

Contact us :

جنة المدنى | Civilittee HU

CALCULATION OF

Strength Of Materials Lab

Deflection of Beams

.....

Student Name: RUBA TAHA

ID#: 1933772

9p,Result and calculations:

Rod material	Steel	Modulus of Elasticity	210 GPa
Length	1000 mm	Cross section dimension	(20 x 6) mm
Cross section type	Rectangle	Ends condition	Simply supported

Experiment parameters

Part (1): Measurement of the reaction forces: The load = 10N

Distance X from support A	Experi	Experimental Theoretical Percentage Error (%		Theoretical		e Error (%)
(mm)	Reaction	Reaction	Reaction	Reaction	Reaction	Reaction
	force A (N)	force B (N)	force A (N)	force B (N)	force A	force B
100	8.4	0.9	9	1	6.66%	10%
200	7.4	1.9	8	2	7.5%	5%
300	6.5	3.1	7	3	7.142%	3.33%
400	5.5	4.05	6	4	8.33%	1.25%
500	4.3	5	5	5	14%	0

Experiment data and result

Sample of calculation:

Strength Of Materials Lab

▶ Subject : * sample of calculation 4444 3 Fy = 2ero RA+RB-F=200 RA = - RB + F = F- PB [- Fa F(1-X 211=200 DFX=RBL RB = FX Load = 10 N =1000 mm at x= 100 1-2) = 10(1-100 1000 × 100% pror 1. = Theo (B) - Exp(1) The (B =9 N * percentage error 7. Theo(A) - Explat 4 100% Theo(A) 0.9 × 100% 10% 8.4 × 1001 = 6.66% 0 0 N 0 S Ε cs Scanne

Part (2): Deflection of simply supported beam: The load = 10N

Distance X from	Deflection W	Deflection W (Theoretical)	Percentage Error
support A (mm)	(Experimental) mm	mm	(%)
100	0.8	0.81	1.23%
200	1.75	1.56	12.17%
300	2.45	2.18	12.38%
400	2.8	2.60	7.69%
500	2.9	2.755	5.26%

Experiment data and result

Strength Of Materials Lab

Sample of calculation:

► Subject : Sample of calcula - 210 GP fion 1000 mo -10 loud = dimension= 120+ 4 2 0 17 100 mr W(x) 1= L 48 × e. ٠. 3 1000 30 IOX 210×103× 48x 2 000 815 ٠, ap P 100 error Χ 1) 8 23 1. 0 κ B 0 0 E N т s R A 8 CS Scanned with CamScanner

Part (3): Cantilever beam Deflection: The load = 10N

Length L from clamp (mm)	Deflection W (Experimental) mm	Deflection W (Theoretical) mm	Percentage Error (%)
200	0.4	0.35	14.28%
300	1.3	1.19	9.24%
400	2.8	2.82	0.70%

Experiment data and result

State the sources of error?

1-personal error in reading the dynamometer (because the difference in angle of view).

- 2-Beam is not completely straight.
- 3-Already plastic deformation before the experiment in the beam .
- 4-The dynamometers experience spring excursion under load.

Comment on your results in each case:

<u> Part 1:</u>

when ever the distance x is closer to the support, the reaction value will be high

<u> Part 2 :</u>

The deflection is increased by increasing the distance , until it reaches the midelte at it

<u>Part 3:</u>

In the cantilever with increasing distance the deflection increases and the largest deflection is at freeend .

<u>I= Area moment of intiria .</u>

Direct relationship between the deflection and the beam length.

stability of columns

Student Name: RUBA TAHA

ID # : 1933772

Result and calculations:

Rod material	Steel	Cross section dimension	(20 x 4) mm ²
Length	700 mm	Modulus of elasticity	210 Gpa
Cross section type	Rectangle	Ends condition	Pin –pin (K=1)

Experiment parameters

Deflection	0.5	1.0	1.5	2.0	2.5
y [mm]					
Load (P)	200	280	330	360	410
Ν					
P/y	400	280	220	180	164
(N/mm)					

** عند وصل المنحنى ب محور واي ** (تقريبا)500 =(pcr(exp)##

#yaxis= load(p)

#x axis=p/y

وضوع الدرس اليوم _ التاريخ $\frac{\text{Length} = 700}{\text{E} = 210 \text{ Gpa}}$ $\frac{\text{Crossetio} = (20 \times 4) \text{ mm}^2}{100}$ $= \frac{1}{12} \times 20 \times y^{8} = 106.67 \text{ mm}^{4}$ Per = T2 ExI $(L \times e)^{2}$ $= \pi^{2} \times 210 \times 10^{9} \times 106.67 \times 10^{6}$ $(700 \times 10^{6-3} \times 1)^{2}$ -12 = 451.1960 N error? = 461.1960 - 500 x 100%. 461.1960 = 10.822 %

Discussion and conclusion:

We use this measurement to find the minimum load we will do to the design it would bk less , the critical load in pin-pin exp we need is more critical than that in pin-fixed exp.

