflected from the bottom 
undergoes no reversal. For constructive interference of reflected 
light, we then have 

   
  
2t = m +

1
2

⎛
⎝⎜

⎞
⎠⎟
λ
n

→ 2nt = m +
1
2

⎛
⎝⎜

⎞
⎠⎟ λ  

  or 
  
λm =

2nt
m + 1 2

=
2 1.45( ) 280 nm( )

m + 1 2
=

812 nm
m + 1 2

.  

 

ANS. FIG. P37.36 
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  Substituting for m gives:  

   m = 0,  λ0 = 1 620 nm  (infrared) 

   m = 1,  λ1 = 541 nm  (green) 

   m = 2,  λ2 = 325 nm  (ultraviolet) 

  Both infrared and ultraviolet light are invisible to the human eye, 
so the dominant color in reflected light is 

 
green .  

 (b) The dominant wavelengths in the transmitted light are those that 
produce destructive interference in the reflected light. The 
condition for destructive interference upon reflection is 

   
  
2t = m

λ
n

 

  or  
  
λm =

2nt
m

=
812 nm

m
.  

  Substituting for m gives:  

   m = 1,  λ1 = 812 nm  (near infrared) 

   m = 2,  λ2 = 406 nm  (violet) 

   m = 3,  λ3 = 271 nm  (ultraviolet) 

  Of these, the only wavelength visible to the human eye (and 
hence the dominant wavelength observed in the transmitted 
light) is 406 nm. Thus, the dominant color in the transmitted light 
is 

 
violet . 

P37.37 For destructive interference in the air, 

   2t = mλ 

 The first dark fringe occurs at the end 
where the plates meet, where 
destructive interference occurs 
because of the phase reversal caused 
by light reflecting from the top of the 
lower glass slide. For 30 dark fringes, 
including the one where the plates 
meet, m = 29 and 

   

  

t = nλ
2

= 29 600 nm( )
2

= 8.70× 10−6  m = 8.70 µm

 

 

 

ANS. FIG. P37.37 
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 The diameter of the wire is the same as the thickness: 

   
  
d = t = 8.70 µm  

P37.38 Light waves are partially reflected and transmitted by the partially 
aluminized glass surfaces on the front and back surfaces of the filter. 
For maximum transmission, we want destructive interference between 
the waves reflected from the front and back surfaces of the film: the 
result of this interference is that most light of the  Hα  line is 
transmitted through the filter. 

 (a) If the surrounding glass has refractive index greater than 1.378, 
light reflected from the front surface of the filter (glass-filter 
interface) suffers no phase reversal and light reflected from the 
back surface of the filter (filter-glass interface) does undergo 
phase reversal. This effect by itself would produce destructive 
interference, so we want the distance down and back to be one 

whole wavelength in the film: 
  
2t =

λ
n

. 

   
  
t =

λ
2n

=
656.3 nm
2 1.378( ) = 238 nm  

 (b) The filter will undergo thermal expansion. As t increases in  
2nt = λ, so does  λ  increase .  

 (c) Destructive interference for reflected light happens when 

  
2t =

2λ
n

: 

   
  
λ = nt = 1.378 238 nm( ) = 328 nm  near ultraviolet( )  

P37.39 Reflection off the lower glass plate causes a phase reversal. The 
condition for bright fringes is 

  
  
2t = m +

1
2

⎛
⎝⎜

⎞
⎠⎟
λ
n

      m = 0,  1,  2,  3, …. 

 From ANS. FIG. P37.39, observe that 

  
  
t = R 1− cosθ( ) ≈ R 1− 1 +

θ 2

2
⎛
⎝⎜

⎞
⎠⎟

=
R
2

r
R

⎛
⎝⎜

⎞
⎠⎟

2

=
r2

2R
 

 The condition for a bright fringe becomes  

  
  

r2

R
= m +

1
2

⎛
⎝⎜

⎞
⎠⎟
λ
n

 

 Thus, for fixed m and λ, nr2 = constant. 



Chapter 37     767 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 Therefore,  

    nliquidrf i
2 = nairr

2    and   
  
nliquid = 1.00( ) 1.50 cm( )2

1.31 cm( )2 = 1.31  

 

ANS. FIG. P37.39 

P37.40 (a) The missing wavelength in reflected light is caused by destructive 
interference. The index of the coating (1.38) is greater than that of 
air (1.00), and the index of the glass (1.52) is greater than that of 
the coating; therefore, light waves reflected off the front and back 
surfaces of the coating undergo phase reversals. For destructive 
interference, 

   
  
2t = m +

1
2

⎛
⎝⎜

⎞
⎠⎟
λ
n

      m = 0, 1, 2, 3, …    and    n = 1.38 

  For the minimum thickness, m = 0: 

   
  
2t = m +

1
2

⎛
⎝⎜

⎞
⎠⎟
λ
n

→ t =
λ
4n

=
540 nm
4 1.38( ) = 97.8 nm  

 (b) 

  

Yes. Destructive interference occurs when 2nt = (m+ 1
2

)λ

(Eq. 37.17), where m is an integer. (There is a phase change
at both faces of the film in Figure P37.40.) Hence, for m =
1, 2, ... we obtain thicknesses of 293 nm, 489 nm, ... .

 

P37.41 For total darkness, we want destructive interference for reflected light 
for both 400 nm and 600 nm. With phase reversal at just one reflecting 
surface (the bottom glass plate), the condition for destructive 
interference is 

    2nairt = mλ       m = 0, 1, 2, … . 

 The least common multiple of these two wavelengths is 1 200 nm, so 
we get no reflected light at 2(1.00)t = 3(400 nm) = 2(600 nm) = 1 200 
nm, so t = 600 nm at this second dark fringe. 

 By similar triangles, 
  

600 nm
x

=
0.050 0 mm

10.0 cm
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 or the distance from the contact point is 

  
  
x = 600 × 10−9  m( ) 0.100 m

5.00 × 10−5  m
⎛
⎝⎜

⎞
⎠⎟ = 1.20 mm  

 
 

 

Section 37.6 The Michelson Interferometer 

P37.42 When the mirror on one arm is displaced by   Δ,  the path difference 
changes by   2Δ.  A shift resulting in the reversal between dark and 
bright fringes requires a path length change of one-half wavelength. 

Therefore, 
   
2Δ = mλ

2
,  where in this case, m = 250. 

   
Δ = m

λ
4

=
250( ) 6.328 × 10−7  m( )

4
= 39.6 µm  

*P37.43 Counting light going both directions, the number of wavelengths 

originally in the cylinder is 
  
m1 =

2L
λ

. It changes to 
  
m2 = 2L

λ ngas

=
2ngasL
λ

 

as the cylinder is filled with gas. If N is the number of bright fringes 

passing, 
  
N = m2 − m1 = 2L

λ
ngas − 1( ) ,  or the index of refraction of the gas 

is  
  

  
ngas = 1+ Nλ

2L
= 1+

160( ) 600× 10−9  m( )
2 5.00× 10−2  m( ) = 1.001

 

P37.44 Counting light going both directions, the number of wavelengths 

originally in the cylinder is 
  
m1 =

2L
λ

. It changes to 
  
m2 =

2L
λ n

=
2nL
λ

 as 

the cylinder is filled with gas. If N is the number of bright fringes 

passing, 
  
N = m2 − m1 = 2L

λ
n− 1( ),  or the index of refraction of the gas is  

  
  
n = 1+

Nλ
2L
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Additional Problems 

P37.45 The wavelength is  

  
  
λ =

c
f

=
3.00 × 108  m/s
60.0 × 106  s−1 = 5.00 m  

 Along the line AB the two traveling waves going in opposite directions 
add to give a standing wave. The two transmitters are exactly 2.00 
wavelengths apart and the signal from B, when it arrives at A, will 
always be in phase with transmitter B. Since B is 180° out of phase with 
A, the two signals always interfere destructively at the position of A to 
form a node. 

 The first antinode (point of constructive interference) is located at 
distance 

  
 

λ
4

=
5.00 m

4
= 1.25 m  from the node at A 

*P37.46 From ANS. FIG. P37.46, we note that the  
angle between the center line of the  
speakers and the corners of the room is   

   

 
θ = tan−1 1.5 m

6.0 m
⎛
⎝⎜

⎞
⎠⎟ = 14.0°

  

 In order for no other maxima to be  
heard, the m = 1 maximum must be  
more than 14.0° away from the central maximum. From Equation 37.2, 
the condition for constructive interference is 

   
  dsinθbright = mλ   

 or   
  
λ =

dsinθbright

m
= v

f
 

 where v = 343 m/s is the speed of sound. Solving for f and substituting 
m = 1 and  θ = 14.0°  then gives 

   

  
f = v

λ
= mv

dsinθbright

= 1( ) 343 m/s( )
1.0 m( )sin14.0°

= 1.4× 102  Hz
 

P37.47 The same source will radiate light into the sugar solution with 

wavelength 
 
λn =

λ
n

. In other words, the condition for bright fringes 

becomes 

  
  
dsinθ = mλn → dsinθ = m

λ
n

 

 

ANS. FIG. P37.46 
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 Also, for small angles, as is the case here 

  
  
sinθ ≈ tanθ =

y
L

 

 The first side bright fringe (m = 1) is separated from the central bright 
fringe by distance y described by 

  

  
dsinθ = m

λ
n

→ d
y
L

⎛
⎝⎜

⎞
⎠⎟ = λ

n

 

 solving for y gives 
  

  
y = λL

nd
=

560× 10−9  m( ) 1.20 m( )
1.38( ) 30.0× 10−6  m( ) = 1.62 × 10−2  m = 1.62 cm

 

P37.48 (a) Where fringes of the two colors coincide we have 

     dsinθ = mλ = ′m ′λ ,    requiring    
 

λ
′λ

= ′m
m

 

 (b) λ = 430 nm,  ′λ = 510 nm  

   
  
∴ ′m

m
=

430 nm
510 nm

=
43
51

 

  which cannot be reduced any further. Then m = 51, m′ = 43. Then, 
   

  
θm = sin−1 mλ

d
⎛
⎝⎜

⎞
⎠⎟ = sin−1 51( ) 430× 10−9  m( )

0.025× 10−3  m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 61.3°
 

  and 
   

  ym = L tanθm = 1.5 m( )tan61.3° = 2.74 m
 

P37.49 (a) Refer to ANS. FIG. P37.49. By similar triangles, the distance x 
between consecutive like interference fringes (bright-to-bright, or 
dark-to-dark) is to the change in thickness  Δt  of the air gap as the 
entire length of a plate    (14.0 cm) is to the diameter d of the fiber 
(equal to the thickness of the air gap at the open end of the gap): 

   

  

x
Δt

= 
d

 

  where, say, between consecutive destructive interference fringes 

   
  
2t = m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ → Δt =

λ
2
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  Combing the two relations gives  

   
   

x
λ 2

= 
d

 

 and solving for the diameter d of the fiber then gives 
   

   

d = λ
2x

=
14.0× 10−2  m( ) 650× 10−9  m( )

2 0.580× 10−3  m( )
= 7.84× 10−5  m = 78.4 µm

  

 

ANS. FIG. P37.49 

P37.50 Assume the distance between gaps is 2 cm. 

 (a) Two adjacent directions of constructive interference for 600-nm 
light are described by   dsinθ = mλ ,  with  θ0 = 0.  Then, 

   

  

dsinθ = mλ

2 × 10−2  m( )sinθ1 = 1 600× 10−9  m( )
 

  Thus,   θ1 = 2 × 10−3°,  

  and   θ1 −θ0 ~ 10−3° .  

 (b) We choose  θ1 = 20°.  Then, 
   

 2 × 10−2  m( )sin 20° = 1( )λ  

  Which gives  λ = 7 mm.  The frequency is then 
   

  
f = c

λ
= 3× 108  m/s

7 × 10−3  m ~ 1011  Hz
 

 (c) Millimeter waves are 
 

microwaves . 

P37.51 Constructive interference occurs where the phases of the waves differ 
by integral multiples m of 2π : 

  

  

2π x1

650
− 924πt + π

6
⎛
⎝⎜

⎞
⎠⎟ −

2π x2

650
− 924πt + π

8
⎛
⎝⎜

⎞
⎠⎟ = 2π m
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 which becomes 
  

  

2π x1 − x2( )
650

+ π
6
− π

8
⎛
⎝⎜

⎞
⎠⎟ = 2π m

x1 − x2( )
650

+ 1
12

− 1
16

= m

 

 
  

x1 − x2 = m − 1
48( )650, where x1  and x2  are in nanometers and

m = 0, 1, − 1, 2, − 2, 3, − 3, …
 

P37.52 A bright line for the green light requires 

  

  

dsinθ ≈ d tanθ = m1λ1

d
y
L

= m1λ1

 

 Similarly, a blue interference maximum requires 

  
  
d

y
L

= m2λ2  

 for integers m1 and m2. Thus, 

  

  

m1 540 nm( ) = m2 450 nm( )
m2

m1

=
540 nm
450 nm

=
6
5

 

 and smallest integers satisfying the equation are m1 = 5 and m2 = 6. 

 Then for both, 
  

  
d

y
L

= 2 700 nm
 

 which gives 
  

  
y = 2 700 nm( ) L

d
= 2.7 µm( ) 1.4 m

150 µm
⎛
⎝⎜

⎞
⎠⎟

= 2.52 cm
 

P37.53 If the center point on the screen is to be a dark spot rather than bright, 
passage through the plastic must delay the light by one-half 

wavelength. Calling the thickness of the plastic t, 
  

t
λ
+

1
2
=

t
λ n

=
nt
λ

   or   

  
t =

λ
2 n − 1( )  where n is the index of refraction for the plastic. 
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P37.54 There is no phase shift upon reflection from the upper surface (glass to 

air) of the film, but there will be a shift of 
 

λ
2

 due to the reflection at the 

lower surface of the film (air to metal). 

 The total phase difference in the two reflected beams is then 

   
  
δ = 2nt +

λ
2

 

 For constructive interference,   δ = mλ,  or 

   
  
2 1.00( )t +

λ
2

= mλ  

 Thus, the film thickness for the mth order bright fringe is 

   
  
tm = m −

1
2

⎛
⎝⎜

⎞
⎠⎟
λ
2

= m
λ
2

⎛
⎝⎜

⎞
⎠⎟
−
λ
4

 

 and the thickness for the m – 1 bright fringe is: 

   
  
tm−1 = m − 1( ) λ

2
⎛
⎝⎜

⎞
⎠⎟
−
λ
4

 

 Therefore, the change in thickness required to go from one bright 
fringe to the next is 

   
  
Δt = tm − tm−1 =

λ
2

 

 To go through 200 bright fringes, the change in thickness of the air film 
must be 

   
 
200

λ
2

⎛
⎝⎜

⎞
⎠⎟

= 100λ  

 Thus, the increase in the length of the rod is 

   
  ΔL = 100λ = 100 5.00 × 10−7  m( ) = 5.00 × 10−5  m  

 From   ΔL = Liα  ΔT  

 we have: 
   
α =

ΔL
LiΔT

=
5.00 × 10−5  m

0.100 m( ) 25.0°C( ) = 20.0 × 10–6°C–1  

P37.55 Since 1 < 1.25 < 1.34, light reflected from top and bottom surfaces of 
the oil undergoes phase reversal. The path difference is then 2t, thus 

  
  
2t = mλn =

mλ
n
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 for maximum reflection, with m = 1 for the given first-order condition 
and n = 1.25. So 

  
  
t =

mλ
2n

=
1 500 nm( )

2 1.25( ) = 200 nm  

 The volume we assume to be constant:    

  1.00 m3 = (200 nm)A 

 The area is then 

  
  
A =

1.00 m3

200 × 10−9  m( ) = 5.00 × 106  m2 = 5.00 km2  

P37.56 The interfering waves travel either along the hypotenuses or the bases 
of the right triangles. The total length of the two bases is 15.0 km. The 
condition for destructive interference for minimum height h is 

   

  

2 15.0 × 103  m( )2
+ h2 − 2 15.0 × 103  m( ) = λ 2 = 175 m

2 15.0 × 103  m( )2
+ h2 = 30.175 × 103  m

h = 1.62 × 103  m = 1.62 km

 

 

ANS. FIG. P37.56 

P37.57 We may treat this problem as a double slit experiment where the 
second slit is the mirror image of the source, 1.00 cm below the mirror 
plane; however, we must remember that the light undergoes a  

 

π
2

 phase shift at the mirror, so light and dark fringes are interchanged 

in the interference pattern. Thus, for destructive interference, the path 
length must differ by mλ. For dark for the first dark fringe (modifying 
Equation 37.7), we have 

   
  
ydark =

mλL
d

=
1 5.00 × 10−7  m( ) 100 m( )

2.00 × 10−2  m( ) = 2.50 mm  

P37.58  From Equation 37.14, for wavelength  λ1 = 600 nm , 

  

  

I
Imax

= cos2 π yd
λ1 L

⎛
⎝⎜

⎞
⎠⎟

= 0.810

π yd
L

= λ1 cos−1 I1

Imax

⎛
⎝⎜

⎞
⎠⎟

1 2

= 600 nm( )cos−1 0.810( )1 2 = 271 nm
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 For the same y, d, and L, let  λ2  be the wavelength for which 

  
  

I2

I2,max

= 0.640  

 Then, 

  
  

λ2 =
π yd L

cos−1 I2 I2,max( )1 2 =
271 nm

cos−1 0.640( )1 2 = 421 nm  

 Note that in this problem, 
  
cos−1 I

Imax

⎛
⎝⎜

⎞
⎠⎟

1 2

 must be expressed in radians. 

P37.59 As with any air gap between glass plates, light reflecting off the lower 
plate undergoes a phase reversal. Thus, for the mth-dark fringe after 
the first fringe (m = 0), with the gap filled with air: 

   2nt = mλ 

 where n = 1.00 and m = 1, 2, …, 84. So, at the widest edge of the wedge, 

   
  
t =

84λ
2

= 42λ  

 When submerged in water, 
   

  

2nt = mλ

m =
2nt
λ

=
2 1.33( ) 42( )λ[ ]

λ
= 111.7 = 111

 

 So, counting the first fringe (m = 0), the total number of fringes is 

  
m + 1 = 112 dark fringes

 

P37.60 Refer to Figure P37.60. Call t the thickness of the sheet. With the sheet in 
place, the central maximum corresponds to zero phase difference. Thus, 
the added distance δ  traveled by the light from the lower slit introduces 
a phase difference equal to that introduced by the plastic film sheet. Call 
the original length of the path from the upper slit to the screen D; then, 
the original number of wavelengths along distance D are 

  
  
N0 =

D
λa

 

 where  λa  is the wavelength in air. With the plastic sheet in the path, 
the number of wavelengths changes to 

  
  
N =

D − t
λa

+
t
λp

=
D − t
λa

+
t

λa n
=

D − t + nt
λa

=
D + n − 1( )t

λa
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 where  λa  is the wavelength in plastic. The phase difference introduced 
by the plastic sheet is 

  
  
δφ = 2π N − N0( ) = 2π

D + n − 1( )t
λa

−
D
λa

⎡

⎣
⎢

⎤

⎦
⎥ = 2π

n − 1( )t
λa

 

 The corresponding difference in path length δ is 

  
  
δ = δφ λa

2π
⎛
⎝⎜

⎞
⎠⎟

= 2π
n − 1( )t
λa

⎡

⎣
⎢

⎤

⎦
⎥

λa

2π
⎛
⎝⎜

⎞
⎠⎟

= t n − 1( )  

 Note that the wavelength of the light does not appear in this equation. 
In the figure, the two rays from the slits are essentially parallel. 

 Thus the angle θ may be expressed as 

  
  
sinθ =

δ
d

=
n − 1( )t

d
→ θ = sin−1 n − 1( )t

d
⎡
⎣⎢

⎤
⎦⎥

 

 The height y of the central maximum is given by 
  

  

′y
L

= tanθ
 

 from which we obtain 
  

  

y = L tan sin−1 n − 1( )t
d

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

= n − 1( )Lt

d2  −  n − 1( )2 t2

 

P37.61 From Figure P37.61, observe that the distance that the ray travels from 
the top of the transmitter to the ground is 

  

  

x = h2 +
d
2

⎛
⎝⎜

⎞
⎠⎟

2

= 35.0 m( )2 +
50.0 m

2
⎛
⎝⎜

⎞
⎠⎟

2

= 1850 m2 = 43.0 m

 

 Including the phase reversal due to reflection from the ground, the 
total shift between the two waves (transmitter-to-ground-to-receiver 
and transmitter-to-receiver) is 

  
  
δ = 2x +

λ
2
− d  

 For constructive interference, 

  

  

2x +
λ
2
− d = mλ → λ =

2x − d

m − 1
2

⎛
⎝⎜

⎞
⎠⎟
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 and for destructive interference 

  
  
2x +

λ
2
− d = m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ → λ =

2x − d
m

 

 (a) The longest wavelength that interferes constructively is, for m = 1, 

   

  

λ =
2x − d

1− 1
2

⎛
⎝⎜

⎞
⎠⎟

= 14x − 2d = 4 1850 m2 − 2 50.0 m( ) = 72.0 m
 

 (b) The longest wavelength that interferes destructively is, for m = 1, 

   
  
λ =

2x − d
1

= 2 1850 m2 − 50.0 m = 36.0 m  

P37.62 From Figure P37.57, observe that the distance that the ray travels from 
the top of the transmitter to the ground is 

  
  
x = h2 +

d
2

⎛
⎝⎜

⎞
⎠⎟

2

=
4h2 + d2

2
 

 Including the phase reversal due to reflection from the ground, the 
total shift between the two waves (transmitter-to-ground-to-receiver 
and transmitter-to-receiver) is 

  
  
δ = 2x +

λ
2
− d  

 For constructive interference, 

  

  

2x +
λ
2
− d = mλ → λ =

2x − d

m − 1
2

⎛
⎝⎜

⎞
⎠⎟

 

 and for destructive interference 
  

  
2x + λ

2
− d = m+ 1

2
⎛
⎝⎜

⎞
⎠⎟ λ → λ = 2x − d

m

 

 (a) The longest wavelength that interferes constructively is, for m = 1, 

   

  

λ =
2x − d

1− 1
2

⎛
⎝⎜

⎞
⎠⎟
= 4x − 2d =

4 4h2 + d2

2
− 2d = 2 4h2 + d2 − 2d  

 (b) The longest wavelength that interferes destructively is, for m = 1, 

   
  
λ =

2x − d
1

= 4h2 + d2 − d  
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P37.63 (a) There is a phase reversal by reflection at the flat plate. 
Constructive interference in the reflected light requires 

  
2t = m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ .  

  The first bright ring has m = 0 and the 55th has m = 54, so at the 
edge of the lens 

   
  
t = m +

1
2

⎛
⎝⎜

⎞
⎠⎟
λ
2

= 54.5( ) 650 × 10−9  m
2

= 17.7 µm  

  Now from the geometry in textbook Figure P37.59, we can find 
the distance t from the curved surface down to the flat plate by 
considering distances measured from the center of curvature: 

   

  
R2 − r2 = R − t or R2 − r2 = R2 − 2Rt + t2

 

  Solving for R gives 
   

  
R = r2 + t2

2t
=

5.00× 10−2  m( )2
+ 1.77 × 10−5  m( )2

2 1.77 × 10−5  m( ) = 70.6 m
 

 (b) 
  

1
f

= n − 1( ) 1
R2

−
1

R2

⎛
⎝⎜

⎞
⎠⎟

= 0.520
1
∞
−

1
−70.6 m

⎛
⎝⎜

⎞
⎠⎟

   so   
  
f = 136 m  

P37.64 Reflection off the top surface of the wedge produced a phase reversal, 
but light reflecting off the bottom surface produces no phase change. 
Thus, a first dark fringe occurs at the thin end of the wedge. For bright 
fringes in the thin film, the thickness is given by Equation 37.17: 

  

  
t = 

m+ 1
2

⎛
⎝

⎞
⎠ λ

2n

 

 The first fringe corresponds to m = 0, the second to m = 1, etc.; so the 
Nth fringe corresponds to N = m + 1. 

 To find how many fringes are present, we solve for m by setting t = h: 
  

  

m + 1
2

= 2nt
λ

= 2nh
λ

=
2 1.50( ) 1.00× 10−3  m( )

632.8× 10−9  m( ) = 4 740

∴ m = 4 740

 

 So, the number of fringes is N = m + 1 = 4 741. This number is less than 
5000. 
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P37.65 Light reflecting from the upper interface of the air layer suffers no 
phase change, while light reflecting from the lower interface is 
reversed 180°. Then there is indeed a dark fringe at the outer 
circumference of the lens, and a dark fringe wherever the air thickness 
t satisfies 

  2t = mλ,      m = 0, 1, 2, …. 

 

ANS. FIG. P37.65 

 (a) At the central dark spot, m = 50 and 

   

  

t0 =
50λ

2
= 25 589 × 10−9  m( ) = 1.47 × 10−5  m = 14.7 µm

 

 (b) In the right triangle, 
   

  

R2 = r2 + R − t0( )2

8.00 m( )2 = r2 + 8.00 m − 1.47 × 10−5  m( )2

8.00 m( )2 = r2 + 8.00 m( )2

                         − 2 8.00 m( ) 1.47 × 10−5  m( ) + 2.16× 10−10  m2

r2 = 2 8.00 m( ) 1.47 × 10−5  m( )− 2.16× 10−10  m2

 

  The last term is negligible. Then, 

   
  
r = 2 8 m( ) 1.47 × 10−5  m( ) = 1.53 × 10−2  m = 1.53 cm  

 (c) 
  

1
f

= n − 1( ) 1
R1

−
1

R2

⎛
⎝⎜

⎞
⎠⎟

= 1.50 − 1( ) 1
∞
−

1
8.00 m

⎛
⎝⎜

⎞
⎠⎟

 

  
  

f = −16.0 m  
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P37.66 The shift between the waves reflecting from 
the top and bottom surfaces of the film at 
the point where the film has thickness t is 

  
δ = 2tnfilm +

λ
2

, with the factor of 
 

λ
2

 being 

due to a phase reversal at one of the 
surfaces. 

 For the dark rings (destructive interference), 

the total shift should be 
  
δ = m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ  with  

m = 0, 1, 2, 3, … . This requires that 

  
t =

mλ
2nfilm

. To find t in terms of r and R, 

    R
2 = r2 + R − t( )2 → r2 = 2Rt + t2  

 Since t is much smaller than R, t2 << 2Rt, therefore 

  
  
r2 ≈ 2Rt = 2R

mλ
2nfilm

⎛
⎝⎜

⎞
⎠⎟

 

 Thus, 

  
r ≈

mλR
nfilm

 where m is an integer. 

P37.67 Refer to the solution of P37.57. We may treat this as a double-slit 
interference problem, where d = 2h, but with maxima and minima 
interchanged because of phase reversal caused by the reflection off the 
mirror: 

  
  
dsinθ = 2hsinθ = m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ      bright fringe 

 and 
  
sinθ ≈ tanθ =

y
L

 for small angles; hence, 

  

  

2hsinθ = m +
1
2

⎛
⎝⎜

⎞
⎠⎟ λ

2h
y
L

⎛
⎝⎜

⎞
⎠⎟ = m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ

 

 The spacing between consecutive fringes corresponding to m and m + 1 
is 

  
  
2h

Δy
L

⎛
⎝⎜

⎞
⎠⎟ = λ  

 

ANS. FIG. P37.66 



Chapter 37     781 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 so 
  

  

h = Lλ
2Δy

=
2.00 m( ) 606× 10−9  m( )

2 1.20× 10−3  m( )
= 5.05× 10−4  m = 0.505 mm

 

P37.68 (a) For a linear function taking the value n = 1.90 at y = 0 and n = 1.33 
at y = 20.0 cm, we write 

   n(y) = 1.90 + (1.33 − 1.90)y/(20.0 cm) 

  or 
  
n(y) = 1.90 − 0.0285 y/cm  

 (b) The optical path length is 
   

  

n(y)dy
0

20.0 cm
∫ = [1.90− 0.0285y cm]dy

0

20.0 cm
∫

= 1.90y− 0.0285y2

2 0

20.0 cm

= 38.0 cm − 5.7 cm = 32.3 cm

 

  (c) A wavefront slows down as it travels deeper into the mixture to 
regions of greater index of refraction. The lower part of the 
wavefront travels more slowly than the upper part; the result is 
that the wavefront bends, becoming more horizontal. The path is 
similar to that of a beam crossing the boundary between a 
medium of lesser to a medium of greater index of refraction, as, 
for example, from air into water: the beam tends to bend toward 
the normal. The difference is that the change in direction is 
gradual rather than sudden. The beam will continuously curve 
downward. 

P37.69 One radio wave reaches the receiver R directly from the distant source 
at an angle θ above the horizontal. The other wave undergoes phase 
reversal as it reflects from the water at P. The distance from P to R is 
the same as from P to R′, where R′ is the mirror image of the telescope. 
Therefore, the path difference is d. 

 

ANS. FIG. P37.69 
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 Constructive interference first occurs for a path difference of 

  
  
d =

λ
2

  [1] 

 The angles θ in the figure are equal because they each form part of a 
right triangle with a shared angle at R′. 

 So the path difference is 

    d = 2 20.0 m( )sinθ = 40.0 m( )sinθ  

 The wavelength is

 
  
λ =

c
f

=
3.00 × 108  m/s
60.0 × 106  Hz

= 5.00 m  

 Substituting for d and λ in equation [1],  

  
 

40.0 m( )sinθ =
5.00 m

2
 

 Solving for the angle θ,  
  

 
θ = sin−1 5.00 m

80.0 m
⎛
⎝⎜

⎞
⎠⎟ = 3.58°

 

P37.70 One phase reversal occurs by reflection off the front of the soap film. 

 (a) Bright bands are observed when 
  
2nt = m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ . 

  Hence, the first bright band (m = 0) corresponds to 
  
nt =

λ
4

. 

  By similar triangles, the distance x from the top where a fringe 
occurs is proportional to the thickness t of the film: 

   
  

x1

x2

=
t1

t2

 

  Thus, we have 

   
  
x2 = x1

t2

t1

⎛
⎝⎜

⎞
⎠⎟

= x1
λ2

λ1

⎛
⎝⎜

⎞
⎠⎟

= 3.00 cm( ) 680 nm
420 nm

⎛
⎝⎜

⎞
⎠⎟ = 4.86 cm  

 (b) 
  
t1 =

λ1

4n
=

420 nm
4 1.33( ) = 78.9 nm  

  
  
t2 =

λ2

4n
=

680 nm
4 1.33( ) = 128 nm  
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 (c) 
  
θ ≈ tanθ =

t1

x1

=
78.9 nm
3.00 cm

= 2.63 × 10−6  rad  

 
 

 

Challenge Problems 

P37.71 Refer to ANS. FIG. P37.71 for the geometry of the situation. At the air-
film interface, Snell’s law gives 

   1.00sin 30.0° = 1.38sinθ2 → θ2 = 21.2°  

 

ANS. FIG. P37.71 

 Call t the unknown thickness of the film. Then, 

  

  

cos21.2° =
t
a

→ a =
t

cos21.2°

tan 21.2° =
c
t

→ c = t tan 21.2°

sinθ1 =
b
2c

→ b = 2t tan 21.2°( ) sin 30.0°( )

 

 The net shift for the second ray, including the phase reversal on 
reflection of the first, is 

  
  
2an − b −

λ
2

 

 where the factor n accounts for the shorter wavelength in the film. For 
constructive interference, we require 

  

  
2an− b − λ

2
= mλ

 

 The minimum thickness will occur when m = 0 and will be given by      

  
  
2an − b −

λ
2

= 0  

 Then, 

  
  

λ
2

= 2an − b = 2
nt

cos21.2°
− 2t tan 21.2°( ) sin 30.0°( )  
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 and 
  

590 nm
2

= 2 1.38( )
cos21.2°

− 2 tan 21.2°( ) sin 30.0°( )⎡
⎣⎢

⎤
⎦⎥
t = 2.57t  

 which gives   t = 115 nm .  

P37.72 The shift between the two reflected waves is 
  
δ = 2na − b −

λ
2

,  where a 

and b are as shown in the ray diagram in ANS. FIG. P37.72, n is the 

index of refraction, and the term 
 

λ
2

 is due to phase reversal at the top 

surface. For constructive interference,   δ = mλ,  where m has integer 
values. This condition becomes 

   
  
2na − b = m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ  [1] 

 

ANS. FIG. P37.72 

 From the figure’s geometry, 

   

  

a =
t

cosθ2

c = asinθ2 =
tsinθ2

cosθ2

b = 2c sinθ1 =
2tsinθ2

cosθ2

sinθ1

 

 Also, from Snell’s law,   sinθ1 = nsinθ2 .  

 Thus,  
  
b =

2ntsin2θ2

cosθ2

.  

 With these results, the condition for constructive interference given in 
equation [1] becomes: 

   

  

2n
t

cosθ2

⎛
⎝⎜

⎞
⎠⎟
− 2ntsin2θ2

cosθ2

= m + 1
2

⎛
⎝⎜

⎞
⎠⎟ λ

2nt
cosθ2

1− sin2θ2( ) = m + 1
2

⎛
⎝⎜

⎞
⎠⎟ λ
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2nt

1− sin2θ2( )
1− sin2θ2

= m + 1
2

⎛
⎝⎜

⎞
⎠⎟ λ  

 or  
  
2nt 1− sin2θ2 = m+ 1

2
⎛
⎝⎜

⎞
⎠⎟ λ  

 Using   sinθ1 = nsinθ2 → sinθ2 = sinθ1 n ,  we have finally 

   
  
2nt 1 − 

sin2  θ1

n2  =  m +  1
2( )λ, where m = 0, 1, 2, …  

P37.73 (a) Minimum:    2nt = mλ2  for m = 0, 1, 2, … 

  Maximum:  
  
2nt = ′m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ1   for m′ = 0, 1, 2, … 

  Note that m and m′ are distinct integer values, and must be 
consecutive because no intensity minima are observed between 

 λ1  and  λ2 .  

  Also, 
  
λ1 > λ2 → ′m +

1
2

⎛
⎝⎜

⎞
⎠⎟ < m,  so    m′ = m – 1. 

  Thus, we have 

   

  

2nt = mλ2 = ′m +
1
2

⎛
⎝⎜

⎞
⎠⎟ λ1 = m − 1( ) +

1
2

⎡
⎣⎢

⎤
⎦⎥
λ1

mλ2 = m −
1
2

⎛
⎝⎜

⎞
⎠⎟ λ1

2mλ2 = 2mλ1 − λ1

 

  so 
  

m =
λ1

2 λ1 − λ2( ) .  

 (b) 
  
m =

500nm
2 500nm − 370nm( ) = 1.92 → 2  (wavelengths measured to 

 ±5 nm ) 

  Minimum:   2nt = mλ2  

   2(1.40)t = 2(370 nm)      t = 264 nm 

  Maximum: 
  
2nt = ′m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ = m − 1+

1
2

⎛
⎝⎜

⎞
⎠⎟ λ = 1.5λ  

   2(1.40)t = 1.5(500 nm)   →      t = 268 nm 

  Film thickness 
 
= 266 nm  
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P37.74 The amplitude of the light from slit 1 is three times that from slit 2; 
therefore, the magnitude of the light arriving at the screen at some 
point P is 

  

  

EP = E1 + E2 = 3E0 sin ωt( )+ E0 sin ωt +φ( )
= E0 3sinωt + sin ωt +φ( )⎡⎣ ⎤⎦

EP

E0

= 3sin ωt( )+ sin ωt +φ( )

= 3sin ωt( )+ sin ωt( )cos φ( ) + cos ωt( )sin φ( )⎡⎣ ⎤⎦
= sin ωt( ) 3 + cos φ( )⎡⎣ ⎤⎦ + cos ωt( )sin φ( )

 

 The square of this expression is 
  

  

EP

E0

⎛
⎝⎜

⎞
⎠⎟

2

= sin2 ωt( ) 3 + cos φ( )⎡⎣ ⎤⎦
2

                                + 2sin ωt( )cos ωt( ) 3 + cos φ( )⎡⎣ ⎤⎦sin φ( )
                                + cos2 ωt( )sin2 φ( )

EP

E0

⎛
⎝⎜

⎞
⎠⎟

2

= sin2 ωt( ) 3 + cos φ( )⎡⎣ ⎤⎦
2
+ sin 2ωt( ) 3 + cos φ( )⎡⎣ ⎤⎦sin φ( )

                                + cos2 ωt( )sin2 φ( )

 

 and the time average of this expression is 

  

  

EP

E0

⎛
⎝⎜

⎞
⎠⎟

2

=
1
2

3 + cos φ( )⎡⎣ ⎤⎦
2 +

1
2

sin2 φ( )

=
1
2

9 + 6cos φ( ) + cos2 φ( ) + sin2 φ( )⎡⎣ ⎤⎦ =
1
2

10 + 6cos φ( )⎡⎣ ⎤⎦

 

 because the time average of   sin2 ωt( )  and   cos2 ωt( )  is 
 

1
2

, and the time 

average of   sin 2ωt( )  is zero. Using the identity  
  

 
cos φ( ) = cos

φ
2

+ φ
2

⎛
⎝⎜

⎞
⎠⎟ = 2cos2 φ

2
⎛
⎝⎜

⎞
⎠⎟ − 1

  

 we have 
  

  

EP

E0

⎛
⎝⎜

⎞
⎠⎟

2

= 1
2

10 + 6cos φ( )⎡⎣ ⎤⎦ = 1
2

10 + 6 2cos2 φ
2

⎛
⎝⎜

⎞
⎠⎟ − 1⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= 1
2

4 + 12cos2 φ
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

= 2 1+ 3cos2 φ
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
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 Intensity is proportional to the time average of the square of the 
amplitude, so 

  
  
I ∝EP

2 = 2E0
2 1+ 3cos2 φ

2
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

 At the central maximum,  φ = 0 , so the maximum intensity is 

  
  Imax ∝ 2E0

2 1 + 3cos2 0( )⎡⎣ ⎤⎦ = 2E0
2 4( ) = 8E0

2  

 Thus, we have 

  

  

I
Imax

=
2E0

2 1+ 3cos2 φ
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

8E0
2 =

1
4

1+ 3cos2 φ
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

I =
Imax

4
1+ 3cos2 φ

2
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

P37.75 Represent the light radiated from each slit to 
point P as a phasor. The two have very nearly 
equal amplitudes E. Since intensity is 
proportional to amplitude squared, we are told 
they add to amplitude   3E.  As shown in the 
figure, the triangle representing the sum of 
phasors may be divided into two right triangles 
whose common side that bisects the line of length   3E.  From either 
triangle, we see that 

  
  
cosθ =

3 E 2
E

→ θ = 30°  

 Next, the obtuse angle between the two phasors is 180 – 30 – 30 = 120°, 
and so  φ = 180 − 120° = 60° . 

 The phase difference between the two phasors is caused by the path 

difference from S to the slits,  δ = SS2 − SS1 , according to 
 

δ
λ

=
φ

360°
, 

 
δ = λ 60°

360°
=
λ
6

. Then 

  

  

δ = L2 + d2 − L =
λ
6

L2 + d2 = L2 +
2Lλ

6
+
λ2

36
→ d2 =

2Lλ
6

+
λ2

36

 

 

ANS. FIG. P37.75 
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 The last term is negligible, so 

  
  
d =

2Lλ
6

⎛
⎝⎜

⎞
⎠⎟

1 2

=
2 1.2 m( ) 620 × 10−9  m( )

6
= 0.498 mm  

P37.76 For bright rings the gap t between surfaces is given by 
  
2t = m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ . 

The first bright ring has m = 0 and the hundredth has m = 99. 

 

ANS. FIG. P37.76 

 So, 
  
t =

1
2

99.5( ) 500 × 10−9  m( ) = 24.9 µm  

 Call rb the ring radius. From the geometry shown in ANS. FIG. P37.76, 

  

  

t = r − r2 − rb
2( ) − R − R2 − rb

2( )
= r − r 1−

rb

r
⎛
⎝⎜

⎞
⎠⎟

2

− R + R 1−
rb

R
⎛
⎝⎜

⎞
⎠⎟

2  

 Since rb << r, we can expand in binomial series: 

  

  

t = r − r 1−
1
2

rb
2

r2

⎛
⎝⎜

⎞
⎠⎟
− R + R 1−

1
2

rb
2

R2

⎛
⎝⎜

⎞
⎠⎟

=
1
2

rb
2

r
−

1
2

rb
2

R

rb =
2t

1 r − 1 R
⎡

⎣
⎢

⎤

⎦
⎥

1 2

=
2 24.9 × 10−6  m( )

1 4.00 m − 1 12.0 m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

= 1.73 cm
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P37.2 3.53 mm 

P37.4 515 nm 

P37.6 The sine of the angle for m = 1 fringe is greater than 1, which is 
impossible. 

P37.8 (a) 1.77 µm; (b) 1.47 µm 

P37.10 36.2 cm 

P37.12 (a) 34.9°; (b) 5.25 cm; (c) 5.24 × 1014 Hz 

P37.14 11.3 m 

P37.16 
  
v tan sin−1 mλ

d
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

P37.18 (a) 13.2 rad; (b) 6.28 rad; (c) 1.27 × 10–2 deg; (d) 5.97 × 10–2 deg 

P37.20 (a) 22.6 cm; (b) 2.51 × 10–3; (c) 6.03 × 10–7 m; (d) 7.21°; (e) 2.28 cm; (f) The 
two answers are close but do not agree exactly. The fringes are not laid 
out linearly on the screen as assumed in part (a), and this nonlinearity 
is evident for relatively large angles such as 7.21°. 

P37.22 (a) 10 m; (b) 500 m; (c) See P37.22(c) for full explanation. 

P37.24 ER = 10.0 and φ = 53.1° 

P37.26 (a) 
  
I = Imax

9
1+ 2cos

2π dsinθ
λ

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

2

;  (b) See P37.24(b) for full 

explanation; (c) 9:1 

P37.28 See ANS. FIG. P37.28. 

P37.30 (a) 638 nm; (b) A thicker film would require a higher order of 
reflection, so use a larger value of m; (c) 360 nm, 600 nm 

P37.32 96.2 nm 

P37.34 (a) 276 nm, 138 nm, 92.0 nm; (b) No visible wavelengths are intensified. 

P37.36 (a) green; (b) violet 

P37.38 (a) 238 nm; (b) λ increase; (c) 328 nm 

P37.40 (a) 97.8 nm; (b) Yes. Destructive interference occurs when 

  
2nt = (m+ 1

2
)λ  (Eq. 37.17), where m is an integer. (There is a phase 

change at both faces of the film in Figure P37.40.) Hence, for m = 1, 2,… 
we obtain thicknesses of 293 nm, 489 nm, . . . 
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P37.42 39.6 µm 

P37.44 
  
1+ Nλ

2L
 

P37.46 1.4 × 102  Hz 

P37.48 (a) See P37.48(a) for full explanation; (b) 2.74 m 

P37.50 (a) ~10–3 degree; (b) ~1011 Hz; (c) microwaves 

P37.52 2.52 cm 

P37.54 20.0 × 10–6 °C–1 

P37.56 1.62 km 

P37.58 421 nm 

P37.60 
  
y  = L tan sin−1 n − 1( )t

d
⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

=
n − 1( )Lt

d2  −  n − 1( )2 t2
 

P37.62 (a)   2 4h2 + d2 − 2d;  (b)   4h2 + d2 − d  

P37.64 The number of fringes is N = m + 1 = 474 1. This number is less than  
5 000. 

P37.66 
  
r ≈

mλR
nfilm

 

P37.68 (a) n(y) = 1.90 – 0.0285 y/cm; (b) 32.3 cm; (c) The beam will 
continuously curve downward. 

P37.70 (a) 4.86 cm; (b) 78.9 nm, 128 nm; (c) 2.63 × 10–6 rad 

P37.72 
  
2nt 1 −  sin2  θ1

n2  =  m +  1
2( )λ ,  where m = 0, 1, 2, … 

P37.74 See P37.74 for full explanation. 

P37.76 1.73 cm 
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38 
Diffraction Patterns 

and Polarization 
 

CHAPTER OUTLINE 
 

38.1  Introduction to Diffraction Patterns 

38.2  Diffraction Patterns from Narrow Slits 

38.3  Resolution of Single-Slit and Circular Apertures 

38.4 The Diffraction Grating 

38.5  Diffraction of X-Rays by Crystals 

38.6 Polarization of Light Waves 

 

* An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ38.1 Answer (a). Glare, as usually encountered when driving or boating, 
is horizontally polarized. Reflected light is polarized in the same 
plane as the reflecting surface. As unpolarized light hits a shiny 
horizontal surface, the atoms on the surface absorb and then reemit 
the light energy as a reflection. We can model the surface as 
containing conduction electrons free to vibrate easily along the 
surface, but not to move easily out of surface. The light emitted from 
a vibrating electron is partially or completely polarized along the 
plane of vibration, thus horizontally. 

OQ38.2 Answer (c). The polarization state of a light beam that is reflected by 
a metallic surface is not changed; therefore, a beam of light that is not 
polarized before it is reflected is not polarized after it is reflected by a 
metallic surface. 

OQ38.3 Answer (b). The wavelength will be much smaller than with visible 
light, so there will be no noticeable diffraction pattern.  
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OQ38.4 Answer (b). In a single slit diffraction pattern, dark fringes occur 
where   sinθdark = mλ a ≈ tanθdark = ydark L ,  and m is any non-zero 
integer.  

 Thus, the width of the slit, a, in the described situation, must be 
   

  

a =
mλL
ydark( )1

=
1( )λL
ydark( )1

=
5.00 × 10−7  m( ) 1.00 m( )

5.00 × 10−3  m

= 1.00 × 10−4  m = 0.100 mm

 

OQ38.5 Answer (d). The central maximum lies between the first-order 
minima defined by the relation   sinθdark = mλ a = λ a .  Because the 
angle is small,   sinθdark ≈ tanθdark = ydark L ,  so the width of the central 
maximum is proportional to Lλ/a. Thus, the central maximum 
becomes twice as wide if the slit width a becomes half as wide.  

OQ38.6 The ranking is (e) > (c) >(a) > (b) > (d). The central maximum lies 
between the first-order minima defined by the relation 

  sinθdark = mλ a = λ a . Because the angle is small, 

  sinθdark ≈ tanθdark = ydark L , so the width of the central maximum is 
proportional to Lλ/a. We consider the value of Lλ/a: (a)   Lλ0 a , (b) 

  f = c λ0 , so for f ′ = 3/2 f,  ′λ = 2 3λ0 , and the width is 

  L 2 3λ0( ) a = 2 3 Lλ0 a( ) , (c)   L 1.5λ0( ) a = 32 Lλ0 a( ) ,  

(d)   Lλ0 (2a) =1 2 Lλ0 a( ) , (e)   (2L)λ0 a = 2 Lλ0 a( ) . 
OQ38.7 Answer (b). From Malus’ law, the intensity of the light transmitted 

through a polarizer (analyzer) having its transmission axis oriented 
at angle 45° to the plane of polarization of the incident polarized light 
is I = Imax cos2 45° = Imax/2. Therefore, the intensity passing through 
the second polarizer having its transmission axis oriented at angle  
θ = 90° – 45° = 45° is I = (Imax/2)cos2 45° = Imax/4. 

OQ38.8 Answer (e). Diffraction of light as it passes through, or reflects from, 
the objective element of a telescope can cause the images of two 
sources having a small angular separation to overlap and fail to be 
seen as separate images. According to Equation 38.6,   θmin = 1.22λ D ,  
the minimum angular separation  θmin  two sources must have in 
order to be seen as separate sources is inversely proportional to the 
diameter D of the objective element. Thus, using a large-diameter 
objective element in a telescope increases its resolution. 

OQ38.9 Answer (e). The bright colored patterns are the result of interference 
between light reflected from the upper surface of the oil and light 
reflected from the lower surface of the oil film.  
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OQ38.10 Answer (b). No diffraction effects are observed because the 
separation distance between adjacent ribs is so much greater than the 
wavelength of x-rays. Diffraction does not limit the resolution of an 
x-ray image. Diffraction might sometimes limit the resolution of a 
sonogram.  

OQ38.11 Answer (a). The grooves in a diffraction grating are not electrically 
conducting. Sending light through a diffraction grating is not like 
sending a vibration on a rope through a picket fence: there is no 
moving substance that could collide with the groove of the grating, 
so the grating could not prevent the wave from passing though it. 

OQ38.12 Answer (c). The ability to resolve light sources depends on 
diffraction, not on intensity. 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ38.1 The crystal cannot produce diffracted beams of visible light. The 
wavelengths of visible light are some hundreds of nanometers. There 
is no angle whose sine is greater than 1. Bragg’s law, 2d sin θ = mλ, 
cannot be satisfied for a wavelength much larger than the distance 
between atomic planes in the crystal. 

CQ38.2 The wavelength of visible light is extremely small in comparison to 
the dimensions of your hand, so the diffraction of light around an 
obstacle the size of your hand is totally negligible. However, sound 
waves have wavelengths that are comparable to the dimensions of 
the hand or even larger. Therefore, significant diffraction of sound 
waves occurs around hand-sized obstacles. 

CQ38.3 Since the obsidian is opaque, a standard method of measuring 
incidence and refraction angles and using Snell’s Law is ineffective. 
Reflect unpolarized light from the horizontal surface of the obsidian 
through a vertically polarized filter. Change the angle of incidence 
until you observe that none of the reflected light is transmitted 
through the filter. This means that the reflected light is completely 
horizontally polarized, and that the incidence and reflection angles 
are the polarization angle. According to Equation 38.10, the tangent 
of the polarization angle is the index of refraction of the obsidian. 

CQ38.4 (a) Light from the sky is partially polarized.  
 (b) Light from the blue sky that is polarized at 90° to the 

polarization axis of the glasses will be blocked, making the sky 
look darker as compared to the clouds. 

CQ38.5 Consider incident light nearly parallel to the horizontal ruler. 
Suppose it scatters from bumps at distance d apart to produce a 
diffraction pattern on a vertical wall a distance L away. At a point of 
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height y, where 
 
θ =

y
L

 gives the scattering angle θ, the character of 

the interference is determined by the shift δ between beams scattered 

by adjacent bumps, where 
  
δ = dcosθ ≈ d 1+

θ 2

2
⎛
⎝⎜

⎞
⎠⎟

.  Bright spots 

appear for δ = mλ, where m = 1, 2, 3, …. 

 

ANS. FIG. CQ38.5 

 For small θ, these equations combine and reduce to 
  
mλ = d 1+

ym
2

2L2

⎛
⎝⎜

⎞
⎠⎟

.  

Measurement of the heights ym of bright spots allows calculation of 
the wavelength of the light. [Note that if a maximum occurs at 

  
θ =

y
L
≈ 0,  then scattered light from a bump constructively interferes 

with scattered light from the next bump in front, which 
constructively interferes with scattered light from the next bump…; 
thus λ = d.] 

CQ38.6 First think about the glass without a coin and about one particular 
point P on the screen. We can divide up the area of the glass into 
ring-shaped zones centered on the line joining P and the light source, 
with successive zones contributing alternately in-phase and out-of-
phase with the light that takes the straight-line path to P. These 
Fresnel zones have nearly equal areas. An outer zone contributes 
only slightly less to the total wave disturbance at P than does the 
central circular zone. Now insert the coin. If P is in line with its 
center, the coin will block off the light from some particular number 
of zones. The first unblocked zone around its circumference will send 
light to P with significant amplitude. Zones farther out will 
predominantly interfere destructively with each other, and the Arago 
spot is bright. Slightly off the axis there is nearly complete 
destructive interference, so most of the geometrical shadow is dark. 
A bug on the screen crawling out past the edge of the geometrical 
shadow would in effect see the central few zones coming out of 
eclipse. As the light from them interferes alternately constructively 
and destructively, the bug moves through bright and dark fringes on 
the screen. The diffraction pattern is shown in Figure 38.3 in the text. 
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CQ38.7 The skin on the tip of a finger has a series of closely spaced ridges 
and swirls on it. When the finger touches a smooth surface, the oils 
from the skin will be deposited on the surface in the pattern of the 
closely spaced ridges. The clear spaces between the lines of deposited 
oil can serve as the slits in a crude diffraction grating and produce a 
colored spectrum of the light passing through or reflecting from the 
glass surface. 

CQ38.8 (a) The diffraction pattern of a hair is the same as the diffraction 
pattern produced by a single slit of the same width.  

 (b) The central maximum is flanked by minima. Measure the width 
2y of the central maximum between the minima bracketing it. 
Because the angle is small, you can use 

    
  

sinθdark ≈ tanθdark

mλ a ≈ y L
 

  to find the width a of the hair. 

CQ38.9 The condition for constructive interference is that the three radio 
signals arrive at the city in phase. We know the speed of the waves (it 
is the speed of light c), the angular bearing θ of the city east of north 
from the broadcast site, and the distance d between adjacent towers. 
The wave from the westernmost tower must travel an extra distance 
2d sin θ to reach the city, compared to the signal from the eastern 
tower. For each cycle of the carrier wave, the western antenna would 

transmit first, the center antenna after a time delay 
  

dsinθ
c

, and the 

eastern antenna after an additional equal time delay. 

CQ38.10 The correct orientation is vertical. If the horizontal width of the 
opening is equal to or less than the wavelength of the sound, then the 
equation   asinθ = 1( )λ  has the solution θ = 90°, or has no solution. 
The central diffraction maximum covers the whole seaward side. If 
the vertical height of the opening is large compared to the 
wavelength, then the angle in   asinθ = 1( )λ  will be small, and the 
central diffraction maximum will form a thin horizontal sheet. 

 Featured in the motion picture M*A*S*H (20th Century Fox, Aspen 
Productions, 1970) is a loudspeaker mounted on an exterior wall of 
an Army barracks. It has an approximately rectangular aperture, and 
it is installed incorrectly. The longer side is horizontal, to maximize 
sound spreading in a vertical plane and to minimize sound radiated 
in different horizontal directions.  
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CQ38.11 Audible sound has wavelengths on the order of meters or 
centimeters, while visible light has a wavelength on the order of half 

a micrometer. In this world of breadbox-sized objects, 
 

λ
a

 is large for 

sound, and sound diffracts around walls with doorways. But 
 

λ
a

 is a 

tiny fraction for visible light passing ordinary-size objects or 
apertures, so light changes its direction by only very small angles 
when it diffracts. 

 Another way of phrasing the answer: We can see by a small angle 
around a small obstacle or around the edge of a small opening. The 
side fringes in Figure 38.1 and the Arago spot in the center of Figure 
38.3 show this diffraction. We cannot always hear around corners. 
Out-of-doors, away from reflecting surfaces, have someone a few 
meters distant face away from you and whisper. The high-frequency, 
short-wavelength, information-carrying components of the sound do 
not diffract around his head enough for you to understand his 
words. 

 Suppose an opera singer loses the tempo and cannot immediately get 
it from the orchestra conductor. Then the prompter may make 
rhythmic kissing noises with her lips and teeth. Try it—you will 
sound like a birdwatcher trying to lure out a curious bird. This sound 
is clear on the stage but does not diffract around the prompter’s box 
enough for the audience to hear it. 

CQ38.12 Consider vocal sound moving at 340 m/s and of frequency 3 000 Hz. 
Its wavelength is 

    
  
λ =

v
f

=
340 m/s
3000 Hz

= 0.113 m  

 If your mouth, for horizontal dispersion, behaves similarly to a slit 
6.00 cm wide, then   asinθ = mλ  predicts no diffraction minima. You 
are a nearly isotropic source of this sound. It spreads out from you 
nearly equally in all directions. On the other hand, if you use a 
megaphone with width 60.0 cm at its wide end, then   asinθ = mλ  
predicts the first diffraction minimum at 

    
  
θ = sin−1 mλ

a
⎛
⎝⎜

⎞
⎠⎟

= sin−1 0.113 m
0.600 m

⎛
⎝⎜

⎞
⎠⎟ = 10.9°  

 This suggests that the sound is radiated mostly toward the front into 
a diverging beam of angular diameter only about 20°. With less 
sound energy wasted in other directions, more is available for your 
intended auditors. We could check that a distant observer to the side 
or behind you receives less sound when a megaphone is used. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 38.2 Diffraction Patterns from Narrow Slits 
*P38.1 (a) According to Equation 38.1, dark bands (minima) occur where  
   

  
sinθ = m

λ
a

  

  For the first minimum, m = 1, and the distance from the center of 
the central maximum is  

   

  
y1 = L tanθ ≈ Lsinθ = L

λ
a

⎛
⎝⎜

⎞
⎠⎟

  

  Thus, the needed distance to the screen is 
   

  
L = y1

a
λ

⎛
⎝⎜

⎞
⎠⎟ = 0.85× 10−3  m( ) 0.75× 10−3  m

587.5× 10−9  m
⎛
⎝⎜

⎞
⎠⎟

= 1.1 m
 

 (b) The width of the central maximum is  
    

  2y1 = 2 0.85 mm( ) = 1.7 mm   

P38.2 From Equation 38.1, with m = 1, 
  

  
sinθ = λ

a
= 6.328× 10−7  m

3.00× 10−4  m
= 2.11× 10−3

 

 Then, 
  

  

y
1.00 m

= tanθ ≈ sinθ ≈θ  (for small θ)   →    y = 2.11 mm
 

 and   2y = 4.22 mm  

P38.3 If the speed of sound is 343 m/s,  

   
  
λ =

v
f

=
343 m/s
650 s−1 = 0.528 m  

 Diffraction minima occur at angles described by   asinθ = mλ.  

   

 

1.10 m( )sinθ1 = 1 0.528 m( ) θ1 = ±28.7°

1.10 m( )sinθ2 = 2 0.528 m( ) θ2 = ±73.6°

1.10 m( )sinθ3 = 3 0.523 m( ) θ3  nonexistent

 

 (a) There are four minima. 

 (b) θ = ±28.7°, ±73.6° 
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P38.4 (a) Refer to ANS. FIG. P38.4. The rectangular patch on the wall is 
wider than it is tall. The aperture will be taller than it is wide. For 
horizontal spreading we have 

   
  
tanθwidth =

ywidth

L
=

0.110 m 2
4.5 m

= 0.012 2  

     awidth sinθwidth = 1λ  

   
  
awidth =

632.8 × 10−9  m
0.012 2

= 5.18 × 10−5  m = 51.8 µm  

 

ANS. FIG. P38.4 

 (b) For vertical spreading, similarly 

    

  

tanθheight =
0.006 m 2

4.5 m
= 0.000 667

aheight =
1λ

sinθh

=
632.8 × 10−9  m

0.000 667
= 9.49 × 10−4  m = 949 µm

 

 (c) The longer dimension in the central bright patch is horizontal.  

 (d) The longer dimension of the aperture is vertical.  

 (e) 

 

A smaller distance between aperture edges causes a wider
diffraction angle. The longer dimension of each rectangle is
18.3 times larger than the smaller dimension.

 

P38.5 For destructive interference, from Equation 38.1, 

   
  
sinθ = m

λ
a

=
λ
a

=
5.00 cm
36.0 cm

= 0.139  

 and θ = 7.98°. Then, 

   
  

y
L

= tanθ  
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 gives 

  

y = L tanθ = 6.50 m( )tan 7.98° = 0.912 m

= 91.2 cm

 

P38.6 In a single slit diffraction pattern, with the slit having width a, the dark 
fringe of order m occurs at angle  θm , where   sinθm = m(λ a)  and 

  m = ±1,  ± 2,  ± 3,… . The location, on a screen located distance L from 
the slit, of the dark fringe of order m (measured from y = 0 at the center 
of the central maximum) is  

  

  
(ydark)m = L tanθm ≈ Lsinθm = mλ L

a
⎛
⎝⎜

⎞
⎠⎟

 

 (a) The central maximum extends from the m = +1 dark fringe on one 
side to the m = –1 dark fringe on the other side, so the width of 
this central maximum is 

   

  

Central max. width = (ydark )m=1 − (ydark )m=−1

= 1( ) λL
a

⎛
⎝⎜

⎞
⎠⎟ − −1( ) λL

a
⎛
⎝⎜

⎞
⎠⎟ = 2λL

a

 

  Therefore,  

   

  

L =
a Central max. width( )

2λ

=
0.200 × 10−3  m( ) 8.10 × 10−3  m( )

2 5.40 × 10−7  m( ) = 1.50 m
 

 (b) The first order bright fringe extends from the m = 1 dark fringe to 
the m = 2 dark fringe, or 

   

  

Δybright( )
1

= ydark( )m=2
− ydark( )m=1 = 2

λL
a

⎛
⎝⎜

⎞
⎠⎟ − 1

λL
a

⎛
⎝⎜

⎞
⎠⎟ = λL

a

=
5.40× 10−7  m( ) 1.50 m( )

0.200× 10−3  m
= 4.05× 10−3  m = 4.05 mm

 

  Note that the width of the first order bright fringe is exactly one 
half the width of the central maximum. 

P38.7 In the equation for single-slit diffraction minima at small angles, 

  
  

y
L
≈ sinθdark =

mλ
a

 

 we take differences between the first and third dark fringes, to see that 

  
  

Δy
L

= Δmλ
a

   with   Δy = 3.00× 10−3  m   and   Δm = 3− 1 = 2    
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 The width of the slit is then  
   

  
a = λLΔm

Δy
=

690× 10−9  m( ) 0.500 m( ) 2( )
3.00× 10−3  m( ) = 2.30× 10−4  m

 

P38.8 Use the small-angle approximation: 
  

y
L
≈ sinθ =

mλ
a

.  

 Then,    
  

Δy
L

=
m2λ

a
−

m1λ
a

= m2 − m1
λ
a

→ a =
λL m2 − m1

Δy
.  

P38.9 The diffraction envelope shows a broad central maximum flanked by 
zeros at a sin θ = 1λ and a sinθ = 2λ. That is, the zeros are at 

  (π asinθ)/λ = π ,  −π ,  2π ,  − 2π , ...  Noting that the distance between 
slits is d = 9 µm = 3a, we say that within the diffraction envelope the 
interference pattern shows closely spaced maxima at   dsinθ = mλ ,  
giving   (π 3asinθ)/λ = mπ  or 

  
  (π asinθ)/λ = 0,  π/3,  −π/3,  2π/3,  − 2π/3   

 The third-order interference maxima are missing because they fall at 
the same directions as diffraction minima, but the fourth order can be 
visible at   (π asinθ)/λ = 4π/3 and − 4π/3  as diagrammed. 

 

ANS. FIG. P38.9 

P38.10 Equation 38.1 states that 
  
sinθ =

mλ
a

, where 

  m = ±1, ± 2, ± 3, …. The requirement for  
m = 1 is from an analysis of the extra path 
distance traveled by ray 1 compared to ray 3 
in the textbook Figure 38.5. This extra 

distance must be equal to 
 

λ
2

 for destructive 

interference. When the source rays approach 
the slit at an angle β, there is a distance added 
to the path difference (of ray 1 compared to 

 

ANS. FIG. P38.10 
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ray 3) of 
  

a
2

sinβ.  Then, for destructive interference, 

  
  

a
2

sinβ +
a
2

sinθ =
λ
2

   so   
  
sinθ =

λ
a
− sinβ  

 Dividing the slit into 4 parts leads to the second order minimum: 

  
  

a
4

sinβ +
a
4

sinθ =
λ
2

   so   
  
sinθ =

2λ
a

− sinβ  

 Dividing the slit into 6 parts gives the third order minimum: 

  
  
sinθ =

3λ
a

− sinβ  

 Generalizing, we obtain the condition for the mth order minimum: 

  
  
sinθ =

mλ
a

− sinβ         m = ±1, ± 2, ± 3, … 

P38.11 First we find where we are. The angle to the side is small so 

   
  
sinθ ≈ tanθ =

y
L

=
4.10 × 10−3 m

1.20 m
= 3.417 × 10−3    

 The parameter controlling the intensity is  

   
  
 
πasinθ

λ
=
π 4.00 × 10−4 m( ) 3.417 × 10−3( )

546.1 × 10−9 m
= 7.862 rad  

 This is between 2π  and 3 π ,  so the point analyzed is off in the second 
side fringe. The fractional intensity is 

  

  

I
Imax

=
sin π a sinθ/λ( )
π a sinθ/λ

⎡

⎣
⎢

⎤

⎦
⎥

2

= sin(7.862 rad)
7.862 rad

⎡

⎣
⎢

⎤

⎦
⎥

2

= 1.62 × 10−2

 

P38.12 (a) Double-slit interference maxima are at angles given by 
  dsinθ = mλ . 

  For m = 0,  θ0 = 0°  

  For m = 1,  2.80 µm( )sinθ = 1 0.501 5 µm( ) : 

 θ1 = sin−1 0.179( ) = ±10.3°  

  Similarly, for m = 2, 3, 4, and 5,  
   

 θ2 = ±21.0° ,  θ3 = ±32.5° ,  θ4 = ±45.8° ,  and θ5 = ±63.6°   

  For m > 5, there are no maxima. 

 (b) Thus, there are 5 + 5 + 1 = 11 directions for interference maxima. 
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 (c) We check for missing orders by looking for single-slit diffraction 
minima, at   asinθ = mλ . 

  For m = 1,  0.700 µm( )sinθ = 1 0.501 5 µm( )     and     θ1 = ±45.8°  

  Thus, there is no bright fringe at this angle.  

 (d) From our answer to (c), two.  

 (e) two 

 (f) Two are missing because slit-slit minimum occur where a double-
slit maximum would be: nine 

 (g) 
  
I = Imax

sin π asinθ λ( )
π sinθ λ

⎡

⎣
⎢

⎤

⎦
⎥

2

 

  At θ = 63.6°,  

 
  

π asinθ
λ

=
π 0.700 µm( )sin 63.6°

0.501 5 µm( ) = 3.93 rad = 225°  

  and 
  
I = 0.032 4Imax  

P38.13 With the screen locations of the dark fringe of order m at 

    (ydark )m = L tanθm ≈ Lsinθm = m(λL a)     for   m = ±1, ± 2, ± 3, … 

 the width of the central maximum is  
  

  
Δycentral

maximum
= (ydark )m=+1 − (ydark )m=−1 = 2(λL a)

 

  so 
  

  

λ =
a Δycentral

maximum

⎛
⎝⎜

⎞
⎠⎟

2L
=

0.600× 10−3  m( ) 2.00× 10−3  m( )
2 1.30 m( )

= 4.62 × 10−7  m = 462 nm

 

 
 

 

Section 38.3 Resolution of Single-Slit and Circular Apertures 

P38.14 We assume Rayleigh’s criterion applies to the cat’s eye with pupil 
narrowed. For a single slit (not a round aperture), for small angles  

   
  
θ ≈ sinθ =

λ
a

=
500 × 10−9  m

0.500 × 10−3  m
= 1.00 × 10−3  rad  
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P38.15 Using Rayleigh’s criterion,  
  

  
θmin = 1.22

λ
D

= 0.100° π  rad
180°

⎛
⎝⎜

⎞
⎠⎟ = 1.75× 10−3  rad

 

 and 
  
D = 1.22

λ
θmin

⎛
⎝⎜

⎞
⎠⎟

= 1.22
3.00× 10−3  m

θmin

⎛
⎝⎜

⎞
⎠⎟

= 2.10 m  

P38.16 Using Rayleigh’s criterion, 
  
θmin = 1.22

λ
D

= y
L

.  Therefore, 

  

  
L = yD

1.22λ
=

2.80× 10−2  m( ) 0.600× 10−3  m( )
1.22 550× 10−9  m( ) = 25.0 m

 

P38.17 Using Rayleigh’s criterion, 
  
θmin = 1.22

λ
D

= y
L

.  Therefore, 

  

  

y = 1.22
λ
D

⎛
⎝⎜

⎞
⎠⎟ L = 1.22

500× 10−9  m
58.0× 10−2  m

⎛
⎝⎜

⎞
⎠⎟

270× 103  m( )
= 0.284 m

 

P38.18 (a) The limiting angle for the resolution of the microscope is 
   

  

θmin = 1.22
λ
D

= 1.22
589× 10−9  m
9.00× 10−3  m

⎛
⎝⎜

⎞
⎠⎟

= 7.98× 10−5  rad

= 79.8 µrad

 

 (b) For a smaller angle of diffraction we choose the smallest visible 
wavelength, violet at 400 nm, to obtain  

   

  

θmin = 1.22
λ
D

= 1.22
400× 10−9  m
9.00× 10−3  m

⎛
⎝⎜

⎞
⎠⎟

= 5.42 × 10−5  rad

= 54.2 µrad

 

 (c) The wavelength in water is shortened to its vacuum value 
divided by the index of refraction. The resolving power is 
improved, with the minimum resolvable angle becoming 

    

  

θmin = 1.22
λ
D

= 1.22
589× 10−9  m 1.33

9.00× 10−3  m
⎛
⎝⎜

⎞
⎠⎟

= 6.00× 10−5  rad

= 60.0 µrad
 

  Better than water for many purposes is oil immersion.  
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P38.19 When the pupil is open wide, it appears that the resolving power of 
human vision is limited by the coarseness of light sensors on the retina. 
But we use Rayleigh’s criterion as a handy indicator of how good our 
vision might be. We are given  

  
  L = 250× 103  m, λ = 5.00× 10−7  m, and d = 5.00× 10−3  m   

 The smallest object the astronauts can resolve is given by Rayleigh’s 

criterion, 
  
θmin = 1.22

λ
D

= y
L

.  Therefore, 

  

  
y = 1.22

λ
D

L = 1.22
5.00× 10−7  m
5.00× 10−3  m

⎛
⎝⎜

⎞
⎠⎟

250× 103  m( ) = 30.5 m
 

P38.20 Undergoing diffraction from a circular opening, the beam spreads into 
a cone of half-angle 

   
  
θmin = 1.22

λ
D

= 1.22
632.8 × 10−9  m

0.005 00 m
⎛
⎝⎜

⎞
⎠⎟

= 1.54 × 10−4  rad  

 The radius of the beam ten kilometers away is, from the definition of 
radian measure, 

   
  rbeam = θmin 1.00 × 104  m( ) = 1.544 m  

 and its diameter is   dbeam = 2rbeam = 3.09 m .  

*P38.21 The limit of resolution in air is  
  

  
θmin air

= 1.22
λ
D

= 0.60 µrad
 

 In oil, the limiting angle of resolution will be 
  

  
θmin oil

= 1.22
λoil

D
= 1.22

λ/noil( )
D

= 1
noil

1.22
λ
D

⎛
⎝⎜

⎞
⎠⎟

 

 or 
  
θmin oil

=
θmin air

noil

= 0.60 µrad
1.5

= 0.40 µrad  

P38.22 When the pupil is open wide, it appears that the resolving power of 
human vision is limited by the coarseness of light sensors on the retina. 
But we use Rayleigh’s criterion as a handy indicator of how good our 

vision might be. We take 
  
θmin =

d
L

= 1.22
λ
D

, where  θmin  is the smallest 

angular separation of two objects for which they are resolved by an 
aperture of diameter D, d is the separation of the two objects, and L is 
the maximum distance of the aperture from the two objects at which 
they can be resolved. 
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 (a) Two objects can be resolved if their angular separation is greater 
than  θmin .  Thus,  θmin  should be as small as possible. Therefore, 
light with the smaller of the two given wavelengths is easier to 
resolve, i.e., blue. 

 (b) 
  
L =

Dd
1.22λ

=
5.20 × 10−3  m( ) 2.80 × 10−2  m( )

1.22λ
=

1.193 × 10−4  m2

λ
 

  Thus for λ = 640 nm, L = 186 m, and for λ = 440 nm, L = 271 m. 
The viewer with the assumed diffraction-limited vision could 
resolve adjacent tubes of blue in the range 

 
186 m to 271 m , but 

cannot resolve adjacent tubes of red in this range. 

P38.23 When the pupil is open wide, it appears that the resolving power of 
human vision is limited by the coarseness of light sensors on the retina. 
But we use Rayleigh’s criterion as a handy indicator of how good our 
vision might be. According to this criterion, two dots separated center-
to-center by 2.00 mm would overlap when 

   
  
θmin =

d
L

= 1.22
λ
D

 

 Thus, 
  
L =

dD
1.22λ

=
2.00 × 10−3  m( ) 5.00 × 10−3  m( )

1.22 500 × 10−9  m( ) = 16.4 m .  

P38.24 We are given D = 2.10 m and L = 9 000 m. The wavelength of the Coast 
Guard radar is 

   

  
λ = c

f
= 3.00× 108  m/s

15.0× 109  Hz
= 0.020 0 m

 

 From Rayleigh’s criterion, 
  
θmin = 1.22

λ
D

=
d
L

. Therefore, 

   

  
d = 1.22

0.020 0 m( ) 9 000 m( )
2.10 m

⎡
⎣⎢

⎤
⎦⎥

= 105 m
 

 
 

 

Section 38.4 The Diffraction Grating 

P38.25 The first order maximum occurs at 20.5°, so  sinθ = sin 20.5° = 0.350,  
and, from Equation 38.7,  

    
  
d =

λ
sinθ

=
632.8 nm

0.350
= 1.81× 103  nm  

 Therefore, the line spacing 
 
= 1.81 µm  
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P38.26 The ruling engine that cut the diffraction grating (or the aluminum 
plate from which the gelatin or plastic was cast) sliced each centimeter 
into two thousand divisions. So the grating spacing is 

  

  
d =

1.00 × 10−2  m
2 000

= 5.00 × 10−6 m
 

 The light is deflected according to     dsinθ = mλ:   

  
  
θ = sin−1 mλ

d
⎛
⎝⎜

⎞
⎠⎟

= sin−1 1 640 × 10−9  m( )
5.00 × 10−6  m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 7.35°  

P38.27 The sound has wavelength 
  
λ =

v
f

=
343 m/s

37.2 × 103 s
= 9.22 × 10−3  m.  Each 

diffracted beam is described by   d sinθ = mλ, m = 0, 1, 2, … 

 The zero-order beam is at m = 0, θ = 0. The beams in the first order of 
interference are to the left and right at  

   
  
θ = sin−1 1λ

d
⎛
⎝⎜

⎞
⎠⎟

= sin−1 9.22 × 10−3  m
1.30 × 10−2  m

⎛
⎝⎜

⎞
⎠⎟

= sin−1 0.709 = 45.2°  

 For a second-order beam we would need  
   

  
θ = sin−1 2λ

d
⎛
⎝⎜

⎞
⎠⎟

= sin−1 2 0.709( )[ ] = sin−1 1.42( )
 

 No angle, smaller or larger than 90°, has a sine greater than 1. Then a 
diffracted beam does not exist for the second order or any higher 
order. The whole answer is then: 

 (a) There are three beams.  

 (b) The beams are at 0°, +45.2°, –45.2°. 

P38.28 (a) 
  
d =

10−2  m
3 660

= 2.732 × 10−6  m = 2 732 nm  

  
  
λ =

dsinθ
m

,  and m = 1: At θ = 10.1°,   
 
λ = 479 nm  

   At θ = 13.7°,    λ = 647  nm .  

   At θ = 14.8°,    λ = 698 nm .  

 (b) 
  
d =

λ
sinθ1

    and      2λ = dsinθ2     so  
  
sinθ2 =

2λ
d

=
2λ

λ sinθ1

= 2sinθ1.  

  Therefore, if  θ1 = 10.1°  then  sinθ2 = 2sin 10.1°( )  gives  θ2 = 20.5° .  

  Similarly, for  θ1 = 13.7° ,  θ2 = 28.3°  and for  θ1 = 14.8°, θ2 = 30.7° .  
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P38.29 For a side maximum, 
  
tanθ =

y
L

=
0.400 µm
6.90 µm

, which gives θ = 3.32°. 

Then, from   dsinθ = mλ ,   

  
  
d =

1( ) 780 × 10−9  m( )
sin 3.32°

= 13.5 µm  

 

ANS. FIG. P38.29 

 The number of grooves per millimeter 

  
 
=

1× 10−3  m
13.5 × 10−6  m

= 74.2  

P38.30 The grating spacing is  
   

  
d = 1.00× 10−3  m

250
= 4.00× 10−6  m = 4 000 nm

  

 Solving for m in Equation 38.7 gives 
   

  
dsinθ = mλ     →     m = dsinθ

λ

 

 (a) The number of times a complete order is seen is the same as the 
number of orders in which the long wavelength limit is visible. 

   

  
mmax =

dsinθmax

λ
=

4 000 nm( )sin 90.0°
700 nm

= 5.71
 

  or  5 orders is the maximum .  

 (b) The highest order in which the violet end of the spectrum can be 
seen is: 

   

  
mmax =

dsinθmax

λ
=

4 000 nm( )sin 90.0°
400 nm

= 10.0
 

  or 
 

10 orders in the short-wavelength region .  
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P38.31 The grating spacing is  

  
  
d =

1.00 × 10−2  m
4200

= 2.38 × 10−6  m = 2380 nm  

 Solving for the angle θ  from Equation 38.7,  dsinθ = mλ ,  gives 
  

  
θ = sin−1 mλ

d
⎛
⎝⎜

⎞
⎠⎟

    

 Then,  
  
y = L tanθ = L tan sin−1 mλ

d
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

 

 Thus,  
  
Δy = L tan sin−1 mλ2

d
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
− tan sin−1 mλ1

d
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

 

 For m = 1, 
  

  

Δy = 2.00 m( ) tan sin−1 589.6
2380

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ − tan sin−1 589

2380
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0.554 mm

 

 For m = 2, 
  

  

Δy = 2.00 m( ) tan sin−1 2 589.6( )
2380

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ − tan sin−1 2 589( )

2380
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 1.54 mm

 

 For m = 3, 
  

  

Δy = 2.00 m( ) tan sin−1 3 589.6( )
2380

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ − tan sin−1 3 589( )

2380
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 5.04 mm

 

 Thus, the observed order must be 
  

m = 2 . 

P38.32 The grating spacing is  

   
  
d =

1.00 × 10−2  m
4 500

= 2.22 × 10−6  m  

 In the 1st-order spectrum, diffraction angles are 
given by 

   
  
sinθ =

λ
d

: 
 
sinθ1 =

656 × 10−9  m
2.22 × 10−6  m

= 0.295  

 so that for red  θ1 = 17.17°  

 and for blue 
 
sinθ2 =

434 × 10−9  m
2.22 × 10−6  m

= 0.195,  

 so that   θ2 = 11.26°.  

ANS. FIG. P38.32 
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 The angular separation is in first-order,  

   
 
Δθ = 17.17° − 11.26° = 5.91°  

 In the second-order spectrum,  
   

  
Δθ = sin−1 2λ1

d
⎛
⎝⎜

⎞
⎠⎟ − sin−1 2λ2

d
⎛
⎝⎜

⎞
⎠⎟ = 13.2°

 

 Again, in the third order,  
   

  
Δθ = sin−1 3λ1

d
⎛
⎝⎜

⎞
⎠⎟ − sin−1 3λ2

d
⎛
⎝⎜

⎞
⎠⎟ = 26.5°

 

 Since the red does not appear in the fourth-order spectrum, the answer 
is complete. 

P38.33 The principal maxima are defined by   dsinθ = mλ , where m = 0, 1, 2, … 

 For m = 1,   λ = dsinθ .  

 Here, θ is the angle between the central (m = 0) and the first order  
(m = 1) maxima. The value of θ can be determined from the 
information given about the distance between maxima and the grating-
to-screen distance:  

  
 
tanθ =

0.488 m
1.72 m

= 0.284  

 so    θ = 15.8°    and     sinθ = 0.273 . 

 The distance between grating “slits” equals the reciprocal of the 
number of grating lines per centimeter 

  
  
d =

1
5 310 cm−1 = 1.88 × 10−4  cm = 1.88 × 103  nm  

 The wavelength is       

  
  
λ = dsinθ = 1.88 × 103  nm( ) 0.273( ) = 514 nm  

P38.34 From Equation 38.7, 
  
sinθ =

mλ
d

 

 Therefore, taking the ends of the visible spectrum to be   λv = 400 nm  
and   λr = 750 nm , the ends of the different order spectra are defined by: 

 End of second order: 
  
sinθ2r =

2λr

d
=

1 500 nm
d

 

 Start of third order: 
  
sinθ3v =

3λv

d
=

1 200 nm
d
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 Thus, it is seen that 
  
θ2r > θ3v  and these orders must overlap  

regardless of the value of the grating spacing d. 

P38.35 (a) We use the grating equation   dsinθ = mλ:  
   

  
d = mλ

sinθ
=

3 5.00× 10−7  m( )
sin 32.0°

= 2.83× 10−6  m
 

  Thus the grating gauge is  
   

  

1
d

= 3.53× 105  grooves/m = 3.53× 103  grooves/cm
  

 (b) For any interference maximum for this light going through this 
grating, 

   

  
sinθ = m

λ
d

⎛
⎝⎜

⎞
⎠⎟

=
m 5.00 × 10−7  m( )

2.83 × 10−6  m
= m(0.177)

 

  For  sinθ ≤ 1,  we require that m(0.177)≤  1 or m ≤  5.66. Because m 
must be an integer, its maximum value is really 5. Therefore, the 
total number of maxima is   2m + 1 = 11 .   

P38.36 (a) The several narrow parallel slits make a diffraction grating. The 
zeroth- and first-order maxima are separated according to 

    dsinθ = 1( )λ       
  
sinθ =

λ
d

=
632.8 × 10−9  m
1.2 × 10−3  m

 

   θ = sin−1 0.000 527( ) = 0.000 527 rad  

  
  
y = L tanθ = 1.40 m( ) 0.000 527( ) = 0.738 mm  

 

ANS. FIG. P38.36 

 (b) Many equally spaced transparent lines appear on the film. It is 
itself a diffraction grating. When the same light is sent through 
the film, it produces interference maxima separated according to 

   
  
dsinθ = 1( )λ    →    sinθ =

λ
d

=
632.8 × 10−9  m
0.738 × 10−3  m

= 0.000 857        

      y = L tanθ = 1.40 m( ) 0.000 857( ) = 1.20 mm  
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  An image of the original set of slits appears on the screen. If the 
screen is removed, light diverges from the real images with the 
same wave fronts reconstructed as the original slits produced. 
Reasoning from the mathematics of Fourier transforms, Gabor 
showed that light diverging from any object, not just a set of slits, 
could be used. In the picture, the slits or maxima on the left are 
separated by 1.20 mm. The slits or maxima on the right are 
separated by 0.738 mm. The length difference between any pair of 
lines is an integer number of wavelengths. Light can be sent 
through equally well toward the right or toward the left.  

P38.37 Fifteen bright spots means that the central maximum and seven orders 
of side maxima appear.  

 (a) If the seventh order is at less than 90°, the eighth order might be 
nearly ready to appear according to 

   

  

dsinθ = mλ

d 1( ) = 8 654 × 10−9  m( )→ d = 5.23 µm

d = 5.23 × 10−6  m = 5.23 µm

 

 (b) If the seventh order is just at 90°, 

   

  

dsinθ = mλ

d 1( ) = 7 654 × 10−9  m( )
d = 4.58 × 10−6  m = 4.58 µm

 

 
 

 

Section 38.5 Diffraction of X-Rays by Crystals 
P38.38 The atomic planes in this crystal are shown in Figure 38.22 of the text. 

The diffraction they produce is described by Bragg’s law, 

     2dsinθ = mλ : 
  
sinθ =

mλ
2d

=
1 0.140 × 10−9  m( )
2 0.281× 10−9  m( ) = 0.249  

 and  θ = 14.4° .  

P38.39 The grazing angle is measured from the surface, as shown in Figure 
38.23. Then, from   2d sinθ = mλ , 

  

  

λ =
2dsinθ

m

=
2 0.353 × 10−9  m( )sin 7.60°

1
= 9.34 × 10−11  m = 0.093 4 nm
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P38.40 From   2dsinθ = mλ ,       

  
  
sinθ =

mλ
2d

=
2 0.166 nm( )
2 0.314 nm( ) = 0.529  

 and     
 
θ = 31.9°  

P38.41 (a) By Bragg’s law,   2d sinθ = mλ , and m = 2: 

     λ = 2dsinθ = 2 0.250 nm( )sin 12.6° = 0.109 nm  

 (b) We obtain the number of orders from 

   
  

mλ
2d

= sinθ ≤ 1 → m ≤
2d
λ

=
2 0.250 nm( )

0.109 nm
= 4.59  

  The order-number must be an integer, so the largest value m can 
have is 4: four orders can be observed.  

 
 

 

Section 38.6 Polarization of Light Waves 
P38.42 In Equation 38.10,   tanθp  = n2 n1 , the index of refraction n2 of the solid 

material must be larger than that of air (n1 = 1.00). Therefore, we must 
have   tanθp  > 1 . For this to be true, we must have   θp > 45° , so 

  θp = 41.0°  is not possible. 

P38.43 We define the initial angle, at which all the light is transmitted, to be  
 θ = 0.  Turning the disk to another angle will then reduce the 
transmitted light by an intensity factor as described by   I = Imax cos2θ .  

 Then,  
  
θ = cos−1 I

Imax

 

 (a) For I = Imax/3.00,  
   

  
θ = cos−1 I

Imax

⎛
⎝⎜

⎞
⎠⎟

1/2

= cos−1 1
3.00

= cos−1 0.577 = 54.7°
 

 (b) Now 
  
θ = cos−1 I

Imax

⎛
⎝⎜

⎞
⎠⎟

1/2

= cos−1 1
5.00

= cos−1 0.447 = 63.4°  

 (c) The largest factor of intensity reduction requires the largest 
crossing angle, 

   
  
θ = cos−1 I

Imax

⎛
⎝⎜

⎞
⎠⎟

1/2

= cos−1 1
10.0

= cos−1 0.316 = 71.6°   
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P38.44 By Brewster’s law, for light in air (n = 1.00) reflecting off a surface of 
index n,  

  

  

tanθp =
n2

n1

=
n

1.00
= n

n = tanθp = tan 48.0°( ) = 1.11
 

P38.45 The intensity of unpolarized light passing through the first polarizing 

filter is reduced by 1/2. The second transmits 
 
cos2 30.0° =

3
4

.  

   
  

I
Imax

=
1
2
×

3
4

=
3
8

= 0.375  

*P38.46 
  
P = ΔV( )2

R
  or   P ∝ ΔV( )2  

 
   ΔV = −( )Ey ⋅ Δy = Ey ⋅ cosθ  

 
  ΔV ∝ cosθ    so   P ∝ cos2θ  

 (a)  θ = 15.0°:  

     P = Pmax cos2 15.0°( ) = 0.933Pmax = 93.3%  

 (b)  θ = 45.0°:    P = Pmax cos2 45.0°( ) = 0.500Pmax = 50.0%  

 (c)  θ = 90.0°:    P = Pmax cos2 90.0°( ) = 0.00%  

P38.47 Let the first sheet have its axis at angle θ to the original plane of 
polarization, and let each further sheet have its axis turned by the same 
angle. 

 The first sheet passes intensity   Imax cos2θ ,  

 The second sheet passes   Imax cos2θ( )cos2θ = Imax cos4θ ,  

 and the nth sheet lets through   Imax cos2nθ ≥ 0.90Imax ,  where 
  
θ =

45°
n

. 

 Try different integers to find n; for example,  
  

 
cos2×5 45°

5
⎛
⎝⎜

⎞
⎠⎟ = 0.885,    cos2×6 45°

6
⎛
⎝⎜

⎞
⎠⎟ = 0.902,    cos2×7 45°

7
⎛
⎝⎜

⎞
⎠⎟ = 0.915

 

 (a) So      n = 6 .  

 (b) 
 
θ =

45°
6

= 7.50°  

θ
l

receiving
antenna∆y

ANS. FIG. P38.46 
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P38.48 (a) Let I0 represent the intensity of unpolarized light incident on the 
first polarizer. The intensity of unpolarized light passing through 
a polarizing filter is reduced by 1/2, so the first filter lets through 
1/2 of the incident intensity. Of the light reaching them, the 
second filter passes cos2 45° = 1/2 and the third filter also  
cos2 45° = 1/2. The transmitted intensity is then  

   

  
I0

1
2

⎛
⎝⎜

⎞
⎠⎟

1
2

⎛
⎝⎜

⎞
⎠⎟

1
2

⎛
⎝⎜

⎞
⎠⎟ = 0.125I0

  

  The reduction in intensity is by a factor of 1.00 – 0.125 = 0.875 of 
the incident intensity. 

 (b) By the same logic as in part (a) we have transmitted  
   

  

I0
1
2

⎛
⎝⎜

⎞
⎠⎟ cos2 30.0°( ) cos2 30.0°( ) cos2 30.0°( ) = I0

2
⎛
⎝⎜

⎞
⎠⎟ cos2 30.0°( )3

= 0.211I0

 

  Then the fraction absorbed is 1.00 – 0.211 = 0.789. 

 (c) Yet again we compute transmission  
   

  
I0

1
2

⎛
⎝⎜

⎞
⎠⎟ cos2 15.0°( )6

= 0.330I0

 

  And the fraction absorbed is 1.00 – 0.330 = 0.670. 

 (d) 

 

We can get more and more of the incident light through the stack
of ideal filters, approaching 50%, by reducing the angle between
the transmission axes of each one and the next.

 

P38.49 For the polarizing angle,  
   

  

nsapphire

nair

= tanθp    and   θp = tan−1 nsapphire

1.00
⎛
⎝⎜

⎞
⎠⎟

 

 For the critical angle for total internal reflection, 
   

nsapphire sinθc = nair sin90° = 1.00   so   nsapphire = 1
sinθc

 

 Therefore,  
   

  
θp = tan−1 1

sin θc

⎛
⎝⎜

⎞
⎠⎟

= tan−1 1
sin 34.4°

⎛
⎝⎜

⎞
⎠⎟

= 60.5°
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P38.50 For the polarizing angle, 

  
  
tanθp =

n2

n1

=
n
1

= n      

 and     
  
sinθc =

n2

n1

=
1
n

 

 Thus,  
  
tanθp =

1
sinθc

: 

 
  
θp = tan−1 1

sinθc

⎛
⎝⎜

⎞
⎠⎟

or θp  = tan−1   csc θc( ) or θp  = cot−1   sin θc( )  

*P38.51 From Malus’s law, the intensity of the light transmitted by the first 
polarizer is   I1 = Ii cos2θ1.  The plane of polarization of this light is 
parallel to the axis of the first plate and is incident on the second plate. 
Malus’s law gives the intensity transmitted by the second plate as  

  
  I2 = I1 cos2 θ2 −θ1( ) = Ii cos2θ1 cos2 θ2 −θ1( )  

 This light is polarized parallel to the axis of the second plate and is 
incident upon the third plate. A final application of Malus’s law gives 
the transmitted intensity as 

  
  I f = I2 cos2 θ3 −θ2( ) = Ii cos2θ1 cos2 θ2 −θ1( )cos2 θ3 −θ2( )  

 With  θ1 = 20.0°,  θ2 = 40.0°,  and θ3 = 60.0°,  this result yields 
 

  I f = 10.0 units( ) cos2 20.0°( ) cos2 20.0°( ) cos2 20.0°( ) = 6.89 units
 

*P38.52 Half of the unpolarized light passes through the first sheet. The light 
that passes through the first sheet is polarized at 45° relative to the 
second sheet, and the light that passes through the second sheet is 
polarized at 45° relative to the third sheet. The fraction of transmitted 
light is given by two successive applications of Malus’s law: 

   
  

I
Imax

= 1
2

cos2 45.0°( ) cos2 45.0°( ) = 1
8

 

 
 

 

Additional Problems 

P38.53 (a) We assume the first side maximum is at   asinθ = 1.5λ.  (Its location 
is determined more precisely in Problem 71.) Then the required 
fractional intensity is  

    
  

I
Imax

= sin(π asinθ λ)
π asinθ λ

⎡

⎣
⎢

⎤

⎦
⎥

2

= sin(1.5π )
1.5π

⎡
⎣⎢

⎤
⎦⎥

2

= 1
2.25π 2 = 0.045 0  
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 (b) Proceeding as in part (a), we assume   asinθ = 2.5λ:   
   

  

I
Imax

= sin(π asinθ λ)
π asinθ λ

⎡

⎣
⎢

⎤

⎦
⎥

2

= sin(2.5π )
2.5π

⎡
⎣⎢

⎤
⎦⎥

2

= 1
6.25π 2 = 0.016 2

 

P38.54 (a) One slit, as the central maximum is twice as wide as the other 
maxima. A two-slit pattern has evenly spaced fringes (within a  
one-slit diffraction envelope).  

 (b) For precision, we measure from the second minimum on one side 
of the center to the second minimum on the other side:  

   
  2y = (11.7 − 6.3) cm = 5.4 cm → y = 2.7 cm  

   

  

tanθ =
y
L

=
0.027 m
2.60 m

≈ sinθ

asinθ = mλ

a =
mλ

sinθ
=

2 632.8 × 10−9  m( )
0.027 m
2.60 m

⎛
⎝⎜

⎞
⎠⎟

= 1.22 × 10−4  m

= 0.122 mm wide

 

P38.55 Figure 38.23 of the text shows the situation. This is Bragg diffraction 
for water waves.  

    2dsinθ = mλ     or    
  
λ =

2dsinθ
m

 

 m = 1: 
 
λ1 =

2 2.80 m( )sin 80.0°
1

= 5.51 m  

 m = 2: 
 
λ2 =

2 2.80 m( )sin 80.0°
2

= 2.76 m  

 m = 3: 
 
λ3 =

2 2.80 m( )sin 80.0°
3

= 1.84 m  

P38.56 For dark fringes in an interference pattern formed by a single slit, 

  asinθ = mλ.  By the small-angle approximation, 
  
sinθ ≈ tanθ = y

L
.  

Substituting, we have 
  
a

y
L

= 2λ  and 

  

  

λ = ya
2L

=
1.40× 10−3  m( ) 0.800× 10−3  m( )

2 85.0× 10−2  m( )
= 6.59× 10−7  m = 659 nm
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P38.57 The first minimum is at   asinθ = 1( )λ.  

 This has no solution if 
  

λ
a

> 1,  

 or if   a < λ = 632.8 nm .  

P38.58 (a) With light in effect moving through vacuum, Rayleigh’s criterion 
limits the resolution according to 

   

  
θmin = 1.22

λ
D

= d
L

 

  The diameter of the aperture is then 
   

  

D = 1.22λL
d

=
1.22 885× 10−9  m( ) 12 000 m( )

2.30 m
= 0.005 63 m = 5.63 mm

 

 (b) 

 

The assumption is unreasonable. Over a horizontal path
of 12 km in air, density variations associated with 
convection (“heat waves,” or what an astronomer calls 
“seeing”) would make the motorcycles completely 
unresolvable with any optical device.

 

P38.59 (a) We first determine the wavelength of 1.40-GHz radio waves from 

 
λ =

v
f

:   

    
 
λ =

3.00 × 108  m/s
1.40 × 109  s−1 = 0.214 m  

  Applying Rayleigh’s criterion, 
  
θmin = 1.22

λ
D

, we obtain  

   

 
θmin = 1.22

0.214 m
3.60× 104  m

⎛
⎝⎜

⎞
⎠⎟ = 7.26 µrad

 

   

 
θmin = 7.26 µrad( ) 180× 60× 60 s

π
⎛
⎝⎜

⎞
⎠⎟ = 1.50 arc seconds

 

 (b) To determine the separation between the clouds, we use 
  
θmin =

d
L

:  

   
  
d =θminL = 7.26× 10−6  rad( ) 26 000 ly( ) = 0.189 ly
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 (c) It is not true for humans, but we assume the hawk’s visual acuity 

is limited only by Rayleigh’s criterion, 
  
θmin = 1.22

λ
D

.  Substituting 

numerical values, 
   

 
θmin = 1.22

500× 10−9  m
12.0× 10−3  m

⎛
⎝⎜

⎞
⎠⎟

= 50.8 µrad = 10.5 seconds of arc
 

 (d) Following the same procedure as in part (b), we have 
 

  d =θminL = 50.8× 10−6  rad( ) 30.0 m( ) = 1.52 × 10−3  m = 1.52 mm
 

*P38.60 Differentiating Equation 38.7,  dsinθ = mλ , gives 
   

  d cosθ( )dθ = mdλ  

 or    d 1− sin2θΔθ ≈ mΔλ.  

 Plugging in for  sinθ ,  
   

  
d 1− m2λ2

d2 Δθ ≈ mΔλ
 

 so  
  
Δθ ≈ Δλ

d2 m2( ) − λ2
.  

*P38.61 The grid spacing is 

   
  
d =

10−3  m
400

= 2.50 × 10−6  m  

 (a) From Equation 38.7,   dsinθ = mλ :     

   
  
θa = sin−1 2 541× 10−9  m( )

2.50 × 10−6  m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 25.6°  

 (b) In water,  

   
 
λ =

541× 10−9  m
1.333

= 4.06 × 10−7  m  

  and 
  
θb = sin−1 2 4.06 × 10−7  m( )

2.50 × 10−6  m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 18.9°  

 (c) 
  
dsinθa = 2λ    and   d sinθb =

2λ
n

→ dnsinθb = 2λ      

  Each equals 2λ: therefore   nsinθb = 1( )sinθa . 
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P38.62 We check to see if the m = 15 interference maximum is visible.  

 We find the sine of the angle for the m = mdouble two-slit interference 
maximum: 

   
  
mdoubleλ  = dsinθbright → sinθbright  = 

mdoubleλ
d

 [1] 

 Then find the sine of the angle for the m = msingle single-slit interference 
minimum: 

   
  
sinθdark  = 

msingleλ
a

 [2] 

 Divide equation [2] by equation [1]: 

   
  

sinθdark

sinθbright

 = 
msingle λ a

mdouble λ d
 = 

msingle

mdouble

d
a

 

 Now let the angle of the single-slit minimum be equal to that of the 
double-slit maximum: 

   

  
1 =  

msingle

mdouble

d
a
 = 

msingle

mdouble

30.0 µm
2.00 µm

 = 15
msingle

mdouble

 

 which gives   mdouble  = 15msingle.  

 Therefore, the msingle = 1 minimum aligns with the mdouble = 15 
maximum so that the mdouble = 15 maximum has zero intensity and 
could not startle the co-worker. 

P38.63 With a grazing angle of 36.0° (measured from the surface), the angle of 
incidence is 54.0°, which equals the polarizing angle:  

  
  
tanθp =

n2

n1

=
n

1.00
= n = tan 54.0° = 1.38  

 In the liquid,  

  
  
λn =

λ
n

=
750 nm

1.38
= 545 nm  

P38.64 (a) Bragg’s law applies to the space lattice of melanin rods. Consider 
the planes d = 0.25 µm apart. For light at near-normal incidence, 
strong reflection happens for the wavelength given by 
  2dsinθ = mλ.  The longest wavelength reflected strongly 
corresponds to m = 1: 

    
 2 0.25 × 10−6  m( )sin 90° = λ = 500 nm  

  This is the blue-green color. 
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 (b) For light incident at grazing angle 60°,   2d sinθ = mλ  gives 

 2 0.25 × 10−6  m( )sin 60° = λ = 433 nm.  This is violet. 

 (c) Your two eyes receive light reflected from the feather at different 
angles, so they receive light incident at different angles and 
containing different colors reinforced by constructive 
interference. 

 (d) The longest wavelength that can be reflected with extra strength 
by these melanin rods is the one we computed first, 500 nm blue-
green.  

 (e) If the melanin rods were farther apart (say 0.32 µm) they could 
reflect red with constructive interference.  

P38.65 In ANS. FIG. P38.65, light strikes the liquid at the polarizing angle   θp ,  
enters the liquid at angle  θ2 , and then strikes the slab at the angle  θ3 , 
which is equal to the polarizing angle   ′θp .  The angle between the water 
surface and the surface of the slab, θ, is related to the other angles by 
(from the triangle)  

  
 θ + 90° +θ2( ) + 90°−θ3( ) = 180°    →     θ = θ3 −θ2

 

 

ANS. FIG. P38.65 
 For the air-to-water interface, 

  
  
tanθp =

nwater

nair

=
1.33
1.00

→ θp = 53.1°  

 and   1.00( )sinθp = 1.33( )sinθ2  

  
 
θ2 = sin−1 sin 53.1°

1.33
⎛
⎝⎜

⎞
⎠⎟ = 36.9°  

 For the water-to-slab interface,  

  

  

tanθ3 = tanθp =
nslab

nwater

=
n

1.33
=

1.62
1.33

θ3 = 50.6°
 

 The angle between surfaces is  θ = θ3 −θ2 = 13.7° .  
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P38.66 Refer to ANS. FIG. P38.65 above. Light strikes the liquid at the 
polarizing angle   θp ,  enters the liquid at angle  θ2 , and then strikes the 
slab at the angle  θ3 , which is equal to the polarizing angle  ′θP . The 
angle between the water surface and the surface of the slab, θ, is 
related to the other angles by (from the triangle)  

  
 θ + 90° +θ2( ) + 90°−θ3( ) = 180°    →     θ = θ3 −θ2

 

 Also,  
  

  

θp + 90° +θ2 = 180°

θp = 90°−θ2

 

 For the air-to-liquid interface, 
  

   

tanθp = n2

n1

=
nliquid

nair

= n
1

=
sinθp

cosθp

=
sin 90°−θ2( )
cos 90°−θ2( )

= cosθ2

sinθ2

= 1
tanθ2

 

 So, 
   
tanθ2 =

1
n

→ θ2 = tan−1 1
n

⎛
⎝⎜

⎞
⎠⎟

 

 For the water-to-slab interface,  

  
   
tanθ3 = tan ′θp =

nslab

nliquid

=
n
n

→ θ3 = tan−1 n
n

⎛
⎝⎜

⎞
⎠⎟

 

 Therefore,  

  
   
θ = θ3 −θ2 →   θ = tan−1 n

n

⎛
⎝⎜

⎞
⎠⎟
 − tan−1 1

n

⎛
⎝⎜

⎞
⎠⎟

 

P38.67 For the limiting angle of resolution between lines we assume 

 
  
θmin = 1.22

λ
D

= 1.22
550 × 10−9  m( )
5.00 × 10−3  m( ) = 1.34 × 10−4  rad  

 Assuming a picture screen with vertical dimension   , the minimum 

viewing distance for no visible lines is found from 
   
θmin =

 485
L

. The 

desired ratio is then 

   

L


=
1

485θmin

=
1

485 1.34 × 10−4  rad( ) = 15.4  

 When the pupil of a human eye is wide open, its actual resolving 
power is significantly poorer than Rayleigh’s criterion suggests. 
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P38.68 (a) We require     

   
  
θmin = 1.22

λ
D

=
radius of diffraction disk

L
=

D 2
L

.  

  Then,   D2 = 2.44λL .  

 (b) 
  
D = 2.44 500 × 10−9  m( ) 0.150 m( ) = 4.28 × 10−4  m = 428 µm  

P38.69 (a) Constructive interference of light of wavelength λ on the screen is 

described by   dsinθ = mλ  and, because 
  
tanθ =

y
L

, we may write 

  
sinθ =

y

L2 + y2
. Therefore,  

   
  d( )y L2 + y2( )−1 2

= mλ  

 Differentiating with respect to y gives  

   

  

d( ) L2 + y2( )−1 2
+ d( )y −

1
2

⎛
⎝⎜

⎞
⎠⎟ L2 + y2( )−3 2

0 + 2y( ) = m
dλ
dy

d( )
L2 + y2( )1 2 −

d( )y2

L2 + y2( )3 2 = m
dλ
dy

=
d( ) L2 + y2( ) − d( )y2

L2 + y2( )3 2

→
dλ
dy

=
d( )L2

m L2 + y2( )3 2

 

 (b) Here   dsinθ = mλ  gives, for m = 1,  
   

 

10−2  m
8 000

sinθ = 1 550× 10−9  m( )
 

  or 
 
θ = sin−1 550× 10−9  m

1.25× 10−6  m
⎛
⎝⎜

⎞
⎠⎟

= 26.1°  

  Then, 

     y = L tanθ = 2.40 m( )tan 26.1° = 1.18 m  

  So we have 

   

  

dλ
dy

=
d( )L2

m L2 + y2( )3 2 =
1.25 × 10−6  m( ) 2.40 m( )2

1( ) 2.4 m( )2 + 1.18 m( )2⎡⎣ ⎤⎦
3 2

= 3.77 × 10−7 m
m = 3.77 × 10−7 109 nm

102 cm
= 3.77 nm cm
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P38.70 (a) Applying Snell’s law gives 

  n2 sinφ = n1 sinθ . From the sketch in ANS. 
FIG. P38.70(a), we also see that: 

    θ + φ + β = π ,    or    φ = π − θ + β( )  

  Using the given identity, 

     sinφ = sinπ cos θ + β( ) − cosπ sin θ + β( )  

  which reduces to,  

     sinφ = sin θ + β( )  

  Applying the identity again,  

     sinφ = sinθ cosβ + cosθ sinβ  

  Snell’s law then becomes, 

      n2 sinθ cosβ + cosθ sinβ( ) = n1 sinθ  

  or (after dividing by cosθ):  

      n2 tanθ cosβ + sinβ( ) = n1 tanθ  

  Solving for tanθ gives:  

    
  

tanθ =
n2 sinβ

n1 − n2 cosβ
 

 (b) If  β = 90.0° , the above result becomes: 

    
  
tanθ =

n2 sin 90°
n1 − n2 cos90°

=
n2

n1

, which is Brewster’s law 

P38.71 From 
  
I = Imax

sinφ
φ

⎛
⎝⎜

⎞
⎠⎟

2

 we find  

  
  

dI
dφ

= Imax 2
sinφ
φ

⎛
⎝⎜

⎞
⎠⎟

φ cosφ − sinφ⎡⎣ ⎤⎦1

φ 2

⎛

⎝
⎜

⎞

⎠
⎟  

 and require that it be zero. The possibility  sinφ = 0  locates all of the 
minima and the central maximum, according to 

   φ = 0, π , 2π , …; 
  
φ =

π asinθ
λ

= 0, π , 2π , … ; 

     asinθ = 0, λ, 2λ, …  

 

ANS. FIG. P38.70(a) 
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 The side maxima are found from  
  

 φ cosφ − sinφ = 0   or   tanφ = φ  

 This has solutions  

  φ = 4.493 4, φ = 7.7253, and others.  

 (a) φ = 4.49 compared to the prediction from the approximation of  
1.5π = 4.71. 

 (b) φ = 7.73 compared to the prediction from the approximation of  
2.5π = 7.85. 

 

P38.72 (a) From Equation 38.2, 
  

I
Imax

=
sin φ( )
φ

⎡

⎣
⎢

⎤

⎦
⎥

2

 where we define 

  
φ ≡

πasinθ
λ

. 

  Therefore, when   
  

I
Imax

=
1
2

 we must have  

   
 

sinφ
φ

=
1
2

,   or   
 

sinφ =
φ
2

 

 (b) Let   y1 = sinφ  and 
  
y2 =

φ
2

. 

  A plot of y1 and y2 in the range 
 
1.00 ≤ φ ≤

π
2

 is shown in ANS. FIG. 

P38.72(b). 

 

ANS. FIG. P38.72(b) 

  The solution to the transcendental equation is found to be 

 
φ = 1.39 rad . 

