

The Hashemite University

Faculty of Engineering

Department of Civil Engineering

Introduction to steel structures

Dr. Ra'ed Al-Mazaidh

JACK C. McCORMAC • STEPHEN F. CSERNAK

STRUCTURAL STEEL DESIGN

STEEL construction

MANUAL

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

FIFTEENTH EDITION

Rolled-steel shapes

Typical hot-rolled structural steel sections

W-and M-shapes: beams or columns in steel buildings; top and bottom chord members of trusses; diagonal braces in braced frames.

AISC Manual

STEEL construction

MANUAL

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

FIFTEENTH EDITION

Dimensions and properties		$\begin{array}{c c} t_{f} & t_{k} & t_{k} \\ \hline t_{w} & t_{w} & t_{k} \\ \hline t_{w} & t_{k} \\ \hline t_{w} & t_{k} \end{array} \qquad \begin{array}{c} Table 1-1 \ (continued) \\ \hline W-Shapes \\ Dimensions \\ \hline Dimensions \\ \hline t_{w} & t_{k} \\ \hline t_{$																Ta	ble 1 W	I-1 (d - Sh rope	ont ape rties	inue 95 s	∍d)		W1	4-W12	
Table 1-1 in the		Area,	Depth,	Web		Fl	ange		k	Distanc	e	Work-	-	iom-	Compact Section		Axis)	X-X			Axis	Y-Y			Tors	sional perties	1
AISC Manual	Shape	A	d	t _w	1 _w /2	b _f	t _f	ss, k,	tes K _{det}	<i>k</i> 1	T	able Gage		Wt.	Criteria <u>br h</u>	1	s	r	z	1	s	r	z	15	J	C _w]
ļ		in. ²	in.	in.	in.	in.	in.	i	1. in.	in.	in.	in.	ļ	b/ft	2tr tw	in. ⁴	in. ³	in.	in. ³	in.4	in. ³	in.	in. ³	in. i	1. in. ⁴	in.6	-
	W14×132 ×120 ×109 ×99 ^f ×90 ^f	38.8 35.3 32.0 29.1 26.5	14.7 14 ⁵ / 14.5 14 ⁹ / 14.3 14 ³ / 14.2 14 ⁹ / 14.0 14	/8 0.645 5/8 2 0.590 9/16 /8 0.525 1/2 8 0.485 1/2 0.440 ∛16	⁵ /16 ⁵ /16 ¹ /4 ¹ /4 ¹ /4	14.7 14 ³ /4 14.7 14 ⁵ /8 14.6 14 ⁵ /8 14.6 14 ⁵ /8 14.5 14 ¹ /2	1.03 1 0.940 0.860 0.780 0.710	1.6 15/16 1.5 7/8 1.4 3/4 1.3 11/16 1.3	53 2 ⁵ /16 54 2 ¹ /4 46 2 ³ /16 58 2 ¹ /16 51 2	1 ⁹ /16 1 ¹ /2 1 ¹ /2 1 ⁷ /16 1 ⁷ /16	10 ↓ ♥	5 ¹ /2		132 120 109 99 90 1	7.15 17.7 7.80 19.3 8.49 21.7 9.34 23.5 0.2 25.9	1530 1380 1240 1110 999	209 190 173 157 143	6.28 6.24 6.22 6.17 6.14	234 212 192 173 157	548 495 447 402 362	74.5 67.5 61.2 55.2 49.9	3.76 3.74 3.73 3.71 3.70	113 102 92.7 83.6 75.6	4.23 13 4.20 13 4.17 13 4.14 13 4.10 13	.7 12.3 .6 9.37 .4 7.12 .4 5.37 .3 4.06	25500 22700 20200 18000 16000	
Example	W14×82 ×74 ×68 ×61	24.0 21.8 20.0 17.9	14.3 14 ¹ / 14.2 14 ¹ / 14.0 14 13.9 13 ⁷ /	4 0.510 ½ 9 0.450 ∛16 0.415 ∛16 9 0.375 3/8	1/4 1/4 1/4 3/18	10.1 10 ¹ /s 10.1 10 ¹ /s 10.0 10 10.0 10	0.855 0.785 0.720 0.645	7/8 1.4 ^{13/} 16 1.3 ³ /4 1.3 5/8 1.2	45 1 ¹¹ /16 38 1 ⁵ /8 31 1 ⁹ /16 24 1 ¹ /2	1 ¹ /16 1 ¹ /16 1 ¹ /16 1	10 ⁷ /8 ↓	5 ¹ /2		82 74 68 61	5.92 22.4 6.41 25.4 6.97 27.5 7.75 30.4	881 795 722 640	123 112 103 92.1	6.05 6.04 6.01 5.98	139 126 115 102	148 134 121 107	29.3 26.6 24.2 21.5	2.48 2.48 2.46 2.45	44.8 40.5 36.9 32.8	2.85 13 2.83 13 2.80 13 2.78 13	.4 5.07 .4 3.87 .3 3.01 .3 2.19	6710 5990 5380 4710	
	W14×53 ×48 ×43°	15.6 14.1 12.6	13.9 137 13.8 133 13.7 135	'8 0.370 3/8 /4 0.340 5/16 /8 0.305 5/16	^{3/16} ^{3/16} ^{3/16}	8.06 8 8.03 8 8.00 8	0.660 0.595 0.530	11/16 1.2 5/8 1.1 1/2 1.1	25 1½ 9 1½ 2 1¾ 2	1 1 1	10 ⁷ /8 ¥	5 ^{1/2}		53 48 43	6.11 30.9 6.75 33.6 7.54 37.4	541 484 428	77.8 70.2 62.6	5.89 5.85 5.82	87.1 78.4 69.6	57.7 51.4 45.2	14.3 12.8 11.3	1.92 1.91 1.89	22.0 19.6 17.3	2.22 13 2.20 13 2.18 13	.2 1.94 .2 1.45 .2 1.05	2540 2240 1950	
	W14×38° ×34° ×30°	11.2 10.0 8.85	14.1 149 14.0 14 5 13.8 139	8 0.310 5/16 0.285 5/16 8 0.270 1/4	^{3/16} ^{3/16} 1/8	6.77 6 ³ /4 6.75 6 ³ /4 6.73 6 ³ /4	0.515 0.455 0.385	1/2 0.9 7/16 0.8 3/8 0.7	915 11/4 355 1 ³ /16 785 11/8	13/16 ³ /4 3/4	11 ⁵ /8 ¥	31/29 31/2 31/2		38 34 30	6.57 39.6 7.41 43.1 8.74 45.4	385 340 291	54.6 48.6 42.0	5.87 5.83 5.73	61.5 54.6 47.3	26.7 23.3 19.6	7.88 6.91 5.82	1.55 1.53 1.49	12.1 10.6 8.99	1.82 13 1.80 13 1.77 13	.6 0.798 .5 0.569 .4 0.380	1230 1070 887	
	₩14×26° ×22°	7.69 6.49	9 13.9 137 9 13.7 133	8 0.255 1/4 /4 0.230 1/4	1/g 1/g	5.03 5 5.00 5	0.420 0.335	7/16 0.8 §∕16 0.7	320 11/s 735 11/16	3/4 3/4	11 ⁵ /8 11 ⁵ /8	2 ³ /4 ⁹ 2 ³ /4 ⁹		26 22	5.98 48.1 7.46 53.3	245 199	35.3 29.0	5.65 5.54	40.2 33.2	8.91 7.00	3.55 2.80	1.08 1.04	5.54 4.39	1.30 13 1.27 13	.5 0.358 .4 0.208	405 314	
	W12×336 ^h ×305 ^h ×279 ^h ×252 ^h ×230 ^h ×210 ×190 ×170 ×152 ×136 ×120 ×106 ×96 ×87 ×79 ×79 ×72 ×65 ^f *Shape Is ski *Shape Is ski	98.9 89.5 81.9 74.1 67.7 61.8 56.0 50.0 44.7 39.9 35.2 28.2 28.2 25.6 23.2 21.1 19.1 19.1 19.1	16.8 167 16.3 163 15.9 157 15.4 153 15.1 15 14.7 143 14.4 143 13.7 134 13.7 134 13.7 134 12.9 127 12.5 129 12.4 123 12.1 121 12.1 121 compression and	a 1.78 13/4 a 1.63 15/a a 1.53 11/2 a 1.53 11/2 a 1.53 11/2 a 1.53 11/2 a 1.60 15/a 1.29 15/aa 1.63 ya 0.960 15/1 ya 0.700 13/a ya 0.700 13/a a 0.700 13/a ya 0.710 11/a a 0.610 5/a ya 0.550 9/ac ya 0.515 1/2 ya 0.390 3/a with $F_y = 50$ kas 3/a with $F_y = 50$ kas 3/a orientation of feature 14	7/8 13/16 3/4 11/16 5/8 9/16 5/8 7/16 5/16 5/16 5/16 1/4 1/4 1/4 1/4 3/16 5.50 ksl.	13.4 13³/c 13.2 13'/a 13.1 13'/a 13.0 13 12.9 127/a 12.8 12³/a 12.7 125/a 12.6 125/a 12.5 12'/a 12.4 12³/a 12.2 12'/a 12.3 12³/a 12.4 12³/a 12.2 12'/a 12.1 12'/a 12.1 12'/a 12.0 12 12.0 12 12.0 12	2.96 2 2.71 2 2.47 2 2.25 2 2.07 2 1.90 1 1.74 1 1.56 1 1.40 1 1.25 1 0.900 1 0.900 0 0.810 0 0.810 0 0.735 0.670 0 0.605 0	15/16 3.6 17/16 3.3 1/2 3.0 1/2 3.0 1/2 3.0 1/4 2.6 1/8 2.6 1/8 2.6 1/8 2.6 1/8 2.6 1/8 2.6 1/8 2.6 1/8 2.6 1/8 2.6 1/8 2.6 1/8 1.7 1.8 1.8 1/8 1.4 3/18 1.4 3/19 1.4 3/4 1.2 5/8 1.2 ared with 1.2	55 37/8 30 35/8 307 33/9 35 31/8 367 215/16 302 215/16 303 25/9 16 25/16 300 25/16 301 25/9 302 25/9 303 25/9 304 25/9 305 21/9 300 25/16 301 25/9 302 25/9 303 25/9 304 25/9 305 21/8 306 25/16 307 11/9 303 15/9 303 15/9 201 11/2 the geometric 250	111/16 15/8 15/8 11/2 11/2 11/2 11/2 11/2 11/4 11/4 11/4	9 ¹ /8 ♥	51/2	-	336 305 279 252 230 210 190 170 152 136 120 106 96 87 79 72 65	2.26 5.47 2.45 5.98 2.66 6.35 2.89 6.96 3.11 7.56 3.37 8.23 3.65 9.16 4.03 10.1 4.46 11.2 4.96 12.3 5.57 13.7 6.17 15.9 6.76 17.7 7.48 18.9 8.22 20.7 8.99 22.6 9.92 24.9	4060 3550 3110 2720 2420 2140 1890 1650 1240 1070 933 833 740 662 597 533	483 435 393 353 221 292 263 209 186 163 145 131 118 107 97.4 87.9	6.41 6.29 6.16 6.06 5.97 5.89 5.82 5.74 5.88 5.54 5.58 5.54 5.34 5.34 5.34 5.32	603 537 481 428 386 348 311 275 243 214 186 164 147 132 119 108 96.8	1190 1050 937 828 742 664 589 517 454 398 345 345 301 270 241 216 195 174	177 159 143 127 115 104 93.0 82.3 72.8 64.2 56.0 49.3 44.4 39.7 35.8 32.4 29.1	3.47 3.42 3.38 3.34 3.28 3.25 3.22 3.19 3.16 3.13 3.11 3.09 3.07 3.05 3.04 3.02	274 244 220 196 177 159 143 126 111 98.0 85.4 75.1 67.5 60.4 54.3 49.2 44.1	4.13 13 4.05 13 3.93 13 3.87 13 3.87 13 3.87 12 3.77 12 3.66 12 3.66 12 3.56 12 3.56 12 3.52 11 3.49 11 3.46 11 3.43 11 3.43 11 3.38 11	8 243 6 185 .4 143 .2 108 .0 83.8 .8 64.7 .7 48.8 .4 35.6 .3 25.8 .2 18.5 .0 12.9 .9 9.13 .8 6.85 .7 5.10 .7 3.84 .6 2.93 .5 2.18	57000 48800 42000 35800 27200 23600 20100 14700 12400 12400 12400 12400 7330 6540 5780	_

Example

d X- tw-	-x	T k			M D	I-S Dime	ha ensi	pe: ons	S				istance			Com	pact				Ν	/I-S Pro	Sha	ape rties	s]		I	M-SH/	- \PES
Shape	Area, A	Dep	pth, ¢/	Thick	ness,	$\frac{t_{W}}{2}$	Wie	ith,	Thickr	iess,	k	k1	T	Workable Gage	Nom- Inal Wt.	Sect Crite	tion eria	,	Axis	x-x	7		Axis	5 Y-Y	7	r _{ts}	h _o	$\frac{J}{S_r h_o}$	Prop J	rties <i>C</i> "
	in. ²	i	n.	in		in.	ir	1.	in.		in.	in.	in.	in.	lb/ft	$\frac{D_{f}}{2t_{f}}$	$\frac{n}{t_w}$	in.4	in. ³	in.	in. ³	/ in. ⁴	in. ³	in.	in. ³	in.	in.		in.4	in."
5×12.4%	3.63	12.5	121/2	0.155	1/8 1/0	1/16 1/10	3.75	33/4	0.228	1/4 3/10	9/16 9/40	3/8 3/0	11 ³ /8	_	12.4 11.6	8.22 8.29	74.8 74.8	89.3 80.3	14.2 12.8	4.96 ⁻	16.5 2 15.0 1	2.01	1.07 0.864	0.744	1.68 1.37	0.933	12.3 12.3	0.000283	0.0493	76.0 57.1
12×11.8	3.47	12.0	12.72	0.177	3/16	1/8	3.07	31/B	0.225	1/4	9/16	3/8	107/8		11.8	6.81	62.5	72.2	12.0	4.56	14.3	1.09	0.709	0.559	1.15	0.731	11.8	0.000355	0.0500	37.7
×10.8°	3.18	12.0	12	0.160	3/16	1/8 1/	3.07	31/8	0.210	∛16 %	9/16	3/8 3-	107/8	-	10.8	7.30	69.2	66.7	11.1	4.58	13.2	1.01	0.661	0.564	1.07	0.732	11.8	0.000300	0.0393	35.0
M12×10 ^{4,9}	2.95	12.0	12	0.149	3/40	1/0	3.25	3%	0.180	9/16 3/1e	1/2 9/40	9/8 3/0	11 87/s		9	6.53	58.4	39.0	7.79	4.57	9.22	0.672	0.500	0.592	0.809	0.650	9,79	0.000411	0.0292	16.1
×8°	2.37	9.95	10	0.141	1/8	1/8 1/16	2.69	23/4	0.182	3/16	9/16	3/B	87/8	_	8	7.39	65.0	34.6	6.95	3.82	8.20	0.593	0.441	0.500	0.711	0.646	9.77	0.000328	0.0224	14.2
M10×7.5°,×	2.22	9.99	10	0.130	1/B	¥16	2.69	23/4	0.173	∛16	∛16	⁵ ∕16	91/8	-	7.5	7.77	71.0	33.0	6.60	3.85	7.77 (0.562	0.418	0.503	0.670	0.646	9.82	0.000289	0.0187	13.5
M8×6.5° ×6.2°	1.92 1.82	8.00 8.00	8 8	0.135 0.129	1/8 1/8	1/16 1/16	2.28 2.28	21/4 21/4	0.189 0.177	∛16 ∛16	9/16 7/16	³ /8 1/4	67/8 7 ¹ /8		6.5 6.2	6.03 6.44	53.8 56.5	18.5 17.6	4.63 4.39	3.11 3.10	5.43 (5.15 (0.376 0.352	0.329 0.308	0.443 0.439	0.529 0.495	0.563	7.81	0.000509	0.0184	5.73
M6×4.4° ×3.7°	1.29	6.00	6 5%	0.114	1/8 1/8	V16 V16	1.84	17/8	0.171	∛16 1/9	3/8 5/16	1/4 1/4	51/4 51/4	_	4.4	5.39 7.75	47.0 54.7	7.23 5.96	2.41 2.01	2.36 2.34	2.80 (0.180 0.173	0.195 0.173	0.372 0.398	0.311	0.467	5.83 5.79	0.000707	0.00990	1.5
M5×18.9t	5.56	5.00	5	0.316	5/16	3/16	5.00	5	0.416	7/16	13/16	1/2	33/8	23/49	18.9	6.01	11.2	24.2	9.67	2.08	11.1 8	3.70	3.48	1.25	5.33	1.44	4.58	0.00709	0.313	45.7
14×6 ^f ×4.08 ×3.45 ×3.2	1.75 1.27 1.01 1.01	3.80 4.00 4.00 4.00	3 ³ /4 4 4	0.130 0.115 0.0920 0.0920	1/8 1/8 1/16 1/16	1/18 1/18 1/18 1/18 1/18	3.80 2.25 2.25 2.25	3 ³ /4 2 ¹ /4 2 ¹ /4 2 ¹ /4	0.160 0.170 0.130 0.130	³ /16 3/16 1/8 1/8	1/2 9/16 1/2 1/2	³ /в 3/в 3/в 3/в	2 ³ /4 2 ⁷ /8 3 3	 	6 4.08 3.45 3.2	11.9 6.62 8.65 8.65	22.0 26.4 33.9 33.9	4.72 3.53 2.86 2.86	2.48 1.77 1.43 1.43	1.64 1.67 1.68 1.68	2.74 1 2.00 (1.60 (1.60 (1.47 0.325 0.248 0.248	0.771 0.289 0.221 0.221	0.915 0.506 0.496 0.496	1.18 0.453 0.346 0.346	1.04 0.593 0.580 0.580	3.64 3.83 3.87 3.87	0.00208 0.00218 0.00148 0.00148	0.0184 0.0147 0.00820 0.00820	4.87 1.1(0.9(0.9)
M3×2.9	0.914	3.00	3	0.0900	1/16	¥16	2.25	21/4	0.130	1/8	¥2	3/8	2	_	2.9	8.65	23.6	1.50	1.00	1.28	1.12	0.248	0.221	0.521	0.344	0.597	2.87	0.00275	0.00790	0.5
ihape is sience Thape exceed The actual size	der for c s compe e, comb	ompres uct limit	sion with for flee	th Fy = 36 une with / mitation o	3 ksi. F _y = 3t	6 ksl. ner cor	nponent	's should	1 be comp	vared w	th the ;	geometr	yof																	

Dimensions and properties Table 1-2 in the AISC Manual

W- and M-shapes:

W- and M-shapes:

S-shape: hoist beams for the support of monorails

Dimensions and properties	d X	Y bf	x 7	-	Ľ	T S- Di	able Sh	e 1- ap	3 es ns]											Tabl	e 1- S-3 Pr	-3 (co Sha oper	ontir pes ties	nue S	d)			s-si	IAPES
Table 1.2 in the		Area.	De	oth.		Web			Fl	ange			Distan	ice		Nom-	Com Sec	pact tion		Axis)	(-X			Axis	Y-Y				Tors	ional erties
	Shape	A		d	Thick:	ness, ,	$\frac{t_w}{2}$		dilh, Þ _f	Thick	ness, f	k	T	Workable Gage		inal Wt.	Crit	eria	,	6		7	,			7	r _{bs}	h,	J	C _w
AISC Manual		in. ²	i	n.	in		in.	i	n.	ir	ı.	in.	in.	in.		lb/ft	$\frac{DT}{2t_f}$	$\frac{n}{t_w}$	in.4	in. ³	in.	in. ³	in.4	in. ³	in.	in. ³	in.	in.	in.4	in. ⁶
	S24×121 ×106	35.5	24.5 24.5	241/2 241/2	0.800	13/16 5/e	7/16 5/16	8.05	8 7%	1.09	1¥16 1¥16	2	20 ¹ /2 20 ¹ /2	4		121	3.69 3.61	25.9	3160	258 240	9.43 0.71	306 270	83.0 76.8	20.6	1.53	36.3 33.4	1.94	23.4	12.8	11400
	\$24×100	29.3	24.0	24	0.745	3/4	3/8	7.25	71/4	0.870	7/8	1 ³ /4	20 ¹ /2	4		100	4.16	27.8	2380	199	9.01	239	47.4	13.1	1.27	24.0	1.66	23.1	7.59	6350
	×90	26.5	24.0	24	0.625	5/8 1/n	5/16 1/4	7.13	7½8	0.870	7/8 7/0	1 ³ /4	20 ¹ /2	4		90	4.09	33.1	2250	187	921	222	44.7	12.5	1.30	22.4	1.66	23.1	6.05	5980
	×00 \$20×96	28.2	24.0	201/4	0.800	13/18	74 7/18	7.20	7 7¼	0.920	15/16	1 ⁻⁷⁴	16 ³ /4	4		90	4.02	41.4 21.1	1670	1/5	9.47	204 108	42.0	12.0	1.34	20.0	1.07	10.4	4.09 8.40	4600
	×86	25.3	20.3	201/4	0.660	11/16	3/8	7.06	7	0.920	15/16	13/4	16 ³ /4	4		86	3.84	25.6	1570	155	7.89	183	46.6	13.2	1.36	23.1	1.71	19.4	6.65	4370
	\$20×75 ×66	22.0 19.4	20.0 20.0	20 20	0.635	5/8 1/2	5/16 1/4	6.39 6.26	6¾ 6¼	0.795 0.795	^{13/} 16 ^{13/} 16	15/s 15/s	16 ³ /4 16 ³ /4	31/28 31/28		75 66	4.02	26.6	1280	128 110	7.62	152 130	29.5 27.5	9.25 8.78	1.16	16.7 15.4	1.49	19.2 10.2	4.59 3.58	2720
	S18×70	20.5	18.0	18	0.711	11/16	3/8	6.25	6¼	0.691	11/16	11/2	15	3 ¹ /2 ^g		70	4.52	21.5	923	103	6.70	124	24.0	7.69	1.08	14.3	1.42	17.3	4.10	1800
Example	×54.7	16.0	18.0	18	0.461	7/16	1/4	6.00	6	0.691	11/16	11/2	15	31/29		54.7	4.34	33.2	801	89.0	7.07	104	20.7	6.91	1.14	12.1	1.42	17.3	2.33	1550
	×42.9	14.7	15.0 15.0	15	0.550	°/16 7 _{/16}	9/16 ¹ /4	5.64 5.50	5%8 51/2	0.622	978 578	14/8 1 ³ /8	12 ¹ /4 12 ¹ /4	31/28 31/28		50 42.9	4.53 4.42	22.7 30.4	485 446	64.7 59.4	5.75 5.95	77.0 69.2	15.6 14.3	5.53 5.19	1.03 1.06	10.0 9.08	1.32 1.31	14.4 14.4	2.12 1.54	805 737
	\$12×50	14.7	12.0	12	0.687	¹¹ /16	3/8	5.48	51/2	0.659	¹¹ /16	17/16	9½	39		50	4.16	13.7	303	50.6	4.55	60.9	15.6	5.69	1.03	10.3	1.32	11.3	2.77	501
	×40.8	11.9	12.0	12	0.462	1/16 7/16	1/4 1/-	5.25	574	0.659	11/16 N/16	1//16	9%	39		40.8	3.98	20.6	270	45.1	4.76	52.7	13.5	5.13	1.06	8.86	1.30	11.3	1.69	433
	×31.8	9.31	12.0	12	0.428	^{7/16} 3 _{/8}	9/4 ³ /16	5.08	578	0.544	9/16 9/16	19/16 1 ³ /16	9% 9%	39		35 31.8	4.67 4.60	23.1 28.3	228 217	38.1 36.2	4.72 4.83	44.6 41.8	9.84 9.33	3.88 3.73	0.960 1.00	6.80 6.44	1.22 1.21	11.5 11.5	1.05 0.878	323 306
	\$10×35	10.3	10.0	10	0.594	5/8	⁵ /16	4.94	5	0.491	1/2	1½	73/4	2 ³ /4 ⁹		35	5.03	13.4	147	29.4	3.78	35.4	8.30	3.36	0.899	6.19	1.16	9.51	1.29	188
	×25.4	6.76	8.00	10	0.311	9/16 7/40	9/16 1/4	4.66	498	0.491	1/2 7/40	178	794 6	29/49		25.4	4.75	25.6	123	24.6	4.07	28.3	6.73	2.89	0.950	4.99	1.14	9.51	0.603	152
	×18.4	5.40	8.00	8	0.441	1/4	1/8	4.00	478	0.425	7/16 7/16	1	6	21/49 21/49		18.4	4.91	22.9	64.7 57.5	16.2	3.09	19.2 16.5	4.27	2.05	0.795	3.67	0.999	7.58	0.550	52.9
	S6×17.25	5.05	6.00	6	0.465	7/16	1/4 1/-	3.57	35/8	0.359	3/8 3/2	13/16 13/	43/8	-		17.25	4.97	9.67	26.2	8.74	2.28	10.5	2.29	1.28	0.673	2.35	0.859	5.64	0.371	18.2
	×12.5	3.66	5.00	5	0.232	74 3/48	78 1/a	3.33	378	0.359	78 5/18	3/4	478			12.5	4.64	19.4	12.0	7.34	2.45	8.45	1.80	1.08	0.702	1.86	0.831	5.64	0.167	14.3
	\$4×9.5	2.79	4.00	4	0.326	5/16	3/16	2.80	23/4	0.293	5/16	3/4	21/2	_		9.5	4.01	8.33	6.76	3.38	1.56	4.04	0.887	0.635	0.564	1.13	0.698	3.71	0.120	3.05
	×7.7	2.26	4.00	4	0.193	³ /16	1/8	2.66	25/8	0.293	5/16	3/4	21/2	-		7.7	4.54	14.1	6.05	3.03	1.64	3.50	0.748	0.562	0.576	0.970	0.676	3.71	0.0732	2.57
	\$3×7.5 ×5.7	2.20	3.00	3	0.349	3 _{/8} 3/16	3/16 1/8	2.51	21/2 23/8	0.260 0.260	1/4 1/4	5/8 5/8	13/4 13/4			7.5 5.7	4.83 4.48	5.38 11.0	2.91 2.50	1.94 1.67	1.15	2.35 1.94	0.578	0.461	0.513	0.821	0.638	2.74 2.74	0.0896	1.08 0.838
				_															2.50					0.000		0.000				
	The actual cross sect	i size, con ton to ens	nbinatior sure com	n and orie ipatibility.	ntation of	' fastene	er comp	onents s	hould be	e compare	d with th	e georne'	ry of the																	
	— Indicates f	nange is t	oo narto	w to esta	dish a w	orkable	gage.																							
	L														1	L														

HP-shape: bearing pile foundations and soldier piles for lateral support in deep excavations.

