

اللجنة الأكاديمية للهندسة المدنية

ريبورتات

لاب سوينل

عبدالله المصري

Contact us:

 Civilittee HU | لجنة المدني

 Civilittee Hashemite

www.civilittee-hu.com

CIVIL ENGINEERING

جامعة الهاشمية

قسم (الهندسة المدنية)

م.آيات العارض

20 - 6 - 2018

Sieve and Hydrometer Analysis

Student Name: عبد الله خالد ابراهيم

ID#: 1639799

Section: 1

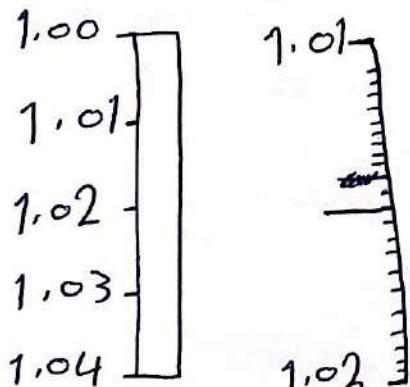
Date: 25/6/2018

19
20

Objective:

- * use sieve analysis and Hydrometer analysis for soil classification.
- sieve analysis → to classify the soil to coarse and fine using sieve # 200, and classify coarse soil into gravel and sand.
- Hydrometer analysis → to classify fine soil into silt and clay.

Equipment:


* Mechanical sieve analysis

- ① Balance
- ② sieve shaker
- ③ sieve with different sizes.

* Hydrometer analysis

- ① Hydrometer device.
- ② Thermometer.
- ③ Timer.
- ④ Tank.
- ⑤ Na_3PO_4 solution.
- ⑥ graded glass.

Draw free sketch for hydrometer device and give me one reading at it is.

$$1 \text{ D}_\text{iv} = \frac{0.01}{20} = 0.0005$$

$$1.01 + 6(\text{D}_\text{iv}) = 1.01 + 6(0.0005) \\ = 1.013$$

Procedure:

mechanical sieve analysis (ASTM D-421)

Hydrometer analysis (ASTM D - 422)

Sieve analysis:

Sieve No	Sieve Diameter (mm)	Sieve Mass (g)	Sieve Mass + Soil Mass (g)	Retained Soil Mass (g)	Cumulative Retained	%Retained soil	Percentage of Finer Soil Mass % (Pass)
1	25	550.29	612.4	67.11	67.11	6.711	93.289
(3/4)	19	554.70	589.57	34.87	101.98	10.198	89.802
(1/2)	12.500	542.90	588.6	45.7	147.68	14.768	85.232
(3/8)	9.5000	542.60	564.90	22.3	169.98	16.998	83.002
# 4	4.7500	511.40	558.64	47.24	217.22	21.722	78.278
# 10	2.00	486.20	519.5	33.3	250.52	25.052	74.948
# 20	.85	424.80	437.70	12.9	263.42	26.342	73.658
# 40	.425	385.90	391.70	5.8	269.22	26.922	73.078
# 60	.25	359.10	360.49	1.39	270.61	27.061	72.939
# 100	0.1500	345.60	353.80	8.2	278.81	27.881	72.119
# 200	0.0750	337.60	344.32	6.72	285.53	28.553	71.447
pan	—	364.35	365.55	1.2	286.73	28.673	71.327
				286.73			

