

اللجنة الأكاديمية للهندسة المدنية

تقاریر

مواد البناء

محمد السفاريني وحازم الدراوشة

Contact us:

f Civilittee HU | لجنة المدنى

Civilittee Hashemite

www.civilittee-hu.com

مختبر مواد البناء/التجرب الأولى/ بميع السعب

Building Materials Laboratory

Experiment No.: 1

Normal Consistency
and Setting time of hydraulic cement

اكسفارينية لقسم الهندسة المدنية

Name	Mark	
me de de	197	
3/1	(100	1
Sline	1177	Addison and

Student's number	Section number	Experiment day and date	Submission day and date
***	X 1	30/9/2019	7/10/2010
		Monday	Monday

Normal Consistency and Setting time of hydraulic cement

1- Determine the Normal Consistency and Setting time Sor cement Passes 2- Determine the IST and FST from the experiment FST = 90 + 1.2 TST 3- test cement quality 1.2. Apparatus and Equipment Factor Cement Paste Cement Paste 1.2. Base Plate	łe
2- Determine the IST and FST from the experiment FST = 90+1.2 TST 3- test cement quality 1.2. Apparatus and Equipment G-Determine the Validity of Named each Part in the apparatus below Cement Paste	
FST = 90+1.2 TST 3- test cement quality 1.2. Apparatus and Equipment 4-Determine the Ualidity of Named each Part in the apparatus below Cement Paste	
1.2. Apparatus and Equipment 4-Determine the Ualidity of Named each Part in the apparatus below Cement Paste	
The Apparatus name is Uica L apparatus Scale Scale	
اللجنة الأكاديمية لقسم الهندسة المدنية	
Inital	
The Apparatus name is	
Final Nedle Gillmore Apparatus Gillmore Apparatus	
(2)	
1.3. Materials Cement water	
Prepared by Eng.Buthaina Abu-Salsem	

Calculations

mal Consistency

ement = 650 g

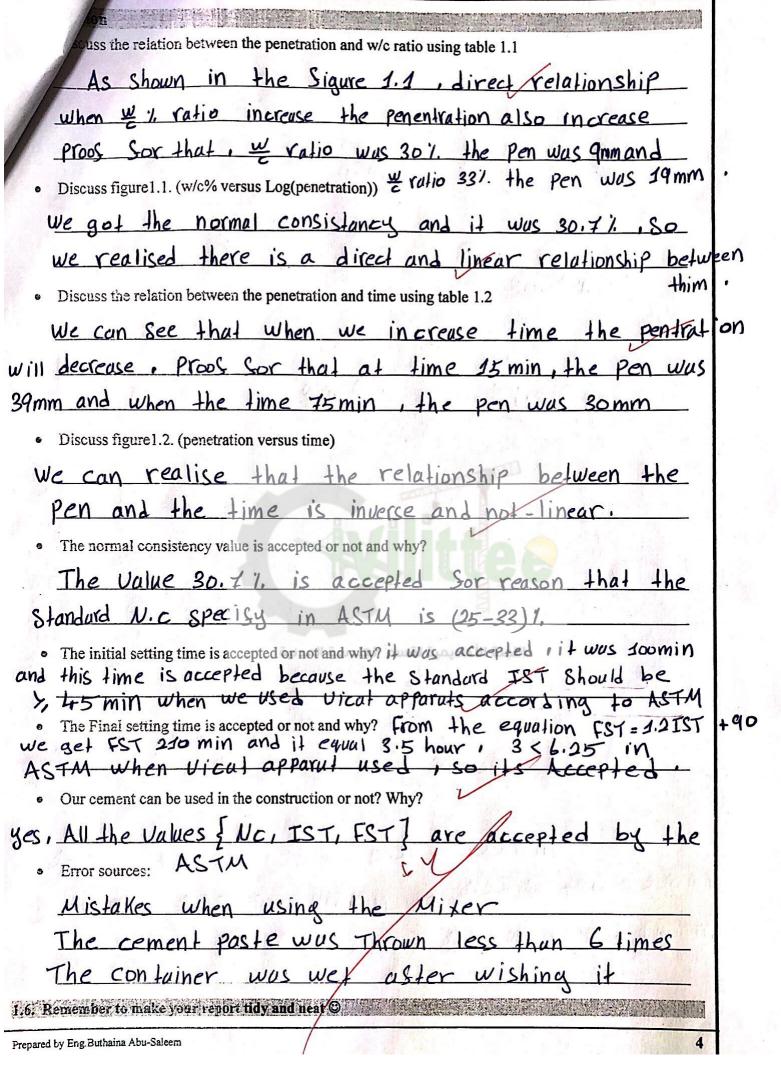
1.1: variation of penetration with w/c ratio

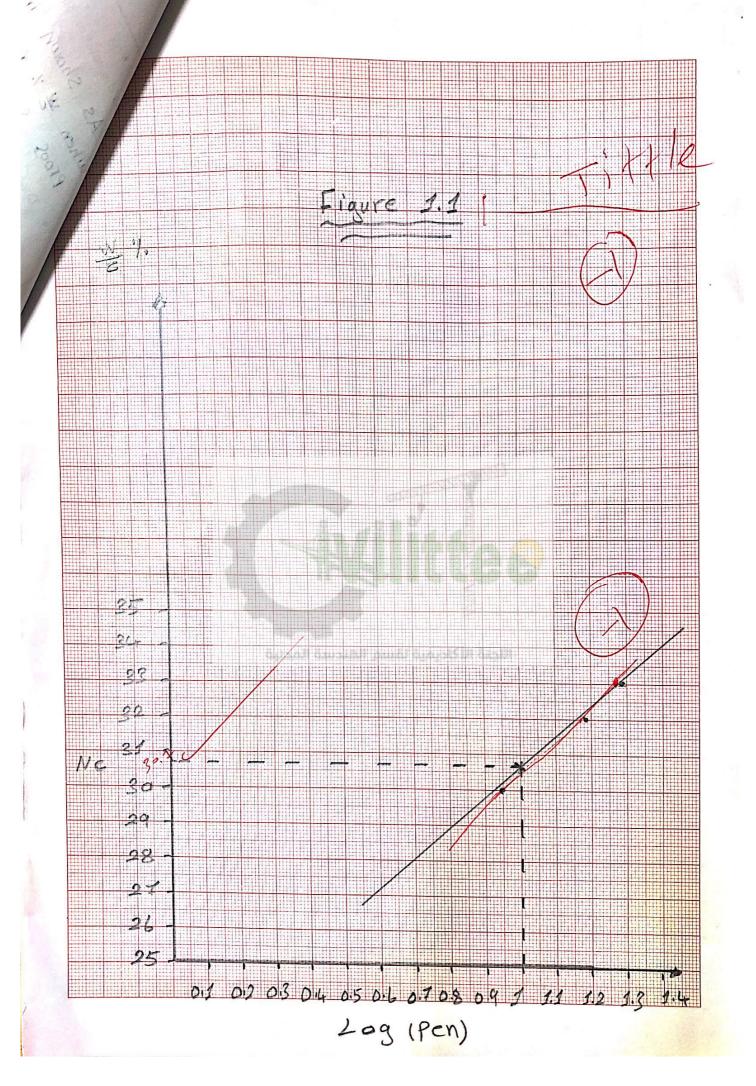
1	Vt. of Water (g)	W/C %	Penetration (mm)	Log (Pent.)
	30195	30	9	0.95
T	22 208	32	15	1.17
	3/3 2/4.5	33	19	1.27

- Draw w/c% versus Log (penetration); Figure 1.1.
- From this curve (w/c% versus Log (pent.)), the normal consistency is ... 30.7 1.

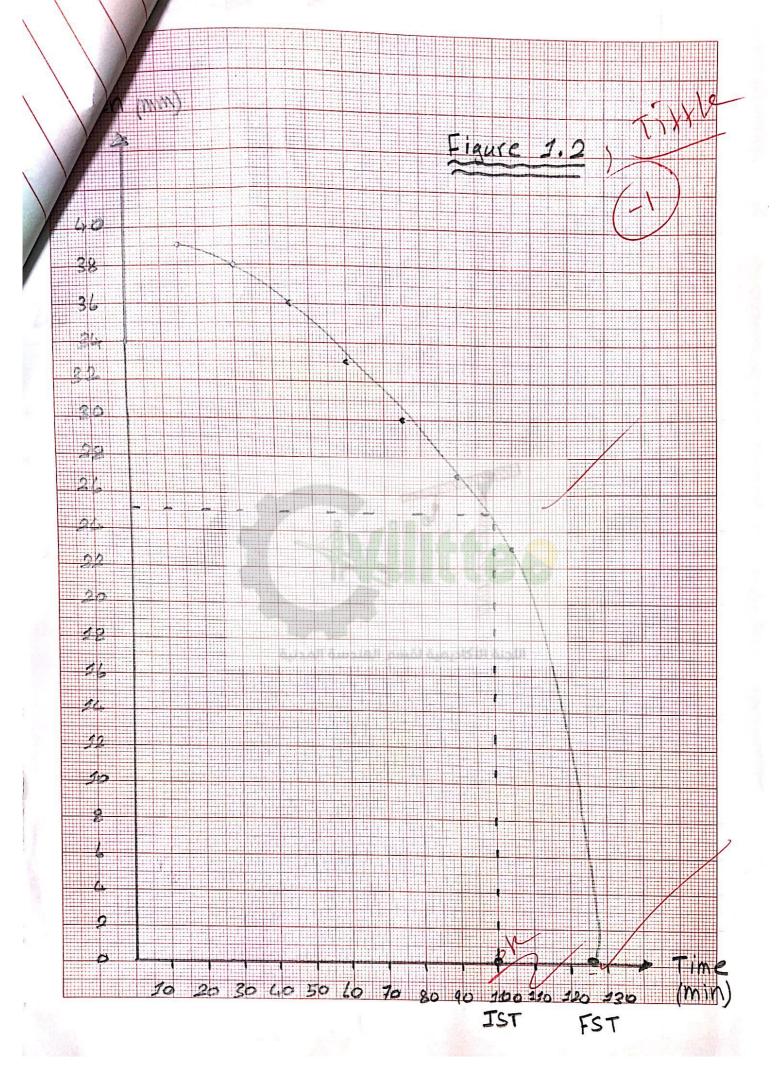
1.4.2. Initial and Final Setting Time

Wt. of Cement = 650 3 W/C% = 30. 7 1. Water = 199.55


Table 1.2: variation of penetration with time


Time (min)	Penetration (mm)
15	39
30	38
45	36
60	33
75	30
90	27
105	23

- Draw the penetration versus time; Figure 1.2.
- From this curve (pent. versus time), initial setting time is. 100. min
- Calculate/Find the Final setting time (using the three different ways; equations and graphically)


2-
$$FST = 1.2 IST + 90 min = 1.5 * 100 + 45 = 195 min$$

3- $FST = 1.5 IST + 45 min = 1.5 * 100 + 45 = 195 min$

Prepared by Eng. Buthaina Abu-Saleem

Scanned with CamScanner

حسر مواد الساع/ الحربة المنادية/ سعبة ع (الحسي)

Building Materials Laboratory

Experiment No.: 2

Compressive and Tensile Strength of Cement Mortar

Name	Mark
4 رام عر «رام»	97

Student's number	Section number	Experiment day and date	Submission day and date
1834046	4	7 mrsday 10/10/2019	Thursday 17/12/2019

Compressive and Tensile Strength of Cement Mortar

2.1	Ohi	ectives
4.1.	OD	ectives

To determine the compressive and forsile strength of coment morter, determine the quality of coment (if it accepted to use or not) and to calculate the strength of mortar in the tension and compression test.

