

C++ PROGRAMMING:
FROM PROBLEM ANALYSIS TO PROGRAM DESIGN

BY: D. S. MALIK

CHAPTER 1: AN OVERVIEW OF COMPUTERS AND

PROGRAMMING LANGUAGES

SUMMARY & EXAMPLES

PREPARED BY:

E. MANAR JARADAT

CHAPTER 1: AN OVERVIEW OF
COMPUTERS AND PROGRAMMING
LANGUAGES

A computer is an electronic device capable of performing the commands.

A computer composed of two main components:

Hardware components:

Input/Output devices to perform input data and output result.
Memory to store data.
CPU to perform arithmetic and logical operations.

Software Components:

They are programs written using a programming language to perform specific
tasks.
Programming languages examples: C, C++, C#, Java, Python, R …

How do computers process C++ programs?

1. A text editor is used to create a C++ program following it's rules, or syntax.

The created program is called the source code, or source program.
The program must be saved in a text file that has the extension .cpp .

2. In a C++ program, statements that begin with the symbol # are called preprocessor
directives. These statements are processed by a program called preprocessor.

3. A program called the compiler checks the source program for syntax errors.

Recall, computers understand binary language only which we can’t speak.
If the source program has no syntax error, the compiler also acts like a translator
to translate source program to machine language (object program).
Object program: The machine language version of the high-level language
program.

4. A program called a linker combines the object program with the programs from
libraries (prewritten programs). When the object code is linked with the system
resources, the executable code is produced and saved in a file with the file extension
.exe .

5. The translated program stored in memory. A program called a loader loads the
executable program into main memory for execution.

6. The final step is to execute the program.

The figure below shows how a typical C++ program is processed.

E. Manar Jaradat

af://n0

An Integrated Development Environment (IDE) is a software that contain programs to
helps you to do all the previous steps using Build and Rebuild command

examples: Microsoft Visual Studio, Eclipse, Code::Blocks.

Programming with the Problem Analysis–Coding–
Execution Cycle

Algorithm: is a step-by-step problem-solving process (transform input to output) in a finite
amount of time.

Programming: is a process of problem-solving and converting algorithms to executable
programs.

The Problem Analysis–Coding–Execution Cycle

Step 1: Analyze the problem and outline it's requirements.
Step 2: Implement the algorithm in a programming language.
Step 3: Maintenance the algorithm until get the expected results.
Step 4: Execution.

EXAMPLE 1-1: Design an algorithm to find the perimeter and area of a rectangle.

Output: Rectangle area and perimeter.

Input: Rectangle length and width.

Algorithm:

1. Get the length of the rectangle.

2. Get the width of the rectangle.

3. Find the perimeter using the following equation:

4. Find the area using the following equation:E. Manar Jaradat

af://n61

EXAMPLE 1-2: Design an algorithm that calculates the sales tax and the final price of an item
sold in a particular state. Knowing that, the sales tax is calculated as follows: The state’s
portion of the sales tax is 4%, and the city’s portion of the sales tax is 1.5%. If the item is a
luxury item, such as a car more than $50,000, then there is a 10% luxury tax.

Knowing that the final price of the item is the selling price in addition to the sales tax.

Output: The sales tax, the final price of an item.

Input: The selling price of the item and whether the item is a luxury or not.

Algorithm:

1. Get the selling price of the item.

2. Find the state’s portion of the sales tax using the formula:

3. Find the city’s portion of the sales tax using the formula:

4. Determine whether the item is a luxury item.

5. Find the luxury tax using the following formula:

6. Find the sales tax using the formula:

7. Find amount due using the formula:

EXAMPLE 1-3: Design an algorithm that calculates the monthly paycheck of a salesperson at
a local department store. Knowing that every salesperson has a base salary. The salesperson
also receives a bonus at the end of each month, based on the following criteria: If the
salesperson has been with the store for five years or less, the bonus is $10 for each year that
he or she has worked there. If the salesperson has been with the store for more than five
years, the bonus is $20 for each year that he or she has worked there. The salesperson can
earn an additional bonus as follows: If the total sales made by the salesperson for the month
are at least $5,000 but less than $10,000, he or she receives a 3% commission on the sale. If
the total sales made by the salesperson for the month are at least $10,000, he or she
receives a 6% commission on the sale.

Output: Monthly paycheck of a salesperson

Input: Salesperson base salary, number of his service years, his total sales.

Algorithm:

1. Get salesperson base salary,
2. Get number of salesperson service years.
3. Calculate bonus using the following formula:

if (item is a luxury item)

 luxuryTax = salePrice * 0.1

otherwise

 luxuryTax = 0

1

2

3

4

E. Manar Jaradat

4. Get amount of salesperson total sales.
5. Calculate additional bonus using the following formula:

6. Calculate pay check using the equation:

EXAMPLE 1-4: Design an algorithm to play a number-guessing game. Knowing that the
number-guessing game is played as follows: An integer greater than or equal to 0 and less
than 100 is randomly generated. Then prompt the player (user) to guess the number. If the
player guesses the number correctly, output an appropriate message. Otherwise, check
whether the guessed number is less than the random number. If the guessed number is less
than the random number generated, output the message, ‘‘Your guess is lower than the
number. Guess again!’’; otherwise, output the message, ‘‘Your guess is higher than the
number. Guess again!’’. Then prompt the player to enter another number. The player is
prompted to guess the random number until the player enters the correct number.

Output: A message that congratulates the player for correctly guessing the secret
number.

Input: a randomly generated secret number, and user guessing's

Algorithm:

1. Generate a random number and call it num .

2. Repeat the following steps until the player has guessed the correct number:

if (noOfServiceYears is less than or equal to five)

 bonus = 10 * noOfServiceYears

otherwise

 bonus = 20 * noOfServiceYears

1

2

3

4

if (totalSales is less than 5000)

 additionalBonus = 0

otherwise

 if (totalSales is greater than or equal to 5000 and

 totalSales is less than 10000)

 additionalBonus = totalSales * (0.03)

 otherwise

 additionalBonus = totalSales * (0.06)

1

2

3

4

5

6

7

8

payCheck = baseSalary + bonus + additionalBonus1

Prompt the player to enter guess.

if (guess is equal to num)

 Print "You guessed the correct number."

otherwise

 if guess is less than num

 Print "Your guess is lower than the number. Guess

again!"

 otherwise

 Print "Your guess is higher than the number. Guess

again!"

1

2

3

4

5

6

7

8

E. Manar Jaradat

EXAMPLE 1-5: There are 10 students in a class. Each student has taken five tests, and each
test is worth 100 points. Design an algorithm to calculate the grade for each student, as well
as the class average. The grade is assigned as follows: If the average test score is greater
than or equal to 90, the grade is A; if the average test score is greater than or equal to 80 and
less than 90, the grade is B; if the average test score is greater than or equal to 70 and less
than 80, the grade is C; if the average test score is greater than or equal to 60 and less than
70, the grade is D; otherwise, the grade is F.

Output: The grade for each student, and the class average grade.
Input: 5 scores for each of the ten student.

Algorithm to calculate a student grade:

1. Get the five test scores.
2. Add the five test scores. Suppose sum stands for the sum of the test scores.
3. Suppose average stands for the average test score. Then average = sum / 5;
4. Calculate the grade according to the following algorithm:

Algorithm to calculate class average grade:

1. total Average = 0;
2. Repeat the following steps for each student in the class:
3. Use the algorithm as discussed above to find the average test score.
4. Use the algorithm as discussed above to find the grade.
5. Update total Average by adding the current student’s average test score.

3. Determine the class average as follows:

if average is greater than or equal to 90

 grade = A

otherwise if average is greater than or equal to 80 and less than 90

 grade = B

otherwise if average is greater than or equal to 70 and less than 80

 grade = C

otherwise if average is greater than or equal to 60 and less than 70

 grade = D

otherwise

 grade = F

1

2

3

4

5

6

7

8

9

10

E. Manar Jaradat

C++ PROGRAMMING:
FROM PROBLEM ANALYSIS TO PROGRAM DESIGN

BY: D. S. MALIK

CHAPTER 2: BASIC ELEMENTS OF C++

SUMMARY & EXAMPLES

PREPARED BY:

E. MANAR JARADAT

CHAPTER 2: BASIC ELEMENTS OF C++
A computer program is a sequence of statements whose objective is to accomplish a task.

Programming is a process of planning and creating a program.

Programming language: is a set of syntax and semantic rules, symbols, and special words.

The syntax rules tell which statements (instructions) are legal or valid and accepted by
the programming language and which are not.
The semantic rules determine the meaning of the instructions.

A Quick Look at a C++ Program
Study the following C++ code snippet which prints a welcoming statement to computer
programming course.

OUTPUT:

The main Function

A C++ program is a collection of functions, one of which is the function main .

A function is a set of instructions designed to accomplish a specific task.

If a C++ program consists of only one function, then it must be the function main .

The syntax of the function main used throughout this course has the following form:

// First C++ program

#include <iostream>

using namespace std;

int main()

{

 cout << "Welcome to Computer programming course";

 return 0;

}

1

2

3

4

5

6

7

8

9

Welcome to Computer programming course1

int main()

{

 statement_1

 .

 .

 .

 statement_n

 return 0;

}

1

2

3

4

5

6

7

8

9E. Manar Jaradat

af://n0
af://n16
af://n24

The basic parts of the function main are the heading and the body.

The first line of the function main , is called the heading of the function main .

The statements enclosed between the curly braces { and } form the body of the
function main , and it contains two types of statements:

Declaration statements: used to declare things, such as variables.
Executable statements: perform calculations, manipulate data, create output,
accept input, and so on.

All C++ statements must end with a semicolon ; . The semicolon is also called a statement
terminator.

As soon as the statement return 0; is executed, the execution of the program stops
immediately.

The statement return 0; returns the exit code 0 to the operating system, and this indicates
that the program was executed successfully.

If the statement return 0; is misplaced in the body of the function main, the results
generated by the program may not be to your liking.

EXAMPLE 2-1: What is the output of the following program?

OUTPUT:

Using return 0; at the end of function main is optional, that is; if you forget it the program
will return 0 to the operating system once it reaches the end of the function.

In C++, return is a reserved word.

Comments

Comments are notes written by the programmer for the code reader, and they are
completely ignored by the compiler.

Why would programmers use comments?

To identify the authors of the program.
To give the date when the program is written or modified.
To give a brief explanation of the program, and explain the meaning of key statements
in it.

There are two common types of comments in a C++ program

int main()1

#include <iostream>

using namespace std;

int main()

{

 return 0;

 cout << "Welcome to Computer programming course";

}

1

2

3

4

5

6

7

1

E. Manar Jaradat

af://n67

Single-line comments: begin with //
Multiple-line comments: enclosed between /* and */ .

Single-line comments and can be placed anywhere in the line. Everything encountered in
that line after // is ignored by the compiler.

The following C++ code snippet demonstrates the use of single-line comments.

Multiple-line comments start with /* , and the compiler will ignore anything after it until it
reaches */ .

The following C++ code snippet demonstrates the use of multiple-line comments.

Preprocessor Directives

Only a small number of operations, such as arithmetic and assignment operations, are
explicitly defined in C++.

Many of the functions and symbols needed to run a C++ program are provided as a
collection of libraries.

Every library has a name and is referred to by a header file.

For example, the descriptions of the functions needed to perform input/output (I/O) are
contained in the header file iostream .

If you want to use functions from a library, you use preprocessor directives and the names of
header files to tell the computer the locations of the code provided in libraries.

Preprocessor directives are commands supplied to the preprocessor that cause the
preprocessor to modify the text of a C++ program before it is compiled.

All preprocessor commands begin with # .

There are no semicolons at the end of preprocessor commands because they are not C++
statements.

To use a header file in a C++ program, use the preprocessor directive include .

The general syntax to include a header file (provided by the IDE) in a C++ program is:

// First C++ program

int main() // function main header

{

 // function main body

}

1

2

3

4

5

/* First C++ Program*/

int main() // function main header

{

 /*

 In C++ comments

 can span

 multiple lines

 cout<<"Go Ahead..."<<endl;

 */

 cout<<"Go Ahead..."<<endl;

}

1

2

3

4

5

6

7

8

9

10

11

E. Manar Jaradat

af://n101

EXAMPLE 2-4: The following statement includes the header file iostream in a C++ program:

Preprocessor directives to include header files are placed as the first line of a program so
that the identifiers declared in those header files can be used throughout the program.

Both cin and cout are predefined identifiers declared in the header file iostream , within
a namespace std .

There are several ways you can use an identifier declared in the namespace std .

Refer to them as std::cin , std::cout and std::endl throughout the program.

Another option is to add the following statement in your program using namespace
std; after the statement #include . You can then refer to cin and cout without using
the prefix std:: .

In C++, namespace and using are reserved words.

Output
The standard output device is usually the screen.

In C++, output on the standard output device is accomplished via the use of cout and the
stream insertion operator << .

The general syntax of an output statement (cout together with <<) is:

C++ output statement causes the computer to evaluate the expression after the stream
insertion operator << and display the result on the screen starting from the insertion point
(where the cursor is).

#include <headerFileName>1

#include <iostream>1

#include <iostream>

int main()

{

 std::cout<<"Hello everybody!"<<std::endl;

}

1

2

3

4

5

6

#include <iostream>

using namespace std;

int main()

{

 cout<<"Hello everybody!"<<endl;

}

1

2

3

4

5

6

7

cout << expression or manipulator << expression or manipulator...;1

E. Manar Jaradat

af://n144

If the expression was a string (anything in double quotes " ") it evaluates to itself.
Arithmetic expressions are evaluated according to rules of arithmetic operations, which
you typically learn in an algebra course.
Manipulators change the format of the output as we will study later.

EXAMPLE 2-2: What is the output of the following statements?

OUTPUT:

In C++, you can use manipulators in output statements to format the output.

The simplest manipulator is endl , which causes the insertion point to move to the beginning
of the next line.

EXAMPLE 2-3: What is the output of the following statements?

OUTPUT:

EXAMPLE 2-4: What is the output of the following code snippets.

OUTPUT:

cout << "Welcome ";

cout<<2<<"C++ course ";

cout<<5*20<<" Times :)";

1

2

3

Welcome 2C++ course 100 Times :)1

cout << "Welcome "<<endl;

cout<<2<<"C++ course "<<endl;

cout<<5*20<<endl<<" Times :)";

1

2

3

Welcome

2C++ course

100

 Times :)

1

2

3

4

cout << 29 / 4 << endl;

cout << "Hello there." << endl;

cout << 12 << endl;

cout << "4 + 7" << endl;

cout << 4 + 7 << endl;

cout << 'A' << endl;

cout << "4 + 7 = "<<endl << 4 + 7 << endl;

cout << "4 + 7 = " << 4 + 7 << endl;

cout << 2 + 3 * 5 << endl;

cout << "Hello \nthere." << endl;

1

2

3

4

5

6

7

8

9

10

E. Manar Jaradat

EXAMPLE 2-5: Write a C++ program to print the area and perimeter of a rectangle which
have a length of 5 and a width of 10.

OUTPUT:

NOTE: When an output statement outputs the value of a string, it outputs only the string
without the double quotes " " (unless you include double quotes as part of the output).

Escape Sequences

In C++, the backslash \ is called the escape character.

\n is called the newline escape sequence.

\n may appear anywhere in the string, and when it is encountered, the insertion point is
positioned at the beginning of the next line.

EXAMPLE 2-6: What is the output of the following C++ statements

 OUTPUT:

7

Hello there.

12

4 + 7

11

A

4 + 7 =

11

4 + 7 = 11

17

Hello

there.

1

2

3

4

5

6

7

8

9

10

11

12

cout << "Area = "<< 10 * 5 << endl;

cout << "Perimeter = "<< 2 * (10 + 5) << endl;

1

2

Area = 50

Perimeter = 30

1

2

cout << "Welcome \n";

cout<<2<<"C++ course \n";

cout<<5*20<<"\n Times :)"<<endl;

cout << "Hello \nthere. \nMy name is Manar.";

1

2

3

4

E. Manar Jaradat

af://n194

Note that the output of the following three statements is the same:

cout << '\n';

cout << "\n";

cout << endl;

EXAMPLE 2-7: Consider the following C++ statements:

OUTPUT

The return (or Enter) key on your keyboard cannot be part of the string. That is, in
programming code, a string cannot be broken into more than one line by using the return
(Enter) key on your keyboard.

Study the following 2 statements

Escape Sequence Description

\n Newline Cursor moves to the beginning of the next line

\t Tab Cursor moves to the next tab stop

\b Backspace Cursor moves one space to the left

\r Return Cursor moves to the beginning of the current line.

\\ Backslash Backslash is printed

The following table lists some of the commonly used escape sequences.

Welcome

2C++ course

100

Times :)

Hello

there.

My name is Manar.

1

2

3

4

5

6

7

cout<<"1"<<'\n'<<"22"<<endl<<"333"<<"\n"<<"444\n4";1

1

22

333

444

4

1

2

3

4

5

cout << "It is sunny day. "

<< "We can go golfing." << endl; // legal statement

cout << "It is sunny day.

We can go golfing." << endl; // illegal statement

1

2

3

4

5

E. Manar Jaradat

Escape Sequence Description

\' Single quotation Single quotation mark is printed

\" Double quotation Double quotation mark is printed

 Sequence Description

1. cout<<"Hello\nEverybody"<<endl;
Hello

Everybody

2. cout<<"Hello\tEverybody"<<endl; Hello Everybody

3. cout<<"Hello\bEverybody"<<endl; HellEverybody

4. cout<<"Hello\rEverybody"<<endl; Everybody

5. cout<<"Everybody\rhello"<<endl; Hellobody

6. cout<<"Hello\\Everybody"<<endl; Hello\Everybody

7. cout<<"Hello\"Every\'Body"<<endl; Hello"Every'Body

8. cout<<"Every\"Body\rHello"<<endl; Hello"Body

9. cout<<"HelloEverybody\b"<<endl; HelloEverybody

10.
cout<<"HelloEverybody\b";

cout<<"Hello\\Everybody"<<endl;

HelloEverybodHello\Everybody

11.
cout<<"HelloEverybody\b";

cout<<"Everybody\rGood"<<endl;

GoodoEverybodEverybody

EXAMPLE 2-8: What is the output of the following statements?

The Basics of a C++ Program
The token is the smallest individual unit of a program written in any language.
C++’s tokens are divided into special symbols, word symbols, and identifiers.

Special Symbols

Special symbols in C++ include:

Punctuators: [] () { } , ; : * #
Operators (arithmetical operators, Relational operators, Logical operators, Unary
operators, Assignment operators, Conditional operators, Comma operator). <= >=
== != + - * / +=
The blank,that you create a blank symbol by pressing the space bar (only once) on the
keyboard.

Special symbols cannot be used for anything other than their intended use.

No character can come between the two characters in the token, not even a blank.

E. Manar Jaradat

af://n319
af://n326

Whitespaces

Whitespaces include blanks, tabs, and newline characters.
In a C++ program, whitespaces are used to separate special symbols, reserved words,
identifiers, and numbers when data is input.
Blanks must never appear within a reserved word or identifier.
Utilization of whitespaces is important.

Reserved Words (Keywords)

Some of the reserved word symbols include the following:

int , float , double , char , const , void , return

The letters that make up a reserved word are always lowercase.

Word symbols cannot be redefined within any program;that is, they cannot be used for
anything other than their intended use.

Identifiers

Identifiers are names of things that appear in programs, such as variables, constants, and
functions.

All identifiers must obey C++’s rules for identifiers.

It consists of letters, digits, and the underscore character _ .
It must begin with a letter or underscore.
It must not have any special symbols like space or arithmetic operators.
C++ is case sensitive. The identifier Num is not the same as the identifier num .
Reserved words cannot be used as identifiers.

It is preferred to use self-documenting identifiers, they make comments less necessary.

Two predefined identifiers that you will encounter frequently are cout and cin .

Predefined identifiers can be redefined, but it would not be wise to do so.

Identifier Is legal? Description

first yes

payRate yes

counter1 yes

_first yes

employee Salary false It has space

Hello! false It has special symbol !

one+two false It has special symbol +

2nd false It starts with a number

EXAMPLE 2-9: Which of the following is a legal identifier in C++

E. Manar Jaradat

af://n342
af://n353
af://n363

VARIABLES
A variable is a memory location whose content may change during program execution.

Declaring variable means instructing the computer to allocate memory, and this can be
accomplished by.

1. Determine the names to use for each memory location.
2. Determine the type of data to store in those memory locations e.g. int , double .

The syntax rule to declare a variable is:

Study the following C++ statements:

The syntax rule to declare one variable or multiple variables of the same data type is:

Study the following C++ statements:

Using semicolon to separate the definition of multiple variables will result in syntax error.

In C++, you must declare all identifiers before you can use them. otherwise the compiler will
generate a syntax error.

How do you put data into variables? In C++, you can place data into a variable in two ways:

Use C++’s assignment statement.
Use input (read) statements.

dataType identifier;1

double amountDue;

int counter;

int x;

1

2

3

dataType identifier, identifier, . . .;1

int day, month, year;

double length, width;

1

2

int x1; x2; x3; // syntax error1

cout << "num = " << num << endl; // error: 'num' was not

 // declared in this scope

1

2

E. Manar Jaradat

af://n426

Initializing Variables using Assignment Statement

A variable is said to be initialized the first time a value is placed in it.

When a variable is declared, C++ may not automatically initialize variables.

If you only declare a variable and do not instruct the computer to put data into the
variable,the value of that variable is garbage, and the computer performs calculations using
those values in memory.

Using a variable without being initialized might give unexpected results and/or the complier
might generate a warning message indicating that the variable has not been initialized.

Assignment operator = can be used to assign data into variables.

The assignment statement takes the following form:

The expression on the right side is evaluated, and its value is assigned to the variable on the
left side.

You can declare and initialize variables at the same time

You can define multiple variables and initialize them in a single C++ statement

EXAMPLE 2-10: What are the values stored in the variables num1 , num2 and num3 after
executing each of the following statements.

The assignment operator, = , is evaluated from right to left, the associativity of the
assignment operator is said to be from right to left.

int num1;

cout << "num1 = " << num1 << endl; //num1 = ??

1

2

variable = expression;1

int first; // declaration statement

first = 13 - 4; // inialization statement

 // first = 9

1

2

3

int second = 12; // declaration and inialization statement1

int x = 5, y = 7, z = 12; 1

int num1, num2, num3; // num1 = ??, num2 = ??, num3 = ??

num1 = 18; // num1 = 18, num2 = ??, num3 = ??

num1 = num1 + 27; // num1 = 45, num2 = ??, num3 = ??

num2 = num1; // num1 = 45, num2 = 45, num3 = ??

num3 = num2 / 5; // num1 = 45, num2 = 45, num3 = 9

num3 = num3 / 4; // num1 = 45, num2 = 45, num3 = 2

cout<<num1<<"\t"<<num2<<"\t"<<num3<<"\n"; //45 45 2

1

2

3

4

5

6

7

E. Manar Jaradat

af://n466

To save the value of an expression and use it in a later expression, do the following:

Declare a variable of the appropriate data type.
Assign the value of the expression to the variable that was declared, using the
assignment statement.
Wherever the value of the expression is needed, use the variable holding the value.

NAMED CONSTANTS

Named constant is a memory location whose content is not allowed to change during
program execution.

The syntax to declare a named constant is:

In C++, const is a reserved word.

C++ programmers typically prefer to use uppercase letters to name a named constant.

If the name of a named constant is a combination of more than one word, then the words
are separated using an underscore.

Study the following C++ statements:

If you declare a named constant you must initialize it on the same statement, otherwise the
compiler will generate a syntax error.

Any attempt to modify the value of a named constant will cause the compiler to generate a
syntax error.

EXAMPLE 2-11: Write a program to calculate and print the volume of a cylinder whose
 and , knowing that

int num1, num2 = 2, num3 = 4; // num1 = ?, num2 = 2, num3 = 4

num1 = num2 = num3; // num1 = 4, num2 = 4, num3 = 4

num1 = num2 = num3 = 9; // num1 = 9, num2 = 9, num3 = 9

1

2

3

const dataType identifier = value;1

const double PI = 22.0 / 7.0;

const int NO_OF_STUDENTS = 20;

1

2

const double PI; // error: unintialized const variable

PI = 22.0 / 7.0; // error: assignment of read only variable

1

2

const double PI = 22.0 / 7.0;

PI = 3.14; // error: assignment of read only variable

1

2

E. Manar Jaradat

af://n511

OUTPUT:

Data Types
Data type is a set of values together with a set of operations.

C++ is a strongly typed programming language since we need to specify the data type of
each created variable.

Specifying the data type of a variable is useful to:

Determine the size and layout of the variable's memory
Determine the range of values that can be stored within that memory
Determine the set of operations that can be applied to the variable.

C++ data types fall into the following three categories:

Simple data type
Structured data type
Pointers

Simple Data Types

The simple data type is the fundamental data type in C++ because it becomes a building
block for the structured data type.

There are three categories of simple data:

Integral data types: deal with integers, or numbers without a decimal part. e.g. char ,
short , int , long long , bool , unsigned char , unsigned short , unsigned int ,
unsigned long .
Floating-point data types: deals with decimal numbers. e.g. float , double .
Enumeration data types: deals with user-defined data type.

Data Type Values Storage (in bytes)

bool true and false 1

char -128 to 127 1

short –32768 to 32767 2

The following table gives the range of possible values associated with some integral data
types and the size of memory allocated to manipulate these values.

double r, h, area, volume;

r = 5;

h = 10;

const double PI = 22.0 / 7.0;

area = PI * r * r;

volume = area * h;

cout<<"base area = "<<area<<endl;

cout<<"cylinder volume = "<<volume<<endl;

1

2

3

4

5

6

7

8

cylinder area = 78.5714

cylinder volume = 785.714

1

2

E. Manar Jaradat

af://n540
af://n565

Data Type Values Storage (in bytes)

int -2147483648 to 2147483647 4

long long to 64

Which data type you use depends on how big a number your program needs to deal with.

Which data type would you use to store whether a student pass an exam or not?
An international company has 5000 employees, which data type would you use to store
number of employees in this company?
Assume the distance between two cities in Jordan that is 79.7 KM, which data type
would you use to store the distance ?

Different compilers may allow different ranges of values.

int Data Type

Integers in C++, as in mathematics, are numbers without decimal parts.

For example: -6728 , -67 , 0 , 78 , 36782 , +763

Positive integers do not need a + sign in front of them.

Study the following C++ statements.

In C++, commas are used to separate items in a list, and you cannot use them within an
integer.

Recall: In C++, you can store any number from -2147483648 to 2147483647 in an integer
data type.

EXAMPLE 2-12: Execute the following code segment on your preferred C++ compiler and
note the result of the second output statement

OUTPUT

int num1 = -12;

num1 = +3;

num1 = 6;

num1 = 12000;

1

2

3

4

int num1 = 12,000; // is illegal1

int x = 1000;

x = x*x;

cout << x << endl;

x = x * x;

cout << x << endl;

1

2

3

4

5

E. Manar Jaradat

af://n619

Explain the result and think in a solution for this problem.

bool Data Type

The data type bool has only two values: true and false .
true and false are called the logical (Boolean) values.
The central purpose of this data type is to manipulate logical (Boolean) expressions.
In C++, bool , true , and false are reserved words.
Any none zero value is considered as true.

Study the following C++ statements.

char Data Type

The data type char is the smallest integral data type.

Can store numbers in the range -128 to 127.

It is mainly used to represent single characters—that is, letters, digits, and special symbols.

All the individual symbols located on the keyboard that are printable may be considered as
possible values of the char data type.

When using the char data type, you enclose each character represented within single
quotation marks.

'A' , 'a' , '0' , '*' , '+' , '$' , '&' , ' ' , '_'

When an output statement outputs char values, it outputs only the character without the
single quotes.

EXAMPLE 2-13: What is Consider the output of following code snippet?

1000000

-727379968

1

2

bool b1;

b1 = true; //b1 = 1

b1 = false; //b1 = 0

b1 = 0; //b1 = 0

b1 = 100; //b1 = 1

b1 = -150; //b1 = 1

1

2

3

4

5

6

E. Manar Jaradat

af://n650
af://n670

OUTPUT:

Note that a blank space is a character and is written as ' ' , with a space between the single
quotation marks.

The data type char allows only one symbol to be placed between the single quotation marks.

'abc' and '!=' is not of the type char .

If you enclose multiple symbols in single quotes the compiler will save the last
character in our variable

ASCII Code Set

Recall, computers can only work with binary data, so we have different character encoding
systems that give each character a unique numeric code.

Several different character data sets are currently in use. The most common are the
American Standard Code for Information Interchange (ASCII)

The ASCII character set has 128 values.

Each of the 128 values of the ASCII character set represents a different character.
Each character has a predefined ordering represented by the numeric value associated
with the character. This ordering is called a collating sequence, in the set.