$$\# M_{tot} = 1000 \text{ g}$$

$$\% \text{ finer} = 100 - 10 \text{ Ret}$$

Hydrometer analysis

Elapsed time (min)	Actual Hydrometer reading	Composite correction	R corrected	Temperature (C°)	L (cm)	K	D	% of finer	Actual % of finer
.25 = 15 sec	$1.02 + 18 \text{ DIV}$ = 1.029	0.0005	1.0285	24°	8.6	0.01282	0.07519	98.86%	70.63%
.5 = 30 sec	$1.02 + 17 \text{ DIV}$ = 1.0285	0.0005	1.028	24°	8.75	0.01282	0.05363	97.27%	69.49%
1	$1.02 + 16 \text{ DIV}$ = 1.028	0.0005	1.0275	24°	8.9	0.01282	0.03824	95.68%	68.36%
2	$1.02 + 15 \text{ DIV}$ = 1.0275	0.0005	1.027	24°	9.05	0.01282	0.02327	94.09%	67.22%
4	$1.02 + 10 \text{ DIV}$ = 1.025	0.0005	1.0245	24°	9.7	0.01282	0.19963	86.17%	61.56%
8	$1.02 + 8 \text{ DIV}$ = 1.024	0.0005	1.0235	24°	10	0.01282	0.01433	82.99%	59.29%
15	$1.02 + 7 \text{ DIV}$ = 1.0235	0.0005	1.023	24°	10.1	0.01282	0.01052	81.41%	58.16%
30 10 (hrs)	$1 + 2 \text{ DIV}$ = 1.0035	0.0005	1.003	24°	15.35	0.01282	0.00149	17.98%	12.85%

sample of calculation: - **** Hydrometer sample ****

@ 15 min

*actual Hydrometer reading = $1.02 + \frac{7}{7} \text{Div.}$

$$= 1.02 + \frac{7}{7} (0.0005)$$

$$= 1.0235$$

Temp(C°)	G _w
4	1
16	.99897
17	.99880
18	.99862
19	.99844
20	.99823
21	.99802
22	.99780
23	.99757
24	<u>.99733</u>
25	.99708
26	.99682
27	.99655
28	.99627
29	.99598
30	.99568

**Composite Correction @ $R_1 = 1, R_2 = 1 - 10\text{Div}$

$$c = (W \text{ of water + disp}) - (W \text{ of water}) \quad \frac{R_1 - R_2}{1 - (1 - 0.0005)} = 0.0005$$

*** Hydrometer reading with composite correction applied

= Actual hydraulic - Composite

$$= 1.0235 - 0.0005$$

$$= 1.023$$

**** Effective depth of hydrometer L (cm) - from table 7-4 = (151H)

$$L = 10.1 \text{ cm at actual reading } 1.0235$$

**** Value of (K) from (table 7.3)

~~K = 0.01282~~

$$a) \leftarrow GS = 2.7$$

$$T = 24$$

***** Diameter of soil particle D (mm) = $K * (L/T)^{0.5}$ hint T is time in minutes

$$D (\text{mm}) = K \sqrt{\frac{L}{T}} = 0.01282 \sqrt{\frac{10.1}{15}} = 0.01052 \text{ mm}$$

***** Soil in Suspension

$$\text{Note } W = 50 \text{ g } GS = 2.7 \quad G_w = 0.99733$$

$$P = \{ ((100,000/W) * GS / (GS - G_w)) \} * (R_{cor} - G_w)$$

$$= \left\{ \left(\frac{100,000}{50} \times \frac{2.7}{(2.7 - 0.99733)} \right) \right\} \times (1.023 - 0.99733)$$

$$= 81.41 \%$$

$$\text{Actual P} = P * (\% \text{ passing sieve No 200})$$

$$= 81.41 \times 0.71447$$

$$= 58.16 \%$$

***** Mechanics Sample *****

@sieve # 100

Weight sieve empty = 345.60 (g)

Weight sieve full = 353.80 (g)

Weight retained = W full - W empty

$$353.80 - 345.60 = 8.2 \text{ (g)}$$

$$\% \text{ of Retained} = \frac{\text{Cumulative retain } \# 100}{\text{total weight of soil}} \times 100 \%$$
$$= \frac{278.81}{1000} \times 100 \% = 27.881 \%$$

Cumulative of retained = cumulative retained sieve #60 + retained on sieve #100

$$= 270.61 + 8.2$$

$$= 278.81 \text{ (g)}$$

$$100 \% - 27.881$$

$$= 72.119 \%$$

Discussion and conclusion

*% Gravel \rightarrow Retained on sieve #4
 $= 21.722\%$

**% sand \rightarrow Retained than sieve #200 and passed on ~~sieve #2~~
 $28.553 - 21.722 = 6.831\%$

***% silt \rightarrow of it passed ~~sieve #200~~ and retained above $D = 0.002$
 $71.447 - 23.91 = 47.537\%$

****% clay \rightarrow finer than $D = 0.002 \rightarrow \approx 23.91\%$

***** $D_{10} = \text{cannot}$, $D_{60} = 0.018$, $D_{30} = 0.0027$, $D_{85} = 12$, $D_{50} = 0.007$
be determined

***** $C_c = \frac{(D_{30})^2}{D_{10} D_{60}}$ \rightarrow can not be determined

***** $C_u = \frac{D_{60}}{D_{10}}$ \rightarrow can not be determined

***** Soil classification the soil is fine graded because
the pass on sieve #200 is bigger than 50%
 $71.447 > 50\% \rightarrow \text{Fine soil}$

