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Numbers

• Historical succession of discovering classes of 

numbers:

- Natural numbers: counting.

- Integers: we added zero and the –ve numbers.

- Rational numbers: fraction of two integers m/n.

- Real numbers: rational and irrational (𝜋, 𝑒, 2).

- Complex numbers: −1.
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The numbers zero and 10

• The number zero and the decimal 

numbers were first defined by 

Brahmagupta (Indian 598 – 668 AD).

• Al-Khwarizmi (Persian: 780 – 850 AD) 

(father of algebra) documented this 

work and introduced the Arabic 

numerals.

• Older numbering systems such as the 

Roman numerals were used: I = 1, V 

= 5, X = 10, L = 50, C = 100, D = 500, 

M = 1,000. 
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Numbers
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The number π

• The Egyptians and Babylonians used 

approximate values.

• Archimedes (Greek: 287 – 212 BC) 

created an algorithm for calculating π

and defined the area of a circle, the 

surface area and volume of a sphere.

• π = C/d

• π = 3.14159…

• π ≈ 22/7, 333/106, and 355/113
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The number π

• Angles can be measured in radians or rad.

• 180o ≡ π

• Angle (degrees) x π/180 = angle (rad)
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The number e

• Euler’s number e = 2.71828… was 

Introduced by Euler (German: 1707 

– 1783 AD).

• Natural growth. Compound interest.

1 JD (100% per year)  2 JD

1 JD (50% per 0.5 year)  1JD x (1+50%)2
 2.25 JD

1 JD (1/12 per month)  1JD x (1+1/12)12
 2.61 JD

1 JD (1/52 per week) 1JD x (1+1/52)52
 2.69 JD

1 JD (1/365 per day) 1JD x (1+1/365)365
 2.71 JD

lim of (1+1/n)n as n∞ is e = 2.71828…
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The number e

• Euler’s formula for e

• For y=ex: value = rate of change = area

Youtube: e (Euler's Number) –

Numberphile

• Later we will show that: 𝑒𝑖𝜋 + 1 = 0
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Square root of 2

• Hypotenuse of isosceles right triangle

= 12 + 12 = 2 = 1.41421…

• 
1

2
= sin 45 = cos(45)

• Paper sizes
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The golden ratio (𝜑)

•

• Solution of 𝑥2 − 𝑥 − 1 = 0

𝜑 =
2+ 5

2
= 1.61803

• Euclid (Greek:  365 – 300 BC) (father of geometry) 

studied the properties of 𝜑

• Relationship with Fibonacci 

sequence
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Why the golden ratio (𝜑) is so 

irrational 
• Plants (such as sunflower) 

arrange their seeds 

according to 𝜑
• If we arrange seeds 

according to fractions of 360o
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Youtube: The Golden Ratio (why it is so irrational) - Numberphile

1/π 1/ 2 1/𝜑3/10



Why the golden ratio (𝜑) is so 

irrational 
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Numbers

• Historical succession of discovering classes of 

numbers:

- Natural numbers: counting.

- Integers: we added zero and the –ve numbers.

- Rational numbers: fraction of two integers m/n.

- Real numbers: rational and irrational (𝜋, 𝑒, 2).

- Complex numbers: −1.
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Square Roots of Negative 

Numbers?
• The most commonly occurring application problems 

that require people to take square roots of numbers 

are problems which result in a quadratic equation.

• e.g. Determine the dimensions of a square with an 

area of 9 cm2, 25 cm2.

• Thus, having to take the square root of a negative 

number in this context means that such a rectangle 

does not exist.
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Motivation: The Cubic Equation

• The solution of a general cubic 

equation that contains the square roots 

of negative numbers led to the 

introduction of complex numbers by 

Cardano (Italian: 1501 – 1576) after 

several attempts by other 

mathematicians before him in the 16th

century.

• The term “complex number” was 

introduced by Gauss (German: 1777 –

1855) who also paved the way for a 

general use of complex numbers.
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Imaginary Numbers
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Complex Numbers

• By definition, a complex number z is an ordered pair 

(x, y) of real numbers x and y, written as:

𝑧 = (𝑥, 𝑦)

• x is called the real part and y the imaginary part of z, 

written as:

𝑥 = 𝑅𝑒 𝑧, 𝑦 = 𝐼𝑚 𝑧

• (0, 1) is called the imaginary unit and is denoted by 𝑖:

𝑖 = (0,1)

samer.awad@hu.edu.jo         7 October 202417



Complex Numbers Notations

• Ordered pair notation: 𝑧 = (𝑥, 𝑦)

• Some references use the notation:

𝑧 = 𝑥 + 𝑖𝑦

𝑧 = 𝑥 + 𝑦𝑖

• In some disciplines, in particular electrical 

engineering, 𝑗 is used instead of 𝑖, since 𝑖 is 

frequently used for electric current:

𝑧 = 𝑥 + 𝑗𝑦

𝑧 = 𝑥 + 𝑦𝑗
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Addition & Multiplication of 

Complex Numbers
Notation: 𝑧=𝑥+𝑖𝑦

• Addition of two complex numbers :

𝑥1 + 𝑖 𝑦1 + 𝑥2+ 𝑖 𝑦2 = 𝑥1+ 𝑥2 + 𝑖(𝑦1+ 𝑦2)

• Multiplication is defined by:

𝑥1 + 𝑖 𝑦1 𝑥2 + 𝑖 𝑦2 = (𝑥1𝑥2 + 𝑖𝑥1𝑦2 + 𝑖𝑥2𝑦1 + 𝑖2 𝑦1𝑦2).

= 𝑥1𝑥2 − 𝑦1𝑦2 + 𝑖( 𝑥1𝑦2+ 𝑥2𝑦1).
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Examples: Addition & 

Multiplication 
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• Add and multiply z1 and z2:



Subtraction & Division of 

Complex Numbers

• Subtraction of two complex numbers :

• Division is defined by:
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Examples: Subtraction & 

Division 
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• Subtract and divide z1 and z2:



Complex Plane

• Remember: a complex number z can be written as:

𝑧 = (𝑥, 𝑦)
• x is called the real part and y the imaginary part of 

z, written as:

𝑥 = 𝑅𝑒 𝑧, 𝑦 = 𝐼𝑚 𝑧

• Hence, it is possible to 

present z on an xy-plane

called the complex plane.

• This is called the Cartesian

coordinate system

(as opposed to the polar coordinate system that will be explained later)
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Example: Complex Plane

• Plot 4 − 3𝑖 on the complex plane
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Complex Plane: Addition & 

Subtraction
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Complex Plane: Addition 

Example
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Complex Conjugate Numbers

• The complex conjugate  𝑧 of a complex number 𝑧 = 𝑥
+ 𝑖𝑦 is defined by:

 𝑧 = 𝑥 − 𝑖𝑦

• Mathematically, replace 𝑖 with −𝑖.

• Graphically, flip z around the x-axis (real axis):

• Some references use the notation 𝑧
∗

for complex 

conjugate.
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Complex Conjugate Numbers

• Prove the following:

𝑧 = 𝑥 + 𝑖𝑦,  𝑧 = 𝑥 − 𝑖𝑦

𝑧  𝑧 = 𝑥2+ 𝑦2

𝑧 +  𝑧 = 2𝑥

𝑧 −  𝑧 = 2𝑖𝑦
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Conjugation Properties

• Re 𝑧 = 𝑥 = 1

2
𝑧 +  𝑧

• 𝐼𝑚 𝑧 = 𝑦 = 1

2𝑖
𝑧 −  𝑧

• If z is real → 𝑧 = 𝑥 → 𝑧 =  𝑧

• If z is imaginary → 𝑧 = 𝑖𝑦 → 𝑧 = −  𝑧

• Working with conjugates is easy, since we have:
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Coordinate Systems 

• The Cartesian coordinate system is commonly used 

to determine the location of a point in two or three 

dimensional space. 

• The cylindrical and spherical coordinate systems –

that will be addressed later – are also used to 

determine the location of a point in two or three 

dimensional space. 

• The polar coordinate system is used to determine the 

location of a point in two dimensional space.

• The polar coordinate system is a special case of the 

cylindrical and the spherical coordinate systems.
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Polar Form: Absolute Value

• To find z in the polar form, we need to find 𝑟 and 𝜃

• The absolute value (aka: 

𝑟, modulus, magnitude or 

amplitude) of a complex 

number in polar form are:
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Polar Form: Absolute Value

• |z| is the distance between point z and the origin. 

The letter “r” stands for radius.

• In class: explain relationship to |-5| = 5

• |z| = constant  circle 
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Polar Form: Argument

• The argument (or angle) of a complex number in 

polar form is:

• Here, all angles are measured in radians and 

positive in the counter clockwise sense.

• For z=0, arg z is undefined 

(why?).
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Polar Form: Argument

• For z ≠ 0, arg z corresponds to the same value 

every 2𝜋.

• Principal value Arg z:  −𝜋 < 𝐴𝑟𝑔 𝑧 ≤ 𝜋.

• arg z = Arg z ± 𝑛2𝜋 (𝑛 = 0, 1, 2, … )
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Polar Form

• If the polar form of z was given,                           

i.e. we know 𝑟 and 𝜃, we can get the Cartesian 

form of z by doing projections on x & y axis.

𝑥 = 𝑟 cos 𝜃 𝑎𝑛𝑑 𝑦 = 𝑟 sin 𝜃



Euler’s formula
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Euler’s formula
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Using Taylor series expansions we need to prove 

that                              :



Polar Form: Conjugation

• For complex conjugates:

𝑧 = 𝑟𝑒𝑖𝜃

 𝑧 = 𝑟𝑒−𝑖𝜃

• |  𝑧| = |𝑧|

• arg  𝑧 = −arg 𝑧

samer.awad@hu.edu.jo         7 October 202438



Example: Polar Form
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• Find the polar form of 𝑧 = 1 + 𝑖 𝑎𝑛𝑑 𝑧 = 3 + 𝑖 3 3:



Triangle Inequality

𝑧1+ 𝑧2 ≤ 𝑧1 + |𝑧2|

• 𝑧1+ 𝑧2 = 𝑧1 + |𝑧2| when z1 and z2 lie on the 

same straight line through the origin.
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Polar Form: Multiplication

• Multiplying two complex numbers gives a complex 

number whose modulus is the product of the two 

moduli and whose argument is the sum of the two 

arguments.