The order of characters in the ASCII code set (collating sequence) is used when you compare
characters.

The table below includes the ASCII table for most characters in your keyboard.

char score = 'A';

char plus = '+';

char num = '5';

const char BLANK = ' ';

const char DOLLAR = '$';

cout<<score<<plus<<num<<BLANK<<DOLLAR;

1

2

3

4

5

6

A+5 $1

char ch5 = 'abd'; // The compiler will give you a warning

cout<<ch5; //d

1

2

E. Manar Jaradat

af://n703

Variables of char data type can be initialized in the following two ways

single symbol enclosed in single quotes.
The symbol equivalent ASCII code.

EXAMPLE 2-14: What is the output of the following code snippet?

OUTPUT:

Floating-Point Data Types

C++ provides the floating-point data type to deal with decimal numbers.

Decimal numbers usually written using the scientific notation. For example:

C++ uses a form of scientific notation called floating-point notation to represent decimal
numbers.

In the C++ floating-point notation, the letter E stands for the exponent.

 Decimal Number Scientific Notation C++ Floating-Point Notation

1. 75.924 7.592400E1

2. 0.18 1.800000E-1

3. 0.0000453 4.530000E-5

EXAMPLE 2-18: The following table shows some decimal numbers and their representation
using scientific notation and C++ floating-point notation.

char ch1 = 65; // ch = A

char ch2 = 50; // ch = 2

char ch3 = 99; // ch = c

char ch4 = 63; // ch = ?

cout<<ch1<<ch2<<ch3<<ch4;

1

2

3

4

5

A2c?1

E. Manar Jaradat

af://n735

 Decimal Number Scientific Notation C++ Floating-Point Notation

4. -1.482 -1.482000E0

5. 7800.0 7.800000E3

 C++ Floating-Point Notation Scientific Notation

1. 3.450000E20

2. 7.940000E-13

3. 2.623000E0

EXAMPLE 2-15: What is the equivalent decimal numbers in scientific notation for the
following numbers represented using C++ floating-point notation?

NOTE: The decimal number is not equivalent to .

C++ provides two data types to manipulate decimal numbers: float and double .

Data Type Values Storage (in bytes)

float to 4

double to 8

The following table show the range of values and required storage space for float , and
double data types.

EXAMPLE 2-20: What is the output of following code snippet?

OUTPUT:

float x = 3.440000E10;

float y = 2.00000E7;

float z = x / y;

cout << z << endl;

double w = 3.154E40;

cout << w << endl;

1

2

3

4

5

6

1720

31540

1

2

E. Manar Jaradat

string Data Type

The data type string is a programmer-defined data type.

The data type string is not directly available for use in a program like the simple data types
discussed earlier, so you need to access its definition from the header file string .

A string is a sequence of zero or more characters.

Strings in C++ are enclosed in double quotation marks " " .

A string containing no characters is called a null or empty string.

EXAMPLE 2-16: What is the output of the following code snippet?

OUTPUT:

Every character in a string has a relative position in the string.

The position of the first character is 0, and the position of the second character is 1, and
so on.

The length of a string is the number of characters in it including the spaces.

EXAMPLE 2-17: For the string "HELLO World!" answer the following questions.

What is the length of the string? 12
What is the position of character 'H'? 0
What is the position of character 'L'? 2
What is the position of character 'O'? 4
What is the position of character 'o'? 7
What is the position of character ' ' the space? 5

EXAMPLE 2-18: For the string "It is a beautiful day." answer the following questions.

What is the length of the string? 22
What is the position of character 'a'? 6

C++ provides many operations and functions to manipulate strings.

To find a string length use the function length() as follows

#include <string>1

string str1, str2;

str1 = "William Jacob";

str2 = "Mickey";

const string TAB = " ";

cout<<str1<<TAB<<str2;

1

2

3

4

5

William Jacob Mickey1

stringId.length();1E. Manar Jaradat

af://n834

To print the character located at position p use the square bracket operator [] as
follows

EXAMPLE 2-19: What is the output of the following code snippet?

OUTPUT

Arithmetic Operators, Operator Precedence, and
Expressions

Arithmetic expressions: contain values and arithmetic operators

Operands: are the values on which the operators will work
Operators: can be unary (one operand) or binary (two operands)

C++ arithmetic operators divided in to two types:

Binary operators: which are operators with 2 operands

+ addition, - subtraction, * multiplication, / division, % modulus (or remainder)
Unary operators: which are operators with one operand

- negation, ++ increment, -- decrement

Order of Precedence

When more than one arithmetic operator is used in an expression, C++ uses the operator
precedence rules to evaluate the expression.

All operations inside of parenthesis () are evaluated first

Unary operators

Multiplication * , Division / , and modulus % are at the same level of precedence and are
evaluated next

Addition + and Subtraction – have the same level of precedence and are evaluated last.

When operators are on the same level performed from left to right (associativity).

Study the following arithmetic expression.

stringId[p]1

string name = "Ahmad Ali";

int len = name.length();

cout<<name<<" has "<<len<<" characters\n";

cout<<name[0]<<name[2]<<name[7];

1

2

3

4

Ahmad Ali has 9 characters

Aml

1

2

E. Manar Jaradat

af://n902
af://n926

There are three types of arithmetic expressions in C++:

Integral expressions—all operands in the expression are integers. An integral
expression yields an integral result.

Floating-point (decimal) expressions—all operands in the expression are decimal
numbers. A floating-point expression yields a floating-point result.

Mixed expressions—the expression contains both integers and decimal numbers.

Evaluation rules for arithmetic expressions

If operator has same types of operands, then it is evaluated according to the type of the
operands

If operator has both types of operands then integer is changed to floating-point,
Operator is evaluated, and the result is floating-point.

Entire expression is evaluated according to precedence rules.

EXAMPLE 2-20: What is the output of the following code snippet?

3 * 7 - 6 + 2 * 5 / 4 + 6

// = (((3 * 7) – 6) + ((2 * 5) / 4)) + 6

// = 21 – 6 + 2 + 6 = 23

1

2

3

3 + 5 / 2 - 1

= 3 + 2 - 1

= 4

1

2

3

10.0 * 3.75 - 34.2

= 37.5 - 34.2

= 3.3

1

2

3

5 / 2 = 2

10 / 3 = 3

5.0 / 2.0 = 2.5

1

2

3

5.0 / 2 = 2.5

5 / 2.0 = 2.5

1

2

int n1 = 2, n2 = 4, n3 = 6;

cout<< 3 + n1 - n2 / 7<<endl;

cout<< n1 + 2 * (n2 - n3) + 18<<endl;

double d1 = 10.0, d2 = 20.4;

cout<< d1 * 10.5 + d2 - 16.2 <<endl;

cout<< 5.4 * 2 - 12.6 / 3 + 18 / 2 <<endl;

cout<< 5.4 * 2 - 13.6 + 18 % 5<<endl;

1

2

3

4

5

6

7

8

9E. Manar Jaradat

OUTPUT:

PRACTICE: What is the output of each of the following code snippet?

NOTE: The value of a variable will not changed unless you use assignment operator =
or input statement cin >> .

EXAMPLE 2-21: Write a program to calculate number of weeks and the remaining days in
100 days

PRACTICE: Knowing that 1 foot has 12 inches, write a program to calculate number of feet
and the remaining inches in 500 inches.

EXAMPLE 2-22: What is the output of the following code snippet?

OUTPUT

Because the char data type is also an integral data type, C++ allows you to perform
arithmetic operations on char data.

When using a char variable in an arithmetic expression, the equivalent ASCII code of the
value stored in it will be used to evaluate the expression.

5

16

109.2

15.6

0.2

1

2

3

4

5

int x1 = 10, x2 = 4;

cout<< x1 / x2 <<endl;

cout<< x1 % x2 <<endl;

cout<<x1<<x2<<endl;

1

2

3

4

int days = 100, weeks;

const int DAYS_WEEK = 7;

weeks = days / DAYS_WEEK;

days = days % DAYS_WEEK;

cout<<"# of weeks = "<<weeks<<endl;

cout<<"# of remaining days = "<<days<<endl;

1

2

3

4

5

6

7

bool b1, b2, b3;

b1 = 10;

b2 = true;

b3 = false;

cout<<(b1 + b2 + b3) * 3 % 5;

1

2

3

4

5

11

E. Manar Jaradat

There is a difference between the character '8' and the integer 8. The integer value of 8 is 8.
The integer value of '8' is 56, which is the ASCII collating sequence of the character '8'.

Example 2-23: What is the output of the following code snippet?

OUTPUT:

When storing the result of arithmetic expression in a char variable, then the corresponding
character of the result will be stored in this variable.

Example 2-24: What is the output of the following code snippet?

OUTPUT:

All arithmetic operators can be used with integral and floating-point data types EXCEPT
modulus operator which can be used ONLY with integral types.

Compound Assignment Statements

The assignment statements you have seen so far are called simple assignment statements.

In certain cases, you can use special assignment statements called compound assignment
statements to write simple assignment statements in a more concise notation.

Corresponding to the five arithmetic operators + , - , * , / , and % , C++ provides five
compound operators: += , -= , *= , /= , and %= , respectively.

Using the compound operator *= , you can rewrite the simple assignment statement:

variable = variable * (expression);

char x1 = 'a'; // ASCII code of 'a' = 97

cout<<x1 + '3'<<endl; // ASCII code of '3' = 51

cout<<x1 / 2 <<endl;

cout<<x1 % 5<<endl;

1

2

3

4

148

48

2

1

2

3

int num = 50;

bool b = true;

char x1 = num * 2 - 3 + b;

cout<<x1<<" "<<num<<endl;

cout<<x1 + 5<<endl;

1

2

3

4

5

b 50

103

1

2

double x1 = 7, x2 = 3;

cout<< x1 % x2 <<endl; //syntax error

1

2

E. Manar Jaradat

af://n1022

as:

variable *= expression;

 simple assignment statement Compound Assignment Statement

1. i = i + 5 i += 5

2. count = count - 3; count -= 3;

3. amount = amount * (interest +1); amount *= (interest +1);

4. x = x / (y + 5); x /= y + 5;

EXAMPLE 2-25: What is the equivalent compound assignment statements for the following
assignment statements?

EXAMPLE 2-26: What is the output of the following code snippet.

OUTPUT:

Increment and Decrement Operators

Increment operator ++ : increase the variable value by 1

Pre-increment:

The increment operator is written before the variable name e.g. ++variable

The variable value is increased then used

Post-increment:

The increment operator is written after the variable name e.g. variable++

The variable value is used then increased

Decrement operator -- : decrease the variable value by 1

int x = 5, y = 8, z = 9;

x *= y - z % 5;

cout<<x<<" "<<y<<" "<<z;

1

2

3

20 8 91

int x = 5;

int y = ++x; // x = 6, y=x=6

cout << x << y; // 66

1

2

3

int x = 5;

int y = x++; // y = x = 5, x = 6

cout << x << y; // 65

1

2

3

E. Manar Jaradat

af://n1066

Pre-decrement:

The decrement operator is written before the variable name e.g. --variable

The variable value is decreased then used

Post-decrement:

The decrement operator is written after the variable name e.g. variable--

The variable value is used then decreased

Example 2-27: What is the output of the following code snippet?

OUTPUT:

Example 2-28: What is the output of the following code snippet?

OUTPUT:

Example 2-29: What is the output of the following code snippet?

OUTPUT:

int x = 5;

int y = --x; // x = 4, y=x=4

cout << x << y; // 44

1

2

3

int x = 5;

int y = x--; // y = x = 5, x = 4

cout << x << y; // 45

1

2

3

int a = 5;

int b = 2 + (++a); // a = 6, b=2+6=8

cout<<a<<b;

1

2

3

681

int a = 5;

int b = 2 + (a--); // b= 2+a= 7, a = 4

cout<<a<<b;

1

2

3

471

int x = 10;

cout<<++x<<endl; // x = 11, print x

cout<<x++<<endl; // print x, x = 12

cout<<x;

1

2

3

4

121E. Manar Jaradat

Type Conversion (Casting)
Changing the data type of the result of an expression to another data type.

Type conversion could be:

Implicit: When the expression results data type is automatically changed to another
type temporarily by the compiler.
Explicit: When the expression results data type is manually changed to another type
temporarily using cast operator.

Implicit Type Conversion

If you are not careful about data types, implicit type coercion can generate unexpected
results.

RECALL, the following is the syntax to define a variable and store the result of expression in
it.

To execute the previous statement:

1. Evaluate the expression according to the evaluation rules we studied earlier.	
2. Modify the value of the result of expression to suit the variable's data type.

NOTE: The compiler can implicitly convert values from one integral and decimal data type to
another as shown in the following examples.

EXAMPLE 2-30: What is the output of the following code snippet?

OUTPUT:

type variable = expression;1

bool x1 = 1;

int x2 = 13;

double x3 = 4.0;

char x4 = 'B';

// Print the result of arithmetic expression

cout<< x2 - 13 <<endl;

cout<< x4 / x3 <<endl;

cout<< x4 + x3-x2 <<endl;

cout<< x4 % 5 <<endl;

// Store the result of arithmatic expression in a variable

x1 = x2 - 13;

x3 = x4 / x3;

x4 += (x3 - x2);

x2 = x4 % 5;

cout<<x1<<x2<<x3<<x4<<endl;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

E. Manar Jaradat

af://n1126
af://n1138

Example 2-31: What is the output of the following code snippet?

OUTPUT:

PRACTICE: What is the output of the following code snippet?

PRACTICE: What is the output of the following code snippet?

PRACTICE: What is the output of the following code snippet?

PRACTICE: What is the output of the following code snippet?

0

16.5

57

1

0416.5E

1

2

3

4

5

char v1 = 'c'; // v1 = 99

int v2 = 5 * ++v1 + 70; // v1 = 100, v2=570

int v3 = 600 - 3 * v1--; // v3 = 300, v1=99

cout<<v1<<v2<<v3;

1

2

3

4

c5703001

// Remember: a boolean variable can only store values 0 or 1

bool b1 = 10 * 6 - 60; // b1 = 0

bool b2 = 3.14; // b2 = 1

bool b3 = 0.04; // b3 = 1

bool b4 = 'a'; // b4 = 1

cout<<b1<<"\t"<<b2<<"\t"<<b3<<"\t"<<b4;

1

2

3

4

5

6

bool b = 10; // b = 1

int v1 = 13.7; // v1 = 13

int v2 = 0.999; // v2 = 0

int v3 = 'a'; // v3 = 97

int v4 = b; // v4 = 1

int v5 = false; // v5 = 0

cout<<v1<<"\t"<<v2<<"\t"<<v3<<"\t"<<v4;

1

2

3

4

5

6

7

bool b = 0;

char c1 = 'A'; // c1 = A

char c2 = 66; // 66 is the ASCII code of 'B' => c1 = B

char c3 = 97.65; // 97 is the ASCII code of 'a' => c2 = a

char c4 = b; // 0 is the ASCII code of null => c3 store null

cout<<c1<<c2<<c4<<c3;

1

2

3

4

5

6

E. Manar Jaradat

NOTE: You cannot store a string in an integral or decimal variables.

Explicit Type Conversion

To avoid implicit type conversion, C++ provides for explicit type conversion through the use
of a cast operator.

The cast operator, also called type conversion or type casting, takes the following form:

First, the expression is evaluated.
Then, its value is converted to a value of the type specified by dataTypeName.

In C++, static_cast is a reserved word.

EXAMPLE 2-32: What is the output of each of the following code snippet?

OUTPUT:

bool b = 10; // b = 1

double d1 = 4; // d1 = 4.0

double d2 = b / 2.0; // d2 = 0.5

double d3 = 'B'; // d3 = 66.0

double d4 = 'a'; // d4 = 97.0

cout<<d1<<d2<<d3<<d4;

1

2

3

4

5

6

bool b = "str"; // error: cannot convert string to bool

int v = "str"; // error: cannot convert string to int

char c = "str"; // error: cannot convert string to char

double d = "str"; // error: cannot convert string to double

string text = 4; // error: cannot convert int to string

1

2

3

4

5

static_cast<dataTypeName>(expression)1

cout<<static_cast<int>(7.9)<<endl;

cout<<static_cast<int>(3.3)<<endl;

cout<<static_cast<double>(25)<<endl;

cout<<static_cast<double>(5 + 3)<<endl;

cout<<static_cast<double>(15) / 2<<endl;

cout<<static_cast<double>(15 / 2)<<endl;

cout<<static_cast<int>(7.8 + static_cast<double>(15) / 2)<<endl;

cout<<static_cast<int>(7.8 + static_cast<double>(15 / 2))<<endl;

char v = static_cast<int>(66.9);

int w = 'a' + static_cast<bool>(66.9);

double x = static_cast<int>(100.0) / 3;

cout<<v<<w<<x<<endl;

1

2

3

4

5

6

7

8

9

10

11

12

13

E. Manar Jaradat

af://n1188

7

3

25

8

7.5

7

15

14

B9833

1

2

3

4

5

6

7

8

9

E. Manar Jaradat

C++ PROGRAMMING:
FROM PROBLEM ANALYSIS TO PROGRAM DESIGN

BY: D. S. MALIK

CHAPTER 3: INPUT / OUTPUT

SUMMARY & EXAMPLES

PREPARED BY:

E. MANAR JARADAT

CHAPTER 3: INPUT/OUTPUT
A program performs three basic operations: it gets data, it manipulates the data, and it
outputs the results.

The standard input device is usually the keyboard, and the standard output device is usually
the screen.

In C++, data is moved between computers and input/ output devices as a sequence of
characters from the source to the destination called a stream.

There are two types of streams:

Input stream: A sequence of characters moved from an input device to the computer.
Output stream: A sequence of characters moved from the computer to an output
device.

To receive data from the keyboard and send output to the screen, every C++ program must
use the header file iostream .

The header file iostream contains, among other things, the following:

The definitions of two data types, istream (input stream) and ostream (output
stream).
The declaration of the input stream variable cin , which stands for common
input. istream cin
The declaration of the output stream variable cout , which stands for common
output. ostream cout

To use cin and cout in your C++ program must use the preprocessor directive:

Because cin and cout are already defined and have specific meanings, to avoid confusion,
you should never redefine them in programs.

EXAMPLE 3-1: Study the following code snippet, and notice the effect of redefinition a
predefined variable.

OUTPUT:

Input (Read) Statement
In Chapter 2 we learned how to use assignment statement to put data into variables.

#include <iostream>1

int x = 5, cin = 10;

cin += 15;

cout << cin << endl;

cin >> x; //warning: statement has no effect

cout << x;

1

2

3

4

5

25

5

1

2

E. Manar Jaradat

af://n0
af://n38

In this chapter we will learn how to develop interactive programs that use input (or read)
statements to put data into variables from the standard input device.

Putting data into variables from the standard input device is accomplished via the use of
cin and the stream extraction operator >> .

The syntax of the input statement (cin >>):

The extraction operator >> is a binary operator since it takes two operands.

The left-side operand must be an input stream variable, such as cin .
The right-side operand is a variable of simple data types (int , double , char ...).

A single input statement can read more than one data item by using the extraction operator
>> several times.

Every occurrence of >> extracts the next data item from the input stream.

Study the following code snippets, and notice how you can read the length and width of a
rectangle using either a single input statement or multiple input statements.

During programming execution, if more than one value is entered in a line, these values
must be separated by at least one blank or tab. Alternately, one value per line can be
entered.

How does the extraction operator >> work?

When scanning for the next input, >> skips all whitespace characters (lines, blanks,
tabs).
The extraction operator >> simply finds the next input data in the input stream.

How does the extraction operator >> distinguish between the character 2 and the number
2?

The right-side operand of the extraction operator >> makes this distinction.

If the right-side operand is a variable of the data type char , the input 2 is treated
as the character 2 and, in this case, the ASCII value of 2 is stored.
If the right-side operand is a variable of the data type int or double , the input 2
is treated as the number 2.

During program execution, when entering character data such as letters, you do not enter
the single quotes around the character.

Example 3-2: Consider the following variable declarations and answer the question below.

cin >> variable;1

cin >> variable >> variable ...;1

cin >> length >> width;1

cin >> length;

cin >> width;

1

2

int a;

double z;

char ch;

1

2

3E. Manar Jaradat

 Statement Input Value stored in Memory

1 cin >> a >> ch >> z; 57 A 26.9 a = 57, ch = 'A', z = 26.9

2 cin >> a >> ch >> z;
57 A

26.9

a = 57, ch = 'A', z = 26.9

3 cin >> a >> ch >> z;
57

A

26.9

a = 57, ch = 'A', z = 26.9

4 cin >> a >> ch >> z; 57A26.9 a = 57, ch = 'A', z = 26.9

What is the value stored in each variable after executing the following input statements.

NOTE: The char data type takes one printable character except the blank

NOTE: The integral data types takes an integer, possibly preceded by a + or - sign.

NOTE: The decimal data types takes a decimal number, possibly preceded by a + or - sign.
If the actual data input is an integer, then the input is converted to a decimal number with
the zero decimal part.

 Statement Input Value stored in Memory

1 cin >> ch; A ch = 'A'

2 cin >> ch; AB
ch = 'A'

'B' is held for later input

3 cin >> a; +48 a = 48

4 cin >> a; -46.35
a = -46

.35 is held for later input

5 cin >> z; 74.35 z = 74.35

6 cin >> z; 39 z = 39.0

7 cin >> z >> a ; 65.78-38 z = 65.78, a = -38

Example 3-3: Consider the following variable declarations and answer the question below.

What is the value stored in each variable after executing the following input statements.

Example 3-4: Consider the following variable declarations and answer the question below.

int a;

double z;

char ch;

1

2

3

int a, b;

double z;

char ch, ch1, ch2;

1

2

3E. Manar Jaradat

 Statement Input Value stored in Memory

1 cin >> z >> ch >> a; 36.78B34 z = 36.78, ch = 'B', a = 34

2 cin >> z >> ch >> a;
36.78

B34

z = 36.78, ch = 'B', a = 34

3 cin >> a >> b >> z; 11 34
a = 11, b = 34,

Computer waits for the next input

4 cin >> a >> z; 78.49 a = 78, z = 0.49

5 cin >> ch >> a; 256 ch = '2', a = 56

6 cin >> a >> ch; 256
a = 256,

Computer waits for the next input

7 cin >> ch1 >> ch2; A B ch1 = 'A', ch2 = 'B'

What is the value stored in each variable after executing the following input statements.

EXAMPLE 3-5: What is the output of the following code snippet?

SAMPLE RUN: Assume user input is 12 5 7.25

EXAMPLE 3-6: What is the output of the following code snippet?

SAMPLE RUN: Assume user input is 12B27.5

int x, y;

double z;

cout << "Insert 2 integers and 1 decimal number"<<endl;

cin >> x >> y >> z;

cout << 4 + x / y + z;

1

2

3

4

5

Insert 2 integers and 1 decimal number

12 5 7.25

13.25

1

2

3

int x;

double y;

char z;

cout << "Enter integer, character, and decimal number" << endl;

cin >> x >> z >> y;

z += y / x;

cout<<z;

1

2

3

4

5

6

7

Enter integer, character, and decimal number

12B27.5

D

1

2

3

E. Manar Jaradat

EXAMPLE 3-7: Modify example 2-21 from chapter 2 to read the value of days from user.

SAMPLE RUN: Assume user input is 500

When you enter data for processing, the data values should correspond to the data types of
the variables in the input statement. because computers does not tolerate any other kind of
mismatch.

For example, entering a char value into an int or double variable causes serious errors,
called input failure.

What happens if the input stream has more data items than required by the program?

After the program terminates, any values left in the input stream are discarded.

Input Failure

What would happen if you tried to input a letter into an int variable? If the input data did
not match the corresponding variables, the program would run into problems.

For example, trying to read a letter into an int or double variable would result in an input
failure.

Statement Input result

cin >> a >> b;
35 67.93
48

a = 35, b = 67

EXAMPLE 3-8: Consider the following variable definitions, and answer the question below.

What will be the value stored in each variable after executing the following input statements
given the corresponding input.

int days, weeks;

const int DAYS_WEEK = 7;

cout<<"Enter number of days: "<<endl;// prompt statement

cin >> days;

weeks = days / DAYS_WEEK;

days = days % DAYS_WEEK;

cout<<"# of weeks = "<<weeks<<endl;

cout<<"# of remaining days = "<<days<<endl;

1

2

3

4

5

6

7

8

9

10

11

Enter number of days:

500

of weeks = 71

of remaining days = 3

1

2

3

4

int a, b, c;

double x;

1

2

E. Manar Jaradat

af://n249

Statement Input result

cin >> a >> b; W 54
Input failure,

input the character 'W' into the int variable
a.

cin >> a >> b >> c;
35 67.93
48

a = 35, b = 67, Input failure,

input the character '.' into the int variable c.

Input failure causes the input stream to enter a fail state.

What happens happens when the input stream enters the fail state?

All further I/O statements using that stream are ignored.
The program continues to execute with whatever values are stored in variables and
produces incorrect results.

EXAMPLE 3-9: What is the output of the following code segment for each of the given user
inputs

SAMPLE RUN1: Assume the user input is Sam 35 q56 6.2

Sample Run2: Assume the user input is Sam 35.0 156 6.2

int main()

{

 string name;

 int age = 0;

 int weight = 0;

 double height = 0.0;

 cout << "Enter name, age, weight, and height: ";

 cin >> name >> age >> weight >> height;//Sam 35.0 156 6.2

 cout << "Name: " << name << endl;

 cout << "Age: " << age << endl;

 cout << "Weight: " << weight << endl;

 cout << "Height: " << height << endl;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Enter name, age, weight, and height: Sam 35 q56 6.2

Name: Sam

Age: 35

Weight: 0

Height: 0

1

2

3

4

5

Enter name, age, weight, and height: Sam 35.0 156 6.2

Name: Sam

Age: 35

Weight: 0

Height: 0

1

2

3

4

5

E. Manar Jaradat

Input the string Type

You can use the input statement cin >> , to read a string into a variable of the data type
string .

NOTE: You cannot use the extraction operator to read strings that contain blanks.

 Statement Input Value stored in Memory

1 cin >> a >> d >> ch >> str; 5 4 % txt
a = 5 , d = 4.0

ch = '%', str = txt2

2 cin >> a >> d >> ch >> str; 5.43Programming
a = 5 , d = 0.43

ch = 'P', str = rogramming

3 cin >> a >> d >> ch >> str; 5.4 3Programming
a = 5 , d = 0.4

ch = '3', str = Programming

EXAMPLE 3-10: Consider the following variable declarations and answer the question below.

What is the value stored in each variable after executing the following input statements?

EXAMPLE 3-11: What is the output of the following code snippet?

SAMPLE RUN: Assume user input is Manar Jaradat

To read a string containing blanks, you can use the function getline .

The syntax to use the function getline is:

istreamVar is an input stream variable, and strVar is a string variable.
The function getline reads until it reaches the end of the current line '\n' . The newline
character is also read but not stored in the string variable.

EXAMPLE 3-12: What is the output of the following code snippet?

int a;

double d;

char ch;

string str;

1

2

3

4

string name;

cout <<"What is your name? "<<endl;

cin >> name;

cout <<"Welcome "<< name;

1

2

3

4

What is your name?

Manar Jaradat

Welcome Manar

1

2

3

getline(istreamVar, strVar);1

E. Manar Jaradat

af://n295

SAMPLE RUN: Assume user input is Manar Jaradat

Using Predefined Functions in a Program
C++ comes with a wealth of functions, called predefined functions, that are already written.

RECALL: In Chapter 2 we learned that predefined functions are organized as a collection of
libraries, called header files.

To use a predefined function in a program, you need to know the following:

You must be aware of what the function is going to do.
The name of the header file containing the specification of the function and include that
header file in the program.
The name of the function.
The number of parameters the function takes, and the type of each parameter.

Consider the use of the power function pow

The specification of the function pow is contained in the header file cmath .

The function pow has two parameters, which are decimal numbers.

It is used to calculate the first parameter to the power of the second parameter. pow(x,
y) = .

Consider the use of the power function sqrt

The specification of the function sqrt is contained in the header file cmath .

The function sqrt has a single parameter, which is a decimal number.

It is used to calculate the square root of the parameter. sqrt(x) = .

 Mathematical Equation Equivalent C++ Statement

1. double x = pow(2.0, 3.0)

2.
double y = pow(4, 0.5) OR

double y = sqrt(4)

3. double z = pow(x, y)

EXAMPLE 3-13: Write the equivalent C++ statement for the following mathematical
equations.

string name;

cout <<"What is your name? "<<endl;

getline(cin, name);

cout <<"Welcome "<< name;

1

2

3

4

What is your name?