					[H	Ta P-3 Dim	ble Sh ens	1-4 ape sion	es s											Та	ible HI	1-4 P-S Prop	(co Sha perti	ntin pe	ued S)		- - HI	P-SHA	NPES
Dimensions and properties		A	Der		١	Web			Fla	inge			Di	stance		Nom-	Com	pact		Avie	v.v			Avia	v.v					Tors	ional
Table 1-4 in the	Shape	Area, A	Dep	1	Thickn	iess,	$\frac{t_w}{2}$	Wie	dth,	Thick	ness,	k	<i>k</i> 1	т	Workable Gage	inai Wt.	Crit	teria		AND	<u>~~</u>	_		Аліа	1-1	-	f _b	h _o	J	J	Gu
AISC Manual		in. ²	in	۱.	in.		in.	ir	" n.	in	, I.	in.	in.	in.	in.	lb/ft	<u>br</u> 2tr	$\frac{h}{t_w}$	/ in.4	S in. ³	n in.	Z in. ³	/ in. ⁴	5 in. ³	r in.	Z in. ³	in.	in.	oluî	in.4	in. ⁶
	HP18×204 ×181 ×157 ^f ×135 ^f	60.2 53.2 46.2 39.9	18.3 18.0 17.7 17.5	18¼ 18 17¾ 17½	1.13 1.00 0.870 0.750	1 ¹ /8 1 7/8 ³ /4	9/16 1/2 7/16 3/8	18.1 18.0 17.9 17.8	18 ¹ /8 18 17 ⁷ /8 17 ³ /4	1.13 1.00 0.870 0.750	11/8 1 7/8 ³ /4	2 ⁵ /16 2 ³ /18 2 ¹ /18 1 ¹⁵ /18	1 ³ /4 1 ¹¹ /16 1 ⁵ /8 1 ⁹ /16	13 ¹ /2	7 ¹ /2	204 181 157 135	8.01 9.00 10.3 11.9	12.1 13.6 15.6 18.2	3480 3020 2570 2200	380 336 290 251	7.60 7.53 7.46 7.43	433 379 327 281	974 833 706	124 108 93.1 79.3	4.31 4.28 4.25 4.21	191 167 143 122	5.03 4.96 4.92 4.85	17.2 17.0 16.8 16.8	0.00451 0.00362 0.00285 0.00216	29.5 20.7 13.9 9.12	82500 70400 59000 49500
	HP16×183 ×162 ×141 ×121 ^f ×101 ^f ×88 ^{cf}	54.1 47.7 41.7 35.8 29.9 25.8	16.5 16.3 16.0 15.8 15.5 15.3	16½ 16¼ 16 15¾ 15½ 15½	1.13 1.00 0.875 0.750 0.625 0.540	1 ¹ /8 1 ⁷ /8 ³ /4 ⁵ /8 ⁹ /16	9/16 1/2 7/16 3/8 5/16 5/16	16.3 16.1 16.0 15.9 15.8 15.7	16 ¹ /2 16 ¹ /8 16 15 ⁷ /8 15 ³ /4 15 ¹¹ /16	1.13 1.00 0.875 0.750 0.625 0.540	1 ¹ /8 1 ⁷ /8 ³ /4 ⁵ /8 ⁹ /16	2 ⁵ /16 2 ³ /16 2 ¹ /16 1 ¹⁵ /16 1 ¹³ /16 1 ³ /4	1 ³ /4 1 ¹¹ /16 1 ⁵ /8 1 ⁹ /16 1 ¹ /2 1 ⁷ /16	11 ³ /4	5 ¹ /2	183 162 141 121 101 88	7.21 8.05 9.14 10.6 12.6 14.5	10.5 11.9 13.6 15.9 19.0 22.0	2510 2190 1870 1590 1300 1110	304 269 234 201 168 145	6.81 6.78 6.70 6.66 6.59 6.56	349 306 264 226 187 161	818 697 599 504 412 349	100 86.6 74.9 63.4 52.2 44.5	3.89 3.82 3.79 3.75 3.71 3.68	156 134 116 97.6 80.1 68.2	4.54 4.45 4.40 4.34 4.27 4.21	15.4 15.3 15.1 15.1 14.9 14.8	0.00576 0.00457 0.00365 0.00275 0.00203 0.00161	26.9 18.8 12.9 8.35 5.07 3.45	48300 40800 34300 28500 22800 19000
Example	HP14×117 ^f ×102 ^f ×89 ^f ×73 ^{c,f}	34.4 30.1 26.1 21.4	14.2 14.0 13.8 13.6	14¼ 14 137/8 135/8	0.805 0.705 0.615 0.505	13/16 11/16 ⁵ /8 1/2	7/16 378 5/16 1/4	14.9 14.8 14.7 14.6	14 ⁷ /8 14 ³ /4 14 ³ /4 14 ⁵ /8	0.805 0.705 0.615 0.505	13y ₁₈ 11y ₁₆ 5 _{/8} 1/2	11/2 13/8 15/16 13/16	1 ^{1/,} 16 1 ^{15/,} 16 ^{7/} 8	11¼ ↓ ♥	51/2 ¥	117 102 89 73	9.25 10.5 11.9 14.4	14.2 16.2 18.5 22.6	1220 1050 904 729	172 150 131 107	5.96 5.92 5.88 5.84	194 169 146 118	443 380 326 261	59.5 51.4 44.3 35.8	3.59 3.56 3.53 3.49	91.4 78.8 67.7 54.6	4.15 4.10 4.05 4.00	13.4 13.3 13.2 13.1	0.00348 0.00270 0.00207 0.00143	8.02 5.39 3.59 2.01	19900 16800 14200 11200
	HP12×84 ×74 ^f ×63 ^f ×53 ^{c,f}	24.6 21.8 18.4 15.5	12.3 12.1 11.9 11.8	12¼ 12⅛ 12 11 ³ /4	0.685 0.605 0.515 0.435	11/16 ⁵ /8 1/2 7/16	3/8 5/16 1/4 1/4	12.3 12.2 12.1 12.0	12¼ 12¼ 12⅓ 121/8	0.685 0.610 0.515 0.435	11/16 5/8 1/2 7/16	13/8 15/16 11/4 11/8	1 15/16 7/8 7/8	9∜2 ▼	51/2 ↓	84 74 63 53	8.97 10.0 11.8 13.8	14.2 16.1 18.9 22.3	650 569 472 393	106 93.8 79.1 66.7	5.14 5.11 5.06 5.03	120 105 88.3 74.0	213 186 153 127	34.6 30.4 25.3 21.1	2.94 2.92 2.88 2.86	53.2 46.6 38.7 32.2	3.41 3.38 3.33 3.29	11.6 11.5 11.4 11.4	0.00345 0.00276 0.00202 0.00148	4.24 2.98 1.83 1.12	7140 6160 5000 4080
	HP10×57 ×42 ^f	16.7 12.4	9.99 9.70	10 9¾	0.565 0.415	9/16 7/16	5/16 1/4	10.2 10.1	10¼ 10⅓	0.565 0.420	9/16 7/16	1¼ 1½	15y ₁₆ 13y ₁₆	7∜2 7∜2	51/2 51/2	57 42	9.03 12.0	13.9 18.9	294 210	58.8 43.4	4.18 4.13	66.5 48.3	101 71.7	19.7 14.2	2.45 2.41	30.3 21.8	2.84 2.77	9.43 9.28	0.00355	1.97 0.813	2240 1540
	×42 [°] HP8×36 ^f [°] Shape Is ste ¹ Shape excee	12.4 10.6 Inder for ads comp	compres act limit	ston with	0.415 0.445	7/16 7/16 0 kst. 6y = 50	γ4 1/4	8.16	81/8	0.420	716 7/16	11/8	'-9716 7/8	534	51/2	36	9.16	14.2	119	29.8	3.36	33.6	40.3	9.88	1.95	15.2	2.26	7.58	0.00341	0.770	578

C- and MC-shapes: beams for light loads

		X +	-x	d d		[C. Di	Tabl -Sh ime	e 1- 1ap nsio	5 es ns]											Та	ble C F	1-5 -SI Prop	(cor nap perti	ntinu)es	ued)			C-	SHA	PES
		P	NA			Web			Fla	nae		0)istanc	e				~											То	rsional Pr	opert	ies
:5	Shape	Area, A	Dep d	th,	Thick	ness,	t _w	Wie	ith,	Avera	age	k	τ	Work-	l _{ts}	h _o	inal	Ctr,		Axis	X-X				Axis	Y-Y			1	6		
		in 2	in		t,	,	2	L.	h N	t _f		in	in	Gage	in	in	Wt.	θ ₀	1	S	r	Z	1	S	r	x	Z	Хp			10 in	н
	C15×50	14.7	II 15.0	15	0.716	11/16	a/8	3.72	1. 3 ³ /4	0.650	5/8	m. 1∛16	n. 121/8	n. 21/4	n. 1.17	In. 14.4	10/IL 50	n. 0.583	404	53.8	in. 5.24	68.5	11.0	3.77	In. 0.865	In. 0.799	In.º 8.14	in. 0.490	in.* 2.65	492	in. 5.49	0.937
	×40 ×33.9	11.8 10.0	15.0 15.0	15 15	0.520 0.400	1/2 3/8	¹ /4 ³ /16	3.52 3.40	3 ¹ /2 3 ³ /8	0.650 0.650	5/8 5/8	1∛16 1∛16	12 ¹ /8 12 ¹ /8	2 2	1.15 1.13	14.4 14.4	40 33.9	0.767 0.896	348 315	46.5 42.0	5.43 5.61	57.5 50.8	9.17 8.07	3.34 3.09	0.883 0.901	0.778 0.788	6.84 6.19	0.392 0.332	1.45 1.01	410 358	5.71 5.94	0.927 0.920
	C12×30 ×25 ×20.7	8.81 7.34 6.08	12.0 12.0 12.0	12 12 12	0.510 0.387 0.282	1⁄2 3∕8 5⁄16	1/4 ³ /16 ³ /16	3.17 3.05 2.94	31/8 3 3	0.501 0.501 0.501	1/2 1/2 1/2	11/8 11/8 11/8	9 ³ /4 9 ³ /4 9 ³ /4	13/49 13/49 13/49	1.01 1.00 0.983	11.5 11.5 11.5	30 25 20.7	0.618 0.746 0.870	162 144 129	27.0 24.0 21.5	4.29 4.43 4.61	33.8 29.4 25.6	5.12 4.45 3.86	2.05 1.87 1.72	0.762 0.779 0.797	0.674 0.674 0.698	4.32 3.82 3.47	0.367 0.306 0.253	0.861 0.538 0.369	151 130 112	4.54 4.72 4.93	0.919 0.909 0.899
	C10×30 ×25 ×20 ×15.3	8.81 7.35 5.87 4.48	10.0 10.0 10.0 10.0	10 10 10 10	0.673 0.526 0.379 0.240	11/16 1/2 3/8 1/4	³ /8 ¹ /4 ³ /16 ¹ /8	3.03 2.89 2.74 2.60	3 2 ⁷ /8 2 ³ /4 2 ⁵ /8	0.436 0.436 0.436 0.436	7/16 7/16 7/16 7/16 7/16	1 1 1 1	8 8 8	1 ³ /4 ⁹ 1 ³ /4 ⁹ 1 ¹ /2 ⁹ 1 ¹ /2 ⁹	0.924 0.911 0.894 0.868	9.56 9.56 9.56 9.56	30 25 20 15.3	0.368 0.494 0.636 0.796	103 91.1 78.9 67.3	20.7 18.2 15.8 13.5	3.43 3.52 3.67 3.88	26.7 23.1 19.4 15.9	3.93 3.34 2.80 2.27	1.65 1.47 1.31 1.15	0.668 0.675 0.690 0.711	0.649 0.617 0.606 0.634	3.78 3.18 2.70 2.34	0.441 0.367 0.294 0.224	1.22 0.687 0.368 0.209	79.5 68.3 56.9 45.5	3.63 3.76 3.93 4.19	0.921 0.912 0.900 0.884
	C9×20 ×15 ×13.4	5.87 4.40 3.94	9.00 9.00 9.00	9 9 9	0.448 0.285 0.233	7/16 5/16 1/4	¹ /4 ³ /16 ¹ /8	2.65 2.49 2.43	2 ⁵ /8 2 ¹ /2 2 ³ /8	0.413 0.413 0.413	7/16 7/16 7/16 7/16	1 1 1	7 7 7	1 ¹ /2 ⁹ 13/8 ⁹ 1 ³ /8 ⁹	0.850 0.825 0.814	8.59 8.59 8.59	20 15 13.4	0.515 0.681 0.742	60.9 51.0 47.8	13.5 11.3 10.6	3.22 3.40 3.48	16.9 13.6 12.6	2.41 1.91 1.75	1.17 1.01 0.954	0.640 0.659 0.666	0.583 0.586 0.601	2.46 2.04 1.94	0.326 0.245 0.219	0.427 0.208 0.168	39.4 31.0 28.2	3.46 3.69 3.79	0.899 0.882 0.875
	C8×18.75 ×13.75 ×11.5	5.51 4.03 3.37	8.00 8.00 8.00	8 8 8	0.487 0.303 0.220	1/2 5/16 1/4	¹ /4 ^{3/16} ¹ /8	2.53 2.34 2.26	2 ¹ /2 2 ³ /8 2 ¹ /4	0.390 0.390 0.390	³ /8 ^{3/8} ³ /8	¹⁵ /16 ¹⁵ /16 ¹⁵ /16	6 ¹ /8 6 ¹ /8 6 ¹ /8	1 ¹ /2 ⁹ 1 ³ /8 ⁹ 1 ³ /8 ⁹	0.800 0.774 0.756	7.61 7.61 7.61	18.75 13.75 11.5	0.431 0.604 0.697	43.9 36.1 32.5	11.0 9.02 8.14	2.82 2.99 3.11	13.9 11.0 9.63	1.97 1.52 1.31	1.01 0.848 0.775	0.598 0.613 0.623	0.565 0.554 0.572	2.17 1.73 1.57	0.344 0.252 0.211	0.434 0.1 <i>8</i> 6 0.130	25.1 19.2 16.5	3.05 3.26 3.41	0.894 0.874 0.862
	C7×14.75 ×12.25 ×9.8	4.33 3.59 2.87	7.00 7.00 7.00	7 7 7	0.419 0.314 0.210	7/16 5∕16 3⁄16	¹ /4 ^{3/16} ¹ /8	2.30 2.19 2.09	2 ¹ /4 2 ¹ /4 2 ¹ /8	0.366 0.366 0.366	³ /8 ³ /8 ³ /8	7 _{/8} 7 _{/8} 7 _{/8}	5 ¹ /4 5 ¹ /4 5 ¹ /4	1¼9 1¥49 1¼9	0.738 0.722 0.698	6.63 6.63 6.63	14.75 12.25 9.8	0.441 0.538 0.647	27.2 24.2 21.2	7.78 6.92 6.07	2.51 2.59 2.72	9.75 8.46 7.19	1.37 1.16 0.957	0.772 0.696 0.617	0.561 0.568 0.578	0.532 0.525 0.541	1.63 1.42 1.26	0.309 0.257 0.205	0.267 0.161 0.0996	13.1 11.2 9.15	2.75 2.86 3.02	0.875 0.862 0.845
	C6×13 ×10.5 ×8.2	3.82 3.07 2.39	6.00 6.00 6.00	6 6 6	0.437 0.314 0.200	7/16 5/16 3/16	¹ /4 ³ /16 ¹ /8	2.16 2.03 1.92	2 ¹ /8 2 1 ⁷ /8	0.343 0.343 0.343	⁵ /16 ⁵ /16 ⁵ /16	¹³ /16 ¹³ /16 ¹³ /16	4 ³ /8 4 ³ /8 4 ³ /8	1 ³ /8 ⁹ 11⁄89 11⁄89	0.689 0.669 0.643	5.66 5.66 5.66	13 10.5 8.2	0.380 0.486 0.599	17.3 15.1 13.1	5.78 5.04 4.35	2.13 2.22 2.34	7.29 6.18 5.16	1.05 0.860 0.687	0.638 0.561 0.488	0.524 0.529 0.536	0.514 0.500 0.512	1.35 1.14 0.987	0.318 0.256 0.199	0.237 0.128 0.0736	7.19 5.91 4.70	2.37 2.48 2.65	0.858 0.842 0.824
	C5×9 ×6.7	2.64 1.97	5.00 5.00	5 5	0.325 0.190	⁵ /16 3/16	³ /16 1/8	1.89 1.75	1 ⁷ /8 1 ³ /4	0.320 0.320	⁵ /16 ⁵ /16	³ /4 ³ /4	31/2 31/2	1½9 —	0.616 0.584	4.68 4.68	9 6.7	0.427 0.552	8.89 7.48	3.56 2.99	1.84 1.95	4.39 3.55	0.624 0.470	0.444 0.372	0.486 0.489	0.478 0.484	0.913 0.757	0.264 0.215	0.109 0.0549	2.93 2.22	2.10 2.26	0.815 0.790
	C4×7.25 ×6.25 ×5.4 ×4.5	2.13 1.77 1.58 1.38	4.00 4.00 4.00 4.00	4 4 4 4	0.321 0.247 0.184 0.125	5/18 1/4 3/18 1/8	^{3/} 16 1/8 1/8 1/8	1.72 1.65 1.58 1.58	1 ³ /4 1 ³ /4 1 ⁵ /8 1 ⁵ /8	0.296 0.272 0.296 0.296	^{5/} 16 ^{5/16} ^{5/16} ^{5/16}	3/4 3/4 3/4 3/4	21/2 21/2 21/2 21/2	19 	0.563 0.546 0.528 0.524	3.70 3.73 3.70 3.70	7.25 6.25 5.4 4.5	0.386 0.434 0.501 0.587	4.58 4.00 3.85 3.65	2.29 2.00 1.92 1.83	1.47 1.50 1.56 1.63	2.84 2.43 2.29 2.12	0.425 0.345 0.312 0.289	0.337 0.284 0.277 0.265	0.447 0.441 0.444 0.457	0.459 0.435 0.457 0.493	0.695 0.569 0.565 0.531	0.266 0.221 0.231 0.321	0.0817 0.0487 0.0399 0.0322	1.24 1.03 0.921 0.871	1.75 1.79 1.88 2.01	0.767 0.764 0.742 0.710
	C3×6 ×5 ×4.1 ×3.5	1.76 1.47 1.20 1.09	3.00 3.00 3.00 3.00	3 3 3 3	0.356 0.258 0.170 0.132	3/8 1/4 3/16 1/8	³ /16 1/8 1/8 1/16	1.60 1.50 1.41 1.37	1 ⁵ /8 1 ¹ /2 1 ³ /8 1 ³ /8	0.273 0.273 0.273 0.273	1/4 1/4 1/4 1/4	¹¹ / ₁₆ ¹¹ / ₁₆ ¹¹ / ₁₆	1 ⁵ /8 1 ⁵ /8 1 ⁵ /8 1 ⁵ /8	 	0.519 0.496 0.469 0.456	2.73 2.73 2.73 2.73	6 5 4.1 3.5	0.322 0.392 0.461 0.493	2.07 1.85 1.65 1.57	1.38 1.23 1.10 1.04	1.09 1.12 1.18 1.20	1.74 1.52 1.32 1.24	0.300 0.241 0.191 0.169	0.263 0.228 0.196 0.182	0.413 0.405 0.398 0.394	0.455 0.439 0.437 0.443	0.543 0.464 0.399 0.364	0.294 0.245 0.262 0.296	0.0725 0.0425 0.0269 0.0226	0.462 0.379 0.307 0.276	1.40 1.45 1.53 1.57	0.690 0.673 0.655 0.646
	9 The act cross se — Indicate	ual size, action to s flange	combina ensure is too na	ation a compa arrow i	nd orlent tibility. to establ	ation o Ish a w	f fasten orkable	er comp gage.	onents :	should be	compa	ared with	the geo	metry of	the			•														

Dimensions and properties Table 1-5 in the AISC Manual

			d d		[M(D	Tal C-S im	ole Sha ens	1-6 ap	es s													Та	ble MC F	1-6 C-S Prop	(co Sha perti	ntin I pe ies	ued) S)		мс	18-N	IC8
		Area	Den	6	1	Web			Fla	nge		I	Distanc	e			Nom	- Shea	ar	A1	rie ¥.	-Y				Avi	• V.V			To	sional Pro	operti	es
erties	Shape	A A	d	ui,	Thickr	ness,	$\frac{t_w}{2}$	Wid b	ith, F	Aver	age ness,	k	т	Work- able	Fts	h _o	inal Wt.	Ctr,	<u>ٰ</u>		e	~	7	,	6	~~~		7	¥-	J	C _w	ī,	н
		in. ²	in		in		in.	in	, I.	in	f 1.	in.	in.	in.	in.	in.	lb/f	t in.	in.	4 ir	5 1. ³	n.	in. ³	/ in. ⁴	in. ³	in.	x in.	in. ³	۸p in.	in.4	in.6	in.	
	MC18×58	17.1	18.0	18	0.700	11/ ₁₆	3/8	4.20	4¼	0.625	5/8	17/16	15 ¹ /8	21/2	1.35	17.4	58	0.69	5 675	75	.0 6	6.29	95.4	17.6	5.28	1.02	0.862	10.7	0.474	2.81	1070	6.56	0.944
	×51.9	15.3	18.0	18	0.600	5/8 1/-	⁵ /16	4.10	41/8	0.625	5/8 5/-	17/16			1.35	17.4	51.9	0.79	7 627	69	.6 6	6.41	87.3	16.3	5.02	1.03	0.858	9.86	0.424	2.03	985	6.70	0.939
	×45.0 ×42.7	13.5	18.0	18	0.500	7/16	1/4 1/4	4.00	4	0.625	5/g	17/16	♦	♦	1.34	17.4	42.7	0.96	9 554	61	.5 6	5.64	75.1	14.9	4.64	1.05	0.877	8.82	0.349	1.23	852	6.97	0.930
	MC13×50	14.7	13.0	13	0.787	13/18	7/18	4.41	4 ³ /0	0.610	5/0	17/18	101/0	21/2	1.41	12.4	50	0.81	5 314	48	.3 4	1.62	60.8	16.4	4,77	1.06	0.974	10.2	0,566	2,96	558	5,07	0.875
	×40	11.7	13.0	13	0.560	9/16	5/16	4.19	41/8	0.610	5/8	17/16		Ĩ	1.38	12.4	40	1.03	273	41	.9 4	1.82	51.2	13.7	4.24	1.08	0.963	8.66	0.452	1.55	462	5.32	0.859
	×35	10.3	13.0	13	0.447	7/16	1/4 2/	4.07	41/8	0.610	5/8 5/-	17/16		↓	1.35	12.4	35	1.16	252	38	.8 4	1.95	46.5	12.3	3.97	1.09	0.980	8.04	0.396	1.13	412	5.50	0.849
	×31.8	9.35	13.0	13	0.375	9/8	9/16	4.00	4	0.610	9/8	1//16	-21		1.34	12.4	51.0	0.24	1 239	30	" l		40.4 50 5	17.4	5.79	1.10	1.00	10.0	0.300	0.937	300	5.04	0.042
	MC12×50 ~45	14.7 13.2	12.0	12	0.835	13/16 11/16	1/16 3/0	4.14	4 % 4	0.700	11/16	1%16 15/1e	94/8	272	1.37	11.3	45	0.74	4 251	44	.9 4	1.28	56.5 52.0	17.4	5.64	1.09	1.05	10.9	0.550	2.33	373	4.77	0.859
	×40	11.8	12.0	12	0.590	9/16	5/16	3.89	37/8	0.700	11/16	15/16			1.33	11.3	40	0.95	2 234	39	.0 4	1.46	47.7	14.2	4.98	1.10	1.04	9.31	0.490	1.69	336	5.01	0.842
	×35	10.3	12.0	12	0.465	7/16	1/4	3.77	3 ³ /4	0.700	11/16	15/16		V	1.30	11.3	35	1.07	216	36	.0 4	1.59	43.2	12.6	4.64	1.11	1.05	8.62	0.428	1.24	297	5.18	0.831
	×31	9.12	12.0	12	0.370	4/8	¶16	3.67	39/8	0.700	1/16	19/16		274	1.28	11.3	31		202	1 10	- 4	+./1	39.7	11.3	4.37	1.11	1.08	0.15	0.425	1.00	267	5.34	0.822
	MC12×14.3	4.18	12.0	12	0.250	V4	1/8	2.12	278	0.313	9/16	3/4	101/2	1749	0.672	11.7	14.3	0.43	5 76.	1 12	./ 4	1.27	15.9	1.00	0.574	0.489	0.377	1.21	0.174	0.117	32.8	4.37	0.965
	MC12×10.6 ^c	3.10	12.0	12	0.190	3/16	1/B	1.50	11/2	0.309	⁵ ∕16	3/4	101/2	-	0.478	11.7	10.6	0.28	4 55.	3 9	.22 4	1.22	11.6	0.378	0.307	0.349	0.269	0.635	0.129	0.0596	11.7	4.27	0.983
	MC10×41.1	12.1	10.0	10	0.796	13/16 9/16	7/16 5/	4.32	43/8 41/2	0.575	9/16 9/16	15/16	73/8	21/29	1.44	9.43	41.1	0.86	4 157	31	.5 3	3.61	39.3	15.7	4.85	1.14	1.09	9.49	0.604	2.26	269	4.26	0.790
	×33.6 ×28.5	9.87	10.0	10	0.575	7/16 7/16	9/16 1/4	4.10 3.95	478	0.575	9/16 9/16	15/16	7% 73/8	21/29	1.40	9.43	28.5	1.21	126	25	.3 3	3.89	30.0	11.3	3.99	1.16	1.12	7.59	0.494	0.791	193	4.68	0.752
	MC10×25	7.34	10.0	10	0.380	3/8	3/16	3.41	33/a	0.575	9/16	15/16	73/8	29	1.17	9.43	25	1.03	110	22	.0 3	3.87	26.2	7.25	2.96	0.993	0.953	5.65	0.367	0.638	124	4.46	0.803
	×22	6.45	10.0	10	0.290	5/16	³ /16	3.32	3 ³ /8	0.575	⁹ /16	1 ⁵ /16	7 ³ /8	29	1.14	9.43	22	1.12	102	20	.5 3	3.99	23.9	6.40	2.75	0.997	0.990	5.29	0.467	0.510	110	4.62	0.791
	MC10×8.4°	2.46	10.0	10	0.170	3/16	1/8	1.50	11/2	0.280	1/4	3/4	8½	_	0.486	9.72	8.4	0.33	2 31.	9 6	.39 3	3.61	7.92	0.326	0.268	0.364	0.284	0.548	0.123	0.0413	7.00	3.68	0.972
	×6.5°	1.95	10.0	10	0.152	1/B	1/16	1.17	11/8	0.202	3/16	9/16	87/s	-	0.363	9.80	6.5	0.18	2 22.	9 4	.59 3	3.43	5.90	0.133	0.137	0.262	0.194	0.284	0.0975	0.0191	2.76	3.46	0.988
	MC9×25.4	7.47	9.00	9	0.450	7/16	1/4	3.50	31/2	0.550	^{9/} 16	11/4	61/2	29	1.20	8.45	25.4	0.98	6 87	9 19	.5 3	3.43	23.5	7.57	2.99	1.01	0.970	5.70	0.415	0.691	104	4.08	0.770
	×23.9	7.02	9.00	9	0.400	3/8	∛16	3.45	31/2	0.550	¥/16	11/4	61/2	29	1.18	8.45	23.9	1.04	84.	9 18	.9 3	5.48	22.5	7.14	2.89	1.01	0.981	5.51	0.390	0.599	98.0	4.15	0.763
	MC8×22.8 ×21.4	6.70 6.28	8.00 8.00	8	0.427	7/16 3/a	1/4 3/16	3.50 3.45	31/2 31/2	0.525	1/2 1/2	13/16 13/16	55/a 55/a	29	1.20	7.48	22.8	1.04	63.	8 15	.9 3 .4 3	3.09 3.13	19.1 18.2	7.01 6.58	2.81 2.71	1.02	1.01	5.37 5.18	0.419	0.572	75.2 70.8	3.84	0.715
	MC920	E 97	0.00		0.400	3/2	3/4.0	2.02	2	0.500	1/2	11/2	=3/.	24	1.02	7.50	20	0.84	3 54	4 13	6 2	3 04	16.4	4 42	202	0.867	0 840	3.86	0.367	0 441	47.8	3.58	0 770
	×18.7	5.50	8.00	8	0.353	3/8	3/16	2.98	3	0.500	1/2	11/8	53/4	29	1.03	7.50	18.7	0.88	9 52	4 13	1 3	3.09	15.6	4.15	1.95	0.868	0.849	3.72	0.344	0.380	45.0	3.65	0.773
	MC8×8.5	2.50	8.00	8	0.179	3/16	1/8	1.87	178	0.311	5/16	13/16	63/8	1 ¹ /8 ⁹	0.624	7.69	8.5	0.54	2 23.	3 5	.82 3	3.05	6.95	0.624	0.431	0.500	0.428	0.875	0.156	0.0587	8.21	3.24	0.910
	^e Shape Is slend 9 The actual size cross section t — Indicates flang	er for co e, combin o ensure e is too r	mpressi nation ar compat narrow t	on wit nd orle tibility. o esta	th F _y = 30 antation o blish a w	6 ksl. of faste vorkabl	ner co e gage	mpone a.	nts sho	uld be c	ompare	ed with t	the geor	netry of	the	<u> </u>		1							L	L	I	L	I	1		I	

