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Numbers

* Historical succession of discovering classes of
numbers:

- Natural numbers: counting.
- Integers: we added zero and the —ve numbers.
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The numbers zero and 10

* The number zero and the decimal
numbers were first defined by

Brahmagupta (Indian 598 — 668 AD).

» Al-Khwarizmi (Persian: 780 — 850 AD)
(father of algebra) documented this

work and introduced the Arabic - :
numerals. - Ettanviopesmy

» Older numbering systems such as the
Roman numerals were used: | =1,V
=95, X=10,L =50, C =100, D =500,
M = 1,000.
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Numbers

Historical succession of discovering classes of
numbers:

Natural numbers: counting.
ntegers: we added zero and the —ve numbers.
Rational numbers: fraction of two integers m/n.

Real numbers: rational and irrational (1, e, v2).
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The number 1T

* The Egyptians and Babylonians used
approximate values.

* Archimedes (Greek: 287 — 212 BC)
created an algorithm for calculating 1o
and defined the area of a circle, the
surface area and volume of a sphere.

e T = C/d

1 =3.14159...

« 1= 22/7, 333/106, and 355/113
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The number 1T

* Angles can be measured in radians or rad.
«180° =

* Angle (degrees) x 11/180 = angle (rad)



e Euler’s number e = 2.71828... was
Introduced by Euler (German: 1707
— 1783 AD).

* Natural growth. Compound interest.
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The number e

D (100% per year) 2> 2 JD
D (50% per 0.5 year) 2 1JD x (1+50%)? - 2.25 JD

D (-
D (-

D ("

/12 per month) 2> 1JD x (1+1/12)'? 2> 2.61 JD
/52 per week) 1JD x (1+1/52)°? & 2.69 JD
/365 per day) 1JD x (1+1/365)36> > 2.71 JD

lim of (1+1/n)"as n>= ise =2.71828...
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The number e

, _y1_1.1 L ...
* Euler's formulafore e=) —=7+7+75+ 733"

* For y=e*: value = rate of change = area

/Gradient,=le*.

Youtube: e (Euler's Number) —
Numberphile

e Later we will show that; e+ 1 =0
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* Hypotenuse of isosceles right triar

=12 + 12 =2 = 1.41421...

1

* — = sin(45) = cos(45)

V2
* Paper sizes

2
1 71
rM A4

2

Two Ads make an A3
and have the same proportions

A4
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Square root of 2

A4

T

70%

1/+/2 = 0.7071...

which is close to 70%
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 Euclid (Greek: 365 — 300 BC) (father of geometry)
studied the properties of ¢

» Relationship with Fibonacci i 13

sequence
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4/\/Vhy the golden ratio ((p) IS SO
Irrational
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Numbers

Historical succession of discovering classes of
numbers:

Natural numbers: counting.
ntegers: we added zero and the —ve numbers.
Rational numbers: fraction of two integers m/n.

Real numbers: rational and irrational (1, e, v2).
Complex numbers: v —1.
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Square Roots of Negatlve
Numbers?

* The most commonly occurring application problems
that require people to take square roots of numbers
are problems which result in a quadratic equation.

 e.g. Determine the dimensions of a square with an
area of 9 cm?, 25 cm-.

* Thus, having to take the square root of a negative
number in this context means that such a rectangle
does not exist.
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Motivation: The Cubic Equatlon

* The solution of a general cubic o
equation that contains the square roots //
of negative numbers led to the
iIntroduction of complex numbers by
Cardano (ltalian: 1501 — 1576) after
several attempts by other
mathematicians before him in the 16t
century.

* The term “complex number” was
iIntroduced by Gauss (German: 1777 —
1855) who also paved the way for a
general use of complex numbers.
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Imaginary Numbers

 The solutions to the quadratic equation:

x*=1=0

dalre.
x=+1 and x=-1

 The solutions to the quadratic equation:

xT+1=0

x:+\/—_1 and x:—\/—_l

* Hence, the imaginary number i was introduced: i =+ —1

dale.
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Complex Numbers

By definition, a complex number z is an ordered pair
(X, y) of real numbers x and vy, written as:

z=(xY)

* X is called the real part and y the imaginary part of z,
written as:
x = Re z, y=Imz

* (0, 1) is called the imaginary unit and is denoted by i:
i = (0,1)
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Complex Numbers Notations

» Ordered pair notation: z = (x, y)

* Some references use the notation:
Z=x+1y

Z=x+Yyl

* |In some disciplines, in particular electrical
engineering, j is used instead of i, since i IS
frequently used for electric current:

Z=Xx+]y
Z=x+Yyj

7 October 2024
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Addition & Multlpllcatlon of
Complex Numbers

Notation: z=x+iy

« Addition of two complex numbers :

(x;+iy)+x+iy) =0 +x) +i(y, +y,)

* Multiplication is defined by:
(X, +iy)x, +iy,) = (X%, + ix,y, + ixy, + 12 y,y,).
= (1%, — y1y,) Hi(xy, + x34).
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Examples: Addition &

Multiplication
« Add and multiply z, and z,:

letzy =8 +3iand zo = 9 — 2.
71+t 20=8+3)+ O —2)) =17 + 14,

7122 =@+ 39 - 21)) =72+ 6 + i(—16 + 27) =78 + 11..
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Subtraction & D|V|S|on of
Complex Numbers

« Subtraction of two complex numbers :

g1 — 22 = (x1 — x9) + i(¥y1 — ¥ya).

* Division is defined by:

x1tiyr (xq T y)xg —iys)  Xixe tyiye  Xay1 T X1)2

: ; : 5 5 5 5
Xg t iyva  (xXg t+ 1va)(xg — Iva) X3 + ¥5 X3 + y3
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Examples: Subtraction &
Division

 Subtract and divide z, and z,:

Forz; =8+ 3iandzo =9 — 2i

21— 20 =(8+3i)—(9—2i)= —1 + 5i

21 843 (B+3)9+ 2D 664+ 431 66 43

— = —~ — =— 4+ —i
23 9—2 (9—29+2) 8l +4 8 85
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Complex Plane

« Remember: a complex number z can be written as:

z=(x7y)
* X is called the real part and y the imaginary part of
Z, written as:
(Imaginary

XxX=Rez, y=Imz xis)
Yy

* Hence, it Is possible to ;

present z on an xy-plane 2=x 4+ iy
called the complex plane. i

& | (Real

TN - x axis)

e This is called the Cartesian : axis

coordinate system

(as opposed to the polar coordinate system that will be explained Iater)
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Example: Complex Plane

* Plot 4 — 3i on the complex plane

7 October 2024
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Complex Plane: Addition &
Subtraction

7 October 2024
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Complex Plane: Addition
Example

5+ 2)+2+3)=T7+j5

7 October 2024
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Complex Conjugate Numbers

* The complex conjugate z of a complex number z = x
+ iy is defined by:

Z=Xx—1y
» Mathematically, replace i with —i.

 Graphically, flip z around the x-axis (real axis):

2k yz=x+iy=54+2i

2 Z=x—-1ly=5-2i

- Some references use the notation z ~ for complex
conjugate.
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Complex Conjugate Numbers

* Prove the following:
Zz=x+1ly, z=x—1y
zZ = x> + y?
Z+zZ=2x

Z—Z =21y
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Conjugation Properties
*Rez=x= 2(z+2)
cimz=y= 1(z—2)
elfzisreal »z=x—-2z=72

e [fzisimaginary > z =iy >z =—Z

« Working with conjugates is easy, since we have:

(21 + 22) =21 + 29, (21 — 22) =71 — Zo.

_ i1
(21292) = 4182, (S) =

£

&
ok

#a|
[



30

samer.awad@hu.edu.jo 7 October 2024

Coordinate Systems

* The Cartesian coordinate system is commonly used
to determine the location of a point in two or three
dimensional space.

* The cylindrical and spherical coordinate systems —
that will be addressed later — are also used to
determine the location of a point in two or three
dimensional space.

* The polar coordinate system is used to determine the
location of a point in two dimensional space.

* The polar coordinate system is a special case of the
cylindrical and the spherical coordinate systems.
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Polar Form: Absolute Value

* To find z in the polar form, we need to find r and 6

* The absolute value (aka:
r, modulus, magnitude or
amplitude) of a complex
number in polar form are:

rz‘z‘z\/xz—lryz Im
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Polar Form: Absolute Value

* |z| is the distance between point z and the origin.
The letter “r” stands for radius.

O
* In class: explain relationship to |-5] =“5ji_) (/@
* |z| = constant = circle |
- =(C
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Polar Form: Argument

* The argument (or angle) of a complex number in
polar form is:

argz =6 =tan" Xj
X

* Here, all angles are measured in radians and
positive in the counter clockwise sense.

: . Im
« For z=0, arg z is undefined p
(why?). 2 . z2=x+iy
: — =Re
X
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Polar Form: Argument

* For z # 0, arg z corresponds to the same value
every 2.

* Principal value Arg z:. —m < Argz <m.

cargz=Argz +tn2n (n=0,1,2,...)
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Polar Form

* If the polar form of z was given,
l.e. we know r and 6, we can get the Cartesian
form of z by doing projections on x & y axis.

x =rcosf and y =rsinf

S z=rcos@+irsin@=re

/

Euler’s formula

Z=X+1y
-

L 1 s1nd 0)

J Re




Usin
that

samer.awad@hu.edu.jo 7 October 2024

Euler’'s formula

ci Tailor series expansions we need to prove
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Polar Form: Conjugation

Im

* For complex conjugates:

*argz = —argz

y

z=rel’=x+jy
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Example: Polar Form

- Find the polar formof z =1+ iand z = 3 + i 3V/3:

Polar Form of Complex Numbers. Principal Value Arg z

z =1 + i (Fig. 325) has the polar form z = ”‘U’E (cos %QT + isin 7_1:77'}- Hence we obtain

=)

Izl =V arg 7 = i—'JT *2nmn=0,1,---), and Argz = .-%ﬂ' (the principal value).

Similarly, z =3 + 3 Vgi = 6 (cos %-Tr + i sin %'Tr), z| = 06, and Arg 7 = %’JT []
CAUTION! In using (4), we must pay attention to the quadrant in which z lies, since

tan 8 has period 77, so that the arguments of 7 and —z have the same tangent. Example:

for #1 = arg (1 + i) and 83 = arg (—1 — i) we have tan #; = tan s = 1.

¥

1+ 1+




40 samer.awad@hu.edu.jo

Triangle Inequality

|Z1 + Zz| < |Z1| + |z,|

* |z, + z,| = |z,| + |z,]| when z, and z, lie on the
same straight line through the origin.

7 October 2024
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Polar Form: Multiplication

* Multiplying two complex numbers gives a complex
number whose modulus is the product of the two
moduli and whose argument is the sum of the two

arguments.
If z, = re'% and z, = rye'®
Then 21Z2 — Tleigl T'Zeigz — ’)"11" el(91+02)
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Polar Form: Division

* Dividing two complex numbers gives a complex
number whose modulus is the quotient of the two
moduli and whose argument is the difference of the
two arguments.

If z, = ret?t and z, = rye'?2

Then z,/z;, = re'® /(rye'%2) = ()el(®1762)
2
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Example: Polar Multiplication &
Division
 Multiply and divide z, and z, in polar form:
Letzy = —2 4+ 2iand z3 = 3i. Then 7133 = —6 — 6i,71/72 = % + (%}f. Hence (make a sketch)
1z129] = 6V2 =3V8 = |z4]lzal,  lz1/22l = 2V2/3 = |z4]/]z2l.

and for the arguments we obtain Argz; = 31Tf4, Argzs = *:IT,J' 2,
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Integer Powers of Complex

Numbers

* De Moivre’s Formula: If a complex number is

raised to t
number w
raised to t

ne power n the result is a complex
nose modulus is the original modulus

ne power n and whose argument is the

original argument multiplied by n.

If z=re'?

Then z" = (re'?)=rneind



Example: Integer Powers of
Complex Numbers
. 1. 1)\10
* Find (E + lz)
1z| = 1/32
Argz =mn/4
z10 = (1/32)e'™/?
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Integer Roots of Complex
Numbers

 Need to calculate w =%z > wk=7z

eletz = ret?and

w = Re'®
> wk = Rkek? = 1elf = 7

« Then, R = /7.

7 October 2024
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Integer Roots of Complex
Numbers

owk = Rkelk® — 1pl0 = 5
0 .
e Does Q = - ? The answer is NO!

 Since 6 is determined only up to integer multiples of

2m (i.e. 86 = 0 +n2m), then ¢ = oaner _ % 4 n2

k k

Forn=20,1,2,k —1 we get k distinct values of w.
Further integers of n would give values already

obtained.n = k - n2n/k = 2n|=n = 0 - n2n/k =0.
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Integer Roots of Complex

Numbers
>w=X4%z =4r expl( +nz—n)
wheren =0,1,2,k — 1

* Hence, there are k distinct roots of a complex
number z.

» These k roots lie on a circle of radius %/r and are
separated by 2m/k from their neighbouring root.
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Examples: Integer Roots of
Complex Numbers

. Find the roots of: /1, /1 \/_

I =1, % = I\/3i, W1 = *1, +i, and /1.
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Examples: Integer Roots of
Complex Numbers

 Find the roots of:
21, V1 +i

23. V216

25, Vi

21. /2 (cos Lkar + isinsm), k=1,9,17
23.6, —3 + 3\/3
25. cos (37 + zkm) + isin (7w + 5kmw), k=0,1,2,3

7 October 2024
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13.5 Exponential Function e~

*zZ=x+1y
¢ pZ = ex+iy — pX eiy
* e? = e¥|(cosy + i siny)




Usin
that
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Euler’'s formula

ci Tailor series expansions we need to prove
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Exponential Function e~

* The complex exponential function e? can be
expressed as:

eZ = X ol
e’ = e*(cosy + i siny)

* Don’t confuse the previous definitions with the
polar form of the complex number z:
Z = ’rei@

z = r(cosf + i sinf)

7 October 2024
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Properties of e“

¢ (e7) = e (e%)' == (e?)