Plot(% of passing) versus(diameter in(mm)) for both sieve and hydrometer analysis on the same figure.

Why using the hexameta phosphate (calgon)?

to ~~neutralize the negative~~ charge in the fine
grained soil to prevent the soil lumps.

Weight of container plus air-dried soil for hydrometer analysis
= 170.49 g

Weight of container = 110.21 g

Sieve Size	Weight Retained (g)
No: 10	0
No: 40	5.13
No. 100	5.31
No. 200	5.19

TABLE 7-4 Values of Effective Depth Based on Hydrometer and Sedimentation
Cylinder of Specified Sizes [1]

Hydrometer 151H		Hydrometer 152H			
Actual Hydrometer Reading	Effective Depth, L (cm)	Actual Hydrometer Reading	Effective Depth, L (cm)	Actual Hydrometer Reading	Effective Depth, L (cm)
1.000	16.3	0	16.3	31	11.2
1.001	16.0	1	16.1	32	11.1
1.002	15.8	2	16.0	33	10.9
1.003	15.5	3	15.8	34	10.7
1.004	15.2	4	15.6	35	10.6
1.005	15.0	5	15.5	36	10.4
1.006	14.7	6	15.3	37	10.2
1.007	14.4	7	15.2	38	10.1
1.008	14.2	8	15.0	39	9.9
1.009	13.9	9	14.5	40	9.7
1.010	13.7	10	14.7	41	9.6
1.011	13.4	11	14.5	42	9.4
1.012	13.1	12	14.3	43	9.2
1.013	12.9	13	14.2	44	9.1
1.014	12.6	14	14.0	45	8.9
1.015	12.3	15	13.8	46	8.8
1.016	12.1	16	13.7	47	8.6
1.017	11.8	17	13.5	48	8.3
1.018	11.5	18	13.3	49	8.1
1.019	11.3	19	13.2	50	7.9
1.020	11.0	20	13.0	51	7.8
1.021	10.7	21	12.9	52	7.6
1.022	10.5	22	12.7	53	7.4
1.023	10.2	23	12.5	54	7.3
1.024	10.0	24	12.4	55	7.1
1.025	9.7	25	12.2	56	7.0
1.026	9.4	26	12.0	57	6.8
1.027	9.2	27	11.9	58	6.6
1.028	8.9	28	11.7	59	6.5
1.029	8.6	29	11.5	60	6.3
1.030	8.4	30	11.4		
1.031	8.1				
1.032	7.8				
1.033	7.6				
1.034	7.3				
1.035	7.0				
1.036	6.8				
1.037	6.5				
1.038	6.2				

Physical Example

T = interval of time from beginning of sedimentation to the taking of the reading, min

9. Grain-size analysis results are normally presented in graphical form with grain diameter along the abscissa on a logarithmic scale that increases from right to left and "percentage passing" along the ordinate on an arithmetic scale. Such a graph is referred to as the "grain-size distribution curve."

TABLE 7-3 Values of K for Use in Equation for Computing Diameter of Particle in Hydrometer Analysis [1]