2.2. Apparatus and Equipment

Trovel

Brignette wold (25 x25) mm

container

Antomatic Flexbral tensile 1-

Mixer, Liner

cubic mold (504501 mm

Graduated glass (cylinder) Bord, paddle

compression rests machine

Glaves

2.3. Materials

(coment

water

اللجنة الأكاديمية لقسم الهردسة المدنية

Sand

2.4. Data and Calculations

2.4.1. Compressive strength

Cement Type: Sulphate Resistance Portland Cement (V)

Ratios:

Cement: Sand = 1: 2.75Water: Cement = 0.485

Weights: Cement = 740gSand = 2035g

Water = 359g

Age (Day)	Compressive Force (KN)	Compressive Strength (MPa)	Average Strength (Mpa)	Accepted range (Mpa)	Accepted or Not	Accepted Avg. Strength
- 7	10.3	4.12		2 2 0 U 532	Jes	4.12
3	9.8	3.92	4.12	3.708-4.532	yes	7.12
Carlo Carlo	10.8	4.32	404		yes	
a' 1	27.2	10.88	0.1	11.583 -14.157	no	75 1 3 5
7	35	19	12.87	11:383 = 1. 21	yes	13.86
	34.3	13.72	4, 7, 8	. ,	Jes	
	41.3	16.52	16.813	15.13-18.5	Jes .	50
28	38.2	15.28	(6.81)	(5.1)	yes	15.9
	46.6	18.64	24		NO	

Sample of calculations: A=50 +50 +10 -25 +103 m

avg, range

a ccepted avg. strength = 4.12+3.42+4.32 4.12 mpa

Estimate the compressive strength of concrete with the same w/c ratio as the cement mortar and same cement type at 28 days

Y= 0.004 x +1.3 X = 0.004(15.9)2+1.3(15.9) = 21.68 MPa

2.4.2. Tensile strength

Cement Type: Sulphate Resistance Portland Cement (V)

Ratios: Cement: Sand = 1:3 Weights: Cement = 400g

Sand = 1200g

Water: Cement = 0.46

Water = 184g

Age (Day)	Tensile Force (N)	Tensile Strength (MPa)	Average Strength (Mpa)	Accepted range (Mpa)	Accepted or Not	Accepted Avg. Strength
	449	0.7184	- "	e for New York	Jes	
3	562	0.8992	0.8155	0.6932-0.438	yes	0.8155
	518	0.8188			yes	
	688	1.1008	1 2 2 -7	272 111 22	Jes	
7	843	1,3488	1.2203	1.0373-1.4-33	Jes	1203
**	757	1,2112			yes	
	902	1,4432	י בעבי	7.7.10	NO	1.8992
28	1131	1.8096	1.7472	1.4852 -2.0092	805	1.8192
	1243	1.9808	1 100	i i jar	yes	

• Sample of calculations: A = 25 & 25 & 106 = 6.25 & 107 2

• Sample of calculations:
$$A = 23 \text{ GZS}$$
 $G = 6.25 \text{ Glo}$ $G = 6.$

Draw the experimental accepted average Compressive and Tensile Strength (MPa) of Mortar versus Time (Days) on the same graph using arithmetic papers

-In the [3-7] days > high rate and clear change strongth In the [7-28] days > small rate, slowly -After 28 days > the sample of coment approximetly and the change in strength is constant. The sample shape after fracture: -In compressive test: the cube of mortar should be broken like the shape below with angle - 45	of BONBLESSIVE LEST!
So bear loads stronger with each fassing day This means: Age 1 Force (c) 1 6 1 A Tensilt test: It was a branch From table (2.14.2): whenever the age of commt increases, increased strongth to tensile highest: Age 1 Force (T) 1 6 1 strongth of From graph (1.1): compressive and tensile? V.S time. It was absented that the relation between the strongth and time is direct and non-linear in compressive and tensile tests. * Rate of strongth along this age (2.28) days as follows: In the first 3 dydays > count morrow is two weak. In the 13-7) days shigh rate and clear change strongth In the 17-28 days > small rate, slowly After 28 clays > the sample of coment approximately and the change in strongth is constant. After sapaple shafe after Fracture: - In compressive test: The supple shafe after Fracture: - In compressive test:	It was observed from table (24.1): that strength increases
This menus. Age of Force (c) of the Tensile tensile to From table (2.4.2): whenever the age of commit increases, increased strength to tensile highest: Age of Force (T) of strength to tensile highest: Age of Force (T) of strength to tensile to strength and tensile to strength and time is direct and non-linear in compressive and tensile tosts. * Rate of strength along this age (3-28) days as follows: In the first 3 digdays - coment mortar is be weak. In the 13-7) days - high rate and clear change strength. In the 17-28 days - small rate, slowly -After 28 days - the sample of coment approximatly and the change in strength is constant. * The sample shape after fracture: -In compressive test: The cube of mortar should be broken like the shape below & with any to - 45	with the progress of days in the coment sample
The first 3 days > high rate and clear change strength In the 13-28 days > the sample of coment is prength In the 13-28 days > the sample of coment approximetly compressive to compressive and proposition of the change in strength The compressive and non-linear in compressive And time is direct and non-linear in compressive and tensile tests. The first 3 days > coment morror is too weak. In the 13-72 days > high rate and clear change strength The 13-28 days > the sample of coment approximetly and the change in strength is constant. The sample shale after fracture: - In compressive test: The cube of mortar should be broken like the shape below 8 with anyle - H5	so bear lands stronger with each Passing day
It was abserved from table (2.14.2): whenever the age of coment increases, increased strength to tensite highest: Age of Force (T) of strength to tensite we From graph (1.1): compressive and tensile Vis time. It was abserved that the vilation between the strength and time is direct and non-linear in compressive and tensile tests. * Rate of strength along this age (3-28) days as follows: In the First 3 of days > coment more is two weak. In the [3-7) days > high rate and clear change strongth. In the [7-28) days > small rate and clear change strongth. After 28 clays > the sample of coment approximately and the change in strength is constant. # The sample shale after fracture: - In compressive test: The cube of mortar should be broken like the shape below & with angle - 45	this menus. Age 1 Force (c) 1 6 1
by coment increases, increased strength to tensite highest: Age 1 Force (T) 1 G1 strength of From graph (1.1): compressive and tensile 1/15 time: It was abserved that the relation between the strength and time is direct and non-linear in compressive and tensile tests: * Rate of strength along this age (2-28) days as follows: - In the [3-7] days > high rate and clear change strongth In the [7-28] days > small rate, slowly - After 28 days > the sample of coment approximately and the change in strength is constant. * The sample shape after fracture: - In compressive test: The cube of mortar should be broken like the shoppe below? with angle - 45	* Tensile test:
highest: Age 1 Force (T) 1 G 1 strength * From graph (1.1): compressive and tensile V.S time. It was observed that the relation between the strength and time is direct and non-linear in compressive and tensile tests. * Rate of strength along this age (3>28) days as follows: - In the First 3 & days > coment moving is two weak. In the 13-7) days > high rate and clear change strength In the 17-28) days > small rate and clear change strength - After 28 days > the sample of coment approximately and the change in strength is constant. * The sample shape after fracture: - In compressive test: The cube of mortar should be broken like the shape below & with anyle - 45	It was observed from table (2.4.2); whenever the age
It was abserved that the relation between the strength and time is direct and non-linear in compressive and tensile tests. * Rate of strength along this age (3-28) days as follows: In the first 3 stydays - cement marrier is two weak. In the [3-7) days > high rate and clear change strength. In the [7-28) days -> small rate , Slowly -After 28 clays -> the sample of coment approximetly and the change in strength is constant. * The sample shale after fracture: -In compressive test: The cube of mortar should be broken like the shape below with anyly - 45	of coment increases, increased strength to tensite
It was abserved that the relation between the strength and time is direct and non-linear in compressive and tensile tests. * Rate of strength along this age (3-28) days as follows: In the first 3 stydays - cement marrier is two weak. In the [3-7) days > high rate and clear change strength. In the [7-28) days -> small rate , Slowly -After 28 clays -> the sample of coment approximetly and the change in strength is constant. * The sample shale after fracture: -In compressive test: The cube of mortar should be broken like the shape below with anyly - 45	highest: Age 1 Force (T) 1 61
and time is direct and non-linear in compressive and tensile tests: * Rate of strength along this age (3-28) days as follows: -In the first 3 daydays > cement mortar is two weak. In the [3-7] days > high rate and clear change strength In the [7-28] days > small rate, slowly -After 28 days > the sample of coment approximetly and the change in strength is constant. * The sample shafe after fracture: -In compressive test: the cube of mortar should be broken like the shape below & with angle - 45	& From graph (1.1): compressive and tensilet V.S time:
and tensile tests. * Rate of strength along this age (3-28) days as follows: -In the first 3 deglays - cement mortar is too weak. In the 13-7) days > high rate and clear change strangth In the 17-28) days - small rate , slowly -After 28 days - the sample of coment approximatly and the change in strength is constant. # The sample shape after Fracture: -In compressive test: the cube of mortar should be broken like the shape below & with angle - 45°	It was observed that the relation bythmen the strength
* Rate of strength along this age (3 > 28) days as follows: In the first 3 degdays > coment marrier is too weak. In the [3-7) days > high rate and clear change strongth. In the [7-28] days > small rate, slowly - After 28 clays > the sample of coment approximatly and the change in strength is constant. **The sample shape after fracture: - In compressive test: The cube of mortar should be broken like the shape below & with angle - 45	and time is direct and non-linear in compressive
-In the [3-7] days > high rate and clear change strongth In the [7-28] days > small rate, slowly -After 28 days > the sample of coment approximetly and the change in strength is constant. The sample shape after fracture: -In compressive test: the cube of mortar should be broken like the shape below with angle - 45	and tensile tests.
In the [3-7) days > high rate and clear change strongth In the [7-28) days > small rate, slowly - After 28 days > the sample of coment approximetly and the change in strength is constant. **The sample shape after Fracture! - In compressive test! The cube of mortar should be broken like the shape below & with angle - 45	* Rate of strength along this age (3->28) days as forbus;
-After 28 clays -> the sample of coment approximatly and the change in strength is constant. The sample shape after fracture: -In compressive test: the cube of mortar should be broken like the shape below & with angle - 45	
-After 28 clays -> the sample of coment approximatly and the change in strength is constant. The sample shape after fracture: -In compressive test: the cube of mortar should be broken like the shape below & with angle - 45	In the 13-7) days > high rate and clear change strongth
and the change in strength is constant. **The sample shape after fracture! - In compressive test! The cube of mortar should be broken like the shape below? with angle - 45°	In the 17-28 days > small rate, slowly
The sample shape after fracture! -In compressive test: the cube of mortar should be broken like the shape below & with angle - 45	-After 28 days -> the sample of coment approximatly
The sample shape after fracture! -In compressive test: the cube of mortar should be broken like the shape below & with angle - 45	and the change in strength is constant.
the cube of mortar should be broken like the shape belows with angle - 45	
belows with angle - 45°	- In compressive test:
Toma Toma	C TOPP
5年(20年) 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951	below & with angle = 45
5年(20年) 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951	
5年(20年) 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951 - 1951	
	Prenared by Eng Buthaina Abu-Saleem