2 . . r L, . .
(€®) = (e cos y)p + i(¢"siny), = e'cosy + ie'siny = €.

o pZ1p2; — pZ117Z,
e e12T = 1, but why?
e Also, e'™/? =i, e = —1,e /2 = —j

* How can you plot these on the complex plane?
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Properties of e“

e’ =e* eV = e*(cosy + i siny)

* [e?] = |cosy + i siny| = \/cos?y + sin’y = 1-> pure
imaginary part amplitude=1.

* Hence, |e?| = e* and arge? =y + n2n

» e” Is periodic with period =i2m
_ eZtin2m — oz y

— All values for w = e” are x
within a region = 2m.

— The fundamental region

ofe?is: — Tt <y <Tr.
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Examples: Exponential Function

« Find the Cartesian & polar form of el4-0-6
et A0 = L1405 0.6 — isin 0.6) = 4.055(0.8253 — 0.5646i) = 3.347 — 2.289i

14080 _ 14 _ 4055 Arg 1408 — _q 6

« To prove that e?:e?% = e%%1% for:

2t = EE(I:D'E 1 + isin 1) and el = £4[CDE 1 —isinl)

and verify that it equals e 2e {u:-:rs 1 + sin® 1) = ed = L+ A-D

e Solve e? = 3 + 4i:

To solve the equation e¢* = 3 + 4i, note first that |£”| =¢ =5 x=1In5= 1.609 is the real part of all
solutions. Now, since &® = 5,

x T :
e cosy =3, € siny = 4, cos y = 0.6, siny = 0.8, y = 0.927.

Ans. z = 1.609 + 09271 * 2nmi(n = 0,1, 2, -+). These are infinitely many solutions (due to the periodicity
of €°). They lie on the vertical line x = 1.609 at a distance 277 from their neighbors. ]
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Trigonometric Functions

e Euler’s formula:

e = cosx + i sinx ...(eql) e ™ = cosx — i sinx ...(eq2)

« Add the previous two eq’s (eq1+eq2) to get:

e +e Y =2cosx = COSX = %(e‘x + e“x)

« Subtract those eq’s (eq1 — eq2) to get:

eX —e™™ =2isinx = sinx = Zii(e‘x — e‘lx)

« Similarly, for a complex value z = x + iy:

cosz = (e + e™%) sinz = Zii(eiz — e~'2)
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Trigonometric Functions

* The other trigonometric functions are defined as:

Sin z COS Z
tan z = cotz =—
COS Z Sin z
1 1
SeCZzZ = CSCZ =

COS Z sin z
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Hyperbolic Functions

sinhx = 2(e* — e™) coshx = 2(e* + e™)

1
1 S
L S
]
L]
L]

i — Ty =sinh(x)
. i i == y=cosh(x)
] e y = tanh(x)

-10 1
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Hyperbolic Functions

* The complex hyperbolic cosine and sine are
defined by the formulas:

sinhz = 2(e? — e™%) coshz = 2(e? + e™%)

« Complex Trigonometric and Hyperbolic Functions
Are Related:

coshiz = %(e‘z + e"‘z) = C0S Z
sinhiz = %(e‘z — e“z) = i{sinz

« Conversely:
coSiz = cosh z siniz = i sinh z
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Hyperbolic Functions

* The other trigonometric functions are defined as:

sinh z cosh z
tanhz = cothz =—
cosh z sinh z
1 1
sechz = cschz =

cosh z sinh z
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Examples: Trigonometric &
Hyperbolic Functions

Prove the following equation 6a

(a) cosg =cosxcoshy —isinxsinhy
(6)

(b) sinz = sinxcoshy + icosxsinhy
cos 7 = _%(Ei{:[.‘+iy:| + E—i(:trﬂy}}

= ¢ Y(cos x + isinx) + %EnyGEI — isin x)

1
Z
1
2

(€’ + e ¥cosx — %I'(Ey — e %sinx.
This yields (6a) since, as is known from calculus,

(8) coshy =1(e¥ + e™¥),  sinhy = e — e7Y):
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Examples: Trigonometric &
Hyperbolic Functions

Prove the following equation 7a

(a) |cosz|® = cos® x + sinh® y
(7)
(b) |sinz|® = sin® x + sinh®y

From (6a) and cosh® y=1+ sinh? y we obtain
|cos :-:|2 e l[u:u:ns2 x)(1 + sinh® y) + sin? x sinh? ¥.

Since sin? x + cos? x = 1, this gives (7a), and (7b) is obtained similarly.
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Example: Trigonometric &
Hyperbolic Functions

- cosz = (e + e7) sinz = (e —e7%)...(1)

Solve (a) cos z = 5 (which has no real solution!), (b) cosz = 0, (¢) sinz = 0.

Solution. (a) e®® = 10e” + 1 = 0 from (1) by multiplication by ¢*. This is a quadratic equation in e,
with solutions (rounded off to 3 decimals)

e =Vt = 54+ /25— 1 =9899 and 0.101.

Thus ¢ ¥ = 9.899 or 0.101, e = l,y=*2292 x=2nm. Ans. z = X2nm * 2292i(n=0,1,2,---).

(b) cosx = 0,sinhy = 0by (7a),y = 0. Ans. 7 = i%{lﬂ + 1y (n=0,1,2,--).

(c)sinx = 0,sinhy =0by (7b),Ans.z = tnm(n=20,1,2,---).
Hence the only zeros of cos z and sin 7 are those of the real cosine and sine functions.
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Natural Logarithm Function

* The natural logarithm of z is denoted by:
w=Inz-e" =2z for z+0

e Let z = ret?:

2> Inz=Inr+i6 OR Inz=Inr+iargz

 Since arg z corresponds to the same value every
2m, In z has infinite values (multivalued).

* The value of In z corresponding to the principal
value Arg z is denoted by Ln z:
Lnz=Inr+iArgz
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Natural Logarithm Function

* Ln z is called the principal value of In z:
Inz=In|z|+iArgz
Inz=Lnz+in2n

* If z is positive real, then Argz=0and Ln z
becomes regular In(x) function from calculus.

* If z is negative real, (remember In(-x) is not
defined in calculus):
Inz=In|z|+iArgz=In|z|+im
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Natural Logarithm Function

* From:Inz =Inr + i0, it follows that:

elnz = eIn7pl® — 7 (single-valued)

» Since arg(e?) = y + n2m , it follows that:

Ine? = z + i n2m (multi-valued)

Remember:
Z is periodic > e? = e#Ein2n
Ine? = In e?E ™27 = |n X tWEIN2T — » 4 jy +in2n
=zt in2n
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Examples: Natural Logarithm

MNatural Logarithm. Principal Value

Inl1 =0, 21, +dri, .- - Inl =10

In 4 = 1.386204 + 2nmi Ln4 = 1.386294
In(—1) = *i, =31, £5m1,- - Ln(—=1)=mi
In (—4) = 1.386204 + (2n + )i Ln(—4) = 1.386294 + i

Ini = 7rif2, =37 /2, Smif2, - Ln: = /2

In4i = 1.386294 + 771/2 = 2nmi Ln4i = 1.386294 + 7ri/2
In(—41) = 1.386294 — 77i/2 £ 2nmri Ln (—4:) = 1.386294 — 1i/2

In(3 —4i)=In5 +iarg (3 — &) Ln (3 — 4i) = 1.609438 — 0.927295:

= 1.609438 — 0.927205; * 2nmmi (Fig. 337)
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Examples: Natural Logarithm

iL?

-0.9 + 61 -

—-0.9 + 471

-09 +2x -

0
-09 -

—
3 —
-

—0.9-2rx |-

—— | — - ———

Some values of In (3 — 4i)
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Natural Logarithm Function

* The familiar relations for the natural logarithm
continue to hold for complex values:

In(z,z,) = In(z,) + In(z,)
In(z,/z;) = In(z,) — In(z,)
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Example: Natural Logarithm

* Prove that In(z,z,) = In(z,) + In(z,) and that
Ln(z,z,) # Ln(z,) + Ln(z,) forz, = z, = -1

Let

It we take the principal values
Lnz; = Lnzs = i,

then (5a) holds provided we write In (z129) = In 1 = 277i; however, it is not true for the principal value,
Ln(z7z9) = Lnl = 0. ]
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General Powers

*Z=x+1y

cln z

=e =e (c complex,z + 0).

e In z is multivalued = z°¢ is multivalued.

7 October 2024

* Hence, there is a principal value of z¢ which is:

principal(z€) = e "%
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General Powers

C clnz

ez¢ =e¢ (c complex,z #+ 0).

elfc=n=1,2,...then z" is single-valued and
identical with the usual nth power of z.

lfc=n=-1,-2, ... then z" is also single-valued .

e l[fc=1/n, wheren=2, 3, ..., then:
7€ = 71/n — 7%

- Same finite n roots explained previously.
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General Powers

clnz

ez¢ =e¢ (c complex,z #+ 0).

* If c=m/n, the quotient of two positive integers, the
situation is similar, and z¢ has only finite n
distinct values (n roots).

* However, if c is real irrational or complex, then z¢
Is infinitely many-valued.

« Remember: an irrational number is any real
number that cannot be expressed as a ratio of

integers. Example: m, V2.
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Example: General Powers
- Find the values of: i, (1 +i)%7t:

. . T _
it ="M =exp(ilni) = exp[i(;i + ZHTTE)] = g~ (m/DF2InT

All these values are real, and the principal value (n = 0) is e~ /2,

Similarly, by direct calculation and multiplying out in the exponent,

(1+ 2= exp[2—)In(1 + )] =exp[(2—1i){lnV2+ %TTE * 2nmi} |

= 2e™/4%27 [gin (3 In 2) + i cos (3 In 2)].
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Matrices

« A matrix is a rectangular array of numbers or
functions which we will enclose in brackets.

* The numbers (or functions) are called entries or,
less commonly, elements of the matrix.

- - d1n 12 d13

o1 d29 da3 |,

G331 dzz dag

e”%  2x? 4
: la; as as],
. 1
e 4x 5
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Linear Systems

* Linear systems is a major application of matrices,

example:
4I1 + EI'IE + ";'Ig = 6

611 — l]fg = 20
511 — EIE + X3z = 10

* where x4, X,, X5 are the unknowns. We form the
coefficient matrix “A” (a,, = zero):
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Linear Systems

* We form another matrix, the augmented matrix of
the system “A”:

4 6 0 6 4x1 + 6x9 + Yx3 = 6
A=[6 0 -2 20|, remember: 6x1 — 2x3 =20
5 —8 ] 10 511—3I3+ Xg = 10

» Matrix operations will be used LATER to find the
values for x,, X,, X5 (the solution for the linear
system).

* For the previous system: x; = 3, x, = 0.5, x; = -1
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General Concepts and
Notations

* We shall denote matrices by capital boldface letters
A B,C, ..

* or by writing the general entry in brackets 4 = [ajk].
e m X n matrix is a matrix with m rows and n columns .

* m X n is called the size of the matrix.

a1 19 T 1n

21 o2 T U2y
A — [ij] —

_”ml m2 S mn
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General Concepts and
Notations

 The following matrices have the sizes 2 x 3, 3 x 3,
2Xx2,1x3,and 2 x 1 respectively.

(0.3

| 0

_E_I

—-0.2

22

4x

16 |

laq

117 12

(a1 daz
(31 d32
s ds],

3

dagz |s

(a3

|
B3| =t
L

7 October 2024



Notations

* If m=n, we call 4 an n x n square matrix.

* Then its diagonal containing the entries a,4, a,,, ..

a . Is called the main diagonal of A.

11

a1

31

samer.awad@hu.edu.jo

General Concepts and

a2

29

D)

* If m#n, we call 4 an n x m rectangular matrix.

* A vector is a matrix with only one row or column.

i3

{og

a3 )

* |ts entries are called the components of the vector.

7 October 2024
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General Concepts and
Notations

* We shall denote vectors by lowercase boldface letters
ab, ..

* or by its general component in brackets a = [aj].
* row vector

a=[ag ag -+ dapl For instance, a=[—2 5 08 0 1]

e column vector:

fl'l — —
4
bo
b= . |. For instance, h = 0].
' —7
by, -
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Matrix Addition and Scalar
Multiplication

Equality of Matrices

Two matrices A = [aj,] and B = [b;,] are equal, written A = B, if and only if
they have the same size and the corresponding entries are equal, that is, a;y = byq,
ajg = by2, and so on. Matrices that are not equal are called different. Thus, matrices

of different sizes are always different.

a11 d12 4 ()
A= and B = .
@z dz2 3 -1

a1 =4, ape = 0,

A=BE if and onlly if
oy = 3, g = —1.
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Matrix Addition and Scalar
Multiplication

Addition of Matrices

The sum of two matrices A = [aji] and B = [b;] of the same size is written
A + B and has the entries aj;, + bj, obtained by adding the corresponding entries
of A and B. Matrices of different sizes cannot be added.
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Matrix Addition and Scalar
Multiplication

Scalar Multiplication (Multiplication by a Number)

The product of any m X n matrix A = [a;;] and any scalar ¢ (number c) is written
cA and is the m X n matrix cA = [caj, | obtained by multiplying each entry of A

by c.

If A=|0 09|, then —-A=| 0O —09], —A=| 0 1|, OA=|0 0]

9.0 —4.5] —9.0 4.5 1o -5 0 0O
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(d)
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Rules for Matrix Addition

A+B=B+A
A+B)+C=A+B+C)
A+0=A
A+ (—A)=0.

(written A + B + C)
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(a)
(b)

(d)

Rules for Matrix Scalar

er.awad@hu.edu.jo

Multiplication

clA+B)=cA +cB
(c + k)A = cA + kA
c(kA) = (ck)A
1A = Al

(written ckA)

7 Octo

ber

2024
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Matrix Multiplication

* The entry c; Is obtained by multiplying each entry in
the jth row of A by the corresponding entry in the kth
column of B and then adding these n products.

A B = C
[m ¥ n||nXp] =[m*Xp].

n=23 p==2 p=2
A Y .
i N ™y i N
~ — =] [ =] [~ = =
@11 %z B3 by by ‘11 Sz
42 G5) Ogp Ogg byy By | = By Oy . s
i = m =
@31 933 933 by, by, €11 ©3z
Sa1 %a2 Ty i1 Caz
L | ] L _— o

Motations in a product AB = C
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Matrix Multiplication

« Matrix multiplication means multiplication of matrices
by matrices.