Dimensions and properties Table 1-6 in the AISC Manual

Angle shapes: lintels to support brick cladding and block wall cladding; members in trusses

		yp PNA				Tab An Prop	le 1- gle: pertie	7 S es]								Tab	le 1- A Pro	7 (co ngle opert	ntinu ƏS ies	ied)			L8-L	6
							Axis	X-X			Flex	cural-Torsion	al				Axis	Y-Y				Axis	Z-Z		Q _s
properties	Shape	k	Wt.	Area, A	1	s	r	ÿ	z	Ур	J	Properties C _w	ī,	Shape	1	s	r	x	z	хp	1	s	r	Tan	Fy = 36
n the		in.	lb/ft	in. ²	in.4	in. ³	in.	in.	in. ³	in.	in.4	in.6	in.		in.4	in. ³	in.	in.	in. ³	in.	in.4	in. ³	in.	a	nai
nual	L8×8×11/8	1 ³ /4	56.9	16.8	98.1	17.5	2.41	2.40	31.6	1.05	7.13	32.5	4.29	L8×8×11	98.1	17.5	2.41	2.40	31.6	1.05	40.7	12.0	1.56	1.00	1.00
iuai	×1 ×7/8	1% 11/2	51.0 45.0	15.1 13.3	89.1 79.7	15.8 14.0	2.43	2.36	28.5 25.3	0.944	5.08 3.46	23.4	4.32	×1 ×7/8	79.7	14.0	2.43	2.30	20.5	0.831	30.0	10.0	1.50	1.00	1.00
	× ³ /4	1 ³ /8	38.9	11.5	69.9	12.2	2.46	2.26	22.0	0.719	2.21	10.4	4.39	×3/4	69.9	12.2	2.46	2.26	22.0	0.719	28.5	8.90	1.57	1.00	1.00
	×∛8 ×∜16	11/4 13/16	32.7 29.6	9.69 8.77	59.6 54.2	10.3 9.33	2.48	2.21	18.6 16.8	0.606	1.30	6.16 4.55	4.42	×% ×%	59.6 54.2	9.33	2.48	2.21	18.6	0.606	24.2 21.9	7.72	1.58	1.00	0.997
	×1/2	1 ¹ /8	26.4	7.84	48.8	8.36	2.49	2.17	15.1	0.490	0.683	3.23	4.45	×1/2	48.8	8.36	2.49	2.17	15.1	0.490	19.8	6.44	1.59	1.00	0.912
	L8×6×1	11/2	442	13.1	80.9	15.1	2.49	2.65	27.3	1.45	4.34	16.3	3.88	L8×6×1	38.8	8.92	1.72	1.65	16.2	0.819	21.3	7.60	1.28	0.542	1.00
	×4/8 ~3/4	1∛8 11/a	39.1 33.8	11.5	72.4 63.5	13.4	2.50	2.60	24.3	1.43	2.96	11.3	3.92	×//8 × ³ /4	34.9 30.8	6.92	1.74	1.60	14.4	0.719	18.9	6.71 5.82	1.28	0.546	1.00
	×5/8	11/8	28.5	8.41	54.2	9.86	2.54	2.50	17.9	1.27	1.12	4.33	3.98	×5/8	26.4	5.88	1.77	1.51	10.5	0.526	14.1	4.91	1.29	0.554	0.997
	×%/16 √1/2	1 ¹ /16	25.7	7.61	49.4 44.4	8.94	2.55	2.48	16.2	1.24	0.823	3.20	3.99	× ⁹ /10 ×1/2	24.1	5.34	1.78	1.49	9.52 8.52	0.476	12.8 11.5	4.45 3.98	1.30 1.30	0.556	0.959
	×7/16	15 _{/16}	20.2	5.99	39.3	7.06	2.56	2.43	12.9	1.15	0.396	1.55	4.02	×7/10	19.3	4.23	1.80	1.44	7.50	0.374	10.2	3.51	1.31	0.559	0.850
	L8×4×1	11/2	37.4	11.1	69.7	14.0	2.51	3.03	24.3	2.45	3.68	12.9	3.75	L8×4×1	11.6	3.94	1.03	1.04	7.73	0.694	7.83	3.48	0.844	0.247	1.00
	×7/8 ~3/4	1%8 11/4	33.1 28.7	9.79	62.6 55.0	12.5	2.53	2.99	21.7	2.41	2.51	8.89	3.78	×//8 ×3/4	9.37	3.51	1.04	0.997	6.77 5.82	0.612	6.97 6.14	3.06 2.65	0.846	0.252	1.00
	×5/8	11/8	24.2	7.16	47.0	9.20	2.56	2.89	16.1	2.27	0.955	3.42	3.83	× ⁵ /8	8.11	2.62	1.06	0.902	4.86	0.448	5.24	2.24	0.856	0.262	0.997
	×%16	11/16	21.9	6.49 5.80	42.9	8.34	2.57	2.86	14.6	2.23	0.704	2.53	3.84	×9/10 ×1/2	6.75	2.38	1.07	0.878	4.39	0.406	4.78	2.03	0.859	0.264	0.959
	×72 ×1/16	15/16	172	5.11	34.2	6.59	2.50	2.81	11.6	2.16	0.340	1.22	3.87	×71	6.03	1.90	1.09	0.829	3.42	0.319	3.84	1.61	0.867	0.268	0.850
	L7×4×3/4	11/4	26.2	7.74	37.8	8.39	2.21	2.50	14.8	1.84	1.47	3.97	3.31	L7×4×3/4	9.00	3.01	1.08	1.00	5.60	0.553	5.63	2.57	0.855	0.324	1.00
	×5/8	1 ¹ /8	22.1	6.50	32.4	7.12	2.23	2.45	12.5	1.80	0.868	2.37	3.34	×5/8 ×1/2	7.79	2.56	1.10	0.958	4.69	0.464	4.81 3.94	2.16	0.860	0.329	1.00 0.965
	×72 ×7/16	¹⁵ /16	15.7	4.63	23.6	5.11	2.25	2.38	9.03	1.71	0.310	0.851	3.38	×7/1	5.79	1.86	1.12	0.886	3.31	0.331	3.50	1.55	0.869	0.337	0.912
	×3/8	7/8	13.6	4.00	20.5	4.42	2.27	2.35	7.81	1.67	0.198	0.544	3.40	×3/8	5.06	1.61	1.12	0.861	2.84	0.286	3.04	1.34	0.873	0.339	0.840
	L6×6×1	1 ¹ /2	37.4	11.0	35.4	8.55	1.79	1.86	15.4	0.917	3.68	9.24	3.18	L6×6×1	35.4	8.55	1.79	1.86	15.4	0.917	14.9	5.70 5.18	1.17	1.00	1.00
	×78 ×3/4	11/4	28.7	8.46	28.1	6.64	1.82	1.01	11.9	0.813	1.61	4.17	3.21	×3/4	28.1	6.64	1.82	1.77	11.9	0.705	11.6	4.63	1.17	1.00	1.00
	× ⁵ /8	1 ¹ /8	242	7.13	24.1	5.64	1.84	1.72	10.1	0.594	0.955	2.50	3.28	×5/8 _9/4	24.1	5.64	1.84	1.72	10.1	0.594	9.81 8.00	4.04	1.17	1.00	1.00
	×%16 ×1∕2	1 1	19.6	6.45 5.77	19.9	4.59	1.85	1.67	9.18	0.538	0.704	1.85	3.29	×1/2	19.9	4.59	1.86	1.67	8.22	0.481	8.06	3.40	1.18	1.00	1.00
	×7/16	15/16 21-	172	5.08	17.6	4.06	1.86	1.65	7.25	0.423	0.340	0.899	3.32	×7/11	17.6	4.06	1.86	1.65	7.25	0.423	7.05	3.05	1.18	1.00	0.973
	×98 × ⁵ /16	13/16	14.9	4.38	15.4	3.51 2.95	1.87	1.62	6.27 5.26	0.365	0.218	0.575	3.34 3.35	×98 ×5/1	13.0	2.95	1.88	1.60	5.26	0.305	5.20	2.30	1.19	1.00	0.812
	Note: For workable	gages, r	efer to Ta	ible 1-7A	. For com	pactness	criteria, i	refer to Ta	ble 1-7B.					Note: For workab	ie gages, re	fer to Table) 1-7A. For	compactn	ness criteria	a, refer to "	Table 1-78.				

Dimensions and properties Table 1-7 in the AISC Manual

Angle shapes

WT-shapes: brace members and top/bottom chords of trusses

-	Stem	m					1	F	lance			Dis	tance		-		Comr	act												Tors
tw 2	ss, <u>tw</u>	$\frac{t_w}{2}$		Area	w	Widt	Wie	dth, b _f	Thi	ckness t _f		<i>k</i>	W	ork- ble	N i	om- nal Wt	Sect	ion ria			Axis	х-х				Axis	Y-Y		Q₂ F. = 50	Prop
in	in	in		in ²	+	in	i	n.	-	in	Kde in	es / ^	ser G	nge n		b/ft	<u>br</u> 24	$\frac{d}{t_w}$	/ in. ⁴	5 in. ³	r in.	y in.	Z in. ³	У _Р in.	/ in.4	5 in. ³	r in.	Z in. ³	ksi	in.4
11. 1/2 7/18 7/18 15/18 15/18 11/16 1	1/2 1/2 1/2 1/2 1/3/16 1/1 1/3/16 1/1 1/3/16 1/1 1/1 1/1 3/16 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/2 1/1 1/2 1/1 1/2 1/2 1/2 1/2 1/3 1/3 1/3 1/4 1/4 1/2 1/3 1/3 1/3 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	1/2 7/16 7/16 3/8 15/16 13/16 11/18 5/8 9/16 11/18 5/8 9/16 1/2 7/16 3/6 5/16	1. /2 2/ /16 1: /16 1: /16 1: /16 1: /16 1: /16 2 /2 2: /16 2: /2 1: /16 2: /16 2: /16 1: /16 2: /16 1: /16 2: /16 1: /16 2: /16 1: /16 2: /16 2: /16 2: /16 2: /16 2: /16 2: /16 1: /16 1: /16 2: /16 1: /16 1:	22.6 18.9 17.0 15.2 38.5 32.3 27.6 25.0 23.6 22.7 20.1 18.5 16.5 14.8 12.7	15.9 15.8 15.8 15.8 16.7 16.4 16.2 16.1 16.1 16.0 15.9 15.8 15.8 15.8	5.9 5.8 5.8 6.7 6.4 6.2 6.1 6.1 6.1 6.1 5.9 5.8 5.8 5.8 5.8 5.8 5.8	15.9 15.8 15.8 16.7 16.4 16.2 16.1 16.1 16.0 15.9 15.8 15.8 15.8	n. 16 157/s 153/a 153/a 163/a 163/a 164/a 164/a 164/a 164/a 164/a 157/a 157/a 157/a 153/a	1.77 1.58 1.42 1.22 1.22 1.22 1.22 1.22 1.22 1.22 2.05 2.01 2.01 1.81 1.65 1.58 1.58 1.42 1	13/4 19/16 19/	2.5 2.3 2.2 2.0 4.4 3.9 3.5 3.3 3.2 3.1 6 2.9 2.8 2.6 2.4 2.4	- $ -$	11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	n. 51/2 Y Y T1/2	10 11 12 12 22 22 19 10 10 14 11 10 14 11 11 10 10	67.5 45 31 15 96.5 51.5 15.5 98.5 86 81 62 48.5 38.5 24.5 07.5 99.5	4.50 5.02 5.57 6.45 2.58 2.98 3.44 3.66 3.93 3.99 4.40 4.80 5.03 5.55 6.45 7.20	21.4 25.2 27.6 30.3 12.0 13.6 15.4 16.8 17.5 18.1 20.1 21.4 23.9 26.3 30.0 20.7	2170 1830 1640 1440 3310 2730 2290 2070 1930 1870 1650 1500 1500 1210 1030	131 111 99.4 88.6 209 174 148 134 134 126 122 108 98.9 88.6 79.4 68.0	6.63 6.54 6.53 6.53 6.16 6.07 6.01 5.96 5.95 5.92 5.88 5.87 5.78 5.78 5.75 5.71	1. 5.53 5.26 5.19 5.17 5.66 5.38 5.18 5.03 4.98 4.91 4.77 4.71 4.50 4.41 4.25	234 196 176 157 379 314 266 240 225 217 192 176 157 140 120	1.54 1.35 1.22 1.07 2.61 2.25 1.95 1.81 1.70 1.66 1.38 1.29 1.16 1.01 0.020	600 521 462 398 1260 1020 843 771 709 691 609 546 522 463 398 393	75.2 65.9 58.6 50.5 151 124 104 95.7 88.3 86.3 76.6 69.0 65.9 58.8 50.5	3.49 3.49 3.47 3.43 3.80 3.72 3.65 3.63 3.60 3.57 3.54 3.58 3.55 3.55 3.55 3.55 3.55	118 102 90.9 78.3 240 197 164 150 138 135 119 107 102 90.8 77.8 582	0.824 0.630 0.525 0.436 1.00 1.00 1.00 1.00 1.00 1.00 0.991 0.890 0.824 0.697 0.579 0.445	372 25.4 18.6 12.4 221 138 88.2 70.6 57.7 54.2 39.6 30.5 25.7 19.0 12.4
12.6 15.6 15^{4} /4 1.4 29.4 12.4 12^{4} /8 2.9 24.9 12.2 12^{4} /8 2.1 24.1 12.1 12^{4} /8 2.1 21.4 12.0 12 1.3 20.6 12.0 12 1.4 19.2 11.9 11^{7} /8 1.1 16.5 11.9 117 /8 1.3 14.8 11.8 11^{3} /4 1.4 12.7 11.8 11^{3} /4 1.4 12.0 11.8 11^{3} /4 0.4 12.0 11.8 11^{3} /4 0.4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.0 15.0 $15^{9}/4$ 1.4 29.4 12.4 $12^{9}/8$ 2.2 24.9 12.2 $12^{1}/8$ 2.2 21.4 12.0 12 1.4 20.6 12.0 12 1.4 19.2 11.9 117/8 1.2 14.8 11.8 113/4 1.4 12.7 11.8 113/4 1.4 12.0 12.1 1.4 1.2 14.8 11.8 113/4 1.4 12.7 11.8 113/4 1.4 12.0 11.8 113/4 0.3	2.6 15.8 15.4 1.4 9.4 12.4 12% 2. 4.9 12.2 12% 2. 4.1 12.1 12% 2. 1.4 12.0 12 1.0 0.6 12.0 12 1.0 9.2 11.9 11% 1. 6.5 11.9 11% 1. 4.8 11.8 11 ³ /4 1. 2.7 11.8 11 ³ /4 1. 2.5 11.8 11 ³ /4 0.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1994 1.4 129/8 2.5 121/8 2.7 121/8 2.7 12 1.4 117/8 1.5 117/8 1.5 117/8 1.4 117/4 1.4 117/4 1.4 117/4 0.4	123/4 1.1 123/8 2.5 121/8 2.1 121/8 2.1 121/8 1.5 117/8 1.5 117/8 1.5 117/8 1.5 113/4 1.5 113/4 1.5 113/4 0.5	12% 2. 12% 2. 12% 2. 12% 2. 12 1. 12 1. 11% 1.	2.9 2.1 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1	52 13 13 13 93 81 73 58 42 03 83	2 21/2 3 21/8 3 21/8 3 115/4 1 13/4 3 13/4	2.2 3.7 3.3 3.3 6 3.1 6 2.9 2.9 2.7 2.6 2.3 2.2 6 2.0	5 2 ⁻² 0 3 ¹ 1 3 ³ 1 3 ³ 1 3 ³ 9 3 ¹ 1 3 ² 1 3 ² 1 2 ⁵ 1 2 ⁵ 1 2 ⁵ 1 2 ⁵	115 19 19 19 19 19 19 19 19 19 19 19	₹ ¹ /2	19 10 14 12 12 12 10 10 10 10 10 10	99,5 96 65,5 63,5 47 39 32 17,5 91,5 83,5 74,5	2.45 2.86 2.85 3.11 3.31 3.45 3.77 4.17 4.92 5.76 7.11	29.7 14.6 16.7 17.3 19.1 19.5 20.8 23.9 26.3 30.0 29.7 30.3	900 2270 1880 1840 1630 1550 1450 1260 1120 955 899 815	66.5 153 128 125 111 106 99.2 85.7 76.7 65.7 63.7 59.7	6.27 6.21 6.19 6.14 6.14 6.14 6.04 6.01 5.98 6.05 6.10	4.47 5.94 5.74 5.66 5.51 5.51 5.41 5.17 5.08 4.97 5.19 5.45	117 275 231 224 199 191 178 153 137 117 115 108	2.33 2.00 1.98 1.80 1.71 1.63 1.45 1.31 1.13 1.10 1.72	401 322 320 281 246 222 195 165 141 114	44.1 64.9 52.9 52.7 46.7 43.5 41.3 37.3 33.0 28.0 23.9 19.4	2.64 2.57 2.58 2.55 2.52 2.52 2.54 2.51 2.49 2.40 2.29	106 85.7 85.0 75.0 69.9 66.0 59.0 52.1 44.0 37.8 30.9	0.454 1.00 1.00 0.940 0.920 0.854 0.697 0.579 0.445 0.454 0.436	9.12 85.4 52.5 51.4 38.2 32.4 27.9 20.6 15.2 9.65 6.99 4.66

Dimensions and properties Table 1-8 in the AISC Manual

Plates and bars

Hollow structural section (HSS) and structural pipes:

Commonly uses for columns hangers, and braced-frame members.

Manufacturing Process

Manufacturing Process

Form - Square, Weld - Square

Submerged Arc Welding

			R€ Dime	Ta ecta Insion	ible 1- ngul is and	-11 ar H Prop	SS erties	;					[Tab Re Dimer	le 1-1 ctar nsion:	11 (co 1gula s and	ntinu ar H Prop	ed) SS ertie	es	HSS20)-HSS16
	Shane	Design Wall Thick-	Nominal Wt	Area,	h.#	h#		Axis	s X-X			Shane		Axis	Y-Y	1	Workal	ole Flat	Tor	sion	Surface
Dimensions and properties	onape	ness, t		A	DA	171	1	S	r	Z		onapo	J	C	- 2						
Table 1-11 in the	HSS20×12×5/a	in. 0.581	127.37	in. ² 35.0	17.7	31.4	in.4 1880	in. ³ 188	in. 7.33	in. ³ 230	ł	HSS20×12×5/8	in.4 851	in. ³ 257	ft²/ft 5.17						
AISC Manual	×1/2 ×3/8 ×5/16	0.465 0.349 0.291	103.30 78.52 65.87	28.3 21.5 18.1	22.8 31.4 38.2	40.0 54.3 65.7	1550 1200 1010	155 120 101	7.39 7.45 7.48	188 144 122		× ¹ /2 × ³ /8 × ⁵ /16	705 547 464	117 91.1 77.3	4.99 5.04 5.07	132 102 85.8	17 ³ /4 185/16 185/8	9 ³ /4 10 ⁵ /16 10 ⁵ /8	1540 1180 997	209 160 134	5.20 5.23 5.25
	HSS20×8× ⁵ /8 × ¹ /2 × ³ /8 × ⁵ /16	0.581 0.465 0.349 0.291	110.36 89.68 68.31 57.36	30.3 24.6 18.7 15.7	10.8 14.2 19.9 24.5	31.4 40.0 54.3 65.7	1440 1190 926 786	144 119 92.6 78.6	6.89 6.96 7.03 7.07	185 152 117 98.6		HSS20×8× ⁵ /8 × ¹ /2 × ² /8 × ⁵ /16	338 283 222 189	84.6 70.8 55.6 47.4	3.34 3.39 3.44 3.47	96.4 79.5 61.5 52.0	17 ³ /18 17 ³ /4 18 ⁵ /18 18 ⁵ /18	5 ³ /16 5 ³ /4 6 ⁵ /16 6 ⁵ /8	916 757 586 496	167 137 105 88.3	4.50 4.53 4.57 4.58
	HSS20×4×1/2 × ³ /8 × ^{5/16} × ^{1/4}	0.465 0.349 0.291 0.233	76.07 58.10 48.86 39.43	20.9 16.0 13.4 10.8	5.60 8.46 10.7 14.2	40.0 54.3 65.7 82.8	838 657 560 458	83.8 65.7 56.0 45.8	6.33 6.42 6.46 6.50	115 89.3 75.6 61.5		HSS20×4× ¹ /2 × ³ /8 × ^{5/16} × ¹ /4	58.7 47.6 41.2 34.3	29.3 23.8 20.6 17.1	1.68 1.73 1.75 1.78	34.0 26.8 22.9 18.7	17³/4 185⁄18 185⁄8 187⁄8	 2⁵/16 2⁵/8 2∛8	195 156 134 111	63.8 49.9 42.4 34.7	3.87 3.90 3.92 3.93
Example	HSS18>6x ⁵ /8 × ¹ /2 × ³ /8 × ⁵ /16 × ¹ /4	0.581 0.465 0.349 0.291 0.233	93.34 76.07 58.10 48.86 39.43	25.7 20.9 16.0 13.4 10.8	7.33 9.90 14.2 17.6 22.8	28.0 35.7 48.6 58.9 74.3	923 770 602 513 419	103 85.6 66.9 57.0 46.5	6.00 6.07 6.15 6.18 6.22	135 112 86.4 73.1 59.4		HSS18×6× ⁵ /8 × ¹ /2 × ³ /8 × ^{5/16} × ¹ /4	158 134 106 91.3 75.1	52.7 44.6 35.5 30.4 25.0	2.48 2.53 2.58 2.61 2.63	61.0 50.7 39.5 33.5 27.3	15 ³ /18 15 ³ /4 16 ⁵ /18 16 ⁹ /18 16 ⁷ /8	3 ³ /16 3 ³ /4 4 ⁵ /16 4 ⁹ /16 4 ⁷ /8	462 387 302 257 210	109 89.9 69.5 58.7 47.7	3.83 3.87 3.90 3.92 3.93
	HSS16×12× ⁵ /8 × ¹ /2 × ³ /8 × ⁵ /16	0.581 0.465 0.349 0.291	110.36 89.68 68.31 57.36	30.3 24.6 18.7 15.7	17.7 22.8 31.4 38.2	24.5 31.4 42.8 52.0	1090 904 702 595	136 113 87.7 74.4	6.00 6.06 6.12 6.15	165 135 104 87.7		HSS16x12x ⁵ /8 × ¹ /2 × ² /8 × ⁵ /16	700 581 452 384	117 96.8 75.3 64.0	4.80 4.86 4.91 4.94	135 111 85.5 72.2	133/18 133/4 145/18 145/8	9 ³ /16 9 ³ /4 10 ⁵ /16 10 ⁵ /8	1370 1120 862 727	204 166 127 107	4.50 4.53 4.57 4.58
	HSS16×8×5/8 ×1/2 ×3/8 ×5/16 ×1/4	0.581 0.465 0.349 0.291 0.233	93.34 76.07 58.10 48.86 39.43	25.7 20.9 16.0 13.4 10.8	10.8 14.2 19.9 24.5 31.3	24.5 31.4 42.8 52.0 65.7	815 679 531 451 368	102 84.9 66.3 56.4 46.1	5.64 5.70 5.77 5.80 5.83	129 106 82.1 69.4 56.4		HSS16×8× ⁵ /8 × ¹ /2 × ² /8 × ⁵ /16 × ¹ /4	274 230 181 155 127	68.6 57.6 45.3 38.7 31.7	3.27 3.32 3.37 3.40 3.42	79.2 65.5 50.8 43.0 35.0	133/18 133/4 145/18 145/8 147/8	5 ³ /16 5 ³ /4 6 ⁵ /16 6 ⁵ /8 6 ⁷ /8	681 563 436 369 300	132 108 83.4 70.4 57.0	3.83 3.87 3.90 3.92 3.93
	HSS16×4× ⁵ /8 × ¹ /2 × ³ /8 × ⁵ /16 × ¹ /4 × ³ /16	0.581 0.465 0.349 0.291 0.233 0.174	76.33 62.46 47.90 40.35 32.63 24.73	21.0 17.2 13.2 11.1 8.96 6.76	3.88 5.60 8.46 10.7 14.2 20.0	24.5 31.4 42.8 52.0 65.7 89.0	539 455 360 308 253 193	67.3 56.9 45.0 38.5 31.6 24.2	5.06 5.15 5.23 5.27 5.31 5.35	92.9 77.3 60.2 51.1 41.7 31.7		HSS16×4× ⁵ /8 × ¹ /2 × ³ /8 × ⁵ /16 × ¹ /4 × ³ /16	54.1 47.0 38.3 33.2 27.7 21.5	27.0 23.5 19.1 16.6 13.8 10.8	1.60 1.65 1.71 1.73 1.76 1.78	32.5 27.4 21.7 18.5 15.2 11.7	13 ³ /18 13 ³ /4 14 ⁵ /18 14 ⁵ /8 14 ⁷ /8 15 ³ /18	2 ⁵ /16 2 ⁵ /8 2 ⁷ /8 3 ³ /16	174 150 120 103 85.2 65.5	60.5 50.7 39.7 33.8 27.6 21.1	3.17 3.20 3.23 3.25 3.27 3.28
	Note: For compactnes:	s criteria, re	ifer to Table 1	-12A.							d	— Indicates flat depth o	or width is t	oo small to e:	stabilsh a w	rorkable flat.					