	· Brighitte of ma		be broken like
the shape belo	wa with angle = 1	70	
<u> </u>	1 177	A Party	
25 700) -		1
#The coment	is much more a	ble to resist	- compression
loads rasher	Yhan tensile lands.	and the com	entis brittle
unaterial.	BERLINE WILLIAM	1	as six (see 5)
Theres ratio	65 6 amp = .	should be b	etween (7-11)
	6 hen		
at 28 days	1.8992	37 racce	pt-ol 6/2
« comparing for	compression!	ITTE	
Time (day) 1 60	wg. comp. accepted (M	Pa) ASTM	Accepted or not
3	4.12	8	not
7	13.86	15	not
28	15.9	(2)	1 not
x comparing for	r teasile:		
	avg to accepted	(MPA) ASTM	Accepted orna
3	0.8155	-	
7	1.2203	1.724	Joh
28	1.8992	2.24	1 not
a coment moster	tyre" V sulphal	e resistance p	Jew Manel cuman)
is pot accepted			
6. Remember to make you			

2.7. Specifications

Table 2.1: ASTM C 150-05 requirements for minimum strength of cement (MPa (Psi))

Age		AS	STM C 150 –	05 (mortar c	ube), cement	type (table 4.4)	
(Days)	l I	1A	II [#]	IIA#	III	IIIA	. IV	V
1			-	-	12.0	10.0		Y and The
<u> </u>		-	-	-	(1740)	(1450)		-
3	12.0	10.0	10.0	8.0	24.0	19.0	- 1	8.0
	(1740)	(1450)	(1450)	(1160)	(3480)	(2760)		(1160)
7	19.0	16.0	17.0	14.0	-		7.0	15.0
	(2760)	(2320)	(2470)	(2030)	-	-	(1020)	(2180)
28	28.0ª	22.0ª	28.0ª	22ª		<u>.</u>	17.0	21.0
i de la companya de l	(4060)	(3190)	(4080)	(3190)	- 1 <u>-</u>	-	(2470)	(3050)

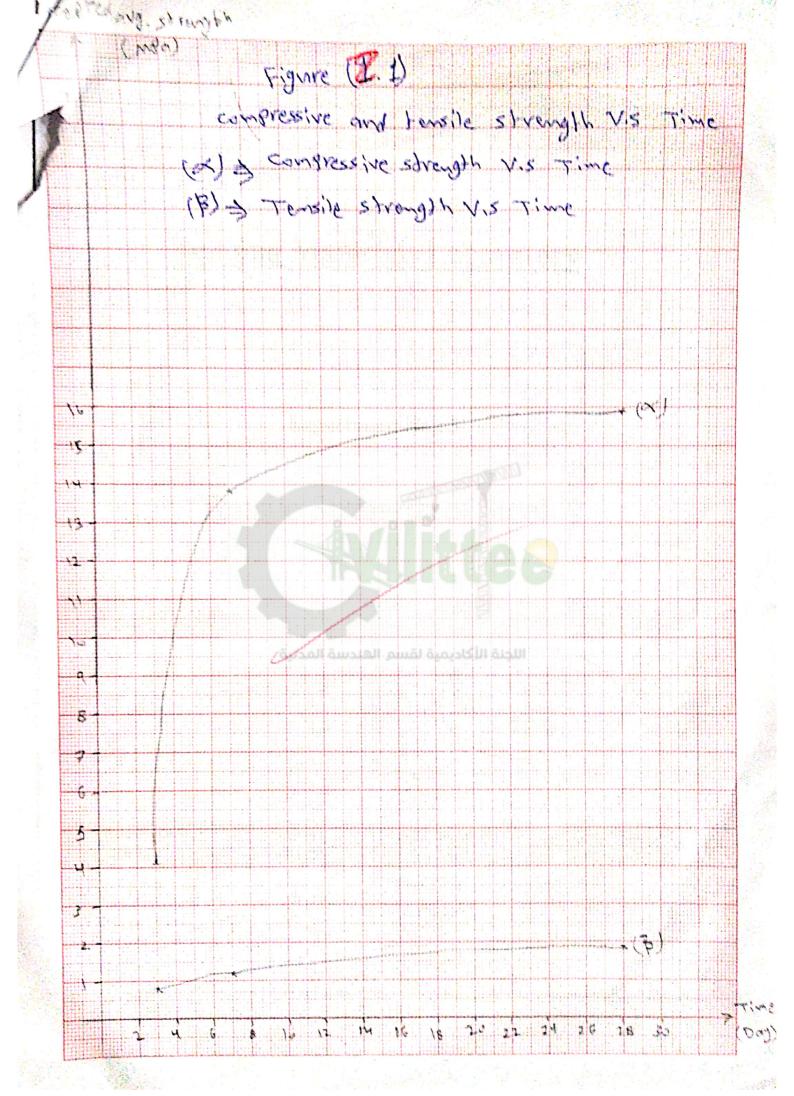

^{*} Strength values depend on specified heat of hydration or chemical limits of tricalcium silicate and tricalcium aluminate

Table 2.2: ASTM C 190-85 requirements for minimum Tensile strength of cement 4 (Psi (KPa))

	Cement Type				
	1	II	III	IV	V
1 day in moist air, psi (KPa)	لقسم الهندسد	ننة الأكاديمية	275 (1896)	-	-
1 day in moist air, 2 days in water	150 (1034)	125 (862)	375 (2586)	-	
1 day in moist air, 6 days in water	275 (1896)	250 (1724)	. '	7.50 (1207)	2.50 (1724)
1 day in moist air, 27 days in water	350 (2413)	325 (2241)	- -	300 (2068)	325 (2241)

^A taken from C 150 - 58 without change

^a Optional

محتبر مواد السناء/ الحربة النالئة/السنعية ع (الحنيس)

Building Materials Laboratory

Experiment No.: 3

Tensile Strength of Steel

Name Name	(2011年) (1922年) 日本 (大阪中学会会学活動)	Mark	
هازم عمر دراو ن		97 100	Than

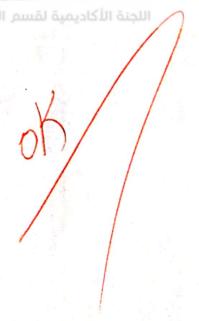
Student's number	Section number	Experiment day and date	Submission day and date
1834046	•	Thursday	4 masolay
	4	17/10/2019	24/10/2019

Tensile Strength of Steel

STATE OF	12-10712-90	38.0	1978 C	TO U.	15%	Carried to	-4000	46.
-	1770.9	-	100		P.5"			9.
2	1.	<i>6</i> 1				-	TA	•
3.00	100	2 2	3.0		145.8			•

testing machine (UTM) and to Dayour the Straigh-Strain diagram and to determine the elastic region, propotional limit, yield stress, ultimate stress and rupture and to determine the elastic region to determine the elargorion and ductility before and after the tensile stress process.

3.2. Apparatus and Equipment


& universal	resting machine (UTM	& Balance.	

×	meter	 	

* computer software special	
FORUTM)	121/1

3.3. Materials

Steel rod

Data and Calculations

4.1. Data

Li mm=	320	Lrmm= 390
D _{i mm} =	17.9	$A_1 \text{ mm}^2 = 251.6$
D _{F mm} =	14.8	AF mm ² = 172

	Load (KN)	Elongation (mm)	Eng. Stress (MPa)	Eng. Strain
1	0	0	O	0
2	1	1.5	3.9	4.7*13
3	8	2.4	31.8	75413
4	18	2.5	71.5	7.8 413
5	32	2.5	127.1	8.1 * 13
6	46	2.7	182.8	8.4 41=3
7	68	2.9	270.2	94153
8	76	5	302	\$15.6413
9	76	7	302	21.8 412
10	76	- 11	302	34.3 415
11	76	13	302	40.641=3
12	78	16	310	50 04153
13	82	17	325.9	53.1813
14	85	18	337.8	56,241=3
15	87	20	345.7	62.5 x103
16	92	23	365.6	71.8×153
17	97	27	385.5	84,32453
18	103	30	4-9.3	93.7x(=
19	108	36	429.2	112.5413
20	110	41	437.2	128.100
21	112	50	445.1	156.20
22	113	52	449.1	162.5 A1
23	114	55	453.1	171.841
24	115	60	457	187.5 ×
25	115	61	457	190.600
26	113	63	444.1	1948413
27	109	65	433.2	203.12#
28	105	66	417.3	206.2A
29	101	68	4,104	212.54
30	99	70	393.4	218,74

$$6 = \frac{9}{\text{Ai} \rightarrow 251.6 \times 10^{6}}$$

$$\xi = \frac{\text{Al} (elongation)}{\text{Li} \rightarrow 320}$$

mple of Calculations

$$6 = \frac{9}{10} = \frac{1413}{251.6410} = 3.9413 99 = 3.4 MPa$$

$$E = \frac{\Delta L(elongnhon)}{2} = \frac{1.5}{320} = 4.7415^{3}$$

$$Ai = \frac{\pi}{\pi}(Di)^2 = \frac{\pi}{4}(17.9)^2 + 10^6 = 251.6$$
 $= 320 + 70$
 $AF = \frac{\pi}{4}(PF)^2 = \frac{\pi}{4}(14.8)^2 + 10^6 = 172 \text{ m}^2$ $= 340 \text{ mm}$

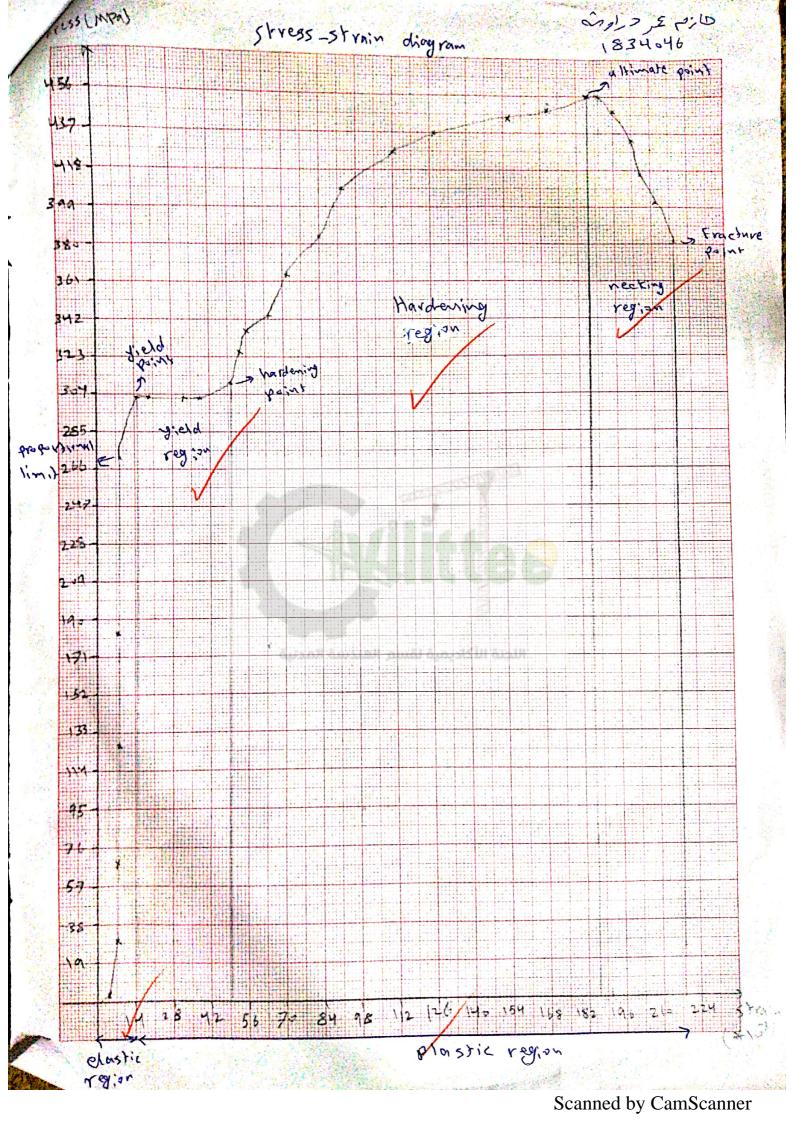
3.4.3. Calculations

- 1. Draw the stress strain Diagram (if you want, use Excel Program) and show on it these regions: Flastic, Plastic, Yield, Hardening, and Necking
- Z. Determine:

اللجنة الأكاديمية لقسم الهندسة المدنية

3. Calculate:

Ductility (Elengation) =
$$\left(\frac{L_F - L_q}{L_i}\right)$$
 = $\left(\frac{399 - 32}{320}\right)$ $\approx 120\% = 21.8\%$


Ductility (Reduction in area) =
$$AF - Ai$$
 4100%
= $172 - 251.6$ $4100\% = 31.6\%$

True Stress at fracture Point =
$$6 = \frac{P}{AF} = \frac{99 \times 13}{172 \times 15^{b}} = 575.6 \text{ MPa}$$

True Strain at Fracture Point =
$$\mathcal{E} = \frac{\Delta L}{L_F} = \frac{7000^3}{3900^3} = 179.5 \text{ et } 173$$

stress - Strain diagram analysis!
& 1 chastic region: stress and strain connected with two
relationship such as linear and direct.
- The Slope is approximately equal modulus of Elasicity
- By the end of the linear, is's the proportional limit
- modulus of flusicity is required to be between (190-2)
but in our experient (E) equal (165.5 GPal Soit 15
not accepted
a yield region i we note that the stress is constant
where as we absence that the strain is getting increased
hardening region Starts from hardening point to the
ultimate point.
(3) Ultimate stress: it is the maximum stress in stress - strain
dingram which steel rad can stand without getting broken.
a Fracture paint: the point which the steel rod count
s tond on it, so it's wall by Keny Island
(5) necking region; starts from the ultimate stress
to the grackure point, at this region thestress is storets
decreasing while other strain increasing in our experiment
fre ductility (alangation) equals (21.890) and this value
is accepted because this value is > 16%, she yield
joint was 3.02 men and ultimate stress - 457 man
sothe type of Steel is G40
(4101/ >2 (275 >< yield < 415) (380 < ultimate < 520)
- BK

or we find that bacomain being because AF (A; From
G-P when the area decreased the stress increase
Ā
- Eachal (E Eny, because Le) Li From & = DL when the
length increase the strain decrease.
- we get the steel vod testod in a marchine called (MTM)
by fixing the ends of the steel took in the marchine, then
we input the information to asoftmare computer (special)
for tensile test. As a result of that the information
we got tell us that the mass of steel rod and
. The cross sectional great as reclas the langth of the
red lead us to find density of the root as the tension
reaches to the man value it will hake place a necking
to the rad and it will break on a shape called cup and come
nesting 6
A 7 Supplier and an analysis of supplier and a supp
Exacture.
a modulus of resilience in Stress-Strain diagram council to
the area under the elastic region
* modalas of fory hness is the area under stress-Strain diagram
Errors: O Error in moduluse of resilience
@ Freez in mochiluse of toryhuese
3 Error in measuring longth and weight of the red
(4) Error in calculations.
3.6. Remember to make your report tidy and neat 3
Prepared by Eng Buthaina Abu-Saleem

مخسر مواد البناء/الجربة الرابعة/ بميم السغب

Building Materials Laboratory

Experiment No.: 4

Specific Gravity and Absorption of Coarse and Fine Aggregate
Rodded Unit Weight of Coarse Aggregate

اللجنة اللكاديميا لقسم المنتدنيا

Name	Mark
181 jeurs 200	(96-0
المسفاريني	(100)
0.	2012

Student's gumber	Section :		i z Spinistora s
建	1	21/10/2019	Mondag 28/10/2019
		A STATE OF THE PARTY OF THE PAR	

Specific Gravity and Absorption of Coarse and Fine Aggregate

Rodded Unit Weight of Coarse Aggregate

the quality of against to the quality of against	2- Find the absorbtion of gate and to Sind comparing 8.6 with	cled Bulk Jensity of the Scale and to Know Voi
22. Apparatus and Equipment List the names of the following	equipment and tools:	1179 number of aggregate
special balance with basket		Cone/mold
A		
	2000 - C	
Pycnometer	Steel cylinder with rod	Oven

4.4. Data and Calculations 4.4.1. Specific gravity and absorption of coarse aggregates Data: A: Weight of oven-dry test sample in air (g) B: Weight of S.S.D. sample in air (g) C: Weight of saturated sample in water (g) weight of oven dried - weight in water Calculations: 1. Apparent Specific Gravity = 1459 - 939.6 = 2.80 2. Bulk Specific Gravity (SSD) = weight of SSD in air - weight in water = 1500 - 939.6 = 2.676 3. Absorption (%) = weight of SSD in air - weight of oven dried $=\left(\frac{3500-3459}{11.59}\right)$ weight of oven dried 4.4.2. Specific gravity and absorption of fine aggregate Data: A: Weight of oven —dry specimen in air (g) B: Weight of Pycnometer filled with water (g) S: Weight of the saturated surface-dry specimen (g) C: Weight of Pycnometer with specimen and water (g) 1. Apparent Specific Gravity = $\frac{A+B-C}{A+B-C} = \frac{494+1449-1730}{494+1449-1730}$ Calculations: = 2.699 S+12-C = 501+1419-1186 2. Bulk Specific Gravity (SSD) = = 2.63 3. Absorption (%) = $\frac{S - A}{A} + 300 = \frac{501 - 494}{494} + 300$ = 1.417. Prepared by Eng Buthaina Abu-Saleem

Weight of measure plus compacted aggregate (kg) $\frac{1}{12}$ $\frac{1}{$		
Weight of measure plus compacted aggregate (kg) $\frac{20.82}{17.2}$ $\frac{1}{2}$	Data: Compacted ass	
Calculations given in the gargegate $=$ mass $Sull$ water $=$ $C-D$ $\frac{15 \cdot 3b-b}{1000} = 9.3b + 30 \text{ m}^3$ 2. Compacted Bulk density of aggregate $=$ mass $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	Weight of measure plus compacted aggregate (kg) Weight of measure plus loose aggregate (kg) Weight of measure filled with water (kg) Weight of measure (kg)	در ۱۶
2. Compacted Bulk density of aggregate = $\frac{20.80 - 6}{9.36 + 100} = \frac{1583.23}{9.36 + 100} = \frac{19.9 - 6}{9.36 + 100} = 19.9 - 6$		
2. Compacted Bulk density of aggregate = $\frac{20.80 - 6}{9.36 + 100} = \frac{1583.23}{9.36 + 100} = \frac{19.9 - 6}{9.36 + 100} = 19.9 - 6$	1. Volume of aggregate = mass Sull water = C - D	
9.36 + 103 3. Voids (%) of compacted sample $(1 - \frac{M_3}{S * W}) * 100 = (1 - \frac{1583.33}{9.73.1900}) * 100$ 4. Bulk density of loose aggregate $= \frac{19.0 - b}{9.36 * 10^3} = 1640.25 \text{ Kg/m}$ 5. Voids (%) of loose sample $= (1 - \frac{M_2}{S * W}) * 100 = (1 - \frac{1440.25}{2.73*1000}) * 100$ 6. Calculate the angularity number if the bulk density (measured to calculate it) is 0.97 of the compacted bulk density. 8. UK density. 8. UK density $= 0.97 * compacted density = 0.97 * 1583.23 * 1535.83$ 8. Kg/li 8. Solid $= 1.900 \times 1.90$	$\frac{15.36-6}{1000} = 9.36 \pm 10 \text{ m}^3$ 2. Compacted Bulk density of aggregate = mass of agg compact = $\frac{A-D}{\text{volume}}$	
9.36 + 103 3. Voids (%) of compacted sample $(1 - \frac{M_3}{S * W}) * 100 = (1 - \frac{1583.33}{9.73.1900}) * 100$ 4. Bulk density of loose aggregate $= \frac{19.0 - b}{9.36 * 10^3} = 1640.25 \text{ Kg/m}$ 5. Voids (%) of loose sample $= (1 - \frac{M_2}{S * W}) * 100 = (1 - \frac{1440.25}{2.73*1000}) * 100$ 6. Calculate the angularity number if the bulk density (measured to calculate it) is 0.97 of the compacted bulk density. 8. UK density. 8. UK density $= 0.97 * compacted density = 0.97 * 1583.23 * 1535.83$ 8. Kg/li 8. Solid $= 1.900 \times 1.90$	20.82 - 6 450 2 22 Nalma ³	
4. Bulk density of loose aggregate = $\frac{19 \cdot 2 - b}{9 \cdot 36 + 30^3} = 14 \cdot 10 \cdot 25 \cdot \text{Kg/m}^3$ 5. Voids (%) of loose sample = $\left(1 - \frac{M_2}{S + w}\right) + 100 = \left(1 - \frac{14 \cdot 10 \cdot 25}{2 \cdot 73 + 1000}\right) + 10$ 6. Calculate the angularity number if the bulk density (measured to calculate it) is 0.97 of the compacted bulk density. Bulk density = $0.97 + \text{Compacted density} = 0.97 + 1583 \cdot 33 = 1535 \cdot 83$ Solid 7. = $100 \cdot 1 \cdot - 10 \cdot 1 \cdot - 100 \cdot 1 \cdot - 10$	1989.30/10/11	1300
4. Bulk density of loose aggregate = $\frac{19 \cdot 2 - b}{9 \cdot 36 + 30^3} = 14 \cdot 10 \cdot 25 \cdot \text{Kg/m}^3$ 5. Voids (%) of loose sample = $\left(1 - \frac{M_2}{S + w}\right) + 100 = \left(1 - \frac{14 \cdot 10 \cdot 25}{2 \cdot 73 + 1000}\right) + 10$ 6. Calculate the angularity number if the bulk density (measured to calculate it) is 0.97 of the compacted bulk density. Bulk density = $0.97 + \text{Compacted density} = 0.97 + 1583 \cdot 33 = 1535 \cdot 83$ Solid 7. = $100 \cdot 1 \cdot - 10 \cdot 1 \cdot - 100 \cdot 1 \cdot - 10$	3. Voids (%) of compacted sample=	
4. Bulk density of loose aggregate = $\frac{19 \cdot 2 - b}{9 \cdot 36 + 40^3} = 14 \cdot 40 \cdot 25 \cdot \text{Kg/m}^3$ 5. Voids (%) of loose sample = $\left(1 - \frac{M_2}{S + w}\right) + 100 = \left(1 - \frac{14 \cdot 40 \cdot 25}{2 \cdot 73 + 4000}\right) + 10$ 6. Calculate the angularity number if the bulk density (measured to calculate it) is 0.97 of the compacted bulk density. Bulk density = $0.97 + \text{Compacted density} = 0.97 + 1583 \cdot 33 = 1535 \cdot 83$ Solid 7. = $100 \text{ N} \cdot - \text{U} \cdot \text{I} \cdot \text{Impacted density} = 100 \cdot \text{I} \cdot \text{Impacted density} = 100 \cdot $		
$\frac{19 \cdot 2 - b}{9 \cdot 3l + 30^{3}} = 14 \cdot 30 \cdot 25 \text{ Kg/m}^{3}$ 5. Voids (%) of loose sample = $\left(1 - \frac{M_{2}}{S + w}\right) + 100 = \left(1 - \frac{14 \cdot 30 \cdot 25}{2 \cdot 73 + 1000}\right) + 100$ 6. Calculate the angularity number if the bulk density (measured to calculate it) is 0.97 of the compacted bulk density. Bulk density = $0.97 + \text{Compacted density} = 0.97 + 1583 \cdot 33 = 1535 \cdot 83$ Solid 7. = 100% - 0% - 10% -	mass of loose aggregate B-D	
$\frac{19.2 - 6}{9.36 \pm 40^3} = 1440.25 \text{ Kg/m}^3$ 5. Voids (%) of loose sample = $\left(1 - \frac{M_2}{S+W}\right) \pm 100 = \left(1 - \frac{1440.25}{2.73 \pm 4000}\right) \pm 400$ 6. Calculate the angularity number if the bulk density (measured to calculate it) is 0.97 of the compacted bulk density. 8 ulk density = $0.97 \pm \text{ComPacted density} = 0.97 \pm 1583.33 = 1535.83$ Solid 7. = $1007 107. \rightarrow 1007 100$	Oblain	
5. Voids (%) of loose sample = $\left(1 - \frac{M_2}{S+W}\right) + 100 = \left(1 - \frac{1430 \cdot 25}{2 \cdot 73 + 1000}\right) + 100$ 6. Calculate the angularity number if the bulk density (measured to calculate it) is 0.97 of the compacted bulk density. 8 UK density = $0.91 + \text{Compacted density} = 0.91 + 1583 \cdot 33 = 1535 \cdot 83$ 8 Solid /. = 100% - U'. $\rightarrow 100\%$ - 100% - 100	19.2-6 - 11.10 25 Valm	
6. Calculate the angularity number if the bulk density (measured to calculate it) is 0.97 of the compacted bulk density. Bulk density = $0.91 + Compacted$ density = $0.91 + 1583.33 - 1535.83$ Kg/1 Solid /. = 100% 10% 100%	1.26 + 20	-
6. Calculate the angularity number if the bulk density (measured to calculate it) is 0.97 of the compacted bulk density. Bulk density = $0.91 + Compacted$ density = $0.91 + 1583.33 - 1535.83$ Kg/1 Solid /. = 100% 10% 100%	5. Voids (%) of loose sample = $\left(1 - \frac{M_2}{S_{+}w}\right) + 100 = \left(1 - \frac{1410.25}{2.73 + 1000}\right) + \frac{1}{2.73 + 1000}$	<i>\$</i> 00
Bulk density = $0.97 + \text{Compacted density} = 0.97 + 1583.33 - 1535.83$ Rg/II Solid /. = 100% U'. $\rightarrow 100\%$ $44.72 - 55.28\%$. V'. = $\left(1 - \frac{1498}{2.71 + 1000}\right) + 100 = 44.72$ Angulaity = 67% Solid /.		
V'' . = $\left(1 - \frac{1498}{2.71 + 1000}\right) + 100 = 44.72$ Angulaity = 671Solid . Trepared by Eng. Buthaina Abu-Saleem	Rulk density = 0.97 + compacted density = 0.97 + 1583.33 = 1535.83 Ke	g/m³
repared by Eng Buthaina Abu-Saleem	Solid 1. = 100% - U1, - 300% - 44. 42 - 33.281,	
repared by Eng Buthaina Abu-Saleem	V". = (1 - 1498) +100 = 44.72 or	
repared by Eng Buthaina Abu-Saleem	Angulaity = 671 Solid 1.	
171 - Fr 201	repared by Eng.Buthaina Abu-Saleem	
6+137.481. = 11. 72	67155.281. = 11.	£2'1