- **1.peronal error.**
- 2.Error in reading value.
- **3.Machine error.**

Fatigue test

Student Name: Ruba Taha

ID#:1933772

Results and Analysis:

	# of load cycles for test bar under different loads						
Trial	Load	Endurance	Stress				
No.	$\mathbf{F}_{\mathbf{a}}$	Ν	σа				
	(N)	(cycles)	(N/mm ²)				
1	195	14030	389.879				
2	172	48800	343.894				
3	147	167000	293.909				
4	128	455000	255.92				
5	118	1280800	235.927				
	L = 100. 5 r	$\mathbf{nm} \qquad \mathbf{d} = 8 \ \mathbf{mm}$					

1. calculate the bending stress

T = T + d' = T + 8' = 64T mm'MXC = FxLx S * 0 200×1 = 399.879 Nmm²

Strength Of Materials Lab

2. plot stress against number of cycles .

3. find the endurance limit :

235.927.

4.Estimate the fatigue strength corresponding to $4*10^5$ cycles.

.تقريبا 269

5. estimate the expected fatigue life corresponding to a bending stress of 250 Mpa

.تقريبا755000

Impact Test

Student Name: Ruba Taha

ID#:1933772

Apply the *impact test* on the following *Specimens:*

Matarial	Notch Type	Total Absorbed Energy		Absorbed Energy by specimen only	
Wateria		(N.m)		(N.m)	
Mild Steel	V,U	26	35	22	31
Brass	V,U	14	21	10	17
Aluminum	V,U				

Absorbed Energy by friction only is : **4** N.m.

Q1: State the main *Material Property* obtained from this test.

RELATIVE TOUGHNESS

Q2: In order to perform an impact test, we need high strain rate, in other words a **shock load**. What is the constrain (condition) of applying a **shock load**?

T<1/3Wn Wn: natural period of vibration "natural frequency"

Q3: According to the above table, answer the following questions:

- A. Why we use notched specimens?
 .To decrease the energy needed to break specimens
 .To facilitate the breakage
- B. Which specimens from the *same material* absorb *higher* amount of energy and why?
 Material with (v)natch absorb higher energy because it give less stress concentration than (v)natch

C. Which specimen absorbed higher energy (Mild Steel or Brass), and why?
 Mid steel because it is aductile material "ductility of mild steel is higher than ductility of brass"

Q4: If we apply *the same impact load* on *the same specimens* but at *different temperature*, what you think will happen? Explain.

As temperature increase the ductility of materials will increase and the toughness will also increase, so the material which have higher temperature will absorb more energy than other material

Q5: Compare between impact test and tensile test.

	Impact Test	Tensile Test
Type of Load	shock	Static
Strain Rate		
	Higher	Lower
Specimen's Notch	There is a notch	There is no notch

Q6: state two differences between Charpy and Izod test ?

Charpy Test	Izod Test
Notch opposes the hammer	Notch faces the hammer
Specimen is simply supported	Cantilever type specimen
Two shearing Area	One shear Area
E Charpy = 2 E Izod	E Izod= ½ E Charpy

Thin Wall Cylinder

Student Name: RUBA TAHA

ID # : 1933772

Results and Analysis:

• Fill the experiment results for all parts and compare with theoretical value:

Tria I No. #	Cylinder Pressure P (Mpa)	Hoop Strain ε _Η Gauge 1	Hoop Strain ε _Η Gauge 6	Average Hoop Strain ε _Η	Hoop stress σ _H (Mpa)
1	0.5	76	96	86	6.67
2	1	162	194	178	13.33
3	1.5	243	278	260.5	20
4	2	334	372	353	26.67
5	2.5	421	458	439.5	33.33
d = 80 mm t = 3.00 mm L = 358mm Theoretical modulus of elasticity (E) =69 Gpa					

• Plot σ_{Hoop} versus ε_{Hoop} then find E and compare with theoretical values.