Multiplication of a Matrix by a Matrix

The product C = AB (in this order) of an m X n matrix A = [a;;] times an r X p

matrix B = [b;] is defined if and only if » = n and is then the m X p matrix
C = [cj] with entries

T
(1) e = O, apbye = anbig + ajpboy + -+ + Ajpbyg
=1

A B
[m X n][n X p] =[mXp].

|
2
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Matrix Multiplication

« Matrix multiplication means multiplication of matrices
by matrices.

Multiplication of a Matrix by a Matrix

The product C = AB (in this order) of an m X n matrix A = [aj, | times an r X p

matrix B = [b;] is defined if and only if r = n and is then the m X p matrix
C = [¢j] with entries

T
(1) e = 2, agby, = ajby + apbey + -+ + ajnbyx
=1
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Example1: Matrix Multiplication

i 5 -1z -2 3 1 22 -2 43 42
AB=| 4 0 2|5 o 71 s8|=[2 -16 14 6
-6 -3 2f|9 -4 1 1] |[-9 4 -37 -28]

Herecpp =324+ 55+ (—-1)-9= Ei.mldi::uu:un.Theentr}rinthebnxisc'ggl =4-34+0-T+2-1=14
The product BA is not defined. ]




samer.awad@hu.edu.jo 7 October 2024

Example2,3: Matrix Multiplication

* Matrix multiplication is not commutative

- AB # BA
« Examples: rectangular matrices:

Multiplication of a Matrix and a Vector
4 2|13 4+-3+2-5 22 314 2
= = whereas 15 undefined.
1 8| |5 l-3+8-5 43 5|1 8

Products of Row and Column Vectors

18

1 1 3 6 1

3 6 1]|2|=[19]. |2|[3 6 1]=| 6 12 2|
4 4 12 24 4

e -
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Example4: Matrix Multiplication

* Matrix multiplication is not commutative
- AB # BA
« Examples: square matrices:

09

| | —1 | 0 0 —1 | | | 99
= but = .
100 100 | 0 0 1 —1 100D 100 —99 —99

* Note that this also shows that AB=0 does not
necessarily imply BA=0 or A=0 or B=0.
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Matrix Multiplication Rules

(a) (kAB = KAB) = AKB)  written KAB or AKB
(b) ABC) = (AB)C written ABC
(c) (A+ B)C=AC + BC

(d) CIA+B)=CA + CB
(e) Integer powers of a mat: A2 = AA, A3 = AAA ...efc

(b) Associative law.
(c) and (d) Distributive laws.
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A o
&~ Matrix Multiplication in Matlab
>> a=[1 2; 3 4]
a:
1 2
3 4
>> b=[1 0; 1 0]
b =
1 0
1 0
>>a*b
dns =
3 0

~
o
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A o
&~ Matrix Multiplication in Matlab

>> a*b
ans =
3 0
7 0

>> b*a
ans =

N DN
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/”i’:l\:\) . . . . .
& Matrix Multiplication in Matlab

>> c=[a,b]
C:
1 2 1 0
3 4 1 0
>> a*c
ans =
/7 10 3 O
15 22 7 O
>> c*a

?7?? Error using ==> mtimes
Inner matrix dimensions must agree.
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/{24// . . .
Matrix Multiplication: Method #2

« Since matrix multiplication is a multiplication of rows
iInto columns, we can write the defining formula more
compactly as:

f‘jk=ﬂj‘hk, j=1,'--,m; k:]!..”!-lt}!-

where a; is the jth row vector of A and b, is the kth
column vector of B:

EJ'”_E

Eil:l;l‘.lk = ['”_;il djg " ﬁ;.is-a] = 11 + ﬂjgf}gk + " T {?jﬂf?ﬂh.

| buid.
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(@\\xample Matrix Multiplication:
¥ Method #2

If A = [ay]isof size 3 % 3 and B = [By] is of size 3 X 4, then

apby  ayby  ajbg  ajby

|:_'—'1-_:| AB = i.-"lgb]_ thﬂ :.-"IEIJ:; th4 .

| aghy  aghs aghg  aghy |

Takinga; = [3 5 —1).ag =1[4 0 2] etc., verify (4) for the product in Example 1.
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Matrix Multiplication: Method #3

 Parallel processing of products on the computer is

facilitated by a variant method #1 for computing
C=AB.

* In this method, A is used as given, B is taken in terms
of its column vectors, and the product is computed
columnwise:

AB = A[by bz --- by] =[Aby Aby --- Ab,].

* Columns of B are then assigned to different
processors, which simultaneously compute the
columns of the product matrix Ab,, Ab,, etc.
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% /xample Matrix Multiplication:
Method #3

To obtain

from (5). calculate the columns

BN | R W

of AB and then write them as a single matrix, as shown in the first formula on the right.




2
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/\
P 1>’ Motivation of Multiplication
\

by Linear Transformations

 Let us now motivate the matrix multiplication by its
use in linear transformations. For n = 2 variables
these transformations are of the form:

V1 = djiX1 + digXsg

Vo = d21X1 + dgaX9

7 October 2024

* In these equations, we may relate an x,x,-coordinate

system to a y,y,-coordinate system in the plane:

M

| Y2 )

ZA‘:{:

11

i a1

19,

aza |

X1

| X2 ]

aj11xX1 + ajaxs

| dg1X1 T+ d29X2 |
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>” Motivation of Multlpllcatlon
by Linear Transformations

* Now suppose further that the x,x,-system is related to

a w,w,-system by another

{11} r’u
= Bw =
Xg ba1

X =

EJ‘IE [
bas | |

Inear transformation:

W1

|:f111‘lr1;‘1 + EIIE“'E

Wo ba1wy + bagwsa

* Then the y,y,-system is related to the w,w,-system
indirectly via the x,x,-system, which is a linear

transformation:

‘11 €12

y = Cw

| 21 C22

C11W1 + C1aWa

Wa

CoiWq T+ CoaWa
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/~’(<> Motivation of Multlpllcatlon

N
by Linear Transformations
« Substituting x into y:
v1 = aiilbyiwy + bigwsa) + ajalbgiwy + bagwsa)
= (a11b11 + a1aba)wy + (a11biz + aiabagws

vg = asi(byiwy + brawsa) + asslbaiwy + bagws)

= (ag1b11 + agaboilwy + (ag1b12 + agsbasiws.

« Comparing this with y=Cw:
c11 = appbrr + ayebay c12 = apibiz + ayabas
cg1 = ag1byy + azabay caa = dg1bya + azabas.

- C=AB
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* |t provides a transition from row vectors to column

vectors and vice versa.

1n

Uapn

11

a12

a1

a2y

thnml

2
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Examples: Transposition

_ 5 4 3 0 T 3 8
lT
=| —8 0 8 —1 sl =0 -1
()
] | 0 |1 -9 4 | | 7 5
™ — T
6 6
T _ —
3T =2 2| =[6 2 3]

7 October 2024
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Rules of Transposition

() AH"=A

b) (A+B)'=A"T+B'
(c) (cA)" = cAT

(d) (AB)" = B"A".

* Note that in (d) the transposed matrices are in
reversed order.

7 October 2024
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Symmetric and Skew-
Symmetric Matrices

« Symmetric and Skew-Symmetric Matrices are square
matrices whose transpose equals the matrix itself or

minus the matrix.

34

AT=A (thus aj = Aik), AT = —A  (thus ai; = —da;k. hence a; = 0).

Symmetric Matrix Skew-Symmetric Matrix

« Example:
[ 20 120 200 o 1 -3
A =120 10 150 1s symmetric, and B=| -1 0 =2 15 skew-symmetric.
200 150 30 | i 2 0]
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Triangular Matrices

* Upper triangular matrices: square matrices with
nonzero entries only on and above the main diagonal.

* Lower triangular matrices: square matrices with
nonzero entries only on and below the main diagonal.

* Any entry on the main diagonal of a triangular matrix
may be zero or not.

« Example:
_ _ _ _ '_3 | | |-
| 4 2 2 I I
] 3 9 =3 I I
[ ] I 3 2 8 —1 I
| 2 | 0 2 |
I I 5] T 6 8
- - - - | y 3 6

Upper triangular Lower triangular



Example: Diagonal, Scalar, &
Unit Matrices

Diagonal

b

Scalar

|dentity
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Diagonal, Scalar, & Unit
Matrices

* Diagonal matrix: square matrix that can have nonzero
entries only on the main diagonal.

« Scalar matrix S: diagonal matrix with all diagonal entries
having the same value = c. Why call is scalar matrix?
AS =5SA=CcA

* Unit or identity matrix I: scalar matrix with ¢ = 1. Why
call is unit matrix?
Al =TA=A
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Linear Systems of Equations

* A linear system of m equations in n unknowns X4, ..., X,
IS a set of equations of the form:

11Xy T 0 T AipXp = fl']_
doyX1 T - T d9,X, = fl'g
dpm1X1 + + @pnXn = Pm

* The system is called linear because each variable
appears in the first power only.
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Linear Systems of Equations

ay1xy + - + areXa = by
ag1xy + - + asnX, = bo
dpm1X1 + + QupnXn = b
*a,, ..., a_. are given numbers, called the coefficients of
the system.
*b., ..., b, 0N the right are also given numbers.

* If all b=0 - homogeneous system.
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Matrix Form of the Linear
System

* From the definition of matrix multiplication the "m”
equations may be written as:

Ax=bh

coefficient matrix A = [a;] is the m X n matrix

— - X1
11 a1z e d1n — =
fl'l
21 a2z T a2n ]
A= ., and x=| - and b =] .
| b
_ﬂml Um2 ":11?11".!-_
In
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Matrix Form of the Linear
System

ajpxy + - + aipkn = b
agxy + -0 + dgpXy = by >  Ax—h
Am1X1 + + @ Xpy = b
— - X1
ay]  dz dn - -
fl'l
agy dgz - dan _
A= ., and x=| - and b =] .
_bm_
_ﬂml 2 n
_ 0o
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Matrix Form of the Llnear
System

* The matrix below is called the augmented matrix of the
system. The dashed vertical line could be omitted:

Eil'l

1
|

tnl T Amn
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Example Existence and Uniqueness
of Solutions — 2 unknowns

If m = n = 2, we have two equations in two unknowns xy, Xo

ap1x1 + ayzxz = Iy

a=zpx) + azzxs = bs,
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Example Existence and Uniqueness
of Solutions — 2 unknowns

* Interpret x4, X, on the x,x,-plane.
* The two equations represent straight lines.

« Solutions are points on both lines at the same time.

(@) Precisely one solution if the lines intersect
(b) Infinitely many solutions if thf lines coincide

(c) Mo solution if the lines are parallel



Example: Existence and Uniqueness
of Solutions — 2 unknowns

11+:1FE:1 11+IE:1 11+12:l
EE-I—I-E—[] .El!-1+2fl:2=2 1-1+I-2=|:|
Cage (a) Cazse (b) Case (¢)
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Example Existence and Uniqueness
of Solutions — 2 unknowns

* If the system is homogenous, Case (c) cannot happen,
because then those two straight lines pass through the
origin, whose coordinates constitute the trivial solution.

» Similarly, our present discussion can be extended from
two equations in two unknowns to three equations in
three unknowns.

* Instead of straight lines we have planes and the
solution depends on the positioning of these planes in
space relative to each other.
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Example Existence and Uniqueness
of Solutions — 3 unknowns

Inique solution

Infinitely
many solutions

Mo solution
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Gauss Elimination and Back
Substitution

* The Gauss elimination method can be motivated as
follows. Consider a linear system that is in triangular
form (in full, upper triangular form) such as:

* Rearrange eq. 2:
X, =—26/13 = =2

 Back substitution: substitute x, into eq. 1:
X, = 2(2—-5x2) =2(2—-5.(-2)) =6
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Elementary Row Operations. Row-

Equivalent Systems

* Elementary Row Operations for Matrices:
- Interchange of two rows.
- Multiplication of a row by a nonzero constant c.
- Addition of a constant multiple of one row to
another row.

« CAUTION! Row operation not for columns!
* System S, = row operations = system S,

* S, and S, are called row equivalent systems

* Row-equivalent linear systems have the same set
of solutions.
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Example 1: Gauss Elimination and
Back Substitution

* This gives us the idea of first reducing a general system
to triangular form. For instance, let the given system be:

25 2]

k-

2x1 + dxg9 =
Its augmented matrix 1s :
—4xq + 3xg9 = —30. | —4 3 —30]

» We eliminate x, from the second equation, to get a
triangular system.

2 5 2
Row 2 + 2 Row 1 0 13 —26
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Example 1: Gauss Elimination and

Back Substitution
2 5 9 2xq + 5xg9 = 2
y Doy { }ﬁ 13x0 = —26
Row 2 + 2 Row 1 0 13 —-26 —A 2 =

* This is the Gauss elimination for 2 unknowns giving
the triangular form, from which back substitution
now yields x, = —2 and x, = 6.
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Example 2: Gauss Elimination:
Electrical Network

» Solve the linear system:

X, — .1'2'|' Xgq = ()
_.I'J_‘|' Xg — Xg = ()
10xg + 25xg = 90

20xq + 10w = 8.

7 October 2024
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Example 2: Gauss Elimination:
Electrical Network

* Derivation from the circuit below

G Node P: iil— iE + 1'3 = 0
!:1 !:3
Node @: —iil + 5.2 — 1'3 = 0
ED"JL il 10 0 il iEiCI".-"
; Right loop: l[:la'E + 251'3 = 0
2
P 15 0 Left loop: 207, + 104, = 80

X1 = i1, X2 = i2, X3 = ig
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Example 2: Gauss Elimination:
Electrical Network

» Creation of augmented matrix A and pivot 1:

Augmented Matrix A

Pivot | —— [ (1) -1 1 0
—1 1 -1 1 0
Eliminate ——s [ 1o 25 i Q0
i 20 10h o | E-uD_
* Elimination of x,
1 -1 1! 0
00 0, 0 Row 2 + Row |
0 10 25 i o0
_EI a0 =20 : ECI_ Row 4 — 20 Row 1
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Example 2: Gauss Elimination:
Electrical Network

* Creation of pivot 10:

1 - 1 1 0
|
Pivot 10 =—s | O 25 | oag
!
Eliminate 30— | 0 30 —20 : 80
0 () o ! 0

* Elimination of x,

1 -1 1 | 0

0 10 25 i Q0

0 0 —95 : — 190 Row 3 — 3 Row 2
| O 0 o ! 0]
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Example 2: Gauss Elimination:
Electrical Network

* New system equations:

X1 — .1'2‘|‘ Ag = ()
10xe + 25xg = Q0
— Q5xq = — 190

0= 0.