If 𝑧1 = 𝑟1𝑒
𝑖𝜃1 𝑎𝑛𝑑 𝑧2 = 𝑟2𝑒

𝑖𝜃2

Then 𝑧1𝑧2 = 𝑟1𝑒
𝑖𝜃1 𝑟2𝑒

𝑖𝜃2 = 𝑟1𝑟2𝑒
𝑖(𝜃1+𝜃2)
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Polar Form: Division 

• Dividing two complex numbers gives a complex 

number whose modulus is the quotient of the two 

moduli and whose argument is the difference of the 

two arguments.

If 𝑧1 = 𝑟1𝑒
𝑖𝜃1 𝑎𝑛𝑑 𝑧2 = 𝑟2𝑒

𝑖𝜃2

Then 𝑧1/𝑧2 = 𝑟1𝑒
𝑖𝜃1 /(𝑟2𝑒

𝑖𝜃2) = (
𝑟1

𝑟2
)𝑒𝑖(𝜃1−𝜃2)
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Example: Polar Multiplication & 

Division

samer.awad@hu.edu.jo         7 October 202443

• Multiply and divide z1 and z2 in polar form:



Integer Powers of Complex 

Numbers
• De Moivre’s Formula: If a complex number is 

raised to the power n the result is a complex 

number whose modulus is the original modulus 

raised to the power n and whose argument is the 

original argument multiplied by n.

If 𝑧 = 𝑟𝑒𝑖𝜃

Then 𝑧𝑛 = (𝑟𝑒𝑖𝜃)𝑛=𝑟𝑛𝑒𝑖𝑛𝜃
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Example: Integer Powers of 

Complex Numbers
• Find 

1

2
+ 𝑖

1

2

10

𝑧 = 1/ 2

𝐴𝑟𝑔 𝑧 = 𝜋/4

𝑧10 = (1/32)𝑒𝑖𝜋/2
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Integer Roots of Complex 

Numbers
• Need to calculate 𝑤 = 𝑘 𝑧  𝑤𝑘 = 𝑧

• Let 𝑧 = 𝑟𝑒𝑖𝜃and 

𝑤 = 𝑅𝑒𝑖∅

 𝑤𝑘 = 𝑅𝑘𝑒𝑖𝑘∅ = 𝑟𝑒𝑖𝜃 = 𝑧

• Then, 𝑅 = 𝑘 𝑟.
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Integer Roots of Complex 

Numbers
•𝑤𝑘 = 𝑅𝑘𝑒𝑖𝑘∅ = 𝑟𝑒𝑖𝜃 = 𝑧

• Does ∅ =
𝜃

𝑘
?  The answer is NO!

• Since 𝜃 is determined only up to integer multiples of 

2𝜋 (i.e. 𝜃 ≡ 𝜃 ± 𝑛2𝜋), then ∅ =
𝜃+𝑛2𝜋

𝑘
=

𝜃

𝑘
+ 𝑛

2𝜋

𝑘
.

• For 𝑛 = 0, 1, 2, 𝑘 − 1 we get k distinct values of w. 

Further integers of n would give values already 

obtained. n = k → 𝑛2𝜋/k = 2𝜋 ≡ n = 0 → 𝑛2𝜋/k =0. 

samer.awad@hu.edu.jo         7 October 202447



Integer Roots of Complex 

Numbers
 𝑤 = 𝑘 𝑧 = 𝑘 𝑟 exp 𝑖

𝜃

𝑘
+

𝑛2𝜋

𝑘
,

𝑤ℎ𝑒𝑟𝑒 𝑛 = 0, 1, 2, 𝑘 − 1

• Hence, there are k distinct roots of a complex 

number z. 

• These k roots lie on a circle of radius 𝑘 𝑟 and are 

separated by 2𝜋/k from their neighbouring root.
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Examples: Integer Roots of 

Complex Numbers
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• Find the roots of: 
3
1,

4
1

5
1:



Examples: Integer Roots of 

Complex Numbers
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• Find the roots of:
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13.5 Exponential Function 𝑒𝑧

• 𝑧 = 𝑥 + 𝑖𝑦

• 𝑒𝑧 = 𝑒𝑥+𝑖𝑦 = 𝑒𝑥 𝑒𝑖𝑦

• 𝑒𝑧 = 𝑒𝑥 (cos𝑦 + 𝑖 𝑠𝑖𝑛𝑦)
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Euler’s formula
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Using Taylor series expansions we need to prove 

that                              :



Exponential Function 𝑒𝑧

• The complex exponential function ez can be 

expressed as:

𝑒𝑧 = 𝑒𝑥 𝑒𝑖𝑦

𝑒𝑧 = 𝑒𝑥(cos𝑦 + 𝑖 𝑠𝑖𝑛𝑦)

• Don’t confuse the previous definitions with the 

polar form of the complex number z:

𝑧 = 𝑟𝑒𝑖𝜃

𝑧 = 𝑟(cos𝜃 + 𝑖 𝑠𝑖𝑛𝜃)
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Properties of 𝑒𝑧

• (𝑒𝑧)′ = 𝑒𝑧 (𝑒𝑧)′ =
𝑑

𝑑𝑥
(𝑒𝑧)

• 𝑒𝑧1𝑒𝑧2 = 𝑒𝑧1+𝑧2

• 𝑒𝑖2𝜋 = 1, but why?

• Also, 𝑒𝑖𝜋/2 = 𝑖, 𝑒𝑖𝜋 = −1, 𝑒−𝑖𝜋/2 = −𝑖

• How can you plot these on the complex plane?
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Properties of 𝑒𝑧

𝑒𝑧 = 𝑒𝑥 𝑒𝑖𝑦 = 𝑒𝑥(cos𝑦 + 𝑖 𝑠𝑖𝑛𝑦)

• 𝑒𝑖𝑦 = cos𝑦 + 𝑖 𝑠𝑖𝑛𝑦 = cos2𝑦 + 𝑠𝑖𝑛2𝑦 = 1 pure 

imaginary part amplitude=1.

• Hence, 𝑒𝑧 = 𝑒𝑥 and arg 𝑒𝑧 = 𝑦 ± 𝑛2𝜋

• 𝑒𝑧 is periodic with period = 𝑖2𝜋

– 𝑒𝑧±𝑖𝑛2𝜋 = 𝑒𝑧.

– All values for w = 𝑒𝑧 are 

within a region = 2𝜋.

– The fundamental region 

of 𝑒𝑧 is: −𝜋 < 𝑦 ≤ 𝜋.
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Examples: Exponential Function 

• Find the Cartesian & polar form of 𝑒1.4−0.6𝑖

• To prove that 𝑒𝑧1𝑒𝑧2 = 𝑒𝑧1+𝑧2 for:

• Solve 𝑒𝑧 = 3 + 4𝑖:
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Trigonometric Functions

• Euler’s formula:

𝑒𝑖𝑥 = cos𝑥 + 𝑖 𝑠𝑖𝑛𝑥 … 𝑒𝑞1 𝑒−𝑖𝑥 = cos𝑥 − 𝑖 𝑠𝑖𝑛𝑥 … (𝑒𝑞2)

• Add the previous two eq’s (eq1+eq2) to get:

𝑒𝑖𝑥 + 𝑒−𝑖𝑥 = 2 cos 𝑥  cos 𝑥 = 1

2
𝑒𝑖𝑥 + 𝑒−𝑖𝑥

• Subtract those eq’s (eq1 – eq2) to get:

𝑒𝑖𝑥 − 𝑒−𝑖𝑥 = 2𝑖 sin 𝑥  sin 𝑥 = 1

2𝑖
𝑒𝑖𝑥 − 𝑒−𝑖𝑥

• Similarly, for a complex value 𝑧 = 𝑥 + 𝑖𝑦:

cos 𝑧 = 1

2
𝑒𝑖𝑧 + 𝑒−𝑖𝑧 sin 𝑧 = 1

2𝑖
𝑒𝑖𝑧 − 𝑒−𝑖𝑧
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Trigonometric Functions

• The other trigonometric functions are defined as:

tan 𝑧 =
sin 𝑧

cos 𝑧
cot 𝑧 =

cos 𝑧

sin 𝑧

sec 𝑧 =
1

cos 𝑧
csc 𝑧 =

1

sin 𝑧
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Hyperbolic Functions

sinh 𝑥 = 1
2 𝑒𝑥 − 𝑒−𝑥 cosh 𝑥 = 1

2 𝑒𝑥 + 𝑒−𝑥
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Hyperbolic Functions

• The complex hyperbolic cosine and sine are 

defined by the formulas:

sinh 𝑧 = 1
2
𝑒𝑧 − 𝑒−𝑧 cosh 𝑧 = 1

2
𝑒𝑧 + 𝑒−𝑧

• Complex Trigonometric and Hyperbolic Functions 

Are Related:

cosh 𝑖𝑧 = 1
2 𝑒𝑖𝑧 + 𝑒−𝑖𝑧 = cos 𝑧

sinh 𝑖𝑧 = 1

2
𝑒𝑖𝑧 − 𝑒−𝑖𝑧 = 𝑖 sin 𝑧

• Conversely:

cos 𝑖𝑧 = cosh 𝑧 sin 𝑖𝑧 = 𝑖 sinh 𝑧
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Hyperbolic Functions

• The other trigonometric functions are defined as:

tanh 𝑧 =
sinh 𝑧

cosh 𝑧
coth 𝑧 =

cosh 𝑧

sinh 𝑧

sech 𝑧 =
1

cosh 𝑧
csch 𝑧 =

1

sinh 𝑧
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Examples: Trigonometric & 

Hyperbolic Functions
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Prove the following equation 6a



Examples: Trigonometric & 

Hyperbolic Functions
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Prove the following equation 7a



Example: Trigonometric & 

Hyperbolic Functions

• cos𝑧 = 1

2
𝑒𝑖𝑧 + 𝑒−𝑖𝑧 𝑠𝑖𝑛𝑧 = 1

2𝑖
𝑒𝑖𝑧 − 𝑒−𝑖𝑧 …(1)
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Natural Logarithm Function

• The natural logarithm of z is denoted by:  

𝒘 = 𝐥𝐧𝒛 → 𝑒𝑤 = 𝑧 𝑓𝑜𝑟 𝑧 ≠ 0

• Let 𝑧 = 𝑟𝑒𝑖𝜃:

 ln 𝑧 = ln 𝑟 + 𝑖 𝜃 𝑂𝑅 ln 𝑧 = ln 𝑟 + 𝑖 arg 𝑧

• Since arg z corresponds to the same value every 

2𝜋, ln 𝑧 has infinite values (multivalued).