Manar Jaradat

Welcome Manar Jaradat

1

2

3

E. Manar Jaradat

af://n349

 Mathematical Equation Equivalent C++ Statement

4.
double w = 34.15 * pow(10, 9) OR

double w = 34.15000E9

5. double v = 10.9 * pow(5, -12)

EXAMPLE 3-14: Write the required C++ program to calculate and print the volume of a
cylinder, read the values of radius and height from the user.

SAMPLE RUN: Assume user input is: 2 10

EXAMPLE 3-15: Knowing that a point p1 has the coordinates (x1,y1), and another point p2
has the coordinates (x2,y2). Write the required code to read the coordinates from user and
calculate the distance between them.

#include <iostream>

#include <cmath>

using namespace std;

int main ()

{

 double radius;

 double height;

 const double PI = 3.14;

 cout << "Insert the radius and height of the cylinder" << endl;

 cin >> radius >> height;

 double volume = PI * pow (radius, 2) * height;

 cout << "A cylinder of radius = " << radius;

 cout << " and height = " << height;

 cout << " has volume = " << volume << endl;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Insert the radius and height of the cylinder

2 10

A cylinder of radius = 2 and height = 10 has volume = 125.6

1

2

3

#include <iostream>

#include <cmath>

using namespace std;

int main ()

{

 double x1, y1;

 double x2, y2;

 cout << "Enter the coordinates of the first point:" << endl;

 cin >> x1 >> y1;

 cout << "Enter the coordinates of the second point:" << endl;

 cin >> x2 >> y2;

 double tmp = pow (x2 - x1, 2) + pow (y2 - y1, 2);

1

2

3

4

5

6

7

8

9

10

11

12

13

14E. Manar Jaradat

 SAMPLE RUN: Assume user input is: 4 7 9 -5

 double distance;

 distance = sqrt (tmp);

 cout << "distance between points = " << distance;

}

15

16

17

18

19

Enter the coordinates of the first point:

4 7

Enter the coordinates of the second point:

9 -5

distance between points = 13

1

2

3

4

5

E. Manar Jaradat

C++ PROGRAMMING:
FROM PROBLEM ANALYSIS TO PROGRAM DESIGN

BY: D. S. MALIK

CHAPTER 4: CONTROL STRUCTURES I (SELECTION)

SUMMARY & EXAMPLES

PREPARED BY:

E. MANAR JARADAT

CHAPTER 4: CONTROL STRUCTURES I
(SELECTION)

The programming examples we studied so far included simple sequential programs. In
sequential programs, the computer starts at the beginning and follows the statements in
order.

Control structures provide alternatives to sequential program execution and used to alter
the sequential flow of execution.

The two most common control structures are :

Selection: The program executes particular statements depending on some condition
(branches).
Repetition: The program repeats particular statements a certain number of times
based on some condition(s).

Another popular control structure is function call, and we will study it later in chapter 6.

The figure below illustrates the first three types of program flow.

Both selection statements and repetition statements use conditional statements to decide
whether to execute a set of statements or not.

Consider the following three conditional statements:

1.

2.

3.

if (score is greater than or equal to 90) then grade is A1

if (hours worked are less than or equal to 40)

 wages = rate * hours

otherwise

 wages = (rate * 40) + 1.5 *(rate *(hours – 40))

1

2

3

4

if (temperature is greater than 70 degrees and it is not raining)

 Go golfing!

1

2E. Manar Jaradat

af://n0

Relational Operators
To make decisions in C++, you must be able to express conditions and make comparisons.

In C++, a condition is represented by a logical (Boolean) expression that has a value of either
true or false .

In C++, comparisons are done using relational operators.

Relational operators are binary operators; that is, they requires two operands.

Expressions that use the relational operators evaluate to either true or false .

Operator Description

== equal to

!= not equal to

< less than

<= less than or equal

> greater than

>= greater than or equal

The following table lists the relational operators that allow you to state conditions and make
comparisons.

In C++, the symbol == , is called the equality operator, and it checks whether two
expressions are equal or not.
In C++, the symbol = is called the assignment operator, and it assigns the value of an
expression to a variable.

Relational Operators and Simple Data Types

You can use the relational operators to compare values from all three simple data types
(integral, decimal)

Expression Meaning Value

is 8 less than 15? true

is 6 not equal to 6? false

is 2.5 greater than 5.8? false

is 5.9 less than or equal to 7.5? true

EXAMPLE 4-1: Consider the following relational expressions.

E. Manar Jaradat

af://n33
af://n76

For char values, the relational operators evaluates to true or false depends on their ASCII
collating sequence

Expression Meaning Value

' ' < 'a'
is ASCII value of ' ' (32) less than the ASCII value of 'a'
(97)?

true

'R' > 'T'
is ASCII value of 'R' (82) less than the ASCII value of 'T'
(84)?

false

'+' < '*'
is ASCII value of '+' (43) less than the ASCII value of '*'
(42)?

false

'A' <=

'a'

is ASCII value of 'A' (65) less than or equal the ASCII value of
'a' (97)?

true

EXAMPLE 4-2: Consider the following relational expressions.

RECALL: Operands of the relational operators could be of any simple data type.

EXAMPLE 4-3: What is the output of the following code snippet?

OUTPUT:

Relational operators have left to right associativity. that is, when two operators of same
precedence are adjacent, the left most operator is evaluated first.

EXAMPLE 4-4: Assume num is an int variable. Study the following statement and answer
the questions below?

What is the output if num = 5 ?

// ASCII value of '2' = 50

bool b;

int x = 50;

double y = 7.75;

char three = '3', five = '5';

cout << (three < 50) << endl;

cout << (five >= 53) << endl;

cout << (x <= y) << endl;

b = x > y;

cout << (1 > b) << endl;

cout << (x == '2') << endl;

1

2

3

4

5

6

7

8

9

10

11

12

0

1

0

0

1

1

2

3

4

5

cout<< (0 <= num <= 10);1

E. Manar Jaradat

What is the output if num = -3 ?

PRACTICE: What is the output if num = 13 ?

Relational Operators and the string Type

How to apply the relational operators on variables of type string.

Variables of type string are compared character by character, starting with the first
character and using the ASCII collating sequence.

The character-by-character comparison continues until:

A mismatch is found

The last characters have been compared and are equal.

 Expression Value /Explanation

1 str1 < str2

true

The first characters of str1 and str2 are the same.

The second character 'e' of str1 is less than the second

character 'i' of str2.

Therefore, str1 < str2 is true.

2 str1 > "Hen"

false

The first two characters of str1 and "Hen" are the same.

The third character 'l' of str1 is less than the third

character 'n' of "Hen".

Therefore, str1 > "Hen" is false.

Example 4-5: Consider the following variable declarations and evaluate the expressions in
the table below.

// ((0 <= 5) <= 10)

// (1 <= 10)

1

1

2

3

// ((0 <= -3) <= 10)

// (0 <= 10)

1

1

2

3

string str1 = "Hello";

string str2 = "Hi";

string str3 = "Air";

string str4 = "Bill";

string str5 = "Big";

1

2

3

4

5

E. Manar Jaradat

af://n157

 Expression Value /Explanation

3 str3 < "An"

true

The first characters of str3 and "An" are the same.

The second character 'i' of "Air" is less than the second

character 'n' of "An".

Therefore, str3 < "An" is true.

4 str1 == "hello"

false

The first character 'H' of str1 is less than the first

character 'h' of "hello", because the ASCII value

of 'H' is 72, and the ASCII value of 'h' is 104.

Therefore, str1 == "hello" is false.

5 str3 <= str4

true

The first character 'A' of str3 is less than

the first character 'B' of str4.

Therefore, str3 <= str4 is true.

6 str2 > str4

true

The first character 'H' of str2 is greater than the first

character 'B' of str4.

Therefore, str2 > str4 is true.

7 str4 >= "Billy"

false

All four characters of str4 are the same as the

corresponding first four characters of "Billy".
"Billy" is the larger string.

Therefore, str4 >= "Billy" is false.

8 str5 <= "Bigger"

true

All three characters of str5 are the same as the

corresponding first three characters of "Bigger",

"Bigger" is the larger string.

Therefore, str5 <= "Bigger" is true.

You cannot use the relational operator to compare a string type with any of the simple data
types.

Logical (Boolean) Operators and Logical Expressions

string str = "hi";

int x = 5;

bool b = str >= x; //error: no match for ‘operator>=’

 //(operand types are ‘std::string’ and ‘int’)

1

2

3

4

E. Manar Jaradat

af://n220

Logical (Boolean) Operators

Logical operators take only logical values as operands and yield only logical values as results.

Logical (Boolean) operators enable you to combine logical expressions.

Operator Description

! not

&& and

|| or

C++ has three logical (Boolean) operators listed in the following table.

The operators && , and || are binary operators, while the operator ! is a unary operator.

Not (!) Operator

Putting ! in front of a logical expression reverses the value of that logical expression.

!true is false.
!false is true.

Expression !(Expression)

true (nonzero) false (0)

false (0) true (1)

The following table defines the operator ! (not).

EXAMPLE 4-6: What is the output of the following code snippet?

OUTPUT:

THINK 🤔: Is it correct to write not operator after the expression (Expression)! ?

cout<<!('A' > 'B');

cout<<!(6 < 7);

1

2

101

E. Manar Jaradat

af://n221
af://n247

And (&&) Operator

Expression1 && Expression2 is true if and only if both Expression1 and Expression2 are
true; otherwise, Expression1 && Expression2 evaluates to false.

Expression1 Expression2 Expression1 && Expression2

true (nonzero) true (nonzero) true (1)

true (nonzero) false (0) false (0)

false (0) true (nonzero) false (0)

false (0) false (0) false (0)

The following table defines the operator && (and).

EXAMPLE 4-7: What is the output of the following code snippet?

OUTPUT:

EXAMPLE 4-8: Write the required expression to check if an integer number num is between
20 and 100 (inclusive).

EXAMPLE 4-9: Write the required expression to check if a character ch is a capital letter.

EXAMPLE 4-10: Write the required expression to check if a character ch is a NOT a capital
letter.

cout<<(14 >= 5) && ('A' < 'B');

cout<<(24 >= 35) && ('A' < 'B');

1

2

101

(20 <= num) && (num <= 100)1

(ch >= 'A') && (ch <= 'Z')1

!((ch >= 'A') && (ch <= 'Z'))1

E. Manar Jaradat

af://n280

Or (||) Operator

Expression1 || Expression2 is true if and only if at least one of the expressions is true;
otherwise, Expression1 || Expression2 evaluates to false.

Expression1 Expression2 Expression1 || Expression2

true (nonzero) true (nonzero) true (1)

true (nonzero) false (0) true (1)

false (0) true (nonzero) true (1)

false (0) false (0) false (0)

The following table defines the operator || (or).

EXAMPLE 4-11: What is the output of the following code segments.

OUTPUT:

EXAMPLE 4-12: Write the required expression to check if a character ch is a NOT a capital
letter.

PRACTICE: Solve examples 4-8 and 4-9 using the or (||) and not (!) operators.

Order of Precedence

To work with complex logical expressions, there must be some priority scheme for
evaluating operators.

Operators Precedence

! , + (plus), - (minus), ++ , -- (unary operators) first

* , / , % second

+ , - third

The following table shows the order of precedence of some C++ operators, including the
arithmetic, relational, and logical operators.

cout << (14 >= 5) || ('A' > 'B');

cout << (24 >= 35) || ('A' > 'B');

cout << ('A' <= 'a') || (7 != 7);

1

2

3

1011

(ch < 'A') || (ch > 'Z')1

E. Manar Jaradat

af://n330
af://n376

Operators Precedence

< , <= , >= , > fourth

== , != fifth

&& sixth

|| seventh

= (assignment operator) last

Using the precedence rules in an expression, relational and logical operators are evaluated
from left to right (left to right associativity).

At any time you can also use parentheses to override the precedence of operators.

NOTE: If a logical expression evaluates to true, the corresponding output is 1; if the logical
expression evaluates to false, the corresponding output is 0.

EXAMPLE 4-13: What is the output of the following code snippet?

OUTPUT:

EXAMPLE 4-14: What is the output of the following code snippet?

OUTPUT:

cout << (5 + 3 <= 9 && 2 > 3);

cout << (11 > 5 || 6 < 15 && 7 >= 8);

cout << (2 + 6 * 2 <= 12 == 30 > 4 * 10);

1

2

3

0111

bool found = true;

int age = 20;

double hours = 45.30;

double overTime = 15.00;

int count = 20;

cout<<!age<<endl;

cout<<(!found && (age >= 18))<<endl;

cout<<(!(found && (age >= 18)))<<endl;

cout<<(hours + overTime <= 75.00)<<endl;

cout<<((age >= 0) && (++count > 20))<<endl;

1

2

3

4

5

6

7

8

9

10

11

0

0

0

1

1

1

2

3

4

5

E. Manar Jaradat

Short-Circuit Evaluation

In C++, short-circuit evaluation is an algorithm used by compilers to evaluate logical
expressions efficiently by avoiding unnecessary calculations.

RECALL: Logical expressions are evaluated from left to right.

RECALL: Expression1 && Expression2 is false if at least of of the expressions is false.

RECALL: Expression1 || Expression2 is true if at least of of the expressions is true.

In short-circuit evaluation, as soon as the value of the entire logical expression is known,
the evaluation stops.

EXAMPLE 4-16: What is the output of the following code snippet?

OUTPUT:

EXAMPLE 4-17: What is the output of the following code snippet?

OUTPUT:

Selection: if and if...else
Selection structures incorporate decision making to alter the processing flow of a program.

In C++, there are two selections, or branch control structures: if statements and the
switch structure.

The selection statements if and if. . .else can be used to create one of the following:

One-way selection.

Two-way selection.

Multiple selections.

char grade = 'B';

cout << (grade == 'A') && (grade >= 7);

1

2

01

int x = 4, y = 2;

cout << ((x > y) || (x == 5)) << endl;

cout << ((x > y) || (++x == 5)) << endl;

cout << x << endl;

cout << ((++x == 5) || (x > y)) << endl;

cout << x << endl;

1

2

3

4

5

6

1

1

4

1

5

1

2

3

4

5

E. Manar Jaradat

af://n430
af://n455

One-Way Selection

In C++, one-way selections are incorporated using the if statement.

The syntax of one-way selection is:

The elements of this syntax.

It begins with the reserved word if ,
The expression is usually a logical expression, and it is sometimes called a decision
maker because it decides whether to execute the statement that follows it or not.
The expression contained within parentheses () , and they are part of the syntax.
The statement following the expression is sometimes called the action statement. It is
executed only if the value of the expression is true, otherwise, the statement does not
execute and the computer goes on to the next statement in the program.

The figure below shows the flow of execution of the if statement (one-way selection).

EXAMPLE 4-18: Study the following code snippet and answer the questions below.

Identify the elements of the used one-way selection structure

What is the output if user input is 6?

if (expression)

 statement

1

2

int x;

cout << "Enter an integer value..."<<endl;

cin >> x;

if (x > 0)

 cout << x <<" is a positive number";

1

2

3

4

5

E. Manar Jaradat

af://n471

What is the output if user input is -5?

RECALL: Parentheses () are part of the syntax of if statement, and forgetting them will
cause syntax error.

EXAMPLE 4-19: Study the following code snippet, and find out the line that will cause a
syntax error.

Line 4: error: expected ‘(’ before 'x'

Putting a semicolon after the parentheses following the expression in an if statement (that is,
before the action statement) is a semantic error.

The semicolon will terminate the if statement.
The action of this if statement is null (empty), and the statement in line 2 is not part of
the if statement any more.
The statement in line 2 executes regardless of how the if statement evaluates.

EXAMPLE 4-20: Study the following code snippet and answer the questions below:

What is the output if user input is 6?

Enter an integer value...

6

6 is a positive number

1

2

3

Enter an integer value...

-5

1

2

if expression //error

 statement

1

2

int x;

cout << "Enter an integer value..."<<endl;

cin >> x;

if x > 0

 cout << x <<" is a positive number";

1

2

3

4

5

if (expression);

 statement

1

2

int x;

cout << "Enter an integer value..."<<endl;

cin >> x;

if (x > 0);

 cout << x <<" is a positive number";

1

2

3

4

5

Enter an integer value...

6

6 is a positive number

1

2

3E. Manar Jaradat

What is the output if user input is -5?

EXAMPLE 4-21: Study the following code snippet and answer the questions below.

What is the output if user input is 4?

What is the output if user input is -6?

EXAMPLE 4-22: Study the following code snippet and answer the questions below.

What is the output if user input is 4?

What is the output if user input is -6?

Enter an integer value...

-5

-5 is a positive number

1

2

3

int x;

cout << "Enter an integer value..."<<endl;

cin >> x;

if(++x >= 5)

 x += 2;

cout << "x = " << x;

1

2

3

4

5

6

Enter an integer value...

4

x = 7

1

2

3

Enter an integer value...

-6

x = -5

1

2

3

int x;

cout << "Enter an integer value..."<<endl;

cin >> x;

if(++x >= 5);

 x += 2;

cout << "x = " << x;

1

2

3

4

5

6

Enter an integer value...

4

x = 7

1

2

3

Enter an integer value...

-6

x = -3

1

2

3

E. Manar Jaradat

EXAMPLE 4-23: Write a program to read a student name, gender and score in computer
programming course, if his score is greater than or equals 50, print "Well done NAME you've
scored SCORE".

SAMPLE RUN:

EXAMPLE 4-24: Modify the previous program so that it adds 5 marks as bonus for female
students before it check if the student pass the course.

SAMPLE RUN:

EXAMPLE 4-25: Modify the previous program to accept the characters (f and F) to indicate
that the student gender is female.

string name;

int score;

char gender;

cout << "Enter your name, gender (F, M) and score..."<<endl;

cin >> name >> gender >> score;

if(score >= 50)

 cout << "Well done "<<name<<" you\'ve scored "<<score;

1

2

3

4

5

6

7

Enter your name, gender (F, M) and score...

Rana F 51

Well done Rana you've scored 51

1

2

3

string name;

int score;

char gender;

cout << "Enter your name, gender (F, M) and score..."<<endl;

cin >> name >> gender >> score;

if (gender == 'F')

score += 5;

if(score >= 50)

 cout << "Well done "<<name<<" you\'ve scored "<<score;

1

2

3

4

5

6

7

8

9

Enter your name, gender (F, M) and score...

Rana F 48

Well done Rana you've scored 53

1

2

3

string name;

int score;

char gender;

cout << "Enter your name, gender (F, M) and score..."<<endl;

cin >> name >> gender >> score;

if (gender == 'F' || gender == 'f')

 score += 5;

if(score >= 50)

 cout << "Well done "<<name<<" you\'ve scored "<<score;

1

2

3

4

5

6

7

8

9E. Manar Jaradat

SAMPLE RUN:

PRACTICE: Write a program to compute and output the sales tax and the final price of an
item sold in a particular state. Knowing that, the sales tax is calculated as follows: The state’s
portion of the sales tax is 4%, and the city’s portion of the sales tax is 1.5%. If the item is a
luxury item (items with price over $10,000), then there is a 10% luxury tax. The final price of
the item is the selling price in addition to the sales tax.

Two-Way Selection

Two-way selections are used in situations in which you must choose between two
alternatives.

For example, if a student passed the exam or not.
To implement two-way selections—C++ provides the if. . .else statement.

Two-way selection uses the following syntax:

The elements of this syntax:

In C++, if and else are reserved words.
Statements 1 and 2 are any valid C++ statements.
In a two-way selection, if the value of the expression is true, statement1 executes,
otherwise, statement2 executes.

The figure below shows the flow of execution of the if. . .else statement (two-way
selection).

EXAMPLE 4-26: Study the following code snippet and answer the questions below:

Enter your name, gender (F, M) and score...

Rana f 48

Well done Rana you've scored 53

1

2

3

if (expression)

 statement1

else

 statement2

1

2

3

4

E. Manar Jaradat

af://n590

What is the output if user input is 6?

What is the output if user input is -5?

EXAMPLE 4-27: Study the following code snippet and answer the questions below:

What is the output if user input is 6?

What is the output if user input is 15?

PRACTICE: What is the output if user input is -5?

In if. . .else statement, if the if statement ends with a semicolon, statement1 is no
longer part of the if statement, and the else part stands all by itself.

In C++, There is no stand-alone else statement. That is, it cannot be separated from the if
statement.

int x;

cout << "Enter an integer value..."<<endl;

cin >> x;

if (x >= 0)

 cout << x <<" is a positive number";

else

 cout << x <<" is a negative number";

1

2

3

4

5

6

7

Enter an integer value...

6

6 is a positive number

1

2

3

Enter an integer value...

-5

-5 is a negative number

1

2

3

int x;

cout << "Enter a positive integer value..."<<endl;

cin >> x;

if (0<= x <= 10)

 cout << x <<" is less than 10";

else

 cout << x <<" is greater than 10";

1

2

3

4

5

6

7

Enter a positive integer value...

6

6 is less than 10

1

2

3

Enter a positive integer value...

15

15 is less than 10

1

2

3

E. Manar Jaradat

In a two-way selection statement, putting a semicolon after the expression separates the
else statement from the if statement and this will cause a syntax error at the else
statement.

EXAMPLE 4-28: Study the following code snippet, and find out the line that will cause a
syntax error.

Line 6: error: 'else' without a previous 'if'

NOTE: In a one-way selection, the semicolon at the end of an if statement is a logical error,
whereas, in a two-way selection, it will cause a syntax error.

EXAMPLE 4-29: Modify example 4-25 , so that it prints "Sorry NAME you've scored SCORE" if
the student score is less than 50.

SAMPLE RUN:

Compound (Block of) Statements

EXAMPLE 4-30: Study the following code snippet, and find out the line that will cause a
syntax error.

int x;

cout << "Enter an integer value..."<<endl;

cin >> x;

if (x >= 0);

 cout << x <<" is a positive number";

else

 cout << x <<" is a negative number";

1

2

3

4

5

6

7

string name;

int score;

char gender;

cout << "Enter your name, gender and score..."<<endl;

cin >> name >> gender >> score;

if (gender == 'F' || gender == 'f')

 score += 5;

if(score >= 50)

 cout << "Well done "<<name;

else

 cout << "Sorry "<<name;

cout<<" you\'ve scored "<<score;

1

2

3

4

5

6

7

8

9

10

11

12

13

Enter your name, gender and score...

Rana f 35

Sorry Rana you've scored 40

1

2

3

E. Manar Jaradat

af://n663

Line 6: error: 'else' without a previous 'if'

RECALL: The if and if. . .else structures control only one statement at a time.

To permit more complex statements, C++ provides a structure called a compound statement
or a block of statements.

A compound statement are a sequence of statements enclosed in curly braces { and } ,
and it takes the following form:

EXAMPLE 4-30: Study the following code segment and answer the questions below?

What is the output if user input is 22

int x;

cout << "Enter an integer value..."<<endl;

cin >> x;

if (x >= 0)

 x *= 10;

 cout << x <<" is a positive number";

else

 cout << x <<" is a negative number";

1

2

3

4

5

6

7

8

{

 statement_1

 statement_2

 .

 .

 .

 statement_n

}

1

2

3

4

5

6

7

8

int age;

cout<<"Enter your age... ";

cin >> age;

if (age >= 18)

{

 cout << "Eligible to vote." << endl;

 cout << "No longer a minor." << endl;

}

else

{

 cout << "Not eligible to vote." << endl;

 cout << "Still a minor." << endl;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Enter your age... 22

Eligible to vote.

No longer a minor.

1

2

3

E. Manar Jaradat

What is the output if user input is 16

The compound statement is very useful and will be used in most of the structured
statements in this chapter.

EXAMPLE 4-31: Modify example 4-29 , so that it checks if the entered score is between 35
and 100 (inclusive). If the entered score is less than 35 it should print an error message and
set the score to 35. If the entered score is greater than 100 it should print an error message
and set the score to 100.

SAMPLE RUN:

Enter your age... 16

Not eligible to vote.

Still a minor.

1

2

3

string name;

int score;

char gender;

cout << "Enter your name, gender and score..."<<endl;

cin >> name >> gender >> score;

if(score < 35)

{

 cout<<"Invalid score value"<<endl;

 score = 35;

}

if(score > 100)

{

 cout<<"Invalid score value"<<endl;

 score = 100;

}

if (gender == 'F' || gender == 'f')

 score += 5;

if(score >= 50)

 cout << "Well done "<<name;

else

 cout << "Sorry "<<name;

cout<<" you\'ve scored "<<score;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Enter your name, gender and score...

Rana f 30

Invalid score value

Sorry Rana you've scored 40

1

2

3

4

E. Manar Jaradat

Multiple Selections: Nested if

Multiple selection statement is used to solve problems of more than two alternatives.

You can include multiple selection paths in a program by using an if. . .else structure
and the action statement itself is an if or if. . .else statement.

When one control statement is located within another, it is said to be nested.

RECALL: In C++,there is no stand-alone else statement. Every else must be paired with an
if .

In a nested if statement,C++ associates an else with the most recent incomplete if —that
is, the most recent if that has not been paired with an else .

EXAMPLE 4-32: Assume x and y are int variables. Study the following code segment and
answer the questions below.

What are the values of x and y if initial values of x and y are 6 and 3 respectively?

x = 9, y = 3

What are the values of x and y if initial values of x and y are 4 and 5 respectively?

x = 4, y = 8

What are the values of x and y if initial values of x and y are 5 and 5 respectively?

x = 8, y = 8

EXAMPLE 4-33: Assume balance and interestRate are two double variables. Study the
following code segment and answer the questions below.

if (expression)

 statement;

else if (expression)

 statement;

1

2

3

4

if (expression)

 statement;

else

 if (expression)

 statement;

 else

 statement;

1

2

3

4

5

6

7

if (x > y)

 x += 3;

else if(x < y)

 y += 3;

else

 x = y = y + 3;

1

2

3

4

5

6

E. Manar Jaradat

af://n702

What is the value of interestRate if balance equals 20000?

0.03

What is the value of interestRate if balance equals 30000?

0.05

What is the value of interestRate if balance equals 100000?

0.07

What is the value of interestRate if balance equals 500?

0.00

EXAMPLE 4-34: Assume temperature is an int variable. Study the following code segment
and answer the questions below.

What is the output if the temperature value is 40?

Good day to play tennis.

What is the output if the temperature value is 70?

Good day for golfing.

What is the output if the temperature value is 90?

Good day for swimming.

EXAMPLE 4-35: Assume that all variables are properly declared. Study the following code
segment and answer the questions below.

if (balance > 50000.00)

 interestRate = 0.07;

else if (balance >= 25000.00)

 interestRate = 0.05;

else if (balance >= 1000.00)

 interestRate = 0.03;

else

 interestRate = 0.00;

1

2

3

4

5

6

7

8

if (temperature >= 50)

 if (temperature >= 80)

 cout << "Good day for swimming." << endl;

 else

 cout << "Good day for golfing." << endl;

else

 cout << "Good day to play tennis." << endl;

1

2

3

4

5

6

7

E. Manar Jaradat

What will be the value stored in the variable policyRate if the customer is a 24 years
old female? 0.03
What will be the value stored in the variable policyRate if the customer is a 19 years
old female? 0.04
What will be the value stored in the variable policyRate if the customer is a 24 years
old male? 0.035
What will be the value stored in the variable policyRate if the customer is a 19 years
old male? 0.05
PRACTICE: Write the previous program using one-way selection.

EXAMPLE 4-36: Study the following code segment and answer the questions below.

What is the value stored in the variable num if the user input is 55?

56

What is the value stored in the variable num if the user input is 77?

79

What is the value stored in the variable num if the user input is 95?

98

if (gender == 'M')

 if (age < 21)

 policyRate = 0.05;

 else

 policyRate = 0.035;

else if (gender == 'F')

 if (age < 21)

 policyRate = 0.04;

 else

 policyRate = 0.03;

1

2

3

4

5

6

7

8

9

10

int num;

cout << "Enter an integer number... "<<endl;

cin >> num;

if (num >= 80)

 num++;

if (num >= 70)

 num++;

if (num >= 60)

 num++;

else

 num++;

1

2

3

4

5

6

7

8

9

10

11

E. Manar Jaradat

Comparing if...else Statements with a Series of if Statements

EXAMPLE 4-37: Given a student test score (out of 100), write a program to calculate his/her
grade (A, B, C, D, F). The grade is assigned as follows: If the average test score is greater than
or equal to 90, the grade is A; if the average test score is greater than or equal to 80 and less
than 90, the grade is B; if the average test score is greater than or equal to 70 and less than
80, the grade is C; if the average test score is greater than or equal to 60 and less than 70,
the grade is D; otherwise, the grade is F. 	

SAMPLE RUN:	

	

EXAMPLE 4-38: Rewrite the implementation of the previous program as a sequence of if
statements. DO NOT use else statement in your implementation.