Dimensions and properties Table 1-12 in the AISC Manual

HSS16-HSS	88	[Dim	S ens	qu	are s an	HS d Pr	SS ope	rties	;	l	-	
Shape	Design Wall Thick- ness, t	Nom- inal Wt.	Area, A	b/t	h/t	1	s	r	z	Work- able Flat	Tors J	ion C	Sur fac Are
	in.	lb/ft	in. ²			in.4	in. ³	in.	in. ³	in.	in.4	in. ³	ft²/
HSS16×16×∜®	0.581	127.37	35.0	24.5	24.5	1370	171	6.25	200	13∛16	2170	276	5.17
× ¹ /2	0.465	103.30	28.3	31.4	31.4	1130	141	6.31	164	133/4	1770	224	5.20
×¥8	0.349	78.52	21.5	42.8	42.8	873	109	6.37	126	145⁄16	1350	171	5.23
× ⁵ ⁄16	0.291	65.87	18.1	52.0	52.0	739	92.3	6.39	106	14%	1140	144	5.25
HSS14×14×5∕≋	0.581	110.36	30.3	21.1	21.1	897	128	5.44	151	113/16	1430	208	4.50
×1/2	0.465	89.68	24.6	27.1	27.1	743	106	5.49	124	113/4	1170	170	4.5
× ³ /8	0.349	68.31	18.7	37.1	37.1	577	82.5	5.55	95.4	125/16	900	130	4.57
× ⁵ ⁄16	0.291	57.36	15.7	45.1	45.1	490	69.9	5.58	80.5	12∛≉	759	109	4.58
HSS12×12×5∞	0.581	93.34	25.7	17.7	17.7	548	91.4	4.62	109	9 ^{3/16}	885	151	3.8
× ¹ /2	0.465	76.07	20.9	22.8	22.8	457	76.2	4.68	89.6	93/4	728	123	3.8
×¥s	0.349	58.10	16.0	31.4	31.4	357	59.5	4.73	69.2	105/16	561	94.6	3.90
× ⁵ ⁄16	0.291	48.86	13.4	38.2	38.2	304	50.7	4.76	58.6	105⁄8	474	79.7	3.92
×1/4	0.233	39.43	10.8	48.5	48.5	248	41.4	4.79	47.6	107/8	384	64.5	3.93
×∛16	0.174	29.84	8.15	66.0	66.0	189	31.5	4.82	36.0	11∛16	290	48.6	3.95
HSS10×10×5/₽	0.581	76.33	21.0	14.2	142	304	60.8	3.80	73.2	73/16	498	102	3.17
×1/2	0.465	62.46	17.2	18.5	18.5	256	51.2	3.86	60.7	73/4	412	84.2	3.20
×¥8	0.349	47.90	13.2	25.7	25.7	202	40.4	3.92	47.2	85⁄16	320	64.8	3.23
× ⁵ ⁄16	0.291	40.35	11.1	31.4	31.4	172	34.5	3.94	40.1	8 ⁵ /8	271	54.8	3.25
×1/4	0.233	32.63	8.96	39.9	39.9	141	28.3	3.97	32.7	87/8	220	44.4	3.27
× ³ /16	0.174	24.73	6.76	54.5	54.5	108	21.6	4.00	24.8	9 ³ /16	167	33.6	3.28
HSS9×9×5/a	0.581	67.82	18.7	12.5	12.5	216	47.9	3.40	58.1	6 ³ /16	356	81.6	2.8
×1/2	0.465	55.66	15.3	16.4	16.4	183	40.6	3.45	48.4	63/4	296	67.4	2.87
×3/8	0.349	42.79	11.8	22.8	22.8	145	32.2	3.51	37.8	75⁄16	231	52.1	2.90
× ⁵ ⁄16	0.291	36.10	9.92	27.9	27.9	124	27.6	3.54	32.1	7∜8	196	44.0	2.92
×1/4	0.233	29.23	8.03	35.6	35.6	102	22.7	3.56	26.2	77/8	159	35.8	2.93
×∛16	0.174	22.18	6.06	48.7	48.7	78.2	17.4	3.59	20.0	8∛16	121	27.1	2.95
×1/a	0.116	14.96	4.09	74.6	74.6	53.5	11.9	3.62	13.6	87/16	82.0	18.3	2.97
HSS8×8×5⁄s	0.581	59.32	16.4	10.8	10.8	146	36.5	2.99	44.7	5∛16	244	63.2	2.50
×1/2	0.465	48.85	13.5	14.2	142	125	31.2	3.04	37.5	53/4	204	52.4	2.53
×¥8	0.349	37.69	10.4	19.9	19.9	100	24.9	3.10	29.4	65⁄16	160	40.7	2.57
× ⁵ ⁄16	0.291	31.84	8.76	24.5	24.5	85.6	21.4	3.13	25.1	6 ⁵ /8	136	34.5	2.58
×1/4	0.233	25.82	7.10	31.3	31.3	70.7	17.7	3.15	20.5	67/8	111	28.1	2.60
×∛16	0.174	19.63	5.37	43.0	43.0	54.4	13.6	3.18	15.7	73/16	84.5	21.3	2.62
×1/8	0.116	13.26	3.62	66.0	66.0	37.4	9.34	3.21	10.7	77/16	57.3	14.4	2.63

Dimensions and properties Table 1-13 in the AISC Manual

\bigcap)		able D	<u>1-13</u>	(cont	inuer	Ŋ	_		
		Dim	ח nensi	ions	and P	roper	ties			
HSS6.625- HSS5										
	Design Wall	Nom- inal	Area,		,	s	,	z	Tors	sion
Shape	ness, t	Wt.	A	D/t					J	C
	in.	lb/ft	in. ²		in.4	in. ³	in.	in. ³	in.4	in. ³
HSS6.625×0.500	0.465	32.74	9.00	14.2	42.9	13.0	2.18	17.7	85.9	25.9
×0.432	0.402	28.60	7.86	16.5	38.2	11.5	2.20	15.6	76.4	23.1
×0.375	0.349	25.06	5.70	19.0	34.0	8.70	2.22	13.8	58.0 58.2	20.5
×0.312 ×0.280	0.260	18.99	5.20	25.5	29.1	7.96	2.24	10.5	52.7	15.9
×0.250	0.233	17.04	4.68	28.4	23.9	7.22	2.26	9.52	47.9	14.4
×0.188	0.174	12.94	3.53	38.1	18.4	5.54	2.28	7.24	36.7	11.1
×0.125 ^r	0.116	8.69	2.37	57.1	12.6	3.79	2.30	4.92	25.1	7.59
HSS6×0.500	0.465	29.40	8.09	12.9	31.2	10.4	1.96	14.3	62.4	20.8
×0.375	0.349	22.55	6.20	17.2	24.8	8.28	2.00	11.2	49.7	16.6
×0.312	0.291	18.97	5.22	20.6	21.3	7.11	2.02	9.49	42.6	14.2
×0.280	0.260	17.12	4.69	23.1	19.3	6.45	2.03	8.57	38.7	12.9
×0.250	0.233	15.37	4.22	25.8	17.6	5.86	2.04	7.75	35.2	11.7
×0.188	0.174	11.68	3.18	34.5	13.5	4.51	2.06	5.91	27.0	9.02
×0.125	0.116	7.85	2.14	51.7	9.28	3.09	2.08	4.02	18.6	6.19
HSS5.563×0.500	0.465	27.06	7.45	12.0	24.4	8.77	1.81	12.1	48.8	17.5
×0.375	0.349	20.80	5.72	15.9	19.5	7.02	1.85	9.50	39.0	14.0
×0.258	0.240	14.63	4.01	23.2	14.2	5.12	1.88	6.80	28.5	10.2
×0.188	0.174	7 79	2.95	32.0	10.7	3.00	1.91	5.05	21.4	1.70
X0.134	0.124	1.10	2.12	44.9	1.04	2.02	1.92	3.07	15.7	5.04
HSS5.500×0.500	0.465	26.73	7.36	11.8	23.5	8.55	1.79	11.8	47.0	17.1
×0.375	0.349	20.55	5.65	15.8	18.8	6.84	1.83	9.27	37.6	13.7
×0.258	0.240	14.46	3.97	22.9	13.7	5.00	1.86	6.64	27.5	10.0
HSS5×0.500	0.465	24.05	6.62	10.8	17.2	6.88	1.61	9.60	34.4	13.8
×0.375	0.349	18.54	5.10	14.3	13.9	5.55	1.65	7.56	27.7	11.1
×0.312	0.291	15.64	4.30	17.2	12.0	4.79	1.67	6.46	24.0	9.58
×0.250	0.240	12.60	2.40	20.0	0.04	2.07	1.69	5.44	10.4	7.05
×0.188	0.174	9.67	2.64	28.7	7.69	3.08	1.71	4.05	15.4	6.15
×0.125	0.116	6.51	1.78	43.1	5.31	2.12	1.73	2.77	10.6	4.25
f Shana avonada com	nort limit «	or floeure -	uth E = 4	9 kei	I	I	I	I		L
- Sugha exceeds coll	ipavi mini i	or nextre A	$a_{y} = 4$	2 101.						
Cold-formed shapes

Some types of steel decks

Typical stress-strain diagram for a mild- or low-carbon structural steel at room temperature

Idealized stress-strain diagram for structural steel

Typical stress–strain curves

Effect of temperature on yield strengths

Steel Types

1. Carbon Steels:

i. Low Carbon Steel (Carbon < 0.15%)

- ii. Mild Carbon (Structural) (Carbon 0.15%-0.29%)
- iii. Medium Carbon Steel (Carbon 0.3%-0.59%)

iv. High Carbon Steel (Carbon 0.6%-1.7%)

• F_v = 35-65 Ksi

- The Carbon steels A36, A53, A500, A 501, A529, A709, A1043 and A1085
- **2.** High Strength Low Alloy Steel:
- F_v = 42-70 Ksi
- Corrosive resistance.

 The High Strength Low Alloy Steel are A572, A618, A709, A913, A992, A1065

Table 2-4 **Applicable ASTM Specifications** for Various Structural Shapes **Applicable Shape Series** Fu Yield Tensile HSS Round Rect. ASTM Stress^a Stress^a Pipe MC W С (ksi) M S HP L (ksi) Designatio A36 36 58-80^t A53 Gr. B 35 60 42 58 Gr. B 46 58 A500 62 46 Carbon Gr. C 50 62 36 58 Gr. A A501 50 70 Gr. B Gr. 50 50 65 - 100A529 55 Gr. 55 70-100 58-80^b 36 36 A709 36-52 58 36 A1043d, 50-65 65 50

= Preferred material specification.

A992

A1065^k Gr. 50^j

50

42

50

55

60

65

50s

50

50

50-65

50

50^h

60

65

70

50ⁱ

50

65

60

65

70

75

80

70^s

65

65

65

70

65^h

75

80

90

65¹

60

= Other applicable material specification, the availability of which should be confirmed prior to specification. = Material specification does not apply.

Footnotes on facing page

A1085

A572

A618

A709

A913

High-

Strength

Low-

Alloy

Gr.A Gr.42

Gr.50

Gr.55

Gr. 60°

Gr. 65°

Gr. lak, lb & I

Gr. III

50

50S

50W

50

60

65

70

Steel

Тур

- 3. Corrosion Resistant High Strength Low Alloy Steel :
- Fy = 50 ksi
- Corrosive resistance.
- The Alloy Steels are A588, A847, A1065 and Gr.50W

Table 2-4 (continued) Applicable ASTM Specifications for Various Structural Shapes

Steel Typ			F	F				Applie	cable	Shape	Serie	s			
	ASTM Designatio		Yield Stress ^a (ksi)	Tensile Stress ^a (ksi)	w	м	s	HP	С	мс	L		HSS		
												Rect.	Round	Pipe	
Corrosion Resistant High- Strength Low-Alloy	A588														
	A847 ^k		50	70											
	A1065 ^k	Gr. 50 W ^j	50	70	8										
equivale 90 ksi ca ^d For shap ^e For shap ^f ASTM A ^g Minimur ^h If desire (per AS	ent can b in be spe pe profil bes with A618 car n applies d, maxir TM A91	e specified ecified (pe es with a f a flange th a also be sp s for walls) num yield 3 Supplem	1 (per AST r ASTM A lange widt nickness le pecified as nominally ² stress of 6 nentary Ro	TM A529 S A529 Suppl th of 6 in. c ss than or corrosion 4 in. thick 55 ksi and p equiremen	equal equal -resista and un maximi t S75).	nentary ary Req ter. to 2 in. o ant; see . der. For um yielo	only. ASTM wall th	irement (ent S79). A618. ickness o nsile stre	S78). Ii over ³ 4 i ength ra	f desired in., $F_y = 4$ atio of 0	, maxir 46 ksi a .85 can	num ter nd $F_u = 0$ t be spec	nsile stro 67 ksi. cified	ess of	
 A maxin variation tensile s ^j The grad ^k This spece 	num yiel n is allow tress of des of A ecificatio	d-to-tensil ved, includ 90 ksi can STM A 10 on is not a	e strength ling for sh be specific 65 may no prequalific	ratio of 0. apes tested ed (per AS t be interc ed base mo	85 and d with TM A hanged etal per	carbon coupons 992 Sup 1 withou AWS I	equiva s cut fr plement at appr D1.1/D	alent for om the v ntary Re oval of t 01.1M:20	mula a veb; se equiren he pur 15.	re incluc e ASTM nent S79 chaser.	ded as 1 I A992.).	mandato If desir	ory, and red, may	l some ximum	

Built-up sections

Advantages of Steel as a Structural Material

- Steel exhibits desirable physical properties that makes it one of the most versatile structural material in use.
- Its great strength, uniformity, light weight, ease of use, and many other desirable properties makes it the material of choice for numerous structures such as steel bridges, high rise buildings, towers, and other structures.
- The many advantages of steel can be summarized as follows:

-High Strength

• This means that the weight of structure that made of steel will be **small**.

-Uniformity

• Properties of steel do not change as oppose to concrete.

– Elasticity

• Steel follows Hooke's Law very accurately.

Advantages of Steel as a Structural Material

-Ductility

• A very desirable of property of steel in which <u>steel can withstand extensive deformation</u> <u>without failure under high tensile stresses</u>, i.e., it gives warning before failure takes place.

-Toughness

• Steel has both strength and ductility.

-Additions to Existing Structures

 Example: new bays or even entire new wings can be added to existing frame buildings, and steel bridges may easily be widened.

Toughness is the ability of a material to absorb energy and plastically deform without fracturing

Disadvantages of Steel as a Structural Material

- Although steel has all this advantages as structural material, it also has many disadvantages that make reinforced concrete as a replacement for construction purposes.
- For example, <u>steel columns</u> sometimes <u>can not provide the necessary strength</u> because of **buckling**, whereas R/C columns are generally sturdy and massive, i.e., no buckling problems occurs.
- □ The many disadvantages of steel can be summarized as follows:
- Maintenance Cost
- Steel structures are susceptible to <u>corrosion</u> when exposed to air, water, and humidity. They must be <u>painted</u> periodically.
- Fireproofing Cost

Although steel is <u>incombustible material</u>, however, its <u>strength is reduced extremely</u> at high temperatures due to common fires.

Fatigue

The strength of structural steel member can be reduced if this member is subjected to cyclic loading.

Design Methods

- Allowable Strength Design (ASD)
 - Allowable Stress Design prior to 2005
 - "working stress design"
- Load and Resistance Factor Design (LRFD)

49

- "limit states design"
 - Failure condition is considered

Load combinations specified by the ASCE 7-16 Standard

1. D2. D + L3. $D + (L_r \text{ or } S \text{ or } R)$ 4. $D + 0.75L + 0.75(L_r \text{ or } S \text{ or } R)$ 5. D + (0.6W)6. $D + 0.75L + 0.75(0.6W) + 0.75(L_r \text{ or } S \text{ or } R)$ 7. 0.6D + 0.6W

□ This method uses load factors to the loads or combination of loads

1.
$$1.4D$$

2. $1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$
3. $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$
4. $1.2D + 1.0W + L + 0.5(L_r \text{ or } S \text{ or } R)$
5. $0.9D + 1.0W$
6. $1.2D + E_v + E_h + L + 0.2S$
7. $0.9D - E_v + E_h$

The Hashemite University

Faculty of Engineering

Department of Civil Engineering

Analysis and design of tension members

Dr. Ra'ed Al-Mazaidh

Tension Members

- > **Tension members** are axially loaded members stressed in **tension**.
- They are used in steel structures in various forms; they occur as <u>web and chord members in roof</u> and <u>floor trusses</u>, and as <u>hangers</u> and <u>sag rods</u>, <u>diagonal braces</u> for lateral stability, <u>lap splices</u>, and <u>in moment connections</u>.

Types of Sections used in steel tension members

- ✓ Hot rolled Steel Sections: (W, S, WT, ST, C, L)
- ✓ <u>Special Sections</u>: (Flat bar, Rods and Cables)
- ✓ <u>Built up Sections</u>:

Dr. Ra'ed Al-Mazaidh

Dr. Ra'ed Al-Mazaidh

Dr. Ra'ed Al-Mazaidh

Dr. Ra'ed Al-Mazaidh

Dr. Ra'ed Al-Mazaidh

Failure modes and analysis of tension members

- ✤ For members subjected to tension, the two most basic modes of failure are:
 - 1. Tensile yielding on the gross section.
 - 2. Tensile rupture at the net section.
- Tensile yielding occurs when the stress on the gross area of the section is <u>large</u> enough to cause excessive deformation.
- Tensile rupture occurs when the stress on the effective area of the net cross-section is large enough to cause the member to fracture or rupture (perpendicular to the tension force), which usually occurs across a line of bolts where the tension member is weakest.

Yielding failure in Tension member

Rupture failure in Tension member

Dr. Ra'ed Al-Mazaidh

Tensile Yielding on the Gross Section:

Tensile Rupture in the Net Section

 $\phi_R P_n = \phi_R F_u A_e$ Eq. (D2-2)....AISCM-15th ed.

where

 $\phi_R = 0.75$, $P_n =$ Nominal tensile strength in fracture or rupture = $F_u A_e$, $F_u =$ Minimum tensile strength, and $A_e =$ Effective cross-sectional area of the tension member.

The **design tensile strength of a tension member** is the **smaller** of the two expressions (yielding and tensile strengths)

$$\phi P_n \ge P_u$$

Gross cross-sectional area (A_g) , Net Area (A_n)

- The gross cross-sectional area (A_g) of a tension member is simply the total cross-sectional area of the <u>member</u>.
- > The net area (A_n) of a member is the sum of the products of the thickness and the net width of each element.

$$A_n = A_g - \sum A_{\text{holes}},$$

$$\sum A_{\rm holes} = n(d_b + \frac{1}{8})t$$

n = Number of bolt holes along the failure plane (perpendicular to the tension force),

t = Material thickness

What is the (1/8) in the equation?

 The long used practice was to punch holes with a diameter 1/16 inch larger than that of the bolts diameter.
 Punching damages 1/16 inch

more of the surrounding metal.

 $\longrightarrow \frac{1}{16} + \frac{1}{16} = \frac{1}{8}$

Example :

Staggered Holes

$$\frac{s^2}{4g}$$
,

where

s = Longitudinal center-to-center spacing or pitch between two consecutive holes, and \neq g = Transverse center-to-center spacing or gage between two consecutive holes.

The failure plane **ABCDE** has <u>two diagonal</u> failure planes: BC and CD. The expression for the net width then becomes:

$$w_n = w_g - \sum d_h + \sum \frac{s^2}{4g}$$

Where:

$$w_n$$
 = Net width,
 w_g = Gross width, and
 d_h = Hole diameter.

Multiplying the equation by the thickness of the member yields

$$w_n t = w_g t - \sum d_h t + \sum \frac{s^2}{4g} t.$$

Since $A_n = W_n t$ and $A_g = W_g t$, the equation can be simplified as follows:

$$A_n = A_g - \sum d_h t + \sum \frac{s^2}{4g} t$$

Example :

Determine the critical net area of the 1/2-in-thick plate shown

Diameter of bolts = 3/4 in.

Solution:

 $2\frac{1}{2}$ in

11 in

3 in

A

Example :

Determine the net area of the W12X16 shown below, assuming that the holes for 1-in bolts

 $ABCDE = 4.71in^2 - 3\left(1 + \frac{1}{8}\right)in.(0.22 in.) + (2)\frac{(2in)^2}{4(3 in)}(0.22 in) = 4.11 in^2.$ Critical section (smallest area)
Effective Area, A_e :

The effective net area, A_e , of a tension member is <u>a product</u> of the <u>net cross-sectional area</u> which accounts for the presence of bolt holes, if any, at the critical section, <u>and the shear lag factor, U</u>

$$A_e = A_n U$$

where

 A_n = Net cross-sectional area of the tension member, and U = Shear lag factor.

Shear lag factor (U)

Shear lag in tension members is a phenomenon that occurs <u>due to the non-uniform axial tension stress</u> <u>distribution at the connections of the tension member</u> because all of the elements of <u>the tension member are not</u> <u>connected or attached to the supporting member or gusset plate</u>, such as a single or WT member.

Table D3.1 of the **AISCM** gives the values of the shear lag factor, U, for various connection configurations

	TABLE D3.1 Shear Lag Factors for Connections to Tension Members												
Case	Description of Element	Shear Lag Factor, U	Example										
1	All tension members where the tension load is trans- mitted directly to each of the cross-sectional elements by fasteners or welds (except as in Cases 4, 5 and 6).	<i>U</i> = 1.0	_										
2	All tension members, except HSS, where the tension load is transmitted to some but not all of the cross-sectional elements by fasteners or by longitudinal welds in combination with transverse welds. Alternatively, Case 7 is permitted for W, M, S and HP shapes. (For angles, Case 8 is permitted to be used.)	$U=1-\frac{\overline{x}}{l}$	\overline{x}										

 \bar{x} = Distance between the centroid of the connected member and the connection plane.

l = Connection length measured parallel to the tension load (for bolts, it is the out-to-out distance between extreme bolts).

Determination of $\bar{x} \text{ and } \ell$

Dr. Ra'ed Al-Mazaidh

 $l_1 + l_2$, where l_1 and l_2 shall not be less than 4 times the weld size. **4**^[a] Plates, angles, channels with welds at heels, tees, and W-shapes with connected elements, where $U = \frac{3l^2}{3l^2 + w^2} \left(1 - \frac{\overline{x}}{l}\right)$ the tension load is transmitted by longitudinal Plate or welds only. See Case 2 for definition of \overline{x} . W connected element 12 5 Round HSS with a single concentric $l \ge 1.3D, U = 1.0$ $D \le l < 1.3D, U = 1 - \frac{\overline{x}}{l}$ gusset plate through slots in the HSS. D $\overline{x} = \underline{D}$

6	Rectangular HSS.	with a single concentric gusset plate	$l \ge H, U = 1 - \frac{\overline{x}}{l}$ $\overline{x} = \frac{B^2 + 2BH}{4(B+H)}$	
		with two side gusset plates	$l \ge H, U = 1 - \frac{\overline{x}}{l}$ $\overline{x} = \frac{B^2}{4(B+H)}$	
7	W-, M-, S- or HP- shapes, or tees cut from these shapes. (If U is calculated	with flange connected with three or more fasteners per line in the direction of loading	$b_f \ge \frac{2}{3}d, \ U = 0.90$ $b_f < \frac{2}{3}d, \ U = 0.85$	_
	per Case 2, the larger value is per- mitted to be used.)	with web connected with four or more fasteners per line in the direction of loading	<i>U</i> = 0 . 70	—

B = overall width of rectangular HSS member, measured 90° to the plane of the connection, in. (mm); D = outside diameter of round HSS, in. (mm); H = overall height of rectangular HSS member, measured in the plane of the connection, in. (mm); d = depth of section, in. (mm); for tees, d = depth of the section from which the tee was cut, in. (mm); l = length of connection, in. (mm); w = width of plate, in. (mm); $\overline{x} =$ eccentricity of connection, in. (mm).