• The value of ln z corresponding to the principal 

value Arg z is denoted by Ln 𝑧: 

Ln 𝑧 = ln 𝑟 + 𝑖 Arg z
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Natural Logarithm Function

• Ln 𝑧 is called the principal value of ln 𝑧: 

Ln 𝑧 = ln |𝑧| + 𝑖 Arg z

ln 𝑧 = Ln 𝑧 ± 𝑖 𝑛2𝜋

• If z is positive real, then Arg z = 0 and Ln z 

becomes regular ln(x) function from calculus.

• If z is negative real, (remember ln(-x) is not 

defined in calculus): 

Ln 𝑧 = ln |𝑧| + 𝑖 Arg z = ln |𝑧| + 𝑖 𝜋
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Natural Logarithm Function

• From: ln 𝑧 = ln 𝑟 + 𝑖𝜃, it follows that:

𝑒ln 𝑧 = 𝑒ln 𝑟𝑒𝑖𝜃 = 𝑧 (single-valued)

• Since arg 𝑒𝑧 = 𝑦 ± 𝑛2𝜋 , it follows that: 

ln 𝑒𝑧 = 𝑧 ± 𝑖 𝑛2𝜋 (multi-valued)

Remember:

𝑒𝑧 is periodic  𝑒𝑧 = 𝑒𝑧±𝒊 𝒏2𝜋

ln 𝑒𝑧 = ln 𝑒𝑧±𝑖 𝑛2𝜋 = ln 𝑒𝑥+𝑖𝑦±𝑖 𝑛2𝜋 = 𝑥 + 𝑖𝑦 ± 𝑖 𝑛2𝜋
= 𝑧 ± 𝑖 𝑛2𝜋
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Examples: Natural Logarithm
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Examples: Natural Logarithm
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Natural Logarithm Function

• The familiar relations for the natural logarithm 

continue to hold for complex values:

ln(𝑧1𝑧2) = ln(𝑧1) + ln(𝑧2)

ln(𝑧1/𝑧2) = ln(𝑧1) − ln(𝑧2)
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Example: Natural Logarithm 
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• Prove that ln(𝑧1𝑧2) = ln(𝑧1) + ln(𝑧2) and that 

Ln(𝑧1𝑧2) ≠ Ln(𝑧1) + Ln(𝑧2) for z1 = z2 = -1



General Powers

• 𝑧 = 𝑥 + 𝑖𝑦

• 𝑧𝑐 = 𝑒ln 𝑧𝑐 = 𝑒𝑐 ln 𝑧 𝑐 𝑐𝑜𝑚𝑝𝑙𝑒𝑥, 𝑧 ≠ 0 .

• ln z is multivalued  𝑧𝑐 is multivalued.

• Hence, there is a  principal value of zc which is: 

𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙(𝑧𝑐) = 𝑒c Ln 𝑧
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General Powers

• 𝑧𝑐 = 𝑒𝑐 ln 𝑧 𝑐 𝑐𝑜𝑚𝑝𝑙𝑒𝑥, 𝑧 ≠ 0 .

• If c = n = 1, 2, … then 𝑧𝑛 is single-valued and 

identical with the usual nth power of z.

• If c = n = -1, -2, … then 𝑧𝑛 is also single-valued .

• If c = 1/n, where n = 2, 3, … , then: 

𝑧𝑐 = 𝑧1/𝑛 = 𝑛 𝑧

 Same finite n roots explained previously.
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General Powers

• 𝑧𝑐 = 𝑒𝑐 ln 𝑧 𝑐 𝑐𝑜𝑚𝑝𝑙𝑒𝑥, 𝑧 ≠ 0 .

• If c=m/n, the quotient of two positive integers, the 

situation is similar, and 𝑧𝑐 has only finite n 

distinct values (n roots).

• However, if c is real irrational or complex, then 𝑧𝑐

is infinitely many-valued.

• Remember: an irrational number is any real 

number that cannot be expressed as a ratio of 

integers. Example: 𝜋, 2.
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Example: General Powers
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• Find the values of: 𝑖𝑖 , (1 + 𝑖)2−𝑖 :
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Matrices

• A matrix is a rectangular array of numbers or 

functions which we will enclose in brackets.

• The numbers (or functions) are called entries or, 

less commonly, elements of the matrix.
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Linear Systems

• Linear systems is a major application of matrices, 

example:

• where x1, x2, x3 are the unknowns. We form the 

coefficient matrix “A” (a22 = zero):
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Linear Systems

• We form another matrix, the augmented matrix of 

the system “  𝐴”:

, remember:

• Matrix operations will be used LATER to find the 

values for x1, x2, x3 (the solution for the linear 

system).

• For the previous system: 𝑥1 = 3, 𝑥2 = 0.5, 𝑥3 = −1
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General Concepts and 

Notations
• We shall denote matrices by capital boldface letters 

𝑨, 𝑩, 𝑪, …

• or by writing the general entry in brackets 𝑨 = [𝑎𝑗𝑘].

• m x n matrix is a matrix with m rows and n columns .

• m x n is called the size of the matrix. 

samer.awad@hu.edu.jo         7 October 20245



General Concepts and 

Notations
• The following matrices have the sizes 2 x 3, 3 x 3, 

2 x 2, 1 x 3, and 2 x 1 respectively. 
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General Concepts and 

Notations
• If m=n, we call 𝑨 an n x n square matrix.

• Then its diagonal containing the entries a11, a22, …, 

ann is called the main diagonal of 𝑨. 

• If m≠n, we call 𝑨 an n x m rectangular matrix.

• A vector is a matrix with only one row or column.

• Its entries are called the components of the vector.
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General Concepts and 

Notations
• We shall denote vectors by lowercase boldface letters 

𝒂, 𝒃, …

• or by its general component in brackets 𝒂 = [𝑎𝑗].

• row vector

• column vector:
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Matrix Addition and Scalar 

Multiplication
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Matrix Addition and Scalar 

Multiplication
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Matrix Addition and Scalar 

Multiplication
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Rules for Matrix Addition
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Rules for Matrix Scalar 

Multiplication
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Matrix Multiplication
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• The entry cjk is obtained by multiplying each entry in 

the 𝑗th row of A by the corresponding entry in the 𝑘th
column of B and then adding these n products.



Matrix Multiplication
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• Matrix multiplication means multiplication of matrices 

by matrices.



Matrix Multiplication
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• Matrix multiplication means multiplication of matrices 

by matrices.



Example1: Matrix Multiplication
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Example2,3: Matrix Multiplication
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• Matrix multiplication is not commutative

• AB ≠ BA

• Examples: rectangular matrices:



Example4: Matrix Multiplication
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• Matrix multiplication is not commutative

• AB ≠ BA

• Examples: square matrices:

• Note that this also shows that AB=0 does not 

necessarily imply BA=0 or A=0 or B=0. 



Matrix Multiplication Rules
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(e) Integer powers of a mat: 𝐀𝟐 = 𝐀𝐀, 𝐀𝟑 = 𝐀𝐀𝐀 …etc

(b) Associative law.

(c) and (d) Distributive laws.



Matrix Multiplication in Matlab

samer.awad@hu.edu.jo         7 October 202421

>> a=[1 2; 3 4]

a =

1     2

3     4

>> b=[1 0; 1 0]

b =

1     0

1     0

>> a*b

ans =

3     0

7     0



Matrix Multiplication in Matlab
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>> a*b

ans =

3     0

7     0

>> b*a

ans =

1     2

1     2



Matrix Multiplication in Matlab
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>> c=[a,b]

c =

1     2     1     0

3     4     1     0

>> a*c

ans =

7    10     3     0

15    22     7     0

>> c*a

??? Error using ==> mtimes

Inner matrix dimensions must agree.



Matrix Multiplication: Method #2

samer.awad@hu.edu.jo         7 October 202424

• Since matrix multiplication is a multiplication of rows 

into columns, we can write the defining formula more 

compactly as:

where aj is the 𝑗th row vector of A and bk is the 𝑘th
column vector of B:



Example: Matrix Multiplication: 

Method #2

samer.awad@hu.edu.jo         7 October 202425



Matrix Multiplication: Method #3
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• Parallel processing of products on the computer is 

facilitated by a variant method #1 for computing 

C=AB.

• In this method, A is used as given, B is taken in terms 

of its column vectors, and the product is computed 

columnwise:

• Columns of B are then assigned to different 

processors, which simultaneously compute the 

columns of the product matrix Ab1, Ab2, etc.



Example: Matrix Multiplication: 

Method #3
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Motivation of Multiplication

by Linear Transformations
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• Let us now motivate the matrix multiplication by its 

use in linear transformations. For 𝑛 = 2 variables 

these transformations are of the form:

• In these equations, we may relate an x1x2-coordinate

system to a y1y2-coordinate system in the plane:



Motivation of Multiplication

by Linear Transformations
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• Now suppose further that the x1x2-system is related to 

a w1w2-system by another linear transformation:

• Then the y1y2-system is related to the w1w2-system 

indirectly via the x1x2-system, which is a linear 

transformation:



Motivation of Multiplication

by Linear Transformations
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• Substituting x into y:

• Comparing this with y=Cw:

 C=AB



Transposition
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• It provides a transition from row vectors to column 

vectors and vice versa.



Examples: Transposition
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• Note that in (d) the transposed matrices are in 

reversed order.

Rules of Transposition
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Symmetric and Skew-

Symmetric Matrices 
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• Symmetric and Skew-Symmetric Matrices are square 

matrices whose transpose equals the matrix itself or 

minus the matrix.

• Example:



Triangular Matrices
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• Upper triangular matrices: square matrices with 

nonzero entries only on and above the main diagonal.

• Lower triangular matrices: square matrices with 

nonzero entries only on and below the main diagonal. 

• Any entry on the main diagonal of a triangular matrix 

may be zero or not.

• Example:



Example: Diagonal, Scalar, & 

Unit  Matrices
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Diagonal Scalar Identity



Diagonal, Scalar, & Unit  

Matrices
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• Diagonal matrix: square matrix that can have nonzero 

entries only on the main diagonal. 

• Scalar matrix 𝑺: diagonal matrix with all diagonal entries 

having the same value = 𝑐. Why call is scalar matrix?

𝑨𝑺 = 𝑺𝑨 = 𝑐𝑨

• Unit or identity matrix 𝑰: scalar matrix with 𝑐 = 1. Why 

call is unit matrix?