7 October 2024
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Example 2: Gauss Elimination:
Electrical Network

» Back Substitution. Determination of x5, X,, X4 (in this

order):
— Q5xg = —190 I3=é3=3[r5|.
10xo + 25xgq = 90 Xo = 'ﬁﬂgﬂ — 25xg9) = ia = 4 [F'L
X1 — Xo+t+ xg= [ .r1=.rg—x3=é1=3[ﬁ'|.

where A stands for “amperes.” This 1s the answer to our problem. The solution is unique.
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Elementary Row Operations. Row-
Equivalent Systems

* A linear system is called determined if number of
equations m = number of unknowns n, as in example 1.

* overdetermined if it has more equations than unknowns,
as in example 2.

« underdetermined if it has fewer equations than
unknowns.
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Elementary Row Operations. Row-
Equivalent Systems

* A system is called consistent if it has at least one
solution (thus, one solution or infinitely many
solutions).

* A system is called inconsistent if it has no solutions
at all, as:

x,+x,=1

x;+x,=0
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Gauss Elimination: The Three
Possible Cases of Systems

« Systems that have a unique solution: Examples 1 &
2 solved above.

« Systems that have infinitely many solutions:
Example 3 solved below.

« Systems that don’t have any solution: Example 4
solved below.
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Infinitely Many Solutions EXxist

* Three equations and four unknowns.

[ 3.0

0.6

2.0

1.5

—0.3

2.0
1.5

—0.3

— 5.0
—5.4
2.4

samer.awad@hu.edu.jo

Example 3: Gauss Elimination if

7 October 2024
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Example 3: Gauss Elimination if
Infinitely Many Solutions EXxist

* Circle pivot 1 and box terms of equations:

+ 2.0x9 + 2.0x3 — 5.0x4 = 8.0

D6xq| + 1.5x0 + 1.5xg — S5dxq4 = 2.7

1.2xq — 0.3x0 — 0.3xq + 2.4xq4 = 2.1.

* Eliminate x;:

3.0 2.0 20 —=5.0

0 1.1 1.1 —44

REow 2 — 0.2 Row |

—
—

0 —1.1 —1.1 44 | —1.1| ERow 3 — 0.4 Row |

b —
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Example 3: Gauss Elimination if
Infinitely Many Solutions EXxist

* Circle pivot 2 and box terms of equations:

3.0x; + 2,000 + 20xg — 5.0y = 8.0

+ l.lxg — 4453 = 1.1

_I.I.l'g

* Eliminate x.;:

0 0 0

(30 20 20 =50

I
I
0 L1 L1 —-44 ! 1.1
I
I

— 1.1xg + 44xy = —L1.

8.0

I:Il Rll'n.".-' _-"- + Rll'n.".-' 2
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Example 3: Gauss Elimination if
Infinitely Many Solutions EXxist

* Previous elimination gives:
30xy + 20x2 + 20xq — 50xq4 = 8.0

l.1xe + l.lxg — 4.4xq = 1.1
0=0
 Fromthe 2 eq: xs =1 — x3 + 4xa.
* From this and the 1steq: x1 =12 — x4.

* X, and X, depend on x5 and x, = X5 and x, remain
arbitrary and we have infinitely many solutions.

» If we choose a value of x; and x,, then the corresponding
values of x, and x, and are uniquely determined.
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Example 4: Gauss Elimination if no

Solution Exists

* This case happens when gauss elimination produces a

contradiction.

* Three equations and three unknowns.

3

-

G

y

|

y

|
|
4

3
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Example 4: Gauss Elimination if no
Solution Exists

* Circle pivot 1 and box terms of equations:

-,\E-ij-l-._xg-l- Xg = 3

‘I‘ IE‘I' .I':;—'I:I

IS.IJ_‘I‘EIE‘I"LI-.I':;:'EL

* Eliminate x;:

I
I

0 -5 3 -2 Row 2 — Z Row |
I

=
I
-
I
-

Row 3 — 2 Row |
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Example 4: Gauss Elimination if no

Solution Exists

* Circle pivot 2 and box terms of equations:

* Eliminate x.;:

3.1'1‘|‘E-.I'3‘|‘ .1'3_= 3

L rxolt axq = —2
C 39+ 3xg

— 2xo|+ 2xg = 0.

]E. ]E_ll'n.".-' -"- — D ]E_ll'n.".-' _-'
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Example 4: Gauss Elimination if no

Solution Exists

* Previous elimination yields:

3xy + 2x0 + xg

1 1
— X2 T FXg
()

3

— 2

12.

* The false statement 0=12 shows that the system has no

solution.
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Row Echelon Form and Informatlon
From it

* At the end of the Gauss elimination the form of the
coefficient matrix, the augmented matrix, and the
system itself are called the row echelon form.

* In it, rows of zeros, if present, are the last rows,

example 4: B -
- = i

0 —3 3 |, -2/
I

0o 0 0 ' 12

* The original system of m equations in n unknowns has
augmented matrix [A|b]. This is to be row reduced to
matrix [R]f].
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34 ,f/\\
<> Row Echelon Form and
Information From It

* At the end of the Gauss elimination the row echelon
form of the augmented matrix [R|f] wil

1 T2

'

be:

* Here r<m, r,, # 0, and all entries in blue are zero.

* The number of nonzero rows, r, in the row-reduced

coefficient matrix R is called the rank of R and also the

rank of A.
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35 //\\
<>’ Row Echelon Form and
N\ .

Information From It

* Possible solution cases:

* Unique solution: if r=n. f,, to f_ if present are zero. In
example 2, r=n =3, and m=4.

* Infinitely many solutions: if r<n and f_,, to f if present
are zero. See example 3.

* No solution: if r<m and at least one of the numbers f,,
to f_ is non-zero. See example 4.
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& Linear Systems in Matlab

» Eg 2: unique solution
linsolve([1-11;01025;20100],[0;90;80])
ans =

2.0000

4.0000

2.0000

 Eg 3: infinitely many solutions
linsolve([322-5;061515-54;1.2-0.3-0.324],[8;2.7;21])
Warning: Rank deficient, rank = 2, tol = 6.8752e-015.
ans =
2.2500
0 xo =1 — xg + 4xa.
0
-0.2500 X1 =2 — xa
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& Linear Systems in Matlab

* Eg 4: no solution
linsolve([321;211;624],[3;0;6])
Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 3.364312e-018.

ans =

1.0e+016 *

1.8014
-1.8014
-1.8014
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/.4 Linear Independence of
Vectors

* A linear combination of m vectors ay, ..., &y IS:

Clagp T+ Cagg T 0 T Cplam)
where c,, C,, ..., C,, are any scalars. Rearrange:
c1acpy + coay + 0+ Cpag = 0.

* This can be satisfied if all ¢'s are zero, because then it
becomes 0 = 0.
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Linear Independence of Vectors

c1acpy + coay + 0+ Cpag = 0.

* If this equation also holds with scalars not all zero, we
call these vectors linearly dependent. Otherwise, they
are linearly independent.

* Linear dependence means that we can express at least
one of the vectors as a linear combination of the other
vectors. For example, if c,#0:

arpy = Keawsy + - + K8 where ﬁ.’j = —{Tj';"f‘l.
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ExampleO: Linear
Independence of Vectors

* The independence of TWO vectors is easy to identify
« Example:

a, =[2 3 15]

a,=[1 1.5 7.5]

a, = 2a, > dependent
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Example1: Linear
Independence of Vectors

The three vectors

agy =[ 3 0 E 2

ag,=[—6 42 24  54]

ag, =[21 —21 0 —I15]

are linearly dependent because
6acyy — Fag — ag) = 0
A 13 '-Iﬂfg'] i T .

 Easily checked but not so easy to discover.

A systematic method can be done by calculating the
rank of a matrix explained next.
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Rank of a Matrix

* Definition: The rank of a matrix A is the maximum
number of linearly independent row vectors of A. It is
denoted by rank A.

* Matrix A; = row operations - matrix A,

* Definition: A, and A, are called row equivalent matricies.

- Matrices in Gauss elimination steps are row-
equivalent.

 Theorem: Row-equivalent matrices have the same
rank.
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Example1: Rank of a Matrix

* The following three vectors (given previously):
agy =[ 3 0 E z

ag,=[—-6 42 24 54

agy =[21 —-21 0 —15]

can be represented by the matrix:

A=|-6 42 24 M | (given)

0 42 28 58 | Row + 2 Row |
0 -21 -14 -29 | Row3 — TRowl
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Example1: Rank of a Matrix

3 0 2 2

0 28 58 | Row?2 +2Rowl

0 21| —-14 -29 | Row3 — TRowl

3 0 2 2

0 42 28 58
0 0 0 0| Row3 + zRow2

 The rank of a matrix in row-echelon form is the
number of non-zero rows.
* Hence rank A=2

7 October 2024
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Prewous Examples: Rank of a Matrix

2 3 2 2 5 2
—>
—4 3 30 0 13 26

Hence, rank = 2

[ (1) -1 1 0] 1 -1 1 0] R ! 0]
-1 1 -1 0 0 @ 25 90 0 10 25 90
— —
o 10 25 90 0 [30] —20 =0 0 —05 —190
|20 10 0 80 0 0 0 0] L 0 0
Hence, rank = 3
3.0 2.0 2.0 =350 5.0 3.0 2.0 2.0 8.0 30 20 20 =50 8.0
0.6 1.5 1.5 —-54 2.7 | =— |0 1.1 1.1 1.1 | =— |0 1.1 1.1 —44 1.1
12 —03 -03 24 21| 0 -1l -1l ~1.1 0 0 0 0 0 |
Hence, rank = 2
ER 3| 3 2] 3 | ERE 3 |
21 0| =—>» |0 -+ 3§ -2 0o -2 F -2
6 2 4 6 | 0o -2 2 0| 0 0 0 12
=3

Hence, rank
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Linear Independence of Vectors

 Theorem 2: Linear Independence and Dependence
of Vectors: p number of vectors are linearly
iIndependent if the matrix formed with these vectors has
rank p. Otherwise linearly dependent.

If Rank(A) = # of vectors = vectors are independent

 Theorem 3: Rank in Terms of Column Vectors: The
rank r of a matrix A equals the maximum number of
linearly independent column vectors of A.

« Hence A and its transpose AT have the same rank.
Proof: see textbook.
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A>Example1: Rank in Terms of

AN
Column Vectors

Recall the matrix from example1 above:

2
A=|—-6 42 24 34

Performing the following column operations concludes -
as before - that rank = 2:

Column 3 = 2 Column 1 + 3 Column 2 and Column 4 = £ Column 1 + 3¢ Column 2.
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Linear Independence of Vectors

 Theorem 4: Linear Dependence of Vectors:
Consider p vectors each having n components. If n<p
then these vectors are linearly dependent.

° Eg -l —1 l

o e o
=)
|
LY
L
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Linear Independence of Vectors

rref : Reduced row echelon form
>>rref ([1-1 ;010 ;2010 ])

ans =
1 0
0 1
0 O

>>rref ([5-1 ;010 ;2010 ])

ans =
1 0
0 1
0O O

>>rref ([5-1 ;010 ;200 ])

ans =
1 0
0 1

0 O
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7.5 Solutions of Linear Systems:
Existence, Uniqueness

* Rank gives complete information about existence,
uniqueness, and general structure of the solution set of
linear systems as follows.

* A linear system of equations in n unknowns has:
— a unique solution if rank(4) = rank(4) = n.
— infinitely many solutions if if rank(4) = rank(4) < n.
— no solution if rank(4) # rank(A).
* If solutions exist, they can all be obtained by the Gauss

elimination. (This method will automatically reveal
whether or not solutions exist
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Prewous Examples: Rank of a Matrix

¥
il

0

3

2
13 —26

rank(4) = rank(4) = n = 2 = unique soln

1

0

0
0

—1

0

1

0

— 190

0
90

0

rank(A) = rank(A4) = n = 3 = unique soln

rank(4) = rank(4) =

E

0

0

0
0

1.1
0

2
1
3
0

1

0

1

1

1
3
0

(30 20 20 -50

—4.4

0

3

I =2

12

=

8.0 |
1.1

0

=

2 < (n=4) - infinite soln’s

rank(4) # rank(A) = no soln
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Determinants

» Determinants were originally introduced for solving
linear systems. They have important engineering
applications in eigenvalue problems (Sec. 8.1),
differential equations, vector algebra (Sec. 9.3), and in
other areas.

A determinant of order n is a scalar associated with an
n X n matrix:

apy apg - 4

az1 4dgz " Gzn
D =detA =

dnl dnp2 e dnn
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Second-Order Determinants

A determinant of second order can be defined by:

D =detA = = 1199 — d12091.

7 October 2024
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Third-Order Determinants

A determinant of third order can be defined by:

111

D = |a

3]

S
(12

(g

13
{29

tlgg

dga d23

D = ayyageass — ayiagzaze + dgiaisdsy — dz1dy2asg + azidisdsz — 31013022
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Third-Order Determinants

A determinant of third order can be defined by:

dy11) iz diz
daz  da23 12 d13 diz di3z
= (az1 |azz azz| = dil — a21 + g1
dgz  da3g (ao  dag gz dag
day |daz dagz
d11 |91z di13
daz  da23 12 d13 diz di3z
= @ dgzz dzz| = dil —|d21 + g1
dgz 33 (dao  d3g dgz dag
day |daz dag
d11 |91z di13
daz  da23 12 d13 diz di3z
= (az1 |azz az3| = dil — 21 + |31
dgz 33 (dao  d3g dgz dag
@ tgza dgg
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Third-Order Determinants

I
[a—
=
[

=1(12—-0)—-3(4 + 4) + 000 + 6) = —12.