8	Single and double angles.	with four or more fasteners per line in the direction of loading	U = 0.80	_
	(If U is calculated per Case 2, the larger value is permitted to be used.)	with three fasteners per line in the direction of loading (with fewer than three fasteners per line in the direction of loading, use Case 2)	<i>U</i> = 0.60	_

Example :

For the bolted tension member shown below, area, A_n ; and the effective area, A_e .

Solution

From the section property tables in part 1 of the AISCM, we find that for an $L5 \times 5 \times \frac{3}{8}$,

 $\overline{x} = 1.37$ in.

 $A_g = 3.65 \text{ in.}^2$

Total length of the connection (i.e., distance between extreme bolts), $\ell = 9$ in.

Shear Lag Factor: See next slide

$$U = 1 - \frac{\overline{x}}{\ell}$$
 Case 2
= $1 - \frac{1.37 \text{ in.}}{9 \text{ in.}} = 0.848$

Alternatively, U = 0.80 from Table D3.1 The larger value of U = 0.848 can be used. Case 8 (a)

determine the shear lag factor, U; the net

2	All tension members, except HSS, where the tension load is transmitted to some but not all of the cross-sectional elements by fasteners or by longitudinal welds in combination with transverse welds. Alternatively, Case 7 is permitted for W, M, S and HP shapes. (For angles, Case 8 is permitted to be used.)	$U=1-\frac{\overline{x}}{l}$	\overline{x}

8	Single and double angles.	with four or more fasteners per line in the direction of loading	<i>U</i> = 0.80	_			
	(If <i>U</i> is calculated per Case 2, the larger value is permitted to be used.)	with three fasteners per line in the direction of loading (with fewer than three fasteners per line in the direction of loading, use Case 2)	<i>U</i> = 0.60	_			

Net Area of the Angle:

At any critical section where rupture may occur perpendicular to the tension load, there is only one hole. Therefore, the net area is

zΙα

$$A_n = A_g - \sum A_{\text{holes}}$$

= 3.65 - (1) $\left(\frac{3}{4} + \frac{1}{8}\right)$ (0.375) = 3.32 in.²

Effective Area:

$$\begin{split} A_e &= A_n U \\ &= \bigl(3.32 \bigr) \bigl(0.848 \bigr) = 2.82 \ \text{in.}^2 \end{split}$$

Table 1-7 (continued) **Angles** Properties

	PNA																								
				A			Axis	5 X-X			Flex	ural-Torsion Properties	al				Axis	Y-Y				Axis	Z-Z		Q _s
:	Shape	k	Wt.	Area, A	1	\$	r	Ţ	z	Уp	J	Cw	ī,	Shape	I	s	r	x	Ζ	Хp	I	s	r	Tan α	F _y = 36 ksi
		in.	lb/ft	in. ²	in.4	in. ³	in.	in.	in. ³	in.	in.4	in. ⁶	in.		in.4	in. ³	in.	in.	in. ³	in.	in. ⁴	in. ³	in.		
	L6×4×7/8	1 ³ /8	27.2	8.00	27.7	7.13	1.86	2.12	12.7	1.43	2.03	4.04	2.82	L6×4×7/8	9.70	3.37	1.10	1.12	6.26	0.667	5.82	2.91	0.854	0.421	1.00
	× ³ /4	11/4	23.6	6.94	24.5	6.23	1.88	2.07	11.1	1.37	1.31	2.64	2.85	\times ³ /4	8.63	2.95	1.12	1.07	5.42	0.578	5.08	2.51	0.856	0.428	1.00
	× ⁵ /8	11/8	20.0	5.86	21.0	5.29	1.89	2.03	9.44	1.31	0.775	1.59	2.88	× ⁵ /8	7.48	2.52	1.13	1.03	4.56	0.488	4.32	2.12	0.859	0.435	1.00
	× ⁹ /16	11/16	18.1	5.31	19.2	4.81	1.90	2.00	8.59	1.28	0.572	1.18	2.90	× ⁹ /16	6.86	2.29	1.14	1.00	4.13	0.443	3.93	1.92	0.861	0.438	1.00
	×1/2	1	16.2	4.75	17.3	4.31	1.91	1.98	7.71	1.25	0.407	0.843	2.91	×1/2	6.22	2.06	1.14	0.981	3.69	0.396	3.54	1.72	0.864	0.440	1.00
	× ⁷ /16	¹⁵ /16	14.3	4.18	15.4	3.81	1.92	1.95	6.81	1.22	0.276	0.575	2.93	×7/16	5.56	1.83	1.15	0.957	3.24	0.348	3.14	1.51	0.867	0.443	0.973
	× ³ /8	7/8	12.3	3.61	13.4	3.30	1.93	1.93	5.89	1.19	0.177	0.369	2.94	×3/8	4.86	1.58	1.16	0.933	2.79	0.301	2.73	1.31	0.870	0.446	0.912
	× ⁵ /16	¹³ /16	10.3	3.03	11.4	2.77	1.94	1.90	4.96	1.15	0.104	0.217	2.96	×5/16	4.13	1.34	1.17	0.908	2.33	0.253	2.31	1.10	0.874	0.449	0.826
L	6×31/2×1/2	1	15.3	4.50	16.6	4.23	1.92	2.07	7.49	1.50	0.386	0.779	2.88	L6×31/2×1/2	4.24	1.59	0.968	0.829	2.88	0.375	2.59	1.34	0.756	0.343	1.00
	× ³ /8	7/8	11.7	3.44	12.9	3.23	1.93	2.02	5.74	1.41	0.168	0.341	2.90	$\times^{3/8}$	3.33	1.22	0.984	0.781	2.18	0.287	2.01	1.02	0.763	0.349	0.912
	× ⁵ /16	¹³ /16	9.80	2.89	10.9	2.72	1.94	2.00	4.84	1.38	0.0990	0.201	2.92	× ⁵ /16	2.84	1.03	0.991	0.756	1.82	0.241	1.70	0.859	0.767	0.352	0.826
	15~5~7/0	13/0	27.2	8.00	17.8	516	1 4 9	1 56	0.21	0.800	2.07	3 5 3	2.64	1.5×5× ⁷ /8	17.8	5 16	1 49	1.56	9.31	0 800	7.60	3 43	0 971	1.00	1.00
	×3/4	11/4	23.6	6.98	15.7	4 52	1.50	1.50	814	0.000	1.33	2.32	2.67	×3/4	15.7	4 52	1.50	1.52	8 14	0.698	6.55	3.08	0.972	1.00	1.00
	×5/2	11/2	20.0	5.90	13.6	3.85	1.52	1 47	6.93	0.590	0.792	1.40	2 70	×5/8	13.6	3.85	1.52	1.47	6.93	0.590	5.62	2.70	0.975	1.00	1.00
	×1/2	1	16.2	4.79	11.3	3.15	1.53	1.42	5.66	0.479	0.417	0.744	2.73	×1/2	11.3	3.15	1.53	1.42	5.66	0.479	4.64	2.29	0.980	1.00	1.00
	×7/16	15/16	14.3	4.22	10.0	2.78	1.54	1.40	5.00	0.422	0.284	0.508	2.74	× ⁷ /16	10.0	2.78	1.54	1.40	5.00	0.422	4.04	2.06	0.983	1.00	1.00
	×3/8	7/8	12.3	3.65	8.76	2.41	1.55	1.37	4.33	0.365	0.183	0.327	2.76	× ³ /8	8.76	2.41	1.55	1.37	4.33	0.365	3.55	1.83	0.986	1.00	0.983

Example :

For the welded tension member shown below, area, A_n ; and the effective area, A_e .

determine the shear lag factor, U; the net

Solution

Shear Lag Factor:

The average length of the longitudinal welds, $\ell = \frac{6 \text{ in.} + 4 \text{ in.}}{2} = 5 \text{ in.}$

$$U = 1 - \frac{\overline{x}}{\ell}$$
 Case 2
= $1 - \frac{1.37 \text{ in.}}{5 \text{ in.}} = 0.726$

There is not an alternate value to use from Table D3.1 so U = 0.726. Since there are no holes, $A_n = A_g = 3.65$ in.².

Effective Area:

$$A_e = A_n U$$

= (3.65)(0.726) = 2.65 in.²

Example :

Determine if the channel is adequate for the applied tension load shown below. The channel is ASTM A36 steel and is connected with four $\frac{5}{8}$ -in. diameter bolts. The tension member is subjected to service dead and live loads of 28.5 kips and 25.5 kips, respectively. Neglect block shear.

Solution

From the AISCM, Table 1-5:

$$A_g = 3.37 \text{ in.}^2$$

$$\overline{x} = 0.572$$

$$t_w = 0.220 \text{ in.}$$

From the AISCM Table (2-4)

$$F_y = 36 \text{ ksi}$$

$$F_u = 58 \text{ ksi to 80 ksi (use } F_u = 58 \text{ ksi})$$

Net Area of the Channel:

$$\begin{split} A_n &= A_g - \sum A_{\text{holes}} \\ &= 3.37 - \left[\left(2 \right) \left(\frac{5}{8} + \frac{1}{8} \right) (0.220) \right] = 3.04 \text{ in} \end{split}$$

Effective Area of the Channel:

From Table D3.1 the shear lag factor is

$$U = 1 - \frac{\overline{x}}{\ell} \quad \text{Case 2}$$

= $1 - \frac{0.572 \text{ in.}}{4 \text{ in.}} = 0.857$
 $A_e = A_n U$
= $(3.04)(0.857) = 2.61 \text{ in.}^2$

		k	īΥ	L	t,																
		^ <u> </u>			T.			٦	able	e 1-{	5										
		T	x-+ -	-X	ď			C-	Sh	ap	es										
		+	╡╚		1			Di	mer	nsio	ns										
		k x						0.		1010	10										
			Р	NA			Wah			Flor				Dk	tone		_			64	
			Area,	Dept	th,	Thick	web ness.	t	Wid	га th.	Avera	ige		Dis	stand	Work-	.,	te	h _o	Typ	De
	S	hape	A	d		t	v	2	b	t.,	Thickr t _f	iess,	k	(Т	able Gage			-		
			In. ²	in.		in		in.	In		In		In	I.	in.	in.	l	n.	in.		A).
	C15	5×50 ×40	14.7 11.8	15.0 15.0	15 15	0.716	^{11/} 16 1/2	³ /8 1/4	3.72	3 ³ /4 3 ¹ /2	0.650	5/8 5/8	11/1 17/1	16 1 16 1	2 ¹ /8	2 ¹ /4	1.	17 1	14.4 14 4		
		×33.9	10.0	15.0	15	0.400	3/8	³ /16	3.40	33/8	0.650	5/8	17/1	16 1	2 ¹ /8	2	1.1	13 1	14.4		A500
	C12	2×30	8.81	12.0	12	0.510	1/2	1/4	3.17	31/8	0.501	1/2	11/8	8	9 ³ /4	1 ³ /4 ⁹	1.0	01 1	11.5	Carbon	
		×25 ×20.7	7.34 6.08	12.0 12.0	12 12	0.387	3/8 5/16	^{3/16} 3/16	3.05 2.94	3	0.501	1/2 1/2	11/8	8	9 ³ /4 9 ³ /4	13/49 13/49	1.0	00 1 983 1	11.5 11.5		
	C10)×30	8.81	10.0	10	0.673	11/16	3/8	3.03	3	0.436	7/16	1		8	1 ³ /4 ^g	0.9	224	9.56		A501
		×25	7.35	10.0	10	0.526	1/2	1/4	2.89	27/8	0.436	7/16	1		8	1 ³ /4 ⁹	0.9	911	9.56		
		×20 ×15.3	5.87 4 48	10.0 10.0	10 10	0.379	³ /8 1/4	³ /16 1/8	2.74	2 ³ /4 2 ⁵ /8	0.436	7/16 7/16	1		8 8	1 ¹ /2 ⁹ 1 ¹ /2 ⁹	0.8	394 368	9.56 9.56		A529*
	C9)	<20	5.87	9.00	9	0.448	7/16	1/4	2.65	25/0	0 413	7/16	1		7	11/29	0.0	350	8 59		A709
	;	×15	4.40	9.00	9	0.285	⁵ /16	3/16	2.49	21/2	0.413	7/16	1		7	1 ³ /8 ^g	0.8	325	8.59		A10434.8
)	×13.4	3.94	9.00	9	0.233	1/4	1/8	2.43	23/8	0.413	7/16	1		7	1 ³ /8 ^g	0.8	314	8.59		A 1095
	C8>	<18.75 ×13.75	5.51 4.03	8.00 8.00	8	0.487	¹ /2 ⁵ /16	¹ /4 ³ /16	2.53 2.34	2 ¹ /2 2 ³ /8	0.390	3/8 3/8	15	/16	6 ¹ /8 6 ¹ /8	1 ¹ /2 ⁹ 1 ³ /8 ⁹	0.8	300 774	7.61		A1060
	,	×11.5	3.37	8.00	8	0.220	1/4	1/8	2.26	2 ¹ /4	0.390	3/8	15	/16	6 ¹ /8	1 ³ /8 ^g	0.7	756	7.61		
n.	2																				A572
	Nom-	Shear												To	rsior	nal Pro	perti	es			
	inal	Ctr,		Axis	х-х				Ax	is y-y						2	ī.				
	WL.	<i>e</i> _o	1	\$	r	Z	1	S	r	x	Z	Xµ	,		<u> </u>	6		н		High-	A618 ^f
	10/IL	In. 0.583	In.* 404	53.8	In.	68.5	11 0	3.7	7 0.86	5 0 79	9 8 1 4	0.4	an 2	<u>In.</u> *	492	n.°	In. 5.49	0.93	7	Strength	
	40	0.767	348	46.5	5.43	57.5	9.17	3.3	4 0.88	3 0.77	8 6.84	0.3	92 1	.45	410		5.71	0.92	7	Allov	A709
	33.9	0.896	315	42.0	5.61	50.8	8.07	3.09	9 0.90	0.78	8 6.19	0.3	32 1	.01	358	3	5.94	0.92	0		
	30 25	0.618	162 144	27.0	4.29	33.8	5.12	2.0	5 0.76	62 0.67	4 4.32	0.3	67 0 06 0).861	151		4.54 4 72	0.91	9		
	20.7	0.870	129	21.5	4.61	25.6	3.86	1.7	2 0.79	0.69	8 3.47	0.2	53 0	.369	112		4.93	0.89	9		A913
	30	0.368	103	20.7	3.43	26.7	3.93	1.6	5 0.66	68 0.64	9 3.78	0.4	41 1	.22	79	9.5	3.63	0.92	1		
	25	0.494	91.1 79.0	18.2	3.52	23.1	3.34	1.4	7 0.67	0.61	7 3.18	0.3	67 0	0.687	68	3.3	3.76	0.91	2		
	15.3	0.796	67.3	13.5	3.88	15.9	2.00	1.1	5 0.71	1 0.63	4 2.34	0.2	24 0	.209	45	5.5	4.19	0.88	4		A1065 ^k
	20	0.515	60.9	13.5	3.22	16.9	2.41	1.17	7 0.64	0.58	3 2.46	0.3	26 0	.427	39	9.4	3.46	0.89	9	Pref.	erred n
	15	0.681	51.0	11.3	3.40	13.6	1.91	1.0	1 0.65	59 0.58	6 2.04	0.2	45 0	0.208	31	.0	3.69	0.88	2	= Othe	er appli
	10.4	0.742	47.8	11.0	3.48	12.0	1.75	1.0	1 0.50		5 0 17	0.2	19 0	100	20	5.2	3.19 2.0E	0.8/	3	= Mat	erial sp
	13.75	0.431	45.9 36.1	9.02	2.99	11.0	1.52	0.8	48 0.61	3 0.55	4 1.73	0.2	52 0).434).186	19	9.2	3.26	0.89	4	Footnotes	on faci
	11.5	0.697	32.5	8.14	3.11	9.63	1.31	0.7	75 0.62	23 0.57	2 1.57	0.2	11 0).130	16	6.5	3.41	0.86	2		

Table 2-4 **Applicable ASTM Specifications** for Various Structural Shapes **Applicable Shape Series** F_y F_u Yield Tensile HSS Round Rect. Stress^a Stress^a STM Pipe (ksi) (ksi) W М S HP C MC L signatio 36 58-80^b A36 3 Gr. B 30 00 42 58 Gr. B 46 58 62 46 Gr. C 50 62 36 58 Gr. A 50 70 Gr. B 50 Gr. 50 65 - 100Gr. 55 55 70-100 36 36 58-80^b 36 36-52 58 50 50-65 65 50 65 Gr.A Gr.42 42 60 Gr.50 50 65 55 Gr.55 70 Gr. 60° 60 75 Gr. 65° 65 80 50ª Gr.la^k, lb&1 70^e 50 65 Gr. III 50 50 65 50S 50-65 65 50 70 50W 50 50^{*} 65^h 75 60 60 65 65 80 70 70 90 992 50 65¹ 50 60 Gr. 50¹

naterial specification.

cable material specification, the availability of which should be confirmed prior to specification. ecification does not apply.

ng page.

LRFD Method: $P_{u}=1.2 \text{ DL}+1.6 \text{ LL}$ $P_{u} = 1.2(28.5) + 1.6(25.5) = 75 \text{ kips}$ the nominal tensile strength due to tensile yielding on the gross area is $P_{n} = F_{y}A_{g} = (36)(3.37) = 121.3 \text{ kips}$ The design tensile strength due to yielding is $\phi_{t}P_{n} = (0.9)(121.3) = 109 \text{ kips} > P_{u} = 75 \text{ kips. OK.}$ Controls the nominal tensile strength due to fracture or rupture on the effective area is

$$P_n = F_u A_e = (58)(2.61 \text{ in.}^2) = 151.4 \text{ kips}$$

The design tensile strength due to fracture or rupture on the effective area is

 $\phi_R P_n = (0.75)(151.4) = 113.6 \text{ kips} > P_u = 75 \text{ kips. OK.}$

<u>The design tensile strength</u> of the tension member is the <u>smaller</u> of the two values calculated above. Thus, the design strength, $\phi P_n = 109 \text{ kips} > P_u = 75 \text{ kips}$. OK.

Example :

Determine the maximum factored load that can be applied in tension to the angle shown below. The angle is ASTM A36 steel and is connected with four 3/4-in. diameter bolts. Neglect block shear.

Other applicable material specification, the availability of which should be confirmed prior to specifical
= Material specification does not apply.

Footnotes on facing page.

	PNA Yp				Ar Pro	n gle pert	es	cuj				
						Ax	is X-X			Flexu	ral-Torsio	nal
Shape	k	Wt.	Area, A	1	s	r	Ţ	z	Уp	J	roperties <i>C</i> w	ī,
	in.	lb/ft	in. ²	in.	⁴ in. ³	in.	in.	in. ³	in.	in. ⁴	in. ⁶	in.
L6×4×7/8	13/8	27.2	8.00	27.7	7.13	1.86	2.12	12.7	1.43	2.03	4.04	2.82
× ³ /4	11/4	23.6	6.94	24.5	6.23	1.88	2.07	11.1	1.37	1.31	2.64	2.85
× ⁵ /8	11/8	20.0	5.86	21.0	5.29	1.89	2.03	9.44	1.31	0.775	1.59	2.88
× ⁹ /16	11/16	18.1	5.31	19.2	4.81	1.90	2.00	8.59	1.28	0.572	1.18	2.90
×1/2	1	16.2	4.75	17.3	4.31	1.91	1.98	7.71	1.25	0.407	0.843	2.91
× ⁷ /16	¹⁵ /16	14.3	4.18	15.4	3.81	1.92	1.95	6.81	1.22	0.276	0.575	2.93
× ³ /8	7/8	12.3	3.61	13.4	3.30	1.93	1.93	5.89	1.19	0.177	0.369	2.94
× ⁵ /16	¹³ /16	10.3	3.03	11.4	2.77	1.94	1.90	4.96	1.15	0.104	0.217	2.96
				Axis	Y-Y				Axi	s Z-Z		Q _s
Shape	1	s		r	x	Ζ	X _p	1	s	r	Tan α	F _y = 3 ksi
	in.4	in.	³ i	n.	in.	in. ³	in.	in.4	in. ³	in.		
L6×4×7/8	9.70	3.3	7 1.	10	1.12	6.26	0.667	5.82	2.91	0.854	0.421	1.00
\times ³ /4	8.63	2.9	95 1.	12	1.07	5.42	0.578	5.08	2.51	0.856	0.428	1.00
× ⁵ /8	7.48	2.5	2 1.	13	1.03	4.56	0.488	4.32	2.12	0.859	0.435	1.00
× ⁹ /16	6.86	2.2	9 1.	14	1.00	4.13	0.443	3.93	1.92	0.861	0.438	1.00
×1/2	6.22	2.0	6 1.	14	0.981	3.69	0.396	3.54	1.72	0.864	0.440	1.00
× ⁷ /16	5.56	1.8	3 1.	15	0.057	3.24	0.348	3.14	1.51	0.867	0.443	0.97
×3/8	4.86	1.5	o8 1. ⊿	16	0.933	2.79	0.301	2.73	1.31	0.870	0.446	0.91
×7/16	4.13	1.3	м 1.	17	0.908	2.33	0.253	2.31	1.10	0.874	0.449	0.82
					I				1			1

Failure Plane ABC:

$$A_n = 3.61 - \left[\left(\frac{3}{4} + \frac{1}{8} \right) (0.375) \right] + 0 = 3.28 \text{ in.}^2$$

Failure Plane ABDE:

s = 1.5 in. and g = 3 in.

$$A_n = 3.61 - \left[\left(2\right) \left(\frac{3}{4} + \frac{1}{8} \right) \left(0.375 \right) \right] + \left[\frac{\left(1.5 \right)^2}{\left(4 \right) \left(3 \right)} \left(0.375 \right) \right] = 3.02 \text{ in.}^2$$

a. failure planes

The failure plane along *ABDE* controls, since it has a smaller net cross-sectional area.

Effective Area of the Angle:

The shear lag factor,
$$U = 1 - \frac{\overline{x}}{\ell}$$
 Case 2
 $= 1 - \frac{0.933}{(3)(1.5)} = 0.792$
Alternatively, $U = 0.60$ from **Table D3.1** The larger value is permitted to be used, so $U = 0.792$.
 $A_e = A_n U$
 $= (3.02)(0.792) = 2.39 \text{ in.}^2$

8	Single and double angles.	with four or more fasteners per line in the direction of loading	_	
	(If <i>U</i> is calculated per Case 2, the larger value is permitted to be used.)	with three fasteners per line in the direction of loading (with fewer than three fasteners per line in the direction of loading, use Case 2)	<i>U</i> = 0.60	_

the tensile strength based on tensile yielding on the gross area is

 $\phi_t P_n = \phi_t F_y A_g$ = (0.9)(36)(3.61) = 116 kips

the tensile strength based on the tensile rupture on the effective area is

 $\phi_R P_n = \phi_R F_u A_e$

$$=(0.75)(58)(2.39 \text{ in.}^2) = 104 \text{ kips}$$
 \leftarrow Controls

The smaller value controls, therefore, the maximum factored tension load, $P_u = 104$ kips.

Yielding failure

Rupture failure

Block Shear Failure Mode:

- This failure occurs due to the tearing out of a segment of the tension member or the connecting element from the rest of the connection.
- > The failure planes usually occur:
 - 1. Along the centerlines of the bolt holes for bolted connections.
 - 2. Along the outline of the welds for welded connections.

Dr. Ra'ed Al-Mazaidh

- ➢ Failure in block shear can occur by:
- 1. A combination of shear yielding plus tensile rupture.
- 2. OR by a combination of shear rupture plus tensile rupture.

Block shear failure

From AISCM Section J4.2

The nominal strength based on shear yielding is

 $R_n = 0.6 F_y A_{gv}$

• The nominal strength based on **shear rupture** is

 $R_n = 0.6 F_u A_{nv}.$

Where, $A_{gv} = \text{Gross area subject}$ $A_{nv} = \text{Net area subject to shear}$

From AISCM Section J4.3

- F_{μ} = Minimum tensile stress,
- F_{γ} = Minimum yield stress,
- A_{gv} = Gross area subjected to shear,
- A_{nt} = Net area subjected to tension (see equation (4-4)),
- A_{nv} = Net area subjected to shear (see equation (4-4)), and
- U_{bs} = 1.0 for uniform tension stress
 - = 0.50 for nonuniform tension stress.

Welded Angle

Gusset Plates

Dr. Ra'ed Al-Mazaidh

Determine if the channel is adequate for the applied tension load shown below. The channel is ASTM A36 steel and is connected with four $\frac{5}{8}$ -in. diameter bolts. The tension member is subjected to service dead and live loads of 28.5 kips and 25.5 kips, respectively. <u>Consider</u> block shear.