𝑨𝑰 = 𝑰𝑨 = 𝑨
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Linear Systems of Equations
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• A linear system of m equations in n unknowns x1, …, xn

is a set of equations of the form:

• The system is called linear because each variable 

appears in the first power only.



Linear Systems of Equations

samer.awad@hu.edu.jo         7 October 20243

• a11, …, amn are given numbers, called the coefficients of 

the system.

• b11, …, bmn on the right are also given numbers.

• If all bj=0  homogeneous system.



Matrix Form of the Linear 

System
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• From the definition of matrix multiplication the “m” 

equations may be written as:



Matrix Form of the Linear 

System

samer.awad@hu.edu.jo         7 October 20245



Matrix Form of the Linear 

System
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• The matrix below is called the augmented matrix of the 

system. The dashed vertical line could be omitted:



Example: Existence and Uniqueness 

of Solutions – 2 unknowns
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Example: Existence and Uniqueness 

of Solutions – 2 unknowns
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• Interpret x1, x2 on the x1x2-plane.

• The two equations represent straight lines.

• Solutions are points on both lines at the same time.



Example: Existence and Uniqueness 

of Solutions – 2 unknowns
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Example: Existence and Uniqueness 

of Solutions – 2 unknowns
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• If the system is homogenous, Case (c) cannot happen, 

because then those two straight lines pass through the 

origin, whose coordinates constitute the trivial solution. 

• Similarly, our present discussion can be extended from 

two equations in two unknowns to three equations in 

three unknowns. 

• Instead of straight lines we have planes and the 

solution depends on the positioning of these planes in 

space relative to each other. 



Example: Existence and Uniqueness 

of Solutions – 3 unknowns
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Gauss Elimination and Back 

Substitution
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• The Gauss elimination method can be motivated as 

follows. Consider a linear system that is in triangular 

form (in full, upper triangular form) such as:

• Rearrange eq. 2:

𝑥2 = −26/13 = −2

• Back substitution: substitute x2 into eq. 1:

𝑥1 = 1
2(2 − 5𝑥2) = 1

2(2 − 5. (−2)) = 6



Elementary Row Operations. Row-

Equivalent Systems
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• Elementary Row Operations for Matrices:

- Interchange of two rows.

- Multiplication of a row by a nonzero constant c.

- Addition of a constant multiple of one row to 

another row.

• CAUTION! Row operation not for columns! 

• System S1  row operations  system S2

• S1 and S2 are called row equivalent systems

• Row-equivalent linear systems have the same set 

of solutions.



• This gives us the idea of first reducing a general system 

to triangular form. For instance, let the given system be:

• We eliminate x1 from the second equation, to get a 

triangular system.

Example 1: Gauss Elimination and 

Back Substitution
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• This is the Gauss elimination for 2 unknowns giving 

the triangular form, from which back substitution 

now yields 𝑥2 = −2 𝑎𝑛𝑑 𝑥1 = 6.

Example 1: Gauss Elimination and 

Back Substitution

samer.awad@hu.edu.jo         7 October 202415



Example 2: Gauss Elimination: 

Electrical Network
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• Solve the linear system:



Example 2: Gauss Elimination: 

Electrical Network
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• Derivation from the circuit below



Example 2: Gauss Elimination: 

Electrical Network
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• Creation of augmented matrix  𝐴 and pivot 1:

• Elimination of x1



Example 2: Gauss Elimination: 

Electrical Network
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• Creation of pivot 10:

• Elimination of x2



Example 2: Gauss Elimination: 

Electrical Network
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• Elimination of x2:

• New system equations:



Example 2: Gauss Elimination: 

Electrical Network
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• Back Substitution. Determination of x3, x2, x1 (in this 

order):



Elementary Row Operations. Row-

Equivalent Systems
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• A linear system is called determined if number of 

equations m = number of unknowns n, as in example 1.

• overdetermined if it has more equations than unknowns, 

as in example 2.

• underdetermined if it has fewer equations than 

unknowns.



Elementary Row Operations. Row-

Equivalent Systems
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• A system is called consistent if it has at least one 

solution (thus, one solution or infinitely many 

solutions).

• A system is called inconsistent if it has no solutions 

at all, as:

𝑥1 + 𝑥2 = 1

𝑥1 + 𝑥2 = 0



Gauss Elimination: The Three 

Possible Cases of Systems
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• Systems that have a unique solution: Examples 1 & 

2 solved above.

• Systems that have infinitely many solutions: 

Example 3 solved below.

• Systems that don’t have any solution: Example 4 

solved below.



Example 3: Gauss Elimination if 

Infinitely Many Solutions Exist
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• Three equations and four unknowns.



Example 3: Gauss Elimination if 

Infinitely Many Solutions Exist
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• Circle pivot 1 and box terms of equations:

• Eliminate x1:



Example 3: Gauss Elimination if 

Infinitely Many Solutions Exist
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• Circle pivot 2 and box terms of equations:

• Eliminate x2:



Example 3: Gauss Elimination if 

Infinitely Many Solutions Exist
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• Previous elimination gives:

• From the 2nd eq:

• From this and the 1st eq:

• x1 and x2 depend on x3 and x4  x3 and x4 remain 

arbitrary and we have infinitely many solutions. 

• If we choose a value of x3 and x4, then the corresponding 

values of x1 and x2 and are uniquely determined.



Example 4: Gauss Elimination if no 

Solution Exists
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• This case happens when gauss elimination produces a 

contradiction.

• Three equations and three unknowns.



Example 4: Gauss Elimination if no 

Solution Exists
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• Circle pivot 1 and box terms of equations:

• Eliminate x1:



Example 4: Gauss Elimination if no 

Solution Exists
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• Circle pivot 2 and box terms of equations:

• Eliminate x2:



Example 4: Gauss Elimination if no 

Solution Exists
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• Previous elimination yields:

• The false statement 0=12 shows that the system has no 

solution.



Row Echelon Form and Information 

From it
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• At the end of the Gauss elimination the form of the 

coefficient matrix, the augmented matrix, and the 

system itself are called the row echelon form.

• In it, rows of zeros, if present, are the last rows, 

example 4:

• The original system of m equations in n unknowns has 

augmented matrix [A|b]. This is to be row reduced to 

matrix [R|f].



Row Echelon Form and 

Information From It
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• At the end of the Gauss elimination the row echelon 

form of the augmented matrix [R|f] will be:

• Here r ≤ m, r11 ≠ 0, and all entries in blue are zero.

• The number of nonzero rows, r, in the row-reduced 

coefficient matrix R is called the rank of R and also the 

rank of A.
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• Possible solution cases:

• Unique solution: if r = n. fr+1 to fm if present are zero. In 

example 2, r = n = 3, and m=4.

• Infinitely many solutions: if r<n and fr+1 to fm if present 

are zero. See example 3.

• No solution: if r<m and at least one of the numbers fr+1

to fm is non-zero. See example 4.

Row Echelon Form and 

Information From It



Linear Systems in Matlab
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• Eg 2: unique solution

linsolve( [ 1 -1 1 ; 0 10 25 ; 20 10 0 ] , [ 0 ; 90 ; 80 ] )

ans =

2.0000

4.0000

2.0000

• Eg 3: infinitely many solutions

linsolve( [ 3 2 2 -5 ; 0.6 1.5 1.5 -5.4 ; 1.2 -0.3 -0.3 2.4 ] , [ 8 ; 2.7 ; 2.1 ] )

Warning: Rank deficient, rank = 2,  tol =   6.8752e-015. 

ans =

2.2500

0

0

-0.2500



Linear Systems in Matlab
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• Eg 4: no solution

linsolve( [ 3 2 1 ; 2 1 1 ; 6 2 4 ] , [ 3 ; 0 ; 6 ] )

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 3.364312e-018. 

ans =

1.0e+016 *

1.8014

-1.8014

-1.8014
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7.4 Linear Independence of 

Vectors
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• A linear combination of m vectors a(1), …, a(m) is:

where c1, c2, …, cm are any scalars. Rearrange:

• This can be satisfied if all c’s are zero, because then it 

becomes 𝟎 = 𝟎.



Linear Independence of Vectors
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• If this equation also holds with scalars not all zero, we 

call these vectors linearly dependent. Otherwise, they  

are linearly independent.

• Linear dependence means that we can express at least 

one of the vectors as a linear combination of the other 

vectors. For example, if c1≠0:



Example0: Linear 

Independence of Vectors
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• The independence of TWO vectors is easy to identify

• Example: 

𝑎1 = [2 3 15]

𝑎2 = [1 1.5 7.5]

𝑎1 = 2𝑎2 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡



Example1: Linear 

Independence of Vectors
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• Easily checked but not so easy to discover. 

• A systematic method can be done by calculating the 

rank of a matrix explained next.



Rank of a Matrix
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• Definition: The rank of a matrix A is the maximum 

number of linearly independent row vectors of A. It is 

denoted by rank A.

• Matrix A1  row operations  matrix A2

• Definition: A1 and A2 are called row equivalent matricies.

 Matrices in Gauss elimination steps are row-

equivalent.

• Theorem: Row-equivalent matrices have the same 

rank.



Example1: Rank of a Matrix
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• The following three vectors (given previously):

can be represented by the matrix:



Example1: Rank of a Matrix
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• The rank of a matrix in row-echelon form is the    

number of non-zero rows. 

• Hence rank A=2



Previous Examples: Rank of a Matrix
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Hence, rank = 2

Hence, rank = 3

Hence, rank = 2

Hence, rank = 3



Linear Independence of Vectors
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• Theorem 2: Linear Independence and Dependence 

of Vectors:   p number of vectors are linearly 

independent if the matrix formed with these vectors has 

rank p. Otherwise linearly dependent.

If Rank(A) = # of vectors  vectors are independent

• Theorem 3: Rank in Terms of Column Vectors: The 

rank r of a matrix A equals the maximum number of 

linearly independent column vectors of A. 

• Hence A and its transpose AT have the same rank. 

Proof: see textbook.



Example1: Rank in Terms of 

Column Vectors
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Recall the matrix from example1 above:

Performing the following column operations concludes -

as before - that rank = 2:



Linear Independence of Vectors
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• Theorem 4: Linear Dependence of Vectors:  

Consider p vectors each having n components. If n<p 

then these vectors are linearly dependent.