 (c) 
  

π asinθ
λ

= φ     gives 
  
sinθ =

φ
π

⎛
⎝⎜

⎞
⎠⎟
λ
a

.  If 
 

λ
a

 is small, then 
 
θ ≈

φ
π

⎛
⎝⎜

⎞
⎠⎟
λ
a

. 
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  This gives the half-width, measured away from the maximum at 
θ = 0. The pattern is symmetric, so the full width is given by 

   

  

Δθ = φ
π

⎛
⎝⎜

⎞
⎠⎟
λ
a
− − φ

π
⎛
⎝⎜

⎞
⎠⎟
λ
a

⎛
⎝⎜

⎞
⎠⎟

= 2
φ
π

⎛
⎝⎜

⎞
⎠⎟
λ
a

= 2
1.39 rad

π
⎛
⎝⎜

⎞
⎠⎟
λ
a

= 0.885λ
a

 

 (d)   

  φ 
 2 sinφ   

 1  1.19  bigger than φ 

 2  1.29  smaller than φ 

 1.5  1.41  smaller 

 1.4  1.394  

 1.39  1.391  bigger 

 1.395  1.392  

 1.392  1.391 7  smaller 

 1.391 5  1.391 54  bigger 

 1.391 52  1.391 55  bigger 

 1.391 6  1.391 568  smaller 

 1.391 58  1.391 563  

 1.391 57  1.391 561  

 1.391 56  1.391 558  

 1.391 559  1.391 557 8  

 1.391 558  1.391 557 5  

 1.391 557  1.391 557 3  

 1.391 557 4  1.391 557 4  

  We get the answer as 1.391 557 4 to seven digits after 17 steps. 
Clever guessing, like using the value of  2 sinφ  as the next guess 
for φ, could reduce this to around 13 steps. 
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P38.73 (a) The angles of bright beams diffracted from the grating are given 
by   dsinθ = mλ.  The angular dispersion is defined as the 

derivative 
 

dθ
dλ

:       

   

  
dcosθ dθ

dλ
= m → dθ

dλ
= m

dcosθ

 

 (b) For the average wavelength  

   
 

579.065 nm + 576.959 nm
2

= 578.012 nm  

    dsinθ = mλ  gives 
   

 

0.020 0 m
8 000

sinθ = 2 578.012 × 10−9  m( )
 

  and 
 
θ = sin−1 2 × 578 × 10−9  m

2.5 × 10−6  m
= 27.5°  

  The separation angle between the lines is, for  
    Δλ = 576.959 nm − 579.065 nm = 2.106 nm   

  and 
   

  

Δθ = dθ
dλ

Δλ = m
dcosθ

Δλ

= 2
2.5× 10−6  mcos27.5°

2.106× 10−9  m( )

= 0.001 90 = 0.001 90 rad = 0.001 90 rad
180°
π  rad

⎛
⎝⎜

⎞
⎠⎟

= 0.109°

 

P38.74 (a) See ANS. FIG. P38.74. 

 

ANS. FIG. P38.74 
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 (b) The first minimum in the single-slit diffraction pattern occurs at 

   
  
sinθ =

λ
a
≈

ymin

L
 

  Thus, the slit width is given by 

   
  
a =

λL
ymin

 

  For a minimum located at   ymin = 6.36 mm ± 0.08 mm , the width is 

   
  
a =

632.8 × 10−9  m( ) 1.00 m( )
6.36 × 10−3  m

= 99.5 µm ± 1%  

 
 

 

Challenge Problems 

P38.75 (a) The E and O rays, in phase at the surface of the plate, will have a 
phase difference 

    
 
θ =

2π
λ

⎛
⎝⎜

⎞
⎠⎟ δ  

  after traveling distance d through the plate. Here δ is the 
difference in the optical path lengths of these rays. The optical path 
length between two points is the product of the actual path length 
d and the index of refraction. Therefore, 

     δ = dnO − dnE  

  The absolute value is used since 
 

nO
nE

 may be more or less than 

unity. Therefore, 

    
  
θ =

2π
λ

⎛
⎝⎜

⎞
⎠⎟ dnO − dnE =

2π
λ

⎛
⎝⎜

⎞
⎠⎟ d nO − nE  

 (b) 
  
d =

λθ
2π nO − nE

=
550 × 10−9  m( ) π 2( )
2π 1.544 − 1.553

= 1.53 × 10−5  m = 15.3 µm  

P38.76 (a) The concave mirror of the spy satellite is probably about 2 m in 
diameter, and is surely not more than 5 m in diameter. That is the 
size of the largest piece of glass successfully cast to a precise 
shape, for the mirror of the Hale telescope on Mount Palomar. If 
the spy satellite had a larger mirror, its manufacture could not be 
kept secret, and it would be visible from the ground. Outer space 
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is probably closer than your state capitol, but the satellite is surely 
above 200-km altitude, for reasonably low air friction. We find the 
distance between barely resolvable objects at a distance of 200 km, 
seen in yellow light through a 5-m aperture: 

   

  

y
L

= θmin = 1.22
λ
D

y = 2 × 107  m( ) 1.22( ) 6 × 10−7  m
5 m

⎛
⎝⎜

⎞
⎠⎟

= 3 cm
 

  Thus the snooping spy satellite cannot see the difference between 
III and II or IV on a license plate. A resolution of about 3 cm 
would make it difficult to read a license plate. 

 (b) No. The resolution is too large. It cannot count coins spilled on a 
sidewalk, much less read the dates on them. 

  Considering atmospheric image distortion caused by variations in 
air density and temperature, the distance between barely 
resolvable objects is more like, assuming a limiting angle of one 
second of arc,  

   
 
2 × 107 m( ) 1 s( ) 1°

3 600 s
⎛
⎝⎜

⎞
⎠⎟

π  rad
180°

⎛
⎝⎜

⎞
⎠⎟ = 97 cm ≈ 1 m  

P38.77 (a) From Equation 38.1, 
  
θ = sin−1 mλ

a
⎛
⎝⎜

⎞
⎠⎟

. In this case m = 1 and  

   
  
λ =

c
f

=
3.00 × 108  m/s
7.50 × 109  Hz

= 4.00 × 10−2  m  

  Thus,  

   
 
θ = sin−1 4.00 × 10−2  m

6.00 × 10−2  m
⎛
⎝⎜

⎞
⎠⎟

= 41.8°  

 (b) From Equation 38.2,  

   
  

I
Imax

=
sin φ( )
φ

⎡

⎣
⎢

⎤

⎦
⎥

2

   where   
  
φ =

π asinθ
λ

 

  When θ = 15.0°,  

   
 
φ =

π 0.060 0 m( )sin 15.0°
0.040 0 m

= 1.22 rad  

  and 
  

I
Imax

=
sin 1.22 rad( )

1.22 rad
⎡
⎣⎢

⎤
⎦⎥

2

= 0.592  
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 (c) 
  
sinθ =

λ
a

,     so     θ = 41.8°: 

  This is the minimum angle subtended by 
the two sources at the slit. Refer to ANS. 
FIG. P38.77(c). Let α be the half angle 
between the sources, each a distance 
   = 0.100 m  from the center line and a 
distance L from the slit plane. Then, 

   
   
L = cotα = 0.100 m( )cot

41.8°
2

⎛
⎝⎜

⎞
⎠⎟ = 0.262 m  

P38.78 For incident unpolarized light of intensity Imax, the average value of the 
cosine-squared function is one-half, so the intensity after transmission 

by the first disk is 
  
I =

1
2

Imax.  

 After transmitting 2nd disk: 
  
I =

1
2

Imax cos2θ  

 After transmitting 3rd disk: 
  
I =

1
2

Imax cos2θ cos2 90° −θ( )  

 where the angle between the first and second disk is  θ = ω t . 

 

ANS. FIG. P38.78 

 Using trigonometric identities 
 
cos2θ =

1
2

1 + cos2θ( )  

 and 
 
cos2 90° −θ( ) = sin2θ =

1
2

1− cos2θ( ) ,  

 we have 
  
I =

1
2

Imax
1 + cos2θ( )

2
⎡
⎣⎢

⎤
⎦⎥

1− cos2θ( )
2

⎡
⎣⎢

⎤
⎦⎥

 

  
  
I =

1
8

Imax 1− cos2 2θ( ) =
1
8

Imax
1
2

⎛
⎝⎜

⎞
⎠⎟ 1− cos 4θ( )  

 Since   θ = ω t,  the intensity of the emerging beam is given by  

  
  

I =
1

16
Imax 1− cos 4ω t( )  

 

ANS. FIG. P38.77(c) 
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P38.79 The energy in the central maximum we can estimate in Figure P38.79 
as proportional to  

    width( ) height( ) = 2π( ) Imax  

 As in Problem P38.71, the maximum height of the first side maximum 
is approximately  

  
  
I = Imax

sin φ( )
φ

⎡

⎣
⎢

⎤

⎦
⎥

2

= Imax

sin 3π 2( )
3π 2

⎡

⎣
⎢

⎤

⎦
⎥

2

=
4Imax

9π 2
 

 Then the energy in one side maximum is proportional to 
  
π 4Imax

9π 2
⎛
⎝⎜

⎞
⎠⎟

, 

and that in both of the first side maxima together is proportional to 

  
2π 4Imax

9π 2
⎛
⎝⎜

⎞
⎠⎟

. 

 Similarly and more precisely, and always with the same 
proportionality constant, the energy in both of the second side maxima 

is proportional to 
  
2π 4Imax

25π 2
⎛
⎝⎜

⎞
⎠⎟

. 

 The energy in all of the side maxima together is proportional to  
  

   

2π 4Imax

π 2
⎛
⎝⎜

⎞
⎠⎟

1
32 +

1
52 +

1
72 +

1
92 +

⎛
⎝⎜

⎞
⎠⎟

               = 2π 4Imax

π 2
⎛
⎝⎜

⎞
⎠⎟

π 2

8
− 1

⎛
⎝⎜

⎞
⎠⎟
= Imax π − 8

π
⎛
⎝⎜

⎞
⎠⎟ = 0.595Imax

 

 The ratio of the energy in the central maximum to the total energy is 
then 

  
  

2π( ) Imax

2π( ) Imax + 0.595Imax

=
1

1 + 0.595 2π( ) = 0.913 = 91.3%  

 Our calculation is only a rough estimate, because the shape of the 
central maximum in particular is not just a vertically-stretched cycle of 
a cosine curve. It is slimmer than that. 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P38.2 4.22 mm 

P38.4 (a) 51.8 µm; (b) 949 µm; (c) horizontal; (d) vertical; (e) A smaller 
distance between aperture edges causes a wider diffraction angle. The 
longer dimension of each rectangle is 18.3 times larger than the smaller 
dimension. 

P38.6 (a) 1.50 m; (b) 4.05 mm 

P38.8 
  
a =

λL m2 − m1

Δy
 

P38.10 See P38.10 for full explanation. 

P38.12 (a)  θ0 = 0° ,  θ1 = ±10.3° ,  θ2 = ±21.0 ,  θ3 = ±32.5° ,  θ4 = ±45.8° ,  θ5 = ±63.6° ; 
(b) 11, (c)  θ1 = ±45.8° , (d) two, (e) two, (f) nine, (g) 0.032 4 Imax 

P38.14 1.00 × 10–3 rad 

P38.16 25.0 m 

P38.18 (a) 79.8 µrad; (b) violet, 54.2 µrad; (c) The resolving power is improved, 
with the minimum resolvable angle becoming 60.0 µrad. 

P38.20 3.09 m 

P38.22 (a) Blue; (b) 186 m to 271 m 

P38.24 105 m 

P38.26 7.35° 

P38.28 (a) 479 nm, 647 nm,  698 nm; (b) 20.5°, 28.3°, 30.7° 

P38.30 (a) 5 orders is the maximum; (b) 10 orders in the short-wavelength 
region 

P38.32 5.91°, 13.2°, 26.5° 

P38.34   θ2r > θ3v  and these orders must overlap. 

P38.36 (a) 0.738 mm; (b) See P38.36(b) for full explanation. 

P38.48 θ = 14.4° 

P38.40 θ = 31.9° 

P38.42 See P38.42 for full explanation. 

P38.44 1.11 

P38.46 (a) 93.3%; (b) 50.0%; (c) 0.00% 
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P38.48 (a) 0.875; (b) 0.789; (c) 0.670; (d) We can get more and more of the 
incident light through the stack of ideal filters, approaching 50%, by 
reducing the angle between the transmission axes of each one and the 
next. 

P38.50 
  
θp = tan−1 1

sinθc

⎛
⎝⎜

⎞
⎠⎟

    or      θp  = tan−1   csc θc( )     or      θp  = cot−1   sin θc( )  

P38.52 1/8 

P38.54 (a) One slit, as the central maximum is twice as wide as the other 
maxima; (b) 0.122 mm wide 

P38.56 659 nm 

P38.58 (a) 5.63 mm; (b) The assumption is unreasonable. Over a horizontal 
path of 12 km in air, density variation associated with convection 
would make the motorcycles completely unresolvable with any optical 
device. 

P38.60 See P38.60 for full explanation. 

P38.62 See P38.62 for full explanation. 

P38.64 (a–e) See P38.64 for full explanations. 

P38.66 
   
θ = tan−1 n

n

⎛
⎝⎜

⎞
⎠⎟
 − tan−1 1

n

⎛
⎝⎜

⎞
⎠⎟

 

P38.68 (a)   D
2 = 2.44λL;  (b) 428 µm 

P38.70  (a) 
  
tanθ =

n2 sinβ
n1 − n2 cosβ

; (b) See P38.70(b) for full explanation. 

P38.72  (a) 
 
sinφ =

φ
2

; (b) φ = 1.39 rad; (c) 
  

0.885λ
a ; (d) 17 steps (13 with clever 

guessing) 

P38.74  (a) See ANS FIG P38.74; (b) 99.5 µm ± 1% 

P38.76 (a) A resolution of about 3 cm would make it difficult to read a license 
plate; (b) No 

P38.78 
  

1
16

Imax 1− cos 4ω t( )  
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39 
Relativity 

 

CHAPTER OUTLINE 
 

39.1 The Principle of Galilean Relativity 

39.2 The Michelson-Morley Experiment 

39.3 Einstein’s Principle of Relativity 

39.4 Consequences of the Special Theory of Relativity 

39.5 The Lorentz Transformation Equations 

39.6 The Lorentz Velocity Transformation Equations 

39.7 Relativistic Linear Momentum  

39.8  Relativistic Energy 

39.9 The General Theory of Relativity 

 

 * An asterisk indicates a question or problem new to this edition. 

 
ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ39.1 (i) Answer (a). (ii) Answer (c). (iii) Answer (d). There is no upper 
limit on the momentum or energy of an electron. As the speed of the 
electron approaches c, the factor γ  tends to infinity, so both the 
kinetic energy,   K = γ − 1( )mc2 ,  and momentum, p = γ mv, tend to 
infinity. 

OQ39.2 Answer (d). The relativistic time dilation effect is symmetric between 
the observers. 

OQ39.3 Answers (b) and (c). According to the second postulate of special 
relativity (the constancy of the speed of light), both observers will 
measure the light speed to be c. 

OQ39.4 Answer (c). An oblate spheroid. The dimension in the direction of 
motion would be contracted but the dimension perpendicular to the 
motion would be unaltered. 
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OQ39.5 Answer (e). The astronaut is moving with constant velocity and is 
therefore in an inertial reference frame. According to the principle of 
relativity, all the laws of physics are the same in her reference frame 
as in any other inertial reference frame. Thus, she should experience 
no effects due to her motion through space. 

OQ39.6 Answer (b). The dimension parallel to the direction of motion is 
reduced by the factor γ  and the other dimensions are unchanged. 

OQ39.7 (i) Answer (c). The Earth observer measures the clock in orbit to 
run slower.  

 (ii) Answer (b). They are not synchronized. They both tick at the 
same rate after return, but a time difference has developed 
between the two clocks. 

OQ39.8 Answer (a) > (c) > (b). The relativistic momentum of a particle is 

  p = E2 − ER
2 c , where E is the total energy of the particle, and 

  ER = mc2  is its rest energy (ER = 0 for the photon). In this problem, 
each of the particles has the same total energy E. Thus, the particle 
with the smallest rest energy (photon < electron < proton) has the 
greatest momentum.  

OQ39.9 Answers (d) and (e). The textbook refers to the postulate summarized 
in choice (d) as the principle of relativity, and to the postulate in 
choice (e) as the constancy of the speed of light. 

OQ39.10 Answer (b). By the postulate of the constancy of the speed of light, 
light from any source travels in vacuum at speed c.  

 
 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ39.1 The star and the planet orbit about their common center of mass, 
thus the star moves in an elliptical path. Just like the light from a star 
in a binary star system, the spectrum of light from the star would 
undergo a cyclic series of Doppler shifts depending on the star’s 
speed and direction of motion relative to the observer. The repetition 
rate of the Doppler shift pattern is the period of the orbit. 
Information about the orbit size can be calculated from the size of the 
Doppler shifts. 

CQ39.2 Suppose a railroad train is moving past you. One way to measure its 
length is this: You mark the tracks at the cowcatcher forming the 
front of the moving engine at 9:00:00 AM, while your assistant marks 
the tracks at the back of the caboose at the same time. Then you find 
the distance between the marks on the tracks with a tape measure. 



Chapter 39     835 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

You and your assistant must make the marks simultaneously in your 
frame of reference, for otherwise the motion of the train would make 
its length different from the distance between marks. 

CQ39.3 (a) Yours does. From your frame of reference, the clocks on the 
train run slow, so the symphony takes a longer time interval to 
play on the train. 

 (b) The observer’s on the train does. From the train’s frame of 
reference, your clocks run slow, so the symphony takes a longer 
time interval to play for you. 

 (c) Each observer measures his symphony as finishing first. 

CQ39.4 Get a Mr. Tompkins book by George Gamow for a wonderful fictional 
exploration of this question. Because of time dilation, your trip to 
work would be short, so your coffee would not have time to become 
cold, and you could leave home later. Driving home in a hurry, you 
push on the gas pedal not to increase your speed by very much, but 
rather to make the blocks get shorter. Big Doppler shifts in wave 
frequencies make red lights look green as you approach them, alter 
greatly the frequencies of car horns, and make it very difficult to tune 
a radio to a station. High-speed transportation is very expensive 
because a small change in speed requires a large change in kinetic 
energy, resulting in huge fuel use. Crashes would be disastrous 
because a speeding car has a great amount of kinetic energy, so a 
collision would generate great damage. There is a five-day delay in 
transmission when you watch the Olympics in Australia on live 
television. It takes ninety-five years for sunlight to reach Earth. 

CQ39.5 Acceleration is indicated by a curved line. This can be seen in the 
middle of Speedo’s world-line in Figure 39.11, where he turns 
around and begins his trip home. 

CQ39.6 (a) Any physical theory must agree with experimental 
measurements within some domain. Newtonian mechanics 
agrees with experiment for objects moving slowly compared to 
the speed of light. Relativistic mechanics agrees with 
experiment for objects moving at relativistic speeds. 

 (b) It is well established that Newtonian mechanics applies to 
objects moving at speeds a lot less than light, but Newtonian 
mechanics fails at relativistic speeds. If relativistic mechanics is 
to be the better theory, it must apply to all physically possible 
speeds. Relativistic mechanics at nonrelativistic speeds must 
reduce to Newtonian mechanics, and it does. 

CQ39.7 No. The principle of relativity implies that nothing can travel faster 
than the speed of light in a vacuum, which is 300 Mm/s. The electron 
would emit light in a conical shock wave of Cerenkov radiation. 
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CQ39.8 According to     

p = γ m


u,  doubling the speed u will make the 

momentum of an object increase by the factor 
  
2

c2 − u2

c2 − 4u2

⎡

⎣
⎢

⎤

⎦
⎥

1 2

. 

CQ39.9 As the object approaches the speed of light, its kinetic energy grows 
without limit. It would take an infinite investment of work to 
accelerate the object to the speed of light. 

CQ39.10 A microwave pulse is reflected from a moving object. The waves that 
are reflected back are Doppler shifted in frequency according to the 
speed of the target. The receiver in the radar gun detects the reflected 
wave and compares its frequency to that of the emitted pulse. Using 
the frequency shift, the speed can be calculated to high precision. Be 
forewarned: this technique works if you are either traveling toward 
or away from your local law enforcement agent! 

CQ39.11 Running “at a speed near that of light” means some other observer 
measures you to be running near the speed of light. To you, you are 
at rest in your own inertial frame. You would see the same thing that 
you see when looking at a mirror when at rest. The theory of 
relativity tells us that all experiments will give the same results in all 
inertial frames of reference. 

CQ39.12 (i) Solving for the image location q in terms of the object location p 
and the focal length f gives 

   

 
q =

pf
p − f

 

  We note that when p = f, the image is formed at infinity. Let us, 
for example, take an object initially a distance pi = 2f from the 
mirror. Its speed, in approaching f in a finite amount of time is 

   

  
v =

p − f
Δt

=
2 f − f
Δt

=
f
Δt

 

  At the same time, the location of the image moves from 

  qi = (2 f ) f /(2 f − f ) = 2 f  to qf = ∞, i.e., covering an infinite 
distance in a finite amount of time. The speed of the image thus 
exceeds the speed of light c. 

 (ii) For simplicity, we assume that the distant screen is curved with 
a radius of curvature R. The linear speed of the spot on the 
screen is then given by v = ω R, where ω is the angular speed of 
rotation of the laser pointer. With sufficiently large ω and R, the 
speed of the spot moving on the screen can exceed c. 
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 (iii) Neither of these examples violates the principle of relativity. In 
the first case, the image transtions from being real to being 
virtual when p = f.  In the second case, we have the intersection 
of a light beam with a screen. A point of tranition or intersection 
is not made of matter so it has no mass, and hence no energy. A 
bug momentarily at the intersection point could squeak or 
reflect light. A second bug would have to wait for sound or light 
to travel across the distance between the first bug and himself, 
to get the message; neither of these actions would result in 
communication reaching the second bug sooner than the 
intersection point reaches him. 

CQ39.13 Special relativity describes the relationship between physical 
quantities and laws in inertial reference frames: that is, reference 
frames that are not accelerating. General relativity describes the 
relationship between physical quantities and laws in all reference 
frames. 

CQ39.14 Because of gravitational time dilation, the downstairs clock runs 
more slowly because it is closer to the Earth and hence in a stronger 
gravitational field than the upstairs clock. 

 

 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 39.1 The Principle of Galilean Relativity 
P39.1 By Equation 4.20,     


uPA = uPB +


vBA , with motion in one dimension,  

  
    

ubaseball , ground = ubaseball , truck +

v truck, ground

ubaseball , ground = −20.0 m/s + 10.0 m/s = −10.0 m/s
 

 In other words, 
 
10.0 m/s toward the left in Figure P39.1 .  

P39.2 In the laboratory frame of reference, Newton’s second law is valid: 

   

F = m


a . Laboratory observer 1 watches some object accelerate under 

applied forces. Call the instantaneous velocity of the object     

v1 = vO1  

(the velocity of object O relative to observer 1 in laboratory frame) and 

its acceleration 
    

d

v1

dt
= a1 . A second observer has instantaneous velocity 

   

v21  relative to the first. In general, the velocity of the object in the 
frame of the second observer is  

       

v2 =


vO2 =


vO1 +


v12 =


v1 −


v21  
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 (a) If the relative instantaneous velocity    

v21  of the second observer is 

constant, the second observer measures the acceleration  

   
    


a2 =

d

v2

dt
=

d

v1

dt
= a1  

  This is the same as that measured by the first observer. In this 
nonrelativistic case, they measure the same forces and masses as 
well. Thus, the second observer also confirms that     


F = m


a.  

 (b) If the second observer’s frame is accelerating, then the 
instantaneous relative velocity    


v21  is not constant. The second 

observer measures an acceleration of  
   

    


a2 =

d

v2

dt
=

d

v1 −

v21( )

dt
= a1 −

d

v21( )
dt

= a1 − ′

a ,

 

  where   
    

d

v21( )
dt

= ′

a  

  The observer in the accelerating frame measures the acceleration 
of the mass as being    


a2 = a1 − ′


a .  If Newton’s second law held for 

the accelerating frame, that observer would expect to find valid 
the relation     


F2 = m


a2 ,  or     


F1 = m


a2  (since    


F1 =

F2  and the mass is 

unchanged in each). But, instead, the accelerating frame observer 
finds that     


F2 = m


a2 − m ′


a ,  which is not Newton’s second law. 

P39.3 From the triangle in ANS. FIG. P39.3,  

  

  

φ = sin−1 v
c

⎛
⎝⎜

⎞
⎠⎟ = sin−1 29.8 × 103  m/s

2.998 × 108  m/s
⎛
⎝⎜

⎞
⎠⎟

= 5.70 × 10−3  degrees = 9.94 × 10−5  rad

 

 

ANS. FIG. P39.3 
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P39.4 In the rest frame,  

   

  

pi = m1v1i + m2v2 i = 2 000 kg( ) 20.0 m/s( ) + 1 500 kg( ) 0 m/s( )
= 4.00 × 104  kg ⋅m/s

p f = m1 + m2( )v f = 2 000 kg + 1 500 kg( )v f

 

 Since   pi = p f ,   

   
  
v f =

pi

m1 + m2

=
4.00 × 104  kg ⋅m/s
2 000 kg + 1 500 kg

= 11.429 m/s  

 In the moving frame, these velocities are all reduced by +10.0 m/s. 
   

  

′v1i = v1i − ′v = 20.0 m/s − +10.0 m/s( ) = 10.0 m/s

′v2 i = v2 i − ′v = 0 m/s − +10.0 m/s( ) = −10.0 m/s

′v f = 11.429 m/s − +10.0 m/s( ) = 1.429 m/s

 

 Our initial momentum is then 
   

  

′pi = m1 ′v1i + m2 ′v2 i

= 2 000 kg( ) 10.0 m/s( ) + 1 500 kg( ) −10.0 m/s( )
= 5 000 kg ⋅m/s

 

 and our final momentum has the same value:  
   

  

′p f = 2 000 kg + 1 500 kg( ) ′v f = 3 500 kg( ) 1.429 m/s( )
= 5 000 kg ⋅m/s

 

 
 

 

Section 39.2 The Michelson-Morley Experiment 

Section 39.3 Einstein’s Principle of Relativity 

Section 39.4 Consequences of the Special Theory of Relativity 
P39.5 In the rest frame of the spacecraft, the Earth-star gap travels past it at 

speed u. The distance from Earth to the star is a proper length in the 
Earth’s frame:  

  

  
L = LP

γ
= LP 1− u

c
⎛
⎝⎜

⎞
⎠⎟

2  

 Solving for the speed of the spacecraft gives,  

  

  
u = c 1− L

LP

⎛
⎝⎜

⎞
⎠⎟

2

= c 1− 2.00 ly
5.00 ly

⎛
⎝⎜

⎞
⎠⎟

2

= 0.917c  
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P39.6 (a) The length of the meter stick measured by the observer moving at 
speed v = 0.900 c relative to the meter stick is 

   
  
L = Lp γ = Lp 1− v c( )2 = 1.00 m( ) 1− 0.900( )2 = 0.436 m  

 (b) If the observer moves relative to Earth in the direction opposite 
the motion of the meter stick relative to Earth, the velocity of the 
observer relative to the meter stick is greater than that in part (a). 
The measured length of the meter stick will be  less than 0.436 m  
under these conditions, but so small it is unobservable. 

P39.7 A clock running at one-half the rate of a clock at rest takes twice the 
time to register the same time interval:   Δt = 2Δtp .   

   

  

Δt =
Δtp

1− v c( )2⎡
⎣

⎤
⎦

1 2   so  
  
v = c 1−

Δtp

Δt
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

 

  For      Δt = 2Δtp ,  

   

  

v = c 1−
Δtp

2Δtp

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

= c 1−
1
4

⎡
⎣⎢

⎤
⎦⎥

1 2

= 0.866c  

P39.8 For 
  

v
c

= 0.990 ,  γ = 7.09.  

 (a) The muon’s lifetime as measured in the Earth’s rest frame is 
   

  

Δt =
LP

v
=

4.60 km
0.990c

=
4.60 × 103  m

0.990 3.00 × 108  m/s( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 1.55 × 10−5  s = 15.5 µs

 

  and the lifetime measured in the muon’s rest frame is 
   

  
Δtp =

Δt
γ

=
1

7.09
(15.5 µs) = 2.18 µs

 

 (b) In the muon’s frame, the Earth is approaching the muon at speed 
v = 0.990c. During the time interval the muon exists, the Earth 
travels the distance  

   

  

d = vΔtP = v
Δt
γ

= v
LP

γ v
=

LP

γ

= 4.60 × 103  m( ) 1− 0.990( )2 = 649 m
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P39.9 From Equation 39.9 for length contraction, 

   
  
L = Lp 1−

v2

c2
  

 we solve for the speed v of the meterstick: 

   
  
v = c 1−

L
Lp

⎛

⎝
⎜

⎞

⎠
⎟

2

 

 Taking 
  
L =

Lp

2
 where, Lp = 1.00 m, gives       

     

  
v = c 1−

Lp 2
Lp

⎛

⎝
⎜

⎞

⎠
⎟

2

= c 1−
1
4

= 0.866c  

P39.10 (a) The time interval between pulses as measured by the astronaut is 
a proper time:  

   
  
Δtp =

1 min
75.0 beats

⎛
⎝⎜

⎞
⎠⎟

 

  The time interval between pulses as measured by the Earth 
observer is then:  

   
  
Δt = γΔtp =

1

1− 0.500( )2

1 min
75.0 beats

⎛
⎝⎜

⎞
⎠⎟ = 1.54 × 10−2  min/beat  

  Thus, the Earth observer records a pulse rate of  

   
  

1
Δt

=
1

γΔtp

= 1− 0.500( )2 75.0 beats
1 min

⎛
⎝⎜

⎞
⎠⎟ = 65.0 beats/min  

 (b) From part (a), the pulse rate is  

   
  

1
Δt

=
1

γΔtp

= 1− 0.990( )2 75.0 beats
1 min

⎛
⎝⎜

⎞
⎠⎟ = 10.5 beats/min  

  That is, the life span of the astronaut (reckoned by the duration of 
the total number of his heartbeats) is much longer as measured by 
an Earth clock than by a clock aboard the space vehicle. 

P39.11 For the light as observed,  λ = 650 nm  and  ′λ = 520 nm.  From Equation 
39.10, 

  

  
′f = c

′λ
= 1+ v c

1− v c
f = 1+ v c

1− v c
c
λ
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 Solving for the velocity, 
  

  

1+ v c
1− v c

= λ
′λ

→ 1+ v
c
= λ

′λ
⎛
⎝⎜

⎞
⎠⎟

2

1− v
c

⎛
⎝⎜

⎞
⎠⎟

 

 Then, 
  

  

v
c

1+ λ
′λ

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥ =

λ
′λ

⎛
⎝⎜

⎞
⎠⎟

2

− 1

v
c
=

λ
′λ

⎛
⎝⎜

⎞
⎠⎟

2

− 1

1+ λ
′λ

⎛
⎝⎜

⎞
⎠⎟

2 =

650 nm
520 nm

⎛
⎝

⎞
⎠

2

− 1

1+ 650 nm
520 nm

⎛
⎝

⎞
⎠

2 = 0.220

 

 or   v = 0.220c = 6.59× 107  m/s  

P39.12 The spacecraft are identical, so they have the same proper length; thus, 
your measurements and the astronaut’s measurements are reciprocal.  

 (a) You measure the proper length of your spacecraft to be 
    

  
Lp = 20.0 m

 

 (b) You measure the length L of the astronaut’s spacecraft to be 
    

  
L = 19.0 m

 

 (c) From the astronaut’s measurement of the length L of your 
spacecraft, 

   

  
L =

Lp

γ
= Lp 1− u

c
⎛
⎝⎜

⎞
⎠⎟

2  

  we solve for the speed of the astronaut’s spacecraft relative to 
yours: 

   

  

u
c

= 1− L
Lp

⎛

⎝
⎜

⎞

⎠
⎟

2

= 1− 19.0 m
20.0 m

⎛
⎝⎜

⎞
⎠⎟

2

= 0.312

 

  or   u = 0.312c  

P39.13 The astronaut’s measured time interval is a proper time in her 
reference frame. Therefore, according to an observer on Earth,  

  
  

Δt = γ Δtp =
Δtp

1− v c( )2
=

3.00 s

1− 0.800( )2
= 5.00 s  
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P39.14 From the definition of  γ ,  

  

  

γ = 1

1− v2 c2( )
= 1.010 0  

 we solve for the speed: 

  

  
v = c 1− 1

γ
⎛
⎝⎜

⎞
⎠⎟

2

= c 1− 1
1.010 0

⎛
⎝⎜

⎞
⎠⎟

2

= 0.140c
 

P39.15 The observer measures the proper length of the tunnel, 50.0 m, but 
measures the train contracted to length 

   
  
L = Lp 1−

v2

c2 = 100 m 1− 0.950( )2 = 31.2 m   

 shorter than the tunnel by 50.0 – 31.2 = 18.8 m. 

 
 

The trackside observer measures the length to be 31.2 m, so the
supertrain is measured to fit in the tunnel, with 18.8 m to spare.

 

*P39.16 (a) The lifetime of the pi meson measured by an observer on Earth is 
given by 

   
  
Δt = γ Δtp =

Δtp

1− v/c( )2
= 2.6× 10−8  s

1− 0.98( )2
= 1.3× 10−7  s   

 (b) The distance travelled before the meson decays is 
   

  d = vΔt = 0.98 3.0× 108  m/s( ) 1.3× 10−7  s( ) = 38 m
 

 (c) In the absence of time dilation, the meson would travel a distance 
   

  d = vΔt = 0.98 3.0× 108  m/s( ) 2.6× 10−8  s( ) = 7.6 m
 

*P39.17 (a) The 0.800c and the 20.0 ly are measured in the Earth frame, 

  so in this frame, 

   
  
Δt = x

v
= 20.0 ly

0.800c
= 20.0 ly

0.800c
⎛
⎝

⎞
⎠

1 c
1 ly yr

⎛
⎝⎜

⎞
⎠⎟

= 25.0 yr  

 (b) We see a clock on the meteoroid moving, so we do not measure 
proper time; that clock measures proper time. 

     Δt = γΔtp :  

   

  

Δtp = Δt
γ

= 25.0 yr
1 1− v2 c2

= 25.0 yr 1− 0.8002

= 25.0 yr 0.600( ) = 15.0 yr
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 (c) Method one: We measure the 20.0 ly on a stick stationary in our 
frame, so it is proper length. The tourist measures it to be 
contracted to 

   
  
L =

Lp

γ
= 20.0 ly

1 1− 0.8002
= 20.0 ly

1.67
= 12.0 ly  

  Method two: The tourist sees the Earth approaching at 0.800c: 

   
 
0.800 ly yr( ) 15.0 yr( ) = 12.0 ly  

*P39.18 The relativistic density is 
   

  

ER

c2V
= γ mc2

c2V
= γ m

V
= m

Lp( )3
1− u c( )2⎡⎣ ⎤⎦

= 8.00 g
1.00 cm( )3 1− 0.900( )2[ ] = 42.1 g cm3

 

P39.19 The spaceship is measured by the Earth observer to be length-
contracted to 

   
  
L = Lp 1−

v2

c2  or 
  
L2 = Lp

2 1−
v2

c2

⎛
⎝⎜

⎞
⎠⎟

 

 Also, the contracted length is related to the time required to pass 
overhead by 

    L = vΔt  or 
  
L2 = v2 Δt( )2 =

v2

c2 cΔt( )2  

 Equating these two expressions gives 
  
Lp

2 − Lp
2 v2

c2 = cΔt( )2 v2

c2 .  

 or  
  

Lp
2 + cΔt( )2⎡⎣ ⎤⎦

v2

c2 = Lp
2  

 Using the given values Lp = 300 m and   Δt = 0.750 × 10−6  s , this becomes 

   
  
1.41× 105  m2( ) v2

c2 = 9.00 × 104  m2  

 giving   v = 0.800c  

P39.20 The spaceship is measured by Earth observers to be of length L, where 

    
  
L = Lp 1−

v2

c2   
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 and  L = vΔt  

    
  
vΔt = Lp 1−

v2

c2  and 
  
v2Δt2 = Lp

2 1−
v2

c2

⎛
⎝⎜

⎞
⎠⎟

 

 Solving for v,  

    
  
v2 Δt2 +

Lp
2

c2

⎛

⎝⎜
⎞

⎠⎟
= Lp

2  

 giving 

  

v =
cLp

c2Δt2 + Lp
2

 

P39.21 (a) When the source moves away from an observer, the observed 
frequency is 

   
  
′f = f

c + v
c − v

⎛
⎝⎜

⎞
⎠⎟

1 2

= f
c − vS

c + vS

⎛
⎝⎜

⎞
⎠⎟

1 2

 

  where   v = vsource = −vS  because the source is moving away from 
the observer.  

  When   vs  c , the binomial expansion gives 
   

  

c − vS

c + vS

⎛
⎝⎜

⎞
⎠⎟

1 2

= 1− vS

c
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

1 2

1+ vS

c
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

−1 2

≈ 1− vS

2c
⎛
⎝⎜

⎞
⎠⎟ 1− vS

2c
⎛
⎝⎜

⎞
⎠⎟ ≈ 1− vS

c
⎛
⎝⎜

⎞
⎠⎟

 

  So, 
  
′f ≈ f 1−

vS

c
⎛
⎝⎜

⎞
⎠⎟

 

  The observed wavelength is found from  c = ′λ ′f = λ f : 

   

  

′λ =
λ f
′f
≈

λ f
f 1− vS c( ) =

λ
1− vS c

Δλ = ′λ − λ = λ 1
1− vS c

− 1
⎛
⎝⎜

⎞
⎠⎟

= λ
vS c

1− vS c
⎛
⎝⎜

⎞
⎠⎟

 

  Since 
  
1−

vS

c
≈ 1 ,   

 

Δλ
λ

≈
vS

c
 

 (b) We use the equation from part (a) with the given values: 

   
  
vS = c

Δλ
λ

⎛
⎝⎜

⎞
⎠⎟

= c
20.0 nm
397 nm

⎛
⎝⎜

⎞
⎠⎟ = 0.050 4c  
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P39.22 We find Cooper’s speed from Newton’s second law: 

    
  

GMm
r2 =

mv2

r
 

 Solving, 
   

  

v =
GM
R + h( )

⎡

⎣
⎢

⎤

⎦
⎥

1 2

=
6.67 × 10−11  N ⋅m2/kg2( ) 5.98 × 1024  kg( )

6.37 × 106  m + 0.160 × 106  m( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

= 7.82 × 103 = 7.82 km/s

 

 Then the time period of one orbit is     
   

  
T =

2π(R + h)
v

=
2π(6.53 × 106  m)
7.82 × 103  m/s

= 5.25 × 103  s
 

 (a) The time difference for 22 orbits is  

     Δt − Δtp = γ − 1( )Δtp =  
  

1−
v2

c2

⎛
⎝⎜

⎞
⎠⎟

−1 2

− 1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

22T( )  

   

  

Δt − Δtp ≈ 1 +
1
2

v2

c2 − 1
⎛
⎝⎜

⎞
⎠⎟

22T( ) =
1
2

7.82 × 103  m/s
3.00 × 108  m/s

⎛
⎝⎜

⎞
⎠⎟

2

×22 5.25 × 103  s( ) = 39.2 µs
 

 (b) For each one orbit Cooper aged less by  

   
  
Δt − Δtp =

39.2 µs
22

= 1.78 µs  

  The press report is 
 
accurate to one digit . 

P39.23 (a) The mirror is approaching the source. Let fm be the frequency as 
seen by the mirror. Thus,  

   
 
fm = f

c + v
c − v

 

  After reflection, the mirror acts as a source, approaching the 
receiver. If  f' is the frequency of the reflected wave,  

   
 
′f = fm

c + v
c − v

 

  Combining gives  

   
 

′f =
c + v
c − v

f  
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 (b) Using the above result, the beat frequency is  

   

  

fbeat = ′f − f = ′f =
c + v
c − v

f − f = f
c + v
c − v

− 1⎛
⎝⎜

⎞
⎠⎟

fbeat = f
c + v − c − v( )

c − v
⎛
⎝⎜

⎞
⎠⎟

= f
2v

c − v
⎛
⎝⎜

⎞
⎠⎟ ≈ f

2v
c

=
2v
c f

fbeat =
2v
λ

 

 (c) The wavelength is  
   

  
λ = c

f
= 3.00× 108  m/s

10.0× 109  Hz
= 0.030 0 m

 

  The beat frequency is therefore, 

   
  
fbeat =

2v
λ

=
2( ) 30.0 m/s( )

0.030 0 m( ) = 2 000 Hz = 2.00 kHz  

 (d) From part (b), 
  
v =

fbeatλ
2

, so 

   

  

Δv = Δfbeatλ
2

=
5.0 Hz( ) 0.030 0 m( )

2
= 0.075 0 m/s ≈ 0.17 mi/h

 

P39.24 (a) In the Earth frame, Speedo’s trip lasts for a time 

   
  
Δt =

Δx
v

=
20.0 ly
0.950c

= 21.05 yr  

  Speedo’s age advances only by the proper time interval 

   
  
Δtp =

Δt
γ

= 21.05 yr 1− 0.950( )2 = 6.574 yr   

  during his trip. Similarly for Goslo, 

   
  
Δtp =

Δx
v

1−
v2

c2 =
20.0 ly

0.750 ly yr
1− 0.750( )2 = 17.64 yr  

  While Speedo has landed on Planet X and is waiting for his 
brother, he ages by 

   
 

20.0 ly
0.750 ly yr

−
20.0 ly

0.950 ly yr
= 5.614 yr  
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  From their departure to when the twins meet, Speedo has aged  
(6.574 yr + 5.614 yr) = 12.19 yr, and Goslo has aged 17.64 years, 
for an age difference of  

    
17.64 yr − 6.574 yr + 5.614 yr( ) = 5.45 yr  

 (b) 
 

Goslo  is older.  

P39.25 This problem is slightly more difficult than most, for the simple reason 
that your calculator probably cannot hold enough decimal places to 
yield an accurate answer. However, we can bypass the difficulty by 
noting the approximation  

   
  

1 −
v2

c2 ≈ 1 −
v2

2c2
 

  Squaring both sides shows that when v/c is small, these two terms are 
equivalent. 

 We evaluate 
  

v
c

=
1 000 × 103 m/h
3.00 × 108 m/s

⎛
⎝⎜

⎞
⎠⎟

1 h
3 600 s

⎛
⎝⎜

⎞
⎠⎟

= 9.26 × 10−7  

  From Equation 39.7, the dilated time interval is 

   

  

Δt = γ Δtp =
Δtp

1 − v2

c2

 

 Rearranging, our approximation yields 

   
  
Δtp = 1 −

v2

c2

⎛

⎝
⎜

⎞

⎠
⎟ Δt ≈ 1 −

v2

2c2

⎛
⎝⎜

⎞
⎠⎟
Δt  

 and  
  
Δt − Δtp =

v2

2c2 Δt  

 Substituting,  

   
  
Δt − Δtp =

9.26 × 10−7( )2

2
(3 600 s)  

 Thus, the time lag of the moving clock is  
   

  
Δt − Δtp = 1.54 × 10−9 s = 1.54 ns
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P39.26 The orbital speed of the Earth is as described by Newton’s second law: 
   

  
F∑ = ma:     

GmSmE

r2 = mEv2

r

 

 Solving for the speed, 
  

  

v = GmS

r
=

6.67 × 10−11  N ⋅ m2 /kg2( ) 1.99× 1030  kg( )
1.496× 1011  m

= 2.98× 104  m/s

 

 The maximum frequency received by the extraterrestrials is 

  

  

′f max = f
1+ v c
1− v c

= 57.0× 106  Hz( ) 1+ 2.98× 104  m/s( ) 3.00× 108  m/s( )
1− 2.98× 104  m/s( ) 3.00× 108  m/s( )

= 57.005 66× 106  Hz

 

 The minimum frequency received is 

  

  

′f min = f
1+ v c
1− v c

= 57.0× 106  Hz( ) 1− 2.98× 104  m/s( ) 3.00× 108  m/s( )
1+ 2.98× 104  m/s( ) 3.00× 108  m/s( )

= 56.994 34× 106  Hz

 

 The difference, which allows them figure out the speed of our planet, is 

  
 
57.005 66 − 56.994 34( ) × 106  Hz = 1.13 × 104  Hz  

 
 

 

Section 39.5 The Lorentz Transformation Equations 
P39.27 (a) From the Lorentz transformation, the separations between the 

blue-light and red-light events are described by 

    Δ ′x = γ Δx− vΔt( ) : 
  
0 = γ 2.00 m − v 8.00 × 10−9  s( )⎡⎣ ⎤⎦  

   
  
v =

2.00 m
8.00 × 10−9  s

= 2.50 × 108  m/s  



850     Relativity 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  so 

 

γ =
1

1− 2.50 × 108  m/s( )2
3.00 × 108  m/s( )2

= 1.81
 

 (b) Again from the Lorentz transformation,  ′x = γ x − vt( ) : 

   
  
′x = 1.81 3.00 m − 2.50 × 108  m/s( ) 1.00 × 10−9  s( )⎡⎣ ⎤⎦ = 4.98m  

 (c) 
  
′t = γ t −

v
c2 x⎛

⎝⎜
⎞
⎠⎟

:  

  

  

′t = 1.81 1.00 × 10−9  s −
2.50 × 108  m/s( )
3.00 × 108  m/s( )2 3.00 m( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

  
  ′t = −1.33 × 10−8 s  

P39.28 Let Shannon be fixed in reference from S and see the two light-
emission events with coordinates x1 = 0, t1 = 0, x2 = 0, t2 = 3.00 µs. Let 
Kimmie be fixed in reference frame S' and give the events coordinate 

  ′x1 = 0 ,   ′t1 = 0 ,   ′t2 = 9.00 µs.  

 (a) Then we have 
   

  

′t2 = γ t2 −
v
c2 x2

⎛
⎝⎜

⎞
⎠⎟

9.00 µs =
1

1− v2 c2
3.00 µs − 0( )

 

   

  
1−

v2

c2 =
1
3

 

   
  v = 0.943c  

 (b) The coordinate separation of the events is  
   

  

Δ ′x = ′x2 − ′x1 = γ x2 − x1( ) − v t2 − t1( )⎡⎣ ⎤⎦

= 3 0 − 0.943c( ) 3.00 × 10−6  s( )⎡⎣ ⎤⎦
3.00 × 108  m/s

c
⎛
⎝⎜

⎞
⎠⎟

= −2.55 × 103  m

 

   
  Δ ′x = 2.55 × 103  m

 

  The later pulse is to the left of the origin.  
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P39.29 The rod’s length perpendicular to the motion is the same in both the 
proper frame of the rod and in the frame in which the rod is moving– 
our frame: 

       y = sinθ = Py  

 where   Py  is the y component of the proper length.  

 We are given:    = 2.00 m , and  θ = 30.0°,  both measured in our 
reference frame. Also,  

   
  
γ =

1

1− v2 c2
=

1

1− 0.9952
≈ 10.0  

 As observed in our frame,  

       x = cosθ = 2.00 m( )cos30.0° = 1.73 m  

 and      y = sinθ = 2.00 m( )sin 30.0° = 1.00 m  

   Px  is a proper length, related to    x  by   
   
 x = Px

γ
.  

 Therefore,    Px = 10.0 x = 17.3 m  

 and      Py =  y = 1.00 m  

 (a) 
   
P = Px( )2 + Py( )2

=
 x

γ
⎛
⎝⎜

⎞
⎠⎟

2

+  y( )2
= 17.4 m  

 (b) In the proper frame,  

    
   
θ2 = tan−1 Py

Px

⎛
⎝⎜

⎞
⎠⎟

= tan−1  y

γ  x

⎛
⎝⎜

⎞
⎠⎟

= tan−1 tan 30.0°
γ

⎛
⎝⎜

⎞
⎠⎟

  = 3.30°  

*P39.30 (a)   L0
2 = L0x

2 + L0y
2  and   L

2 = Lx
2 + Ly

2 . 

  Since the motion is in the x direction, the length of the rod in the y 
direction does not change:   Ly = L0y = L0 sinθ0  and  

   
  
Lx = L0x 1− v

c( )2

= L0 cosθ0( ) 1− v
c( )2

 

  Thus, 

   
  
L2 = L0

2 cos2θ0 1− v
c( )2⎡

⎣⎢
⎤
⎦⎥

+ L0
2 sin2θ0 = L0

2 1− v
c( )2

cos2θ0
⎡
⎣⎢

⎤
⎦⎥
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  or 
  

L = L0 1− v
c( )2

cos2θ0
⎡
⎣⎢

⎤
⎦⎥

1 2

. 

 (b) 
  
tanθ =

Ly

Lx

=
L0y

L0x 1− v c( )2
= γ tanθ0  

P39.31 We use the Lorentz transformation equations 39.11. In frame S, we 
may take t = 0 for both events, so the coordinates of event A are (x = 
50.0 m, y = 0, z = 0, t = 0), and the coordinates of event B are (x = 150 m, 
y = 0, z = 0, t = 0). The time coordinates of event A in frame S' are  

   

  

′tA = γ tA − v
c2 xA

⎛
⎝⎜

⎞
⎠⎟

= 1

1− 0.800( )2
0− 0.800c

c2 150 m( )⎛
⎝⎜

⎞
⎠⎟

= 1.667 − 120 m
3.00× 108  m/s

⎛
⎝⎜

⎞
⎠⎟

= −6.67 × 10−7  s

 

 The time coordinates of event B in frame S' are  
   

  

′tB = γ tB −
v
c2 xB

⎛
⎝⎜

⎞
⎠⎟

= 1

1− 0.800( )2
0− 0.800c

c2 50.0 m( )⎛
⎝⎜

⎞
⎠⎟

= 1.667 − 40.0 m
3.00× 108  m/s

⎛
⎝⎜

⎞
⎠⎟

= −2.22 × 10−7  s

 

 We see that event B occurred earlier. The time elapsed between the 
events was  

   

  

Δ ′t = ′tA − ′tB = γ Δt −
v
c2 Δx⎛

⎝⎜
⎞
⎠⎟ = −γ v

c2 Δx

= −1.667
80.0 m

3.00 × 108  m/s
⎛
⎝⎜

⎞
⎠⎟

= −4.44 × 10−7  s = 444 ns
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ANS. FIG. P39.32 
 

Section 39.6 The Lorentz Velocity Transformation Equations 
P39.32 Take the galaxy as the unmoving frame. 

Arbitrarily define the jet moving upward to 
be the object, and the jet moving downward 
to be the “moving” frame:    

    ′ux =  velocity of other jet in  

     frame of jet  

    ux = velocity of other jet in  

      frame of galaxy center  

     =  0.750c 

    v  = speed of galaxy center in frame of jet = –0.750c 

  From Equation 39.16, the speed of the upward-moving jet as measured 
from the downward-moving jet is  

    

  

′ux = ux − v
1− uxv/c2 = 0.750c − (−0.750c)

1− (0.750c)(−0.750c)/c2 = 1.50c
1 + 0.7502

= 0.960c

 

P39.33 The question is equivalent to asking for the speed of the patrol craft in 
the frame of the enemy craft.  

  

  

′ux =  velocity of patrol craft in frame of enemy craft
ux =  velocity of patrol craft in frame of Earth
v =  speed of Earth in frame of enemy craft

  

 From Equation 39.16, 

   
  
′ux =

ux − v
1− uxv c2 =

0.900c − 0.800c
1− 0.900( ) 0.800( ) = 0.357c  

*P39.34 Let frame S be the Earth frame of reference. Then v = –0.700c. 

 The components of the velocity of the first spacecraft are 
   

  ux = 0.600c( )cos50.0° = 0.386c  

 and    uy = 0.600c( )sin 50.0° = 0.460c.  

 As measured from the S’ frame of the second spacecraft, 

   

  

′ux = ux − v
1− uxv c2 = 0.386c − −0.700c( )

1− 0.386c( ) −0.700c( ) c2[ ]
= 1.086c

1.27
= 0.855c
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 and 
   

  

′uy =
uy

γ 1− uxv c2( ) = 0.460c 1− 0.700( )2

1− 0.386( ) −0.700( )

= 0.460c 0.714( )
1.27

= 0.258c

 

 The magnitude of   

′u  is   0.855c( )2 + 0.285c( )2 = 0.893c  

 and its direction is at 
  
tan−1 0.258c

0.855c( ) = 16.8° above the ′x  axis . 

*P39.35 Taking to the right as positive, it is given that the velocity of the rocket 
relative to observer A is vRA = +0.92c. If observer B observes the rocket 
to have a velocity vRB = –0.95c, the velocity of observer B relative to the 
rocket is vBR = +0.95c. The relativistic velocity addition relation then 
gives the velocity of B relative to the stationary observer A as 

   

  

vBA = vBR + vRA

1+ vBRvRA

c2

= +0.95c + 0.92c

1+ 0.95c( ) 0.92c( )
c2

= +0.998c

  

 or  
  
0.998c toward the right   

 
 

 

Section 39.7 Relativistic Linear Momentum 
P39.36 (a)   p = γ mu;  for an electron moving at 0.010 0c, 

   
  

γ =
1

1− u c( )2
=

1

1− 0.010 0( )2
= 1.000 05 ≈ 1.00  

  Thus,   p = 1.00 9.11× 10−31  kg( ) 0.010 0( ) 3.00 × 108  m/s( )  

   
  
p = 2.73 × 10−24  kg ⋅m/s  

 (b) Following the same steps as used in part (a), we find at 0.500c,  
γ  = 1.15 and  

   
  
p = 1.58 × 10−22  kg ⋅m/s  

 (c) At 0.900c, γ  = 2.29  and  

   
  
p = 5.64 × 10−22  kg ⋅m/s  
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P39.37 (a) The momentum condition  

      p = γ mu = 3mu → γ = 3  

  From the definition of  γ ,   

    
  

γ =
1

1− u c( )2
→ u = c 1−

1
γ 2  

    
  
u = c 1−

1
32 = c

8
9

=
2 2

3
c = 0.943c = 2.83 × 108  m/s  

 (b) From part (a), we see the mass of the particle drops out. 

 The result would be the same .  

*P39.38 From the definition of relativistic linear momentum, 

   
  
p = mu

1− u c( )2
  

 we obtain  

   
  
1− u2

c2 = m2u2

p2  

 which gives:   
   

  
1 = u2 m2

p2 + 1
c2

⎛
⎝⎜

⎞
⎠⎟

 

 or  
  
c2 = u2 m2c2

p2 + 1
⎛
⎝⎜

⎞
⎠⎟

 and 

  

u = c
m2c2 p2( ) + 1

. 

*P39.39 (a) Classically, 
   

  

p = mv = m 0.990c( ) = 1.67 × 10−27  kg( ) 0.990( ) 3.00× 108  m/s( )
= 4.96× 10−19  kg ⋅m/s

  

 (b) By relativistic calculations, 

   

  

p = mu

1− u c( )2
= m 0.990c( )

1− 0.990( )2

=
1.67 × 10−27  kg( ) 0.990( ) 3.00× 108  m/s( )

1− 0.990( )2

= 3.52 × 10−18  kg ⋅m/s

 

 (c)  No ,  neglecting relativistic effects at such speeds would 
introduce an approximate 86% error in the result. 



856     Relativity 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

P39.40  We can express the proportion relating the speeding fine to the excess 

momentum as 
  

F
$80.0

=
pu − p90 km/h( )

p190 km/h − p90 km/h( ) , where F is the fine, 

  

pu =
mu

1− u c( )2
 is the magnitude of the vehicle’s momentum at speed 

u, and c = 1.08 × 109 km/h. After substitution of the expression for 
momentum, the proportion becomes  

   

  

F
$80.0

=

mu

1− u c( )2
− m 90.0 km/h( )

1− 90.0 km/h c( )2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

m 190.0 km/h( )
1− 190.0 km/h c( )2

− m 90.0 km/h( )
1− 90.0 km/h c( )2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

≈

u

1− u c( )2
− 90.0 km/h( )

100.0 km/h

 

 (a) For u = 1 090 km/h,  

   

  

F
$80.0

≈

1 090 km/h( )
1− 1 090 km/h 1.08 × 109  km/h( )2

− 90.0 km/h( )

100.0 km/h

≈
1 090 km/h( ) − 90.0 km/h( )

100.0 km/h
=

1 000 km/h
100.0 km/h

= 10

F = $800

 

 (b) For u = 1 000 000 090 km/h,  
   

  

F
$80.0

≈
1

100 km/h
⎛
⎝⎜

⎞
⎠⎟

                   [
1 000 000 090 km/h( )

1− 1 000 000 090 km/h 1.08 × 109  km/h( )2

                                                                                − 90.0 km/h( )]

 

 

  

F
$80.0

≈
2.648( ) 1 000 000 090 km/h( ) − 90.0 km/h( )

100.0 km/h

 

   

  F = $2.12 × 109
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P39.41 The ratio of relativistic to classical momentum is 

   
  

p − mu
mu

=
γ mu − mu

mu
= γ − 1 

 From the definition of  γ ,  

   
  

γ − 1 =
1

1− u c( )2
− 1 ≈ 1 +

1
2

u
c

⎛
⎝⎜

⎞
⎠⎟

2

− 1 =
1
2

u
c

⎛
⎝⎜

⎞
⎠⎟

2

 

 The ratio is then 
   

  

p − mu
mu

≈
1
2

90.0 m/s
3.00 × 108  m/s

⎛
⎝⎜

⎞
⎠⎟

2

= 4.51× 10−14
 

P39.42 Using the relativistic form, 

  

p = mu

1− u c( )2
= γ mu,  we find the 

difference  Δp  from the classical momentum, mu: 
   

  Δp = γ mu− mu = γ − 1( )mu  

 (a) The difference is 1.00% when   γ − 1( )mu = 0.010 0γ mu:   

   
  

γ =
1

0.990
=

1

1− u c( )2  

  thus,   

   
  
1−

u
c

⎛
⎝⎜

⎞
⎠⎟

2

= 0.990( ) 2 , and   u = 0.141c  

 (b) The difference is 10.0% when   γ − 1( )mu = 0.100γ mu:  

   
  

γ =
1

0.900
=

1

1− u c( )2  

  thus, 
  
1−

u
c

⎛
⎝⎜

⎞
⎠⎟

2

= 0.900( )2  and   u = 0.436c  

P39.43 Relativistic momentum of the system of fragments must be conserved. 
For total momentum to be zero after as it was before, we must have, 
with subscript 2 referring to the heavier fragment, and subscript 1 to 
the lighter, p2 = p1, 

 or  

  
γ 2m2u2 = γ 1m1u1 =

2.50 × 10−28  kg

1− 0.893( )2
× 0.893c( )  
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 or  

  

1.67 × 10−27  kg( )u2

1− u2 c( )2
= 4.960 × 10−28  kg( )c  

 Proceeding to solve, we find  

   
  

1.67 × 10−27

4.960 × 10−28

u2

c
⎛
⎝⎜

⎞
⎠⎟

2

= 1−
u2

2

c2  

   
  
12.3

u2
2

c2 = 1   and   u2 = 0.285c  

 
 

 

Section 39.8 Relativistic Energy 

*P39.44 We use the equation   ΔE = γ 1 − γ 2( )mc2 . For an electron, 

  mc2 = 0.511 MeV.  

 (a) 
  
ΔE = 1

1− 0.810( )
− 1

1− 0.250( )
⎛
⎝⎜

⎞
⎠⎟

mc2 = 0.582 MeV  

 (b) 
  
ΔE = 1

1− 0.990( )2 − 1
1− 0.810

⎛
⎝⎜

⎞
⎠⎟

mc2 = 2.45 MeV  

*P39.45 (a)   K = E − ER = 5ER  

  
  

E = 6ER = 6 9.11× 10−31  kg( ) 3.00 × 108  m s( )2 = 4.92 × 10−13  J

= 3.07 MeV
 

 (b)   E = γ mc2 = γ ER  

  Thus, 
  
γ = E

ER

= 6 = 1
1− u2 c2

 which yields   u = 0.986c  

P39.46 (a) To find the speed of the protons with   E = γ mc2 = 400mc2 ,  we 
write 

   
  

γ =
1

1− u c( )2
→ u = c 1−

1
γ 2  

  So, 
  
u = c 1−

1
400( )2 = 0.999 997c  
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 (b) From Example 39.9, for a proton, mc2 = 938 MeV. Then 

   
  K = γ − 1( )mc2 = 399 938 MeV( ) = 3.74 × 105  MeV  

P39.47 At u = 0.950c, it will be useful to know the gamma factor:  

   
  
γ =

1

1 – u2/c2
=

1

1 – 0.9502
= 3.20  

 (a) The rest energy is  
   

  

ER = mc2 = 1.67 × 10−27 kg( ) 2.998 × 108 m/s( )2

= 1.50 × 10−10 J

= 1.50 × 10−10 J
1 eV

1.60 × 10−19 J
⎛
⎝⎜

⎞
⎠⎟

= 938 MeV

 
 

  (We use a value for c accurate to four digits so that we can be 
sure to get an answer accurate to three digits. Through the rest of 
the book we will use values for physical constants accurate to 
four digits or to three, whichever we like. We will still quote 
answers to three digits, and you can still think of the last digit as 
uncertain.) 

 (b) The total energy is 
    

  E = γ mc2 = γ ER = (3.20)(938 MeV) = 3.00 GeV  

 (c) The kinetic energy is 
     

  
K = E − ER = 3.00 GeV – 938 MeV = 2.07 GeV

 

P39.48 (a) Using the classical equation, 

   
  
K =

1
2

mu2 =
1
2

78.0 kg( ) 1.06 × 105  m/s( )2
= 4.38 × 1011  J  

 (b) Using the relativistic equation, 

  

K = 1

1− u c( )2
− 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

mc2 :  

   

  

K =
1

1− 1.06 × 105

2.998 × 108

⎛
⎝⎜

⎞
⎠⎟

2
− 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

78.0 kg( ) 3.00 × 108  m/s( )2

= 4.38× 1011 J
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 (c) When 
   

u
c
 1 , the binomial series expansion gives 

   
  

1−
u
c

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥

−1 2

≈ 1 +
1
2

u
c

⎛
⎝⎜

⎞
⎠⎟

2

 

Thus, 
  

1−
u
c

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥

−1 2

− 1 ≈
1
2

u
c

⎛
⎝⎜

⎞
⎠⎟

2

 and the relativistic expression for 

kinetic energy becomes 
  
K ≈ 1

2
u
c

⎛
⎝⎜

⎞
⎠⎟

2

mc 2 = 1
2

mu 2 .  That is, in the 

limit of speeds much smaller than the speed of light, the 
relativistic and classical expressions yield the same results. In this 
situation the two kinetic energy values are experimentally 
indistinguishable.  The fastest-moving macroscopic objects 
launched by human beings move sufficiently slowly compared to 
light that relativistic corrections to their energy are negligible. 

P39.49 The work–kinetic energy theorem is 
  
W = ΔK = K f − Ki ,  which for 

relativistic speeds (u comparable to c) is:  

   

  

W =
1

1 – uf
2/c2

− 1
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

mc2 −
1

1 – ui
2/c2

− 1
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

mc2  

 or, simplified,  

    
  
W = 1/ 1 – uf

2/c2 − 1/ 1 – ui
2/c2( )mc2  

 From our specialized equation, 

 (a) 

  

W =
1

1 – 0.7502
−

1

1 – 0.5002

⎛

⎝
⎜

⎞

⎠
⎟

                × 1.67 × 10−27 kg( ) 3.00 × 108 m/s( )2

 

   
  
W = (1.512 − 1.155) 1.50 × 10−10 J( ) = 5.37 × 10−11 J = 336 MeV

 

  (b) 

  

W =
1

1 – 0.9952
−

1

1 – 0.5002

⎛

⎝
⎜

⎞

⎠
⎟

                  1.67 × 10−27 kg( ) 3.00 × 108 m/s( )2

 

  

  
W = 10.01 − 1.155( ) 1.50 × 10−10 J( ) = 1.33 × 10−9 J = 8.32 GeV
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P39.50 The relativistic kinetic energy of an object of mass m and speed u  

 is 
  
Kr = 1

1− u2 c2
− 1

⎛

⎝
⎜

⎞

⎠
⎟ mc2 .  The classical equation is 

  
Kc =

1
2

mu2 . Their 

ratio is  

   

  

Kr

Kc

=

1
1− u2 c2

− 1
⎛

⎝
⎜

⎞

⎠
⎟ mc2

1
2 mu2 =

2
1

1− u2 c2
− 1

⎛

⎝
⎜

⎞

⎠
⎟

u2 c2

= 2
1

1− u2 c2
− 1

⎛

⎝
⎜

⎞

⎠
⎟

1
u2 c2

Kr

Kc

= 2
1

1− 0.100( )2
− 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1
0.100( )2 = 1.007  56

 

 For still smaller speeds the agreement will be still better. 

P39.51 Given E = 2mc2, where mc2 = 938 MeV from Example 39.9. We use 
Equation 39.27: 

   

  

E2 = p2c2 + mc2( )2

2mc2( )2
= p2c2 + mc2( )2

4 mc2( )2
= p2c2 + mc2( )2

→ p2c2 = 3 mc2( )2

 

 Solving for the momentum then gives 
   

  
p = 3

mc2( )
c

= 3
938 MeV( )

c
= 1.62 × 103 MeV c

 

P39.52 (a)   E = γ mc2 = 20.0 GeV  with mc2 = 0.511 MeV for electrons. 

  Thus, 
 
γ =

20.0 × 109  eV
0.511× 106  eV

= 3.91× 104 . 

 (b) 

  

γ =
1

1− u c( )2
→ u = c 1−

1
γ 2 = 0.999 999 999 7c  

 (c) 
  
L = Lp 1−

u
c

⎛
⎝⎜

⎞
⎠⎟

2

=
Lp

γ
=

3.00 × 103  m
3.91× 104 = 7.67 × 10−2  m = 7.67 cm  
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P39.53  (a)   E = 2.86 × 105  J  leaves the system, so the final mass is  smaller .  

 (b) The mass-energy relation says that E = mc2. Therefore, 

   

  

m =
E
c2 =

2.86 × 105  J

3.00 × 108  m/s( )2 = 3.18 × 10−12  kg  

 (c) 
 
It is too small a fraction of 9.00 g to be measured .  

P39.54 The loss of mass in the nuclear reactor is 
   

  

Δm = E
c2 = PΔt

c2

=
0.800 1.00× 109  J/s( ) 3.00 yr( ) 3.16× 107  s/yr( )

3.00× 108  m/s( )2

= 0.842 kg

 

P39.55 The power output of the Sun is 

   
  
P =

dE
dt

=
d mc2( )

dt
= c2 dm

dt
= 3.85 × 1026  W  

 Thus, 

  

dm
dt

=
3.85 × 1026  J/s

3.00 × 108  m/s( )2 = 4.28 × 109  kg/s  

P39.56 Total energy is conserved. The photon must have enough energy to be 
able to create an electron and a positron, both having the same rest 
mass: 

     
  
Eγ ≥ 2mec

2 = 1.02 MeV → Eγ ≥ 1.02 MeV  

P39.57 We use Equation 39.23 for relativistic kinetic energy. 
 (a) The change in kinetic energy of the spaceship is the minimum 

energy required to accelerate the spaceship. From Equation 39.23, 
relativistic kinetic energy is given by 

   

  
K = γ − 1( )mc2 =

1

1− u2 c2
− 1

⎛

⎝
⎜

⎞

⎠
⎟ mc2  
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  The change in kinetic energy is then 

   

  

ΔK = γ f − 1( )mc2 − γ i − 1( )mc2 = γ f −γ i( )mc2

= 1
1− uf

2 c2
− 1

1− ui
2 c2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

mc2

= 1

1− 0.700( )2
− 1

1− 0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

mc2

= 1.40− 1( ) 2.40× 106  kg( ) 2.998× 108  m/s( )2

= 8.63× 1022  J

  

 (b) We use Einstein’s famous mass-energy relation, and equate the 
rest energy of the fuel to the change in kinetic energy of the 
spacecraft: 

   
  E = mc2 = ΔK  

  The required mass of fuel is then  
    

  
m = ΔK

c2 = 1

1− 0.700( )2
− 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2.40× 106  kg( ) = 9.61× 105  kg

 

P39.58 We are told to start from   E = γ mc2  and   p = γ mu.  Squaring both 
equations gives  

      E
2 = γ mc2( )2

 and   p
2 = γ mu( )2

 

  We choose to multiply the second equation by c2 and subtract it from 
the first: 

    
  
E2 − p2c2 = γ mc2( )2

− (γ mu)2 c2  

We factor to obtain  
  

  
E2 − p2c2 = γ 2 mc2( ) mc2( ) − mc2( ) mu2( )⎡⎣ ⎤⎦

 

Extracting the (mc2) factors gives  

  
  
E2 − p2c2 = γ 2 mc2( )2

1 −
u2

c2

⎛

⎝⎜
⎞
⎠⎟
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We substitute the definition of  γ :  

  
  
E2 − p2c2 = 1 −

u2

c2

⎛

⎝⎜
⎞
⎠⎟

−1

mc2( )2
1 −

u2

c2

⎛

⎝⎜
⎞
⎠⎟

 

The  γ
2  factors divide out, leaving  

      E
2 − p2c2 = mc2( )2  

P39.59  From 
  
K = γ − 1( )mc2 = 1

1− u2 c2
− 1

⎛

⎝
⎜

⎞

⎠
⎟ mc2 ,  we have 

   
  

K
mc2 + 1 =

1

1− u2 c2
=

K + mc2

mc2  

   

  

1−
u2

c2 =
m2c4

K + mc2( )2

u2

c2 = 1−
mc2( )2

K + mc2( )2

u = c 1−
mc2

K + mc2

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

 

 (a) Electron: 
  
u = c 1−

0.511
2.511

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥

1 2

= 0.979c  

 (b) Proton: 
  
u = c 1−

938
940

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥

1 2

= 0.065 2c  

 (c) 
  

uelectron

uproton

=
0.979c

0.065 2c
= 15.0  

In this case the electron is moving relativistically, but the classical 

expression 
  

1
2

mv2  is accurate to two digits for the proton. 

 (d) Electron: 

  
u = c 1−

0.511
2 000.511

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

= 0.999 999 97c  

  Proton: 
  
u = c 1− 938

2 938
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥

1 2

= 0.948c  
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  Then, 
   

  

uelectron

uproton

=

c 1− 0.511
2 000.511

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

c 1− 938
2 938

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥

1 2 = 1.06

 

As the kinetic energies of both particles become large, their 
speeds approach c. By contrast, classically the speed would 
become large without any finite limit. 

P39.60 The kinetic energy of the car is given by 

   
  
K = γ − 1( )mc2 = 1− u2 c2( )−1 2

− 1( )mc2  

 We use the series expansion from Appendix B.5: 

   
  
K = mc2 1+ −

1
2

⎛
⎝⎜

⎞
⎠⎟ (−u2 c2 ) + −

1
2

⎛
⎝⎜

⎞
⎠⎟ −

3
2

⎛
⎝⎜

⎞
⎠⎟

1
2

(−u2 c2 )2 + ... − 1⎡
⎣⎢

⎤
⎦⎥

 

   
  
K =

1
2

mu2 +
3
8

m
u4

c2 + ...  

 The actual kinetic energy, given by this relativistic equation, is 

 
larger  than the classical 

  

1
2

mu2.  

 The difference, for m = 1 000 kg and u = 25 m/s, is 

   
  

3
8

m
u4

c2 =
3
8

(1 000 kg)
(25 m/s)4

(3.00 × 108 m/s)2 = 1.6 × 10−9 J ~ 10−9 J  

P39.61 We use, together, both the energy version and the momentum version 
of the isolated system model. By conservation of system energy, 

   
  mπc2 = γ mµc2 + pν c  

 By conservation of system momentum:  

   
 
pν = −pµ = − γ mµu  

 Substituting the second equation into the first, 

   
  
mπc2 = γ mµc2 + γ mµuc  

 Simplified, this equation then reads  

   
  
mπ = mµ (γ + γ u/c)  



866     Relativity 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  Substituting the masses,  

      273me = (207me )(γ + γ u/c)  

  where the rest energy of an electron is  

      mec
2 = 0.511 MeV  

 Numerically,  

    
  

273me

207me

=
1 + u/c

1 – (u/c)2
=

1 + u/c
1 − u/c

 

 Solving for the muon speed,  

   
  

u
c
=

2732 − 2072

2732 + 2072 = 0.270  

  Therefore,  

    
  
γ =

1

1 – u2/c2
= 1.038 5  

  (a) and the muon’s kinetic energy is  
    

  
Kµ = (0.038 5)(207 × 0.511 MeV) = 4.08 MeV

 

  (b) The energy of the antineutrino is 
   

  

Kν = (273 × 0.511 MeV) − (207 × 0.511 MeV + 4.08 MeV)

= 29.6 MeV

  

P39.62 (a) The initial system is  isolated .  

 (b) 

 

Isolated system: conservation of energy, and isolated system:
conservation of momentum.

 

 (c) We must conserve both energy and 
relativistic momentum of the system of 
fragments. With subscript 1 referring to 
the 0.987c particle and subscript 2 to the 
0.868c particle, 

   

 
γ 1 =

1

1− 0.987( )2
= 6.22  and  

   
 
γ 2 =

1

1− 0.868( )2
= 2.01  

ANS. FIG. P39.62 
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 (d) Conservation of energy gives   E1 + E2 = Etotal  

  which is  

     γ 1m1c
2 + γ 2m2c

2 = mtotalc
2  

  or   6.22m1 + 2.01m2 = 3.34 × 10−27  kg  

  This reduces to: 
  
3.09m1 + m2 = 1.66 × 10−27  kg  [1] 

 (e) Since the final momentum of the system must equal zero, p1 = p2 
gives  

     γ 1m1u1 = γ 2m2u2  

  or   6.22( ) 0.987c( )m1 = 2.01( ) 0.868c( )m2  

  which becomes   
  
m2 = 3.52m1  [2] 

 (f) Substituting [2] into [1] gives 

     3.09m1 + 3.52m1 = 1.66 × 10−27  kg  

  thus,  
  
m1 = 2.51× 10−28  kg  and 

  
m2 = 8.84 × 10−28  kg  

P39.63 Let m = 1.99 × 10−26 kg, and     

u = uî = 0.500cî.  An isolated system of two 

particles of mass m and m′ = m/3 collide with the respective velocities 

  

u  and   −


u , resulting in a particle with mass M and velocity     


v f = v f î.  

By conservation of the x component of momentum (γ mu): 

    

  

mu

1− u2 c2
+

m −u( )
3 1− u2 c2

=
Mv f

1− v f
2 c2

2mu

3 1− u2 c2
=

Mv f

1− v f
2 c2

 

[1]

 

 By conservation of total energy (γ mc2): 

   

  

mc2

1− u2 c2
+

mc2

3 1− u2 c2
=

Mc2

1− v f
2 c2

4mc2

3 1− u2 c2
=

Mc2

1− v f
2 c2

 

[2]

 

 To start solving, we divide the momentum equation [1] by the energy 

equation [2], giving 
  
v f =

2u
4

=
u
2

.  
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 Then, substituting the value of the final speed back into the energy 
equation [2], we get 

   

  

Mc2

1− u2 4c2
=

4mc2

3 1− u2 c2

2Mc2

4 − u2 c2
=

4mc2

3 1− u2 c2

M =
2m 4 − u2 c2

3 1− u2 c2
=

2 1.99 × 10−26  kg( ) 4 − 0.500( )2

3 1− 0.500( )2

M = 2.97 × 10−26  kg

 

P39.64 (a) By conservation of the x component of momentum (γ mu): 

    

  

mu

1− u2 c2
+

m −u( )
3 1− u2 c2

=
Mv f

1− v f
2 c2

2mu

3 1− u2 c2
=

Mv f

1− v f
2 c2

 

[1]

 

  By conservation of total energy (γ mc2): 

   

  

mc2

1− u2 c2
+

mc2

3 1− u2 c2
=

Mc2

1− v f
2 c2

4mc2

3 1− u2 c2
=

Mc2

1− v f
2 c2

 

[2]

 

  To start solving, we divide the momentum equation [1] by the 

energy equation [2], giving 
  
v f =

2u
4

=
u
2

. Then, substituting the 

value of the final speed back into the energy equation [2], we get 
   

  

Mc2

1− u2 4c2
=

4mc2

3 1− u2 c2

2Mc2

4 − u2 c2
=

4mc2

3 1− u2 c2

M =
2m 4 − u2 c2

3 1− u2 c2
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 (b) As   u→ 0 , 
  
M =

2m 4 − u2 c2

3 1− u2 c2
→

2m 4
3 1

=
4m
3

 

 (c) 

 

The answer to part (b) is in agreement with the classical result,
which is the arithmetic sum of the masses of the two colliding
particles.

 

 
 

 

Section 39.9 The General Theory of Relativity 
P39.65 (a) For the satellite, Newton’s second law gives 
    

  
F∑ = ma:     

GMEm
r2 = mv2

r
= m

r
2π r
T

⎛
⎝⎜

⎞
⎠⎟

2  

   which gives 
   

  GMET 2 = 4π 2r3  

  Solving for the orbital radius, 

   

  

r = GMET 2

4π 2

⎛
⎝⎜

⎞
⎠⎟

1 3

r =
6.67 × 10−11  N ⋅m2/kg2( ) 5.98× 1024  kg( ) 43 080 s( )2

4π 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 3

 = 2.66× 107  m

 

 (b) 
  
v =

2π r
T

=
2π 2.66 × 107  m( )

43 080 s
= 3.87 × 103  m/s  

(c) From the relationship of frequency and period: 
   

  
f =

1
T

→ df = −
dT
T 2 = − f

dT
T

⎛
⎝⎜

⎞
⎠⎟

→
df
f

= −
dT
T

 

We see the fractional decrease in frequency is equal in magnitude 
to the fractional change in period. 

The small fractional decrease in frequency received is equal in 
magnitude to the fractional increase in period of the moving 
oscillator due to time dilation: 
 

  

df
f

= − dT
T

= − γΔtP − ΔtP

ΔtP

= − γ − 1( )
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df
f

= − 1

1− v c( )2
− 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= 1− 1

1− v c( )2

≈ 1− 1+ 1
2

v
c

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥ = − 1

2
v
c

⎛
⎝⎜

⎞
⎠⎟

2

= − 1
2

3.87 × 103  m/s
3.00× 108  m/s

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −8.34× 10−11

 

 (d) The orbit altitude is large compared to the radius of the Earth, so 
we must use 

   
 
Ug = −

GMEm
r

 

  The change in gravitational potential energy is 

   

  

ΔUg = − 6.67 × 10−11  
N ⋅m2

kg2

⎛
⎝⎜

⎞
⎠⎟

      × 5.98× 1024  kg( )m
1

2.66× 107  m
− 1

6.37 × 106  m
⎡

⎣
⎢

⎤

⎦
⎥

= 4.76× 107  J/kg( )m

 

  Then 
   

  

Δf
f

=
ΔUg

mc2 =
4.76× 107  J/kg( ) m

m 3.00× 108  m/s( )2 = +5.29× 10−10

 

 (e)  −8.34 × 10−11 + 5.29 × 10−10 = +4.46 × 10−10  

 
 

 

Additional Problems 

P39.66 (a) When   Ke = Kp ,    
  
mec

2 γ e − 1( ) = mpc
2 γ p − 1( )  

  In this case,   mec
2 = 0.511 MeV,  

  
mpc

2 = 938 MeV  

  and 
  
γ e = 1− 0.750( )2⎡

⎣⎢
⎤
⎦⎥
−1 2

= 1.511 9  
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  Substituting,  

  

γ p = 1 +
mec

2 γ e − 1( )
mpc

2 = 1 +
0.511 MeV( ) 1.511 9 − 1( )

938 MeV

= 1.000 279

 

  But   

  

γ p =
1

1− up c( )2⎡
⎣⎢

⎤
⎦⎥

1 2  

  Therefore,  
  
up = c 1− γ p

−2 = 0.023 6c  

 (b) When 
 
pe = pp

,  
 
γ pmpup = γ emeue  or 

 
γ pup =

γ emeue

mp

 

  Thus,  
  
γ pup =

1.511 9( ) 0.511 MeV c2( ) 0.750c( )
938 MeV c2 = 6.177 2 × 10−4 c  

  and 
  

up

c
= 6.177 2 × 10−4 1−

up

c

⎛

⎝
⎜

⎞

⎠
⎟

2

 

  which yields 
  
up = 6.18 × 10−4 c = 185 km/s  

P39.67 The original rest energy of four protons is 

    ER = 4(938.78 MeV) = 3 755.12 MeV  

 The energy given off is  

    
  ΔE = (3 755.12 − 3 728.4) MeV = 26.7 MeV  

 The fractional energy released is  
   

  

ΔE
ER

= 26.7 MeV
3 755 MeV

× 100% = 0.712%
 

P39.68 From the particle under constant speed model, find the travel time for 
Speedo from Goslo’s reference frame: 

   
  
Δt = 

d
u
 = 

2 50 ly( )
0.85c

c ⋅ yr
ly

⎛
⎝⎜

⎞
⎠⎟
 = 118 yr  

 Therefore, when Speedo arrives back on Earth, 118 years have passed 
and Goslo would have to be 158 years old. Furthermore, Speedo will 
be 102 years old. Perhaps future medical breakthroughs may extend 
the life expectancy to 158 years and beyond, but that is impossible at 
present. 
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*P39.69 (a) Consider the raindrops moving toward the station, at speed v. 
They receive radio waves with the Doppler-enhanced frequency 

  
′f = f

c + v
c − v

,  where   f = 2.85 GHz.  These raindrops reflect the 

waves at frequency   ′f .  The waves are received by the station 
with another upward Doppler shift in frequency to 

     
 
′′f = ′f

c + v
c − v

= f
c + v
c − v

c + v
c − v

 

     

  

2.85 × 109  Hz + 254 Hz = 2.85 × 109  Hz
c + v
c − v( )

1 + 8.91× 10−8 = c + v
c − v

 

     

  

c + 8.91× 10−8 c − v − 8.91× 10−8 v = c + v

8.91× 10−8 c = 2.000 000 089v

v = 4.46 × 10−8( ) 3.00 × 108  m s( ) = 13.4 m s

 

  The same calculation with 254 Hz replaced by –254 Hz applies to 
the receding raindrops and given the same velocity magnitude. 
Thus the velocities are 13.4 m/s toward the station and 13.4 m/s 
away from the station. 

 (b) Radio waves travel to the rain and back again in  180 µs,  so the 

one-way distance is 
 
1
2

3.00 × 108  m s( ) 180 × 10−6  s( ) = 27 000 m.  

The frequency shifts indicate the batch of raindrops are whirling 
around a common center separated by 1° of arc. The diameter of 
the vortex is  

    
  
s = rθ = 27 000 m( ) 1°( ) π  rad

180°
⎛
⎝

⎞
⎠= 471 m  

  Its radius is therefore 
 
1
2

471 m( ) = 236 m  and the angular speed of 

the rain is 
  
ω = v

r
= 13.4 m s

236 m
= 0.056 7 rad s .  A Doppler 

weather radar computer performs a calculation like this to detect 
a “tornado vortex signature.” 

*P39.70 From energy conservation, we have 

   
  

1 400 kg( )c2

1− 02
+ 900 kg( )c2

1− 0.8502
= Mc2

1− v2 c2
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3 108 kg( ) 1− v2

c2 = M  

 From momentum conservation, we have 
    

  
0 + 900 kg( ) 0.850c( )

1− 0.8502
= Mv

1− v2 c2

 

   

  
1 452 kg( ) 1− v2

c2 = Mv
c

 

 (a) Dividing the momentum equation by the energy equation gives  

   
  

v
c

= 1 452
3 108

= 0.467 , or   v = 0.467c  

 (b) Now by substitution, 
  
3 108 kg( ) 1− 0.4672 = M = 2.75 × 103  kg . 

*P39.71 (a) Observers on Earth measure the distance to Andromeda to be  
   

  d = 2.00× 106  ly = 2.00× 106  ly( )c
  

  The time for the trip, in Earth’s frame of reference, is  
   

  
Δt = γ Δtp = 30.0 yr

1− v/c( )2

  

  The required speed is then 
   

  
v = d

Δt
=

2.00× 106  ly( )c

30.0 yr( ) 1− v/c( )2

 

  which gives, suppressing units, 
   

  1.50× 10−5( ) v/c( ) = 1− v/c( )2  

  Squaring both sides of this equation and solving for v/c yields  
   

  

v
c
= 1

1+ 2.25× 10−10

 

  Then, the approximation 
  

1
1+ x

= 1− x
2

 gives  

   

  

v
c

= 1− 2.25× 10−10

2
= 1− 1.12 × 10−10
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 (b) Let 
  

v
c
= 1

1+ x
,  where   x = 2.25× 10−10. . Then, 

   

  
1− v

c
⎛
⎝⎜

⎞
⎠⎟

2

= 1− 1
1+ x

= x
1+ x

  

  and 
   

  

γ = 1

1− v
c

⎛
⎝

⎞
⎠

2
= 1+ x

x
= 1+ 1

x

  

  The kinetic energy of the spacecraft is given by 
    

  
KE = γ − 1( )mc2 = 1+ 1

x
− 1

⎛
⎝⎜

⎞
⎠⎟

mc2
 

   Thus, 
    

  

KE = 1+ 1
2.25× 10−10 − 1

⎛
⎝⎜

⎞
⎠⎟

1.00× 106  kg( ) 3.00× 108  m/s( )2

= 5.99991× 1027  J = 6.00× 1027  J

  

 (c) The cost of this energy is 
    

  

cost = KE × rate = 6.00× 1027  J( ) 1 kWh
3.60× 106  J

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ $0.13/kWh( )

= $2.17 × 1020

  

*P39.72 In this case, the proper time is   T0  (the time measured by the students 
on a clock at rest relative to them). The dilated time measured by the 
professor is: 

   
  Δt = γT0

 

 where   Δt = T + t.  Here T is the time she waits before sending a signal 
and t is the time required for the signal to reach the students. Thus, we 
have: 

     T + t = γ T0  [1] 

 To determine the travel time t, realize that the distance the students will 
have moved beyond the professor before the signal reaches them is:  

   
 d = v T + t( )  

 The time required for the signal to travel this distance is: 
   

 
t = d

c
= v

c( ) T + t( )
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 Solving for t gives: 
   

  
t = v c( )T

1− v c( )
 

 Substituting this into equation [1] yields:  
   

  
T + v c( )T

1− v c( ) = γ T0

 

 or  
  

T
1− v c

= γ T0 . 

 Then  
   

  

T = T0
1− v c( )
1− v2 c2( )

= T0
1− v c( )

1+ v c( )[ ] 1− v c( )[ ]

= T0
1− v c( )
1+ v c( )

 

*P39.73 (a) The proper lifetime is measured in the ship’s reference frame, and 
Earth-based observers measure a dilated lifetime of 

    

  
Δt = γ Δtp =

Δtp

1− v/c( )2
= 15.0 yr

1− 0.700( )2
= 21.0 yr

 

 (b) As measured by mission control, the distance to the ship is 
    

  

d = vΔt = 0.700c( ) 21.0 yr( ) = 0.700( ) 1.00 ly/yr( )⎡⎣ ⎤⎦ 21.0 yr( )
= 14.7 ly

 

  (c) Looking out the rear window, the astronauts see Earth recede at a 
rate of v = 0.700c. The distance it has receded, as measured by the 
astronauts, when the batteries fail is 

    

  

d = v Δtp( ) = 0.700c( ) 15.0 yr( ) = 0.700( ) 1.00 ly/yr( )⎡⎣ ⎤⎦ 15.0 yr( )
= 10.5 ly

  

 (d) Mission control gets signals for 21.0 yr while the battery is 
operating and then for 14.7 yr after the battery stops powering the 
transmitter, 14.7 ly away. The total time that signals are received 
is 

 
21.0 yr + 14.7 yr = 35.7 yr .   

P39.74 (a) We let H represent   K mc2 .  Then,   

   
  
H + 1 =

1

1− u2 c2
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  so 
  
1− u2 c2 =

1
H 2 + 2H + 1

 

  Solving, 

   
  

u2

c2 = 1−
1

H 2 + 2H + 1
=

H 2 + 2H
H 2 + 2H + 1

  

  and 
  
u = c

H 2 + 2H
H 2 + 2H + 1

⎛
⎝⎜

⎞
⎠⎟

1 2

 

  (b) 
  
u goes to 0 as K  goes to 0.  

 (c) 
  
u approaches c as K  increases without limit.  

 (d) The acceleration is given by 
   

  
a = du

dt
= d

dt
c

H 2 + 2H
H 2 + 2H + 1

⎛
⎝⎜

⎞
⎠⎟

1 2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

   

  

a = c
1
2

H 2 + 2H
H 2 + 2H + 1

⎛
⎝⎜

⎞
⎠⎟

−1 2

      ×
H 2 + 2H + 1⎡⎣ ⎤⎦ 2H + 2[ ]− H 2 + 2H⎡⎣ ⎤⎦ 2H + 2[ ]

H 2 + 2H + 1⎡⎣ ⎤⎦
2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

      × d(K mc2 )
dt

 

   

  

a = c
H 2 + 2H + 1

H 2 + 2H
⎛
⎝⎜

⎞
⎠⎟

1 2
H + 1
H + 1[ ]4

⎛
⎝⎜

⎞
⎠⎟

P
mc 2

= P
mcH 1 2(H + 2)1 2(H + 1)2

 

  where 
 
P =

dK
dt

. 

 (e) When H is small (   H  1 ), we have approximately 
   

  

a = P
mcH 1 2(2)1 2(1)2 = P

mcH 1 2 21 2 = P

mc
K

mc2
⎛
⎝

⎞
⎠

1 2

21/2

= P
2mK( )1 2

 

  in agreement with the nonrelativistic case. 
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 (f) When H is large the acceleration approaches 

   

  

a =
P

mcH 1 2(H + 2)1 2(H + 1)2 →
P

mcH 1 2(H)1 2(H)2 =
P

mcH 3

=
P

mc
K

mc2
⎛
⎝⎜

⎞
⎠⎟

3 =
m2c5P

K 3

 

 (g) 

  

As energy is steadily imparted to the particle, the particle’s
acceleration decreases. It decreases steeply, proportionally to

1/K 3  at high energy. In this way the particle’s speed cannot
reach or surpass a certain upper limit, which is the speed of
light in vacuum.

 

 

*P39.75 (a) From Problem 71,  
   

  

v
c
= 1

1+ 2.25× 10−10

 

  and 
    

 

γ = 1

1− 1
1+ 2.25× 10−10

⎛
⎝⎜

⎞
⎠⎟

2
= 1

1− 1
1+ 2.25× 10−10

⎛
⎝

⎞
⎠

= 6.67 × 104

 

 (b) The astronaut’s speed, from Problem 71, is  
    

  
v = 1

1+ 2.25× 10−10
c

 

   The time difference between the astronaut’s trip and that of the 
beam of light is then  

    

  

Δt = d
v
− d

c
= d

1
v
− 1

c
⎛
⎝⎜

⎞
⎠⎟ = d

c
c
v
− 1⎛

⎝⎜
⎞
⎠⎟ = d

c
1+ x − 1( ) ≈ d

c
1+ x

2
− 1⎛

⎝⎜
⎞
⎠⎟

= d
c

x
2

⎛
⎝⎜

⎞
⎠⎟

 

   Where   x = 2.25× 10−10.  Substituting numerical values,  

    

  

Δt =
2.00× 106  ly( ) 9.46× 1015  m/ly( )

3.00× 108  m/s
2.25× 10−10

2
⎛
⎝⎜

⎞
⎠⎟

= 7 095 s = 1.96 h
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P39.76 The energy of the first fragment is given by  

   
  
E1

2 = p1
2c2 + m1c

2( )2
= 1.75 MeV( )2

+ 1.00 MeV( )2  

     E1 = 2.02 MeV  

 For the second, 

   
  E2

2 = 2.00 MeV( )2
+ 1.50 MeV( )2  

     E2 = 2.50 MeV  

 (a) Energy is conserved, so the unstable object had 

  E = E1 + E2 = 4.52 MeV.  Each component of momentum is 
conserved, so for the original object 

   
  
p2 = px

2 + py
2 =

1.75 MeV
c

⎛
⎝⎜

⎞
⎠⎟

2

+
2.00 MeV

c
⎛
⎝⎜

⎞
⎠⎟

2

 

  Then, using Equation 39.27, we find the mass of the original 
object: 

   
  
E2 = p2c2 + mc2( )2  

    
  

4.52 MeV( )2
= 1.75 MeV( )2

+ 2.00 MeV( )2⎡
⎣⎢

⎤
⎦⎥

+ mc2( )2
 

   
  

m =
3.65 MeV

c2
 

 (b)  Now   E = γ mc2  gives 

   
  
4.52 MeV =

1

1− u2 c2
3.65 MeV  

   
  
1−

u2

c2 = 0.654    which gives    u = 0.589c  

P39.77 The relativistic kinetic energy of such a proton is  

   
  K = γ − 1( )mc2 = 1013 MeV  

  Its rest energy is  

    

  

mc2 = 1.67 × 10−27 kg( ) 2.998 × 108 m/s( )2

                              × 1 eV
1.60 × 10−19 kg · m2/s2

⎛
⎝⎜

⎞
⎠⎟

= 938 MeV
 

  So   1013 MeV = (γ − 1)(938 MeV)  
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  and therefore,  γ = 1.07 × 1010.  The proton’s speed in the galaxy’s 
reference frame can be found from 

     γ = 1/ 1 – u2/c2  so   1 – u2/c2 = 8.80 × 10−21  

  and    u = c 1− 8.80 × 10−21 ≈ 1− 4.40 × 10−21( )c ≈ 3.00 × 108 m/s  

  The proton’s speed is nearly as large as the speed of light. In the galaxy 
frame, the traversal time is  

     Δt = x/u = 105 light years/c = 105 years  

 (a) This is dilated from the proper time measured in the proton’s 
frame. The proper time interval is found from 

  
Δt = γ Δtp :  

   
  
Δtp = Δt/γ = 105 yr/1.07 × 1010 = 9.38 × 10−6 years  =  296 s  

    Δt     102  s or 103  s  

 (b) The proton sees the galaxy moving by at a speed nearly equal to c, 
passing in 296 s:  

    

  

ΔLproton frame = uΔtp = 3.00 × 108 m/s( )(296 s)

= 8.88 × 107 km ∼ 108 km

 

    

  

ΔLproton frame = 8.88 × 1010 m( ) 1 ly
9.46 × 1015 m

⎛
⎝⎜

⎞
⎠⎟

= 9.39 × 10−6 ly ∼ 10−5 ly

 

P39.78 Look at the situation from the instructors’ viewpoint since they are at 
rest relative to the clock, and hence measure the proper time. The Earth 
moves with velocity   v = −0.280c  relative to the instructors while the 
students move with a velocity   ′u = −0.600c  relative to Earth. Using the 
velocity addition equation, the velocity of the students relative to the 
instructors (and hence the clock) is: 

   
  
u =

v + ′u
1 + v ′u c2 =

−0.280c( ) − 0.600c( )
1 + −0.280c( ) −0.600c( ) c2 = −0.753c   

 (students relative to clock) 

 (a) With a proper time interval of   Δtp = 50.0 min,  the time interval 
measured by the students is: 

   
 
Δt = γ Δtp  with 

  

γ =
1

1− 0.753c( )2
c2

= 1.52  
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  Thus, the students measure the exam to last  

     T = 1.52 50.0 min( ) =  
 

76.0 minutes  

 (b) The duration of the exam as measured by observers on Earth is: 

   
 
Δt = γ Δtp   with  

  

γ =
1

1− 0.280c( )2
c2

  so   

   T = 1.04(50.0 min) 
 
= 52.1 minutes  

P39.79 (a) The speed of light in water is c/1.33, so the electron’s speed is 
1.10c/1.333. Then 

   
 
γ =

1

1− (1.10 1.333)2
= 1.770   

  and the total energy is 
   

  E = γ mc2 = 1.770 0.511 MeV( ) = 0.905 MeV   

 (b) The electron’s kinetic energy is 
   

  K = E − mc2 = 0.905 MeV − 0.511 MeV = 0.394 MeV  

 (c) The electron’s momentum is found from 
   

  

pc = E2 − (mc2 )2 = γ 2 − 1  mc2

= γ 2 − 1 0.511 MeV( )  = 0.747 MeV

 

  and 
   

  

p = 0.747
 MeV

c
=

0.747 × 106  1.602 × 10−19  J( )
3.00× 108  m/s

= 3.99× 10−22  kg ⋅m/s

 

 (d) From Figure 17.11, the angle between the particle (source of 
waves) and the shock wave is 

     sinθ = v vS
 

   where v is the wave speed, which is the speed of light in water, 
and  vS

 is the source speed. Then 

   
  sinθ = v vS = 1 1.10 → θ = 65.4°  
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P39.80 (a) From Equation 39.18, the speed of light in the laboratory frame is 

    

  

u =
v + c

n

1 +
v c n( )

c2

=
c (1 + nv c)
n (1 + v nc)

 

 (b) When v is much less than c we have 
   

  

u = c
n

1+ nv
c

⎛
⎝⎜

⎞
⎠⎟ 1+ v

nc
⎛
⎝⎜

⎞
⎠⎟
−1

≈ c
n

1+ nv
c

⎛
⎝⎜

⎞
⎠⎟ 1− v

nc
⎛
⎝⎜

⎞
⎠⎟

≈ c
n

1+ nv
c
− v

nc
⎛
⎝⎜

⎞
⎠⎟ =

c
n
+ v − v

n2

 

 (c) If light travels at speed c/n in the water, and the water travels at 
speed v, then the Galilean velocity transformation Equation 4.20 
would indeed give c/n + v for the speed of light in the moving 
water. The third term – v/n2 does represent a relativistic effect 
that was observed decades before the Michelson-Morley 
experiment. It is a piece of twentieth-century physics that 
dropped into the nineteenth century. We could say that light is 
intrinsically relativistic. 

 (d) To take the limit as v approaches c we must go back to 

  
u =

c (1+ nv c)
n (1+ v nc)

. As  v → c , 

    
  
u→

c (1+ nc c)
n (1+ c nc)

=
c(1+ n)

n + 1
= c  

P39.81 (a) Assuming the Sun-mass system is isolated, the energy (work) 
required to remove a mass m from the Sun’s surface to infinity is 
equal to the change in potential energy of the system. If the work 
equals the rest energy mc2, then 

    

  

W = ΔE = ΔK + ΔU = 0 + U f −Ui( )
mc2 = 0 − −

GMsm
Rg

⎛

⎝
⎜

⎞

⎠
⎟

mc2 =
GMsm

Rg

→ Rg =
GMs

c2

 

 (b) 

  

Rg =
GMs

c2 =
6.67 × 10−11  N.m2 / kg2( ) 1.99 × 1030  kg( )

3.00 × 108  m/s( )2  

  
  
Rg = 1.47 × 103  m = 1.47 km  
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P39.82 We find the speed of the electrons after accelerating through a 
potential difference  ΔV  from Equation 39.23: 

  

  

K  = eΔV  =  γ  − 1( )mc2  = 
1

1 −  u c( )2
 − 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ mc2  

 then 
  

  

1

1 −  u c( )2
 =  eΔV

mc2  + 1 = 
eΔV  + mc2

mc2

 

 or 
  

  
1 −  u c( )2  =  mc2

eΔV  + mc2

⎛
⎝⎜

⎞
⎠⎟

2  

 Solving, 

  

 

u
c
 =  1−  m

eΔV c2 + m
⎛
⎝⎜

⎞
⎠⎟

2

 

 Substituting numerical values and suppressing units, 
  

  

u
c
 =  1 − 

9.11 × 10−31  kg( )
1.60 × 10−19  C( ) 8.40 × 104  V( )

3.00 × 108  m/s( )2 + 9.11 × 10−31  kg

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

2

u = 0.512c

 

 Because this speed is more than half the speed of light, there is no way 
to double its speed, regardless of the increased accelerating voltage. If 
the accelerating voltage is quadrupled to 336 kV, the speed of the 
electrons rises to u = 0.798c. 

P39.83 (a) Take the spaceship as the primed frame, moving toward the right 
at v = +0.600c. Then   ′ux = +0.800c,  and 

   
  
ux =

′ux + v
1 + ′uxv( ) c2 =

0.800c + 0.600c
1 + 0.800( ) 0.600( ) = 0.946c  

 (b) 
 
L =

Lp

γ
: 

  
L = 0.200 ly( ) 1− 0.600( )2

= 0.160 ly  

 (c) The aliens observe the 0.160-ly interval decreasing because the 
probe reduces it from one end at 0.800c and the Earth reduces it at 
the other end at 0.600c. 
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  Thus, time 
  
=

0.160 ly
0.800c + 0.600c

= 0.114 yr  

 (d) In Earth’s reference frame, the kinetic energy of the landing craft is 

   

  

K =
1

1− u2 c2
− 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

mc2  

    

  

K = 1

1− 0.946( )2
− 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

4.00× 105  kg( ) 3.00× 108  m/s( )2

= 7.50× 1022  J

 

P39.84 (a) Take m = 1.00 kg. The classical kinetic energy is 
   

  
Kc =

1
2

mu2 =
1
2

mc2 u
c

⎛
⎝⎜

⎞
⎠⎟

2

= 4.50 × 1016  J( ) u
c

⎛
⎝⎜

⎞
⎠⎟

2  

  and the actual kinetic energy is  
  

  

Kr = 1

1− u c( )2
− 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

mc2 = 9.00× 1016  J( ) 1

1− u c( )2
− 1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

  Using these expressions, we generate the graph in ANS. GRAPH 
P39.84. 

  

  

u
c

Kc  J( ) Kr  J( )
0.000 0.000 0.000
0.100 0.045 × 1016 0.045 3 × 1016

0.200 0.180 × 1016 0.186 × 1016

0.300 0.405 × 1016 0.435 × 1016

0.400 0.720 × 1016 0.820 × 1016

0.500 1.13 × 1016 1.39 × 1016

0.600 1.62 × 1016 2.25 × 1016

0.700 2.21× 1016 3.60 × 1016

0.800 2.88 × 1016 6.00 × 1016

0.900 3.65 × 1016 11.6 × 1016

0.990 4.41× 1016 54.8 × 1016

 

ANS. GRAPH P39.84 
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 (b)   Kc = 0.990Kr , when 

  

1
2

u
c

⎛
⎝⎜

⎞
⎠⎟

2

= 0.990
1

1− u c( )2
− 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, yielding  

   
  u = 0.115c  

 (c) Similarly,   Kc = 0.950Kr   when   u = 0.257c .  

 (d)   Kc = 0.500Kr  when   u = 0.786c .  

P39.85 Both observers measure the speed of light to be c. 

 (a) Call the total travel time   ΔtS .  An observer at rest relative to the 
mirror sees the light travel a distance d1 = d from the spacecraft to 
the mirror, but a distance   d2 = d − vΔtS  from the mirror back to the 
spacecraft because the spacecraft has traveled the distance 

  vΔtS forward. Therefore, the total distance traveled by the light is 

    

  

D = d1 + d2

d + d − vΔtS( ) = cΔtS

ΔtS =
2d

c + v
=

2d
c + 0.650c

=
2 5.66 × 1010  m( )

1.650 3.00 × 108  m/s( ) = 229 s

 

 (b) The observer in the spacecraft measures a length-contracted 
initial distance to the mirror of 

    
  
L = d 1−

v2

c2
 

  and the mirror moving toward the ship at speed v. Consider the 
motion of the light toward the mirror in time interval   Δt1:  light 
travels toward the mirror at speed c while the mirror travels toward 
the spacecraft at speed v; together, they travel the distance L: 

    

  

cΔt1 + vΔt1 = L

Δt1 =
L

c + v

 

  When light strikes the mirror, it is a distance   ′L = L − vΔt1  from 
the spacecraft. The light must travel back through this same 
distance to return to the spacecraft: 

     

  
cΔt2 = L − vΔt1 → Δt2 =

L
c
−

v
c
Δt1
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  The total travel time is 

    

  

Δt1 + Δt2 = L
c + v

+ L
c
− v

c
Δt1 = L

c + v
+ L

c
− v

c
L

c + v
⎛
⎝⎜

⎞
⎠⎟

= Lc + L c + v( )− Lv
c c + v( ) = 2Lc

c c + v( ) = 2
c + v( ) d 1− v2

c2

= 2
c + v( ) d

c2 − v2

c

 

    

  

Δt1 + Δt2 = 2d
c

c − v
c + v

= 2d
c

c − 0.650c
c + 0.650c

=
2 5.66× 1010  m( )
3.00× 108  m/s( )

0.350
1.650

= 174 s

 

P39.86 Both observers measure the speed of light to be c.  

 (a) Call the total travel time   ΔtS .  An observer at rest relative to the 

mirror sees the light travel a distance   d1 = d  from the spacecraft to 
the mirror, but a distance   d2 = d − vΔtS  from the mirror back to the 
spacecraft because the spacecraft has traveled the distance   vΔtS  
forward. Therefore, the total distance traveled by the light is  

    

  

D = d1 + d2

d + d − vΔtS( ) = cΔtS

ΔtS =
2d

c + v

 

 (b) The observer in the spacecraft measures a length-contracted 
initial distance to the mirror of 

    
  
L = d 1−

v2

c2
 

  and the mirror moving toward the ship at speed v. Consider the 
motion of the light toward the mirror in time interval   Δt1 : light 
travels toward the mirror at speed c while the mirror travels toward 
the spacecraft at speed v; together, they travel the distance L:  

    

  

cΔt1 + vΔt1 = L

Δt1 =
L

c + v
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  When light strikes the mirror, it is a distance   L ' = L − vΔt1  from 
the spacecraft. The light must travel back through this same 
distance to return to the spacecraft:  

    

  
cΔt2 = L − vΔt1     →    Δt2 =

L
c
−

v
c
Δt1

 

  The total travel time is  
  

  

Δt1 + Δt2 =
L

c + v
+

L
c
−

v
c
Δt1

=
L

c + v
+

L
c
−

v
c

L
c + v

⎛
⎝⎜

⎞
⎠⎟

=
Lc + L c + v( ) − Lv

c c + v( ) =
2Lc

c c + v( ) =
2

c + v( ) d 1−
v2

c2

=
2

c + v( ) d
c2 − v2

c

Δt1 + Δt2 =
2d
c

c − v
c + v

 

P39.87 Since the total momentum is zero before decay, it is necessary that 
after the decay 

   
  
pnucleus = pphoton =

Eγ

c
=

14.0 keV
c

 

 Also, for the recoiling nucleus, 
  
E2 = p2c2 + mc2( )2

with 

     Mc2 = 8.60 × 10−9  J = 5.38 × 1010  eV = 5.38 × 107  keV  

 Thus,  
  

Mc2 + K( )2
= 14.0 keV( )2

+ Mc2( )2
 

 or  

   
  

1+
K

Mc 2

⎛
⎝⎜

⎞
⎠⎟

2

=
14.0 keV

Mc 2

⎛
⎝⎜

⎞
⎠⎟

2

+ 1  

 Because the term 
   

14.0 keV
Mc2

⎛
⎝⎜

⎞
⎠⎟

2

 1 , evaluating 
  

14.0 keV
Mc2

⎛
⎝⎜

⎞
⎠⎟

2

+ 1  on a 

calculator gives 1.  
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 We need to expand 
  

14.0 keV
Mc2

⎛
⎝⎜

⎞
⎠⎟

2

+ 1  using the Binomial Theorem: 

   

  
1+

K
Mc2 = 1+

14.0 keV
Mc2

⎛
⎝⎜

⎞
⎠⎟

2

≈ 1+
1
2

14.0 keV
Mc2

⎛
⎝⎜

⎞
⎠⎟

2

 

   

  
K ≈

14.0 keV( )2

2Mc2 =
14.0 × 103  eV( )2

2 53.8 × 109  eV( ) = 1.82 × 10−3  eV  

 
 

 

Challenge Problems 
P39.88 (a) At any speed, the momentum of the particle is given by 

   

  

p = γ mu =
mu

1− u c( )2  

  With Newton’s law expressed as 
 
F = qE =

dp
dt

, we have  

   

  

qE =
d
dt

mu 1−
u2

c2

⎛

⎝⎜
⎞

⎠⎟

−1 2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

   
  
qE = m 1−

u2

c2

⎛

⎝⎜
⎞

⎠⎟

−1 2
du
dt

+
1
2

mu 1−
u2

c2

⎛

⎝⎜
⎞

⎠⎟

−3 2
2u
c2

⎛
⎝⎜

⎞
⎠⎟

du
dt

 

  so 

  

qE
m

=
du
dt

1− u2 c2 + u2 c2

1− u2 c2( )3 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

  and 
  

a =
du
dt

=
qE
m

1−
u2

c2

⎛

⎝⎜
⎞

⎠⎟

3 2

 

 (b) For u small compared to c, the relativistic expression reduces to 

the classical 
 
a =

qE
m

. As u approaches c, the acceleration 

approaches zero, so that the object can never reach the speed of 
light. 
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 (c) We can use the result of (a) to find the velocity u at time t:  
   

  

a =
du
dt

=
qE
m

1−
u2

c2

⎛
⎝⎜

⎞
⎠⎟

3 2

→
du

1− u2 c2( )3 2
0

u

∫ =
qE
m

dt
0

t

∫

u

1− u2 c2( )1 2 =
qEt
m

u2 =
qEt
m

⎛
⎝⎜

⎞
⎠⎟

2

1−
u2

c2

⎛
⎝⎜

⎞
⎠⎟

u =
qEct

m2c2 + q2E2t2

 

  Now, we can use this result to find position x at time t:  

   

  

dx
dt

= u =
qEct

m2c2 + q2E2t2

x = udt
0

t

∫ = qEc
tdt

m2c2 + q2E2t20

t

∫ =
c

qE
m2c2 + q2E2t2

0

t

x =
c

qE
m2c2 + q2E2t2 − mc( )

 

P39.89 (a) Take the two colliding protons as the system 

     E1 = K + mc2     E2 = mc2  

     E1
2 = p1

2c2 + m2c4    p2 = 0  

  In the final state, 
   

  E f = K f + Mc2 = p f
2c2 + M2c4   

  By energy conservation, 
  
E1 + E2 = Ef , so 

   
  
E1

2 + 2E1E2 + E2
2 = Ef

2  

   

  

p1
2c2 + m2c4 + 2 K + mc2( )mc2 + m2c4

= p f
2c2 + M2c4

 

  By conservation of momentum, 
  
p1 = p f , so  

   

  

p1
2c2 + m2c4 + 2 K + mc2( )mc2 + m2c4

= p f
2c2 + M2c4
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  and we have then  

   
  
M2c4 = 2Kmc2 + 4m2c4 =

4Km2c4

2mc2 + 4m2c4  

   
  
Mc2 = 2mc2 1+

K
2mc2

 

 

ANS. FIG. P39.89 

 (b) By contrast, for colliding beams we have, in the original state,  

     E1 = K + mc2    E2 = K + mc2  

  In the final state,  

   
  
E f = Mc2  

   
  
E1 + E2 = Ef :  

      K + mc2 + K + mc2 = Mc2  

    
  
Mc2 = 2mc2 1+

K
2mc2

⎛
⎝⎜

⎞
⎠⎟

 

P39.90 We choose to write down the answer to part (b) first. 