Channel Dimensions:

Shear plane:

$$A_{gv} = (2 \text{ shear planes})(4 \text{ in.} + 1.5 \text{ in.})(0.220 \text{ in.}) = 2.42 \text{ in.}^2$$

 $A_{nv} = A_{gv} - \sum A_{\text{holes}}$
 $= 2.42 - \left[(2 \text{ shear planes})(1.5 \text{ holes}) \left(\frac{5}{8} + \frac{1}{8}\right)(0.220 \text{ in.}) \right] = 1.92 \text{ in.}^2$

Tension plane:

$$\begin{split} A_{nt} &= A_{gt} - \sum A_{\text{holes}} \\ &= \left[\left(4 \,\text{in.}\right) \left(0.220 \,\text{in.}\right) \right] - \left(\frac{1}{2} \,\text{hole} + \frac{1}{2} \,\text{hole}\right) \left[\left(\frac{5}{8} + \frac{1}{8}\right) (0.220 \,\text{in.}) \right] = 0.715 \,\text{in.}^2 \\ U_{bs} &= 1.0 \,\, (\text{tension stress is uniform}) \end{split}$$

block shear in channel

For the *Channel* ($t_w = 0.22$ in.), the tensile strength in block shear is

$$\begin{split} \phi P_n &= 0.75 \Big[\big(0.60 \big) \big(58 \big) \big(1.92 \big) + \big(1.0 \big) \big(58 \big) \big(0.715 \big) \Big] \\ &\leq 0.75 \Big[\big(0.60 \big) \big(36 \big) \big(2.42 \big) + \big(1.0 \big) \big(58 \big) \big(0.715 \big) \Big] \end{split}$$

 $= 81.2 \text{ kips} \le 70.3 \text{ kips}.$

Controls

Dr. Ra'ed Al-Mazaidh

DESIGN OF TENSION MEMBERS

- 1. Calculate the maximum factored tension loads on the member, P_u .
- 2. Determine the minimum gross area from the tensile yielding failure mode equation

$$A_g \ge \frac{P_u}{0.9F_v}$$

3. Determine the minimum net area from the tensile rupture failure mode equation

$$A_n \ge \frac{P_u}{0.75F_uU}$$

where the net area is found from equation

$$A_n = A_g - \sum A_{\text{holes}}$$

Therefore, the required gross area for the tensile rupture failure mode is:

$$A_g \geq \frac{P_u}{0.75F_u U} + \sum A_{\rm holes}$$

4. Use the larger A_g value from step (2) and step (3), and select a trial member size based on the larger value of A_g .

5. For tension members, AISC specification Section D1 suggests that the slenderness ratio $\frac{L_C}{r_{min}} = \frac{KL}{r_{min}}$

should be less than 300 to prevent flapping or flutter of the member,

Where:

- K = Effective length factor (usually assumed to be 1.0 for tension members),
- L = Unbraced length of the tension member, and
- r_{min} = Smallest radius of gyration of the member.

The smallest radius of gyration for rolled sections can be obtained from part 1 (tables) of the AISCM
6. Determine the block shear capacity of the selected tension member

$$\phi P_n = \phi \big(0.6 F_u A_{nv} + U_{bs} F_u A_{nt} \big) \leq \phi \big(0.6 F_y A_{gv} + U_{bs} F_u A_{nt} \big)$$

If ϕP_n (block shear) is greater than or equal to P_u , the member is adequate. If ϕP_n (block shear) is less than P_u , increase the member size and repeat step 5 until ϕP_n (block shear) $\geq P_u$.

Example:

Using the LRFD method, design a tension member given the following parameters:

- Service loads: $P_D = 40$ kips, $P_L = 66$ kips;
- Single angle required;
- Unbraced length, L = 20 ft.;
- ASTM A36 steel; and
- Two lines of four $\frac{3}{4}$ -in.-diameter bolts.

Solution

$$P_{u} = 1.2 P_{D} + 1.6 P_{L} = \left[(1.2)(40) \right] + \left[(1.6)(66) \right] = 154 \text{ kips}$$

1. $A_{g} \ge \frac{P_{u}}{0.9F_{y}}$ (assume slenderness ratio, $\frac{K\ell}{r} < 300$)
 $A_{g} \ge \frac{(154)}{(0.9)(36)} = 4.75 \text{ in.}^{2}$

Case 8- (a)

2. Shear lag factor, U, is 0.80 for single angles (from Table D3.1 Alternatively, U may be calculated using $\ell = (3)(3 \text{ in.}) = 9$ in. (three spaces at 3 in.), but an angle size would have to be assumed.

$$\begin{split} A_g &\geq \frac{P_u}{0.75 F_u U} + \Sigma A_{\text{holes}} \\ A_g &\geq \frac{(154)}{(0.75)(58)(0.80)} + (2 \text{ holes}) \left(\frac{3}{4} + \frac{1}{8}\right) (t) \\ A_g \text{ required} &= 4.43 + 1.75t, \text{ where } t \text{ is the thickness of the angle} \\ r_{\min} &= \frac{L}{300} = \frac{(20)(12)}{300} = 0.80 \text{ in.} \end{split}$$

	y _p PNA			I	Tab An Prop	le 1- gle perti	.7 S es			5							Tab	ole 1- A Pro	7 (co ngle opert	ontinu 2S ties	ied)			L8-L	.6
	*	Wt	Area,			Axis	s X-X			Fie	Properties	nau					Axis	s Y-Y				Axis	z-z		Qs
Shape	in	16./64	A in 2	1 in 4	<i>S</i>	r	ÿ	Z	У _Р	J in 4	C _w	ī,		Shape	1	\$	'	x	z	x _p	1	s	'	Tan cx	F _y =36 ksi
18~8~11/2	13/4	1D/π 56.9	16.8	08.1	17.5	2.41	2.40	31.6	1.05	7 13	32.5	1 2 Q	\vdash	10-0-11/-	in.*	17.5	in.	in.	in.3	in.	in."	in.3	in.	1.00	1.00
×1	15/8	51.0	15.1	89.1	15.8	2.43	2.36	28.5	0.944	5.08	23.4	4.32		L8×8×178 ×1	96.1 89.1	17.5	2.41	2.40	28.5	0.944	40.7	11.0	1.50	1.00	1.00
×7/8	11/2	45.0	13.3	79.7	14.0	2.45	2.31	25.3	0.831	3.46	16.1	4.36		×"/8	79.7	14.0	2.45	2.31	25.3	0.831	32.7	10.0	1.57	1.00	1.00
× ³ /4	1 ³ /8	38.9	11.5	69.9	12.2	2.46	2.26	22.0	0.719	2.21	10.4	4.39		×3/4	69.9	12.2	2.46	2.26	22.0	0.719	28.5	8.90	1.57	1.00	1.00
×5/8	174	32.7	9.69	59.6	10.3	2.48	2.21	18.6	0.606	1.30	6.16	4.42		×5/8	59.6	10.3	2.48	2.21	18.6	0.606	24.2	7.72	1.58	1.00	0.997
×9/16 ×1/2	11/2	29.0	0.//	04.2 48.8	9.33	2.49	2.19	15.0	0.546	0.961	4.00	4.43		×9/16	54.2	9.33	2.49	2.19	16.8	0.548	21.9	7.09	1.58	1.00	0.959
10.01	410	20.4	1.04		0.00	2.40	2.17	07.0	0.450	0.000	0.20	9.90		×12	40.0	0.30	2.49	2.17	13.1	0.490	19.0	0.44	1.59	1.00	0.912
L8×6×1	1 1/2	44.2	13.1	80.9	15.1	2.49	2.65	27.3	1.45	4.34	16.3	3.88		L8×6×1	38.8	8.92	1.72	1.65	16.2	0.819	21.3	7.60	1.28	0.542	1.00
×'/8 ×3/4	11/4	33.8	9.00	63.5	11 7	2.50	2.00	24.5	1.45	2.90	7.28	3.92		×'/8	34.9	7.94	1.74	1.60	14.4	0.719	18.9	6.71	1.28	0.546	1.00
× ⁵ /8	11/8	28.5	8.41	54.2	9.86	2.54	2.50	17.9	1.27	1.12	4.33	3.98		×14 ×5/8	26.4	5.88	1.75	1.50	10.5	0.526	14.1	4.91	1.29	0.550	0.997
× ⁹ /16	11/16	25.7	7.61	49.4	8.94	2.55	2.48	16.2	1.24	0.823	3.20	3.99		×9/16	24.1	5.34	1.78	1.49	9.52	0.476	12.8	4.45	1.30	0.556	0.959
×1/2	1	23.0	6.80	44.4	8.01	2.55	2.46	14.6	1.20	0.584	2.28	4.01		×1/2	21.7	4.79	1.79	1.46	8.52	0.425	11.5	3.98	1.30	0.557	0.912
×7/16	15/16	20.2	5.99	39.3	7.06	2.56	2.43	12.9	1.15	0.396	1.55	4.02		×7/16	19.3	4.23	1.80	1.44	7.50	0.374	10.2	3.51	1.31	0.559	0.850
L8×4×1	11/2	37.4	11.1	69.7	14.0	2.51	3.03	24.3	2.45	3.68	12.9	3.75		L8×4×1	11.6	3.94	1.03	1.04	7.73	0.694	7.83	3.48	0.844	0.247	1.00
×7/8	13/8	33.1	9.79	62.6	12.5	2.53	2.99	21.7	2.41	2.51	8.89	3.78		×7/8	10.5	3.51	1.04	0.997	6.77	0.612	6.97	3.06	0.846	0.252	1.00
×3/4	11/4	28.7	8.49	55.0	10.9	2.55	2.94	18.9	2.34	1.61	5.75	3.80		×3/4	9.37	3.07	1.05	0.949	5.82	0.531	6.14	2.65	0.850	0.257	1.00
×78 ×9/16	178 11/16	24.2	6.49	42.9	8.34	2.50	2.86	14.6	2.23	0.355	2.53	3.84		×9/8	8.11	2.62	1.06	0.902	4.86	0.448	5.24	2.24	0.856	0.262	0.997
×1/2	1	19.6	5.80	38.6	7.48	2.58	2.84	13.1	2.20	0.501	1.80	3.86		×1/2	6.75	2.30	1.07	0.854	3.91	0.363	4.70	1.82	0.863	0.264	0.939
×7/16	15/16	17.2	5.11	34.2	6.59	2.59	2.81	11.6	2.16	0.340	1.22	3.87		×7/16	6.03	1.90	1.09	0.829	3.42	0.319	3.84	1.61	0.867	0.268	0.850
L7×4×3/4	11/4	26.2	7.74	37.8	8.39	2.21	2.50	14.8	1.84	1.47	3.97	3.31		L7×4×3/4	9.00	3.01	1.08	1.00	5.60	0.553	5.63	2.57	0.855	0.324	1.00
×5/8	11/8	22.1	6.50	32.4	7.12	2.23	2.45	12.5	1.80	0.868	2.37	3.34		×5/8	7.79	2.56	1.10	0.958	4.69	0.464	4.81	2.16	0.860	0.329	1.00
×1/2	1	17.9	5.26	26.6	5.79	2.25	2.40	10.2	1.74	0.456	1.25	3.37		×1/2	6.48	2.10	1.11	0.910	3.77	0.376	3.94	1.76	0.866	0.334	0.965
×'/16 ×3/2	-9716 7/e	13.6	4.63	23.0	4.42	2.20	2.38	9.03	1.71	0.310	0.651	3.38		×//16	5.79	1.86	1.12	0.886	3.31	0.331	3.50	1.55	0.869	0.337	0.912
~78	78	13.0	4.00	20.0	4.42	2.21	2.00	7.01	1.07	0.130	0.044	5.40		X1/8	5.06	1.61	1.12	0.861	2.84	0.286	3.04	1.34	0.873	0.339	0.840
L6×6×1	11/2	37.4	11.0	35.4	8.55	1.79	1.86	15.4	0.917	3.68	9.24	3.18		L6×6×1	35.4	8.55	1.79	1.86	15.4	0.917	14.9	5.70	1.17	1.00	1.00
×'/8 _3/4	11/4	28.7	9.75	28.1	6.64	1.81	1.81	13.7	0.813	2.51	4.17	3.21		×'/8	31.9	7.61	1.81	1.81	13.7	0.813	13.3	5.18	1.17	1.00	1.00
×5/8	11/8	24.2	7.13	24.1	5.64	1.84	1.72	10.1	0.594	0.955	2.50	3.24		×°/4	28.1	5.64	1.82	1.77	10.1	0.705	0.91	4.63	1.17	1.00	1.00
×9/16	11/16	21.9	6.45	22.0	5.12	1.85	1.70	9.18	0.538	0.704	1.85	3.29		×78 ×9/18	22.0	5.12	1.85	1.70	9,18	0.534	8,90	3,73	1.18	1.00	1.00
×1/2	1	19.6	5.77	19.9	4.59	1.86	1.67	8.22	0.481	0.501	1.32	3.31		×1/2	19.9	4.59	1.86	1.67	8.22	0.481	8.06	3.40	1.18	1.00	1.00
×7/16	15/16	17.2	5.08	17.6	4.06	1.86	1.65	7.25	0.423	0.340	0.899	3.32		×7/16	17.6	4.06	1.86	1.65	7.25	0.423	7.05	3.05	1.18	1.00	0.973
×3/8	7/8	14.9	4.38	15.4	3.51	1.87	1.62	6.27	0.365	0.218	0.575	3.34		×3/8	15.4	3.51	1.87	1.62	6.27	0.365	6.21	2.69	1.19	1.00	0.912
×9/16	19/16	12.4	3.67	13.0	2.95	1.88	1.60	5.26	0.306	0.129	0.338	3.35		×5/16	13.0	2.95	1.88	1.60	5.26	0.306	5.20	2.30	1.19	1.00	0.826
Note: For workship	12000	efer to T	able 1.74	For con	nnactnee	criteria	refer to Tr	able 1.79						late: Fee words - 1.1-		landa Tabi	1 74 5				Table 4 20				
NUS. FUI WUIKADIS	yayes, I	0.01001	aule 1-77	e ror con	npaceness	s oriestia,		aure 1-7D.					N N	vote: For workable	gages, ref	rer to Table	e 1-7A. For	compactr	iess criteria	a, reter to	iable 1-7B.				
													L												

$\begin{array}{c} \bar{z} \\ $	y _p PNA	l.			Tab An Proj	le 1- gle perti	-7 S es									Tab	ole 1- A Pro	7 (co ngle opert	ontinu 8S ties	ued)			L8-L	.6
			Area		1	Axis	s X-X	1	1	Flex	cural-Torsion Properties	nal			1	Axis	5 Y-Y	1	1		Axis	z-z	1	Qs
Shape	k	Wt.	Alca, A	1	s	r	ÿ	z	Уp	J	C,,	ī,	Shape	1	s	'	x	z	Хp	'	\$	'	Tan α	F _y =36 ksi
10.0.416	in.	lb/ft	in.2	in.4	in.3	in.	in.	in.3	in.	in.4	in.6	in.	10.0.11/	in.4	in.3	in.	in.	in. ³	in.	in.4	in.3	in.	1.00	1.00
L8×8×1 //s	1% 15/s	56.9	16.8	98.1 89.1	17.5	2.41	2.40	31.6	1.05	7.13	32.5	4.29	L8×8×1 /8	98.1 89.1	17.5	2.41	2.40	31.6	1.05	40.7	12.0	1.56	1.00	1.00
×7/8	11/2	45.0	13.3	79.7	14.0	2.45	2.31	25.3	0.831	3.46	16.1	4.36	×7/8	79.7	14.0	2.45	2.31	25.3	0.831	32.7	10.0	1.57	1.00	1.00
× ³ /4	1 ³ /8	38.9	11.5	69.9	12.2	2.46	2.26	22.0	0.719	2.21	10.4	4.39	×3/4	69.9	12.2	2.46	2.26	22.0	0.719	28.5	8.90	1.57	1.00	1.00
×9/8	11/4	32.7	9.69	59.6	10.3	2.48	2.21	18.6	0.606	1.30	6.16	4.42	×%	59.6	10.3	2.48	2.21	18.6	0.606	24.2	7.72	1.58	1.00	0.997
×1/2	11/8	26.4	7.84	48.8	8.36	2.49	2.15	15.1	0.340	0.683	3.23	4.45	×1/16 ×1/2	48.8	8.36	2.49	2.19	15.1	0.548	19.8	6.44	1.50	1.00	0.939
18×6×1	11/2	44.2	13.1	80.9	15.1	2.49	2.65	27.3	1.45	4 34	16.3	3.88	18-6-1	38.8	8 92	1 72	1.65	16.2	0.810	21.3	7.60	1.28	0.542	1.00
×7/8	13/8	39.1	11.5	72.4	13.4	2.50	2.60	24.3	1.43	2.96	11.3	3.92	×7/8	34.9	7.94	1.74	1.60	14.4	0.719	18.9	6.71	1.28	0.546	1.00
× ³ /4	11⁄4	33.8	9.99	63.5	11.7	2.52	2.55	21.1	1.34	1.90	7.28	3.95	× ³ /4	30.8	6.92	1.75	1.56	12.5	0.624	16.6	5.82	1.29	0.550	1.00
×6/8	11/8	28.5	8.41	54.2	9.86	2.54	2.50	17.9	1.27	1.12	4.33	3.98	×5/8	26.4	5.88	1.77	1.51	10.5	0.526	14.1	4.91	1.29	0.554	0.997
×9/16	1 1/16	25.7	7.61	49.4	8.94	2.55	2.48	16.2	1.24	0.823	3.20	3.99	×9/16	24.1	5.34	1.78	1.49	9.52	0.476	12.8	4.45	1.30	0.556	0.959
×72 ×7/16	15/16	20.2	5.99	39.3	7.06	2.55	2.40	12.9	1.15	0.396	1.55	4.01	×72 ×7/16	19.3	4.79	1.80	1.40	8.52	0.425	10.2	3.98	1.30	0.559	0.850
1 Budiet	11/2	27.4	11.1	60.7	14.0	2.51	2.02	24.2	2.45	2.69	12.0	2.75	10-4-1	11.6	2.04	1.02	1.04	7 79	0.004	7.02	2.40	0.044	0.247	1.00
×7/8	13/8	33.1	9.79	62.6	12.5	2.53	2.99	24.5	2.45	2.51	8.89	3.78	L0X4X1 × ⁷ /8	10.5	3.54	1.03	0.997	6.77	0.694	6.97	3.46	0.846	0.247	1.00
× ³ /4	11/4	28.7	8.49	55.0	10.9	2.55	2.94	18.9	2.34	1.61	5.75	3.80	× ³ /4	9.37	3.07	1.05	0.949	5.82	0.531	6.14	2.65	0.850	0.257	1.00
× ⁵ /8	11/8	24.2	7.16	47.0	9.20	2.56	2.89	16.1	2.27	0.955	3.42	3.83	×5/8	8.11	2.62	1.06	0.902	4.86	0.448	5.24	2.24	0.856	0.262	0.997
×9/16	11/16	21.9	6.49	42.9	8.34	2.57	2.86	14.6	2.23	0.704	2.53	3.84	×9/16	7.44	2.38	1.07	0.878	4.39	0.406	4.78	2.03	0.859	0.264	0.959
×1/2 ×7/16	15/16	19.6	5.80	38.0	6.59	2.58	2.84	13.1	2.20	0.501	1.80	3.80	×1/2	6.75	2.15	1.08	0.854	3.91	0.363	4.32	1.82	0.863	0.266	0.912
17.4.30	41/-	00.0	7.74	07.0	0.00	2.00	2.50	11.0	1.04	1.47	2.07	0.01	17.4.3	0.00	1.50	1.00	0.023	5.00	0.013	5.04	0.57	0.007	0.200	0.000
L/×4×'/4	11/4	20.2	6.50	37.8	8.39	2.21	2.50	14.8	1.84	0.868	3.97	3.31	L/×4×3/4	9.00	3.01	1.08	1.00	5.60	0.553	5.63	2.5/	0.855	0.324	1.00
×1/2	1	17.9	5.26	26.6	5.79	2.25	2.40	10.2	1.74	0.456	1.25	3.37	×1/2	6.48	2.10	1.11	0.910	3.77	0.376	3.94	1.76	0.866	0.325	0.965
×7/16	15/16	15.7	4.63	23.6	5.11	2.26	2.38	9.03	1.71	0.310	0.851	3.38	×7/16	5.79	1.86	1.12	0.886	3.31	0.331	3.50	1.55	0.869	0.337	0.912
×3/8	7/8	13.6	4.00	20.5	4.42	2.27	2.35	7.81	1.67	0.198	0.544	3.40	×3/8	5.06	1.61	1.12	0.861	2.84	0.286	3.04	1.34	0.873	0.339	0.840
L6×6×1	11/2	37.4	11.0	35.4	8.55	1.79	1.86	15.4	0.917	3.68	9.24	3.18	L6×6×1	35.4	8.55	1.79	1.86	15.4	0.917	14.9	5.70	1.17	1.00	1.00
×7/8	13/8	33.1	9.75	31.9	7.61	1.81	1.81	13.7	0.813	2.51	6.41	3.21	×7/8	31.9	7.61	1.81	1.81	13.7	0.813	13.3	5.18	1.17	1.00	1.00
×3/4	11/4	28.7	8.46	28.1	6.64	1.82	1.77	11.9	0.705	1.61	4.17	3.24	×3/4	28.1	6.64	1.82	1.77	11.9	0.705	11.6	4.63	1.17	1.00	1.00
×78 ×9/16	178	24.2	7.13	24.1	5.04	1.85	1.72	9.18	0.539	0.955	2.50	3.20	×% ×9/~	24.1	5.64 5.12	1.84	1.72	9.18	0.539	9.81	4.04	1.17	1.00	1.00
×1/2	1	19.6	5.77	19.9	4.59	1.86	1.67	8.22	0.481	0.501	1.32	3.31	×1/2	19.9	4.59	1.86	1.67	8.22	0.481	8.06	3.40	1.18	1.00	1.00
×7/16	15/16	17.2	5.08	17.6	4.06	1.86	1.65	7.25	0.423	0.340	0.899	3.32	×7/16	17.6	4.06	1.86	1.65	7.25	0.423	7.05	3.05	1.18	1.00	0.973
×3/8	7/8	14.9	4.38	15.4	3.51	1.87	1.62	6.27	0.365	0.218	0.575	3.34	×3/8	15.4	3.51	1.87	1.62	6.27	0.365	6.21	2.69	1.19	1.00	0.912
×9/16	"716	12.4	3.6/	13.0	2.95	1.88	1.60	5.26	0.306	0.129	0.338	3.35	×%16	13.0	2.95	1.88	1.60	5.26	0.306	5.20	2.30	1.19	1.00	0.826
Note: For workable	gages, I	refer to T	able 1-7/	A. For con	npactnes	s criteria.	refer to Ta	able 1-7B.			1		Note: For workable	aages, ref	fer to Tabl	e 1-7A, For	compactr	i ness criteri	a, refer to	Table 1-78	1	1	1	I

- **3.** Select L8 × 4 × $\frac{1}{2}$ because of its lighter weight; also, it would have greater block shear capacity than the L6 × 6 × $\frac{1}{2}$ (same weight).
- 4. The minimum slenderness ratio calculated = 0.8 in.; r_{zz} for L8 × 4 × $\frac{1}{2}$ = 0.863 in. > 0.8 in. OK.
- 5. Check block shear capacity. The spacing of the bolts will have to be assumed.

Mode 1 Block Shear:

Shear plane:

$$\begin{split} A_{gv} &= \left(2 \text{ shear planes}\right) \left(10.5\right) (0.5) = 10.5 \text{ in.}^2\\ A_{nv} &= A_{gv} - \Sigma A_{\text{holes}}\\ &= 10.5 - \left(2 \text{ shear planes}\right) \left(3.5 \text{ holes}\right) \left(\frac{3}{4} + \frac{1}{8}\right) (0.5 \text{ in.}) = 7.43 \text{ in.}^2\\ \text{Tension plane:}\\ A_{gt} &= \left(3 \text{ in.}\right) \left(0.5 \text{ in.}\right) = 1.5 \text{ in.}^2\\ A_{nt} &= A_{gt} - \Sigma A_{\text{holes}}\\ &= 1.5 - \left(2\right) \left(0.5 \text{ hole}\right) \left(\frac{3}{4} + \frac{1}{8}\right) \left(0.5 \text{ in.}\right) (0.5 \text{ in.}) = 1.06 \text{ in.}^2 \end{split}$$

The design tension strength for the block shear failure mode is

$$\begin{split} \phi P_n &= \phi \big(0.60 F_u A_{nv} + U_{bs} F_u A_{nt} \big) \le \phi \big(0.60 F_y A_{gv} + U_{bs} F_u A_{nt} \big) \\ &= 0.75 \Big[\big(0.60 \big) \big(58 \big) \big(7.43 \big) + \big(1.0 \big) \big(58 \big) \big(1.06 \big) \Big] \\ &\le 0.75 \Big[\big(0.60 \big) \big(36 \big) \big(10.5 \big) + \big(1.0 \big) \big(58 \big) \big(1.06 \big) \Big] \\ &= 240 \text{ kips } \le 216 \text{ kips} \end{split}$$

Therefore, $\phi P_n = 216$ kips (mode #1 block shear capacity) > $T_u = 154$ kips OK.

Mode 2 Block Shear:

Shear plane:

$$\begin{split} A_{gv} &= (10.5 \text{ in.})(0.5 \text{ in.}) = 5.25 \text{ in.}^2\\ A_{nv} &= A_{gv} - \sum A_{\text{holes}}\\ &= 5.25 - (3.5 \text{ holes}) \left(\frac{3}{4} + \frac{1}{8}\right) (0.5 \text{ in.}) = 3.72 \text{ in.}^2 \end{split}$$

Tension plane:

$$\begin{aligned} A_{gt} &= (3 \text{ in.} + 2.5 \text{ in.})(0.5 \text{ in.}) = 2.75 \text{ in.}^2\\ A_{nt} &= A_{gt} - \Sigma A_{\text{holes}}\\ &= 2.75 - (1.5 \text{ holes}) \left(\frac{3}{4} + \frac{1}{8}\right) (0.5 \text{ in.}) = 2.09 \text{ in.}^2 \end{aligned}$$

The design tension strength for the block shear failure mode is

$$\begin{split} \phi P_n &= \phi \big(0.60 F_u A_{nv} + U_{bs} F_u A_{nt} \big) \le \phi \big(0.60 F_y A_{gv} + U_{bs} F_u A_{nt} \big) \\ &= 0.75 \Big[\big(0.60 \big) \big(58 \big) \big(3.72 \big) + \big(1.0 \big) \big(58 \big) \big(2.09 \big) \Big] \\ &\le 0.75 \Big[\big(0.60 \big) \big(36 \big) \big(5.25 \big) + \big(1.0 \big) \big(58 \big) \big(2.09 \big) \Big] \\ &= 188 \text{ kips } \le 175 \text{ kips} \end{split}$$

Therefore, $\phi P_n = 175$ kips (mode #2 block shear capacity) > $T_u = 154$ kips OK. The block shear capacity is the smaller of the block shear capacities for block shear failure modes 1 and 2. Therefore, $\phi P_n = 175$ kips.

Select an $L8 \times 4 \times \frac{1}{2}$ with two lines of four $\frac{3}{4}$ -in.-diameter bolts.