$\sigma_{\text{Hoop}(\text{mpa})}$

Strength Of Materials

• Sample of calculation:

(5 السا 6 S # op n 6.61 C 6 60.5 \$10 36 3 0 7 -6. 7 6 6 C 0 96 76+ HOODStrain 2 ... 61 0.5* Da 0 0 ×

• Fill table below and find the Poisson's ratio (v):

Tria I No. #	Hoop Strain ε _Η Gauge 1	Hoop Strain ε _H Gauge 6	Longitudinal strain ε∟ Gauge 2	Average Hoop Strain ε _Η
1	76	96	-29	86
2	162	194	-61	178
3	243	278	-90	260.5
4	334	372	-120	353
5	421	458	-149	439.5
	-	Theoretical Poiss	on's ratio (v) =0.33	

• Plot $\varepsilon_{\text{Hoop}}$ versus $\varepsilon_{\text{Longitudinal}}$, then find Poisson's ratio (v) and compare with theoretical value

Calculate the theoretical principal hoop and longitudinal strains for poisson's experiment and compare your results with the experimental values?? (first trial only)

Strength Of Materials

Subject : * Trial NO#7 Longi tudinal Strain =) 29 86 5 H 01 5 86 S 337 exp V) Privor 3-3 Da 2+3+ -3 \$6 S H 83 XD 9 69 F 69 + 109 ü 694 Q prev 5 100 89 0 .5 3 04 × 100% 483.04 0 K 0 E T N S R A S T 7

Strength Of Materials

The Hashemite University Faculty Of Engineering Mechanical Engineering

Department • Calculate the theoretical longitudinal stress ? σL = 0 (free end condition) in open cylinder

.....

Strain Measurement with Strain Gauges

Student Name: RUBA TAHA

ID #:<u>1933772</u>

Result and calculations:

Rod material	Steel	Cross section dimension	(20 x 4) mm
Length	800 mm	Distance of W from center	200 mm
Cross section type	Rectangle	Ends condition	Simply supported

Experiment parameters

#	W1 (N)	W2 (N)	Channel 1 Reading µ	Channel 2 reading μ	€ _{lateral}	E _{axial}	Bending moment (M)	Stress (σ) Mpa
1	0	2.5	10	32	5	16	250	4.69
2	2.5	2.5	26	86	13	43	500	9.38
3	2.5	5	46	158	23	79	750	14.07
4	5	5	62	188	31	94	1000	18.07
5	5	7.5	80	260	40	130	1250	23.45
6	7.5	7.5	100	332	50	166	1500	28.1

Experiment data and result

Sample of calculation:

w1=2010, w2=2.5 ► Subject : latora C 5 2 32 16 2 wa 200 20 200 200 4 TRA RB S 2000 RA+RB = W, +W2 5 70 - 800 B-2000 +600 WZ 800 FB = 200 2, + 600 2 RB= 200x 2010 + 600(25 > RD 200 00, + 600 02 800 800 200 875 20 200 PRB 900 200175 M=400RB 2000 6 × n 106.6 12 12 × 10-12 4 \mathcal{U} C 2 260 1 2 250 ¥ 9 06.66 S A R S N 0 E в 0 0 к CS Scanned with CamScanner -

E<mark>=slope=126</mark> Ethr=210 GPA Error=((210-126)/210)*100%=40%

Plot $\varepsilon_{\text{axial}}$ versus $\varepsilon_{\text{lateral}}$ then find \bm{V} and compare with theoretical values

slope=Uexp=0.285 U=thr=0.34 Error=((0.34-0.285)/0.34)*100%=16.17%

State 3 applications of strain measurement using strain gauges.

1-CAR SPRING.

2-CUTRING MACHINE AND VESSEL SUPPORT STRUCTURE.

3-IN NUCLEAR REACTORS.

Discussion and conclusion:

IN THIS EXPERIMENT WE SHOW HOW TO FIND THE AXIAL ANA LATERAL STRAIN ON THE BEAM BY USE STRAIN GAUGE WE DETERMAIN VALUE OF \in AXIAL,LATERAL,,(σ), M.

Discussion

-Vibration Error because the strain gauges are very sensitive for vibration.
-Heat because the gauges the material deforms by the heat for long terms of time.
-The low efficiency of the circuit because its not brand new.
-Error in fitting the gauge on the rod.
-The rod is already deformed my many factors.