 (b) Consider a hermit who lives on an asteroid halfway between the 
Sun and Tau Ceti, stationary with respect to both. Just as our 
spaceship is passing him, he also sees the blast waves from both 
explosions. Judging both stars to be stationary, this observer 

concludes that 
 
the two stars blew up simultaneously . 
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 (a) We in the spaceship moving past the hermit do not calculate the 
explosions to be simultaneous. We measure the distance we have 
traveled from the Sun as 

   
  
L = Lp 1−

v
c

⎛
⎝⎜

⎞
⎠⎟

2

= 6.00 ly( ) 1− 0.800( )2 = 3.60 ly  

  We see the Sun flying away from us at 0.800c while the light from 
the Sun approaches at 1.00c. Thus, the gap between the Sun and 
its blast wave has opened at 1.80c, and the time we calculate to 
have elapsed since the Sun exploded is 

   
  

3.60 ly
1.80c

= 2.00 yr  

  We see Tau Ceti as moving toward us at 0.800c, while its light 
approaches at 1.00c, only 0.200c faster. We measure the gap 
between that star and its blast wave as 3.60 ly and growing at 
0.200c. We calculate that it must have been opening for 

   
  

3.60 ly
0.200c

= 18.0 yr  

  and conclude that  Tau Ceti exploded 16.0 years before the Sun . 

P39.91 (a) Since Dina is in the same reference frame, S′, as Owen, she 
measures the ball to have the same speed Owen observes, namely  

   
  ′ux = 0.800c

 

 (b) Within the frame S′, the ball travels  1.80 × 1012  m  at a speed of 
0.800c, so  

   
  
Δ ′t =

Lp

′ux

=
1.80 × 1012  m

0.800 3.00 × 108  m/s( ) = 7.50 × 103  s  

 (c) In the S frame, the distance between Dina and Owen is a proper 
length; therefore,  

   
  
L = Lp 1−

v2

c2 = 1.80 × 1012  m( ) 1−
0.600c( )2

c2 = 1.44 × 1012  m  

  Since v = 0.600c and   ′ux = −0.800c,  the velocity Ed measures for 
the ball is 

   
  
ux =

′ux + v
1 + ′uxv c2 =

−0.800c( ) + 0.600c( )
1 + −0.800( ) 0.600( ) = −0.385c  
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 (d) Ed measures the ball and Dina to be initially separated by 

 1.44 × 1012  m.  Dina’s motion at 0.600c and the ball’s motion at 
0.385c cover this distance from both ends. The gap closes at the 
rate 0.600c + 0.385c = 0.985c, so the ball and catcher meet after a 
time 

     
  
Δt =

1.44 × 1012  m
0.985 3.00 × 108  m/s( ) = 4.88 × 103  s  
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 
P39.2 (a–b) See P39.2 for full explanation. 

P39.4 See P39.4 for full explanation. 

P39.6 (a) 0.436 m; (b) less than 0.436 m 

P39.8 (a)  2.18 µs ; (b) 649 m 

P39.10 65.0 beats/min; (b) 10.5 beats/min 

P39.12 (a) Lp = 20.0 m; (b) L = 19.0 m; (c) 0.312c 

P39.14 0.140c 

P39.16 (a)  1.3× 10−7  s;  (b) 38 m; (c) 7.6 m 

P39.18 42.1 g/cm3 

P39.20 

  

v =
cLp

c2Δt2 + Lp
2

 

P39.22 (a)  39.2 µs ; (b) accurate to one digit 

P39.24 (a) 5.45 yr; (b) Goslo 

P39.26 1.13 × 104 Hz 

P39.28 (a) v = 0.943c; (b) 2.55 × 103 m  

P39.30 (a) 
  
L = L0 1− v

c( )2

cos2θ0
⎡
⎣⎢

⎤
⎦⎥

1 2

; (b)  γ tanθ0  

P39.32 0.960c 

P39.34 0.893c, 16.8° above the x’ axis 

P39.36 (a)  2.73 × 10−24  kg ⋅m/s ; (b)  1.58 × 10−22  kg ⋅m/s ;  

(c)  5.64 × 10−22  kg ⋅m/s  

P39.38 
  
u = c

m2c2 p2( ) + 1
 

P39.40 (a) $800; (b) $2.12 × 109 

P39.42 (a) 0.141c; (b) 0.436c 

P39.44 (a) 0.582 MeV; (b) 2.45 MeV 

P39.46 (a) 0.999997c; (b) 3.74 × 105 MeV 

P39.48 (a) 4.38 × 1011 J; (b) 4.38 × 1011; (c) See P39.48(c) for full explanation. 
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P39.50 See P39.50 for full explanation. 

P39.52 (a) 3.91 × 104; (b) 0.9999999997c; (c) 7.67 cm 

P39.54 0.842 kg 

P39.56 1.20 MeV 

P39.58 See P39.58 for full explanation. 

P39.60 larger; ~10−9 J 

P39.62 (a) isolated; (b) isolated system: conservation of energy and isolated 
system: conservation of momentum; (c) 6.22 and 2.01;  
(d)   3.09m1 + m2 = 1.66 × 10−27  kg ; (e)   m2 = 3.52m1 ;  

(f)   m1 = 2.51× 10−28  kg  and   m2 = 8.84 × 10−28  kg  

P39.64 (a) 

  
M =

2m 4 − u2 c2

3 1− u2 c2
; (b) 

  

4m
3

; (c) The answer to part (b) is in 

agreement with the classical result, which is the arithmetic sum of the 
masses of the two colliding particles. 

P39.66 (a) 0.023 6c ; (b) 6.18 × 10−4c 

P39.68 When Speedo arrives back on Earth, 118 years have passed, and Goslo 
would be 158 years old. That is impossible at the present time. 

P39.70 (a) 0.467c; (b) 2.75 × 103 kg 

P39.72 See P39.72 for full explanation. 

P39.74 (a) 
  
u = c

H 2 + 2H
H 2 + 2H + 1

⎛

⎝⎜
⎞

⎠⎟

1 2

; (b) u goes to 0 as K goes to 0; (c) u 

approaches c as K increases without limit; (d) 
  

P
mcH 1 2(H + 2)1 2(H + 1)2

; 

(e) See P39.74(e) for full explanation; (f) See P39.74(f) for full 
explanation; (g) As energy is steadily imparted to particle, the 
particle’s acceleration decreases. It decreases steeply, proportionally to 
1/K3 at high energy. In this way the particle’s speed cannot reach or 
surpass a certain upper limit, which is the speed of light in vacuum. 

P39.76 (a) 
  
m =

3.65 MeV
c2

; (b) v = 0.589c 

P39.78 (a) 76.0 minutes; (b) 52.1 minutes 

P39.80 (a–c) See P39.80 for full explanation; (d) c 
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P39.82 Because the speed of the electrons after accelerating through a 
potential difference  ΔV  is more than half the speed of light, there is no 
way to double its speed, regardless of the increased accelerating 
voltage. 

P39.84 (a) See ANS. GRAPH P39.84; (b) 0.115c; (c) 0.257c; (d) 0.786c 

P39.86 (a) 
  

2d
c + v

; (b) 
  

2d
c

c − v
c + v

 

P39.88 (a) 
  
a =

du
dt

=
qE
m

1−
u2

c2

⎛

⎝⎜
⎞

⎠⎟

3 2

; (b) For u small compared to c, the relativistic 

expression reduces to the classical 
 
a =

qE
m

. As u approaches c, the 

acceleration approaches zero, so that the object can never reach the 

speed of light; (c) 

  
u =

qEct

m2c2 + q2E2t2
 and 

  
x =

c
qE

m2c2 + q2E2t2 − mc( )  

P39.90 (a) Tau Ceti exploded 16.0 years before the Sun; (b) The two stars blew 
up simultaneously. 
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40 
Introduction to Quantum Physics 

 

CHAPTER OUTLINE 
 

40.1  Blackbody Radiation and Planck’s Hypothesis 

40.2  The Photoelectric Effect 

40.3  The Compton Effect 

40.4 The Nature of Electromagnetic Waves 

40.5  The Wave Properties of Particles  

40.6 A New Model: The Quantum Particle 

40.7 The Double-Slit Experiment Revisited 

40.8 The Uncertainty Principle 
 

* An asterisk indicates a question or problem item new to this edition. 

 

ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ40.1 The ranking is d > a = e > b > c. The wavelength is described by  
λ = h/p in all cases. For photons, the momentum is given by p = E/c, 
so (a) is the same as (e), and (d) has a wavelength ten times larger. 
For the particles with mass, pc = (E2 – m2c4)1/2 = ([K + mc2]2 – m2c4)1/2  
= (K2 + 2Kmc2)1/2. Thus a particle with larger mass has more 
momentum for the same kinetic energy, and a shorter wavelength. 

OQ40.2 Answer (a). The x-ray photon transfers some of its energy to the 
electron. Thus, its frequency must decrease. 

OQ40.3 Answer (b). In Compton scattering, a photon of energy E = hf = hc/λ 
is scattered from an electron at rest. The scattering sets the electron 
into motion: the electron gains kinetic energy, so the photon loses 
energy. Because the photon has less energy, its frequency is smaller 
than E/h and its wavelength is larger than hc/E.  
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OQ40.4 (i) Answer (d). Because P = IV, the power input to the filament has 
increased by 8 × 2 = 16 times. The filament radiates this greater 
power according to Stefan’s law, so its absolute temperature is 
higher by the fourth root of 16: it is two times higher.  

 (ii)  Answer (d). By Wien’s displacement law, the wavelength 
emitted with the highest intensity is inversely proportional the 
temperature: the temperature is twice as large, so the 
wavelength is half as large.  

OQ40.5 Answer (a) and (c). One form of Heisenberg’s uncertainty relation is 

   ΔxΔpx ≥  2π ,  which says that one cannot determine both the 
position and momentum of a particle with arbitrary accuracy. 
Another form of this relation is    ΔEΔt ≥  2π ,  which sets a limit on 
how accurately the energy can be determined in a finite time interval.  

OQ40.6 Answer: (a). The stopping potential is 1.00 V, so the maximum 
kinetic energy is 1.00 eV. From Equation 40.9,  

    

  

Kmax = hf −φ = hc λ −φ

λ =
hc

φ + Kmax

=
1240 eV ⋅nm

2.50 eV + 1.00 eV( ) = 354 nm
 

OQ40.7 Answer (c). UV light has the highest frequency of the three, and hence 
each photon delivers more energy to a skin cell. This explains why 
you can become sunburned on a cloudy day: clouds block visible light 
and infrared, but not much ultraviolet. You usually do not become 
sunburned through window glass, even though you can see the visible 
light from the Sun coming through the window, because the glass 
absorbs much of the ultraviolet and reemits it as infrared. 

OQ40.8 Answer (d). Electron diffraction by crystals, first detected by the 
Davisson-Germer experiment in 1927, confirmed de Broglie’s 
hypothesis and, of the listed choices, most clearly demonstrates the 
wave nature of electrons.  

OQ40.9 Answer (c). We obtain the momentum of the electron from 

   
  
K =

1
2

mu2 =
p2

2m
= eΔV → p = 2meΔV  

 The de Broglie wavelength is then 

     

  

λ = h
p

= h
2meΔV

= 6.626× 10−34  J ⋅s

2 9.11× 10−31  kg( ) 1.60× 10−19  C( ) 50.0 V( )
= 1.74× 10−10  m = 0.174 nm
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OQ40.10 The ranking is: electron, proton, helium nucleus. The comparative 
masses of the particles of interest are   mp ≈ 1 840me  and   mHe ≈ 4mp.  
Assuming each particle is classical, its wavelength is inversely 
proportional to its mass: λ = h/p = h/mv.  

OQ40.11 (i)  (a) and (c). Electrons and protons possess mass, therefore they 
have rest energy ER = mc2. Photons do not have rest energy—
they are never at rest.  

 (ii)  (a) and (c). The electron and the proton have charges –e and +e, 
respectively; the photon has no charge.  

 (iii)  (a), (b), and (c). The electron and proton carry energy 

  
E = p2c2 + mc2( )2

= K + mc2 ;  the photon carries energy E = hf. 

 (iv)  (a), (b), and (c). The electron and proton carry momentum  
p = γ mu, the photon carries momentum p = E/c, where E is its 
energy. 

 (v)  Answer (b). Because it is light.  

 (vi)  (a), (b), and (c). Each has the same de Broglie wavelength  
λ = h/p. 

OQ40.12 Answer (a). If we set 
  
K = 1

2
mu2 = p2

2m
= eΔV ,  which is the same for 

both particles, then we see that the momentum is   p = 2meΔV ,  so 
the electron has the smaller momentum and therefore the longer 

wavelength 
  
λ =

h
p

=
h

2meΔV
⎛
⎝⎜

⎞
⎠⎟

. 

OQ40.13 Answer (b). Diffraction, polarization, interference, and refraction are 
all processes associated with waves. However, to understand the 
photoelectric effect, we must think of the energy transmitted as light 
coming in discrete packets, or quanta, called photons. Thus, the 
photoelectric effect most clearly demonstrates the particle nature of 
light. 

OQ40.14 Answer  (c). For the same uncertainty in speed, the particle with the 
smaller mass has the smaller uncertainty in momentum,   Δpx = mΔvx ,  

thus greater uncertainty in its position: 
   
Δx≥


2πΔpx

=


2πmΔvx

.  The 

mass of the electron is smaller than that of the proton, thus its 
minimum possible uncertainty in position is greater than that of the 
proton.  
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ40.1 In general, a turn of wire receives energy by two energy transfer 
mechanisms: (1) electrical transmission and (2) absorption of 
electromagnetic radiation from neighboring turns. Each turn of wire 
emits radiation similar to blackbody radiation. For most turns, the 
electromagnetic radiation absorbed comes from two neighbors. The 
turns on the end, however, have only one neighbor so they receive 
less energy input by electromagnetic radiation than the others. As a 
result, they operate at a lower temperature and do not glow as 
brightly. 

CQ40.2 The Compton effect describes the scattering of photons from 
electrons, while the photoelectric effect predicts the ejection of 
electrons due to the absorption of photons by a material. 

CQ40.3 Any object of macroscopic size—including a grain of dust—has an 
undetectably small wavelength, so any diffraction effects it might 
exhibit are very small, effectively undetectable. Recall historically 
how the diffraction of sound waves was at one time well known, but 
the diffraction of light was not.  

CQ40.4 No. The second metal may have a larger work function than the first, 
in which case the incident photons may not have enough energy to 
eject photoelectrons. 

CQ40.5 The stopping potential measures the kinetic energy of the most 
energetic photoelectrons. Each of them has gotten its energy from a 
single photon. According to Planck’s E = hf, the photon energy 
depends on the frequency of the light. The intensity controls only the 
number of photons reaching a unit area in a unit time. 

CQ40.6 Wave theory predicts that the photoelectric effect should occur at any 
frequency, provided the light intensity is high enough, or provided 
that the light shines on the surface for a sufficient time interval so 
that enough energy is delivered to the surface to eject electrons. 
However, as seen in the photoelectric experiments, the light must 
have a sufficiently high frequency for the effect to occur, and that 
electrons are either ejected almost immediately (less than 109 seconds 
after the surface is illuminated) or not at all, regardless of the 
intensity.   

CQ40.7 Ultraviolet light has shorter wavelength and higher photon energy 
than any wavelength of visible light. 
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CQ40.8 Our eyes are not able to detect all frequencies of electromagnetic 
waves. For example, all objects that are above 0 K in temperature 
emit electromagnetic radiation in the infrared region. This describes 
everything in a dark room. We are only able to see objects that emit or 
reflect electromagnetic radiation in the visible portion of the 
spectrum. 

CQ40.9 An electron has both classical-wave and classical-particle 
characteristics. In single- and double-slit diffraction and interference 
experiments, electrons behave like classical waves. An electron has 
mass and charge. It carries kinetic energy and momentum in parcels 
of definite size, as classical particles do. At the same time it has a 
particular wavelength and frequency. Since an electron displays 
characteristics of both classical waves and classical particles, it is 
neither a classical wave nor a classical particle. It is customary to call 
it a quantum particle, but another invented term, such as “wavicle,” 
could serve equally well. 

CQ40.10 A photon can interact with the photographic film at only one point. 
A few photons would only give a few dots of exposure, apparently 
randomly scattered. 

CQ40.11 The wavelength of violet light is on the order of 
 

1
2

 µm,  while the de 

Broglie wavelength of an electron can be 4 orders of magnitude 
smaller. The resolution is better (recall Rayleigh’s criterion) because 
the diffraction effects are smaller.  

CQ40.12 Light has both classical-wave and classical-particle characteristics. In 
single- and double-slit experiments light behaves like a wave. In the 
photoelectric effect light behaves like a particle. Light may be 
characterized as an electromagnetic wave with a particular 
wavelength or frequency, yet at the same time light may be 
characterized as a stream of photons, each carrying a discrete energy, 
hf. Since light displays both wave and particle characteristics, perhaps 
it would be fair to call light a “wavicle.” It is customary to call a 
photon a quantum particle, different from a classical particle. 

CQ40.13 Comparing Equation 40.9 with the slope-intercept form of the 
equation for a straight line, y = mx + b, we see  

 (a) that the slope in Figure 40.11 in the text is Planck’s constant h 
and  

 (b) that the y intercept is –φ, the negative of the work function.  

 (c) If a different metal were used, the slope would remain the same 
but the work function would be different. Thus, data for 
different metals appear as parallel lines on the graph. 
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CQ40.14 The discovery of electron diffraction by Davisson and Germer was a 
fundamental advance in our understanding of the motion of material 
particles. Newton’s laws fail to properly describe the motion of an 
object with small mass. It moves as a wave, not as a classical particle. 
Proceeding from this recognition, the development of quantum 
mechanics made possible describing the motion of electrons in 
atoms; understanding molecular structure and the behavior of matter 
at the atomic scale, including electronics, photonics, and engineered 
materials; accounting for the motion of nucleons in nuclei; and 
studying elementary particles. 

CQ40.15 The spacing between repeating structures on the surface of the 
feathers or scales is on the order of 1/2 the wavelength of light. An 
optical microscope would not have the resolution to see such fine 
detail, while an electron microscope can. The electrons can have 
much shorter wavelength. 

CQ40.16 The intensity of electron waves in some small region of space 
determines the probability that an electron will be found in that 
region. 

CQ40.17 The first flaw is that the Rayleigh–Jeans law predicts that the 
intensity of short wavelength radiation emitted by a black body 
approaches infinity as the wavelength decreases. This is known as 
the ultraviolet catastrophe. The second flaw is the prediction of much 
more power output from a black body than is shown experimentally. 
The intensity of radiation from the black body is given by the area 
under the red I (λ, T) vs. λ curve in Figure 40.5 in the text, not by the 
area under the blue curve. 

 Planck’s Law dealt with both of these issues and brought the theory 
into agreement with the experimental data by adding an exponential 
term to the denominator that depends on 1/λ. This keeps both the 
predicted intensity from approaching infinity as the wavelength 
decreases and the area under the curve finite. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 40.1 Blackbody Radiation and Planck’s Hypothesis 
P40.1 The absolute temperature of the heating element is  

   T = 150°C + 273 = 423 K 

 The peak wavelength is, from Equation 40.2, 
   

  λmaxT = 2.898× 10−3  m ⋅K  

   

  
λmax = 2.898× 10−3  m ⋅K

T
= 2.898× 10−3  m ⋅K

423 K
= 6.85× 10−6  m

 

 or   6.85 µm, which is in the infrared region of the spectrum. 

P40.2 (a) From Equation 40.2,  

   
 
λmax =

2.898 × 10−3  m ⋅K
2900 K

= 999 nm  

 (b) The wavelength emitted at the greatest intensity is in the infrared 
(greater than 700 nm), and according to the graph in Active 
Figure 40.3, much more energy is radiated at wavelengths longer 
than  λmax  than at shorter wavelengths.  

P40.3 (a) For lightning, 

    
  
λmax =

2.898 × 10−3  m ⋅K
T

~
2.898 × 10−3  m ⋅K

104  K
~ 10−7  m  

  For the explosion, 

    
 
λmax ~

2.898 × 10−3  m ⋅K
107  K

~ 10−10  m  

 (b) Lightning: ultraviolet; explosion: x-ray and gamma ray 

P40.4 (a) The peak radiation occurs at approximately 560 nm wavelength. 
From Wien’s displacement law, 

   

  
T =

0.289 8 × 10−2  m ⋅K
λmax

=
0.289 8 × 10−2  m ⋅K

560 × 10−9  m
≈ 5 200 K

 

 (b) Clearly, a firefly is not at this temperature, so 

 
this is not blackbody radiation .  
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P40.5 The energy of a single 500-nm photon is: 
   

  

Eγ = hf = hc
λ

=
6.626× 10−34  J ⋅s( ) 3.00× 108  m/s( )

500× 10−9  m
= 3.98× 10−19  J

 

 The energy entering the eye each second 
   

  

E = PΔt = IAΔt

= 4.00× 10−11  W/m2( ) π
4

8.50× 10−3  m( )2⎡
⎣⎢

⎤
⎦⎥

1.00 s( )

= 2.27 × 10−15  J

 

 The number of photons required to yield this energy is  

   
  
n =

E
Eγ

=
2.27 × 10−15  J

3.98 × 10−19  J/photon
= 5.71× 103  photons  

P40.6 (i) Planck’s equation is E = hf. The photon energies are:  

  (a) 

  

E = hf = 6.626 × 10−34  J ⋅ s( ) 620 × 1012  s−1( ) 1.00 eV
1.60 × 10−19  J

⎛
⎝⎜

⎞
⎠⎟

= 2.57 eV

 

  (b) 

  

E = hf = 6.626 × 10−34  J ⋅ s( ) 3.10 × 109  s−1( ) 1.00 eV
1.60 × 10−19  J

⎛
⎝⎜

⎞
⎠⎟

= 1.28 × 10−5  eV

 

  (c) 

  

E = hf = 6.626 × 10−34  J ⋅ s( ) 46.0 × 106  s−1( ) 1.00 eV
1.60 × 10−19  J

⎛
⎝⎜

⎞
⎠⎟

= 1.91× 10−7  eV

 

 (ii) Wavelengths: 

  (a) 
  
λ =

c
f

=
3.00 × 108  m/s
620 × 1012  Hz

= 4.84 × 10−7  m = 484 nm  

  (b) 
  
λ =

c
f

=
3.00 × 108  m/s
3.10 × 109  Hz

= 9.68 × 10−2  m = 9.68 cm  

  (c) 
  
λ =

c
f

=
3.00 × 108  m/s
46.0 × 106  Hz

= 6.52 m  



Chapter 40     903 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (iii) Part of spectrum: 

  (a) 
 
visible light blue( )  

  (b)  radio wave  

  (c)  radio wave  

P40.7 From Wien’s displacement law, 

 (a) 
  
T =

2.898 × 10−3  m ⋅K
λmax

=
2.898 × 10−3  m ⋅K

970 × 10−9  m
 ≈ 2.99 × 103  K  

 (b) 
  
T =

2.898 × 10−3  m ⋅K
λmax

=
2.898 × 10−3  m ⋅K

145 × 10−9  m
 ≈ 2.00 × 104  K  

P40.8 Each photon has an energy   
   

  E = hf = 6.626 × 10−34( ) 99.7 × 106( ) = 6.61× 10−26  J
 

 This implies that there are   

   
 

150 × 103  J/s
6.61× 10−26  J/photon

= 2.27 × 1030  photons/s  

P40.9 From Equation 40.2, Wien’s displacement law, 
   

  
T = 2.898× 10−3  m ⋅K

560× 10−9  m
= 5.18× 103  K

 

P40.10 (a) From Stefan’s law (Equation 40.1),   P = eAσ T 4.  If the sun emits as 
a black body, e = 1.  

   

  

T =
P

eAσ
⎛
⎝⎜

⎞
⎠⎟

1 4

=
3.85 × 1026  W

1 4π 6.96 × 108  m( )2⎡
⎣

⎤
⎦ 5.67 × 10−8  W/m2 ⋅K4( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 4

= 5.78 × 103  K

 

 (b) 

  

λmax =
2.898 × 10−3  m ⋅K

T
=

2.898 × 10−3  m ⋅K
5.78 × 103  K

= 5.01× 10−7  m = 501 nm
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P40.11 Planck’s radiation law, Equation 40.6, gives the intensity-per-
wavelength (W/m2-wavelength). Because the range of the wavelengths 
is small, we treat the wavelength as the average  λ = λ1 + λ2( ) 2 . Taking 
E to be the average photon energy and n to be the number of photons 
emitted each second, we multiply by area and wavelength range to 
have energy-per-time leaving the hole: 
 

  

P = I(λ ,T)λA

= 2π hc2

λ1 + λ2( ) 2⎡⎣ ⎤⎦
5

e2hc λ1+λ2( )kBT⎡
⎣

⎤
⎦ − 1⎛

⎝
⎞
⎠

λ2 − λ1( )π d 2( )2

= En = nhf

 

 where 
  
E ≈ hf ≈

hc
λ

=
2hc

λ1 + λ2

 

 Solving for n, 
   

  

n = P
E

=
8π 2cd2 λ2 − λ1( )

λ1 + λ2( )4 e2hc λ1+λ2( )kBT⎡
⎣

⎤
⎦ − 1⎛

⎝
⎞
⎠

 

 Substituting numerical values and suppressing units, 
   

  

n =
8π 2 3.00× 108  m/s( ) 0.050 0× 10−3  m( )2

1.00× 10−9  m( )

1 001× 10−9  m( )4 e
2 6.626×10−34( ) 3.00×108( )

1 001×10−9( ) 1.38×10−23( ) 7.50×103( ) − 1
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

n = 5.90× 1016 s
e3.84 − 1( ) = 1.30× 1015 s

 

P40.12 (a) From Stefan’s law, 
   

  

P = eAσT 4

= 1 20.0× 10−4  m2( ) 5.67 × 10−8  W/m2 ⋅K4( ) 5 000 K( )4

= 7.09× 104  W

  

 (b) From Wien’s displacement law, 

   
  λmaxT = λmax 5 000 K( ) = 2.898 × 10−3  m ⋅K ⇒λmax = 580 nm  
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 (c) We compute:  

   
  

hc
kBT

=
6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m/s( )

1.38 × 10−23  J/K( ) 5 000 K( ) = 2.88 × 10−6  m  

  The power per wavelength interval is  

   
  
P λ( ) = AI λ( ) =

2π hc2A
λ5 exp hc λkBT( ) − 1⎡⎣ ⎤⎦

, 

  and 
  

  

2π hc2A = 2π 6.626× 10−34  J ⋅s( ) 3.00× 108  m/s( )2
20.0× 10−4  m2( )

= 7.50× 10−19  J ⋅m4/s

 

   

  

P 580 nm( ) = 7.50× 10−19  J ⋅m4/s
580× 10−9  m( )5

exp 2.88 µm 0.580 µm( )− 1⎡⎣ ⎤⎦

= 1.15× 1013  J/m ⋅s
e4.973 − 1

= 7.99× 1010  W/m

 

 (d)–(i) The other values are computed similarly: 

 

   

(d)
(e)
(f)
(g)
(h)
(i)

λ hc
λkBT

ehc λkBT − 1
2π hc2A

λ5 P (λ), W/m

1.00 nm 2882.6 7.96 × 101251 7.50 × 1026 9.42 × 10−1226

5.00 nm 576.5 2.40 × 10250 2.40 × 1023 1.00 × 10−227

400 nm 7.21 1347 7.32 × 1013 5.44 × 1010

700 nm 4.12 60.4 4.46 × 1012 7.38 × 1010

1.00 mm 0.00288 0.00289 7.50 × 10−4 0.260
10.0 cm 2.88 × 10−5 2.88 × 10−5 7.50 × 10−14 2.60 × 10−9

 

 (j) We approximate the area under the P (λ) versus λ curve, between 
400 nm and 700 nm, as the product of the average power per 
wavelength times the range of wavelength: 

   

  

P = P λ( )Δλ
=

5.44 + 7.38( )× 1010  W/m⎡⎣ ⎤⎦
2

700− 400( )× 10−9  m⎡⎣ ⎤⎦

= 1.92 × 104  W ≈ 19 kW
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P40.13 (a) The mass of the sphere is  

   

  

m = ρV = ρ 4
3
π r3⎛

⎝⎜
⎞
⎠⎟ = 7.86 × 103  kg/m3( ) 4

3
π 0.020 0 m( )3⎡

⎣⎢
⎤
⎦⎥

= 0.263 kg

 

 (b) From Stefan’s law, 

     P = σ AeT 4 = σ 4π r2( )eT 4  
   

  

P = 5.67 × 10−8  W/m2 ⋅K4( ) 4π 0.020 0 m( )2⎡⎣ ⎤⎦ 0.860( ) 293 K( )4

= 1.81 W

 

 (c) It emits but does not absorb radiation, so its temperature must 
drop according to 

   
 
Q = mcΔT = mc Tf −Ti( ) →

dQ
dt

= mc
dTf

dt
 

   

  

dTf

dt
=

dQ dt
mc

=
−P
mc

=
−1.81 J/s

0.263 kg( ) 448 J/kg ⋅C°( )
= −0.015 3 °C/ s = −0.919 °C/ min

 

 (d)   λmaxT = 2.898 × 10−3  m ⋅K  

  

 
λmax =

2.898 × 10−3  m ⋅K
293 K

= 9.89 × 10−6  m = 9.89 µm  (infrared)
 

 (e) 
  
E = hf =

hc
λ

=
6.626 × 10−34  J ⋅ s( )  3.00 × 108  m/s( )

9.89 × 10−6  m
= 2.01× 10−20  J  

 (f) The energy output each second is carried by photons according to 
   

  

P = N
Δt

⎛
⎝⎜

⎞
⎠⎟ E

N
Δt

= P
E

= 1.81 J/s
2.01× 10−20  J/photon

= 8.98× 1019  photon/s

 

  Matter is coupled to radiation quite strongly, in terms of photon 
numbers. 
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P40.14 Planck’s radiation law is  

  
  
I λ, T( ) =

2π hc2

λ5 ehc λkBT − 1( ) . 

 For long wavelengths, the exponent   hc λkBT  is small. Using the series 
expansion  

  
   
ex = 1+ x +

x2

2!
+

x3

3!
+  

 Planck’s law reduces to 

  
   
I λ, T( ) =

2π hc2

λ5 1 + hc λkBT +( ) − 1⎡⎣ ⎤⎦
≈

2π hc2

λ5 hc λkBT( ) =
2π ckBT

λ 4  

 which is the Rayleigh–Jeans law, for very long wavelengths. 

P40.15 From the figure, at maximum horizontal displacement x, the bob is at 

height   h = L − L2 − x2 .  Then the pendulum’s total energy is  

   

  

E = mgh = mg L − L2 − x2( )
E = 1.00 kg( ) 9.80 m/s2( ) 1.00 m − 1.00 m( )2 − 0.030 0 m( )2( )

= 4.41× 10−3  J

 

 

ANS. FIG. P40.15 

 The frequency of oscillation is  

   
  
f =

ω
2π

=
1

2π
g
L

=
1

2π
9.80 m/s2

1.00 m
= 0.498 Hz  

 The energy is quantized:  

   E = nhf 

 Therefore,  

   

  

n =
E
hf

=
4.41× 10−3  J

6.626 × 10−34  J ⋅ s( ) 0.498 s−1( )
= 1.34 × 1031
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*P40.16 (a) The physical length of the pulse is 

       = vt = 3.00 × 108  m s( ) 14.0 × 10−12  s( ) = 4.20 mm  

 (b) We find the number of photons from 

   
  
E = hc

λ
=

6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m/s( )
694.3 × 10−9  m

= 2.86 × 10−19  J  

  Then, 

   
  
N = 3.00 J

2.86 × 10−19  J
= 1.05 × 1019  photons  

 (c) The volume of the beam is 

     V = 4.20 mm( ) π 3.00 mm( )2⎡⎣ ⎤⎦ = 119 mm3  

  The number of photons per cubic millimeter is  

   
  
n = 1.05 × 1019  photons

119 mm3 = 8.82 × 1016  mm−3  

 
 

 

Section 40.2 The Photoelectric Effect 
*P40.17 (a) The cutoff wavelength is given by Equation 40.12: 

   
  
λc = hc

φ
=

6.626× 10−34  J ⋅s( ) 2.998× 108  m s( )
4.20 eV( ) 1.602 × 10−19  J eV( ) = 295 nm

 

  which corresponds to a frequency of
 

   
  
fc = c

λc

= 2.998× 108  m s
295× 10−9  m

= 1.02 × 1015  Hz  

 (b) We find the stopping potential from 
  

hc
λ

= φ + eΔVS:   

   

  

6.626× 10−34( ) 2.998× 108( )
180× 10−9 = 4.20 eV( ) 1.602 × 10−19  J eV( )

                                                                 + 1.602 × 10−19( )ΔVS

 

  Therefore, 
  
ΔVS = 2.69 V .  
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P40.18 (a) At the cutoff wavelength, the energy of the photons is equal to the 
work function (Kmax = 0): 

 
  

hc
λ

= φ → λ =
hc
φ

=
1 240 nm ⋅eV

4.31 eV
= 288 nm  

 (b) This is the cutoff frequency:  

    
  
f =

c
λ

=
3.00 × 108  m/s
288 × 10−9  m

= 1.04 × 1015  Hz  

 (c) The maximum kinetic energy is the difference between the energy 
of the photons and the work function:  

      Kmax = E −φ = 5.50 eV − 4.31 eV =   1.19 eV  

P40.19 (a) Einstein’s photoelectric effect equation is Kmax = hf – φ  and the 
energy required to raise an electron through a 1-V potential is 1 
eV, so that  

   
  Kmax = eΔVs = 0.376 eV  

  The energy of a photon from the mercury lamp is: 
   

  

hf = hc
λ

= (6.626× 10−34  J ⋅s)(2.998× 108  m/s)
546.1× 10−9  m

1 eV
1.602 × 10−19  J

⎛
⎝⎜

⎞
⎠⎟

= 1 240 eV ⋅nm
546.1 nm

= 2.27 eV

 

  Therefore, the work function for this metal is:  
   

  
φ = hf − Kmax = 2.27  eV – 0.376 eV = 1.89 eV

 

 (b) For the yellow light, λ  = 587.5 nm and the photon energy is  
   

  
hf = hc

λ
= 1 240 eV ⋅nm

587.5 nm
= 2.11 eV

 

  Therefore the maximum energy that can be given to an ejected 
electron is 

   
  Kmax = hf −φ = 2.11 eV – 1.89 eV = 0.216 eV  

  so the stopping voltage is  
   

  ΔVs = 0.216 V  

P40.20 (a) The energy of a photon with a wavelength of 400 nm is  
   

  

E = hc
λ

=
6.63× 10−34  J ⋅s( ) 3.00× 108  m/s( )

400× 10−9  m
1 eV

1.60× 10−19  J
⎛
⎝⎜

⎞
⎠⎟

= 3.11 eV
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The energy of a photon with wavelength 400 nm is calculated
to be 3.11 eV. Now compare this energy with the given work
functions. Of these metals, only lithium shows the photoelectric
effect because its work function is less than the energy of the
photon.

 

 (b) For lithium, 
   

  

Kmax = E −φ

=
6.63× 10−34  J ⋅s( ) 3.00× 108  m/s( )

400× 10−9  m
1 eV

1.60× 10−19  J
⎛
⎝⎜

⎞
⎠⎟

                                                                      − 2.30 eV

= 0.808 eV

 

P40.21 The maximum kinetic energy of the electrons is 

   

  

Kmax =
1
2

mumax
2 =

1
2

9.11× 10−31kg( ) 4.60 × 105 m/s( )2

= 9.64 × 10−20  J = 0.602 eV

 

 (a) The work function is 

   
  
φ = E − Kmax =

1 240 eV ⋅nm
625 nm

− 0.602 eV = 1.38 eV  

 (b) At the cutoff frequency, the energy of the photons equals the 
work function:  

   

  

E = hf = φ → f =
φ
h

=
1.38 eV

6.626 × 10−34  J ⋅ s
1.60 × 10−19  J

1 eV
⎛
⎝⎜

⎞
⎠⎟

= 3.34 × 1014  Hz

 

P40.22 (a) The energy needed is E = 1.00 eV = 1.60 × 10–19 J. 

  The energy absorbed in time interval  Δt  is  
    E = PΔt = IAΔt  

  So, 
   

  

Δt =
E
IA

=
1.60 × 10−19  J

500 J/s ⋅m2( ) π 2.82 × 10−15  m( )2⎡
⎣

⎤
⎦

= 1.28 × 107  s

= 148 days

 

 (b) The result for part (a) does not agree at all with the experimental 
observations. 
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P40.23 Ultraviolet photons will be absorbed to knock electrons out of the 
sphere with maximum kinetic energy   Kmax = hf −φ.  As the sphere loses 
charge, it becomes more positive relative to V = 0 at r = ∞. Eventually, 
the sphere will accumulate enough charge +Q that the potential 
difference between the sphere’s surface and infinity reaches the 
stopping potential of the photoelectrons, at which point no more 
electrons can escape.   

   
  
Kmax =

hc
λ

−φ = eΔVs → ΔVs =
1
e

hc
λ

−φ⎛
⎝⎜

⎞
⎠⎟

  

 and  
  

keQ
r

= ΔVs =
1
e

hc
λ

−φ⎛
⎝⎜

⎞
⎠⎟ .  

 Therefore,  

   
 
Q =

r
eke

hc
λ

−φ⎛
⎝⎜

⎞
⎠⎟  

 Solving for Q gives  
   

  

Q = 5.00× 10−2  m
1.602 × 10−19  C( ) 8.99× 109  N ⋅m2 /C2( )

           ×
6.626× 10−34  J ⋅s( ) 2.998× 108  m/s( )

200× 10−9  m

⎡

⎣
⎢
⎢

⎧
⎨
⎪

⎩⎪

                                          −4.70 eV
1.602 × 10−19  J

1 eV
⎛
⎝⎜

⎞
⎠⎟
⎤

⎦
⎥
⎫
⎬
⎪

⎭⎪

= 8.34× 10−12  C

 

P40.24 (a) The energy of photons is 

   
  
E =

hc
λ

=
1 240 nm ⋅eV

150 nm
= 8.27 eV  

 (b) The photon energy is larger than the work function. 

 (c)   KEmax = E −φ = 8.27 eV − 6.35 eV = 1.92 eV  

 (d) 
  
Kmax = eΔVs → ΔVs =

Kmax

e
=

1.92 eV
e

= 1.92 V  
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Section 40.3 The Compton Effect 
P40.25 From the Compton shift equation, the wavelength shift of the scattered 

x-rays is  
  

  

Δλ = h
mec

1− cosθ( )

= 6.63× 10−34  J ⋅s
9.11× 10−31  kg( ) 3.00× 108  m/s( ) 1− cos55.0°( )

= 1.03× 10−12  m
1 nm

10−9  m
⎛
⎝⎜

⎞
⎠⎟ = 1.03× 10−3  nm

 

P40.26 We note that ′′λ − λ = ′′λ − ′λ( ) + ′λ − λ( ) . 

 

ANS. FIG. P40.26 

 At A, the scattering angle is θ, and 

   
  
′λ − λ =

h
mec

1− cosθ( )  

 At B, the scattering angle is 180° – θ, and 

   
  
′′λ − ′λ =

h
mec

1− cos 180° −θ( )[ ] =
h

mec
1 + cosθ[ ] 

 Therefore, 

   

  

′′λ − λ = ′′λ − ′λ( ) + ′λ − λ( )

=
h

mec
1 + cosθ( ) +

h
mec

1− cosθ( ) =
2h
mec

=
2 6.63 × 10−34  J ⋅ s( )

9.11× 10−31  kg( ) 3.00 × 108  m/s( )
= 4.85 × 10−12  m
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*P40.27 This is Compton scattering through 180°: 

   

  

E0 = hc
λ0

=
6.626× 10−34  J ⋅s( ) 3.00× 108  m s( )
0.110× 10−9  m( ) 1.60× 10−19  J eV( ) = 11.3 keV

Δλ = h
mec

1− cosθ( ) = 2.43× 10−12  m( ) 1− cos180°( )

    = 4.85× 10−12  m

 

    ′λ = λ0 + Δλ = 0.115 nm,  so 
  
′E = hc

′λ
= 10.8 keV.  

 By conservation of momentum for the photon-
electron system,  

   

   

h
λ0

î = h
′λ
− î( ) + pe î

 

 and  
  
pe = h

1
λ0

+ 1
′λ

⎛
⎝⎜

⎞
⎠⎟

, 

   

  

pe = 6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m s( ) c
1.60 × 10−19  J eV

⎛
⎝⎜

⎞
⎠⎟

                              × 1
0.110 × 10−9  m

+ 1
0.115 × 10−9  m( )

= 22.1 keV
c

 

 By conservation of system energy, 11.3 keV = 10.8 keV + Ke , so that 

  
Ke = 478 eV .  

 Check:    E
2 = p2c2 + me

2c4  or   mec
2 + Ke( )2 = pc( )2 + mec

2( )2  
    

 

511 keV + 0.478 keV( )2 = 22.1 keV( )2 + 511 keV( )2

2.62 × 105  keV2 = 2.62 × 105  keV2

 

P40.28 (a) and (b) From 
  
Δλ =

h
mec

1− cosθ( )  we calculate the wavelength of the 

scattered photon. For example, at θ = 30° we have 
    

 

′λ + Δλ = 120× 10−12  m

    + 6.626× 10−34  J ⋅s
9.11× 10−31  kg( ) 2.998× 108  m/s( ) 1− cos30.0°( )

= 120.3× 10−12  m

 

ANS. FIG. P40.27 
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  The electron carries off the energy the photon loses: 
    

  

Ke = hc
λ0

− hc
′λ

=
6.626× 10−34  J ⋅s( )  2.998× 108 m/s( )

1.602 × 10−19  J/eV( )
                           × 1

120× 10−12 m
− 1

120.3× 10−12 m
⎛
⎝⎜

⎞
⎠⎟

= 27.9 eV

 

  The other entries are computed similarly. 

θ , degrees 0 30 60 90 120 150 180 

λ ', pm 120.0 120.3 121.2 122.4 123.6 124.5 124.8 

Ke, eV 0 27.9 104 205 305 376 402 

 (c) 

 

180°. We could answer like this: The photon imparts the greatest
momentum to the originally stationary electron in a head-on
collision. Here the photon recoils straight back and the electron
has maximum kinetic energy.

 

P40.29 With Ke = E′ and Ke = E0 – E′, we have 
  
′E = E0 − ′E → ′E =

E0

2
.  

 We also have 
  
′λ =

hc
′E

;  therefore, 
  
′λ =

hc
E0 2

= 2
hc
E0

= 2λ0.  

 By the Compton equation,  

    ′λ = λ0 + λC 1− cosθ( ) → 2λ0 = λ0 + λC 1− cosθ( )  

 Therefore,  

   
 
1− cosθ =

λ0

λC

=
0.001 60
0.002 43

→ θ = 70.0°  

P40.30 (a) To compute the Compton shift, we first determine the electron’s 
kinetic energy: 

    

  

K = 1
2

meu
2 = 1

2
9.11× 10−31  kg( ) 1.40× 106  m/s( )2

= 8.93× 10−19  J = 5.58 eV
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  Then, 

   
  
E0 =

hc
λ 0

=
1 240 eV ⋅nm

0.800 nm
= 1 550 eV  

     E′ = E0 − K  and 
  
′λ =

hc
′E

=
1 240 eV ⋅nm

1 550 eV − 5.58 eV
= 0.803 nm  

  and the Compton shift is 

   
 
Δλ = λ′ − λ0 = 0.002 89 nm = 2.89 pm  

 (b)  Δλ = λC 1− cos θ( )  

  
 
cos θ = 1−

Δλ
λC

= 1−
0.002 89 nm
0.002 43 nm

= − 0.189 → θ = 101°  

P40.31 The photon has momentum   p0 = E0 c = h λ0  before scattering and 
momentum  ′p = h ′λ  after scattering. The electron momentum after 
scattering is pe. 

 (a) Conservation of momentum in the x direction gives  

     p0 = ′p cosθ + pe cosθ  

  or 
  

h
λ0

=
h
′λ
+ pe

⎛
⎝⎜

⎞
⎠⎟ cosθ.  [1] 

  Conservation of momentum in the y direction gives 

     0 = ′p sinθ − pe sinθ  

  which (neglecting the trivial solution θ = 0) gives 

   
 
pe = ′p =

h
′λ

 [2] 

  Substituting [2] into [1] gives  

   
  

h
λ0

=
2h
′λ

cosθ  

  or  ′λ = 2λ0 cosθ.  [3] 

  Substitute [3] into the Compton equation: 
   

  
′λ − λ0 = h

mec
1− cosθ( )

 

   

  
2λ0 cosθ( )− λ0 = h

mec
1− cosθ( )
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  Solving, 

   

  

2λ0 + h
mec

⎛
⎝⎜

⎞
⎠⎟

cosθ = λ0 + h
mec

2
hc
E0

+ h
mec

⎛
⎝⎜

⎞
⎠⎟

cosθ = hc
E0

+ h
mec

1
mec

2E0

2mec
2 + E0( )cosθ = 1

mec
2E0

mec
2 + E0( )

cosθ = mec
2 + E0

2mec
2 + E0

= 0.511 MeV + 0.880 MeV
2 0.511 MeV( )+ 0.880 MeV

= 0.731

→ θ = 43.0°

 

 (b) Using equation [3]:  

   
  
′E =

hc
′λ

=
hc

λ0 2cosθ( ) =
E0

2cosθ
=

0.880 MeV
2cos 43.0°

= 0.602 MeV  

  Then,  

   
  
′p = ′E

c
=

0.602 MeV
c

= 3.21× 10−22  kg ⋅m s  

 (c) From energy conservation:  

     Ke = E0 − ′E = 0.880 MeV − 0.602 MeV = 0.278 MeV  

  From equation [2], 

   

   

pe = ′p =
0.602 MeV

c
 

c
3.00 × 10−22 m/s

⎛
⎝⎜

⎞
⎠⎟

1.60 × 10−23 J
1 MeV

⎛
⎝⎜

⎞
⎠⎟

= 3.21× 10−22  kg ⋅m/s

 

P40.32 The photon has momentum   p0 = E0 c = h λ0  before scattering and 
momentum  ′p = h ′λ  after scattering. The electron momentum after 
scattering is pe. 

 (a) Conservation of momentum in the x direction gives  

     p0 = ′p cosθ + pe cosθ  

  or 
  

h
λ0

=
h
′λ
+ pe

⎛
⎝⎜

⎞
⎠⎟ cosθ.  [1] 

  Conservation of momentum in the y direction gives 

     0 = ′p sinθ − pe sinθ  
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  which (neglecting the trivial solution θ = 0) gives 

   
 
pe = ′p =

h
′λ

 [2] 

  Substituting [2] into [1] gives  

   
  

h
λ0

=
2h
′λ

cosθ  

  or  ′λ = 2λ0 cosθ.  [3] 

  Substitute [3] into the Compton equation: 

   
  
′λ − λ0 =

h
mec

1− cosθ( )  

   
  
2λ0 cosθ( ) − λ0 =

h
mec

1− cosθ( )  

   
  

2λ0 +
h

mec
⎛
⎝⎜

⎞
⎠⎟

cosθ = λ0 +
h

mec
 

   
  

2
hc
E0

+
h

mec
⎛
⎝⎜

⎞
⎠⎟

cosθ =
hc
E0

+
h

mec
 

   

  

1
mec

2E0

2mec
2 + E0( )cosθ =

1
mec

2E0

mec
2 + E0( )

cosθ =
mec

2 + E0

2mec
2 + E0

→ θ = cos−1 mec
2 + E0

2mec
2 + E0

⎛
⎝⎜

⎞
⎠⎟

 

 (b) Using equation [3]: 

   

  

′E =
hc
′λ

=
hc

λ0 2cosθ( ) =
E0

2cosθ
=

E0 2mec
2 + E0( )

2 mec
2 + E0( )  

  Then, 

  

′p = ′E
c

=
E0 2mec

2 + E0( )
2c mec

2 + E0( ) .  

 (c) From energy conservation:  
   

  

Ke = E0 − ′E = E0 −
E0 2mec

2 + E0( )
2 mec

2 + E0( )

=
2E0 mec

2 + E0( )−E0 2mec
2 + E0( )

2 mec
2 + E0( )
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Ke =
2E0mec

2 + 2E0
2( )− 2E0mec

2 + E0
2( )

2 mec
2 + E0( )

= 2E0mec
2 + 2E0

2 − 2E0mec
2 −E0

2

2 mec
2 + E0( ) = E0

2

2 mec
2 + E0( )

 

  From equation [2], 

   

  

pe = ′p =
E0 2mec

2 + E0( )
2c mec

2 + E0( )  

P40.33 (a) From 
  
Δλ =

h
mec

1− cosθ( ):  

   

 

Δλ =
6.626 × 10−34 J ⋅ s

9.11× 10−31 kg( ) 2.998 × 108 m/s( ) 1− cos37.0°( )

= 4.89 × 10−13  m = 4.89 × 10−4  nm

 

 (b) 
  
λ0 =

hc
E

=
1 240 eV ⋅nm
300 × 103  eV

= 4.13 × 10−3  nm  

  and  

   

  

′λ = λ0 + Δλ = 4.62 × 10−12  m = 4.62 × 10−3  nm

′E =
hc
′λ
=

1 240 eV ⋅nm
4.62 × 10−3  nm

= 2.68 × 105  eV = 268 keV
 

 (c)   Ke = E0 − ′E = 31.7 keV  

P40.34 (a) 

  

It is, because Compton’s equation and the conservation of vector
momentum give three independent equations in the unknowns
′λ , λ0 , and u.

 

 (b) Assuming the photon is incident along the x direction, the 
equations are 

   
  
′λ − λ0 =

h
mec

1− cos90.0°( ) → ′λ = λ0 +
h

mec
 [1] 

  and 

   

  

Δpx = 0→
h
λ0

= γ meucos20.0°

Δpy = 0→
h
′λ

= γ meusin 20.0°
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  Dividing the latter two equations gives  

   
 

λ0

′λ
= tan 20.0°   [2] 

  Substituting equation [2] into equation [1] gives 
   

  

′λ = ′λ tan 20.0° + h
mec

′λ = h
mec 1− tan 20.0°( ) = hc

mec
2 1− tan 20.0°( )

= 1240 eV ⋅nm
0.511× 106  eV( ) 1− tan 20.0°( )

= 3.82 × 10−3  nm = 3.82 × 10−12  m = 3.82 pm

 

P40.35 We treat the electron non-relativistically because  
   

  

u
c

= 2.18× 106  m/s
3.00× 103  m/s

= 0.007 27 < 0.01
 

 The electron’s final kinetic energy is  

   
  
K f =

1
2

meu
2 . 

 This is the energy lost by the photon:  

   
  
ΔE = hf0 − h ′f =

hc
λ0

−
hc
′λ

= K f  [1] 

 From the Compton equation, we have  

   
  
Δλ = ′λ − λ0 =

h
mec

1− cosθ( )  [2] 

   
  
′λ = λ0 +

h
mec

1− cosθ( )  [3] 

 Substitute [2] and [3] into [1]: 
   

  
K f = hc

λ0

− hc
′λ

=
λ0 − ′λ( )hc

λ0 ′λ
= h

mec
1− cosθ( ) hc

λ0 ′λ

 

   

  

K f = h2c 1− cosθ( )

mecλ0 λ0 + h
mec

1− cosθ( )⎡

⎣
⎢

⎤

⎦
⎥
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 Solving, 
   

  

mecλ0 λ0 + h
mec

1− cosθ( )⎡

⎣
⎢

⎤

⎦
⎥ = h2c

K f

1− cosθ( )

mecλ0
2 + h 1− cosθ( )λ0 −

h2c
K f

1− cosθ( ) = 0

 

 (a) Solve for  λ0 : 

   

  

λ0 =

h 1− cosθ( ) ± h 1− cosθ( )[ ]2 − 4 mec( ) − h2c
K f

1− cosθ( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2mec

λ0 =

h 1− cosθ( ) ± h 1− cosθ( )[ ]2 + 4h2mec
2

1
2 meu

2 1− cosθ( )⎡

⎣
⎢

⎤

⎦
⎥

2mec

 

   

  

λ0 =
h 1− cosθ( ) ± h 1− cosθ( )[ ]2 + 8h2c2

u2 1− cosθ( )⎡
⎣
⎢

⎤
⎦
⎥

2mec

=
h 1− cosθ( )

2mec
1 ± 1 +

8c2

u2 1− cosθ( )
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 

 Only the positive answer is physical: 
   

  

λ0 = h 1− cosθ( )
2mec

1+ 1+ 8c2

u2 1− cosθ( )
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

=
6.63× 10−34  J ⋅s( ) 1− cos17.4°( )

2 9.11× 10−31  kg( ) 3.00× 108  m/s( )

           × 1+ 1+
8 3.00× 108  m/s( )2

2.18× 106  m/s( )2
1− cos17.4°( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= 1.01× 10−10  m = 0.101 nm

 

 (b) From [3],  

   
  
′λ = λ0 +

h
mec

1− cosθ( )  
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  Substituting, 

   

  

′λ = h 1− cosθ( )
2mec

1+ 1+ 8c2

u2 1− cosθ( )
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+ h

mec
1− cosθ( )

= h
mec

1− cosθ( ) 3
2

+ 1
2

1+ 8c2

u2 1− cosθ( )
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= 1.0116× 10−10  m

 

  The electron scattering angle is φ. By conservation of momentum 
in the transverse direction: 

   

  

0 = h
′λ
sinθ − meusinφ → sinφ = h

′λ meu
sinθ

φ = sin−1 h
′λ meu

sinθ
⎛
⎝⎜

⎞
⎠⎟

= sin−1 6.63× 10−34  J ⋅s
′λ 9.11× 10−31  kg( ) 2.18× 106  m/s( ) sin17.4°

⎛

⎝
⎜

⎞

⎠
⎟

= 80.7°

 

P40.36 Maximum energy loss appears as maximum increase in wavelength, 
which occurs for scattering angle 180°. Then,  

  
  
Δλ =

h
mc

⎛
⎝⎜

⎞
⎠⎟ 1− cos180°( ) =

2h
mc

  

 where m is the mass of the target particle. The fractional energy loss is  

  
  

E0 − ′E
E0

=
hc λ0 − hc ′λ

hc λ0

= ′λ − λ0

′λ
=

Δλ
λ0 + Δλ

=
2h mc

λ0 + 2h mc
 

 Further, 
  
λ0 =

hc
E0

, so 
  

E0 − ′E
E0

=
2h mc

hc E0 + 2h mc
=

2E0

mc2 + 2E0

. 

 (a) For scattering from a free electron, mc2 = 0.511 MeV, so 

   
  

E0 − ′E
E0

=
2 0.511 MeV( )

0.511 MeV + 2 0.511 MeV( ) = 0.667  

 (b) For scattering from a free proton, mc2 = 938 MeV, and 

   
  

E0 − ′E
E0

=
2 0.511 MeV( )

938 MeV + 2 0.511 MeV( ) = 0.001 09  
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Section 40.4 The Nature of Electromagnetic Waves 
P40.37 With photon energy E = hf = 10.0 eV, a photon would have 

   
  
f =

E
h

=
10.0 1.602 × 10−19  J( )

6.626 × 10−34  J ⋅ s
= 2.42 × 1015  Hz  

 and  
   

  
λ = c

f
= 3.00× 108  m/s

2.41× 1015  Hz
= 124 nm

  

 

 

To have photon energy 10 eV or greater, according to this definition,
ionizing radiation is the ultraviolet light, x-rays, and γ  rays with
wavelength shorter than 124 nm; that is, with frequency higher than

2.42 × 1015  Hz.

 

P40.38 The photon energy is  
   

  
E =

hc
λ

=
6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m/s( )

633 × 10−9  m
= 3.14 × 10−19  J

 

 The power carried by the beam is  

   
 2.00 × 1018  photons/s( ) 3.14 × 10−19  J/photon( ) = 0.628 W  

 Its intensity is the average Poynting vector 
   

  

I = Savg =
P

π r2 =
0.628 W

π 1.75 × 10−3  m
2

⎛
⎝⎜

⎞
⎠⎟

2 = 2.61× 105  W m2

 

 (a) To find the electric field, we use 

   
  
Savg =

1
µ0

ErmsBrms =
Emax

2

2µ0c
 

  Solving, 
   

  

Emax = 2µ0cSavg( )1 2

= 2 4π × 10−7  T ⋅m/A( ) 3.00× 108  m/s( )⎡⎣

                                            × 2.61× 105  W/m2( )⎤⎦
1 2

= 1.40× 104  N/C = 14.0 kV/m
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 (b) 
  
Bmax =

Emax

c
=

1.40 × 104  N/C
3.00 × 108  m/s

= 4.68 × 10−5  T = 46.8 µT  

 (c) Each photon carries momentum 
 

E
c

. The beam transports 

momentum at the rate 
 

P
c

. It imparts momentum to a perfectly 

reflecting surface at the rate  

   
  

2P
c

= force =
2 0.628 W( )

3.00 × 108  m/s
= 4.19 × 10−9  N = 4.19 nN  

 (d) The block of ice absorbs energy  mL = PΔt  melting  

   
  
m =

PΔt
L

=
0.628 W( ) 1.50 3 600 s( )⎡⎣ ⎤⎦

3.33 × 105  J/kg
= 1.02 × 10−2  kg = 10.2 g  

 
 

 

Section 40.5 The Wave Properties of Particles 

P40.39 (a) 
  
p =

h
λ

=
6.63 × 10−34  J ⋅ s
4.00 × 10−7  m

= 1.66 × 10−27  kg ⋅m/s  

 (b) From   p = meu,  
   

  
u = p

me

= 1.66× 10−27  kg ⋅m/s
9.11× 10−31  kg

= 1.82 × 103  m/s = 1.82 km/s
  

P40.40 (a) Electron: 
 
λ =

h
p

 and 
  
K =

1
2

meu
2 =

me
2u2

2me

=
p2

2me

, 

  so   p = 2meK  

  and 

  

λ = h
2meK

= 6.626× 10−34  J ⋅s

2 9.11× 10−31  kg( ) 3.00( ) 1.60× 10−19  J( )
= 7.09× 10−10  m = 0.709 nm

 

 (b) Photon: 
 
λ =

c
f

 and E = hf, so 
 
f =

E
h

, 

  and 
  
λ =

hc
E

=
1240 eV ⋅nm

3.00 eV
= 413 nm .  
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P40.41 Since the de Broglie wavelength is 
  
λ =

h
p

,  the electron momentum is: 

   

  
p =

h
λ
≈

6.626 × 10−34  J ⋅ s
1.00 × 10−11  m

= 6.626 × 10−23  kg ⋅m s
 

 (a) For electrons, the relativistic answer is more precisely correct. 
Suppressing units, 

   

  

Ke = p2c2 + mec
2( )2

− mec
2 = pc( )2 + mec

2( )2
− mec

2

= 6.626×10−23( ) 2.998×108( ) 1 MeV
1.602 × 10−13  J

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

2

+ 0.511( )2

−0.511

= 0.014 8 MeV = 14.8 keV

or, ignoring relativistic correction,

 

   
  
Ke =

p2

2me

=
6.626 × 10−23( )2

2 9.11× 10−31( )  
1 keV

1.602 × 10−16  J
⎛
⎝⎜

⎞
⎠⎟

= 15.1 keV  

 (b) For photons (suppressing units): 
   

  

Eγ = pc = 6.626 × 10−23( ) 2.998 × 108( ) 1 keV
1.602 × 10−16  J

⎛
⎝⎜

⎞
⎠⎟

= 124 keV

 

P40.42 The de Broglie wavelength of the proton is 
   

  

λ = h
p

= h
mu

= 6.626× 10−34  J ⋅s
1.67 × 10−27  kg( ) 1.00× 106  m/s( )

= 3.97 × 10−13  m

 

P40.43 Refer to Figure P40.43 (or ANS. FIG. 
P40.43). For Bragg reflection, the 
angle θ is measured from the 
reflecting plane to the incident beam, 
as shown in Figure 38.23. Angle φ is 
measured from the incident beam to 
the reflected (scattered) beam. The 
law of reflection applies relative to 
the normal to the plane (the dashed  
line), so the angles of incidence and  
reflection are equal to φ/2. The angle between the reflecting plane and 

ANS. FIG. P40.43(a) 
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the normal is 90°, so  

  
 
θ +

φ
2

= 90°  

 From the condition for Bragg 
reflection, we have 

  

  

mλ = 2dsinθ = 2dsin 90° −
φ
2

⎛
⎝⎜

⎞
⎠⎟

= 2dcos
φ
2

⎛
⎝⎜

⎞
⎠⎟

 

 The vertical beam is incident along the normal to the horizontal lattice 
planes which contain atoms that are separated by distance a, and the 
reflecting lattice planes form the angle φ/2 with the horizontal planes 
because the normal to the reflecting planes forms the angle φ/2 with 
the vertical beam. Therefore, the spacing of the reflecting lattice planes 

is 
  
d = asin

φ
2

⎛
⎝⎜

⎞
⎠⎟

. 

 Thus, for the first maximum, with m = 1,  

   
  
λ = 2 asin

φ
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
cos

φ
2

⎛
⎝⎜

⎞
⎠⎟ = asinφ  

 We know that 

   

  

λ =
h
p

=
h

2meK

=
6.626 × 10−34  J ⋅ s

2 9.11× 10−31  kg( ) 54.0 × 1.60 × 10−19  J( )
= 1.67 × 10−10  m

 

 Therefore, the lattice spacing is  

   
  
a =

λ
sinφ

=
1.67 × 10−10  m

sin 50.0°
= 2.18 × 10−10 =   0.218 nm  

P40.44 (a)  λ ~ 10−14  m  or less, so 
  
p =

h
λ

~
6.626 × 10−34  J ⋅ s

10−14  m
≈ 10−19  kg ⋅m/s  or 

more.  The energy of the electron is, suppressing units, 
   

  

E = p2c2 + me
2c4

~ 10−19( )2
3× 108( )2

+ 9× 10−31( )2
3× 108( )4

 

  or   E ~ 10−11  J ~ 108  eV  or more 

ANS. FIG. P40.43(b) 
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  so that  

     K = E − mec
2 ~ 108  eV − 0.5 × 106  eV( ) ~ 108  eV  or more 

 (b) If the nucleus contains ten protons, the electric potential energy of 
the electron-nucleus system would be 

   

  

Ue =
keq1q2

r
~

9 × 109  N ⋅m2 C2( ) 10 1.60 × 10−19  C( )⎡⎣ ⎤⎦ −e( )
0.5 × 10−14  m

 

~ −106  eV

 

 (c) With its   K + Ue ~ 108  eV >> 0,  the electron could not be confined 
to the nucleus. 

P40.45 (a) From   E = γ mc2 ,   
   

  
γ = E

mc2 = 20 000 MeV
0.511 MeV

= 3.91× 104
  

 (b) We find the momentum of the particle from 
   

  

pc = E2 − mc2( )2⎡
⎣

⎤
⎦

1/2
= 20 000 MeV( )2 − 0.511 MeV( )2⎡⎣ ⎤⎦

= 20.0 GeV

  

  Then, 
   

  
p = 20.0 GeV/c = 1.07 × 10−17  kg ⋅m/s

 

 (c) The electron’s wavelength is 
   

  
λ = h

p
= 6.626× 10−34  J ⋅s

1.07 × 10−17  kg ⋅m/s
= 6.21× 10−17  m

  

 (d) The wavelength is two orders of magnitude smaller than the size 
of the nucleus. 

P40.46 Given the assumption in the problem statement, for significant 
diffraction to occur, we must have  

   
  
w ≤ 10λ  = 10

h
p

⎛
⎝⎜

⎞
⎠⎟
 = 10

h
mu

⎛
⎝⎜

⎞
⎠⎟

 

 where u is the speed of the student as he passes through the doorway. 
The variable we do not know here is the speed u, so let’s solve for it: 

   
  
u ≤ 10

h
mw

⎛
⎝⎜

⎞
⎠⎟

 

 This expression will give the upper limit to the speed of the student. 
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Substitute numerical values: 

   
  
u ≤ 10

6.626 × 10−34  J ⋅ s
80 kg( ) 0.75 m( )

⎡

⎣
⎢

⎤

⎦
⎥ = 1.1 × 10−34  m/s  

 This is an extremely low velocity. It is impossible for the student to 
walk this slowly. At this speed, if the thickness of the wall in which the 
door is built is 15 cm, the time interval required for the student to pass 
through the door is 1.4 × 1033 s, which is 1015 times the age of the 
Universe. 

P40.47 (a) For the electron,  

     K = γ − 1( )mec
2  and 

 
λ =

h
p

=
h

γ meu
 

  For the photon,  

   Eph = K  and 
  
λph =

c
f

=
ch
E

=
ch
K

=
ch

γ − 1( )mec
2  

  Then the ratio is 

   
  

λph

λ
=

ch
γ − 1( )mec

2

γ meu
h

=
γ

γ − 1
u
c

,  where γ =
1

1− u2 c2  

 (b) For u = 0.900c, 

   

 

λph

λ
=

1

1− 0.900( )2

0.900( )
1 1− 0.900( )2( ) − 1⎡

⎣⎢
⎤
⎦⎥

= 1.60  

 (c) The ratio for a particular particle speed does not depend on the 
particle mass: There would be no change. 

 (d) For u = 0.001 00c, 

   

 

λph

λ
=

1

1− 0.001 00( )2

0.001 00( )
1 1− 0.001 00( )2( ) − 1⎡

⎣⎢
⎤
⎦⎥

= 2.00 × 103  

 (e) As 
  

u
c
→ 1 , γ → ∞  and  γ − 1 becomes nearly equal to γ. Then,  

   
  

λγ

λm

→
γ
γ

1( ) = 1  

 (f) As 
  

u
c
→ 0 , 

  
1−

u2

c2

⎛
⎝⎜

⎞
⎠⎟

−1 2

− 1≈ 1− −
1
2

⎛
⎝⎜

⎞
⎠⎟

u2

c2 − 1 =
1
2

u2

c2  and  
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λγ

λm

→ 1
u c

1 2( ) u2 c2( ) =
2c
u

→ ∞  

P40.48 (a) E2 = p2c2 + m2c4 with E = hf,       

   
 
p =

h
λ

      and      
  
mc =

h
λC

 

  Substituting, we find that    

   
  
h2 f 2 =

h2c2

λ2 +
h2c2

λC
2    and   

  

f
c

⎛
⎝⎜

⎞
⎠⎟

2

=
1
λ2 +

1
λC

2
 

 (b) No. For a photon, 
  

f
c

= 1
λ

.  The third term 
 

1
λC

 in the equation 

above for particles with mass shows that they will always have a 
different frequency from photons of the same wavelength. 

 
 

 

Section 40.6 A New Model: The Quantum Particle 
P40.49 (a) The particle is freely moving, so we attribute no potential energy 

to it. Its energy is  
   

   
E = K = 1

2
mu2 = hf = h

2π
⎛
⎝⎜

⎞
⎠⎟ 2π f( ) = ω

  

  For its momentum we have  
   

   
p = mu = h

λ
= h

2π
⎛
⎝⎜

⎞
⎠⎟

2π
λ

⎛
⎝⎜

⎞
⎠⎟ = k

 

  Thus, 
   

   
ω = K


   and   k = p



  

  Then the phase speed is 
   

  
vphase = fλ = mu2

2h
⎛
⎝⎜

⎞
⎠⎟

h
mu

⎛
⎝⎜

⎞
⎠⎟ = u

2

 

 (b) We see that the phase speed is only one-half of the experimentally 
measurable speed u at which the quantum particle transports 
mass, energy, and momentum. In the textbook’s Active Figure 
28.17, individual wave crests would move forward more slowly 
than their envelope moves forward, so individual crests would 
appear to move backward relative to the packet containing them. 
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P40.50 As a bonus, we begin by proving that the phase speed 
 
vp =

ω
k

 is not 

the speed of the particle. 

   

   

vp =
ω
k
=

p2c2 + m2c4

γ mu
=

γ 2m2u2c2 + m2c4

γ 2m2u2

= c 1+
c2

γ 2u2 = c 1+
c2

u2 1−
u2

c2

⎛
⎝⎜

⎞
⎠⎟
= c 1+

c2

u2 − 1 =
c2

u

 

 In fact, the phase speed is larger than the speed of light! A point of 
constant phase in the wave function carries no mass, no energy, and no 
information. 

 Now for the group speed:  

   

   

vg =
dω
dk

=
d ω( )
d k( ) =

dE
dp

=
d

dp
m2c4 + p2c2

=
1
2

m2c4 + p2c2( )−1 2
0 + 2pc2( ) =

p2c4

p2c2 + m2c4

= c
γ 2m2u2

γ 2m2u2 + m2c2

= c
u2 1− u2 c2( )

u2 1− u2 c2( ) + c2 = c
u2 1− u2 c2( )

u2 + c2 − u2( ) 1− u2 c2( ) = u

 

 It is this speed at which mass, energy, and momentum are transported. 

 
 

 

Section 40.7 The Double-Slit Experiment Revisited 

P40.51 (a) 
  
λ =

h
mu

=
6.626 × 10−34  J ⋅ s

1.67 × 10−27  kg( ) 0.400 m/s( )
= 9.92 × 10−7  m = 992 nm  

 (b) For destructive interference in a multiple-slit experiment, 

  
dsinθ = m +

1
2

⎛
⎝⎜

⎞
⎠⎟ λ,  with m = 0 for the first minimum. Also, 

  

y
L

= tanθ ≈ sinθ =
1
2

⎛
⎝⎜

⎞
⎠⎟
λ
d

, so  

    
  
y = L tanθ = λL

2d
=

9.92 × 10−7  m( ) 10.0 m( )
2 1.00× 10−3  m( ) = 4.96 mm  
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 (c) 

 

No; there is no way to identify the slit through which the 
neutron passed. Even if one neutron at a time is incident 
on the pair of slits, an interference pattern still develops 
on the detector array. Therefore, each neutron in effect 
passes through both slits.

 

P40.52 We find the speed of each electron from energy conservation in the 
firing process: 

   

  

E = 0 = K f + U f =
1
2

mu2 − eV

u =
2eV
m

=
2 1.60 × 10−19  C( ) 45.0 V( )

9.11× 10−31  kg
= 3.98 × 106  m/s

 

 The time of flight is  

   
  
Δt =

Δx
u

=
0.280 m

3.98 × 106  m/s
= 7.04 × 10−8  s  

 The current when electrons are 28 cm apart is  

    
  
I =

q
t

=
e
Δt

=
1.60 × 10−19  C
7.04 × 10−8  s

 
 = 2.27 × 10−12  A  

P40.53 Consider the first bright band away from the center: 
      dsinθ = mλ  
    

 

0.060 0 × 10−6  m( )sin tan−1 0.400 × 10−3  m
20.0 × 10−2  m

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

                                                     = 1( )λ = 1.20 × 10−10  m

 

 And since 
 
λ =

h
p

=
h

meu
,    so     

 
meu =

h
λ

,  

 and 

    
  
K =

1
2

meu
2 =

me
2u2

2me

=
h2

2meλ
2 = eΔV → ΔV =

h2

2emeλ
2  

 Therefore,    

    

  

ΔV =
6.626× 10−34  J ⋅s( )2

2 1.60× 10−19  C( ) 9.11× 10−31  kg( ) 1.20× 10−10  m( )2

= 105 V
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Section 40.8 The Uncertainty Principle 

P40.54 (a) The uncertainty principle states 
   
ΔpΔx = mΔuΔx ≥


2

,  so  

   

  
Δu ≥ h

4π mΔx
= 2π  J ⋅s

4π 2.00 kg( ) 1.00 m( ) = 0.250 m/s
 

 (b) The duck might move by (0.250 m/s)(5.00 s) = 1.25 m. With an 
original position uncertainty of 1.00 m, we can think of  Δx  
growing to  1.00 m + 1.25 m = 2.25 m .  

P40.55 The uncertainty principle states 
   
ΔxΔpx ≥


2

,  where  

   Δpx = mΔu   and    = h/2π .   

 Both the electron and bullet have a velocity uncertainty  
  

  Δu = (0.000 100)(500 m/s) = 0.050 0 m/s  

 For the electron, the minimum uncertainty in position is  
  

  
Δx = h

4πmΔu
= 6.626× 10–34  J ⋅s

4π 9.11× 10–31  kg( )(0.050 0 m/s)
= 1.16 mm

 

 For the bullet, 
  

  
Δx = h

4πmΔu
= 6.626× 10–34  J · s

4π (0.020 0 kg)(0.050 0 m/s)
= 5.28× 10–32  m

 

P40.56 The momentum of the block is p = mv, and if the mass is known 
precisely, the uncertainty in the momentum is   Δp = mΔv.  From the 
uncertainty principle,    ΔxΔpx ≥  2 , so if there is an uncertainty of 

  Δx = 0.150 cm = 1.50× 10−3  m  in the position of the particle, the 
minimum uncertainty in its speed is 

  

  

Δvx( )min
=

Δpx( )min

m
= h

4πm Δx( )max

= 6.63× 10−34  J ⋅s
4π 0.500 kg( ) 1.50× 10−3  m( ) = 7.03× 10−32  m/s
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P40.57 The maximum time one can use in measuring the energy of the particle 
is equal to the lifetime of the particle, or   Δtmax ≈ 2 µs . One form of the 
uncertainty principle is    ΔEΔt ≥  2 . Thus, the minimum uncertainty 
one can have in the measurement of a muon’s energy is  

  

  
ΔEmin = h

4π Δtmax

= 6.626× 10−34  J ⋅s
4π 2 × 10−6  s( ) = 3× 10−29  J ≈ 2 × 10−10  eV

 

P40.58 Assume the rifle is firing horizontally and let the distance between the 
rifle and the target be L. The uncertainty in the vertical position of the 
particle as it leaves the end of the rifle is  Δy  = 2.00 mm. The 
uncertainty principle will allow us to approximate the uncertainty in 
the vertical momentum of the particles (ignoring gravitational 
acceleration): 

   

   
ΔyΔpy  ≥ 


2

→ Δpy  ≥ 


2Δy

 

 The time interval for the particle to reach the screen is, from the 
particle under constant velocity model, 

   
  
Δt = 

L
vx

 

 During this time interval, again from the particle under constant 
velocity model, the particle moves in the vertical direction by a 
distance (again ignoring gravitational effects) 

   
  
Δyt  = vyΔt = vy

L
vx

 = py
L
px

 

 where  Δyt  is the vertical distance though which the particle moves 
when it arrives at the target and py is the vertical momentum of the 
particle. Because the particles begin with zero vertical momentum, let’s 
assume that the vertical momentum of the particles is on the order of 
the uncertainty in the vertical momentum. Then, 

   
   
Δyt  ≈


2Δy

  
L
px

 

 What we don’t know in this expression is the distance L, so let’s solve 
for it: 

   
   
L ≈ 

2pxΔyΔyt
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 Substitute numerical values: 

   

  

L ≈ 
2 0.001 00 kg( ) 100 m/s( ) 0.002 00 m( ) 0.010 0 m( )

1.055 × 10−34  J ⋅ s
 ≈ 4 × 1028  m

 

 According to Table 1.1, this distance is two orders of magnitude larger 
than the distance from the Earth to the most remote known quasar. In 
conclusion, then, for rifles fired at targets at reasonable distances away, 
a spread of 1.00 cm due to the uncertainty principle would be impossible. 

P40.59 With   Δx = 1× 10−14  m,  the uncertainty principle requires  
  

   
Δpx ≥


2Δx

= 1.055 × 10−34  J ⋅s
2 1 × 10−14  m( ) = 5.3× 10−21  kg ⋅m/s

 

 The average momentum of the particle bound in a stationary nucleus 
is zero. The uncertainty in momentum measures the standard 
deviation of the momentum, so we take   p ≈ 5.3 × 10−21  kg ⋅m/s . 

 For an electron, the non-relativistic approximation p = meu would 
predict   u ≈ 6 × 109  m/s , which is impossible because u cannot be 
greater than c. Thus, a better solution would be to use  

  
  
E = mec

2( )2
+ pc( )2⎡

⎣
⎤
⎦

1 2

≈ 9.9 MeV    = γ mec
2   

 to find the speed (with mec
2 = 0.511 MeV):  

  
  
γ ≈ 19.4 =

1

1− u2 c2      so       u ≈ 0.998 67c  

 For a proton,  

  
  
u =

p
m

=
5.3 × 10−21  kg ⋅m/s

1.67 × 10−27  kg
= 3.2 × 106  m/s = 0.011c  

 about one-hundredth the speed of light. 

 
 

 

Additional Problems 

P40.60  From each wavelength we find the corresponding frequency using the 
relation  λ f = c, where c is the speed of light:  

 For 
  
λ1 = 588 × 10–9  m            f1 =

c
λ1

= 5.10 × 1014  Hz  
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 For   λ2 = 505 × 10–9  m            f2 = 5.94 × 1014  Hz  

    λ3 = 445 × 10–9  m            f3 = 6.74 × 1014  Hz  

    λ4 = 399 × 10–9  m            f4 = 7.52 × 1014  Hz  

(a) We plot each point on an energy versus frequency graph, as 
shown in ANS. FIG. P40.60. We extend a straight line through 
the set of 4 points, as far as the negative y intercept.  

 

ANS. FIG. P40.60 

 (b) Our basic equation is Kmax = hf – φ . Therefore, an experimental 
value for Planck’s constant is the slope of the K-f graph, which 
can be found from a least-squares fit or from reading the graph 
as: 

   

  

hexp = Rise
Run

= 1.25 eV − 0.25 eV
6.5 × 1014  Hz − 4.0 × 1014  Hz

= 4.0 × 10–15  eV · s  = 6.4 × 10–34  J · s

  

  From the scatter of the data points on the graph, we estimate the 
uncertainty of the slope to be about 3%. Thus we choose to show 
two significant figures in writing the experimental value of 
Planck’s constant.  

 (c) Again from the linear equation Kmax = hf –  φ , the work function for 
the metal surface is the negative of the y-intercept of the graph, so   

   
 φexp = − −1.4 eV( ) = 1.4 eV   

  Based on the range of slopes that appear to fit the data, the 
estimated uncertainty of the work function is 5%.  
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*P40.61  From the circular path the electrons follow in the magnetic field, the 
magnetic force is centripetal,  

   

  
F = ma: evB =

mev
2

R
→ mev = eBR

 

 so the maximum kinetic energy is seen to be:  

   

  

Kmax = 1
2

mev
2 =

mev( )2

2me

= e2B2R2

2me

=
1.602 × 10−19  C( )2

2.00× 10−5  T( )2
0.200 m( )2

2 9.11× 10−31  kg( )
= 2.25× 10−19  J = 1.40 eV

 

 From the photoelectric equation,      

   
  
Kmax = hf −φ =

hc
λ

−φ  

 Thus, the work function is 
   

  
φ = hc

λ
− Kmax = 1 240 eV ⋅nm

450 nm
− 1.40 eV = 1.36 eV

 

P40.62 From the circular path the electrons follow in the magnetic field, the 
magnetic force is centripetal,  

   
  
F = ma: evB =

mev
2

R
→ mev = eBR  

 so maximum kinetic energy is seen to be:  

   
  
Kmax =

1
2

mev
2 =

mev( )2

2me

=
e2B2R2

2me

 

 From the photoelectric equation,      

   
  
Kmax = hf −φ =

hc
λ

−φ  

 Thus, the work function is  

   
  
φ =

hc
λ

− Kmax =
hc
λ

−
e2B2R2

2me

 

P40.63 The condition on electric power delivered to the filament is  

  
   
P = I ΔV =

ΔV( )2

R
=

ΔV( )2 A
ρ 

=
ΔV( )2 π r2

ρ 
,    so    

   
 = ΔV( )2πr2

ρP
.  
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 Here P = 75.0 W,  ρ = 7.13 × 10−7Ω⋅m,  and  ΔV  = 120 V. As the filament 
radiates in steady state, it must emit all of this power through its 
lateral surface area    P = σ eAT 4 = σ e2π rT 4.  

 (a) We combine the conditions by substitution: 
   

   

P =σ e2πr
ΔV( )2πr2

ρP
⎡

⎣
⎢

⎤

⎦
⎥T 4

r3 = ρP2

2σ e ΔV( )2π 2T 4

=
7.13× 10−7Ω⋅m( ) 75.0 W( )2

2 5.67 × 10−8  W/m2K4( ) 0.450( ) 120 V( )2π 2 2 900 K( )4

r = 1.98× 10−5  m

r = Pρ 
π ΔV( )2

⎛
⎝⎜

⎞
⎠⎟

1 2

=
75.0 W( )  7.13× 10−7Ω⋅m( )  0.333 m( )

π 120 V( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

= 1.98× 10−5  m

 

 (b) 
   
 =

ΔV( )2 πr2

ρP
=

120 V( )2 πr2

7.13 × 10−7Ω⋅m( ) 75.0 W( )
= 0.333 m  

P40.64 We first isolate the terms involving φ in Equations 40.13 and 40.14, 
  

  

γ meucosφ = h
λ0

− h
′λ
cosθ

γ meusinφ = h
′λ
sinθ

 

 We then square and add to eliminate φ : 
  

  

γ meucosφ( )2 + γ meusinφ( )2 = h
λ0

− h
′λ
cosθ

⎛
⎝⎜

⎞
⎠⎟

2

+ h
′λ
sinθ⎛

⎝⎜
⎞
⎠⎟

2

γ 2me
2u2 = h2 1

λ0
2 + 1

′λ 2 −
2cosθ
λ0 ′λ

⎡

⎣
⎢

⎤

⎦
⎥

u2 c2

1− u2 c2( ) = h2

me
2c2

1
λ0

2 + 1
′λ 2 −

2cosθ
λ0 ′λ

⎡

⎣
⎢

⎤

⎦
⎥
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 Defining 
  
b =

h2

me
2c2

1
λ0

2 +
1
′λ 2 −

2cosθ
λ0 ′λ

⎡

⎣
⎢

⎤

⎦
⎥ , the above equation becomes  

  

u2 c2

1− u2 c2( ) = b → u2 c2 = b 1− u2 c2( )

u2 c2 =
b

1 + b( )

 

 Substitute into Equation 40.12 for the cutoff wavelength, 

  
  
1+

h
mec

⎛
⎝⎜

⎞
⎠⎟

1
λ0

−
1
′λ

⎡

⎣
⎢

⎤

⎦
⎥ = γ = 1−

b
1+ b

⎛
⎝⎜

⎞
⎠⎟
−1 2

= 1+ b  

 Squaring each side then gives 
  

  

1+ 2h
mec

1
λ0

− 1
′λ

⎡

⎣
⎢

⎤

⎦
⎥ +

h2

me
2c2

1
λ0

− 1
′λ

⎡

⎣
⎢

⎤

⎦
⎥

2

                                        = 1+ h2

me
2c2

⎛
⎝⎜

⎞
⎠⎟

1
λ0

2 +
1
′λ 2 −

2cosθ
λ0 ′λ

⎡

⎣
⎢

⎤

⎦
⎥

 

 Eliminating terms, 
  

  

c2 + 2h
mec

1
λ0

− 1
′λ

⎡

⎣
⎢

⎤

⎦
⎥ +

h2

me
2c2

1
λ0

2 − 2
λ0 ′λ

+ 1
′λ 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                                   = c2 + h2

me
2c2

⎛
⎝⎜

⎞
⎠⎟

1
λ0

2 + 1
′λ 2 − 2cosθ

λ0 ′λ
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

  

  

2 h
mec

1
λ0

− 1
′λ

⎡

⎣
⎢

⎤

⎦
⎥ −

h2

me
2c2

⎛
⎝⎜

⎞
⎠⎟

2
λ0 ′λ

⎛
⎝⎜

⎞
⎠⎟

= − h2

me
2c2

⎛
⎝⎜

⎞
⎠⎟

2 cosθ
λ0 ′λ

⎛
⎝⎜

⎞
⎠⎟

mec
′λ − λ0

λ0 ′λ
⎡

⎣
⎢

⎤

⎦
⎥ − h

1
λ0 ′λ

⎛
⎝⎜

⎞
⎠⎟

= −h
cosθ
λ0 ′λ

⎛
⎝⎜

⎞
⎠⎟

mec ′λ − λ0( )− h = −hcosθ

 

 Rearranging this gives Equation 40.11, 

  
  
′λ − λ0 =

h
mec

⎛
⎝⎜

⎞
⎠⎟

1− cosθ( )  
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P40.65 We use 
 
ΔVS =

h
e

⎛
⎝⎜

⎞
⎠⎟ f −

φ
e

. 

 From two points on the graph in ANS. FIG. 
P40.65, 

   
  
0 =

h
e

⎛
⎝⎜

⎞
⎠⎟ 4.1× 1014  Hz( ) − φ

e
 

 and 

   
  
3.3 V =

h
e

⎛
⎝⎜

⎞
⎠⎟ 12 × 1014  Hz( ) − φ

e
 

 Combining these two expressions we find: 

 (a)  φ = 1.7 eV  

 (b) 
  

h
e

= 4.2 × 10−15  V ⋅ s  

 (c) At the cutoff wavelength, 
 

hc
λc

= φ =
h
e

⎛
⎝⎜

⎞
⎠⎟

ec
λc

, or  

   

  

λc = 4.2 × 10−15  V ⋅ s( ) 1.60 × 10−19  C( )
                                         ×

3.00 × 108  m/s( )
1.7 eV( ) 1.60 × 10−19  J/eV( )

= 7.3 × 102  nm

 

P40.66 Equation 40.11 states 
  
Δλ =

h
mec

1− cosθ( ) = ′λ − λ0  for the scattered 

photon. The initial energy of a photon is   E0 = hc λ0 . Its energy after 
scattering is  

  

  

′E =
hc
′λ

=
hc

λ0 + Δλ
= hc λ0 +

h
mec

1− cosθ( )⎡

⎣
⎢

⎤

⎦
⎥

−1

′E =
hc
λ0

1 +
hc

mec
2λ0

1− cosθ( )⎡

⎣
⎢

⎤

⎦
⎥

−1

′E =
hc
λ0

1 +
hc

mec
2λ0

1− cosθ( )⎡

⎣
⎢

⎤

⎦
⎥

−1

= E0 1 +
E0

mec
2 1− cosθ( )⎡

⎣
⎢

⎤

⎦
⎥

−1

 

 

ANS. FIG. P40.65 
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P40.67 (a) We use energy conservation in the daredevil-Earth system to find 
the speed of the daredevil just before he makes a splash: 

   
  
mgyi =

1
2

muf
2  

  gives 
   

  
uf = 2gyi = 2 9.80 m/s2( ) 50.0 m( ) = 31.3 m/s

 

  The de Broglie wavelength is then 
   

  
λ = h

mu
= 6.626× 10−34  J ⋅s

75.0 kg( ) 31.3 m/s( ) = 2.82 × 10−37  m
  

  This is too small to be observable. 

 (b) Equation 40.26 gives us the energy-lifetime version of the 
uncertainty principle: 

   
   
ΔEΔt ≥


2

 

  substituting numerical values, 
   

  
ΔE ≥ 6.626× 10−34  J ⋅s

4π 5.00× 10−3  s( ) = 1.05× 10−32  J
 

 (c) We find the percent error from 
   

  

ΔE
E

= 1.05× 10−32  J
75.0 kg( ) 9.80 m/s2( ) 50.0 m( )

= 2.87 × 10−35%
 

P40.68 The definition of the Compton wavelength is  λC  = h/mec. The de 
Broglie wavelength is   λ = h/p . We take the ratio of the Compton 
wavelength to the de Broglie wavelength, and square it: 

  

  

λC

λ
⎛
⎝⎜

⎞
⎠⎟

2

= p2

mec( )2

 

 From Equation 39.27, the momentum for a slowly-moving or rapidly-
moving object is described by 

  
  
p2 =

E2 − me
2c4

c2
 

 Substituting and simplifying, 
  

  

λC

λ
⎛
⎝⎜

⎞
⎠⎟

2

=
E2 − me

2c4( )
mec

2( )2 = E
mec

2

⎛
⎝⎜

⎞
⎠⎟

2

− 1
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 and 
  

λC

λ
=

E
mec

2

⎛

⎝⎜
⎞

⎠⎟

2

− 1  

P40.69 (a) We find the energy of one photon:  
   

  

hf = Kmax +φ

    = 1
2

9.11× 10−31  kg( ) 420× 103  m/s( )2

                       + 3.44 eV( ) 1.6× 10−19  J
1 eV

⎛
⎝⎜

⎞
⎠⎟

= 6.31× 10−19  J 

 

  The number intensity of photon bombardment is  
   

  

I
hf

= 550 J/s ⋅m2

6.31× 10−19  J/photon
1 m2

104  cm2

⎛
⎝⎜

⎞
⎠⎟

1 electron emitted
1 photon absorbed

⎛
⎝⎜

⎞
⎠⎟

= 8.72 × 1016  
electrons

s ⋅cm2

 

 (b) The density of the current the imagined electrons comprise is 
   

  

J = 8.72 × 1016  
electrons

s ⋅cm2
⎛
⎝⎜

⎞
⎠⎟ 1.60× 10−19  

C
electron

 ⎛
⎝⎜

⎞
⎠⎟

= 0.014 0 
C

s ⋅cm2 = 14.0 mA/cm2

 

 (c) Many photons are likely reflected or give their energy to the 
metal as internal energy, so the actual current is probably a small 
fraction of 14.0 mA. 

P40.70 From the uncertainty principle,  

   
   
ΔEΔt ≥


2

→ Δ mc2( )Δt =

2

 

 Therefore,  

   

  

Δm
m

= h
4π c2 Δt( )m

= h
4π Δt( )ER

= 6.626× 10−34  J ⋅s
4π 8.70× 10−17  s( ) 135 MeV( )

1 MeV
1.60× 10−13  J

⎛
⎝⎜

⎞
⎠⎟

= 2.81× 10−8
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P40.71 (a) To find the de Broglie wavelength of the neutron, we first 
determine its momentum, 

   

  

p = mu = 2mE

= 2 1.67 × 10−27  kg( ) 0.040 0 eV( ) 1.60× 10−19 J eV( )
= 4.62 × 10−24  kg ⋅m/s

 

  Then, 

   
  
λ =

h
mu

=
6.626 × 10−34  J ⋅ s

4.62 × 10−24  kg ⋅m/s
= 1.43 × 10−10  m = 0.143 nm  

 (b) This is of the same order of magnitude as the spacing between 
atoms in a crystal. 

 (c) Because the wavelength is about the same as the spacing, 
diffraction effects should occur. 

  A diffraction pattern with maxima and minima at the same angles 
can be produced with x-rays, with neutrons, and with electrons of 
much higher kinetic energy, by using incident quantum particles 
with the same wavelength. 

 
 

 

Challenge Problems 

*P40.72 (a) At the top of the ladder, the woman holds a pellet inside a small 
region   Δxi .  Thus, the uncertainty principle requires her to release 

it with typical horizontal momentum 
   
Δpx = mΔvx = 

2Δxi

.  It falls 

to the floor in a travel time given by 
  
H = 0 + 1

2
gt2  as 

  
t = 2H

g
,  so 

the total width of the impact points is 

   
   
Δx f = Δxi + Δvx( )t = Δxi + 

2mΔxi

⎛
⎝⎜

⎞
⎠⎟

2H
g

= Δxi + A
Δxi

 

  where 
   
A = 

2m
2H
g

.  

  To minimize   Δx f ,  we require 
  

d Δx f( )
d Δxi( ) = 0  or 

  
1− A

Δxi
2 = 0,  

  so   Δxi = A.  
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  The minimum width of the impact points is 

    
   
Δx f( )min

= Δxi + A
Δxi

⎛
⎝⎜

⎞
⎠⎟ Δxi = A

= 2 A = 2
m

2H
g

⎛
⎝⎜

⎞
⎠⎟

1 4

 

  (b) 

  

Δx f( )min
=

2 1.054 6 × 10−34  J ⋅ s( )
5.00 × 10−4  kg

⎡
⎣⎢

⎤
⎦⎥

1 2
2 2.00 m( )
9.80 m s2

⎡
⎣⎢

⎤
⎦⎥

1 4

= 5.19 × 10−16  m

 

P40.73 (a) The Doppler shift increases the apparent frequency of the 
incident light. 

 (b) If v = 0.280c,   

    
  
′f = f

1 + v c
1− v c

= 7.00 × 1014 Hz( ) 1.28
0.720

= 9.33 × 1014  Hz  

  Therefore, 
   

  

φ = h ′f

= 6.626× 10−34  J ⋅s( ) 9.33× 1014  Hz( ) 1 eV
1.602 × 10−19  J

⎛
⎝⎜

⎞
⎠⎟

= 3.86 eV

 

 (c) At v = 0.900c,   

   
  
′f = f

1 + v c
1− v c

= 7.00 × 1014  Hz( ) 1.900
0.100

= 3.05 × 1015  Hz  

  and  
   

  

Kmax = h ′f −φ

= 6.626× 10−34  J ⋅s( ) 3.05× 1015  Hz( ) 1.00 eV
1.602 × 10−19  J

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

                                                                         − 3.86 eV

= 8.76 eV

 

P40.74 We show that if all of the energy of a photon is transmitted to an 
electron, momentum will not be conserved. In general, a photon of 
energy   E0 = hc λ0  scatters off an electron at rest, resulting in the 
photon having energy  ′E = hc ′λ  and the electron having kinetic 
energy Ke. Energy conservation requires   E0 = ′E + Ke ,  or 

  
  

hc
λ0

= hc
′λ
+ mec

2 γ − 1( )  
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 If the photon is absorbed, then   ′E = hc ′λ = 0 , and the above equation 
becomes 

  
  

hc
λ0

= mec
2 γ − 1( )   [1] 

 Because the photon is absorbed, momentum conservation requires the 
momentum of the electron be in the same direction as the momentum 
of the original photon:  

  
  
p0 =

E
c

=
h
λ0

= γ meu  [2] 

 From [1], we find that  

  
  
γ =

h
λ0mec

+ 1   [3] 

 and 
  
u = c 1−

λ0mec
h + λ0mec

⎛
⎝⎜

⎞
⎠⎟

2

 [4] 

 Substituting [3] and [4] into [2] reveals the inconsistency: 
  

  

h
λ0

= 1+ h
λ0mec

⎛
⎝⎜

⎞
⎠⎟

mec 1− λ0mec
h + λ0mec

⎛
⎝⎜

⎞
⎠⎟

2

                 = λ0mec + h
λ0

h h + 2λ0mec( )
h + λ0mec( )2 = h

λ0

h + 2λ0mec
h

 

 This is impossible, so all of the energy of a photon cannot be 
transmitted to an electron. 

P40.75 (a) Starting with Planck’s law,  

   
  
I λ, T( ) =

2π hc2

λ5 ehc λkBT − 1⎡⎣ ⎤⎦
 

  the total power radiated per unit area  

   
  

I λ, T( )dλ
0

∞

∫ =
2π hc2

λ5 ehc λkBT − 1⎡⎣ ⎤⎦
dλ

0

∞

∫  

  Change variables by letting 
  
x =

hc
λkBT

, so 
  
dx = −

hc
kBTλ2 dλ . 

  Note that as λ varies from  0→∞ , x varies from  ∞→ 0 . 
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  Then,  

    
  

I λ, T( )dλ
0

∞

∫ = −
2π kB

4T 4

h3c2

x3

ex − 1( ) dx
∞

0

∫ =
2πkB

4T 4

h3c2

π 4

15
⎛
⎝⎜

⎞
⎠⎟

 

  Therefore,  

    
  

I λ, T( )dλ
0

∞

∫ =
2π 5kB

4

15h3c2

⎛
⎝⎜

⎞
⎠⎟

T 4 = σ T 4  

 (b) From part (a), 

    

  
σ =

2π 5kB
4

15h3c2 =
2π 5 1.38 × 10−23  J/K( )4

15 6.626 × 10−34  J ⋅ s( )3
3.00 × 108  m/s( )2  

    
 σ = 5.67 × 10−8  W/m2 ⋅K4  

P40.76 (a) Planck’s law states  

    
  
I λ, T( ) =

2π hc2

λ5 ehc λkBT − 1⎡⎣ ⎤⎦
= 2π hc2λ−5 ehc λkBT − 1⎡⎣ ⎤⎦

−1
. 

  To find the wavelength at which this distribution has a 
maximum, compute 

    

  

dI
dλ

= 2π hc2 −5λ−6 ehc λkBT − 1⎡⎣ ⎤⎦
−1⎧

⎨
⎩

                           − λ−5 ehc λkBT − 1⎡⎣ ⎤⎦
−2

ehc λkBT − hc
λ 2kBT

⎛
⎝⎜

⎞
⎠⎟
⎫
⎬
⎪

⎭⎪
= 0

dI
dλ

= 2π hc2

λ 6 ehc λkBT − 1⎡⎣ ⎤⎦
−5+ hc

λkBT
ehc λkBT

ehc λkBT − 1⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0

 

  Letting 
  
x =

hc
λkBT

, the condition for a maximum becomes 

  

xex

ex − 1
= 5 . We zero in on the solution to this transcendental 

equation by iterations as shown in the table on the following 
page. 
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x   xex ex − 1( )   x   xex ex − 1( )  

4.000 00 4.074 629 4  4.964 50 4.999 403 0 

4.500 00 4.550 552 1  4.965 50 5.000 374 9 

5.000 00 5.033 918 3  4.965 00 4.999 889 0 

4.900 00 4.936 762 0  4.965 25 5.000 132 0 

4.950 00 4.985 313 0  4.965 13 5.000 015 3 

4.975 00 5.009 609 0  4.965 07 4.999 957 0 

4.963 00 4.997 945 2  4.965 10 4.999 986 2 

4.969 00 5.003 776 7  4.965 115 5.000 000 8 

4.966 00 5.000 860 9    

  The solution is found to be 

   
  
x =

hc
λmaxkBT

= 4.965 115  and 
  
λmaxT =

hc
4.965 115kB

 

 (b) Thus, 

   

  

λmaxT =
6.626 075 × 10−34  J ⋅ s( ) 2.997 925 × 108  m/s( )

4.965 115 1.380 658 × 10−23  J/K( )
= 2.897 755 × 10−3  m ⋅K

 

  This result agrees with Wien’s experimental value of 

  λmaxT = 2.898 × 10−3  m ⋅K  for this constant.  
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P40.2 (a) 999 nm; (b) The wavelength emitted at the greatest intensity is in 
the infrared (greater than 700 nm), and according to the graph in 
Active Figure 40.3, much more energy is radiated at wavelengths 
longer than  λmax  than at shorter wavelengths. 

P40.4 (a) 5 200 K; (b) This is not blackbody radiation. 

P40.6 i: (a) 2.57 eV, (b) 1.28 × 10−5 eV, (c) 1.91 × 10−7 eV; ii: (a) 484 nm, (b) 9.68 
cm, (c) 6.52 m; iii: (a) visible light (blue), (b) radio wave, (c) radio wave 

P40.8 2.27 × 1030 photon/s 

P40.10 (a) 5.78 × 103 K; (b) 501 nm 

P40.12 (a) 7.09 × 104 W; (b) 580 nm; (c) 7.99 × 1010 W/m; (d−i) See table in 
P40.12; (j)  ≈ 19 kW  

P40.14 See P40.14 for full explanation. 

P40.16 (a) 4.20 mm; (b) 1.05 × 1019 photons; (c) 8.82 × 1016 mm–3 

P40.18 (a) 288 nm; (b) 1.04 × 1015 Hz; (c) 1.19 eV 

P40.20 (a) The energy of a photon with wavelength 400 nm is calculated to be 
3.11 eV. Now compare this energy with the given work functions. Of 
these metals, only lithium shows the photoelectric effect because its 
work function is less than the energy of the photon; (b) 0.808 eV 

P40.22 (a) 148 days; (b) The result for part (a) does not agree at all with the 
experimental observations. 

P40.24 (a) 8.27 eV; (b) The photon energy is larger than the work function;  
(c) 1.92 eV; (d) 1.92 V 

P40.26  4.85 × 10−12 m 

P40.28 (a and b) See P40.28 for full answer; (c) 180°. We could answer like this: 
The photon imparts the greatest momentum to the originally 
stationary electron in a head-on collision. Here the photon recoils 
straight back, and the electron has maximum kinetic energy. 

P40.30 (a) 2.89 pm; (b) θ = 101° 

P40.32 (a) 
  
θ = cos−1 mec

2 + E0

2mec
2 + E0

⎛
⎝⎜

⎞
⎠⎟

; (b) 
  
′E =

E0 2mec
2 + E0( )

2 mec
2 + E0( ) ,  ′p =

E0 2mec
2 + E0( )

2c mec
2 + E0( ) ;  

 (c) 
  
Ke =

E0
2

2 mec
2 + E0( ) , pe =

E0 2mec
2 + E0( )

2c mec
2 + E0( )  
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P40.34 (a) It is because Compton’s equation and the conservation of vector 
momentum give three independent equations in the unknowns ′λ ,  λ0 , 
and u; (b) 3.82 pm 

P40.36 (a) 0.667; (b) 0.001 09 

P40.38 (a) 14.0 kV/m; (b)  46.8 µT;  (c) 4.19 nN; (d) 10.2 g 

P40.40 (a) 0.709 nm; (b) 413 nm 

P40.42 3.97 × 10−13 m 

P40.44 (a) ~108 eV; (b) ~ −106 eV; (c) The electron could not be confined to the 
nucleus. 

P40.46 The speed with which the student passes through the door is an 
extremely low velocity. It is impossible for the student to walk this 
slowly. At this speed, if the thickness of the wall in which the door is 
built is 15 cm, the time interval required for the student to pass 
through the door is 1.4 × 1033 s, which is 1015 times the age of the 
Universe. 

P40.48 (a) See P40.48(a) for full explanation; (b) They will always have a 
different frequency from photons of the same wavelength. 

P40.50 See P40.50 for the full explanation. 

P40.52 2.27 × 10−12 A 

P40.54 (a) 0.250 m/s; (b) 2.25 m 

P40.56 7.03 × 10−32 m/s 

P40.58 For the rifles fired at targets at reasonable distances away, a spread of 
1.00 cm due to the uncertainty principle would be impossible. 

P40.60 (a) See graph in ANS. FIG. P40.60 (b)  6.4× 10−34  J ⋅s;  (c) 1.4 eV 

P40.62 
  

hc
λ

−
e2B2R2

2me

 

P40.64 See P40.64 for full explanation. 

P40.66 See P40.66 for full explanation. 

P40.68 See P40.68 for full explanation. 

P40.70 2.81 × 10−8  

P40.72 (a) See P40.72(a) for full explanation; (b) 5.19 × 10−16 m 

P40.74 See P40.74 for full explanation. 

P40.76 (a) See P40.76 for full explanation; (b)  2.897 755 × 10−3  m ⋅K  
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41 
Quantum Mechanics 

 

CHAPTER OUTLINE 
 

41.1  The Wave Function 

41.2  Analysis Model: Quantum Particle Under Boundary Conditions 

41.3 The Schrödinger Equation 

41.4 A Particle in a Well of Finite Height 

41.5 Tunneling Through a Potential Energy Barrier 

41.6 Applications of Tunneling 

41.7 The Simple Harmonic Oscillator 
 

* An asterisk indicates a question or problem new to this edition. 

 

ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ41.1 Answer (b). Fewer particles are reflected as the height of the 
potential barrier decreases and approaches the energy of the 
particles. By Equations 41.22 and 41.23, the transmission coefficient 

  T ≈ e−2CL ,  where 
   C = 2m U − E( )  ,  increases as U − E decreases, so 

the reflection coefficient   R = 1−T ≈ 1− e−2CL  decreases as U − E 
decreases. 

OQ41.2 The ranking is answer (b) > (a) > (c) > (e) > (d). From Equation 41.14, 
consider the quantity 

   
  
E =

h2

8mL2

⎛
⎝⎜

⎞
⎠⎟

n2 : 

 (a) 
  

h2

8m1 3 nm( )2

⎡

⎣
⎢

⎤

⎦
⎥ 1( )2 =

1
9

h2

8m1

 nm−1⎛
⎝⎜

⎞
⎠⎟
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 (b) 
  

h2

8m1 3 nm( )2

⎡

⎣
⎢

⎤

⎦
⎥ 2( )2 =

4
9

h2

8m1

 nm−1⎛
⎝⎜

⎞
⎠⎟

 

 (c) 
  

h2

8 2m1( ) 3 nm( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1( )2 =
1

18
h2

8m1

 nm−1⎛
⎝⎜

⎞
⎠⎟

 

 (d) 
  

0( )2

8m1 3 nm( )2

⎡

⎣
⎢

⎤

⎦
⎥ 1( )2 = 0  

 (e) 
  

h2

8m1 6 nm( )2

⎡

⎣
⎢

⎤

⎦
⎥ 1( )2 =

1
36

h2

8m1

 nm−1⎛
⎝⎜

⎞
⎠⎟

 

OQ41.3 (a) True. Examples: An electron has mass and charge, but it can 
also display interference effects. 