SAMPLE RUN:

int score;

char grade;

cout << "Enter your test score... "<<endl;

cin >> score;

if (score >= 90)

 grade = 'A';

else if (score >= 80)

 grade = 'B';

else if (score >= 70)

 grade = 'C';

else if (score >= 60)

 grade = 'D';

else

 grade = 'F';

cout << "student grade is: "<<grade;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Enter your test score...

76

student grade is: C

1

2

3

int score;

char grade;

cout << "Enter your test score... "<<endl;

cin >> score;

if (score >= 90)

 grade = 'A';

if (score >= 80 && score < 90)

 grade = 'B';

if (score >= 70 && score < 80)

 grade = 'C';

if (score >= 60 && score < 70)

 grade = 'D';

if (score < 60)

 grade = 'F';

cout << "student grade is: "<<grade;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

E. Manar Jaradat

af://n802

THINK: The previous two examples do the exact same thing, but not in the same amount of
time. Find out which of them requires less time to execute if the student grade is 92 in each
of them?

In example 1, the expression in the if statement in Line 5 evaluates to true. The
statement (in Line 6) associated with this if then executes; the rest of the structure,
which is the else of this if statement, is skipped; and the remaining if statements are
not evaluated.
In example 2, the computer has to evaluate the expression in each if statement because
there is no else statement.
SO, the program in example 2 executes more slowly than does the program in example
1.

PRACTICE: Write a program to calculate the monthly paycheck of a salesperson at a local
department store. Knowing that every salesperson has a base salary. The salesperson also
receives a bonus at the end of each month, based on the following criteria: If the salesperson
has been with the store for five years or less, the bonus is $10 for each year that he or she
has worked there. If the salesperson has been with the store for more than five years, the
bonus is $20 for each year that he or she has worked there. The salesperson can earn an
additional bonus as follows: If the total sales made by the salesperson for the month are at
least $5,000 but less than $10,000, he or she receives a 3% commission on the sale. If the
total sales made by the salesperson for the month are at least $10,000, he or she receives a
6% commission on the sale.

Comparing Floating-Point Numbers for Equality: A
Precaution

Comparison of floating-point numbers for equality may not behave as you would expect. For
example, consider the following program:

EXAMPLE 4-39: What is the output of the following code snippet?

Enter your test score...

76

student grade is: C

1

2

3

double x = 1.0;

double y = 3.0 / 7.0 + 2.0 / 7.0 + 2.0 / 7.0;

cout << "x = " << x << endl;

cout << "y = " << y << endl;

if(x == y)

 cout<<"x and y are equal"<<endl;

else

 cout<<"x and y are not equal"<<endl;

if (abs(x - y) < 0.000001)

 cout << "x and y are almost the same" << endl;

1

2

3

4

5

6

7

8

9

10

11

12

13E. Manar Jaradat

af://n831

OUTPUT:

Confusion between the Equality Operator (==) and
the Assignment Operator (=)

No matter how experienced a programmer is, almost everyone makes the mistake of using
= in place of == at one time or another.

The appearance of = in place of == can cause serious problems. It is not a syntax error, so
the compiler does not warn you of an error. Rather, it is a logical error.

EXAMPLE 4-40: What is the output of the following code snippet?

OUTPUT:

EXAMPLE 4-41: Study the following code snippet and explain why would you get the same
result regardless the value of x.

This expression is evaluated as follows.

First, the right side of the operator = is evaluated, which evaluates to 5. The value
5 is then assigned to x.
The value 5—that is, the new value of x—also becomes the value of the expression
in the if statement—that is, the value of the assignment expression.
Because 5 is nonzero, the expression in the if statement evaluates to true, so the
statement part of the if statement outputs: The value is five.

EXAMPLE 4-42: Study the following code segment, and answer the questions below.

else

 cout << "x and y are not the same" << endl;

14

15

x = 1

y = 1

x and y are not the same

x and y are almost the same

1

2

3

4

int x = 12, y = 12;

cout << (x = 5) << endl;

cout << (x == 5) << endl;

cout << (x == y) << endl;

1

2

3

4

5

1

0

1

2

3

if (x = 5)

 cout << "The value is five." << endl;

1

2

E. Manar Jaradat

af://n842

What will be the value stored in the variable num if user input is 7?

12

What will be the value stored in the variable num if user input is 10?

15

What will be the value stored in the variable num if user input is 0?

-5

Conditional Operator (?:)
The conditional operator, written as ?: , is a ternary operator, which means that it takes
three operands.

Certain if. . .else statements can be written in a more concise way by using C++’s
conditional operator.

The syntax for using the conditional operator is:

The conditional expression is evaluated as follows:

If expression1 evaluates to a nonzero integer (that is, to true), the result of the
conditional expression is expression2.
Otherwise, the result of the conditional expression is expression3.

EXAMPLE 4-43: Assume a, b and max are int variables. Study the following code snippet
and answer the question below.

Write an equivalent code using the conditional operator.

EXAMPLE 4-44: Assume A and B are int variables. Study the following code snippet and
answer the question below.

int num = 7, x;

cout << "Enter an integer number..."<<endl;

cin >> x;

if (num = x)

 num += 5;

else

 num -=5;

1

2

3

4

5

6

7

8

expression1 ? expression2 : expression31

if (a >= b)

 max = a;

else

 max = b;

1

2

3

4

max = (a >= b) ? a : b;1

E. Manar Jaradat

af://n886

Rewrite the previous code using the conditional operator.

EXAMPLE 4-45: Assume n is an int variable. Study the following code snippet and answer
the question below.

Rewrite the previous code using if..else statement.

Avoiding Bugs by Avoiding Partially Understood
Concepts and Techniques

Understanding a concept or technique completely before using it will save you an enormous
amount of debugging time.
So, Avoid bugs by avoiding partially understood concepts and techniques 😎.

Input Failure and the if Statement
In Chapter 3, you saw that an attempt to read invalid data causes the input stream to enter a
fail state.

Once an input stream enters a fail state, all subsequent input statements associated with
that input stream are ignored, and the computer continues to execute the program, which
produces erroneous results.

You can use if statements to check the status of an input stream variable and, if the input
stream enters the fail state, include instructions that stop program execution.

One way to address these causes of input failure is to check the status of the input stream
variable (cin).

You can check the status by using the input stream variable cin as the logical expression in
an if statement.

If the last input succeeded, the input stream variable evaluates to true.

if(A > B)

 cout << A << " is greater \n";

else

 cout<<B<< " is greater\n";

1

2

3

4

 cout << (A > B ? A : B) << " is greater \n";1

(n % 2 == 0) ? cout << n <<" :Even number\n" : cout << n <<":Odd

number\n";

1

if(n% 2 == 0)

 cout<<n<<" :Even number\n" ;

else

 cout<<n<<" :Odd number\n";

1

2

3

4

E. Manar Jaradat

af://n927
af://n934

if the last input failed, it evaluates to false.
EXAMPLE 4-46: Study the following code snippet and answer the following questions.

What is the output if user input is 10?

What is the output if user input is .10?

switch Structures
RECALL: that there are two selection, or branch, structures in C++.

The first selection structure, which is implemented with if and if. . .else
statements, usually requires the evaluation of a (logical) expression.
The second selection structure, which does not require the evaluation of a logical
expression, is called the switch structure.

C++’s switch structure gives the computer the power to choose from among many
alternatives.

A general syntax of the switch statement is:

int x;

cout << "Enter an integer number..."<<endl;

cin >> x;

if(cin)

 cout << "Input is OK." << endl;

else

 cout << "Input failed." << endl;

1

2

3

4

5

6

7

 Enter an integer number...

 10

 Input is OK.

1

2

3

Enter an integer number...

.10

Input failed.

1

2

3

switch (expression) //integral exp

{

 case value1:

 statements1

 break;

 case value2:

 statements2

 break;

 .

 .

 .

 case valuen:

 statementsn

 break;

 default:

 statements

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16E. Manar Jaradat

af://n964

In C++, switch , case , break , and default are reserved words.

In a switch structure, first the expression is evaluated. The value of the expression is then
used to perform the actions specified in the statements that follow the reserved word case .

Although it need not be, the expression is usually an identifier. Whether it is an identifier or
an expression, the value can be only integral.

The expression is sometimes called the selector. Its value determines which statement is
selected for execution.

A particular case value should appear only once.

One or more statements may follow a case label, so you do not need to use braces to turn
multiple statements into a single compound statement.

The break statement may or may not appear after each statement.

The figure below shows the flow of execution of the switch statement.

The switch statement executes according to the following rules:

1. When the value of the expression is matched against a case value (also called a label),
the statements execute until either a break statement is found or the end of the switch
structure is

reached.

2. If the value of the expression does not match any of the case values, the statements
following the default label execute. If the switch structure has no default label and if the
value of the expression

does not match any of the case values, the entire switch statement is skipped.

}17

E. Manar Jaradat

3. A break statement causes an immediate exit from the switch structure.

EXAMPLE 4-47: Study the following code snippet and answer the questions below.

What is the output if user input is 3?

What is the output if user input is 7?

EXAMPLE 4-48: Study the following code snippet, and answer the questions below

char day;

cout << "What day is today? Enter a number from 1 to 7.\n";

cin >> day;

switch (day)

{

 case '1':

 cout << "Sunday";

 break;

 case '2':

 cout << "Monday";

 break;

 case '3':

 cout << "Tuesday";

 break;

 case '4':

 cout << "Wednesday";

 break;

 case '5':

 cout << "Thursday";

 break;

 default:

 cout << "Weekend";

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

What day is today? Enter a number from 1 to 7.

3

Tuesday

1

2

3

What day is today? Enter a number from 1 to 7.

7

Weekend

1

2

3

int num;

cout << "Enter an integer between 0 and 5: ";

cin >> num;

switch(num)

{

 case 0:

 case 1:

 cout << "One";

1

2

3

4

5

6

7

8

9E. Manar Jaradat

What is the output if the user input is 1?

What is the output if the user input is 5?

PRACTICE: What is the output if the user input is 2, 3, 4, 6, and 7?

EXAMPLE 4-49: Study the following code snippet and find out the line number that has
syntax errors.

Line 5: error: switch quantity not an integer
Line 12: error: duplicate case value

EXAMPLE 4-50: Study the following C++ program, and rewrite it using nested if-else
statements.

 case 2:

 cout << "Two";

 case 3:

 cout << "Three" << endl;

 break;

 case 4:

 break;

 case 5:

 cout << "Five";

 default:

 cout << "Invalid Input" << endl;

}

10

11

12

13

14

15

16

17

18

19

20

21

Enter an integer between 0 and 5: 1

OneTwoThree

1

2

Enter an integer between 0 and 5: 5

FiveInvalid Input

1

2

double num;

cout << "Enter an integer between 0 and 5: ";

cin >> num;

switch(num)

{

 case 2:

 cout << "Two";

 case 3:

 cout << "Three" << endl;

 break;

 case 3:

 break;

 case 5:

 cout << "Five";

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

E. Manar Jaradat

The following code performs the same operation

When the value of the switch expression matches a case value, all statements execute until a
break is encountered or reach the end of switch structure, and the program skips all case
labels in between.

PRACTICE: Rewrite the implementation of example 4-37 using switch statement:

int i,n;

cout<< "Enter an integer"<<endl;

cin>>i;

switch(i)

{

 case 0:

 case 1:

 n=10;

 break;

 case 2:

 n=500;

 break;

 default:

 n = 0;

}

cout<<n;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

int i,n;

cout<< "Enter an integer"<<endl;

cin>>i;

if(i == 0 || i == 1)

 n=10;

else if(i == 2)

 n=500;

else

 n = 0;

cout<<n;

1

2

3

4

5

6

7

8

9

10

11

int score;

char grade;

cout<<"Enter your score..."<<endl;

cin >> score;

switch (score / 10)

{

 case 0:

 case 1:

 case 2:

 case 3:

 case 4:

 case 5:

 grade = 'F';

 break;

 case 6:

 grade = 'D';

 break;

 case 7:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18E. Manar Jaradat

SAMPLE RUN:

In addition to being a variable identifier or a complex expression, the switch expression can
evaluate to a logical value. Consider the following statements:

EXAMPLE 4-51: Study the following code snippet, and answer the questions below.

What is the output if score = 80?

What is the output if score = 40?

Rewrite the previous code using true and false , instead of 1 and 0 , respectively, in
the case labels.

 grade = 'C';

 break;

 case 8:

 grade = 'B';

 break;

 case 9:

 case 10:

 grade = 'A';

 break;

 default:

 cout << "Invalid test score." << endl;

}

cout<<"Student Grade is: "<<grade;

19

20

21

22

23

24

25

26

27

28

29

30

31

Enter your score...

87

Student Grade is: B

1

2

3

int score;

cout<<"Enter your score..."<<endl;

cin >> score;

switch (score >= 50)

{

case 1:

 cout << "Well done " << endl;

 cout << "You passed the exam." << endl;

 break;

case 0:

 cout << "Sorry" << endl;

 cout << "You failed the exam." << endl;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

Well done

You passed the exam.

1

2

Sorry

You passed the exam.

1

2

E. Manar Jaradat

The switch statement is an elegant way to implement multiple selections.

Even though no fixed rules exist that can be applied to decide whether to use an if. .
.else structure or a switch structure to implement multiple selections, the following
considerations should be remembered.

If multiple selections involve a range of values, you should use either an if. . .else
structure or a switch structure, wherein you convert each range to a finite set of
values.
If the range of values consists of infinitely many values and you cannot reduce them to
a set containing a finite number of values, you must use the if. . .else structure.

E. Manar Jaradat

C++ PROGRAMMING:
FROM PROBLEM ANALYSIS TO PROGRAM DESIGN

BY: D. S. MALIK

CHAPTER 5: CONTROL STRUCTURES II (REPETITION)

SUMMARY & EXAMPLES

PREPARED BY:

E. MANAR JARADAT

CONTROL STRUCTURES II (REPETITION)
In this chapter, you will learn how repetitions are incorporated in programs.

EXAMPLE 5-1: Write a C++ program to read five integer numbers from user and find their
average .

SAMPLE RUN: Assume user input is 5 7 8 2 7

Extend the previous code to read 100 integers from user and find their average. 😏

EXAMPLE 5-2: Rewrite the previous example using one variable to store the numbers read
from user.

SAMPLE RUN: Assume user input is 5 7 8 2 7

Extend the previous code to read 100 integers from user and find their average.

What is the differences between the programs in examples 5.1 and 5.2?

int num1, num2, num3, num4, num5;

cout << "Enter 5 integer numbers"<<endl;

cin >> num1 >> num2 >> num3 >> num4 >> num5;

int sum = num1 + num2 + num3 + num4 + num5;

int average = sum / 5;

cout << "Average = "<<average;

1

2

3

4

5

6

Enter 5 integer numbers

5 7 8 2 7

Average = 5

1

2

3

int num, sum = 0;

cout << "Enter 5 integer numbers"<<endl;

cin >> num;

sum += num;

cin >> num;

sum += num;

cin >> num;

sum += num;

cin >> num;

sum += num;

cin >> num;

sum += num;

int average = sum / 5;

cout << "Average = "<<average;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Enter 5 integer numbers

5 7 8 2 7

Average = 5

1

2

3

E. Manar Jaradat

af://n0

Why Is Repetition Needed?
There are many situations in which it is necessary to repeat a set of statements.

C++ has three repetition, or looping, structures that let you repeat statements over and over
until certain conditions are met.

while loop.
for loop.
do..while loop.

while Looping (Repetition) Structure
This section discusses the first looping structure, called a while loop.

The general form of the while statement is:

In C++, while is a reserved word.
The expression acts as a decision maker and is usually a logical expression.
Parentheses around the expression are part of the syntax.
The statement can be either a simple or compound statement, and it is called the body
of the loop.

The figure below shows the flow of execution of a while loop.

The expression provides an entry condition. If it initially evaluates to true, the statement
executes.

The statement (body of the loop) continues to execute until the expression is no longer
true.

A loop that continues to execute endlessly is called an infinite loop.

To avoid an infinite loop, make sure that the loop’s body contains statement(s) that assure
that the exit condition—the expression in the while statement—will eventually be false.

EXAMPLE 5-3: Study the following code snippet and answer the questions below.

while (expression)

 statement

1

2

E. Manar Jaradat

af://n27
af://n41

What is the output of the previous code snippet?

How does the previous code works?

What will be the output if you do not initialize the variable i in the first statement?

The loop may not execute at all

What will be the output if you remove i++ statement from the body of the loop?

It will print 1 endlessly

What will be the value stored in the variable i when the loop exit?

4

What will be the output if you interchange the statements at lines 4 and 5?

Adding a semicolon (;) at the end of the while loop, (after the logical expression), makes the
body of the while loop empty, that is, the statements within the braces do not form the
body of the while loop.

int i = 1; //initialize loop control variable

while (i <= 3) // expression

{

 cout << i << "\t"; // the statement to repeat

 i++; // update loop control variable

}

cout << endl << "Done!";

1

2

3

4

5

6

7

1 2 3

Done!

1

2

int i = 1; // i = 1

if (i <= 3) // true

{

 cout << i << "\t"; // print(1)

 i++; // i = 2

}

if (i <= 3) // true

{

 cout << i << "\t"; // print(2)

 i++; // i = 3

}

if (i <= 3) // true

{

 cout << i << "\t"; // print(3)

 i++; // i = 4

}

if (i <= 3) // false

 // Skip the body of the loop

cout << endl << "Done!"; // print(Done)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2 3 4

Done!

1

2

E. Manar Jaradat

EXAMPLE 5-4: Study the following code snippet and answer the questions below.

What are the statements that form the body of the loop?

None of the statements, the loop body is empty

Does the while loop has any update statement for the loop control variable?

No

What is the output of the previous program?

The loop will repeated endlessly without doing anything

EXAMPLE 5-5: Study the following code snippet and answer the questions below.

What are the statements that form the body of the loop?

None of the statements, the loop body is empty

Does the while loop has any update statement for the loop control variable?

Yes

What is the output of the previous program?

EXAMPLE 5-6: Study the following code snippet, and answer the questions below.

Does the loop entry condition evaluates to true?

NO

int i = 1;

while (i <= 3);

{

 cout << i << "\t";

 i++;

}

cout << endl << "Done!";

1

2

3

4

5

6

7

int i = 1;

while (++i <= 3);

{

 cout << i << "\t";

 i++;

}

cout << endl << "Done!";

1

2

3

4

5

6

7

4

Done!

1

2

int i = 20;

while (i < 20)

{

 cout << i << " ";

 i = i + 5;

}

cout<<endl<<"Done!";

1

2

3

4

5

6

7

E. Manar Jaradat

What is the output of the previous program?

EXAMPLE 5-7: Write a C++ program to print all multiples of 5 between 150 and 200
(inclusive).

Can you think in another way to solve this question?

EXAMPLE 5-8: Write a C++ program to print all capital letters from 'Z' down to 'A' (inclusive).

Random Numbers Generation in C++
In C++, you can use the function rand of the header file cstdlib to generate an integer
random number between 0 and 32767.

EXAMPLE 5-9: Study the following code snippet and answer the questions below.

What is the purpose of the previous code?

Print two randomly generated integers whose values are between 0 and 32767

Execute the previous code multiple times, what do you notice?

You will get the same random numbers every time

Done!1

int i = 150;

while (i <= 200)

{

 cout << i << "\t";

 i += 5;

}

1

2

3

4

5

6

char ch = 'Z';

while (ch >= 'A')

{

 cout << ch << "\t";

 ch--;

}

1

2

3

4

5

6

#include <iostream>

#include <cstdlib>

using namespace std;

int main()

{

 cout << rand() << ", " << rand() << endl;

}

1

2

3

4

5

6

7

8

E. Manar Jaradat

af://n149

The function rand uses an algorithm that produces the same sequence of random numbers
each time the program is executed on the same system.

To generate different random numbers each time the program is executed, you can use the
function srand of the header file cstdlib .

The function srand takes as input an unsigned int , which acts as the seed for the
algorithm.

By specifying different seed values, each time the program is executed, the function rand
will generate a different sequence of random numbers.

To specify a different seed, you can use the function time of the header file ctime , which
returns the number of seconds elapsed since January 1, 1970.

EXAMPLE 5-10: Modify the program in example 5-8 by adding srand function. Execute your
program multiple times and notice the output.

You can use modulus (%) operator with rand function to generate random integer between
A and B (inclusive). Where A and B are integer numbers.

EXAMPLE 5-11: Write the required statement to randomly generate an integer number num
between [0, 100].

EXAMPLE 5-12: Write the required statement to randomly generate an integer number num
between [50, 100].

#include <iostream>

#include <cstdlib>

#include <ctime>

using namespace std;

int main()

{

 srand(time(0));

 cout << rand() << ", " << rand() << endl;

}

1

2

3

4

5

6

7

8

9

10

int num = rand() % (B - A + 1) + A ;1

// A = 0, B = 100

// B - A + 1 = 100 - 0 + 1 = 101

int num = rand() % 101;

1

2

3

// A = 50, B = 100

// B - A + 1 = 100 - 50 + 1 = 51

int num = rand() % 51 + 50;

1

2

3

E. Manar Jaradat

af://n193

Designing while Loops
RECALL: The body of a while loop executes only when the expression, in the while
statement, evaluates to true.

RECALL: The expression checks whether a variable(s), called the loop control variable (LCV),
satisfies certain conditions.

RECALL: The LCV must be properly initialized before the while loop.

RECALL: The LCV must be properly updated in the body of the while loop such that it
eventually make the expression evaluate to false to avoid infinite loop.

The general form of while loops is:

while loops could take one of the following forms or a mix of them.

Counter-Controlled while Loops.
Sentinel-Controlled while Loops
flag-Controlled while Loops.

Case 1: Counter-Controlled while Loops

A counter-controlled while loops are used when you know exactly how many times certain
statements need to be executed.

To execute a set of statements N times.

You can set up a counter (initialized to 0 before the while statement) to track how many
items the loop executed.
The loop entry condition must compare the counter with N. If counter < N, the body of
the while statement executes. The body of the loop continues to execute until the value
of counter >= N.
The value of counter increments inside the body of the while statement.

Counter-controlled while loop takes the following form:

//initialize the loop control variable(s)

while (expression) //expression tests the LCV

{

 .

 .

 //update the loop control variable(s)

 .

 .

}

1

2

3

4

5

6

7

8

9

int counter = 0; //initialize the loop control variable

while (counter < N) //test the loop control variable

{

 .

 .

 counter++; //update the loop control variable

 .

 .

}

1

2

3

4

5

6

7

8

9E. Manar Jaradat

af://n193
af://n217

EXAMPLE 5-13: Write a program to read 5 integers from user then calculate and print their
sum and average.

SAMPLE RUN: Assume user input is 4 6 2 4 7

EXAMPLE 5-14: Students at a local middle school volunteered to sell fresh baked cookies to
raise funds to increase the number of computers for the computer lab. Each student
reported the number of boxes he/she sold. Write a program to calculate the total number of
boxes of cookies sold, the total revenue generated by selling the cookies (assume cost of
each box is $10), and the average number of boxes sold by each student.

int N = 5;

double sum = 0;

int num;

int count = 0; //initialize the loop control variable

while (count < N)

{

 cout<<"Enter an integer number"<<endl;

 cin >> num;

 sum += num;

 count++; //update the loop control variable

}

cout << "Sum = "<< sum << endl;

cout << "Average = "<< sum / N<< endl;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Enter an integer number

4

Enter an integer number

6

Enter an integer number

2

Enter an integer number

4

Enter an integer number

7

Sum = 23

Average = 4.6

1

2

3

4

5

6

7

8

9

10

11

12

int numOfVolunteers;

int numOfBoxesSold;

int totalNumOfBoxesSold = 0;

int counter = 1;

double costOfOneBox = 10;

cout << "Enter the number of volunteers: ";

cin >> numOfVolunteers;

while (counter <= numOfVolunteers)

{

 cout << "Enter the number of boxes sold by volanteer "

 << counter << " : ";

1

2

3

4

5

6

7

8

9

10

11

12E. Manar Jaradat

SAMPLE RUN:

Case 2: Sentinel-Controlled while Loops

A sentinel-controlled while loops are used when you need to keep read data until user enters
a special value, called a sentinel .

To read a set of values from user until the sentinel value is entered, do the following:

Read the first item before the while statement. If this item does not equal the sentinel,
the body of the while statement executes.
In the body of the while loop keep read values from user, the while loop continues to
execute as long as the program has not read the sentinel.

Sentinel-Controlled while Loops might look as follows:

 cin >> numOfBoxesSold;

 totalNumOfBoxesSold += numOfBoxesSold;

 counter++;

}

cout << "The total number of boxes sold: "

 << totalNumOfBoxesSold << endl;

cout << "The total money made by selling cookies: $"

 << totalNumOfBoxesSold * costOfOneBox << endl;

if (numOfVolunteers != 0)

 cout << "The average number of boxes sold by each volunteer: "

 << totalNumOfBoxesSold / numOfVolunteers << endl;

else

 cout << "No input." << endl;

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Enter the number of volunteers: 4

Enter the number of boxes sold by volanteer 1 : 6

Enter the number of boxes sold by volanteer 2 : 7

Enter the number of boxes sold by volanteer 3 : 3

Enter the number of boxes sold by volanteer 4 : 8

The total number of boxes sold: 24

The total money made by selling cookies: $240

The average number of boxes sold by each volunteer: 6

1

2

3

4

5

6

7

8

cin >> variable; //initialize the loop control variable

while (variable != sentinel) //test the loop control variable

{

 .

 .

 cin >> variable; //update the loop control variable

 .

 .

}

1

2

3

4

5

6

7

8

9

E. Manar Jaradat

af://n246

EXAMPLE 5-15: Write a program to read integers from user continuously until he/she enters
-99, then calculate and print their sum and average excluding -99.

SAMPLE RUN:

PRACTICE: On a standard telephone keypad, the letters A-Z are mapped onto the phone
number digits 0-9 as shown in the following diagram. A,B,C are mapped to 2, and D,E,F are
mapped to 3, and so on. Write a program to read the letter codes A to Z from user and prints
the corresponding telephone digit. Your program should continue read letters until # is
read. You may ignore invalid inputs.

Hint: The solution is available on textbook EXAMPLE 5-5

//Declare variables

int count = 0; // store the number of inserted integers

int sentinel = -99;

double sum = 0; // store the sum of inserted integers

int num;

// Intialize the loop control variable

cout<<"Enter an integer number"<<endl;

cin >> num;

while (num != sentinel)

{

 sum += num;

 //update the loop control variable

 cout<<"Enter an integer number"<<endl;

 cin >> num;

 count++;

}

cout << "Sum = "<< sum <<endl;

cout << "Average = "<< sum / count;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Enter an integer number

4

Enter an integer number

6

Enter an integer number

9

Enter an integer number

10

Enter an integer number

-99

Sum = 29

Average = 7.25

1

2

3

4

5

6

7

8

9

10

11

12

E. Manar Jaradat

Case 3: Flag-Controlled while Loops

A flag-controlled while loops are used when you need to execute a loop repeatedly until a
condition is met.

A flag-controlled while loop uses a bool variable to control the loop.

To execute a loop repeatedly until a condition is met, do the following:

Initialize the flag variable to false .
The loop entry condition must ensure that the flag is not true . If the flag is not true the
body of the while statement executes. The body of the loop continues to execute until
the value of flag become true.
In the body of the while loop you must check for the stop condition, if the stop
condition is true then set the flag to true .

The flag-controlled while loop takes the following form:

EXAMPLE 5-16: Write a program to develop a number guessing game. In this game the
program randomly generates an integer greater than or equal to 0 and less than or equal to
10. The program then prompts the user to guess the number. If the user guesses the
number correctly, the program outputs an appropriate message. Otherwise, the program
checks whether the guessed number is less than the random number. If the guessed
number is less than the random number generated by the program, the program outputs
the message ‘‘Your guess is lower than the number. Guess again!’’; otherwise, the program
outputs the message ‘‘Your guess is higher than the number. Guess again!’’. The program
then prompts the user to enter another number. The user is prompted to guess the random
number until the user enters the correct number.

bool found = false; //initialize the loop control variable

while (!found) //test the loop control variable

{

 .

 .

 if (expression)

 found = true; //update the loop control variable

 .

 .

}

1

2

3

4

5

6

7

8

9

10

E. Manar Jaradat

af://n274

SAMPLE RUN:

EXAMPLE 5- 17: Modify the previous example such that it counts number of tries the user
made to guess the correct number.

//declare the variables

int secret; // variable to store the random number

int guess; // variable to store the number guessed by the user

bool isGuessed; // boolean variable to control the loop

srand(time(0));

secret = rand() % 11;

isGuessed = false;

while (!isGuessed)

{

 cout << "Enter an integer greater within [0,10]"<<endl;

 cin >> guess;

 if (guess == secret)

 {

 cout << "You guessed the correct number." << endl;

 isGuessed = true;

 }

 else if (guess < secret)

 cout << "Your guess is lower than the number. Guess again!\n";

 else

 cout << "Your guess is higher than the number. Guess again!\n";

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Enter an integer greater within [0,10]

5

Your guess is higher than the number. Guess again!