4.5. Discussion

4.5.1. Specific gravity and absorption

- The SSD weight in water is less than that in air. Why?
 - The aggregate in water the aggregate dried and loss weight and its equal weight of removed water , by oven conficulty aggregate dried and it will not have anguoid.
- Our aggregate (coarse and fine) are Heavy, Normal, or Light weight? Why? according the value of 8.6, we know that when 8.6 +3 is heavy and if 8.6 < 2 is Light and if 2.2 < 8.6 < 2.8 is Normal 80 when we calculated the values of Bulk and apparent 8.6 For coarse aggregate was (2.676.290) and the values of Bulk and apparent for Sine aggregate was (2.676.290) and that indicate that coarse agg is Normal and Fine aggregate was (2.6376.200).
- Absorption% of coarse and fine aggregate are accepted or not? Why?

 The Max allowable of absorption must be \$51. and the absorption For Coarse aggregate is 2.811. So its Accepted and the absorption For Sine aggregate is 1.41 So its accepted accepted.
- What is the effect of using alcohol instead of water to calculate the specific gravity of aggregate; i.e. [Gs=Mass of aggregate / Mass of alcohol] instead of [Gs=Mass of aggregate / Mass of water]?

 If we used alcohol, the volume will increase and according to the $S = \frac{M}{V}$ So the relation between Mass and density of So the density will decrease and according to the $S = \frac{M}{V}$ So the S. G increase density alcohol $S = \frac{M}{V}$ So the S. G increase density alcohol $S = \frac{M}{V}$ So the S. G increase
- The air bubbles must be eliminated from pycnometer. Why?

 We remove the bubbles for their essect on 8.6 when

 we measure the specimen with bubbles the volume will be

 larger than the real measurement, the value os s.6

 is decrease and this is not correct volume and there

 for the correct value of S.6.

Prepared by Eng. Buthaina Abu-Saleem

4.5.2. Bulk density of coarse aggregate

- Comment on the acceptability of the following measurements and explain why:
 - Compacted Voids ratio Voids ratio Srom our experiment equal 42%, and its accepted because its greater than 33%.
 - Angularity number was 11.72% and the range Angularity number accepted for the Angularity must be Less or equal So its not accepted

Is our coarse aggregate normal? Why?

Sour coarse aggregated Ayg 149e	Bulk density (Kg/m³)	
Heavy	12880	
Norma I	1520-1180	
light	1120	

the computed density is 1583.33 Kg/m3 So we can sayed that is hormal aggregate.

- Compare the compacted results with loose.
 When we calculated the compacted density was 1583.33 Kg/m and the loose density was 1410.25 Kg/m3, the compacted density > loose density Because its exposed for compacting voids for compacted density and the voids For loose density is the loose voids is larger Because it isn't compacted and inverse relation between density and voids,
 - What is the relation between the roundness of the aggregate and the angularity number? If the obsence of roundness that means more angular So we can noticed that the relation between the roundness and the angularity number its inverse relation

4.5.3. Error sources:

- 1. When we Airred and mited to remove air bubbles i't had to last sor somin and we didn't.
- 2. The air was not removed of fychometer
- 3. When we add the fine Agy to the Pychometer, we didn't add the


3.6. Remember to make your report fidy and neat (S. 1)

Prepared by Eng. Buthaina Abu-Saleem Whole Sample 1 Some of it soll on the

4- Error in tamping the Sample.

مخسر مواد الساء/ البركبة الخامسة / فيع السعب

Building Materials Laboratory

Experiment No.: 5

Sieve Analysis of coarse and Fine Aggregates

Name	Mark
المسفار عني	100

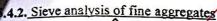
Student's	Section	day and deto	Submission day and date
ACCOUNT OF	1	28/11	4/11
Part 20		Monday	Monday

Sieve Analysis of coarse and Fine Aggregates

1- Determine the grading of agg 2- determine the finess modulus for coarse and fine agg 3- Determine if the aggregate is accepted or not to use in concrete 4- Determine the maximum of agg and nominal maximum size of agg.

Ralance
Sieves for coarse Agg
Sieve Sor fine Agg

Coars aggregate
Sine aggregate


Prepared by Eng. Buthaina Abu-Saleem

2

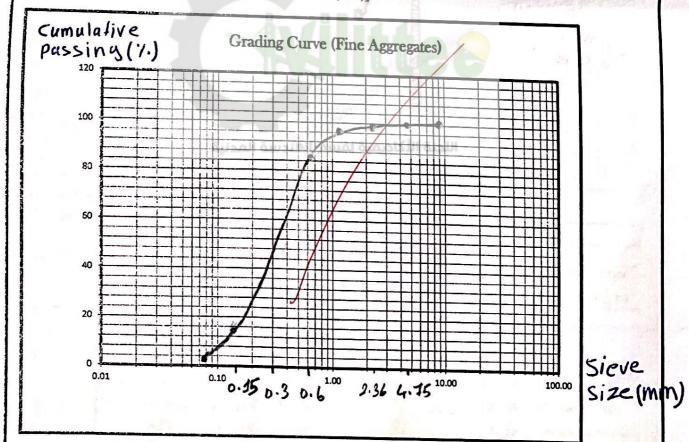
O Dan and Carrie 21 008 2 1 1 5.4.1. Sieve analysis of coarse aggregates Sample weight = 999 (3) Table 6.1: Sieve analysis of coarse aggregates Cum. Ret. Cum. Pass Retained Ret. Wt. sieve+ret. sieve wt. sieve No. sieve size (%) (%) (%) (g) (g) (g) (mm) 200 0 0 1 1/2" 37.5 100 1" 25 1.220 98.78 1.22 12 3/4" 19 13.22 86.78 12. 118 1/2" ×12.5 25.93 74.07 12.71 125 9.5 3/8" 79.13 20.87 53.20 523 4 4.75 98.15 19.02 187 8 2.35 98.96 0.81 16 1.18 99.36 0.40 200 0.075 0.03 99.97 par: 983 Total weight retained × 100 1. F.M. = Scum Ret (1) Sor all Standard Sieve Determine: 2. M.S. = 25 mm , 3" 300 3. N.M.S. = 12.5 mm 3" 0+1.22+25.93+79.13+ 98.15 + 98.96 + 36100) Draw the [cumulative passing (%)] versus [sieve size (mm)]; ((Excluding sieve #200)) 6.03 cumulative Grading Curve (Coarse Aggregates) Passin & (1/.) 100 80 60 40 20 Sieve Size (mm) 1.0 4.15 10.0 40 25 Prepared by Eng. Buthaina Abu-Saleem

Standard

Not

Sample weight= -- 300

Table 5.2: Sieve analysis of fine aggregates


sieve size (mm)	sieve No.	sieve wt. (g)	sieve+ret. (g)	Ret. Wt.	Retained (%)	Cum. Ret.	Cum. Pass
9.5	3/8"			0		(%)	(%)
4.75	4				0	0	100
2.36	8			0	0	0	100
1.18	16			3	1.003	1.003	92.90
0.5				4	2.337	2.34	97.66
	30			26	8.695	21.035	00 01
0.3	50			112	A		88.96
0.15	100				37.458	48.493	51.50
人 0.075	200			213	37.792	2000	23. 7
X pan				34/	21.371	97.656	2.341
		-		7	2.341	100	0
		Total weigh	t retained	290			

1. F.M. = Scum ret Sor all Standard Sieves

0+1.003+2.34+11.035+48.493+86.285

2. M.S. = 4.75mm, \$4 3. N.M.S. = 0.6mm, \$38

Draw the [cumulative passing (%)] versus [sieve size (mm)]

Prepared by Eng. Buthaina Abu-Saleem

The state of the s		2	The second second second	
A . DC and	ASTM grading	requirements	for fine aggregate	
his 9.4. DO And	. To B	dans emicute	TOTALINE MENTER STREET	ł

Sieve size		Percentage by m	nass passing sieve	Company of the Compan		
D.C.		BS 882: 1992		140		ASTM
BS	ASTM	Overall	Additional limit	s*	,	C 33-92a
	No.	limits	C	<u>M</u>	F_	
10 mm	$\frac{3}{8}$ in.	100			/-	100
5 mm	$\frac{3}{16}$ in.	89 – 100	, -/	-	/	95 – 100 /
2.36 mm	8	60 – 100	60-100	65 – 100	80 - 100	80 - 100
1.18 mm	16	30 – 100 V	30-90 ₺	45 -100 V	70 – 100 V	50 - 85
600 µm	30	15 – 100 V	15 – 54	25-80 ×	55 – 100	25 – 60
300 µm	50	5 - 70	5-40	5 – 48	5 - 70 V	10-30
150 μm	100	0-15/2		• 03	- V	2-10