• Eg:



Linear Independence of Vectors
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rref : Reduced row echelon form

>> rref ( [ 1 -1  ; 0 10  ; 20 10  ] )

ans =

1     0

0     1

0     0

>> rref ( [ 5 -1  ; 0 10  ; 20 10  ] )

ans =

1     0

0     1

0     0

>> rref ( [ 5 -1  ; 0 10  ; 20 0  ] )

ans =

1     0

0     1

0     0



7.5 Solutions of Linear Systems:

Existence, Uniqueness
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• Rank gives complete information about existence, 

uniqueness, and general structure of the solution set of 

linear systems as follows.

• A linear system of equations in n unknowns has: 

– a unique solution if rank(𝑨) = rank( 𝑨) = n.

– infinitely many solutions if if rank(𝑨) = rank( 𝑨) < n.

– no solution if rank(𝑨) ≠ rank( 𝑨).

• If solutions exist, they can all be obtained by the Gauss 

elimination. (This method will automatically reveal 

whether or not solutions exist



Previous Examples: Rank of a Matrix
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rank(𝑨) = rank( 𝑨) = n = 2  unique soln

rank(𝑨) = rank( 𝑨) = n = 3  unique soln

rank(𝑨) = rank( 𝑨) = 2 < (n=4)  infinite soln’s

rank(𝑨) ≠ rank( 𝑨)  no soln



Determinants
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• Determinants were originally introduced for solving 

linear systems. They have important engineering 

applications in eigenvalue problems (Sec. 8.1), 

differential equations, vector algebra (Sec. 9.3), and in 

other areas.

• A determinant of order n is a scalar associated with an 

n × n matrix:



Second-Order Determinants
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• A determinant of second order can be defined by:



Third-Order Determinants
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• A determinant of third order can be defined by:



Third-Order Determinants
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• A determinant of third order can be defined by:



Third-Order Determinants
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n-order Determinants
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• A determinant is defined as follows:

“Column-wise” expansion

“Row-wise” expansion (shown in previous slide)



Minors and Cofactors of Third-

Order Determinants
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Minors and Cofactors 
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• Cjk is the cofactor of ajk in D

• Mjk is the minor of ajk in D (determinant of order n-1): 

the determinant of the submatrix of 𝑨 obtained from 𝑨
by omitting the row and column of the entry.

• Equation (3) above can be rewritten as :



Minors and Cofactors of Third-

Order Determinants
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Checkerboard pattern for Cjk



Third-Order Determinants
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• The determinants can be expanded using any row or 

column. The following D using 1st column:

• Minor of a11 is M11=

• Cofactor of a11 is C11= (-1)j+k M11 = (-1)2 M11 =



Third-Order Determinants
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• Use the row or column with the most zeros. 



Cofactor Matrix
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𝑐𝑜𝑓(𝐴) =
−7 − 13 8
2 − 2 2
3 7 − 2



Cofactor Matrix
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Adjoint (or Adjugate) Matrix
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• (𝑎𝑑𝑗 𝑨) = (𝑐𝑜𝑓 𝑨)𝑇

• 𝑨 (𝑎𝑑𝑗 𝑨) = (𝑎𝑑𝑗 𝑨) 𝑨 = (det 𝑨) 𝑰

• Using MATLAB: 

- Cofactor: cof(A)

- Transpose: transpose(A) or A’

- Adjoint: transpose(cof(A)) or cof(A)’



Example: Determinant of a 

Triangular Matrix
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• Hence, the determinant of a diagonal or triangular 

matrix is just the product of its diagonal entries.



General Properties of 

Determinants
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Theorem 1:

• (a) can be realized just by looking at the checkerboard mentioned above.

A=[ -3 0 0 ; 6 4 0 ; -1 2 5]; det(A) = - 60

A=[-1 2 5 ; 6 4 0 ; -3 0 0 ]; det(A) = 60

A=[-1 2 5 ; -3 0 0 ; 6 4 0 ]; det(A) = - 60

• (b) points us to an attractive way of finding determinants: by reduction to 

triangular form.

• from (c): det(𝑐𝑨) = 𝑐𝑛 det(𝑨)



General Properties of 

Determinants
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Theorem 2:

• (f) can be proven from Theorem 1 and (e).

• from (f) & (b): a matrix with rank < n has det = zero.

eg: 



Example: Finding Determinants 

by Reduction to Triangular Form
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Example: Finding Determinants 

by Reduction to Triangular Form
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Example: Finding Determinants 

by Reduction to Triangular Form
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Example: Finding Determinants 

by Reduction to Triangular Form
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by Reduction to Triangular Form
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Cramer’s Rule for Linear 

Systems of Two Equations
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D D1



Cramer’s Rule for Linear 

Systems of Two Equations
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D

D

D1

D2



Cramer’s Rule for Linear 

Systems of Two Equations
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D

D

D1

D2



Example 1: Cramer’s Rule for 

Linear Systems of Two Equations
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Cramer’s Rule for Linear 

Systems of Three Equations
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Cramer’s Rule for Linear 

Systems of n Equations
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• This last rule will be used in Eigenvalues problems

Cramer’s Rule for Linear 

Systems of n Equations
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Inverse of a Matrix.

Gauss–Jordan Elimination
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• For a matrix to have an inverse, it has to be a 

square matrix.

• The inverse of an n x n matrix, is denoted by A-1

which is also an n x n matrix:

𝑨𝑨−𝟏 = 𝑨−𝟏𝑨 = 𝑰 (𝑛 × 𝑛 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥)

• If A has an inverse, then A is called a non-singular

(or invertible) matrix. Otherwise it is called singular.

• If A has an inverse then the inverse is unique.

• A has an inverse iff rank(A) = n.

• A has an inverse iff det(A) ≠ 0.



Example: Finding Inverse of a Matrix 

by Gauss–Jordan Elimination
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• 𝑨  𝑨 𝑰  Gauss-Jordan   [𝑰|𝑨−𝟏]



Example: Finding Inverse of a Matrix 

by Gauss–Jordan Elimination
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Example: Finding Inverse of a Matrix 

by Gauss–Jordan Elimination
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Example: Finding Inverse of a Matrix 

by Gauss–Jordan Elimination
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• Gauss-Jordan extra steps: reducing 𝑼 𝒕𝒐 𝑰



Example: Finding Inverse of a Matrix 

by Gauss–Jordan Elimination
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• Gauss-Jordan extra steps: reducing 𝑼 𝒕𝒐 𝑰



Example: Finding Inverse of a Matrix 

by Gauss–Jordan Elimination
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• Gauss-Jordan extra steps: reducing 𝑼 𝒕𝒐 𝑰



Example: Finding Inverse of a Matrix 

by Gauss–Jordan Elimination
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Inverse of a Matrix.

The cofactor method
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Here 𝑐𝑜𝑓(𝐴) =

𝑎22 −𝑎21

−𝑎12 𝑎11
checkerboard:

Inverse of a Matrix.

The cofactor method
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The cofactor method
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• Find the inverse of:



Inverse of Diagonal Matrices
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• A diagonal matrix has an inverse if ajj≠0

• A-1 is also diagonal with entries 
1

𝑎11
,
1

𝑎22
, … ,

1

𝑎𝑛𝑛



Properties of Matrix Operations
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• (AC)-1 = C-1 A-1

• (AC … PQ)-1 = Q-1 P-1 … C-1 A-1

• Matrix multiplication is NOT commutative: AB ≠ BA

• AB = 0, does not generally imply that A = 0 or B = 0 or   

BA = 0

• 
1 1
2 2

−1 1
1 − 1

=
0 0
0 0

•
−1 1
1 − 1

1 1
2 2

=
1 − 1
−1 − 1

• AC = AD, does not imply that C = D even when A ≠ 0



Properties of Matrix Operations
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• AB = 0, does not generally imply that A = 0 or B = 0 or   

BA = 0

Let A, B, C be n x n matrices:

• If rank(A) = n and AB = 0 implies that B = 0.

Proof: A-1 exists, A-1AB = A-10  B = 0

• Hence, if AB = 0, but A ≠ 0 & B ≠ 0 then rank(A) < n 

and rank(B) < n 

Proof: if rank(A) = n  A-1 exists  A-1AB = A-10  B = 0 

also: if rank(B) = n  B-1 exists  ABB-1 = 0B-1
 A = 0 



Properties of Matrix Operations

samer.awad@hu.edu.jo         7 October 202424

• AB = AC, does not imply that B = C even when A ≠ 0

Let A, B, C be n x n matrices:

• If rank(A) = n and AB = AC then B = C

Proof: A-1 exists, A-1AB = A-1AC  B = C



Properties of Matrix Operations
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Let A, B, C be n x n matrices then:

• If A is singular  BA and AB are singular

Proof: see textbook

For any n x n matrices A and B

• det (AB) = det (BA) = det A det B.

Proof: see textbook



Example: Solving Systems of Linear 

Equations Using Matrix Inverse
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𝑥1 + 𝑥2 − 𝑥3 = 3
−𝑥1 + 𝑥2 + 𝑥3 = −1
𝑥1 − 𝑥2 + 𝑥3 = 5

1 1 − 1
−1 1 1
1 − 1 1

𝑥1
𝑥2
𝑥3

=
3
−1
5

A x = b



Example: Solving Systems of Linear 

Equations Using Matrix Inverse
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A x = b

1 1 − 1
−1 1 1
1 − 1 1

−1

=
0.5 0 0.5
0.5 0.5 0
0 0.5 0.5

Multiply by inverse:

A-1 A x = A-1 b   x = A-1 b

𝑥1
𝑥2
𝑥3

=
0.5 0 0.5
0.5 0.5 0
0 0.5 0.5

3
−1
5



𝑥1
𝑥2
𝑥3

=
4
1
2
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Eigenvalue Problems
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• The determination of the eigenvalues and 

eigenvectors of a system is extremely important in 

physics and engineering.

• Solving eigenvalue problems is equivalent to matrix 

diagonalization and has several applications:

• Stability analysis

• The physics of rotating bodies

• Small oscillations of vibrating systems

• You might encounter these and/or other applications 

of eigenvalue problems in other courses. 



Matrix Eigenvalue Problems
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• A matrix eigenvalue problem considers the vector 

equation:

𝑨𝒙 = λ𝒙

Here, A is a given square matrix, 

‒ λ is an unknown scalar

‒ 𝒙 is an unknown vector

• In a matrix eigenvalue problem, the task is to 

determine:

‒ λ’s that satisfy the eq. above (called eigenvalues).

‒ 𝒙’s that satisfy the eq. above (called eigenvectors) 

excluding 𝒙 = 𝟎 which is always a solution.