This is the expansion by the first row. The expansion by the third column is

b
oy

1 3 1 3

— 4 + 2 =0-12+0=—-12.

—1 0 2 6

Verify that the other four expansions also give the value —12.
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//T’& .
\& n-order Determinants

* A determinant is defined as follows:

Form = 1, this determinant is defined by

(2) D = ayy.

Forn = 2 by

(3a) D = a;Cy + appla + - + apmln =12, 0rn)
or “Column-wise” expansion

(3b) = ayeCipe + agpCope + -+ + ap1:Cpe (k= 1,2,---, orn).

Here, <Row-wise” expansion (shown in previous slide)

Cie = (— 1)? +ijn:
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Minors and Cofactors of Thlrd-
Order Determinants

i1y a2 g

D =|az1 az2 a3

3y dga d3g
11 13 d11  di=2

Mgy = Moz =

g1 d3zz dz1 dzs
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Minors and Cofactors
Cik = {._1_}j+kit‘fjk
* C is the cofactor of a, in D
* M is the minor of a, in D (determinant of order n-1):
the determinant of the submatrix of A obtained from A4
by omitting the row and column of the entry.
* Equation (3) above can be rewritten as :

)
(4a) D = E(—l)j+kﬂjijk (j=1,2,---,0rn)
k=1

n
(413) D = E(—l)j+kfijijk (k =1,2,---,0r n).
j=1
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Minors and Cofactors of Third-
Order Determinants

i1y a2 g

D =|az1 az2 a3

3y dga d3g

Mgy = Moz =

CE]_ = _JHEI_, ng —_ +;Hgg, and ng = _JHEE.

Checkerboard pattern for C;,

+ - +
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Third-Order Determinants

* The determinants can be expanded using any row or
column. The following D using 18t column:

(::) tya g

D =laz1 |azz a23|= an

3] |32 d3g

* Minor of a, is M=

» Cofactor of aq is C,= (-1)* M, = (-1)2 M, =

a2

a9,

aq9

i1z 13 12
— azl T 31
3z  d3g I
(?23 |
a
33 ffzz
Ggg
_|_
_|_

a13

tag

(?23

tag

7 October 2024
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Third-Order Determinants

e Use the row or column with the most zeros.

] 3

7 October 2024

0
D=| 2 6 41 =|1

—1 0

-
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Cofactor Matrix

-1 3 4
-1 1 3 1 3 =1
'-'_'11: = -7 Cu:— = —13 Cl‘.!- ‘:B
3 4 -1 4 -1 3
I 2 -1 2 -1 1
Cay = — =2 Cop = = -2 Cas = — = 2,
3 4 -1 4 -1 3
| 2 -1 2 —1 |
Cqy = =3 Css = — =7 "-'_'33:‘ ‘=—l
¥ |—t 1 ‘ 3 l‘ i -l
—7 —13 8
cof(A) =|2 — 2 2
3 7 — 2
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cofactor matlab

Cofactor Matrix
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> A=[-1 1 &;-3 7 0;0 -2 3]

o =
-1 1 &
-3 7 0
O -2 >

> cof (4)

Videos —42_.0000 -18.0000 -4 _0000

ans =
32.0000 12.0000 &.0000
—-17.0000 —-3.0000 —2.0000

About 40,900 results (0.33 seconds

cof=cof(a) - File Exchange - MATLAB Central

www.mathworks.com/matlabcentral/.._cofactor. /cof.m = The Math\Works

Feb 8 2012 - function cof=cof(a); % % COF=COF(A) generates matrix of cofactor

values for an M-by-N matrix % A - an M-by-N matrix % % Example: Find the ...

7 October 2024
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Adjoint (or Adjugate) Matrix

* (adj A) = (cof A)'
+A(adjA) = (adj A) A = (detA) I

* Using MATLAB:

- Cofactor: cof(A)

- Transpose: transpose(A) or A

- Adjoint: transpose(cof(A)) or cof(A)’

7 Octo

ber

2024
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Example: Determinant of a
Triangular Matrix

-3 0 0
4 0

6 4 O|= —3 =—-3-4-5=-60
2 5

—1 2 3

* Hence, the determinant of a diagonal or triangular
matrix is just the product of its diagonal entries.
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General Properties of
Determinants

Theorem 1:

Behavior of an nth-Order Determinant under Elementary Row Operations

(a) Interchange of two rows multiplies the value of the determinant by —1.

(b) Addition of a multiple of a row to another row does not alter the value of the
determinant.

(c) Multiplication of a row by a nonzero constant ¢ multiplies the value of the
determinant by c. (This holds also when ¢ = (), but no longer gives an elementary
row operation. )

* (a) can be realized just by looking at the checkerboard mentioned above.

A=[-300;640;-125];det(A)=-60

A=[-125;640;-300]; det(A) =60

A=[-125;-300;640]; det(A)=-60

* (b) points us to an attractive way of finding determinants: by reduction to
triangular form.

* from (c): det(cA) = c"det(A)
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General Properties of
Determinants

Theorem 2:
Further Properties of nth-Order Determinants

(a)=(c) in Theorem 1 hold also for columns.
(d) Transposition leaves the value of a determinant unaltered.
(e) A zero row or column renders the value of a determinant zero.

(f) Proportional rows or columns render the value of a determinant zero. In
particular, a determinant with two identical rows or columns has the value zero.

* (f) can be proven from Theorem 1 and (e).
* from (f) & (b): @ matrix with rank < n has det = zero.

eg. 3 2 1



Example: Finding Determinants
by Reduction to Triangular Form
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|




Example: Finding Determinants
by Reduction to Triangular Form

(D 0 -4 6
4 5 | 0

D:
() 2 W — 1
—3 5 L |
2 ( —4 i

3 L —12 Row 2 — 2 Row |

= = =
bt
L
1

A 3 110 Rowd + 1.5 Row |



Example: Finding Determinants
by Reduction to Triangular Form

-
=
|
P
=h

A8 Row 3 — 0.4 Row 2

- = -
=
bt
fa

0 —114 20.2 Row4 — 1.6 Row 2



Example: Finding Determinants
by Reduction to Triangular Form

O
2 0 —4 6
0 3 9 —12
B 0 0 2.4 3.8
0 0 0 47.25] Rowd + 4.75 Row 3



Example: Finding Determinants
by Reduction to Triangular Form

. 0 —4 6
0 5 9 —12
B 0 0 2.4 3.8
0 0 0 47.25| Rowd + 4.75 Row 3

=25 -24-47.25 = 1134,
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Cramer’s Rule for Linear
Systems of Two Equations

(a) aypxq + apxs = Iy

(2]
(b) a21xy + azaxs = bo
b a1z
o by aga| byasy — ayabs
1 — - §
(3) D D
aj;
azy bo| anbe — han
277D T D
1] (2
D= det A = = 1192 — dy2dday.
dz] az2
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4>’ Cramer’s Rule for Linear
Systems of Two Equations

(a) ayyxy + apxs = by
(2)
(b) a21xy + azaxs = bo

We prove (3). To eliminate xo multiply| (2a) by ag9 |and [(2b) by —aye|and add,

D D
I (a11a23 — ﬂmﬁm@= biass — ajaba. 7

7 October 2024
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4/ Cramer’s Rule for Linear
Systems of Two Equations

We prove (3). To eliminate xo multiply| (2a) by a9 [and

(2b) by —ays

ajpxy + apxs = b

ag1x1 + aszaxs = bo

and add,

D D
> (a11a23 — ﬂmﬁm@= biasas — ayabe. <«

Similarly, to eliminate x; multiply [(2a) by —ao

and|(2b) by aqq

and add,

D D
> (anam — ﬂlzﬂzl@= aniby — bag. <

Assuming that [? = ajiase — ayeas) F 0, dividing, and writing the right sides of these

two equations as determinants, we obtain (3).
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4/ Cramer’s Rule for Linear
Systems of Two Equations

We prove (3). To eliminate xo multply| (2a) by aso|and [(2b) by —ays|and add,

D D
S (a11a23 — ﬂmﬁm@= biasas — ayabe. «

Similarly, to eliminate x; multiply |(2a) by —a9q|and|(2b) by ayq jand add,
D D,
> (anam — ﬂlzﬂzl@= ariby — biag. <

Assuming that [? = ajiase — ayeas) F 0, dividing, and writing the right sides of these

two equations as determinants, we obtain (3). [ ]
D b1 aig
N W
by aga| biagy — aabe
]‘1 —_— —_ .
(3) D D
D, —~_, a;nz b
agy1 byl anbe — biag
'TE —_— —_—

D D



Example 1: Cramer’s Rule for
Linear Systems of Two Equations

dx, + 3x, 53 12
If then
2xy + Sxg :j

12 3 4 12
—8) 5| 84 2 -8 -36
X = — = £, e = — = -4
4 3 14 4 3 14
2
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Cramer’s Rule for Linear
Systems of Three Equations

appxy + apsxg + aygxg = by
dg1X1 + agaxg + asgxg = by

asyx1 + assxg + asgxg = by

Dy Dy Ds
X1 = F, Xag = ﬁ, Xa = E [D + ﬂ:l
by| a2 aa a1 | | as a1 dpe

bo| asa aga|, Do =|asy | ba| ag|, D3 =|as az

5
3

bg| aga aas asy asy dass

7 October 2024

3
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Cramer’s Rule for Linear
Systems of n Equations

(a) If a linear svstem of n equations in the same number of unknowns x1,---, xy

ajpxy + ajgxg + - +appxy, = b

) agixy + agexs + - + agux, = by

Ap1X1 + GpaXa + - + AGupkn = bﬂ

has a nonzero coefficient determinant D = det A, the system has precisely one
solution. This solution 15 given by the formulas

Dl -DE, Dﬂ - M
(7) X=ps 2=t = (Cramer’s rule)
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Cramer’s Rule for Linear
Systems of n Equations

Dy
(7) X1 = —— Xg =

Dy
D’ D’

D, H ‘
Yy Xp = D (Cramer’s rule)

where Dy, is the determinant obtained from D by replacing in D the kth column by
the column with the entries by, ---. b,,.

(b) Hence if the system (6) is homogeneous and D + 0, if has only the trivial
solution x1 = 0,x9 = 0,---,x, = 0. If D = 0, the homogeneous system also has
nontrivial solutions.

* This last rule will be used in Eigenvalues problems
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Inverse of a Matrix.
Gauss—Jordan Elimination

* For a matrix to have an inverse, it has to be a
square matrix.

* The inverse of an n x n matrix, is denoted by A-1
which is also an n x n matrix:
AA™! = A714 = I (n X n identity matrix)

* If A has an inverse, then A is called a non-singular
(or invertible) matrix. Otherwise it is called singular.

* If A has an inverse then the inverse is unique.
* A has an inverse iff rank(A) = n.
* A has an inverse iff det(A) # 0.
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Example Finding Inverse of a Matrix
by Gauss—Jordan Elimination

Determine the inverse .!t_l of

« A > [A|I] > Gauss-Jordan => [I|A71]
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Example Finding Inverse of a Matrix
by Gauss—Jordan Elimination

bt

bt

bt

bt

bt

RBow 2 + 3 Row 1

Fow 3 — Row |
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Example Finding Inverse of a Matrix
by Gauss—Jordan Elimination

I
bt
—_—
=
=

o0 (2) 7| 3 1 0| Row2+ 3Row]

o | 2] 2] -1 0 1| Row3 — Rowl
—1 1 2 .1 0 0]
o 2 7 R By

) 0 —35 -4 -1 | Row 3 — Row 2
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Example Finding Inverse of a Matrix
by Gauss—Jordan Elimination

« Gauss-Jordan extra steps: reducing U to I

-1) 1 2 1 0 o0
o C2) 7] 3 1 0
0 0 (—5) -4 -1 1

1 -1 -2 —1 0 0 —Row |

0 l 3.5 1.5 0.5 0 0.5 Row 2

0 0 1 0.8 0.2 —-02| —0.2Row3
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Example Finding Inverse of a Matrix
by Gauss—Jordan Elimination

« Gauss-Jordan extra steps: reducing U to I

1 -1 |-

0 1 | 35
o o (1)
1 -1 0

0o 1 0
0o 0

— 1
1.5
0.8

0.6

—1.3

0.8

0.5

0.2

0.4

—0.2
0.2

Row 1l + 2 Row 3

Fow 2 — 3.5 Row 3
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Example Finding Inverse of a Matrix
by Gauss—Jordan Elimination

« Gauss-Jordan extra steps: reducing U to I

|

— 1

0 (1D
0 0
10
0 1
0 0

0.6

—1.3

0.8

— 0.7

—1.3

0.8

Fow 1 + Row 2
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Example Finding Inverse of a Matrix
by Gauss—Jordan Elimination

The last three columns constitute f-"._l. Check:

—1 | 2 —0.7 0.2 0.3 l 0 0
3 -1 | —1.3 —-0.2 0.7 1=10 | 0.
—1 3 4 0.8 0.2 -—-0.2 0 0 |

] - —

Hence AA~! = L Similarly, A=A =L
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Inverse of a Matrix.
The cofactor method

The inverse of a nonsingular n % n matrix A = [ay. | is given by

(4) AT =——

Cin Cop - Cﬂ?l_

where Cji 1s the cofactor of aji in det A

7 October 2024
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Inverse of a Matrix.
The cofactor method

an a2 | . 1 azy —a12]
A= IS A= Tot A
agy agy LAl —ay  an
Az2 —U2q L
Here cof (A) = checkerboard:
—Q1p Qg1 -7
31 1[4 =1] [ 04 -o01
A = ATl = —

2 4] 0 -2 3| |-02 03
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The cofactor method

—1 1 2

* Find the inverse of: | = |

—1 3 4_
Solution. Weobtaindet A = —1i—7) — 1 - 13 + 2 - 8 = 10, and in (4),

@\n | 2 | 2
Gy = DN = -7, Cay = — = 2, Cq = = 3,
x4 3 4 -1 1
3 1 -1 2 -1 2
Clg - — = —13 Cﬂ — = -2 E‘HE - — =T,
-1 4 -1 4 3 1
3 -1 -1 1 —1 |
Ciz = =8 Caz = — =12, (g3 = = —1,
—1 3 -1 3 —1
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Inverse of Diagonal Matrices

* A diagonal matrix has an inverse if a;#0

. . . . 1 1 1
« A1 is also diagonal with entries —,—, ...,—

ai1 a2 ,ann
05 0 0] _2 0 0
A=| 0 4 0. Al =] 0 0.25 0.
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Properties of Matrix Operations

+ (AC)' = C-1 A
+ (AC ... PQ)'= Q' P-' ... C' A1

« Matrix multiplication is NOT commutative: AB # BA

 AB = 0, does not generally imply that A=0orB=0 or

BA =

0

1
L2
—1
]

o | P
1 [1 17
— 1112 2.