Enter an integer greater within [0,10]

3

Your guess is higher than the number. Guess again!

Enter an integer greater within [0,10]

2

Your guess is higher than the number. Guess again!

Enter an integer greater within [0,10]

1

You guessed the correct number.

1

2

3

4

5

6

7

8

9

10

11

12

//declare the variables

int secret; // variable to store the random number

int guess; // variable to store the number guessed by the user

bool isGuessed; // boolean variable to control the loop

int count = 0; // variable to store number of tries.

srand(time(0));

secret = rand() % 11;

isGuessed = false;

while (!isGuessed)

{

 cout << "Enter an integer greater within [0,10]"<<endl;

1

2

3

4

5

6

7

8

9

10

11

12E. Manar Jaradat

SAMPLE RUN:

EXAMPLE 5-18: Modify the previous code such that you give the user three tries at most to
guess the number. If the user does not guess the number correctly within three tries, then
the program outputs the random number generated by the program as well as a message
that he have lost the game.

 cin >> guess;

 count++;

 if (guess == secret)

 {

 cout << "You guessed the correct number." << endl;

 isGuessed = true;

 }

 else if (guess < secret)

 cout << "Your guess is lower than the number. Guess again!\n";

 else

 cout << "Your guess is higher than the number. Guess again!\n";

}

cout << endl << "You take "<<count

 <<" tries to guess the correct number";

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Enter an integer greater within [0,10]

5

Your guess is lower than the number. Guess again!

Enter an integer greater within [0,10]

8

Your guess is lower than the number. Guess again!

Enter an integer greater within [0,10]

9

You guessed the correct number.

You take 3 tries to guess the correct number

1

2

3

4

5

6

7

8

9

10

11

//declare the variables

int secret; // variable to store the random number

int guess; // variable to store the number guessed by the user

bool isGuessed; // boolean variable to control the loop

int count = 0; // variable to store number of tries.

srand(time(0));

secret = rand() % 11;

isGuessed = false;

while (!isGuessed && count < 3)

{

 cout << "Enter an integer greater within [0,10]"<<endl;

 cin >> guess;

 count++;

 if (guess == secret)

 {

 cout << "You guessed the correct number." << endl;

 isGuessed = true;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19E. Manar Jaradat

SAMPLE RUN

PRACTICE: On a standard telephone keypad, the letters A-Z are mapped onto the phone
number digits 0-9 as shown in the following diagram. A,B,C are mapped to 2, and D,E,F are
mapped to 3, and so on. Write a program to read the letter codes A to Z from user and prints
the corresponding telephone digit. Your program should continue read letters until it reads
any non-letter inputs.

for Looping (Repetition) Structure
The while loop discussed in the previous section is general enough to implement most forms
of repetitions.

 }

 else if (guess < secret)

 cout << "Your guess is lower than the number. Guess again!\n";

 else

 cout << "Your guess is higher than the number. Guess again!\n";

}

if (count == 3 && !isGuessed)

 cout << endl << "Sorry! you loose the game"<<endl

 << "The secret number was "<<secret;

20

21

22

23

24

25

26

27

28

29

Enter an integer greater within [0,10]

2

Your guess is lower than the number. Guess again!

Enter an integer greater within [0,10]

4

Your guess is lower than the number. Guess again!

Enter an integer greater within [0,10]

5

Your guess is lower than the number. Guess again!

Sorry! you loose the game

The secret number was 7

1

2

3

4

5

6

7

8

9

10

11

12

E. Manar Jaradat

af://n318

The C++ for looping structure discussed here is a specialized form of the while loop. Its
primary purpose is to simplify the writing of counter-controlled loops.

The for loop is typically called a counted or indexed for loop.

The general form of the for statement is:

The initial statement usually initializes a variable (called the for loop control variable).
The initial statement, loop condition, and update statement (called for loop control
statements).
Control statements enclosed within the parentheses control the body (statement) of the
for statement.

The figure below shows the flow of execution of a for loop.

The for loop executes as follows:

1. The initial statement executes.

2. The loop condition is evaluated. If the loop condition evaluates to true:

1. Execute the for loop statement.
2. Execute the update statement (the third expression in the parentheses).

3. Repeat Step 2 until the loop condition evaluates to false.

In C++, for is a reserved word.

NOTE: The initial statement in the for loop is the first statement to execute; it executes only
once.

The syntax of the for loop, which is:

for (initial statement; loop condition; update statement)

 statement

1

2

for (initial expression; logical expression; update expression)

statement

1

2E. Manar Jaradat

is functionally equivalent to the following while statement:

EXAMPLE 5-19: Study the following code snippet, and answer the questions below.

Identify the initial statement, loop condition, and update statement in the previous
code.

Initial statement: 	 int i = 0;

Loop condition: i < 10
Update statement: i++;

Rewrite the previous code using for loop.

EXAMPLE 5-20: Study the following code snippet and answer the questions below.

What is the output of the previous code snippet?

How does the previous code works?

initial expression

while (logical expression)

{

 statement

 update expression

}

1

2

3

4

5

6

int i = 0;

while (i < 10)

{

 cout << i << " ";

 i++;

}

1

2

3

4

5

6

for (int i = 0; i < 10; i++)

cout << i << " ";

1

2

for (int i = 1; i <= 3; i++)

 cout << i << " ";

cout << endl<<"Done!";

1

2

3

 1 2 3

 Done!

1

2

 i = 1; // i = 1

 if (i <= 3) // true

 cout << i << "\t"; // print(1)

 i++; // i = 2

 if (i <= 3) // true

 cout << i << "\t"; // print(2)

1

2

3

4

5

6

7E. Manar Jaradat

Another valid forms of the for statement are:

1.

2.

3.

The body of the for loop can be either a simple or a compound statement.

EXAMPLE 5-21: What is the output of the following code segments?

OUTPUT:

EXAMPLE 5-22: What is the output of the following code segments.

 i++; // i = 3

 if (i <= 3) // true

 cout << i << "\t"; // print(3)

 i++; // i = 4

 if (i <= 3) // false

 cout << endl<<"Done!";

8

9

10

11

12

13

14

15

16

initial statement

for (; loop condition; update statement)

 statement

1

2

3

for (initial statement; loop condition;)

{

 statement

 update statement

}

1

2

3

4

5

initial statement

for (;loop condition ;)

{

 statement

 update statement

}

1

2

3

4

5

6

int i = 4;

for (; i <= 5; i++)

 cout << "Hello!" << endl;

 cout << "*" << endl;

1

2

3

4

Hello!

Hello!

*

1

2

3

E. Manar Jaradat

OUTPUT:

Adding a semicolon at the end of the for loop, (after the control statements), then the body
of the for loop is empty, that is, the statements within the braces do not form the body of the
for loop.

A semicolon at the end of the for statement is a semantic error.

EXAMPLE 5-23: Study the following code snippet and answer the questions below.

What are the statements that form the body of the loop?

The loop body is empty

Does the while loop has any update statement for the loop control variable?

Yes

What is the output of the previous program?

EXAMPLE 5-24: Study the following code snippet and answer the questions below.

What are the statements that form the body of the loop?

The loop body is empty

Does the while loop has any update statement for the loop control variable?

NO

What is the output of the previous program?

int i = 4;

for (; i <= 5;)

{

 cout << "Hello!" << endl;

 cout << "*" << endl;

 i++;

}

1

2

3

4

5

6

7

Hello!

*

Hello!

*

1

2

3

4

int i;

for (i = 3;i <= 5;i++);

 cout << i << " ";

1

2

3

61

int i;

for (i = 3;i <= 5;);

{

 cout << i << " ";

 i++;

}

1

2

3

4

5

6

E. Manar Jaradat

The loop will execute endlessly

If the loop condition is initially false, the loop body does not execute.

EXAMPLE 5-25: Study the following code snippet, and find out how many times will
statement at line 2 be executed?

Zero times

Omitting the loop condition from the for statement, makes the loop condition always true ,
and so,it will cause an infinite loop.

EXAMPLE 5-26: What is the output of the following code snippet

OUTPUT:

In a for statement, you can omit all three statements—initial statement, loop condition, and
update statement.

EXAMPLE 5-27: What is the purpose of the following code snippet?

This is an infinite for loop, it prints "Hello" endlessly.

You can increment (or decrement) the loop control variable by any fixed number.

EXAMPLE 5-28: What is the output of the following code snippet?

OUTPUT:

EXAMPLE 5-30: What is the output of the following code segment?

for (int i = 10; i <= 9; i++)

 cout << i << " ";

1

2

for (int i = 1; ; i++)

 cout << i << " ";

1

2

1 2 3 4 5 6 7 8 9 10 ...and so on1

for(; ;)

 cout << "Hello" << endl;

1

2

for (int i = 10; i > 5; i--)

 cout << i << " ";

1

2

10 9 8 7 61

E. Manar Jaradat

OUTPUT:

C++ allows you to use fractional values for loop control variables of the double type (or any
real data type). Because different computers can give these loop control variables different
results, you should avoid using such variables.

EXAMPLE 5-31: Write a program to read five numbers from user and count number of odd,
even, and zeros in them.

SAMPLE RUN:

EXAMPLE 5-32: Write to program to find the sum of the first n positive integers.

for (int i = 1; i <= 10; i = i + 3)

 cout << i << " ";

1

2

1 4 7 101

int i, num, odds = 0, evens = 0, zeros = 0;

cout<<"Enter 5 integers"<<endl;

for (i = 1; i <= 5; i++)

{

 cin >> num;

 if(num == 0)

 zeros++;

 else if(num % 2)

 odds++;

 else

 evens++;

}

cout << "# of zeros is " << zeros << endl;

cout << "# of odds is " << odds << endl;

cout << "# of evens is " << evens << endl;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Enter 5 integers

0 6 0 3 7

of zeros is 2

of odds is 2

of evens is 1

1

2

3

4

5

int counter; // loop control variable

int sum; // variable to store the sum of numbers

int n; // variable to store the number of

 // first positive integers to be added

cout << "Enter the number of positive integers to be added: ";

cin >> n;

sum = 0;

for (counter = 1; counter <= n; counter++)

 sum = sum + counter;

1

2

3

4

5

6

7

8

9

10

11

12E. Manar Jaradat

OUTPUT:

PRACTICE: Write a program to read 10 integers and then prints the maximum number
among them.

do...while Looping (Repetition) Structure
This section describes the third type of looping or repetition structure, called a do. .
.while

loop.

The general form of a do. . .while statement is as follows:

statement can be either a simple or compound statement. If it is a compound statement,
enclose it between braces.

The figure below shows the flow of execution of a do. . .while loop.

In C++, do and while are reserved words.

cout << "The sum of the first " << n

 << " positive integers is " << sum << endl;

13

14

Enter the number of positive integers to be added: 4

The sum of the first 4 positive integers is 10

1

2

do

 statement

while (expression);

1

2

3

E. Manar Jaradat

af://n507

The statement executes first, and then the expression is evaluated.

If the expression evaluates to true, the statement executes again.

As long as the expression in a do...while statement is true, the statement executes.

To avoid an infinite loop, you must make sure that the loop body contains a statement that
ultimately makes the expression false and assures that it exits properly.

EXAMPLE 5-33:

OUTPUT:

RECALL: In a while and for loop, the loop condition is evaluated before executing the body of
the loop. Therefore, while and for loops are called pretest loops.

The loop condition in a do. . .while loop is evaluated after executing the body of the loop.
Therefore, do. . .while loops are called posttest loops.

Because the while and for loops both have entry conditions, these loops may never
activate.

The do...while loop, has an exit condition and therefore always executes the statement at
least once.

EXAMPLE 5-34: What is the output of the following code snippet?

OUTPUT:

EXAMPLE 5-35: What is the output of the following code snippet?

int i = 0;

do

{

 cout << i << " ";

 i = i + 5;

}

while (i <= 20);

1

2

3

4

5

6

7

0 5 10 15 201

int i = 11;

while (i <= 10)

{

 cout << i << " ";

 i = i + 5;

}

cout<<endl<<"Done!";

1

2

3

4

5

6

7

Done!

1

2

E. Manar Jaradat

OUTPUT:

A do...while loop can be used for input validation.

EXAMPLE 5-36: To login to the student portal, a student should enter his/her password
correctly. If the user forgets his password the system keeps prompting him/her to enter the
password correctly. Once the student enters the correct password the system prints a
greeting message. Write the required C++ to perform login operation.

SAMPLE RUN:

EXAMPLE 5-37: Write a program to find the sum of digits of any positive integer.

Hint: You can use modulus (%) and integer division (/) operators to extract all digits in the
number.

int i = 11;

do

{

 cout << i << " ";

 i = i + 5;

}

while (i <= 10);

cout<<endl<<"Done!";

1

2

3

4

5

6

7

8

11

Done!

1

2

string username = "ahmad";

string password = "ah12345";

string tmpPassword;

do

{

 cout << "Enter your password ";

 cin >> tmpPassword;

}

while (tmpPassword != password);

cout<<endl<< "Welcome back "<<username<<" :)";

1

2

3

4

5

6

7

8

9

10

Enter your password ahmad

Enter your password 12345

Enter your password ah12345

Welcome back ahmad :)

1

2

3

4

5

E. Manar Jaradat

OUTPUT:

PRACTICE: It is known that an integer n is divisible by 3 if and only if the sum of its digits is
divisible by 3. Write a program to check if a number entered from user is divisible by 3 or
not, then print the proper message.

Choosing the Right Looping Structure
If you know, or the program can determine in advance, the number of repetitions needed,
the for loop is the correct choice.
If you do not know, and the program cannot determine in advance the number of repetitions
needed, and it could be 0, the while loop is the right choice.
If you do not know, and the program cannot determine in advance the number of repetitions
needed, and it is at least 1, the do...while loop is the right choice.

break and continue Statements

break statement

The break statement, when executed in a switch structure, provides an immediate exit
from the switch structure.

Similarly, you can use the break statement in while , for , and do. . .while loops.

When the break statement executes in a repetition structure, it immediately exits from the
structure.

The break statement is typically used for two purposes:

To exit early from a loop.
To skip the remainder of the switch structure.

After the break statement executes, the program continues to execute with the first
statement after the structure.

EXAMPLE 5-38: What is the output of the following code segment.

int num, sum;

cout << "Enter an integer number "<<endl;

cin >> num;

sum = 0;

do

{

 sum = sum + num % 10; //extract the last digit and add it to sum

 num = num / 10; //remove the last digit

}

while (num > 0);

cout<< "Sum of digits in = "<<sum;

1

2

3

4

5

6

7

8

9

10

11

12

Enter an integer number

24968

Sum of digits = 29

1

2

3

E. Manar Jaradat

af://n575
af://n584
af://n585

OUTPUT:

EXAMPLE 5-39: A prime number is a number that is divisible only by the number 1 and itself.
write a program to check if a number is prime or not.

SAMPLE RUN:

EXAMPLE 5-40: Write a program that reads integer numbers continuously from user and
calculate the sum of positive numbers only. Your program should stop reading once an input
failure occurred or the user entered a negative number.

int i = 1;

do

{

 if(i % 3 == 0)

 break;

 cout << i << " ";

 i++;

}

while(i < 5);

cout << endl << "Done @ i = "<<i;

1

2

3

4

5

6

7

8

9

10

1 2

Done @ i = 3

1

2

int num;

cout<< "Enter an integer number"<<endl;

cin >> num;

bool isPrime = true;

for(int i = 2; i< num; i++)

{

 if(num % i == 0)

 {

 isPrime = false;

 break;

 }

}

cout<<x<<(isPrime?" is prime number":" is not prime number")<<endl;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Enter an integer number

13

13 is a prime number

1

2

3

int num;

double sum = 0;

cout << "Enter an integer number"<<endl;

cin >> num;

while (cin)

{

 if (num < 0)

1

2

3

4

5

6

7

8E. Manar Jaradat

OUTPUT:

PRACTICE: Rewrite the previous example using flag-controlled while loop.

NOTE: The break statement is an effective way to avoid extra variables to control a loop and
produce an elegant code.

continue statement

The continue statement is used in while , for , and do. . .while structures.

When the continue statement is executed in a loop, it skips the remaining statements in the
loop and proceeds with the next iteration of the loop.

In a while and do. . .while structure, the expression (that is, the loop-continue test) is
evaluated immediately after the continue statement.

In a for structure, the update statement is executed after the continue statement, and
then the loop condition (that is, the loop-continue test) executes.

EXAMPLE 5-41: Study the following code snippet and answer the following questions

What is the output of the previous program?

 {

 cout << "Negative number found in the data." << endl;

 break;

 }

 sum = sum + num;

 cout << "Enter an integer number"<<endl;

 cin >> num;

}

cout<<"sum = "<<sum;

9

10

11

12

13

14

15

16

17

Enter an integer number

7

Enter an integer number

9

Enter an integer number

3

Enter an integer number

-5

Negative number found in the data.

sum = 19

1

2

3

4

5

6

7

8

9

10

int i = 1;

do

{

 if(i % 3 == 0)

 continue;

 cout << i << " ";

 i++;

}

while(i < 10);

cout << endl << "Done @ i = "<<i;

1

2

3

4

5

6

7

8

9

10

E. Manar Jaradat

af://n624

It will print 1 2 and then start an infinite loop

How to avoid the infinite loop in the previous program?

By adding an increment statement before the continue statement

Rewrite the previous code so that it print all numbers between 1 and 10 (inclusive)
except multiples of three.

EXAMPLE 5-42: Write a program to print all numbers between 1 and 10 (inclusive) except
multiples of three using for loop.

EXAMPLE 5-43: Write a program that reads integer numbers continuously from user and
calculate the sum of positive numbers only. Your program should skip the negative numbers
and stop reading once an input failure occurred.

int i = 1;

do

{

 if(i % 3 == 0)

 {

 i++;

 continue;

 }

 cout << i << " ";

 i++;

}

while(i <= 10);

cout << endl << "Done @ i = "<<i;

1

2

3

4

5

6

7

8

9

10

11

12

13

int i = 1;

for (;i <= 10; i++)

{

 if(i % 3 == 0)

 continue;

 cout << i << " ";

}

1

2

3

4

5

6

7

sum = 0;

cin >> num;

while (cin)

{

 if (num < 0)

 {

 cout << "Negative number found in the data." << endl;

 cin >> num;

 continue;

 }

 sum = sum + num;

 cin >> num;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

E. Manar Jaradat

NOTE: When the continue statement is executed in a while or a do. . .while loop, the
update statement may not execute. In a for structure, the update statement always
executes (if the update statement written in the first line of for loop).

PROGRAMMING EXAMPLE: Fibonacci Number
The following sequence of numbers is called the Fibonacci sequence.

Assumes that the first number of the Fibonacci sequence is less than or equal to the second
number of the Fibonacci sequence, and both numbers are nonnegative. (say, a1 = 1 and
a2 = 1)

Given the first two numbers of the sequence (a1 , a2), the nth number an , n >= 3 , of this
sequence is given by:

The following steps are required to calculate the nth number in a Fibonacci series.

1. Get the first two Fibonacci numbers.
2. Get the desired Fibonacci number. That is, get the position, n, of the Fibonacci number

in the sequence.
3. Calculate the next Fibonacci number by adding the previous two elements of the

Fibonacci sequence.

4. Repeat Step 3 until the nth Fibonacci number is found.

5. Output the nth Fibonacci number.
The required code to calculate the nth number in a Fibonacci series is as follows.

1, 1, 2, 3, 5, 8, 13, 21, 34,1

an = an_1 + an_21

//Declare variables

int previous1;

int previous2;

int current;

int counter;

int nthFibonacci;

cout << "Enter the first two Fibonacci numbers: "<<endl;

cin >> previous1 >> previous2;

cout << "Enter the position of the desired Fibonacci number: ";

cin >> nthFibonacci;

if (nthFibonacci == 1)

 current = previous1;

else if (nthFibonacci == 2)

 current = previous2;

else

{

 for(counter = 3; counter <= nthFibonacci; counter++)

 {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21E. Manar Jaradat

af://n661

SAMPLE RUN:

Nested Control Structures
In this section, we give examples that illustrate how to use nested loops to achieve useful
results and process data.

EXAMPLE 5-45: Write a program to create the following pattern:

	 *

	 **

PRACTICE: Write a program to create the the following pattern.

	 **

	 *

Modify your program so that you read number of rows from user.

EXAMPLE 5-46: Consider the following multiplication table and answer the questions below

 current = previous2 + previous1;

 previous1 = previous2;

 previous2 = current;

 }

}

cout << "The Fibonacci number at position "

 << nthFibonacci << " is " << current;

22

23

24

25

26

27

28

29

Enter the first two Fibonacci numbers:

1 1

Enter the position of the desired Fibonacci number: 7

The Fibonacci number at position 7 is 13

1

2

3

4

int i, j;

for (i = 1; i <= 5; i++)

{

 for (j = 1; j <= i; j++)

 cout << "*";

 cout << endl;

}

1

2

3

4

5

6

7

E. Manar Jaradat

af://n691

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

Write a program to print the previous multiplication table.

Modify your program so that you calculate and print the sum of numbers in each line
next to it.

for (i = 1; i <= 5; i++)

{

 for (j = 1; j <= 10; j++)

 cout << setw(3) << i * j;

 cout << endl;

}

1

2

3

4

5

6

int sum, tmp;

for (int i = 1; i <= 5; i++)

{

 sum = 0;

 for (int j = 1; j <= 10; j++)

 {

 tmp = i *j;

 sum+=tmp;

 cout << setw(3) << tmp;

 }

 cout << " = "<<sum<<endl;

}

1

2

3

4

5

6

7

8

9

10

11

12

E. Manar Jaradat

CHAPTER 6: USER-DEFINED FUNCTIONS
RECALL: C++ program is a collection of functions. One such function is main .

For large programs, it is not practical (although it is possible) to put the entire programming
instructions into one function.

In this chapter we will learn how to use functions to break the problem into manageable
pieces.

Functions are often called modules. They are like small programs; you can put them
together to form a larger program.

The following are some advantages of using functions:

They let you divide complicated programs into manageable pieces.
While working on one function, you can focus on just that part of the program and
construct it, debug it, and perfect it.
Different people can work on different functions simultaneously.
If a function is needed in more than one place in a program or in different programs,
you can write it once and use it many times.
Using functions greatly enhances the program’s readability because it reduces the
complexity of the function main.

Functions flow of execution

When the program executes, the first statement in the function main always executes
first, regardless of where in the program the function main is placed. Other functions
execute only when they are called.
A function call statement transfers control to the first statement in the body of the
function. In general, after the last statement of the called function executes, control is
passed back to the point immediately following the function call.
A value-returning function returns a value. Therefore, after executing the value-
returning function, when the control goes back to the caller, the value that the function
returns replaces the function call statement. The execution continues at the point
immediately following the function call.

First we will review how to use predefined functions. then we will learn how to write our
functions

Predefined Functions
In C++, the concept of a function, either predefined or user-defined, is similar to that of a
function in algebra.

Every function has a name and, depending on the values specified by the user, it does
some computation.

In C++, predefined functions are organized into separate libraries.

The header file iostream contains I/O functions.
The header file cmath contains math functions.

To use these functions in your programs, you must know the following:

f(x) = 3x + 51

af://n0
af://n36

Function Header File Purpose
Parameter(s)

Type

Result

abs(x) <cmath>
Returns the absolute value

of its argument.

int

(double)

int

(double)

pow(x, y) <cmath>
Returns ; if x is negative, y

must be a whole number.

double double

sqrt(x) <cmath>

Returns the nonnegative

square root of x; x must be

nonnegative.

double double

ceil(x) <cmath>
Returns the smallest whole

number that is not less than x.

double double

floor(x) <cmath>
Returns the largest whole

number that is not greater than x.

double double

exp(x) <cmath> Returns , where e = 2.718 double double

islower(x) <cctype>

Returns 1 (true) if x is a

lowercase letter; otherwise,

it returns 0 (false).

int int

isupper(x) <cctype>

Returns 1 (true) if x is an

uppercase letter; otherwise,

it returns 0 (false).

int int

tolower(x) <cctype>

Returns the lowercase value

of x if x is uppercase;

otherwise, it returns x.

int int

toupper(x) <cctype>

Returns the uppercase value

of x if x is lowercase;

otherwise, it returns x.

int int

The name of the header file that contains the functions’ specification. You need to
include this header file in your program using the include statement.

The heading of the function (also called the function header)

1. The name of the function.
2. The number of parameters, if any, and the data type of each parameter.
3. The data type of the value computed (that is, the value returned) by the function,

called the type of the function

The purpose of the function.

Return the absolution value of its argument.

The following table lists some of the predefined functions.

 Statement Output

1. cout<<abs(-7); 7

EXAMPLE 6-1: What is the output of each of the following C++ statements.

#include <cmath>1

int abs(int number)1

 Statement Output

2. cout<<abs(3.9); 3.9

3. cout<<pow(16, 0.5); 4

4. cout<<sqrt(4.0); 2

5. cout<<static_cast<int> (sqrt(28.00)); 5

6. cout<<ceil(56.34); 57

7. cout<<ceil(-56); -56

8. cout<<floor(-56.34); -57

9. cout<<floor(56); 56

10. cout<<exp(1.0); 2.71828

11. cout<<islower('2'); 0

12. cout<<islower('b'); 1

13. cout<<islower('B'); 0

14. cout<<isupper('2'); 0

15. cout<<isupper('b'); 0

16. cout<<isupper('B'); 1

17. cout<<toupper('2'); 50

18. cout<<toupper('b'); 66

19. cout<<toupper('B'); 66

20. cout<<tolower('2'); 50

21. cout<<tolower('b'); 98

22. cout<<tolower('B'); 98

23. cout<<static_cast<char>(toupper('a')); A

User-Defined Functions
C++ does not provide every function that you will ever need and designers cannot possibly
know a user’s specific needs, so you must learn to write your own functions.

User-defined functions in C++ are classified into two categories:

Value-returning functions—functions that have a return type. These functions return
a value of a specific data type using the return statement.

af://n248

Void functions—functions that do not have a return type. These functions do not use a
return statement to return a value.

Value-Returning Functions
The previous section introduced some predefined C++ functions such as pow , abs ,
islower , and toupper . These are examples of value-returning functions.

Because the value returned by a value-returning function is unique, the natural thing for you
to do is to use the value in one of three ways:

In an assignment statement.

As a parameter in a function call.

In an output statement.

Value-Returning Function Definition

The syntax of a value-returning function is:

functionType (data type) is the type of the value that the function returns.
functionName is any valid identifier.
Formal parameter list are list of variables declared in the function heading.
The statements enclosed between curly braces { } form the body of the function.

The syntax of the formal parameter list is:

Once a value-returning function computes the desired value, the function returns this value
via the return statement.

The return statement has the following syntax:

In C++, return is a reserved word.
expr is a variable, constant value, or expression.

area = PI * pow(radius, 2.0);1

area = PI * pow(abs(radius), 2.0);1

cout<< PI * pow(radius, 2.0);1

functionType functionName(formal parameter list) //function header

{

 //function body

 statements

}

1

2

3

4

5

dataType identifier, dataType identifier, ...1

return expr;1

af://n260
af://n277

The expr is evaluated, and its value is returned.
The data type of the value that expr computes must match the function type.

When a return statement executes in a function, the function immediately terminates and
the control goes back to the caller. Moreover, the function call statement is replaced by the
value returned by the return statement.

When a return statement executes in the function main, the program terminates.

EXAMPLE 6-2: Write the required C++ function definition to calculate the result of the
following mathematical formula.

EXAMPLE 6-3: The roots of a quadratic equation are calculated using the

following formula . Write a C++ function definition to calculate
one of the quadratic equation roots.

Value-Returning Function Call

To call a value returning function, you use its name, with the actual parameters (if any) in
parentheses.

The syntax to call a value-returning function is:

Actual parameter list is the list of variables or expressions listed in a call to a function.

The syntax of the actual parameter list is:

Expression can be a single constant value.

To execute a function call, the parameters are evaluated first.

 Statement Output

1.
int x = 3;

cout<<Fun1(x);

11

EXAMPLE 6-4: Study the definition of functions Fun1 and Fun2 and find out the output of
each of the following function calls.

int Fun1(int x)

{

 return 2 * x + 5;

}

1

2

3

4

double Fun2(double a, double b, double c)

{

 double tmp = b*b - 4*a*c;

 return (-b + sqrt(tmp))/(2 * a);

}

1

2

3

4

5

functionName(actual parameter list)1

expression or variable, expression or variable, ...1

af://n322

 Statement Output

2. cout<<Fun1(2.8); 9

3. cout<<Fun1('2'); 105

4. cout<<Fun1(Fun1(1)); 19

5.
double c = 5;

cout<<Fun2(5%3, -1*Fun1(3), c);

5

A function’s formal parameter list can be empty. However, if the formal parameter list is
empty, the parentheses are still needed.