 (b) False. An electron has rest energy ER = mec
2. 

 (c) True. A moving electron possesses kinetic energy. 

 (d) True. p = meu. 

 (e) True. 

OQ41.4 (a) True. Examples: A photon behaves as a particle in the 
photoelectric effect and as a wave in double-slit interference. 

 (b) True. A photon cannot have rest energy (mass) because it is 
never at rest: it travels at the speed of light. 

 (c) True. E = hf. 

 (d) True. p = E/c. 

 (e) True. 

OQ41.5 Answer (d). The probability of finding the particle is at the antinodes 
(places of greatest amplitude) of the standing wave. 

OQ41.6 Compare the ground state wave functions in Figures 41.4 and 41.7 in 
the text. In the square well with infinitely high walls, the particle’s 
simplest wave function has strict nodes separated by the length L of 
the well. The particle’s wavelength is 2L, its momentum h/2L, and its 
energy p2/2m = h2/8mL2. In the well with walls of only finite height, 
the wave function has nonzero amplitude at the walls, and it extends 
outside the walls. 

 (i) Answer (a). The ground state wave function extends somewhat 
outside the walls of the finite well, so the particle’s wavelength 
is longer. 
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 (ii) Answer (b). The particle’s momentum in its ground state is 
smaller because p = h/λ and the wave function has a larger 
wavelength. 

 (iii) Answer (b). The particle has less energy because is has smaller 
momentum. 

OQ41.7 Answer (e). From the relation between the square of the wave 
function and the probability P of finding the particle in the interval 
 Δx  = (7 nm − 4 nm) = 3 nm, we have 

   

  
ψ 2 Δx = P → ψ = P

Δx
= 0.48

3 nm
= 0.40 nm−1

 

OQ41.8 Answer (a). Because of the exponential tailing of the wave function 
within the barrier, the tunneling current is more sensitive to the 
width of the barrier than to its height. Notice that the exponent term 
CL in the transmission coefficient   T ≈ e−2CL ,  where 

   C = 2m U − E( )  ,  decreases more if L decreases than if U decreases 
by the same percentage. 

OQ41.9 Answer (c). Other points see a wider potential-energy barrier and 
carry much less tunneling current. 

OQ41.10 Answer (d). The probability of finding the particle is greatest at the 
place of greatest amplitude of the wave function. The next most 
likely place is point b, after that, points a and e appear to be equally 
probable. The particle would never be found at point c. 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ41.1 Consider the Heisenberg uncertainty principle. It implies that 
electrons initially moving at the same speed and accelerated by an 
electric field through the same distance need not all have the same 
measured speed after being accelerated. Perhaps the philosopher 
could have said “it is necessary for the very existence of science that 
the same conditions always produce the same results within the 
uncertainty of the measurements.” 

CQ41.2 Consider a particle bound to a restricted region of space. If its 
minimum energy were zero, then the particle could have zero 
momentum and zero uncertainty in its momentum. At the same time, 
the uncertainty in its position would not be infinite, but equal to the 
width of the region. In such a case, the uncertainty product  ΔxΔpx  
would be zero, violating the uncertainty principle. This contradiction 
proves that the minimum energy of the particle is not zero. 
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CQ41.3 The motion of the quantum particle does not consist of moving 
through successive points. The particle has no definite position. It 
can sometimes be found on one side of a node and sometimes on the 
other side, but never at the node itself. There is no contradiction here, 
for the quantum particle is moving as a wave. It is not a classical 
particle. In particular, the particle does not speed up to infinite speed 
to cross the node. 

CQ41.4 (a) ψ (x) becomes infinite as  x →∞ . 

 (b) ψ (x) is discontinuous and becomes infinite at x = π/2, 3π/2,… 

CQ41.5 A particle’s wave function represents its state, containing all the 
information there is about its location and motion. The squared 
absolute value of its wave function tells where we would classically 
think of the particle as spending most its time.  Ψ

2  is the probability 
distribution function for the position of the particle. 

CQ41.6 In quantum mechanics, particles are treated as wave functions, not 
classical particles. In classical mechanics, the kinetic energy is never 
negative. That implies that   E ≥U.  Treating the particle as a wave, the 
Schrödinger equation predicts that there is a nonzero probability that 
a particle can tunnel through a barrier—a region in which E < U. 

CQ41.7 Both (d) and (e) are not physically significant. Wave function (d) is 
not acceptable because ψ is not single-valued. Wave function (e) is 
not acceptable because ψ is discontinuous (as is its slope). 

CQ41.8 Newton’s 1st and 2nd laws are used to determine the motion of a 
particle of large mass. The Schrödinger equation is not used to 
determine the motion of a particle of small mass; rather, it is used to 
determine the state of the wave function of a particle of small mass. 
In particular, the states of atomic electrons are confined-wave states 
whose wave functions are solutions to the Schrödinger equation. 
Anything that we can know about a particle comes from its wave 
function. 
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 41.1 The Wave Function 
P41.1 (a) The wave function, 
     

  ψ x( ) = Aei 5×1010x( ) = Acos 5× 1010x( ) + iAsin 5× 1010x( )
 

   will go through one full cycle between x1 = 0 and (5.00 ×  1010)x2 = 
2 π .  The wavelength is then 

    

  
λ = x2 − x1 = 2π

5.00× 1010  m−1 = 1.26× 10–10  m
 

  To say the same thing, we can inspect   Ae
i 5 × 1010 x( )  to see that the 

wave number is k = 5.00 ×  1010 m–1 =  2π/λ.  

 (b) Since λ  = h/p, the momentum is  
    

  
p = h

λ
= 6.626× 10–34  J ⋅s

1.26× 10–10  m
= 5.27 × 10–24  kg ⋅m/s

   

 (c) The electron’s kinetic energy is  
    

  

K = 1
2

mu2 = p2

2m
 

=
5.27 × 10–24  kg ⋅m/s( )2

2 9.11× 10–31  kg( )
1 eV

1.602 × 10–19  J
⎛
⎝⎜

⎞
⎠⎟

= 95.3 eV

 

  [We use u to represent the speed of a particle with mass in chapters 
39, 40, and 41.] 

P41.2 (a) See ANS. FIG. P41.2 for a graph of 
  

f (x)
A

= e− x /a  for the range 

  
−3 <

x
a

< 3 . 

 

ANS. FIG. P41.2 
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 (b) Normalization requires 
   

  
ψ 2 dx

all space
∫ = 1:

 

    

  

A2e−2 x /adx
−∞

∞

∫ = 2 A2e−2 x /adx
0

∞

∫ = 1

− aA2e−2 x /a

0

∞
= aA2 = 1 → A =

1
a

 

 (c) 
  
P =

e−2 x /a

a
dx

−a

a

∫ = 2
e−2 x /a

a
dx

0

a

∫ = −e−2x/a
0

a
= −e−2 + 1 = 0.865  

P41.3 (a) Normalization requires     

   
  

ψ 2 dx
all space
∫ = 1:  

    

  

A2x2dx
0

1.00

∫ = 1

A2x3

3 0

1.00

=
A23

3
= 1 → A = 3

 

 (b) 
  
P = 3x2 dx

0.300

0.400

∫ = x3
0.300

0.400
= 0.400( )2 − 0.300( )2 = 0.037 0  

 (c) The expectation value is  
   

  
x = ψ * xψ dx

all space
∫ = 3x3 dx

0

1.00
∫ = 3x4

4 0

1.00

= 0.750
 

P41.4 The probability is given by 

    
  
P = ψ x( ) 2

−a

a

∫ =
a

π x2 + a2( ) dx
−a

a

∫ =
a
π

⎛
⎝⎜

⎞
⎠⎟

1
a

⎛
⎝⎜

⎞
⎠⎟ tan−1 x

a
⎛
⎝⎜

⎞
⎠⎟

−a

a

 

    
  
P =

1
π

tan−1 1− tan−1 −1( )⎡⎣ ⎤⎦ =
1
π

π
4
− −

π
4

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

=
1
2
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Section 41.2 Analysis Model: Quantum Particle  
Under Boundary Conditions 

P41.5 (a) The energy of a quantum particle confined to a line segment is 

    
  
En = h2n2

8mL2   

  Here we have for the ground state 
    

  

E1 =
6.626 × 10–34 J · s( )2

(1)2

8 1.67 × 10–27kg( ) 2.00 × 10–14m( )2

= 8.22 × 10–14J = 0.513 MeV   

 

  and for the first and second excited states, which are states 2 and 3, 
    

  
E2 = 4E1 = 2.05 MeV    and   E3 = 9E1 = 4.62 MeV

 

 (b) They do; the MeV is the natural unit for energy radiated by an 
atomic nucleus. 

  Stated differently: Scattering experiments show that an atomic 
nucleus is a three-dimensional object always less than 15 fm in 
diameter. This one-dimensional box 20 fm long is a good model in 
energy terms. 

P41.6 From Equation 41.14, the allowed energy levels of a particle in a box is 
    

  
En =

h2

8mL2

⎛
⎝⎜

⎞
⎠⎟

n2 ,        n = 1, 2, 3,...
 

 (a) For L = 1.00 nm, 
    

  

En =
h2

8mL2

⎛
⎝⎜

⎞
⎠⎟

n2

=
1 eV

1.60 × 10−19  J
⎛
⎝⎜

⎞
⎠⎟

6.626 × 10−34  J ⋅ s( )2

8 9.11× 10−31  kg( ) 1.00 × 10−9  m( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n2

= 0.377n2 = 6 eV

n ≈ 4

 

 (b) For n = 4,   En = 0.377 4( )2 = 6.03 eV  

P41.7 (a) From Equation 41.14, the allowed energy levels of an electron in a 
box is 

   
  
En =

h2

8meL
2

⎛
⎝⎜

⎞
⎠⎟

n2  n = 1, 2, 3, . . . 
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  Substituting numerical values, 

   

  

En =
6.626 × 10−34  J ⋅ s( )2

8 9.11× 10−31  kg( ) 0.100 × 10−9  m( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
n2

= 6.02 × 10−18  J( )n2 = 37.7 eV( )n2

 

 

ANS. FIG. P41.7 

 (b) When the electron falls from higher level ni to lower level nf , it 
emits energy 

   
  
ΔEn =

h2

8meL
2

⎛
⎝⎜

⎞
⎠⎟

ni
2 − nf

2( ) = 37.7 eV( ) ni
2 − nf

2( )  

  by emitting a photon of wavelength 
   

  

λ =
hc
ΔEn

=
8mecL2

h ni
2 − nf

2( )
=

8 9.109 × 10−31  kg( ) 2.998 × 108  m/s( ) 0.100 × 10−9  m( )2

6.626 × 10−34  J ⋅ s( ) ni
2 − nf

2( )
                                                                             ×

1 nm
10−9  m

⎛
⎝⎜

⎞
⎠⎟

=
33.0 nm
ni

2 − nf
2( )

 

  For example, for the transition  4→ 3,  the wavelength is 

   
 
λ =

33.0 nm
4( )2 − 3( )2 = 4.71 nm  

  The wavelengths produced by all possible transitions are: 

Transition 4 → 3 4 → 2 4 → 1 3 → 2 3 → 1 2 → 1 

λ (nm) 4.71 2.75 2.20 6.59 4.12 11.0 
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P41.8 The energy of the photon is 
   

  
E =

hc
λ

=
1 240 eV ⋅nm

6.06 mm
1 mm
106 nm

⎛
⎝⎜

⎞
⎠⎟ = 2.05 × 10−4eV

 

 The allowed energies of the proton in the box are 

   

  

En =
h2

8mL2

⎛
⎝⎜

⎞
⎠⎟

n2

=
6.626 × 10−34  J ⋅ s( )2

8 1.673 × 10−27  kg( ) 1.00 × 10−9  m( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 eV
1.602 × 10−19  J

⎛
⎝⎜

⎞
⎠⎟

n2

= 2.05 × 10−4  eV( )n2

 

 The smallest possible energy for a transition between states is from  
n = 1 to n = 2, which has energy 

   
  ΔEn = 2.05 × 10−4 eV( ) 22 − 12( ) = 6.14 × 10−4 eV  

 The photon does not have enough energy to cause this transition. The 
photon energy would be sufficient to cause a transition from n = 0 to  
n = 1, but the n = 0 state does not exist for the particle in a box. 

P41.9 From Equation 41.14,  

   
  
ΔE =

hc
λ

=
h2

8meL
2

⎛
⎝⎜

⎞
⎠⎟

22 − 12⎡⎣ ⎤⎦ =
3h2

8meL
2  

 Solving for the length of the box then gives 

   

  

L = 3hλ
8mec

=
3 6.626× 10−34  J ⋅s( ) 694.3× 10−9  m( )
8 9.11× 10−31  kg( ) 3.00× 108  m/s( )

= 7.95× 10−10  m = 0.795 nm

 

P41.10 From Equation 41.14,  

   
  
ΔE =

hc
λ

=
h2

8meL
2

⎛
⎝⎜

⎞
⎠⎟

22 − 12⎡⎣ ⎤⎦ =
3h2

8meL
2  

 Solving for the length of the box then gives 
   

  
L = 3hλ

8mec
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P41.11 From Equation 41.14, the allowed energy levels of a particle in a box is 

   
  
En =

h2

8mL2

⎛
⎝⎜

⎞
⎠⎟

n2 = n2E1        n = 1, 2, 3, … 

 For a proton (m = 1.673 × 10–27 kg) in a 10.0-fm wide box: 

   

  

E1 =
6.626 × 10−34  J ⋅ s( )2

8 1.673 × 10−27  kg( ) 10.0 × 10−15  m( )2

= 3.28 × 10−13  J
1 eV

1.602 × 10−19  J
⎛
⎝⎜

⎞
⎠⎟

= 2.05 × 106  eV = 2.05 MeV

 

 (a) The energy of the emitted photon is 

      E = ΔEn  = E2 − E1 = 2( )2 E1 − E1 = 3E1 = 6.14 MeV  

 (b) The wavelength of the photon is 
   

  

λ =
hc
E

=
1 240 eV ⋅nm
6.14 × 106  eV

= 2.02 × 10−4  nm = 2.02 × 10−13  m = 202 × 10−15  m = 202 fm

 

 (c) This is a gamma ray, according to the electromagnetic spectrum 
chart in Chapter 34. 

P41.12 The ground state energy of a particle (mass m) in a 1-dimensional box 

of width L is 
  
E1 =

h2

8mL2 . 

 (a) For a proton (m = 1.67 × 10–27 kg) in a 0.200-nm wide box: 
   

  

E1 =
6.626× 10−34  J ⋅s( )2

8 1.67 × 10−27  kg( ) 2.00× 10−10  m( )2

= 8.22 × 10−22  J = 5.13× 10−3  eV

 

 (b) For an electron (m = 9.11 × 10–31 kg) in the same size box: 
   

  

E1 =
6.626× 10−34  J ⋅s( )2

8 9.11× 10−31  kg( ) 2.00× 10−10  m( )2

= 1.51× 10−18  J = 9.41 eV

 

 (c) The electron has a much higher energy because it is much less 
massive. 
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P41.13 E1 = 2.00 eV = 3.20 × 10–19 J. For the ground state,  

   
  
E1 =

h2

8meL
2  

(a) The length of the region is 
  

  

L = h
8meE1

= 6.626× 10−34  J ⋅s

8 9.11× 10−31  kg( ) 3.20× 10−19  J( )
= 4.34× 10−10  m = 0.434 nm

  

 (b) For the excited states, 
  
En =

h2

8meL
2

⎛
⎝⎜

⎞
⎠⎟

n2 = n2E1 . For the first excited 

state,   ΔE = E2 − E1 = 4E1 − E1 = 3E1 = 6.00 eV  

P41.14 (a) The classical kinetic energy of the particle is 
   

  

K = 1
2

mv2 = 1
2

4.00× 10−3  kg( ) 1.00× 10−3  m/s( )2

= 2.00× 10−9  J

 

(b) The length L can be found from 
   

  
E = h2

8mL2

⎛
⎝⎜

⎞
⎠⎟

n2
 

  Solving, 

   

  

L = n
h2

8mE
= 2

6.626× 10−34  J ⋅s( )2

8 4.00× 10−3  kg( ) 2.00× 10−9  J( )
= 1.66× 10−28  m

 

 (c) 

 

No. The length of the box would have to be much smaller than

the size of a nucleus ( ~ 10–14  m) to confine the particle.

 

*P41.15 (a) The energies of the confined electron are 
  
En = h2

8meL
2 n2 .   Its 

energy gain in the quantum jump from state 1 to state 4 is 

  

h2

8meL
2 42 − 12( ) ,  and this is the photon energy 

  

h2 15
8meL

2 = hf = hc
λ

.  

Then   8mecL2 = 15hλ  and 
  

L = 15hλ
8mec

⎛
⎝⎜

⎞
⎠⎟

1 2

.  
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 (b) Let ′λ  represent the wavelength of the photon emitted:  

   
  

hc
′λ

= h2

8meL
2 42 − h2

8meL
2 22 = 12h2

8meL
2  

  Then 
  

hc
λ

′λ
hc

=
h2 15 8meL

2( )
8meL

2 12h2 = 5
4

 and  ′λ = 1.25λ .  

P41.16 (a) From 
   
ΔxΔp ≥ 

2
,  with   Δx = L,  

   
Δp ≥


2Δx

=


2L
, so the uncertainty 

in momentum must be at least 
   
Δp ≈


2L

. 

 (b) Its energy is all kinetic, so  
   

   
E = p2

2m
= (Δp)2

2m
≈ 2

8mL2 = h2

(4π )2 8mL2

 

 (c) Compare the result of part (b) to the result h2/8mL2 for the wave 
function as a standing wave. This estimate is too low by  4π

2 ≈ 40  
times, but it correctly displays the pattern of dependence of the 
energy on the mass and on the length of the well. 

P41.17 (a) 
  

ψ 2 dx
−∞

∞

∫ = 1  becomes 

   

  

A2 cos2 2π x
L

⎛
⎝⎜

⎞
⎠⎟ dx

−L 4

L 4

∫ = A2 1 + cos 2 2π x L( )⎡⎣ ⎤⎦
2

dx
−L 4

L 4

∫ = 1

A2

2
x +

L
4π

cos
4π x L

L
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥ −L 4

L 4

= 1

A2

2
L
2

⎛
⎝⎜

⎞
⎠⎟ = 1 → A =

2
L

 

 (b) The probability of finding the particle between 0 and 
  

L
8

 is 

   

  

ψ 2 dx
0

L 8

∫ = A2 cos2 2π x
L

⎛
⎝⎜

⎞
⎠⎟ dx

0

L 8

∫ =
A2

2
x +

L
4π

cos
4π x

L
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥ 0

L 8

1
2

4
L

⎛
⎝⎜

⎞
⎠⎟

L
8
+

L
4π

sin
π
2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
=

1
4
+

1
2π

= 0.409
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P41.18 Normalization requires 
  

ψ
all space
∫

2
dx = 1 :  

   

  

A2 sin2 nπ x
L

⎛
⎝⎜

⎞
⎠⎟ dx

0

L

∫ = A2 1− cos 2 π x L( )⎡⎣ ⎤⎦
2

dx = 1
0

L

∫

=
A2

2
x −

L
2π

sin
2π x

L
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥0

L

= 1

=
A2

2
L −

L
2π

sin 2π⎡
⎣⎢

⎤
⎦⎥0

L

=
A2L

2
= 1

A =
2
L

 

P41.19 (a) The expectation value is 
  

x = ψ * xψ dx
0

L

∫ :  

   

  

x = x
2
L

sin2 2π x
L

⎛
⎝⎜

⎞
⎠⎟ dx

0

L

∫ =
2
L

x
1− cos 2 π x L( )⎡⎣ ⎤⎦

2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
dx

0

L

∫

=
1
L

x 1− cos
4π x

L
⎛
⎝⎜

⎞
⎠⎟ dx

0

L

∫

 

  From integral tables, we find that 

   
  

x =
1
L

x2

2 0

L

−
1
L

L2

16π 2

4π x
L

sin
4π x

L
+ cos

4π x
L

⎡
⎣⎢

⎤
⎦⎥0

L

=
L
2

 

 (b) The probability of finding the particle in the range  
0.490L ≤ x ≤ 0.510L is 

   

  

P = 2
L

sin2 2π x
L

⎛
⎝⎜

⎞
⎠⎟ dx

0.490L

0.510L

∫ = 2
L

1− cos 2 2π x L( )⎡⎣ ⎤⎦
2

dx
0.490L

0.510L

∫

= 1
L

x − L
2π

sin
4π x

L
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥0.490L

0.510L

= 0.020− 1
4π

sin 2.04π − sin1.96π( ) = 5.26× 10−5

 

 (c) The probability of finding the particle in the range  
0.240L ≤ x ≤ 0.260L is 

   
  
P =

1
L

x −
L

2π
sin

4π x
L

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥0.240L

0.260L

= 3.99 × 10−2  
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 (d) 

  

In the n = 2 graph in the text’s Figure 41.4(b), it is more probable
to find the particle either near x = L 4  or x = 3L 4  than at the
center, where the probability density is zero. Nevertheless, the
symmetry of the distribution means that the average position is
x = L 2.

 

P41.20 (a) The most probable positions of the particle are x = L/4, L/2, and 
3L/4. 

 (b) We look for sin (3πx/L) taking on its extreme values 1 and –1 so 
that the squared wave function is as large as it can be. The result 
can also be found by studying Figure 41.4b. The most probable 
locations are at the antinodes of the standing wave pattern n = 3, 
which has three antinodes that are equally spaced, one at the 
center, and two a distance L/4 from either end. 

P41.21 (a) The probability of finding the electron between x = 0 and  
x = 0.100 nm = L/3 is 

   

  

ψ 1
2 dx

0

L/3

∫ = 2
L

sin2 π x
L

⎛
⎝⎜

⎞
⎠⎟ dx

0

L/3

∫ = 2
L

1− cos 2 π x L( )⎡⎣ ⎤⎦
2

dx
0

L/3

∫

= 1
L

x − L
2π

sin
2π x

L
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥0

L/3

= 1
3
− 1

2π
sin

2π
3

⎛
⎝⎜

⎞
⎠⎟ = 1

3
− 0.866

2π
= 0.196

 

 (b) Classically, the particle moves back and forth steadily, spending 
equal time intervals in each third of the line. The classical 
probability is 0.333, which is significantly larger. 

 (c) The probability is  

   

  

ψ 99
2 dx

0

L/3

∫ = 2
L

sin2 99π x
L

⎛
⎝⎜

⎞
⎠⎟ dx

0

L/3

∫ = 1
L

1− cos
198π x

L
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dx

0

L/3

∫

= 1
L

x − L
198π

sin
198π x

L
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥0

L/3

= 1
3
− 1

198π
sin 66π( ) = 1

3
− 0 = 0.333

  

  The probability is 0.333 for both classical and quantum models. 

 



962     Quantum Mechanics 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

P41.22 (a) From Equation 41.13, 
  
ψ 1 x( ) =

2
L

sin
π x
L

⎛
⎝⎜

⎞
⎠⎟

. The probability of 

finding the particle between x = 0 and   x =   is 

   

   

ψ 1
2 dx

0



∫ =
2
L

sin2 π x
L

⎛
⎝⎜

⎞
⎠⎟ dx

0



∫ =
2
L

1− cos 2 π x L( )⎡⎣ ⎤⎦
2

dx
0



∫

=
1
L

x −
L

2π
sin

2π x
L

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥ 0



=

L
−

1
2π

sin
2π 

L
⎛
⎝⎜

⎞
⎠⎟

 

 (b) The probability function is sketched in ANS. FIG. P41.22(b). 

 

ANS. FIG. P41.22(b) 

 (c) 

   

The wave function is zero for x < 0 and for x > L. The 
probability at  = 0 must be zero because the particle 
is never found at x < 0 or exactly at x = 0. The probability
at  = L must be 1 for normalization: the particle is always 
found somewhere in the range 0 < x < L.

 

 (d) The probability of finding the particle between x = 0 and   x =   is 

 

2
3

, and between   x =   and x = L is 
 

1
3

. 

  Thus,  
   
ψ 1

2 dx
0



∫ =
2
3

 

    
   
∴

L
−

1
2π

sin
2π 

L
⎛
⎝⎜

⎞
⎠⎟ =

2
3

 

  or, defining 
   
u =

L

,   
  
u −

1
2π

sin 2π u =
2
3
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  This equation for u can be solved by homing in on the solution 

with a calculator, the result being 
   
u =

L

= 0.585 , or     = 0.585L  

to three digits. 

P41.23 (a) The probability is 
   

  

P = ψ 1
2 dx

0

L/3

∫ =
2
L

sin2 π x
L

⎛
⎝⎜

⎞
⎠⎟ dx

0

L/3

∫

=
2
L

1− cos 2 π x L( )⎡⎣ ⎤⎦
2

dx
0

L/3

∫

=
1
L

x −
L

2π
sin

2π x
L

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥ 0

L 3

=
1
L

L
3
−

L
2π

sin
2π
3

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

=
1
3
−

1
2π

sin
2π
3

⎛
⎝⎜

⎞
⎠⎟

=
1
3
−

3
4π

⎛
⎝⎜

⎞
⎠⎟

= 0.196

 

 (b) The probability density is symmetric about 
  
x =

L
2

. Thus, the 

probability of finding the particle between 
  
x =

2L
3

 and x = L is the 

same, 0.196. Therefore, the probability of finding it in the range 

  

L
3
≤ x ≤

2L
3

 is   P = 1.00 − 2 0.196( ) = 0.609 . 

 

ANS. FIG. P41.23(b) 
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Section 41.3 The Schrödinger Equation 

P41.24 From  ψ = Aei kx − ωt( )  [1] 

 we evaluate   

  
 

dψ
dx

= ikAei kx − ωt( )  

 and 
  

d2ψ
dx2 = − k2Aei kx − ωt( )  [2] 

 We substitute equations [1] and [2] into the Schrödinger equation, so 
that Equation 41.15,  

  
   
−
2

2m
d2ψ
dx2 + Uψ = Eψ  

 becomes the test equation  

  
   
−
2

2m
⎛

⎝⎜
⎞
⎠⎟
−k2Aei kx − ωt( )( ) + 0 = EAei kx − ωt( )  [3] 

 The wave function  ψ = Aei kx − ωt( )  is a solution to the Schrödinger 
equation if equation [3] is true. Both sides depend on A, x, and t in the 
same way, so we can cancel several factors, and determine that we 
have a solution if  

  
   

2k2

2m
= E  

 But this is true for a nonrelativistic particle with mass in a region 
where the potential energy is zero, since  

  

   

2k2

2m
= 1

2m
h

2π
⎛
⎝⎜

⎞
⎠⎟

2 2π
λ

⎛
⎝⎜

⎞
⎠⎟

2

= (h/λ)2

2m
= p2

2m
using de Broglie's equation
  

                                         = m2u2

2m
= 1

2 mu2 = K = K + U
recall U=0
   = E 

 

 where K is the kinetic energy. Therefore, the given wave function 
does satisfy Equation 41.15. 

P41.25 (a) Given the function 
   

  ψ x( ) = Acos kx + Bsin kx  

  Its derivative with respect to x is 
   

  

∂ψ
∂x

= −kAsin kx + kBcos kx
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  And its second derivative is 
   

  

∂2ψ
∂x2 = −k2Acos kx − k2Bsin kx

= −k2 Acos kx + Bsin kx( ) = −k2ψ

 

  The Schrödinger equation is satisfied if 

   
   
−
2

2m
d2ψ
dx2 +Uψ = Eψ ,  where    U = 0: 

   

   
− 

2

2m
−k2ψ( ) = Eψ      →      

2k2

2m
ψ = Eψ

 

  This is true as an identity (functional equality) for all x if 

   
E =
2k2

2m
, which is true because E = K + U = K + 0 = K, and  

   
   

2k2

2m
=

1
2m

 
  

h
2π

⎛
⎝⎜

⎞
⎠⎟

2 2π
λ

⎛
⎝⎜

⎞
⎠⎟

2

=
1

2m
h
λ

⎛
⎝⎜

⎞
⎠⎟

2

=
p2

2m
= K  

 (b) From part (a), 
   
E =
2k2

2m
.  

P41.26 (a) These are standing wave patterns with nodes at the ends and n 
antinodes. 

  For n = 1, the wave function is 

    
  
ψ 1 x( ) =

2
L

cos
π x
L

⎛
⎝⎜

⎞
⎠⎟

  

  and the probability density is 

    
  
P1 x( ) = ψ 1 x( ) 2 =

2
L

cos2 π x
L

⎛
⎝⎜

⎞
⎠⎟

 

  For n = 2, the wave function is 

    
  
ψ 2 x( ) =

2
L

sin
2π x

L
⎛
⎝⎜

⎞
⎠⎟

 

  and the probability density is  

    
  
P2 x( ) = ψ 2 x( ) 2 =

2
L

sin2 2π x
L

⎛
⎝⎜

⎞
⎠⎟

 

  For n = 3, the wave function is     

    
  
ψ 3 x( ) =

2
L

cos
3π x

L
⎛
⎝⎜

⎞
⎠⎟
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  and the probability density is  

    
  
P3 x( ) = ψ 3 x( ) 2 =

2
L

cos2 3π x
L

⎛
⎝⎜

⎞
⎠⎟

 

 (b) The wave functions and probability densities are shown in ANS. 
FIG. P41.26(b). 

 

ANS. FIG. P41.26(b) 

P41.27 (a) Setting the total energy E equal to zero and rearranging the 
Schrödinger equation to isolate the potential energy function 
gives 

   

   

2

2m
⎛
⎝⎜

⎞
⎠⎟

d2ψ
dx2 + U x( )ψ = 0

U x( ) =
2

2m
⎛
⎝⎜

⎞
⎠⎟

1
ψ

d2ψ
dx2

 

  If   ψ x( ) = Axe−x2 L2

 

  Then,  

   
  

d2ψ
dx2 = 4Ax3 − 6AxL2( ) e−x2 L2

L4
 

  or 
  

d2ψ
dx2 =

4x2 − 6L2( )
L4 ψ x( )  

  and 
   
U x( ) =

2

2mL2

4x2

L2 − 6
⎛
⎝⎜

⎞
⎠⎟
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 (b) U(x) is sketched in ANS. FIG. P41.27(b). 

 

ANS. FIG. P41.27(b) 

P41.28 (a) 
  
ψ x( ) = A 1−

x2

L2

⎛
⎝⎜

⎞
⎠⎟

→
dψ
dx

= −
2Ax
L2 →

d2ψ
dx2 = −

2A
L2  

  Schrödinger’s equation:       

   
   
−
2

2m
d2ψ
dx2 +Uψ = Eψ  

  becomes  

   

   

−
2

2m
−

2A
L2

⎛
⎝⎜

⎞
⎠⎟ +

−2x2( )
mL2 L2 − x2( ) A 1−

x2

L2

⎛
⎝⎜

⎞
⎠⎟

= EA 1−
x2

L2

⎛
⎝⎜

⎞
⎠⎟

−
2

2 m
−

2
L2

⎛
⎝⎜

⎞
⎠⎟

+
−2x2( ) L2 − x2( )
mL4 L2 − x2( )

= E 1−
x2

L2

⎛
⎝⎜

⎞
⎠⎟

2

mL2 +
−2x2( )
mL4 = E 1−

x2

L2

⎛
⎝⎜

⎞
⎠⎟

2

mL2 1−
x2

L4

⎛
⎝⎜

⎞
⎠⎟

= E 1−
x2

L2

⎛
⎝⎜

⎞
⎠⎟

 

  This will be true for all x if 
   
E =

2

L2m
.  

 (b) Note that the wave function  ψ x( )  is an even function; therefore, 
we may write the normalization condition as 

   

  

ψ 2 dx
−L

L

∫ = 1 = A2 1−
x2

L2

⎛
⎝⎜

⎞
⎠⎟

2

dx
−L

L

∫ = 2 A2 1−
x2

L2

⎛
⎝⎜

⎞
⎠⎟

2

dx
0

L

∫

= 2A2 1−
2x2

L2 +
x4

L4

⎛
⎝⎜

⎞
⎠⎟

dx
0

L

∫
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  Solving, 

    

  

1 = 2A2 x −
2x3

3L2 +
x5

5L4

⎡

⎣
⎢

⎤

⎦
⎥

0

L

= 2A2 L −
2
3

L +
L
5

⎡
⎣⎢

⎤
⎦⎥

= A2 16L
15

⎛
⎝⎜

⎞
⎠⎟ → A =

15
16L

 

 (c) As in part (b), because the wave function is an even function, the 
probability is 

    

  

P = ψ 2 dx
−L 3

L 3

∫ = ψ 2 dx
0

L 3

∫ = 2
15

16L
1−

2x2

L2 +
x4

L4

⎛
⎝⎜

⎞
⎠⎟

dx
0

L 3

∫

=
15
8L

x −
2x3

3L2 +
x5

5L5

⎡

⎣
⎢

⎤

⎦
⎥

0

L 3

=
15
8L

L
3
−

2L
81

+
L

1215
⎡
⎣⎢

⎤
⎦⎥
=

47
81

= 0.580

 

 
 

 

Section 41.4 A Particle in a Well of Finite Height 
P41.29  (a) For n = 4, the wave function has two maxima and two minima 

(four extrema), as shown in the left-hand panel of ANS. FIG. 
P41.29.  

 (b) For n = 4, the probability function has four maxima. as shown in 
the right-hand panel of ANS. FIG. P41.29.  

 

ANS. FIG. P41.29 

P41.30 (a) See ANS. FIG. P41.30(a).  

 

ANS. FIG. P41.30(a) 
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 (b) The wavelength inside the box is 2L. The wave function 
penetrates the wall, but the wavelength of the transmitted wave 
traveling to the left is the same,   2L , because U = 0 on both sides 
of the wall, so the energy and momentum and, therefore, the 
wavelength, are the same. 

 
 

 

Section 41.5 Tunneling Through a Potential Energy Barrier 
P41.31 The decay constant for the wave function inside the barrier is: 

   

   

C =
2m U − E( )


=
2 9.11× 10–31  kg( ) 10.0 eV − 5.00 eV( ) 1.60 × 10–19  J/eV( )

6.626 × 10–34  J ⋅ s/2π
= 1.14 × 1010  m–1

 

(a) The approximate probability of transmission is  
 

  T ≈ e−2CL = e−2 1.14 × 1010 m–1( ) 2.00 × 10–10 m( ) = 0.010 3
 

  or a 1% chance of transmission. 

 (b)   R = 1−T = 0.990 ,  a 99% chance of reflection. 

P41.32 (a)   T = e−2CL ,   where       

   

   

C =
2m U −E( )


=
2 9.11× 10−31  kg( ) 5.00− 4.50( ) 1.60× 10−19  J( )  

1.055× 10−34  J ⋅s
= 3.62 × 109  m−1

 

  and 

  

T = e−2CL = exp −2 3.62 × 109  m−1( ) 950× 10−12  m( )⎡⎣ ⎤⎦

= exp −6.88( ) = 1.03× 10−3

 

 (b) We require   e
−2CL = 10−6.  Taking logarithms, 

   

  

−2CL = ln 10−6 = −6ln 10

L =
3ln 10

C
=

3ln 10
3.62 × 109  m−1 = 1.91× 10−9  m = 1.91 nm
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P41.33 The original tunneling probability is   T = e−2CL ,  where 

   

   

C =
2m U −E( )


=
2 9.11× 10−31  kg( ) 20.0− 12.0( ) 1.60× 10−19  J( )

6.626× 10−34  J ⋅s 2π
= 1.448 1× 1010  m−1

 

 The photon energy is 
  
hf =

hc
λ

=
1 240 eV ⋅nm

546 nm
= 2.27 eV,  to make the 

electron’s new kinetic energy 12.0 + 2.27 = 14.27 eV and its decay 
coefficient inside the barrier 

   

   

′C =
2m U −E( )


=
2 9.11× 10−31  kg( ) 20.0− 14.27( ) 1.60× 10−19  J( )

6.626× 10−34  J ⋅s 2π
= 1.225 5× 1010  m−1

 

 Now the factor of increase in transmission probability is  

   
  

e−2 ′C L

e−2CL = e2L C− ′C( ) = e2 1.00×10−9  m( ) 0.223×1010  m−1( ) = e4.45 = 85.9  

 
 

 

Section 41.6 Applications of Tunneling 

P41.34 With the wave function proportional to e–CL, the transmission 
coefficient and the tunneling current are proportional to  ψ

2 ,  to e–2CL. 
Then, 

  
  

I 0.500 nm( )
I 0.515 nm( ) =

e−2 10.0 nm( ) 0.500 nm( )

e−2 10.0 nm( ) 0.515 nm( ) = e20.0 0.015( ) = 1.35  

P41.35 With transmission coefficient e–2CL, the fractional change in 
transmission is 

  

  

e−2 10.0 nm( )L − e−2 10.0 nm( ) L+0.002 00 nm( )

e−2 10.0 nm( )L = 1− e−20.0 0.002 00( )

= 0.039 2 = 3.92%
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Section 41.7 The Simple Harmonic Oscillator 

P41.36 (a) The wave function is given by   ψ = Axe−bx2

,  so     

   
  

dψ
dx

= Ae−bx2

− 2bx2Ae−bx2
 

  and 

   
  

d2ψ
dx2 = −2bxAe−bx2

− 4bxAe−bx2⎡⎣ ⎤⎦ + 4b2x3e−bx2

= −6bψ + 4b2x2ψ  

  Substitute into Equation 41.24: 

   

   

−
2

2m
d2ψ
dx2 +

1
2

mω 2x2ψ = Eψ

−
2

2m
−6bψ + 4b2x2ψ⎡⎣ ⎤⎦ +

1
2

mω 2x2ψ = Eψ

3b2

m
ψ −

2b22

m
x2ψ = −

1
2

mω 2x2ψ + Eψ

 

  For this to be true as an identity, the coefficients of like terms 
must be the same for all values of x. So we must have both 

   
   

2b22

m
=

1
2

mω 2 → b2 =
m2ω 2

42
    and    

   

3b2

m
= E  

 (b) Therefore,    
   
b =

mω
2

    and    
   
E =

3b2

m
=

3
2
ω  

 (c) The energy levels are 
   
En = n +

1
2

⎛
⎝⎜

⎞
⎠⎟ ω =

3
2
ω , so n = 1, which 

corresponds to the  first excited state . 

P41.37 The longest wavelength corresponds to minimum photon energy, 
which must be equal to the spacing between energy levels of the 
oscillator. From    E = ω ,  we have 

  

   

hc
λ

=  k
m

= h
2π

k
m

 

 or 
  

  

λ = 2πc
m
k

= 2π 3.00× 108  m/s( ) 9.11× 10−31  kg
8.99 N/m

⎛
⎝⎜

⎞
⎠⎟

1 2

= 600 nm
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P41.38 The longest wavelength corresponds to minimum photon energy, 
which must be equal to the spacing between energy levels of the 
oscillator, which is (from Equation 41.28) 

  

   

E = ω

hc
λ

= 
k
m

=
h

2π
k
m

λ = 2πc
m
k

 

P41.39 (a) With    ψ = Be− mω 2( )x2

,  the normalization condition 
  

ψ 2 dx
all x
∫ = 1  

becomes 
   

   

1 = B2e−2 mω 2( )x2

dx
−∞

∞

∫ = 2B2 e− mω ( )x2

dx
0

∞

∫

                                 = 2B2 1
2

π
mω 

= B2 π 
mω

 

  where Table B.6 in Appendix B was used to evaluate the integral. 

  Thus, 

   
B =

mω
π 

⎛
⎝⎜

⎞
⎠⎟

1 4

. 

 (b) For small δ, the probability of finding the particle in the range 

  
−
δ
2

< x <
δ
2

 is 

   

   
ψ 2 dx

−δ 2

δ 2

∫ ≈ δ ψ 0( ) 2 = δB2e−0 = δ mω
π 

⎛
⎝⎜

⎞
⎠⎟

1 2

 

P41.40 (a) For the center of mass to be fixed,   m1u1 + m2u2 = 0 . Then 
   

  
u = u1 + u2 = u1 + m1

m2

u1 = m2 + m1

m2

u1

 

  and 
   

  
u1 = m2u

m1 + m2

 

  Also, 

   
  
u =

m2

m1

u2 + u2 =
m2 + m1

m1

⎛
⎝⎜

⎞
⎠⎟

u2 → u2 =
m1u

m1 + m2
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  Substitute for   u1  and   u2 : 

    

  

1
2

m1u1
2 + 1

2
m2u2

2 + 1
2

kx2 = 1
2

m1m2
2u2

m1 + m2( )2 + 1
2

m2m1
2u2

m1 + m2( )2 + 1
2

kx2

= 1
2

m1m2 m1 + m2( )
m1 + m2( )2 u2 + 1

2
kx2

= 1
2

µu2 + 1
2

kx2

 

 (b) Because the total energy is constant 
    

  

d
dx

1
2

µ u2 +
1
2

kx2⎛
⎝⎜

⎞
⎠⎟ = 0

0 =
1
2

µ 2u
du
dx

+
1
2

k2x = µ dx
dt

du
dx

+ kx = µ du
dt

+ kx = µa + kx

µa = −kx

a = −
kx
µ

 

  This is the condition for simple harmonic motion; the acceleration 
of the equivalent particle is a negative constant times the 
displacement from equilibrium. 

 (c) By identification with   a = −ω 2x,   

    
  
ω =

k
µ

= 2π f  and 
  

f =
1

2π
k
µ

 

P41.41 (a) With   x = 0  and   px = 0 , the average value of x2 is   Δx( )2  and the 

average value of   px
2  is   Δpx( )2 .  We know 

   
Δx ≥


2Δpx

. 

  The average of the energy is constant: 
   

   

E = px
2

2m
+ k

2
x2 =

px
2

2m
+ k

2
x2

E =
Δpx( )2

2m
+ k

2
Δx( )2 ≥

Δpx( )2

2m
+ k

2


2Δpx

⎛
⎝⎜

⎞
⎠⎟

2

E ≥
Δpx( )2

2m
+ k2

8 Δpx( )2

 

  We rewrite the last equation as   
   
E ≥

px
2

2m
+

k2

8px
2  
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 (b) To minimize E as a function of   Δpx( )2 ,  we require 

    

   

d

d Δpx( )2⎡
⎣

⎤
⎦

Δpx( )2

2m
+

k2

8 Δpx( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 0

1
2m

+
k2

8
−1( ) 1

Δpx( )4 = 0

 

  Then 

    
   

k2

8 Δpx( )4 =
1

2m
→ Δpx( )2 =

2mk2

8
⎛
⎝⎜

⎞
⎠⎟

1 2

=
 mk

2
 

  and 
    

   

E ≥
Δpx( )2

2m
+ k2

8 Δpx( )2 =  mk
2 2m( ) + k2 2

8 mk

= 
4

k
m

+ 
4

k
m

= 
2

k
m

 

  Therefore, 
   
Emin =


2

k
m

=
ω
2

 

P41.42 Equation 41.26 is    ψ = Be− mω 2( )x2

,  so 

   
  

dψ
dx

= −
mω


⎛
⎝⎜

⎞
⎠⎟ xψ     and     

   

d2ψ
dx2 =

mω


⎛
⎝⎜

⎞
⎠⎟

2

x2ψ + −
mω


⎛
⎝⎜

⎞
⎠⎟ψ

 

 Substitute into Equation 41.24: 
   

   

− 
2

2m
d2ψ
dx2 + 1

2
mω 2x2ψ = Eψ

− 
2

2m
mω


⎛
⎝⎜

⎞
⎠⎟

2

x2ψ + − mω


⎛
⎝⎜

⎞
⎠⎟ψ

⎡

⎣
⎢

⎤

⎦
⎥ +

1
2

mω 2x2ψ = Eψ

− 1
2

mω 2x2ψ + ω
2

⎛
⎝⎜

⎞
⎠⎟ψ + 1

2
mω 2x2ψ = Eψ

ω
2

⎛
⎝⎜

⎞
⎠⎟ψ = Eψ

 

 which is satisfied provided that 
   
E =
ω
2

. 
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Additional Problems 
P41.43 (a) The particle’s wavelength is 

   
  
λ =

2L
n

=
2L
1

= 2.00 × 10−10  m  

(b) Its momentum is 

 
  
p =

h
λ

=
6.626 × 10−34  J ⋅ s
2.00 × 10−10  m

= 3.31× 10−24  kg ⋅m/s  

(c) And its energy is 

 
  
E =

p2

2m
=

3.31× 10−24  kg ⋅m/s( )2

2 2.00 × 10−28  kg( ) = 0.171 eV  

P41.44 (a) From Equation 41.4 for   ψ x( ) = Aeikx ,  the first and second 
derivatives are 

   
 

d
dx

Aeikx( ) = ikAeikx    and    
  

d2ψ
dx2 = −k2Aeikx  

  Then 
   

   

−
2

2m
d2ψ
dx2 = −

2

2m
−k2Aeikx( ) =

2k2

2m
Aeikx( )

=
1

2m
h

2π
⎛
⎝⎜

⎞
⎠⎟

2
2π
λ

⎛
⎝⎜

⎞
⎠⎟

2

Aeikx( )

=
1

2m
h
λ

⎛
⎝⎜

⎞
⎠⎟

2

Aeikx( ) =
p2

2m
ψ = Kψ

 

 (b) For 
  
ψ x( ) = Asin

2π x
λ

⎛
⎝⎜

⎞
⎠⎟ = Asin kx,   

   
  

d
dx

Asin kx( ) = Ak cos kx       and      
  

d2ψ
dx2 = −Ak2 sin kx.  

  Then, similarly to the proof in part (a), 
   

   

−
2

2m
d2ψ
dx2 = −

2

2m
−Ak2 sin kx( ) =

2k2

2m
Ak2 sin kx( ) =

p2

2m
ψ

= Kψ
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P41.45 From Equation 41.13, 
  
ψ 2(x) =

2
L

sin
2πx

L
⎛
⎝⎜

⎞
⎠⎟

. 

 The probability of finding the particle between x = 0 and x = L/4 is 

  

  

ψ 2 dx
0

L 4

∫ =
2
L

sin2 2π x
L

⎛
⎝⎜

⎞
⎠⎟ dx

0

L/4

∫ =
2
L

1− cos 2 2π x L( )⎡⎣ ⎤⎦
2

dx
0

L/4

∫

1
L

x −
L

4π
sin

4π x
L

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥ 0

L 4

=
1
L

L
4
−

L
4π

sin π( )⎡
⎣⎢

⎤
⎦⎥

=
1
4

= 0.250

 

P41.46 If we had n = 0 for a quantum particle in a box, its momentum would 
be zero. The uncertainty in its momentum would be zero. The 
uncertainty in its position would not be infinite, but just equal to the 
width of the box. Then the uncertainty product would be zero, to 
violate the uncertainty principle. The contradiction shows that the 
quantum number cannot be zero. In its ground state the particle has 
some nonzero zero-point energy. 

P41.47 T = e–2CL, where 
   
C =

2m U − E( )


 and where m is in kilograms, and U 

and E are in joules. 

(a) We compute 
 

  

C =
2 9.11× 10−31  kg( ) 0.010 0 eV( ) 1.60× 10−19  J/eV( )⎡⎣ ⎤⎦

1.055× 10−34  J ⋅s
= 5.12 × 108  m−1

 

Then, 
 

  2CL = 2 5.12 × 108  m−1( ) 0.100× 10−9  m( ) = 0.102
 

  and   T = e−0.102 = 0.903  

(b) We compute 
 

  

C =
2 9.11× 10−31  kg( ) 1.00 eV( ) 1.60× 10−19  J/eV( )⎡⎣ ⎤⎦

1.055× 10−34  J ⋅s
= 5.12 × 109  m−1

 

Then, 

   
  2CL = 2 5.12 × 109  m−1( ) 0.100× 10−9  m( ) = 1.02

 

  and 
  T = e−1.02 = 0.359  
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 (c) We compute 
   

  

C =
2 6.65× 10−27  kg( ) 1.00× 106  eV( ) 1.60× 10−19  J/eV( )⎡⎣ ⎤⎦

1.055× 10−34  J ⋅s
= 4.37 × 1014  m−1

 

  Then, 

   
  2CL = 2 4.37 × 1014  m−1( ) 1.00× 10−15  m( ) = 0.875

 

  and   T = e−0.875 = 0.417  

 (d) We compute 
   

  
2CL = 2

2 8.00 kg( ) 1.00 J( )
1.055× 10−34  J ⋅s

0.020 0 m( ) = 1.52 × 1033

 

  Then, 

   
  T = e−1.52×1033

= e(ln 10)(−1.52×1033 /ln 10) = 10−6.59×1032  

P41.48 From Equation 41.14, the energy levels of an electron in an infinitely 
deep potential well are proportional to n2. If the energy of the ground 
state, n = 1, is E1 = 0.300 eV, the energy levels of the states n = 2, 3, and 
4 are 

   

  

E2 = 22 0.300 eV( ) = 1.20 eV

E3 = 32 0.300 eV( ) = 2.70 eV

E4 = 42 0.300 eV( ) = 4.80 eV

 

 (a) For the transition from the n = 3 level to the n = 1 level, the 
electron loses energy 

   

  

E = hc
λ

= E3 −E1 = 2.70 eV − 0.300 eV = 2.40 eV

λ = hc
ΔE

= 1240 eV ⋅nm
2.40 eV

= 517 nm

 

 (b) For the transition from level 2 to level 1, 

   E = 1.20 eV – 0.300 eV = 0.900 eV 

  and 
   

  
λ = hc

ΔE
= 1240 eV ⋅nm

0.900 eV
= 1 380 nm = 1.38 µm

 

  This photon, with wavelength greater than 700 nm, is in the 
infrared region. 
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  In like manner, we find 

  for 3 to 2:    ΔE = 1.50 eV, and λ = 827 nm, infrared   

  for 4 to 1:   ΔE = 4.50 eV, and λ = 275 nm, ultraviolet  

  for 4 to 2:    ΔE = 3.60 eV, and λ = 344 nm, near ultraviolet   

  for 4 to 3: 
  
ΔE = 2.10 eV, and λ = 590 nm, yellow-orange visible   

P41.49 (a) From E = hf, the frequency is 

   

  

f =
E
h

=
1.80 eV( )

6.626 × 10−34  J ⋅ s( )
1.602 × 10−19  J

1.00 eV
⎛
⎝⎜

⎞
⎠⎟

= 4.35 × 1014  Hz = 435 × 1012  Hz = 435 THz

 

 (b) The wavelength of the emitted photon is 

   
  
λ = c

f
= 3.00× 108  m/s

4.35× 1014  Hz
= 6.89× 10−7  m = 689 nm  

 (c) We use 
   
ΔEΔt ≥


2

, so 

   

   

ΔE ≥ 
2Δt

= h
4π Δt( ) = 6.626× 10−34  J ⋅s

4π 2.00× 10−6  s( )
ΔE ≥ 2.64× 10−29  J = 1.65× 10−10  eV = 165× 10−12  eV

    = 165 peV

 

  The uncertainty is 165 peV or more. 

P41.50 Suppose the marble has mass 20 g. Suppose the wall of the box is 12 
cm high and 2 mm thick. While it is inside the wall, 

   
  U = mgy = 0.02 kg( ) 9.8 m/s2( ) 0.12 m( ) = 0.023 5 J  

 and     

   
  
E = K =

1
2

mu2 =
1
2

0.02 kg( ) 0.8 m/s( )2 = 0.006 4 J  

 Then,    

   
   
C =

2m U − E( )


=
2 0.02 kg( ) 0.017 1 J( )

1.055 × 10−34  J ⋅ s
= 2.5 × 1032  m−1  
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 and the transmission coefficient is 
   

  

e−2CL = e−2 2.5×1032( ) 2×10−3( ) = e−10×1029

= e−2.30 4.3×1029( )

= 10−4.3×1029

= ~ 10−1030

 

P41.51 (a) From Equation 41.14, the allowed energy levels are 

   
  
En =

h2

8mL2

⎛
⎝⎜

⎞
⎠⎟

n2         n = 1, 2, 3, … 

  The energy of the absorbed photon is 
   

  
E = ΔEn = E3 −E1 = h2

8meL
2

⎛
⎝⎜

⎞
⎠⎟

(3)2 − h2

8meL
2

⎛
⎝⎜

⎞
⎠⎟

(1)2 = 8
h2

8meL
2

⎛
⎝⎜

⎞
⎠⎟

 

  We determine the length of the box from 
   

  

hc
λ

= h2

meL
2 → L = hλ

mec
⎛
⎝⎜

⎞
⎠⎟

1/2  

 (b) The energy lost during the n = 3 to n = 2 transition is 

   
  
′E = E3 − E2 =

h2

8meL
2

⎛
⎝⎜

⎞
⎠⎟

3( )2 −
h2

8meL
2

⎛
⎝⎜

⎞
⎠⎟

2( )2 = 5
h2

8meL
2

⎛
⎝⎜

⎞
⎠⎟

 

  The wavelength of the emitted photon is then 

   
  

hc
′λ

=
5h2

8meL
2 =

5h2

8 me

me c

hλ
⎛

⎝
⎜

⎞

⎠
⎟ → ′λ =

8
5
λ  

P41.52 
  

x2 = x2 ψ 2 dx
−∞

∞

∫  

 For a one-dimensional box of width L, from Equation 41.18, 

  

  

ψ n =
2
L

sin
nπ x

L
⎛
⎝⎜

⎞
⎠⎟

x2 =
2
L

x2 sin2 nπ x
L

⎛
⎝⎜

⎞
⎠⎟ dx

0

L

∫
  

 With the substitution 

   

 

y =
nπ x

L
→ dy =

nπ
L

dx

x =
L

nπ
y → dx =

L
nπ

dy
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 the integral becomes (from integral tables) 
   

  

x2 = 2
L

L
nπ

⎛
⎝⎜

⎞
⎠⎟

3

x2 sin2 y dy
0

nπ

∫

= 2L2

nπ( )3
y3

6
− y2

4
− 1

8
⎛
⎝⎜

⎞
⎠⎟

sin 2y − y
4

cos2y
⎡

⎣
⎢

⎤

⎦
⎥

0

nπ

= 2L2

nπ( )3
nπ( )3

6
− nπ

4
cos2 nπ( )⎡

⎣
⎢

⎤

⎦
⎥

= 2L2

nπ( )3
nπ( )3

6
− nπ

4
⎡

⎣
⎢

⎤

⎦
⎥ = L2

3
− L2

2n2π 2

 

P41.53 (a) The requirements that 
  

nλ
2

= L  and 
  
p =

h
λ

=
nh
2L

 are still valid. 

From the relativistic energy of the particle,  
    

  
E = pc( )2 + mc2( )2

⇒En = nhc
2L

⎛
⎝⎜

⎞
⎠⎟

2

+ mc2( )2
 

  its kinetic energy is therefore 
    

  
Kn = En − mc2 = nhc

2L
⎛
⎝⎜

⎞
⎠⎟

2

+ mc2( )2
− mc2

 

 (b) Taking L = 1.00 × 10–12 m, m = 9.11 × 10–31 kg, and n = 1, we find 

    

  

Kn = nhc
2L

⎛
⎝⎜

⎞
⎠⎟

2

+ mc2( )2
− mc2

=
1( ) 6.626× 10−34  J ⋅s( ) 2.998× 108  m s( )

2 1.00× 10−12  m( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2⎧
⎨
⎪

⎩⎪

+ 9.11× 10−31  kg( ) 2.998× 108  
m
s

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥

2 ⎫
⎬
⎪

⎭⎪

1/2

              − 9.11× 10−31  kg( ) 2.998× 108  
m
s

⎛
⎝⎜

⎞
⎠⎟

2

= 4.68× 10−14  J

 

 (c) The particle’s nonrelativistic energy is  

  
E1 = h2

8mL2 =
6.626× 10−34  J ⋅s( )2

8 9.11× 10−31  kg( ) 1.00× 10−12  m( )2 = 6.02 × 10−14  J
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  Comparing this to K1, we see that this value is too large by 

 28.6% . 

P41.54 Looking at Figure 41.7, we see that wavelengths for a particle in a finite 
well are longer than those for a particle in an infinite well. Therefore, 
the energies of the allowed states should be lower for a finite well than 
for an infinite well. As a result, the photons from the source have too 
much energy to be absorbed or, equivalently, the photons have a 
frequency that is too high. In order to lower their apparent frequency 
using the Doppler shift, the source would have to move away from the 
particle in the finite square well, not toward it. 

 P41.55 (a) For a particle with wave function 

    

  

ψ x( ) =
2
a

e−x a for x > 0

0 for x < 0

⎧
⎨
⎪

⎩⎪
 

  The probability densities are 

    
  ψ x( ) 2 = 0    for x < 0     

  and 
  
ψ 2 x( ) =

2
a

e−2x a  for x > 0. 

  ANS. FIG. P41.55. shows a sketch of the probability density for 
this particle. 

 

ANS. FIG. P41.55 

 (b) The probability is obtained from 

    
  
Prob x < 0( ) = ψ x( ) 2

dx
−∞

0

∫ = 0( )dx
−∞

0

∫ = 0  

(c) For the wave function to be normalized, we require  

 
  

ψ x( ) 2
dx

−∞

∞

∫ = ψ 2 dx
−∞

0

∫ + ψ 2 dx
0

∞

∫ = 1  

Performing the integration gives 

    
  

0dx
−∞

0

∫ +
2
a

⎛
⎝⎜

⎞
⎠⎟ e−2x adx

0

∞

∫ = 0 − e−2x a

0

∞
= − e−∞ − 1( ) = 1  
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(d) The probability is obtained from  
 

  

Prob 0 < x < a( ) = ψ 2 dx
0

a

∫ = 2
a

⎛
⎝⎜

⎞
⎠⎟ e−2x a dx

0

a

∫ = −e−2x a

0

a

= 1− e−2 = 0.865

 

P41.56 (a) Taking Lx = Ly = L, we see that the expression for E becomes 

   
  
E =

h2

8meL
2 nx

2 + ny
2( )  

  The general form of the wave function is  

   
  
ψ ∼ sin

nxπ x
L

⎛
⎝⎜

⎞
⎠⎟ sin

nyπ y

L
⎛
⎝⎜

⎞
⎠⎟

 

  For a normalizable wave function, neither nx nor ny can be zero, 
otherwise ψ = 0. 

 (b) The ground state corresponds to 
  
nx = ny = 1 . 

 (c) The energy of the ground state is 

   
  
E1, 1 =

h2

8meL
2 12 + 12( ) =

h2

4meL
2

 

 (d) For the first excited state, nx = 1 and ny = 2, or nx = 2 and ny = 1. 

 (e) For the second excited state, nx = 2 and ny = 2. 

 (f) The second excited state, corresponding to nx = 2, ny = 2, has an 
energy of 

   
  
E2, 2 =

h2

8meL
2 22 + 22( ) =

h2

meL
2

 

 (g) The energy difference between the ground state and the second 
excited state is 

   
  
ΔE = E2, 2 − E1, 1 =

h2

meL
2 −

h2

4meL
2 =

3h2

4meL
2

 

 (h) 
  
ΔE =

3h2

4meL
2 =

hc
λ

→ λ =
4mecL2

3h
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P41.57 (a) The expectation value is 

   
  

x 0 = x
a
π

⎛
⎝⎜

⎞
⎠⎟

1 2

e−ax2

dx
−∞

∞

∫ = 0  

  since the integrand is an odd function of x. 

(b) The expectation value is  

  
  

x 1 = x
4a3

π
⎛
⎝⎜

⎞
⎠⎟

1 2

x2e−ax2

dx
−∞

∞

∫ = 0  

 since the integrand is an odd function of x. 

(c) The expectation value is  

   
  

x 01 = x
1
2
ψ 0 +ψ 1( )2 dx

−∞

∞

∫ =
1
2

x 0 +
1
2

x 1 + xψ 0 x( )ψ 1 x( )dx
−∞

∞

∫  

  The first two terms are zero, from (a) and (b). Thus, 
   

  

x 01 = x
a
π

⎛
⎝⎜

⎞
⎠⎟

1 4

e−ax2 2 4a3

π
⎛
⎝⎜

⎞
⎠⎟

1 4

xe−ax2 2 dx
−∞

∞

∫ = 2
2a2

π
⎛
⎝⎜

⎞
⎠⎟

1 2

x2e−ax2

dx
0

∞

∫

= 2
2a2

π
⎛
⎝⎜

⎞
⎠⎟

1 2
1
4

π
a3

⎛
⎝⎜

⎞
⎠⎟

1 2

= 1
2a

 

  Where we have used Table B.6 in the Appendix to evaluate the 
integral. 

P41.58 With one slit open, 
   

  P1 = ψ 1
2      or     P2 = ψ 2

2  

 With both slits open,     

   
  P = ψ 1 +ψ 2

2  

 At a maximum, the wave functions are in phase     

   
  Pmax = ψ 1 + ψ 2( )2  

 At a minimum, the wave functions are out of phase, 

   
  Pmin = ψ 1 − ψ 2( )2  
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 Now, 

   
  

P1

P2

=
ψ 1

2

ψ 2
2 = 25.0 , 

  so  
 

ψ 1

ψ 2

= 5.00  

 and  
  

Pmax

Pmin

=
ψ 1 + ψ 2( )2

ψ 1 − ψ 2( )2 =
5.00 ψ 2 + ψ 2( )2

5.00 ψ 2 − ψ 2( )2 =
6.00( )2

4.00( )2 =
36.0
16.0

= 2.25  

 
 

 

Challenge Problems 
P41.59 (a) The claim is that Schrödinger’s 

equation 

   
   

∂2ψ
∂x2 = −

2m
2 E −U( )ψ  

  has the solutions 

     ψ 1 = Aeik1x + Be− ik1x  [region I] 

     ψ 2 = Ceik2 x   [region II] 

  Check that the solution for region I satisfies Schrödinger’s 
equation: 

   

   

∂2ψ 1

∂x2 = −
2m
2 Eψ 1

∂2

∂x2 Aeik1x( ) +
∂2

∂x2 Be− ik1x( ) = −
2m
2 E Aeik1x + Be− ik1x( )

−k
1

2 Aeik1x( ) − k1
2 Be− ik1x( ) = −

2m
2 E Aeik1x + Be− ik1x( )

−k
1

2 Aeik1x + Be− ik1x( ) = −
2m
2 E Aeik1x + Be− ik1x( )

 

  The last line is true if 
   
k

1

2 =
2m
2 E,  which it is because 

   
   
E =

p2

2m
=
k1( )2

2m
→ k1 =

2mE


 

  Therefore, the equation is satisfied in region I. 

ANS. FIG. P41.59(a) 
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  Check that the solution for region II satisfies Schrödinger’s 
equation: 

    

   

∂2ψ 2

∂x2 = −
2m
2 E −U( )ψ 2

∂2

∂x2 Ceik2 x( ) = −
2m
2 E −U( ) Ceik2 x( )

−k
2

2 Ceik2 x( ) = −
2m
2 E −U( ) Ceik2 x( )

 

  The last line is true if 
   
k

2

2 =
2m
2 E −U( ) ,  which it is because 

    
   
E =

p2

2m
+ U =

k2( )2

2m
→ k2 =

2m E −U( )


 

  Therefore, the equation is satisfied in region II. We apply boundary 
conditions. Matching functions and derivatives at x = 0, we find that 

     ψ 1( )0
= ψ 2( )0

 gives     A + B = C, 

  and 
  

dψ 1

dx
⎛
⎝⎜

⎞
⎠⎟ 0

=
dψ 2

dx
⎛
⎝⎜

⎞
⎠⎟ 0

 gives       k1 A − B( ) = k2C.  

  Then    
  
B =

1− k2 k1

1+ k2 k1

A     and    
  
C =

2
1+ k2 k1

A . 

  Incident wave Aeikx reflects Be–ikx, with probability 

    

  

R =
B2

A2 =
1− k2 k1( )2

1 + k2 k1( )2 =
k1 − k2( )2

k1 + k2( )2  

 (b) With E = 7.00 eV and U = 5.00 eV: 

    
  

k2

k1

=
E −U

E
=

2.00 eV
7.00 eV

= 0.535  

  The reflection probability is    
  
R =

1− 0.535( )2

1 + 0.535( )2 = 0.092 0 .  

 (c) The probability of transmission is      T = 1− R = 0.908 .  

P41.60 (a) The potential energy of the system is given by 

    

  

U = e2

4π ∈0 d
−1+ 1

2
− 1

3
⎛
⎝⎜

⎞
⎠⎟ + −1+ 1

2
⎛
⎝⎜

⎞
⎠⎟ + −1( )⎡

⎣⎢
⎤
⎦⎥

=
−7 3( )e2

4π ∈0 d

= − 7kee
2

3d
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 (b) There are two electrons, each with minimum energy E1. From 
Equation 41.14, the total energy is 

   
  
K = 2E1 =

2h2

8me 3d( )2 =
h2

36med
2

 

 (c) The total energy of the system is 

   
  
E = K +U =

h2

36med
2 −

7kee
2

3d
 

  For a minimum, we require 
  

dE
d d( ) = 0 . Differentiating, 

   

  

dE
d d( ) = 0

d
d d( )

h2

36med
2 −

7kee
2

3d
⎛
⎝⎜

⎞
⎠⎟

= 0

−2( ) h2

36med
3 − −1( )7kee

2

3d2 = 0

h2

18med
3 = 7kee

2

3d2

d = 3h2

7 18me( )kee
= h2

42mekee
2

 

  Substituting numerical values, 

  

  

d =
6.626 × 10−34  J ⋅ s( )2

42( ) 9.11× 10−31  kg( ) 8.99 × 109  N ⋅m2/C2( ) 1.60 × 10−19  C( )2

= 4.99 × 10−11  m = 49.9 pm

 

 (d) The lithium spacing is d and the number of atoms N in volume V 

is related by Nd3 = V, and the density is 
 

Nm
V

, where m is the mass 

of one atom. We have: 
    

  
density = Nm

V
= Nm

Nd3 = m
d3
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  From which we obtain 

    

  

d = m
density

⎛
⎝⎜

⎞
⎠⎟

1 3

=

6.94 g
mol

1 mol
6.022 × 1023  atoms

⎛
⎝⎜

⎞
⎠⎟

0.530 g
cm3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 3

= 2.79× 10−8  cm = 2.79× 10−10  mm = 279 pm

  

  

  

The lithium interatomic spacing of 280 pm is 5.59 times larger.
Therefore, it is of the same order of magnitude as the interatomic
spacing 2d here.

 

P41.61 The wave functions and probability densities are the same as those 
shown in Active Figure 41.4 of the textbook. From Equation 41.13, the 
wave functions are 

  
  
ψ n =

2
L

sin
nπ x

L
⎛
⎝⎜

⎞
⎠⎟

 where n = 1, 2, 3… 

 (a)  For n = 1, 

   

  

P1 = ψ 1
2 dx

0.150 nm

0.350 nm

∫ =
2

1.00 nm
⎛
⎝⎜

⎞
⎠⎟ sin2 π x

1.00 nm
⎛
⎝⎜

⎞
⎠⎟ dx

0.150

0.350

∫

= 2.00 nm( ) x
2
−

1.00 nm
4π

sin
2π x

1.00 nm
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥0.150 nm

0.350 nm
 

  In the above result we used  

   
  

sin2 ax( )dx∫ =
x
2

⎛
⎝⎜

⎞
⎠⎟ −

1
4a

⎛
⎝⎜

⎞
⎠⎟ sin 2ax( )  

  Therefore,  

   
  
P1 = 1.00 nm( ) x −

1.00 nm
2π

sin
2π x

1.00 nm
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥0.150 nm

0.350 nm

 

   

  

P1 = 1.00 nm( ) 0.350 nm − 0.150 nm
⎧
⎨
⎩

                 − 1.00 nm
2π

sin 0.700π( )− sin 0.300π( )[ ]⎫⎬
⎭

= 0.200
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 (b) 
  
P2 =

2
1.00

sin2 2π x
1.00

⎛
⎝⎜

⎞
⎠⎟ dx

0.150

0.350

∫ = 2.00
x
2
−

1.00
8π

sin
4π x
1.00

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥0.150

0.350

 

  

  

P2 = 1.00 x −
1.00
4π

sin
4π x
1.00

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥0.150

0.350

= 1.00 0.350 − 0.150( ) − 1.00
4π

sin 1.40π( ) − sin 0.600π( )[ ]{ }
= 0.351

 

 Using 
  
En =

n2h2

8mL2 , we find that  

 (c)   E1 = 0.377 eV     and     

 (d)   E2 = 1.51 eV  

P41.62 (a) and (b) The Wave functions are shown in ANS. FIG. P41.62(a) and 
ANS. FIG. P41.62(b). 

   

   ANS. FIG. P41.62(a) ANS. FIG. P41.62(b) 

 (c) ψ  is continuous and  ψ → 0  as   x → ±∞.  The function can be 
normalized. It describes a particle bound near x = 0. 

 (d) Since ψ  is symmetric, 

   
  

ψ 2 dx
−∞

∞

∫ = 2 ψ 2 dx
0

∞

∫ = 1  

  or 
  
2A2 e−2α x dx

0

∞

∫ =
2A2

−2α
⎛
⎝⎜

⎞
⎠⎟

e−∞ − e0( ) = 1.  

  This gives   A = α .  

 (e) The probability of finding the particle between –1/2α  and 
+1/2α  is  

  

  

P−1 2α( )→ 1 2α( ) = 2 a( )2
e−2α x dx

x=0

1 2α

∫ =
2α
−2α

⎛
⎝⎜

⎞
⎠⎟ e−2α 2α − 1( )

= 1− e−1( ) = 0.632
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P41.63 (a) Recall from Section 41.7 that the potential energy of a harmonic 

oscillator is 
  

1
2

kx2 =
1
2

mω 2x2 . We can find the energy of the 

oscillator E by substituting the wave function into the 
Schrödinger equation. 

   
   

−2

2m
d2ψ
dx2 +Uψ = Eψ →

−2

2m
d2ψ
dx2 +

1
2

mω 2x2ψ = Eψ  

  From    ψ = Bxe− mω 2( )x2

, we have 
   

   

dψ
dx

= Be− mω 2( )x2

+ Bx − mω
2

⎛
⎝⎜

⎞
⎠⎟ 2xe− mω 2( )x2

= Be− mω 2( )x2

− B
mω


⎛
⎝⎜

⎞
⎠⎟ x2e− mω 2( )x2

d2ψ
dx2 = Bx − mω


⎛
⎝⎜

⎞
⎠⎟ xe− mω 2( )x2

− B
mω


⎛
⎝⎜

⎞
⎠⎟ 2xe− mω 2( )x2

                                 − B
mω


⎛
⎝⎜

⎞
⎠⎟ x2 − mω


⎛
⎝⎜

⎞
⎠⎟ xe− mω 2( )x2

d2ψ
dx2 = −3B

mω


⎛
⎝⎜

⎞
⎠⎟ xe− mω 2( )x2

+ B
mω


⎛
⎝⎜

⎞
⎠⎟

2

x3e− mω 2( )x2

 

  Substituting the above into the Schrödinger equation, we have 
   

   

−2

2m
d2ψ
dx2 + 1

2
mω 2x2ψ = Eψ

−2

2m
−3B

mω


⎛
⎝⎜

⎞
⎠⎟ xe− mω 2( )x2

+ B
mω


⎛
⎝⎜

⎞
⎠⎟

2

x3e− mω 2( )x2⎡

⎣
⎢

⎤

⎦
⎥

                                                     + 1
2

mω 2x2 Bxe− mω 2( )x2⎡
⎣

⎤
⎦

= E Bxe− mω 2( )x2⎡
⎣

⎤
⎦

3ω
2

⎛
⎝⎜

⎞
⎠⎟ Bxe− mω 2( )x2⎡
⎣

⎤
⎦ + − 1

2
mω 2x2⎛

⎝⎜
⎞
⎠⎟ Bxe− mω 2( )x2⎡
⎣

⎤
⎦

                                                 + 1
2

mω 2x2⎛
⎝⎜

⎞
⎠⎟ Bxe− mω 2( )x2⎡
⎣

⎤
⎦

= E Bxe− mω 2( )x2⎡
⎣

⎤
⎦

3ω
2

⎛
⎝⎜

⎞
⎠⎟ Bxe− mω 2( )x2( ) = E Bxe− mω 2( )x2( )
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  The last line is true if 
   
E =

3ω
2

. 

 (b) We never find the particle at   x = 0  because ψ = 0 there. 

 (c) ψ  is maximized if 

   

   

dψ
dx

= Be− mω 2( )x2

− B
mω


⎛
⎝⎜

⎞
⎠⎟ x2e− mω 2( )x2

= 0

1−
mω


⎛
⎝⎜

⎞
⎠⎟ x2 = 0

 

  which is true at 
  
x = ±


mω

. 

 (d) We require   
  

ψ 2 dx
−∞

∞

∫ = 1 : 

   

   

1 = B2x2e− mω ( )x2

dx
−∞

∞

∫ = 2B2 x2e− mω ( )x2

dx∫

= 2B2 1
4

π
mω ( )3 = B2 π

1 2

2


mω
⎛
⎝⎜

⎞
⎠⎟

3 2  

  Then,      

   

   
B =

21 2

π 1 4

mω


⎛
⎝⎜

⎞
⎠⎟

3 4

=
4m3ω 3

π 3

⎛
⎝⎜

⎞
⎠⎟

1 4

 

 (e) At 
   x = 2  mω( )1 2 , the potential energy is  

  

   

1
2

mω 2x2 = 1
2

mω 2 4
mω

⎛
⎝⎜

⎞
⎠⎟ = 2ω

 

This is larger than the total energy 
  

3ω
2

, so there is  zero  classical 

probability of finding the particle here. 

 (f) The actual probability is given by 

 
   
P = ψ 2 dx = Bxe− mω 2( )x2( )2

δ  

   

   

P = δB2x2e− mω ( )x2

= δ 4m3ω 3

π 3

⎛
⎝⎜

⎞
⎠⎟

1 2
4
mω

⎛
⎝⎜

⎞
⎠⎟ e− mω ( )x2

= δ 2
π 1 2

m3 2ω 3 2

3 2

⎛
⎝⎜

⎞
⎠⎟

4
mω

⎛
⎝⎜

⎞
⎠⎟ e− mω ( )4  mω( ) = 8δ mω

π
⎛
⎝⎜

⎞
⎠⎟

1 2

e−4
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P41.64 (a) To find the normalization constant, we note that 
  
ψ 2 dx

0

L

∫ = 1 , or 

   
  
A2 sin2 π x

L
⎛
⎝⎜

⎞
⎠⎟ + 16sin2 2π x

L
⎛
⎝⎜

⎞
⎠⎟ + 8sin

π x
L

⎛
⎝⎜

⎞
⎠⎟ sin

2π x
L

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dx

0

L

∫ = 1  

  Noting that 
   

  

sin2 π x
L

⎛
⎝⎜

⎞
⎠⎟ dx

0

L

∫ =
1− cos 2 π x L( )⎡⎣ ⎤⎦

2
dx

0

L

∫

= x
2
− L
π

sin 2π x L( )
2

⎡

⎣
⎢

⎤

⎦
⎥

0

L

= L
2

 

  the integral becomes 
   

  

ψ 2 dx
0

L

∫ = A2 L
2

⎛
⎝⎜

⎞
⎠⎟ + 16

L
2

⎛
⎝⎜

⎞
⎠⎟ + 8 sin

π x
L

⎛
⎝⎜

⎞
⎠⎟ sin

2π x
L

⎛
⎝⎜

⎞
⎠⎟ dx

0

L

∫
⎡

⎣
⎢

⎤

⎦
⎥

1= A2 L
2

⎛
⎝⎜

⎞
⎠⎟ + 16

L
2

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

                   +8 sin
π x
L

⎛
⎝⎜

⎞
⎠⎟ 2sin

π x
L

⎛
⎝⎜

⎞
⎠⎟ cos

π x
L

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dx

0

L

∫
⎫
⎬
⎪

⎭⎪

1= A2 17L
2

+ 16 sin2 π x
L

⎛
⎝⎜

⎞
⎠⎟ cos

π x
L

⎛
⎝⎜

⎞
⎠⎟ dx

0

L

∫
⎡

⎣
⎢

⎤

⎦
⎥

1= A2 17L
2

+ 16L
3π

sin3 π x
L

⎛
⎝⎜

⎞
⎠⎟

x=0

x=L⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= A2 17L

2
⎛
⎝⎜

⎞
⎠⎟

→ A = 2
17L

 

 (b) To determine the relationship between A and B, we note that 

  
ψ 2 dx

−a

a

∫ = 1 . Therefore, 

   

  

A 2 cos2 π x
2a

⎛
⎝⎜

⎞
⎠⎟ + B 2 sin2 π x

a
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢−a

a

∫

                             + 2 A B cos
π x
2a

⎛
⎝⎜

⎞
⎠⎟ sin

π x
a

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥
dx = 1
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  Noting that 
   

  

sin2 π x
2a

⎛
⎝⎜

⎞
⎠⎟ dx

−a

a

∫ =
1− cos 2 π x 2a( )⎡⎣ ⎤⎦

2
dx

−a

a

∫

= x
2

+ 2L
π

sin π x a( )
2

⎡

⎣
⎢

⎤

⎦
⎥
−a

a

= a

 

   and 
   

  

cos2 π x
2a

⎛
⎝⎜

⎞
⎠⎟ dx

−a

a

∫ =
1+ cos 2 π x 2a( )⎡⎣ ⎤⎦

2
dx

−a

a

∫

= x
2

+ 2L
π

sin π x a( )
2

⎡

⎣
⎢

⎤

⎦
⎥
−a

a

= a

 

  the integral becomes 

   
  
A 2 a + B 2 a + 2 A B cos

π x
2a

⎛
⎝⎜

⎞
⎠⎟ sin

π x
a

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

dx
−a

a

∫ = 1  

 The third term is: 
   

  

2 A B cos
π x
2a

⎛
⎝⎜

⎞
⎠⎟ 2sin

π x
2a

⎛
⎝⎜

⎞
⎠⎟ cos

π x
2a

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
dx

−a

a

∫

                                     = 4 A B cos2 π x
2a

⎛
⎝⎜

⎞
⎠⎟ sin

π x
2a

⎛
⎝⎜

⎞
⎠⎟ dx

−a

a

∫

                                     = 8a A B
3π

cos3 π x
2a

⎛
⎝⎜

⎞
⎠⎟

−a

a

= 0

 

 so the whole integral is  

   
  
a A 2 + B 2( ) = 1 , giving 

  
A 2 + B 2 =

1
a
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P41.2 (a) See ANS. FIG. P41.2; (b) 
  

1
a

; (c) 0.865 

P41.4 
 

1
2

 

P41.6 (a) n ≈ 4; (b) 6.03 eV 

P41.8 The photon does not have the smallest possible energy to cause the 
transition between states n = 1 to n = 2. 

P41.10 
  

3hλ
8mec

 

P41.12 (a) 5.13 × 10−3 eV; (b) 9.41 eV; (c) The electron has a much higher 
energy because it is much less massive. 

P41.14 (a) 2.00 × 10−9 J; (b) 1.66 × 10−28 m; (c) No. The length of the box would 
have to be much smaller than the size of a nucleus (~10−14 m) to confine 
the particle. 

P41.16 (a) 
   


2L

; (b)    
2/8mL2 ;  (c) This estimate is too low by  4π

2 ≈ 40  times, but 

it correctly displays the pattern of dependence of the energy on the 
mass and on the length of the well. 

P41.18 See P41.18 for full explanation. 

P41.20 (a) x = L/4, L/2, and 3 L/4; (b) We look for sin (3π x/L) taking on its 
extreme values 1 and –1 so that the squared wave function is as large 
as it can be. The result can also be found by studying Figure 41.4b. 

P41.22 (a) 
   


L
− 1

2π
sin

2π 
L

⎛
⎝⎜

⎞
⎠⎟ ;  (b) See ANS FIG P41.22(b); (c) The wave function 

is zero for x < 0 and for x > L. The probability at    = 0  must be zero 
because the particle is never found at x < 0 or exactly at x = 0. The 
probability at    = L  must be 1 for normalization: the particle is always 
found somewhere in the range 0 < x < L; (d) 0.585L 

P41.24 See P41.24 for complete solution. 
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P41.26 (a) n = 1:   
  
ψ 1 x( ) =

2
L

cos
π x
L

⎛
⎝⎜

⎞
⎠⎟ ;   

  
P1 x( ) = ψ 1 x( ) 2 =

2
L

cos2 π x
L

⎛
⎝⎜

⎞
⎠⎟

,  

n = 2: 
  
ψ 2 x( ) =

2
L

sin
2π x

L
⎛
⎝⎜

⎞
⎠⎟ ;   

  
P2 x( ) = ψ 2 x( ) 2 =

2
L

sin2 2π x
L

⎛
⎝⎜

⎞
⎠⎟ ,  

n = 3:  
  
ψ 3 x( ) =

2
L

cos
3π x

L
⎛
⎝⎜

⎞
⎠⎟ ;   

  
P3 x( ) = ψ 3 x( ) 2 =

2
L

cos2 3π x
L

⎛
⎝⎜

⎞
⎠⎟ ;  

(b) See ANS FIG. P41.26(b). 

P41.28 (a) 
   

2

L2m
;  (b) 

  

15
16L

;  (c) 0.580 

P41.30 (a) See ANS. FIG. P41.30(a); (b) 2L 

P41.32 (a)  1.03× 10−3 ;
 
 (b) 1.91 nm  

P41.34 1.35 

P41.36 (a) See P41.36(a) for full explanation; (b) 
   
b =

mω
2

 and 
  

3
2
ω ;  

(c) first excited state 

P41.38 
  
2πc

m
k

 

P41.40 (a) See P41.40(a) for full explanation; (b) See P41.40(b) for full 

explanation; (c) 
  
f =

1
2π

k
µ

 

P41.42 See P41.42 for full explanation. 

P41.44 (a–b) See P41.44(a) and (b) for full explanations. 

P41.46 See P41.46 for full explanation. 

P41.48 (a) See P41.48(a) for full proof; (b) For 2 to 1, λ = 1.38 µm, infrared; For 
3 to 2, λ = 827 nm, infrared; For 4 to 1, λ = 275 nm, ultraviolet; For 4 to 
2, λ = 344 nm, near ultraviolet; For 4 to 3, λ = 590 nm, yellow-orange 
visible. 

P41.50  ∼10−1030

 

P41.52 See P41.52 for full explanation. 
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P41.54 Looking at Figure 41.7, we see that wavelengths for a particle in a finite 
well are longer than those for a particle in an infinite well. Therefore, 
the energies of the allowed states should be lower for a finite well than 
for an infinite well. As a result, the photons from the source have too 
much energy to be absorbed or, equivalently, the photons have a 
frequency that is too high. In order to lower their apparent frequency 
using the Doppler shift, the source would have to move away from the 
particle in the finite square well, not toward it. 

P41.56 (a) 
  
E =

h2

8meL
2 nx

2 + ny
2( ) ;  (b) nx = ny = 1; (c) 

  

h2

4meL
2 ; (d) nx = 1 and ny = 2, or 

nx = 2 and ny = 1; (e) nx = 2 and ny = 2; (f) 
  

h2

meL
2 ; (g) 

  

3h2

4meL
2 ; (h) 

  

4mecL2

3h
 

P41.58 2.25 

P41.60 (a) 
  
−

7kee
2

3d
; (b) 

  

h2

36med
2 ; (c) 49.9 pm; (d) The lithium interatomic 

spacing of 280 pm is 5.59 times larger. Therefore, it is of the same order 
of magnitude as the interatomic spacing 2d here. 

P41.62 (a) See ANS. FIG. P41.62(a); (b) See ANS. FIG. P41.62(b); (c) ψ is 
continuous and  ψ → 0  as   x → ±∞.  The function can be normalized. It 
describes a particle bound near x = 0; (d)   A = α ;  (e) 0.632 

P41.64 (a) 
  
A =

2
17L

; (b) 
  
A 2 + B 2 =

1
a
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42 
Atomic Physics 

 

CHAPTER OUTLINE 
 

42.1  Atomic Spectra of Gases 

42.2 Early Models of the Atom 

42.3  Bohr’s Model of the Hydrogen Atom  

42.4 The Quantum Model of the Hydrogen Atom 

42.5  The Wave Functions for Hydrogen 

42.6 Physical Interpretation of the Quantum Numbers 

42.7  The Exclusion Principle and the Periodic Table 

42.8 More on Atomic Spectra: Visible and X-Ray 

42.9 Spontaneous and Stimulated Transitions 

42.10 Lasers 
 

* An asterisk indicates a question or problem new to this edition. 

 

ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ42.1 (i) Answer (e). (ii) Answer (c). The M means that the electron falls 
into the M shell, for which n = 3. The β means the electron comes 
from two shells above M: the O shell, for which n = 5.  Mα  would 
refer to 4 → 3 and  Mβ  refers to 5 → 3.  

OQ42.2 Answer (c). All states associated with    = 2  are referred to as d states. 
Thus, all 10 possible quantum states having n = 3,    = 2  are called 3d 
states. 
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OQ42.3 Answer (d). Wavelengths of the hydrogen spectrum are given by 

  
1 λ = RH 1 nf

2 − 1 ni
2( ) , where RH is the Rydberg constant. For the 

transition ni = 5 to nf = 3, we have 

  

 

1
λ

= 1.097 × 107  m−1( ) 1
32 −

1
52

⎛
⎝⎜

⎞
⎠⎟ = 7.80 × 105  m−1

λ = 1.28 × 10−6  m

 

OQ42.4 Answer (e). With a principal quantum number of n = 3, there are 3 
possible values of the orbital quantum number,    = 0,  1,  2.  There are 
a total of   2 2 + 1( )  possible quantum states for each value of   ,  

  2 + 1  possible values of the orbital magnetic quantum number    m ,  

and 2 possible spin orientations 
  
(ms = ± 1

2
)  for each value of    m.  

Thus, the number of states are  

  3s states    (n = 3, = 0):  2[2(0) + 1] = 2 

  3p states    (n = 3, = 1):  2[2(1) + 1] = 6 

  3d states    (n = 3, = 2):  2[2(2) + 1] = 10 

 The grand total of n = 3 states is 2 + 6 + 10 = 18.  

OQ42.5 Answer (c). It is an experimental fact the charge on the electron is 
quantized. The Bohr model does not introduce this as a new 
assumption. 

OQ42.6 (i) Answer (b). (ii) Answer (e). From the discussion of Equations 42.8 

and 42.9, 
  
K =

kee
2

2r
 and 

  
Ue = −

kee
2

r
. If  

   −E = K + Ue =  
  
+

kee
2

2r
−

kee
2

r
= −

kee
2

2r
, then 

  
E =

kee
2

2r
. 

 Therefore, K = E and Ue = –2E. 

OQ42.7 Answer (e). The structure of the periodic table is the result of the 
Pauli exclusion principle, which states that no two electrons in an 
atom can ever have the same set of values for the set of quantum 
numbers n,    ,  m ,  and ms. 

OQ42.8 (a) Yes, provided that the energy of the photon is precisely enough 
to put the electron into one of the allowed energy states. 
Strangely—more precisely non-classically—enough, if the 
energy of the photon is not sufficient to put the electron into a 
particular excited energy level, the photon will not interact with 
the atom at all!  
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 (b) Yes, a photon of any energy greater than 13.6 eV will ionize the 
atom. Any energy above 13.6 eV will go into kinetic energy of 
the newly liberated electron. 

OQ42.9 Answers (b) and (e). Choice (b) is not possible because the Pauli 
exclusion principle limits the number of electrons in any p subshell to 
a maximum of 6. Choice (e) is impossible because the selection rules 
of quantum mechanics limit the maximum value of    to n – 1. Thus, 
a 2d state (n = 2,    = 2 ) cannot exist. 

OQ42.10 Answer (e). Since the electron is in some bound quantum state of the 
atom, the atom is not ionized and choice (a) is false. The fact that the 
electron is in a d state means that its orbital quantum number is 
   = 2,  so choice (b) is false. Also, since the maximum value of    is  
n – 1, choice (c) is false. Finally, the ground state of hydrogen is a 1s 
state, so choice (d) is false. Choice (e) is true because the magnitude 
of the orbital angular momentum is    L =   + 1( ) = 2 2 + 1( ) = 6.  

OQ42.11 (i) In order of energy change, the ranking is a > d > c > b. 

 (ii) In order of decreasing photon wavelength, the ranking is  
c = d > b > a. 

  We calculate the energy of the photon according to 

  
ΔE = 13.6 eV( ) 1

ni
2 −

1
nf

2

⎛

⎝
⎜

⎞

⎠
⎟ ,  where   ΔE > 0  means the photon is 

absorbed and   ΔE < 0  means the photon is emitted. We calculate 

the wavelength according to 
  
λ =

hc
ΔE

=
1 240 eV ⋅nm

ΔE
. 

  (a) ni = 2 and nf = 5,   ΔE = 2.86 eV (absorption) λ = 434 nm  

  (b) ni = 5 and nf = 3,   ΔE = −0.967 eV (emission) λ = 1 280 nm  

  (c)  ni = 7 and nf = 4,   ΔE = −0.572 eV (emission) λ = 2 170 nm  

  (d) ni = 4 and nf = 7,   ΔE = 0.572 eV (absorption) λ = 2 170 nm  

OQ42.12 Answer (c). The photon carries energy, thus an electron must lose 
energy.  

OQ42.13 (a) Yes. As   n→∞,    En = −13.6 eV / n2 → 0,  and the electron remains 
in a bound state. 

 (b) No. To produce a spectral line, the electron must make a 
transition from a higher energy bound state to a lower energy 
bound state. The greatest frequency is that of the Lyman series 
limit, caused by the transition from n = ∞ to n = 1. 
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 (c) Yes. Photons with large wavelengths, corresponding to low 
photon energies, can be produced by transitions between 
adjacent states with n large.  

OQ42.14 (i) Answer (d). The spin quantum number   ms = ±1 2.  

 (ii) Answers (c) and (d).  The orbital magnetic quantum number   m  
has the range   −,− + 1,. . .,−1,0,1,. . ., − 1,,  and spin quantum 
number   ms = ±1 2.  

 (iii) Answers (b) and (c). The orbital quantum number has values 
    = 0,1,2,. . .,n − 1 , and, as stated above,   m  can be zero.  

OQ42.15 Answer (a). The bombarding electron can give up all or part of its 
kinetic energy to the atom. The energy required to raise the atom 
from its ground state to its first excited state is  

  
  
ΔE = E2 − E1 = −

13.6 eV
22 − −

13.6 eV
12

⎛
⎝⎜

⎞
⎠⎟ = 10.2 eV  

 The bombarding electron can give up this energy to the atom and 
carry off the remaining 0.3 eV. 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ42.1 Stimulated emission coerces atoms to emit photons along a specific 
axis and in phase rather than in the random directions and phases of 
spontaneously emitted photons. The photons that are emitted 
through stimulation can be made to accumulate over time. The 
fraction allowed to escape constitutes the intense, collimated, and 
coherent laser beam. If this process relied solely on spontaneous 
emission, the emitted photons would not exit the laser tube or crystal 
in the same direction. Neither would they be coherent with one 
another. 

CQ42.2 In a neutral helium atom, one electron can be modeled as moving in 
an electric field created by the nucleus and the other electron. 
According to Gauss’s law, if the electron is above the ground state it 
moves in the electric field of a net charge of +2e – 1e = +1e. We say 
the nuclear charge is screened by the inner electron. The electron in a 
He+ ion moves in the field of the unscreened nuclear charge of 2 
protons. Then the potential energy function for the electron is about 
double that of one electron in the neutral atom. 

CQ42.3 Fundamentally, three quantum numbers describe an orbital wave 
function because we live in three-dimensional space. They arise 
mathematically from boundary conditions on the wave function, 
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expressed as a product of a function of r, a function of θ, and a 
function of φ. 

CQ42.4 Bohr’s theory pictures the electron as moving in a flat circle like a 
classical particle described by   F∑ = ma.  Schrödinger’s theory 
pictures the electron as a cloud of probability amplitude in the three-
dimensional space around the hydrogen nucleus, with its motion 
described by a wave equation. In the Bohr model, angular 
momentum can take the values    L = n,  n = 1, 2, 3, . . ., so the ground-
state angular momentum is   1 ; in the Schrödinger model, angular 
momentum can take the values    L =  + 1( ),     = 0,  1, . . ., n – 1, so 
the ground-state angular momentum (   n = 1→  = 0 ) is zero. Both 
models predict that the electron’s energy is limited to discrete energy 
levels, given by –13.6 eV/n2, with n = 1, 2, 3, . . . . 

CQ42.5 Practically speaking, no. Ions have a net charge and the magnetic 
force 

   
q

v ×

B( )  would deflect the beam, making it difficult to separate 

the atoms with different orientations of magnetic moments. 

CQ42.6 The deflecting force on an atom with a magnetic moment is 
proportional to the gradient of the magnetic field. Thus, atoms with 
oppositely directed magnetic moments would be deflected in opposite 
directions in an inhomogeneous magnetic field. 

CQ42.7 If the exclusion principle were not valid, the elements and their 
chemical behavior would be grossly different because every electron 
would end up in the lowest energy level of the atom. All matter would 
be nearly alike in its chemistry and composition, since the shell 
structures of all elements would be identical. Most materials would 
have a much higher density. The spectra of atoms and molecules would 
be very simple, and there would be very little color in the world. 

CQ42.8 Bohr modeled the electron as moving in a perfect circle, with zero 
uncertainty in its radial coordinate. Then its radial velocity is always 
zero with zero uncertainty. Bohr’s theory violates the uncertainty 
principle by making the uncertainty product  ΔrΔpr  be zero, less than 
the minimum allowable    2 . 

CQ42.9 The three elements have similar electronic configurations. Each has 
filled inner shells plus one electron in an outer s orbital. Their single 
outer electrons largely determine their chemical interactions with 
other atoms. 

CQ42.10 Each of the electrons must have at least one quantum number 
different from the quantum numbers of each of the other electrons. 
They can differ (in ms ) by being spin-up or spin-down. They can also 
differ (in   ) in angular momentum. Those electrons with    = 1  can 
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differ (in   m ) in orientation of angular momentum. For n = 2,    = 0  or 
1. If    = 0 ,    m = 0,  and ms = ±1/2, for a total of two different states. 
For     = 1, m = −1,  0, +1, and ms = ±1/2, for a total of six different 
states.  

CQ42.11 If an electron moved like a hockey puck, it could have any arbitrary 
frequency of revolution around an atomic nucleus. If it behaved like 
a charge in a radio antenna, it would radiate light with frequency 
equal to its own frequency of oscillation. Thus, the electron in 
hydrogen atoms would emit a continuous spectrum, electromagnetic 
waves of all frequencies smeared together. 

CQ42.12 No. Laser light is collimated. The energy generally travels in the 
same direction. The intensity of a laser beam stays remarkably 
constant, independent of the distance it has traveled. 

 
 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 42.1 Atomic Spectra of Gases 
P42.1 (a) The wavelengths in the Lyman series of hydrogen are given by  
    

  

1
λ

= RH 1− 1
n2

⎛
⎝⎜

⎞
⎠⎟

 

  where n = 2, 3, 4,… , and the Rydberg constant is  

  RH = 1.097 373 2 × 107  m−1. This can also be written as  
    

  
λ = 1

RH

⎛
⎝⎜

⎞
⎠⎟

n2

n2 − 1
⎛
⎝⎜

⎞
⎠⎟

 

  therefore, the first three wavelengths in this series are 
    

 

λ1 = 1
1.097 373 2 × 107  m−1

22

22 − 1
⎛
⎝⎜

⎞
⎠⎟

= 1.215× 10−7  m

= 121.5 nm

 

    

 

λ2 = 1
1.097 373 2 × 107  m−1

32

32 − 1
⎛
⎝⎜

⎞
⎠⎟

= 1.025× 10−7  m

= 102.5 nm

 

    

 

λ3 = 1
1.097 373 2 × 107  m−1

42

42 − 1
⎛
⎝⎜

⎞
⎠⎟

= 9.720× 10−8  m

= 97.20 nm

 

 (b) These wavelengths are all in the ultraviolet of the spectrum. 
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P42.2 (a) The wavelengths in the Paschen series of hydrogen are given by  
    

  

1
λ

= RH
1
32 −

1
n2

⎛
⎝⎜

⎞
⎠⎟

 

  where n = 4, 5, 6,… , and the Rydberg constant is 

  RH = 1.097 373 2 × 107  m−1.  This can also be written as  
    

  
λ = 1

RH

⎛
⎝⎜

⎞
⎠⎟

9n2

n2 − 9
⎛
⎝⎜

⎞
⎠⎟

 

  therefore, the first three wavelengths in this series are 
    

 

λ1 = 1
1.097 373 2 × 107  m−1

9(4)2

42 − 9
⎡
⎣⎢

⎤
⎦⎥

= 1.875× 10−6  m

= 1 875 nm

 

    

 

λ2 = 1
1.097 373 2 × 107  m−1

9(5)2

52 − 9
⎡
⎣⎢

⎤
⎦⎥

= 1.281× 10−6  m

= 1 281 nm

 

    

 

λ1 = 1
1.097 373 2 × 107  m−1

9(6)2

62 − 9
⎡
⎣⎢

⎤
⎦⎥

= 1.094× 10−6  m

= 1 094 nm

 

 (b) These wavelengths are all in the  infrared  region of the spectrum. 

P42.3 (a) The fifth excited state must lie above the second excited state by 
the photon energy 

    

  

E52 = hf =
hc
λ

=
6.626 × 10−34  J ⋅ s ( ) 3.00 × 108  m/s( )

520 × 10−9  m
= 3.82 × 10−19  J

 

  The sixth excited state exceeds the second in energy by  
    

  
E62 =

6.626 × 10−34  J ⋅ s ( ) 3.00 × 108  m/s( )
410 × 10−9  m

= 4.85 × 10−19  J
 

  Then the sixth excited state is above the fifth by  

     4.85 − 3.82( ) × 10−19  J = 1.03 × 10−19  J  
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  In the 6 to 5 transition the atom emits a photon with the infrared 
wavelength  

    

  

λ =
hc
E65

=
6.626 × 10−34  J ⋅ s ( ) 3.00 × 108  m/s( )

1.03 × 10−19  J

= 1.94 × 10−6  m = 1.94 µm

 

P42.4 (a) Denote the energy level n of the atom by En. For the transition  
m → 1, the energy of the emitted photon and its wavelength   λm1  
are related thus:  

    
  
ΔEm1 = Em − E1 =

hc
λm1

 

  For the transition n → 1, the energy of the emitted photon and its 
wavelength   λn1  are related similarly:  

    
  
ΔEn1 = En − E1 =

hc
λn1

 

  Therefore, for the transition m → n, the energy of the emitted 
photon and its wavelength  λmn  (where m is the higher state, so 

  λn1 > λm1 ) can be related as  

    

  

ΔEmn = Em − En =
hc
λmn

ΔEmn = Em − E1( ) − En − E1( ) =
hc
λmn

=
hc
λm1

−
hc
λn1

=
hc
λmn

→
1
λmn

=
1
λm1

−
1
λn1

 

  This result may be written as 
  
λmn =

1
1/λm1 − 1/λn1

.  

 (b) Multiply the result of part (a) by 2π and apply the definition 

  kij = 2π λij :  

    
  
2π 1

λmn

=
1
λm1

−
1
λn1

⎛

⎝⎜
⎞

⎠⎟
→ kmn = km1 − kn1  
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P42.5 Our equation is 
  

1
λ
 = RH

1
nf

2  − 
1
ni

2

⎛

⎝
⎜

⎞

⎠
⎟  where   RH = 1.097 373 2 × 107  m−1.  

 With our notation we have identified what Rydberg did not know, that 
the integers are the principal quantum numbers of the original and 
final atomic states in the photon emission process. For the Lyman 
series, we have nf = 1, and ni = 2, 3, 4 , …  We solve for the quantum 
number of the original state  

  
  

1
ni

2 = 1
nf

2 − 1
RHλ

     →      ni = 1
nf

2 − 1
RHλ

⎛

⎝
⎜

⎞

⎠
⎟

−1/2

   

 (a) and substitute the given values. 
   

  
ni = 1

12 −
1

94.96× 10−9 m × 1.097 × 107 m−1
⎛
⎝⎜

⎞
⎠⎟
−1/2

= 5
   

  The electron makes a transition from energy level 5 to the ground 
state to emit light in this spectral line. 

 (b) and (c) By Figure 42.8, spectral lines in the Balmer and Paschen 
series all have much longer wavelengths, since much smaller 
energy losses put the atom into energy levels 2 or 3.  The 
expressions  

   
  
ni = 1

22 −
1

94.96× 10−9 m × 1.097 × 107 m−1
⎛
⎝⎜

⎞
⎠⎟
−1/2

 

  and 
  
ni = 1

32 −
1

94.96× 10−9 m × 1.097 × 107 m−1
⎛
⎝⎜

⎞
⎠⎟
−1/2

 

  
are imaginary quantities, not real positive integers. The Lyman-
delta wavelength given cannot be part of the Balmer or the 
Paschen series. 

 
 

 

Section 42.2 Early Models of the Atom 

P42.6 According to a classical model, the electron 
moving as a particle in uniform circular motion 
about the proton in the hydrogen atom 
experiences a force kee

2/r2; and from Newton’s 
second law, F = ma, its acceleration is kee

2/mer
2.  

ANS. FIG. P42.6 
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 (a) Using the fact that the Coulomb constant is 
  
ke  = 

1
4π ∈0

,  the 

centripetal acceleration is  
    

  
a =

v2

r
=

F
me

=
e2

4π∈0 r2me

→ mev
2 =

e2

4π∈0 r

 

  The total energy is  
    

  
E = K + U =

mev
2

2
−

e2

4π∈0 r
= −

e2

8π∈0 r

 

  Substitute the expressions for E and a into the relation for 
 

dE
dt

: 

    

  

dE
dt

= −1
6π∈0

e2a2

c3

e2

8π∈0 r2

dr
dt

= −e2

6π∈0 c3

e2

4π∈0 r2me

⎛
⎝⎜

⎞
⎠⎟

2

 

  Therefore, 
  

dr
dt

= −
e4

12π 2∈0
2 me

2c3

1
r2

⎛
⎝⎜

⎞
⎠⎟ .  

 (b) From the result of part (a), we have  
   

  

T = dt
0

T

∫ = −
12π 2∈0

2 r2me
2c3

e4 dr
2.00×10−10  m

0

∫

=
12π 2∈0

2 r2me
2c3

e4 dr
0

2.00×10−10  m

∫

=
12π 2∈0

2 me
2c3

e4

r3

3 0

2.00×10−10

=
12π 2 8.85 × 10−12  C( )2

9.11× 10−31  kg( )2
3.00 × 108  m/s( )3

1.60 × 10−19  C( )4

                                                                    ×
2.00 × 10−10  m( )3

3
= 8.46 × 10−10  s = 0.846 ns

 

  Since atoms last much longer than 0.8 ns, the classical laws 
(fortunately!) do not hold for systems of atomic size.  
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P42.7 (a) The point of closest approach is found when  

    

  

E = Ki + Ui = K f + U f

Ki + 0 = 0 +
keqαqAu

rmin

 

   

  
→ rmin =

ke 2e( ) 79e( )
Ki

 

    

  

rmin =
8.99 × 109  N ⋅m2 C2( ) 158( ) 1.602 × 10−19  C( )2

4.00 × 106  eV( ) 1.602 × 10−19  J eV( )
= 5.69 × 10−14  m

 

 (b) The maximum force exerted on the alpha particle is 
    

  

Fmax =
keqαqAu

rmin
2 =

8.99 × 109  N ⋅m2 C2( ) 158( ) 1.602 × 10−19  C( )2

5.69 × 10−14  m( )2

= 11.3 N

  

  away from the nucleus. 

 
 

 

Section 42.3 Bohr’s Model of the Hydrogen Atom 

*P42.8 From the equation just above Equation 42.9 in the text, 
  
1
2

mev
2 = kee

2

2r
,  

we have  
   

  
v2 = kee

2

mer

 

 and using  
   

   
rn = n22

mekee
2

 

 we obtain 
   

   
vn

2 = kee
2

me n22 mekee
2( )

 

 or  
   

   
vn = kee

2

n
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*P42.9 We use 
  
En = −13.6 eV

n2 .   To ionize the atom when the electron is in the  

nth level, it is necessary to add an amount of energy given by 
   

  
E = −En = 13.6 eV

n2

 

 (a) Thus, in the ground state where n = 1, we have   E = 13.6 eV . 

 (b) In the n = 3 level, 
  
E = 13.6 eV

32 = 1.51 eV . 

P42.10 The allowed energy levels of the hydrogen atom are given by  

  
  
En = −

13.6 eV
n2

 where n = 1, 2, 3. . . 

 A transition in which a lower state ni absorbs a photon of energy  ΔE  
results in a higher state nf , and energy is conserved:  

  
 Ei + ΔE = Ef

 

 or  
  

  
ΔE = Ef −Ei = − 13.6 eV

nf
2 − − 13.6 eV

ni
2

⎛
⎝⎜

⎞
⎠⎟

= 13.6 eV
1
ni

2 −
1

nf
2

⎛

⎝
⎜

⎞

⎠
⎟

 

 (a) For the transition ni = 2 to nf = 5,  

   
  
ΔE = 13.6 eV

1
22 −

1
52

⎛
⎝⎜

⎞
⎠⎟ = 2.86 eV  

 (b) For the transition ni = 4 to nf = 6,  

   
  
ΔE = 13.6 eV

1
42 −

1
62

⎛
⎝⎜

⎞
⎠⎟ = 0.472 eV  

P42.11 The allowed energy levels of the hydrogen atom are given by  

  
  
En = −

13.6 eV
n2

 where n = 1, 2, 3. . . 

 In a transition for higher state ni to lower state nf , a photon of energy 
 ΔE  is emitted, and energy is conserved:  

  
 Ei + ΔE = Ef

 

 or  
  

  
ΔE = Ef −Ei = − 13.6 eV

nf
2 − − 13.6 eV

ni
2

⎛
⎝⎜

⎞
⎠⎟

= 13.6 eV
1
ni

2 −
1

nf
2

⎛

⎝
⎜

⎞

⎠
⎟
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 (a) For the transition ni = 5 to nf = 3,  

   
  
ΔE = 13.6 eV

1
32 −

1
52

⎛
⎝⎜

⎞
⎠⎟ = 0.967 eV  

 (b) To find the wavelength of the emitted photon, we use Equation 
42.5: 

   

  
ΔE = 0.967 eV = hf = hc

λ

 

  Solving, 
   

  
λ = hc

ΔE
= 1 240 eV ⋅nm

0.967 eV
= 1 282 nm = 1.28 µm

 

 (c) The frequency of the emitted photon is 

   
  
f =

c
λ

=
3.00 × 108  m/s
1 282 × 10− 9  m

= 2.34 × 1014  Hz  

P42.12 (a) The longest wavelength implies lowest frequency and smallest 
energy. The electron makes a transition from n = 3 to n = 2: 

   
  
ΔE = −

13.6 eV
32 +

13.6 eV
22 = 1.89 eV  

 (b) The photon’s wavelength is  
   

  
λ =

c
f

=
hc
ΔE

=
1 240 eV ⋅nm

1.89 eV( ) = 656 nm
 

  This is the red Balmer-alpha line, which gives its characteristic 
color to the chromosphere of the Sun and to photographs of the 
Orion nebula. 