Known



Matrix Eigenvalue Problems
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• The set of all the eigenvalues of A is called the 

spectrum of A.

• The spectrum consists of at least one eigenvalue 

and at most of n numerically different eigenvalues 

(where n is the matrix size).



Example 1: Finding Eigenvalues 

and Eigenvectors
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• For the matrix above, eigenvalues must be determined first:

• By rearranging these equations we get:



• This can be written in matrix notation:

Proof: 𝑨𝒙 = λ𝒙

• So we’ve transferred the original eigenvalue equation to a 

homogeneous linear system.

• By Cramer’s rule, (𝑨 − λ𝑰)𝒙 = 𝟎 has a nontrivial solution 𝒙
≠ 𝟎 iff the determinant of coefficient matrix (𝑨 − λ𝑰) is zero.

Example 1: Finding Eigenvalues 

and Eigenvectors
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• 𝐷(𝜆) is the characteristic determinant (or characteristic 

polynomial) and 𝐷(𝜆) = 0 is the characteristic equation of A.

• Solving the characteristic equations gives the two 

eigenvalues:𝜆 = −1, 𝜆 = −6,

• Solution of quadratic equation:

Example 1: Finding Eigenvalues 

and Eigenvectors
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• Eigenvector x of A corresponding to 𝜆= −1 can be obtained 

from:

• by substituting 𝜆 = −1 :

• Gauss elimination will zero row 2 which means we have 

infinite solutions. Rearranging row 1 or row 2 gives the 

solution: 𝑥2 = 2𝑥1

Example 1: Finding Eigenvalues 

and Eigenvectors
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• solution: 𝑥2 = 2𝑥1

• Hence for 𝜆= −1, 𝐱 =
𝑥1
2𝑥1

• If we choose 𝑥1 = 1 we obtain the eigenvector 𝐱 =
1
2

• Check:

𝐀𝐱 = = 𝜆𝐱

Example 1: Finding Eigenvalues 

and Eigenvectors
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• Eigenvector x of A corresponding to 𝜆 = −6 can be 

obtained from:

• by substituting 𝜆 = −6 :

• Gauss elimination will also zero row 2 which means we have 

infinite solutions. Rearranging row 1 or row 2 gives the 

solution: 𝑥2 = −𝑥1/2

Example 1: Finding Eigenvalues 

and Eigenvectors
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• solution: 𝑥2 = −𝑥1/2

• Hence for 𝜆= −6, 𝐱 =
𝑥1

−𝑥1/2

• If we choose 𝑥1 = 2 we obtain the eigenvector 𝐱 =
2
−1

• Check:

𝐀𝐱 = = 𝜆𝐱

Example 1: Finding Eigenvalues 

and Eigenvectors
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• Transferring the terms on the right side to the left side:

• Which is equivalent to: (𝑨 − λ𝑰)𝒙 = 𝟎

Finding Eigenvalues and 

Eigenvectors: General Case
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• By Cramer’s theorem this homogeneous linear system of 

equations has a nontrivial solution if and only if the 

corresponding determinant of the coefficients is zero:

• Which is equivalent to: (𝑨 − λ𝑰)𝒙 = 𝟎

Finding Eigenvalues and 

Eigenvectors: General Case
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Eigenvalue Problems Steps

samer.awad@hu.edu.jo         7 October 202414

• Steps for solving Eigenvalue Problems:

‒ Solve the c/s equation to get the eigenvalues:

𝐷 𝜆 = det (𝑨 − λ𝑰) = 0

‒ Substitute each λ into (𝑨 − λ𝑰)𝒙 = 𝟎

‒ Solve the system of linear equations (𝑨 − λ𝑰)𝒙 = 𝟎
(i.e. find 𝒙 for each λ). These vectors 𝒙 are the 

eigenvectors).

‒ You can always check your solution by substituting 

your λ and the corresponding 𝒙 into:

𝑨𝒙 = λ𝒙



• 𝑨 − λ𝑰 is called the characteristic matrix.

• D λ = 𝑑𝑒𝑡(𝑨 − λ𝑰) is called the characteristic 

determinant  of A.

• D(λ) = 0 is called the characteristic equation of A.

• By developing D(λ) we obtain a polynomial of nth 

degree in λ. This is called the characteristic polynomial 

of A.

• Theorem 1: The eigenvalues of a square matrix A are 

the roots of the characteristic equation of A.

• Hence an n x n matrix has at least one eigenvalue and 

at most n different eigenvalues.

Definitions

samer.awad@hu.edu.jo         7 October 202415



• Theorem 2: Eigenvectors, Eigenspace: If w and x are 

eigenvectors of a matrix A corresponding to the same 

eigenvalue λ, so are w + x (provided x ≠ ‒w) and kx for 

any k≠0. 

• Hence the eigenvectors corresponding to one and the 

same eigenvalue λ of A, together with 0, form a vector 

space, called the eigenspace of A corresponding to that 

λ.

Definitions
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• Find the eigenvalues and eigenvectors of

• For our matrix, the characteristic determinant gives the 

characteristic equation:

• The roots (eigenvalues of A) are:

Example 2: Multiple Eigenvalues
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• For λ = 5 the characteristic matrix is:



• After two steps of gauss elimination:

Example 2: Multiple Eigenvalues
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• For λ = 5:

• From row 2  𝑥2 = −2𝑥3

• From row 1 & 𝑥2 = −2𝑥3  𝑥1 = −𝑥3

• Hence for 𝜆= 5, 𝐱 =
−𝑥3
−2𝑥3
𝑥3

• If we choose 𝑥3 = −1we obtain 𝐱 =
1
2
−1

Example 2: Multiple Eigenvalues
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• For λ = −3 the characteristic matrix is:



• After two steps of gauss elimination:

Example 2: Multiple Eigenvalues
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• For λ = −3:

• From row 1 𝑥1 = −2𝑥2+ 3𝑥3, 

• Hence for 𝜆= −3, 𝐱 =
−2𝑥2+ 3𝑥3

𝑥2
𝑥3

• If we choose 𝑥2 = 1, 𝑥3 = 0 we obtain 𝐱 =
−2
1
0

Example 2: Multiple Eigenvalues
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• Find the eigenvalues and eigenvectors of the following skew-

symmetric matrix:

• Solving the characteristic equations gives the two 

eigenvalues:𝜆 = 𝑖, 𝜆 = −𝑖.

Example 5: Real Matrices with 

Complex Eigenvalues & Eigenvectors

samer.awad@hu.edu.jo         7 October 202422



• Eigenvector of A corresponding to 𝜆= 𝑖 can be obtained 

from:

−𝑖 1

−1 − 𝑖
Gauss elimination  

−𝑖 1

0 0

• From row 1  𝑥2 = 𝑖𝑥1

• Hence for 𝜆= 𝑖, 𝐱 =
𝑥1
𝑖𝑥1

• If we choose 𝑥1 = 1 we obtain the eigenvector 𝐱 =
1
𝑖

Example 5: Real Matrices with 

Complex Eigenvalues & Eigenvectors
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• Eigenvector of A corresponding to 𝜆= −𝑖 can be obtained 

from:

𝑖 1

−1 𝑖
Gauss elimination  

𝑖 1

0 0

• From row 1  𝑥2 = −𝑖𝑥1

• Hence for 𝜆= −𝑖, 𝐱 =
𝑥1
−𝑖𝑥1

• If we choose 𝑥1 = 1 we obtain the eigenvector 𝐱 =
1
−𝑖

Example 5: Real Matrices with 

Complex Eigenvalues & Eigenvectors
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Eigenvalues of The Transpose 

of a Matrix
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• Theorem3: Eigenvalues of the Transpose: The 

transpose AT of a square matrix A has the same 

eigenvalues as A.
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8.3 Symmetric, Skew-symmetric, 

and Orthogonal Matrices

samer.awad@hu.edu.jo         7 October 20242

• Symmetric matrix: 𝑨𝑇 = 𝑨

• Skew-symmetric matrix: 𝑨𝑇 = −𝑨

• Orthogonal matrix: 𝑨𝑇 = 𝑨−1

• Examples:

Symmetric                  Skew-symmetric                Orthogonal 



8.3 Symmetric, Skew-symmetric, 

and Orthogonal Matrices
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• Any real square matrix A may be written as the sum 

of a symmetric matrix R and a skew-symmetric 

matrix S, where:

𝑹 = 1
2 𝑨 + 𝑨𝑇 𝑎𝑛𝑑 𝑺 = 1

2(𝑨 − 𝑨𝑇)



Example 6: Finding R and S of a 

Square Matrices

samer.awad@hu.edu.jo         7 October 20244

𝑹 = 1
2
𝑨 + 𝑨𝑇 𝑎𝑛𝑑 𝑺 = 1

2
(𝑨 − 𝑨𝑇)

• Remember: Symmetric (R): 𝑨𝑇 = 𝑨, Skew-symmetric (S): 𝑨𝑇 = −𝑨



Symmetric & Skew-symmetric 

Matrices
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• Theorem 1: Eigenvalues of Symmetric and Skew-

Symmetric Matrices: 

(a) The eigenvalues of a symmetric matrix are real.

(b) The eigenvalues of a skew-symmetric matrix are 

pure imaginary or zero. Example 7.

• Remember: Symmetric: 𝑨𝑇 = 𝑨, Skew-symmetric: 𝑨𝑇 = −𝑨



Orthogonal Matrices
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• Theorem 3: Orthogonal matrices: Orthonormality of 

Column and Row Vectors: A real square matrix is 

orthogonal iff its column vectors (and also its row 

vectors) form an orthonormal system:

Proof: 𝑨−1𝑨 = 𝑰 → 𝑨𝑇𝑨 = 𝑰

• Remember: Orthogonal matrix: 𝑨𝑇 = 𝑨−1



Orthogonal Matrices
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• Theorem 4: Determinant of an Orthogonal Matrix: 

The determinant of an orthogonal matrix has the value 

+1 or  ‒1.

• Theorem 5: Eigenvalues of an Orthogonal Matrix: 

The eigenvalues of an orthogonal matrix A are real or 

complex conjugates in pairs and have absolute value 1.

• Remember: Orthogonal matrix: 𝑨𝑇 = 𝑨−1



8.4 Diagonalization of Matrices:

Similar Matrices
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• Definition: Similar Matrices: An n x n  𝑨 matrix is 

called similar to an n x n matrix 𝑨 if
 𝑨 = 𝑷−𝟏𝑨𝑷

where P is a non-singular n x n matrix.