If the formal parameter list of a value-returning function is empty, the actual parameter is
also empty in a function call, and the empty parentheses are still needed.

A call to a value-returning function with an empty formal parameter list is:

EXAMPLE 6-5: Study the following definition of function pi and answer the questions below.

What is the purpose of function pi?

Calculate and returns the value of

Write the required C++ statement to calculate and print the area of a circle whose
radius = 10.

Modify the return type of function pi to int and notice the change in the circle area
value.

In a function call, you specify only the actual parameter, not its data type.

In a function call, the number of actual parameters, together with their data types, must
match with the formal parameters in the order given. That is, actual and formal parameters
have a one-to-one correspondence.

EXAMPLE 6-6: Study the following function definition and answer the questions below.

functionType functionName()1

functionName()1

double pi()

{

 return 22.0 / 7;

}

1

2

3

4

cout << pi() * 10 * 10;1

What is the purpose of the previous function?

Return the character at position x in string str

 Statement Is correct?

1. cout<<Fun("spring", 3); True

2. cout<<Fun("spring", 3.7); True

3. cout<<Fun("spring", "Summer"); False

4. cout<<Fun(2, "spring"); False

5. cout<<Fun("spring"); False

6. cout<<Fun("spring",3,2); False

7. cout<<Fun(string s,int b); False

Which of the following C++ statements is a correct function call for function Fun .

EXAMPLE 6-7: Write the definition of function power that takes two integers as parameters
and returns the value of its first parameter to the power of the second parameter. Test the
correctness of your function.

Value-Returning Functions: Some Peculiarities

Having more than one expression in a return statement will not cause compilation error,
however it may result in redundancy, wasted code, and a confusing syntax.

A return statement returns only one value. Even if the return statement contains more than
one expression, it will return the value of the last expression .

char Fun(string str, int x)

{

 if(x >= 0 && x < str.length())

 return str[x];

 return '\0';

}

1

2

3

4

5

6

int power(int x, int y)

{

 int result = 1;

 for(int i=0; i<y; i++)

 result *= x;

 return result;

}

int main()

{

 cout<<power(2, 5);

}

1

2

3

4

5

6

7

8

9

10

11

return x, y; // The value of y is returned.1

af://n444

EXAMPLE 6-8: What is the output of the following program

OUTPUT:

EXAMPLE 6-9: Study the following definition of function secret and answer the questions
below.

What is the output of the following C++ statement?

What is the output of the following C++ statement?

For value-returning functions that have selection statements, the function should return a
value from all possible paths.

Because secret is a value-returning function that have a selection statement you need to
return a value either if the formal parameter value is less than or greater than 5. A correct
definition of the function secret is:

int funcRet1()

{

 int x = 45;

 return 23, x; //only the value of x is returned

}

int funcRet2(int z)

{

 int a = 2;

 int b = 3;

 return 2 * a + b, z + b; //only the value of z + b is returned

}

int main()

{

 int num = 4;

 cout << funcRet1() << endl;

 cout << funcRet2(num) << endl;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

45

7

1

2

int secret(int x)

{

 if (x > 5)

 return 2 * x;

}

1

2

3

4

5

cout<<secret(10); //201

cout<<secret(3); //??1

OR: Because the execution of a return statement in a function terminates the function, the
preceding function secret can also be written (without the word else) as:

PRACTICE: Write the definition of function absolute that takes a decimal number as a
parameter, and returns its absolute value. Test the correctness of your function.

EXAMPLE 6-10: Write the definition of function courseGrade . This function takes as a
parameter an int value specifying the score (value between 50 and 100 inclusive) for a
course and returns the grade (type char). Test the correctness of your function.

int secret(int x)

{

 if (x > 5)

 return 2 * x;

 else

 return x;

}

1

2

3

4

5

6

7

int secret(int x)

{

 if (x > 5)

 return 2 * x;

 return x;

}

1

2

3

4

5

6

char courseGrade(int score)

{

 switch (score / 10)

 {

 case 5:

 return 'F';

 case 6:

 return 'D';

 case 7:

 return 'C';

 case 8:

 return 'B';

 case 9:

 case 10:

 return 'A';

 default:

 return 'F';

 }

}

int main()

{

 cout<<courseGrade(70)<<endl;

 cout<<courseGrade(95)<<endl;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

EXAMPLE 6-11: Write a function that rolls a pair of dice until the sum of the numbers rolled
is a specific number, and return the number of times the dice are rolled to get the desired
sum. Test the correctness of your function.

PRACTICE: Modify this program so that it allows the user to enter the desired sum of
the numbers to be rolled.

PRACTICE: A string is a palindrome if it reads forward and backward in the same way. For
example, the strings "madam", "5", "434", and "789656987" are all palindromes. write the
definition of a C++ function isPalindrome that returns true if a string is a palindrome and
false otherwise.

Function Prototype

EXAMPLE 6-12: Write the definition of function Larger that takes two decimal numbers as
parameters, and returns the larger number between them. Test the correctness of your
function.

int rollDice(int num)

{

 int die1, die2, sum;

 srand(time(0));

 int rollCount = 0;

 if(num >= 2 && num <= 12)

 {

 do

 {

 die1 = rand() % 6 + 1;

 die2 = rand() % 6 + 1;

 sum = die1 + die2;

 rollCount++;

 }

 while (sum != num);

 }

 return rollCount;

}

int main()

{

 cout<< "The number of times the dice are rolled to "

 << "get the sum 15 = " << rollDice(15) << endl;

 cout<< "The number of times the dice are rolled to "

 << "get the sum 10 = " << rollDice(10) << endl;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

af://n497

EXAMPLE 6-13: Use function Larger we studied earlier to write the definition of function
compareThree that determine the largest of three numbers.

What is the order in which user-defined functions should appear in a program?

Place the definition of function larger after the definition of function compareThree .
Compile the program and note what happened.
Following the rule that you must declare an identifier before you can use it and knowing
that the function compareThree uses the identifier larger , logically you must place
larger before compareThree .

C++ programmers usually place the function main before all other user-defined functions.
However, this organization could produce a compilation error because functions are
compiled in the order in which they appear in the program.

EXAMPLE 6-14: Study the following code snippet, and identify the line number that will cause
a syntax error.

double larger(double x, double y)

{

 if (x >= y)

 return x;

 return y;

}

int main()

{

 double one = 13.00;

 cout<< larger(one, 29) << endl;

}

1

2

3

4

5

6

7

8

9

10

11

double larger(double x, double y)

{

 if (x >= y)

 return x;

 return y;

}

double compareThree(double x, double y, double z)

{

 return larger(x, larger(y, z));

}

int main()

{

 double one = 13.00;

 cout<< compareThree(one, 29,34) << endl;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Line 4: error: 'larger' was not declared in this scope

To work around the previous problem of undeclared identifiers, we place function
prototypes before any function definition (including the definition of main).

Function Prototype: The function heading without the body of the function.

The general syntax of the function prototype of a value-returning function is:

Note that the function prototype ends with a semicolon.
For the function larger, the prototype is:

When writing the function prototype, you do not have to specify the variable name in the
parameter list. However, you must specify the data type of each parameter.

You can rewrite the function prototype of the function larger as follows:

EXAMPLE 6-15: Rewrite the previous example to solve undeclared identifiers problem.

PRACTICE: Rewrite example 6-13 so that you place the functions prototype before the
definition of function main .

int main()

{

 double one = 13.00;

 cout<< larger(one, 29) << endl;

}

double larger(double x, double y)

{

 if (x >= y)

 return x;

 return y;

}

1

2

3

4

5

6

7

8

9

10

11

functionType functionName(parameter list);1

double larger(double x, double y);1

double larger(double, double); 1

double larger(double, double);

int main()

{

 double one = 13.00;

 cout<< larger(one, 29) << endl;

}

double larger(double x, double y)

{

 if (x >= y)

 return x;

 return y;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

Void Functions
Void functions and value-returning functions have similar structures, both have a heading
and a body.

Like value-returning functions, can place user-defined void functions either before or
after the function main.
If you place user-defined void functions after the function main, you should place the
function prototype before the function main.

A void function does not have a data type. Therefore, functionType —that is, the return type
—in the heading part and the return statement in the body of the void functions are
meaningless.

The function definition of void functions with parameters has the following syntax:

Statements are usually declaration and/or executable statements.
The formal parameter list may be empty, in which case, in the function heading, the
empty parentheses are still needed.

In a void function, you can use the return statement without any value; it is typically used to
exit the function early.

EXAMPLE 6-16: Write the definition of function weekDay that takes an integer number as a
parameter and prints the corresponding day name.

void functionName(formal parameter list)

{

 statements

}

1

2

3

4

void weekDay(int day)

{

 switch(day)

 {

 case 1:

 cout<<"Sunday";

 return;

 case 2:

 cout<<"Monday";

 return;

 case 3:

 cout<<"Tuesday";

 return;

 case 4:

 cout<<"Wednesday";

 return;

 case 5:

 cout<<"Thursday";

 return;

 case 6:

 cout<<"Friday";

 return;

 case 7:

 cout<<"Saturday";

 return;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

af://n552

Because void functions do not have a data type, they are not used (called) in an expression.

A call to a void function is a stand-alone statement. Thus, to call a void function, you use the
function name together with the actual parameters (if any) in a stand-alone statement.

The function call has the following syntax:

RECALL: In a function call, Actual and formal parameters have a one-to-one correspondence,
that is, the number of actual parameters together with their data types must match the
formal parameters in the order given.

 Statement Is correct?

1. weekDay(3); true

2. weekDay(3, 5); false

3. cout<<weekDay(3); false

4. string day = weekDay(4); false

EXAMPLE 6-17: Which of the following statements is correct function call to function
weekDay.

EXAMPLE 6-18: Write a C++ function printStars that takes two integer numbers (n and r)
as parameters. Your function should print n stars divided into r stars per row. For example
the following function call printStars(14, 6) will print the following shape.

	 * * * * * *

	 * * * * * *

	 * *

Parameter Types

 default:

 cout<<"Invalid day";

 return;

 }

}

26

27

28

29

30

functionName(actual parameter list);1

void printStars(int n, int r)

{

 for (int count = 1; count <= n; count++)

 {

 cout << "* ";

 if(count % r == 0)

 cout << endl;

 }

}

1

2

3

4

5

6

7

8

9

af://n617

Parameters provide a communication link between the calling function (such as main) and
the called function. They enable functions to manipulate different data each time they are
called.

In general, there are two types of formal parameters:

Value parameter: A formal parameter that receives a copy of the content of the
corresponding actual parameter.
Reference parameter: A formal parameter that receives the location (memory
address) of the corresponding actual parameter.

When you attach & after the dataType in the formal parameter list of a function, the variable
following that dataType becomes a reference parameter.

EXAMPLE 6-19: Consider the following function definition and answer the questions below.

How many value parameters does the function areaAndPerimeter has?

2 parameters, length and width

How many reference parameters does the function areaAndPerimeter has?

2 parameters, area and perimeter

Value Parameters

When a function is called, memory for its formal parameters and variables declared in the
body of the function (called local variables) is allocated in the function data area.

Value parameter copy the value of the actual parameter into the memory cell of its
corresponding formal parameter.

The formal parameter has its own copy of the data. Therefore, during program
execution, the formal parameter manipulates the data stored in its own memory space.
When the function executes, any changes made to the formal parameters do not in any
way affect the actual parameters.

Value parameters cannot pass information outside of the function.

EXAMPLE 6-20: What is the output of the following program?

void areaAndPerimeter(double length, double width,

 double& area, double& perimeter)

{

 area = length * width;

 perimeter = 2 * (length + width);

}

1

2

3

4

5

6

void Swap(int num1, int num2)

{

 int tmp = num1;

 num1 = num2;

 num2 = tmp;

 cout<< "Inside function Swap..."<<endl;

 cout<< "num1 = " << num1

 << ", num2 = " << num2<< endl;

}

int main()

{

 int number1 = 6;

1

2

3

4

5

6

7

8

9

10

11

12

af://n641

OUTPUT:

Reference Variables as Parameters

Address-of Operator (&)

The address-of operator is a unary operator represented by an ampersand (&).

The address-of operator, & , is used to create aliases to a variable.

Consider the following statements:

The first statement declares x to be an int variable.
The second statement declares y to be an alias of x, that is, both x and y refer to the
same memory location.

EXAMPLE 6-21: What is the output of the following code snippet.

OUTPUT:

Once you set an alias to a variable, you can't modify it to become an alias to another
variable.

 int number2 = 13;

 cout<< "Before calling the function Swap"<<endl;

 cout<< "number1 = " << number1

 << ", number2 = " << number2<< endl;

 Swap(number1,number2);

 cout<< "After calling the function Swap"<<endl;

 cout<< "number1 = " << number1

 << ", number2 = " << number2<< endl;

}

13

14

15

16

17

18

19

20

21

Before calling the function Swap

number1 = 6, number2 = 13

Inside function Swap...

num1 = 13, num2 = 6

After calling the function Swap

number1 = 6, number2 = 13

1

2

3

4

5

6

int x; // x = ??

int &y = x; // x,y = ??

1

2

int x;

int &y = x;

y = 25; // x,y = 25

x = 2 * x + 30; // x,y = 80

cout<<x<<y;

1

2

3

4

5

80801

af://n660
af://n661

Any attempt to create an alias to a constant value will cause a compilation error.

Reference Parameter

RECALL: When you attach & after the dataType in the formal parameter list of a function,
the variable following that dataType becomes a reference parameter.

RECALL: When a function is called, memory for its formal parameters and variables declared
in the body of the function (called local variables) is allocated in the function data area.

Reference parameter receives the address (memory location) of the actual parameter. That
is, the content of the formal parameter is an address.

In reference parameter, both the actual and formal parameters refer to the same memory
location. Consequently, during program execution, changes made by the formal parameter
permanently change the value of the actual parameter.

Reference parameters are useful in three situations:

When the value of the actual parameter needs to be changed.
When you want to return more than one value from a function (recall that the return
statement can return only one value).
When passing the address would save memory space and time relative to copying a
large amount of data.

EXAMPLE 6-22: What is the output of the following program?

int x = 3, w = 7; // x = 3, w = 7

int &y = x; // x,y = 3, w = 7

y = w; // x,y = 7, w = 7

&y = w; // error

1

2

3

4

int &a = 15; // error: invalid initialization of non-const reference

 // of type 'int&' from an rvalue of type 'int'

1

2

void Swap(int &num1, int &num2)

{

 int tmp = num1;

 num1 = num2;

 num2 = tmp;

 cout<< "Inside function Swap..."<<endl;

 cout<< "num1 = " << num1

 << ", num2 = " << num2<< endl;

}

int main()

{

 int number1 = 6;

 int number2 = 13;

 cout<< "Before calling the function Swap"<<endl;

 cout<< "number1 = " << number1

 << ", number2 = " << number2<< endl;

 Swap(number1,number2);

 cout<< "After calling the function Swap"<<endl;

 cout<< "number1 = " << number1

 << ", number2 = " << number2<< endl;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

af://n688

OUTPUT:

EXAMPLE 6-23: What is the output of the following program?

Before calling the function Swap

number1 = 6, number2 = 13

Inside function Swap...

num1 = 13, num2 = 6

After calling the function Swap

number1 = 13, number2 = 6

1

2

3

4

5

6

void funOne(int a, int& b, char v)

{

 cout << "Inside funOne:" << endl;

 int one;

 one = a;

 a++;

 b = b * 2;

 v = 'B';

 cout<< "a = " << a <<endl

 << "b = " << b <<endl

 << "v = " << v <<endl

 << "one = " << one << endl;

}

void funTwo(int& x, int y, char& w)

{

 cout << "Inside funTwo:"<<endl;

 x++;

 y = y * 2;

 w = 'G';

 cout<< "x = " << x<<endl

 << "y = " << y<<endl

 << "w = " << w << endl; //Line 17

}

int main()

{

 int num1, num2;

 char ch;

 num1 = 10;

 num2 = 15;

 ch = 'A';

 cout<< "Inside main:" <<endl

 << "num1 = " << num1 <<endl

 << "num2 = " << num2 <<endl

 << "ch = " << ch << endl;

 funOne(num1, num2, ch);

 cout<< "After funOne: " <<endl

 << "num1 = " << num1<<endl

 << "num2 = " << num2<<endl

 << "ch = " << ch << endl;

 funTwo(num2, 25, ch);

 cout<< "After funTwo:"<<endl

 << "num1 = " << num1<<endl

 << "num2 = " << num2 <<endl

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

OUTPUT:

PRACTICE: What is the output of the following program.

 << "ch = " << ch << endl;

}

45

46

Inside main:

num1 = 10

num2 = 15

ch = A

Inside funOne:

a = 11

b = 30

v = B

one = 10

After funOne:

num1 = 10

num2 = 30

ch = A

Inside funTwo:

x = 31

y = 50

w = G

After funTwo:

num1 = 10

num2 = 31

ch = G

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

void addFirst(int& first, int& second);

void doubleFirst(int one, int two);

void squareFirst(int& ref, int val);

int main()

{

 int num = 5;

 cout << "main: num = " << num << endl;

 addFirst(num, num);

 cout << "main after addFirst: num = " << num << endl;

 doubleFirst(num, num);

 cout << "main after doubleFirst: num = " << num << endl;

 squareFirst(num, num);

 cout << "main after squareFirst: num = " << num << endl;

}

void addFirst(int& first, int& second)

{

 cout << "Inside addFirst:"<<endl;

 cout << "first = "<< first << ", second = " << second << endl;

 first = first + 2;

 second = second * 2;

 cout << "first = "<< first << ", second = " << second << endl;

}

void doubleFirst(int one, int two)

{

 cout << "Inside doubleFirst:"<<endl;

 cout<<"one = "<< one << ", two = " << two << endl;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

By definition, a value-returning function returns a single value; this value is returned via the
return statement. If a function needs to return more than one value, as a rule of good
programming style, you should change it to a void function and use the appropriate
reference parameters to return the values.

EXAMPLE 6-24: Write the definition of a void function that takes as input two parameters of
type int , say sum and testScore. The function updates the value of sum by adding the
value of testScore. The new value of sum is reflected in the calling environment. Test the
correctness of your function

EXAMPLE 6-25: Write the definition of a void function that takes as input two parameters of
type double , that represents the length and width of a rectangle. The function should return
the area and perimeter of the rectangle. Test the correctness of your function.

 one = one * 2;

 two = two + 2;

 cout<<"one = "<< one << ", two = " << two << endl;

}

void squareFirst(int& ref, int val)

{

 cout << "Inside squareFirst: "<<endl;

 cout <<"ref = "<< ref << ", val = " << val << endl;

 ref = ref * ref;

 val = val + 2;

 cout <<"ref = "<< ref << ", val = " << val << endl;

}

27

28

29

30

31

32

33

34

35

36

37

38

void sumScores(int &sum, int testScore)

{

 sum += testScore;

}

int main()

{

 int score = 85;

 int totalScores = 0;

 sumScore(totalScores, score);

 cout<<totalScores;

}

1

2

3

4

5

6

7

8

9

10

11

void AreaPermiter(double length, double width, double &area, double

&perimeter)

{

 area = length * width;

 perimeter = 2 *(length + width);

}

int main()

{

 double w = 10;

 double ar, pe;

 AreaPermiter(2*20/ 4,w, ar,pe);

 cout<<"area = "<<ar<<endl;

 cout<<"perimeter = "<<pe<<endl;

1

2

3

4

5

6

7

8

9

10

11

12

13

Scope of an Identifier
RECALL: An identifier is the name of something in C++, such as a variable or function name.

Identifiers are declared in a function heading, within a block, or outside a block.

Are you allowed to access any identifier anywhere in the program?

The answer is no, you must follow certain rules to access an identifier.
The scope of an identifier refers to where in the program an identifier is accessible (visible).

Local identifier: Identifiers declared within a function (or block), and they are not
accessible outside of the function (block).
Global identifier: Identifiers declared outside of every function definition.

In general, the following rules apply when an identifier is accessed:

Global identifiers (such as variables) are accessible by a function or a block if:

1. The identifier is declared before the function definition (block).

OUTPUT:

2. The function name is different than the identifier.

}14

const double RATE = 10.50;

int z = 1;

void one(int , char);

int main()

{

 int first = 8;

 char last = 'd';

 cout<<"main: "<<RATE<<"\t"<<z<<"\t"

 <<first<<"\t"<<last<<endl;

 one(first, last);

}

int w = 9;

void one(int x, char y)

{

 cout<<"one : "<<RATE<<"\t"<<z<<"\t"

 <<x<<"\t"<<y<<"\t"<<w<<endl;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

main: 10.5 1 8 d

one : 10.5 1 8 d 9

1

2

void one(int x, char y);

void three(int one, double y, int z);

int main()

{

 int num = 7, first = 8;

1

2

3

4

5

6

af://n733

OUTPUT:

3. All parameters of the function have names different than the name of the
identifier.

4. All local identifiers (such as local variables) have names different than the name of
the identifier.

 double x = 13.5;

 char last = 'd';

 cout<<"main : "<<num<<"\t"<<first<<"\t"

 <<x<<"\t"<<last<<endl;

 one(first, last);

 three(num,x,first);

}

void one(int x, char y)

{

 cout<<"one : "<<x<<"\t"<<y<<endl;

}

void three(int one, double y, int z)

{

 //one(3,'2');

 cout<<"three: "<<one<<"\t"<<y<<"\t"<<z<<endl;

}

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

main : 7 8 13.5 d

one : 8 d

three: 7 13.5 8

1

2

3

int z = 1;

double t = 11.5;

void one(int, char);

void two(int, int, char);

int main()

{

 int num1 = 7, num2 = 8;

 char last = 'd';

 cout<<"main: "<<z<<"\t"<<t<<"\t"

 <<num1<<"\t"<<num2<<"\t"<<last<<endl;

 one(num1, last);

 two(num1,num2, 'r');

}

void one(int x, char y)

{

 double z = 12;

 cout<<"o : "<<z<<"\t"<<t<<"\t"

 <<x<<"\t"<<y<<endl;

}

void two(int a, int b, char t)

{

 cout<<"two : "<<z<<"\t"<<t<<"\t"

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

OUTPUT:

(Nested Block) An identifier declared within a block is accessible:

1. Only within the block from the point at which it is declared until the end of the
block.

2. By those blocks that are nested within that block if the nested block does not have
an identifier with the same name as that of the outside block (the block that
encloses the nested block).

OUTPUT:

 <<a<<"\t"<<b<<endl;

}

25

26

main: 1 11.5 7 8 d

one : 12 11.5 7 d

two : 1 r 7 8

1

2

3

int z = 1;

void three(int, double, int);

int main()

{

 int num1 = 7;

 double x = 13.5;

 cout<<"main : "<<z<<"\t"<<num1<<"\t"

 <<x<<"\t"<<endl;

 three(num1,x,num1+3);

}

void three(int one, double x, int z)

{

 char ch = 'e';

 int a = 11;

 cout<<"three 1: "<<z<<"\t"<<one<<"\t"

 <<x<<"\t"<<ch<<"\t"<<a<<endl;

 { //Block Three 2

 int x = 12;

 char a = 'f';

 cout<<"three 2: "<<z<<"\t"<<one<<"\t"

 <<x<<"\t"<<a<<endl;

 }//end Block Three 2

 cout<<"three 1: "<<z<<"\t"<<one<<"\t"

 <<x<<"\t"<<ch<<"\t"<<a<<endl;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

main : 1 7 13.5

three 1: 10 7 13.5 e 11

three 2: 10 7 12 f

three 1: 10 7 13.5 e 11

1

2

3

4

The scope of a function name is similar to the scope of an identifier declared outside
any block. That is, the scope of a function name is the same as the scope of a global
variable.

Any attempt to access an identifier outside its scope will cause a compilation error.

C++ allows the programmer to declare a variable in the initialization statement of the for
statement, and its scope is limited only to the body of the for loop.

	 	

Note the following about global variables:

1. Usually C++ does not automatically initialize variables. However, some compilers
initialize global variables to their default values. For example, if a global variable is of
type int , char , or double , it is initialized to zero.

2. In C++, :: is called the scope resolution operator. By using the scope resolution
operator, a global variable declared before the definition of a function (block) can be
accessed by the function (or block) even if the function (or block) has an identifier with
the same name as the variable.

PRACTICE: Use the scope resolution operator in the example given in the second rule to
access global identifiers to call function one in function three.

Global Variables, Named Constants, and Side Effects
A C++ program can contain global variables and you might be tempted to make all of the
variables in a program global variables so that you do not have to worry about what a
function knows about which variable.

for (int count = 1; count < 10; count++)

 cout << count << endl;

 cout << count << endl; //error: 'count' was not declared in this scope

1

2

3

int x;

int main()

{

 int a;

 cout<<a<<" "<<x; //4354206 0

}

1

2

3

4

5

6

int x = 1;

int main()

{

 int x = 2;

 x++;

 ::x++;

 cout<<x<<" "<<::x; //3 2

}

1

2

3

4

5

6

7

8

af://n809

If more than one function uses the same global variable and something goes wrong, it is
difficult to discover what went wrong and where. Problems caused by global variables in one
area of a program might be misunderstood as problems caused in another area.

It is not recommend to use global variables; instead, use the appropriate parameters.

For example, consider the following program:

Declaring named constants as global named constants have no side effects because their
values cannot be changed during program execution. Moreover, placing a named constant in
the beginning of the program can increase readability, even if it is used only in one function.

Static and Automatic Variables
The variables discussed so far have followed two simple rules:

1. Memory for global variables remains allocated as long as the program executes.
2. Memory for a variable declared within a block is allocated at block entry and

deallocated at block exit.
Automatic variables are variables for which memory is allocated at block entry and
deallocated at block exit.

Variables declared within a block (local variables) are automatic variables.
Static variables are variables for which memory remains allocated as long as the program
executes is called .

Global variables are static variables.
You can declare a static variable within a block by using the reserved word static .

The syntax for declaring a static variable is:

The following statement declares x to be a static variable of type int :

int t;

void funOne(int& a);

int main()

{

 t = 15;

 cout << "t = " << t << endl;

 funOne(t);

 cout << "after funOne: "<< " t = " << t << endl;

}

void funOne(int& a)

{

 cout << "In funOne: a = " << a

 << ", t = " << t << endl;

 a = a + 12;

 cout << "In funOne: a = " << a

 << ", t = " << t << endl;

 t = t + 13;

 cout << "In funOne: a = " << a

 << ", t = " << t << endl;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

static dataType identifier;1

af://n824

Most compilers initialize static variables to their default values.
For example, static int variables are initialized to 0 .
However, it is a good practice to initialize static variables yourself, especially if the initial
value is not the default value.

Static variables declared within a block are local to the block, and their scope is the same as
that of any other local identifier of that block.

EXAMPLE 6-26: Study the following code snippet and answer the questions below.

How many times does the declaration statement of the variable x is executed?

It will be executed every time the for-loop body is executed (5 times)

What is the output of the previous code snippet?

EXAMPLE 6-27: Study the following code snippet and answer the questions below.

How many times does the declaration statement of the variable x is executed?

It will be executed only the first time the for-loop body is executed

What is the output of the previous code snippet?

static int x;

static int y = 2;

cout << x<<" "<<y;

1

2

3

int count;

for (count = 1; count <= 5; count++)

{

 int x = count;

 x += count;

 cout<<count<<". x = "<<x<<endl;

}

1

2

3

4

5

6

7

1. x = 2

2. x = 4

3. x = 6

4. x = 8

5. x = 10

1

2

3

4

5

int count;

for (count = 1; count <= 5; count++)

{

 static int x = count;

 x += count;

 cout<<count<<". x = "<<x<<endl;

}

1

2

3

4

5

6

7

1. x = 2

2. x = 4

3. x = 7

4. x = 11

5. x = 16

1

2

3

4

5

EXAMPLE 6-28: Study the following function definition and answer the questions below.

How many times does the declaration statement of the static variable x is executed?

It will be executed only in the first function call to function test

How many times does the declaration statement of the automatic variable y is
executed?

It will be executed in every function call to function test

What is the output of the following code snippet?

OUTPUT:

Function Overloading
In C++, function overloading (overloading a function name): is creating several functions
with the same name and different formal parameter lists.

Two functions are said to have different formal parameter lists in one of the following cases:

If both functions have different number of formal parameters.
If both functions have the same number of formal parameters but different data type of
the formal parameters, in the order you list them, must differ in at least one position.