:Conclusions

-Proving hooks law

.-Proving Wheatstone bridge theory

-Getting to know the components of a scale

Creep Test

NAME:RUBA TAHA

ID#:1933772

Spe	ecimen specifications: - made of L - Applied mass	.ead Dimensions: (2*5mm –5 : 1.5 Kg Ambient temperature: 1	Section), 20mm Length. 4°
Time (Sec.)	Dial Gauge Extension mm (Ext.1)	Extension (2)	STRAIN
15	4.90	2.45	0.1225
30	5.17	2.585	0.12925
45	5.27	2.635	0.13175
60	5.36	2.68	0.134
75	5.39	2.685	0.13475
90	5.40	2.7	0.135
105	5.48	2.74	0.137
120	5.52	2.76	0.138
135	5.56	2.78	0.139
150	5.58	2.79	0.1395
165	5.62	2.81	0.1405
180	5.64	2.82	0.141
240	5.74	2.87	0.1435
300	5.85	2.925	0.14625
360	5.95	2.975	0.14875
420	6.11	3.055	0.15275
480	6.18	3.09	0.1545
540	6.27	3.135	0.15675
600	6.45	3.225	0.16125
660	6.60	3.3	0.165
690	6.71	3.355	0.16775
720	6.86	3.43	0.1715
735	6.92	3.46	0.173
750	6.94	3.47	0.1735
765	7.01	3.505	0.17525
780	7.15	3.575	0.17875
795	7.10	3.55	0.1775

- Plot Strain against Time(s), the slope of the curve at the secondary region is the creep rate *έ*.

0.2 0.18 0.16 Line 4 0.14 0.12 Line 3 0.1 Line 2 0.08 0.1225 0.06 0.04 0.02 0 120 150 180 300 420 540 660 720 750 90 60 780 30

L=20mm) (applie) mass = 1.5kg (ambient Temp=14) at E = 155 = D E x f(2) = E x f(1) = 4.92 2 = 2.45 E = Ext(2) = 2.46 = 0.1225Lo 20 * slope 0.15275-0.14625 = 5.42×10 420 - 300 R= 8.31 J/moler E= 120rg/mol d= 0.85 $p = (2.84 + 8 \times M) + g = m = 1.5 \text{ kg}$ = (2.84+8+1.5) + 9.81 P= 145.5804 N $SO \quad \nabla = P = 145.5804$ this = 14558040pa=14.558 Mpa

- 2-Find the time required for each stage.
- 3-Calculate the constant B.

Timerequired Primary = 15 - 90 5 Secondary 20 90, - 540 s × tertiary 70 540, -795, calculate The constant B 3 ア $B = \frac{\hat{\epsilon}}{\hat{e}^{\sigma} - \epsilon/\epsilon t}$ E=Bexc (-E/EF) B = 5.42 × 10 - 5 e^{12,37624} (-170/ 8.31 × 287)</sup> *e 2.40448 ×10-10 =

- 4-State 2 applications where the creep test is essential in elements and members design.
 - In the bridges
 - In cars

Hardness Test

Student Name:Ruba Taha

ID # :1933772

Results and Analysis:

Teat	Brinell			Rockwel	Rockwel
rest	Hardnes	Vickers H	ardness	I	I
	s Test	Test (HV)		Hardnes	Hardnes
Setting	(HB)	10	30	s Test (HRC)	s Test (HRB)
Indenter	Steel ball	Diamond	Diamond	Diamon	Steel ball
	2.5 mm.	pyramid	pyramid	d	(1/16")
				cone	
	3	3	3	10	10
Preload					
	187.5	10	30	150	100
Main					
load					

Experiment parameters

	Brinell			Rockwel	Rockwel
Test	Hardnes	Vicl	kers	I	
	s Test	Hard	dnes	Hardnes	Hardnes
	(HB	s T	est	s Test	s Test
)	(⊦	IV	(HRC)	(HRB)
)		
Materials		10	30		
Mild steel	173	208	Х	Х	85.9
High speed	Х	Х	619	64.2	Х
steel					
Aluminum	100	105	Х	Х	50.6
	102	97	Х	Х	56.2
Brass					

Experiment data and results

1-What is the reason or for using a minor load in the case of Rockwell hardness test method?

- 1. To make contact between specimen and indentor.
- 2. To overcome the roughness on the surface of specimen

2-A 10 mm diameter Brinell hardness indenter produced an indentation 2.5 mm in diameter in a steel alloy when a load of 100 kg was used. Compute the HBN of this material?

3- Find the Ultimate tensile strength for the mild steel based on the hardness test?

► Subject :	
	الفرع الثاني
<u> </u>	D = 10 mm
	d = 2.6 mm
	P= 100 Kg
	HBN = P
	$0.5 \times \pi \times D(D - \sqrt{D^2 - J^2})$
	= 100
	0.5×T×10(10- J100-6.25)
	-100 = 20.0521
	<u>Y.987</u>
	العركاني.
2	
S	· · · · · · · · · · · · · · · · · · ·
	= 3.44 + 173
	= 528.2 1/00
••••••	- 200, 2 10- 1991