 (c) The shortest wavelength implies highest frequency and greatest 
energy. The electron makes a transition from n = ∞ to n = 2:  

   
  
ΔE = −

13.6 eV
∞

+
13.6 eV

22 = 3.40 eV  

 (d) The photon’s wavelength is 
   

  
λ =

c
f

=
hc
ΔE

=
1 240 eV ⋅nm

3.40 eV
= 365 nm

 

 (e) This is the Balmer series limit,  365 nm ,  in the near ultraviolet. 
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P42.13 (a) From the equation just above Equation 42.9 in the text, 
  
v1 =

kee
2

mer1

 

where, from Equation 42.10, 
    

  r1 = 1( )2 a0 = 0.005 29 nm = 5.29× 10−11  m  

  Substituting numerical values, 
    

  

v1 =
8.99× 109  N ⋅m2 C2( ) 1.60× 10−19  C( )2

9.11× 10−31  kg( ) 5.29× 10−11  m( )
= 2.19× 106  m/s

 

 (b) The kinetic energy of the electron is 
    

  

K1 = 1
2

mev1
2 = 1

2
9.11× 10−31  kg( ) 2.19× 106  m/s( )2

= 2.18× 10−18  J = 13.6 eV

 

 (c)  The electric potential energy of the atom is 
    

  

U1 = − kee
2

r1

= −
8.99× 109  N ⋅m2 C2( ) 1.60× 10−19  C( )2

5.29× 10−11  m

= − 4.35× 10−18  J = −27.2 eV

 

*P42.14 Each atom gives up its kinetic energy in emitting a photon, so  
   

  

1
2

mv2 = hc
λ

=
6.626× 10−34  J ⋅s( ) 3.00× 108  m/s( )

1.216× 10−7  m( )
= 1.63× 10−18  J

 

 Their speed before the collision is 
   

  
v = 2(1.63 × 10−18  J)

1.67 × 10−27  kg
= 4.42 × 104  m/s

 

*P42.15 (a) The speed of the moon in its orbit is  

    
  
v = 2π r

T
=

2π 3.84 × 108  m( )
2.36 × 106  s

= 1.02 × 103  m/s  

  so,  

    

  

L = mvr = 7.36 × 1022  kg( ) 1.02 × 103  m/s( ) 3.84 × 108  m( )
= 2.89 × 1034  kg ⋅m2 s
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  (b) We have    L = n,  

  or 
   
n = L


= 2.89 × 1034  kg ⋅m2 s
1.055 × 10−34  J ⋅ s

= 2.74 × 1068 .  

 (c) We have 
   
n = L = mvr = m

GMe

r( )1 2

r,  

  so 
   
r = 2

m2GMe

n2 = Rn2  and 
  

Δr
r

= n + 1( )2 R − n2R
n2R

= 2n + 1
n2 ,  

  which is approximately equal to 
  

2
n

= 7.30 × 10−69 .  

P42.16 (a) The collection of excited atoms must make these six transitions to 
get back to state one: 4 → 1, 4 → 2, and 4 → 3; 3 → 1 and 3 → 2;  
2 → 1. Thus, the absorbed photon changes the atomic state from  
1 to 4: 

      E1 + hf = E4 → hf = E4 − E1 ,    where    
  
En = −

13.6 eV
n2

 

  The incoming photons have energy  

    
  
hf = ΔE = Ef − Ei = −0.850 eV − −13.6 eV( ) = 12.75 eV =

hc
λ

 

  and wavelength  
    

  
λ =

hc
ΔE

=
1 240 eV ⋅nm

12.75 eV
= 97.3 nm

 

 (b) The longest of the six wavelengths corresponds to the lowest 
photon energy, emitted in the transition 4 → 3. By energy 
conservation,   E4 = hf + E3  and 

    

  
hf = E4 − E3 = 13.6 eV

1
32 −

1
42

⎛
⎝⎜

⎞
⎠⎟ = 0.661 eV =

hc
λ

 

  which gives 
    

  
λ =

hc
E4 − E3

=
1 240 eV ⋅nm

0.661 eV
= 1 876 nm = 1.88 µm

 

 (c) The wavelength is in the infrared region of the spectrum. 

 (d) The wavelength is part of the Paschen series, since the lower state 
has n = 3. 

 (e) The shortest wavelength emitted is from the transition 4 → 1, and 
it is the same as the wavelength absorbed: 97.3 nm. 

 (f) The wavelength is in the ultraviolet region of the spectrum.  



Chapter 42     1011 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (g) The wavelength is part of the Lyman series, since the lower state 
has n = 1. 

P42.17 (a) From Equation 42.12,  
   

  rn = n2a0 = n2(0.052 9 nm)  

  and   r3 = 3( )2 (0.052 9 nm) = 0.476 nm  

 (b) Using Equation 42.8, we calculate the momentum of the electron:  

  

  

mev2 = me
kee

2

mer2

=
mekee

2

r2

=
9.11× 10−31  kg( ) 8.99 × 109  N ⋅m2 C2( ) 1.602 × 10−19  C( )2

0.476 × 10−9  m

= 6.64 × 10−25  kg ⋅m/s

 

  The de Broglie wavelength for the electron is  

   
  
λ =

h
mv

=
6.626 × 10−34  J ⋅ s

6.64 × 10−25  kg ⋅m/s
= 9.97 × 10−10  m = 0.997 nm  

P42.18 We note, during our calculations, that the nominal velocity of the 
electron is less than 1% of the speed of light; therefore, we do not 
need to use relativistic equations.  

 (a) By Bohr’s theory and Equation 42.12,  

   
  

rn = n2a0

r2 = 2( )2 0.052 9 nm( ) = 0.212 nm
 

 (b) Since    mevr  = n,  
   

   

p = mev = 
n
r
 = 

2 1.054 6  ×  10–34  J · s( )
2.12  ×  10–10  m

=  9.97 × 10–25  kg · m/s

  

 (c)   

L = r × p  becomes   

   

  

L2 = mev2r2 = 9.97 × 10−25  kg ⋅m/s( ) 0.212 × 10−9  m( )
= 2.11× 10−34  kg ⋅m2/s

 

 (d) Next, the speed is  

    
  
v =

p
me

=
9.97 × 10–25  kg · m/s

9.11 × 10–31  kg
 = 1.09 × 106 m/s  
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  So the kinetic energy is   K  =  1
2 mev

2:  
    

  

K =
9.11 × 10–31 kg( ) 1.09 × 106m/s( )2

2

= 5.45 × 10–19  J
1.602 × 10–19  J/eV

= 3.40 eV

 

 (e) From Chapter 25, the electric potential energy is 
  
U = ke

q1q2

r
:   

    

  

U  = − kee
2

r
 = −

8.99  ×  109  N · m2 /C2( ) 1.602  ×  10–19  C( )2

2.12  ×  10–10  m
= − 1.09 × 10–18  J = –6.80 eV

 

 (f) Thus the total energy is  
    

  
E = K + U = − 5.45 × 10–19  J = –3.40 J

 

P42.19 (a) The photon has energy 2.28 eV, and 
 

13.6 eV
22 = 3.40 eV  is required 

to ionize a hydrogen atom from state n = 2. So while the photon 
cannot ionize a hydrogen atom pre-excited to n = 2, it can ionize a 
hydrogen atom in the   n = 3  state, with energy 

 
−

13.6 eV
32 = −1.51 eV.

 

 (b) The electron thus freed can have kinetic energy  

    
  
Ke = 2.28 eV − 1.51 eV = 0.769 eV =

1
2

mev
2  

  Therefore,  
    

  

v =
2 0.769 eV( ) 1.60× 10−19

 J/eV( )
9.11× 10−31  kg

= 5.20× 105  m/s

= 520 km/s

 

P42.20 (a) From the Bohr theory, we find the speed of the electron: 

   
  
L = mevr = n → v =

n
mer

 

  The period of its orbital motion is 
   
T =

2πr
v

=
2πrmer

n
. 
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  Substituting the orbital radius 
   
r =

n22

mekee
2 , we find  

    
   
T =

2πmen
44

nme
2ke

2e4 =
2π3

meke
2e4 n3  

  Thus we have the periods determined in terms of the ground-
state period 

    

   

t0 = 2π3

meke
2e4

= 2π (1.054 6× 10−34  J ⋅s)3

9.11× 10−31  kg( )(8.99× 109  N ⋅m2/C2 )2(1.602 × 10−19  C)4  

= 1.52 × 10−16  s = 152 × 10−18  s = 152 as

 

 (b) In the n = 2 state, the period is  

     T = t0n
3 = t0 2( )3 = 8t0 = 1.22 × 10−15  s  

  The number of orbits completed in the excited state is  

   
  
N =

10 × 10−6  s
T

=
10 × 10−6  s

1.22 × 10−15  s
= 8.23 × 109  revolutions  

 (c) Its lifetime in electron years is comparable to the lifetime of the 
Sun in Earth years, so we can think of it as a long time. 

P42.21 (a) The energy levels of a hydrogen-like ion 
whose charge number is Z are given by  

   
  
En = −13.6 eV( ) Z2

n2
 

  Thus for helium (Z = 2), the energy levels 
are 

   
  
En = −

54.4 eV
n2 n = 1, 2, 3, . . .  

  The enegy level diagram for helium is 
shown in ANS. FIG. P42.21. 

 (b) For He+, Z = 2, so we see that the ionization energy (the energy 
required to take the electron from the n = 1 to the n = ∞ state) is 

    
  
E = E∞ − E1 = 0 −

−13.6 eV( ) 2( )2

1( )2 = 54.4 eV  

 
 

 

 

ANS. FIG. P42.21 
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Section 42.4 The Quantum Model of the Hydrogen Atom 
P42.22 The reduced mass of positronium is less than hydrogen, so the photon 

energy will be less for positronium than for hydrogen. This means that 
the wavelength of the emitted photon will be longer than 656.3 nm. On 
the other hand, helium has about the same reduced mass but more 
charge than hydrogen, so its transition energy will be larger, 
corresponding to a wavelength shorter than 656.3 nm. 

 All the factors in the given equation are constant for this problem 
except for the reduced mass and the nuclear charge. Therefore, the 
wavelength corresponding to the energy difference for the transition 
can be found simply from the ratio of mass and charge variables. 

 For hydrogen,   
  
µ =

mpme

mp + me

≈ me .  The photon energy is    ΔE = E3 −E2.    

 Its wavelength is λ = 656.3 nm, where 
  
λ =

c
f

=
hc
ΔE

.  

 (a) For positronium,   
  
µ =

meme

me + me

=
me

2
,  

  so the energy of each level is one half as large as in hydrogen. The 
photon energy is inversely proportional to its wavelength, so for 
positronium, 

   
 
λ32 = 2 656.3 nm( ) = 1.31 µm     (in the infrared region) 

 (b) For He+,  µ ≈ me , q1 = e, and q2 = 2e, so the transition energy is  
22 = 4 times larger than hydrogen. Then,  

   
 
λ32 =

656
4

⎛
⎝⎜

⎞
⎠⎟  nm = 164 nm  (in the ultraviolet region) 

P42.23 (a) For this problem, refer to the equation from Problem 22, with  
q1 = q2 = e.  For a particular transition from ni to nf ,  

   
   
ΔEH = −

µHke
2e4

22

1
nf

2 −
1

ni
2

⎛

⎝
⎜

⎞

⎠
⎟ =  

  

hc
λH

  

  and 
   
ΔED = −

µDke
2e4

22

1
nf

2 −
1

ni
2

⎛

⎝
⎜

⎞

⎠
⎟ =

hc
λD

,  

  where 
  
µH =

memp

me + mp

 and 
  
µD =

memD

me + mD

. 
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  By division, 
  

ΔEH

ΔED

=
µH

µD

=
λD

λH

 or 
 
λD =

µH

µD

⎛
⎝⎜

⎞
⎠⎟
λH.  Then,  

   

 
λH − λD = 1−

µH

µD

⎛
⎝⎜

⎞
⎠⎟
λH  

 (b) 

  

µH

µD

=
memp

me + mp

⎛

⎝
⎜

⎞

⎠
⎟

me + mD

memD

⎛
⎝⎜

⎞
⎠⎟

=
1.007 276 u( ) 0.000 549 u + 2.013 553 u( )
0.000 549 u + 1.007 276 u( ) 2.013 553 u( )

= 0.999 728

 

   λH − λD = 1− 0.999 728( ) 656.3 nm( ) = 0.179 nm  

P42.24 (a) The uncertainty principle is represented by 
   
ΔxΔp ≥ 


2

.  

  Thus, if 
   
Δx = r, Δp ≥  

2r
.   

 (b) The minimum uncertainty would be attained only if the wave 
function had a particular (gaussian) waveform. We assume that 
the momentum uncertainty is just twice as large as its minimum 

possible value: 
   
Δp = 


r

.  Then the kinetic energy is

 
   
K =

p2

2me

≈
Δp( )2

2me

=
2

2mer
2  

 (c) The electric potential energy is 
  
U  = −

kee
2

r
 so the total energy is   

   
   
E = K + U ≈

2

2mer
2 −

kee
2

r
. 

 (d) To minimize E as a function of r, we require    

   
   

dE
dr

= −
2

mer
3 +

kee
2

r2 = 0 → r =
2

mekee
2 = a0  (the Bohr radius) 

 (e) Then the energy is  

   
   
E =

2

2me

mekee
2

2

⎛
⎝⎜

⎞
⎠⎟

2

− kee
2 mekee

2

2

⎛
⎝⎜

⎞
⎠⎟

= −
meke

2e4

22
 



1016     Atomic Physics 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  Substituting numerical values, 

  

   

E = −
meke

2e4

22 = −
meke

2e4

22

= −
9.109 × 10−31  kg( ) 8.988 × 109  N ⋅m2/C2( )2

1.602 × 10−19  C( )4

2 6.626 × 10−34  J ⋅ s 2π( )2

= −2.179 × 10−18  J
1 eV

1.602 × 10−19  J
⎛
⎝⎜

⎞
⎠⎟

= −13.6 eV

 

 (f) With our particular choice for the momentum uncertainty as 
double its minimum possible value, we find our results are in 
agreement with the Bohr theory. 

 
 

 

Section 42.5 The Wave Functions for Hydrogen 

P42.25 
  
ψ 1s r( ) =

1

π a0
3

e−r a0  is the ground state hydrogen wave function. 

 
  
P1s r( ) =

4r2

a0
3 e−2r a0  is the ground state radial probability distribution 

function. The plots are shown in ANS. FIG. P42.25. 

 

 

 

ANS. FIG. P42.25 
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P42.26 (a) We first find the first and second derivatives of the wave 
function: 

   

  
ψ =

1

π a0
3

e−r a0 →
2
r

dψ
dr

=
2
r

−1

π a0
5

e−r a0

⎛

⎝
⎜

⎞

⎠
⎟ = −

2
ra0

ψ  

  and 
  

d2ψ
dr2 =

1

π a0
7

e−r a0 =
1
a0

2 ψ  

  Substitution into the Schrödinger equation to test the validity of 
the solution yields  

   

   
− 

2

2me

1
a0

2 −
2

ra0

⎛
⎝⎜

⎞
⎠⎟
ψ − e2

4π ∈0 r
ψ = Eψ

 

  But, from Equation 42.11, 
   
a0 = 2

mekee
2 =
2 4π∈0( )

mee
2 ,  thus 

   

   

− 
2

2me

1
a0

2 −
2

ra0

⎛
⎝⎜

⎞
⎠⎟
ψ − e2

4π ∈0 r
ψ = Eψ

− 
2

2me

1
a0

2ψ + 2

mer
1
a0

ψ − e2

4π ∈0 r
ψ

⎡

⎣
⎢

⎤

⎦
⎥ = Eψ

− 
2

2me

1
a0

2ψ + 2

me r
me e2

4π ∈0 
2
− e2

4π ∈0 r

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ψ = Eψ

− 
2

2me

1
a0

2ψ = Eψ

 

  The Schrödinger equation is satisfied if 
   
E = −

2

2me

1
a0

2 .  

 (b) Substituting 
   
a0 =

2

mekee
2  for one factor of a0, we find that  

   
   
E = −

2

2me

1
a0

2 = −
2

2 me

1
a0

me kee
2

2
= E = −

kee
2

2a0

 

P42.27 The wave function given is 

   
  
ψ =

1
3

1
2a0( )3 2

r
a0

e−r 2a0  
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 so, by Equation 42.24,  

   
  
Pr = 4π r2 ψ 2 = 4π r2 r2

24a0
5 e−r a0  

 Setting 
  

dP
dr

= 4π
24a0

5 4r3e−r a0 + r4 − 1
a0

⎛
⎝⎜

⎞
⎠⎟

e−r a0
⎡

⎣
⎢

⎤

⎦
⎥ = 0,  we obtain 

   

  
4r3 + − r4

a0

⎡

⎣
⎢

⎤

⎦
⎥ = 0

 

 Solving for r, this is a maximum at 
  
r = 4a0 .  

P42.28 (a) 
  
ψ 2 dV∫ = 4π ψ 2 r2dr

0

∞

∫ = 4π 1
π a0

3

⎛
⎝⎜

⎞
⎠⎟

r2e−2r a0 dr
0

∞

∫ . Using integral 

tables, 

   
  
ψ 2 dV∫ = −

2
a0

2 e−2r a0 r2 + a0r +
a0

2

2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

0

∞

= −
2
a0

2

⎛
⎝⎜

⎞
⎠⎟

−
a0

2

2
⎛
⎝⎜

⎞
⎠⎟

= 1  

  so the wave function as given is normalized. 

 (b) 
  
Pa0 /2→3a0 /2 = 4π ψ 2 r2dr

a0 2

3a0 2

∫ = 4π 1
π a0

3

⎛
⎝⎜

⎞
⎠⎟

r2e−2r a0 dr
a0 2

3a0 2

∫ . Again, using 

integral tables,  

   

  

Pa0 /2→3a0 /2 = −
2
a0

2 e−2r a0 r2 + a0r +
a0

2

2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

a0 2

3a0 2

= −
2
a0

2 e−3 17a0
2

4
⎛
⎝⎜

⎞
⎠⎟
− e−1 5a0

2

4
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = 0.497

 

P42.29 The hydrogen ground-state radial probability density is, from 
Equation 42.25,  

   
  
P1s r( ) = 4π r2 ψ 1s

2 =
4r2

a0
3 exp −

2r
a0

⎛
⎝⎜

⎞
⎠⎟

 

 The number of observations at 2a0 is, by proportion,  
   

  

N = 1 000( ) P1s 2a0( )
P1s a0 2( ) = 1 000( ) 2a0( )2

a0 2( )2

e−4a0 a0

e−a0 a0
= 1 000( ) 16( )e−3

= 797 times
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Section 42.6 Physical Interpretation of the Quantum Numbers 
P42.30 (a) In the 3d subshell, n = 3 and    = 2,  we have 

n 3 3 3 3 3 3 3 3 3 3 

   2 2 2 2 2 2 2 2 2 2 

  m  +2 +2 +1 +1 0 0 –1 –1 –2 –2 

ms +1/2 –1/2 +1/2 –1/2 +1/2 –1/2 +1/2 –1/2 +1/2 –1/2 

  (a total of 10 states.) 

 (b) In the 3p subshell, n = 3 and    = 1,  we have 

n 3 3 3 3 3 3 

   1 1 1 1 1 1 

  m  +1 +1 0 0 –1 –1 

ms +1/2 –1/2 +1/2 –1/2 +1/2 –1/2 

  (a total of 6 states.) 

*P42.31 From Equation 42.27,    L =   + 1( )  (suppressing units): 

  
  
4.714 × 10−34 =   + 1( ) 6.626 × 10−34

2π
⎛
⎝⎜

⎞
⎠⎟

 

  

  
  + 1( ) =

4.714 × 10−34( )2 2π( )2

6.626 × 10−34( )2 = 1.998 × 101 ≈ 20 = 4 4 + 1( )
 

 so    = 4 .  

P42.32 (a) For a 3d state, n = 3 and    = 2.  Therefore,     
   

   L =  + 1( ) = 6 = 2.58× 10−34  J ⋅s
 

 (b)   m  can have the values     –2, –1, 0, 1, and 2, 

  so      
   
Lz  can have the values − 2, − , 0,  and 2 . 
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 (c) Using the relation 
  
cosθ =

Lz

L
,  we find the possible values of θ :  

   
 
145°, 114°, 90.0°, 65.9°,  and 35.3°  

P42.33 From Equation 42.27, 
   L =   + 1( ) . 

 (a) For the d state,    = 2,  and    L = 6 = 2.58 × 10−34  J ⋅ s . 

 (b) For the f state,    = 3,  and    L = 12 = 2 3 = 3.65 × 10−34  J ⋅ s . 

P42.34  (a) For n = 1, we have    = 0,   m  = 0, 
  
ms = ± 1

2 .  

 

 

 

 

 

 

  This yields   2n2 = 2 1( )2 = 2  sets.   

 (b) For n = 2, we have  

 

 

 

 

 

 

 

 

 

  This yields   2n2 = 2 2( )2 = 8  sets.   

  Note that the number is twice the number of   m  values. Also, for 
each    there are   2 + 1( )  different   m  values. Finally, l can take on 
values ranging from 0 to n – 1. 

n      m
 ms 

1 0 0 –1/2 

1 0 0 +1/2 

n      m
 ms 

2 0 0 ±1/2 

2 1 –1 ±1/2 

2 1 0 ±1/2 

2 1 +1 ±1/2 
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  So the general expression is 
   
number =  2(2+ 1)

=0

n−1

∑ .  

  The series is an arithmetic progression like 2 + 6 + 10 + 14. 

  The sum is 
   

4
0

n−1

∑  +  2
0

n−1

∑  = 4 n2  − n
2

⎡
⎣⎢

⎤
⎦⎥
 + 2n = 2n2.  

 (c) n = 3:    2(1) + 2(3) + 2(5) = 2 + 6 + 10 = 18   or    2n2 = 2 3( )2 = 18  

 (d) n = 4:    2(1) + 2(3) + 2(5) + 2(7) = 32 or     2n2 = 2 4( )2 = 32  

 (e) n = 5:     32 + 2(9) = 32 + 18 = 50 or     2n2 = 2 5( )2 = 50  

P42.35 In the N shell, n = 4. For n = 4,    can take on values of 0, 1, 2, and 3. For 
each value of   ,   m  can be  −  to    in integral steps. Thus, the 
maximum value for   m  is 3. Since    Lz = m,  the maximum value for Lz 

is    Lz = 3 .  

P42.36 (a) Modeling it as a solid sphere, the density of a proton is,  
   

  
ρ =

m
V

=
1.67 × 10−27  kg

4 3( )π 1.00 × 10−15  m( )3 = 3.99 × 1017  kg/m3

  

 (b) The radius of an electron modelled as a solid sphere is, 

   

  

r =
3m

4π ρ
⎛
⎝⎜

⎞
⎠⎟

1 3

=
3 9.11× 10−31  kg( )

4π 3.99 × 1017  kg/m3( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 3

= 8.17 × 10−17  m = 81.7 × 10−18  m = 8.17 am

 

 (c) The moment of inertia of the spinning electron is 
   

  

I =
2
5

mr2 =
2
5

9.11× 10−31  kg( ) 8.17 × 10−17  m( )2

= 2.43 × 10−63  kg ⋅m2

 

   
   
Lz = Iω =


2

=
Iv
r

 

  Therefore,  
   

   

v =
r
2I

=
6.626 × 10−34  J ⋅ s( ) 8.17 × 10−17  m( )

2π 2 × 2.43 × 10−63  kg ⋅m2( )
= 1.77 × 1012  m/s = 1.77 Tm/s

 

 (d) It is 5.91 × 103c, which is huge compared with the speed of light 
and impossible. 
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P42.37 The 5th excited state has n = 6, energy 
  
E6 =

−13.6 eV
6( )2 = −0.378 eV.  

 The atom loses this much energy:  

   
  
E =

hc
λ

=
6.626 × 10−34  J ⋅ s( ) 3.00 × 108  m/s( )
1 090 × 10−9  m( ) 1.60 × 10−19  J eV( ) = 1.14 eV  

 to end up with energy –0.378 eV – 1.14 eV = –1.52 eV 

 which is the energy in state 3: 
 
−

13.6 eV
33 = −1.51 eV  

 While n = 3,    can be as large as 2, giving angular momentum  

   
   L =   + 1( ) = 6 = 2.58 × 10−34  J ⋅ s  

P42.38 The energy of the photon is 

   
  
Eph  = 

1 240 eV ⋅nm
88.0 eV

 = 14.1 eV  

 The maximum energy of the ejected photoelectron from the aluminum 
surface is 

     Kmax  = Eph  − φ  = 14.1 eV − 4.08 eV = 10.0 eV  

 where the work function φ for aluminum is found from Table 40.1. 
This electron energy is not enough to excite the hydrogen atom from 
its ground state to even the first exited state. 

P42.39 The 3d subshell has n = 3 and    = 2. Also, we have s = 1. Altogether 
we can have n = 3,  = 2,   m= –2, –1, 0, 1, 2, s = 1, and ms = –1, 0, 1, 
leading to the following table: 

 

 

 

 

 

 

 

 

 

 
 

n 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  

   2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  

  m
 –2 –2 –2 –1 –1 –1 0 0 0 1 1 1 2 2 2   

s 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

ms –1 0 1 –1 0 1 –1 0 1 –1 0 1 –1 0 1   
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Section 42.7 The Exclusion Principle and the Periodic Table 
P42.40 (a) The 4s subshell, for potassium and calcium, before the 3d subshell 

starts to fill for scandium through zinc.  

 (b) 

  

We would expect [Ar]3d4 4s2  to have lower energy, but

[Ar]3d5 4s1  has more unpaired spins and lower energy 
according to Hund’s rule. 

 

 (c) It is the ground-state configuration of chromium. 

P42.41 (a) 
  

1s2 2s2 2p4  

 (b) For the 1s electrons,  

   
   
n = 1,   = 0,  m = 0,  ms = + 1

2
 and − 1

2
 

 For the two 2s electrons,  

   
   
n = 2,   = 0,  m = 0,  ms = + 1

2
 and − 1

2
 

 For the four 2p electrons,  

   
   
n = 2,   = 1,  m = –1,  0,  1,  and ms = + 1

2
 and − 1

2
 

P42.42 Electronic configuration:    sodium to argon 

 Orbitals 1s, 2s, and 2p are filled (and not shown). 

  3s  3p  4s 

 Na11 
 ⇑   

 
       

       
       

       
  1s2 2s2 2p6⎡⎣ ⎤⎦3s1  

 Mg12 
 ⇑ ⇓  

       
       

       
       

  1s2 2s2 2p6⎡⎣ ⎤⎦3s2  

 Al13 
 ⇑ ⇓  

 ⇑   
 

       
       

       
  1s2 2s2 2p6⎡⎣ ⎤⎦3s2 3p1  

 Si14 
 ⇑ ⇓  

 ⇑   
 

 ⇑   
 

       
       

  1s2 2s2 2p6⎡⎣ ⎤⎦3s2 3p2  

 P15 
 ⇑ ⇓  

 ⇑   
 

 ⇑   
 

 ⇑   
 

       
  1s2 2s2 2p6⎡⎣ ⎤⎦3s2 3p3  

 S16 
 ⇑ ⇓  

 ⇑ ⇓  
 ⇑   

 
 ⇑   

 
       

  1s2 2s2 2p6⎡⎣ ⎤⎦3s2 3p4  

 Cl17 
 ⇑ ⇓  

 ⇑ ⇓  
 ⇑ ⇓  

 ⇑   
 

       
  1s2 2s2 2p6⎡⎣ ⎤⎦3s2 3p5  

 Ar18 
 ⇑ ⇓  

 ⇑ ⇓  
 ⇑ ⇓  

 ⇑ ⇓  
       

  1s2 2s2 2p6⎡⎣ ⎤⎦3s2 3p6  

 K19 
 ⇑ ⇓  

 ⇑ ⇓  
 ⇑ ⇓  

 ⇑ ⇓  
 ⇑   

 
  1s2 2s2 2p6 3s2 3p6⎡⎣ ⎤⎦4s1  
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P42.43 In the table of electronic configurations in the text, or on a periodic 
table, we look for the element whose last electron is in a 3p state and 
which has three electrons outside a closed shell. Its electron 
configuration then ends in 3s2 3p1. The element is  aluminum .  

P42.44 (a) Note that the possible values for    range from zero to n – 1. 
 

  n +   1 2 3 4 5 6 7 

subshell 1s 2s 2p, 3s 3p, 4s 3d, 4p, 5s 4d, 5p, 6s 4f, 5d, 6p, 7s 

  The order is 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s. 

P42.45 (a) For electron one and also for electron two, n = 3 and    = 1;  
possible values are    m = 1 , 0, –1 and ms = 1/2, –1/2. The exclusion 
principle requires that the electrons cannot have identical sets of 
quantum numbers. The possible states are listed here in columns 
giving the other quantum numbers: 

electron   m  1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 

one ms  

1
2

 
 

1
2

 
 

1
2

 
 

1
2

 
 

1
2

 
 
− 1

2

 
 
− 1

2

 
 
− 1

2

 
 
− 1

2

 
 
− 1

2

 
 

1
2

 
 

1
2

 
 

1
2

 
 

1
2

 
 

1
2

 

electron   m  1 0 0 –1 –1 1 0 0 –1 –1 1 1 0 –1 –1 

two ms  
− 1

2

 
 

1
2

 
 
− 1

2

 
 

1
2

 
 
− 1

2

 
 

1
2

 
 

1
2

 
 
− 1

2

 
 

1
2

 
 
− 1

2

 
 

1
2

 
 
− 1

2

 
 
− 1

2

 
 

1
2

 
 
− 1

2

 

 

 electron   m  0 0 0 0 0 –1 –1 –1 –1 –1 –1 –1 –1 –1 –1 

 one ms  
− 1

2

 
 
− 1

2

 
 
− 1

2

 
 
− 1

2

 
 
− 1

2

 
 

1
2

 
 

1
2

 
 

1
2

 
 

1
2

 
 

1
2

 
 
− 1

2

 
 
− 1

2

 
 
− 1

2

 
 
− 1

2

 
 
− 1

2

 

 electron   m  1 1 0 –1 –1 1 1 0 0 –1 1 1 0 0 –1 

 two ms 
 

1
2

 
 
− 1

2

 
 

1
2

 
 

1
2

 
 
− 1

2

 
 

1
2

 
 
− 1

2

 
 
− 1

2

 
 

1
2

 
 
− 1

2

 
 
− 1

2

 
 

1
2

 
 

1
2

 
 
− 1

2

 
 

1
2
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  There are  6 × 5 = 30  allowed states, since electron one can have 
any of three possible values for   m  for both spin up and spin 
down, amounting to six states, and the second electron can have 
any of the other five states. 

 (b) Were it not for the exclusion principle, there would be  6 × 6 = 36  
possible states, six for each electron independently. 

P42.46 Listing subshells in the order of filling, we have for element 110, 

   1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p66s2 4 f 14 5d106p67s2 5 f 146d8  

 In order of increasing principal quantum number, this is 

 
  

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4 f 14 5s2 5p6 5d10 5 f 146s2 6p66d87s2  

P42.47 In the ground state of sodium, the outermost electron is in an s state. 
This state is spherically symmetric, so it generates no magnetic field by 
orbital motion, and has the same energy no matter whether the 
electron is spin-up or spin-down. The energies of the states   3p ↑  and 

  3p ↓  above 3s are 
  
hf1 = hc

λ
 and 

  
hf2 = hc

λ2

.  

 The energy difference is 
   

  
2µBB = hc

1
λ1

− 1
λ2

⎛
⎝⎜

⎞
⎠⎟

 

 so  
    

  

B = hc
2µB

1
λ1

− 1
λ2

⎛
⎝⎜

⎞
⎠⎟

=
6.626× 10−34  J ⋅s( ) 3.00× 108  m s( )

2 9.27 × 10−24  J T( )
                             × 1

588.995× 10−9  m
− 1

589.592 × 10−9  m( )
= 18.4 T
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Section 42.8 More on Atomic Spectra: Visible and X-Ray 
*P42.48 Some electrons can give all their kinetic energy  Ke = eΔV  to the 

creation of a single photon of x-radiation, with 
   

  

hf = hc
λ

= eΔV

λ = hc
eΔV

=
6.626 1× 10−34  J ⋅ s( ) 2.997  9 × 108  m s( )

1.602 2 × 10−19  C( )ΔV

= 1 240 nm ⋅V
ΔV

 

P42.49 A photon of maximum energy or minimum wavelength is produced 
when the electron gives up all of its kinetic energy in a single collision 
within the target. Thus,  

  

  
Emax = hc

λmin

= KE = eΔV
 

 For a minimum wavelength of  λmin = 70.0 pm = 70.0 × 10−12  m , the 
required accelerating voltage is  

  

  

ΔV = hc
eλmin

=
6.626× 10−34  J ⋅s( ) 3.00× 108  m/s( )

1.60× 10−19  C( ) 70.0× 10−12  m( )
= 1.77 × 104  V = 17.7 kV

 

P42.50 The shortest wavelength is produced when the electron gives up all of 
its kinetic energy as a photon in a single collision within the target. For 
an accelerating voltage of 40.0 keV, the kinetic energy of the electrons is  

    KE = eΔV = e 40.0 kV( ) = 40.0 keV  

 For the shortest wavelength produced, 
  

  
Emax = hc

λmin

= KE = eΔV
 

 and 
  
λmin = hc

eΔV
= 1 240 eV ⋅nm

40.0× 103  eV( ) = 0.031 0 nm  

P42.51 (a) For bismuth, Z = 83. Following Example 42.5, the electron in the 
M shell (n = 3) is shielded from the nuclear charge by one electron 
in the L shell (n = 1) and eight electrons in the K shell (n = 2). Its 
energy is  

   
  
EM ≈ − Z − 9( )2 13.6 eV

3( )2 = −13.6 eV
74( )2

3( )2  
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  The electrons in the L shell (n = 2) are shielded from the nuclear 
charge by one electron in the K shell, so (from page 1324)  

    
  
EL ≈ − Z − 1( )2 13.6 eV

2( )2 = −13.6 eV
82( )2

2( )2  

  When the electron drops from the M to the L shell of the atom, it 
emits a photon of energy 

    

  

Ephoton = EM −EL ≈ 13.6 eV − 74( )2

3( )2 + 82( )2

2( )2

⎡

⎣
⎢

⎤

⎦
⎥

= 1.46× 104  eV ≈ 15 keV

 

 (b) The wavelength of the emitted x-ray is given by 
    

  

λ = 1.240 keV ⋅nm
E

= 1.240 keV ⋅nm
15 keV

≈ 0.083 nm = 8.3× 10−11  m

 

P42.52 (a) For the 3p state, 
  
En =

−13.6 eV Zeff
2

n2  becomes  

    
  
−3.0 eV =

−13.6 eV Zeff
2

32     so     Zeff = 1.4  

  For the 3d state  

    
  
−1.5 eV =

−13.6 eV Zeff
2

32    so     Zeff = 1.0  

 (b) When the outermost electron in sodium is promoted from the 3s 
state into a 3p state, its wave function still overlaps somewhat 
with the ten electrons below it. It therefore sees the +11e nuclear 
charge not fully screened, and on the average moves in an electric 
field like that created by a particle with charge +11e – 9.6e = 1.4e. 
When this valence electron is lifted farther to a 3d state, it is 
essentially entirely outside the cloud of ten electrons below it, and 
moves in the field of a net charge +11e – 10e = 1e. 

P42.53 (a) Recall     ≤ n − 1 . For n = 3,    = 0 , 1, 2. If    = 2 , then    m = 2 , 1, 0, –1, 
–2; if    = 1 , then    m = 1 , 0, –1; if    = 0 , then    m = 0 . 

 (b) The He+ ion is a one-electron atom, so all states are have the same 
energy, determined by the principal quantum number n:  

   

  
E3 = − Z2E0

n2 = − 22 13.606 eV( )
32 = −6.05 eV
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*P42.54 The K series includes transitions from 
higher levels down to the K shell (n = 1). 
Transitions from higher n produce 
photons of higher energy. The ionization 
energy for the K shell is 69.5 keV, so the 
energy of the K shell is –69.5 keV.  

 The photon energies are  
   

  
E =

hc
λ

=
1 240 eV ⋅nm

λ
=

1.240 keV ⋅nm
λ

 

 λ  (nm)  
photon 

energy  

(keV) 

transition energy of level (keV) level 

 λ1 = 0.018 5  67.03 n = 4 → 1 –69.5 + 67.03 = –2.47 N 

 λ2 = 0.020 9  59.3 n = 3 → 1 –69.5 + 59.3 = –10.2 M 

 λ3 = 0.021 5  57.7 n = 2 → 1 –69.5 + 57.7 = –11.8 L 

 The ionization energy for the K shell is 69.5 keV, so the ionization 
energies for the other shells are: 

   L shell = 11.8 keV     M shell = 10.2 keV     N shell = 2.47 keV  

P42.55 Following the reasoning of Example 42.5, when the electron is in the K 
shell (n = 1), from Equation 42.37, its energy is  

   
  EK ≈ −Z2 13.6 eV( )  

 When the electron was in the L shell (n = 2), the nuclear charge is 
shielded by one electron in the K shell, so (from page 1324)  

   

  
EL ≈ − Z − 1( )2 13.6 eV

22

 

 When the electron drops from the L to the K shell of the atom, it emits 
a photon of energy (for Z = 42)  

   
  
Ephoton = EL − EK ≈ 13.6 eV( ) −

41( )2

4
+ 42( )2⎡

⎣
⎢

⎤

⎦
⎥ = 1.83 × 104  eV  

ANS. FIG. P42.54 
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 with wavelength  
   

  
λ =

hc
Ephoton

=
1 240 eV ⋅nm
1.83 × 104  eV

= 6.79 × 10−2  nm = 0.068 nm
 

P42.56 (a) All of the kinetic energy of an electron after its acceleration 
through a potential difference  ΔV  goes into producing a single 
photon:  

    

  
E = hc

λ
= eΔV → ΔV = hc

eλ
= 1240 eV ⋅nm

eλ  
= 1240 V ⋅nm

λ

 

 (b) The potential difference is inversely proportional to the 
wavelength. 

 (c) 

 

Yes. It predicts a minimum wavelength of 33.5 pm when the
accelerating voltage is 37 keV, in agreement with the minimum
wavelength in the figure.

 

 (d) 

 

Yes, but it might be unlikely for a very high energy electron to
stop in a single interaction to produce a high-energy gamma ray,
and it might be difficult to observe the very low intensity radio
waves produced as bremsstrahlung by low-energy electrons.

 

 (e) 

 

The potential difference goes to infinity as the wavelength goes
to zero.

 

 (f) 

 

The potential difference goes to zero as the wavelength goes to
infinity.

 

P42.57 The concepts for this problem are discussed in Example 42.5. An 
electron makes a transition from the M to the K shell. From Equation 
42.37, when the electron is in the K shell, its energy is  

    EK ≈ −Z2 13.6 eV( )  

 When the electron was in the M shell, because nine electrons shield the 
nuclear charge—one in the L shell (n = 1) and eight in the K shell  
(n = 2)—its energy is  

  
  
EM ≈ − Z − 9( )2 13.6 eV

3( )2  
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 Thus, as the electron drops from the M to the K shell, it emits a photon 
of energy  

  

  

Ephoton = EM −EK ≈ 13.6 eV( ) − Z − 9( )2

9
+ Z2⎡

⎣
⎢

⎤

⎦
⎥

= 13.6 eV( ) − Z2 − 18Z + 81
9

⎛
⎝⎜

⎞
⎠⎟
+ Z2⎡

⎣
⎢

⎤

⎦
⎥

= 13.6 eV( ) 8
9

Z2 + 2Z − 9⎛
⎝⎜

⎞
⎠⎟ =

hc
λ

 

 Therefore, we have the relation  
  

  

13.6 eV( ) 8
9

Z2 + 2Z − 9⎛
⎝⎜

⎞
⎠⎟ =

hc
λ

8
9

Z2 + 2Z − 9 = hc
13.6 eV( )λ = 1 240 eV ⋅nm( )

13.6 eV( ) 0.101 nm( ) = 902.7

8
9

Z2 + 2Z − 911.7 = 0

 

 Solving for Z gives  
  

  

Z =
− 2( ) ± 2( )2 − 4 8 9( ) −911.7( )

2 8 9( ) =
−1 ± 1+ 8 9( ) 911.7( )

8 9( )
= −1 ± 28.5

8 9( )

 

 The positive solution is physical:  

  
  
Z =

−1+ 28.5
8 9( ) = 30.9  

 The nearest whole number for Z is 31, which corresponds to the 
element 

 
gallium . 
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Section 42.9 Spontaneous and Stimulated Transitions 

Section 42.10 Lasers 
P42.58 The electron in the E3* state drops to the E2 state, emitting a photon of 

energy hf. The process conserves energy:  

    E3* = E2 + hf → hf = E3* − E2  

 The photon’s energy is

 
  
hf = E3 * − E2 = 20.66 − 18.70( )  eV = 1.96 eV =

hc
λ

 

 and its wavelength is 
  

  
λ = hc

E
= 1 240 eV ⋅nm

1.96 eV
= 633 nm

 

P42.59 (a) We use Equation 42.5, E = hf = 0.117 eV, and solve for f: 

   

  

f =
E
h

=
0.117 eV

6.626 × 10−34  J ⋅ s
1.60 × 10−19  J

eV
⎛
⎝⎜

⎞
⎠⎟

= 2.83 × 1013  s−1 = 28.3 × 1012  s−1 = 28.3 THz

 

 (b) The wavelength of the laser is 

   
  
λ =

c
f

=
3.00 × 108  m/s
2.83 × 1013  s−1 = 10.6 µm  

 (c) This is in the  infrared  portion of the electromagnetic spectrum. 

P42.60 (a) We find the energy from 

   
  
ΔE = E4* − E2 =

hc
λ

 

  Then, 
   

  

E2 = E4* − hc
λ

= 20.66 eV

   −
6.626× 10−34  J ⋅s( ) 3.00× 108  m/s( )

543× 10−9  m
1 eV

1.602 × 10−19  J
⎛
⎝⎜

⎞
⎠⎟

= 18.37 eV

 

 (b) The light in the cavity is incident perpendicularly on the mirrors. 
Some of the light reflects off the front surface of the silicon 
dioxide layer while some enters the layer and then reflects off the 
titanium oxide layer on its other side. The index of refraction of 
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titanium oxide (1.9–2.6) is greater the index of refraction of silicon 
dioxide (1.458), so there is automatically a 180° shift of the ray 
reflecting off the silicon dioxide. To minimize reflection at a 
vacuum wavelength of 632.8 nm, the net phase difference 
between reflected rays should be 180°, so the extra distance 
traveled by the ray passing into the silicon dioxide should be one 
whole wavelength: 

   

  

2t =
λ
n

t =
λ
2n

=
632.8 nm
2 1.458( ) = 217 nm

 

 (c) For the green light to experience constructive interference, the net 
phase difference should be 360°, including contributions of 180° 
by reflection and 180° by extra distance traveled: 

   

  

2t =
λ
2n

t =
λ
4n

=
543 nm
4 1.458( ) = 93.1 nm

 

P42.61 The energy in each pulse is  
  

  E = PΔt = 1.00 × 106  W( ) 1.00 × 10–8  s( ) = 1.00 × 10–2  J
 

 The energy of each photon is  
  

  

Eγ = hf = hc
λ

=
6.626× 10–34  J ⋅s( ) 3.00× 108  m/s( )

694.3× 10–9  m
= 2.86× 10–19  J

 

 So the number of photons in the pulse is  
  

  
N = E

Eγ

= 1.00× 10–2  J
2.86  ×  10–19  J/photon

= 3.49× 1016  photons
 

P42.62 (a) The equilibrium ratio is  

   
  

N4*
N3

=
Nge−E3 kBT

Nge−E2 kBT = e− E3 −E2( ) kBT = e−ΔE kBT  

  where the temperature T = 27.0 °C + 273.15 = 300.2 K, and the 
energy difference (from Figure P42.60) is  

     ΔE = E4* − E3 = 20.66 eV − 18.70 eV = 1.96 eV  
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  Substituting numerical values, 
   

  

N4*
N3

= e−ΔE kBT = e− 1.96 eV( ) 1.602×10−19  J/eV( ) 1.381×10−23  J K( ) 300.2  K( )

= 1.26× 10−33

 

 (b) Now, we require 
  

N4*
N3

= e−ΔE kBT = 1.02  

  where    ΔE = E4* − E3 = 1.96 eV  

  Thus,  

   

  

ln 1.02( ) = −
1.96 eV( ) 1.602 × 10−19  J/eV( )

1.381× 10−23  J K( )T
T = −1.15 × 106  K

 

 (c) The population inversion requires the temperature be negative. 
Because   ΔE = E4* − E3 > 0 , and in any real equilibrium state T > 0, 
the ratio   N4 * N3 = e−ΔE kBT < 1 . Thus, a population inversion 
cannot happen in thermal equilibrium. 

P42.63 (a) The energy of the pulse is spread over the area of a circle of 
radius R = 15.0 µm: 

   

  

I = P
A

= ΔE Δt
πR2 = 3.00× 10−3  J 1.00× 10−9  s

π 15.0× 10−6  m( )2⎡
⎣

⎤
⎦

= 4.24× 1015  W m2

 

 (b) The absorbed energy falls within the area of a circle of radius  
r = 0.300 nm: 

   

  

ΔE = IΔtA = ΔE Δt
πR2

⎛
⎝⎜

⎞
⎠⎟ Δtπr2 = ΔE

r2

R2

⎛
⎝⎜

⎞
⎠⎟

= 3.00× 10−3  J( ) 0.300× 10−9  m( )2

15.0× 10−6  m( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 1.20× 10−12  J
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*P42.64 (a) The distance between nodes is 
 
λ
2

,  so we require solutions to 

  
35.124 103 cm = N

2
λ,  where N is an integer and λ  is in the 

required range. The midpoint of the range is 632.809 10 nm, 
giving  

   
  
Ntrial =

2 35.124 103× 10−2  m( )
632.809 1× 109  m

= 1 110 101.07  

  So we try N = 1 110 101, 1 110 102, 1 110 100, 1 110 103, and so on: 

   

 

λ1 =
2 35.124 103 × 10−2  m( )

1 110 101
= 632.809 14 nm

λ2 =
2 35.124 103 × 10−2  m( )

1 110 102
= 632.808 57 nm

λ3 =
2 35.124 103 × 10−2  m( )

1 110 100
= 632.809 71 nm

 

   
 
λtrial =

2 35.124 103× 10−2  m( )
1 110 103

= 632.808 00 nm   

  outside the range. Thus the laser light has just  three  
wavelength components. 

 (b) The rms speed is obtained from 
  
1
2

m0v2 = 3
2

kT.  We use the 

periodic table for the mass of a neon atom. Then, 

   

  

v = 3kT
m0

=
3 1.38 × 10−23  J K( ) 393 K( )

20.18 u
1 u

1.66 × 10−27  kg
⎛
⎝⎜

⎞
⎠⎟

= 697 m s

 

 (c) For a neon atom moving toward one mirror at the rms speed as it 
emits, the Doppler shift is described by 

   

  

′f = f
c + v
c − v

= c
′λ
= c
λ

c + v
c − v

′λ = λ c − v
c + v

= 632.809 1 nm( ) 3 × 108 − 697
3 × 108 + 697

= 632.807  63 nm

 

  This is outside the given range. Many atoms are moving faster 
than the rms speed, so we should expect still more Doppler 
broadening of the resonance amplification peak. 
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Additional Problems 
P42.65 To ionize the atom, it is necessary that  nf →∞ . The required energy is 

then 
   

  

ΔE = Ef −Ei = −13.6 eV
1

nf
2 − 1

ni
2

⎛

⎝
⎜

⎞

⎠
⎟ = −13.6 eV

1
∞ − 1

ni
2

⎛
⎝⎜

⎞
⎠⎟

= 13.6 eV
ni

2

 

 (a) If ni = 1, the required energy is  

   
  
ΔE =

13.6 eV
12 = 13.6 eV  

 (b) If ni = 3,    

   
  
ΔE =

13.6 eV
32 = 1.51 eV  

P42.66 The sliver atoms (Z = 108) move as particles initially traveling in the x 
direction at speed u with constant acceleration in the z direction:  

   
  
Δz =

1
2

a Δt( )2 =
1
2

Fz

m0

⎛
⎝⎜

⎞
⎠⎟
Δt( )2 =

µz dBz dz( )
2m0

Δx
u

⎛
⎝⎜

⎞
⎠⎟

2

    

 where   
   
µz =

e
2me

, so 

   
   
Δz =

e
4mem0

Δx
u

⎛
⎝⎜

⎞
⎠⎟

2 dBz

dz
 

 Therefore,  
  

   

dBz

dz
=

4m0meΔzv2

eΔx2

=
4 108( ) 1.66 × 10−27  kg( )⎡⎣ ⎤⎦ 9.11× 10−31  kg( ) 10−3  m( ) 100 m/s( )2

1.60 × 10−19  C( ) 1.05 × 10−34  J ⋅ s( ) 1.00 m( )2

dBz

dz
= 0.389 T/m

 

P42.67 The wave function for the 2s state is given by Equation 42.26: 

   
  
ψ 2s r( ) =

1
4 2π

1
a0

⎛
⎝⎜

⎞
⎠⎟

3 2

2 −
r
a0

⎡

⎣
⎢

⎤

⎦
⎥e−r 2a0  
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 (a) Taking   r = a0 = 0.529 × 10−10  m,  we find 
   

  

ψ 2s a0( ) =
1

4 2π
1

0.529 × 10−10  m
⎛
⎝⎜

⎞
⎠⎟

3 2

2 − 1[ ]e−1 2

= 1.57 × 1014  m−3 2

 

 (b)   ψ 2s a0( ) 2
= 1.57 × 1014  m−3 2( )2

= 2.47 × 1028  m−3  

 (c) Using Equation 42.24 and the result of part (b) gives 

   
  P2s a0( ) = 4π a0

2 ψ 2s a0( ) 2
= 8.69 × 108  m−1  

P42.68 (a) The energy difference between these two states is equal to the 
energy that is absorbed. Thus, 

   

  

ΔE = E2 − E1 =
−13.6 eV( )

4
−

−13.6 eV( )
1

= 10.2 eV

= 1.63 × 10−18  J

 

 (b) 
  
E =

3
2

kBT     or    
  
T =

2E
3kB

=
2 1.63 × 10−18  J( )

3 1.38 × 10−23  J K( ) = 7.88 × 104  K  

P42.69 To evaluate the energy difference, we imagine the z component of the 
electron’s magnetic moment as continuously variable. In turning it 
from alignment with the field to the opposite direction, the field does 
work according to Equation 10.22, 

  
  
W  =  dW∫  =  τ  dθ

0

180°

∫  =  µBsinθ  dθ
0

π

∫  = −µBcosθ
0

π
 = 2µB  

 To make the electron flip, the photon must carry energy 

  ΔE = 2µBB = hf .  Therefore, 
  

  

f =  2µBB
h

=
2 9.27 × 10–24  J/T( )(0.350 T)

6.626× 10–34  J ⋅s

= 9.79× 109  Hz = 9.79 GHz

 

P42.70 We suppose that the electron that makes the transition is shielded from 
the electric field of the full nuclear charge by the one K-shell electron 
originally below it. With Z = 24, its original energy is  

   
  
E = −(Z − 1)2(13.6 eV)

1
22

⎛
⎝⎜

⎞
⎠⎟
 = −1.80 keV  

 Its final energy is   
  
E = −Z2(13.6 eV)

1
12

⎛
⎝⎜

⎞
⎠⎟ = −7.83 keV.   
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 The magnitude of the electron’s energy loss is  

   7.83 keV – 1.80 keV = 6.04 keV 

 Then, instead of coming out as an x-ray photon, this +6.04 keV can be 
transferred to the single 4s electron. Suppose that it is shielded by the 
22 electrons in the K, L, and M shells. To break the outermost electron 
out of the atom, producing a Cr2+ ion, requires an energy investment of  

   
  
Eionize  = 

(Z − 22)2(13.6 eV)
42  = 

22(13.6 eV)
16

 = 3.40 eV  

 Then the remaining energy that can appear as kinetic energy is  
   

  K = ΔE − Eionize = 6 035 eV − 3.4 eV = 6.03 keV  

 Because of conservation of momentum for the ion-electron system and 
the tiny mass of the electron compared to that of the Cr2+ ion, almost 
all of this kinetic energy will belong to the electron. 

*P42.71 From Figure 42.20, a typical ionization energy is 8 eV. For internal 
energy to ionize most of the atoms we require 

   

  

3
2

kBT = 8 eV:    

          T =
2 × 8 1.60 × 10−19  J( )
3 1.38 × 10−23  J K( ) ~  between 104  K and 105  K

 

*P40.72 From Equation 42.26,  

   
  
ψ 2s = 1

4
2π( )−1 2 1

a0

⎛
⎝⎜

⎞
⎠⎟

3 2

2 − r
a0

⎛
⎝⎜

⎞
⎠⎟

e−r 2a0 = A 2 − r
a0

⎛
⎝⎜

⎞
⎠⎟

e−r 2a0  

 Differentiating gives  

   
  

dψ
dr

= Ae−r 2a0 − 2
a0

+ r
2a0

2

⎛
⎝⎜

⎞
⎠⎟

 

 Differentiating a second time gives,  

   
  

d2ψ
dr2 = Ae−r 2a0

a0
2

⎛
⎝⎜

⎞
⎠⎟

3
2
− r

4a0

⎛
⎝⎜

⎞
⎠⎟

 

 Substituting into Schrödinger’s equation and dividing by   Ae−r 2a0 ,  we 
will have a solution if 

   
   
− 5

4
2

mea0
2 + kee

2

a0

+ 2r
8mea0

3 + 22

mea0r
− 2kee

2

r
= 2E − Er

a0
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 Now with 
   
a0 = 2

mee
2ke

,  this reduces to 

   
   
− mee

4ke
2

82 2 − r
a0

⎛
⎝⎜

⎞
⎠⎟

= E 2 − r
a0

⎛
⎝⎜

⎞
⎠⎟

 

 This is true, so   ψ 2s  is a solution to the Schrödinger equation, provided 

  
E = 1

4
E1 = −3.40 eV.  

*P42.73 The expectation value of 1/r is found from 

  

  

1
r

= 4r2

a0
3 e−2r a0

1
r

dr
0

∞

∫ = 4
a0

3 re− 2 a0( )r dr
0

∞

∫ = 4
a0

3

1
2
a0

( )2 = 1
a0

 

 We compare this to 
  

1
r

= 1
3a0

2

= 2
3a0

,  and find that the average 

reciprocal value is  NOT  the reciprocal of the average value. 

P42.74 The fact that there are five values of the z component of orbital angular 
momentum tells us that there are five values of    m ,  which, in turn, 
tells us that    = 2.  From Equation 42.28, we can find the maximum 
value of   m : 

   
   
Lz  = m → m  = 

Lz


 = 

3.16 × 10−34

1.055 × 10−34  = 3  

 In order to have a maximum value of   m  equal to 3, we need to have 
   = 3 , which is inconsistent with the first result. 

P42.75 (a) The size of the quantum jump in the electron’s energy is 

   

   

ΔE =
eB
me

=
1.60 × 10−19  C( ) 6.626 × 10−34  J ⋅ s( ) 5.26 T( )

2π 9.11× 10−31  kg( )
= 9.75 × 10−23  J

1 eV
1.60 × 10−19  J

⎛
⎝⎜

⎞
⎠⎟

= 6.09 × 10−4  eV = 609 µeV

 

 (b) The energy available from the walls of the container is 

   
  
kBT = 1.38 × 10−23  J K( ) 80 × 10−3  K( ) = 1.10 × 10−24  J = 6.9 µeV  

 (c) The photon’s frequency is 

   

  

f =
ΔE
h

=
9.75 × 10−23  J

6.626 × 10-34  J ⋅ s
= 1.47 × 1011  Hz = 147 × 109  Hz

= 147 GHz
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 (d) The photon’s wavelength is 

   
  
λ =

c
f

=
3.00 × 108  m/s
1.47 × 1011  Hz

= 2.04 × 10−3  m = 2.04 mm  

P42.76 (a) Using the same procedure that was used in the Bohr model of the 
hydrogen atom, we apply Newton’s second law to the Earth. We 
simply replace the Coulomb force by the gravitational force 
exerted by the Sun on the Earth and find 

    
  
G

MSME

r2 = ME
v2

r
 [1] 

  where v is the orbital speed of the Earth. Next, we apply the 
postulate that angular momentum of the Earth is quantized in 
multiples of   : : 

       MEvr = n n = 1, 2, 3, …( )  

  Solving for v gives 

    
  
v =

n
MEr

  [2] 

  Substituting [2] into [1], we find 

    
   
r =

n22

GMSME
2   [3] 

 (b) Solving equation [3] for n gives 

    
  
n = GMSr

ME


 [4] 

  Taking MS = 1.99 × 1030 kg, ME = 5.98 × 1024 kg, r = 1.496 × 1011 m, 

    G = 6.67 × 10−11  N ⋅m2 kg2 , and    = 1.055 × 10−34  J ⋅ s , we find 

    
  n = 2.53 × 1074  

 (c) We can use equation [3] to determine the radii for the orbits 
corresponding to the quantum numbers n and n + 1: 

    
   
rn =

n22

GMSME
2     and    

   
rn+1 =

n + 1( )2 2

GMSME
2

 

  Hence, the separation between these two orbits is 

    
   
Δr =

2

GMSME
2 n + 1( )2 − n2⎡⎣ ⎤⎦ =

2

GMSME
2 2n + 1( )  
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  Since n is very large, we can neglect the number 1 in the 
parentheses and express the separation as 

    

   

Δr ≈ 2

GMSME
2 2n( )

=
1.054 6× 10−34  J ⋅s( )2

6.67 × 10−11  N ⋅m2 kg2( ) 1.99× 1030  kg( ) 5.98× 1024  kg( )2

                                                                     × 2 2.53× 1074( )⎡⎣ ⎤⎦
= 1.18× 10−63  m

 

 (d) This number is much smaller than the radius of an atomic nucleus 
(~ 10–15 m), so the distance between quantized orbits of the Earth 
is too small to observe. 

P42.77 The average squared separation distance is 
   

  

r2 = ψ 1s
∗

all space∫ r2ψ 1sdV

= 1
π a0

3
e−r a0

⎛

⎝
⎜

⎞

⎠
⎟ r2 1

π a0
3

e−r a0
⎛

⎝
⎜

⎞

⎠
⎟ 4π r2 dr

r=0

∞

∫

= 4
a0

3 r4e−2r a0 dr
0

∞
∫

 

 We use 
  

xn
0

∞
∫ e−axdx =

n!
an+1  from Table B.6:   

   
  

r2 =
4
a0

3

4!
2 / a0( )5 =

96a0
2

32
= 3a0

2  

 The root-mean-square uncertainty in r is 

   

  

Δr = r2 − r 2 = 3a0
2 −

3a0

2
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥

1 2

= 3a0
2 −

9a0
2

4
⎛
⎝⎜

⎞
⎠⎟

1 2

=
3
4

⎛
⎝⎜

⎞
⎠⎟

1 2

a0 = 0.866a0

 

P42.78 (a) From Equations 42.22 – 42.25,  

   

  

P = P1s ′r( )d ′r
r

∞

∫ =
4
a0

3 ′r 2e−2 ′r a0 d ′r
r

∞

∫

= −
2 ′r 2

a0
2 +

2 ′r
a0

+ 1
⎛
⎝⎜

⎞
⎠⎟

e−2 ′r a0
⎡

⎣
⎢

⎤

⎦
⎥

r

∞

=
2r2

a0
2 +

2r
a0

+ 1
⎛
⎝⎜

⎞
⎠⎟

e−2r a0
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 (b) The graph is shown in ANS. FIG. P42.78. 

 

ANS. FIG. P42.78 

 (c) The probability of finding the electron inside or outside the 

sphere of radius r is 
 

1
2

:  

   
  

2r2

a0
2 +

2r
a0

+ 1
⎛
⎝⎜

⎞
⎠⎟

e−2r a0 =
1
2

   or      z
2 + 2z + 2 = ez    

  where   
  
z =

2r
a0

.  

  One can home in on a solution to this transcendental equation for 
r on a calculator, the result being 

  
r = 1.34a0  to three digits. 

P42.79 (a) The energy emitted by the atom is  

   
  
ΔE = E4 − E2 = −13.6 eV

1
42 −

1
22

⎛
⎝⎜

⎞
⎠⎟

  = 2.55 eV  

  The wavelength of the photon produced is then 
   

  
λ =

hc
Eγ

=
hc
ΔE

=
1 240 eV ⋅nm

2.55 nm
= 486 nm

 

 (b) Since momentum must be conserved, the photon and the atom go 
in opposite directions with equal magnitude momenta. Thus, 

  
p = matomv =

h
λ

, or  

   

  

v =
h

matomλ
=

6.626 × 10−34  J ⋅ s
1.67 × 10−27  kg( ) 4.86 × 10−7  m( )

= 0.816 m/s
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P42.80 (a) The energy of the ground state is  
    

  
E1 = −

hc
λseries limit

= −
1 240 eV ⋅nm

152.0 nm
= −8.16 eV

  

  From the wavelength of the Lyman α line:  
    

  
E2 − E1 =

hc
λ

=
1 240 nm ⋅eV

202.6 nm
= 6.12 eV

 

      E2 = E1 + 6.12 eV = −2.04 eV  

  The wavelength of the Lyman β line gives  
    

  
E3 − E1 =

1 240 nm ⋅eV
170.9 nm

= 7.26 eV
 

  so 
  
E3 = −0.902 eV .  

  Next, using the Lyman γ line gives  
    

  
E4 − E1 =

1 240 nm ⋅eV
162.1 nm

= 7.65 eV
 

  and 
  
E4 = −0.508 eV .  

  From the Lyman δ line,  
    

  
E5 − E1 =

1 240 nm ⋅eV
158.3 nm

= 7.83 eV
 

  so 
  
E5 = −0.325 eV .  

 (b) For the Balmer series,  

    
  

hc
λ

= Ei − E2 ,  or 
  
λ =

1 240 nm ⋅eV
Ei − E2

 

  For the α line, Ei = E3 and so  

    
  
λa =

1 240 nm ⋅eV
−0.902 eV( ) − −2.04 eV( ) = 1 090 nm  

  Similarly, the wavelengths of the β line, γ line, and the short 
wavelength limit are found to be:  811 nm, 724 nm, and 609 nm .  

 (c) Using Equation 42.2, 
  

1
λ

= RH 1−
1
n2

⎛
⎝⎜

⎞
⎠⎟

, the Lyman series for 

hydrogen contains the lines: α (n = 2) = 122 nm, β (n = 3) = 103 
nm, γ (n = 4) = 97.2 nm, δ (n = 5) = 94.9 nm, the short wavelength 
limit ( n→∞ ) = 91.1 nm. 
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  Computing 60.0% of the wavelengths of the spectral lines shown 
on the energy-level diagram gives: 

     0.600 202.6 nm( ) = 122 nm     

     0.600 170.9 nm( ) = 103 nm  

     0.600 162.1 nm( ) = 97.3 nm  

     0.600 158.3 nm( ) = 95.0 nm  

     0.600 152.0 nm( ) = 91.2 nm  

  These are seen to be the wavelengths of the α, β, γ, and δ lines as 
well as the short wavelength limit for the Lyman series in 
Hydrogen. 

 (d) The observed wavelengths could be the result of Doppler shift 
when the source moves away from the Earth. The required speed 
of the source is found from 

     
  

′f
f

=
λ
′λ

=
c − v
c + v

= 0.600      yielding   v = 0.471c. 

  

  

The spectrum could be that of hydrogen, Doppler-shifted 
by motion away from us at speed 0.471c.

 

P42.81 We use Equation 42.26: 

  

  
ψ 2s(r) = 

1
4 2π

1
a0

⎛
⎝⎜

⎞
⎠⎟

3/2

2 − 
r
a0

⎡

⎣
⎢

⎤

⎦
⎥e−r/2a0    

(a)  By Equation 42.24,  
 

  
P r( ) = 4π r2 ψ 2 = r2

8a0
3 2 − r

a0

⎛
⎝⎜

⎞
⎠⎟

2

e−r a0

 

 (b) The derivative of the radial probability is  
   

  

dP r( )
dr

= 1
8a0

3 2r 2 − r
a0

⎛
⎝⎜

⎞
⎠⎟

2

− 2r2 1
a0

⎛
⎝⎜

⎞
⎠⎟

2 − r
a0

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

                                                      − r2 2 − r
a0

⎛
⎝⎜

⎞
⎠⎟

2
1
a0

⎛
⎝⎜

⎞
⎠⎟
⎤

⎦
⎥
⎥
e−r a0
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  Simplifying the expression, 
   

  

dP r( )
dr

= 1
8a0

3 2 − r
a0

⎛
⎝⎜

⎞
⎠⎟

e−r a0 4r − 2r2

a0

− 2r2

a0

− 2r2

a0

− r3

a0
2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= r
8a0

5 2 − r
a0

⎛
⎝⎜

⎞
⎠⎟

e−r a0 4a0
2 − 6ra0 + r2⎡⎣ ⎤⎦

= r
8a0

5 2 − r
a0

⎛
⎝⎜

⎞
⎠⎟

e−r a0 r2 − 6ra0 + 4a0
2⎡⎣ ⎤⎦

 

 (c) Its extremes are given by 

   
  

dP
dr

=
r

8a0
5 2 −

r
a0

⎛
⎝⎜

⎞
⎠⎟

e−r a0 r2 − 6ra0 + 4a0
2⎡⎣ ⎤⎦ = 0  

  The roots of 
  

dP
dr

= 0  at r = 0, r = 2a0, and r = ∞ are minima with 

P(r) = 0 (as shown in Figure 42.12). 

 (d) We require   r
2 − 6ra0 + 4a0

2 = 0.  The solutions are  

   

  
r =

− −6a0( ) ± −6a0( )2 − 4 1( ) 4a0
2( )

2
=

6a0 ± 20a0
2

2
= 3 ± 5( )a0

 

 (e) We substitute the last two roots into P(r) to determine the most 
probable value: 

  When 
  
r = 3 − 5( )a0 = 0.764a0 ,  

    

  

P r( ) =
0.764a0( )2

8a0
3 2 −

0.764a0

a0

⎛
⎝⎜

⎞
⎠⎟

2

e−0.764

=
0.764( )2

8a0

2 − 0.764( )2 e−0.764 =
0.051 9

a0

 

  When 
  
r = 3 + 5( )a0 = 5.236a0 ,  

    

  

P r( ) =
5.236a0( )2

8a0
3 2 −

5.236a0

a0

⎛
⎝⎜

⎞
⎠⎟

2

e−5.236

=
5.236( )2

8a0

2 − 5.236( )2 e−5.236 =
0.191

a0

 

  Therefore, the most probable value of r is 

  
r = 3 + 5( )a0 → P = 0.191 a0 .  
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P42.82 (a) One molecule’s share of volume is,  

   Al: 

  

V =
27.0 g
 mol

⎛
⎝⎜

⎞
⎠⎟

1 mol
6.02 × 1023  molecules

⎛
⎝⎜

⎞
⎠⎟

1.00 × 10−6  m3

2.70 g
⎛
⎝⎜

⎞
⎠⎟

= 1.66 × 10−29  m3

 

   
  D ≈ V3 = 2.55 × 10−10  m~10−1  nm  

   U:  

  

V =
238 g
 mol

⎛
⎝⎜

⎞
⎠⎟

1 mol
6.02 × 1023  molecules

⎛
⎝⎜

⎞
⎠⎟

1.00 × 10−6  m3

18.9 g
⎛
⎝⎜

⎞
⎠⎟

= 2.09 × 10−29  m3

 

   
  D ≈ V3 = 2.76 × 10−10  m ~ 10−1  nm  

 (b) 

   

The outermost electron in any atom sees the nuclear charge
screened by all the electrons below it. If we can visualize a single
outermost electron, it moves in the electric field of net charge 

+Ze − Z − 1( )e = +e, the charge of a single proton, as felt by the

electron in hydrogen. So the Bohr radius sets the scale for the
outside diameter of every atom. An innermost electron, on the
other hand, sees the nuclear charge unscreened, and the scale size
of its (K-shell) orbit is a0 Z .

 

P42.83 (a) The length of the pulse is      

    
  ΔL = cΔt = 3.00 × 108  m/s( ) 14.0 × 10−12  s( ) = 4.20 mm  

 (b) The energy of each photon is  

    
  
E =

hc
λ

= 2.86 × 10−19  J   

  so the number of photons in the pulse is 

    
  
N =

3.00 J
2.86 × 10−19  J/photon

= 1.05 × 1019  photons  

 (c) The volume of the pulse is  

    
  
V = ΔLπr2 = 4.20 mm( ) π 3.00 mm( )2⎡⎣ ⎤⎦ = 119 mm3  

  resulting in a photon density of  
    

  
n = 1.05× 1019  photons

119 mm3 = 8.82 × 1016  mm−3
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P42.84 (a) The length of the pulse is 
 
ΔL = cΔt . 

 (b) The energy of each photon is 
 
E =

hc
λ

, so  

    
  
N =

TER

E
=

λTER

hc
 

 (c) The volume of the pulse is  

    
  
V = ΔLπ d2

4
= cΔtπ d2

4
  

   resulting in a photon density of 

     
  
n =

N
V

=
λTER

hc cΔtπ d2 4( ) =
4λTER

πhc2d2Δt
 

P42.85 The fermions are described by the exclusion principle. Two of them, 
one spin-up and one spin-down, will be in the ground energy level, in 
a standing wave pattern with one antinode: 

   
  
dNN =

1
2
λ = L → λ = 2L =

h
p

,  

 and  
  
p =

h
2L

→ K =
1
2

mv2 =
p2

2m
=

h2

8mL2 .  

 The third must be in the next higher level, in a standing wave pattern 
with two antinodes: 

   
  
2dNN = 2

λ
2

⎛
⎝⎜

⎞
⎠⎟

= L → λ = L ,      

 and  
  
p =

h
L

→ K =
p2

2m
=

h2

2mL2 .  

 The total energy is then   
   

  

h2

8mL2 + h2

8mL2 + h2

2mL2 = 3h2

4mL2

 

P42.86 An ionization energy of 4.10 eV means the ground state energy is  
–4.10 eV. The photon energies tell us the separation of the energy 
levels:  

  
  
E =

hc
λ

=
1 240 eV ⋅nm

λ
= ΔE  

 Then,  λ1 = 310 nm ,    so   ΔE1 = 4.00 eV  
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   λ2 = 400 nm ,       ΔE2 = 3.10 eV  

   λ3 = 1 378 nm ,       ΔE3 = 0.900 eV  

 The energy level diagram having the fewest levels and consistent with 
these energies is shown in ANS. FIG. P42.86. 

 

 

 

ANS. FIG. 42.86 

P42.87 The general radial probability distribution function is  

  
  P(r) = 4πr2 ψ

2  

 With   ψ 1s  =  πa0
3( )−1/2

e−r/a0 ,  it is   P(r) = 4r2a0
−3e−2r/a0 .  

 The required probability is then  
  

  
P =  P(r)dr

2.50a0

∞

∫  = ∫2.50a0

∞ 4r2

a0
3 e−2r/a0 dr

 

 Let z = 2r/a0 and dz = 2dr/a0. Then we want 
  
P = 1

2
z2e−z dz

5.00

∞

∫ .  

 Performing this integration by parts,  

  
  
P = − 1

2
z2  + 2z + 2( )e−z

5.00

∞

 

  

  
P = − 1

2
(0) + 1

2
(25.0 + 10.0 + 2.00)e−5.00 = 37

2
⎛
⎝⎜

⎞
⎠⎟ (0.006 74) = 0.125

 

P42.88 From Equations 42.22 – 42.25, 

  
  
P = P1s(r)dr

βa0

∞

∫ =
4r2

a0
3 e−2r a0 dr

βa0

∞

∫ =
1
2

z2e−z dz
2β

∞

∫ ,     where    
  
z ≡

2r
a0

 

  

  

P = −
1
2

z2 + 2z + 2( )e−z

2β

∞

= −
1
2

0[ ]+
1
2

2β( )2 + 4β + 2⎡⎣ ⎤⎦e−2β

= e−2β 2β 2 + 2β + 1( )
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Challenge Problems 
P42.89 (a) Let r represent the distance between the electron and the positron. 

The two move in a circle of radius r/2 around their center of mass 
with opposite velocities. The total angular momentum of the 
electron-positron system is quantized according to 

    
   
Ln =

mvr
2

+
mvr

2
= n   where    n = 1, 2, 3, … 

  For each particle,  F∑ = ma  expands to     
    

  

kee
2

r2 = mv2

r 2

 

  We can eliminate 
  
v =

n
mr

 to find     

    

   

kee
2

r
= 2mn22

m2r2

 

  So the separation distances are     
    

   
r = 2n22

mkee
2 = 2a0n

2
 

  Comparing this result to Equations 42.10 and 42.11, we see the 
allowed separation distances are two times the allowed radii of 
the Bohr hydrogen atom. Therefore, 

  rn = 0.106n2, where rn is in nanometers and n = 1, 2, 3,… 

 (b) The orbital radii are 
  

r
2

= a0n
2 ,  the same as for the electron in 

hydrogen. The energy can be calculated from    

    
  
E = K + U =

1
2

mv2 +
1
2

mv2 −
kee

2

r
 

  Since 
  
mv2 =

kee
2

2r
,

 
  
E =

kee
2

2r
−

kee
2

r
= −

kee
2

2r
=
−kee

2

4a0n
2  

  Comparing this result to Equations 42.13 and 42.14, we see the 
allowed energies are half those of the Bohr hydrogen atom. 
Therefore,  

  
  
En  = −

6.80
n2

, where En is in electron volts and n = 1, 2, 3,…  
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P42.90 (a) Suppose the atoms move in the +x direction. The absorption of a 
photon by an atom is a completely inelastic collision, described by 

   
   
mvi î +

h
λ

− î( ) = mv f î     so    
 
v f − vi = −

h
mλ

 

  This happens promptly every time an atom has fallen back into 
the ground state, so it happens every   10−8  s = Δt.  Then, 

   

  

a =
v f − vi

Δt
= −

h
mλΔt

~ −
6.626 × 10−34  J ⋅ s

10−25  kg( ) 500 × 10−9  m( ) 10−8  s( )
~ −106  m s2

 

 (b) With constant average acceleration, 

     v f
2 = vi

2 + 2aΔx     
  0 ~ 103  m/s( )2

+ 2 −106  m/s2( )Δx  

  so  
  
Δx ~

103  m/s( )2

106  m/s2 ~ 1 m .  

P42.91 (a) From Equation 42.13, the allowed energies are 
  
En =

kee
2

2a0

1
n2

⎛
⎝⎜

⎞
⎠⎟ ,  

where, from Equation 42.11, the Bohr radius is  

   
   
a0 =

2

mekee
2 =

h 2π( )2

mekee
2 =  

  

h2

4π 2mekee
2  

  Combining these gives 
   

  
En =

kee
2

2
4π 2mekee

2

h2

1
n2

⎛
⎝⎜

⎞
⎠⎟ =

2π 2meke
2e4

h2

1
n2

⎛
⎝⎜

⎞
⎠⎟

 

  For a transition from state n to state n – 1, 
   

  

hf = ΔE =
2π 2meke

2e4

h2

⎛
⎝⎜

⎞
⎠⎟

1
n − 1( )2 −

1
n2

⎛

⎝⎜
⎞

⎠⎟

hf = ΔE =
2π 2meke

2e4

h2

⎛
⎝⎜

⎞
⎠⎟

n2 − n2 − 2n + 1( )
n2 n − 1( )2

 

  which gives  
   

  
f = 2π 2meke

2e4

h3

⎛
⎝⎜

⎞
⎠⎟

2n− 1
n2 n− 1( )2
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 (b) As   n→∞,  we find the quantum result:  
   

  
f →

2π 2meke
2e4

h3

2
n3 =

4π 2meke
2e4

h3n3

 

  The classical frequency is 
  
f =

v
2π r

,  where classically, from 

Equation 42.8, 
  
v2 =

kee
2

me r
. By substituting, the relation for the 

classical frequency becomes  

   
  
f =

v
2π r

=
1

2π r
kee

2

me r
=

kee
2

4π 2mer
3

 

  From Equation 42.10, the radius 
   
r = rn =

n22

mekee
2 =

n2h2

4π 2 mekee
2 ; 

substituting this yields 
   

  

f =
kee

2

4π 2mer
3 =

kee
2

4π 2me

4π 2 mekee
2

n2h2

⎛
⎝⎜

⎞
⎠⎟

3

=
4π 2( )2

me
2ke

4e8

n6h6 =
4π 2meke

2e4

h3n3

 

  The classical frequency is   4π
2meke

2e4 h3n3 .  We see that the Bohr 
result for large n reduces to the classical result. 
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P42.2 (a) 1 875 nm, 1 282 nm, 1 094 nm; (b) infrared 

P42.4 (a) 
  
λmn =

1
1/λm1 − 1/λn1

;  (b)   kmn = km1 − kn1  

P42.6 (a) See P42.6(a) for full explanation; (b) 0.846 ns 

P42.8 See P42.8 for full explanation. 

P42.10 (a) 2.86 eV; (b) 0.472 eV 

P42.12 (a) 1.89 eV; (b) 656 nm; (c) 3.40 eV; (d) 365 nm; (e) 365 nm 

P42.14  4.42 × 104  m/s  

P42.16 (a) 97.3 nm; (b) 1.88 µm; (c) infrared; (d) Paschen; (e) 97.3 nm;  
(f) ultraviolet; (g) Lyman 

P42.18 (a) 0.212 nm; (b) 9.97 × 10–25 kg · m/s; (c) 2.11 × 10–34 kg · m2/s; 
(d) 3.40 eV; (e) –6.80 eV; (f) –3.40 eV 

P42.20 (a) 152 as; (b) 8.23 × 109 revolutions; (c) Its lifetime in electron years is 
comparable to the lifetime of the Sun in Earth years, so we can think of 
it as a long time. 

P42.22 (a) 1.31 µm; (b) 164 nm 

P42.24 (a) 
   


2r

; (b) 
   

2

2mer
2 ; (c) 

   

2

2mer
2 −

kee
2

r
; (d) 

   

2

mekee
2 = a0 ; (e) –13.6 eV;  

(f) We find our results are in agreement with the Bohr theory. 

P42.26 (a) See P42.26(a) for full explanation; (b) 
  
E = −

kee
2

2a0

 

P42.28 (a) 1; (b) 0.497 

P42.30 (a) See P42.30(a) for a list of all sets; (b) See P42.30(b) for a list of all 
sets. 

P42.32 (a)   6;  (b) Lz can have the values   −2, − , 0,  and 2;  (c) 145°, 114°, 
90.0°, 65.9°, and 35.3° 

P42.34 (a) 2; (b) 8; (c) 18; (d) 32; (e) 50 

P42.36 (a) 3.99 × 1017 kg/m3; (b) 8.17 am; (c) 1.77 Tm/s; (d) It is 5.91 × 103c, 
which is huge compared with the speed of light and impossible. 

P42.38 The electron energy is not enough to excite the hydrogen atom from its 
ground state to even the first excited state. 
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P42.40 (a) the 4s subshell; (b) We would expect [Ar]3d44s2 to have lower 
energy, but [Ar]3d54s1 has more unpaired spins and lower energy 
according to Hund’s rule; (c) chromium 

P42.42 See P42.42 for the complete table. 

P42.44 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s 

P42.46   1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4 f 14 5s2 5p6 5d10 5 f 146s2 6p66d87s2  

P42.48 See P42.48 for full explanation. 

P42.50 0.310 nm 

P42.52 (a) For the 3p state, 1.4 and for the 3d state, 1.0; (b) See P42.52(b) for full 
explanation. 

P42.54 L shell = 11.8 keV, M shell = 10.2 keV, N shell = 2.47 keV 

P42.56 (a) 
 

1240 V ⋅nm
λ

; (b) The potential difference is inversely proportional 

to the wavelength; (c) Yes. It predicts a minimum wavelength of 33.5 
pm when the accelerating voltage is 37 keV, in agreement with the 
minimum wavelength in the figure; (d) Yes, but it might be unlikely 
for a very high energy electron to stop in a single interaction to 
produce a high-energy gamma ray, and it might be difficult to observe 
the very low intensity radio waves produced as bremsstrahlung by 
low-energy electrons; (e) The potential difference goes to infinity as the 
wavelength goes to zero; (f) The potential difference goes to zero as the 
wavelength goes to infinity. 

P42.58 633 nm 

P42.60 (a) 18.37 eV; (b) 217 nm; (c) 93.1 nm 

P42.62 (a) 1.26 × 10–33; (b) –1.15 × 106 K; (c) A population inversion cannot 
happen in thermal equilibrium. 

P42.64 (a)  λ1 = 632.809 14 nm, λ2 = 632.808 57 nm, λ3 = 632.809 71 nm, three;  
(b) 697 m/s (c) See P42.64(c) for full description. 

P42.66 0.389 T/m 

P42.68 (a) 1.63 × 10–18 J; (b) 7.88 × 104 K 

P42.70 5.39 keV 

P42.72 See P42.72 for full explanation. 

P42.74 In order to have a maximum value of   m  equal to 3, we need to have 
   = 3 , which is inconsistent with the first result. 
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P42.76 (a) See P42.76(a) for full explanation; (b) 2.53 × 1074; (c) 1.18 × 10–63 m; 
(d) This number is much smaller than the radius of an atomic nucleus 
(~10–15 m), so the distance between quantized orbits of the Earth is too 
small to observe. 

P42.78 (a) 
  

2r2

a0
2 +

2r
a0

+ 1
⎛
⎝⎜

⎞
⎠⎟

e−2r a0 ; (b) See ANS. FIG. P42.78; (c) 1.34 a0 

P42.80 (a) –8.16 eV, –2.04 eV, –0.902 eV, –0.508 eV, –0.325 eV; (b) 1 090 nm,  
811 nm, 724 nm, and 609 nm; (c) 122 nm, 103 nm, 97.3 nm, 95.0 nm, 
91.2 nm; (d) The spectrum could be that of hydrogen, Doppler-shifted 
by motion away from us at speed 0.471c. 

P42.82 (a) Al: 2.55 × 10–10 m ~ 10–1 nm and U: 2.76 × 10–10 m ~ 10–1 nm; (b) The 
outermost electron in any atom sees the nuclear charge screened by all 
the electrons below it. If we can visualize a single outermost electron, it 
moves in the electric field of net charge +Ze – (Z – 1)e = +e, the charge 
of a single proton, as felt by the electron in hydrogen. So the Bohr 
radius sets the scale for the outside diameter of every atom. An 
innermost electron, on the other hand, sees the nuclear charge 
unscreened, and the scale size of its (K-shell) orbit is a0/Z. 

P42.84 (a)   cΔt;  (b) 
  

λTER

hc
; (c) 

  

4λTER

πhc2d2Δt
 

P42.86 See ANS. FIG P42.86 for the energy-level diagram. 

P42.88   e
−2β 2β 2 + 2β + 1( )  

P42.90 (a) −106 m/s2; (b) ~1 m 
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43 
Molecules and Solids 

 

CHAPTER OUTLINE 
 

43.1  Molecular Bonds 

43.2 Energy States and Spectra of Molecules 

43.3  Bonding in Solids  

43.4 Free-Electron Theory of Metals 

43.5  Band Theory of Solids 

43.6 Electrical Conduction in Metals, Insulators, and Semiconductors 

43.7  Semiconductor Devices 

43.8 Superconductivity 
 

* An asterisk indicates a question or problem new to this edition. 

 

ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ43.1 (a) False. An infinite current would produce an infinite magnetic 
field that would penetrate the surface of the superconductor and 
destroy the superconducting properties. (b) False. There is no 
physical requirement that a superconductor carry a current. (c) True. 
(d) True. (e) True. Collisions do not occur between Cooper pairs and 
the lattice ions.  

OQ43.2 Answer (b). At higher temperature, molecules are typically in higher 
rotational energy levels before as well as after infrared absorption.  

OQ43.3 (i) Answer (c). Think of aluminum foil.  

 (ii) Answer (a). An example is NaCl, table salt.  

 (iii) Answer (b). Examples are elemental silicon and carborundum 
(silicon carbide).  
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OQ43.4 (i) Answer (b). The density of states is proportional to the energy 
to the one-half power.  

 (ii) Answer (a). Most states well above the Fermi energy are 
unoccupied.  

OQ43.5 Answer (b). First consider electric conduction in a metal. The number 
of conduction electrons is essentially fixed. They conduct electricity 
by having drift motion in an applied electric field superposed on 
their random thermal motion. At higher temperature, the ion cores 
vibrate more and scatter more efficiently the conduction electrons 
flying among them. The mean time between collisions is reduced. 
The electrons have time to develop only a lower drift speed. The 
electric current is reduced, so we see the resistivity increasing with 
temperature. 

 Now consider an intrinsic semiconductor. At absolute zero its 
valence band is full and its conduction band is empty. It is an 
insulator, with very high resistivity. As the temperature increases, 
more electrons are promoted to the conduction band, leaving holes in 
the valence band. Then both electrons and holes move in response to 
an applied electric field. Thus we see the resistivity decreasing as 
temperature goes up.  

OQ43.6 (i) and (ii) Answer (a) for both. Either kind of doping contributes 
more mobile charge carriers, either holes or electrons.  

OQ43.7 The ranking is then b > d > c > a. If you start with a solid sample and 
raise its temperature, it will typically melt first, then start emitting 
lots of far infrared light, then emit light with a spectrum peaking in 
the near infrared, and later have its molecules dissociate into atoms. 
Rotation of a diatomic molecule involves less energy than vibration. 
Absorption and emission of microwave photons, of frequency ~1011 
Hz, accompany excitation and de-excitation of rotational motion, 
while infrared photons, of frequency ~1013 Hz, accompany changes in 
the vibration state of typical simple molecules.  

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ43.1 A material can absorb a photon of energy greater than the energy 
gap, as an electron jumps into a higher energy state; therefore, silicon 
can absorb visible light, thus appearing opaque. If the photon does 
not have enough energy to raise the energy of the electron by the 
energy gap, then the photon will not be absorbed; therefore, 
diamond cannot absorb visible light, thus appearing transparent.  
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CQ43.2 Rotational, vibrational, and electronic (as discussed in Chapter 42) 
are the three major forms of excitation. Rotational energy for a 

diatomic molecule is on the order of 
   

2

2I
,  where I is the moment of 

inertia of the molecule. A typical value for a small molecule is on the 
order of 1 meV = 10–3 eV. Vibrational energy is on the order of hf, 
where f is the vibration frequency of the molecule. A typical value is 
on the order of 0.1 eV. Electronic energy depends on the state of an 
electron in the molecule and is on the order of a few eV. The 
rotational energy can be zero, but neither the vibrational nor the 
electronic energy can be zero.  

CQ43.3 From the rotational spectrum of a molecule, one can easily calculate 
the moment of inertia of the molecule using Equation 43.7 in the text. 
Note that with this method, only the spacing between adjacent 
energy levels needs to be measured. From the moment of inertia, the 
size of the molecule can be calculated, provided that the structure of 
the molecule is known.  

CQ43.4 Along with arsenic (As), any other element in group V, such as 
phosphorus (P), antimony (Sb), and bismuth (Bi), would make good 
donor atoms. Each has 5 valence electrons. Any element in group III 
would make good acceptor atoms, such as boron (B), aluminum (Al), 
gallium (Ga), and indium (In). They all have only 3 valence electrons.  

CQ43.5 The energy of the photon is given to the electron. The energy of a 
photon of visible light is sufficient to promote the electron from the 
lower-energy valence band to the higher-energy conduction band. 
This results in the additional electron in the conduction band and an 
additional hole—the energy state that the electron used to occupy—
in the valence band.  

CQ43.6 (a) In a metal, there is no energy gap between the valence and 
conduction bands, or the conduction band is partly full even at 
absolute zero in temperature. Thus an applied electric field is 
able to inject a tiny bit of energy into an electron to promote it to 
a state in which it is moving through the metal as part of an 
electric current. In an insulator, there is a large energy gap 
between a full valence band and an empty conduction band. An 
applied electric field is unable to give electrons in the valence 
band enough energy to jump across the gap into the higher 
energy conduction band. In a semiconductor, the energy gap 
between valence and conduction bands is smaller than in an 
insulator.  
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 (b) At absolute zero the valence band is full and the conduction 
band is empty, but at room temperature thermal energy has 
promoted some electrons across the gap. Then there are some 
mobile holes in the valence band as well as some mobile 
electrons in the conduction band.  

CQ43.7 (a) The two assumptions in the free-electron theory are that the 
conduction electrons are not bound to any particular atom, and 
that the nuclei of the atoms are fixed in a lattice structure. In this 
model, it is the “soup” of free electrons that are conducted 
through metals.  

 (b) The energy band model is more comprehensive than the free-
electron theory. The energy band model includes an account of 
the more tightly bound electrons as well as the conduction 
electrons. It can be developed into a theory of the structure of 
the crystal and its mechanical and thermal properties.  

CQ43.8 A molecule containing two atoms of D = 2H, deuterium, has twice the 
mass of a molecule containing two atoms of ordinary hydrogen 1H; 
therefore the deuterium molecule has twice the reduced mass of the 
hydrogen molecule. The atoms have the same electronic structure, so 
the molecules have the same interatomic spacing, and the same 
spring constant. Therefore, each vibrational energy level for D2 is 

 1 2  times that of H2. The moment of inertia of deuterium is twice 
as large and the rotational energies one-half as large as for the 
ordinary hydrogen molecule.  

CQ43.9 Ionic bonds are ones between oppositely charged ions. One atom 
essentially steals an electron from another; for example, in table salt, 
NaCl, the chlorine atom takes the outer 3s electron from the sodium 
atom, resulting in two ions Cl–

 and Na+. A simple model of an ionic 
bond is the electrostatic attraction of a negatively charged latex 
balloon to a positively charged Mylar balloon.  

 Covalent bonds are ones in which atoms share electrons. Classically, 
two children playing a short-range game of catch with a ball models 
a covalent bond. On a quantum scale, the two atoms are sharing a 
wave function, so perhaps a better model would be two children 
using a single hula hoop.  

 Van der Waals bonds are weak electrostatic forces: the electric 
dipole-dipole force is analogous to the attraction between the 
opposite poles of two bar magnets, the dipole-induced dipole force is 
similar to a bar magnet attracting an iron nail or paper clip, and the 
dispersion force is analogous to an alternating-current electromagnet 
attracting a paper clip.  
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 A hydrogen atom in a molecule is not ionized, but its electron can 
spend more time elsewhere than it does in the hydrogen atom. The 
hydrogen atom can be a location of net positive charge, and can 
weakly attract a zone of negative charge in another molecule.  

CQ43.10 The atoms of crystalline substances form a regular array of ions in a 
lattice structure, and the atoms are close enough together to allow 
energy bands to form. The atoms of amorphous solids do not form a 
regular array, but they are close enough to produce energy bands. 
The atoms of gases do not form regular arrays and are too far apart 
to form energy bands.   

 
 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 43.1 Molecular Bonds 
P43.1 At the boiling or condensation temperature,  
  

  
E = 3

2
kBT ≈ 10−3  eV = 10−3 1.6× 10−19  J( )

  

 Solving for the temperature T gives, 

  
  
T =

E
kB

≈
2 1.6 × 10−22  J( )

3 1.38 × 10−23  J K( ) ~ 10 K  

P43.2 (a) The electrostatic force is  

   

  

F = q2

4π ∈0 r2

=
8.99× 109  N ⋅m2/C2( ) 1.60× 10−19  C( )2

5.00× 10−10  m( )2

= 9.21× 10−10  N = 921× 10−12  N

 

  or 921 pN toward the other ion. 

 (b) The potential energy of the ion pair is 

   

  

U = −q2

4π ∈0 r

= −
8.99× 109  N ⋅m2/C2( ) 1.60× 10−19  C( )2

5.00× 10−10  m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 eV
1.60× 10−19  J

⎛
⎝⎜

⎞
⎠⎟

= −2.88 eV
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P43.3 We are told that  

    K + Cl + 0.70 eV → K+ + Cl−  

 and   Cl + e− → Cl− + 3.6 eV  

 or   Cl− → Cl + e− − 3.6 eV   

 By substitution,  

    K + Cl + 0.7 eV → K+ + Cl + e− − 3.6 eV  

    K + 4.3 eV → K+ + e−  

 or the ionization energy of potassium is  4.3 eV .  

P43.4 (a) Because the ionization energy of K is 4.34 eV, we have the relation  

    K + 4.34 eV → K+ + e−  [1] 

  and because the electron affinity of I is 3.06 eV, we have the 
relation  

    I + e− → I− + 3.06 eV  
  I − 3.06 eV → I− − e−  [2] 

  Adding equations [1] and [2] gives  

   

 

K + 4.34 eV( ) + I − 3.06 eV( )→ K+ + e−( ) + I− − e( )
K + I + 4.34 eV − 3.06 eV( )→ K+ + I−

K + I + 1.28 eV → K+ + I−

 

  Therefore, the activation energy is 
  
Ea = 1.28 eV . 

 (b) We differentiate the given function: 
   

  

dU
dr

= 4∈
σ

−12
σ
r

⎛
⎝⎜

⎞
⎠⎟

13

+ 6
σ
r

⎛
⎝⎜

⎞
⎠⎟

7⎡

⎣
⎢

⎤

⎦
⎥

 

  Setting the expression above equal to 0, at r = r0 we have  
   

  

dU
dr

= 0 → σ
r0

⎛
⎝⎜

⎞
⎠⎟

13

= 1
2

σ
r0

⎛
⎝⎜

⎞
⎠⎟

7  

  which gives 
   

  

σ
r0

⎛
⎝⎜

⎞
⎠⎟

6

= 2−1 → σ = 2−1 6 r0 = 2−1 6 0.305( )  nm
 

  or  σ = 0.272 nm  
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  Then also  
   

  

U r0( ) = 4∈ 2−1 6 r0

r0

⎛
⎝⎜

⎞
⎠⎟

12

− 2−1 6 r0

r0

⎛
⎝⎜

⎞
⎠⎟

6⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+Ea

= 4∈ 1
4
− 1

2
⎡
⎣⎢

⎤
⎦⎥
+Ea = −∈+Ea

 

  solving for ∈  gives 
   

  

∈= Ea −U r0( ) = 1.28 eV + 3.37 eV

= 4.65 eV

 

 (c) The force of attraction between the atoms is  
   

  
F r( ) = − dU

dr
= 4∈

σ
12

σ
r

⎛
⎝⎜

⎞
⎠⎟

13

− 6
σ
r

⎛
⎝⎜

⎞
⎠⎟

7⎡

⎣
⎢

⎤

⎦
⎥

 

  To find the maximum force we calculate  
   

  

dF
dr

= 4∈
σ 2 −156

σ
r

⎛
⎝⎜

⎞
⎠⎟

14

+ 42
σ
r

⎛
⎝⎜

⎞
⎠⎟

8⎡

⎣
⎢

⎤

⎦
⎥ = 0

σ
rbreak

= 42
156

⎛
⎝⎜

⎞
⎠⎟

1 6

 

  So at r = rbreak, the force is a maximum:  

   

  

Fmax =
4 4.65 eV( )
0.272 nm

12
42

156
⎛
⎝⎜

⎞
⎠⎟

13 6

− 6
42

156
⎛
⎝⎜

⎞
⎠⎟

7 6⎡

⎣
⎢

⎤

⎦
⎥

=
−41.0 eV

nm
1.60 × 10−19  N ⋅m

1 eV
⎛
⎝⎜

⎞
⎠⎟

1 nm
10−9  m

⎛
⎝⎜

⎞
⎠⎟ = − 6.55 nN

 

  Therefore the applied force required to break the molecule is 

 +6.55 nN  away from the center.  

 (d) To calculate the force constant, we expand U(r) as suggested in 
the problem statement: 

   

  

U r0 + s( ) = 4∈ σ
r0 + s

⎛
⎝⎜

⎞
⎠⎟

12

− σ
r0 + s

⎛
⎝⎜

⎞
⎠⎟

6⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+Ea

= 4∈ 2−1 6 r0

r0 + s
⎛
⎝⎜

⎞
⎠⎟

12

− 2−1 6

r0 + s
⎛
⎝⎜

⎞
⎠⎟

6⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+Ea
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  Expanding, 

    

   

U r0 + s( ) = 4∈ 1
4

1+ s
r0

⎛
⎝⎜

⎞
⎠⎟

−12

− 1
2

1+ s
r0

⎛
⎝⎜

⎞
⎠⎟

−6⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+Ea

= 4∈ 1
4

1− 12
s
r0

+ 78
s2

r0
2 −

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

                        − 1
2

1− 6
s
r0

+ 21
s2

r0
2 −

⎛
⎝⎜

⎞
⎠⎟
⎤

⎦
⎥ +Ea

=  ∈−12∈ s
r0

+ 78∈ s2

r0
2 − 2∈+12∈ s

r0

− 42∈ s2

r0
2 +Ea +

= −∈+Ea + 0
s
r0

⎛
⎝⎜

⎞
⎠⎟
+ 36∈ s2

r0
2 +

 

  or 
  
U r0 + s( )≈U r0( ) + 1

2
ks2  

  where 
  
k = 72∈

r0
2 = 72 4.65 eV( )

0.305 nm( )2 = 3 599 eV nm2 = 576 N m  

P43.5 (a) The minimum energy of the molecule at r = r0 is found from  

   
  

dU
dr

= −12Ar0
−13 + 6Br0

−7 = 0   

  yielding  

   

  

r0 =
2A
B

⎡
⎣⎢

⎤
⎦⎥

1 6

=
2 0.124 × 10−120  eV ⋅m12( )

1.488 × 10−60  eV ⋅m6

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 6

= 7.42 × 10−11  m = 74.2 pm

 

 (b) The energy required to break up the molecule would separate the 
atoms from r = r0 to r = ∞: 

   

  

E = U r=∞ −U r=r0
= 0 −

A
4A2 B2 −

B
2A B

⎡

⎣
⎢

⎤

⎦
⎥ = −

1
4
−

1
2

⎡
⎣⎢

⎤
⎦⎥

B2

A
=

B2

4A

E =
1.488 × 10−60  eV ⋅m6( )2

4 0.124 × 10−120  eV ⋅m12( ) = 4.46 eV

 

  This is also the equal to the binding energy, the amount of energy 
given up by the two atoms as they come together to form a 
molecule. 
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P43.6 (a) The minimum energy of the molecule at r = r0 is found from  

   
  

dU
dr

= −12Ar0
−13 + 6Br0

−7 = 0   

  yielding  

   
  
r0 =

2A
B

⎡
⎣⎢

⎤
⎦⎥

1 6

 

 (b) The energy required to break up the molecule would separate the 
atoms from r = r0 to r = ∞:  

   
  
E = U r=∞ −U r=r0

= 0 −
A

4A2 B2 −
B

2A B
⎡

⎣
⎢

⎤

⎦
⎥ = −

1
4
−

1
2

⎡
⎣⎢

⎤
⎦⎥

B2

A
=

B2

4A
 

 
 

 

Section 43.2 Energy States and Spectra of Molecules 
P43.7 (a) Recall from Chapter 42 that the energy of the photon is given by 

   
   
hf = ΔE =

2

2I
2 2 + 1( )[ ]− 

2

2I
1 1 + 1( )[ ] =

2

2I
4( )  

  Then, 
   

  

I =
4 h 2π( )2

2hf
= h

2π 2 f
= 6.626× 10−34  J ⋅s

2π 2 2.30× 1011  Hz( )
= 1.46× 10−46  kg ⋅m2

 

 (b) 

 

The results are the same, suggesting that the bond length
of the molecule does not change measurably between the 
two transitions.

 

P43.8 From Equations 43.4 and 43.3, the reduced mass and moment of inertia 
of CsI are  

  

  

µ = m1m2

m1 + m2

= 132.9 u( ) 126.9 u( )
132.9 u + 126.9 u

1.66× 10−27  kg
u

⎛
⎝⎜

⎞
⎠⎟

= 1.08× 10−25  kg

 

 and  

  
  

I = µ r2 = 1.08× 10−25  kg( ) 0.127 × 10−9  m( )2

= 1.74× 10−45  kg ⋅m2
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 The allowed rotational energies (from Equation 43.6) are  

  

   

Erot =
2

2I
J J + 1( ) = J J + 1( ) 6.626× 10−34  J ⋅s 2π( )2

2 1.74× 10−45  kg ⋅m2( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= J J + 1( ) 3.20× 10−24  J( ) ⋅ 1 eV
1.602 × 10−19  J

⎛
⎝⎜

⎞
⎠⎟

= J J + 1( ) 2.00× 10−5  eV( )

 

 (a) J = 2 gives  
   

   
Erot = 2 3( )

2

2I
= 1.20× 10−4  eV = 0.120 meV

 

 (b) The photon that can cause the transition J = 1 → 2 has energy  
   

   

hf = ΔErot = 2 2 + 1( ) 
2

2I
⎛
⎝⎜

⎞
⎠⎟
− 1 1+ 1( ) 

2

2I
⎛
⎝⎜

⎞
⎠⎟
= 4

2

2I
⎛
⎝⎜

⎞
⎠⎟

= 4 3.20× 10−24  J( ) = 1.28× 10−23  J = 7.99× 10−2  eV

 

  The frequency of the photon is  
   

  
f = ΔErot

h
= 1.28× 10−23  J

6.626× 10−34  J ⋅s
= 1.93× 1010  s−1 = 19.3 GHz

 

*P43.9 For the HCl molecule in the J = 2 rotational energy level, we are given 
the distance between nuclei, r0 = 0.127 5 nm. From Equation 43.6, the 
allowed rotational energies are  

  
   
Erot =

2

2I
J J + 1( )  

 Taking J = 2, we have 
   
Erot = 6

2

2I
= 32

I
= 1

2
Iω 2 ,  

 or 
   
ω =

62

I 2 = 6

I

 

 The moment of inertia of the molecule is given by Equation 43.3: 

  
  
I = µ r0

2 =
m1m2

m1 + m2

⎛
⎝⎜

⎞
⎠⎟

r0
2  
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 Substituting numerical values, 

  

  

I = 1.008 u( ) 35.45 u( )
1.008 u + 35.45 u

⎡
⎣⎢

⎤
⎦⎥
r0

2

= 0.980 u( ) 1.66× 10−27  kg u( ) 1.275× 10−10  m( )2

= 2.64× 10−47  kg ⋅m2

 

 Therefore,  

  
   
ω = 6


I

=
6 6.626 × 10−34  J ⋅ s( )

2π(2.64 × 10−47  kg ⋅m2 )
= 9.77 × 1012  rad s  

P43.10 (a) From Equation 43.10, the energy separation between the ground 
and first excited state is  

   
  
ΔEvib =

h
2π

k
µ

= hf           so          k = 4π 2 f 2µ  

  and the reduced mass is 

   
  
µ =

k
4π 2 f 2 =

1530 N/m
4π 2(56.3 × 1012  s−1)2 = 1.22 × 10−26 kg  

 (b) From Equation 43.4, the reduced mass is 
   

  

µ = m1m2

m1 + m2

= 14.007 u( ) 15.999 u( )
14.007 u +15.999 u

1.66× 10−27  kg
1 u

⎛
⎝⎜

⎞
⎠⎟

= 1.24× 10−26  kg

 

 (c) They agree because the small apparent difference can be 
attributed to uncertainty in the data. 

P43.11 (a) With r representing the distance of each atom from the center of 
mass, the moment of inertia is  

   

  

mr2 + mr2 = 2mr2

= 2 1.008 u( ) 1.66× 10−27  kg
u

⎛
⎝⎜

⎞
⎠⎟

0.750× 10−10  m
2

⎛
⎝⎜

⎞
⎠⎟

2

= 4.71× 10−48  kg ⋅m2

 

  The allowed rotational energies (from Equation 43.6) are  

   
   
Erot =

2

2I
J J + 1( )  
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  The J = 0 state has energy Erot = 0, and the J = 1 state has energy  

   

  

Erot =
h 2π( )2

2I
1( ) 2( ) =

h 2π( )2

I

=
6.626× 10−34  J ⋅s 2π( )2

4.71× 10−48  kg ⋅m2( )
1 eV

1.602 × 10−19  J
⎛
⎝⎜

⎞
⎠⎟

= 1.48× 10−2  eV = 0.014 8 eV

 

 (b) The energy of the photon that raises the molecule from 0 to  
0.014 8 eV is 0.014 8 eV. The photon’s wavelength is 

   

  

λ = h
E

= 1240 eV ⋅nm
0.0148 eV

= 8.41× 104  nm

= 84.1× 103  nm = 84.1 µm

 

*P43.12 From Equation 43.10, the energy separation between the ground and 
first excited state is  

  
   
ΔEvib  = 

k
µ
 = 

k m1  + m2( )
m1m2

 

 Substituting numerical values, 
  

  

ΔEvib  =   1.055 × 10−34  J ⋅ s( ) 480 N/m( ) 35 + 1( )
35( ) 1( ) 1.66 × 10−27  kg( )  

= 5.75 × 10−20  J =  0.359 eV

 

 To excite a transition with this energy difference, the wavelength of 
incident photons must be  

  
  
λ  = hc

ΔEvib  
= 

1 240 eV ⋅ nm
0.359 eV

 = 3.45 × 103  nm  

 The incident photons have a wavelength longer than this, which 
means they have less energy than 0.359 eV. Therefore, these photons 
cannot excite the molecule to the first excited state. 

P43.13  The mass to consider is the molecule’s reduced mass. Iodine has atomic 
mass 126.90 u and a hydrogen atom is 1.007 9 u, so the reduced mass of 
HI is  

  

  
µ = m1m2

m1 + m2

= 126.90 u( ) 1.007 9 u( )
126.90 u + 1.007 9 u

= 0.999 96 u
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 Now for the energy of the ground state we have  
  

  
E = 1

2
kA2 = 0 + 1

2
⎛
⎝⎜

⎞
⎠⎟ hf = 1

2
h

2π
k
µ

 

 So the amplitude is  

  
  
A = h

2π k
k
µ

= h
2π

⎛
⎝⎜

⎞
⎠⎟

1/2 1
kµ

⎛
⎝⎜

⎞
⎠⎟

1/4

 

 (a) For HI we have  

   

  

A = 6.626× 10−34 J ⋅s
2π

⎛
⎝⎜

⎞
⎠⎟

1/2

                × 1
(320 N/m)(0.999 96)(1.66× 10−27kg)

⎛
⎝⎜

⎞
⎠⎟

1/4

= 1.20× 10−11  m = 12.0 pm

  

 (b) Flourine has an atomic mass of 18.998 4 u, so, for HF,  
   

  
µ = m1m2

m1 + m2

= 18.998 4 u( ) 1.007 9 u( )
18.998 4 u + 1.007 9 u

= 0.957 12 u
 

  and 

   

  

A = 6.626× 10−34 J ⋅s
2π

⎛
⎝⎜

⎞
⎠⎟

1/2

                × 1
(970 N/m)(0.957 12)(1.66× 10−27kg)

⎛
⎝⎜

⎞
⎠⎟

1/4

= 9.22 × 10−12 m = 9.22 pm

  

P43.14 The energy of a rotational transition is 
   
ΔE = 2

I
⎛
⎝⎜

⎞
⎠⎟

J ,  where J is the 

rotational quantum number of the higher energy state (see Equation 
43.7). We do not know J from the data. However,  

  

  

ΔE = hc
λ

=
6.626× 10−34  J ⋅s( ) 2.998× 108  m/s( )

λ
1 eV

1.602 × 10−19  J
⎛
⎝⎜

⎞
⎠⎟
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 For each observed wavelength,  

λ (mm) E (eV) 

0.120 4 0.010 30 

0.096 4 0.012 86 

0.080 4 0.015 42 

0.069 0 0.017 97 

0.060 4 0.020 53 

 The  Δ ′E s  consistently increase by 0.002 56 eV.  