The following functions have different formal parameter lists.

void test()

{

 static int x = 0;

 int y = 10;

 x = x + 2;

 y = y + 1;

 cout << "Inside test x = " << x << " and y = "

 << y << endl;

}

1

2

3

4

5

6

7

8

9

int main()

{

 int count;

 for (count = 1; count <= 5; count++)

 test();

}

1

2

3

4

5

6

Inside test x = 2 and y = 11

Inside test x = 4 and y = 11

Inside test x = 6 and y = 11

Inside test x = 8 and y = 11

Inside test x = 10 and y = 11

1

2

3

4

5

af://n901

The following two functions have the same formal parameter lists.

The following two functions are overloaded functions.

Having multiple functions with the same signature [name + formal parameter list] will cause
a compilation error.

If a function is overloaded, then in a call to that function, the signature—that is, the formal
parameter list of the function—determines which function to execute.

EXAMPLE 6-29: Study the following functions definitions and answer the question below.

 Statement Output

1. cout<<larger(3,7)<<endl; 7

2. cout<<larger("hi","hello")<<endl; hi

3. cout<<larger(30.6,7.89)<<endl; 30.6

What is the output of the following C++ statements.

void functionOne(int x)

void functionTwo(int x, double y)

void functionThree(double y, int x)

int functionFour(char ch, int x, double y)

int functionFive(char ch, int x, string name)

1

2

3

4

5

void functionSix(int x, double y, char ch)

void functionSeven(int one, double u, char firstCh)

1

2

int functionXYZ(char ch, int x, double y);

double functionXYZ(char ch, int x, string name);

1

2

void functionXYZ(int x, double y)

double functionXYZ(int v, double w)

// error: ambiguating new declaration of 'double functionXYZ(int,

double)'

1

2

3

int larger(int x, int y)

{

 return x >=y ? x : y;

}

char larger(char x, char y)

{

 return x >=y ? x : y;

}

double larger(double x, double y)

{

 return x >=y ? x : y;

}

string larger(string x, string y)

{

 return x >=y ? x : y;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 Statement Output

4. cout<<larger('a','D')<<endl; a

5. cout<<larger(3,7.5)<<endl;
error: call of overloaded

'larger(int, double)' is ambiguous

Functions with Default Parameters
RECALL: When a function is called, the number of actual and formal parameters must be the
same.

C++ relaxes this condition for functions with default parameters.

The syntax for formal parameter list in functions with default parameter is:

You specify the value of a default parameter when the function name appears for the first
time, such as in the prototype.

The following rules apply for functions with default parameters:

1. In the definition of a function with default parameters, all of the default parameters
must be the far-right parameters of the function.

2. Default values can be constants, global variables, or value returning function calls.

3. In the function call, if you do not specify the value of a default parameter, the default
value is used for that parameter.

4. In the function call, you can specify a value other than the default for any default
parameter.

dataType identifier = initialValue1,

...,

dataType identifier = initialValueN_1,

dataType identifier = initialValueN

1

2

3

4

int Sum(int val1 = 1 ,int val2 = 1,int val3 = 1); // correct

prototype

int Sum(int val1 ,int val2 = 1,int val3 = 1); // correct

prototype

int Sum(int val1 = 1 ,int val2,int val3 = 1); // incorrect

prototype

int Sum(int val1 = 1,int val2 = 1,int val3); // incorrect

prototype

1

2

3

4

int Sum(int val1,int val2 = abs(-5),int val3 = 2);1

af://n961

OUTPUT:

5. Suppose a function has more than one default parameter. In a function call, if a value to
a default parameter is not specified, then you must omit all of the arguments to its
right.

OUTPUT:

6. You cannot assign a constant value as a default value to a reference parameter.

EXAMPLE 6-30: Consider the following function prototype and answer the question below.

int Sum(int val1 = 1,int val2 = 1,int val3 = 1)

{

 return val1 + val2 + val3;

}

int main()

{

 cout<<Sum()<<endl;

 cout<<Sum(3)<<endl;

 cout<<Sum(3,4)<<endl;

 cout<<Sum(3,4,5)<<endl;

}

1

2

3

4

5

6

7

8

9

10

11

3

5

8

12

1

2

3

4

int Sum(int val1,int val2 = abs(-5),int val3 = 2)

{

 return val1 + val2 + val3;

}

int main()

{

 cout<<Sum(3)<<endl;

 cout<<Sum(3,4)<<endl;

 cout<<Sum(2,,4)<<endl;//illegal function call

}

1

2

3

4

5

6

7

8

9

10

10

9

1

2

void Fun(int val1,int &val2=1,int val3 = 2);

//illegal function declaration

1

2

void funcExp(int x, int y, double t, char z = 'A', int u = 67, char v =

'G', double w = 78.34);

1

 Statement Is correct?

1. funcExp(5, 10, 12.5); true

2. funcExp(5, 15, 34.6, 'B', 87, 'h'); true

3. funcExp(14.6, 12, 14.56, 'D'); true

4. funcExp(10, 15); false

5.
int b = 5;

funcExp(b, 25, 48.76, "D", 4567, 78.34);

false

Which of the following function calls are correct?

NOTE: In programs in this book, and as is recommended, the definition of the function main
is placed before the definition of any user-defined functions. You must, therefore, specify the
default value for a parameter in the function prototype and in the function prototype only,
not in the function definition because this must occur at the first appearance of the function
name.

EXAMPLE 6-31: What is the output of the following program.

OUTPUT:

void funcOne(int& x, double y = 12.34, char z = 'B');

int main()

{

 int a = 23;

 funcOne(a);

 funcOne(a, 42.68);

 funcOne(a, 34.65, 'Q');

 cout<< "a = " << a << endl;

}

void funcOne(int& x, double y, char z)

{

 x = 2 * x;

 cout<< "x = " << x << ", y = "

 << y << ", z = " << z << endl;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

x = 46, y = 12.34, z = B

x = 92, y = 42.68, z = B

x = 184, y = 34.65, z = Q

a = 184

1

2

3

4

CHAPTER 8: ARRAYS AND STRINGS
RECALL: C++ data types fall into three categories.

Simple data types (integers, floating point numbers).
Structured data type.
Pointers

RECALL: A data type is called simple if variables of that type can store only one value at a
time.

In structured data type, each data item is a collection of other data items. Usually, simple
data types are building blocks of structured data types.

In this chapter we will study the first structured data type that is array.

EXAMPLE 8-1: Write a C++ program that reads five numbers, finds their sum, and then print
them in reverse order.

If you try to extend the previous program to process 100 (or more) numbers, you would
have to declare 100 variables and write many cin , cout , and addition statements.
Thus, for large amounts of data, this type of program is not desirable.

When you try to process a group of variables of the same type, you should be able to specify
how many variables must be declared—and their data type—with a simpler statement than
the one we used earlier.

The data structure that lets you do this in C++ is called array.

Arrays
An array is a collection of a fixed number of components all of the same data type and
stored at contiguous memory locations.

A one-dimensional array is an array in which the components are arranged in a list form.

The general form for declaring a one-dimensional array is:

intExp specifies the number of components in the array.
intExp is any constant expression that evaluates to a positive integer.

EXAMPLE 8-2: Which of the following C++ statements are correct to declare arrays.

int num1, num2, num3, num4, num5;

cout << "Enter five integers"<<endl;

cin >> num1 >> num2 >> num3 >> num4 >> num5;

double sum = num1 + num2 + num3 + num4 + num5;

cout <<" Sum = " << sum<<endl;

cout<<"Numbers in reverse order "

 << num5 << num4 << num3 << num2 << num1;

1

2

3

4

5

6

7

8

9

dataType arrayName[intExp];1

af://n0
af://n31

 Statement Is correct? Statement Is correct?

1. int List1[5]; correct

2.
const int ARRAY_SIZE = 10;

int List2[ARRAY_SIZE];

correct

3. int List3[-10]; error: size of array 'List3' is negative

4. int List4[5.5]; error: size of array 'List4' has non-integral type

The general form (syntax) used for accessing an array component is:

indexExp , called the index, is any expression whose value is a nonnegative integer.
The index value specifies the position of the component in the array.
In C++, [] is an operator called the array subscripting operator.

In C++, the array index starts at 0.

EXAMPLE 8-3: Study the following C++ statements and note the effect of each of them.

1.

nums[0] nums[1] nums[2] nums[3] nums[4]

?? ?? ?? ?? ??

The statement declares an array nums of five components of type int . The
components are nums[0] , nums[1] , nums[2] , nums[3] , and nums[4] .

2.

nums[0] nums[1] nums[2] nums[3] nums[4]

7 ?? 10 ?? 21

3.

nums[0] nums[1] nums[2] nums[3] nums[4]

7 12 10 4 21

arrayName[indexExp];1

int nums[5];1

nums[0] = 7;

nums[2] = 10;

nums[4] = nums[0] * 3;

1

2

3

int i = 3;

nums[i] = nums[4] / 5;

nums[i * 3 % 4] = 12;

1

2

3

4.

OUTPUT: Assume user input is: 5

In C++ standard, when you declare an array, its size must be known. For example, you
cannot do the following:

Some compilers provide extensions to allow the previous code.

Array Initialization During Declaration

Like any other simple variable, an array can be initialized while it is being declared.

The following C++ statement declares an array of 5 integers and initialize them.

If number of initializers is greater than array size then the compiler will issue a syntax error.

When initializing arrays as they are declared, it is not necessary to specify the size of the
array. The size is determined by the number of initial values in the braces. However, you
must include the brackets following the array name.

When you declare and initialize an array simultaneously, you do not need to initialize all
components of the array. This procedure is called partial initialization of an array during
declaration.

If not all values are specified in the initialization statement, the array components for which
the values are not specified are initialized to 0

NOTE: The size of the array in the declaration statement does matter.

cin >> nums[2];

cout<< nums[0] <<" "<< nums[1] <<" "<< nums[2]

 <<" "<< nums[3] <<" "<< nums[4];

1

2

3

5

7 12 5 4 21

1

2

int arraySize;

cout << "Enter the size of the array: ";

cin >> arraySize;

cout << endl;

int list[arraySize]; //not allowed in earlier versions of C+

1

2

3

4

5

int List1[5] = {12, 32, 16, 23, 45};1

int List1[5] = {12, 32, 16, 23, 45, 25};

// error: too many initializers for 'int [5]'

1

2

int List2[] = {12, 32, 16, 23, 45, 25}; // array size = 61

int List3[5] = {0}; // List3 {0, 0, 0, 0, 0}

int List4[5] = {12, 32}; // List4 {12, 32, 0, 0, 0}

1

2

af://n147

When you partially initialize an array, then all of the elements that follow the last uninitialized
elements must be uninitialized. Therefore, the following statement will result in a syntax
error:

Processing One-Dimensional Arrays

Some of the basic operations performed on a one-dimensional array are initializing,
inputting data, outputting data stored in an array, and finding the largest and/or smallest
element.

If the data is numeric, some other basic operations are finding the sum and average of the
elements of the array.

Each of these operations requires the ability to step through the elements of the array. This
is easily accomplished using a loop.

Consider the following definition of array sales that has 10 double numbers.

Initializing an array

The following loop initializes every component of the array sales to 0.0.

Reading data into an array

The following loop inputs the data into the array sales from the keyboard.

Printing an array

The following loop outputs the components of array sales to the screen.

int List5[10] = {2, 5, 6, , 8}; //illegal1

for (int i = 0; i < SIZE; i++)

 //process list[i]

1

2

double sales[10];1

for (int index = 0; index < 10; index++)

 sales[index] = 0.0;

1

2

for (int index = 0; index < 10; index++)

 cin >> sales[index];

1

2

for (int index = 0; index < 10; index++)

 cout << sales[index] << " ";

1

2

af://n171
af://n184
af://n190
af://n196

Copy one array into another array

To copy an array into another array, you must copy it component-wise—that is, one
component at a time.

The following program copies the content of array sales into array newSales.

PRACTICE: Write the required C++ program to check if two arrays are equal (has the same
elements in the same order).

Finding the sum and average of an array

Because the array sales has numeric data, you can calculate the total sales and average sales
amounts.

The following C++ code finds the sum and average of all elements of array sales:

Largest element in the array

The following C++ code finds the first occurrence of the largest element in the array sales—
that is, the first array component with the largest value.

To determine the index of the first occurrence of the largest element in an array use the
following code.

double newSales[10];

for (int index = 0; index < 10; index++)

 newSales[index] = sales[index];

1

2

3

double sum = 0;

for (int index = 0; index < 10; index++)

 sum = sum + sales[index];

double average = sum / 10;

1

2

3

4

5

double maxValue = sales[0];

for (int index = 1; index < 10; index++)

 if (sales[index] > maxValue)

 maxValue = sales[index];

cout<<"largest sale = "<< maxValue;

1

2

3

4

5

6

af://n202
af://n214
af://n222

PRACTICE: Write the required code to find the index of the last occurrence of the smallest
element in the array sales

EXAMPLE 8-4: Write a C++ program to read five test scores, finds the average test score, and
print all the test scores that are less than the average test score.

OUTPUT: Assume user input is 70 83 89 78 90

The index of an array is in bounds if index >= 0 and index <= ARRAY_SIZE - 1 .

Array Index is said to be out of bounds if either index < 0 or index > ARRAY_SIZE - 1 ,
then we say that the index is out of bounds.

Unfortunately, in C++, there is no guard against out-of-bound indices.

If the index goes out of bounds and the program tries to access the component
specified by the index, then whatever memory location is indicated by the index that
location is accessed.

int maxIndex = 0; // store the index of the first occurrence

 // of the largest element in the array

for (index = 1; index < 10; index++)

 if (sales[maxIndex] > sales[index])

 maxIndex = index;

double largestSale = sales[maxIndex];

1

2

3

4

5

6

7

8

int test[5];

int sum = 0;

double average;

int index;

cout << "Enter five test scores: "<<endl;

for (index = 0; index < 5; index++)

{

 cin >> test[index];

 sum = sum + test[index];

}

average = sum / 5.0;

cout << "The average test score = " << average << endl;

cout << "Test scores less than the average test score." << endl;

for (index = 0; index < 5; index++)

 if (test[index] < average)

 cout << test[index]<<"\t";

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Enter five test scores:

70 83 89 78 90

The average test score = 82

Test scores less than the average test score.

70 78

1

2

3

4

5

This situation can result in altering or accessing the data of a memory location that you
never intended to modify or access
It is solely the programmer’s responsibility to make sure that the index is within bounds.

EXAMPLE 8-5: Study the output of the following code snippet.

OUTPUT:

Searching an Array for a Specific Item

Searching a list for a given item is one of the most common operations performed on a list.

In this chapter we will use the sequential search or linear search algorithm to search an array
for a specific element.

The sequential search algorithm search the array sequentially as follows:

1. Start from the first array element.
2. Compare search item with the elements in the array (the list)
3. Repeat step 2 until either you find the item or no more data is left in the list to compare

with search item.
The pseudocode for sequential search algorithm.

EXAMPLE 8-6: Write C++ program to read a number from the user and determine whether it
is on the array List or not. if the number is found in the list print its location otherwise
print a proper message.

int i;

int List[5];

for (i = 0; i < 5; i++)

 List[i] = 10;

for (i = 0; i <= 6; i++)

 cout<<List[i]<<" ";

1

2

3

4

5

6

7

0 0 0 0 0 5 43541441

found is set to false

loc = 0;

while (loc < listLength and not found)

 if (list[loc] is equal to searchItem)

 found is set to true

 else

 increment loc

if (found)

 print element found at location loc

else

 print element not found

1

2

3

4

5

6

7

8

9

10

11

12

const int LIST_SIZE = 5;

int List[LIST_SIZE] = {12,4,34,27,44};

int searchItem;

1

2

3

af://n261

PRACTICE: Rewrite the sequential search program using loop and break statement.

Selection Sort

In this section, we discuss how to sort an array using an algorithm, called selection sort.

The selection sort algorithm, rearrange the list by selecting an element in the list and moving
it to its proper position.

Selection sort thus involves the following steps.

1. Find the location of the smallest element In the unsorted portion of the list.
2. Move the smallest element to the beginning of the unsorted list.

EXAMPLE 8-7: Consider the following example that discuss the selection sort algorithm.

1. Initially, the entire list is unsorted.

2. Find the smallest item in the list. Move it from position 6 to position 0. So, we swap 16
(that is, list[0]) with 5 (that is, list[6]), as shown in the figure below.

cout << "Enter a number to search for"<<endl;

cin >> searchItem;

bool found = false;

int loc = 0;

while (loc < LIST_SIZE && !found)

 if (List[loc] == searchItem)

 found = true;

 else

 loc++;

if (found)

 cout<<"Element found at location "<< loc<<endl;

else

 cout<<"Element not found"<<endl;

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

af://n289

3. Now the unsorted list is list[1] ... list[7] . So, we find the smallest element in the
unsorted list. Move it from position 3 to position 1. So, we swap 30 (that is, list[1]) with 7
(that is, list[3]), as shown in the figure below.

4. Now, the unsorted list is list[2] ... list[7] . So, we repeat the preceding process of
finding the (position of the) smallest element in the unsorted portion of the list and
moving it to the beginning of the unsorted portion of the list.

The following is the pseudocode for selection sort algorithm:

The following program implements the selection sort algorithm:

for (index = 0; index < length - 1; index++)

{

 a. Find the location, smallestIndex, of the smallest element in

 list[index]...list[length - 1].

 b. Swap the smallest element with list[index]. That is, swap

 list[smallestIndex] with list[index].

}

1

2

3

4

5

6

7

int smallestIndex;

int location;

1

2

Base Address of an Array and Array in Computer Memory

RECALL: An array is a sequence of components of the same type placed in contiguous
memory locations.

The base address of an array is the address (that is, the memory location) of the first array
component.

Address 330 331 332 333 334 501

Variable List1[0] List1[1] List1[2] List1[3] List1[4] List1

Content 0 4 8 12 16 330

Consider the following statements:

This statement declares List1 to be an array of five components of type int .
The computer allocates five contiguous memory spaces, each large enough to store an
int value, for these components.
The base address of the array List1 is the address of the component List1[0] .
There is also a memory space associated with the identifier List1 , and the base
address of the array is stored in that memory space and it cannot be changed during
program execution (constant).

Consider the following statement:

This statement outputs the value of List1 , which is the base address of the array. This
is why the statement will not generate a syntax error.

Consider the following code snippet:

int temp;

int list[]= {2, 56, 34, 25, 73, 46, 89, 10, 5, 16};

for (int index = 0; index < 9; index++)

{

 //Step a

 smallestIndex = index;

 for (location = index + 1; location < length; location++)

 if (list[location] < list[smallestIndex])

 smallestIndex = location;

 //Step b

 temp = list[smallestIndex];

 list[smallestIndex] = list[index];

 list[index] = temp;

}

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

int List1[5] = {0, 4, 8, 12, 16}; 1

cout << List1 << endl; 1

af://n328

The expression List1 <= List2 evaluates to true if the base address of the array
List1 is less than the base address of the array List2 ; and evaluates to false
otherwise.

When you declare an array, the only things about the array that the computer remembers
are:

Its name
Its base address.
The data type of each component

Using the base address of the array and the index of an array component, the computer
determines the address of a particular component, so it can access its content directly.

When you declare an array, the base address of this array is stored in a memory space
whose name is the same as the array name. The content of this memory space is constant
and any attempt to modify it will cause the compiler to generate a syntax error.

C++ does not allow aggregate operations on an array.

An aggregate operation on an array is any operation that manipulates the entire array as a
single unit.

Copy an array into another array using assignment operator.
Read data into array using input statement .
Determine whether two arrays have the same elements using equality operator or
compare array elements using relational operators.
Print the contents of an array using output statement .

EXAMPLE 8-8: Study the following code snippet and identify the line that will cause a syntax
error.

Statement at line 4 and 5 will cause syntax error.
Statement at line 3 is illegal in the sense that it dose not generate a syntax error;
however, they do not give the desired results.

	 	

C-Strings (Character Arrays)
Character array: An array whose components are of type char.

Character arrays are of special interest, and you process them differently than you process
other arrays.

The first character in the ASCII character set is the null character, which is nonprintable
character, and it plays an important role in processing character arrays.

RECALL: In C++, the null character is represented as '\0' , a backslash followed by a zero.

The most commonly used term for character arrays is C-strings.

int List2[5];

if (List1 <= List2)

 //Action statement

1

2

3

int myList[5] = {0, 4, 8, 12, 16};

int yourList[5];

cout<<(myList == yourList);

yourList = myList;

cin >> yourList;

1

2

3

4

5

af://n428

There is a subtle difference between character arrays and C-strings.

C-strings are null terminated character array; that is, the last character in a C-string is
always the null character.

A character array might not contain the null character.

From the definition of C-strings, it is clear that there is a difference between 'A' and "A" .

'A' is character A. To store 'A', we need only one memory cell of type char;
"A" is C-string A, to store "A", we need two memory cells of type char—one for 'A' and
one for '\0' .

The following statement declares an array name of 8 components of type char .

Because C-strings are null terminated and name has 8 components, the largest string
that can be stored in name is of length 7.

name[0] name[1] name[2] name[3] name[4] name[5] name[6] name[7]

'O' 'm' 'a' 'r' '\0' '\0' '\0' '\0'

If you store a C-string of length 4 in name , the first 4 components of name are used and
the last 4 are set to '\0' .

Most rules that apply to other arrays also apply to character arrays.

Using aggregate operations, such as assignment and comparison, are also not allowed
on character arrays.

EXAMPLE 8-9: Write the required C++ program to find the length of a C-string.

char name1[] = {'A','h','m','a','d','\0'}; //Array size = 6

char name2[] = "Omar"; //Array size = 5

1

2

char name1[] = {'A','h','m','a','d'}; //Array size = 5

char name2[] = "Omar"; //Array size = 5

1

2

char name[8];1

char name[8] = "Omar";1

char name1[20];

char name2[20];

name1 = "Ahmad Ali"; // error: incompatible types in assignment of

// 'const char [10]' to 'char [20]'

cout<<(name1 < name2); // legal statement but it does not give the

// desired results.

1

2

3

4

EXAMPLE 8-10: Write the required C++ program to compare two C-strings and set a result
variable to -1 if the first C-string is less than the second C-string, 1 if the first C-string is
greater than the second C-string and 0 if the two C-strings are the same.

EXAMPLE 8-11: Use the value stored in the variable result from the program to print the
value of the greatest string.

PRACTICE: Write the required C++ program to copy a C-string into another C-string variable.

C++ provides a set of functions that can be used for C-string manipulation. The header file
cstring describes these functions.

strcpy (string copy): Copy a C-string into another C-string variable—that is,
assignment.
strcmp (string comparison): Compare C-strings.
strlen (string length): Find the length of a C-string.

The following table summarize the previous functions

char str[20] = "Good Day";

int length = 0;

while(str[length] != '\0')

 length++;

cout << "length = "<<length;

1

2

3

4

5

6

char str1[10] = "Ahmad";

char str2[10] = "Ali";

int result = 0;

for(int i = 0; i < 10 ;i++)

{

 if(str1[i] > str2[i])

 {

 result = 1;

 break;

 }

 else if(str1[i] < str2[i])

 {

 result = -1;

 break;

 }

}

cout << "result = "<<result<<endl;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

if(result > 0)

 cout<< str1 <<" is greater than "<<str2<<endl;

else if (result < 0)

 cout<< str1 <<" is less than "<<str2<<endl;

else

 cout<< str1 <<" is equal "<<str2<<endl;

1

2

3

4

5

6

Function EffectFunction Effect

strcpy (s1, s2)
Copies the string s2 into the string variable s1

The length of s1 should be at least as large as s2

strcmp (s1, s2)

Returns a value< 0 if s1 is less than s2

Returns 0 if s1 and s2 are the same

Returns a value > 0 if s1 is greater than s2

strlen (s) Returns the length of the string s, excluding the null character

To use these functions, the program must include the header file cstring via the include
statement.

EXAMPLE 8-12: What is the output of the following C++ program.

OUTPUT:

EXAMPLE 8-13: Write a C++ program to compare two C-strings and print the greatest one.

#include <cstring>1

char studentName[21];

char myname[16];

char yourname[16];

strcpy(myname, "John Robinson");

cout<< myname<<" has ";

cout<< strlen(myname) <<" letters"<<endl;

int len = strlen("Sunny Day");

cout<<"Sunny Day has "<< len <<" letters"<<endl;

strcpy(yourname, "Lisa Miller");

strcpy(studentName, yourname);

cout<<"Student name = "<<studentName<<endl;

cout<<"Your name = "<<yourname<<endl;

cout<< strcmp("Bill", "Lisa")<<endl;

strcpy(yourname, "Kathy Brown");

strcpy(myname, "Mark G. Clark");

cout<<strcmp(myname, yourname)<<endl;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

John Robinson has 13 letters

Sunny Day has 9 letters

Student name = Lisa Miller

Your name = Lisa Miller

-1

1

1

2

3

4

5

6

Reading and Writing Strings

Aggregate operations, such as assignment and comparison, are not allowed onto C-strings as
well as arrays.
The input/ output of arrays is done component-wise. However, the one place where C++
allows aggregate operations on arrays is the input and output of C-strings (that is, character
arrays).

String Output

RECALL: The null character should not appear anywhere in the C-string except the last
position.

Because aggregate operations are allowed for C-string output, you can output C-strings by
using an output statement cout << .

The insertion operator, << , continues to write the contents of a C-string until it finds the null
character.

If a C-string does not contain the null character, then you will see strange output because the
insertion operator continues to output data from memory adjacent to name until '\0' is
found.

EXAMPLE 8-14: What is the output of the following code segment

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

'A' 'h' 'm' 'a' 'd' ' ' 'A' 'l' 'i' '\0' '3' 'Z' '\0'

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

'A' 'h' 'm' 'a' 'd' ' ' 'A' 'l' 'i' '*' '3' 'Z' '\0'

PRACTICE: What is the output of the following code snippet?

char str1[10] = "Ahmad";

char str2[10] = "Ali";

if(strcmp(str1, str2) > 0)

 cout<< str1 <<" is greater than "<<str2<<endl;

else if (strcmp(str1, str2) < 0)

 cout<< str1 <<" is less than "<<str2<<endl;

else

 cout<< str1 <<" is equal "<<str2<<endl;

1

2

3

4

5

6

7

8

9

char name[10] = "Ahmad";

cout << name;

1

2

char name[10] = "Ahmad Ali";

cout << name; //Ahmad Ali

1

2

name[9] = '*';

cout << name; //Ahmad Ali*3Z

1

2

af://n546
af://n553

String Input

Because aggregate operations are allowed for C-string input, the input statement cin >>
can be used to store the next input in a C-string.

The length of the input C-string must be less than 20.

If the length of the input string is is less than the character array size, the computer
stores the input and the null character '\0' after it.

In C++ there is no check on the array index bounds, so if the input is greater than the
character array size, the computer continues storing the string in whatever memory
cells follow name.

This process can cause serious problems, because data in the adjacent memory
cells will be corrupted.

RECALL: The extraction operator, >> , skips all leading whitespace characters and stops
reading data into the current variable as soon as it finds the first whitespace character or
invalid data.

EXAMPLE 8-15: What is the output of the following code segment

What is the output assume user input is Rana Ali

What is the output Assume user input is Adel Ibrahim

Can you explain the previous result.

The function get can be used to input C-strings with blanks into a character array.

char name[10] = "Ahmad Ali";

name[4] = 0;

cout << name;

1

2

3

char name[20];

cin >> name;

1

2

char name1[5];

char name2[5];

cout << "Enter your name ... "<<endl;

cin >> name1 >> name2;

cout<<name1<<endl<<name2;

1

2

3

4

5

Enter your name ...

Rana Ali

Rana

Ali

1

2

3

4

Adel Ibrahim

im

Ibrahim

1

2

3

af://n633

To read any character including white spaces, use the form of the function get that takes one
parameter of type character.

To read C-strings, use the form of the function get that has the following two parameters.

The first parameter is a C-string variable;
The second parameter specifies how many characters to read into the string variable.

To read C-strings, the general form (syntax) of the get function is:

This statement stores the next m characters, or all characters until the newline
character '\n' is found, into str.
If the input C-string has fewer than m characters, then the reading stops at the newline
character.

EXAMPLE 8-16: Study the following code snippet, and answer the questions below.

What is the output? Assume user input is Good Evening

NOTE: if you are planning to use get function multiple times in your program, then you
must read and discard the newline character '\n' after each time you use the function
get .

EXAMPLE 8-17: Study the following code snippet, and answer the questions below.

What is the output? Assume user input is

Good

char ch;

cin.get(ch);

1

2

cin.get(str, m + 1);1

char str1[10];

cout <<"Enter a string..."<<endl;

cin.get(str1, 10);

cout <<"str1 = "<<str1<<"\t";

1

2

3

4

5

Enter a string...