Table 9.5.: Some of the grading requirements for coarse aggregate according to ASTM C 33-92a

Sieve size		Percentage by mas	ss passing sieve	10 6			
		Nominal size of graded aggregate			Nominal size of single-sized aggregate		
mm	in.	37.5-4.75mm	19 – 4.75mm	12.5-4.75mm	63 mm	37.5 mm	
		$(1\frac{1}{2} to \frac{3}{16} in.)$	$(\frac{3}{4} \text{ to } \frac{3}{16} \text{ in.})$	$(\frac{1}{2} \text{ to } \frac{3}{16} \text{ in.})$	$(2\frac{1}{2} \text{ in.})$	$(1\frac{1}{2} in.)$	
75.0	. 3		- 1	6	100		
63.0	$2\frac{1}{2}$		Die of	1/-	90 – 100	-	
50.0	2	100		1 - 1	35 – 70	100	
38.1	$1\frac{1}{2}$	95 – 100	-		0-15	90 – 100	
25.0	1	-	100	-	The state of the s	20 – 55	
19.0	3 4	35 – 70	90 – 100	100	0-5	0-15	
12.5	1/2		- /	90 – 100	-	•	
9.5	3 8	10-30	20 - 5 1	40-70	. اللجنة	0-5	
4.75	3 16	0-5	000	0 – 15			
2.36	No. 8		0-5	0-5	•	•	

Table 9.6.: Grading requirements for coarse aggregate according to BS 882: 1992

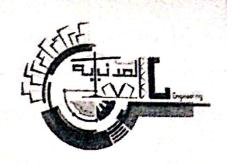
	Percentage by	y mass passing	g BS sieve					
	Nominal size	of graded ag	gregate	Nominal s	ize of single-	sized aggreg	gate	
in.	40–5mm	20-5mm	14-5mm	40 mm	20 mm	14 mm	10 mm	5 mm
	$(1\frac{1}{2} - \frac{3}{16} in)$	$(\frac{3}{4} - \frac{3}{16} in)$	$(\frac{1}{2} - \frac{3}{16} in)$	$(1\frac{1}{2} in.)$	$(\frac{3}{4} \text{ in.})$	$(\frac{1}{2}$ in.)	$(\frac{3}{8} in)$	$(\frac{3}{16} in)$
2	100	-1	/	35 – 70	100		-	3 -
$1\frac{1}{2}$	95 - 100	4	/	0-15	90 – 100		1.	
3 4	35 – 70	90 - 100	100	0-5	0 – 15	100	•	
1 2	•	/.	90 – 100		1	85 - 100	100	-
3 8	10-30/	20-55 K	40 – 70	•	0-5	0 - 50	85 - 100	100
	0-5	0-10	0 – 15	•	<u>-</u>	0 – 10	0 - 25	50-100
#7	-	0-5	0-5	•		•	0 - 5	0 - 30
	2 1 1 2 3 4 1 2 3 8 3 8 3 16	Nominal size in. $40-5$ mm $(1\frac{1}{2} - \frac{3}{16} \text{ in})$ 2 100 $1\frac{1}{2}$ 95 - 100 $\frac{3}{4}$ 35 - 70 $\frac{1}{2}$ - $\frac{3}{8}$ 10 - $\frac{30}{16}$ $\frac{3}{16}$ 0 - 5	Nominal size of graded age 40-5mm ($1\frac{1}{2} - \frac{3}{16}$ in) ($\frac{3}{4} - \frac{3}{16}$ in) 2 100 - 100 1 $\frac{1}{2}$ 95 - 100 - $\frac{3}{4}$ 35 - 70 90 - 100 $\frac{2}{2}$ - $\frac{3}{8}$ 10 - 30 20 - 55 $\frac{3}{16}$ 0 - 5 0 - 10 $\frac{3}{16}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nominal size of graded aggregates Advanced Size of Graded aggregates Advanced Size of Graded aggregates Nominal size of graded aggregates Nominal size of graded aggregates Advanced Size of Graded aggregates Nominal size of graded aggregates No	Nominal size of graded aggregate Nominal size of single- in. $40-5$ mm $20-5$ mm $14-5$ mm 40 mm 20 mm $(1\frac{1}{2}-\frac{3}{16}$ in) $(\frac{3}{4}-\frac{3}{16}$ in) $(\frac{1}{2}-\frac{3}{16}$ in) $(1\frac{1}{2}$ in.) $(\frac{3}{4}$ in.) 2 100 $35-70$ 100 $1\frac{1}{2}$ $95-100$ - $0-15$ $90-100$ $\frac{3}{4}$ $35-70$ $90-100$ 100 $0-5$ $0-15$ $\frac{1}{2}$ - $90-100$ - $0-5$ $\frac{3}{8}$ $10-30$ $20-55$ $40-70$ - $0-5$ $\frac{3}{16}$ $0-5$ $0-10$ $0-15$ - $0-5$	Nominal size of graded aggregate) in. $40-5 \text{mm}$ $20-5 \text{mm}$ $14-5 \text{mm}$ 40 mm 20 mm 14 mm $(1\frac{1}{2}-\frac{3}{16}\text{ in})$ $(\frac{3}{4}-\frac{3}{16}\text{ in})$ $(\frac{1}{2}-\frac{3}{16}\text{ in})$ $(\frac{1}{2}\text{ in.})$ $(\frac{3}{4}\text{ in.})$ $(\frac{1}{2}\text{ in.})$ 2 100 $35-70$ 100 - $35-70$ 100 - $1\frac{1}{2}$ $95-100$ - $0-15$ $90-100$ - $0-15$ $90-100$ - $0-15$ $90-100$ - $0-15$ 100 - $0-15$ 100 - $0-15$ 100 - $0-15$ 100 - $0-15$ - $0-15$ 100 - $0-15$ - $0-15$ - $0-10$	Nominal size of graded aggregate in. $40-5 \text{mm}$ $20-5 \text{mm}$ $14-5 \text{mm}$ 40mm 20mm 14mm 10mm $(1\frac{1}{2}-\frac{3}{16}\text{in})$ $(\frac{3}{4}-\frac{3}{16}\text{in})$ $(\frac{1}{2}-\frac{3}{16}\text{in})$ $(\frac{1}{2}\text{in})$ $(\frac{3}{4}\text{in})$ $(\frac{3}{4}\text{in})$ $(\frac{1}{2}\text{in})$ $(\frac{3}{4}\text{in})$ $(\frac{3}{4}\text{in})$ $(\frac{3}{8}\text{in})$ 2 100 - $0-15$ $90-100$ - $0-15$ $90-100$ - $0-15$ 100 - $0-15$ - $0-10$ 100 - $0-10$ - 0

^{*} C = coarse; M = medium; F = fine.

‡ For crushed rock sands the permissible limit is increased to 20 percent, except when used for heavy duty floors.

Table 9.7.: Grading requirements for coarse aggregate according to J.S. (Jordanian Standards)

Sieve size		Percentage by mass passing sieve				
510		Nominal size of g	raded aggregate	a de la companya de		
mm	in.	40 mm	25 mm	20 mm	12 mm	
		$(1\frac{1}{2} in.)$	(1 in.)	$\frac{3}{4}$ in.)	$(\frac{1}{2}$ in.)	
51	2	100		/.	•	
38	$1\frac{1}{2}$	80 – 100	100	-		
25.4	1	20 – 50	95 – 100 V	100		
19	3 4	10 – 30	40-80 1	95 – 100	100	
12.7	$\frac{1}{2}$	-	5-50	50 – 80	90 – 100	
9.5	3 3	0-10	0-15	25 – 60	80 – 100	
4.75	<u>3</u> 16	0-5	0-5	0 – 10	5 – 50	
2.36	#3	0-2	0-5	0 – 10	0-25	
0.075	#200	0-2	0-2	0-2	0-2	


Table 9.8.: Grading requirements for fine aggregate according to J.S. (Jordanian Standards)

Sieve size		Percentage by mass passing sieve			
		Nominal size of	graded aggregate	E HES	
mm	No.	9.5 mm	4.75 mm	1.18 mm	
		$(\frac{3}{8} \text{ in.})$	(No. 4)	(No. 8)	
9.5mm	$\frac{3}{8}$ in.	95 – 100	100	./	
4.75 mm	4	80 – 100	90 – 100 🗸	اللجنة الكاديم	
2.36 mm	8	50 – 80	75 – 100 V	100	
1.18 mm	16	20 – 70	55−90 X	90 – 100	
600 µm	30	10-35	35 – 59	60 – 90	
300 μm	50	5-15	8 – 30	20 – 60	
150 μm	100	0-5	0 – 10	0-20	
75 μm	200	0-5	0-5	0-10	

Fine Aggregate: when we compare table [5.2] with table [9.4]	
For BS And ASTM we observed that: - According to ASTM	
the FA is not accepted because its not accepted to the requirments	
OS ASTM also according to 185 the FA is accepted all of	
overall limits of sieves are accepted according to 18s requirments.	À
Also we tested the FA to determine that is (coarse, medium, Sin	e)
Sand So we Sind that is not accepted to be coarse Sand	
and meet its accepted to be Fine Sand and according to the	
JS table [9.8] we see that its not accepted	
in Sieve #16,30,50,100 ans.	
Finess of Modlus 1.49 <2 its accepted to be Sine augre	ga e
es fine agy. Sin	2
In FA table [5.2] Sieve #200 has cumulative Passing 2.34425	ar
So its accepted to use in concrete because is the clay higher	
than 5% then its not accepted.	
We use sieve 9.5 mm in FA to insure that we removed	
all impurities which is \$5mm.	
[A is well-graded according to 185 and J5 but poor graded	
according to ASTM.	
From table 6.1 and 5.2 we found that a seive	
Size increase the Log of Sieve Size Increase.	
repared by Eng. Buthaina Abu-Saleem	7

© Coarse aggregate: - When we compare table [6.1] with table [9.5]
For BS we Sound that CA in our experiment is not accepted
and table [9.1] Sor ASTM is not accepted Also it is not
Accepted Sor Jordan Standard table [9.7]
B The CA is poor graded according to ASTM because its not
accepted to the ASTM requirments, Also CA is poor graded
according to Jordan and BS Requirements.
@ Finas Modulus of CA in our experimen! = 603
So that this is a A because 6.03 > 5 According
to table Fineness Modulus.
The state of the s
From :- 1- Irror in reading weight
2- From in use Shaker
3- Error in the order of sieves
4- Error in Sieves (not clean)
5- Some of agg go out from Shaker
Prepared by Eng. Buthaina Abu-Saleem

Building Materials Laboratory

Experiment No.: 6

Resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine

اللجنة الأكاديمية لقسم الهندسة المدنية

! are Mark
515 Stop (9.5) 015 35 (100)

Stephenis Anniber	Section number	Experiment day and date	Submission day and date
, 834046	4	Thursday	7 hm vidag
		7/11/2019	7/11/2019

Resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine

6.1. Objectives

to containing L. A mombar (value)

To measure the hardness of ang.

6.2. Apparatus and Equipment

Sieves, driving, timer, Pan, Steel balls.