The Hashemite University

Faculty of Engineering

Department of Civil Engineering

Analysis and design of axially loaded compression members Dr. Ra'ed Al-Mazaidh

INTRODUCTION

Structural steel elements are sometimes subjected to concentric compressive axial loads without any accompanying bending moment; Some examples include:

- Truss web members, compression chords of some trusses
- Struts
- compression members in concentric and eccentric braced frames such as X-braces and Chevron braces, and some columns in buildings

Struts, tie rods, and columns at an airport entrance canopy

Dr. Ra'ed Al-Mazaidh

The common shapes used for columns are:

- Wide flange sections (i.e., I-shapes)
- Round and square hollow structural sections (HSS).
- o Built-up sections (e.g., box sections) are used as columns in high-rise buildings

Failure modes of compression members

□ Flexural buckling:

- In this failure mode, the member bends globally between lateral supports and buckles about its weaker axis (i.e., the axis with the larger slenderness ratio) because of the presence of the axial compression load.
- This limit state is usually applicable to compression members comprised of non-slender elements, and the failure mode can be either elastic buckling or inelastic buckling depending on the slenderness ratio of the member. This limit state is covered in AISC Specification Section E3.

□ Torsional buckling

It involves twisting about the longitudinal axis of the member without any lateral displacement.
 Examples of sections susceptible to torsional buckling include cruciform shapes. See AISC Specification E4.

□ Lateral-torsional or flexural-torsional buckling:

- It is a combination of the above two failure modes.
- It is common in wide flange sections.
- It is caused by the flexural compression stresses on the compression flange of a beam or column with large unbraced lengths.
- Torsional and flexural buckling limit state applies to singly symmetric and non-symmetric members and some doubly symmetric members such as cruciform-shaped columns with non-slender elements.
- The flexural and torsional buckling limit state for members with non-slender elements is covered in AISC Specification Section E4.

□ Local buckling

 It occurs where the component elements of the structural member such as the web and the flanges are slender and can buckle locally (i.e., web local buckling and flange local buckling) in contrast to the global buckling that occurs in the first three failure modes discussed previously (see AISC Specification Section E7).

EULER CRITICAL BUCKLING LOAD

Therefore,

Summing moments about point C in Figureyields
$$-Py + M = 0$$
 $M = Py$(1)

Substituting equation (2) + into equation (1) and rearranging yields the second order differential equation

$$\frac{d^2y}{dx^2} + \frac{Py}{EI} = 0 \quad \dots \dots (3)$$

The solution to equation (3) is as follows

$$y = A_1 \sin\left(\sqrt{\frac{P}{EI}}x\right) + A_2 \cos\left(\sqrt{\frac{P}{EI}}x\right)$$
(4)

(b) Free body diagram

р

(a) Pin ended column subject to axial compression load

The boundary conditions for the pin-ended column are as follows:

At x = 0, the deflection, y = 0

At x = L, the deflection, y = 0

Substituting the first boundary condition into equation (4) means that the constant, $A_2 = 0$, which reduces equation (4) to

$$y = A_1 \sin\left(\sqrt{\frac{P}{EI}}x\right)$$
(5)

Substituting the second boundary condition into equation (5) leads to the following equation:

 $0 = A_1 \sin\!\left(\sqrt{\frac{P}{EI}}L\right)$

The non-trivial solution to the preceding equation is obtained from

$$\sin\left(\sqrt{\frac{P}{EI}}L\right) = 0, \text{ which yields the following solution:}$$
$$\left(\sqrt{\frac{P}{EI}}L\right) = n\pi,$$

Where, n = the number of deflection waves in the column between lateral supports = 1, 2, 3...

Therefore, the solution is $P = \frac{n^2 \pi^2 EI}{L^2}$

The smallest value of n (i.e., n = 1), which indicates a single half-sine wave between the column lateral supports, gives the Euler critical load of the column, P_e ,

$$P_e = \frac{\pi^2 E I}{L^2}$$

and,

Where,

- P_e = Euler critical buckling load, lb.,
- $E = Modulus of elasticity (for steel, <math>E = 29 \times 10^6 psi)$,
- $I = Moment of inertia, in.^4, and$
- L = Length of the column between lateral supports or brace points, in.

c. column capacity curve

$$P_e = \frac{\pi^2 EI}{L^2}$$

$$I = Ar^{2}, \qquad P_{e} = \frac{\pi^{2} E A r^{2}}{L^{2}}$$
$$\sigma = \frac{P}{A}$$

$$F_e = \frac{P_e}{A} = \frac{\pi^2 E}{\left(L/r\right)^2}$$
 where
 $F_e = E$
 $A = C$

$$F_e$$
 = Euler elastic critical buckling stress, psi,

$$A = Cross-sectional area, in.^2$$
, and

r =Radius of gyration, in

This equation assumes that the ends of the column are pinned. For other end conditions, an adjustment or effective length factor, K, is applied to the column length

$$P_{e} = \frac{\pi^{2} EI}{\left(KL\right)^{2}} = \frac{\pi^{2} EI}{\left(L_{c}\right)^{2}}$$

$$\frac{KL}{r} = \frac{L_{c}}{r} \leq 200 \text{ for compression members.}$$

$$F_{e} = \frac{\pi^{2} E}{\left(KL/r\right)^{2}} = \frac{\pi^{2} E}{\left(L_{c}/r\right)^{2}}$$
Dr. Ra'ed Al-Mazaidh

	(a)	(b)	(c)	(d)	(e)	(f)
Buckling modes					0	
Theoretical K value	0.50	0.70	1.0	1.0	2.0	2.0
Recommended design K when ideal conditions are approximated	0.65	0.80	1.0	1.2	2.1	2.4
End condition legend		Rotatio Rotatio Rotatio Rotatio	n fixed, tra n free, tra n fixed, tr n free, tra	anslation f nslation fiz anslation f nslation fro	ixed ked iree ee	

Adapted from AISCM Table C-A-7.1 [1]. Copyright © American Institute of Steel Construction. Reprinted with permission, All rights reserved.

Effective length factors, K, for idealized support conditions

COMPRESSION MEMBER STRENGTH

The AISC Specification defines the design compressive strength of a column for the flexural buckling limit state as follows : The nominal axial compression strength is given as:

$$P_n = F_{cr}A_g$$

Where,

 $P_n = \text{Nominal compressive strength} \left(= F_{cr} A_g\right), \text{kips},$ $F_{cr} = \text{Flexural buckling stress (see below), ksi}$ $A_g = \text{Gross cross-sectional area of the column, in.}^2$ For the LRFD method, the design axial compressive strength is given as

$$\phi_c P_n = \phi_c F_{cr} A_g$$

 ϕ_c = strength reduction factor for compression = 0.90,

The slenderness ratio at which the behavior of the compression member changes from inelastic buckling to elastic buckling is

 $\frac{KL}{r} = \frac{L_c}{r} = 4.71 \sqrt{\frac{E}{F_y}}$

- Therefore, the member buckles *elastically* when $\frac{KL}{r} = \frac{L_c}{r} > 4.71 \sqrt{\frac{E}{F_y}}$, and The column buckles *inelastically* when $\frac{KL}{r} = \frac{L_c}{r} \le 4.71 \sqrt{\frac{E}{F_y}}$ 1 2

The AISC critical flexural buckling stress, F_{cr} , is determined as follows:

$$\begin{array}{ll} \mbox{When } \frac{KL}{r} = \frac{L_c}{r} \leq 4.71 \sqrt{\frac{E}{F_y}} & \left(\mbox{or when } F_y \leq 2.25F_e \mbox{ or } F_e \geq 0.44F_y \right), \\ & F_{cr} = \left[0.658^{\frac{F_y}{F_e}} \right] F_y & \mbox{AlSC equation E3-2} \\ \mbox{When } \frac{KL}{r} = \frac{L_c}{r} > 4.71 \sqrt{\frac{E}{F_y}} & \left(\mbox{or when } F_y > 2.25F_e \mbox{ or } F_e < 0.44F_y \right), \\ & F_{cr} = 0.877F_e & \mbox{AlSC equation E3-3} \end{array}$$

$$F_e = \frac{P_e}{A} = \frac{\pi^2 E}{\left(L/r\right)^2}$$

LOCAL BUCKLING OF COMPRESSION MEMBERS

- Local buckling due to the slenderness of the component elements a compression member leads to a reduction in the strength of the member and prevents it from reaching its full axial compression capacity
- > To avoid or prevent local buckling, the AISC specification prescribes limits to the width-to-thickness ratios (λ_p) of the plate elements that make up the compression member. These limits are given in section B4 of the AISC Specification.
- In Section B4 of the AISC Specification, compression members subject to axial compression can be classified with regard to local stability as follows (see Table 5-1 or AISCM Table B4.1a):
 - Nonslender elements, or
 - Slender element sections.

١	W	idth-to-Thic Member	T kness rs Subj	ABLE B4.1a Ratios: Com ect to Axial	pression Elements Compression
	Case	Description of Element	Width-to- Thickness Ratio	Limiting Width-to-Thickness Ratio λ, (nonslender/slender)	Examples
	1	Flanges of rolled I-shaped sections, plates projecting from rolled I-shaped sections, outstanding legs of pairs of angles connected with con- tinuous contact, flanges of channels, and flanges of tees	b/t	$0.56\sqrt{\frac{E}{F_y}}$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ $
ffened Elements	2	Flanges of built-up I-shaped sections and plates or angle legs projecting from built-up I-shaped sections	b/t	$0.64\sqrt{\frac{k_c E}{F_y}}$	
Unsti	3	Legs of single angles, legs of double angles with separators, and all other unstiffened elements	b/t	$0.45\sqrt{\frac{E}{F_y}}$	$\frac{b}{1} = \frac{1}{1}t$
	4	Stems of tees	d/t	$0.75\sqrt{\frac{E}{F_{y}}}$	
	5	Webs of doubly symmetric rolled and built-up I-shaped sec- tions and channels	h/t _w	$1.49\sqrt{\frac{E}{F_{\gamma}}}$	$-t_w h$ $-t_w h$ $-t_w h$
	6	Walls of rectangular HSS	b/t	$1.40\sqrt{\frac{E}{F_{\gamma}}}$	
ened Elements	7	Flange cover plates and diaphragm plates between lines of fasteners or welds	b/t	$1.40\sqrt{\frac{E}{F_y}}$	
£ito	8	All other stiffened elements	b/t	$1.49\sqrt{\frac{E}{F_y}}$	
	9	Round HSS	D/t	0.11 <u></u> <i>E</i> _y	
lal k	e=	$4/\sqrt{h/t_w}$, but shall not	be taken less	than 0.35 nor greater tha	n 0.76 for calculation purposes.

ANALYSIS PROCEDURES FOR COMPRESSION MEMBERS

Method 1: Using slenderness ratios and the AISC equations

The AISC critical flexural buckling stress, F_{cr} , is determined as follows:

When
$$\frac{KL}{r} = \frac{L_c}{r} \le 4.71 \sqrt{\frac{E}{F_y}}$$
 (or when $F_y \le 2.25F_e$ or $F_e \ge 0.44F_y$),
 $F_{cr} = \begin{bmatrix} 0.658^{\frac{F_y}{F_e}} \end{bmatrix} F_y$ AISC equation E3-2 using the larger of $\frac{L_{cx}}{r_x}$ or $\frac{K_x L_x}{r_x}$ and $\frac{L_{cy}}{r_y}$ or $\frac{K_y L_y}{r_y}$.
When $\frac{KL}{r} = \frac{L_c}{r} > 4.71 \sqrt{\frac{E}{F_y}}$ (or when $F_y > 2.25F_e$ or $F_e < 0.44F_y$),
 $F_{cr} = 0.877F_e$ AISC equation E3-3

 $\phi P_n = \phi F_{cr} A_g$ where A_g is the gross cross-sectional area of the compression member. Method 2: Using slenderness ratios and AISC Available Critical Stress Tables (AISCM, Table (4-22)

This table gives the critical buckling stress, $\phi_c F_{cr}$ (for LRFD) and as a function of $\frac{L_c}{r}$ or $\frac{KL}{r}$ for different values of F_y (35 ksi, 36 ksi, 46 ksi 50 ksi, 65 ksi, and 70 ksi). For a given $\frac{L_c}{r}$ or $\frac{KL}{r}$, determine $\phi_c F_{cr}$ (for LRFD) from the table using the larger of $\frac{L_{cx}}{r_x}$ or $\frac{K_x L_x}{r_x}$ and $\frac{L_{cy}}{r_y}$ or $\frac{K_y L_y}{r_y}$. (e.g., when $\frac{L_c}{r} = \frac{KL}{r} = 97$ and $F_y = 36$ ksi, AISCM Table (4-22) gives $\phi_c F_{cr} = 19.7$

Knowing the critical buckling stress, the axial design capacity for the LRFD method can be calculated from the equation

 $\phi P_n = \phi F_{cr} A_g$

where A_g is the gross cross-sectional area of the compression member.

Table 4-22 (continued) Available Critical Stress for Compression Members

	<i>F</i> _y = 35 I	ksi		<i>F_y</i> = 36 l	ksi		$F_y = 42$	ksi		<i>F</i> _y = 46 l	ksi		$F_y = 50$ l	ksi
NI.	F_{cr}/Ω_{c}	ф _cF_{cr}	vi –	F_{cr}/Ω_{c}	ф _с <i>F</i> _{cr}	VI.	F_{cr}/Ω_{c}	ф _cF_{cr}	N	F_{cr}/Ω_{c}	ф <i>сFсг</i>	VI	F_{cr}/Ω_{c}	¢ _c F _{cr}
$\frac{\pi L}{r}$	ksi	ksi	$\frac{\pi}{r}$	ksi	ksi	$\frac{\pi L}{r}$	ksi	ksi	$\frac{nL}{r}$	ksi	ksi	$\frac{\pi L}{r}$	ksi	ksi
	ASD	LRFD		ASD	LRFD		ASD	LRFD		ASD	LRFD		ASD	LRFD
81	15.0	22.5	81	15.3	22.9	81	16.8	25.3	81	17.7	26.6	81	18.5	27.9
82	14.9	22.3	82	15.1	22.7	82	16.6	25.0	82	17.5	26.3	82	18.3	27.5
83	14.7	22.1	83	15.0	22.5	83	16.5	24.8	83	17.3	26.0	83	18.1	27.2
84	14.6	22.0	84	14.9	22.3	84	16.3	24.5	84	17.1	25.8	84	17.9	26.9
85	14.5	21.8	85	14.7	22.1	85	16.1	24.3	85	16.9	25.5	85	17.7	26.5
86	14.4	21.6	86	14.6	22.0	86	16.0	24.0	86	16.7	25.2	86	17.4	26.2
87	14.2	21.4	87	14.5	21.8	87	15.8	23.7	87	16.6	24.9	87	17.2	25.9
88	14.1	21.2	88	14.3	21.6	88	15.6	23.5	88	16.4	24.6	88	17.0	25.5
89	14.0	21.0	89	14.2	21.4	89	15.5	23.2	89	16.2	24.3	89	16.8	25.2
90	13.8	20.8	90	14.1	21.2	90	15.3	23.0	90	16.0	24.0	90	16.6	24.9
91	13.7	20.6	91	13.9	21.0	91	15.1	22.7	91	15.8	23.7	91	16.3	24.6
92	13.6	20.4	92	13.8	20.8	92	15.0	22.5	92	15.6	23.4	92	16.1	24.2
93	13.5	20.2	93	13.7	20.5	93	14.8	22.2	93	15.4	23.1	93	15.9	23.9
94	13.3	20.0	94	13.5	20.3	94	14.6	22.0	94	15.2	22.8	94	15.7	23.6
95	13.2	19.9	95	13.4	20.1	95	14.4	21.7	95	15.0	22.6	95	15.5	23.3
96	13.1	19.7	96	13.3	19.9	96	14.3	21.5	96	14.8	22.3	96	15.3	22.9
97	13.0	19.5	97	13.1	19.7	97	14.1	21.2	97	14.6	22.0	97	15.0	22.6

Method 3: AISCM Available Strength in Axial Compression Tables (*AISCM* Tables 4-1 through 4-12) – also known as the column load capacity tables.

These column load capacity tables give the design strength, $\phi_c P_n$ (for the LRFD method)

for selected shapes at various effective lengths,

 $L_c \text{ or } KL$, and for selected values of the yield strength, F_y . Enter the appropriate "Available Strength in Axial Compression" table (i.e., the column load capacity table) with the value of $L_c \text{ or } KL$, using the larger of

$$\frac{K_x L_x}{\left(\frac{r_x}{r_y}\right)} \text{ and } K_y L_y \text{ (i.e., the larger of } \frac{L_{cx}}{\left(\frac{r_x}{r_y}\right)} \text{ and } L_{cy})$$

Fy :	= 50 ks	si 🎽	Av Axia	Tab vaila al C	le 4 abl om W	-1 (c e Si ipre -Sha	ontii trer ssi	nued ngtł ion,) n in kip	os		W1	4
Sh	ape						W1	4 ×					
lb	/ft	42	6 ^h	39	8 ^h	37	Oh	34	2 ^h	31	1 ^h	28	3 ^h
Do	elan	P_{Π}/Ω_{C}	ф <i>сРп</i>	P_{Π}/Ω_{c}	ф сР п	Ρ η/Ω _c	ф <i>сРп</i>	Ρ η/Ω _c	ф <i>сР</i> п	P_n/Ω_c	ф <i>сРп</i>	Ρ η/Ω _c	ф сР п
Dea	aigii	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
$\overline{\mathbf{\Lambda}}$	0	3740	5620	3500	5260	3260	4900	3020	4540	2740	4110	2490	3750
	11	3500	5260	3270	4920	3040	4570	2820	4230	2550	3830	2320	3480
5	12	3450	5190	3230	4850	3000	4510	2780	4180	2510	3770	2290	3440
	13	3410	5120	3180	4780	2960	4450	2740	4120	2470	3720	2250	3380
yra	14	3350	5040	3130	4710	2910	4380	2700	4050	2430	3660	2210	3330
6	15	3300	4960	3080	4630	2870	4310	2650	3980	2390	3600	2180	3270
IS C	16	3240	4870	3030	4550	2810	4230	2600	3910	2350	3530	2140	3210
	17	3180	4790	2970	4470	2760	4150	2550	3840	2300	3460	2090	3150
	18	3120	4690	2920	4380	2710	4070	2500	3760	2260	3390	2050	3080
Spa	19	3060	4600	2850	4290	2650	3980	2450	3680	2210	3320	2000	3010
2	20	2990	4500	2790	4200	2590	3890	2390	3000	2160	3240	1960	2940
5	22	2860	4290	2660	4000	2470	3710	2280	3420	2050	3080	1860	2800
ads	24	2/10	4080	2530	3800	2340	3520	2160	3240	1940	2920	1/60	2640
P	20	2000	3630	2390	3380	2080	3320	2040	2870	1710	2730	1550	2490
	30	2260	3400	2100	3160	1940	2920	1790	2680	1600	2400	1450	2170
, v	20	2110	2170	1060	2050	1010	2720	1660	2500	1400	2020	1240	2020
	34	1960	2950	1820	2950	1670	2520	1540	2310	1370	2230	1240	1860
z,	36	1810	2730	1680	2530	1540	2320	1420	2130	1260	1900	1140	1710
n	38	1670	2510	1550	2320	1420	2130	1300	1950	1160	1740	1040	1560
2	40	1530	2300	1410	2130	1300	1950	1180	1780	1050	1580	945	1420
A	42	1390	2090	1290	1930	1180	1770	1070	1610	954	1430	857	1290
acii	44	1270	1910	1170	1760	1070	1610	979	1470	869	1310	781	1170
	46	1160	1750	1070	1610	980	1470	896	1350	795	1200	715	1070
	48	1070	1600	985	1480	900	1350	823	1240	730	1100	656	986
	50	983	1480	907	1360	830	1250	758	1140	673	1010	605	909
EXAMPLE 1

Using the LRFD method, calculate the design compressive strength of a W12 \times 65 column, 20 ft. long, and pinned at both ends. Use ASTM A992 Grade 50 steel.

Solution

Method 1: Using slenderness ratios and the AISC equations *Solution*

 $L_x = L_y = 20$ ft.

K = 1.0 Both ends are pinned

 $F_y = 50 \text{ ksi}$ Table 2-4

For W12
$$\times$$
 65, $A_g = 19.1$ in.² Table 1-1 AISCM

Compute the slenderness ratio about the *x*-*x* and *y*-*y* axes and use the larger of the two values

(i.e., the larger of
$$\frac{KL_x}{r_x}$$
 or $\frac{KL_y}{r_y}$). Alternatively, since $L_x = L_y$ and therefore $KL_x = KL_y$, the

smaller radius of gyration will control.

For W12 \times 65 from *AISCM*, part 1, the radius of gyration about both orthogonal axes are as follows:

 $r_x = 5.28$ in., and

	(a)	(b)	(c)	(d)	(e)	(f)
Buckling modes						+ II
Theoretical K value	0.50	0.70	1.0	1.0	2.0	2.0
Recommended design K when ideal conditions are approximated	0.65	0.80	1.0	1.2	2.1	2.4
End condition legend		Rotatio Rotatio Rotatio Rotatio	n fixed, tra n free, tra n fixed, tr n fixed, tra	anslation f nslation fiz anslation f nslation fr	ixed ked iree ee	

Adapted from AISCM Table C-A-7.1 [1]. Copyright O American Institute of Steel Construction. Reprinted with permission, All rights reserved.

FIGURE 5-4 Effective length factors, *K*, for idealized support conditions

	Table 2-4 Applicable ASTM Specifications														
	Applicable ASTM Specifications for Various Structural Shapes														
Applicable AST W Specifications for Various Structural Shapes Fy Fu Applicable Shape Series Vgul T USS															
			F	F.				Applic	able	Shape	Series	5			
Steel	A	ASTM	Yield Stress ^a (ksi)	Tensile Stress ^a (ksi)	w	м	s	нр	C	MC	т	lect.	HSS	ipe	
тур	De	signatio	(KSI)	(RSI)		M	3	m	C	me	L	~	ž	-	
	A30 30 38-80 A53 Gr. B 35 60 Gr. B 42 58														
	AS	3 Gr. B	35	60											
		Gr. B	42	58											
	Carbon $A500$ 460 58 62 62 62 62 62 62 62 63														
Carbon	Carbon $Gr.C = \frac{46}{50} \frac{62}{62}$														
Gr. A 36 58 62															
	A501 Gr. A 36 58 Gr. B 50 70 Gr. B 70 G														
	AS01 Gr. B 50 70 Image: Constraint of the state of the st														
	A529 ^c Gr. 50 50 65–100 Gr. 55 55 70–100 A709 36 36 58–80 ^b														
	A529° Gr. 55 55 70–100 A709 36 36 58–80° 26 26 25 58														
		36	36-52	58											
	A1043**	50	50-65	65											
	A1085	Gr.A	50	65											
		Gr.42	42	60						1					
		Gr.50	50	65											
	A572	Gr.55	55	70											
		Gr. 60°	60	75											
		Gr. 65°	65	80											
	. crof	Gr. la ^k , lb & I	50 ^s	70 ^s											
High-	A618 ¹	Gr. III	50	65											
Strength		50	50	65	t i i										
Low-	A709	50S	50-65	65											
Alloy		50W	50	70											
		50	50 ^h	65 ^h											
	A913	60	60	75											
		65	65	80											
		70	70	90											
	A	4992	50 ¹	65 ¹											
	A1065 ^K	Gr. 50 ⁹	50	60											
 = Preferred material specification. = Other applicable material specification, the availability of which should be confirmed prior to specification. = Material specification does not apply. 															
Footnotes	on faci	ng page.													

	in. ²	i	in.	i	n.	in.	in.		in.		in.	in.	in.	in.	in.
1															
W12×336 ^h	98.9	16.8	16 ⁷ /8	1.78	1 ³ /4	7/ ₈	13.4	13 ³ /8	2.96	2 ¹⁵ /16	3.55	37/8	1 ¹¹ /16	9 ¹ /8	5 ¹ /2
$ imes 305^{h}$	89.5	16.3	16 ³ /8	1.63	1 ⁵ /8	¹³ /16	13.2	13 ¹ /4	2.71	2 ¹¹ /16	3.30	3 ⁵ /8	1 ⁵ /8		
×279 ^h	81.9	15.9	15 ⁷ /8	1.53	11/2	³ /4	13.1	13 ¹ /8	2.47	2 ¹ /2	3.07	3 ³ /8	1 ⁵ /8		
×252 ^h	74.1	15.4	15 ³ /8	1.40	1 ³ /8	¹¹ /16	13.0	13	2.25	2 ¹ /4	2.85	31/8	1 ¹ /2		
×230 ^h	67.7	15.1	15	1.29	1 ⁵ /16	¹¹ /16	12.9	12 ⁷ /8	2.07	2 ¹ /16	2.67	2 ¹⁵ /16	1 ¹ /2		
×210	61.8	14.7	14 ³ /4	1.18	1 ³ /16	5/8	12.8	12 ³ /4	1.90	17/8	2.50	2 ¹³ /16	1 7/16		
×190	56.0	14.4	14 ³ /8	1.06	1 ¹ /16	⁹ /16	12.7	12 ⁵ /8	1.74	1 ³ /4	2.33	2 ⁵ /8	1 ³ /8		
×170	50.0	14.0	14	0.960	¹⁵ /16	1/2	12.6	12 ⁵ /8	1.56	1 ⁹ /16	2.16	2 ⁷ /16	1 ⁵ /16		
×152	44.7	13.7	13 ³ /4	0.870	7/8	⁷ /16	12.5	12 ¹ /2	1.40	1 ³ /8	2.00	2⁵/ 16	1 ¹ /4		
×136	39.9	13.4	13 ³ /8	0.790	¹³ /16	⁷ /16	12.4	12 ³ /8	1.25	1 ¹ /4	1.85	2 ¹ /8	1 ¹ /4		
×120	35.2	13.1	13 ¹ /8	0.710	¹¹ /16	³ /8	12.3	12 ³ /8	1.11	1 ¹ /8	1.70	2	1 ³ /16		
×106	31.2	12.9	12 ⁷ /8	0.610	⁵ /8	⁵ /16	12.2	12 ¹ /4	0.990	1	1.59	17/8	1 ¹ /8		
×96	28.2	12.7	12 ³ /4	0.550	⁹ /16	⁵ /16	12.2	12 ¹ /8	0.900	7/8	1.50	1 ¹³ /16	1 ¹ /8		
×87	25.6	12.5	12 ¹ /2	0.515	1/2	1/4	12.1	12 ¹ /8	0.810	¹³ /16	1.41	1 ¹¹ /16	1 ¹ /16		
×79	23.2	12.4	12 ³ /8	0.470	1/2	1/4	12.1	12 ¹ /8	0.735	³ /4	1.33	1 ⁵ /8	1 ¹ /16		
×72	21.1	12.3	12 ¹ /4	0.430	⁷ /16	1/4	12.0	12	0.670	¹¹ /16	1.27	1 ⁹ /16	1 ¹ /16		
×65 ^f	19.1	12.1	12 ¹ /8	0.390	³ /8	³ /16	12.0	12	0.605	⁵ /8	1.20	1 ¹ /2	1	V	V