0 O]
L0 0
1 -1

-1 =1

« AC = AD, does not imply that C =D even when A# 0
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Properties of Matrix Operations

« AB = 0, does not generally implythat A=0orB=0or
BA=0

Let A, B, C be n x n matrices:

* If rank(A) = n and AB = 0 implies that B = 0.
Proof: A1exists, ATAB=A10->B=0

* Hence, if AB =0, but A# 0 & B # 0 then rank(A) <n
and rank(B) <n

Proof: if rank(A) =n > A1exists > ATAB=A10->B=0
also: if rank(B) = n > B exists > ABB1=0B1"> A =0
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Properties of Matrix Operations

« AB = AC, does not imply that B=C even when A# 0

Let A, B, C be n x n matrices:

* If rank(A) =nand AB=ACthenB=C
Proof: A1exists, ATAB=AAC>B=C
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Properties of Matrix Operations

Let A, B, C be n x n matrices then:

* If A is singular = BA and AB are singular
Proof. see textbook

For any n x n matrices A and B

» det (AB) = det (BA) = det A det B.

Proof: see textbook
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Example Solving Systems of Linear
Equations Using Matrix Inverse
X1 +Xxy, —x3 =3

—X1 +X2 +X3=—1
X1 — X, +x3=5

1 1 —=11[*% 3
-1 1 111*2] =|—-1
1 —1 11 1X3 5
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Example Solving Systems of Linear
Equations Using Matrix Inverse

Ax=Db
1 1 —111' r05 0 05"
-1 1 1l =l05 05 0
1 -1 1. 0 0.5 0.5.

Multiply by inverse:
ATAx=A"b 2>x=A"b

X1] [0.5 0 O05]7[3° X1]  [4]
X21=105 05 0f]|—-1 > X21 = |1
X311 L0 0.5 0515 X3 12
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Eigenvalue Problems

* The determination of the eigenvalues and
eigenvectors of a system is extremely important in
physics and engineering.

« Solving eigenvalue problems is equivalent to matrix
diagonalization and has several applications:

« Stability analysis
* The physics of rotating bodies
« Small oscillations of vibrating systems

* You might encounter these and/or other applications
of eigenvalue problems in other courses.
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Matrix Eigenvalue Problems

* A matrix eigenvalue problem considers the vector

equation: T

Ax = A\x Known

Here, A is a given square matrix,
— A IS an unknown scalar
— x IS an unknown vector

* In a matrix eigenvalue problem, the task is to
determine:

— A's that satisfy the eq. above (called eigenvalues).

— x’s that satisfy the eq. above (called eigenvectors)
excluding x = 0 which is always a solution.
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Matrix Eigenvalue Problems

* The set of all the eigenvalues of A is called the
spectrum of A.

* The spectrum consists of at least one eigenvalue
and at most of n numerically different eigenvalues
(where n is the matrix size).
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Example 1: Finding Eigenvalues
and Eigenvectors

A=

 For the matrix above, eigenvalues must be determined first:
—3 21 x,
= A
2 -2 Xo

* By rearranging these equations we get:
(—5 — Alxy + 2x=2 =1

}; |0 COMmpPonents,

Xao 2-.1.'1 — 2-.1.'2_ = AXa.

E-.Tl + |:-_2- - Al’fz — I::J
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Example 1: Finding Eigenvalues
and Eigenvectors

(—3 — Ay + 2xa =0
2xy + (=2 — Alx, = 00,
 This can be written in matrix notation:
(A=—Alx =0

Proof: Ax =Ax 2 Ax — Ax = Ax — Alx = (A — AlDx = 0.

« S0 we've transferred the original eigenvalue equation to a
homogeneous linear system.

« By Cramer’s rule, (A — AI)x = 0 has a nontrivial solution x
+ 0 iff the determinant of coefficient matrix (4 — Al) is zero.
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Example 1: Finding Eigenvalues

and Eigenvectors

-5 —A 2
DIA) = detiA — Al =

2 —2— A

= (-5 —A(—-2—-A)—4=A+Th+6=0

* D(A) is the characteristic determinant (or characteristic
polynomial) and D(A4) = 0 is the characteristic equation of A.

» Solving the characteristic equations gives the two
eigenvalues:A = —1,1 = —6,

 Solution of quadratic equation:
—b + V’/ETIE — dar
2a

ar’ +bhr+e=0 x=
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Example 1: Finding Eigenvalues
and Eigenvectors

« Eigenvector x of A corresponding to A= —1 can be obtained
from:

(=5 — Alxg + 2xg =0
2xy + (=2 — Alx, = 0.
by substituting 4 = —1:
—4xy + 2x9 = 0
2xy — xq9 =10

» Gauss elimination will zero row 2 which means we have
infinite solutions. Rearranging row 1 or row 2 gives the
solution: x, = 2x,
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Example 1: Finding Eigenvalues
and Eigenvectors

* solution: x, = 2x,

for 1= S
* Hence for A= —1, x = le]
* If we choose x, = 1 we obtain the eigenvector x = E]

* Check:

]
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Example 1: Finding Eigenvalues
and Eigenvectors

* Eigenvector x of A corresponding to A = —6 can be
obtained from:

(=5 — Alxg + 2xg =0
* by substituting A = —6:

x1 + 2x0 =10

» Gauss elimination will also zero row 2 which means we have
infinite solutions. Rearranging row 1 or row 2 gives the
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Example 1: Finding Eigenvalues
and Eigenvectors

* solution: x, = —x,/2

X1

* Hence for A= —6, x = [—x1/2

* If we choose x, = 2 we obtain the eigenvector x = [_21]

* Check:
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Finding Eigenvalues and
Eigenvectors: General Case

appxy + 0 Ay = Axg
agixy + -+ + agpx, = Axg
Ap1X1 + 0+ AupXy = AX,.

 Transferring the terms on the right side to the left side:

(@11 — Alxq + diaXo + s T MpX 5 =0
as1X1 + (a9 — A)xg + -+ + 195X 1 =0

p1X1 + dpaxs + o+ Ay, — A, = 0.

* Which is equivalentto: (A— Ax =0
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Finding Eigenvalues and
Eigenvectors: General Case

* By Cramer’s theorem this homogeneous linear system of
equations has a nontrivial solution if and only if the
corresponding determinant of the coefficients is zero:

app — A a2 a1n
Ggy Az — A Agn
Di(A) = det(A — Al = = 0.
dn1 p2 gy — A

* Which is equivalentto: (A— Ax =0
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Eigenvalue Problems Steps

» Steps for solving Eigenvalue Problems:

— Solve the c/s equation to get the eigenvalues:
D(A) =det(4A— A =0

— Substitute each A into (4A— ADx =0

— Solve the system of linear equations (A — Ax =0
(i.e. find x for each A). These vectors x are the
eigenvectors).

— You can always check your solution by substituting
your A and the corresponding x into:
Ax = Ax
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Definitions

« A — Al is called the characteristic matrix.

* D(A) = det(A — Al) is called the characteristic
determinant of A.

* D(A) = 0 Is called the characteristic equation of A.

* By developing D(A) we obtain a polynomial of nth
degree in A. This is called the characteristic polynomial
of A.

 Theorem 1: The eigenvalues of a square matrix A are
the roots of the characteristic equation of A.

* Hence an n x n matrix has at least one eigenvalue and
at most n different eigenvalues.
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Definitions

* Theorem 2: Eigenvectors, Eigenspace: If w and x are
eigenvectors of a matrix A corresponding to the same
eigenvalue A, so are w + x (provided x # —w) and kx for
any k#0.

* Hence the eigenvectors corresponding to one and the
same eigenvalue A of A, together with 0, form a vector
space, called the eigenspace of A corresponding to that
A.
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Example 2: Multiple Eigenvalues

* Find the eigenvalues and eigenvectors of

-2 2 -3
A=l 2 1 -6
-1 -2 0

 For our matrix, the characteristic determinant gives the
characteristic equation:

— A - AT+ 2144+ 45 =0

* The roots (eigenvalues of A) are:
.rln.l — 5,ﬂ2=.|'13= __]'
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Example 2: Multiple Eigenvalues

 For A = 5 the characteristic matrix is:

__1 ) | —7 2 =3
A=| 2 1 —6| ? A-AN=A-51=| 2 -4 —6|
_—l —2 'l:l_. -1 -2 =5

« After two steps of gauss elimination:

—7 2 —3

0 _24 _48
T T |-

0 0 0

e )
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Example 2: Multiple Eigenvalues

19

e FOr A = 5; —7 . —73
2d 48
0 —5 —+].
| () [ ﬂ_.

* Fromrow 2 2 x, = —2x,

* Fromrow 1 & x, = —2x; 2 x; = —x;

* Hence for A= 5, x = [—Zx3 ]
X3

1
* If we choose x, = —1 we obtain x = [ 2 ]
—1
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Example 2: Multiple Eigenvalues

* For A = —3 the characteristic matrix is:

-2 2 -3 1 2 -3
A=| 2 1 -6 D> A-AM=A+3=| 2 4 -6
-1 -2 0 -1 -2 3




21 samer.awad@hu.edu.jo 7 October 2024

Example 2: Multiple Eigenvalues

« For A = -3: L2 =3
0 0 0
0o 0 0

* Fromrow 1 x; = —2x, + 3x5,

—2x, + 3%,
X2
X3

e Hence for A= —3, x =

—2
* If we choose x, = 1, x; = 0 we obtain x = [ 1 ]
0
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:2'4\/|:xample 5: Real Matrices with
Complex Eigenvalues & Eigenvectors

* Find the eigenvalues and eigenvectors of the following skew-
symmetric matrix:

det (A — Al) =

-1 —A

» Solving the characteristic equations gives the two
eigenvalues:A = i,1 = —i.
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:14\/|:xample 5: Real Matrices with
Complex Eigenvalues & Eigenvectors

 Eigenvector of A corresponding to A= i can be obtained

from:

—1 1 —1 1
[ ] Gauss elimination =2 [ ]
-1 =i 0 0

* Fromrow 1 2 x, = ix,

 Hence for A=1i, x = Lxl]

* If we choose x; = 1 we obtain the eigenvector x = m
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:14\/|:xample 5: Real Matrices with
Complex Eigenvalues & Eigenvectors

 Eigenvector of A corresponding to A= —i can be obtained
from:

[ 1 [ 1
[ ] Gauss elimination = [ ]
—1 [ 0 0

* Fromrow 1 2 x, = —ix;

« Hence for 1= —i, x = [—%cll

* If we choose x; = 1 we obtain the eigenvector x = [_11]
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Eigenvalues of The Transpose
of a Matrix
- Theorem3: Eigenvalues of the Transpose: The

transpose AT of a square matrix A has the same
eigenvalues as A.
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8.3 Symmetric, Skew- symmetrlc
and Orthogonal Matrices

« Symmetric matrix: AT = A
» Skew-symmetric matrix: A" = —A4
* Orthogonal matrix: AT = A1

* Examples:

-3 1 5] D 9 —12 B
1 0 =2, -9 0 20 £ & 3

5 -2 4] 12 -0 0 | B 1

Symmetric Skew-symmetric Orthogonal
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8.3 Symmetric, Skew-symmetric,
and Orthogonal Matrices

* Any real square matrix A may be written as the sum
of a symmetric matrix R and a skew-symmetric
matrix S, where:

R=2(A+A") and S=3(A-A")
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Example 6: Finding R and S of a
Square Matrices

=2(A+A") and S=3(A-A")

9 5 2 9.0 35 35 0 15 —15]
\=[2 3 -8|=R+S=[35 30 -20|+|-15 0 —60
5 4 3] 35 -20 30| | 15 60 0 |

 Remember: Symmetric (R): AT = 4, Skew-symmetric (S): A" = —A
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Symmetric & Skew- symmetrlc
Matrices

* Theorem 1: Eigenvalues of Symmetric and Skew-
Symmetric Matrices:

(a) The eigenvalues of a symmetric matrix are real.

(b) The eigenvalues of a skew-symmetric matrix are
pure imaginary or zero. Example 7. /\

~k/

 Remember: Symmetric: A" = A, Skew-symmetric: A" = —A
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Orthogonal Matrices

* Theorem 3: Orthogonal matrices: Orthonormality of
Column and Row Vectors: A real square matrix is
orthogonal iff its column vectors (and also its row
vectors) form an orthonormal system:

0 if j#k
E'Ij *dp = E'I;—H;[E = {
| if j=k

Proof: A=A =1 - ATA=1 _

== LBl Efba

Wra  ofra Lol
e

- Remember: Orthogonal matrix: AT = A~



samer.awad@hu.edu.jo 7 October 2024

Orthogonal Matrices

* Theorem 4: Determinant of an Orthogonal Matrix:
The determinant of an orthogonal matrix has the value
+1 or -1.

 Theorem 5: Eigenvalues of an Orthogonal Matrix:

The eigenvalues of an orthogonal matrix A are real or
complex conjugates in pairs and have absolute value 1.

« Remember: Orthogonal matrix: AT = A~
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8.4 Diagonalization of Matrices:
Similar Matrices

 Definition: Similar Matrices: An n x n 4 matrix is
called similar to an n x n matrix 4 if
A=P1AP

where P is a non-singular n x n matrix.