4 12, 3/4", 1/2", 3/8"

8.3. Materials

COAVSE OGGREGATE

6.5. Data and Calculations

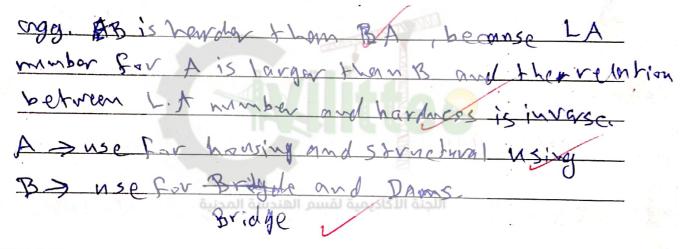
Data:

W1: Weight of aggregate before testing = .5.9.9.9
W2: Weight of aggregate retained on sieve #12 after testing = .3.9.859

Calculations:


Calculate the Abrasion%

6.6. Discussion


What is the quality of our sample? Why?

It's for aprality bearnese LA = 38.3	
(35-45) according to LA standard.	

• How will the L.A. value be affected if the number of steel balls in L.A. machine is 8?

• The abrasion value found from Los Angeles test for two aggregates A and B are 22% and 13% respectively. Which aggregate is harder? Why? For what types of constructions are these suitable?

6.7 Remains or to can be wear report tiely and reaf .

Building Materials Laboratory

Experiment No.: 7

Concrete workability and Admixtur

Name (1987)	Mark
ها زم الحر دراوه	hu.com 96
	100

Stevens Angle	1位指令50.在85课程	ection Inber	Experiment day and date	Submission day and da
1874046	4		Thursday	Thursday
			14/11/2014	28/11/20

Concrete workability and Admixture

Remember to make your report tidy and neat @

7.1. Objective

To know or check the workability of concrete by
following tests; slumptest, stow table test, Vebe test
compacting factor test, Kerly ball test
we add amandaishure (superplacticizer) to observe

7.2. Materials

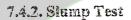
water coment crarse five an superplanticizer

7.3. Tests Apparatus and Equipment

Apparatus / Tools		all resemble to the second		
Name	shurt test	You /	mixen	C-por table
Apparatus			tte	
Tools				
Name	Velbe	compacting	relley ball	Vibration
Prepared by Eng Buths	test are barajus	factor	the A comparat	Vibration ratable

Workability Test

7.4.1. Weights


Batch=35kg

Cement= 4.7 kg

Coarse Aggregate= 18.6 kg

Fine Aggregate= 9.4 kg

Water= 2.35 kg

Cone Height (cm)	Height (cm) Slump (cm)	
30	窗 (0 /	True

7.4.3. Vebe Test

	Time (sec) (Vebe Seconds)
3	Scends

7.4.4. Flow Table Test

Dimensions (cm)	Readings (mm)	Diam (m)		D _{f-avg} (mm)	Flow Factor (%)	اللج	
Table	185	.CiVili	745	DF,+DF2	F.F-Draw	- D' &1 >.	, 41°
70 x 79	170	Z n		= 365470	= 367,5-3	20-0	
Di	190	Dz	370	2 = 367.5	200	- oc 130	L
26	140	<i>Du</i>	,	- 707.3	- 83.75	70	- A-

Prepared by Eng. Buthains Abu-Saleem

3

7.4.5 Compacting Factor Test

Wt. of Partially compacted concrete (kg)	Wt. of Fully compacted concrete (kg)	Compacting Factor	
14.26-3.24	14.38-3.24	0.989	
= 11.02	- 11.14		

Admintures Test

7.4.6. Weights

Batch= 20 kg Cement = 2.7 kg

Coarse Aggregates= 10.6 kg

Fine Aggregates= 5.4 kg

Water= 1.31 kg

Plasticizer= 1.11% of cement

Plasticizer= 1.11/100*2.7

Plasticizer= 0.03kg = 30g

7.4.7 Results

Admixture Type and name	Cone Height (cm)	Slump (cm)	Slump Type
suger & Eisticizer	30	101.5	collapse
(Flocket Spas)			

Flow Table

Davg =
$$\frac{36.5 + 37}{2} = 36.75$$
 cm

Flow Factor = $\frac{1}{2}$ and $\frac{1}{2}$ = $\frac{36.75 - 23}{23}$ axon $\frac{1}{12}$ = $\frac{1}{2}$ 83.75%

Compacting Factor $\frac{1}{2}$

Prepared by Eng Buthsine Abu-Saleem

acting Ractor \ 1440 0/00 \ 140 0 0 00 chile	,
4. Compacting Factor in our of Ponium t we found that compacting	
Factor = 7.989 (it should be (1), according	/_
to the standard compacting factor it's high works of	/
Con OC - when conforcing sactor increases the	
workerpily confifactor work. increase.	
V. low 0.78 - we calculate coup. Factor by:	
100 0.85 Brown Englis Vinconf. womford.	¥
medium 0.92 took.	-
high 0.95	
Disadvantages: not fit to measure very nigh and to low	
work and it takes along time	
5. Admixtures	
* we use super plasticizer to increase workahility with out	
deereasing the strength of concrete	
the aphicitum the achieve	
The aghing the activity one	
C. 4.7: 2-35 27: 1.34	
C: F.A 4.7: 9.4	
-1,2	
C'. CA 4.7 (18.6 2.7! 10.6	
= 1 13.98 = 1.3.93	
we observe that the rapies as remain constant after adding	
The admixture, that means the strength of concrete do cont diffe	
part with mare markability, the shame = 1015 mm so this some	1
7.7.3 Source of errors is a collapse stump and has a va	le
O Ever in mixing time high morkability according to AST	J
and it's accepted because	M
DErvor in using the miler seggregation to staid to	
harson	
Derror in Lauping weight	
@ error in using the apparatus	
5) we used the same sample of concrete fortall tests so this	
is ever because we should use a new congrete for a men test.	
100	
Prepared by Eng Buthains Abu-Saleern	
to design the second se	

مختبر مواد البناء / التجربة الثامنة / جميع الشعب

Building Materials Laboratory

Experiment No.: 8

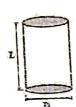
Part.1. Concrete Strength by Non-Destructive Methods Part.2. Concrete Strength by Destructive Methods

Name	Mark
لازم عرد راوش	98
www.civii	100

Student's number	Section number	Experiment day and date	Submission day and date
1834046	4	7hmrsdag 31111/2019	5/12/2019

Part.1: Concrete Strength by Non-Destructive Methods

Part.2: Concrete Strength by Destructive Methods


Apparatus spliting apparatus ultrasomic gase rebound hanner velocity marchine Apparatus manual compressive Antomatic compressive testing machine universal testing machine (UTM) testing marchine

Prepared by Eng. Buthaina Abu-Saleem

2

8.2.1 Destructive Tests

Compressive Strength of cylindrical Concrete Specimens

$$\sigma = \frac{P}{A}$$

 $\sigma = \frac{P}{\pi r^2}$

Where:

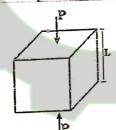
σ: compressive strength, MPa

P: maximum applied load indicating by testing machine, N

D: diameter of cylinder, mm

r: radius of cylinder, mm

Standard Dimensions: L= 300mm and D=150mm

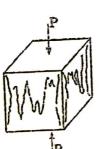

Failure Type:

Compressive Strength of cubic Concrete Specimens

$$\sigma = \frac{P}{A}$$

$$\sigma = \frac{P}{L^2}$$

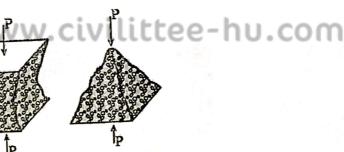
Where:

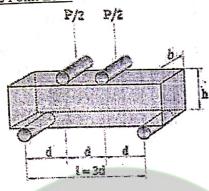

σ: compressive strength, MPa

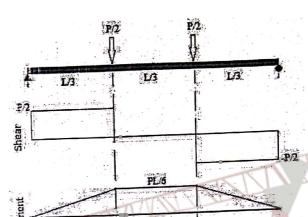
P: maximum applied load indicating by testing machine, N

L: dimension of cube, mm

Standard Dimension: L= 150mm اللجنة الأكاديمية لقسم الهندس


Failure Type:

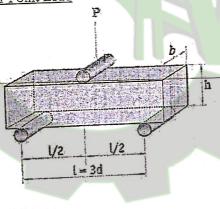

Explosive

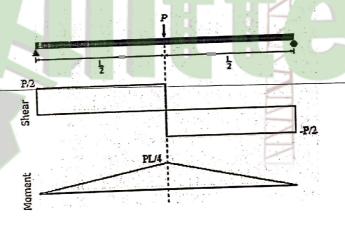

Prepared by Eng. Burhaina Abu-Saleem

Flexural Strength of beam Concrete Specimens

The flexural strength of the specimen shall be expressed as the modulus of rupture fb. Standard dimension: h= 150mm, b= 150mm, L= 450mm and total length= 700mm.

2 Point Load



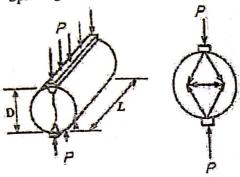


$$\sigma(f_b) = \frac{My}{1} \qquad y = \frac{1}{2}$$

$$I = \frac{1}{12}bh^3 \qquad \sigma(f_b) = \frac{PL}{bh^2}$$

1 Point Load

$$\sigma(f_b) = \frac{My}{I} \qquad y = \frac{h}{2} \qquad I = \frac{1}{12}bh^3 \qquad \sigma(f_b) = \frac{3PL}{2bh^2}$$


www.civilittee-hu.com

Failure Type:

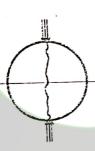
Prepared by Eng.Buthaina Abu-Saleem

Splitting Tensile Strength of Cylindrical Concrete Specimens

Calculate the splitting tensile strength of the specimen as follows:

$$\sigma = \frac{2P}{\pi DL}$$

Where:


o: splitting tensile strength, MPa

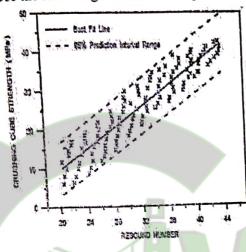
P: maximum applied load indicating by testing machine, N

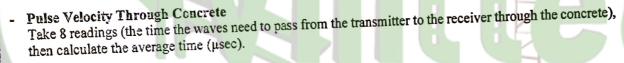
L: length of cylinder, mm

D: diameter of cylinder, mm

Failure Type:

Destructive tests relations:


- Compressive strength of cube = 1.25 Compressive strength of cube
- Direct tension strength = 0.9 Splitting strength
- Compressive strength = (7 11) Tensile strength
- Flexural strength (Modulus of rupture (2P)) = (1.15 1.25) Splitting strength


8.2.2 Non-Destructive Tests

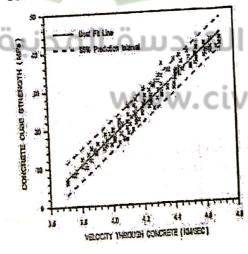
Rebound Number of Hardened Concrete

Take ten readings and discard readings differing from the average of 10 readings by more than 6 units and determine the average of the remaining readings. If more than 2 readings differ from the average by 6 units, discard the entire set of readings. Use the final average to convert from rebound number to compressive

Use the following chart to find Gavs and Grange

Calculate the pulse velocity as follows:

V=L/T


Where:

V= pulse velocity, m/s

L= distance between transducers, m

T = effective transmit time, s

Use the following chart to convert from pulse velocity to σ_{avg} and σ_{range}

اللجنة الأكاديمية لقسم vilittee-hu.com

Prepared by Eng. Buthaina Abu-Saleem

E.3. Date and Calculations 8.3.1. Non -Destructive Tests 8.3.1.1. Pulse Velocity Reading # T (μsec) 27.8 27.4 Gavg (Mpa)= 4 MPa 8.3.1.2. Rebound Number

						_	•
1	2	1	5	6	7	8	_
_	3	-		- 1	2 7.2	2-7	
1	28,6	27.3	27.5	27.1	23.3		•

 $\frac{2T}{8} = 27.5 \text{ MSR}$ $\frac{L}{Tany} = \frac{107 + 157}{27.5 + 156} = 3636.36 \text{ m/Sec} = 3.636 \text{ Km/sec}$

Quanting (Wbs)= (1-8) MB a

8.3.1.2. <u>Rebour</u>	ng Numos	<u> </u>			(7	8	9	10	
Reading #	1 21	2 3 22 23	127	24	21	22	25	26	22	

Re(zvg)= {Re # = 23.7 / Re(range)= Rcong ± 6 = 17.7 - 29.7 (all of these values are accepted)

Re(new 2vg)= 23.7

Gavg (Mpa)= 14 MPa

Orange (Mpa)= 8-21) MPA 4

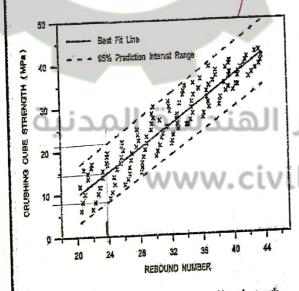


Fig. 1. Relationship between rebound number and crushing cube strength.