Gage

	Table 1-1 (continued) W-Shapes Properties W14-W12													
Nom- inal	Compact Section Axis X-X Axis Y-Y Criteria rts ho											Tors Prop	rsional perties	
Wt.	b _f	h	1	S	r			J	Cw					
lb/ft	$\frac{b_f}{2t_f}$	$\frac{n}{t_w}$	$in.^4$ in. ³ in. in. ³ in. ⁴ in. ³ in. in. ³ in.									in.	in.4	in.6
336	2.26	5.47	4060	483	6.41	603	1190	177	3.47	274	4.13	13.8	243	57000
305	2.45	5.98	3550	435	6.29	537	1050	159	3.42	244	4.05	13.6	185	48600
279	2.66	6.35	3110	393	6.16	481	937	143	3.38	220	4.00	13.4	143	42000
252	2.89	6.96	2720	353	6.06	428	828	127	3.34	196	3.93	13.2	108	35800
230	3.11	7.56	2420	321	5.97	386	742	115	3.31	177	3.87	13.0	83.8	31200
210	3.37	8.23	2140	292	5.89	348	664	104	3.28	159	3.81	12.8	64.7	27200
190	3.65	9.16	1890	263	5.82	311	589	93.0	3.25	143	3.77	12.7	48.8	23600
170	4.03	10.1	1650	235	5.74	275	517	82.3	3.22	126	3.70	12.4	35.6	20100
152	4.46	11.2	1430	209	5.66	243	454	72.8	3.19	111	3.66	12.3	25.8	17200
136	4.96	12.3	1240	186	5.58	214	398	64.2	3.16	98.0	3.61	12.2	18.5	14700
120	5.57	13.7	1070	163	5.51	186	345	56.0	3.13	85.4	3.56	12.0	12.9	12400
106	6.17	15.9	933	145	5.47	164	301	49.3	3.11	75.1	3.52	11.9	9.13	10700
96	6.76	17.7	833	131	5.44	147	270	44.4	3.09	67.5	3.49	11.8	6.85	9410
87	7.48	18.9	740	118	5.38	132	241	39.7	3.07	60.4	3.46	11.7	5.10	8270
79	8.22	20.7	662	107	5.34	119	216	35.8	3.05	54.3	3.43	11.7	3.84	7330
72	8.99	22.6	597	97.4	5.31	108	195	32.4	3.04	49.2	3.41	11.6	2.93	6540
65	9.92	24.9	533	87.	5.28	96.8	174	29.	3.02	44.1	3.38	11.5	2.18	5780

 $\frac{L_{cy}}{r_y} = \frac{KL_y}{r_y} = \frac{(1.0)(20 \text{ ft.})(12)}{3.02} = 79.5 \quad \text{(controls)} \\ < 200 \quad \text{OK.} \\ \frac{L_{cx}}{r_x} = \frac{KL_x}{r_x} = \frac{(1.0)(20 \text{ ft.})(12)}{5.28 \text{ in.}} = 45.5 \quad < 200 \quad \text{OK.} \\ \text{The larger } \frac{L_c}{r} \text{ value governs.}$

Check the slenderness criteria for compression elements: For $W12 \times 65$,

 $b_f = 12$ in. $(b = b_f/2 = 12/2 = 6$ in.) $t_f = 0.605$ in. (Table 1-1 AISCM)

$$t_w = 0.39$$
 in.

$$h = d - 2k_{\text{des}} = 12.1 - (2)(1.20) = 9.7$$
 in.

$$\frac{b}{t} \le 0.56 \sqrt{\frac{E}{F_y}}; \qquad \frac{b}{t} = \frac{6}{0.605} = 9.92 < 0.56 \sqrt{\frac{29,000}{50}} = 13.48 \quad \text{OK. Flange}$$
$$\frac{h}{t_w} \le 1.49 \sqrt{\frac{E}{F_y}}; \qquad \frac{h}{t_w} = \frac{9.7}{0.39} = 24.88 < 1.49 \sqrt{\frac{29,000}{50}} = 35.88 \quad \text{OK. Web}$$

You can also get these values from table 1-1 AISCM......See previous slide

Therefore, the component elements are non-slender. Determine the flexural buckling stress, F_{cr} : The maximum slenderness ratio for inelastic buckling is

$$\begin{split} 4.71\sqrt{\frac{E}{F_y}} &= 4.71\sqrt{\frac{29,000}{50}} = 113.4\\ \text{Since}\,\frac{L_c}{r} &= \frac{KL}{r} = 79.5 < 113.4, \, \text{this indicates that the failure mode is by inelastic flexural} \end{split}$$

$$F_e = \frac{\pi^2 E}{\left(KL/r\right)^2} = \frac{\left(\pi^2\right)(29,000)}{\left(79.5\right)^2} = 45.3 \text{ ksi}$$

the flexural buckling stress is

$$F_{cr} = \left[0.658^{\frac{F_y}{F_e}}\right] F_y = \left[0.658^{\frac{50}{45.3}}\right] (50) = 31.5 \text{ ksi}$$

The nominal axial compressive strength of the column is

 $P_n = F_{cr}A_g = (31.5)(19.1) = 601.6$ kips The design compressive strength of the column is determined: $\phi_c P_n = (0.90)(601.6) = 541$ kips

~ ~ J J

Method 2: Using slenderness ratios and AISC Available Critical Stress Tables (AISCM, Table (4-22)

From AISCM Table (4-22) the critical compression stress, ϕF_{cr} , could be obtained directly by entering the table with $\frac{L_c}{r} = \frac{KL}{r} = 79.5$ and $F_y = 50$ ksi. A value of $\phi_c F_{cr} = 28.4$ ksi is obtained, which confirms the design axial compression strength as $\phi_c F_{cr} A_g = (28.4 \text{ ksi})(19.1 \text{ in.}^2) = 542 \text{ kips.}$

Method 3: AISCM Available Strength in Axial Compression Tables (AISCM Tables 4-1 through 4-12)

WF sections (Table 4-1)

Alternatively, the design axial compression strength could be obtained directly from Table 4-1 of the AISCM (i.e., the column load capacity tables). Enter the table with $L_{cy} = KL_y = 20$ ft. and obtain $\phi_c P_n = 542$ kips.

Fy	= 50 ks	A	r Ava xial	able ailab Col	4-1 ((ble S mpr W-Sh	contii Strer essi apes	nued) ngth ion,	in kips	6	w	/12
Sh	ape			-		W1	2 ×				
b	/ft	9	6	8	7	7	9	7	2	6	Б
Der	lan	P_{B}/Ω_{c}	ф _с Р п	P_n/Ω_c	ф _с Р п	P_n/Ω_c	ф _с Р п	P_n/Ω_c	фс Р п	P_n/Ω_c	$\varphi_c P_n$
Det	- BII	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
	0	844	1270	766	1150	695	1040	632	949	572	859
Wh respect to least radius of gyration, $r_{\mathcal{Y}}$	6 7 8 9 10 11 12 13 14 15 16 17 18 19	811 800 787 772 756 739 720 701 680 659 637 614 591 567	1220 1200 1180 1160 1140 1110 1080 1050 1020 990 957 923 888 852	736 726 714 700 685 670 653 635 616 596 576 555 534 512	1110 1090 1070 1050 1030 1010 981 954 925 896 865 834 802 770	667 657 646 634 620 606 590 574 556 538 520 501 481 462	1000 988 971 953 932 910 887 862 836 809 781 753 723 694	606 597 576 564 550 536 521 505 489 472 455 437 419	911 898 883 866 847 827 806 783 759 735 709 683 656 629	549 540 531 521 510 497 484 470 456 441 426 410 393 377	825 812 798 783 766 747 728 707 685 663 640 616 591
Effective length, KL (ft), w	20 22 24 26 28 30 32 34 36 38 40	543 495 447 356 312 274 243 217 195 176	816 744 672 602 535 469 413 365 326 293 264	490 446 403 360 319 280 246 218 194 174 157	737 671 605 541 480 421 370 327 292 262 237	442 402 362 286 250 220 195 174 156 141	664 604 544 486 430 376 331 293 261 234 212	401 364 328 292 259 226 199 176 157 141 127	602 547 493 440 389 340 299 265 236 212 191	360 327 294 262 231 202 178 157 140 126 114	542 492 442 394 348 304 267 236 211 189 171

Example

Using the LRFD method, determine the design compressive strength for a pin-ended HSS $8 \times 8 \times \frac{3}{8}$ column of Fy= 46 Ksi steel with an unbraced length of 13.5 ft.

Solution

Unbraced column length, L = 13.5 ft.

Pin-ended column : K = 1.0,

 $L_c = KL = (1.0)$ (13.5)=13.5 ft.

For HSS $8 \times 8 \times \frac{3}{8}$ from AISCM Table (1-12) , we find the cross-sectional properties as follows:

$$A_{g} = 10.4 \text{ in.}^{2}$$

$$r_{x} = r_{y} = 3.10 \text{ in.}$$

$$\frac{L_{c}}{r} = \frac{KL}{r} = \frac{(1.0)}{3.10} (13.5 \text{ ft.})(12) = 152.26 < 200 \text{ OK.}$$

Table 1-12 Square HSS HSS16-HSS8 Table 1-12														
Shape	Shape $egin{array}{c c c c c c c c c c c c c c c c c c c $													
	$\frac{t}{t}$ in. lb/ft in. ² in. ⁴ in. ³ in. in. ³ in. in. ⁴ in. ³ ft ² /ft													
									I					
HSS8×8×5/8	0.581	59.32	16.4	10.8	10.8	146	36.5	2.99	44.7	5 ³ /16	244	63.2	2.50	
×1/2	0.465	48.85	13.5	14.2	14.2	125	31.2	3.04	37.5	5 ³ /4	204	52.4	2.53	
× ³ /8	0.349	37.69	10.4	19.9	19.9	100	24.9	3.10	29.4	6 ⁵ /16	160	40.7	2.57	
×5/16	0.291	31.84	8.76	24.5	24.5	85.6	21.4	3.13	25.1	65/8	136	34.5	2.58	
×1/4	0.233	25.82	7.10	31.3	31.3	70.7	17.7	3.15	20.5	6 ⁷ /8	111	28.1	2.60	
×3/16	0.174	19.63	5.37	43.0	43.0	54.4	13.6	3.18	15.7	73/16	84.5	21.3	2.62	
×1/8	0.116	13.26	3.62	66.0	66.0	37.4	9.34	3.21	10.7	71/16	57.3	14.4	2.63	

Check the slenderness criteria for compression elements:

$$\frac{b}{t} \le 1.40 \sqrt{\frac{E}{F_y}}; \quad \text{i.e. } 19.9 \le 1.40 \sqrt{\frac{29,000}{46}} = 35.1 \text{ OK}$$
$$\left(\frac{b}{t} = 19.9 \text{ from } \text{ AISCM Table (1-12)}\right)$$

Therefore, there are no slender elements in this column section. Determine the flammal headling strenge E

Determine the flexural buckling stress, F_{cr} :

The maximum slenderness ratio for inelastic buckling is

$$4.71 \sqrt{\frac{E}{F_y}} = 4.71 \sqrt{\frac{29,000}{46}} = 118.2$$

Since $\frac{L_c}{r} = \frac{KL}{r} = 52.26 < 118.2$
therefore,

The Euler critical buckling stress is

$$F_e = \frac{\pi^2 E}{\left(KL/r\right)^2} = \frac{\left(\pi^2\right)(29,000)}{(52.26)^2} - 104.80 \text{ Ksi}$$

The flexural buckling stress IS:

 $F_{cr} = (0.658^{\frac{F_y}{F_e}}) F_y = (0.658^{(\frac{46}{104.8})})(46) = 38.28$ Ksi The nominal axial compressive strength is

$$P_n = F_{cr}A_g$$
 = (38.28)(10.4)= 398.11 Kips
 $\phi_c P_n$ = (0.9)(398.11)= **358.3 Kips**

Recall

Dr. Ra'ed Al-Mazaidh

Method 2: Using slenderness ratios and AISC Available Critical Stress Tables (AISCM, Table (4-22)

From AISCM Table ⁽⁴⁻²²⁾ he critical compression stress for LRFD, $\phi_c F_{cr}$, is obtained directly by entering the table with $\frac{L_c}{r} = \frac{KL}{r} = 52.26$ and Fy=46 Ksi . A value of $\phi_c F_{cr} = 34.45$ Ksi is obtained therefore, the design axial compressive strength is

 $\oint_c P_n = \oint_c F_{cr} A_g = |$ (34.45) (10.4)= 355.3 Kips

Table 4-22 (continued) Available Critical Stress for Compression Members

	<i>Fy</i> = 35 l	ksl	$F_y = 36$ ksi		$F_y = 42 \text{ ksl}$				F _v = 46 I	ksl	$F_{y} = 50 \text{ ksl}$			
	F_{cr}/Ω_{c}	¢cFcr	ĸ	F_{cr}/Ω_{c}	¢cFcr	~	F_{cr}/Ω_{c}	¢c <i>Fc</i> r	N	F_{cr}/Ω_{c}	¢c <i>Fc</i> r	N	F_{cr}/Ω_{c}	¢c <i>Fc</i> r
	ksl	ksl	$\frac{RL}{r}$	ksi	ksl	$\frac{\pi}{r}$	ksi	ksl	$\frac{RL}{r}$	ksi	ksl	$\frac{RL}{r}$	ksl	ksi
<i>.</i>	ASD	LRFD		ASD	LRFD		ASD	LRFD		ASD	LRFD		ASD	LRFD
41	19.2	28.9	41	19.7	29.7	41	22.7	34.1	41	24.6	37.0	41	26.5	39.8
42	19.2	28.8	42	19.6	29.5	42	22.6	33.9	42	24.5	36.8	42	26.3	39.5
43	19.1	28.7	43	19.6	29.4	43	22.5	33.7	43	24.3	36.6	43	26.2	39.3
44	19.0	28.5	44	19.5	29.3	44	22.3	33.6	44	24.2	36.3	44	26.0	39.1
45	18.9	28.4	45	19.4	29.1	45	22.2	33.4	45	24.0	36.1	45	25.8	38.8
46	18.8	28.3	46	19.3	29.0	46	22.1	33.2	46	23.9	35.9	46	25.6	38.5
47	18.7	28.1	47	19.2	28.9	47	22.0	33.0	47	23.8	35.7	47	25.5	38.3
48	18.6	28.0	48	19.1	28.7	48	21.8	32.8	48	23.6	35.4	48	25.3	38.0
49	18.5	27.9	49	19.0	28.5	49	21.7	32.6	49	23.4	35.2	49	25.1	37.7
50	18.4	27.7	50	18.9	28.4	50	21.6	32.4	50	23.3	35.0	50	24.9	37.5
51	18.3	27.6	51	18.8	28.3	51	21.4	32.2	51	23.1	34.8	51	24.8	37.2
52	18.3	27.4	52	18.7	28.1	52	21.3	32.0	52	23.0	34.5	52	24.6	36.9
53	18.2	27.3	53	18.6	28.0	53	21.2	31.8	53	22.8	34.3	53	24.4	36.7

52.26 34.45

Method 3: AISCM Available Strength in Axial Compression Tables (AISCM Tables 4-1 through 4-12)

HSS sections (Table 4-4)

Alternatively, the design strength could be obtained directly from the *AISCM* column load capacity tables (Table 4-4), but these are only listed for $F_y=46$ Ksi Enter the table with KL = 13.5 ft. and interpolate to obtain $\phi_c P_n = 358$ Kips for $F_y=46$ Ksi

Table 4-4 (continued) Available Strength in Axial Compression, kips

HSS9-HSS8

Square HSS

	110000															
Ch			HSS)×9×					HSS8	8×8 ×						
516	ahe	3/	16 ⁰	1/	8 ^C	5	/8	1,	2	3	8	5/	16			
t _{desig}	_{an} , In.	0.1	74	0.1	16	0.5	681	0.4	65	0.3	349	0.2	291			
lb	/ft	22	2.2	15.0		59.3		48.9		37.7		31.8				
		Ρ η/Ω _c	ф <i>сРп</i>	P_n/Ω_c	ф <i>сРп</i>	Ρ η/Ω _c	ф сР п	P_n/Ω_c	ф <i>сРп</i>	P_n/Ω_c	ф сР п	P_n/Ω_c	ф сР п			
Des	sign	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD			
	0	134	201	64.4	96.8	452	679	372	559	286	431	241	363			
	6	132	198	63.8	95.9	434	653	358	538	276	415	233	350			
	7	131	197	63.6	95.6	428	644	353	531	273	410	230	346			
	8	130	196	63.4	95.2	421	633	348	523	269	404	226	340			
	9	130	195	63.1	94.8	414	622	342	513	264	397	223	335			
, <i>I</i> y	10	129	193	62.8	94.4	405	609	335	503	259	389	219	329			
tion	11	128	192	62.4	93.9	396	596	328	492	254	381	214	322			
yra	12	126	190	62.1	93.3	386	581	320	481	248	372	209	315			
fg	13	125	188	61.7	92.7	376	565	311	468	242	363	204	307			
s o	14	124	186	61.2	92.0	365	549	303	455	235	353	199	299			
dlu	15	122	184	60.7	91.3	354	532	294	441	228	343	193	290			

DESIGN PROCEDURES FOR COMPRESSION MEMBERS

- a) calculate the factored axial load on the column, P_u . b) Obtain the recommended effective length factor, K, from and calculate
- **b)** Obtain the recommended effective length factor, K, from the effective length, $L_c = KL$, for buckling about each axis.
- **C)** Enter the column load capacity tables (i.e., *AISCM*, Tables 4-1 through 4-12) with $L_c = KL$ which is the larger of $\frac{K_x L_x}{\left(\frac{r_x}{r_y}\right)}$ and $K_y L_y$, and find the *lightest* column section

that has a design strength, $\phi_c P_n \geq$ the factored load, P_u for the LRFD method

Adapted from AISCM Table C-A-7.1 [1]. Copyright © American Institute of Steel Construction. Reprinted with permission, All rights reserved.

FIGURE 5-4 Effective length factors, K, for idealized support conditions

EXAMPLE

Using LRFD Method,

select a W14 column of ASTM A992, Grade 50 steel, 14

ft. long, pinned at both ends, and subjected to the following service loads:

- $P_D = 160 \text{ kips}$
- $P_L = 330$ kips

Solution

- A992, Grade 50 steel: $F_y = 50$ ksi AISCM Table (2-4)
- Pinned at both ends, K = 1.0
- L = 14 ft.; $L_c = KL = (1.0)(14) = 14$ ft.

The factored load, $P_u = 1.2P_D + 1.6P_L = 1.2(160) + 1.6(330) = 720$ kips.

From the column load capacity tables in part 4 of the AISCM, find the W14 tables for $F_{\gamma} = 50$ ksi (i.e., AISCM Table 4-1a).

Enter these tables with $L_c = KL = 14$ ft. and find the lightest W14 that has a design compression strength, $\phi P_n \ge P_u$.

We obtain a **W14** × **82** with an axial compression strength, $\phi_c P_n = 774 \text{ kips} > P_u = 720 \text{ kips}$. (*Note:* $\phi_c P_n = 701 \text{ kips}$ for W14 × 74, so the W14 × 74 column size is not adequate.)

EXAMPLE

Select a W12 column of an ASTM A992, Grade 50 steel column to resist a factored compression load, $P_{\mu} = 780$ kips. The unbraced lengths are $L_x = 25$ ft. and $L_y = 12.5$ ft. and the column is pinned at each end.

Solution

- **1.** $P_{u} = 780$ kip
- **2.** $L_{cr} = K_r L_r = (1.0)(25 \text{ ft.}) = 25 \text{ ft.} (\text{strong axis})$ $L_{cv} = K_v L_v = (1.0)(12.5 \text{ ft.}) = 12.5 \text{ ft.} \text{ (weak axis)}$
- **3.** Initially, assume that the *weak* axis governs, that is, $L_c = KL = K_y L_y$. Enter the column load capacity table (AISCM Table 4-1) with $L_c = KL = K_v L_v = 12.5$ ft.

Select W12X72 $\oint_n P_n = 794.5$ Kips (see the next slide -red color circles)

```
4. W12X72, the radius of gyration about x-axes are:
```

```
r_x=5.31 in., r_y=5.31 in., and
```

 $r_x/r_y=1.75$ (from AISCM Table 4-1);

thus, the effective length for buckling about the x- and

 $\frac{K_x L_x}{\left(\frac{r_x}{r_y}\right)} = \frac{25 \text{ ft.}}{1.75} = 14.3 \text{ ft.} \quad \text{(the larger value controls)}$ $K_y L_y = 12.5$ ft.

	<i>F</i> _y =	: 50 ks	si A	۲ Ava xial	able ailab Coi	4-1 (ole S mpr N-Sh	contii Strer essi apes	nued) ngth ion,	in kips	5	w	12
	Sha	ape			1		W1	2 ×				
	lb	/ft	9	6	8	7	7	9	7	2	6	5
	Des	ian	P _n /Ω _c	ф с Р п	P _n/Ω_c	ф сР п	P n/Ωc	ф сР п	P_n/Ω_c	ф <i>сРп</i>	P_n/Ω_c	ф сР п
		Design		LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
		0	844	1270	766	1150	695	1040	632	949	572	859
12.5 ft — 14.3 ft —	least radius of gyration, <i>r_y</i>	6 7 8 9 10 11 12 13 14 15	811 800 787 772 756 739 720 701 680 659	1220 1200 1180 1160 1140 1110 1080 1050 1020 990	736 726 714 700 685 670 653 635 616 596	1110 1090 1070 1050 1030 1010 981 954 925 896	667 657 646 634 620 606 590 574 556 538	1000 988 971 953 932 910 887 862 836 809	606 597 587 576 564 550 536 521 505 489	911 898 883 866 847 827 806 783 759 735	549 540 531 521 510 497 484 470 456 441	825 812 798 783 766 747 728 707 685 663

Therefore, the original assumption in step 3—that the weak axis (i.e., y-axis) controls was incorrect; the strong axis (i.e., the *x*-axis) actually controls.

5. Enter the W12X72 column load capacity tables (AISCM Table 4-1a) with

 $\frac{K_x L_x}{\left(\frac{r_x}{r_y}\right)} = 14.3 \text{ ft. and we obtain the following allowable compression loads for the}$

unbraced lengths of 14 ft and 15 ft, from which the allowable compression load for the unbraced length of 14.3 ft. can be obtained by linear interpolation:

$L_c = KL$ (ft.)	$\phi_c P_n$, (kips)
14.0	759
14.3	752
15.0	735

See the previous slide (blue color circles)

For W12 \times 72, $\phi_c P_n =$ 752 Kips < $P_u =$ 780 kips NOT OKAY

Select another section heavier than W12X72

Select W12X79

For W12 × 79, the radius of gyration about the x- and y-axes are

$$r_x = 5.34$$
 in.,
 $r_y = 3.05$ in., and
 $r_x/r_y = 1.75$ (from AISCM Table 4-1);
thus, the effective length for buckling about the x- and y-axes, respectively, are

$$\label{eq:Kx} \begin{split} \frac{K_x L_x}{\left(\frac{r_x}{r_y}\right)} &= \frac{25 \mbox{ ft.}}{1.75} = 14.3 \mbox{ ft.} \quad \mbox{ (the larger value controls)} \\ K_y L_y &= 12.5 \mbox{ ft.} \end{split}$$

-

Enter the W12 × 79 column load capacity tables (*AISCM* Table 4-1a) with $\frac{K_x L_x}{\left(\frac{r_x}{r_y}\right)} = 14.3$ ft. and we obtain the following allowable compression loads for the

unbraced lengths of 14 ft and 15 ft, from which the allowable compression load for the unbraced length of 14.3 ft. can be obtained by linear interpolation:

$L_c = KL$ (ft.)	$\phi_c P_n$, (kips)	
14.0	836	
14.3	827	See next slide
15.0	809	

For W12 × 79, $\phi_c P_n = 827$ kips > $P_u = 780$ kips OK. Use a W12 × 79 column.

	<i>F</i> y =	50 ks	ⁱ A	۲ Ava xial	able ailab Coi	4-1 (le S mpr N-Sh	cor Str es ap	ntir er ssi es	nued) ngth on,	in kips	6	w	12
	Sha	ipe			1			W1	2 ×	1		I	
	lb/	/ft	96		87			79		72		65	
	Des	ian	Ρ η/Ω _c	ф с Р п	Ρ _/Ω_c	ф с Р п	P_n/s	Ω c	ф сР п	P_n/Ω_c	ф <i>сРп</i>	P_n/Ω_c	ф с Р п
	Design		ASD	LRFD	ASD	LRFD	AS	SD	LRFD	ASD	LRFD	ASD	LRFD
	0		844	1270	766	1150	69	95	1040	632	949	572	859
	f gyration, <i>r_y</i>	6 7 8 9 10	811 800 787 772 756	1220 1200 1180 1160 1140	736 726 714 700 685	1110 1090 1070 1050 1030	66 65 64 63 62	67 57 46 34 20	1000 988 971 953 932	606 597 587 576 564	911 898 883 866 847	549 540 531 521 510	825 812 798 783 766
14.3 ft 🗕	o least radius of	11 12 13 14 15	739 720 701 680 659	1110 1080 1050 1020 990	670 653 635 616 596	1010 981 954 925 896	60 59 57 55 53	06 90 74 56 38	910 887 862 836 809	550 536 521 505 489	827 806 783 759 735	497 484 470 456 441	747 728 707 685 663