• Theorem 3: Eigenvalues and Eigenvectors of 

Similar Matrices: If  𝑨 is similar to 𝑨, then  𝑨 has the 

same eigenvalues as 𝑨. Furthermore, if x is an 

eigenvector of 𝑨, then 𝒚 = 𝑷−𝟏𝒙 is an eigenvector of  𝑨
corresponding to the same eigenvalue.



Example 9: Similar Matrices
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• Let A and P be the following:

Given:



•  𝑨 = 𝑷−𝟏𝑨𝑷



Example 9: Similar Matrices
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• Eigenvalues of 𝑨:

𝑑𝑒𝑡 𝑨 − λ𝑰 =
6 − 𝜆 − 3
4 − 1 − λ

= 0

 λ2 ‒ 5 λ + 6 = 0

 (λ ‒ 3)(λ ‒ 2) = 0

λ = 3

λ = 2



Example 9: Similar Matrices
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• Eigenvalues of  𝑨:

𝑑𝑒𝑡  𝑨 − λ𝑰 =
3 − 𝜆 0
0 2 − λ

= 0

 (λ ‒ 3)(λ ‒ 2) = 0

λ = 3

λ = 2



Example 9: Similar Matrices
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• Eigenvectors of 𝑨:

• For λ = 3

→ 𝐀− λ𝐈 =
3 − 3
4 − 4

→ 𝑥2 = 𝑥1

• Hence for 𝜆= 3, 𝐱 =
𝑥1
𝑥1

• If we choose 𝑥1 = 1 we obtain the eigenvector 𝐱 =
1
1



Example 9: Similar Matrices

samer.awad@hu.edu.jo         7 October 202413

• Eigenvectors of 𝑨:

• For λ = 2

→ 𝐀− λ𝐈 =
4 − 3
4 − 3

→ 𝑥2 =
4

3
𝑥1

• Hence for 𝜆= 2, 𝐱 =
𝑥1

4/3 𝑥1

• If we choose 𝑥1 = 3 we obtain the eigenvector 𝐱

=
3
4



Example 9: Similar Matrices
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• Eigenvectors of  𝑨:

• For λ = 2, 𝐲 = 𝐏−𝟏𝐱 =
4 − 3
−1 1

1
1

=
1
0

• For λ = 3, 𝐲 = 𝐏−𝟏𝐱 =
4 − 3
−1 1

3
4

=
0
1



Diagonalization of a Matrix

samer.awad@hu.edu.jo         7 October 202415

Also   𝐀 = 𝐗𝐃𝐗−1. Can you prove that?

Diagonalization: converting a square matrix into a 

diagonal matrix.



Example 10: Diagonalization of 

a Matrix
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• The characteristic determinant gives the characteristic 

equation:

• The eigenvalues (roots):



Example 10: Diagonalization of 

a Matrix
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• Eigenvectors of A can be:

X-1 AX                   D



Example 11: Diagonalization of 

a Matrix
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• From eigenvalues example 2 

the matrix A is:

• The eigenvalues/eigenvectors are: 

λ = 5 → 𝐱 = [1 2 − 1]𝑇

λ = −3 → 𝐱 = −2 1 0 𝑇 𝑎𝑛𝑑 𝐱 = 3 0 1 𝑇

Note that 𝐱’s for λ = −3 are independent  X is invertable

𝐗 =
1 −2 3
2 1 0
−1 0 1

𝐗−1 𝐀 𝐗 =
5 0 0
0 −3 0
0 0 −3
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Vectors
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• Two kinds of quantities:

‒ Scalar: determined by its magnitude: voltage, 

temperature, length, speed.

‒ Vector: has both a magnitude and a direction: 

force, displacement, velocity.

• A vector is denoted in drawing by an arrow that has 

length ≡ magnitude (aka norm or Euclidean norm). 

Magnitude of vector a is denoted by |a|.

• Tail: initial point, tip: terminal point, and direction of 

the arrow: direction of the vector.



Vectors
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• In writing, a vector is denoted by lower case 

boldface (𝒂, 𝒃, 𝒗), or by using an arrow (  𝑎, 𝑏,  𝑣).

• A vector of length 1 is called a unit vector.



Components of a Vector
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• Using Cartesian coordinate system, let a be a given 

vector with initial point P: (x1, y1, z1) and             

terminal point Q: (x2, y2, z2), then:

𝑎1 = 𝑥2 − 𝑥1 𝑎2 = 𝑦2 − 𝑦1 𝑎3 = 𝑧2 − 𝑧1

are called the components of 

the vector a:  𝒂 = [𝑎1, 𝑎2, 𝑎3]

• By the Pythagorean theorem:

|𝒂| = 𝑎1
2 + 𝑎2

2 + 𝑎3
2



Example: Components of a Vector
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Position Vector 
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• The position vector r of a point A: (x, y, z) is the 

vector with the origin (0, 0, 0) as the initial point and 

A as the terminal point.



Vector Addition
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Vector Addition
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• For forces, this addition is the parallelogram law by 

which we obtain the resultant of two forces in 

mechanics.



Vector Addition
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• The “algebraic way” and the “geometric way” of 

vector addition give the same vector: 

𝒂 + 𝒃 = 𝒄



Basic Properties of Vector Addition
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• −𝐚 denotes the vector having the length |a| and the 

direction opposite to that of a.

• (a) and (b) are 

verified in the 

following figures:



Basic Properties of Scalar Multiplication:

Scalar Multiplication
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Example: Vector Addition and 

Scalar Multiplication
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Unit Vectors i, j, k
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• Besides 𝒂 = [𝑎1, 𝑎2, 𝑎3] another popular way of writing 

vectors is: 𝒂 = 𝑎1𝒊 + 𝑎2𝒋 + 𝑎3𝒌

Example:



Unit Vectors i, j, k
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• 𝐢 = [1,0, 0]

• 𝐣 = [0,1, 0]

• 𝐤 = [0,0, 1]



9.2 Inner Product (Dot Product)
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 The result of an inner product is always a scalar. 



9.2 Inner Product (Dot Product)

samer.awad@hu.edu.jo         7 October 202416

• Vector a is orthogonal to vector b if a.b = 0, a ≠ 0 and b ≠ 0.

• "Orthogonal" is a term used for more general objects, like 

planes and functions, whereas "perpendicular" is used only 

with lines. 



Length and Angle
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Properties of Inner Product

samer.awad@hu.edu.jo         7 October 202418

Since cos 𝛾 ≤ 1:

| a + b | ≤ | a | + | b |     (Triangular inequality)



Properties of Inner Product
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Prove that  

where 𝒊 ∙ 𝒊 = 𝒋 ∙ 𝒋 = 𝒌 ∙ 𝒌 = 1

𝒊 ∙ 𝒋 = 𝒋 ∙ 𝒊 = 𝒋 ∙ 𝒌 = 𝒌 ∙ 𝒋 = 𝒌 ∙ 𝒊 = 𝒊 ∙ 𝒌 = 0





Applications of Inner Products
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Work Done by a Force Expressed as an Inner 

Product

• p: constant force

• d: displacement

• 𝛼 : angle between p and d

The work done by p in the displacement is:

𝑊 = 𝐩 𝐝 cos 𝛼 = 𝐩 ∙ 𝐝

• If 𝛼 < 90 𝑊 > 0

• If 𝐩 & 𝐝 are orthogonal then 𝑊 = 0

• If 𝛼 > 90 then 𝑊 < 0  work against the force



Example: Applications of Inner 

Products
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What force in the rope in will hold a car of 5000 lb in 

equilibrium if the ramp makes an angle of 25o with 

the horizontal?

• weight: 𝒂 = [0, −5000]

• c is the force the car exerts on the ramp

• p is the force parallel to the ramp  𝒂 = 𝒑 + 𝒄

• 𝛾 = 90 − 25 = 65𝑜

 𝐩 = 𝒂 cos 𝛾 = 5000 cos 65 = 2113 lb



9.3 Vector Product (Cross Product)
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Cross Product
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• The direction of v is perpendicular both a & b

• If 𝐚, 𝐛, 𝐯 are in the order of: 𝐯 = 𝐚 × 𝐛, the cross 

product follows the right-handed triple



Cross Product
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• The direction of v is perpendicular to both a & b

• If 𝐚, 𝐛, 𝐯 are in the order of: 𝐯 = 𝐚 × 𝐛, the cross 

product follows the right-handed triple



Cross Product
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𝐢 × 𝐣 = 𝐤 𝐢 × 𝐤 = −𝐣 𝐢 × 𝐢 = 0

𝐣 × 𝐤 = 𝐢 𝐤 × 𝐣 = −𝐢 𝐣 × 𝐣 = 0

𝐤 × 𝐢 = 𝐣 𝐣 × 𝐢 = −𝐤 𝐤 × 𝐤 = 0



Example: Cross Product
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Sketch in class a, b, a x b, and b x a.



Properties of Cross Product
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Applications of Cross Product
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Moment of a Force:

• Moment m of a force p about point Q is defined as

𝐦 = 𝐩 𝑑

• 𝑑 is the perpendicular distance between Q and the line 

of action L of 𝐩.

• If 𝐫 is the vector from Q to any point A on L,               

then 𝑑 = 𝐫 sin 𝛾 and  |𝐦| = 𝐫 |𝐩| sin 𝛾.

• Since 𝛾 is the angle

between 𝐫 and 𝐩
then: 𝐦 = 𝐫 × 𝐩



Example: Applications of Cross 

Product

samer.awad@hu.edu.jo         7 October 202429



Scalar Triple Product
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• Scalar triple product or mixed product of three vectors

𝒂 𝒃 𝒄 = 𝒂 ∙ (𝒃 × 𝒄)



Properties of Scalar Triple Product
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Application of Scalar Triple Product
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Volume of a box:

Volume = (Height) (Area of the base)

Height = 𝐚 | cos 𝛽 |

Area of base = |𝐛 × 𝐜|

Volume = 𝐚 |𝐛 × 𝐜|| cos 𝛽 |

Volume = |𝐚 ∙ 𝐛 × 𝐜 |



Example: Scalar Triple Product
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• A tetrahedron is determined by three edge vectors a, b, c. 

Find the volume when a=[2, 0, 3] b=[0, 4, 1], c=[5, 6, 0].