  
   
E1 =

2

I
= 0.002 56 eV  

 and   
  

   

I = 
2

E1

=
1.055× 10−34  J ⋅s( )2

0.002 56 eV( )
1 eV

1.60× 10−19  J
⎛
⎝⎜

⎞
⎠⎟

= 2.72 × 10−47  kg ⋅m2

 

 For the HCl molecule, the internuclear radius is  

  
  
r =

I
µ

=
2.72 × 10−47

1.62 × 10−27  m = 0.130 nm  

P43.15 (a) The reduced mass of NaCl is 
   

  

µ = mNamCl

mNa + mCl

= 22.99 u( ) 35.45 u( )
22.99 u + 35.45 u

1.66× 10−27  kg
 u

⎛
⎝⎜

⎞
⎠⎟

= 2.32 × 10−26  kg

 

 (b) Its moment of inertia is 
   

  

I = µ r2 = 2.32 × 10−26  kg( ) 0.280× 10−9  m( )2

= 1.82 × 10−45  kg ⋅m2
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 (c) The wavelength of the emitted photon is found from: 

   
   

hc
λ

= ΔE =
2

2I
2 2 + 1( ) − 

2

2I
1 1+ 1( ) = 32

I
−
2

I
=

22

I
=

2h2

4π 2I
 

  then, 
   

  

λ = c4π 2I
2h

=
3.00× 108  m/s( )4π 2 1.82 × 10−45  kg ⋅m2( )

2 6.626× 10−34  J ⋅s( )
= 1.62 cm

 

P43.16 Masses m1 and m2 have the respective distances r1 and r2 from the 
center of mass. Then, 

   m1r1 = m2r2     and     r1 + r2 = r 

 So,  
  
r1 =

m2r2

m1

 

 and thus, 
  

m2r2

m1

+ r2 = r → r2 =
m1r

m1 + m2

 

 Also,  
  
r2 =

m1r1

m2

 

 thus,   
  
r1 +

m1r1

m2

= r → r1 =
m2r

m1 + m2

 

 The moment of inertia of the molecule is then 
  

  

I = m1r1
2 + m2r2

2 = m1
m2

2r2

m1 + m2( )2 + m2
m1

2r2

m1 + m2( )2

=
m1m2 m2 + m1( )r2

m1 + m2( )2 = m1m2r
2

m1 + m2

= µ r2

 

P43.17 (a) The reduced mass of the O2 is  
    

  

µ = mOmO

mO + mO

= 16.00 u( ) 16.00 u( )
16.00 u( )+ 16.00 u( ) = 8 u

= 8 1.66× 10−27  kg( ) = 1.33× 10−26  kg

 

  The moment of inertia is then  
   

  

I = µ r2 = 1.33× 10−26 kg( ) 1.20× 10−10 m( )2

= 1.91× 10−46 kg ⋅m2
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  The rotational energies are  
    

   
Erot =

2

2I
J J + 1( ) = 6.626× 10−34  J ⋅s 2π( )2

2 1.91× 10−46  kg ⋅m2( ) J J + 1( )
  

  Thus,  

    
  Erot = 2.91× 10−23  J( ) J J + 1( )  

  and for J = 0, 1, 2,  

    
  
Erot = 0, 3.63 × 10−4  eV, 1.09 × 10−3  eV  

 (b) The vibrational energies are given by 
    

   

Evib = v + 1
2

⎛
⎝⎜

⎞
⎠⎟ 

k
µ

= v + 1
2

⎛
⎝⎜

⎞
⎠⎟

6.626× 10−34  J ⋅s
2π

⎛
⎝⎜

⎞
⎠⎟

1 177 N m
8 1.66× 10−27  kg( )

= v + 1
2

⎛
⎝⎜

⎞
⎠⎟ 3.14× 10−20  J( ) 1 eV

1.602 × 10−19  J
⎛
⎝⎜

⎞
⎠⎟

= v + 1
2

⎛
⎝⎜

⎞
⎠⎟ 0.196 eV( )

 

  For v = 0, 1, 2, 
  
Evib = 0.098 0 eV, 0.294 eV, 0.490 eV . 

P43.18 (a) In benzene, the dashed lines form equilateral triangles, so the 
carbon atoms are each 0.110 nm from the axis and each hydrogen 
atom is (0.110 + 0.100 nm) = 0.210 nm from the axis. Thus, the 
moment of inertia is given by 

    

  

I = mr2∑ = 6 1.99× 10−26  kg( ) 0.110× 10−9  m( )2

                             + 6 1.67 × 10−27  kg( ) 0.210× 10−9  m( )2

= 1.89× 10−45  kg ⋅m2

 

 (b) The allowed rotational energies are then  
    

   

Erot =
2

2I
J J + 1( ) = 1.055× 10−34  J ⋅s( )2

2 1.89× 10−45  kg ⋅m2( ) J J + 1( )

= 2.95× 10−24  J( ) J J + 1( ) = 18.4× 10−6  eV( ) J J + 1( )

 

  

  

Erot = 18.4J J + 1( ) , where Erot  is in microelectron volts and

J = 0,1,2,3,. . . .
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  The first five of these allowed energies are:  

     Erot = 0, 36.9 µeV, 111 µeV, 221 µeV, and 369 µeV  

P43.19 We carry extra digits through the solution because part (c) involves the 
subtraction of two close numbers. The longest wavelength corresponds 
to the smallest energy difference between the rotational energy levels. 
It is between J = 0 and J = 1, namely 

   

   
ΔEmin = 

2

I

 

 The wavelength is then 

  
   
λ =

hc
ΔEmin

=
hc
2 I

=
4π 2Ic

h
 

 If 
  
µ =

mHmCl

mH + mCl

 is the reduced mass, then  

   
  I = µ r2 = µ 0.127 46 × 10−9  m( )2  

 and therefore,  

  

 

λ =
4π 2 µ 0.127 46 × 10−9  m( )2⎡

⎣
⎤
⎦ 2.997 925 × 108  m/s( )

6.626 075 × 10−34  J ⋅ s

= 2.901 830 × 1023  m/kg( )µ  [1]

 

 (a) For 35Cl,  
   

 

µ35 =
1.007 825u( ) 34.968 853u( )
1.007 825u + 34.968 853u

1.660540× 10−27  kg
 u

⎛
⎝⎜

⎞
⎠⎟

= 1.626 653× 10−27  kg

 

  From equation [1], 
   

 

λ35 = 2.901 830× 1023  m/kg( ) 1.626 653× 10−27  kg( )
= 472 µm

  

 (b) For 37Cl, 
   

 

µ37 =
1.007 825u( ) 36.965 903u( )
1.007 825u + 36.965 903u

1.660540× 10−27  kg
 u

⎛
⎝⎜

⎞
⎠⎟

= 1.629 118× 10−27  kg

 

  From equation [1], 

   
 
λ37 = 2.901 830 × 1023  m/kg( ) 1.629 118 × 10−27  kg( ) = 473 µm  
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 (c) The separation in wavelength is 

   
 
λ37 − λ35 = 472.742 4 µm − 472.027 0 µm = 0.715 µm  

P43.20 We find an average spacing between peaks by counting 22 gaps 
(counting the central gap as two) between 7.96 × 1013 Hz  and  
9.24 × 1013 Hz: 

  

  

Δf = 9.24− 7.96( )× 1013  Hz
22

= 0.058 2 × 1013  Hz

= 5.82 × 1011 Hz = 1
h

h2

4π 2I
⎛
⎝⎜

⎞
⎠⎟

 

 The moment of inertia is then 
  

  
I = h

4π 2Δf
= 6.626× 10−34  J ⋅s

4π 2 5.82 × 1011  s−1( ) = 2.88× 10−47  kg ⋅m2
 

P43.21 We carry extra digits through the solution because the given 
wavelengths are close together.  

 (a) The energy levels are given by 

   
   
EvJ = v +

1
2

⎛
⎝⎜

⎞
⎠⎟ hf +

2

2I
J J + 1( )  

  Therefore, 
   

   
E00 = 1

2
hf ,  E11 = 3

2
hf + 

2

I
,  and E02 = 1

2
hf + 32

I

  

  Then, 
   

   

ΔE1 = E11 −E00 = hf + 
2

I
= hc
λ1

=
6.626 075× 10−34  J ⋅s( ) 2.997 925× 108  m/s( )

2.211 2 × 10−6  m

 

   
   
ΔE1 = hf +

2

I
= 8.983 573 × 10−20  J  [1]  

   and 

    

   

ΔE2 = E11 −E02 = hf − 22

I
= hc
λ2

=
6.626 075× 10−34  J ⋅s( ) 2.997 925× 108  m/s( )

2.405 4× 10−6  m

 

   
   
ΔE2 = hf − 22

I
= 8.258 284× 10−20  J  [2]  
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  Subtracting equation [2] from [1] gives, 
   

   
ΔE1 − ΔE2 = hf + 

2

I
⎛
⎝⎜

⎞
⎠⎟
− hf − 22

I
⎛
⎝⎜

⎞
⎠⎟

= hc
λ1

− hc
λ2

 

  solving, 
   

   

32

I
= hc

1
λ1

− 1
λ2

⎛
⎝⎜

⎞
⎠⎟

→ 3h
4π 2I

= c
1
λ1

− 1
λ2

⎛
⎝⎜

⎞
⎠⎟

 

  Then, 
   

  

3h
4π 2I

= c
1
λ1

− 1
λ2

⎛
⎝⎜

⎞
⎠⎟

= 2.997 925× 108  m/s( )
                × 1

2.211 2 × 10−6  m
− 1

2.405 4× 10−6  m
⎛
⎝⎜

⎞
⎠⎟

= 1.0946× 1013  s−1

 

  Solving for the moment of inertia then gives 
   

  
I =

3 6.626 075× 10−34  J ⋅s( )
4π 2 1.094 6× 1013  s−1( ) = 4.60× 10−48  kg ⋅m2

 

 (b) From equation [1]:  

   

   

f1 = ΔE1

h
− 

2

2π I

= 8.983 573× 10−20  J
6.626 075× 10−34  J ⋅s

−
6.626 075× 10−34  J ⋅s( )

2π 4.600 060× 10−48  kg ⋅m2( )
= 1.32 × 1014  Hz

 

 (c) The moment of inertia of the molecule is given by I = µr2, where µ 
is the reduced mass, 

   
  
µ =

1
2

mH =
1
2

1.007 825u( ) = 8.367 669 × 10−28  kg  

  The equilibrium separation distance is then, 

   
  
r =

I
µ

=
4.600 060 × 10−48  kg ⋅m2

8.367 669 × 10−28  kg
= 0.074 1 nm  
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P43.22 The emission energies are the same as the absorption energies, but the 
final state must be below (v = 1, J = 0). The transition must satisfy 

  ΔJ = ±1,  so it must end with J = 1. To be lower in energy, the state must 
be (v = 0, J = 1). The emitted photon energy is therefore  

  

  

hfphoton = Evib v=1
+Erot J=0( )− Evib v=0

+Erot J=1( )
= Evib v=1

−Evib v=0( )− Erot J=1
−Erot J=0( )

hfphoton = hfvib − hfrot

 

 Thus,  

  

fphoton = fvib − frot = 6.42 × 1013  Hz − 1.15× 1011  Hz

= 6.41× 1013  Hz = 64.1 THz

 

P43.23 The moment of inertia about the molecular axis is 

   
  
Iy =

2
5

mr2 +
2
5

mr2 =
4
5

m 2.00 × 10−15  m( )2  

 The moment of inertia about a perpendicular axis is  

   
  
Ix = m

R
2

⎛
⎝⎜

⎞
⎠⎟

2

+ m
R
2

⎛
⎝⎜

⎞
⎠⎟

2

=
m
2

2.00 × 10−10  m( )2  

 The allowed rotational energies are 
   
Erot =

2

2I
⎛
⎝⎜

⎞
⎠⎟

J J + 1( ) , so the energy 

of the first excited state is 
   
E1 =

2

I
. The ratio is therefore 

  

   

E1, y

E1, x

=
2 Iy( )
2 Ix( ) = Ix

Iy

=
1 2( )m 2.00× 10−10  m( )2

4 5( )m 2.00× 10−15  m( )2

= 5
8

105( )2
= 6.25× 109

 

 
 

 

Section 43.3 Bonding in Solids 
P43.24 (a) Consider a cubical salt crystal of edge length 0.1 mm.  

  The number of atoms is 
 

10−4  m
0.261× 10−9  m

⎛
⎝⎜

⎞
⎠⎟

3

= 6 × 1016 ~ 1017 . 

 (b) This number of salt crystals would have volume  

   
 10−4  m( )3

6 × 1016 = 6 × 104 ~ 105  m3  

  If it is cubic, it has edge length 40 m.  
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P43.25 The ionic cohesive energy is  

    

  

U = −α kee
2

r0

1− 1
m

⎛
⎝⎜

⎞
⎠⎟

= − 1.747 6( ) 8.99× 109( ) 1.60× 10−19( )2

0.281× 10−9( ) 1− 1
8

⎛
⎝⎜

⎞
⎠⎟

= −1.25× 10−18  J = −7.83 eV

 

P43.26 We assume the ions are all singly ionized. The total potential energy is 
obtained by summing over all interactions of our ion with others: 

    

   

U = ke
i≠ j
∑

qiqj

rij

= – ke
e2

r
+ e2

r
–

e2

2r
–

e2

2r
+ e2

3r
+ e2

3r
–

e2

4r
–

e2

4r
+⎡

⎣⎢
⎤
⎦⎥

 

    
   
U = – 2ke

e2

r
1 – 1

2 + 1
3 – 1

4 +⎡⎣ ⎤⎦  

 But from Appendix B.5, 

   
   
ln(1 + x) =  x –

x2

2
+

x3

3
–

x4

4
+  

 Our series follows this pattern with x = 1, so the 
potential energy of one ion due to its 
interactions with all the others is 

   

  
U = (–2 ln 2)ke

e2

r
= −keα

e2

r
 where α = 2ln 2

 

 
 

 

Section 43.4 Free-Electron Theory of Metals 
Section 43.5 Band Theory of Solids 
P43.27 Taking EF = 5.48 eV for sodium at 800 K,  

  
  
f (E) =

1
e(E−EF )/kBT + 1

        so         e(E−EF )/kBT =
1

f (E)
− 1  

 Then, 
  

E −EF

kBT
= ln

1
f (E)

− 1
⎛
⎝⎜

⎞
⎠⎟

 

 

ANS. FIG. P43.26 
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 and 
  
E = EF + kBT ln

1
f (E)

− 1
⎛
⎝⎜

⎞
⎠⎟

 

 substituting numerical values, 
  

  

E = 5.48 eV + 1.38× 10−23  J/K( )
      × 1.602 × 10−19  eV/J( ) 800 K( )ln 1

0.950
− 1⎛

⎝⎜
⎞
⎠⎟ = 5.28 eV

 

P43.28 (a) 

 

The Fermi energy is proportional to the spatial concentra-
tion of free electrons to the two-thirds power.

 

 (b) From Equation 43.25, 
   

  

EF = h2

2m
3ne

8π
⎛
⎝⎜

⎞
⎠⎟

2 3

=
6.626× 10−34  J ⋅s( )2

2 9.11× 10−31  kg( ) 1.60× 10−19  J eV( )
3

8π
⎛
⎝⎜

⎞
⎠⎟

2 3

ne
2 3

  

  becomes  

   
  EF = 3.65 × 10−19( )ne

2 3   

  where EF is in electron volts and ne in electrons per cubic meter. 

 (c) Copper has the greater concentration of free electrons by a factor 
of  

   
  

ne Cu( )
ne K( ) =

8.46 × 10−19  m−3

1.40 × 10−19  m−3 = 6.04  

 (d) Copper has the greater Fermi energy, 7.05 eV.  

 (e) The Fermi energy is larger by a factor of  7.05 eV 2.12 eV = 0.333 . 

 (f) This behavior agrees with the proportionality because    EF  ne
2 3  

and 6.042/3 = 3.32. 

P43.29 The melting point of silver is 1 234 K. Its Fermi energy at 300 K is  
5.48 eV. The approximate fraction of electrons excited is  

  
  

kBT
EF

=
1.38 × 10−23  J K( ) 1 234 K( )
5.48 eV( ) 1.60 × 10−19  J eV( ) ≈ 2%  

P43.30 (a) Setting the kinetic energy equal to the Fermi energy, 

   
  

1
2

mv2 = 7.05 eV  
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  we solve for the speed of the conduction electron as 
   

  

v =
2 7.05 eV( ) 1.60× 10−19  J eV( )

9.11× 10−31  kg

= 1.57 × 106  m/s = 1.57 Mm/s

 

 (b) Compared to the drift velocity of 0.1 mm/s = 10–4 mm/s, the 
speed is larger by ten orders of magnitude. The energy of an 

electron at room temperature is typically 
  
kBT = 1

40
 eV.  

P43.31 (a) From Equation 43.26,  

   
  
Eavg =

3
5

EF = 0.6(7.05 eV) = 4.23 eV  

 (b) The average energy of a molecule in an ideal gas is 
  

3
2

kBT  so we 

have  

   
  
T =

2
3

4.23 eV
1.38 × 10−23  J/K

1.6 × 10−19  J
1 eV

= 3.27 × 104  K  

P43.32 For edge d = 1.00 mm,  

  
  V = d3 = 1.00 × 10−3  m( )3

= 1.00 × 10−9  m3  

 The density of states is  

  
  
g E( ) = CE1 2 =

8 2π me
3 2

h3 E1 2  

 or     

  

  
g E( ) =

8 2π 9.11× 10−31  kg( )3 2

6.626 × 10−34  J ⋅ s( )3 4.00 eV( ) 1.60 × 10−19  J eV( )  

    g E( ) = 8.50 × 1046  m−3 ⋅ J−1 = 1.36 × 1028  m−3 ⋅eV−1  

 So, the total number of electrons is  
  

  

N = g E( )[ ] ΔE( )V
= 1.36× 1028  m−3 ⋅eV−1( ) 0.025 0 eV( ) 1.00× 10−9  m3( )
= 3.40× 1017  electrons
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P43.33 For sodium, M = 23.0 g/mol and ρ = 0.971 g/cm3. Sodium contributes 
one electron per atom to the conduction band. 

 (a) The density of conduction electrons is 

   
  
ne =

NAρ
M

=
6.02 × 1023  electrons mol( ) 0.971 g/cm3( )

23.0 g mol
 

   
  ne = 2.54 × 1022  electrons/cm3 = 2.54 × 1028  m−3  

 (b) From Equation 43.25,  

   

  

EF = h2

2m
⎛
⎝⎜

⎞
⎠⎟

3ne

8π
⎛
⎝⎜

⎞
⎠⎟

2 3

=
6.626× 10−34  J ⋅s( )2

2 9.11× 10−31  kg( )
3 2.54× 1028  m−3( )

8π
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 3

= 5.05× 10−19  J = 3.15 eV

 

P43.34 From Equation 43.24, the number density of free electrons is 

  

  

ne = 2
3

8 2πme
3/2

h3 EF
3/2

= 2
3

8 2π 9.11× 10−31kg( )3/2

6.626× 10−34 J ⋅ s( )3 5.48eV( )3/2 1.602 × 10−19 J
1 eV

⎛
⎝⎜

⎞
⎠⎟

3/2

= 5.83× 1028 m–3

 

 Then, the number density of atoms in the metal is  

  

  

natoms  = 
nNA

V
 = mNA

MV
 =  ρNA

M

 = 
4.90 × 103  kg/m3( ) 6.02 × 1023  mol–1( )

0.100 kg/mol
 

= 2.95 × 1028  m−3

 

 Then the number of free electrons per atom is  

  
  

ne

natoms

 = 
5.83 × 1028  m–3

2.95 × 1028  m–3  = 1.97  

 Therefore, there are approximately two free electrons per atom for this 
metal, not one.  
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P43.35 From Table 43.2, the Fermi energy for copper at 300 K is 7.05 eV. From 
Equation 43.19, the Fermi-Dirac distribution function, the occupation 
probability is 

  

  

f (E) = 1
e(E−EF )/kBT + 1

= 1
e(0.99EF−EF )/kBT + 1

    = 1

e −0.01(7.05 eV)(1.602×10−19  J/eV)⎡⎣ ⎤⎦/ (1.381×10−23  J/K) 300 K( )⎡⎣ ⎤⎦ + 1

= 1
e−2.72 + 1

= 0.939

 

P43.36 From Equation 43.19, the Fermi-Dirac distribution function, the 
occupation probability is 

  
  
f (E) =

1
e(E−EF )/kBT + 1

=
1

e(βEF −EF )/kBT + 1
=

1
e β−1( )EF /kBT + 1

 

P43.37 Consider first the wave function in x. At x = 0 and x = L, ψ = 0. 
Therefore,  

  sin kxL = 0   and   kxL = π, 2π, 3π, … 

 Similarly, sin kyL = 0   and   kyL = π, 2π, 3π, … 

 and sin kzL = 0  and   kzL = π, 2π, 3π, … 

 Then, 

  
  
ψ = Asin

nxπ x
L

⎛
⎝⎜

⎞
⎠⎟ sin

nyπ y

L
⎛
⎝⎜

⎞
⎠⎟

sin
nzπ z

L
⎛
⎝⎜

⎞
⎠⎟

 

 From Schrödinger’s Equation, 
   

∂2ψ
∂x2 +

∂2ψ
∂y2 +

∂2ψ
∂z2 =

2me

2 U − E( )ψ , we 

have inside the box, where U = 0, 

  
   
−

nx
2π 2

L2 −
ny

2π 2

L2 −
nz

2π 2

L2

⎛

⎝⎜
⎞

⎠⎟
ψ =

2me

2 −E( )ψ  

 Therefore, 

  
   

E =
2π 2

2meL
2 nx

2 + ny
2 + nz

2( ) nx , ny , nz = 1, 2, 3, …  

 Outside the box we require ψ = 0. The minimum energy state inside 

the box is nx = ny = nz = 1, with 
   
E =

32π 2

2meL
2 . 
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P43.38 The density of states at the energy E is g(E) = CE1/2.  

 (a) Hence, the required ratio is 
    

  
Rstates = g(8.50 eV)

g(7.05 eV)
= C(8.50)1/2

C(7.05)1/2 = 1.10
 

 (b) From Equation 43.22, we see that the number of occupied 
states between energy E and energy E + dE is 

    
  
N(E)dE =

CE1/2

e E–EF( )/kBT + 1
dE  

  Hence, the required ratio is 
    

   
Roccupied states = N(8.50 eV)

N(7.05 eV)
= 8.50

7.05
e(7.05−7.05)/kBT + 1
e(8.50−7.05)/kBT + 1

⎡
⎣
⎢

⎤
⎦
⎥

 

  At T = 300 K, we compute 
    

  

kBT = 1.380 65× 10–23 J
K

⎛
⎝⎜

⎞
⎠⎟ 300.000 K( ) 1 eV

1.602 18× 10–19J
⎛
⎝⎜

⎞
⎠⎟

= 0.025 852 0 eV

 

   so 
  
Rocc.st = 8.50

7.05
⎛
⎝⎜

⎞
⎠⎟

1/2 2
e1.45/0.025 852  0 + 1

⎛
⎝⎜

⎞
⎠⎟ = 9.61× 10−25  

  With an exponent of 56.1, the derivative of the exponential 
function is so large that none of the digits in 9.61 is really 
significant. Different-looking answers would result from 
different choices of how precisely to represent the input data. 

 (c) The answer to part (b) is vastly smaller than the answer to (a). 
Very few states well above the Fermi energy are occupied at room 
temperature. 

P43.39 We are to compute 
  

  
Eavg = 1

ne

EN(E) dE
0

∞

∫
 

 where from Equation 43.22, 
   

  
N(E) = CE 1/2

e E−EF( )/kBT + 1
= Cf E( )E1/2

 

 with 
  
C =

8 2πme
3/2

h3
 

 But at T = 0 the Fermi-Dirac distribution function is f(E) = 0 for E > EF, 

and  f(E) = 1 for E < EF . So we can take   N(E) = CE1/2  just for energies 
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up to the Fermi energy. The average we want is then 
   

  
Eavg = 1

ne

CE3/2

0

EF∫ dE = 2C
5ne

EF
5/2

 

 But from Equation 43.24, 
  

C
ne

= 3
2

EF
–3/2 ,  so  

   
  
Eavg = 2

5
⎛
⎝⎜

⎞
⎠⎟

3
2

⎛
⎝⎜

⎞
⎠⎟ EF

–3/2( )EF
5/2 = 3

5
EF  

 
 

 
Section 43.6 Electrical Conduction in Metals, Insulators,  

and Semiconductors 

P43.40 (a) If  λ ≤ 1.00 µm = 1.00× 103  nm,  then photons of sunlight have 
energy  

    
  
E ≥

hc
λmax

=
1240 eV ⋅nm
1.00 × 103  m

= 1.24 eV  

  The gap should be less than or equal to 1.24 eV. 

 (b) 

 

Because silicon has an energy gap of 1.14 eV, it can absorb
the energy of nearly all of the photons in sunlight and is an 
appropriate material for a solar energy collector. 

 

P43.41 (a) Eg = 1.14 eV for Si. The photon energy, given by E = hf, must be at 
least this energy. Then,  

    

  

f = E
h

=
1.14 eV( ) 1.602 × 10−19  J eV( )

6.626× 10−34  J ⋅s

= 2.76× 1014  Hz = 276× 1012  Hz = 276 THz

 

 (b) From c = λf,  

    
  
λ =

c
f

=
3.00 × 108  m/s
2.75 × 1014  Hz

= 1.09 × 10−6  m = 1.09 µm  (infrared) 

P43.42 (a) From Table 43.3, the energy gap for CdS is 2.42 eV, so photons of 
energy greater than 2.42 eV will be absorbed, corresponding to 
wavelengths shorter than  

    
  
λ =

hc
E

=
1240 eV ⋅nm

2.42 eV
= 512 nm  

  All the Balmer lines lie between the shortest (series limit) 
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produced by the transition   n = ∞→ 2,  with energy 
    

  
ΔE = 13.6 eV

1
22

⎛
⎝⎜

⎞
⎠⎟ = 3.40 eV

 

  is 
  
λ = hc

E
= 1240 eV ⋅nm

3.40 eV
= 365 nm  

  The longest produced by the transition n = 3 → 2, with energy 
    

  
ΔE = 13.6 eV

1
22 −

1
32

⎛
⎝⎜

⎞
⎠⎟ = 1.89 eV

 

  is 
  
λ = hc

E
= 1240 eV ⋅nm

1.89 eV
= 656 nm  

  All the hydrogen Balmer lines except for the red line at 656 nm 
will be absorbed. 

 (b) The red line at 656 nm will be transmitted. 

P43.43 The energy-bang gap is  

   
  
Eg =

hc
λ

=
1240 eV ⋅nm

650 nm
≈ 1.91 eV  

P43.44 The wavelength 0.512 µm = 512 nm. The corresponding photon energy 
is just sufficient to promote an electron across the gap.  

   
  
Eg =

hc
λ

=
1240 eV ⋅nm

512 nm
= 2.42 eV  

P43.45 If the photon energy is 5.47 eV or higher, the diamond window will 
absorb the photons. Here,  

  

  
hf( )max

= hc
λmin

= 5.47 eV
 

 which gives 
  

  
λmin = hc

5.47 eV
= 1240 eV ⋅nm

5.47 eV
= 227 nm

 

P43.46 (a) In the Bohr model we replace ke by  ke κ  and me by m*. Then the 

radius of the first Bohr orbit, 
   
a0 =

2

mekee
2  in hydrogen, changes to 

   
   
′a = 2

m * ke κ( )e2 = 2κ
m * kee

2 = me

m *
⎛
⎝⎜

⎞
⎠⎟κ

2

mekee
2 = me

m *
⎛
⎝⎜

⎞
⎠⎟κ a0  

 (b) Substituting numerical values, 

    
  
′a =

me

m *
⎛
⎝⎜

⎞
⎠⎟κ a0 =

me

0.220me

⎛
⎝⎜

⎞
⎠⎟

11.7( ) 0.052 9 nm( ) = 2.81 nm  
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 (c) The energy levels for hydrogen are 
  
En = −

kee
2

2a0

1
n2 . Making the 

replacements  ke → ke κ  and   a0 → ′a , we have 

    

  

′En = −
ke κ( )e2

2 me m *( )κ a0⎡⎣ ⎤⎦

1
n2 = − kee

2

2κ 2 me m *( )a0⎡⎣ ⎤⎦

1
n2

= − 1
κ 2

m *
me

⎛
⎝⎜

⎞
⎠⎟

kee
2

2a0

1
n2

⎛
⎝⎜

⎞
⎠⎟

= − m *
me

⎛
⎝⎜

⎞
⎠⎟

En

κ 2

 

 (d) For n = 1,  

   

  
′E1 = −0.220

13.6 eV
11.72

⎛
⎝⎜

⎞
⎠⎟ = −0.021 9 eV

. 

 
 

 

Section 43.7 Semiconductor Devices 
P43.47 Equation 43.27 is 

   
  I = I0 eeΔV kBT − 1( )  

 Thus, 
  
ee ΔV( ) kBT = 1+

I
I0

 

 and   
  
ΔV =

kBT
e

ln 1 +
I
I0

⎛
⎝⎜

⎞
⎠⎟

 

 At T = 300 K,  
   

  

ΔV =
1.38× 10−23  J K( ) 300 K( )

1.60× 10−19  C
ln 1+ I

I0

⎛
⎝⎜

⎞
⎠⎟

= 25.9 mV( )ln 1+ I
I0

⎛
⎝⎜

⎞
⎠⎟

 

 (a) If I = 9.00I0,     

     ΔV = 25.9 mV( )ln 10.0( ) = 59.5 mV  

 (b) If I = –0.900I0,  

     ΔV = 25.9 mV( )ln 0.100( ) = −59.5 mV  

 The basic idea behind a semiconductor device is that a large current or 
charge can be controlled by a small control voltage.  
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P43.48 (a) The current in the diode, and thus in all elements of the series circuit, 
is   I = I0 eeΔV kBT − 1( ) . Appling Kirchhoff’s loop rule in the direction of 
the current, going through the negative to the positive side of the 
battery, then through the diode, and then the resistor, we get 

    
  

ε − ΔV − IR = 0

ε − ΔV − I0R eeΔV kBT − 1( ) = 0
 

  or 
  
ε − ΔV = I0R eeΔV kBT − 1( )  

 (b) The graphs to be plotted are the voltage across the resistor, 
    

  

ΔVresistor = IR = 1.00× 10−6  A( ) 745 Ω( ) eΔV 0.0250 V − 1( )
= 7.45× 10−4  A( ) eΔV 0.025 V − 1( )

 

  and the voltage across the battery and diode combined, 
   

  ΔVBD = ε − ΔV = 2.42 V − ΔV  

  The graphs are plotted in ANS. FIG. P43.48 below. 

 

ANS. FIG. P43.48 

 (c) The two graphs intersect at  ΔV  = 0.200 V. The current is then 

    
  I = 1.00 × 10−6  A( ) e0.200 V 0.025 0 V − 1( ) = 2.98 × 10−3  A = 2.98 mA  

 (d) The ohmic resistance of the diode is 

    
  
Rohmic =

ΔV
I

=
0.200 V

2.98 × 10−3  A
= 67.1 Ω  

 (e) The dynamic resistance of the diode is  

    
  Rdynamic = d ΔV( ) dI = dI d ΔV( )[ ]−1  

  where   I = I0 eeΔV kBT − 1( ) . Then, 

   
  

dI
d ΔV( ) =

d
d ΔV( ) I0 eeΔV kBT − 1( )⎡⎣ ⎤⎦ =

eI0

kBT
eeΔV kBT  
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  Therefore, 

    

  

Rdynamic =
d ΔV( )

dI
=

dI
d ΔV( )

⎡

⎣
⎢

⎤

⎦
⎥

−1

=
eI0

kBT
eeΔV kBT⎡

⎣
⎢

⎤

⎦
⎥

−1

=
1.00 × 10−6  A

0.0250 V
e0.200 V 0.025 0 V⎡

⎣
⎢

⎤

⎦
⎥

−1

= 8.39 Ω

 

P43.49 First, we evaluate I0 in   I = I0 eeΔV kBT − 1( ) , given that I = 200 mA when 

 ΔV  = 100 mV and T = 300 K. 

   
  

eΔV
kBT

=
1.60 × 10−19  C( ) 0.100 V( )
1.38 × 10−23  J K( ) 300 K( )

= 3.86  

 so  
  
I0 =

I
ee ΔV( ) kBT − 1

=
200 mA
e3.86 − 1

= 4.28 mA  

 If V = –100 mV, 
  

e ΔV( )
kBT

= −3.86 ; and the current will be 

   
  I = I0 eeΔV kBT − 1( ) = 4.28 mA( ) e−3.86 − 1( ) = −4.19 mA  

P43.50 From Equation 43.27, the current in the diode is a function of  ΔV  is  

   
  I ΔV( ) = I0 eeΔV kBT − 1( )  

 where kBT = 0.025 0 eV. Therefore,  

   

  

I +ΔV( )
I −ΔV( ) =

I0 eeΔV kBT − 1( )
I0 ee −ΔV( ) kBT − 1( ) =

eeΔV kBT − 1
ee −ΔV( ) kBT − 1

I +1.00 V( )
I −1.00 V( ) =

e1.00 0.025 0 − 1
e−1.00 0.025 0 − 1

=
e40 − 1
e−40 − 1

= −2.35 × 1017

 

 
 

 

Section 43.8 Superconductivity 
P43.51 (a) See ANS. FIG. P43.51. 

 

ANS. FIG. P43.51 



Chapter 43     1085 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (b) Treat the rod as a solenoid. For a surface current around the 

outside of the cylinder as shown, 
   
B =

Nµ0I


, or 

    
   
NI = B

µ0

=
0.540 T( ) 2.50× 10−2  m( )

4π × 10−7  T ⋅m A
= 10.7 kA  

P43.52 (a) In the definition of resistance,  ΔV  = IR; if R is zero, then  ΔV  = 0 
for any value of the current. 

 (b) See ANS. FIG. P43.52. The graph is linear. 

 

ANS. FIG. P43.52 

 (c) The graph shows a direct proportionality with resistance given by 
the reciprocal of the slope: 

   

  
slope = ΔI

ΔV
= 1

R
= 155− 57.8( )  mA

3.61− 1.356( )  mV
= 43.1 Ω−1

 

  so, 
  
R = 0.023 2 Ω  

 (d) The expulsion of magnetic flux, and therefore fewer current-
carrying paths through the superconductor, could explain the 
decrease in current. 

P43.53 By Faraday’s law: 
 

ΔΦB

Δt
= L

ΔI
Δt

= A
ΔB
Δt

, thus 

  
  
ΔI =

A ΔB( )
L

=
π 0.010 0 m( )2⎡
⎣

⎤
⎦ 0.020 0 T( )

3.10 × 10−8  H
= 203 A  

 The current generated in the ring is 203 A to produce a magnetic field 
in the direction of the original field through the ring. 

 
 

 



1086     Molecules and Solids 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

Additional Problems 

43.54 For the N2 molecule, k = 2 297 N/m, m = 2.32 × 10–26 kg, and 
r = 1.20 × 10–10 m. The reduced mass is, from Equation 43.4, 

  
  
µ =

mm
m + m

=
m
2

 

 The frequency of vibration for the molecule is, from Equation 43.8, 

  
  
ω =

k
µ

= 4.45 × 1014  rad s  

 and the moment of inertia is, from Equation 43.3, 
  

  

I = µ r2 = 1.16× 10−26  kg( ) 1.20× 10−10  m( )2

= 1.67 × 10−46  kg ⋅m2

 

 The allowed vibrational energies are, from Equation 43.9, 

  
   
Evib = v + 1

2
⎛
⎝⎜

⎞
⎠⎟ ω ,  where v = 1, 2, 3… 

 The first excited vibrational state is above the vibrational ground state 
by the energy difference    ΔE = ω .  For the rotational state that is above 
the rotational ground state by the same energy difference, we require 

  
   

2

2I
J J + 1( ) = ω  

 or 
  

   

J J + 1( ) = 2Iω


=
2 1.67 × 10−46  kg ⋅m2( ) 4.45× 1014  rad s( )

1.055× 10−34  J ⋅s
= 1 410.

 

 Thus, by inspection, 
  
J = 37 . 

P43.55 From Equation 43.9, the allowed vibrational energies are 

  
   
Evib = v + 1

2
⎛
⎝⎜

⎞
⎠⎟ ω ,  where v = 1, 2, 3… 

 For the vibrational energy level that is just below the dissociation 
energy, we require 

  

   
Evib = v + 1

2
⎛
⎝⎜

⎞
⎠⎟ ω ≤ Emax = 4.48 eV

 



Chapter 43     1087 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 or,  

   

v ≤ Emax

ω
− 1

2
= Emax

ω
− 1

2

v ≤
4.48 eV( ) 1.60× 10−19  J eV( )

6.626× 10−34  J ⋅s 2π⎡⎣ ⎤⎦ 8.28× 1014  rad/s( ) −
1
2

= 7.7

 

 Therefore, because v is an integer,   v = 7 .  

P43.56 (a) The total potential energy 
  
Utotal = −α kee

2

r
+

B
rm ,  given by Equation 

43.17, has its minimum value at the equilibrium spacing, r = r0. At 

this point, 
  
F = − dU

dr r=r0

= 0:  

    

  

F = − d
dr

−α kee
2

r
+ B

rm

⎛
⎝⎜

⎞
⎠⎟

r=r0

= 0

= −α kee
2

r0
2 + mB

r0
m+1 = 0

 

  which gives 
    

  
B =α kee

2

m
r0

m−1
 

  Substituting this value of B into F, we have  

    
  
F = −α kee

2

r2 +
m

rm+1 α kee
2

m
r0

m−1⎛
⎝⎜

⎞
⎠⎟

= −α kee
2

r2 1−
r0

r
⎛
⎝⎜

⎞
⎠⎟

m−1⎡

⎣
⎢

⎤

⎦
⎥  

 (b) Let r = r0 + x, so  r0 = r – x.  Then assuming x is small we have, 

    

  

F = −α kee
2

r2 1−
r − x

r
⎛
⎝⎜

⎞
⎠⎟

m−1⎡

⎣
⎢

⎤

⎦
⎥ = −α kee

2

r2 1− 1−
x
r

⎛
⎝⎜

⎞
⎠⎟

m−1⎡

⎣
⎢

⎤

⎦
⎥

≈ −α kee
2

r2 1− 1 + (m − 1)
x
r

⎡
⎣⎢

⎤
⎦⎥
≈ −α kee

2

r0
3 (m − 1)x

 

  This is of the form of Hooke’s law with spring constant 

  
K =

keαe2

r0
3 m − 1( ) . 

 (c) Figure 38.22 (in Section 38.5 on electron diffraction) gives the 
distance from sodium ion to sodium ion as 0.562 737 nm. 
Therefore, the interatomic spacing in NaCl is  

    r0 = (0.562 737 nm)/2 = 0.281 369 × 10–9 m 

  Other problems in this chapter give the same information, or we 
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could calculate it from the statement in Section 43.3 that the ionic 
cohesive energy for this crystal is –7.84 eV. Using Equation 43.17,  

    

  
U0 = −α kee

2

r0

1− 1
m

⎛
⎝⎜

⎞
⎠⎟ = −7.84 eV

 

  Solving for r0, 

    

  

r0 = −α kee
2

U0

1− 1
m

⎛
⎝⎜

⎞
⎠⎟

= −α
8.99× 109  N ⋅m2 /C2( ) 1.60× 10−19  C( )2

−7.84 eV( ) 1.60× 10−19  J/eV( ) 1− 1
8

⎛
⎝⎜

⎞
⎠⎟

= 2.81× 10−10  m

 

  The stiffness constant is then 

    

  

K =α kee
2

r0
3 (m− 1)

= 1.7476( ) 8.99× 109  N ⋅m2 /C2( )(1.60× 10−19  C)2(8− 1)
(2.81× 10−10  m)3

= 127 N/m

 

  The vibration frequency of a sodium ion (m = 23.0 u) within the 
crystal is 

    

  

f = 1
2π

K
m

= 1
2π

127 N/m
23.0 1.66× 10−27  kg( )

= 9.18× 1012  Hz = 9.18 THz

 

P43.57 Because the average energy required to break one van der Waals bond 
is 1.74 × 10–23 J, and because the bond is between two atoms of the 
same kind, the energy required to remove one helium atom from the 
bond is half the total: 

   1.74 × 10−23  J 2 = 0.870 × 10−23  J  

 Because each atom bonds with four other atoms, the energy required 
to remove one atom from all four bonds is 

  
 4 0.870 × 10−23  J( ) = 3.48 × 10−23  J atom  

 The latent heat of fusion for helium (in joules per gram) is the total 
energy required to break the bonds of all the helium atoms in a mol, 
expressed as energy/ unit mass: 

  
  
L = 3.48× 10−23  J

atom
⎛
⎝⎜

⎞
⎠⎟

6.02 × 1023  atoms
mol

⎛
⎝⎜

⎞
⎠⎟

1 mol
4.00 g

⎛
⎝⎜

⎞
⎠⎟

= 5.24 J/g  
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P43.58 We assume the potential well is that of a harmonic-oscillator. From 
Equation 43.9, the allowed energies of vibration of the molecule are 

  

  
Evib = v + 1

2
⎛
⎝⎜

⎞
⎠⎟ hf

 

 To dissociate the atoms, enough energy must be supplied to raise their 
energy to the top of the potential well. The energy required to 
dissociate the atoms in the ground state (v = 0) is 4.48 eV; thus, the well 

depth is 
  

1
2

hf + 4.48 eV.  In the first excited vibrational state (v = 1), the 

dissociation energy is 3.96 eV; thus, the well depth is 
  

3
2

hf + 3.96 eV.  

Then, the depth of the well is 

  
  

1
2

hf + 4.48 eV =
3
2

hf + 3.96 eV  

 from which we see that hf = 0.52 eV. Therefore, the depth of the well is 

  
  

1
2

hf + 4.48 eV =
1
2

0.520 eV( ) + 4.48 eV = 4.74 eV  

P43.59 The total potential energy is given by Equation 43.17:  

  
  
Utotal = −α kee

2

r
+

B
rm

 

 The total potential energy has its minimum value U0 at the equilibrium 

spacing, r = r0. At this point, 
  

dU
dr r=r0

= 0,  or 

  

  

dU
dr r=r0

= d
dr

−α kee
2

r
+ B

rm

⎛
⎝⎜

⎞
⎠⎟

r=r0

= −α kee
2

r0
2 + mB

r0
m+1 = 0

 

 which gives 
  

  
B =α kee

2

m
r0

m−1
 

 Substituting this value of B into Utotal, we arrive at 

  
  
U0 = −α kee

2

r0

+α kee
2

m
r0

m−1 1
r0

m

⎛
⎝⎜

⎞
⎠⎟

= −α kee
2

r0

1−
1
m

⎛
⎝⎜

⎞
⎠⎟
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P43.60 (a) The results of the spreadsheet are shown in two parts, in TABLE 

P43.60(a) and TABLE P43.60(b) for 
  
f E( ) = 1

e E EF −1( )TF⎡⎣ ⎤⎦ T + 1
. ANS. 

FIG. P43.60 shows the graphs of the tabulated values. 

 (b) The function is compared to the case T = 0. See the table and 
graphs below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE P43.60(a) 

 

 T = 0 T = 0.1TF 

 

E
EF

   e
E EF( )−1⎡⎣ ⎤⎦ TF T( )    f (E)   e

E EF( )−1⎡⎣ ⎤⎦ TF T( )    f (E) 

0 e–∞ 1.00 e–10.0 1.000 

0.500 e–∞ 1.00 e–5.00 0.993 

0.600 e–∞ 1.00 e–4.00 0.982 

0.700 e–∞ 1.00 e–3.00 0.953 

0.800 e–∞ 1.00 e–2.00 0.881 

0.900 e–∞ 1.00 e–1.00 0.731 

1.00 e0 0.500 e0 0.500 

1.10 e+∞ 0.00 e1.00 0.269 

1.20 e+∞ 0.00 e2.00 0.119 

1.30 e+∞ 0.00 e3.00 0.047 4 

1.40 e+∞ 0.00 e4.00 0.018 0 

1.50 e+∞ 0.00 e5.00 0.006 69 
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TABLE P43.60(b) 
 

 

ANS. FIG. P43.60 

 T = 0.2TF T = 0.5TF 

 

E
EF

   e
E EF( )−1⎡⎣ ⎤⎦ TF T( )    f (E)   e

E EF( )−1⎡⎣ ⎤⎦ TF T( )    f (E) 

0 e–5.00 0.993 e–2.00 0.881 

0.500 e–2.50 0.924 e–1.00 0.731 

0.600 e–2.00 0.881 e–0.800 0.690 

0.700 e–1.50 0.818 e–0.600 0.646 

0.800 e–1.00 0.731 e–0.400 0.599 

0.900 e–0.500 0.622 e–0.200 0.550 

1.00 e0 0.500 e0 0.500 

1.10 e0.500 0.378 e0.200 0.450 

1.20 e1.00 0.269 e0.400 0.401 

1.30 e1.50 0.182 e0.600 0.354 

1.40 e2.00 0.119 e0.800 0.310 

1.50 e2.50 0.075 9 e1.00 0.269 
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P43.61 (a) For equilibrium, 
  

dU
dx

= 0 :    

    
  

d
dx

Ax−3 − Bx−1( ) = −3Ax−4 + Bx−2 = 0  

   x →∞  describes one equilibrium position, but the stable 
equilibrium position x0 is at 

     
  −3Ax0

−4 + Bx0
−2 = 0  

  solving, 
     

  
x0

2 = 3A
B

→ x0 = 3A
B

=
3 0.150 eV ⋅nm3( )

3.68 eV ⋅nm
= 0.350 nm

 

 (b) The depth of the well is given by 

    
  
U0 = U x= x0

=
A
x0

3 −
B
x0

=
AB3 2

33 2 A3 2 −
BB1 2

31 2 A1 2  

    
  
U0 = U x= x0

= −
2B3 2

33 2 A1 2 = −
2 3.68 eV ⋅nm( )3 2

33 2 0.150 eV ⋅nm3( )1 2 = −7.02 eV  

 (c) The force on the particle is given by 
  
Fx = −

dU
dx

= 3Ax−4 − Bx−2 . To 

find the maximum force, we determine finite xm such that 

  

dF
dx x= xm

= 0 . 

    

  

dFx

dx x= xm

= −12Ax−5 + 2Bx−3⎡⎣ ⎤⎦x= x0
= 0

2Bxm
−3 = 12Axm

−5

xm
2 =

6A
B

→ xm =
6A
B

 

  Then,      

    
  
Fmax = 3A

B
6A

⎛
⎝⎜

⎞
⎠⎟

2

− B
B

6A
⎛
⎝⎜

⎞
⎠⎟ = −

B2

12A
= −

3.68 eV ⋅nm( )2

12 0.150 eV ⋅nm3( )  

  so 

  

Fmax = −7.52 eV nm
1.60 × 10−19  J

1 eV
⎛
⎝⎜

⎞
⎠⎟

1 nm
10−9  m

⎛
⎝⎜

⎞
⎠⎟ = −1.20 × 10−9  N

= −1.20 nN

 

  or, as a vector,   −1.20î nN .  
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P43.62 (a) For equilibrium, 
  

dU
dx

= 0 :    

   
  

d
dx

(Ax−3 − Bx−1) = −3Ax−4 + Bx−2 = 0  

   x →∞  describes one equilibrium position, but the stable 
equilibrium position x0 is at 

   

  

−3Ax0
−4 + Bx0

−2 = 0

Bx0
−2 = 3Ax0

−4

x0
2 =

3A
B

→ x0 =
3A
B

 

 (b) The depth of the well is given by 

   
  
U0 = U x= x0

=
A
x0

3 −
B
x0

=
AB3 2

33 2 A3 2 −
BB1 2

31 2 A1 2 = −2
B3

27A
 

 (c) The force on the particle is given by 
  
Fx = −

dU
dx

= 3Ax−4 − Bx−2 . 

  To find the maximum force, we determine finite xm such that 

   

  

dFx

dx x= xm

= −12Ax−5 + 2Bx−3⎡⎣ ⎤⎦x= x0
= 0

2Bxm
−3 = 12Axm

−5

xm
2 =

6A
B

→ xm =
6A
B

 

  then 

   
  
Fmax = 3A

B
6A

⎛
⎝⎜

⎞
⎠⎟

2

− B
B

6A
⎛
⎝⎜

⎞
⎠⎟ = −

B2

12A
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Challenge Problems 
P43.63 (a) Refer to Example 43.2 for details. Since the interatomic potential is 

the same for both molecules, the spring constant is the same. 

  Then,  

    
  
f =

1
2π

k
µ

  

  where  
    

 
µ12 = 12 u( ) 16 u( )

12 u + 16 u
= 6.86 u   and   µ14 = 14 u( ) 16 u( )

14 u + 16 u
= 7.47 u

  

  Therefore, 

    

  

f14 = 1
2π

k
µ14

= 1
2π

k
µ12

µ12

µ14

⎛
⎝⎜

⎞
⎠⎟

= f12
µ12

µ14

= 6.42 × 1013  Hz( ) 6.86 u
7.47 u

= 6.15× 1013  Hz

 

 (b) The equilibrium distance is the same for both molecules. 

    

  

I14 = µ14r
2 =

µ14

µ12

⎛
⎝⎜

⎞
⎠⎟

µ12r
2 =

µ14

µ12

⎛
⎝⎜

⎞
⎠⎟

I12

I14 =
7.47 u
6.86 u

⎛
⎝⎜

⎞
⎠⎟ 1.46 × 10−46  kg ⋅m2( ) = 1.59 × 10−46  kg ⋅m2

 

 (c) The molecule can move to the (v = 1, J = 9) state or to the (v = 1,  
J = 11) state. The energy it can absorb is either 

    

   

ΔE = hc
λ

= 1+ 1
2

⎛
⎝⎜

⎞
⎠⎟ hf14 + 11 11+ 1( ) 

2

2I14

⎡

⎣
⎢

⎤

⎦
⎥

                                        − 0+ 1
2

⎛
⎝⎜

⎞
⎠⎟ hf14 + 10 10+ 1( ) 

2

2I14

⎡

⎣
⎢

⎤

⎦
⎥

hc
λ

= hf14 + 22
2

2I14

= hf14 + 11
h

2π I14

c
λ
= f14 + 11


2π I14
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  or 
    

   

ΔE = hc
λ

= 1+ 1
2

⎛
⎝⎜

⎞
⎠⎟ hf14 + 9 9+ 1( ) 

2

2I14

⎡

⎣
⎢

⎤

⎦
⎥

                                          − 0− 1
2

⎛
⎝⎜

⎞
⎠⎟ hf14 + 10 10+ 1( ) 

2

2I14

⎡

⎣
⎢

⎤

⎦
⎥

hc
λ

= hf14 − 20
2

2I14

= hf14 − 10
h

2π I14

c
λ
= f14 − 10


2π I14

 

  The wavelengths it can absorb are then 
    

   
λ = c

f14 + 11 2π I14( )    or   λ = c
f14 − 10 2π I14( )

  

  These are,  
    

 

λ = 2.998× 108  m/s

6.15× 1013  Hz +
11 1.055× 10−34  J ⋅s( )⎡⎣ ⎤⎦

2π 1.59× 10−46  kg ⋅m2( )⎡⎣ ⎤⎦

= 4.78 µm

 

  or 
    

 

λ = 2.998× 108  m/s

6.15× 1013  Hz −
10 1.055× 10−34  J ⋅s( )⎡⎣ ⎤⎦

2π 1.59× 10−46  kg ⋅m2( )⎡⎣ ⎤⎦

= 4.96 µm

 

P43.64 (a) At equilibrium separation r = re ,  

    
  

dU
dr r=re

= −2aB e−a re −r0( ) − 1⎡⎣ ⎤⎦e−a re −r0( ) = 0  

  We have neutral equilibrium as  re →∞  and stable equilibrium at 

    
  
e−a re −r0( ) = 1 → re = r0  

 (b) At r = r0, U = 0. As  r →∞ , U → B. The depth of the well is  B . 

 (c) We expand the potential in a Taylor series about the equilibrium 
point r = r0: 

    

  
U r( )≈U r0( ) + dU

dr r=r0

r − r0( ) + 1
2

d2U
dr2

r=r0

r − r0( )2
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  or,   
    

  

U r( )≈ 0+ 0+ 1
2

−2Ba( ) −2ae−2a r−r0( ) + ae−a r−r0( )⎡⎣ ⎤⎦r=r0

r − r0( )2

≈ Ba2 r − r0( )2

 

  This is of the form     

    
  

1
2

kx2 =
1
2

k r − r0( )2  

  for a simple harmonic oscillator with  k = 2Ba2. 

  Then, the molecule vibrates with frequency 

    
  
f =

1
2π

k
µ

=
a

2π
2B
µ

=
a
π

B
2µ

 

 (d) The ground state energy is  

    
   

1
2
ω =

1
2

hf =
ha
π

B
8µ

 

  The energy at infinity is B.  Therefore, to separate the nuclei to 
infinity requires energy  

    
  

B −
ha
π

B
8µ
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P43.2 (a) 921 pN toward the other ion; (b) −2.88 eV 

P43.4 (a) Ea = 1.28 eV; (b) σ = 0.272 nm, ∈  = 4.65 eV; (c) +6.55 nN;  
(d) 576 N/m 

P43.6 (a) 
  
r0 =

2A
B

⎡
⎣⎢

⎤
⎦⎥

1 6

; (b) 
  

B2

4A
 

P43.8 (a) 0.120 meV; (b) 19.3 GHz 

P43.10 (a) 1.22 × 10−26 kg; (b) 1.24 × 10−26 kg; (c) They agree because the small 
apparent difference can be attributed to uncertainty in the data. 

P43.12 The incident photons have a wavelength longer than this, which 
means they have less energy than 0.359 eV. Therefore, these photons 
cannot excite the molecule to the first excited state. 

P43.14  2.72 × 10−47  kg ⋅m2  

P43.16 µr2 

P43.18 (a)  1.89× 10−45  kg ⋅m2 ;  (b) Erot = 18.4 J (J + 1), where Erot is in 
microelectron volts and J = 0, 1, 2, 3,…. 

P43.20  2.88× 10−47  kg ⋅m2  

P43.22 64.1 THz 

P43.24 (a) ~1017; (b) ~105 m3 

P43.26 
  
U = −keα

e2

r
 where α = 2 ln 2  

P43.28 (a) The Fermi energy is proportional to the spatial concentration of free 
electrons to the two-thirds power; (b) See P43.28(b) for full 
explanation; (c) 6.04; (d) Copper; (e) 0.333; (f) This behavior agrees 
with the proportionality because    EF  ne

2 3  and 6.042/3 = 3.32. 

P43.30 (a) 1.57 Mm/s; (b) The speed is larger by ten orders of magnitude. 

P43.32 3.40 × 1017 electrons 

P43.34 There are approximately two free electrons per atom for this metal, not 
one (see P43.34 for full explanation). 

P43.36 
  

1
e β  −  1( )EF /kBT  + 1

 

P43.38 (a) 1.10; (b) 9.42 × 10−25 
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P43.40 (a) The gap should be less than or equal to 1.24 eV; (b) Because silicon 
has an energy gap of 1.14 eV, it can absorb the energy of nearly all of 
the photons in sunlight and is an appropriate material for a solar 
energy collector. 

P43.42 (a) All the hydrogen Balmer lines except for the red lien at 656 nm will 
be absorbed; (b) The red line at 656 nm will be transmitted. 

P43.44 2.42 eV 

P43.46 (a) 
  
′a =

me

m *
⎛
⎝⎜

⎞
⎠⎟κ a0 ; (b) 2.81 nm; (c) 

  
′En = −

m *
me

⎛
⎝⎜

⎞
⎠⎟

En

κ 2 ; (d) −0.0219 eV 

P43.48 (a) See P43.48(a) for full explanation; (b) See ANS. FIG. P43.48;  
(c) 2.98 mA; (d) 67.1 Ω; (e) 8.39 Ω 

P43.50 –2.35 × 1017 

P43.52 (a) In the definition of resistance  ΔV =  IR, if R is zero then  ΔV =  0 for 
any value of current; (b) See ANS FIG P43.52; (c) 0.023 2 Ω; (d) 
Expulsion of magnetic flux, and therefore fewer current-carrying paths 
through the superconductor, could explain the decrease in current. 

P43.54 J = 37 

P43.56 (a) See P43.56(a) for full explanation; (b) See P43.56(b) for full 
explanation; (c) 9.18 THz 

P43.58 4.74 eV 

P43.60 (a–b) See P43.60 for full explanation. 

P43.62 (a) 
  
x0 = 3A

B
;  (b) 

  
−2

B3

27A
;  (c) 

  
−

B2

12A
 

P43.64 (a) r0; (b) B; (c) 
  

a
π

B
2µ

; (d) 
  
B −

ha
π

B
8µ
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44 
Nuclear Physics 

 

CHAPTER OUTLINE 
 

44.1  Some Properties of Nuclei 

44.2  Nuclear Binding Energy 

44.3  Nuclear Models 

44.4 Radioactivity 

44.5 The Decay Processes 

44.6 Natural Radioactivity 

44.7  Nuclear Reactions 

44.8 Nuclear Magnetic Resonance and Magnetic Resonance Imaging 
 

* An asterisk indicates a question or problem new to this edition. 

 

ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ44.1 Answer (b). The frequency increases linearly with the magnetic field 
strength because the magnetic potential energy    −


µ •

B  is 

proportional to the magnetic field strength.  

OQ44.2 Answer (a). In the beta decay of  36
95 Kr,  the emitted particles are an 

electron,  −1
0e,  and an antineutrino,  νe.  The emitted particles contain a 

total charge of –e and zero nucleons. Thus, to conserve both charge 
and nucleon number, the daughter nucleus must be  37

95 Rb,  which 
contains Z = 37 protons and A – Z = 95 – 37 = 58 neutrons. (Recall 
that the electron and an antineutrino are produced by the decay on a 
neutron into a proton.) 
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OQ44.3 Answer (c). The emitted particle is not a nucleon because there is no 
change in nucleon number, and conservation of charge requires  
15 = 16 + Z → Z = –1, so the emitted particle is an electron. From 
Equation 44.19, we see that  15

32 P  decays by means of beta decay: 

 15
32 P → 16

32 S + −1
0e + νe.  

OQ44.4 Answer (d). In a large sample, one half of the radioactive nuclei 
initially present remain in the sample after one half-life has elapsed. 
Hence, the fraction of the original number of radioactive nuclei 
remaining after n half-lives have elapsed is (1/2)n = 1/2n. In this case 
the number of half-lives that have elapsed is   Δt T1 2 = 14 d 3.6 d ≈ 4.  
Therefore, the approximate fraction of the original sample that 
remains undecayed is 1/24 = 1/16. 

OQ44.5 (i) Answer (b). Since the samples are of the same radioactive 
isotope, their half-lives are the same.  

 (ii) Answer (b). When prepared, sample G has twice the activity 
(number of radioactive decays per second) of sample H. The 
activity of a sample experiences exponential decay also; 
therefore, after 5 half-lives, the activity of sample G is decreased 
by a factor of 25, and after 5 half-lives the activity of sample H is 
decreased by a factor of 25. So after 5 half-lives, the ratio of 
activities is still 2:1. 

OQ44.6 Answer (b). A gamma ray photon carries no nucleon number and no 
charge, so there can be no change in these quantities.  

OQ44.7 Answer (c). The nucleus  18
40 X  contains A = 40 total nucleons, of which 

Z = 18 are protons. The remaining A – Z = 40 – 18 = 22 are neutrons. 

OQ44.8 Answer (b). Conservation of nucleon number requires 144 = 140 + A 
→ A = 4, and conservation of charge requires 60 = 58 + Z → Z = 2. 
The particle is  2

4 X = 2
4 He.  

OQ44.9 Answer (d). The Q value for the reaction  4
9Be + 2

4 He →  6
12 C + 0

1 n  is 
(using masses from Table 44.2) 

   

  

Q = Δm( )c2 = m
4
9 Be

+ m
2
4 He

− m
6

12 C
− mn( )c2

= 9.012 182 u + 4.002 603 u[
                 −12.000 000 u − 1.008 665 u]× 931.5 Mev u( )

= 5.70 MeV

 

OQ44.10 (i) Answer (a). The liquid drop model gives a simpler account of a 
nuclear fission reaction, including the energy released and the 
probable fission product nuclei.  
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 (ii) Answer (b). The shell model predicts magnetic moments by 
necessarily describing the spin and orbital angular momentum 
states of the nucleons.  

 (iii) Answer (b). Again, the shell model wins when it comes to 
predicting the spectrum of an excited nucleus, as it allows only 
quantized energy states, and thus only specific transitions. 

OQ44.11 Answer (d). A free neutron can undergo beta decay into a proton 
plus an electron and an antineutrino because its mass is greater than 
the mass of a free proton. Energy conservation prevents a free proton 
from decaying into a neutron plus a positron and a neutrino. (A 
proton bound inside a nucleus can undergo beta decay into a neutron 
if the final mass of the nucleus is less than that of the original 
nucleus, as for example in the beta decay of sodium-22: 

 11
22 Na→ e+ + ν +  10

22 Ne. ) 

OQ44.12 Answer (d). The reaction energy is the amount of energy released as 
a result of a nuclear reaction. Equation 44.29 in the text implies that 
the reaction energy is (initial mass – final mass) c2. The Q-value is 
taken as positive for an exothermic reaction.  

OQ44.13 Answer (c). To conserve nucleon number (mass number), it is 
necessary that A + 4 = 234, or A = 230. Conservation of charge 
(atomic number) demands that Z + 2 = 90, or Z = 88. 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ44.1 The alpha particle and the daughter nucleus carry equal amounts of 
momentum in opposite directions. Since kinetic energy can be 

written as 
  

p2

2m
,  the small-mass alpha particle has much more of the 

decay energy than the recoiling nucleus. 

CQ44.2 The statement is false. Both patterns show monotonic decrease over 
time, but with very different shapes. For radioactive decay, 
maximum activity occurs at time zero. Cohorts of people now living 
will be dying most rapidly perhaps forty years from now. Everyone 
now living will be dead within less than two centuries, while the 
mathematical model of radioactive decay tails off exponentially 
forever. A radioactive nucleus never gets old. It has constant 
probability of decay however long it has existed. 

CQ44.3 An alpha particle contains two protons and two neutrons. Because 
the nuclei of heavy hydrogen (D and T) contain only one proton, they 
cannot emit an alpha particle. 
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CQ44.4 In alpha decay, there are only two final particles, the alpha particle 
and the daughter nucleus. There are also two conservation 
principles, energy and momentum, that apply to the process. As a 
result, the alpha particle must be ejected with a discrete energy to 
satisfy both conservation principles. Beta decay, however, is a three-
particle decay involving the beta particle, the neutrino (or 
antineutrino), and the daughter nucleus. As a result, the energy and 
momentum can be shared in a variety of ways among the three 
particles while still satisfying the two conservation principles. This 
explains why the beta particle can have a continuous range of 
energies.  

CQ44.5 Carbon dating cannot generally be used to estimate the age of a rock, 
because the rock was not alive to receive carbon, and hence 
radioactive carbon-14, from the environment. Only the ages of 
objects that were once alive can be estimated with carbon dating. 

CQ44.6 The larger rest energy of the neutron means that a free proton in 
space will not spontaneously decay into a neutron and a positron. 
When the proton is in the nucleus, however, you must consider the 
total rest energy of the nucleus. If it is energetically favorable for the 
nucleus to have one fewer proton and one more neutron, then the 
process of positron decay will occur to achieve this lower energy. 

CQ44.7 I refers to nuclear spin quantum number.  

 (a) Iz may have 
  
2I + 1 = 2

5
2

⎛
⎝⎜

⎞
⎠⎟ + 1 = 6  values for 

  
I =

5
2

, namely 
 

5
2

, 
 

3
2

, 

 

1
2

, 
 
−

1
2

, 
 
−

3
2

, and 
 
−

5
2

. 

 (b) For I = 3, there are 2I + 1 = 2(3) + 1 = 7 possible values for Iz. 

CQ44.8 Extra neutrons are required to overcome the increasing electrostatic 
repulsion of the protons. The neutrons participate in the net 
attractive effect of the nuclear force, but feel no Coulomb repulsion. 

CQ44.9 Nuclei with more nucleons than bismuth-209 are unstable because 
the electrical repulsion forces among all of the protons is stronger 
than the nuclear attractive force between nucleons. 

CQ44.10 The nuclear force favors the formation of neutron-proton pairs, so a 
stable nucleus cannot be too far away from having equal numbers of 
protons and neutrons. This effect sets the upper boundary of the 
zone of stability on the neutron-proton diagram. All of the protons 
repel one another electrically, so a stable nucleus cannot have too 
many protons. This effect sets the lower boundary of the zone of 
stability. 
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CQ44.11 Nucleus Y will be more unstable. The nucleus with the higher 
binding energy requires more energy to be disassembled into its 
constituent parts and has less available energy to release in a decay.  

CQ44.12 After one half-life, one half the radioactive atoms have decayed. 
After the second half-life, one half of the remaining atoms have 

decayed. Therefore, 
 

1
2

+
1
4

=
3
4

 of the original radioactive atoms have 

decayed after two half-lives. 

CQ44.13 Long-lived progenitors at the top of each of the three natural 
radioactive series are the sources of our radium. As an example, 
thorium-232 with a half-life of 14 Gyr produces radium-228 and 
radium-224 at stages in its series of decays. 

CQ44.14 Yes. The daughter nucleus can be left in its ground state or 
sometimes in one of a set of excited states. If the energy carried by 
the alpha particle is mysteriously low, the daughter nucleus can 
quickly emit the missing energy in a gamma ray. 

CQ44.15 The alpha particle does not make contact with the nucleus because of 
electrostatic repulsion between the positively-charged nucleus and 
the +2e alpha particle. To drive the alpha particle into the nucleus 
would require extremely high kinetic energy. 

CQ44.16 The samples would have started with more carbon-14 than we first 
thought. We would increase our estimates of their ages. 

CQ44.17 The photon and the neutrino are similar in that both particles have 
zero charge and little or no mass. (The photon has zero mass, but 
evidence suggests that neutrinos have a very small mass.) Both 
particles are capable of transferring both energy and momentum. 
They differ in that the photon has spin 1 and is involved in 
electromagnetic interactions, while the neutrino has spin  

1
2 ,  interacts 

through the weak interaction, and is closely related to beta decay.  
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SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 44.1 Some Properties of Nuclei 

P44.1 The average nuclear radii are r = r0A
1/3, where r0 = 1.2 × 10–15 m = 1.2 fm 

and A is the mass number. 

 (a) For  1
2 H ,   r = 1.2 fm( ) 2( )1 3 = 1.5 fm  

 (b) For  27
60 Co ,   r = 1.2 fm( ) 60( )1 3 = 4.7 fm  

 (c) For  79
197 Au ,   r = 1.2 fm( ) 197( )1 3 = 7.0 fm  

 (d) For  94
239 Pu ,   r = 1.2 fm( ) 239( )1 3 = 7.4 fm  

P44.2 (a) Approximate nuclear radii are given by r = r0A
1/3. Thus, if a 

nucleus of atomic number A has a radius approximately two-
thirds that of  88

230 Ra,  we should have 

   
  
r = r0A1 3 =

2
3

r0 230( )1 3   

  or 
  
A =

23

33 230( ) =
8

27
230( ) ≈ 68  

 (b) One possible nucleus is  30
68 Zn . 

 (c) 

 

Isotopes of other elements to the left and right of zinc in
the periodic table (from manganese to bromine) may 
have the same mass number.

 

P44.3 (a) The initial kinetic energy of the alpha particle must equal the 
electrostatic potential energy at the distance of closest approach. 

   

  

Ki = Uf =
keqQ
rmin

rmin =
keqQ

Ki

=
8.99 × 109  N ⋅m2 C2( ) 2( ) 79( ) 1.60 × 10−19  C( )2

0.500 MeV( ) 1.60 × 10−13  J/MeV( )
= 4.55 × 10−13  m = 455 × 10−15  m = 455 fm

 

 (b) Following the same logic as in part (a),  
   

  
Ki = 1

2
mαvi

2 = keqQ
rmin

 



Chapter 44     1105 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  Now, for rmin = 300 fm = 300 × 10–15 m, solving for the initial 
velocity gives 

   

  

vi =
2keqQ
mαrmin

=
2 8.99 × 109  N ⋅m2 / C2( ) 2( ) 79( ) 1.602 × 10−19  C( )2

6.645 × 10−27  kg( ) 300 × 10−15  m( )

 

   
  
vi = 6.05 × 106  m/s

 

P44.4 An iron nucleus (in hemoglobin) has a few more neutrons than 
protons, but in a typical water molecule there are eight neutrons and 
ten protons. So protons and neutrons are nearly equally numerous in 
your body, each contributing mass (say) 35 kg: 

 (a) 
 
35 kg

1 nucleon
1.67 × 10−27  kg

⎛
⎝⎜

⎞
⎠⎟

~ 1028  protons ,  

 (b) and  ~ 1028  neutrons .  

 (c) The electron number is precisely equal to the proton number, 

 ~ 1028  electrons .  

P44.5 (a)  29
65 Cu  has an A number of 65, so the radius of its nucleus is 

      r = r0A1 3 = 1.2 fm( ) 65( )1 3 = 4.8 fm  

 (b) The volume of the nucleus, assumed to be spherical in shape, is 
    

  

V = 4
3
πr3 = 4

3
π r0

3A⎡⎣ ⎤⎦ = 4
3
π 1.2 × 10−15  m( )3

65( )⎡
⎣

⎤
⎦

= 4.7 × 10−43  m3

 

 (c) The density of the nucleus is 
    

  

ρ = m
V

= Am
4
3
π r0

3A⎡⎣ ⎤⎦
= 3m

4πr0
3 =

3 1.66× 10−27  kg( )
4π 1.2 × 10−15  m( )3

= 2.3× 1017  kg/m3

 

P44.6 From   ME = ρn V = ρn (4π r3 3) , we find 

  

  
r =

3 ME

4π ρn

⎛
⎝⎜

⎞
⎠⎟

1 3

=
3 5.98 × 1024  kg( )

4π 2.30 × 1017  kg/m3( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 3

= 184 m  
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P44.7 The number of neutrons in a star of two solar masses is 

   
  
A =

2 1.99 × 1030  kg( )
1.67 × 10−27  kg neutron

= 2.38 × 1057  neutrons  

 Therefore, 
   

  

r = r0A1 3 = 1.20× 10−15  m( ) 2.38× 1057( )1 3

= 1.6× 104  m = 16 km

 

P44.8 (a) The electric potential energy between two protons is  
   

  

U = ke
q1q2

r
= ke

e2

r

= 8.99× 109  N ⋅m2 C2( ) 1.60× 10−19  C( )2

4.00× 10−15  m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

                                               × 1 eV
1.60× 10−19  J

⎛
⎝⎜

⎞
⎠⎟

1 MeV
106  eV

⎛
⎝⎜

⎞
⎠⎟

= 0.360 MeV

 

 (b) 

 

Figure P44.8 shows the highest point in the curve at about
4 MeV, a factor of ten higher than the value in (a).

 

P44.9 By energy conservation,  
   

  

1
2

mv2 = qΔV: 2mΔV = qr2B2
 

 By Newton’s second law,  
   

  

mv2

r
= qvB: r = 2mΔV

qB2

 

 Comparing radii for particles with different masses but with the same 
charge, we find that  

   
  

r2

r1

=
2m2ΔV qB2

2m1ΔV qB2
=

m2

m1

 

 For 12C: m1 = 12 u and r1 = 7.89 cm 

 For  13C:  

   
  

r2

r1

=
r2

7.89 cm
=

m2

m1

=
13
12

→ 8.21 cm  
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P44.10 By energy conservation,  
   

  

1
2

mv2 = qΔV: 2mΔV = qr2B2
 

 By Newton’s second law,  
   

  

mv2

r
= qvB: r = 2mΔV

qB2

 

 Comparing radii for particles with different masses but with the same 
charge, we find that  

   
  

r2

r1

=
2m2ΔV qB2

2m1ΔV qB2
=

m2

m1

          →   r2 =
m2

m1

r1  

*P44.11 (a) The magnitude of the maximum Coulomb force is given by 

   

  

Fmax = keq1q2

rmin
2

=
8.99× 109  N ⋅m2 C2( ) 2( ) 6( ) 1.60× 10−19  C( )2⎡

⎣
⎤
⎦

1.00× 10−14  m( )2

= 27.6 N

 

 (b) From Newton’s second law, 
   

  
amax = Fmax

mα

= 27.6 N
6.64× 10−27  kg

= 4.16× 1027  m/s2
  

 (c) The potential energy of the system at the time of the maximum 
force is 

   

  

Umax = keq1q2

rmin

=
8.99× 109  N ⋅m2 C2( ) 2( ) 6( ) 1.60× 10−19  C( )2⎡

⎣
⎤
⎦

1.00× 10−14  m( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

                                                 × 1 eV
1.60× 10−19  J

⎛
⎝⎜

⎞
⎠⎟

1 MeV
106  eV

⎛
⎝⎜

⎞
⎠⎟

= 1.73 MeV
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P44.12 We obtain the alpha particle’s momentum from 

   
  
Eα = 7.70 MeV =

1
2

mv2 =
1
2

mv( )2

m
→ mv = 2mEα  

 (a) The de Broglie wavelength of the alpha particle is (mass from 
Table 44.1)  

   

  

λ =
h

mαvα

=
h

2mαEα

=
6.626 × 10−34  J ⋅ s

2 6.64 × 10−27  kg( ) 7.70 × 106  eV( ) 1.60 × 10−19  J eV( )
= 5.18 × 10−15  m = 5.18 fm

 

 (b) Since λ is much less than the distance of closest approach, the 
alpha particle may be considered a particle. 

P44.13 The volume of each of the golf balls is 

   
  
V =

4
3
π r4 =

4
3
π 0.021 5 m( )3 = 4.16 × 10−5  m3  

 We take the nuclear density from Example 44.2. Then, the mass of a 
golf-ball sized nuclear matter is 

   
  m = ρV = 2.3 × 1017  kg/m3( ) 4.16 × 10−5  m3( ) = 9.6 × 1012  kg  

 and the gravitational force between two such balls is 

   
  
F = G

m1m2

r2 = 6.67 × 10−11  N ⋅m2 / kg2( ) 9.6 × 1012  kg( )2

1.00 m( )2  

   
  F = 6.1× 1015  N toward each other.  

P44.14 (a) Let V represent the volume of the tank. The number of molecules 
present is  

    

  

N = nNA = PV
RT

=
1.013× 105  N/m2( )V

8.315 J/mol ⋅K( ) 273 K( ) 6.022 × 1023( )
= 2.69× 1025  m−3( )V

 

  The volume of one molecule is  

    
  
2

4
3
πr3⎛

⎝⎜
⎞
⎠⎟ =

8π
3

1.00 × 10−10  m
2

⎛
⎝⎜

⎞
⎠⎟

3

= 1.047 × 10−30  m3  
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  The volume of all the molecules is  

    
  2.69 × 1025  m−3( )V 1.047 × 10−30  m3( ) = 2.82 × 10–5 V  

  So the fraction of the volume occupied by the hydrogen 

molecules is  2.82 × 10–5.  An atom is precisely one half of a 
molecule. 

 (b) The fraction occupied by the nucleus is found from 
    

  

nuclear volume
atomic volume

=

4
3
πr3

4
3
π (d/2)3

= r
d/2

⎛
⎝⎜

⎞
⎠⎟

3

= 1.20× 10−15  m
0.500× 10−10  m

⎛
⎝⎜

⎞
⎠⎟

3

= 1.38× 10−14

  

  In linear dimension, the nucleus is small inside the atom in the 
way a fat strawberry is small inside the width of the Grand 
Canyon. In terms of volume, the nucleus is really small.  

 
 

 

Section 44.2 Nuclear Binding Energy 
P44.15 Using Equation 44.2, the binding energy per nucleon is  

   
  

Eb

A
=

ZM H( ) + Nmn − M Z
A X( )⎡⎣ ⎤⎦

A
931.5 MeV

u
⎛
⎝⎜

⎞
⎠⎟

 

 Using atomic masses as given in Table 44.2, 

 (a) For  1
2 H:   

   

  

Eb

A
= 1 1.007  825 u( )+ 1 1.008 665 u( )− 2.014 102 u

2

= 0.002 388 u
2

⎛
⎝⎜

⎞
⎠⎟

931.5 MeV
u

⎛
⎝⎜

⎞
⎠⎟ = 1.11 MeV

 

 (b) For  2
4 He:   

   

  

Eb

A
= 2 1.007  825 u( )+ 2 1.008 665 u( )− 4.002 603 u

4

= 0.030 377 u
4

⎛
⎝⎜

⎞
⎠⎟

931.5 MeV
u

⎛
⎝⎜

⎞
⎠⎟ = 7.07 MeV

 



1110     Nuclear Physics 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 (c) For  26
56 Fe:  

   

  

Eb

A
= 26 1.007  825 u( )+ 30 1.008 665 u( )− 55.934 942 u

56

= 0.528 458 u
56

⎛
⎝⎜

⎞
⎠⎟

931.5 MeV
u

⎛
⎝⎜

⎞
⎠⎟ = 8.79 MeV

 

 (d) For  92
238 U:  

   

  

Eb

A
= 92 1.007  825 u( )+ 146 1.008 665 u( )− 238.050 783 u

238

= 1.934 207 u
238

⎛
⎝⎜

⎞
⎠⎟

931.5 MeV
u

⎛
⎝⎜

⎞
⎠⎟ = 7.57 MeV

 

P44.16 We use Equation 44.2,  

  
  
Eb MeV( ) = ZM H( ) + Nmn − M Z

A X( )⎡⎣ ⎤⎦ 931.494 MeV/u( )  

 Then, for  11
23 Na ,  

  

  

Eb 11
23 Na( ) = 11M H( )+ 12mn − M 11

23 Na( )⎡⎣ ⎤⎦ 931.494 MeV/u( )
= 11 1.007 825 u( ) + 12 1.008 665 u( )− 22.989 769 u⎡⎣ ⎤⎦
                                                       × 931.494 MeV/u( )
= 186.565 MeV

 

 and  
  

Eb

A
=

186.565 MeV
23

= 8.11 MeV  

 For  12
23 Mg , 

  

  

Eb = Eb 12
23 Mg( )

= 12M H( )+ 11mn − M 12
23 Mg( )⎡⎣ ⎤⎦ 931.494 MeV/u( )

= 12 1.007 825 u( ) + 11 1.008 665 u( )− 22.994 124 u⎡⎣ ⎤⎦

                                                      × 931.494 MeV/u( )
= 181.726 MeV

 

 and  
  

Eb

A
=

181.726 MeV
23

= 7.90 MeV  

 The difference is  

   

  

ΔEb

A
=

Eb 11
23 Na( )−Eb 12

23 Mg( )
A

= 8.11 MeV − 7.90 MeV = 0.210 MeV
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 The binding energy per nucleon is greater for  11
23 Na  by  0.210 MeV . 

There is less proton repulsion in  11
23 Na;  it is the more stable nucleus. 

P44.17 From Equation 44.2, the binding energy of a nucleus is  

   
  
Eb MeV( ) = ZM H( ) + Nmn − M Z

A X( )⎡⎣ ⎤⎦ 931.494 MeV/u( )  

 For  8
15 O:  

   

  

Eb = 8 1.007  825 u( ) + 7 1.008 665 u( ) − 15.003 065 u[ ]
× 931.494 MeV/u( ) = 111.96 MeV

  

 For  7
15 N:  

   

  

Eb = 7 1.007  825 u( ) + 8 1.008 665 u( ) − 15.000 109 u[ ]
× 931.494 MeV/u( ) = 115.49 MeV

  

 Therefore, the binding energy is 
 
greater for 7

15 N  by 3.54 MeV.  

P44.18 We find the mass difference,   ΔM = ZmH + Nmn − M,  and then the 

binding energy per nucleon, 
  

Eb

A
=
ΔM 931.5( )

A
, in units of MeV. The 

results are tabulated below. 
 

Nuclei Z N M in u  ΔM  in u 
 

Eb

A
 in MeV 

55Mn 25 30 54.938 050 0.517 5 8.765 

56Fe 26 30 55.934 942 0.528 46 8.790 

59Co 27 32 58.933 200 0.555 35 8.768 

  
  
∴ 56 Fe has a greater 

Eb

A
 than its neighbors.  

P44.19 (a) The isobar with the highest neutron-to-proton ratio is 
 55

139 Cs ;  the 

ratio is 
  

N
Z

=
A − Z

Z
=

139 − 55
55

=
84
55

= 1.53  

 (b) 
 57

139 La  is stable, so has the largest binding energy per nucleon 

(8.378 MeV). 
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 (c) The isobars are close in Figure 44.6, the plot of binding energy per 
nucleon versus mass number, and there is not much detail, so we 
may assume they have about the same binding energy, or missing 
mass. However, neutrons have more mass than protons, so the 
isobar with more neutrons (thus, fewer protons) should be more 

massive: 
 55

139 Cs .  

P44.20 (a) The radius of the 40Ca nucleus is, 

   
  R = r0A1 3 = 1.20 × 10−15  m( ) 40( )1 3   = 4.10 × 10−15  m  

  The energy required to overcome electrostatic repulsion is 
   

  

U = 3keQ
2

5R
=

3 8.99× 109 N ⋅m2/C2( ) 20 1.602 × 10−19  C( )⎡⎣ ⎤⎦
2

5 4.10× 10−15  m( )
= 1.35× 10−11  J = 84.2 MeV

 

 (b) The binding energy of  20
40 Ca  (Z = 20, N = A – Z = 20) is (using 

Equation 44.2 and masses from Table 44.2),  
   

  

Eb = 20 1.007 825 u( ) + 20 1.008 665 u( )− 39.962 591 u⎡⎣ ⎤⎦
                                                              × 931.5 MeV/u( )
= 342 MeV

 

 (c) 

 

The nuclear force is so strong that the binding energy greatly
exceeds the minimum energy needed to overcome electrostatic
repulsion.

 

P44.21 Removal of a neutron from  20
43 Ca  would result in the residual nucleus, 

 20
42 Ca . If the required separation energy is   ΔEn ,  the overall process can 
be described by  

  

  

mass 20
43 Ca( ) + ΔEn = mass 20

42 Ca( ) + mass n( )
ΔEn = mass 20

42 Ca( ) + mass n( ) − mass 20
43 Ca( )

 

 From Table 44.2,  
  

  

ΔEn = 41.958 618 u + 1.008 665 u − 42.958 767 u( )
                                                        × 931.5 MeV/u( )
= 7.93 MeV
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Section 44.3 Nuclear Models 
P44.22 The curve of binding energy shows that a heavy nucleus of mass 

number A = 200 has binding energy about 

   
 

7.8
MeV

nucleon
⎛
⎝⎜

⎞
⎠⎟

(200 nucleons) ≈ 1.56 GeV  

 Thus, it is less stable than its potential fission products, two 
middleweight nuclei of A = 100, together having binding energy 

    2(8.7 MeV/nucleon)(100 nucleons) ≈ 1.74 GeV  

 Fission then releases about 
   

 
1.74 GeV − 1.56 GeV ~200 MeV

 

 

P44.23 (a) In Equation 44.3, the first or “Volume” term is, 

    E1 = C1A = (15.7 MeV)(56) = 879 MeV 

  The second, or “Surface” term is,
   E2 = −C2A2 3 = − 17.8 MeV( ) 56( )2 3 = −260 MeV  

  The third, or “Coulomb” term is, 

    

  

E3 = −C3
Z Z − 1( )

A1 3 = − 0.71 MeV( ) 26( ) 25( )
56( )1 3

= −121 MeV

 

  and the fourth, or “Asymmetry” term is, 

    
  
E4 = C4

A − 2Z( )2

A
= − 23.6 MeV( ) 56 − 52( )2

56
= −6.74 MeV  

 

ANS. FIG. P44.22 
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  The binding energy is then 

    

  

Eb = C1A − C2A2 3 − C3
Z Z − 1( )

A1 3 − C4
A − 2Z( )2

A

= 879 MeV − 260 MeV − 121 MeV − 6.74 MeV = 491 MeV

 

 (b) The percentages for each of the terms is as follows 

    
  

term1 :
E1

Eb

= 179% ; term2 :
E2

Eb

= −53.0% ;  

    
  
term3:

E3

Eb

= −24.6% ; term 4:
E4

Eb

= −1.37%  

P44.24 (a) 

 

Nucleons on the surface have fewer neighbors with which to
interact. The surface term is negative to reduce the estimate
from the volume term, which assumes that all nucleons have
the same number of neighbors.

 

 (b) The volume to surface ratio for a sphere of radius r is 

    
  

Volume
Area

=
4 3( )π r3

4π r2 =
1
3

r  

  The volume to surface ratio for a cube of side length L is 

    
  

Volume
Area

=
L3

6L2 =
1
6

L  

  

 

The sphere has a larger ratio to its characteristic length, so it
would represent a larger binding energy and be more plausible
for a nuclear shape.

 

 
 

 

Section 44.4 Radioactivity 
*P44.25 We use Equation 44.7 for the exponential decay rate of the sample, 

  R = R0e
−λ t ,  where  

   

 
λ = ln 2

26.0 h
= 0.026 7 h−1

 

 Since we require a 90% decrease in activity, 

    
  

R
R0

= 0.100 = e−λ t    →    ln 0.100( ) = −λ t  
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 then, 
   

  
t = 2.30

0.026 7/h
= 86.4 h

 

P44.26 (a) From   R = R0e
−λ t ,  the decay constant is 

   

  

λ =
1
t

ln
R0

R
⎛
⎝⎜

⎞
⎠⎟ =

1
4.00 h

⎛
⎝⎜

⎞
⎠⎟ ln

10.0 mCi
8.00 mCi

⎛
⎝⎜

⎞
⎠⎟ = 5.58 × 10−2  h−1

= 1.55 × 10−5  s−1

 

 (b) The half-life is 

   
  
T1 2 =

ln 2
λ

= 12.4 h  

 (c) The number of original atoms can be found if we convert the 
initial activity from curies into becquerels (decays per second):  
1 Ci  ≡  3.70  × l010 Bq.   

   

  

R0 = 10.0 mCi = 10.0× 10−3  Ci( ) 3.70× 1010  Bq/Ci( )
= 3.70× 108  Bq

  

  Since R0 =   λN0 ,  the original number of nuclei is 
   

  
N0 = R0

λ
= 3.70× 108  decays/s

1.55× 10–5  s
= 2.39× 1013  atoms

  

 (d) The decay rate after thirty hours is  
   

  

R = R0e
−λ t = 10.0 mCi( )exp −5.58× 10−2  h−1( ) 30.0 h( )⎡⎣ ⎤⎦

= 1.88 mCi

 

P44.27 The decay law is 

     dN/dt = – λN  

 Then, the decay constant is 
   

  

λ = − 1
N

dN
dt

⎛
⎝⎜

⎞
⎠⎟ = − 1

1.00 × 1015 nuclei
⎛
⎝⎜

⎞
⎠⎟

−6.00 × 1011 nuclei
s

⎛
⎝⎜

⎞
⎠⎟

= 6.00 × 10–4 s–1

 

 and the half-life is 
   

  
T1/2 = ln 2

λ
= 1.16× 103 s

 

 (This is 19.3 minutes.) 
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P44.28 According to Equation 44.7, the time dependence of the decay rate is 

  R = R0e
−λΔ t . From this equation we can derive a relation between the 

change in decay rate over the time interval  Δt  to the decay constant. 
We start with   R = R0e

−λΔ t .  Then, rearranging and taking the natural log 
of both sides gives 

  

  
e−λ Δt = R

R0

→ ln e−λΔ t( ) = ln
R
R0

⎛
⎝⎜

⎞
⎠⎟

 

 or 
  
− λ Δt = ln

R
R0

⎛
⎝⎜

⎞
⎠⎟

= − ln
R0

R
⎛
⎝⎜

⎞
⎠⎟  

 Solving, 
  

  
λ = 1

Δ t
ln

R0

R
⎛
⎝⎜

⎞
⎠⎟

 

 Now, because 
  
λ =

ln 2
T1/2

, we can relate the time interval  Δt to the half-

life:  

  

  

λ =
1
Δ t

ln
R0

R
⎛
⎝⎜

⎞
⎠⎟ →

ln 2
T1/2

=
1

ln 2( )Δ t
ln

R0

R
⎛
⎝⎜

⎞
⎠⎟

1
T1/2

=
1

ln 2( )Δ t
ln

R0

R
⎛
⎝⎜

⎞
⎠⎟

T1/2 =
ln 2( )Δ t

ln R0 R( )

 

P44.29 The number of nuclei that decay during the interval will be  

   
  
ΔN = N1 − N2 = N0 e−λ t1 − e−λ t2( )  

 First we find the decay constant λ:  

   
  
λ =

ln 2
T1 2

=
0.693
64.8 h

= 0.010 7 h−1 = 2.97 × 10−6  s−1  

 Now we find N0:   

   

  

N0 =
R0

λ
=

40.0 µCi( )
2.97 × 10−6  s−1

3.70 × 104  s−1

µCi
⎛
⎝⎜

⎞
⎠⎟

= 4.98 × 1011  nuclei
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 Substituting in these values, 

   

  

N1 − N2 = 4.98 × 1011( ) e− ln 2 64.8 h( ) 10.0 h( ) − e− ln 2 64.8 h( ) 12.0 h( )⎡⎣ ⎤⎦

N1 − N2 = 9.47 × 109  nuclei

 

P44.30 The number of nuclei that decay during the interval will be  

   
  
N1 − N2 = N0 e−λ t1 − e−λ t2( )  

 We wish to write this expression in terms of the half-life T1/2 and the 
initial decay rate R0. First, from the definition of λ, we have  

   
  
λ =

ln 2
T1 2

→ e−λ t = e ln 2 −t T1 2( ) = 2−t T1 2  

 Now we find N0:   

   
  
N0 =

R0

λ
=

R0T1 2

ln 2
 

 Substituting in these expressions, we find that  

   
  
N1 − N2 =

R0T1 2

ln 2
e−λ t1 − e−λ t2( ) =

R0T1 2

ln 2
2−t1 T1 2 − 2−t2 T1 2( )  

P44.31 (a) The decay constant is 

    

  

λ =
ln 2
T1 2

=
ln 2

8.04 d
= 0.0862 d−1

=
0.0862

d
1 d

24 h
⎛
⎝⎜

⎞
⎠⎟ = 3.59 × 10−3  h−1

=
9.98 × 10−7

 h
1 h

3600 s
⎛
⎝⎜

⎞
⎠⎟ = 9.98 × 10−7  s−1

 

 (b) From R = λN, the number of radioactive nuclei in a 6.40 mCi of 131 I is  

    
  
N =

R
λ

=
6.40 × 10−3  Ci
9.98 × 10−7  s−1  

3.70 × 1010  s−1

Ci
⎛
⎝⎜

⎞
⎠⎟

= 2.37 × 1014  nuclei  

 (c) From Equation 44.7, R = λN, the decay rate R also undergoes 
exponential decay; thus, after one half-life, the rate drops from R0 
to R0/2. The number of half-lives that have elapsed after 40.2 d is 
n = t/T1/2 = 40.2 d/8.04 d = 5, so the remaining activity of the 
sample is  

    
  
R =

R0

2n =
R0

25 =
6.40 mCi

32
= 0.200 mCi  
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P44.32 (a) From Equation 44.6, the fraction remaining at t = 5.00 yr will be 

    
  

N
N0

= e−λt = e−t ln 2 T1 2 = e− 5.00 yr( ) ln 2 12.33 yr( ) = 0.755  

 (b) At t = 10.0 yr,  
    

  

N
N0

= e−λt = e−t ln 2 T1 2 = e− 10.0 yr( )ln 2 12.33 yr( ) = 0.570
 

 (c) At t = 123.3 yr,  
    

  

N
N0

= e−λt = e−t ln 2 T1 2 = e− 123.3 yr( )ln 2 12.33 yr( ) = e−10ln 2 = 9.766× 10−4
  

 (d) 

 

No. The decay model depends on large numbers of nuclei. 
After some long but finite time, only one undecayed nucleus
will remain. It is likely that the decay of this final nucleus 
will occur before infinite time.

 

P44.33 The number remaining after time 
  

T1/2

2
=

ln 2
2λ

 is  

    
  
N = N0e

−λt = N0  e−λ ln 2/2λ( ) = N0 e− ln 2( )1/2
= N0

1
2

⎛
⎝⎜

⎞
⎠⎟

1/2

=
N0

2
 

 The number decaying in this first half of the first half-life is  
    

  

ΔNfirst half =  N0 −
N0

2
=  1− 1

2
⎛
⎝⎜

⎞
⎠⎟ N0 = 1− 2

2
⎛
⎝⎜

⎞
⎠⎟

N0

= 2
2

2 − 1( )N0

 

 The number remaining after time T1/2 is 
  

N0

2
, so the number decaying 

in the second half of the first half-life is  
  

  

ΔNsecond half = N0

2
− N0

2
= 1

2
− 1

2
⎛
⎝⎜

⎞
⎠⎟ N0 = 2

2
− 1

2
⎛
⎝⎜

⎞
⎠⎟

N0

= 1
2

2 − 1( )N0

 

 The ratio required is then 

  

  

ΔNfirst half =
ΔNsecond half =

=

2
2

2 − 1( )N0

1
2

2 − 1( )N0

= 2 = 1.41  



Chapter 44     1119 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

P44.34 (a) 
  

dN2

dt
=  rate of change of N2 

   = rate of production of N2 – rate of decay of N2 

   = rate of decay of N1 – rate of decay of N2 

     = λ1N1 − λ2N2  

 (b) From the trial solution, 

   
  
N2 t( ) =

N10λ1

λ1 − λ2

e−λ2t − e−λ1t( )  

   
  
∴

dN2

dt
=

N10λ1

λ1 − λ2

−λ2e
−λ2t + λ1e

−λ1t( )  [1] 

   

  

dN2

dt
+ λ2N2 =

N10λ1

λ1 − λ2

−λ2e
−λ2t + λ1e

−λ1t( )
                       +

N10λ1

λ1 − λ2

λ2e
−λ2t − λ2e

−λ1t( )
=

N10λ1

λ1 − λ2

λ1 − λ2( )e−λ1t = λ1N1

 

  So  
  

dN2

dt
= λ1N1 − λ2N2  as required. 

 (c) The functions plotted in ANS. FIG. P44.34(c) are 

     

Po nuclei: N1 t( ) = 1 000e− ln 2 3.10 min( ) t

Pb nuclei: N2 t( ) = 1 130.8 e− ln 2 26.8 min( ) t − e− ln 2 3.10 min( ) t⎡⎣ ⎤⎦  

 
ANS. FIG. P44.34(c) 

 (d) From the graph,   tm ≈ 10.9 min  
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 (e) From equation [1], 
  

dN2

dt
= 0  if  

     λ2e
−λ2t = λ1e

−λ1t  

   
  
∴e λ1 −λ2( )t =

λ1

λ2

 

  Thus,  
  
t = tm =

ln λ1 λ2( )
λ1 − λ2

. 

 (f) With  λ1 = ln 2 3.10 min( ) ,  λ2 = ln 2 26.8 min( ) , this formula gives  

   

  

tm =
ln λ1 λ2( )
λ1 − λ2

=
ln

ln 2 3.10 min( )
ln 2 26.8 min( )

⎡

⎣
⎢

⎤

⎦
⎥

ln 2
3.10 min

− ln 2
26.8 min

⎛
⎝⎜

⎞
⎠⎟

=
ln

26.8 min
3.10 min

⎛
⎝⎜

⎞
⎠⎟

ln 2
1

3.10 min
− 1

26.8 min
⎛
⎝⎜

⎞
⎠⎟

= 10.9 min

 

  This result is in agreement with the result of part (d). 

 
 

 

Section 44.5 The Decay Processes 
P44.35 Atomic masses are given in Table 44.2.  

 (a) For this e+ decay, 
   

  

Q = MX − MY − 2me( )c2

= 39.962 591 u − 39.963 999 u − 2 0.000 549 u( )⎡⎣ ⎤⎦
                                                     × 931.5 MeV/u( )

Q = −2.33 MeV

 

  Since Q < 0, the decay  cannot occur  spontaneously. 
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 (b) For this alpha decay, 

    

  

Q = MX − MY − 2me( )c2

= 97.905 287 u − 4.002 603 u − 93.905 088 u[ ]
                                                     × 931.5 MeV/u( )

Q = −2.24 MeV

 

  Since Q < 0, the decay  cannot occur  spontaneously. 

 (c) For this alpha decay, 
   

  

Q = MX − MY − 2me( )c2

= 143.910 083 u − 4.002 603 u − 139.905 434 u[ ]
                                                     × 931.5 MeV/u( )

Q = 1.91 MeV

 

  Since Q > 0, the decay  can occur  spontaneously. 

P44.36 (a) The reaction is  1
3 H → 2

3 He + e− + ν .  

  Adding one electron, the reaction becomes  

    1
3 H nucleus + e− → 2

3 He nucleus + 2e− + ν  

  Ignoring the slight difference in ionization energies, we have 

    1
3 H atom → 2

3 He atom + ν  

 (b) The total energy released is the Q value:  
   

  

Q = MH-3 − MHe-3( )c2

Q = 3.016 049 u − 3.016 029 u( ) 931.5 MeV u( )
= 0.018 6 MeV = 18.6 keV

 

P44.37 From Equation 44.21, carbon-14 undergoes beta decay:   

   6
14 C→ 7

14 N + e− + ν  

 Adding six electrons to each side, this is the same as   

   6
14 C atom → 7

14 N atom + ν  

 The Q value is  
  

  

Q = MC-14 − MN-14 − mν( )c2

= 14.003 242 u − 14.003 074 u − 0[ ] 931.5 MeV/u( )
= 0.156 MeV
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P44.38 Total Z and A are conserved.  

 (a) A gamma ray has zero charge and it contains no protons or 
neutrons. So for a gamma ray Z = 0 and A = 0. Keeping the total 
values of Z and A for the system conserved requires Z = 28 and A 
= 65 for X. With this atomic number it must be nickel, and the 

nucleus must be in an excited state, so X is 
 28

65 Ni∗ .  

 (b) An alpha particle,  α = 2
4 He,  has Z = 2 and A = 4. Total initial Z is 

84, and total initial A is 215, so for X we require 

   Z = 84 = ZX + 2       →      ZX = 82     →    Pb, and  

   A = 215 = AX + 4     →      AX = 211,     →    X is 
 82

211Pb . 

 (c) A positron,  e
+ = 1

0e , has charge the same as a nucleus with Z = 1. 
A neutrino,  0

0ν ,  has no charge. Neither contains any protons or 
neutrons. So X must have by conservation Z = 26 + 1 + 0 = 27; so, 

X is Co. And A = 55 + 0 + 0 = 55: X is 
 27

55 Co .  

P44.39 Atomic masses are given in Table 44.2. We calculate the energy 
released by the reaction, its Q-value, as 

     Q = MU-238 − MTh-234 − MHe-4( )c2  
   

  

Q = 238.050 783 − 234.043 596 − 4.002 603( )  u 931.5 MeV u( )
= 4.27 MeV

 

P44.40 (a) The decay constant is λ = ln2/10 h = 0.0693/h. The number of 
parent nuclei is given by   NP = NP , 0 e−λt = 1.00 × 106( )e−0.0693t , where 
t is in hours. 

  The number of daughter nuclei is equal to the number of missing 
parent nuclei, 

  

  
Nd = NP , 0 − NP , 0 e−λt = 1.00 × 106( ) 1− e−0.0693t( ) , where t is in hours.

 

 (b) 

  

The number of daughter nuclei starts from zero at t = 0. The
number of stable product nuclei always increases with time and

asymptotically approaches 1.00 × 106  as t increases without limit.

 

 (c) 

  

The minimum number of daughter nuclei is zero at t = 0. The
maximum number of daughter nuclei asymptotically approaches

1.00 × 106  as t increases without limit.
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 (d) The rate of change is  
    

  

dNd

dt
= 1.00× 106( )(0+ 0.0693 e−0.0693t ) = 6.93× 104 e−0.0693t

  

   where 
 

dNd

dt
 is in decays per hour and t is in hours. The rate of 

change has its maximum value, 6.93 × 104 h–1, at t = 0, after which 
the rate decreases more and more, approaching zero as t 
increases without limit. 

P44.41 (a) The reaction for one particle is 
 
e− + p → n + ν . 

 (b) For nuclei,  8
15 O + e− → 7

15 N + ν.  

  Add seven electrons to both sides to obtain  

    8
15 O atom → 7

15 N atom + ν  

  From Table 44.2 of atomic masses, 
   

  

Q = 15.003 065 u − 15.000 109 u( ) 931.5 MeV u( )
= 2.75 MeV

 

P44.42 (a) The number of carbon atoms in the sample is 
   

  
NC = 0.021 0 g

12.0 g mol
⎛
⎝⎜

⎞
⎠⎟

6.02 × 1023  atoms
 mol

⎛
⎝⎜

⎞
⎠⎟

= 1.05× 1021  
  

 (b) 1 in 7.70 × 1011 carbon atoms is a 14C atom. Then, 

   
  

N0( )C-14
= 1.05 × 1021 1

7.70 × 1011
⎛
⎝⎜

⎞
⎠⎟ = 1.37 × 109  

 (c) The decay constant for 14C is 
   

 

λC-14 = ln 2
5 730 yr

= 1.21× 10−4  yr−1 1 yr
3.16× 107 s 

⎛
⎝⎜

⎞
⎠⎟

= 3.83× 10−12  s−1

 

 (d) We use   R = λN = λN0e
−λ t .  At t = 0, 

   

  

R0 = λN0 = 3.83 × 10−12  s−1( ) 1.37 × 109( ) 7 86 400 s( )
1 week

⎡
⎣⎢

⎤
⎦⎥

= 3.17 × 103 decays week

 

 (e) At time t, 
  
R =

837
0.880

= 951 decays week .  
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 (f)  Taking logarithms,  

   
  
ln

R
R0

= −λ t  so 
  
t =

−1
λ

ln
R
R0

⎛
⎝⎜

⎞
⎠⎟

 

  and 

   
  
t =

−1
1.21× 10−4  yr−1 ln

951
3.17 × 103

⎛
⎝⎜

⎞
⎠⎟ = 9.95 × 103  yr  

 
 

 

Section 44.6 Natural Radioactivity 
P44.43 (a) The conversion is 

    

 

4.00 pCi L =
4.00 × 10−12  Ci

1 L
⎛
⎝⎜

⎞
⎠⎟

3.70 × 1010  Bq
1 Ci

⎛
⎝⎜

⎞
⎠⎟

1.00 × 103  L
1 m3

⎛
⎝⎜

⎞
⎠⎟

= 148 Bq m3

 

 (b) Each cubic meter of air contains 

    

  

N =
R
λ

= R
T1 2

ln 2
⎛
⎝⎜

⎞
⎠⎟

= 148 Bq/m3( ) 3.82 d
ln2

⎛
⎝⎜

⎞
⎠⎟

86 400 s
1 d

⎛
⎝⎜

⎞
⎠⎟

= 7.05 × 107  atoms/m3

 

 (c) The density of radon in each cubic meter of air is 
    

 

density = 7.05× 107  atoms/m3( ) 1 mol
6.02 × 1023  atoms

⎛
⎝⎜

⎞
⎠⎟

222 g
1 mol

⎛
⎝⎜

⎞
⎠⎟

= 2.60× 10−14  g/m3

 

  Since air has a density of 1.20 kg/m3, the fraction consisting of 
radon is 

    
 
fraction =

2.60 × 10−14  g/m3

1 200 g/m3 = 2.17 × 10−17  

P44.44 The number of radon atoms remaining is  

    
  N = N0e

− ln 2( )t T1 2  

 And the fraction remaining is  

    
  

N
N0

= e−λ t = e− ln 2( )t T1 2  
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 (a) With T1/2 = 3.82 d and t = 7.00 d,  

    
  

N
N0

= e− ln 2( ) 7.00( ) 3.82( ) = 0.281  

 (b) When t = 1.00 yr = 365.25 d,    

    
  

N
N0

= e− ln 2( ) 365.25( ) 3.82( ) = 1.65 × 10−29  

 (c) 
 
Radon is continuously created  as one daughter in the series of 

decays starting from the long-lived isotope 238U. 

P44.45 We find the chemical name by looking up Z in a periodic table. The 
values in the shaded boxes  (

235U and 207Pb)  in Figure P44.45 were 
given; all others have been filled in as part of the solution shown in 
ANS. FIG. P44.45 below. 

 

 

ANS. FIG. P44.45 
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P44.46 (a) Let N be the number of 238U nuclei and N′ be 206Pb nuclei. 

  Then   N = N0e
−λ t  and N0 = N + N′ so  N = N + ′N( )e−λ t  or 

  
eλ t = 1 + ′N

N
. Taking logarithms,      

   
  
λ t = ln 1 + ′N

N
⎛
⎝⎜

⎞
⎠⎟

 where 
  
λ =

ln 2
T1 2

 

  Thus, 

   
  
t =

T1 2

ln 2
⎛
⎝⎜

⎞
⎠⎟

ln 1 + ′N
N

⎛
⎝⎜

⎞
⎠⎟

 

  If 
  

N
′N

= 1.164  for the  
238 U → 206 Pb  chain with T1/2 = 4.47 × 109 yr, 

the age is: 

   
  
t =

4.47 × 109  yr
ln 2

⎛
⎝⎜

⎞
⎠⎟

ln 1 +
1

1.164
⎛
⎝⎜

⎞
⎠⎟ = 4.00 × 109  yr  

 (b) From above, 
  
eλ t = 1 + ′N

N
. Solving for 

 

N
′N
 gives 

  

N
′N

=
e−λ t

1− e−λ t
. 

  With T = 4.00 × 109 yr and T1/2 = 7.04 × 108 yr for the  
235 U → 207 Pb  

chain, 

   
  
λ t =

ln 2
T1 2

⎛

⎝
⎜

⎞

⎠
⎟ t =

ln 2( ) 4.00 × 109  yr( )
7.04 × 108  yr

= 3.938  

  and  
  

N
′N

= 0.019 9  for the 235U to 207Pb chain. 