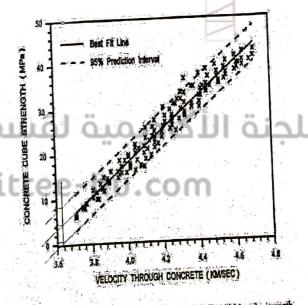


Fig. 2 Relationship between ultrasonic pulse velocity and crushing cube strength.

Prepared by Eng. Buthaina Abu-Saleem

Test	Max. Load (KN)	Strength (MPa) Show your calculations
ompressive Strength [Cubes] (100*100*100)mm	1	0= P = 196 & 13 = 19.6 MBa
		6-P=1884)==23.43 MPa
Compressive Streng [Cylinders] (100*200)mm	\88	$6 - \frac{P}{A} = 188 \text{ a})^{\frac{3}{4}} = 23.43 \text{ MPa}$ $\frac{1}{4}(100)^{2} + 10^{-6}$
Indirect Tensil Strength [Splitting Tes (100*200)mr	ıj	6=28=24120410===============================
- Lo	sile	جنة الله في مية لقسم ا vilittee-hu.com
[Flexural T (2-Point (100*100*30	est]	

8.4.1. Non-Destructive Tests

1) Error% of Rebound Number Test

Rett = bang = 12 14 MPa

Comp = bang = 1 and mpa

embe

2) Error% of Pulse Velocity Test

PN/SC VELOCITY = bang = 4 mga

Comp. = Gang = 19-6 mpa

on be

3) Which one is more accurate Rebound or Pulse velocity test? Why?

pulse velocity is more accorrage, because rebound hammer

measure the strength of the surface of concrete (first 3 cm)

and it have more personal errors.

4) Fatty substance must be used to grease the surfaces of the transmitter and receiver; why?

IN order to get rid of the bubbles be file surface of

Specinen and transmitter and receiver, why

The surface of

West bubbles are made by the dast so we removed it.

8.4.2. Destructive Tests

1) Fill the following table Experimental Accepted or Not Standards Results not accorded = 19.6 = 0.82 Compressive Strength of Cube Compressive Strength of Cylinder = 0.9 & 650 litting=01903.82 = 3.4 mga Direct Tension (MPa) 7-11 met accepted Compressive Strength of Cube Direct Tension 65-lex = 1.15-1.25 or ccepted 4.5=1.18 Flexural Strength (2P) 3.82 Splitting Strength

2) If we redo the test by 1-Point loading method, give an estimate of modulus of rupture based on the 2-Point loading result? Why?

If we have the same load, the result of 9, 92 with be equal,

but the load is charged so the result in 9, will be larger

Propared by Eng. Burhaina Abu-Salcom than P2 be cause there is a shear \$ 0

The failure forms of a cube subjected to compressive strength are:
Dron-eaplosive failure @ Explosive Failure
And our case is Non explosive
Draw it
Dizwit (
4) The failure forms of a cylinder subjected to compressive strength are:
Osplit Failure Oshenr fuilure 3) shear Asplit Failure
And our case is 5 wear and 501it
Draw it
5) Draw the failure of a cylinder subjected to splitting Load
M APPA A
6) Draw the failure of a flexural beam
7) Errors
when we used rebound hammer some of the hits
· error in using machines
To De De La Colombia
Prepared by Eng. Buthaina Abu-Saleem

مختبر مواد البناء / التجربة التاسعة / شعبة 4 (الخميس)

Building Materials Laboratory

Experiment No.: 9

Mix Design (ACI Method)

Name Name	Mark Mark
سم الهندسة المدنية	<u>68</u>
المازم عر دراری	ee-(u.c <mark>100</mark>

Student's			
1834046	4	7 mrsday 5/12/2019	7 mirsday 121 (2/2019

Mix Design (ACI Method)

Remember to make your report tidy and neat

9.1. Data

9.1.1. PART (A)

Use the American Method to design a concrete mix that is required to a specified mean strength of 27MPa (strength of cylinder) at 28 days with a slump of 85mm. The available coarse aggregate has a maximum nominal size of 25mm and rodded bulk density (unit weight) of 1465kg/m³. The aggregates are of normal weight and their grading conforms to the appropriate standard with a fineness modulus of sand of 2.8. Assume:

	Fine Aggregates	Coarse Aggregates
		2.75
Bulk Specific Gravity (SSD)	2.65	
	4.00	1.00
Moisture Content (%)	-1,00	4.00
Absorption (%)	1.20	4.00
Absorption (70)		

9.1.2. PART (B): Practical Part =

The calculated mix design (in part A) has been checked by making a trial mix and the results were as the following:

> Slump= 45mm Entrapped Air= 1%

Adjust your mix design (in part A) to achieve the required slump and entrapped air content?

9.2. Design Tables

 $F_{MD} = F_{STRUC} + 1.34 \text{ s MPa}$ $F_{MD} = F_{STRUC} + 2.33 \text{ s - 3.5 MPa}$

Table 9.1: Required increase in strength for specified compressive strength when no tests records are available, according to ACI 318-05

tive strength	Required strength	increase in
Psi Less than 3000 3000 to 5000	MPa 7 8.5 10	Psi 1000 1200 1400
	Less than 3000	Psi

Prepared by Eng Buthaina Abu-Saleem

Table 9.2: Relationships between water-cement ratio and compressive strength of concrete

	Water-cement ratio, by	mass
Compressive strength at 28 days, MPa	Non-air-entrained concrete	Air-entrained concrete
35.5 35. 30 25 20 15	0.42 0.47 0.54 0.61 0.69 0.79	0.39 0.45 0.52 0.60 0.70

Table 9.3: Approximate mixing water and air content requirements for different slumps and nominal maximum sizes

Table 9.3: Approximate mixing water of aggregates	Water, k	g/m³ of	concrete	for indica	ated nom	inal max	imum siz	
Slump, mm	10	12	20	25	40	50	75	150
	Non-air-	entrained	concrete				120	113
25 to 50	207 228	199 216	190 205	179	166 181	154 169	130 145	124
75 to 100 150 to 175	243	228	216	202	190	178	160	0.2
Approximate amount of entrapped air in non-air-	3.0	2.5	2.0	1.5	1.0	0.5	0.3	0.2
entrained concrete, %	Air-ent	rained co	ncrete					100
25 to 50 75 to 100	181 202	175 193	168 184 197	160 175 184	150 165 174	142 157 166	122 133 154	107 119
150 to 175 Recommended average	216	205	191					
total air content, percent for level of exposure:	4.5	4.0	3.5	3.0 4.5	2.5 4.5	2.0 4.0	1.5 3.5	1.0 3.0
Mild exposure Moderate exposure Extreme exposure	6.0 7.5	5.5 7.0	5.0 6.0	6.0	5.5	5.0	4.5	4.

Table 9.4: Volume of coarse aggrega	Volume of dry-ro for different fine	odded coarse agg	regate per unit volume	e of concrete
Nominal maximum	for different fine		(2.80)	3.00
size of aggregate, mm	2.40	2.60	0.46	0.44
	0.50	0.48	0.55	0.53
10.0	0.59	0.57	0.62	0.60
12.5	0.66	0.64	0.67	0.65
, 20.0	0.71	0.69	0.71	0.69
25.0	0.75	0.73	0.74	0.72
40.0	0.78	0.76	0.78	0.76
50.0	0.82	0.80	0.83	0.81
75.0	0.87	0.85	0.65	
150	187 1			

Prepared by Eng. Buthaina Abu-Saleem

ACI	method	Ş			
O str	V	trough =	27 MPA		
Fmg=		. + Mhrgji	n ([.v.s] = 35.5 M		
2 v	VIC n	110			
5 -> 3.	5 0	42.47	(by in	ter palati	71
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	mp= 85 x. nomi	ontenty: mm (mm	nontair o	nt voined!	
		tent = 1.5			
(f) 40 -(=		193 - 41 1465	15. ×5 Kg	/m³ oscono	Miliain Crybe Om —
(2)					
			-		Section 2

	orse aggregate:
	n 05 sand= 28
	rapped at = 0.67 m
_	PCA = Vrapped CA & Grapped = 0.67 & M65 = 981.55 Kg /v3 of concrete Fine aggregate:
	Absolute volume: V= V
_	Vc + Vv + VcA + VrA + Air = 1 5.64 + 8 myler 415.75 + 1013 + 081.55 WrA + 0.015 = 1 3.15 * 1000 1 + 1000 2.754 1000 2.65 + 1000
- - (3) WER = 8.73.77 Kg/m² of concrete 8) water ray, = free waster + absorption - maisture
	= 193+ H & 981,55+ 1,2 A 803,77)
_	- (11 + 981,55 + 4 x 803.77)
-	= 199.94 Kg/m³ of concrete
_	Fush Density
Prepa	ared by Eng. Buthaina Abu-Saleem

Name: 20/2 & 0/6

Practical Mix Design

section#4

The materials in the lab have been used to design a concrete mix according to ACI 211.1. The concrete mix will be used for the slab of a residential building in Zarqa. The required workability and strength for the building are 29 MPa and 40mm respectively and the required air content is 2.5%.

— Aggregate properties:

1.3	F.A.	C.A.	1
Specific Gravity	2.65	2.50	reprodo
Moisture %	5.00	2.00	0.4/
Absorption %	0.40	0.80	Water to

— The required proportions of the mix have been designed and the results are:

Free water = 190 Kg, w/c= 0.45 and C.A. = 991 Kg

A trial mix has been prepared to check about slump and air content, and the results are:
 Slump = 50 mm and air content = 1%

Adjust the mix to satisfy the required slump and air content Ky ma of come 422-22 Kg (m of anappe or remove 2 kg of matter to therease 51mpby 1 cm 50 me remove 2 4 1 cm = 2/19 remove 3kg of water to restrict niv content by 1% 1 (> reg. = 2.5% So we remove 3# (25% - 1%) = 3×15 = 4.5 kg 1a

New matter = 190 = 197.77

There cement = 1888 = 17.77

We we cement = 1888 = 17.77

We want cement = 1888 = 17.77 veer CA & Cno change) = 991 Kg/m of come new fai EVII is 417.77 + 1882 + 991 + WFA + 2.5 =1 3.15 *1000 + 1.5 *1000 = 1

naper aggresment!

mayor Leen := Eresmyte + a prospyjon - moistans

= 188 + (0.4 + 60 d .63 + 6.84 0101)

- (5 +68\$, 63 + 2 * 991)

= 144,68 Kg [m] of anc.

اللجنة الأكاديمية لقسم الهندسة المدنية www.civilittee-hu.com