• Volume of the parallelepiped with these vectors as edge 

vectors is the absolute value of the scalar triple product:

• The volume of the tetrahedron is  1
6

of that of 

the parallelepiped.

 volume = 72/6 = 12
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9.4 Vector and Scalar Functions 

and Their Fields
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• Vector functions (whose values are vectors) In 

Cartesian coordinate system:

• Scalar function (whose values are scalars). In 

Cartesian coordinate system:



9.4 Vector Field: Velocity of a 

Rotating Body

samer.awad@hu.edu.jo         7 October 20243

• Rotation of a rigid body is described by a vector 𝒘.

• Direction of 𝒘 is that of the axis of rotation

• 𝒘 = angular speed.

• Let P be any point on the body and d its distance 

from the axis. Then P has the speed ωd.

𝑑 = |𝒓| sin 𝛾

 𝜔𝑑 = 𝒘 𝒓 sin 𝛾 = 𝒘 × 𝒓



9.4 Vector Field: Velocity of a 

Rotating Body
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• Let P be any point of B and d its distance from the 

axis. Then P has the speed ωd.

𝑑 = |𝒓| sin 𝛾

 𝜔𝑑 = 𝒘 𝒓 sin 𝛾 = 𝒘 × 𝒓

 the velocity vector 𝐯 of P:

𝐯 = 𝒘 × 𝒓



9.4 Vector Field: Velocity of a 

Rotating Body
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• If the z-axis is the axis of rotation and 𝒘 is in the +ve

z-direction, then 𝒘 = 𝑤 𝒌

𝐯 = 𝒘 × 𝒓 =
𝒊 𝒋 𝒌
0 0 𝑤
𝑥 𝑦 𝑧

= 𝑤(−y𝒊 + 𝑥𝒋)



9.4 Vector Field: Velocity of a 

Rotating Body: Example
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• A wheel is rotating about the y-axis with angular 

speed 𝑤 = 10 rounds/sec.

• The rotation appears clock-wise if one looks from 

origin, in the +ve y-direction.

• Find the velocity and speed at P = [4, 3, 0].

𝒓 = 4 − 0 , 3 − 0 , 0 − 0 = [4, 3, 0]

𝐯 = 𝒘 × 𝒓 =
𝒊 𝒋 𝒌
0 10 0
4 3 0

= −40𝒌

speed = 𝐯 = 40



9.4 Derivative of a Vector 

Function
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• For a vector function 𝐯 t :

• 𝐯′ t is defined as the time derivative of 𝐯 t :

• 𝐯′ t is obtained by differentiating each component 

separately.

• Example: 𝐯 t = [ 𝑡, 𝑡2, 0 ]

𝐯′ t = [ 1, 2𝑡, 0 ]



9.4 Derivative of a Vector 

Function: Rules
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9.4 Partial Derivatives of a 

Vector Function
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• Suppose that the components of a vector function:

are differentiable functions of n variables t1, t2, … tm.

• Then the partial derivative of v with respect to 𝑡𝑚 is 

denoted by 𝜕v/𝜕𝑡𝑚 and is defined as the vector 

function:



9.4 Partial Derivatives of a 

Vector Function
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• Then the partial derivative of v with respect to 𝑡𝑚 is 

denoted by 𝜕v/𝜕𝑡𝑚 and is defined as the vector 

function:

• Similarly, second partial derivatives are



9.4 Partial Derivatives of a 

Vector Function
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• Similarly, second partial derivatives are

• Note d2v / ( dt dr ) = d/dt ( dv/dr )



9.4 Partial Derivatives of a 

Vector Function: Example
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• Various physical and geometric applications of 

derivatives of vector functions are discussed in the 

next sections as well as in Chap. 10.



9.7 Gradient of a Scalar Field
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• Gradient of a given scalar function                              

is denoted by ( grad f ) or ( ∇ f ).

• ∇ is pronounced Nabla.

• The differential operator ∇ is defined as:

𝛻 =
𝜕

𝜕𝑥
𝒊 +

𝜕

𝜕𝑦
𝒋 +

𝜕

𝜕𝑧
𝒌



9.7 Gradient of a Scalar Field
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𝑔𝑟𝑎𝑑 𝑓(𝑥, 𝑦, 𝑧) = 𝛻 𝑓(𝑥, 𝑦, 𝑧) =
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧

=
𝜕𝑓

𝜕𝑥
𝒊 +

𝜕𝑓

𝜕𝑦
𝒋 +

𝜕𝑓

𝜕𝑧
𝒌

• A gradient gives the rate of change of 𝑓 (𝑥, 𝑦, 𝑧) in 

any direction in space.

• This is done by obtaining by deriving a vector field 

from a scalar field.



9.7 Gradient of a Scalar Field: 

Example
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• Find the gradient of a scalar function described by:

𝑓(𝑥, 𝑦, 𝑧) = 2 𝑦3+ 4𝑥𝑧 + 3𝑥

𝛻 𝑓 =
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧

𝛻 𝑓 = 4𝑧 + 3, 6𝑦2, 4𝑥

𝛻 𝑓 = 4𝑧 + 3 𝒊 + 6𝑦2 𝒋 + (4𝑥)𝒌



9.7 Gradient as a Surface Normal 

Vector
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• Gradients have an important application in 

connection with surfaces as surface normal vectors.

• Let S be a surface represented by 

𝑓 (𝑥, 𝑦, 𝑧) = 𝑐 = 𝑐𝑜𝑛𝑠𝑡, where f is differentiable.

• Now let C be a curve (a line) on S through a point 

P of the surface S.

• The curve C is represented by 𝒓(𝑡) =
[𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)]

• A tangent vector of C is 𝒓′(𝑡) =
[𝑥′(𝑡), 𝑦′(𝑡), 𝑧′(𝑡)]



9.7 Gradient as a Surface Normal 

Vector
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• A tangent vector of C  tangent plane of S  at P.

• A vector in the direction of the surface normal is 

called a surface normal vector of S at P.

• Surface normal vector of S ( 𝑓 (𝑥, 𝑦, 𝑧) ) at point P

equals 𝛻f P = grad f (P)

• Since grad f (P) is perpendicular to tangent 𝒓′(𝑡): 



9.7 Gradient as a Surface Normal 

Vector: Example
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• Find a unit normal vector n of the cone of revolution 

𝑧2 = 4 𝑥2 + 𝑦2 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 𝑃(1,0,2)

→ 𝑓 𝑥, 𝑦, 𝑧 = 4𝑥2 + 4𝑦2−𝑧2= 0

𝛻f 𝑥, 𝑦, 𝑧 = [8x, 8y, −2z]

normal vector: 𝛻f(1,0,2) = 8, 0, −4

unit normal vector: =
𝛻f(1,0,2)

|𝛻f(1,0,2)|
=

8,0,−4

80
=

2

5
, 0,

−1

5



9.7 Laplacian of a Scalar Field
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• 𝛻2 : nabla squared: laplacian.

• Remember that f is a scalar function and 𝛻2 gives 

also a scalar function.

• Differentiate f twice with respect to x, y, and z and 

add the derivatives.



9.7 Laplacian of a Scalar Field
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9.7 Directional Derivative of a 

Scalar Field
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• The directional derivative  Dbf   or  df/ds of a 

function f(x, y, z) at a point P in the direction of a 

unit vector b is defined by: 

where Q is a variable point on the straight line L in 

the direction of b



9.7 Directional Derivative of a 

Scalar Field
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• Assuming that a is an arbitrary vector of any length 

(≠0), then the directional derivative of f  Daf in the 

direction of vector a is: 

Remember: 𝑔𝑟𝑎𝑑 𝑓 = 𝛻 𝑓 =
𝜕𝑓

𝜕𝑥
𝒊 +

𝜕𝑓

𝜕𝑦
𝒋 +

𝜕𝑓

𝜕𝑧
𝒌



9.7 Directional Derivative of a 

Scalar Field: Example
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• Find the directional derivative of:

grad f = 𝛻f = [4x, 6y, 2z]

𝛻f(P) = 8, 6,6

|𝐚| = 5

Daf P =
𝒂 .𝛻f P

𝒂
=

1,0,−2 . [8,6,6]

5
=

−4

5



9.8 Divergence of a Vector Field
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• Divergence measures the magnitude of a vector 

field's source at a given point, in terms of a scalar.

• Example: The velocity of the moving air at a point. 

• If air is heated in a region it will expand in all 

directions such that the velocity field points outward 

from that region positive divergence

• If the air cools and contracts negative divergence, 

as the region is a sink



9.8 Divergence of a Vector Field
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• Let 𝐯 𝑥, 𝑦, 𝑧 =



9.8 Divergence of a Vector Field: 

Example
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• Let 



9.8 Divergence of a Vector Field
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9.8 Divergence of a Vector Field
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• Let 𝑓 (𝑥, 𝑦, 𝑧) be a twice differentiable scalar 

function. Then its gradient exists,

• Let’s now find div v:

• Hence, 𝑑𝑖𝑣(𝑔𝑟𝑎𝑑 𝑓) = 𝛻2𝑓



9.9 Curl of a Vector Field
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• Curl describes the rotation of a 3-dimensional 

vector field.

• The direction of the curl is the axis of rotation, as 

determined by the right-hand rule, and the 

magnitude of the curl is the magnitude of rotation.

• Example: The flow velocity of a moving fluid, then 

the curl is the circulation density of the fluid.

• A vector field whose curl is zero is called 

irrotational.



9.9 Curl of a Vector Field
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• Let 𝐯 𝑥, 𝑦, 𝑧 =



9.9 Curl of a Vector Field: Example

samer.awad@hu.edu.jo         7 October 202431



9.9 Curl of a Vector Field: Example
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9.9 Curl of a Vector Field: Example
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Vector & Scalar Fields Operations
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• Vector field
𝑑/𝑑𝑡

vector field.

• Vector field
𝜕/𝜕𝑡𝑚

vector field.

• Scalar field 
𝛻𝑓

vector field.

• Scalar field 
𝛻2𝑓

scalar field.

• Scalar field 
𝐷𝒂𝑓

scalar field.

• Vector field
𝑑𝑖𝑣 𝐯

scalar field.

• Vector field
𝑐𝑢𝑟𝑙 𝐯

vector field.



Other Vector & Scalar Field 

Operators
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• Hessian is a square matrix of second-order partial 

derivatives of a scalar field.



Other Vector & Scalar Field 

Operators
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• Jacobian is the matrix of all first-order partial 

derivatives of a vector field.



Basic Formulas for Grad, Div, Curl
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Basic Formulas for Grad, Div, Curl
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• Important tip: Page 410 in textbook gives a useful 

summary of vector differential calculus: grad, div, 

curl.