Good Evening

str1 = Good Even

1

2

3

char str1[10];

char str2[10];

char discard;

cout <<"Enter a string..."<<endl;

cin.get(str1, 10);

cin.get(discard);

cin.get(str2, 10);

cout <<"str1 = "<<str1<<"\t";

cout <<discard;

cout <<"str2 = "<<str2<<"\t";

1

2

3

4

5

6

7

8

9

10

11

Evening

What is the output? Assume user input is Good Evening

Comment cin.get(discard); statement and execute the previous code for the same
input and note the output each time.

To read and store a line of input, including whitespace characters, you can also use the
stream function getline .

The previous program will read and store the next 99 characters, or until the newline
character, into textLine.
The null character will be automatically appended as the last character of textLine.

Parallel Arrays
Two (or more) arrays are called parallel if their corresponding components hold related
information.

ID Score

202101 53

202102 90

202103 87

202104 69

202105 75

EXAMPLE 8-18: The following table has the id numbers of 5 students together with their
scores in computer programming course.

Write a C++ program to keep track of students’ Id numbers, and their scores in
computer programming course and then perform the following:

1. Print the id number and the test score for each student in a separate line.
2. Print the Id numbers for students who get a score less than 70.

Enter a string...

Good

Evening

str1 = Good

str2 = Evening

1

2

3

4

5

Enter a string...

Good Evening

str1 = Good Even i str2 = ng

1

2

3

char textLine[100];

cin.getline(textLine, 100);

1

2

af://n720

3. Create a new array to store students grades in computer programming course. (to
calculate the grade use the algorithm in example 1-5)

4. Print the id number, the test score , and grades for each student in a separate line.

NOTE: to use setw function you have to include iomanip header file.

Two- and Multidimensional Arrays
If the data is provided in a list form, you can use one-dimensional arrays.

If the data is provided in a table form you can use multidimensional arrays.

For example, suppose that you want to track the number of cars in a particular color that are
in stock at a local dealership. The dealership sells 4 types of cars in five different colors.

The following table shows sample data.

// Arrays declaration

const int NO_OF_STUDENTS = 5;

int studentId[NO_OF_STUDENTS]={202101, 202102, 202103, 202103,202104};

int courseScore[NO_OF_STUDENTS] = {53, 90, 87,69,75};

int index;

// 1- Print info

cout<<"Part 1"<<endl;

for(index = 0; index < NO_OF_STUDENTS; index++)

 cout<<setw(10)<<studentId[index]<<setw(10)<<courseScore[index]

<<endl;

// 2- Print Ids for students who get a score less than 70.

for(index = 0; index < NO_OF_STUDENTS; index++)

 if(courseScore[index] < 70)

 cout<<setw(10)<<studentId[index]<<setw(10)

 <<courseScore[index]<<endl;

// 3- Calculate Grades

char courseGrade[NO_OF_STUDENTS];

for(index = 0; index < NO_OF_STUDENTS; index++)

 if(courseScore[index] >= 90)

 courseGrade[index] = 'A';

 else if(courseScore[index] >= 80)

 courseGrade[index] = 'B';

 else if(courseScore[index] >= 70)

 courseGrade[index] = 'C';

 else if(courseScore[index] >= 60)

 courseGrade[index] = 'D';

 else

 courseGrade[index] = 'F';

// 4- Print info

cout<<endl<<"Part 4"<<endl;

for(index = 0; index < NO_OF_STUDENTS; index++)

 cout<<setw(10)<<studentId[index]

 <<setw(10)<<courseScore[index]

 <<setw(10)<<courseGrade[index]<<endl;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

af://n764

 Red Brown Black White Gray

Ford 10 7 12 10 4

Toyota 18 11 15 17 10

BMW 12 6 9 5 12

Mercedes 10 9 12 6 4

You can see that the data is in a table format.
The table has 20 entries, and every entry is an integer.
Because the table entries are all of the same type, you can declare a one-dimensional
array of 20 components of type int . In other words, you can simulate the data given in
a table format in a one-dimensional array.
If you do so, the algorithms to manipulate the data in the one-dimensional array will be
somewhat complicated, because you must know where one row ends and another
begins.

Two-dimensional array: A collection of a fixed number of components arranged in rows
and columns (that is, in two dimensions), where all components are of the same type.

The syntax for declaring a two-dimensional array is:

intExp1 and intExp2 are constant expressions yielding positive integer values.
intExp1 , specify the number of rows in the 2D array
intExp2 , specify the number of columns in the 2D array.

To access the components of a two-dimensional array, you need a pair of indices: one for the
row position and one for the column position.

The syntax to access a component of a two-dimensional array is:

indexExp1 and indexExp2 are expressions yielding positive integer values.
indexExp1 specifies the row position.
indexExp2 specifies the column position.

EXAMPLE 8-19: Study the following C++ statements and note the effect of each of them.

1.

 [0] [1] [2] [3] [4]

[0] ?? ?? ?? ?? ??

[1] ?? ?? ?? ?? ??

[2] ?? ?? ?? ?? ??

[3] ?? ?? ?? ?? ??

The statement declares a two-dimensional array cars of 4 rows and 5 columns, in
which every component is of type int .
The components in the first row are cars[0][0] , cars[0][1] , cars[0][2] ,
cars[0][3] , and cars[0][4] .

dataType arrayName[intExp1][intExp2];1

arrayName[indexExp1][indexExp2]1

int cars[4][5];1

2.

 [0] [1] [2] [3] [4]

[0] ?? ?? 12 ?? ??

[1] ?? 11 ?? ?? 10

[2] 12 ?? ?? ?? 12

[3] 10 ?? ?? ?? ??

	

3.

 [0] [1] [2] [3] [4]

[0] ?? ?? 12 ?? ??

[1] ?? 11 ?? ?? 10

[2] 12 ?? ?? ?? 12

[3] 10 ?? ?? ?? 4

Two-Dimensional Array Initialization During Declaration

Two-dimensional arrays can be initialized when they are declared.

To initialize a two-dimensional array when it is declared:

The elements of each row are enclosed within curly braces { } , and separated by
commas.
All rows are enclosed within curly braces { } .
For number arrays, if all components of a row are not specified, the unspecified
components are initialized to 0. In this case, at least one of the values must be given to
initialize all the components of a row.

EXAMPLE 8-20: Study the following C++ statements and note the effect of each of them.

The previous statements declare two-dimensional arrays board1 and board2 of 4 rows
and 3 columns, both initialized to the same values.

cars[1][1] = 11;

cars[1][4] = cars[3][0] = 10;

cars[0][2] = cars[2][0] = cars[2][4] = 12;

1

2

3

int i = 3;

int j = 4;

cars[i][j] = j;

1

2

3

int board1[4][3] = {{2, 3, 1}, {15, 25, 13},

 {20, 4, 7},{11, 18, 14}};

int board2[4][3] = {2, 3, 1, 15, 25, 13, 20, 4, 7, 11, 18, 14};

1

2

3

4

af://n970

 [0] [1] [2] [0] [1] [2]

[0] 2 3 1

[1] 15 25 13

[2] 20 4 7

[3] 11 18 14

 [0] [1] [2] [3]

[0] 2 3 0 0

[1] 15 25 13 0

[2] 20 4 7 11

EXAMPLE 8-21: Study the following C++ statement and note the effect of each of them.

The previous statement declares a two-dimensional array board3 of 3 rows and 4
columns, both initialized to the same values.

PROCESSING TWO-DIMENSIONAL ARRAYS

A two-dimensional array can be processed in three ways:

1. Process the entire array.
2. Process a particular row of the array, called row processing.
3. Process a particular column of the array, called column processing.

Initializing and printing the array are examples of processing the entire two-dimensional
array.

Finding the largest element in a row (column) or finding the sum of a row (column) are
examples of row (column) processing.

We will use the following declaration for our discussion:

Each row and each column of a two-dimensional array is a one-dimensional array. Therefore,
when processing a particular row or column of a two-dimensional array, we use algorithms
similar to those that process one-dimensional arrays.

int board3[3][4] = {{2, 3}, {15, 25, 13},

 {20, 4, 7, 11}};

1

2

const int NUMBER_OF_ROWS = 4; //This can be set to any number.

const int NUMBER_OF_COLUMNS = 5; //This can be set to any number.

int matrix[NUMBER_OF_ROWS][NUMBER_OF_COLUMNS];

int row;

int col;

int sum;

int largest;

int temp;

1

2

3

4

5

6

7

8

af://n1048

You can use the following for loop to process the third row of matrix (index = 2):

You can use the following for loop to process the second column of matrix (index = 1):

Initialization

You can use the following nested for loops to initialize the entire matrix to 0:

To initialize the second row (index = 1) of matrix to 0.

Print

You can use the following nested for loops to print the components of matrix, one row per
line:

Input

You can use the following nested for loops to input data into each component of matrix:

row = 2;

for (col = 0; col < NUMBER_OF_COLUMNS; col++)

 process matrix[row][col]

1

2

3

col = 1;

for (row = 0; row < NUMBER_OF_ROWS; row++)

 process matrix[row][col]

1

2

3

for (row = 0; row < NUMBER_OF_ROWS; row++)

 for (col = 0; col < NUMBER_OF_COLUMNS; col++)

 matrix[row][col] = 0;

1

2

3

row = 1;

for (col = 0; col < NUMBER_OF_COLUMNS; col++)

 matrix[row][col] = 0;

1

2

3

for (row = 0; row < NUMBER_OF_ROWS; row++)

{

 for (col = 0; col < NUMBER_OF_COLUMNS; col++)

 cout << setw(5) << matrix[row][col] << " ";

 cout << endl;

}

1

2

3

4

5

6

for (row = 0; row < NUMBER_OF_ROWS; row++)

 for (col = 0; col < NUMBER_OF_COLUMNS; col++)

 cin >> matrix[row][col];

1

2

3

af://n1075
af://n1084
af://n1090

You can use the following for loop to input data into all components in the third row (index =
2) of matrix:

Sum by Row

You can use the following for loop to find the sum of row number 3 of matrix; that is, it adds
the components of row number 3:

EXAMPLE 8-22: Write the required C++ code to find the sum of each row separately and
store them in an array.

PRACTICE: Write the required C++ code to find the sum of each column separately and store
them in an array.

Largest Element in Each Row and Each Column

You can use the following for loop to determine the largest element in row number 1:

PRACTICE: Write the required C++ program to determine the largest element in each row
and print them.

row = 2;

for (col = 0; col < NUMBER_OF_COLUMNS; col++)

 cin >> matrix[row][col];

1

2

3

sum = 0;

row = 3;

for (col = 0; col < NUMBER_OF_COLUMNS; col++)

 sum = sum + matrix[row][col];

1

2

3

4

//Sum of each individual row

int sum[NUMBER_OF_ROWS]={0};

for (row = 0; row < NUMBER_OF_ROWS; row++)

{

 for (col = 0; col < NUMBER_OF_COLUMNS; col++)

 sum[row] = sum[row] + matrix[row][col];

 cout << "Sum of row " << row + 1 << " = " << sum[row] << endl;

}

1

2

3

4

5

6

7

8

row = 1;

largest = matrix[row][0]; //Assume that the first element of

 //the row is the largest.

for (col = 1; col < NUMBER_OF_COLUMNS; col++)

 if (largest < matrix[row][col])

 largest = matrix[row][col];

1

2

3

4

5

6

af://n1100
af://n1113
af://n1122

Arrays of Strings
Strings in C++ can be manipulated using either the data type string or character arrays (C-
strings).

This section illustrates both ways to manipulate a list of strings.

Arrays of Strings and the string Type Processing

You can declare an array of 100 components of type string as follows:

Basic operations, such as assignment, comparison, and input/output, can be performed
on values of the string type.

EXAMPLE 8-23: What is the output of the following code segment.

SAMPLE RUN:

string list[100];1

string names[5] = {"Ahmad", "Aya", "Ali", "Omar"};

names[4] = names[1];

names[1] = "Rana";

cout<<"Enter your full name"<<endl;

getline(cin, names[3]);

cout<<"Enter your friend first name"<<endl;

cin >> names[0];

for (int i = 0; i < 5; i++)

 cout<<endl<<names[i];

for (int i = 0; i < 5; i++)

 cout<<endl<<names[i].length();

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Enter your full name

Manar Jaradat

Enter your friend first name

Ayat

Ayat

Rana

Ali

Manar Jaradat

Aya

1

2

3

4

5

6

7

8

9

10

af://n1122
af://n1129

Arrays of Strings and C-Strings (Character Arrays)

Suppose that the largest string (for example, name) in your list is 15 characters long and your
list has 100 strings.

You can declare a two-dimensional array of characters of 100 rows and 16 columns as
follows

list[j] for each j , 0 <= j <= 99 , is a C-string of at most 15 characters in length.
You can use C-string functions (such as strcmp and strlen) and for loops to manipulate
rows in the two-dimensional array of characters.

EXAMPLE 8-24: What is the output of the following code segment.

SAMPLE RUN:

NOTE: The data type string has operations such as assignment, concatenation, and relational
operations defined for it. If you use Standard C++ header files and the data type string is
available on your compiler, we recommend that you use the data type string to manipulate
lists of strings.

char list[100][16];1

char names[5][20] = {"Ahmad", "Aya", "Ali", "Omar"};

char discard;

strcpy(names[4], names[1]);

strcpy(names[1], "Rana");

cout<<"Enter your full name"<<endl;

cin.get(names[3],20);

cin.get(discard);

cout<<"Enter your friend first name"<<endl;

cin >> names[0];

for (int i = 0; i < 5; i++)

 cout<<endl<<names[i];

for (int i = 0; i < 5; i++)

 cout<<endl<<strlen(names[i]);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Enter your full name

Manar Jaradat

Enter your friend first name

Ayat

Ayat

Rana

Ali

Manar Jaradat

Aya

1

2

3

4

5

6

7

8

9

10

af://n1143
af://n1166

Arrays as Parameters to Functions
In C++, arrays are passed as parameters to functions by reference only.

Because arrays are passed by reference only, you do not use the symbol & when declaring
an array as a formal parameter.

When declaring a one-dimensional array as a formal parameter, the size of the array is
usually omitted.

If you specify the size of a one-dimensional array when it is declared as a formal parameter,
the size is ignored by the compiler.

The prototype for a function that takes an array as parameter is:

listOne, a one-dimensional array of type double .
Usually when we declare an array as a formal parameter, we declare another formal
parameter specifying the number of elements in the array, as in the following function:

listOne, a one-dimensional array of type double .
size, an int variable that specifies the size of the array ListOne

When you pass an array as a parameter, the base address of the actual array is passed to the
formal parameter.

The function call for the previous function is:

In this statement, the base address of myList is passed to the formal parameter list.
Both myList and listOne modify the same memory locations.

EXAMPLE 8-25: What is the output of the following program?

void funcArrayAsParam(double listOne[]);1

void funcArrayAsParam(double listOne[], int size);1

const int SIZE = 5;

double myList[SIZE] = {3,4,5,6,7};

funcArrayAsParam(myList, SIZE);

1

2

3

void fillArray(int list[], int listSize)

{

 int index;

 cout<<"Enter "<<listSize<<" integers"<<endl;

 for (index = 0; index < listSize; index++)

 cin >> list[index];

}

void printArray(int list[], int listSize)

{

 int index;

 for (index = 0; index < listSize; index++)

 cout << list[index] << " ";

 cout<<endl;

}

void copyArray(int list1[], int src, int list2[],

 int tar, int numOfElements)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

af://n1166

OUTPUT:

Array elements can be passed to functions either by value or by reference.

EXAMPLE 8-26: What is the output of the following program?

{

 for (int index = tar; index < tar + numOfElements; index++)

 {

 list2[index] = list1[src];

 src++;

 }

}

int main()

{

 int myList[5];

 int yourList[5]= {0};

 fillArray(myList,5);

 cout<<"After calling fillArray function"<<endl;

 printArray(myList,5);

 copyArray(myList,1,yourList,2,3);

 cout<<"After calling copyArray function"<<endl;

 printArray(yourList,5);

}

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Enter 5 integers

4 8 7 6 9

After calling fillArray function

4 8 7 6 9

After calling copyArray function

0 0 8 7 6

1

2

3

4

5

6

void swap(int , int &);

void printArray(int list[], int);

int main()

{

 int myList[5] = {2,4,6,8,10};

 swap(myList[0],myList[3]);

 cout<<"After calling swap function"<<endl;

 printArray(myList,5);

}

void swap(int x, int &y)

{

 int tmp = x;

 x = y;

 y = tmp;

}

void printArray(int list[], int listSize)

{

 int index;

 for (index = 0; index < listSize; index++)

 cout << list[index] << " ";

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

OUTPUT:

Constant Arrays as Formal Parameters

RECALL: When a formal parameter is a reference parameter, then whenever the formal
parameter changes, the actual parameter changes as well.

Even though an array is always passed by reference, you can still prevent the function from
changing the actual parameter by using the reserved word const in the declaration of the
formal parameter.

Any attempt to change a constant array results in a compile-time error.

EXAMPLE 8-27: Study the following function, and identify the line number that will cause
syntax error.

Line 4: error: assignment of read-only location '* y'

EXAMPLE 8-28: What is the output of the following program?

 cout<<endl;

}

23

24

After calling swap function

2 4 6 2 10

1

2

void example(int x[], const int y[], int value)

{

 x[0] = value;

 y[0] = value;

}

1

2

3

4

5

void printArray(const int list[], int listSize)

{

 int index;

 for (index = 0; index < listSize; index++)

 cout << list[index] << " ";

 cout<<endl;

}

int sumArray(const int list[], int listSize)

{

 int index;

 int sum = 0;

 for (index = 0; index < listSize; index++)

 sum = sum + list[index];

 return sum;

}

int main()

{

 int myList[5]={3,5,7,8,4};

 printArray(myList,5);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

af://n1216

OUTPUT:

NOTE: If C++ allowed arrays to be passed by value, the computer would have to allocate
memory for the components of the formal parameter and copy the contents of the actual
array into the corresponding formal parameter when the function is called. If the array size
was large, this process would waste memory as well as the computer time needed for
copying the data. That is why in C++ arrays are always passed by reference.

C++ does not allow functions to return a value of the type array.

PRACTICE: Use function Larger we studied earlier to write the definition of function
Largest that determine the largest number in the array.

Passing Two-Dimensional Arrays as Parameters to Functions

Two-dimensional arrays can be passed as parameters to a function, and they are passed by
reference.

The base address is passed to the formal parameter. If matrix is the name of a two-
dimensional array, then matrix[0][0] is the first component of matrix.
When storing a two-dimensional array in the computer’s memory, C++ uses the row
order form. That is, the first row is stored first, followed by the second row, followed by
the third row, and so on.

In the case of a one-dimensional array, when declaring it as a formal parameter, we usually
omit the size of the array.

Because C++ stores two-dimensional arrays in row order form, to compute the address of a
component correctly, the compiler must know where one row ends and the next row begins.

Thus, when declaring a two-dimensional array as a formal parameter, you can omit the size
of the first dimension, but not the second; that is, you must specify the number of columns.

This function takes as a parameter a two-dimensional array of an unspecified number of
rows and five columns, and outputs the content of the two-dimensional array.

During the function call, the number of columns of the actual parameter must match the
number of columns of the formal parameter.

EXAMPLE 8-29: Study the following functions that manipulate a two-dimensional array and
find out the output of the program.

 cout<<"Sum = "<<sumArray(myList,5)<<endl;

}

22

23

3 5 7 8 4

Sum = 27

1

2

int[] arrayFunction(int list[], int size);1

void matrixFun(int matrix[][5], int noOfRows); // Correct prototype

void matrixFun(int matrix[5][], int noOfRows); // Incorrect prototype

1

2

af://n1246

OUTPUT:

const int NUMBER_OF_ROWS = 6;

const int NUMBER_OF_COLUMNS = 5;

void printMatrix(const int matrix[][NUMBER_OF_COLUMNS],

 int noOfRows)

{

 int row, col;

 for (row = 0; row < noOfRows; row++)

 {

 for (col = 0; col < NUMBER_OF_COLUMNS; col++)

 cout << setw(5) << matrix[row][col] << " ";

 cout << endl;

 }

}

void sumRows(int matrix[][NUMBER_OF_COLUMNS], int noOfRows)

{

 int row, col;

 int sum;

 for (row = 0; row < noOfRows; row++)

 {

 sum = 0;

 for (col = 0; col < NUMBER_OF_COLUMNS; col++)

 sum = sum + matrix[row][col];

 cout << "Sum of row " << (row + 1) << " = " << sum

 << endl;

 }

}

int main()

{

 int board[NUMBER_OF_ROWS][NUMBER_OF_COLUMNS]

 = {{23, 5, 6, 15, 18},

 {4, 16, 24, 67, 10},

 {12, 54, 23, 76, 11},

 {1, 12, 34, 22, 8},

 {81, 54, 32, 67, 33},

 {12, 34, 76, 78, 9}

 };

 printMatrix(board, NUMBER_OF_ROWS);

 cout << endl;

 sumRows(board, NUMBER_OF_ROWS);

 cout << endl;

 return 0;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

 23 5 6 15 18

 4 16 24 67 10

 12 54 23 76 11

 1 12 34 22 8

 81 54 32 67 33

 12 34 76 78 9

 Sum of row 1 = 67

 Sum of row 2 = 121

 Sum of row 3 = 176

 Sum of row 4 = 77

 Sum of row 5 = 267

 Sum of row 6 = 209

1

2

3

4

5

6

7

8

9

10

11

12

13

C++ PROGRAMMING:
FROM PROBLEM ANALYSIS TO PROGRAM DESIGN

BY: D. S. MALIK

CHAPTER 12: POINTERS

SUMMARY & EXAMPLES

PREPARED BY:

E. MANAR JARADAT

Pointer Data Type and Pointer Variables
Recall: C++’s data types are classified into three categories: simple, structured, and pointers.

Pointer variable: A variable whose content is a memory address.

Declaring Pointer Variables

The value of a pointer variable is an address. That is, the value refers to another memory

space, where the data is typically stored.

When you declare a pointer variable, you also specify the data type of the value to be stored
in the memory location pointed to by the pointer variable.

How do you declare pointer variables?

In C++, you declare a pointer variable by using the asterisk symbol (*) between the data

type and the variable name.

The general syntax to declare a pointer variable is:

Consider the following statements:

p is called a pointer variable of type int , and ch is called a pointer variable of type
char .
The content of p (when properly assigned) points to a memory location of type int .
The content of ch points to a memory location of type char.

NOTE: The character * can appear anywhere between the data type name and the variable
name. and so the following three statements are equivalent.

The general syntax to declare multiple pointer variables of the same type.

EXAMPLE 12-1: What is the difference between the following 2 statements.

The first statement declares p to be a pointer variable of type int , while q in an integer
variable.
The second statement declares both p and q to be pointer variables of type int .

dataType *identifier;1

int *p;

char *ch;

1

2

int *p;

int* p;

int * p;

1

2

3

datatype *identifier1, *identifier2, ... , *identifiern;1

int *p, q;

int *p, *q;

1

2

af://n0
af://n9

Address of Operator (&)

In C++, the ampersand, & , called the address of operator, is a unary operator that returns
the address of its operand.

For example, to assigns the address of the integer variable x to the pointer p use the
following statements.

After executing the third statement, both x and the value of p refer to the same
memory location.

Dereferencing Operator (*)

C++ uses * as a binary operator (for multiplication) or as a unary operator.

When the , * , used as a unary operator, it is commonly referred to as the dereferencing
operator or indirection operator.

The , * , used to refer to the object to which its operand (that is, the pointer) points.

EXAMPLE 12-2: Consider the following code segments and answer the questions below.

What is the effect of the following statement?

Prints the value stored in the memory space pointed to by p, which is the value of x
What is the output of the following statement?

EXAMPLE 12-3: Consider the following statements and write down the value of &p , p , *p ,
&x , x after executing each of the statements in the table below.

Suppose that we have the memory allocation for p and x as shown in the figure below

int x;

int *p;

p = &x;

1

2

3

int x = 25;

int *p;

p = &x; //store the address of x in p

1

2

3

cout << *p << endl;1

*p = 55;

cout << *p << endl; //55

1

2

int *p;

int x;

1

2

af://n48
af://n59

Statement &p p *p &x x

Initialization 1400 ?? undefined 1750 ??

x = 50; 1400 ?? undefined 1750 50

p = &x; 1400 1750 50 1750 50

*p = 38; 1400 1750 38 1750 38

A pointer can be modified to point to another variable during program execution.

EXAMPLE 12-4: What is the output of the following code segment?

OUTPUT:

Initializing Pointer Variables

Because C++ does not automatically initialize variables, pointer variables must be initialized if
you do not want them to point to anything.

Pointer variables are initialized using the constant value 0, or the named constant NULL , that
are called the null pointer.

The following two statements are equivalent and store the null pointer in p, that is, p points
to nothing.

The number 0 is the only number that can be directly assigned to a pointer variable.

double val1 = 12.5, val2 = 6;

double *ptr = &val1;

*ptr = *ptr * 2;

ptr = &val2;

*ptr /= 2;

cout<<val1<<" "<<val2<<" "<<*ptr;

1

2

3

4

5

6

25 3 31

p = NULL;

p = 0;

1

2

int *p = 10; // error: invalid conversion from 'int' to 'int*'1

af://n133

Operations on Pointer Variables

The operations that are allowed on pointer variables are the assignment and relational
operations and some limited arithmetic operations.

The value of one pointer variable can be assigned to another pointer variable of the same
type.

Two pointer variables of the same type can be compared for equality.

Integer values can be added and subtracted from a pointer variable.

The value of one pointer variable can be subtracted from another pointer variable.

The previous two type of operations usually performed when the pointers points to array
elements.

EXAMPLE 12-5: What is the output of the following code segment?

OUTPUT:

int *p, *q;

int x = 8;

p = &x;

q = p;

cout<<*p<<" "<<*q; //8 8

1

2

3

4

5

int *p, *q;

int x = 8, y = 12;

p = &x;

q = p;

cout<<(p == q); //1

q = &y;

cout<<(p != q); // 1

1

2

3

4

5

6

7

int *p, *q;

int myList[5] = {6,3,12,8,9};

p = &myList[0];

q = &myList[3];

cout<<*p<<" "<<*q<<endl;

p += 2;

q--;

cout<<*p<<" "<<*q<<endl;

cout<<p-q;

1

2

3

4

5

6

7

8

9

6 8

12 12

0

1

2

3

af://n147

EXAMPLE 12-6: What is the output of the following code segment?

OUTPUT:

EXAMPLE 12-7: Study the following code segment and identify the line(s) that will cause
syntax error.

Line 5: cannot convert 'int*' to 'double*' in assignment.
Line 9: cannot convert 'int*' to 'double*' in assignment.

double val1 = 12.5, val2 = 6;

double *ptr1, *ptr2;

ptr1 = &val1;

ptr2 = &val2;

double *ptr3 = ptr1;

ptr1 = ptr2;

ptr2 = ptr3;

cout<<*ptr1<<" "<<*ptr2<<" "<<*ptr3;

1

2

3

4

5

6

7

8

6 12.5 12.51

double num = 12.5;

int x;

double *dptr;

int *iptr;

dptr = &x;

iptr = &x;

*iptr = 3;

dptr = #

dptr = iptr;

*dptr = *iptr;

1

2

3

4

5

6

7

8

9

10

	CHAPTER 6: USER-DEFINED FUNCTIONS
	Predefined Functions
	User-Defined Functions
	Value-Returning Functions
	Value-Returning Function Definition
	Value-Returning Function Call
	Value-Returning Functions: Some Peculiarities
	Function Prototype

	Void Functions
	Parameter Types
	Value Parameters
	Reference Variables as Parameters
	Address-of Operator (&)
	Reference Parameter

	Scope of an Identifier
	Global Variables, Named Constants, and Side Effects
	Static and Automatic Variables
	Function Overloading
	Functions with Default Parameters

	CHAPTER 8: ARRAYS AND STRINGS
	Arrays
	Array Initialization During Declaration
	Processing One-Dimensional Arrays
	Initializing an array
	Reading data into an array
	Printing an array
	Copy one array into another array
	Finding the sum and average of an array
	Largest element in the array
	Searching an Array for a Specific Item
	Selection Sort

	Base Address of an Array and Array in Computer Memory

	C-Strings (Character Arrays)
	Reading and Writing Strings
	String Output
	String Input

	Parallel Arrays
	Two- and Multidimensional Arrays
	Two-Dimensional Array Initialization During Declaration
	PROCESSING TWO-DIMENSIONAL ARRAYS
	Initialization
	Print
	Input
	Sum by Row
	Largest Element in Each Row and Each Column

	Arrays of Strings
	Arrays of Strings and the string Type Processing
	Arrays of Strings and C-Strings (Character Arrays)

	Arrays as Parameters to Functions
	Constant Arrays as Formal Parameters
	Passing Two-Dimensional Arrays as Parameters to Functions