  With T = 4.00 × 109 yr and T1/2 = 1.41 × 1010 yr for the 

 
232 Th → 208 Pb  chain, 

    
  
λ t =

ln 2( ) 4.00 × 109  yr( )
1.41× 1010  yr

= 0.196 6  

  and  
  

N
′N

= 4.60  for the 232Th to 208Pb chain. 
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Section 44.7 Nuclear Reactions 
P44.47 Neglect recoil of product nucleus (i.e., do not require momentum 

conservation for the system of colliding particles). The energy balance 
gives   Kemerging = Kincident + Q.  To find Q, 

   

  

Q = MH + MAl( ) − MSi + mn( )⎡⎣ ⎤⎦c2

Q = 1.007  825 + 26.981 539( ) − 26.986 705 + 1.008 665( )[ ]  u

                                                                       × 931.5 MeV u( )
= −5.59 MeV

 

 Thus, 
  
Kemerging = 6.61 MeV − 5.59 MeV = 1.02 MeV .  

P44.48 (a) The Q value of the reaction is given by 

   
  
Q = M 9 Be

+ M 4 He
− M 12 C

− mn⎡⎣ ⎤⎦c2  

   

  

Q = 9.012 182 u + 4.002 603 u[
                 − 12.000 000 u − 1.008 665 u]
                                                           × 931.5 MeV u( )

= 5.70 MeV

 

 (b) For this reaction, 

   
  
Q = 2M 2 H

− M 3 He
− mn⎡⎣ ⎤⎦  

   

  

Q = 2 2.014 102 u( )− 3.016 029 u − 1.008 665 u[ ]
                                                          × 931.5 MeV u( )

= 3.27 MeV

 

 (c) The reaction in part (b) is exothermic because the Q value is 
positive.  

P44.49 Total A and total Z are conserved.  

 (a) For X,   A = 24 + 1 – 4 = 21 and Z = 12 + 0 – 2 = 10, so X is 
 10

21Ne .  

 (b) A = 235 + 1 – 90 – 2 = 144 and Z = 92 + 0 – 38 – 0 = 54,  

so X is 
 54

144 Xe .  

 (c) A = 2 – 2 = 0 and Z = 2 – 1 = +1, so X must be a positron. 

  As it is ejected, it is accompanied by a neutrino:    

    
  
X + ′X = 1

0e+ + ν  
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P44.50 (a) 
 79

197 Au + 0
1 n → 79

198 Au* → 80
198 Hg + −1

0e + ν  

 Note the conservation of baryon number (which you can think of 
as nucleon census number and call mass number in this chapter) 
in the superscripts: 197 + 1 = 198 + 0. Note the conservation of 
charge in the subscripts: 79 + 0 = 80 – 1. 

 (b) Consider adding 79 electrons: 
    

  79
197 Au atom + 0

1 n → 80
198 Hg atom + ν + Q  

  Then, 
    

  

Q = M197 Au + mn − M198 Hg
⎡
⎣

⎤
⎦c2

Q = 196.966 552 u + 1.008 665 u − 197.966 752 u[ ] 

                                                         × 931.5 MeV u( )
= 7.89 MeV

 

P44.51 We consult Table 44.2 for the masses.  For the first reaction, 

   4
9Be + 1.665 MeV → 4

8Be + 0
1 n  

 so 
  
M

4
8 Be

= M
4
9 Be

−
Q
c2 − mn  

  

  

M
4
8 Be = 9.012 182 u − −1.665 MeV( )

931.5 MeV u
− 1.008 665 u

= 8.005 3 u

 

 For the second reaction, 

   4
9Be + 0

1 n → 4
10Be + 6.812 MeV  

 so    
  
M

4
10 Be

= M
4
9 Be

+ mn −
Q
c2  

  

  

M
4

10 Be = 9.012 182 u + 1.008 665 u − 6.812 MeV
931.5 MeV u

= 10.013 5 u
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Section 44.8 Nuclear Magnetic Resonance and  
Magnetic Resonance Imaging 

P44.52 It is the quantum particle under boundary conditions model that is 
behind the general rules: With angular momentum quantum number I, 

the magnitude of the angular momentum must be    I(I + 1)  . Whether 
I is an integer or a half-integer, the allowed values for one component 
of angular momentum being measured range from   +I  to +(I – 1)   to 
… to   −I . Conditions that the wave function for a quantum particle 
must satisfy, for self-consistency under rotations in three-dimensional 
space, impose these requirements. We call a component being 
measured the z component. It can be measured more directly, as in a 
nuclear magnetic resonance experiment, or less directly, as from the 
way the angular momentum influences the intrinsic energy levels of a 
system and the number of available states within an energy level. 

 (a) With I = 5/2, the magnitude of the angular momentum is  
   

   

I(I + 1)  = 5
2 ( 5

2 + 1)  = 35  /2

     = 2.958 04(6.626× 10−34  J ⋅s)/2π
= 3.119× 10−34  kg ⋅m2/s

 

  The z component can take the values +5  /2 , +3  /2 , +  /2 ,   −/2 , 

  −3/2 , and   −5/2 . These identifications are shown in ANS. FIG. 
P44.52(a). 

 (b) Similarly, with I = 4, the magnitude of the angular momentum of 
a nucleus is    I(I + 1)  = 4(4 + 1)  = 20    and its z component 
must have one of the nine values +4  , +3  , +2  ,  + , 0,  − , –2  , 
–3  , –4  , as shown in ANS. FIG. P44.52(b). 

 

ANS. FIG. P44.52 
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P44.53 From page 1406 and Equation 44.31, the magnetic moment is 

  −1.913 5µn  for the neutron and   2.792 8µn  for the proton, where 

  µn = 5.05 × 10−27  J T  is the nuclear magneton.  

 (a) The Larmor frequency of free neutrons is 

   

  

fn =
2µB

h
=

2 1.913 5( ) 5.05× 10−27  J T( )⎡⎣ ⎤⎦ 1.00 T( )
6.626× 10−34  J ⋅s

= 29.2 MHz

 

 (b) The Larmor frequency of free protons is 

   
  
fp =

2 2.792 8( ) 5.05 × 10−27  J T( )⎡⎣ ⎤⎦ 1.00 T( )
6.626 × 10−34  J ⋅ s

= 42.6 MHz  

 (c) In the Earth’s magnetic field, 

   
  
fp =

2 2.792 8( ) 5.05 × 10−27 J T( )⎡⎣ ⎤⎦ 50.0 × 10−6  T( )
6.626 × 10−34  J ⋅ s

= 2.13 kHz  

 
 

 

Additional Problems 

*P44.54 From   R = R0e
−λ t  and T1/2 = 5 730 yr for 14C, the age of the sample is 

   

  

t = −1
λ

ln
R
R0

⎛
⎝⎜

⎞
⎠⎟

= −T1/2

ln R/R0( )
ln 2

⎡

⎣
⎢

⎤

⎦
⎥ = − 5 730 yr( ) ln 0.600( )

ln 2
⎡
⎣⎢

⎤
⎦⎥

= 4.22 × 103  yr

 

*P44.55 From   R = R0e
−λ t , the elapsed time is 

   

  

t = −1
λ

ln
R
R0

⎛
⎝⎜

⎞
⎠⎟

= −T1/2

ln R/R0( )
ln 2

⎡

⎣
⎢

⎤

⎦
⎥ = − 14.0 d( )

ln 20.0 mCi
200 mCi

⎛
⎝

⎞
⎠

ln 2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= 46.5 d

 

P44.56 The proposed reaction can be written as 

    5
10B +  2

4 He    →     1
1H  +   6

12 C   

 While electric charge is conserved (5 + 2 = 1 + 6), the number of 
nucleons is not (10 + 4 ≠ 1 + 12). Therefore, this reaction cannot occur. 
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P44.57 (a) From Equation 44.1,  

   
  
r = aA1 3 = 1.2 fm( )A1 3 = 1.2 × 10−15  m( )A1 3  

  When A = 12,   r = 1.2 fm 12( )1 3
= 2.7 × 10−15  m = 2.7 fm  

 (b) 
  
F =

ke Z − 1( )e2

r2 =
8.99 × 109  N ⋅m2 C2( ) Z − 1( ) 1.60 × 10−19  C( )2

r2  

  When Z = 6 and 
  
r = 1.2 × 10−15  m( ) 12( )1 3

,   F = 1.5 × 102  N . 

 (c) 
  
U =

keq1q2

r
=

ke Z − 1( )e2

r
=

8.99 × 109( ) Z − 1( ) 1.6 × 10−19( )2

r
 

  When Z = 6 and 
  
r = 1.2 × 10−15  m( ) 12( )1 3

, 

  U = 4.2 × 10−13  J = 2.6 MeV  

 (d) A = 238, Z = 92, and   r = 1.2 fm 238( )1 3
= 7.4 × 10−15  m = 7.4 fm  

     F = 3.8 × 102  N  and   U = 2.8 × 10−12  J = 18 MeV  

P44.58 (a) The process cannot occur because energy input would be 
required. Note that the mass of the proton is less than the sum of 
the masses of the neutron and positron (electron): 

   

  

mn + m
e+ > mp

1.008 665 u + 0.000 549 u
1.009 214 u > 1.007 276 u

 

  Therefore, the reaction  p → n + e+ + ν  would violate the law of 
conservation of energy.  

 (b) The 
 
required energy can come from the electrostatic repulsion of 

protons in the parent nucleus. 

 (c) Add seven electrons to both sides of the reaction for nuclei 

 7
13 N → 6

13 C + e+ + ν  to obtain the reaction for neutral atoms 

 7
13 N atom→ 6

13 C atom + e+ + e− +ν.  

   

  

Q = m 13 N( )− m 13 C( )− me+ − me− − mν⎡⎣ ⎤⎦c2

Q = 13.005 739 u − 13.003 355 u − 2 5.49× 10−4  u( )− 0⎡⎣ ⎤⎦
                                             × 931.5 MeV u( )

= 1.20 MeV
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P44.59    E = −

µ ⋅

B  so the energies are   E1 = +µB  and  E2 = −µB , where B = 12.5 T, 

  µ = 2.792 8µn , and   µn = 5.05 × 10−27 J T . The energy difference is  

  

  

ΔE = 2µB = 2 2.792 8( ) 5.05 × 10−27  J T( ) 12.5 T( )
= 3.53 × 10−25  J = 2.20 × 10−6eV = 2.20 µeV

 

P44.60 We check the Q value of this reaction: 
  

  

Q = 238.050 788 u − 237.051 144 u − 1.007 825 u[ ]
                                                            × 931.5 MeV u( )

= −7.62 MeV

 

 

 

The Q value of this hypothetical decay is calculated to be
–7.62 MeV, which means you would have to add this 

much energy to the 238U nucleus to make it emit a proton.

 

P44.61 (a) The system of a separated proton and electron puts out energy 
13.606 eV to become a hydrogen atom in its ground state. This 
decrease in its rest energy appears also as a decrease in mass: the 
mass is smaller .  

 (b) The mass difference is 

   

  

Δm = E
c2 = 13.6 eV

3.00× 108  m s( )2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1.60× 10−19  J
1 eV

⎛
⎝⎜

⎞
⎠⎟

= 2.42 × 10−35  kg( ) 1 u
1.66× 10−27  kg

⎛
⎝⎜

⎞
⎠⎟

= 1.46× 10−8  u

 

 (c) As a percentage of the total mass, 

   
 

1.46 × 10−8  u
1.007 825 u

= 1.45 × 10−8  = 1.45 × 10−6%  

 (d)  No. The textbook table lists  1.007 825 u  as the atomic mass of 
hydrogen. This correction of  0.000 000 01 u  is on the order of 100 
times too small to affect the values listed. 

P44.62 We check the Q value of the 57Co nuclei decay by e+:  

    27
57 Co→ 26

57 Fe + +1
0e + ν  

 Mass values appear in Table 44.2. For this reaction, 
   

  

Q = 56.936 291− 56.935 394 − 2 0.000 549( )⎡⎣ ⎤⎦u 931.5 MeV u( )
= −0.187 MeV

 



Chapter 44     1133 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 
  

The nucleus 57Co cannot decay by e+  emission because 
the Q value is – 0.187 MeV.

  

P44.63 (a) The number of nuclei at t = 0 is given by 
    

  

N0 = mass
mass per atom

= 1.00 kg
(239.05 u) 1.66× 10−27 kg u( )

= 2.52 × 1024

 

 (b) To find the initial activity, we first compute the ecay constant: 

    
  
λ =

ln 2
T1 2

=
ln 2

2.412 × 104  yr( ) 3.156 × 107 s yr( ) = 9.106 × 10−13  s−1  

  Then, 

    
  
R0 = λN0 = 9.106 × 10−13  s−1( ) 2.52 × 1024( ) = 2.29 × 1012  Bq  

 (c) From   R = R0e
−λt ,  

    
  
t =

−1
λ

ln
R
R0

⎛

⎝⎜
⎞

⎠⎟
=

1
λ

ln
R0

R
⎛
⎝⎜

⎞
⎠⎟

 

    

  

t = 1
9.106× 10−13  s−1 ln

2.29× 1012  Bq
0.100 Bq

⎛
⎝⎜

⎞
⎠⎟

= 3.38× 1013  s
1 yr

3.156× 107  s
⎛
⎝⎜

⎞
⎠⎟ = 1.07 × 106 yr

 

P44.64 (a) One liter of milk contains this many  40 K  nuclei: 
    

  

N = (2.00 g)
6.02 × 1023  nuclei mol

39.1 g mol
⎛
⎝⎜

⎞
⎠⎟

0.011 7
100

⎛
⎝⎜

⎞
⎠⎟

= 3.60 × 1018  nuclei

λ =
ln 2
T1 2

=
ln 2

1.28 × 109  yr
1 yr

3.156 × 107  s
⎛
⎝⎜

⎞
⎠⎟ = 1.72 × 10−17  s−1

R = λN = 1.72 × 10−17  s−1( ) 3.60 × 1018( ) = 61.8 Bq

 

  The activity is 
 
61.8 Bq L .  

 (b) For the iodine,   R = R0e
−λ t ,  with 

 
λ =

ln 2
8.04 d

. Then, 

   
  
t =

1
λ

ln
R0

R
⎛
⎝⎜

⎞
⎠⎟

=
8.04 d

ln 2
ln

2 000
61.8

⎛
⎝⎜

⎞
⎠⎟

= 40.3 d  
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P44.65 We have   NU-235 = N0, U- 235e
−λU- 235t  

 and    NU-238 = N0, U-238e
−λU- 238t ,  

 so  
  

NU-235

NU-238

= 0.007  25 = e − ln 2( )t T1/2 , U- 235 + ln 2( )t T1/2 , U- 238( )  

 Taking logarithms, 

   
  
−4.93 = −

ln 2
0.704 × 109  yr

+
ln 2

4.47 × 109  yr

⎛

⎝⎜
⎞

⎠⎟
t  

   
  
− 4.93 = −

1
0.704 × 109  yr

+
1

4.47 × 109  yr

⎛

⎝⎜
⎞

⎠⎟
ln 2( )t  

   
  
t =

−4.93
−1.20 × 10−9  yr−1( )ln 2

= 5.94 × 109  yr = 5.94 Gyr  

P44.66 (a) See ANS. FIG. P44.66. A least-square fit to the graph yields: 

   
 
λ = −slope = − −0.250 h−1( ) = 0.250 h−1  

  and 

   
  
ln(cpm)

t=0
= intercept = 8.30     

 

ANS. FIG. P44.66 

 (b) From part (a),  

   
 
λ = 0.250 h−1 1 h

60.0 min
⎛
⎝⎜

⎞
⎠⎟ = 4.17 × 10−3  min−1  

  and 
  
T1 2 = ln 2

λ
= ln 2

4.17 × 10−3  min−1 = 166 min = 2.77 h  

 (c) From part (a), intercept = ln cpm( )0
= 8.30.  

  Thus,   
cpm( )0

= e8.30  counts min = 4.02 × 103  counts min .  
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 (d) At t = 0, 

   

  

N0 =
R0

λ
=

1
λ

cpm( )0

Eff
=

4.02 × 103  counts min
4.17 × 10−3  min−1( ) 0.100( )

= 9.65 × 106  atoms

 

P44.67 (a) If  ΔE  is the energy difference between the excited and ground 
states of the nucleus of mass M, and hf is the energy of the 
emitted photon, conservation of energy for the nucleus-photon 
system gives 

    ΔE = hf + Er  [1] 

  where  Er  is the recoil energy of the nucleus, which can be 
expressed as 

   
  
Er =

Mv2

2
=

Mv( )2

2M
 [2] 

  Since system momentum must also be conserved, we have 

   
 
Mv =

hf
c

 [3] 

  Hence,  Er
can be expressed as 

  
Er =

hf( )2

2Mc2 . 

  When   hf << Mc2 ,  we can make the approximation that   hf ≈ ΔE,  

  so 
  
Er ≈

ΔE( )2

2Mc2 .  

 (b) 
  
Er =

ΔE( )2

2Mc2
,  where    ΔE = 0.014 4 MeV  

  and   Mc2 = (57 u)(931.5 MeV u) = 5.31× 104  MeV.  

  Therefore,  

   

  
Er =

1.44 × 10−2  MeV( )2

2 5.31× 104  MeV( ) = 1.95 × 10−9  MeV = 1.95 × 10−3  eV  

P44.68 (a) If we assume all the  
87 Sr  came from 

87 Rb,  then   N = N0e
−λ t  yields 

   

  
t = −1

λ
ln

N
N0

⎛
⎝⎜

⎞
⎠⎟

=
T1 2

ln 2
ln

N0

N
⎛
⎝⎜

⎞
⎠⎟
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  where   N = NRb-87  

  and    N0 = NSr-87 + NRb-87 .  

   
  
t =

4.75 × 1010  yr( )
ln 2

ln
1.82 × 1010 + 1.07 × 109

1.82 × 1010

⎛

⎝⎜
⎞

⎠⎟
= 3.91× 109  yr  

 (b) It could be  no older.  The rock could be younger if some 

 
87 Sr were originally present. We must make some assumption 
about the original quantity of radioactive material. In part (a) we 
assumed that the rock originally contained no strontium. 

P44.69 The time of flight is given by  Δt  = d/v. Since 
  
K = 1

2
mv2 ,  

  

  

Δt = d
2K
m

= 10.0× 103  m

2(0.040 0 eV) 1.60× 10–19  J/eV( )  
1.67 × 10–27  kg 

= 3.61 s

 

 The decay constant is  
  

  
λ = 0.693

T1/2

= 0.693
(10.4 min)(60 s/min) 

= 1.11× 10−3  s–l
 

 Therefore we have 
  

  λΔt = 1.11× 10−3  s( )(3.61 s) = 4.01× 10–3 = 0.004 01
 

 And the fraction remaining is 

  
  

N
N0

= e–λΔt = e– 0.004 01 = 0.996 0.  

 Hence, the fraction that has decayed in this time interval is 
   

  
1 –

N
N0

= 0.004 01 or 0.401%
  

P44.70 (a) For cobalt-56, 

   
  
λ =

ln 2
T1 2

=
ln 2

77.1 d
365.25 d

1 yr
⎛
⎝⎜

⎞
⎠⎟

= 3.28 yr−1  

  The elapsed time from July 1054 to July 2010 is 956 yr. Then, 

  R = R0e
−λ t  implies 

    

  

R
R0

= e−λ t = e− 3.28 yr−1( ) 956 yr( ) = e−3 139 = e− ln10( )1 363 = ~ 10−1 363
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 (b) For carbon-14, 
   

 
λ = ln 2

5 730 yr
= 1.21× 10−4  yr−1

 

  and 
   

  

R
R0

= e−λ t = e− 1.21×10−4  yr−1( ) 956 yr( ) = e−0.116 = 0.891
 

P44.71 (a) For the electron capture, 

    43
93 Tc + −1

0e → 42
93 Mo + γ   

  For positron emission, 

    43
93 Tc → 42

93 Mo + +1
0e + γ  

  The daughter nucleus in both forms of decay is
 42

93 Mo . 

 (b) We usually calculate 
the Q value under the 
assumption that the 
daughter nucleus is in 
its ground state, but for 
these decays, the Q 
value gives the upper 
limit of energy 
available to the 
daughter nucleus to be 
above its ground state.  

  For electron capture, 
the disintegration energy is        

   
  
Q = M 93 Tc

− M 93 Mo
⎡⎣ ⎤⎦c2   

   

  

Q = 92.910 2 u − 92.906 8 u[ ] 931.5 MeV u( )
= 3.17 MeV > 2.44 MeV

  

  so electron capture provides enough energy for  42
93 Mo  to be in all 

levels above its ground state.  

  For  e
+  emission, the disintegration energy is  

   
  
′Q = M 93 Tc

− M 93 Mo
− 2me

⎡⎣ ⎤⎦c2 . 

   

  

′Q = 92.910 2 u − 92.906 8 u − 2(0.000 549 u)[ ](931.5 MeV/u)
= 2.14 MeV

 

 

ANS. FIG. P44.71 
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  so  e
+  emission does not supply enough energy for  42

93 Mo  to be in 
the 4.22 MeV state, only 1.35 MeV, 1.48 MeV, and 1.35 MeV above 
ground (see ANS. FIG. P44.71). 

P44.72 We start with   R = R0e
−λ t ,  and take the natural logarithm of both sides, 

giving   ln R = ln R0 − λ t,  which is the equation of a straight line with 

 slope = λ.  The logarithmic plot shown in Figure P44.72 is fitted by  

     ln R = 8.44− 0.262t  

 If t is measured in minutes, then decay constant λ  is 0.262 per minute. 
The half–life is 

   
  
T1 2 =

ln 2
λ

=
ln 2

0.262 min
= 2.64 min  

 The reported half–life of  
137 Ba  is 2.55 min. The difference reflects 

experimental uncertainties. 

P44.73 (a) With  mn  and  vn  as the mass and speed of the neutrons, Equation 
9.24 for elastic collisions becomes for the two collisions, after 
making appropriate notational changes,  

   
  
v1 =

2mn

mn + m1

⎛

⎝⎜
⎞

⎠⎟
vn , and 

  
v2 =

2mn

mn + m2

⎛

⎝⎜
⎞

⎠⎟
vn  

  Solving, 

   

  

mn + m2( )v2 = mn + m1( )v1 = 2mnvn

mn v2 − v1( ) = m1v1 − m2v2 → mn =
m1v1 − m2v2

v2 − v1

 

 (b) We obtain the neutron mass from 

   
  
mn =

1 u( ) 3.30 × 107  m s( ) − 14 u( ) 4.70 × 106  m s( )
4.70 × 106  m s − 3.30 × 107  m s

= 1.16 u  

P44.74 (a) We treat the collision of the two particles a and X as a perfectly 
inelastic collision: the kinetic energy that is converted into 
internal energy supplies the missing energy Q, permitting the 
conversion of the particles into Y and b.  

  Initially, the projectile   Ma  moves with velocity   va  while the 

target   MX  is at rest. We have from momentum conservation for 
the projectile-target system: 

   
  Mava = Ma + MX( )vc
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  The initial energy is  

   
  
Ei =

1
2

Mava
2  

  The final kinetic energy is:  
   

  

E f =
1
2

Ma + MX( )vc
2 =

1
2

Ma + MX( ) Mava

Ma + MX

⎡

⎣
⎢

⎤

⎦
⎥

2

=
Ma

Ma + MX

⎡

⎣
⎢

⎤

⎦
⎥Ei

 

  From this, we see that 
 
E f  is always less than  Ei  and the change in 

energy, 
 
E f − Ei , is given by 

   
  
E f − Ei =

Ma

Ma + MX

− 1
⎡

⎣
⎢

⎤

⎦
⎥Ei = −

MX

Ma + MX

⎡

⎣
⎢

⎤

⎦
⎥Ei  

  This loss of kinetic energy in the isolated system corresponds to 
an increase in mass-energy during the reaction. Thus, the absolute 
value of this kinetic energy change is equal to –Q (remember that 
Q is negative in an endothermic reaction). The initial kinetic 
energy  Ei  is the threshold energy   Eth .  Therefore,  

   

  
−Q = MX

Ma + MX

⎡

⎣
⎢

⎤

⎦
⎥Eth

 

  or 
  
Eth = −Q

MX + Ma

MX

⎡

⎣
⎢

⎤

⎦
⎥ = −Q 1 +

Ma

MX

⎡

⎣
⎢

⎤

⎦
⎥ . 

 (b) We first calculate the Q value for the reaction:  

   
  Q = MN-14 + MHe-4 − MO-17 − MH-1⎡⎣ ⎤⎦c2  

   

  

Q = 14.003 074 u + 4.002 603 u − 16.999 132 u − 1.007  825 u[ ]
× 931.5 MeV u( )

= −1.19 MeV

 

  Then, 
    

  

Eth = −Q
MX + Ma

MX

⎡

⎣
⎢

⎤

⎦
⎥ = − −1.19 MeV( ) 1+ 4.002 603 u

14.003 074 u
⎡
⎣⎢

⎤
⎦⎥

= 1.53 MeV
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P44.75 We have the following information:   NX(0) = 2.50NY(0),   

   NX(3 d) = 4.20NY(3 d), and T1 2Y = 1.60 d.  The nuclei decay 
exponentially:  

   

  

NX(3 d) = 4.20NY(3 d)

NX(0)e−λX 3  d( ) = 4.20NY(0)e−λY 3  d( ) = 4.20
NX(0)
2.50

e−λY 3  d( )

e 3  d( )λX = 2.5
4.2

e 3  d( )λY

 

  Taking the natural logarithm of both sides, 

   

  

3 d( )λX = ln
2.5
4.2

⎛
⎝⎜

⎞
⎠⎟ + 3 d( )λY

3 d( ) 0.693
T1 2 X

= ln
2.5
4.2

⎛
⎝⎜

⎞
⎠⎟ + 3 d( ) 0.693

1.60 d
= 0.781

 

  The half-life of X is 
  T1 2 X = 2.66 d  

P44.76 We have the following information: 
  

NX(0)
NY(0)

= r1 ,  
NX(Δt)
NY(Δt)

= r2 , and  

  T1 2Y = TY.  The nuclei decay exponentially:   
   

  

NX(Δt) = r2NY(Δt)

NX(0)e−λXΔt = r2NY(0)e−λYΔt = r2

r1

⎛
⎝⎜

⎞
⎠⎟

NX(0)e−λYΔt

e−ΔtλX = r2

r1

e−ΔtλY

 

 Taking the natural logarithm of both sides, 

   

  

−ΔtλX = ln
r2

r1

⎛
⎝⎜

⎞
⎠⎟
− ΔtλY

Δt
ln 2
TX

= − ln
r2

r1

⎛
⎝⎜

⎞
⎠⎟

+ Δt
ln 2
TY

= ln
r1

r2

⎛
⎝⎜

⎞
⎠⎟

+ Δt
ln 2
TY

 

   

  

1
TX

=
ln r1 r2( )
Δt ln 2

+ 1
TY

=
TY ln r1 r2( ) + Δt ln 2

TYΔt ln 2
=

ln 2 r1 r2( )TY Δt⎡
⎣

⎤
⎦

TY ln 2

 

 The half-life of X is 

  

TX = TY ln 2

ln 2 r1 r2( )TY Δt⎡
⎣

⎤
⎦
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Challenge Problems 
P44.77 The electric charge density in the sphere is 
  

  
ρ = Ze

4 3( )π R3

 

 Using Gauss’s Law inside the sphere, 

  

  
E ⋅4π r2 =

4 3( )π r3

∈0

⎛
⎝⎜

⎞
⎠⎟

Ze
4 3( )π R3

:  

 or 
  
E = 1

4π ∈0

Ze
R3

⎛
⎝⎜

⎞
⎠⎟

r           r ≤ R( )   

 Outside the sphere, the field is   
  

  
E = 1

4π ∈0

Ze
r2           r ≥ R( )

   

 We now find the electrostatic energy 
  

  
U = 1

2
∈0 E2⎛

⎝⎜
⎞
⎠⎟

4π r2 dr
r=0

∞

∫
 

  

  

U = 1
2
∈0

Ze

4π ∈0 R3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

r

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

4π r2 dr
0

R

∫ + 1
2
∈0

1

4π ∈0

Ze

r2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

4π r2 dr
R

∞

∫

= 2π ∈0
Ze

4π ∈0

⎛
⎝⎜

⎞
⎠⎟

2
r2

R6

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

r2 dr
0

R

∫ + 2π ∈0
Ze

4π ∈0

⎛
⎝⎜

⎞
⎠⎟

2
1

r4

⎡

⎣
⎢

⎤

⎦
⎥

R

∞

∫ r2dr

= Z2e2

8π ∈0

r4

R6 dr
0

R

∫ + dr

r2
R

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= Z2e2

8π ∈0

R5

5R6

⎛
⎝⎜

⎞
⎠⎟

0

R

− 1
r

⎛
⎝⎜

⎞
⎠⎟

R

∞⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= Z2e2

8π ∈0

R5

5R6 + 1
R

⎡
⎣⎢

⎤
⎦⎥

= 3
20

Z2e2

π ∈0 R
= 3

5
1

4π ∈0

⎛
⎝⎜

⎞
⎠⎟

Z2e2

R

 

 or  
  
U = 3

20
Z2e2

π ∈0 R
= 3keZ

2e2

5R
 

P44.78 (a) Add two electrons to both sides of the reaction to have it in 
neutral-atom terms: 

    
  
41

1H atom → 2
4 He atom + Q →  Q = Δmc2 = 4M

1
1 H

− M
2
4 He

⎡
⎣

⎤
⎦c2  
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  The Q value is then 
   

  

Q = 4 1.007 825 u( ) − 4.002 603 u⎡⎣ ⎤⎦

× 931.5 MeV u( ) 1.60 × 10−13  J
1 MeV

⎛
⎝⎜

⎞
⎠⎟

= 4.28 × 10−12  J

 

 (b) The Sun is comprised of  

   

  

N =
1.99 × 1030  kg

1.67 × 10−27  kg atom
= 1.19 × 1057  atoms

= 1.19 × 1057  protons

 

 (c) The energy that could be created by this many protons in this 
reaction is 

   
 
1.19 × 1057  protons( ) 4.28 × 10−12  J

4 protons
⎛

⎝⎜
⎞

⎠⎟
= 1.27 × 1045  

  Then, since 
 
P =

E
Δt

, 

   

  
Δt = E

P
= 1.27 × 1045  J

3.85× 1026  W
= 3.31× 1018  s = 105 billion years

 

 (d) 

 

The time interval in (c) is an order of magnitude larger 
than the expected remaining lifetime of the Sun. Only 
the hydrogen in a relatively small core is available as a 
nuclear fuel. Only in the core are temperatures and 
densities high enough for the fusion reaction to be 
self-sustaining.
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P44.2 (a) 68; (b) 30
68 Zn ; (c) Isotopes of other elements to the left and right of 

zinc in the periodic table (from manganese to bromine) may have the 
same mass number. 

P44.4 ~1028 protons; (b) 1028 neutrons; (c) ~1028 electrons 

P44.6 184 m 

P44.8 (a) 0.360 MeV; (b) Figure P44.8 shows the highest point in the curve at 
about 4 MeV, a factor of ten higher than the value in (a).  

P44.10 
  
r2 =

m2

m1

r1  

P44.12 (a) 5.18 fm; (b)  λ  is much less than the distance of closest approach  

P44.14 (a) 2.82 × 10–5; (b) 1.38 × 10–14 

P44.16 0.210 MeV 

P44.18 See P44.18 for full explanation. 

P44.20 (a) 84.2 MeV; (b) 342 MeV; (c) The nuclear force is so strong that the 
binding energy greatly exceeds the minimum energy needed to 
overcome electrostatic repulsion. 

P44.22 ~200 MeV 

P44.24 (a) Nucleons on the surface have fewer neighbors with which to 
interact. The surface term is negative to reduce the estimate from the 
volume term, which assumes that all nucleons have the same number 

of neighbors; (b) sphere, 
  

1
3

r,  cube, 
  

1
6

L.  The sphere has a larger ratio to 

its characteristic length, so it would represent a larger binding energy 
and be more plausible for a nuclear shape. 

P44.26 (a) 1.55 × 10−5  s−1 ;  (b) 12.4 h; (c) 2.39 × 1013  atoms;  (d) 1.88 mCi 

P44.28 See P44.28 for full explanation. 

P44.30 
  

R0T1 2

ln 2
2−t1 T1 2 − 2−t2 T1 2( )  

P44.32 (a) 0.755; (b) 0.570; (c)  9.766× 10−4 ;  (d) No. The decay model depends 
on large numbers of nuclei. After some long but finite time, only one 
undecayed nucleus will remain. It is likely that the decay of this final 
nucleus will occur before infinite time. 
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P44.34 (a) See P44.34(a) for full explanation; (b) See P44.34(b) for full 
explanation; (c) See ANS. FIG. P44.34(c); (d) 10.9 min;  

(e) 
  
tm =

ln λ1 λ2( )
λ1 − λ2

; (f) 10.9 min 

P44.36 (a) See P44.36(a) for full explanation; (b) 18.6 keV 

P44.38 (a) 28
65 Ni∗ ;  (b) 82

211Pb;  (c)  27
55 Co  

P44.40 (a)
  
Nd = NP , 0 − NP , 0 e−λt = 1.00 × 106( ) 1− e−0.0693t( ) , where t is in hours;  

(b) The number of daughter nuclei starts from zero at t = 0. The 
number of stable product nuclei always increases with time and 
asymptotically approaches 1.00 × 106 as t increases without limit;  
(c) The minimum number of daughter nuclei is zero at t = 0. The 
maximum number of daughter nuclei asymptotically approaches  
1.00 × 106 as t increases without limit; (d) The rate of change has its 
maximum value, 6.93 × 104 h–1, at t = 0, after which the rate decreases 
more and more, approaching zero as t increases without limit. 

P44.42 (a)  1.05 × 1021 ;  (b)  1.37 × 109 ;  (c)  3.83 × 10−12  s−1 ;   
(d)  3.17 × 103  decays week ;  (e) 951 decays/week; (f)  9.95 × 103  yr  

P44.44 (a) 0.281; (b) 1.65 × 10−29 ; (c) Radon is continuously created. 

P44.46 (a) 4.00 × 109  yr ; (b) 
  

N
′N

= 0.019 9 235U to 207Pb chain and 
  

N
′N

= 4.60  for 

the 232Th to 208Pb chain 

P44.48 (a) 5.70 MeV; (b) 3.27 MeV; (c) exothermic 

P44.50 (a)  79
197 Au + 0

1 n → 79
198 Au* → 80

198 Hg + −1
0e + ν ;  (b) 7.89 MeV 

P44.52 See ANS. FIG. P44.52(a) and (b). 

P44.54  4.42 × 103  yr  

P44.56 While electric charge is conserved (5 + 2 = 1 + 6), the number of 
nucleons is not (10 + 4 ≠ 1 + 12). Therefore, this reaction cannot occur. 

P44.58 (a) The process cannot occur because energy input would be required; 
(b) Required energy can come from the electrostatic repulsion;  
(c) 1.20 MeV 

P44.60 The Q value of this hypothetical decay is calculated to be –7.62 MeV, 
which means you would have to add this much energy to the 238U 
nucleus to make it emit a proton. 
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P44.62 The nucleus 57Co cannot decay by e+ emission because the Q value is  
–0.187 MeV. 

P44.64 (a) 61.8 Bq/L; (b) 40.3 d 

P44.66 (a) See ANS. FIG. P44.66; (b)  4.17 × 10−3  min−1 ,  2.77 h; 
(c) 4.02 × 103 counts min ; (d)  9.65 × 106  atoms  

P44.68 (a)  3.91× 109  yr ; (b) no older 

P44.70 (a) ~ 10−1 363 ;  (b) 0.891 

P44.72 2.64 min 

P44.74 (a) See P44.74(a) for full explanation; (b) 1.53 MeV 

P44.76 
  

TY ln 2

ln 2 r1 r2( )TY Δt⎡
⎣

⎤
⎦

 

P44.78 (a)  4.28 × 10−12  J;  (b)  1.19 × 1057  atoms;  (c) 105 billion years; (d) The 
time interval in (c) is an order of magnitude larger than the expected 
remaining lifetime of the Sun. Only the hydrogen in a relatively small 
core is available as a nuclear fuel. Only in the core are temperatures 
and densities high enough for the fusion reaction to be self-sustaining. 
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45 
Applications of Nuclear Physics 

 

CHAPTER OUTLINE 
 

45.1  Interactions Involving Neutrons 

45.2  Nuclear Fission 

45.3  Nuclear Reactors 

45.4 Nuclear Fusion 

45.5  Radiation Damage 

45.6 Uses of Radiation 
 

* An asterisk indicates a question or problem new to this edition. 

 

ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ45.1 Answer (c). We compute the change in mass number A: 235 + 1 – 137 
– 96 = 3. All the protons that start out in the uranium nucleus end up 
in the fission product nuclei. 

OQ45.2 Answer (d). The best particles to trigger a fission reaction of the 
uranium nuclei are slow moving neutrons. Fast moving neutrons 
may not stay in close proximity with a uranium nucleus long enough 
to have a good probability of being captured by the nucleus so that a 
reaction can occur. Positively charged particles, such as protons and 
alpha particles, have difficulty approaching the target nuclei because 
of Coulomb repulsion. 

OQ45.3 Answer (c). The total energy released was  

   
  E = (17 × 103  ton) 4.2 × 109  J 1 ton( ) = 7.1× 1013  J  

 and according to the mass-energy equivalence, the mass converted 
was  

   
   
m =

E
c2 =

7.1× 1013  J

3.00 × 108  m s( )2 = 7.9 × 10−4  kg = 0.79 g  1 g  
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OQ45.4 The ranking is (b) > (c) > (a) > (d). See Table 45.1 for the RBE factors. 
Dose (a) is 1 rem. Dose (b) is (1 rad × 10) = 10 rem. Doses (c) and (d) 
are (1 rad × 4 or 5) = 4 to 5 rem, but dose (d) is to the hands only (less 
mass has absorbed the radiation). If we assume that (a) and (b) as 
well as (c) were whole-body doses to many kilograms of tissue (more 
mass has absorbed the radiation), we find the ranking stated. 

OQ45.5 Answer (c). The function of the moderator is to slow down the 
neutrons released by one fission so that they can efficiently cause 
more fissions. 

OQ45.6 The ranking is Q1 > Q2 > Q3 > 0. Because all of the reactions involve 
108 nucleons, we can look just at the change in binding-energy-per-
nucleon as shown on the curve of binding energy. The jump from 
lithium to carbon is the biggest jump (~ 5.4 → 7.7 MeV), and next the 
jump from A = 27 to A = 54 (~ 8.3 → 8.8 MeV), which is near the peak 
of the curve. The step up for fission from A = 108 to A = 54 (~ 8.7 → 
8.8 MeV) is smallest. All the reactions result in an increase in 
binding-energy-per-nucleon, so both of the fusion reactions 
described and the fission reaction put out energy, so Q is positive for 
all. 

 Imagine turning the curve of binding energy upside down so that it 
bends down like a cross-section of a bathtub. On such a curve of total 
energy per nucleon versus mass number it is easy to identify the 
fusion of small nuclei, the fission of large nuclei, and even the alpha 
decay of uranium, as exoenergetic processes. The most stable nucleus 
is at the drain of the bathtub, with minimum energy. 

OQ45.7 Answer (d). The particles lose energy by collisions with nuclei in the 
bubble chamber to make their speed and their cyclotron radii  
r = mv/qB decrease. 

OQ45.8 Answer (b). The cyclotron radius is given by  

   
  
r = mv qB = 2 1

2 m2v2( ) qB = 2mK qB  

 K and B are the same for both particles, but the ratio  m q  is smaller 
for the electron; therefore, the path of the electron has a smaller 
radius, meaning the electron is deflected more. 

OQ45.9 Answer (b). The nuclei must be energetic enough to overcome the 
Coulomb repulsion between them so that they can get close enough 
to fuse, and numerous enough for many collisions to occur in a short 
period of time so that the reaction produces more energy than it 
requires to operate. 
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ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ45.1 The two factors presenting the most technical difficulties are the 
requirements of a high plasma density and a high plasma 
temperature. These two conditions must occur simultaneously. 

CQ45.2 For the deuterium nuclei to fuse, they must be close enough to each 
other for the nuclear forces to overcome the Coulomb repulsion of 
the protons—this is why the ion density is a factor. The more time 
that the nuclei in a sample spend in close proximity, the more nuclei 
will fuse—hence the confinement time is a factor. 

CQ45.3 The products of fusion reactors are generally not themselves 
unstable, while fission reactions result in a chain of reactions which 
almost all have some unstable products, because they have an excess 
of neutrons. 

CQ45.4 The advantage of a fission reaction is that it can generate much more 
electrical energy per gram of fuel compared to fossil fuels. Also, 
fission reactors do not emit greenhouse gases as combustion 
byproducts like fossil fuels—the only necessary environmental 
discharge is heat. The cost involved in producing fissile material is 
comparable to the cost of pumping, transporting, and refining fossil 
fuel. 

 The disadvantage is that some of the products of a fission reaction 
are radioactive—and some of those have long half-lives. The other 
problem is that there will be a point at which enough fuel is spent 
that the fuel rods do not supply power economically and need to be 
replaced. The fuel rods are still radioactive after removal. Both the 
waste and the “spent” fuel rods present serious health and 
environmental hazards that can last for tens of thousands of years. 
Accidents and sabotage involving nuclear reactors can be very 
serious, as can accidents and sabotage involving fossil fuels. 

CQ45.5 Fusion of light nuclei to a heavier nucleus releases energy. Fission of 
a heavy nucleus to lighter nuclei releases energy. Both processes are 
steps towards greater stability on the curve of binding energy, Figure 
44.5. The energy release per nucleon is typically greater for fusion, 
and this process is harder to control. 

CQ45.6 The excitation energy comes from the binding energy of the extra 
nucleon. 

CQ45.7 Advantages of fusion: high energy yield, no emission of greenhouse 
gases, fuel very easy to obtain, reactor cannot go supercritical like a 
fission reactor and low amounts of radioactive waste. 

  



Chapter 45     1149 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

 Disadvantages: requires high energy input to sustain reaction, 
lithium and helium are scarce, and neutrons released by the reaction 
cause structural damage to reactor housing. 

CQ45.8 For each additional dynode, a larger applied voltage is needed, and 
hence a larger output from a power supply—“infinite” amplification 
would not be practical. Nor would it be desirable: the goal is to 
connect the tube output to a simple counter, so a massive pulse 
amplitude is not needed. If you made the detector sensitive to 
weaker and weaker signals, you would make it more and more 
sensitive to background noise. 

CQ45.9 The hydrogen nuclei in water molecules have mass similar to that of 
a neutron, so that they can efficiently rob a fast-moving neutron of 
kinetic energy as they scatter it. A neutron bouncing off a more 
massive nucleus would lose less energy, so it would continue to 
travel through the shield. Once the neutron is slowed down, a 
hydrogen nucleus can absorb it in the reaction  n + 1

1H→ 1
2 H.  

 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 45.1 Interactions Involving Neutrons 

Section 45.2 Nuclear Fission 
*P45.1 The energy consumed by a 100-W lightbulb in a 1.0-h time period is 
  

  
E = PΔt = 100 J/s( ) 1.0 h( ) 3600 s

1 h
⎛
⎝⎜

⎞
⎠⎟ = 3.6× 105  J

  

 The number of fission events, yielding an average of 208 MeV each, 
required to produce this quantity of energy is 

  

  
n = E

208 MeV
=

3.6× 105  J
208 MeV

1 MeV
1.60× 10−13  J

⎛
⎝⎜

⎞
⎠⎟

= 1.1× 1016
  

P45.2 The mass of U-235 producing the same amount of energy as 1 000 kg of 
coal is 

  

  

m = 3.30× 1010  J( ) 1 MeV
1.60× 10−13  J

⎛
⎝⎜

⎞
⎠⎟

                  × 1 U-235 nucleus
200 MeV

⎛
⎝⎜

⎞
⎠⎟

235 g
6.02 × 1023  nucleus

⎛
⎝⎜

⎞
⎠⎟

= 0.403 g
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P45.3 Three different fission reactions are possible: 

  
 0
1 n + 92

235 U → 38
90 Sr + 54

144 Xe + 2 0
1 n 54

144 Xe  

  
 0
1 n + 92

235 U → 38
90 Sr + 54

143 Xe + 3 0
1 n 54

143 Xe  

  
 0
1 n + 92

235 U → 38
90 Sr + 54

142 Xe + 4 0
1 n 54

142 Xe  

P45.4 If the electrical power output of 1.00 GW is 40.0% of the power derived 
from fission reactions, the power output of the fission process is 

  
 

1.00 GW
0.400

= 2.50 × 109  J s( ) 8.64 × 104 s d( ) = 2.16 × 1014  J d  

 The number of fissions per day is  
  

 

2.16× 1014  J d( ) 1 fission
200× 106  eV

⎛
⎝⎜

⎞
⎠⎟

1 eV
1.60× 10−19  J

⎛
⎝⎜

⎞
⎠⎟

= 6.75× 1024  d−1

 

 This also is the number of 235U nuclei used, so the mass of 235U used per 
day is 

  

 

6.75× 1024  nuclei d( ) 235 g mol
6.02 × 1023  nuclei mol

⎛
⎝⎜

⎞
⎠⎟

= 2.63× 103  g d = 2.63 kg d

 

 In contrast, a coal-burning steam plant producing the same electrical 
power uses more than 6 × 106 kg/d of coal. 

P45.5 First, the thorium is bombarded: 
  

 0
1 n   +   90

232 Th    →      90
233 Th   

 Then, the thorium decays by beta emission: 

     90
233 Th    →      91

233 Pa +  −1
0e + ν   

 Protactinium-233 has more neutrons than the more stable 
protactinium-231, so it too decays by beta emission: 

     91
233Pa   →      92

233 U + −1
0e + ν  

P45.6 (a) The energy released is equal to the Q value, given by 

      Q = Δm( )c2 = mn + MU-235 − MBa-141 − MKr-92 − 3mn[ ]c2  

  with 

    
  

Δm = 1.008 665 u + 235.043 923 u − 140.914 4[  u

                    −91.926 2 u − 3 1.008 665 u( )] = 0.185 993 u
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  Then, 
    

  Q = 0.185 993 u( ) 931.5 MeV u( ) = 173 MeV
 

 (b) The fraction of rest energy transformed is 

    
  
f =

Δm
mi

=
0.185 993 u

236.05 u
= 7.88 × 10−4 = 0.078 8%  

P45.7 The energy released in the reaction  0
1 n +  92

235 U →  38
88 Sr +  54

136 Xe + 12 0
1 n  

is  
  

  

Q = Δm( )c2 = m
  92
235 U − 11mn − m

38
88 Sr − m

 54
136 Xe

⎡
⎣

⎤
⎦c2

= 235.043 923 u − 11 1.008 665 u( )⎡⎣
         −87.905 614 u − 135.907 220 u] 931.5 MeV u( )

= 126 MeV

 

P45.8 In N collisions, the energy is reduced from 2.00 MeV to 0.039 eV:  
  

  

2.00× 106  eV( ) 1
2

⎛
⎝⎜

⎞
⎠⎟

N

≤ 0.039 eV

1
2

⎛
⎝⎜

⎞
⎠⎟

N

≤ 0.039
2.00× 106

N ln
1
2

⎛
⎝⎜

⎞
⎠⎟ ≤ ln

0.039
2.00× 106

⎛
⎝⎜

⎞
⎠⎟

N ln 2( )≥ ln
2.00× 106

0.039
⎛
⎝⎜

⎞
⎠⎟

 

 which gives 
  

  N ≥ 25.6  →   N = 26  

P45.9 The mass defect is  
  

  

Δm = mn + MU( )− MZr + MTe + 3mn( )
Δm = 1.008 665 u + 235.043 923 u[

            − 97.912 7 u − 134.916 5 u − 3 1.008 665 u( )⎤⎦
= 0.197 393 u

 

 The energy equivalent is  

  
  
Δmc2 = 0.197 393 u( )c2 931.5 MeV c2

 u
⎛
⎝⎜

⎞
⎠⎟

= 184 MeV  
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P45.10 (a) At a concentration of c = 3 mg/m3 = 3 × 10–3 g/m3, the mass of 
uranium dissolved in the oceans covering two-thirds of Earth’s 
surface to an average depth of havg = 4 km is  

   
  
mU = cV = c 2

3 A( ) ⋅ hav = c 2
3 4πRE

2( )⎡⎣ ⎤⎦ ⋅ hav  

  or 
   

  

mU = 3× 10−3  
g

m3
⎛
⎝⎜

⎞
⎠⎟

2
3

⎛
⎝⎜

⎞
⎠⎟ 4π 6.38× 106  m( )2

4× 103  m( )
= 4× 1015  g

 

 (b) Fissionable 235U makes up 0.700% of the mass of uranium 
computed above. If we assume all of the 235U is collected and 
caused to undergo fission, with the release of about 200 MeV per 
event, the potential energy supply is  

   

  

E = number of 235  U atoms( ) 200 MeV( )

= 0.700
100

mU

m235Uatom

⎛

⎝
⎜

⎞

⎠
⎟ 200 MeV( )

 

  and at a consumption rate of P = 1.5 × 1013 J/s, the time interval 
this could supply the world’s energy needs is   Δt = E/P,  or 

   

  

Δt = 0.700
100

mU

m235Uatom

⎛

⎝
⎜

⎞

⎠
⎟

200 MeV( )
P

= 0.700
100

4× 1015  g
235 u( ) 1.66× 10−27  kg u( )

1 kg
103  g

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

              × 200 MeV
1.50× 1013  J s

⎛
⎝⎜

⎞
⎠⎟

1.60× 10−13  J
1 MeV

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

1 yr
3.16× 107  s

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

= 5× 103  yr

 

  (Compare this value to that in part (b) of Problem 17, which is a 
more realistic estimate of the time interval for the uranium that 
can be extracted reasonably from the Earth.)  

 (c) 

 

The uranium comes from rocks and minerals dissolved in water
and carried into the ocean by rivers.

 

 (d) No. Uranium cannot be replenished by the radioactive decay of 
other elements on Earth. 
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P45.11 One kg of enriched uranium contains 3.40%  92
235U,  so the mass of 

uranium-235 is  

  m235 = 0.034 0(1 000 g) = 34.0 g 

 In terms of number of nuclei, this is equivalent to 
  

  

N235 = (34.0 g)
1

235 g/mol
⎛
⎝⎜

⎞
⎠⎟

6.02 × 1023  atoms/mol( )
= 8.71× 1022  nuclei

 

 If all these nuclei fission, the energy released is equal to 
  

 

8.71× 1022  nuclei( ) 200 × 106  eV/nucleus( )
× 1.602 × 10–19  J/eV( ) = 2.79 × 1012  J

 

 Now, for the engine, 
  

  
efficiency = work output

heat input
or e = PΔr cosθ

Qh

 

 So the distance the ship can travel per kilogram of uranium fuel is 
  

  
Δr = eQh

Pcos 0°( ) =
0.200 2.79× 1012  J( )

1.00× 105  N
= 5.58× 106  m

 

 
 

 

Section 45.3 Nuclear Reactors 
*P45.12 (a) With a specific gravity of 4.00, the density of soil is 

 ρ = 4.00× 103  kg/m3.  Thus, the mass of the top 1.00 m of soil is 
   

  

m = ρV = 4.00× 103  kg/m3( ) 1.00 m( ) 43 560 ft2( ) 1 m
3.281 ft

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥

= 1.62 × 107  kg

 

  At a rate of 1 part per million, the mass of uranium in this soil is  
   

  
mU = m

106 = 1.62 × 107  kg
106 = 16.2 kg

 

 (b) Since 0.720% of naturally occurring uranium is  92
235 U,  the mass of 

 92
235 U  in the soil of part (a) is 

   

  

m
92

235 U = 7.20× 10−3( )mU = 7.20× 10−3( ) 16.2 kg( )
= 0.117 kg = 117 g
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P45.13 In one minute there are 
  
N =

60.0 s
1.20 × 10−3  s

= 5.00 × 104  fissions.  

 So the rate increases by a factor of 
 
1.000 25( )50 000 = 2.68 × 105 . 

P45.14 (a) For a sphere: 
  
V =

4
3
π r3 → r =

3V
4π

⎛
⎝⎜

⎞
⎠⎟

1 3

, so  

   
  

A
V

=
4π r2

4 3( )π r3 =
3
r

=
36π
V

⎛
⎝⎜

⎞
⎠⎟

1 3

= 4.84V−1 3  

 (b) For a cube:    V = 3 →  = V1 3 , so  

   
   

A
V

=
62

3 =
6


= 6V−1 3  

 (c) For a parallelepiped: 
  
V = 2a3 → a =

V
2

⎛
⎝⎜

⎞
⎠⎟

1 3

, so 

   
  

A
V

=
2a2 + 8a2( )

2a3 =
5
a
= 5

2
V

⎛
⎝⎜

⎞
⎠⎟

1 3

=
250
V

⎛
⎝⎜

⎞
⎠⎟

1 3

= 6.30V−1 3  

 (d) The answers show that the sphere has the smallest surface area 
for a given volume and the brick has the greatest surface area of 
the three. Therefore, The sphere has minimum leakage and the 
parallelepiped has maximum leakage. 

P45.15 Recall the radius of a nucleus of mass number A is r = aA1/3, where  
a = 1.2 fm. The center to center distance of the nuclei of helium (A = 4) 
and gold (A = 197) is the sum of their combined radii: 

    r = 1.2 fm( ) 4( )1 3 + 1.2 fm( ) 197( )1 3 = 8.9 fm = 8.9 × 10−15  m  

  The electric potential energy is  

  

  

U = qV = keq1q2

r

=
8.99× 109  N ⋅m2 /C2( )  2( ) 79( ) 1.60× 10−19  C( )  e

8.9× 10−15  m
= 2.6× 107  eV = 26 MeV

 

P45.16 The power after three months is P = 10.0 MW = 1.00 × 107 J/s. If each 
decay delivers 1.00 MeV = 1.60 × 10–13 J, then the number of decays/s 

  
 
=

1.00 × 107  J/s
1.60 × 10−13  J

= 6.25 × 1019  Bq  
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P45.17 (a) Do not think of the “reserve” as being held in reserve. We are 
depleting it as fast as we choose. The remaining current balance 
of irreplaceable 235U is 0.7% of the whole mass of uranium: 

    

 
0.007 00( ) 4.40× 106 tons( ) 103  kg

1 ton
⎛
⎝⎜

⎞
⎠⎟

103  g
1 kg

⎛
⎝⎜

⎞
⎠⎟

= 3.08× 1010  g
 

 (b) The number of moles of 235U in the reserve is 
    

  
n = m

M
= 3.08× 1010  g

235 g/mole
= 1.31× 108  mole

 

 (c) The number of moles found in part (b) corresponds to  
    

  

N = nNA = 1.31× 108  mole( ) 6.02 × 1023  atom
1 mole

⎛
⎝⎜

⎞
⎠⎟

1 nucleus
1 atom

⎛
⎝⎜

⎞
⎠⎟

= 7.89× 1031  nuclei

  

 (d) We imagine each nucleus as fissioning, to release 
    

 
7.89× 1031  fissions( ) 200 MeV

1 fission
⎛
⎝⎜

⎞
⎠⎟

1.60× 10−13  J
1 MeV

⎛
⎝⎜

⎞
⎠⎟

= 2.52 × 1021  J
 

  (e) The definition of power is represented by  
P = (energy converted)/ Δt , so we have 

    

  

Δt = energy
P

= 2.52 × 1021  J
1.5× 1013  J/s 

= 1.68× 108  s( ) 1 yr
3.156× 107  s

⎛
⎝⎜

⎞
⎠⎟

= 5.33 yr

 

 (f) 

 

Fission is not sufficient to supply the entire world with energy at
a price of $130 or less per kilogram of uranium.

 

P45.18 Assuming that the impossibility is not that he can have this control 
over the process (which, as far as we know presently, is impossible), 
let’s see what else might be wrong. The reaction can be written 

  
  0
1 n   +   92

235 U   →    57
141La  +   35

94Br  +  n 0
1 n( )  

 where n is the number of neutrons released in the fission reaction. By 
balancing the equation for electric charge and number of nucleons, we 
find that n = 1. If one incoming neutron results in just one outgoing 
neutron, the possibility of a chain reaction is not there, so this nuclear 
reactor will not work. 
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*P45.19 The total energy required for one year is 
   

  

E = 2 000 kWh/month( ) 3.60× 106  J/kWh( ) 12.0 months( )
= 8.64× 1010  J

  

 The number of fission events needed will be 
  

  
N = E

Eevent

= 8.64× 1010  J
208 MeV( ) 1.60× 10−13  J/MeV( ) = 2.60× 1021

 

 and the mass of this number of 235U  atoms is 
  

  

m = N
NA

⎛
⎝⎜

⎞
⎠⎟

Mmol = 2.60× 1021  atoms
6.02 × 1023  atoms/mol

⎛
⎝⎜

⎞
⎠⎟

235 g/mol( )

= 1.01 g

 

P45.20 (a) Since K = p2/2m, we have 

     

  

p = 2mK = 2m
3
2

kBT
⎛
⎝⎜

⎞
⎠⎟

= 3(1.675× 10−27  kg)(1.38× 10−23  J/K) 300 K( )

= 4.56× 10−24  kg ⋅m/s

 

 (b) The de Broglie wavelength of the particle is 

    
  
λ =

h
p

=
6.626 × 10−34  J ⋅ s

4.56 × 10−24  kg ⋅m/s
= 1.45 × 10−10  m = 0.145 nm  

 (c) 

 

This size has the same order of magnitude as an atom’s outer
electron cloud, and is vastly larger than a nucleus.

 

 
 

 

Section 45.4 Nuclear Fusion 
P45.21 (a) Helium fusion proceeds according to 

   
 
2
4 He + 2

4He → 4
8 Be + γ  

 (b) The beryllium produced by helium fusion fuses with another 
alpha particle according to 

   
 4
8 Be + 2

4He →  6
12 C + γ  
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 (c) The total energy released in this pair of fusion reactions is 
    

  

Q = Δm( )c2 = 2m4 He − m8 B
⎡⎣ ⎤⎦c2 + m8 B

+m4 He − m12 C
⎡⎣ ⎤⎦c2

= 3m4 He − m12 C
⎡⎣ ⎤⎦c2

= 3 4.002 602 u( )− 12.000 000 u⎡⎣ ⎤⎦ 931.5 MeV u( )
= 7.27 MeV

 

P45.22 From Equation 45.2, the energy released in the reaction 

 1
2 H + 1

3H → 2
4He + 0

1n  is 17.59 MeV per event. The total energy required 
for the year is 

  

  

E = 2 000 kWh month( ) 12.0 months( ) 3.60× 106  J kWh( )
= 8.64× 1010  J

 

 so the number of fusion events needed for the year is 
  

  

N = E
Q

= 8.64× 1010  J
17.59 MeV event( ) 1.602 × 10−13  J MeV( )

= 3.07 × 1022  events

 

P45.23 The energy released in the reaction  1
1H + 1

2H → 2
3He + γ  is 

  

  

Q = Δm( )c2 = m
1
1 H + m

1
2 H − m

2
3 He

⎡
⎣

⎤
⎦c2

= 1.007 825 u + 2.014 102 u − 3.016 029 u[ ] 931.5 MeV u( )
= 5.49 MeV

 

P45.24 (a) We assume that the nuclei are stationary at closest approach, so 
that the electrostatic potential energy equals the total energy E. 
Then, from the isolated system model, 

   
  K f +U f = Ki +Ui      →      U f = E  

  then, 
   

  

ke Z1e( ) Z2e( )
rmin

= E
 

   

  

E =
8.99× 109  N ⋅m2 C2( ) 1.60× 10−19  C( )2

Z1Z2

1.00× 10−14  m
1 keV

1.60× 10−16  J
⎛
⎝⎜

⎞
⎠⎟

= 144 keV( )Z1Z2

 

  or E = 144Z1Z2 where E is in keV. 

 (b) The energy is proportional to each atomic number. 
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 (c) Take Z1 = 1 and Z2 = 59 or vice versa. This choice minimizes the 
product Z1 Z2. If extra cleverness is allowed, take Z1 = 0 and  
Z2 = 60: use neutrons as the bombarding particles. A neutron is a 
nucleon but not an atomic nucleus. 

 (d) For both the D-D and the D-T reactions, Z1 = Z2 = 1. Thus, the 
minimum energy required in both cases is 

    

  

E = 2.30× 10−14  J( ) 1 MeV
1.60× 10−13  J

⎛
⎝⎜

⎞
⎠⎟

= 144 keV for both, according to this model.

 

  Section 45.4 in the text gives more accurate values for the critical 
ignition temperatures, of about 52 keV for D-D fusion and 6 keV 
for D-T fusion. The nuclei can fuse by tunneling. A triton moves 
more slowly than a deuteron at a given temperature. Then D-T 
collisions last longer than D-D collisions and have much greater 
tunneling probabilities. 

P45.25 (a) The Q value for the D-T reaction is 17.59 MeV (from Equation 
45.4).  Specific energy content in fuel for D-T reaction (from Table 
44.2, mass = 2.014 u + 3.016 u = 5.030 u): 

    
 

17.59 MeV( ) 1.60 × 10−13  J MeV( )
5.030 u( ) 1.6605 × 10−27  kg u( ) = 3.37 × 1014  J kg  

  The rate of fuel burning for the D-T reaction is then 
    

  

rDT =
3.00× 109  J s( ) 3 600 s hr( )

3.37 × 1014  J kg( ) 10−3  kg g( )
= 32.1 g h  burning of D and T

 

 (b) Using energy values from Equation 45.4, the specific energy 
content in fuel for D-D reaction is:  

    
  
Q =

1
2

3.27 + 4.03( ) = 3.65 MeV  

  From Table 44.2, the D-D mass is = 2(2.014 u) = 4.018 u. The 
specific energy content in D-D fuel is 

    
 

3.65 MeV( ) 1.60 × 10−13  J MeV( )
4.028 u( ) 1.6605 × 10−27  kg u( ) = 8.73 × 1013  J kg  
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  and the rate of fuel burning for the D-D reaction is 

    
  
rDD =

3.00 × 109  J s( ) 3 600 s hr( )
8.73 × 1013  J kg( ) 10−3  kg g( ) = 124 g h  

P45.26 (a) The radius of a nucleus with mass number A is r = aA1/3, where  
a = 1.2 fm. The distance of closest approach is equal to the center 
to center distance of the two nuclei: 

   

  

rf = rD + rT = 1.20× 10−15  m( ) 2( )1 3 + 3( )1 3⎡⎣ ⎤⎦

= 3.24× 10−15  m = 3.24 fm

 

 (b) At this distance, the electric potential energy is 
   

  

U f = kee
2

rf

=
8.99× 109  N ⋅m2 C2( ) 1.60× 10−19  C( )2

3.24× 10−15  m

= 7.10× 10−14  J = 444 keV

 

 (c) Conserving momentum,   mDvi = mD + mT( )v f  or  

   
  
v f =

mD

mD + mT

⎛
⎝⎜

⎞
⎠⎟

vi =
2
5

vi  

 (d) To find the minimum initial kinetic energy of the deuteron, we 
use Ki + Ui = Kf + Uf , where Ui = 0 because the deuteron starts 
from very far away (infinity), and with the result from part (c),  

   

  

Ki + 0 =
1
2

mD + mT( )v f
2 +U f

Ki =
1
2

mD + mT( ) mD

mD + mT

⎛
⎝⎜

⎞
⎠⎟

2

vi
2 +U f

 

  With some re-arrangement, we have  

   
  
Ki =

mD

mD + mT

⎛
⎝⎜

⎞
⎠⎟

1
2

mDvi
2⎛

⎝⎜
⎞
⎠⎟ + U f =

mD

mD + mT

⎛
⎝⎜

⎞
⎠⎟

Ki + U f  

  or 
   

  
1− mD

mD + mT

⎛
⎝⎜

⎞
⎠⎟

Ki = U f

 

  solving for the initial kinetic energy then gives 
   

  
Ki =U f

mD + mT

mT

⎛
⎝⎜

⎞
⎠⎟
= 5

3
444 keV( ) = 740 keV
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 (e) The nuclei can fuse possibly by tunneling through the potential 
energy barrier. 

P45.27 (a) 
  
V = 317 × 106  mi3( ) 1 609 m

1 mi
⎛
⎝⎜

⎞
⎠⎟

3

= 1.32 × 1018  m3  

  From the periodic table, H has atomic mass 1.007 9 and O has 
atomic mass 15.999 4, so water has atomic mass 18.015 2. 

    

  

mwater = ρV = 103  kg m3( ) 1.32 × 1018  m3( ) = 1.32 × 1021  kg

mH2
=

MH2

MH2 O

⎛

⎝
⎜

⎞

⎠
⎟ mH2O =

2.016
18.015

⎛
⎝⎜

⎞
⎠⎟ 1.32 × 1021  kg( )

= 1.48 × 1020  kg

mDeuterium = 0.030 0%( )mH2
= 0.030 0 × 10−2( ) 1.48 × 1020  kg( )

= 4.43 × 1016  kg

 

  The number of deuterium nuclei in this mass is 

    
  
N =

mDeuterium

mDeuteron

=
4.43 × 1016  kg

2.014 u( ) 1.66 × 10−27  kg u( ) = 1.33 × 1043  

  Since two deuterium nuclei are used per fusion,  1
2 H + 1

2 H → 2
4 He,  

the number of events is 
  

N
2

= 6.63 × 1042.  

  The energy released per event is 

    

  

Q = M 2 H
+ M 2 H

− M 4 He
⎡⎣ ⎤⎦c2

= 2 2.014 102( ) − 4.002 603[ ]u 931.5 MeV u( )
= 23.8 MeV

 

  The total energy available is then 
    

  

E =
N
2

⎛
⎝⎜

⎞
⎠⎟Q = 6.63 × 1042( ) 23.8 MeV( ) 1.60 × 10−13  J

1 MeV
⎛
⎝⎜

⎞
⎠⎟

= 2.53 × 1031  J

 

 (b) The time this energy could possibly meet world requirements is 
    

  

Δ t =
E
P

=
2.53 × 1031  J

100 1.50 × 1013  J s( ) = 1.69 × 1016  s( ) 1 yr
3.16 × 107  s

⎛
⎝⎜

⎞
⎠⎟

= 5.34 × 108  yr
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P45.28 (a) Including both ions and electrons, the number of particles in the 
plasma is N = 2nV, where n is the ion density and V is the volume 
of the container. Application of Equation 21.6 gives the total 
energy as 

    

  

E = 3
2

NkBT = 3nVkBT

    = 3 2.00× 1013  cm−3( ) 50.0 m3( ) 106  cm3

1 m3

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

                                     × 1.38× 10−23  J K( ) 4.00× 108  K( )
E = 1.66× 107  J

 

 (b) The specific heat of water is c = 4 186 J/kg . °C, and the energy 
required to raise the temperature of one kilogram of water from 
27.0°C to 100°C is given by Equation 20.4: 

    

  

Q = mcΔT = 1.00 kg( ) 4 186 J/kg ⋅°C( ) 100°C− 27.0°C( )
= 3.06× 105  J

  

  From Table 20.2, the heat of vaporization of water is 

  Lv = 2.26 × 106  J kg , so that a total of  
    

  E1 kg = 3.06× 105  J + 2.26× 106  J = 2.57 × 106  J   

  is required to boil away each kilogram of water initially at 27.0°C. 
The mass of water that could be boiled away is therefore 

    

  
m = E

E1 kg

= 1.66× 107  J
2.57 × 106  J kg

= 6.45 kg
 

P45.29  (a) Taking m  ≈  2mp for deuterons, we have   
     

  

1
2

mv2 = 3
2

kBT
 

   The root-mean-square speed is 
     

  

vrms = 3kBT
2mp

=
3 1.38 × 10–23  J/K( ) 4.00 × 108  K( )

2 1.67 × 10–27  kg( )
= 2.23 × 106  m/s

 

  (b) The confinement time in the absence of confinement measures is 

     
   
Δt = x

v
= 0.100 m

2.23 × 106  m/s
 10–7 s   
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P45.30  (a) By adding 1 + 6 = 7 and 1 + 12 = 13, we have  1
1H + 6

12 C → 7
13 N + γ  so 

nucleus A is 13N.  

 (b) Now 13 – 0 = 13 and 7 – 1 = 6, so the positron decay is 

 7
13 N → 6

13 C + 1
0e + ν  and nucleus B is 13C.  

 (c) Similarly, we have  1
1H + 6

13 C → 7
14 N + γ  and nucleus C is 14N.  

 (d) The hydrogen nuclei keep piling on like rugby players after a 
tackle. We have  1

1H + 7
14 N → 8

15 O + γ  and nucleus D is 15O.  

 (e) Now  8
15 O → 7

15 N + 1
0e + ν ,  so nucleus E is 15N.  

 (f) We calculate 15 + 1 – 4 = 12 and 7 + 1 – 2 = 6 to identify 

 1
1H + 7

15 N → 6
12 C + 2

4 He  and nucleus F is 12C. 

 (g) The original carbon-12 nucleus is returned. One carbon nucleus 
can participate in the fusions of colossal numbers of hydrogen 
nuclei, four after four. Carbon is a catalyst.  

  The two positrons immediately annihilate with electrons 
according to  1

0e + −1
0e → 2γ .  The overall reaction, obtained by 

adding all eight reactions, can be represented as 

    1
1H + 6

12 C + 1
1H + 1

1H + 1
1H + 2 −1

0e → 2
4 He + 6

12 C + 7γ + 2ν  

  This simplifies to 
 
4 1

1H( ) + 2 −1
0e → 2

4 He + 2ν .  The net reaction is 

identical to the net reaction in the proton–proton cycle which 
predominates in the Sun. In energy terms the reaction can be 
considered as 

 
4 1

1H atom( )→ 2
4 He atom + 26.7 MeV,  where the Q 

value of energy output was computed in Chapter 39, Problem 67 
and again in Problem 59 in this chapter. 

P45.31 (a) Lawson’s criterion for the D-T reaction is   nτ ≥ 1014  s cm3 .  For a 
confinement time of τ = 1.00 s, this requires a minimum ion 
density of 

  
n = 1014  cm−3 . 

 (b) At the ignition temperature of T = 4.5 × 107 K and the ion density 
found above, the plasma pressure is 

    

  

P = 2nkBT

= 2 1014  cm−3( ) 106  cm3

1 m3

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ 1.38× 10−23  J K( ) 4.5× 107  K( )

 = 1.2 × 105  J m3
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 (c) The required magnetic energy density is then 

    
  
uB =

B2

2µ0

≥ 10P = 10 1.2 × 105 J m3( ) = 1.2 × 106  J m3  

  which requires a magnetic field of magnitude  
    

  

B ≥ 2µ0 10P( ) = 2 4π × 10−7 N A2( ) 1.24× 106 J m3( )
= 1.8 T

 

  This is a very strong field. 

 
 

 

Section 45.5 Radiation Damage 
P45.32 (a) The number of x-ray images made per year is (assuming a 2-week 

vacation)  

      n = 8 x-ray d( ) 5 d wk( ) 50 wk yr( ) = 2.0 × 103  x-ray yr  

  The average dose per photograph is 

    
 

5.0 rem yr
2.0 × 103  x-ray yr

= 2.5 × 10−3  rem x-ray = 2.5 mrem x-ray  

 (b) The technician receives low-level background radiation at a rate 
of 0.13 rem/yr. The ration dose of 5.0 rem/yr received as a result 
of the job to background is  

    
 

5.0 rem yr
0.13 rem yr

= 38  

  
 

The technician’s occupational exposure is high compared to
background radiation—it is 38 times 0.13 rem/yr.

 

P45.33 (a)   I = I0e
−µ x ,  so 

  
x = −

1
µ

ln
I
I0

⎛
⎝⎜

⎞
⎠⎟

, with µ = 1.59 cm–1. 

  When the intensity 
  
I =

I0

2
,

 
  
x = −

1
1.59 cm−1 ln

1
2

⎛
⎝⎜

⎞
⎠⎟ = 0.436 cm  

 (b) When 
  
I =

I0

1.00 × 104 ,

 
  
x = −

1
1.59 cm−1 ln

1
1.00 × 104

⎛
⎝⎜

⎞
⎠⎟ = 5.79 cm  
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P45.34 (a)   I = I0e
−µ x ,  so 

  
x = −

1
µ

ln
I
I0

⎛
⎝⎜

⎞
⎠⎟

. 

  When intensity 
  
I =

I0

2
, 

  
x = −

1
µ

ln
I
I0

⎛
⎝⎜

⎞
⎠⎟

= −
1
µ

ln
1
2

⎛
⎝⎜

⎞
⎠⎟ =

ln 2( )
µ

. 

 (b) When intensity I = f I0, 
  
x = −

1
µ

ln
I
I0

⎛
⎝⎜

⎞
⎠⎟

= −
1
µ

ln f( ) = −
ln f
µ

. 

P45.35 The source delivers 100 mrad of 2.00-MeV γ -rays/h at a 1.00-m 
distance. The RBE for these γ -rays is 1.0 (from Table 45.1). 

 (a) From Equation 45.6,  
   

 

dose in rem = dose in rad ×  RBE
1.00 rem = dose in rad ×  1.0   

 

  or,  
  dose in rad = 1.00 rad = 100× 10−3  rad/h( )Δt  

  which gives   Δt = 10.0 h.  

  Thus a person would have to stand there 
 

10.0 hours  to receive 

1.00 rem from a 100-mrad/h source. 

 (b) If the γ -radiation is emitted isotropically, the dosage rate falls off 

as 
  

1
r2

. 

  Thus a dosage 10.0 mrad/h would be received at a distance 

  
r = 10.0  m = 3.16 m . 

*P45.36 For each gray (GY) or radiation, 1 J of energy is delivered to each 
kilogram of absorbing material. Thus, the total energy delivered in this 
whole body dose to a 75.0-kg person is 

   

  
E = 0.250 Gy( ) 1 

J/kg
Gy

⎛
⎝⎜

⎞
⎠⎟

75.0 kg( ) = 18.8 J
  

P45.37 By definition, one rad increases the energy of one kilogram of the 
absorbing material by 1.00 ×  10-2 J. The energy starts as energy carried 
by electromagnetic radiation, and turns entirely into internal energy. 
The 1 000 rad or  10.0 gray = 10.0 Gy will then put 10.0 J/kg into the 
body, to raise its temperature by the same amount as 10.0 J/kg of 
energy input by heat from a higher-temperature energy source. In 

 Q = mcΔT  we have Q/m = 10.0   J/kg and  

  
  
ΔT = Q

m
1
c

= 10.0 J/kg( ) 1
4 186 J/kg ⋅°C

⎛
⎝⎜

⎞
⎠⎟

= 2.39× 10−3 °C  
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P45.38 Assume all the energy from the x-ray machine is absorbed by the 
water and that no energy leaves the cup of water by heat or thermal 
radiation. The energy input to the cup and the temperature of the 
water are related by 

  
  TER = mcΔT  

 Because the power input P is equal to   TER/ΔT ,  we have 
  

  
PΔt = mcΔT    →    Δt = mcΔT

P

 

 where we have solved for the time interval required to raise the 
temperature of the water.  We note that the temperature of the water 
will increase until it is 100°C, after which the latent heat of 
vaporization of   Lv = 2.26 × 106  J kg  would have to be added to boil the 
water. For the purposes of this problem, we limit ourselves to 
increasing the temperature of the water to 100°C. Substituting 
numerical values gives 

  
  
Δt = 

m 4 186 J/kg ⋅ °C( ) 50.0°C( )
10.0 rad/s( ) 1 × 10–2  J/kg( )m

 = 2.09 × 106  s = 24.2 d  

 Therefore, it would take over 24 days just to increase the water’s 
temperature to 100°C, and much longer to boil it, and this technique 
will not work for a 20-minute coffee break! 

P45.39 The number of nuclei in the original sample is 
  

  

N0 =
mass present

mass of nucleus
=

5.00 kg
89.907 7 u( ) 1.66 × 10–27  kg/u( )

= 3.35 × 1025  nuclei

 

 The decay constant is 
  

  
λ =

ln 2
T1/2

=
0.693

29.1 yr
= 2.38 × 10–2  yr–1 = 4.53 × 10–8  min–1

 

 The original activity is  
  

  

R0 = λN0 = 4.53 × 10–8  min–1( ) 3.35 × 1025  nuclei( )
= 1.52 × 1018  decays/min

 

 The law of decay then gives us 
  

  

R
R0

=
10.0 decays/min

1.52 × 1018  decays/min
= 6.59  × 10–18 =  e–λt
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 and the time interval is  

   
  
t =

− ln R/R0( )
λ

=
− ln 6.59× 10–18( )
2.38× 10–2  yr–1 = 1.66× 103  yr

 

P45.40 If half of the 0.140-MeV gamma rays are absorbed by the patient, the 
total energy absorbed is 

  

  

E = 0.140 MeV( )
2

1.00× 10−8  g
98.9 g mol

⎛
⎝⎜

⎞
⎠⎟

6.02 × 1023  nuclei
1 mol

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= 4.26× 1012  MeV( ) 1.60× 10−13  J MeV( ) = 0.682 J

 

 Thus, the dose received is Dose 
 
=

0.682 J
60.0 kg

1 rad
10−2  J kg

⎛
⎝⎜

⎞
⎠⎟

= 1.14 rad  

P45.41 The decay constant is   λ = ln 2 T1 2 = ln 2 17.0 d . The number of nuclei 
remaining after 30.0 days is  

  
  
N = N0e

−λT = N0 exp
− ln 2
17.0 d

⎛
⎝⎜

⎞
⎠⎟ 30.0 d⎡

⎣⎢
⎤
⎦⎥

= 0.294N0  

 The number decayed is N0 – N = N0 (1 – 0.294) = 0.706N0. 

 Then the energy release is  

  

  

2.12 J = 0.706N0( ) 21.0 × 103  eV( ) 1.60 × 10−19  J
1 eV

⎛
⎝⎜

⎞
⎠⎟

N0 =
2.12 J

2.37 × 10−15  J
= 8.94 × 1014

 

 (a) The initial activity is 

   
  
R0 = λN0 =

ln 2
17.0 d

8.94 × 1014( ) 1 d
86 400 s

⎛
⎝⎜

⎞
⎠⎟

= 4.22 × 108  Bq  

 (b) We find the total mass contained in the seeds from 
   

  

original sample mass = m = N0mone atom

= 8.94× 1014 103 u( ) 1.66× 10−27  kg
1 u

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

  

  Then, 

   
  
m = 1.53 × 10−10  kg = 1.53 × 10−7  g = 153 ng  
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P45.42 The nuclei initially absorbed are (mass from Table 44.2)  

  
  
N0 = 1.00 × 10−9  g( ) 6.02 × 1023  nuclei mol

89.9 g mol
⎛
⎝⎜

⎞
⎠⎟

= 6.70 × 1012  

 The number of decays in time t is  
  

  
ΔN = N0 − N = N0 1− e−λ t( ) = N0 1− e− ln 2( )t T1 2( )   

 At the end of 1 year, 

  

  

ΔN = N0 − N = 6.70× 1012( ) 1− exp
− ln 2

29.1 yr
⎛
⎝⎜

⎞
⎠⎟

1.00 yr
⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 1.58× 1011

 

 The energy deposited is  

  
  E = 1.58 × 1011( ) 1.10 MeV( ) 1.60 × 10−13  J MeV( ) =   0.027 7 J  

 Thus, the dose received is  
  

 
Dose = 0.027 7 J

70.0 kg
⎛
⎝⎜

⎞
⎠⎟

= 3.96× 10−4  J kg = 0.039 6 rad
  

 
 

 

Section 45.6 Uses of Radiation 

P45.43 (a) With 
  
I x( ) =

1
2

I0 ,   I x( ) = I0e
−µx  becomes 

   

  

1
2

I0 = I0e
−0.72x mm

2 = e+0.72x mm → ln 2 = 0.72 x mm →x =
ln 2( )  mm

0.72
= 0.963 mm

 

 (b) The intensity reaching the detector through x1 = 0.800 mm of steel 
is   I1 = I0e

−µx1 .  That transmitted by thickness x2 = 0.700 mm is 

  I2 = I0e
−µx2 .  The fractional change is   

   

  

I2 − I1

I1

=
I0e

−µx2 − I0e
−µx1

I0e
−µx1

= eµ(x1 −x2 ) − 1 = e(0.720/mm)(0.100 mm) − 1

          = e0.0720 − 1 = +0.074 7 = 7.47%

 

  As the thickness decreases, the intensity increases by 7.47%. 
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P45.44 (a) Starting with N = 0 radioactive atoms at t = 0, the rate of increase 
is (production – decay) 

    
 

dN
dt

= R − λN     so      dN = R − λN( )dt.  

  The variables are separable. 
    

  

dN
R − λN

0

N

∫ = dt
0

t

∫ :     −
1
λ

ln
R − λN

R
⎛
⎝⎜

⎞
⎠⎟

= t
 

  so  
  
ln

R − λN
R

⎛
⎝⎜

⎞
⎠⎟

= −λ t    and     
R − λN

R
⎛
⎝⎜

⎞
⎠⎟

= e−λ t .  

  Therefore 
  
1−

λ
R

N = e−λ t    →    N =
R
λ

1− e−λ t( ).  

 (b) The maximum number of radioactive nuclei would be 
 

R
λ

. 

P45.45 (a) The number of photons is 
 

104  MeV
1.04 MeV

= 9.62 × 103.  Since only 50% 

of the photons are detected, the number of 65Cu nuclei decaying is 
twice this value, or 1.92 × 104. In two half-lives, three-fourths of 

the original nuclei decay, so 
  

3
4

N0 = 1.92 × 104  and N0 = 2.56 × 104. 

This is 1% of the 65Cu, so the number of 65Cu is 
 
2.56 × 106 ~ 106 . 

 (b) Natural copper is 69.17% 63Cu and 30.83% 65Cu. Thus, if the 
sample contains NCu copper atoms, the number of atoms of each 
isotope is N63 = 0.691 7 NCu and N65 = 0.308 3 NCu. Therefore,  

   
  

N63

N65

=
0.691 7
0.308 3

  

  or  
  
N63 = 0.6917

0.3083
⎛
⎝⎜

⎞
⎠⎟ N65 = 0.6917

0.3083
⎛
⎝⎜

⎞
⎠⎟ 2.56× 106( ) = 5.75× 106  

  The total mass of copper present is then    
   

  

mCu = 62.93 u( )N63 + 64.93 u( )N65

mCu = 62.93 u( ) 5.75× 106( ) + 64.93 u( ) 2.56× 106( )⎡⎣ ⎤⎦
                                                    × 1.66× 10−24  g u( )
= 8.77 × 10−16  g ~ 10−15  g
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Additional Problems 

P45.46 (a) The energy released by the  1
1H + 5

11B → 3 2
4 He( )  reaction is 

   
  
Q = M

1
1 H

+ M
5

11B
− 3M

2
4 He

⎡
⎣

⎤
⎦c2  

   

  

Q = 1.007 825 u+11.009 305 u − 3 4.002 603 u( )⎡⎣ ⎤⎦
                                                            × 931.5 MeV u( )

= 8.68 MeV

 

 (b) 

 

The particles must have enough kinetic energy to overcome their
mutual electrostatic repulsion so that they can get close enough
to fuse.

 

P45.47 From momentum conservation, we have  

       0 = mLi

vLi + mα


vα  or   mLivLi = mαvα  

 Thus,  

   
  
KLi =

1
2

mLivLi
2 =

1
2

mLivLi( )2

mLi

=
mαvα( )2

2mLi

=
mα

2

2mLi

⎛
⎝⎜

⎞
⎠⎟

vα
2  

   

  

KLi =
4.002 6 u( )

2 7.016 0 u( )
2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

9.25× 106  m s⎛
⎝⎜

⎞
⎠⎟

2

= 1.14 u( ) 1.66× 10−27  kg/u( ) 9.25× 106  m s⎛
⎝⎜

⎞
⎠⎟

2

KLi = 1.62 × 10−13  J = 1.01 MeV

 

P45.48 (a) We have 
  
I = 1

2
ρv ω smax( )2 ,  and from Equation 17.10, 

  
I =

ΔPmax( )2

2ρv
. 

Substituting the second expression for I into the first and solving 
for smax gives 

   

  
smax = 1

ω
2I
ρv

⎛
⎝⎜

⎞
⎠⎟

1 2

= 1
ω

2
ρv

ΔPmax( )2

2ρv

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 2

= ΔPmax

ωρv

 

  Solving for   ΔPmax  and assuming smax ~ 2.5 m, 
   

   

ΔPmax =ωρvsmax = 1 s−1( ) 1.20 kg/m3( ) 343 m/s( ) 2.5 m( )

 103  Pa
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 (b) The change in volume is given by 
   

  

ΔV = 4π r2Δ r = 4π 14.0× 103  m( )2
2.5 m( )

= 1.23× 108  m3 ~ 6× 109  m3

 

 (c) The energy carried by the blast wave is 

   
  W = ΔPmax( ) ΔV( ) = 103  Pa( ) 6 × 109  m3( ) = 6 × 1012  J  

 (d) Since the blast wave carries only 10% of the bomb’s energy, 

 
6 × 1016  J =

1
10

yield( ) , and the bomb yield is then 

   
 yield = 6 × 1013  J ~1014  J  

 (e) The yield in terms of tons of TNT is 

   
 

6 × 1013  J
4.2 × 109  J ton TNT

= 1.42 × 104  ton TNT ~ 104  ton TNT  

*P45.49 The Japanese call it the original child bomb. 

 (a) Suppose each  
235 U  fission releases 208 MeV of energy. Then, the 

number of nuclei that must have undergone fission is 

   

  

N = total release
energy per nuclei

= 5 × 1013  J
208 MeV( ) 1.60 × 10−13  J MeV( )

= 1.5 × 1024  nuclei

. 

 (b) 
 
mass = 1.5 × 1024  nuclei

6.02 × 1023  nuclei mol
⎛
⎝⎜

⎞
⎠⎟

235 g mol( ) ≈ 0.6 kg  

P45.50 (a) Subtracting the background counts, the decay counts are  
N1 = 372 – 5(15) = 297 in the first 5.00 min interval and  
N2 = 337 – 5(15) = 262 in the second. The midpoints of the time 
intervals are separated by T = 5.00 min. We use   R = R0e

−λ t ,  taking 
t = T and identifying R0 = N1/T = 297/5 min and R = N2/T = 
262/5 min. We have then  

   

  

N2

T
= N1

T
⎛
⎝⎜

⎞
⎠⎟ e−λT      or      

262
5 min

= 297
5 min

⎛
⎝⎜

⎞
⎠⎟ e − ln 2 T1 2( ) 5.00 min( )

  

  which gives 
   

  
e− ln 2 T1 2( )T = N2

N1

     or     e− ln 2 T1 2( ) 5.00 min( ) = 262
297
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  Solving, 
   

  
− ln 2

T1 2

T = ln
N2

N1

⎛
⎝⎜

⎞
⎠⎟

or − ln 2
T1 2

T = ln
262
297

⎛
⎝⎜

⎞
⎠⎟

 

  The half-life is then 
   

  
T1 2 = − ln 2

ln N2 N1( )T = − ln 2
ln 262 297( ) 5.00 min( ) = 27.6 min

 

  NOTE: If it seems questionable to set instantaneous decay rates 
equal to average decay rates, to let R0 = N1/T and R = N2/T, see 
the Alternate Solution to (a) below. The results are the same. 

 (b) The average count rate is about  

   
  

1
2

262
5 min

+
297

5 min
⎛
⎝⎜

⎞
⎠⎟

1 min
60 s

⎛
⎝⎜

⎞
⎠⎟  1 s−1  

  but the counts are randomly spaced in time, meaning some 
counts near the beginning and end of each 5.00-min interval 
should or should not have been counted. Let’s assume that the 
count incidence could vary by as much as 5 seconds, so we shall 
assume a count uncertainty of ±5. The smallest likely value for the 
half-life is then given by 

   
  
ln

262 − 5
297 + 5

⎛
⎝⎜

⎞
⎠⎟ = −

ln 2
T1 2

5.00 min( ) , giving 
  
T1 2( )

min
= 21.5 min  

  The largest credible value is found from 

   
  
ln

262 + 5
297 − 5

⎛
⎝⎜

⎞
⎠⎟ = −

ln 2
T1 2

5.00 min( ) , yielding 
  
T1 2( )

max
= 38.7 min  

  Thus, the half-life is about  
   

  

T1 2 = 38.5 + 21.7
2

⎛
⎝⎜

⎞
⎠⎟ ± 38.5− 21.7

2
⎛
⎝⎜

⎞
⎠⎟  min

= 30 ± 8( )  min = 30 min± 27%

 

  Alternate Solution to (a) The amount of the radioactive sample at 
time t is   N = N0e

−λt , where we do not know N0. The number of 
decay counts between t = 0 and t = T are  

   
  
N1 = N0 1− e−λT( ) = 297  

  and the number of decay counts between t = 0 and t = 2T are  

   
  
N1 + N2 = N0 1− e−λ2T( ) = 297 + 262 = 559  
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  To eliminate N0, we consider the ratio of the counts: 
    

  

r = N1 + N2

N1

=
N0 1− e−λ 2T( )
N0 1− e−λT( ) = 559

297

r =
1− e−λ 2T( )
1− e−λT( ) =

1− e−λT( ) 1+ e−λT( )
1− e−λT( ) = 1+ e−λT

 

  solving, 
    

  
e−λT = r − 1= N1 + N2

N1

− 1= N2

N1

     →      e− ln 2 T1 2( )T = N2

N1

 

  which leads to the same result as above, 
  
T1 2 =

− ln 2
ln N2 N1( )T . 

P45.51 (a) The energy amplification is 
  

  

E
E0

=

1
2

CΔV 2

0.500 MeV
=

1
2

5.00 × 10–12  F( ) 1.00 × 103  V( )2

0.500 MeV( ) 1.60 × 10–13  J/MeV( )
= 3.12 × 107

  

 (b) The number of electrons is 
   

  

N = Q
e

= CΔV
e

=
5.00 × 10–12  F( ) 1.00 × 103  V( )

1.60 × 10–19  C

= 3.12 × 1010  electrons

 

P45.52 (a) To conserve momentum, the two fragments must move in 
opposite directions with speeds v1 and v2 such that 

    m1v1 = m2v2     or    
  
v2 =

m1

m2

⎛
⎝⎜

⎞
⎠⎟

v1  

  The kinetic energies after the break-up are then 

    
  
K1 =

1
2

m1v1
2      and     

  
K2 =

1
2

m2v2
2 =

1
2

m2
m1

m2

⎛
⎝⎜

⎞
⎠⎟

2

v1
2 =

m1

m2

⎛
⎝⎜

⎞
⎠⎟

K1  

  The fraction of the total kinetic energy carried off by m1 is  

   
  

K1

Ktot

=
K1

K1 + K2

=
K1

K1 + m1 m2( )K1

=
m2

m1 + m2
 



Chapter 45     1173 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  and the fraction carried off by m2 is  

    
  

K2

Ktot

= 1−
K1

Ktot

= 1−
m2

m1 + m2

=
m1

m1 + m2

 

 (b) The disintegration energy is  
    

  

Q = 236.045 562 u − 86.920 711 u − 148.934 370 u( )
                                                            × 931.5 MeV u( )

= 177.4 MeV= 177 MeV

 

 (c) Immediately after fission, this Q-value is the total kinetic energy 
of the fission products. From part (a),  

    

  

K1

Ktot

= m2

m1 + m2

= KBr

Q

 

  Then, 
    

  
KBr = Q

mLa

mBr + mLa

= 177.4 MeV( ) 149 u
87 u + 149 u

⎛
⎝⎜

⎞
⎠⎟ = 112.0 MeV

 

  and   KLa = Q − KBr = 177.4 MeV − 112.0 MeV = 65.4 MeV  

 (d) The speed of the fragments is given by 
   

  

vBr = 2KBr

mBr

=
2 112 × 106  eV( ) 1.60× 10−19  J eV( )

87 u( ) 1.66× 10−27  kg u( )
= 1.58× 107  m s = 15.8 Mm/s

 

  and 
   

  

vLa = 2KLa

mLa

=
2 65.4× 106  eV( ) 1.60× 10−19  J eV( )

149 u( ) 1.66× 10−27  kg u( )
= 9.20× 106  m s = 9.30 Mm/s

 

*P45.53 (a) For each of the following six steps, the subscripts a - f of Q refer to 
the corresponding step in Problem 45.30. 

  For   
12 C + 1H → 13 N + Q,  

   
  

Qa = 12.000 000+ 1.007  825− 13.005 739( ) 931.5 MeV( )

= 1.94 MeV
 

  For the second step, add seven electrons to both sides to get: 

     
13 N atom → 13 C atom + e+ + e− + Q  
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  Then, 

   

  

Qb = 13.005 739− 13.003 355− 2 0.000 549( )[ ] 931.5 MeV( )

= 1.20 MeV
Qc = 13.003 355 + 1.007  825− 14.003 074[ ] 931.5 MeV( )

= 7.55 MeV
Qd = 14.003 074 + 1.007  825− 15.003 065[ ] 931.5 MeV( )

= 7.30 MeV
Qe = 15.003 065− 15.000 109− 2 0.000 549( )[ ] 931.5 MeV( )

= 1.73 MeV
Qf = 15.000 109 + 1.007  825− 12 − 4.002 603[ ] 931.5 MeV( )

= 4.97 MeV

 

 (b) The energy released in the annihilations is 

     

Q3 = Q7 = 2 0.000 549( ) 931.5 MeV( )

= 1.02 MeV  

 (c) The sum is  26.7 MeV ,  the same as for the proton-proton cycle. 

 (d) Not all of the energy released appears as internal energy in the 
star. When a neutrino is created, it will likely fly directly out of 
the star without interacting with any other particle. 

P45.54 The original activity per area is  

  
 

5.00 × 106  Ci
104  km2

1 km
103  m

⎛
⎝⎜

⎞
⎠⎟

2

= 5.00 × 10−4  Ci/m2  

 The half-life is 29.1 yr. The decay law,   N = N0 e–λt , becomes the law of 

decrease of activity,   R = R0 e–λt . If the material is not transported, it 
describes the time evolution of activity per area,   R/A = R0/A e–λt . 
Solving for the time t gives 

  

  
eλt = R0 / A

R/ A
→ t = 1

λ
ln

R0 / A
R/ A

⎛
⎝⎜

⎞
⎠⎟

 

 Substituting numerical values, 
  

  

t = 29.1 yr
ln 2

⎛
⎝⎜

⎞
⎠⎟ ln

R0 / A
R/ A

⎛
⎝⎜

⎞
⎠⎟

= 29.1 yr
ln 2

ln
5.00× 10−4  Ci/m2

2.00× 10−6  Ci/m2

⎛
⎝⎜

⎞
⎠⎟

= 232 yr
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P45.55 The number of nuclei in 3.80 kg of  94
238 Pu  is 

   

  

N0 =
3 800 g

238.049 560 g mol
⎛
⎝⎜

⎞
⎠⎟

6.022 × 1023  nuclei mol( )
= 9.61× 1024  nuclei

 

 The half-life of  94
238 Pu  is 87.7 years, so the decay constant is given by 

   
  
λ =

ln 2
T1 2

=
ln 2

87.7 yr( ) 3.155 × 107  s yr( ) = 2.51× 10−10  s−1  

 The initial activity is 

   
  R0 = λN0 = 2.51× 10−10  s−1( ) 9.61× 1024  nuclei( ) = 2.41× 1015  Bq  

 The energy released in each  94
238 Pu → 92

234 U + 2
4 He  reaction is 

   

  

Q = M
94

238 Pu − M
92

234 U − M
2
4 He

⎡
⎣

⎤
⎦c2:

Q = 238.049 560 u − 234.040 952 u − 4.002 603 u[ ]
                                                            × 931.5 MeV u( )

= 5.59 MeV

 

 Thus, assuming a conversion efficiency of 3.20%, the initial power 
output of the battery is 

   

  

P = 0.032 0( )R0Q

= 0.032 0( ) 2.41× 1015  decays s( ) 5.59 MeV decay( )
× 1.602 × 10−13  J MeV( )

= 69.0 W

 

P45.56 The number of hydrogen-3 nuclei is 
  

  

N = 50.0 m3( ) 2.00 × 1014  
particles

cm3
⎛
⎝⎜

⎞
⎠⎟ 100 cm/m( )3

= 1.00 × 1022  particles

 

 The decay constant is  

  
  
λ =

ln 2
T1/2

=
0.693

12.3 yr
⎛
⎝⎜

⎞
⎠⎟

1 yr
3.16 × 107  s

⎛
⎝⎜

⎞
⎠⎟

= 1.78 × 10–9  s–1  

 The activity is then 
  

  R = λN = 1.78× 10–9  s–1( ) 1.00× 1022  nuclei( ) = 1.78 × 1013  Bq
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 In curies this is  
  

  
R = 1.78 × 1013 Bq( ) 1 Ci

3.70 × 1010  Bq
⎛
⎝⎜

⎞
⎠⎟

= 482 Ci
 

 482 Ci, which is less than the fission inventory by on the order of a 
hundred million times. 

P45.57 The complete fissioning of 1.00 gram of 235U releases 

   

  

Q = 1.00 g
235 grams mol

⎛
⎝⎜

⎞
⎠⎟

6.02 × 1023  atoms
 mol

⎛
⎝⎜

⎞
⎠⎟

× 200 MeV
fission

⎛
⎝⎜

⎞
⎠⎟

1.60× 10−13  J
MeV

⎛
⎝⎜

⎞
⎠⎟

= 8.20× 1010  J

 

 If all this energy could be utilized to convert m kilograms of 20.0°C 
water to 400°C steam (see Chapter 20 of text for values), then  

   

  

Q = mcw ΔT + mLv + mcs ΔT

Q = m 4 186 J kg  °C( ) 80.0 °C( ) + 2.26 × 106  J kg⎡⎣
+ 2 010 J kg  °C( ) 300 °C( )⎤⎦

 

 Therefore,  
  
m = 8.20× 1010  J

3.20× 106  J kg
= 2.56× 104  kg  

P45.58 When mass m of 235U undergoes complete fission, releasing energy E 
per fission event, the total energy released is 

   
  
Q =

m
MU-235

⎛
⎝⎜

⎞
⎠⎟

NAE  

 where NA is Avogadro’s number. If all this energy could be utilized to 
convert a mass mw of liquid water at Tc into steam at Th, then 

   
  
Q = mw c w 100°C −Tc( ) + Lv + c s Th − 100°C( )⎡⎣ ⎤⎦  

 where cw is the specific heat of liquid water, Lv is the latent heat of 
vaporization, and cs is the specific heat of steam. Solving for the mass 
of water converted gives 

   

  

mw =
Q

c w 100°C −Tc( ) + Lv + c s Th − 100°C( )⎡⎣ ⎤⎦

=  
mNAE

MU-235 cw 100 − Tc( ) + Lv  + cs Th  – 100( )⎡⎣ ⎤⎦
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P45.59 (a)   QI = MA + MB − MC − ME[ ]c2 ,     and     

    QII = MC + MD − MF − MG[ ]c2  

    Qnet = QI + QII = MA + MB − MC − ME + MC + MD − MF − MG[ ]c2  

    Qnet = QI + QII = MA + MB + MD − ME − MF − MG[ ]c2  

  Thus, reactions may be added. Any product like C used in a 
subsequent reaction does not contribute to the energy balance. 

 (b) Adding all five reactions gives 

    1
1H + 1

1H+ −1
0e + 1

1H+ 1
1H+ −1

0e → 2
4 He + 2ν  

    4 1
1H + 2 −1

0e → 2
4 He + 2ν  

  Adding two electrons to each side gives  

    4 1
1H atom → 2

4 He atom + 2ν  

  Thus, 
   

  

Qnet = 4M
1
1 H

− M
2
4 He

⎡
⎣

⎤
⎦c2

= 4 1.007  825 u( ) − 4.002 603 u[ ] 931.5 MeV u( )
= 26.7 MeV

 

P45.60 (a) From the definition of the volume of a cube and the definition of 

mass density, we have 
   
V = 3 =

m
ρ

, so  

   
   
 =

m
ρ

⎛
⎝⎜

⎞
⎠⎟

1 3

=
70.0 kg

19.1× 103  kg m3

⎛
⎝⎜

⎞
⎠⎟

1 3

= 0.154 m =  
 

15.4 cm  

 (b) We add 92 electrons to both sides of the given nuclear reaction. 
Then it becomes  

    92
238 U atom → 8 2

4 He atom + 82
206 Pb atom  

  The Q value of this reaction is 

   

  

Q = M
92

238 U
−8 M

2
4 He

−M
82

206 Pb
⎡
⎣

⎤
⎦c2

= 238.050 783−8 4.002 603( )−205.974 449⎡⎣ ⎤⎦ 931.5 MeV u( )
Q = 51.7 MeV
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 (c) 

  

The number of decays per second is the decay rate R, and the
energy released in each decay is Q. Then the energy released
per unit time interval is P = QR.

 

 (d) The decay rate for all steps in the radioactive series in steady state 
is set by the parent uranium: 

   

  

N = 7.00× 104  g
238 g mol

⎛
⎝⎜

⎞
⎠⎟

6.02 × 1023  nuclei mol( )
= 1.77 × 1026  nuclei

 

  The decay constant is 
   

  
λ = ln 2

T1 2

= ln 2
4.47 × 109  yr

= 1.55× 10−10  
1
yr

 

  and the rate of decays is then 
   

  

R = λN = 1.55× 10−10  
1
yr

⎛
⎝⎜

⎞
⎠⎟

1.77 × 1026  nuclei( )
= 2.75× 1016  decays yr

 

  so, 

  

P = QR = 51.7 MeV( ) 2.75 × 1016  yr−1( ) 1.60 × 10−13  J MeV( )
= 2.27 × 105  J yr

 

 (e) We know that  

   dose in rem = dose in rad × RBE  

  or 

   5.00 rem/yr = (dose in rad/yr)(1.10)  

  giving  

   (dose in rad/yr) = 4.55 rad/yr 

  The allowed whole-body dose is then  

   
 
70.0 kg( ) 4.55 rad yr( ) 10−2  J kg

1 rad
⎛
⎝⎜

⎞
⎠⎟

= 3.18 J yr  

P45.61 (a) The mass of the pellet is 
   

  

m = ρV = ρ 4π
3

r3 = 0.200 g cm3( ) 4π
3

1.50× 10−2  cm
2

⎛
⎝⎜

⎞
⎠⎟

3⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 3.53× 10−7  g
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  The pellet consists of equal numbers of 2H and 3H atoms, so the 
average molar mass is 2.50 and the total number of atoms is 

   

  

N = 3.53× 10−7  g
2.50 g mol

⎛
⎝⎜

⎞
⎠⎟

6.02 × 1023  atoms mol( )
= 8.51× 1016  atoms

 

  When the pellet is vaporized, the plasma will consist of 2N 
particles (N nuclei and N electrons). The total energy delivered to 
the plasma is 1.00% of 200 kJ or 2.00 kJ. The temperature of the 
plasma is found from 

  
E = 2N( ) 3

2 kBT( )  as 

   
  
T =

E
3NkB

=
2.00 × 103  J

3 8.51× 1016( ) 1.38 × 10−23  J K( ) = 5.68 × 108  K  

 (b) Each fusion event uses 2 nuclei, so N/2 events will occur. From 
Equation 45.4, the energy released by one fusion event is 17.59 
MeV, so the total energy released will be  

   

  

E = N
2

⎛
⎝⎜

⎞
⎠⎟Q = 8.51× 1016

2
⎛
⎝⎜

⎞
⎠⎟

17.59 MeV( ) 1.60× 10−13  J MeV( )
= 1.20× 105  J = 120 kJ

 

P45.62 (a) From the given equation, the ratio of the two intensities is 

   
  

I2

I1

=
I0e

−µ2 x

I0e
−µ1x = e− µ2 −µ1( )x  

 (b) Substituting numerical values into the equation in part (a) gives 

   
  

I50

I100

= exp − 5.40 cm−1 − 41.0 cm−1( ) 0.100 cm( )⎡⎣ ⎤⎦ = e3.56 = 35.2  

 (c) Here, x = 10.0 mm = 1.00 cm, and 
   

  

I50

I100

= exp − 5.40 cm−1 − 41.0 cm−1( ) 1.00 cm( )⎡⎣ ⎤⎦ = e35.6

= 2.89× 1015

 

  Thus, a 1.00-cm-thick aluminum plate has essentially removed the 
long-wavelength x-rays from the beam. 

P45.63 The momentum of the alpha particle and that of the neutron must add 
to zero, so their velocities must be in opposite directions with 
magnitudes related by 

      mn


vn + mα


vα = 0  or (1.008 7 u)vn = (4.002 6 u) vα  
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 At the same time, their kinetic energies must add to 17.6 MeV: 
  

  

E = 1
2

mnvn
2 + 1

2
mαvα

2 = 1
2

(1.008 7  u)vn
2 + 1

2
(4.002 6 u)vα

2

= 17.6 MeV

 

 Substitute   vα = 0.252 0vn  to obtain  
  

  

E = 0.504 35 u( )vn
2 + 0.127  10 u( )vn

2

= 17.6 MeV
1 u

931.494 MeV/c2

⎛
⎝⎜

⎞
⎠⎟

 

 Solving for vn then gives 
  

  
vn = 0.018 9c2

0.631 45
= 0.173c = 5.19 × 107 m/s

 

 Since this speed is not too much greater than 0.1c, we can get a 
reasonable estimate of the kinetic energy of the neutron from the 
classical equation, 

  

  

K = 1
2

mv2 = 1
2

1.008 7  u( ) 0.173c( )2 931.494 MeV/c2

u
⎛
⎝⎜

⎞
⎠⎟

= 14.1 MeV

 

 For a more accurate calculation of the kinetic energy, we should use 
relativistic expressions. Conservation of energy for this reaction 
requires that  

    En + Eα = mnc2 + Kn( ) + mαc2 + Kα( ) = mnc2 + mαc2 + K  [1] 

 where K = 17.6 MeV is the total kinetic energy, and conservation of 
momentum for this reaction requires that 

      

pn + pα = 0 → pn = pα  [2] 

 From the relation between total energy, mass, and momentum of a 
particle, we have  

    E
2 = p2c2 + mc 2( )2

→ p2c2 = E2 − mc 2( )2
 [3] 

 From equations [2] and [3], we may write  

  

  

pn
2c2 = pα

2 c2

En
2 − mnc 2( )2

= Eα
2 − mαc 2( )2

En
2 − Eα

2 = mnc 2( )2
− mαc 2( )2

En − Eα( ) En + Eα( ) = mnc 2( )2
− mαc 2( )2
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 Substituting the above expression into equation [1] gives 
  

  

En −Eα( ) mnc2 + mαc2 + K( ) = mnc 2( )2
− mαc 2( )2

En −Eα =
mnc 2( )2

− mαc 2( )2

mnc2 + mαc2 + K( )

Eα = En −
mnc 2( )2

− mαc 2( )2

mnc2 + mαc2 + K( )

 

 Substituting this result back into equation [1] gives 

  

  

En + En −
mnc 2( )2

− mαc 2( )2

mnc2 + mαc2 + K( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= mnc2 + mαc2 + K

2En = mnc2 + mαc2 + K( ) + mnc 2( )2
− mαc 2( )2

mnc2 + mαc2 + K( )

En =
mnc2 + mαc2 + K( )2

+ mnc 2( )2
− mαc 2( )2

2 mnc2 + mαc2 + K( )

 

 To find the kinetic energy of the neutron, we note that   En = mnc2 + Kn :   

  

  

En =
mnc2 + mαc2 + K( )2

+ mnc 2( )2
− mαc 2( )2

2 mnc2 + mαc2 + K( ) = mnc2 + Kn

Kn =
mnc2 + mαc2 + K( )2

+ mnc 2( )2
− mαc 2( )2

2 mnc2 + mαc2 + K( ) − mnc2

 

 For K = 17.6 MeV,  
  

  mnc2 = 1.008 7 u( )c2 931.494 MeV c2 ⋅u( ) = 939.60 MeV
 

 and    mαc2 = 4.002 6 u( )c2 931.494 MeV c2 ⋅u( ) = 3 728.4 MeV  

 we find that   Kn = 14.0 MeV .  