 Theorem 3: Eigenvalues and Eigenvectors of
Similar Matrices: If 4 is similar to 4, then 4 has the
same eigenvalues as A. Furthermore, if X is an
eigenvector of A4, then y = P~1x is an eigenvector of 4
corresponding to the same eigenvalue.
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Example 9: Similar Matrices

* Let A and P be the following:

- —3
Given: ,_|° T
4 -
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Example 9: Similar Matrices

 Eigenvalues of A4: r —3]
A=
4 -1

det(A — Al = |Z_A =3

—1—;\‘20
>M-512+6=0

> A=-3)A-2)=0

A=3

A=2

7 October 2024
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Example 9: Similar Matrices

» Eigenvalues of 4:, [3 0
0o 2|
~ 3-1 0] _
det(A—A) = |77 " | =0
> (A-3)A-2)=0
A=3

A=2

7 Octo

ber

2024
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Example 9: Similar Matrices

4 -1

 Eigenvectors of A: r —3]
A=

eForA=3

_>A—M=Lf

— 3

— X, — X
— 4 2 1

 Hence for A= 3, x = [iﬂ

f we choose x; = 1 we obtain the eigenvector x =

i
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Example 9: Similar Matrices

 Eigenvectors of A: 6 —3
A=
4 -1
*For A =2
—>A—)\I=LiL :?; - Xy, ==X

e Hence for A= 2, x = 4/3 xJ

* If we choose x; = 3 we obtain the eigenvector x

=[3]
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Example 9: Similar Matrices

- Eigenvectors of 4: [3 n]

0o 2|
. _ oo-1. 4 =31111 1
ForA=2, y=P x=1_1 147l
° — —_ -1 — —4 _3- —3- . _O-
ForA=3, y=P X—__1 1l = 11
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Diagonalization of a Matrix

Diagonalization: converting a square matrix into a
diagonal matrix.

Diagonalization of a Matrix

If an n X n matrix A has a basis of eigenvectors, then

(5) D = X !AX

is diagonal, with the eigenvalues of A as the entries on the main diagorm!.

is the matrix with these eigenvectors as column vectors.

Also A = XDX™!. Can you prove that?
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Example 10: Diagonalization of
a Matrix

73 02 —37]
A=|-115 10 55

17.7 1.8 —9.3

* The characteristic determinant gives the characteristic
equation: —a* — a*+ 120 =0

* The eigenvalues (roots): Ay =3, 4s = —4, A3 =1
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Example 10: Diagonalization of

a Matrix
* Eigenvectors of Acanbe: [-1] [ 1] [2]
3 -1/, |1
-1 | 3| |4
-1 1 2] [—0.7 02 03]
X=| 3 -1 1 X l=|-13 -02 07
-1 3 4 08 02 -02]

-07 02 03|[-3 -4 o] (3 0 o
D=X"AX=|-13 -02 o7|| 9 4 o|=|0o -4 o0l

0.8 0.2 —-02)||-3 -—12 0 0 0 0)
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Example 11: Diagonalization of

a Matrix )
» From eigenvalues example 2 Lz =3
the matrix Ais: 0o 0 0
* The eigenvalues/eigenvectors are: 0o 0 0

A=5 - x=[1 2 —-1]"
A=-3 -»x=[-2 1 0] and x=[3 0 1]
Note that x's for A = —3 are independent - X is invertable

1 -2 3
2>X=]2 1 0
-1 0 1
5 0 0
>X1AX=|0 -3 0
0 0 -3
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Vectors

« Two kinds of quantities:

— Scalar: determined by its magnitude: voltage,
temperature, length, speed.

— Vector: has both a magnitude and a direction:
force, displacement, velocity.

A vector is denoted in drawing by an arrow that has
length = magnitude (aka norm or Euclidean norm).
Magnitude of vector a is denoted by |a]|.

e Tall: initial point, tip: terminal point, and direction of
the arrow: direction of the vector.
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Vectors

* In writing, a vector is denoted by lower case
boldface (a, b, v), or by using an arrow (a, b, ).

* A vector of length 1 is called a unit vector.

A A N

Equal 1lreu:tl:nr.s, Vectors having Vectors having Vectors having
the same length the same direction different length
"Aﬁ but different but different and different
' direction length direction

(B) (C) (I
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Components of a Vector

« Using Cartesian coordinate system, let a be a given
vector with initial point P: (x4, y4, Z,) and
terminal point Q: (X5, Y,, Z,), then:

a, =X, —Xq a, =Y, — Y A3 = Zy) — Z,

=

are called the components of
the vector a: a = [a,, a,, a;]

» By the Pythagorean theorem:

al = Va2 + a,? + a,? N
|al 1 2 3 ST
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Example: Components of a Vector

The vector a with initial point P: (4, 0, 2) and terminal point {: (6, —1, 2) has the components
m=6—4=2, as =—1—0= —1, ag =2 —2 =0

Hence a = [2, —1, 0]. {(Can you sketch a, as in Fig. 1687) Equation {2) gives the length

la]| = V22 + (-1 + 02 = V5
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Position Vector

* The position vector r of a point A: (X, vy, z) is the
vector with the origin (0, 0, 0) as the initial point and
A as the terminal point.
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Vector Addition

Addition of Vectors

The sum a + b of two vectors a = [ay. ds. d3] and b = [by, bs, bg] is obtained by
adding the corresponding components,

{3} El‘|‘]]=[ﬂ1+b1, ﬂg‘|‘b3, -EI3‘|‘.I!?3].

Geometrically, place the vectors as in Fig. 170 (the initial point of b at the terminal
point of a); then a + b is the vector drawn from the initial point of a to the terminal
point of h.

Fig. 70. Vector
addition
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8 /’Q\
S oy
\/‘/ Vector Addition

* For forces, this addition is the parallelogram law by
which we obtain the resultant of two forces in
mechanics.




samer.awad@hu.edu.jo 7 October 2024

Vector Addition

* The "algebraic way” and the "geometric way” of
vector addition give the same vector:

a+b=c
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Basic Properties of Vector Addition

(a) at+b=hb+a (Commutativity)
(b) (m+v)+w=u+(v+ w) (Associativity)
(c) at+0=0+a=a

(d) a-+ (—a)=0.

« —a denotes the vector having the length |a| and the
direction opposite to that of a.

* (a) and (b) are
verified in the

following figures: %
b
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Scalar Multiplication

The product ca of any vector a = [ay. dq. dz] and any scalar ¢ (real number ¢) is
the vector obtained by multiplying each component of a by ¢,

ca = [cay. cds, Cag]. /
a 20 -Aa

Basic Properties of Scalar Multiplication:

(a)
(b)
(c)
(d)

cla + b)
(c + K)a
c(ka)

la

¥
1,
2
ca + cb
ca + ka
(ck)a (written cka)
a.
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Example: Vector Addition and
Scalar Multiplication

a=1[4,0,1 and b=[2,—53%]
Then —a = [—4.0, —1], Ta=[28,0.7], a+ h = [6, —5,%], and

2(a —b) = 2[2,5,8] = [4.10,3] = 2a — 2b.
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Unit Vectors |, |, k

* Besides a = [a,, a,, a;] another popular way of writing
vectors is: a = a,i + a,j + ask

Example:

a=4i+kb=2—5+3k
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Unit Vectors |, |, k

e i =[1,0,0

*J=10,1,0

-k = [0,0, 1]

7 October 2024
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9.2 Inner Product (Dot Product)

The inner product or dot product a = b (read “a dot b™) of two vectors a and b 1s
the product of their lengths times the cosine of their angle (see Fig. 178),

ash=|al|b|cosy if a#Z0,b#0
(1)

a*bh=20 if a=0orb=10.

The angle v, 0 = vy = 71, between a and b is measured when the initial points of
the vectors coincide, as in Fig. 178, In components, a = [dy, da, az]. b = [by, b, bg].
and

(2) a*b =aby + asbs + azbq.

- The result of an inner product is always a scalar.
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9.2 Inner Product (Dot Product)

H'h:ﬂlf}l+ﬂzf&+ﬂ3b}

|
a ol
Y i
M - ]
b b b

asbh =0 ash=10 a«bh <0

[orthogonality)
Fig. 178. Angle between vectors and value of inner product

* Vector a is orthogonal to vectorb ifa.b =0,a#0and b # 0.

 "Orthogonal" is a term used for more general objects, like
planes and functions, whereas "perpendicular” is used only
with lines.
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Length and Angle
la| = va»a.

a=h
\a||b|

Cosy =

Find the inner product and the lengths of a = [1, 2, 0] and b = [3, —2, 1] as well as the angle between these
vechors.

Solution. a+bh=1-3+2-(-2)4+0-1=—1,]al = Vasa="V5|bl = Vbheh =14, and (4
gives the angle

a+*h

|a| [b|

¥ = arccos = arccos (—0.11952) = 1.69061 = 96.865.
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Properties of Inner Product

(a) (g1a + gab)*Cc =gqa¢c + gib+c (Linearity)
(b) a*bh="b=a (Svmmetry)
ara=10
(C) (Positive-definiteness).
a*a—=0 ifandonlyif a =10

Since |cos y| < 1:

la*h| = |al|b (Cauchv—Schwarz ineguality).

la+tb|<|a|+|b]| (Triangularinequality)
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Properties of Inner Product

la+ b|2+ |la— bl®=2(lal® + |b|®) (Parallelogram equality).
Prove that a«b = ayb; + agly + azhs.
a=mi+tasj +askand b = ki + ] + K.
a*bh=ai1+absi~j+ -+ azbsk =Kk
wherei-i=j-j=k-k=1
l-j=j-i=j-k=k-j=k-i=i-k=0

9 H'h=ﬂ1ﬂl+ﬂgfh+ﬂ3b3.
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20 //\\
" Applications of Inner Products

Work Done by a Force Expressed as an Inner
Product

* p: constant force »
* d: displacement |
* o . angle between p and d

'||'

d

The work done by p in the displacement is:
W = |plld/cosa=p-d

cfa<90>W >0
- If p & d are orthogonal then W = 0
* If «a > 90 then W < 0 - work against the force
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& C2Zxample: Applications of Inner

v Products

What force in the rope in will hold a car of 5000 Ib in
equilibrium if the ramp makes an angle of 25° with
the horizontal? !

%‘WL %
* weight: a = [0, —5000] 25 €Y

e C Is the force the car exerts on the ramp

 p is the force parallel totheramp 2> a=p + ¢
ey =90 — 25 = 65°

-2 |p| = |a| cosy = 5000 cos65 = 2113 1b
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9.3 Vector Product (Cross Product)

The vector product or cross product a x b (read “a cross b”) of two vectors a
and b is the vector v denoted by

.
I1.

I1I.

IV.

v=axbh

Ifa=0o0rh =0, then we define v=a x h = 1.
If both vectors are nonzero vectors, then vector v has the length

(1) v = |a x b| = |a||b| sin vy,

If a and b lie in the same straight line, i.e., a and b have the same or opposite
directions, then y is 0° or 180° so that sin y = 0. In that case |v| = 0 so that
v=axh=1.

If cases I and III do not occur, then v is a nonzero vector. The direction of
v = a ¥ b is perpendicular to both a and b such that a, b, v—precisely in this
order (!)—form a right-handed triple as shown in Figs. 185-187 and explained
below.
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Cross Product

* The direction of v is perpendicular botha & b

* If a,b, v are in the order of: v =a X b, the cross
product follows the right-handed triple

Tv
i ’ h
e “\T

Fig. 185. Vector product Fig. 186. Right-handed Fig. 187. Right-handed
triple of vectors a, b, v SCrew
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Cross Product

* The direction of v is perpendicular to botha & b

* If a,b, v are in the order of: v =a X b, the cross
product follows the right-handed triple

v=axb=|m a az|= i —

by by bg

by b3 by by
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ixXj=Kk
jxk=1i

kxi=j
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Cross Product

ixXK=—j ixi=0
kxj=—1 jXj=0
jxXi=-k kxk=0

7 October 2024
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Example: Cross Product

For the vector product ¥ =a X b of a = [1, 1,0] and b = [3,0,0] in right-handed coordinates we obtain

from (2)

vy=0, wg=0, wvg=1:0—1-3=-3

We confirm this by (2%%):

l
k = =3k = [0, 0, —3].

3 0

Sketch in class a, b, ax b, and b x a.
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Properties of Cross Product

(a) For every scalar |,
(4) (fa) x b= 1Ia x h)=a x (h).
(b) Cross multiplication is distributive with respect to vector addition; that is,

(@) ax(b+c)=(axhbh)+ (axc),

(5
} (B) (a+bh)yxc=1(axc)+ (bxc).

(c) Cross multiplication is not commutative but anticommultative; that is,

b
(6) bxa=—(axbh) X b
(d) Cross multiplication is not associative; that is, [
|
(7) axX(bxc)FF(axbh) xXc hxa{r !
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,//57
&~ Applications of Cross Product

Moment of a Force:
* Moment m of a force p about point Q is defined as
/m| = [p|d

* d is the perpendicular distance between Q and the line
of action L of p.

* If r is the vector from Q to any point Aon L,
then d = |r|siny and |m| = |r||p]| siny. L

» Since y is the angle
between r and p
thentm =rxp
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4/xamp|e Applications of Cross
Product

Find the moment of the force p about the center {? of a wheel, as given in Fig. 191.

Solution. Introducing coordinates as shown in Fig. 191, we have

p = [1000 cos 307, 1000 sin 307, 0] = [866, 300, 0], r=[0, 1.5 0]

(Mote that the center of the wheel 1s at y = — 1.5 on the y-axis.) Hence (8) and (2%*) give
I i k
i 1.5
m=rxp=| 0 1.5 0l=0i —0j + k = [0, 0, —1299].
RA6 500
RO6 500 0

¥ |p| = 1000 Ib
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Scalar Triple Product

» Scalar triple product or mixed product of three vectors
(abc)=a-(bxc)

as*(bxc)=as*v=aU+ asls + dgls

N\
ba by by by by bs
= ﬂl + ﬂz + ﬂa
Ca C3 Ca O G Ca
Iy dg d3

(10) (a@a b c)=a(bxc)=|b bk b.
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Properties of Scalar Triple Product

(a) In (10) the dot and cross can be interchanged:

(11) (@ b ¢)=a(bxc)=(@Xb)-c.