P45.64 (a) The number of Pu nuclei in 1.00 kg is  

   
 

6.02 × 1023  nuclei mol
239.05 g mol

1 000 g( ) = 2.52 × 1024  nuclei  

  The total energy is  
   

 
25.2 × 1023  nuclei( ) 1 fission

nucleus
⎛
⎝⎜

⎞
⎠⎟

200 MeV
 fission

⎛
⎝⎜

⎞
⎠⎟ = 5.04× 1026  MeV
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E = 5.04 × 1026  MeV( ) 4.44 × 10−20  kWh MeV( )
= 2.24 × 107  kWh

 

  or   22 million kWh. 

 (b) 

  

E = Δmc2 = 3.016 049 u + 2.014 102 u − 4.002 603 u − 1.008 665 u( )
× 931.5 MeV u( )

  

  
  
E = 17.6 MeV for each D-T fusion  

 (c)   En = total number of D nuclei( ) 17.6 MeV( ) 4.44 × 10−20  kWh/MeV( )  

  

  

En =
6.02 × 1023

mol
⎛
⎝⎜

⎞
⎠⎟

1 000 g
2.014 g/mol

⎛
⎝⎜

⎞
⎠⎟

17.6 MeV( )

× 4.44 × 10−20  kWh/MeV( )
      = 2.34 × 108  kWh

 

 (d) 
  
En = the number of C atoms in 1.00 kg( ) × 4.20 eV

kg
⎛
⎝⎜

⎞
⎠⎟

 

  

  

En =
6.02 × 1026

12 g
⎛
⎝⎜

⎞
⎠⎟

4.20 × 10−6  MeV( ) 4.44 × 10−20  kWh/MeV( )
= 9.36 kWh

 

 (e) 

 

Coal is cheap at this moment in human history. We 
hope that safety and waste disposal problems can 
be solved so that nuclear energy can be affordable 
before scarcity drives up the price of fossil fuels. Burning 
coal in the open puts carbon dioxide into the atmosphere, 
worsening global warming. Plutonium is a very
dangerous material to have sitting around.

 

P45.65 (a) We have 1.00 kg – (1.00 kg)(0.007 20) – (1.00 kg)(0.000 0500) =  
0.993 kg of 238U, comprising  

    

  

N = 0.993 kg( ) 6.02 × 1023  nuclei
 mol

⎛
⎝⎜

⎞
⎠⎟

1 mol
0.238 kg

⎛
⎝⎜

⎞
⎠⎟

= 2.51× 1024  nuclei

 



Chapter 45     1183 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  with activity  

    

  

R = λN = ln 2
4.47 × 109  yr

2.51× 1024  nuclei( )

                                  × 1 yr
3.16× 107  s

⎛
⎝⎜

⎞
⎠⎟

1 Ci
3.70× 1010  s−1

⎛
⎝⎜

⎞
⎠⎟

= 3.3× 10−4  Ci = 330 µCi

 

  We have (1.00 kg)(0.007 20) = 0.007 2 kg of 235U, comprising  
    

  

N = 0.007 2 kg( ) 6.02 × 1023  nuclei
 mol

⎛
⎝⎜

⎞
⎠⎟

1 mol
0.235 kg

⎛
⎝⎜

⎞
⎠⎟

= 1.84× 1022  nuclei

 

  with activity  

    

  

R = λN = ln 2
7.04× 108  yr

1.84× 1022  nuclei( )

                                  × 1 yr
3.16× 107  s

⎛
⎝⎜

⎞
⎠⎟

1 Ci
3.70× 1010  s−1

⎛
⎝⎜

⎞
⎠⎟

= 1.6× 10−5  Ci = 16 µCi

 

  We have (1.00 kg)(0.000 0500) = 5.00 × 10–5 kg of 234U, comprising  
    

  

N = 5.00× 10−5  kg( ) 6.02 × 1023  nuclei
 mol

⎛
⎝⎜

⎞
⎠⎟

1 mol
0.234 kg

⎛
⎝⎜

⎞
⎠⎟

= 1.29× 1020  nuclei

 

  with activity  

    

  

R = λN = ln 2
2.44× 105  yr

1.29× 1020  nuclei( )

                                  × 1 yr
3.16× 107  s

⎛
⎝⎜

⎞
⎠⎟

1 Ci
3.70× 1010  s−1

⎛
⎝⎜

⎞
⎠⎟

= 3.1× 10−4  Ci = 310 µCi

 

 (b) The total activity is (330 + 16 + 310) µCi = 656 µCi, so the fractional 
contributions are, respectively, 330/656 = 50%, 16/656 = 2.4%, 
and 310/656 =  47% 

 (c) 

 

It is dangerous, notably if the material is inhaled as a 
powder. With precautions to minimize human contact, 
however, microcurie sources are routinely used in 
laboratories.
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P45.66 (a) The number of molecules in 1.00 liter of water (mass = 1 000 g) is 
   

  

N =
1.00 × 103  g
18.0 g mol

⎛
⎝⎜

⎞
⎠⎟

6.02 × 1023  molecules mol( )
= 3.34 × 1025  molecules

 

  The number of deuterium nuclei contained in these molecules is 
   

  

′N = 3.34 × 1025  molecules( ) 1 deuteron
3 300 molecules

⎛
⎝⎜

⎞
⎠⎟

= 1.01× 1022  deuterons

 

  Since 2 deuterons are consumed per fusion event, the number of 

events possible is 
  

′N
2

= 5.07 × 1021  reactions, and the energy 

released is 
   

  

Efusion = 5.07 × 1021  reactions( ) 3.27 MeV reaction( )
= 1.66 × 1022  MeV

 

   
  Efusion = 1.66 × 1022  MeV( ) 1.60 × 10−13  J MeV( ) = 2.65 × 109  J  

 (b) In comparison to burning 1.00 liter of gasoline, the energy from 
the fusion of deuterium is  

   
  

Efusion

Egasoline

=
2.65 × 109  J
3.40 × 107  J

= 78.0 times larger  

P45.67 (a) At 6 × 108 K, the average kinetic energy of a carbon atom is 

   
  

3
2

kBT = 1.5( ) 8.62 × 10−5  eV K( ) 6 × 108  K( ) = 8 × 104  eV  

  Note that 6 × 108 K is about 62 = 36 times larger than 1.5 × 107 K, 
the core temperature of the Sun. This factor corresponds to the 
higher potential-energy barrier to carbon fusion compared to 
hydrogen fusion. It could be misleading to compare it to the 
temperature ~ 108 K required for fusion in a low-density plasma 
in a fusion reactor. 

 (b) The energy released is 
   

  

Q = 2M
C12 − M

Ne20 − M
He4⎡⎣ ⎤⎦c2

Q = 2 12.000 000 u( ) − 19.992 440 u − 4.002 603 u[ ]
                                                                × 931.5 MeV u( )

= 4.62 MeV
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  In the second reaction, 
   

  

Q = 2M
C12 − M

Mg24
⎡
⎣

⎤
⎦c2

Q = 2 12.000 000 u( ) − 23.985 042 u[ ] 931.5 MeV u( )
= 13.9 MeV

 

 (c) The energy released is the energy of reaction of the number of 
carbon nuclei in a 2.00-kg sample, which corresponds to 

   

  

ΔE = 2.00 × 103  g( ) 6.02 × 1023  atoms mol
12.0 g mol

⎛
⎝⎜

⎞
⎠⎟

×
4.62 MeV fusion event
2 nuclei fusion event

⎛
⎝⎜

⎞
⎠⎟

1 kWh
2.25 × 1019  MeV

⎛
⎝⎜

⎞
⎠⎟

ΔE =
1.00 × 1026( ) 4.62( )

2 2.25 × 1019( ) kWh = 1.03 × 107  kWh

 

P45.68 From Table 44.2 of isotopic masses, the half-life of 32P is 14.26 d. Thus, 
the decay constant is 

  
  
λ =

ln 2
T1 2

=
ln 2

14.26 d
= 0.048 6 d−1 = 5.63 × 10−7  s−1  

 and the initial number of nuclei is 

  
  
N0 =

R0

λ
=

5.22 × 106  decay s
5.63 × 10−7  s−1 = 9.28 × 1012  nuclei  

 At t = 10.0 days, the number remaining is 
  

  

N = N0 e−λ t = 9.28× 1012  nuclei( )exp − 0.048 6 d−1( ) 10.0 d( )⎡⎣ ⎤⎦
= 5.71× 1012  nuclei

 

 so the number of decays has been N0 – N = 3.57 × 1012 and the energy 
released is 

  
  E = 3.57 × 1012( ) 700 keV( ) 1.60 × 10−16  J keV( ) = 0.400 J  

 If this energy is absorbed by 100 g of tissue, the absorbed dose is 

  
 
Dose =

0.400 J
0.100 kg

⎛
⎝⎜

⎞
⎠⎟

1 rad
10−2  J kg

⎛
⎝⎜

⎞
⎠⎟

= 400 rad  

P45.69 (a) The thermal power transferred to the water is Pw = 0.970 (waste 
heat): 

   
  Pw = 0.970 3 065 MW − 1 000 MW( )= 2.00× 109  J s  



1186     Applications of Nuclear Physics 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

  rw is the mass of water heated per hour: 

   
  
rw =

Pw

c ΔT( ) =
2.00 × 109  J s( ) 3600 s h( )
4186 J kg ⋅ °C( ) 3.50 °C( ) = 4.92 × 108  kg h  

  Then, the volume used per hour is    

 

4.91× 108  kg h
1.00 × 103  kg m3 = 4.92 × 105  m3 h  

 (b) The 235U fuel is consumed at a rate 

   
  
rf =

3 065 × 106  J s
7.80 × 1010  J g

⎛
⎝⎜

⎞
⎠⎟

1 kg
1 000 g

⎛
⎝⎜

⎞
⎠⎟

3 600 s
1 h

⎛
⎝⎜

⎞
⎠⎟ = 0.141 kg h  

P45.70 We add two electrons to both sides of the given reaction. 

 Then,  4 1
1H atom → 2

4 He atom + 2ν ,  

 where 

  

Q = Δm( )c2 = 4 1.007 825 u( ) − 4.002603 u⎡⎣ ⎤⎦ 931.5 MeV u( )
= 26.7 MeV

 

 or    Q = 26.7 MeV( ) 1.60 × 10−13  J MeV( ) = 4.28 × 10−12  J  

 The proton fusion rate is then 
   

 

rate =
power output

energy per proton
=

3.85 × 1026  J s
4.28 × 10−12  J( ) 4 protons( )

= 3.60 × 1038  protons s

 

 
 

 

Challenge Problems 

P45.71 The initial specific activity of 59Fe in the steel is 
   

  

R m( )0
= 20.0 µCi

0.200 kg
= 100 µCi

kg
⎛
⎝⎜

⎞
⎠⎟

3.70× 104
 Bq

1 µCi
⎛
⎝⎜

⎞
⎠⎟

= 3.70× 106
 Bq kg

 

 The decay constant of 59Fe is 
 
λ=

ln 2
45.1 d

1 d
24 h

⎛
⎝⎜

⎞
⎠⎟

.  
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After 1 000 h, the activity is  

   

  

R
m

=
R
m

⎛
⎝⎜

⎞
⎠⎟ 0

e−λ t

= 3.70 × 106  Bq kg( )exp −
ln 2

45.1 d
⎛
⎝⎜

⎞
⎠⎟

1 d
24 h

⎛
⎝⎜

⎞
⎠⎟ 1 000 h( )⎡

⎣⎢
⎤
⎦⎥

= 1.95 × 106  Bq kg

 

 The activity of the oil is  

   
  
Roil =

800
60.0

Bq liter⎛
⎝⎜

⎞
⎠⎟ (6.50 liters) = 86.7 Bq  

 Therefore,    

   
  
min oil =

Roil

R m( ) =
86.7 Bq

1.95 × 106
 Bq kg

= 4.44 × 10−5
 kg  

 So that the wear rate is 
 

4.45 × 10−5  kg
1 000 h

= 4.44 × 10−8  kg h .  

P45.72 (a) The number of fissions occurring in the zeroth, first, second, …, 
nth generation is 

     N0 , N0K , N0K 2 , …, N0K
n  

  The total number of fissions that have occurred up to and 
including the nth generation is 

   
  N = N0 + N0K + N0K

2 +…+ N0K
n = N0 1 + K + K2 +…+ Kn( )  

  Note that the factoring of the difference of two squares, a2 – 1 =  
(a + 1) (a – 1), can be generalized to a difference of two quantities 
to any power, 

   
  

a3 − 1 = a2 + a + 1( ) a − 1( )
an+1 − 1 = an + an−1 +…+ a2 + a + 1( ) a − 1( )

 

  Thus, 
  
Kn + Kn−1 +…+ K 2 + K + 1 =

Kn+1 − 1
K − 1

 

  and 
  

N = N0
Kn+1 − 1

K − 1
 

 (b) The number of U-235 nuclei is 
   

  
N = 5.50 kg( ) 1 atom

235 u
⎛
⎝⎜

⎞
⎠⎟

1 u
1.66× 10−27  kg

⎛
⎝⎜

⎞
⎠⎟

= 1.41× 1025  nuclei
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  We solve the equation from part (a) for n, the number of 
generations: 

   
  

N
N0

K − 1( ) = Kn+1 − 1  

   
  

N
N0

K − 1( ) + 1 = Kn K( )  

   

  

nln K = ln
N K − 1( ) N0 + 1

K
⎛
⎝⎜

⎞
⎠⎟
= ln

N K − 1( )
N0

+ 1
⎛
⎝⎜

⎞
⎠⎟
− ln K

n =
ln N K − 1( ) N0 + 1( )

ln K
− 1=

ln 1.41× 1025 0.1( ) 1020 + 1( )
ln1.1

− 1

  = 99.2

 

  Therefore time must be allotted for 100 generations: 

   
  
Δtb = 100 10 × 10−9  s( ) = 1.00 × 10−6  s = 1.00 µs  

 (c) The speed of sound in uranium is 

   
  
v =

B
ρ

=
150 × 109  N m2

18.7 × 103  kg m3 = 2.83 × 103  m s = 2.83 km/s  

 (d) From the definitions of volume and mass density,
  
V =

4
3
π r3 =

m
ρ

, 

and  

   
  
r = 3m

4πρ
⎛
⎝⎜

⎞
⎠⎟

1 3

=
3 5.5 kg( )

4π 18.7 × 103  kg m3( )
⎛

⎝
⎜

⎞

⎠
⎟

1 3

= 4.13× 10−2  m  

  then, the time interval is given by 

   
  
Δtd = r

v
= 4.13× 10−2  m

2.83× 103  m s
= 1.46× 10−5  s = 14.6 µs  

 (e) 14.6 µs is greater than 1 µs, so the entire bomb can fission. The 
destructive energy released is 

    

 

1.41× 1025  nuclei( ) 200× 106  eV
fissioning nucleus

⎛
⎝⎜

⎞
⎠⎟

1.60× 10−19  J
1 eV

⎛
⎝⎜

⎞
⎠⎟

= 4.51× 1014  J
1 ton TNT
4.20× 109  J

⎛
⎝⎜

⎞
⎠⎟

= 1.08× 105  ton TNT

= 108 kilotons of TNT
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  What if? If the bomb did not have an “initiator” to inject 1020 
neutrons at the moment when the critical mass is assembled, the 
number of generations would be 

    
  
n =

ln 1.41× 1025 0.1( ) 1+ 1( )
ln 1.1

− 1 = 582.4    

  requiring   
 583 10 × 10−9  s( ) = 5.83 µs  

  This time is not very short compared with 14.6 µs, so this bomb 
would likely release much less energy. 

P45.73 (a) EI = 10.0 eVis the energy required to liberate an electron from a 
dynode. Let ni be the number of electrons incident upon a 
dynode, each having gained energy  eΔV  as it was accelerated to 
this dynode. The number of electrons that will be freed from this 

dynode is 
 
Ni = nie

ΔV
EI

. 

  At the first dynode, ni = 1 and  

    
  
N1 =

1( )e 100 V( )
10.0 eV

= 101  electrons  

 (b) For the second dynode, ni = N1 = 101, so  

    
  
N2 =

(101)e 100 V( )
10.0 eV

= 102  

  At the third dynode, ni = N2 = 102 and  

    
  
N3 =

(102 )e 100 V( )
10.0 eV

= 103  

  Observing the developing pattern, we see that the number of 
electrons incident on the nth dynode is   nn = Nn−1 = 10n−1 , so for 

the seventh and last dynode is 
  
n7 = N6 = 106 . 

 (c) The number of electrons incident on the last dynode is n7 = 106. 
The total energy these electrons deliver to that dynode is given by 

   
  E = nie ΔV( ) = 106 e 700 V − 600 V( ) = 108  eV  
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P45.2 0.403 g 

P45.4 2.63 kg/d 

P45.6 (a) 173 MeV; (b) 0.078 8% 

P45.8 26 

P45.10 (a) 4 × 1015 g; (b) 5 ×103 yr; (c) The uranium comes from rocks and 
minerals dissolved in water and carried into the ocean by rivers;  
(d) No. 

P45.12 (a) 16.2 kg; (b) 117 g 

P45.14 (a) 4.84V−1/3; (b) 6V−1/3; (c) 6.30V−1/3; (d) The sphere has minimum 
leakage and the parallelepiped has minimum leakage. 

P45.16 6.25 × 1019 Bq 

P45.18 By balancing the equation for electric charge and number of nucleons, 
we find that n = 1. If one incoming neutron results in just one outgoing 
neutron, the possibility of a chain reaction is not there, so this nuclear 
reactor will not work. 

P45.20 (a)  4.56× 10−24  kg ⋅m/s;  (b) 0.145 nm; (c) This size has the same order 
of magnitude as an atom’s outer electron cloud, and is vastly larger 
than a nucleus. 

P45.22 3.07 × 1022 events 

P45.24 (a) E = 144Z1Z2 where E is in keV; (b) The energy is proportional to 
each atomic number; (c) Take Z1 = 1 and Z2 = 59 or vice versa. This 
choice minimizes the product Z1 Z2; (d) 144 keV for both, according to 
this model 

P45.26 (a) 3.24 fm; (b) 444 keV; (c) 
  

2
5

vi ; (d) 740 keV; (e) possibly by tunneling 

P45.28 (a) 1.66 × 107 J; (b) 6.45 kg 

P45.30 (a)   7
13 N ; (b)   6

13 C ; (c)   7
14 N ; (d)   8

15 O ; (e)   7
15N ; (f)   6

12 C ; (g) The original 
carbon-12 nucleus is returned so the overall reaction is 

 4 1
1H( )  →    2

4 He.  

P45.32 (a) 2.5 mrem/x-ray; (b) The technician’s occupational exposure is high 
compared to background radiation; it is 38 times 0.13 rem/yr. 
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P45.34 (a) 
 

ln 2( )
µ

; (b) 
  
−

ln f
µ

 

P45.36 18.8 J 

P45.38 It would take over 24 days to raise the temperature of the water to 
100°C and even longer to boil it, so this technique will not work for a 
20-minute coffee break! 

P45.40 1.14 rad 

P45.42 3.96 × 10–4 J/kg 

P45.44 (a) See P45.44(a) for full explanation; (b) 
 

R
λ

 

P45.46 (a) 8.68 MeV; (b) The particles must have enough kinetic energy to 
overcome their mutual electrostatic repulsion so that they can get close 
enough to fuse. 

P45.48 (a) 103 Pa; (b) 6 × 109 m3; (c) 6 × 1012 J; (d) ~1014 J; (e) ~ 104 ton TNT 

P45.50 (a) 27.6 min; (b) 30 min ± 27% 

P45.52 (a) See P45.52(a) for full explanation; (b) 177 MeV; (c) KBr = 112.0 MeV, 
KLa = 65.4 MeV; (d) vBr = 15.8 Mm/s, vLa = 9.30 Mm/s  

P45.54 232 yr 

P45.56 482 Ci, less than the fission inventory by on the order of a hundred 
million times. 

P45.58 
  
 

mNAE
MU-235 cw 100 − Tc( ) + Lv  + cs Th  – 100( )⎡⎣ ⎤⎦

 

P45.60 (a) 15.4 cm; (b) 51.7 MeV; (c) The number of decays per second is the 
decay rate R, and the energy released in each decay is Q. Then the 
energy released per unit time interval is P = QR; (d) 2.27 × 105 J/yr;  
(e) 3.18 J/yr 

P45.62 (a) See P45.62(a) for full explanation; (b) 35.2; (c) 2.89 × 1015 

P45.64 (a) 2.24 × 107 kWh; (b) 17.6 MeV for each D-T fusion; (c) 2.34 × 108 kWh; 
(d) 9.36 kWh; (e) Coal is cheap at this moment in human history. We 
hope that safety and waste disposal problems can be solved so that 
nuclear energy can be affordable before scarcity drives up the price of 
fossil fuels. Burning coal in the open puts carbon dioxide into the 
atmosphere, worsening global warming. Plutonium is a very 
dangerous material to have sitting around. 

P45.66 (a) 2.65 × 109 J; (b) 78.0 times larger 
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P45.68 400 rad 

P45.70 3.60 × 1038 protons/s 

P45.72 (a) See P45.72(a) for full explanation; (b) 1.00   µs;  (c) 2.83 km/s;  
(d) 14.6   µs;  (e) 108 kilotons of TNT 
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46 
Particle Physics and Cosmology 

 

CHAPTER OUTLINE 
 

46.1  The Fundamental Forces in Nature 

46.2  Positrons and Other Antiparticles 

46.3  Mesons and the Beginning of Particle Physics 

46.4 Classification of Particles 

46.5  Conservation Laws 

46.6 Strange Particles and Strangeness 

46.7 Finding Patterns in the Particles 

46.8 Quarks 

46.9 Multicolored Quarks 

46.10 The Standard Model 

46.11 The Cosmic Connection 

46.12 Problems and Perspectives 
 

* An asterisk indicates a question or problem new to this edition. 

 

ANSWERS TO OBJECTIVE QUESTIONS 
 

OQ46.1 Answers (a), (b), (c), and (d). Protons feel all these forces; but within 
a nucleus the strong interaction predominates, followed by the 
electromagnetic interaction, then the weak interaction. The 
gravitational interaction is very small.  

OQ46.2 Answer (e). Kinetic energy is transformed into internal energy:  

  Q = −ΔK.  In the first experiment, momentum conservation requires 
the final speed be zero:  

     p1 = mv − mv = 2mv f → v f = 0  
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 The kinetic energy converted into internal energy is mv2:  

   
  
ΔK1 = K f − Ki = 0 − 1

2 mv2 + 1
2 mv2( ) = −mv2 → Q1 = mv2  

 In the second experiment, momentum conservation requires the final 
speed be half the initial speed:  

   
  
p2 = mv + m 0( ) = 2mv f → v f =

v
2

 

 The kinetic energy converted into internal energy is 
  

mv2

4
:  

   

  
ΔK2 = K f − Ki = 1

2
2m( ) v

2
⎛
⎝⎜

⎞
⎠⎟

2

− 1
2

mv2 = − mv2

4
→ Q2 = mv2

4

 

OQ46.3 Answer (b). There are 
  
2s + 1( ) = 2 3

2 + 1( ) = 4  states: the z component of 

its spin angular momentum can be 3/2, 1/2, –1/2, or –3/2, in units of 
  .  

OQ46.4 Answer (b). According the Table 46.1, the photon mediates the 
electromagnetic force, the graviton the gravitational force, and the 
W+ and Z bosons the weak force.  

OQ46.5 Answer (c). According to Table 46.2, the muon has much more rest 
energy (105.7 MeV/c2) than the electron (0.511 MeV/c2) and the 
neutrinos together (< 0.3 MeV/c2). The missing rest energy goes into 
kinetic energy:   

mµc2 = Ktotal + mec
2 + mνe

c2 + mνµ
c2.  

OQ46.6 Answer (a). The vast gulfs not just between stars but between 
galaxies and especially between clusters, empty of ordinary matter, 
are important to bring down the average density of the Universe. We 
can estimate the average density defined for the Solar System as the 
mass of the Sun divided by the volume of a sphere of radius  
2 × 1016 m: 

   

 

2 × 1030  kg
4
3
π (2 × 1016  m)3

= 6× 10−20  kg/m3 = 6× 10−23  g/cm3
 

 This is ten million times larger than the critical density 3H2/8π G  
= 6 × 10–30 g/cm3.  

OQ46.7 Answer (b). Momentum would not be conserved. The electron and 
positron together have very little momentum. A 1.02-MeV photon 
has a definite amount of momentum. Production of a single gamma 
ray could not satisfy the law of conservation of momentum, which 
must hold true in this—and every—interaction. 
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OQ46.8 The sequence is c, b, d, e, a, f, g. Refer to Figure 46.16 in the textbook. 
The temperature corresponding to b is on the order of 1013 K. That for 
hydrogen fusion d is on the order of 107 K. A fully ionized plasma 
can be at 104 K. Neutral atoms can exist at on the order of 3 000 K, 
molecules at 1 000 K, and solids at on the order of 500 K. 

 
 

ANSWERS TO CONCEPTUAL QUESTIONS 
 

CQ46.1 The electroweak theory of Glashow, Salam, and Weinberg predicted 
the W+, W–, and Z particles. Their discovery in 1983 confirmed the 
electroweak theory. 

CQ46.2 Hadrons are massive particles with internal structure. There are two 
classes of hadrons: mesons (bosons) and baryons (fermions). 
Hadrons are composed of quarks, so they interact via the strong 
force. Leptons are light particles with no structure. All leptons are 
fermions. It is believed that leptons are fundamental particles 
(otherwise, there would be leptonic bosons); leptons are not 
composed of quarks, so they do not interact via the strong force.  

CQ46.3 Before that time, the Universe was too hot for the electrons to remain 
bound to any nucleus. The thermal motion of both nuclei and 
electrons was too rapid for the Coulomb force to dominate. The 
Universe was so filled high energy photons that any nucleus that 
managed to captured an electron would immediately lose it because 
of Compton scattering or the photoelectric effect.  

CQ46.4 Baryons are heavy hadrons; they are fermions with spin 
 

1
2

, 
 

3
2

, 
 

5
2

, …; 

they are composed of three quarks. (Antibaryons are composed of 
three antiquarks.) Mesons are light hadrons; they are bosons with 
spin 0, 1, 2, …; they are composed of a quark and an antiquark. 

CQ46.5 The decay is slow, relatively speaking. The decays by the weak 
interaction typically take 10–10 s or longer to occur. This is slow in 
particle physics. The decay does not conserve strangeness: the  Ξ0  has 
strangeness of  –2, the  Λ0  has strangeness –1, and the  π

0  has 
strangeness 0. (Refer to Table 46.2.) 

CQ46.6 The word “color” has been adopted in analogy to the properties of the 
three primary colors (and their complements) in additive color 
mixing. Each flavor of quark can have colors, designated as red, 
green, and blue. Antiquarks are colored antired, antigreen, and 
antiblue. We call baryons and mesons colorless. A baryon consists of 
three quarks, each having a different color: the analogy is three 
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primary colors combine to form no color: colorless white. A meson 
consists of a quark of one color and antiquark with the 
corresponding anticolor: the analogy is a primary color and its 
complementary color combine to form no color: colorless white.  

CQ46.7 No. Antibaryons have baryon number –1, mesons have baryon 
number 0, and baryons have baryon number +1. The reaction cannot 
occur because it would not conserve baryon number, unless so much 
energy is available that a baryon-antibaryon pair is produced. 

CQ46.8 The Standard Model consists of quantum chromodynamics (to 
describe the strong interaction) and the electroweak theory (to 
describe the electromagnetic and weak interactions). The Standard 
Model is our most comprehensive description of nature. It fails to 
unify the two theories it includes, and fails to include the 
gravitational force. It pictures matter as made of six quarks and six 
leptons, interacting by exchanging gluons, photons, and W and Z 
bosons. In 2011 and 2012, experiments at CERN produced evidence 
for the Higgs boson, a cornerstone of the Standard Model. 

CQ46.9 (a) Baryons consist of three quarks. 
(b) Antibaryons consist of three antiquarks. 
(c) and (d) Mesons and antimesons consist of a quark and an 
antiquark. 

 Since quarks have spin quantum number 
 

1
2

 and can be spin-up or 

spin-down, it follows that the baryons and antibaryons must have a 

half-integer spin (
 

1
2

, 
 

3
2

, …), while the mesons and antimesons must 

have integer spin (0, 1, 2, …). 

CQ46.10 We do know that the laws of conservation of momentum and energy 
are a consequence of Newton’s laws of motion; however, 
conservation of baryon number, lepton number, and strangeness 
cannot be traced to Newton’s laws. Even though we do not know 
what electric charge is, we do know it is conserved, so too we do not 
know what baryon number, lepton number, or strangeness are, but 
we do know they are conserved—or in the case of strangeness, 
sometimes conserved—from observations of how elementary 
particles interact and decay. You can think of these conservation laws 
as regularities which we happen to notice, as a person who does not 
know the rules of chess might observe that one player’s two bishops 
are always on squares of opposite colors. (From the observation of 
the behavior of baryon number, lepton number, and strangeness in 
particle interactions, gauge theories, which are not discussed in the 
textbook, have been developed to describe that behavior.)  
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CQ46.11 The interactions and their field particles are listed in Table 46.1. 

 Strong Force—Mediated by gluons. 
Electromagnetic Force—Mediated by photons. 
Weak Force—Mediated by W+, W–, and Z0 bosons. 
Gravitational Force—Mediated by gravitons (not yet observed). 

CQ46.12 Hubble determined experimentally that all galaxies outside the Local 
Group are moving away from us, with speed directly proportional to 
the distance of the galaxy from us, by observing that their light 
spectra were red shifted in direct relation to their distance from the 
Local Group.  

CQ46.13 The baryon number of a proton or neutron is one. Since baryon 
number is conserved, the baryon number of the kaon must be zero. 
See Table 46.2.  

 
 
 

SOLUTIONS TO END-OF-CHAPTER PROBLEMS 
 

Section 46.1 The Fundamental Forces in Nature 

Section 46.2 Positrons and Other Antiparticles 
P46.1 (a) The rest energy of a total of 6.20 g of material is converted into 

energy of electromagnetic radiation: 
   

  
E = mc2 = 6.20 × 10−3  kg( ) 2.998 × 108 m s( )2

= 5.57 × 1014  J
 

 (b) 

 

5.57 × 1014  J = 5.57 × 1014  J
$0.11
kWh

⎛
⎝⎜

⎞
⎠⎟

k
1 000

⎛
⎝⎜

⎞
⎠⎟

W
J s

⎛
⎝⎜

⎞
⎠⎟

1 h
3 600 s

⎛
⎝⎜

⎞
⎠⎟

= $1.70 × 107

 

P46.2 (a) The minimum energy is released, and hence the minimum 
frequency photons are produced, when the proton and antiproton 
are at rest when they annihilate. 

  That is, E = E0 and K = 0. To conserve momentum, each photon 
must have the same magnitude of momentum, and p = E/c, so 
each photon must carry away one-half the energy. 

  Thus  
  
Emin =

2E0

2
= E0 = 938.3 MeV = hfmin .  

  Thus, 
  
fmin =

938.3 MeV( ) 1.602 × 10−13 J MeV( )
6.626 × 10−34  J ⋅ s

= 2.27 × 1023  Hz .  
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 (b) 
  
λ =

c
fmin

=
2.998 × 108 m s
2.27 × 1023  Hz

= 1.32 × 10−15  m  

P46.3 (a) Assuming that the proton and antiproton are left nearly at rest 
after they are produced, the energy E of the photon must be 

   

  

E = 2E0 = 2 938.3 MeV( ) = 1 876.6 MeV
1.602 × 10−13  J

1 MeV
⎛
⎝⎜

⎞
⎠⎟

= 3.01× 10−10  J

 

  Thus, E = hf = 3.01 × 10–10 J, so 

   
  
f =

3.01× 10−10  J
6.626 × 10−34  J ⋅ s

= 4.53 × 1023  Hz  

 (b) 
  
λ =

c
f

=
2.998 × 108 m s
4.53 × 1023  Hz

= 6.61× 10−16  m  

P46.4 The half-life of 14O is 70.6 s, so the decay constant is 
  
λ =

ln 2
T1 2

=
ln 2

70.6 s
.  

 The number of 14O nuclei remaining after five minutes is 

   
  
N = N0e

−λ t = 1010( )exp −
ln 2

70.6 s
300 s( )⎡

⎣⎢
⎤
⎦⎥

= 5.26 × 108  

 The number of these in one cubic centimeter of blood is 
   

  

′N = N
1.00 cm3

total volume of blood
⎛
⎝⎜

⎞
⎠⎟

= 5.26 × 108( ) 1.00 cm3

2 000 cm3

⎛
⎝⎜

⎞
⎠⎟

= 2.63 × 105

 

 and their activity is 

  
R = λ ′N =

ln 2
70.6 s

2.63 × 105( ) = 2.58 × 103  Bq  ~103  Bq  

P46.5 The total energy of each particle is the sum of its rest energy and its 
kinetic energy. Conservation of system energy requires that the total 
energy before this pair production event equal the total energy after. In 

 γ → p+ + p− ,  conservation of energy requires that  

  

  

Eγ → E
p+ + E

p−

Eγ → mpc2 + K
p+( ) + mpc2 + K

p−( )  

 or 
 
Eγ = ERp + Kp( ) + ERp + Kp( )  
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 The energy of the photon is given as  
  

  Eγ = 2.09 GeV = 2.09× 103  MeV  

 From Table 46.2 or from the problem statement, we see that the rest 
energy of both the proton and the antiproton is  

  
  
ERp = ER p = mpc

2 = 938.3 MeV  

 If the kinetic energy of the proton is observed to be 95.0 MeV, the 
kinetic energy of the antiproton is 

  

  

Kp  = Eγ  − ERp  −  ERp − Kp

= 2.09× 103  MeV – 2(938.3 MeV) – 95.0 MeV = 118 MeV

 

 
 

 

Section 46.3 Mesons and the Beginning of Particle Physics 

P46.6 The creation of a virtual Z0 boson is an energy fluctuation 

  ΔE = m
Z0 c2 = 91× 109  eV.  By the uncertainty principle, it can last no 

longer than 
   
Δt =


2ΔE

 and move no farther than 

   

  

c Δt( ) = hc
4π ΔE

=
6.626× 10−34  J ⋅s( ) 3.00× 108 m s( )

4π 91× 109  eV( )
1 eV

1.60× 10−19  J
⎛
⎝⎜

⎞
⎠⎟

= 1.06× 10−18  m = ~ 10−18  m

 

P46.7 (a) The particle’s rest energy is mc2. The time interval during which a 
virtual particle of this mass could exist is at most  Δt  in 

   
ΔEΔt = 

2
= mc2Δt;  or 

   
Δt =


2mc2 ;  so, the distance it could move 

(traveling at the speed of light) is at most 

   

   

d ≈ cΔt =
c

2mc2 =
6.626 × 10−34  J ⋅ s( ) 2.998 × 108  m/s( )

4πmc2 1.602 × 10−19  J/eV( )
=

1.240 × 10−6  eV ⋅m
4πmc2

1 nm
10−9  m

⎛
⎝⎜

⎞
⎠⎟ =

1 240 eV ⋅nm
4πmc2

=
98.7 eV ⋅nm

mc2
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  or 
  
d ≈

98.7
mc2 ,  where d is in nanometers and mc2 is in electron volts.  

  According to Yukawa’s line of reasoning, this distance is the 
range of a force that could be associated with the exchange of 
virtual particles of this mass. 

 (b) The range is inversely proportional to the mass of the field 
particle. 

 (c) The value of mc2 for the proton in electron volts is 938.3 × 106. The 
range of the force is then  

   

  

d ≈
98.7
mc2 =

98.7
938.3 × 106 = 1.05 × 10−7  nm( ) 10−9

1 nm
⎛
⎝⎜

⎞
⎠⎟

= 1.05 × 10−16  m ~ 10−16  m

 

 
 

 

Section 46.4 Classification of Particles 

Section 46.5 Conservation Laws 

*P46.8 
 

Baryon number conservation allows the first and forbids the second .  

P46.9 The energy and momentum of a photon are related by   pγ = Eγ c .  By 
momentum conservation, because the neutral pion is at rest, the 
magnitudes of the momenta of the two photons are equal; thus, their 
energies are equal.  

 (a) From Table 46.2,   mπ 0 = 135 MeV c2 .  Therefore,  

   
  
Eγ =

mπ 0 c2

2
=

135.0 MeV
2

= 67.5 MeV  for each photon 

 (b) 
  
p =

Eγ

c
= 67.5 MeV c  

 (c) 
  
f =

Eγ

h
=

67.5 MeV
6.626 × 10−34  J ⋅ s

1.602 × 10−13  J
MeV

⎛
⎝⎜

⎞
⎠⎟

= 1.63 × 1022  Hz  

P46.10 The time interval for a particle traveling with the speed of light to 
travel a distance of 3 × 10–15 m is 

   
  
Δ t =

d
v

=
3 × 10−15  m

3.00 × 108  m s
= ~ 10−23  s  
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P46.11 (a)  p + p → µ+ + e−    Lµ : 0 + 0→ −1 + 0  and   Le : 0 + 0→ 0 + 1  

   muon lepton number and electron lepton number 

 (b)  π
− + p → p + π +  

 
charge : − 1 + 1→ +1 + 1  

 (c)  p + p → p + p + n  
 

baryon number : 1 + 1→ 1 + 1 + 1  

 (d)  γ + p → n + π 0  
 

charge : 0 + 1→ 0 + 0  

 (f)   νe + p → n + e+    Le : 1 + 0→ 0 − 1  

   
 

electron lepton number  

P46.12 (a) Baryon number and charge are conserved, with respective values 
of 

   baryon: 0 + 1 = 0 + 1 

   charge: 1 + 1 = 1 + 1 in both reactions (1) and (2). 

 (b) The strangeness values for the reactions are  

  (1) S: 0 + 0 = 1 – 1 

  (2) S: 0 + 0 = 0 – 1 

  
  

Strangeness is not conserved in the second reaction.  

P46.13 Check that electron, muon, and tau lepton number are conserved.  

 (a) π − → µ− + νµ     Lµ :   0→ 1− 1  

 (b) 
 
K+ → µ+ + νµ     Lµ :   0→ −1 + 1  

 (c) 
 
νe + p+ → n + e+     Le :   − 1 + 0→ 0 − 1  

 (d) 
 
νe + n → p+ + e−     Le :   1 + 0 → 0 + 1  

 (e) 
 
νµ + n → p+ + µ−    Lµ :   1 + 0→ 0 + 1  

 (f) 
 
µ− → e− + νe + νµ    Lµ :   1→ 0 + 0 + 1 and  Le :   0→ 1− 1 + 0  

P46.14 The relevant conservation laws are ∆Le = 0,   ΔLµ = 0,  and   ΔLτ = 0.  

 (a)  π
+ →π 0 + e+ + ?    Le :   0→ 0 − 1 + Le  implies Le = 1, so the particle 

is 
  
νe .  
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 (b)  ?  + p → µ− + p + π +    Lµ :   Lµ + 0→ +1 + 0 + 0  implies   Lµ = 1,  

so the particle is 
 
νµ .  

 (c)  Λ
0 → p + µ− + ?    Lµ :   0→ 0 + 1 + Lµ  implies   Lµ = −1,  so the 

particle is 
 
νµ .  

 (d)  τ
+ → µ+ + ?+ ?    Lµ :   0→ −1 + Lµ  implies   Lµ = 1,  so one particle 

is 
 
νµ .  

  Also,   Lτ :   − 1→ 0 + Lτ  implies    Lτ = −1,  so the other particle is 

 
ντ .

 

P46.15 (a)  p
+ →π + + π 0  check baryon number:  1→ 0 + 0  

  It cannot occur because it violates baryon number conservation. 

 (b)  p
+ + p+ → p+ + p+ + π 0  It can occur. 

 (c)  p
+ + p+ → p+ + π +  check baryon number:  1 + 1→ 1 + 0  

  It cannot occur because it violates baryon number conservation. 

 (d) π + → µ+ + νµ  It can occur. 

 (e)  n
0 → p+ + e− + νe  It can occur. 

 (f)  π
+ → µ+ + n  check baryon number:  0→ 0 + 1  

   check muon lepton number:  0→ −1 + 0  

   check masses:   
mπ + < mµ+ + mn  

  
 

It cannot occur because it violates baryon number conservation,
muon lepton number conservation, and energy conservation.

 

P46.16 The reaction is  µ
+ + e− → ν + ν.  

 muon-lepton number before reaction: (–1) + (0) = –1 

 electron-lepton number before reaction: (0) + (1) = 1 

 Therefore, after the reaction, the muon-lepton number must be –1. 
Thus, one of the neutrinos must be the antineutrino associated with 
muons, and one of the neutrinos must be the neutrino associated with 
electrons: νµ  and 

 
νe  

 Thus,  µ
+ + e− → νµ + νe.  
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P46.17 Momentum conservation for the decay requires the pions to have 
equal speeds. 

 The total energy of each is 
 

497.7 MeV
2

= 248.8 MeV,  so  

   
  E

2 = p2c2 + mc2( )2  gives 

   
  248.8 MeV( )2 = pc( )2 + 139.6 MeV( )2  

 Solving, 

  

pc = 206 MeV = γ mvc =
mc2

1− v c( )2

v
c

⎛
⎝⎜

⎞
⎠⎟ :  

   
  

pc
mc2 =

206 MeV
139.6 MeV

=
1

1− v c( )2

v
c

⎛
⎝⎜

⎞
⎠⎟ = 1.48  

   

  

v
c

= 1.48 1− v
c

⎛
⎝⎜

⎞
⎠⎟

2  

 and  
  

v
c

⎛
⎝⎜

⎞
⎠⎟

2

= 2.18 1−
v
c

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢

⎤

⎦
⎥ = 2.18 − 2.18

v
c

⎛
⎝⎜

⎞
⎠⎟

2

 

   

  
3.18

v
c

⎛
⎝⎜

⎞
⎠⎟

2

= 2.18
 

 so  
  

v
c

=
2.18
3.18

= 0.828    and     v = 0.828c .  

P46.18 (a) In the suggested reaction  p → e+ + γ .  

  From Table 46.2, we would have for baryon numbers  +1→ 0 + 0 ; 
thus   ΔB ≠ 0,  so baryon number conservation would be violated. 

 (b) From conservation of momentum for the decay:  pe = pγ  

  Then, for the positron,  

   
  Ee

2 = pec( )2 + mec
2( )2  

  becomes  
   

  
Ee

2 = pγ c( )2
+ mec

2( )2
= Eγ

2 + mec
2( )2  

  From conservation of energy for the system:   mpc2 = Ee + Eγ  

  or   Ee = mpc2 − Eγ ,  
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  so 
  
Ee

2 = mpc2( )2
− 2 mpc2( )Eγ + Eγ

2 .  

  Equating this to the result from above gives 

   
  
Eγ

2 + mec
2( )2

= mpc2( )2
− 2 mec

2( )Eγ + Eγ
2  

   

  

Eγ =
mpc2( )2

− mec
2( )2

2mpc2

=
938.3 MeV( )2 − 0.511 MeV( )2

2 938.3 MeV( ) = 469 MeV

 

  Also,   Ee = mpc2 − Eγ = 938.3 MeV − 469 MeV = 469 MeV,   

  Thus, 
  
Ee = Eγ = 469 MeV .  

  Also, 
  
pγ =

Eγ

c
=

469 MeV
c

, so 
  
pe = pγ = 469 MeV c .  

 (c) The total energy of the positron is Ee = 469 MeV, 

  but 

  

Ee = γ mec
2 =

mec
2

1− v c( )2
,  

  so    
  

1−
v
c

⎛
⎝⎜

⎞
⎠⎟

2

=
mec

2

Ee

=
0.511 MeV
469 MeV

= 1.09 × 10−3 ,  

  which yields   v = 0.000 999 4c .  

P46.19 (a) To conserve charge, the decay reaction is  Λ
0 → p + π − .  

  We look up in the table the rest energy of each particle: 

     mΛc2  = 1 115.6 MeV  mpc2 = 938.3 MeV  

     mπc2  = 139.6 MeV 

  The Q value of the reaction, representing the energy output, is the 
difference between starting rest energy and final rest energy, and 
is the kinetic energy of the products: 

   
  Q = 1 115.6 MeV − 938.3 MeV − 139.6 MeV = 37.7 MeV   

 (b) The original kinetic energy is zero in the process considered here, 
so the whole Q becomes the kinetic energy of the products  

   
  Kp + Kπ = 37.7 MeV
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 (c) The lambda particle is at rest. Its momentum is zero. System 
momentum is conserved in the decay, so the total vector 
momentum of the proton and the pion must be zero. 

 (d) The proton and the pion move in precisely opposite directions 
with precisely equal momentum magnitudes.  Because their 
masses are different, their kinetic energies are not the same.  

  The mass of the π -meson is much less than that of the proton, so it 
carries much more kinetic energy. We can find the energy of each. 
Let p represent the magnitude of the momentum of each. Then the 
total energy of each particle is given by E2 = (pc)2 + (mc2)2 and its 
kinetic energy is K = E – mc2. For the total kinetic energy of the two 
particles we have 

   

  

mp
2c4 + p2c2 − mpc

2 + mπ
2c4 + p2c2 − mπc2

                                                    = Q = mΛc2 − mpc
2 − mπc2

 

  Proceeding to solve for pc, we find 

   
  
mp

2c4 + p2c2 = mΛ
2 c4 − 2mΛc2 mπ

2c4 + p2c2 + mπ
2c4 + p2c2  

   

  

mπ
2c4 + p2c2 =

mΛ
2 c4 − mp

2c4 + mπ
2c4

2mΛc2

= 1 115.62 − 938.32 + 139.62

2(1 115.6)
MeV = 171.9 MeV

 

   
  pc = 171.92 − 139.62  MeV = 100.4 MeV

 

  Then the kinetic energies are  

   
  
Kp = 938.32 + 100.42 − 938.3 = 5.35 MeV  

  and    Kπ = 139.62 + 100.42 − 139.6 = 32.3 MeV  

  

 

No. The mass of the π −  meson is much less than that of the
proton, so it carries much more kinetic energy. The correct
analysis using relativistic energy conservation shows that the

kinetic energy of the proton is 5.35 MeV, while that of the π −

meson is 32.3 Mev.
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Section 46.6 Strange Particles and Strangeness 

P46.20 

 

The ρ0 →π + + π −  decay must occur via the strong interaction.

The KS
0 →π + + π −  decay must occur via the weak interaction.

 

P46.21 (a)  π
− + p → 2η  

  Baryon number:  0 + 1→ 0  

  It is not allowed because baryon number is not conserved. 

 (b)  K
− + n → Λ0 + π −  

  Baryon number:  0 + 1→ 1 + 0  

  Charge:  −1 + 0→ 0 − 1  

  Strangeness:  −1 + 0→ −1 + 0  

  Lepton number:  0→ 0  

  The interaction may occur via the 
 

strong interaction  since all 

are conserved. 

 (c)  K
− → π − + π 0  

  Strangeness:  −1→ 0 + 0  

  Baryon number:  0→ 0  

  Lepton number:  0→ 0  

  Charge:  −1→ −1 + 0  

  Strangeness conservation is violated by one unit, but everything 
else is conserved. Thus, the reaction can occur via the 

 
weak interaction , but not the strong or electromagnetic 

interaction. 

 (d)  Ω
− → Ξ− + π 0  

  Baryon number:  1→ 1 + 0  

  Lepton number:  0→ 0  

  Charge:  −1→ −1 + 0  

  Strangeness:  −3→ −2 + 0  

  Strangeness conservation is violated by one unit, but everything 
else is conserved. The reaction may occur by the 

 weak interaction ,  but not by the strong or electromagnetic 
interaction.  
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 (e)  η→ 2γ  

  Baryon number:  0→ 0  

  Lepton number:  0→ 0  

  Charge:  0→ 0  

  Strangeness:  0→ 0  

  No conservation laws are violated, but photons are the mediators 
of the electromagnetic interaction. Also, the lifetime of the η is 
consistent with the 

 
electromagnetic interaction .  

P46.22 (a)  µ
− → e− + γ    Le :   0→ 1 + 0  

   
  Lµ :   1→ 0  

   electron and muon lepton numbers 

 (b)   n → p + e− + νe    Le :   0→ 0 + 1 + 1  

   electron lepton number 

 (c)  Λ
0 → p + π 0  Strangeness:  −1→ 0 + 0  

   Charge:  0→ +1 + 0  

   charge and strangeness 

 (d)  p → e+ + π 0  Baryon number:  +1→ 0 + 0  

   baryon number 

 (e)  Ξ
0 → n + π 0  Strangeness:  −2 → 0 + 0  

   strangeness 

P46.23 (a)  K
+ + p → ? + p  

  The strong interaction conserves everything. 

  Baryon number:    0 + 1→ B + 1  so B = 0 

  Charge:    +1 + 1→ Q + 1  so Q = +1 

  Lepton numbers:    0 + 0→ L + 0  so   Le = Lµ = Lτ = 0  

  Strangeness:    +1 + 0→ S + 0  so S = 1 

  The conclusion is that the particle must be positively charged, a 
non-baryon, with strangeness of +1. Of particles in Table 46.2, it 
can only be the 

 
K+ . Thus, this is an elastic scattering process. 

  The weak interaction conserves all but strangeness, and   ΔS = ±1.   
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 (b)  Ω
− → ? + π −  

  Baryon number:   +1→ B + 0  so B = 1 

  Charge:    −1→ Q − 1  so Q = 0 

  Lepton numbers:    0→ L + 0  so   Le = Lµ = Lτ = 0  

  Strangeness:    −3→ S + 0  so ∆S = 1: S = –2 

    (There is no particle with S = –4.) 

  The particle must be a neutral baryon with strangeness of –2. 
Thus, it is the 

 
Ξ0 . 

 (c)  K
+ → ? + µ+ + νµ  

  Baryon number:   0→ B + 0 + 0  so B = 0 

  Charge:    +1→ Q + 1 + 0  so Q = 0 

  Lepton numbers:   Le : 0→ Le + 0 + 0  so Le = 0 

     Lµ : 0→ Lµ − 1 + 1  so   Lµ = 0  

     Lτ : 0→ Lτ + 0 + 0  so   Lτ = 0  

  Strangeness:   1→ S + 0 + 0  so   ΔS = ±1:  S = 0 

    (There is no meson with S = 2.) 

  The particle must be a neutral meson with strangeness 

 
= 0 ⇒ π 0 . 

P46.24 (a)  Ξ
− → Λ0 + µ− + νµ  

  Baryon number:  +1→ +1 + 0 + 0  Charge:   −1→ 0 − 1 + 0  
  

  Le :   0→ 0 + 0 + 0   Lµ :   0→ 0 + 1 + 1  

    Lτ :   0→ 0 + 0 + 0  Strangeness:  −2 → −1 + 0 + 0  

  Conserved quantities are 
  

B,  charge, Le , and Lτ .  

 (b)  KS
0 → 2π 0  

  Baryon number:  0→ 0  Charge:  0→ 0  
  

  Le :   0→ 0   Lµ :   0→ 0  

    Lτ :   0→ 0  Strangeness:  +1→ 0  

  Conserved quantities are 
  

B,  charge, Le , Lµ , and Lτ .  
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 (c)   K
− + p → Σ0 + n  

  Baryon number:  0 + 1→ 1 + 1  Charge:  −1 + 1→ 0 + 0  
  

  Le :   0 + 0→ 0 + 0   Lµ :   0 + 0→ 0 + 0  

    Lτ :   0 + 0→ 0 + 0  Strangeness:  −1 + 0→ −1 + 0  

  Conserved quantities are 
  

S,  charge, Le , Lµ , and Lτ .  

 (d)  Σ
0 + Λ0 + γ  

  Baryon number:  +1→ 1 + 0  Charge:  0→ 0  
  

  Le :   0→ 0 + 0   Lµ :   0→ 0 + 0  

    Lτ :   0→ 0 + 0  Strangeness:  −1→ −1 + 0  

  Conserved quantities are 
  

B, S,  charge, Le , Lµ , and Lτ .  

 (e)  e
+ + e− → µ+ + µ−  

  Baryon number:  0 + 0→ 0 + 0  Charge:  +1− 1→ +1− 1  
  

  Le :   − 1 + 1→ 0 + 0   Lµ :   0 + 0→ +1− 1  

    Lτ :   0 + 0→ 0 + 0  Strangeness:  0 + 0→ 0 + 0  

  Conserved quantities are 
  

B, S,  charge, Le , Lµ , and Lτ .  

 (f)  p + n → Λ0 + Σ−  

  Baryon number:  −1 + 1→ −1 + 1  Charge:  −1 + 0→ 0 − 1  
  

  Le :   0 + 0→ 0 + 0   Lµ :   0 + 0→ 0 + 0  

    Lτ :   0 + 0→ 0 + 0  Strangeness:  0 + 0→ +1− 1  

  Conserved quantities are 
  

B, S,  charge, Le , Lµ , and Lτ .  

P46.25 (a)  Λ
0 → p + π −  Strangeness:  −1→ 0 + 0 , so ∆S = +1 

   Strangeness is not conserved. 

 (b)  π
− + p → Λ0 + K0  Strangeness:  0 + 0→ −1 + 1 , so ∆S = 0 

   Strangeness is conserved. 

 (c)  p + p → Λ0 + Λ0  Strangeness:  0 + 0→ +1− 1 , so ∆S = 0 

   Strangeness is conserved. 
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 (d)  π
− + p →π− + Σ+  Strangeness:  0 + 0→ 0 − 1 , so ∆S = –1 

   Strangeness is not conserved. 

 (e)  Ξ
− → Λ0 + π −  Strangeness:  −2 → −1 + 0 , so ∆S = +1 

   Strangeness is not conserved. 

 (f)  Ξ
0 → p + π −  Strangeness:  −2 → 0 + 0 , so ∆S = +2 

   Strangeness is not conserved. 

P46.26 As a particle travels in a circle, it experiences a centripetal force, and 
the centripetal force can be related to the momentum of the particle.  

   

  
F∑ = ma: qvBsin 90° = mv2

r
→ mv = p = qBr

 

 (a) Using p = qBr gives momentum in units of kg ⋅ m/s. To convert 
kg ⋅ m/s into units of MeV/c, we multiply and divide by c: 

   

  

kg ⋅m
s

⎛
⎝⎜

⎞
⎠⎟ =

kg ⋅m
s

⎛
⎝⎜

⎞
⎠⎟

c
c

⎛
⎝⎜

⎞
⎠⎟ =

kg ⋅m
s

⎛
⎝⎜

⎞
⎠⎟ 2.998 × 108  m/s( ) 1

c
⎛
⎝⎜

⎞
⎠⎟

= 2.998 × 108  
kg ⋅m2

s2

⎛
⎝⎜

⎞
⎠⎟

1
c

⎛
⎝⎜

⎞
⎠⎟

= 2.998 × 108  J
1
c

⎛
⎝⎜

⎞
⎠⎟

1 MeV
1.602 × 10−13  J

⎛
⎝⎜

⎞
⎠⎟

= 1.871× 1021  MeV c

 

   

  

pΣ+ = eBrΣ+

= 1.602 × 10−19  C( ) 1.15 T( ) 1.99 m( )1.871× 1021  MeV c
kg ⋅m/s

= 686 MeV c

 

   

  

pπ + = eBrπ +

= 1.602 × 10−19  C( ) 1.15 T( ) 0.580 m( ) 1.871× 1021  MeV c
kg ⋅m/s

⎛
⎝⎜

⎞
⎠⎟

= 200 MeV c

 

 (b) The total momentum equals the momentum of the Σ+ particle. The 
momentum of the pion makes an angle of 64.5° with respect to 
the original momentum of the Σ+ particle. If we take the direction 
of the momentum of the Σ+ particle as an axis of reference, and let 
φ be the angle made by the neutron’s path with the path of the Σ+ 
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at the moment of its decay, by conservation of momentum, we 
have these components of momentum: 

  parallel to the original momentum:  

     pΣ+ = pn cosφ + pπ + cos64.5°  

  thus,  

   
  

pn cosφ = pΣ+ − pπ + cos64.5°

pn cosφ = 686 MeV c − 200 MeV c( )cos64.5°  [1] 

  perpendicular to the original momentum: 

   
  

0 = pn sinφ − 200 MeV c( )sin 64.5°

pn sinφ = 200 MeV c( )sin 64.5°  [2]
 

  From [1] and [2]:  

   
  
pn = pn cosφ( )2 + pn sinφ( )2 = 626 MeV c  

 (c) 

  

Eπ + = pπ + c( )2
+ mπ + c2( )2

= 200 MeV( )2 + 139.6 MeV( )2

= 244 MeV

 

  

  

En = pnc( )2 + mnc2( )2
= 626 MeV( )2 + 939.6 MeV( )2

= 1 129 MeV = 1.13 GeV
 

 (d) 
  
EΣ+ = Eπ + + En = 244 MeV + 1129 MeV = 1 373 MeV = 1.37 GeV  

 (e) 
  
mΣ+ c2 = EΣ+

2 − pΣ+ c( )2
= 1 373 MeV( )2 − 686 MeV( )2 = 1 189 MeV  

  
  
∴mΣ+ = 1 189 MeV c2 =  1.19 GeV c2  

 (f) From Table 46.2, the mass of the Σ+ particle is 1 189.4 MeV/c2. The 
percentage difference is  

   
  

Δm
m

=
1. 19 × 103  MeV c2 − 1 189.4 MeV c2

1 189.4 MeV c2 × 100% = 0.0504%  

  The result in part (e) is within 0.05% of the value in Table 46.2. 

P46.27 The time-dilated lifetime is 

   
  
T = γ T0 =

0.900 × 10−10  s

1− v2 c2
=

0.900 × 10−10  s

1− (0.960)2
= 3.214 × 10−10  s  
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 During this time interval, we see the kaon travel at 0.960c. It travels for 
a distance of  

   

  

distance = vT = 0.960 2.998 × 108  m s( ) 3.214 × 10−10  s( )
= 9.25 × 10−2  m = 9.25 cm

 

 
 

 

Section 46.7 Finding Patterns in the Particles 

Section 46.8 Quarks 

Section 46.9 Multicolored Quarks 

Section 46.10 The Standard Model 
P46.28 (a)  

 K0 d  s  total 

strangeness 1 0 1 1 

baryon number 0 1/3 –1/3 0 

charge 0 –e/3 e/3 0 

 

 (b)  

  Λ0  u d s total 

strangeness –1 0 0 –1 –1 

baryon number 1 1/3 1/3 1/3 1 

charge 0 2e/3 –e/3 –e/3 0 
 

P46.29 In the first reaction,  

    π
− + p → K0 + Λ0  

 the quarks in the particles are  

    ud + uud → sd + uds  
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 There is a net of 1 up quark both before and after the reaction, a net of 
2 down quarks both before and after, and a net of zero strange quarks 
both before and after. Thus, the reaction conserves the net number of 
each type of quark. 

 In the second reaction,  

    π
− + p → K0 + n  

 the quarks in the particles are  

    ud + uud → sd + udd  

 In this case, there is a net of 1 up and 2 down quarks before the 
reaction but a net of 1 up, 3 down, and 1 anti-strange quark after the 
reaction. Thus, the reaction does not conserve the net number of each 
type of quark.  

P46.30 Compare the given quark states to the entries in Tables 46.4 and 46.5: 

 (a) 
 
uus = Σ+  

 (b) 
 
ud = π −  

 (c) 
 
sd = K0  

 (d) 
 
dss = Ξ−  

P46.31 (a)  

 proton u u d total 

strangeness 0 0 0 0 0 

baryon number 1 1/3 1/3 1/3 1 

charge e 2e/3 2e/3 –e/3 e 

 (b)  

 neutron u d d total 

strangeness 0 0 0 0 0 

baryon number 1 1/3 1/3 1/3 1 

charge 0 2e/3 –e/3 –e/3 0 
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P46.32 (a)  π
+ + p → K+ + Σ+ :   du + uud → su + uus  

  up quarks:   1 + 2 → 1 + 2,  or  3→ 3  

  down quarks:  −1 + 1→ 0 + 0 , or  0→ 0  

  strange quarks:  0 + 0→ −1 + 1 , or  0→ 0  

  The reaction has a net of 3 u, 0 d, and 0 s before and after. 

 (b)  K
− + p → K+ + K0 + Ω− :  us + uud → su + sd + sss  

  up quarks:  −1 + 2 → 1 + 0 + 0 , or  1→ 1  

  down quarks:  0 + 1→ 0 + 1 + 0 , or  1→ 1  

  strange quarks:  1 + 0→ −1− 1 + 3 , or  1→ 1  

  The reaction has a net of 1 u, 1 d, and 1 s before and after. 

 (c)  p + p → K0 + p + π + + ?:   uud + uud → sd + uud + du + ?  

  The quark combination ? must be such as to balance the last 
equation for up, down, and strange quarks. 

  up quarks:  2 + 2 = 0 + 2 + 1 + ?  (? has 1 u quark) 

  down quarks:  1 + 1 = 1 + 1− 1 + ?  (? has 1 d quark) 

  strange quarks:  0 + 0 = −1 + 0 + 0 + ?  (? has 1 s quark) 

  The reaction must net of 4 u, 2 d, and 0 s before and after. 

 (d) quark composition 
 
= uds = Λ0  or Σ0  

P46.33 (a)  uud : 
  
charge = −

2
3

e⎛
⎝⎜

⎞
⎠⎟ + −

2
3

e⎛
⎝⎜

⎞
⎠⎟ +

1
3

e⎛
⎝⎜

⎞
⎠⎟ = −e  

 (b)  udd : 
  
charge = −

2
3

e⎛
⎝⎜

⎞
⎠⎟ +

1
3

e⎛
⎝⎜

⎞
⎠⎟ +

1
3

e⎛
⎝⎜

⎞
⎠⎟ = 0  

 (c) 
 

antiproton ; 
 

antineutron  

*P46.34 The number of protons in one liter (1 000 g) of water is 
   

  

Np = 1 000 g( ) 6.02 × 1023  molecules
18.0 g

⎛
⎝⎜

⎞
⎠⎟

10 protons
molecule

⎛
⎝⎜

⎞
⎠⎟

= 3.34 × 1026  protons

 

 and there are 

   

  

Nn = 1 000 g( ) 6.02 × 1023  molecules
18.0 g

⎛
⎝⎜

⎞
⎠⎟

8 neutrons
molecule

⎛
⎝⎜

⎞
⎠⎟

= 2.68 × 1026  neutrons
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  So there are, for electric neutrality,  3.34 × 1026  electrons .  

  The protonquark content is  p = uud, and the neutron quark 
content is n = udd, so the number of up quarks is  

   
 2 3.34 × 1026( ) + 2.68 × 1026 = 9.36 × 1026  up quarks  

  and the number of down quarks is  

   
 
2 2.68 × 1026( ) + 3.34 × 1026 = 8.70 × 1026  down quarks  

P46.35   Σ
0 + p → Σ+ + γ + X  

  uds + uud → uus + 0 + ?  

 The left side has a net 3 u, 2 d, and 1 s. The right-hand side has 2 u and 
1 s, leaving 2 d and 1 u missing. 

 
 

The unknown particle is a neutron, udd.  

 Baryon and strangeness numbers are conserved. 

P46.36 Quark composition of proton = uud and of neutron = udd. 
Thus, if we neglect binding energies, we may write 

     mp = 2mu + md  [1] 

 and    mn = mu + 2md.  [2] 

 Subtract [2] from 2 × [1]: 

   

  

2mp = 4mu + 2md

−mn = − mu + 2md( )
2mp − mn = 3mu

 

 We find  
   

  

mu =
1
3

2mp − mn( ) =
1
3

2 938 MeV c2( ) − 939.6 meV c2⎡⎣ ⎤⎦

= 312 MeV c2

  

 and from either [1] or [2], 
  
md = 314 MeV c2 . 
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Section 46.10 The Cosmic Connection 
P46.37 From Equation 39.10,  

  
  
fobserver = fsource

1 + va c
1− va c

 

 where the velocity of approach, v, is the negative of the velocity of 
mutual recession: va = –v. 

 Thus, 
  

c
′λ

=
c
λ

1− v c
1 + v c

  and 

  
′λ = λ

1 + v c
1− v c

 

P46.38 (a) We let r in Hubble’s law represent any distance.  

   

  

v = Hr = 22 × 10−3 m
s ⋅ ly

⎛
⎝⎜

⎞
⎠⎟

1.85 m( ) 1 ly
c ⋅1 yr

⎛
⎝⎜

⎞
⎠⎟

×
c

3.00 × 108  m s
⎛
⎝⎜

⎞
⎠⎟

1 yr
3.156 × 107  s

⎛
⎝⎜

⎞
⎠⎟

= 4.30 × 10−18  m s

 

  This is unobservably small. 

 (b) 

  

v = Hr = 22 × 10−3 m
s ⋅ ly

⎛
⎝⎜

⎞
⎠⎟

3.84 × 108  m( ) 1 ly
c ⋅1 yr

⎛
⎝⎜

⎞
⎠⎟

c
3.00 × 108  m s

⎛
⎝⎜

⎞
⎠⎟

1 yr
3.156 × 107  s

⎛
⎝⎜

⎞
⎠⎟

= 8.92 × 10−10  m s = 0.892 nm/s

  

  Again too small to measure. 

P46.39 (a) From Wien’s law, 

     λmaxT = 2.898 × 10−3  m ⋅K  

  Thus,     

   

  

λmax =
2.898 × 10−3  m ⋅K

T
=

2.898 × 10−3  m ⋅K
2.73 K

= 1.06 × 10−3  m

= 1.06 mm

 

 (b) This is a 
 

microwave.  
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P46.40 (a) The volume of the sphere bounded by the Earth’s orbit is 
   

  

V =
4
3
π r3 =

4
3
π 1.496 × 1011  m( )3

= 1.40 × 1034  m3

m = ρV = 6 × 10−28  kg m3( ) 1.40 × 1034  m3( ) = 8.41× 106  kg

 

 (b) By Gauss’s law, the dark matter would create a gravitational field 
acting on the Earth to accelerate it toward the Sun. It would 
shorten the duration of the year in the same way that 8.41 × 106 kg 
of extra material in the Sun would. This has the fractional effect of 

 

8.41× 106  kg
1.99 × 1030  kg

= 4.23 × 10−24  of the mass of the Sun.  

  No. It is only the fraction 4.23 × 10–24 of the mass of the Sun. 

P46.41 (a) The energy is enough to produce a proton-antiproton pair: 

  kBT ≈ 2mpc
2 ,  so  

   
  
T ≈

2mpc
2

kB

=
2 938.3 MeV( )

1.38 × 10−23  J K( )
1.60 × 10−13  J

1 MeV
⎛
⎝⎜

⎞
⎠⎟

~ 1013  K  

 (b) The energy is enough to produce an electron-positron pair: 

  kBT ≈ 2mec
2 ,  so  

   
  
T ≈

2mec
2

kB

=
2 0.511 MeV( )

1.38 × 10−23  J K( )
1.60 × 10−13  J

1 MeV
⎛
⎝⎜

⎞
⎠⎟

~ 1010  K  

P46.42 (a) The Hubble constant is defined in v = HR. The gap R between any 
two far-separated objects opens at constant speed according to 
  R = vΔt.  Then the time interval  Δt  since the Big Bang is found from 

   
  
v = H vΔt→ Δt =

1
H

 

 (b) 

  

1
H

=
1

22 × 10−3  m s ⋅ ly
1 yr( ) ⋅ 3 × 108  m s( )

1 ly

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 1.36 × 1010  yr

= 13.6 billion years

 

*P46.43 The radiation wavelength of  ′λ = 500 nm  that is observed by observers 
on Earth is not the true wavelength,  λ,   emitted by the star because of 
the Doppler effect. The true wavelength is related to the observed 
wavelength using: 

   
  

c
′λ
= c
λ

1− v c( )
1+ v c( )
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 Solving for the true wavelength then gives 
   

  
λ = ′λ 1− v c( )

1+ v c( ) = 500 nm( ) 1− 0.280( )
1+ 0.280( )

= 375 nm
 

 The temperature of the star is given by Wien’s law,  
   

  λmaxT = 2.898 × 10−3  m ⋅K  

 or  
  
T = 2.898 × 10−3  m ⋅K

λmax

= 2.898 × 10−3  m ⋅K
375 × 10−9 = 7.73 × 103  K .  

P46.44 We assume that the fireball of the Big Bang is a black body. Then, 
  

  

I = eσT 4 = (1) 5.67 × 10−8  W m2 ⋅K4( ) 2.73 K( )4

= 3.15× 10−6  W m2

 

P46.45 (a) We use primed symbols to represent observed Doppler-shifted 
values and unprimed symbols to represent values as they 
would be measured by an observer stationary relative to the 
source. Doppler-shift equations from Chapter 17 do not apply to 
electromagnetic waves, because the speed of source or observer 
relative to some medium cannot be defined for these waves. 
Instead, we use Equation 39.10, expressing it as  

   

  
′f =

c
′λ

=
1 + v/c
1− v/c

 f =
1 + v/c
1− v/c

c
λ

⎛
⎝⎜

⎞
⎠⎟

 

  where v is the velocity of mutual approach. Then we have 
   

  

′λ
λ

=
1− v / c
1 + v / c

 

  Squaring both sides, and solving, 
   

  

′λ
λ

⎛
⎝⎜

⎞
⎠⎟

2

=
1− v / c
1 + v / c

′λ
λ

⎛
⎝⎜

⎞
⎠⎟

2

+ ′λ
λ

⎛
⎝⎜

⎞
⎠⎟

2 v
c

= 1−
v
c

                    

′λ
λ

⎛
⎝⎜

⎞
⎠⎟

2

− 1 = −
v
c

′λ
λ

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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  Solving for v/c then gives 
   

  

v
c
= −

′λ /λ( )2 − 1
′λ /λ( )2 + 1

= −
510 nm / 434 nm( )2 − 1
510 nm / 434 nm( )2 + 1

=
1.18( )2 − 1
1.18( )2 + 1

   = −
1.381− 1
1.381+ 1

= −0.160

 

  The negative sign indicates that the quasar is moving away from 
us, or us from it. The speed of recession that the problem asks for 
is then 

   
  v = 0.160c  (or 16.0% of the speed of light)   

 (b) Hubble’s law asserts that the universe is expanding at a constant 
rate so that the speeds of galaxies are proportional to their 
distance R from Earth, as described by v = HR. 

  So, 
  
R = v

H
=

0.160 3.00× 108  m/s( )
2.2 × 10–2  m/s ⋅ ly

= 2.18× 109  ly .   

P46.46 (a) Applying the result from Problem 37, 
  
′λn = λn

1 + v c
1− v c

, to the 

definition 
  
Z = ′λn − λn

λn

,  we have  

    

  

Z = ′λn − λn

λn

→ Z + 1( )λn = ′λn = λn

1+ v c
1− v c

1+ v c
1− v c

= Z + 1( )2

1+
v
c
= Z + 1( )2 −

v
c

⎛
⎝⎜

⎞
⎠⎟ Z + 1( )2

v
c

⎛
⎝⎜

⎞
⎠⎟ Z2 + 2Z + 2( ) = Z2 + 2Z

v = c
Z2 + 2Z

Z2 + 2Z + 2
⎛
⎝⎜

⎞
⎠⎟

 

 (b) 
  
R =

v
H

=
c
H

Z2 + 2Z
Z2 + 2Z + 2

⎛
⎝⎜

⎞
⎠⎟
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P46.47 First, we calculate v = HR, using   H = 22 × 10−3  m s ⋅ ly,  and then we 

use the result of Problem 37, 
  
′λ = λ

1 + v c
1− v c

, and c = 2.998 × 108 m/s, to 

calculate the wavelength emitted by the galaxy. 

 (a)   v = 22 × 10−3  m s ⋅ ly( ) 2.00 × 106  ly( ) = 4.4 × 104 m s ,  

  

  

′λ = λ
1+ v c
1− v c

= λ
1+ 4.4 × 104 m s( ) 2.998 × 108 m s( )
1− 4.4 × 104 m s( ) 2.998 × 108 m s( )

= 590 nm( ) 1+ 0.000 146 8
1− 0.000 146 8

= 590.09 nm

 

  Similarly, 

 (b)   v = 22 × 10−3  m s ⋅ ly( ) 2.00 × 108  ly( ) = 4.4 × 106 m s ,  

  
 
′λ = 590 nm( ) 1+ 0.014 68

1− 0.014 68
= 599 nm  

 (c)   v = 22 × 10−3  m s ⋅ ly( ) 2.00 × 109  ly( ) = 4.4 × 107 m s ,  

  
 
′λ = 590 nm( ) 1+ 0.146 8

1− 0.146 8
= 684 nm  

P46.48 (a) What we can see is limited by the finite age of the Universe and by 
the finite speed of light. We can see out only to a look-back time 
equal to a bit less than the age of the Universe. Every year on your 
birthday the Universe also gets a year older, and light now in 
transit arrives at Earth from still more distant objects. So the radius 
of the visible Universe expands at the speed of light, which is  

   

  

dr
dt

= c = 1 ly/yr
  

 (b) The volume of the visible section of the Universe is 
  

4
3
πr3 ,  where 

r = 13.7 billion light-years. The rate of volume increase is 

   

  

dV
dt

= d 
dt

4
3πr3( ) = 4

3π 3r2 dr
dt

= 4πr2c

= 4π 13.7 × 109  ly( ) 9.4605× 1015  m
1 ly

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

2

3.00× 108 m
s( )

= 6.34× 1061  m3/s
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P46.49 The density of the Universe is 

  
  
ρ = 1.20ρc = 1.20

3H 2

8πG
⎛
⎝⎜

⎞
⎠⎟

 

 Consider a remote galaxy at distance r. The mass interior to the sphere 
below it is 

  
  
M = ρ 4

3
π r3⎛

⎝⎜
⎞
⎠⎟ = 1.20

3H 2

8πG
⎛
⎝⎜

⎞
⎠⎟

4
3
π r3⎛

⎝⎜
⎞
⎠⎟ =

0.600H 2r3

G
 

 both now and in the future when it has slowed to rest from its current 
speed v = Hr. The energy of this galaxy-sphere system is constant as 
the galaxy moves to apogee distance R: 

  
  

1
2

mv2 −
GmM

r
= 0 −

GmM
R

    

 so 
  

1
2

mH 2r2 −
Gm

r
0.600H 2r3

G
⎛
⎝⎜

⎞
⎠⎟

= 0 −
Gm
R

0.600H 2r3

G
⎛
⎝⎜

⎞
⎠⎟

 

  
  
−0.100 = −0.600

r
R

    so    R = 6.00r 

 The Universe will expand by a factor of 
 

6.00  from its current 

dimensions. 

 
 

 

Section 46.12 Problems and Perspectives 
P46.50 (a) The Planck length is 
   

   

L = G
c3 =

1.054 5× 10−34  J ⋅s( ) 6.673× 10−11  N ⋅m2 kg2( )
2.998× 108  m s( )3

= 1.62 × 10−35  m

 

 (b) The Planck time is given as  
   

  
T = L

c
= 1.616× 10−35  m

2.998× 108  m s
= 5.39× 10−44  s

 

  of the same order of magnitude as the ultrahot epoch.  

 
 

 



1222     Particle Physics and Cosmology 
 

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 

Additional Problems 

P46.51 (a)  π
− + p → Σ+ + π 0  

  Total charge is 0 on the left side of the equation, +1 on the right 
side. Charge is not conserved. 

 (b)  µ
− → π − + νe  

  The rest mass of the pion is larger than the rest mass of the muon. 
Muon lepton number is +1 on the left side of the equation, 0 on 
the right side. Electron lepton number is 0 on left side, +1 on right 
side. Energy, muon lepton number, and electron lepton number 
are not conserved. 

 (c)  p →π + + π + + π −  

  Baryon number is +1 on the left side of the equation, 0 on the 
right side. Baryon number is not conserved. 

P46.52 In  ? + p+ → n + µ+ ,  charge conservation requires the unknown particle 
to be neutral. Baryon number conservation requires baryon number  
= 0. The muon-lepton number of ? must be –1. So the unknown particle 
must be an muon-antineutrino νµ . 

*P46.53 The time of flight is given by  Δt  = d/v. 

 Since 
  
K = 1

2
mv2 ,   

  

  

Δt = d
2K
m

= 10.0× 103  m

2(0.040 0 eV) 1.60× 10–19  J/eV( )  
1.67 × 10–27  kg 

= 3.61 s
 

 The decay constant is 
  
λ =

ln 2
T1/2

=
0.693
614 s 

= 1.13 × 10−3  s–l .  

 Therefore we have 

  
  λΔt = 1.13 × 10−3  s( )(3.61 s) = 4.08 × 10–3 = 0.004 08  

 And the fraction remaining is 
  

  

N
N0

= e–λΔt = e– 0.004 08 = 0.995 9
 

 Hence, the fraction that has decayed in this time interval is 
  

  
1 –

N
N0

= 0.004 07 or 0.407%
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P46.54 Let’s find the minimum energy necessary for the increase in rest 
energy to occur. 

     ΔER  =  3me  − me( )c2  = 2mec
2  = 2 0.511 eV( ) = 1.02 eV  

 This calculation may make it look like the reaction is possible. But 
there is more to the energy picture here than just the increase in rest 
energy. There is kinetic energy associated with the moving particles. 
Let’s demand that energy be conserved for the isolated system: 

     Ei  = Ef    →   Eγ  + mec
2  = 3γ mec

2  [1] 

 Now demand that momentum in the direction of travel of the initial 
photon be conserved for the isolated system: 

   
  
pxi  = pxf    →   

Eγ

c
  = 3γ meu  [2] 

 Divide equation [1] by equation [2]: 

   
  

Eγ  + mec
2

Eγ / c
 = 

c2

u
    →    

Eγ  + mec
2

Eγ

 = 
c
u
 = 

1
β

 [3]  

 where β = u/c. Multiply equation [2] by c and subtract it from equation 
[1]: 

   

  

Eγ  + mec
2  − Eγ = 3γ mec

2 − 3γ meuc   

             →    mec
2  = 3γ mec

2 − 3γ meuc 

  →    1 = 3γ  − 3γ u
c
 = 3γ 1 − β( )

 

 Substitute for γ : 
   

  
1=

3 1− β( )
1− u2 /c2

=
3 1− β( )

1− β 2
= 3

1− β
1+ β

  

   

 
1+ β = 9 1− β( )      →      β = 8

10
= 0.800

  

 Substitute this value into equation [3]: 

   

  

Eγ  + mec
2

Eγ

 = 
1

0.800

1 +
 mec

2

Eγ

= 1.25→ Eγ = 4mec
2 = 2.04 MeV

 

 Therefore, the photon arriving with 1.05 MeV of energy cannot cause 
this reaction.  
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 Let’s check the assumptions. If the final particles have any velocity 
component perpendicular to the initial direction of travel of the 
photon, then they must be moving with a higher speed after the 
collision and the incoming photon energy would have to be larger. If 
any one of the particles had a different energy than the other two, then 
the only way to satisfy both energy and momentum conservation 
would be for at least two of the particles to have components of 
velocity perpendicular to the initial direction of motion of the photon, 
so again the incoming photon energy would have to be larger. 
Therefore, 2.04 MeV represents the minimum energy for the reaction to 
occur. 

P46.55 We find the number N of neutrinos: 

   
  

1046  J = N 6 MeV( ) = N 6 × 1.60 × 10−13  J( )
N = 1.0 × 1058  neutrinos

 

 The intensity at our location is 
   

  

N
A

= N
4π r2 = 1.0× 1058

4π 1.7 × 105  ly( )2
1 ly

9.460 5× 1015  m
⎛
⎝⎜

⎞
⎠⎟

2

= 3.1× 1014  m−2

 

 The number passing through a body presenting 5 000 cm2 = 0.50 m2 

 is then 
 

3.1× 1014  
1

m2
⎛
⎝⎜

⎞
⎠⎟ 0.50 m2( ) = 1.5 × 1014 , or  ~ 1014 .  

P46.56 Since the neutrino flux from the Sun reaching the Earth is 0.400 W/m2, 
the total energy emitted per second by the Sun in neutrinos in all 
directions is that which would irradiate the surface of a great sphere 
around it, with the Earth’s orbit as its equator. 

  

  

0.400 W/m2( ) 4πr2( ) = 0.400 W/m2( ) 4π 1.496 × 1011  m( )2⎡
⎣

⎤
⎦

= 1.12 × 1023  W

 

 In a period of 109 yr, the Sun emits a total energy of   ΔE = PΔt.   
  

  E = 1.12 × 1023  J/s( ) 109  yr( ) 3.156 × 107  s/yr( ) = 3.55 × 1039  J
 

 carried by neutrinos. This energy corresponds to an annihilated mass 
according to  

  
  E = mνc2 = 3.55 × 1039  J or mν = 3.94 × 1022  kg.  

 Since the Sun has a mass of 1.989 ×  1030 kg, this corresponds to a loss 
of only about 1 part in 5 × 107 of the Sun’s mass over 109 yr in the form 
of neutrinos. 
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P46.57 In our frame of reference, Hubble’s law is exemplified by     

v1 = H


R1  

and     

v2 = H


R2 .   

 (a) From the first equation     

v1 = H


R1  we may form the equation 

    −

v1 = −H


R1 . This equation expresses Hubble’s law as seen by the 

observer in the first galaxy cluster, as she looks at us to find our 
velocity relative to her (away from her) is 

    
− v1 = H −


R1( ) .  

 (b) From both equations we may form the equation 

    

v2 −


v1 = H


R2 −


R1( ) . This equation expresses Hubble’s law as 

seen by the observer in the first galaxy cluster, as she looks at 
cluster two to find the relative velocity of cluster 2 relative to 
cluster 1 is 

    

v2 −


v1 = H


R2 −


R1( ) . 

P46.58 π − → µ− + νµ . By energy conservation,  

     mπc2 = Eµ + Eν = 139.6 MeV  [1] 

 Because we assume the antineutrino has no mass,   Eν = pνc,  and by 
momentum conservation,   pµ = pν ;  thus, we can relate the total 
energies of the muon and antineutrino:  

   
  
Eµ

2 = pµc( )2
+ mµc2( )2

= pνc( )2 + mµc2( )2
= Eν

2( )2
+ mµc2( )2  

 or  
  
Eµ

2 − Eν
2 = mµc2( )2

 

 and  
  
Eµ + Eν( ) Eµ − Eν( ) = mµc2( )2

.  [2] 

 Substituting [1] into [2], we find that  

   
  
Eµ − Eν =

mµc2( )2

Eµ + Eν( ) =
mµc2( )2

mπc2  [3] 

 Subtracting [3] from [1], 
   

  

Eµ + Eν( )− Eµ −Eν( ) = mπc2 −
mµc2( )2

mπc2

2Eν = mπc2 −
mµc2( )2

mπc2

Eν =
mπc2( )2

− mµc2( )2

2mπc2 = 139.6 MeV( )2 − 105.7 MeV( )2

2 139.6 MeV( )
    = 29.8 MeV
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P46.59 Each particle travels in a circle, so each must experience a centripetal 
force:  

   

  
F∑ = ma: qvBsin 90° = mv2

r
→ mv = qBr

 

 The proton and the pion have the same momentum because they have 
the same magnitude of charge and travel in a circle of the same radius: 

   

  

pp = pπ = p = qBr = 1.60 × 10−19  C( ) 0.250 T( ) 1.33 m( )
= 5.32 × 10−20  kg ⋅m s

 

 so  
   

  

pc = 3.00 × 108  m/s( ) 5.32 × 10−20  kg ⋅m s( ) 1 MeV
1.60 × 10−13  J

⎛
⎝⎜

⎞
⎠⎟

= 99.8 MeV

 

 Using masses from Table 46.2, we find the total energy of the proton to be  
   

  

Ep = pc( )2 + mpc2( )2
= 99.8 MeV( )2 + 938.3 MeV( )2

= 944 MeV

 

 and the total energy of the pion to be  
   

  

Eπ = pc( )2 + mπc2( )2
= 99.8 MeV( )2 + 139.6 MeV( )2

= 172 MeV

 

 The unknown particle was initially at rest; thus, Etotal after = Etotal before = 
rest energy, and the rest energy of unknown particle is  

   
  mc2 = 944 MeV + 172 MeV = 1 116 MeV  

   

  
Mass = 1.12 GeV c2

 

 From Table 46.2, we see this is a  Λ0  particle.  

P46.60 Each particle travels in a circle, so each must experience a centripetal 
force:  

   
  

F∑ = ma: qvBsin 90° = mv2

r
→ mv = qBr  

 The particles have the same momentum because they have the same 
magnitude of charge and travel in a circle of the same radius:   

   
  p+ = p− = p = eBr    →    pc = eBrc  

 We find the total energy of the positively charged particle to be  

   
  
E+ ,  total = pc( )2 + E+( )2 = qBrc( )2 + E+

2  
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 and the total energy of the negatively charged particle to be  

   
  
E+ ,  total = pc( )2 + E−( )2 = qBrc( )2 + E−

2  

 The unknown particle was initially at rest; thus, Etotal after = Etotal before = 
rest energy, and the rest energy of the unknown particle is  

   
  
mc2 = qBrc( )2 + E+

2 + qBrc( )2 + E−
2

 

   

  
m =

qBrc( )2 + E+
2 + qBrc( )2 + E−

2

c2

 

P46.61 (a) This diagram represents electron–positron annihilation. From 
charge and lepton-number conservation at either vertex, the 
exchanged particle must be an electron, 

 
e− .   

 (b) A neutrino collides with a neutron, producing a proton and a 
muon. This is a weak interaction. The exchanged particle has 

charge +e and is a  W+ .  

 

ANS. FIG. P46.61 

P46.62 (a) The Feynman diagram in ANS. FIG. 
P46.62 shows a neutrino scattering off  
an electron, and the neutrino and 
electron do not exchange electric charge. 
The neutrino has no electric charge and 
interacts through the weak interaction 
(ignoring gravity). The mediator is a 

 Z0  boson.  

 (b) The Feynman diagram shows a down 
quark and its antiparticle annihilating each other. They can 
produce a particle carrying energy, momentum, and angular 
momentum, but zero charge, zero baryon number, and, if the 
quarks have opposite color charges, no color charge. In this case 

ANS. FIG. P46.62 
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the mediating particle could be a  photon or Z0  boson.  

  Depending on the color charges of the d and  d  quarks, the 
ephemeral particle could also be a 

 
gluon , as suggested in the 

discussion of Figure 46.13(b). 

  For conservation of both energy and momentum in the collision 
we would expect two mediating particles; but momentum need 
not be strictly conserved, according to the uncertainty principle, if 
the particle travels a sufficiently short distance before producing 
another matter-antimatter pair of particles, as shown in ANS. FIG. 
P46.62(b). 

P46.63 The expression   e
−E kBTdE  gives the fraction of the photons that have 

energy between E and E + dE. The fraction that have energy between E 
and infinity is 

   

  

e−E kBT dE
E

∞

∫

e−E kBT dE
0

∞

∫
=

e−E kBT −dE kBT( )
E

∞

∫

e−E kBT −dE kBT( )
0

∞

∫
=

e−E kBT
E

∞

e−E kBT
0

∞ = e−E kBT

 

 We require T when this fraction has a value of 0.010 0 (i.e., 1.00%) 

 and    E = 1.00 eV = 1.60 × 10−19  J.  

 Thus,   0.010 0 = e− 1.60×10−19  J( ) 1.38×10−23  J K( )T  

 or   
  
ln 0.010 0( ) = − 1.60 × 10−19  J

1.38 × 10−23  J K( )T = − 1.16 × 104  K
T

,  

 giving    T = 2.52 × 103  K ~ 103  K .  

P46.64  Σ
0 → Λ0 + γ  

 From Table 46.2,   mΣ = 1 192.5 MeV c2  and   mΛ = 1 115.6 MeV c2 .  

 Conservation of energy in the decay requires 

     mΣc2 = mΛc2 + KΛ( ) + Eγ       or     
  
mΣc2 = mΛc2 +

pΛ
2

2mΛ

⎛
⎝⎜

⎞
⎠⎟

+ Eγ  

 System momentum conservation gives 
 

pΛ = pγ , so the last result 

may be written as 

   
  
mΣc2 = mΛc2 +

pγ
2

2mΛ

⎛

⎝⎜
⎞

⎠⎟
+ Eγ  
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 or  
  
mΣc2 = mΛc2 +

pγ
2c2

2mΛc2

⎛

⎝⎜
⎞

⎠⎟
+ Eγ .  

 Recognizing that   pγ c = Eγ ,  we now have  
   

  
1 192.5 MeV = 1 115.6 MeV +

Eγ
2

2 1 115.6 MeV( ) +Eγ

 

 Solving this quadratic equation gives 
  
Eγ = 74.4 MeV . 

P46.65  p + p → p + π + + X  

 The protons each have 70.4 MeV of kinetic energy. In accord with 
conservation of momentum for the collision, particle X has zero 
momentum and thus zero kinetic energy. Conservation of system 
energy then requires 

   
  
mpc2 + mπc2 + mXc2 = mpc2 + Kp( ) + mpc2 + Kp( )  

   

  

mXc2 = mpc2 + 2Kp − mπc2

= 938.3 MeV + 2 70.4 MeV( ) − 139.6 MeV
= 939.5 MeV

 

 X must be a neutral baryon of rest energy 939.5 MeV. Thus, X is a 

 neutron.  

P46.66  p + p → p + n + π +  

 The total momentum is zero before the reaction. Thus, all three 
particles present after the reaction may be at rest and still conserve 
system momentum. This will be the case when the incident protons 
have minimum kinetic energy. Under these conditions, conservation of 
energy for the reaction gives 

   
  
2 mpc

2 + Kp( ) = mpc
2 + mnc2 + mπc2  

 so the kinetic energy of each of the incident protons is 
   

  

Kp =
mnc2 + mπc2 − mpc

2

2
=

939.6 + 139.6 − 938.3( )  MeV
2

= 70.4 MeV
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Challenge Problems 
P46.67 See the discussion of P46.19 in this volume for more details of the 

mathematical steps used in the following calculations. 

 From Table 46.2,   mΛc2 = 1 115.6 MeV, mpc
2 = 938.3 MeV,  and 

  mπc2 = 139.6 MeV.  

 Since the  Λ
0  is at rest, the difference between its rest energy and the 

rest energies of the proton and the pion is the sum of the kinetic 
energies of the proton and the pion. 

    Kp + Kπ = 1 115.6 MeV − 938.3 MeV − 139.6 MeV = 37.7 MeV  

 Now, since   pp = pπ = p, applying conservation of relativistic energy to 
the decay process, we have 

  

  

938.3 MeV( )2 + p2c2 − 938.3 MeV⎡⎣ ⎤⎦

            + 139.6 MeV( )2 + p2c2 − 139.6 MeV⎡⎣ ⎤⎦ = 37.7 MeV

 

 Solving yields 

    pπc = ppc = 100.4 MeV  

 Then,  
  

  Kp = mpc
2( )2

+ 100.4 MeV( )2 − mpc
2 = 5.35 MeV

 

  
  Kπ = 139.6( )2 + 100.4 MeV( )2 − 139.6 = 32.3 MeV

 

P46.68 (a) Let   Emin  be the minimum total energy of the bombarding particle 
that is needed to induce the reaction. At this energy the product 
particles all move with the same velocity. The product particles 
are then equivalent to a single particle having mass equal to the 
total mass of the product particles, moving with the same velocity 
as each product particle. By conservation of energy: 

     Emin + m2c
2 = m3c

2( )2 + p3c( )2  [1] 

  By conservation of momentum,   p3 = p1 ,  so 

     p3c( )2 = p1c( )2 = Emin
2 − m1c

2( )2  [2] 

  Substitute [2] into [1]:  

     Emin + m2c
2 = m3c

2( )2 + Emin
2 − m1c

2( )2  
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  Square both sides: 

   

  

Emin
2 + 2Eminm2c

2 + m2c
2( )2 = m3c

2( )2 + Emin
2 − m1c

2( )2

∴Emin =
m3

2 − m1
2 − m2

2( )c2

2m2

∴Kmin = Emin − m1c
2 =

m3
2 − m1

2 − m2
2 − 2m1m2( )c2

2m2

=
m3

2 − m1 + m2( )2⎡⎣ ⎤⎦c2

2m2

 

  Refer to Table 46.2 for the particle masses. 

 (b) 
  
Kmin = 4 938.3( )[ ]2  MeV2 c2 − 2 938.3( )[ ]2  MeV2 c2

2 938.3 MeV c2( ) = 5.63 GeV  

 (c) 

  

Kmin = 497.7 + 1 115.6( )2  MeV2 c2 − 139.6 + 938.3( )2  MeV2 c2

2 938.3( )  MeV c2

= 768 MeV

 

 (d) 

  

Kmin = 2 938.3( ) + 135[ ]2  MeV2 c2 − 2 938.3( )[ ]2  MeV2 c2

2 938.3( )  MeV c2

= 280 MeV

 

 (e) 
  
Kmin =

91.2 × 103( )2 − 938.3 + 938.3( )2⎡⎣ ⎤⎦  MeV2 c2

2 938.3( )  MeV c2 = 4.43 TeV  

P46.69 (a) 
  
ΔE = mn − mp − me( )c2  

  From Table 44.2 of masses of isotopes,  
   

  

ΔE = 1.008 665 u − 1.007  825 u( ) 931.5 MeV/u( )
= 0.782 MeV

 

 (b) Assuming the neutron at rest, momentum conservation for the 
decay process implies pp = pe. Relativistic energy for the system is 
conserved:  

   
  

mpc2( )2
+ pp

2c2 + mec
2( )2

+ pe
2c2 = mnc2  

  Since pp = pe = p, we have  

   
  

mpc2( )2
+ p2c2 = mnc2 − mec

2( )2
+ p2c2  
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mpc2( )2
+ p2c2 = mnc2( )2

− 2mnc2 mec
2( )2

+ p2c2

                                                               + mec
2( )2

+ p2c2

mec
2( )2

+ p2c2 =
mnc2( )2

− mpc2( )2
+ mec

2( )2

2mnc2

 

   

  

p2c2 =
mnc2( )2

− mpc2( )2
+ mec

2( )2

2mnc2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2

− mec
2( )2  

  Refer to Table 46.2 for the particle masses. 

   

  

p2c2 =
939.6 MeV( )2 − 938.3 MeV( )2 + 0.511 MeV( )2

2 939.6 MeV( )
⎡

⎣
⎢

⎤

⎦
⎥

2

                                                                       − 0.511 MeV( )2

pc = 1.19 MeV

 

  From   pec = γ mevec,  we find the speed of the electron:  
   

  

γ ve

c
=

pec
mec

2 =
1

1− ve c( )2

ve

c

1−
ve

c
⎛
⎝⎜

⎞
⎠⎟

2

=
ve

c
⎛
⎝⎜

⎞
⎠⎟

2 mec
2

pec
⎛
⎝⎜

⎞
⎠⎟

2

→
ve

c
⎛
⎝⎜

⎞
⎠⎟

2

1+
mec

2

pec
⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 1

ve

c
=

1

1+ mec
2 pec( )2

=
1

1+ 0.511 MeV 1.19 MeV( )2

 

   
  
ve = 0.919c

 

  To find the speed of the proton, a similar derivation (basically, 
substituting mp for me), yields  

   

  

vp =
c

1+ mpc2 pec( )2
=

2.998 × 108  m/s

1+ 938.3 MeV 1.19 MeV( )2

= 3.82 × 105  m/s = 382 km/s

 

 (c) 
 

The electron is relativistic; the proton is not.  Our criterion for 

answers accurate to three significant digits is that the electron is 
moving at more than one-tenth the speed of light and the proton 
at less than one-tenth the speed of light. 
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P46.70 (a) At threshold, we consider a photon and a proton colliding head-
on to produce a proton and a pion at rest, according to 

 p + γ → p + π 0.  Energy conservation gives 

   
  

mpc2

1− u2 c2
+ Eγ = mpc2 + mπc2  

  Momentum conservation gives 
  

mpu

1− u2 c2
−

Eγ

c
= 0.  

  Combining the equations, we have 

   
  

mpc2

1− u2 c2
+

mpc2

1− u2 c2

u
c

= mpc2 + mπc2  

   
  

938.3 MeV( ) 1+ u c( )
1− u c( ) 1+ u c( )

= 938.3 MeV + 135.0 MeV  

  so 
  

u
c

= 0.134  

  and   Eγ = 127 MeV .  

 (b)   λmaxT = 2.898 mm ⋅K  

  
 
λmax = 2.898 mm ⋅K

2.73 K
= 1.06 mm  

 (c) 
  
Eγ = hf = hc

λ
= 1 240 eV ⋅10−9  m

1.06 × 10-3  m
= 1.17 × 10−3  eV  

 (d) In the primed reference frame, the proton is moving to the right at 

  

′u
c

= 0.134  and the photon is moving to the left with 

  h ′f = 1.27 × 108  eV.  In the unprimed frame,   hf = 1.17 × 10−3  eV.  
Using the Doppler effect equation (Equation 39.10), we have for 
the speed of the primed frame (suppressing units) 

   

  

1.27 × 108 = 1 + v c
1− v c

1.17 × 10−3

v
c

= 1− 1.71× 10−22

 

  Then the speed of the proton is given by 

   
  

u
c
= ′u c + v c

1+ ′u v c2 = 0.134 + 1− 1.71× 10−22

1+ 0.134 1− 1.71× 10−22( ) = 1− 1.30 × 10−22  
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  And the energy of the proton is 

    

  

mpc2

1− u2 c2
= 938.3 MeV

1− 1− 1.30 × 10−22( )2

= 6.19 × 1010 × 938.3 × 106  eV = 5.81× 1019  eV

 

P46.71 (a) Consider a sphere around us of radius R large compared to the 
size of galaxy clusters. If the matter M inside the sphere has the 
critical density, then a galaxy of mass m at the surface of the 
sphere is moving just at escape speed v according to   K +Ug = 0,  

  or 
  
1
2

mv2 − GMm
R

= 0.  

  The energy of the galaxy-sphere system is conserved, so this 
equation is true throughout the history of the Universe after the 

Big Bang, where 
  
v = dR

dt
.  Then, 

    
  

dR
dt

⎛
⎝⎜

⎞
⎠⎟

2

= 2GM
R

  

  or 
  

dR
dt

= R−1/2 2GM .   

  integrating,   

      R dR
0

R
∫ = 2GM dt

0

T
∫  

    
  

R3/2

3 2 0

R

= 2GM t
0

T
 gives 

  

2
3

R3/2 = 2GM T  

  or 
  
T = 2

3
R3 2

2GM
= 2

3
R

2GM R
.  

  From above, 
  

2GM
R

= v  

  so 
  
T = 2

3
R
v

.  

  Now Hubble’s law says v = HR, so 
  
T = 2

3
R

HR
= 2

3H
.  

 (b) 

  

T = 2
3 22 × 10−3  m s ⋅ ly( )

2.998× 108  m s
1 ly yr

⎛
⎝⎜

⎞
⎠⎟

= 9.08× 109  yr

= 9.08 billion years
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P46.72 A photon travels the distance from the Large Magellanic Cloud to us in 
170 000 years. The hypothetical massive neutrino travels the same 
distance in 170 000 years plus 10 seconds: 

   
  c 170 000 yr( ) = v 170 000 yr + 10 s( )  

   

  

v
c

= 170 000 yr
170 000 yr + 10 s

= 1
1+ 10 s 1.7 × 105  yr( ) 3.156× 107  s yr( )[ ]{ }

= 1
1+ 1.86× 10−12

 

 For the neutrino we want to evaluate mc2 in   E = γ mc2 :  
   

  

mc2 = E
γ
= E 1− v2

c2 = 10 MeV 1− 1
1+ 1.86 × 10−12( )2

= 10 MeV( ) 1+ 1.86 × 10−12( )2 − 1
1+ 1.86 × 10−12( )2

 

   

  

mc2 ≈ 10 MeV( )
2 1.86× 10−12( )

1
= 10 MeV( ) 1.93× 10−6( )

= 19 eV

 

 Then the upper limit on the mass is 
   

  
m = 19 eV

c2

 

   

  
m = 19 eV

c2

u
931.5 × 106  eV c2

⎛
⎝⎜

⎞
⎠⎟

= 2.1× 10−8  u
 

P46.73 (a) If 2N particles are annihilated, the energy released is 2Nmc2. The 

resulting photon momentum is 
  
p = E

c
= 2Nmc2

c
= 2Nmc.  Since the 

momentum of the system is conserved, the rocket will have 
momentum 2Nmc directed opposite the photon momentum. 

   
  

p = 2Nmc  

 (b) Consider a particle that is annihilated and gives up its rest energy 
mc2 to another particle which also has initial rest energy mc2 (but 
no momentum initially). 

     E
2 = p2c2 + mc2( )2  
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  Thus,   2mc2( )2 = p2c2 + mc2( )2 .  

  Where p is the momentum the second particle acquires as a result 
of the annihilation of the first particle. Thus 

  4 mc2( )2 = p2c2 + mc2( )2 ,    p
2 = 3 mc2( )2 .  So   p = 3mc.  

  This process is repeated N times (annihilate 
  
N
2

 protons and 
  
N
2

 

antiprotons). Thus the total momentum acquired by the ejected 
particles is   3Nmc,  and this momentum is imparted to the 
rocket. 

   
  

p = 3Nmc  

 (c) Method (a) produces greater speed since   2Nmc > 3Nmc.  
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ANSWERS TO EVEN-NUMBERED PROBLEMS 
 

P46.2 (a) 2.27 × 1023  Hz;  (b)  1.32 × 10−15  m  

P46.4 ~103 Bq 

P46.6  ~10−18  m  

P46.8 Baryon number conservation allows the first reaction and forbids the 
second. 

P46.10  ~10−23  s  

P46.12 (a) See P46.12(a) for full explanation; (b) Strangeness is not conserved 
in the second reaction. 

P46.14 (a)  νe ; (b) νµ ; (c) νµ ; (d) νµ , ντ  

P46.16 νµ and  νe  

P46.18 (a) See P46.18(a) for full explanation;  
(b)   Ee = Eγ = 469 MeV,   pe = pγ = 469 MeV c ;  (c) v = 0.999 999 4c 

P46.20 The  ρ
0 →π + + π −  decay must occur via the strong interaction. The 

 KS
0 →π + + π −  decay must occur via the weak interaction. 

P46.22 (a) electron and muon lepton numbers; (b) electron lepton number;  
(c) charge and strangeness; (d) baryon number; (e) strangeness 

P46.24 (a)   B,  charge, Le , and Lτ ;  (b)   B,  charge, Le , Lµ , and Lτ ;   

(c) 
  
S,  charge, Le , Lµ , and Lτ ; (d) 

  
B, S,  charge, Le , Lµ , and Lτ ;  

(e) 
  
B, S,  charge, Le , Lµ , and Lτ ; (f) 

  
B, S,  charge, Le , Lµ , and Lτ  

P46.26 (a)   pΣ+ = 686 MeV c ,  pπ + = 200 MeV c ;  (b) 626 MeV/c;  

(c)   Eπ + = 244 MeV,  En = 1.13 GeV;  (d) 1.37 GeV; (e) 1.19 GeV/c2;  
(f) The result in part (e) is within 0.05% of the value ion Table 46.2. 

P46.28 (a) See table in P46.28(a); (b) See table in P46.28(b). 

P46.30 (a)Σ+ ; (b) π − ; (c)  K0 ; (d) Ξ−  

P46.32 (a) The reaction has a net of 3u, 0d, and 0s before and after; (b) The 
reaction has a net of 1u, 1d, and 1s before and after; (c) The reaction 
must net of 4u, 2d, and 0z before and after; (d)  Λ

0  or Σ0  

P46.34  3.34 × 1026  electrons ,  9.36 × 1026  up quarks , 8.70 × 1026  down quarks  

P46.36   mu = 312 MeV c2 ;  md = 314 MeV c2  
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P46.38 (a) 4.30 × 10−18 m s ; (b) 0.892 nm/s 

P46.40 (a)  8.41× 106  kg ; (b) No. It is only the fraction 4.23 × 10–24 of the mass 
of the Sun. 

P46.42  1.36 × 1010  yr  

P46.44  3.15 × 10−6  W m2  

P46.46 (a) 
  
c

Z2 + 2Z
Z2 + 2Z + 2

⎛

⎝⎜
⎞

⎠⎟
; (b) 

  

c
H

Z2 + 2Z
Z2 + 2Z + 2

⎛

⎝⎜
⎞

⎠⎟
 

P46.48 (a) See P46.48(a) for full explanation; (b)  6.34 × 1061  m3/s  
P46.50 (a)  1.62 × 10−35  m;  (b)  5.39× 10−44  s  

P46.52 νµ  

P46.54 See P46.54 for full explanation. 

P46.56 1 part in 5 × 107  

P46.58 29.8 MeV 

P46.60 
  
m =

qBrc( )2
+ E+

2 + qBrc( )2
+ E−

2

c2
 

P46.62 (a)  Z
0  boson;  (b) photon or Z0  boson,  gluon 

P46.64 74.4 MeV 

P46.66 70.4 MeV 

P46.68 (a) See P46.68(a) for full explanation; (b) 5.63 GeV; (c) 768 MeV;  
(d) 280 MeV; (e) 4.43 TeV 

P46.70 (a) 127 MeV; (b) 1.06 mm; (c) 1.17 × 10–3 eV; (d) 5.81 × 1019 eV; 

P46.72 19 eV/c2 

 
 

 

 


	Physics 9th c2014 solutions ISM_unlocked.pdf
	cover (txtbk)
	VOLUME 1
	PART 1 - Mechanics
	01 Physics and Measurement
	02 Motion in One Dimension
	03 Vectors
	04 Motion in Two Dimensions
	05 The Laws of Motion
	06 Circular Motion and Other Applications of Newton’s Laws
	07 Energy of a System
	08 Conservation of Energy
	09 Linear Momentum and Collisions
	10 Rotation of a Rigid Object About a Fixed Axis
	11 Angular Momentum
	12 Static Equilibrium and Elasticity
	13 Universal Gravitation
	14 Fluid Mechanics

	PART 2 - Oscillations and  Mechanical Waves
	15 Oscillatory Motion
	16 Wave Motion
	17 Sound Waves
	18 Superposition and Standing Waves

	PART 3 - Thermodynamics
	19 Temperature
	20 The First Law of Thermodynamics
	21 The Kinetic Theory of Gases
	22 Heat Engines, Entropy, and the Second Law of Thermodynamics


	VOLUME 2
	PART 4 - Electricity and Magnetism
	23 Electric Fields
	24 Gauss’s Law
	25 Electric Potential
	26 Capacitance and Dielectrics
	27 Current and Resistance
	28 Direct-Current Circuits
	29 Magnetic Fields
	30 Sources of the Magnetic Field
	31 Faraday’s Law and Inductance
	32 Inductance
	33 Alternating-Current Circuits
	34 Electromagnetic Waves

	PART 5 - Light and Optics
	35 The Nature of Light and the Principles of Ray Optics
	36 Image formation
	37 Wave Optics
	38 Diffraction Patterns and Polarization

	PART 6 - Modern Physics
	39 Relativity
	40 Introduction to Quantum Physics
	41 Quantum Mechanics
	42 Atomic Physics
	43 Molecules and Solids
	44 Nuclear Physics
	45 Applications of Nuclear Physics
	46 Particle Physics and Cosmology