(b) Geometric interpretation. The absolute value |(a b c¢)| of (10) is the
volume of the parallelepiped (oblique box) with a, b, ¢ as edge vectors (Fig. 193).

(¢) Linear independence. Three vectors in R® are linearly independent if
and only if their scalar triple product is not zero.
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Application of Scalar Triple Product

Volume of a box:

Volume = (Height) (Area of the base)
Height = |a|| cos |

Area of base = |b X c|

Volume = |a||b X c|| cos S |

Volume = |a- (b X ¢)|
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Example: Scalar Triple Product

A tetrahedron is determined by three edge vectors a, b, c.
Find the volume when a=[2, O, 3] b=[0, 4, 1], c=[5, 6, O].

 VVolume of the parallelepiped with these vectors as edge
vectors is the absolute value of the scalar triple product:

2 0 3
4 1 0 4
a b c)=|0 4 1|=12 + 3 = —12 — 60 = -T2
6 0 5 6
5 6 0

» The volume of the tetrahedron is - of thatof  a_
the parallelepiped. , \
> volume = 72/6 = 12
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9.4 Vector and Scalar Functlons
and Their Fields

 VVector functions (whose values are vectors) In
Cartesian coordinate system:

vix, v 7) = [vplx v. z) valx, v z). valx, v, 2.

vit) = [v1l1), valf), val(f)]

» Scalar function (whose values are scalars). In
Cartesian coordinate system:

fIP) = fx, v, 2).
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/4\/9 4 Vector Field: Velocnty of a
e Rotating Body

 Rotation of a rigid body is described by a vector w.
* Direction of w is that of the axis of rotation
 |w| = angular speed.

* Let P be any point on the body and d its distance
from the axis. Then P has the speed w,.

d = |r|siny

. w i
> wq = Iwllr|siny = |w x 7 (,,,[7, :
) S v/*

0
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4/9 4 Vector Field: Velocnty of a
Rotating Body

 Let P be any point of B and d its distance from the
axis. Then P has the speed wy.

= |r|siny
2> wy = |w||r|siny = |lw X r|
- the velocity vector v of P:

V=WXTr
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/4\/9 4 Vector Field: Veloc:|ty of a
Rotating Body

 |If the z-axis is the axis of rotation and w is in the +ve
z-direction, thenw=w k

\,/

V=WXT=

i j k
0 0 w
X y z

= w(—yi + xj)
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/4“/9 4 Vector Field: Veloc:|ty of a
" Rotating Body: Example

* Awheel is rotating about the y-axis with angular
speed w = 10 rounds/sec.

* The rotation appears clock-wise if one looks from
origin, in the +ve y-direction.

* Find the velocity and speed at P = [4, 3, 0].
r=[4-0),(3-0),(0-0)]=1[4230]

i j k l_/
v=wxr=|0 10 0|=-40k ( L 2A.

4 3 0 = /
speed = |v| = 40 0
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9.4 Derivative of a Vector
Function

* For a vector function v(t):
vit) = [v1(s), valt), valt)] = vl + valt)y + valnk.

* v'(t) is defined as the time derivative of v(t):

vi() = [vi(, vz, vald].

 v'(t) is obtained by differentiating each component
separately.
« Example: v(t) = [¢,t%0]

v(t)=1[1,2t0]
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9.4 Derivative of a Vector
Function: Rules

LN'J’ = v’ (c constant),

4+ v) =u" 4+

(mev) =u'*sv+u+v

Mmxv) =u Xxv+uxy

m v wi'=m" v w+m v w+u v w
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9.4 Partial Derivatives of a
Vector Function

» Suppose that the components of a vector function:

v = |vy, va. vg] = vl + va) + vgk
are differentiable functions of n variables t, t,, ... t..
* Then the partial derivative of v with respectto t,, is

denoted by odv/dt,,, and is defined as the vector
function:

A a1 . Ao aip
=Li+ =Zj+ 2k

r'.l.!'_;m_ r'.l.r_J-ﬂ_ il .!'_J.”_ r'.l.r_J-ﬂ_
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9.4 Partial Derivatives of a
Vector Function

* Then the partial derivative of v with respectto t,, is
denoted by dv/dt,,, and is defined as the vector
function:

A dvy . dva n dug

: =T 1T — )T
Mg My 'l My

k.

« Similarly, second partial derivatives are

a2y EJEIJ]_ . Eﬂzvg . EﬂE‘uﬂ "
" " — " " l I - " 'I] I a "
ol g, Ol 1oy oI poilan g Ty h
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9.4 Partial Derivatives of a
Vector Function

« Similarly, second partial derivatives are

r'JE'lr' r'.|EI:' 1 r'JEE:'E ",

— i j 2 k.

r'J]"Er'.']".m r.-lf[r.-'f-]]-g_ il .!‘Er'.'.!".lﬂ_ r'.|.|"Er'.| Lo

* Note d?v / ( dtdr ) = d/dt ( dv/dr)

7 October 2024
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9.4 Partial Derivatives of a
Vector Function: Example

Let rify, fs) —acosf,1 + asmnty |+ i k.

oI .. :
Then — = —asiniyi +acosiy]
o'y
ir
and — = k.
i

 Various physical and geometric applications of
derivatives of vector functions are discussed in the
next sections as well as in Chap. 10.
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9.7 Gradient of a Scalar Field

« Gradient of a given scalar function f(P)
Is denoted by (gradf)or (VT).

* V is pronounced Nabla.

* The differential operator V is defined as:

%) %)
V—al+—]+ —Zk

= flx, vy, 7).
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9.7 Gradient of a Scalar Field

of Of of
grad f59.7) = 7 v = (2 2L, 2

_of. ,0f ., Of
~ ox ! 'ay]'F azk

A gradient gives the rate of change of f (x,y,z) In
any direction in space.

* This is done by obtaining by deriving a vector field
from a scalar field.
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9.7 Gradient of a Scalar Field:
Example

 Find the gradient of a scalar function described by:
f(x,v,z) = 2y3+ 4xz + 3x

_[of df of
Vi = 0x’ 0y’ 9z

Vf =I[4z+3, 6y 4x]
Vf =4z +3)i+ (6y2)j + (4x)k
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N l//\\v ]
<A Gradient as a Surface Normal
N

Vector

» Gradients have an important application in
connection with surfaces as surface normal vectors.

* Let S be a surface represented by
f (x,y,z) = c = const, where f is differentiable.

* Now let C be a curve (aline) on S through a point
P of the surface S.

* The curve C is represented by r(t) =rangent piane f = const

x(6), Y (), 2(0)] g,

» A tangent vector of C is r'(t) &
[x'(t),y'(t),Zz' (t)] -
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AN _
37 Gradient as a Surface Normal

(\i(,;,/
Vector
* Atangent vector of C - tangent plane of S at P,

e A vector in the direction of the surface normal is
called a surface normal vector of S at P.

» Surface normal vectorof S (f (x,y,z) ) at point P
equals Vf(P) = grad f (P)

 Since grad f (P) is perpendicular to tangent r'(t):
r'-'_,i'r r'.lf r'f , Tangent plana ,i"=u:t:uns.’:2

x .!I;"II + - -.I_.'r -+ T 7 = grad f {"/ f

i i g ! i
N

= (grad f) » ¥’ = 0. «

/
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9 / Gradient as a Surface Normal
Vector: Example

 Find a unit normal vector n of the cone of revolution
z? = 4(x% + y?) at point P(1,0,2)

> f(x,y,2z) = 4x* + 4y*—2z*= 0
Vi(x,y,z) = [8%, 8y, —2z]

—

normal vector: Vf(1,0,2) = [8, 0, —4]
rf(1,0,2)
IV£(1,0,2)|

unit normal vector: =

[8,0,—4] -1

NED) L/_’ ' 75
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9.7 Laplacian of a Scalar Field

Qf & f o
_|_

o B o 2 . 2
X oy .

Vi =

72 : nabla squared: laplacian.

 Remember that f is a scalar function and V4 gives
also a scalar function.

« Differentiate f twice with respect to x, y, and z and
add the derivatives.
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9.7 Laplacian of a Scalar Field

V2f is also denoted by A f. The differential operator

(11) VA=

(read “nabla squared” or ““delta™) i1s called the Laplace operator.
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9.7 Directional Derlvatlve of a
Scalar Field

* The directional derivative D,f or df/ds ofa
function f(x, y, z) at a point P in the direction of a
unit vector b is defined by:

af Q) — f(P)
Dyf=—=Ilm :

ds  s—0 §

where Q is a variable point on the straight line L in

the direction of b /
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9.7 Directional Derlvatlve of a
Scalar Field

* Assuming that a is an arbitrary vector of any length
(#0), then the directional derivative of f D_f in the
direction of vector a is:

D f=—= a* grad f.

Remember: grad f = V f —a—fl+a—£]+ o k



9.7 Directional Derivative of a
Scalar Field: Example

* Find the directional derivative of:
fle,y.2) =20 + 3" + 2 at P2 (2,1, 3)
in the direction of a = [1, 0, —2].

ograd f = VI = |4x, 6y, 2z]
Vf{(P) = [8, 6,6]
la| = V5

_a.Vf(P) _ [1,0-2].[86,6] _ -4
Daf(P) = ja V5 G
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9.8 Divergence of a Vector Field

* Divergence measures the magnitude of a vector
field's source at a given point, in terms of a scalar.

« Example: The velocity of the moving air at a point.

* If air is heated in a region it will expand in all
directions such that the velocity field points outward
from that region > positive divergence

* If the air cools and contracts > negative divergence,
as the region is a sink
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9.8 Divergence of a Vector Field

e Letv(x,y,z) = Y= Iv. ve wva]=uvil+vgj+ vak

1 o 1 51'112 EI'IJE
divv=—"+—+—
X iy o7

"




9.8 Divergence of a Vector Field:

Example
* Let
L — I T, o f] — Byt L Vs | e
v = |3xz, 2xy, —vz7] = 3xa + 2xv) — vk,

—

—

then divv = 3z + 2x — 2yz.
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9.8 Divergence of a Vector Field

Another common notation for the divergence is

I B

divy=Vev = [ ]*[111,112,113]

. h . b .
X oy oF
d,

(—1 + 2+ ik)- (v1i + vgj + vak)

dx ay a7

ﬂul ﬂvg ﬂﬂg

X dy 03
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9.8 Divergence of a Vector Field

*Let f (x,y,z) be a twice differentiable scalar
function. Then its gradient exists,

of aof af] of . of o
—i+—j+—k

= - B 7 . r r -
dX oy o X o'y a3

v=gradf=[

e Let’'s now find div v:

divv = divigradf) =

+—+
o 2 EJ}-‘E

Eazf E.Igf EJEf
X Eﬂaﬂ' .

* Hence, div(grad ) = V?f
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9.9 Curl of a Vector Field

e Curl describes the rotation of a 3-dimensional
vector field.

* The direction of the curl is the axis of rotation, as
determined by the right-hand rule, and the
magnitude of the curl is the magnitude of rotation.

« Example: The flow velocity of a moving fluid, then
the curl is the circulation density of the fluid.

e A vector field whose curl is zero is called
iIrrotational.



30

samer.awad@hu.edu.jo 7 October 2024

9.9 Curl of a Vector Field

eletv(x,y,z) = v=[vy. v, vsg]=uvql+ vg) + vak

i J k

o o o
culv=Vxv=|— — —
X dy  df

25 va Ug
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9.9 Curl of a Vector Field: Example
Let v = [yz,

Jzx, z] = wzi + Jzxj + K

curl v =

ol

ax

¥

|
g

dy

.

ol

l:'-I.;_.

[

—3xl + ¥ + {3z — z)k = =3 + v + 2zk.
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9.9 Curl of a Vector Field: Example

»Letv(x,y,z) = yi

i j Kk
d d . . d
VXV = =0i+0j+|—( 5":)_ (}’)l{——

dx dy 0z dx

y —x 0
LT I L W Y
# of F Fororr e wnwnwnw L Y
£ & F F v For > -naun s 4
A o F ¢ 5 5 v m = womm LA
I I R R T 4 4 I-|'
d 4 L | 1
i d 19 |

- o~ ¢ ¥ Py |

| . F F I.
[ FoF I
bk F F .|
L T A R A I el S F F I
L T o R »OF P 1
L3 LR B R e o o & OE ;
L% W W W wam—aa a T g g

R
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9.9 Curl of a Vector Field: Example

e Let v(x,y,2z) = —x?j

i j k
a d a : . a 2]
Txv=|= = 2 0+ 0j + = (—x%)| k = —2xk

0 —x* 0

Y Ty

| Ty

| I ry

1 Ty

| ry

| ry

Y Ty

Y Ty

Y Ty

| Ty

L Ty

| I Ty

L Ty

| L |

L ry
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Vector & Scalar Fields Operations

. d/dt .
* Vector field —— vector field.

. d/0tm .
* Vector field > vector field.

e Scalar field L vector field.

. V2 f .

e Scalar field —— scalar field.
. Dqf .

e Scalar field —— scalar field.

_ divv _
* VVector field —— scalar field.

_ curlv _
* \VVector field > vector field.
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A Other Vector & Scalar Field
e Operators

* Hessian is a square matrix of second-order partial
derivatives of a scalar field.

e E e
dri Oz 0r, Ozy dx,
I Y

H Org 0y  Or} g 0, |
0 f 0 f & f
-aIﬂ.aIl aIﬂaIE aIEI. -




<< Other Vector & Scalar Fleld
> Operators

 Jacobian is the matrix of all first-order partial
derivatives of a vector field.

L K S Y o On
L )
0, Oz
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Basic Formulas for Grad, Div, Curl
Vifeg) = fVeg + gVf
V(fle) = (1/g°)gVf — fVe)
div ( fv) = fdivv + v Vf
div (fVg) = fV% + Vf* Vg

Vif = div (VF)
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Basic Formulas for Grad, Div, Curl

VA f2) = gV + 2Vf+ Vg + Vg
curl ( fv) =Vfx v+ feurl v
diviun X vl =wvecurlu — u+*curl v
curl (Vf) =10

div (curl v) = 0.

* Important tip: Page 410 in textbook gives a useful
summary of vector differential calculus: grad, div,
curl.