Temperature (°C)	Specific Gravity of Soil Particles								
	2.45	2.50	2.55	2.60	2.65	2.70	2.75	2.80	2.85
16	0.01510	0.01505	0.01481	0.01457	0.01435	0.01414	0.01394	0.01374	0.01356
17	0.01511	0.01486	0.01462	0.01439	0.01417	0.01396	0.01376	0.01356	0.01338
18	0.01482	0.01467	0.01443	0.01421	0.01399	0.01378	0.01359	0.01339	0.01321
19	0.01474	0.01449	0.01425	0.01403	0.01382	0.01361	0.01342	0.01323	0.01305
20	0.01455	0.01431	0.01408	0.01386	0.01365	0.01344	0.01325	0.01307	0.01289
21	0.01439	0.01414	0.01391	0.01369	0.01348	0.01329	0.01309	0.01291	0.01273
22	0.01421	0.01397	0.01374	0.01353	0.01332	0.01312	0.01292	0.01273	0.01255
23	0.01404	0.01381	0.01358	0.01337	0.01317	0.01297	0.01279	0.01261	0.01243
24	0.01388	0.01365	0.01342	0.01321	0.01301	0.01282	0.01264	0.01246	0.01229
25	0.01372	0.01349	0.01327	0.01306	0.01286	0.01267	0.01249	0.01232	0.01215
26	0.01357	0.01334	0.01312	0.01291	0.01272	0.01253	0.01235	0.01218	0.01201
27	0.01342	0.01319	0.01297	0.01277	0.01255	0.01239	0.01221	0.01204	0.01188
28	0.01327	0.01304	0.01283	0.01264	0.01244	0.01225	0.01208	0.01191	0.01175
29	0.01312	0.01290	0.01269	0.01249	0.01230	0.01212	0.01195	0.01178	0.01162
30	0.01298	0.01276	0.01256	0.01236	0.01217	0.01199	0.01182	0.01165	0.01149

NUMERICAL EXAMPLE A laboratory test was conducted according to the procedure described previously. The following data were obtained:

Weight of total air-dried soil = 540.94 g

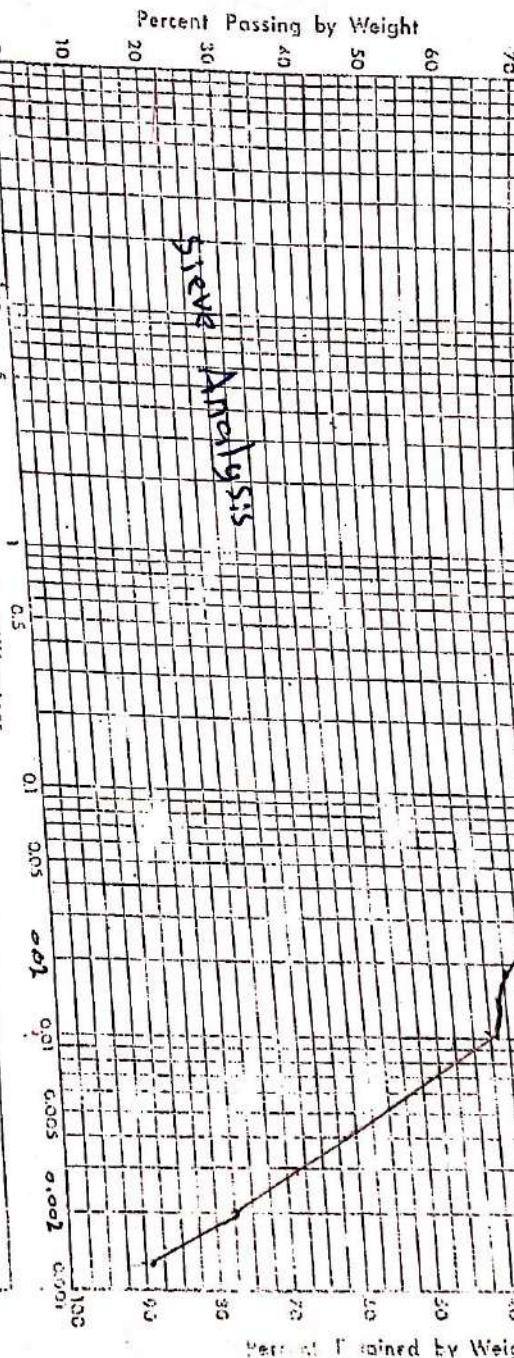
Weight of fraction retained on No. 10 sieve (washed and oven-dried) = 2.20 g

For sieve analysis:

Sieve Size	Weight Retained (g)
4 in.	0
No. 1	0.97
No. 10	1.23

For hydrometric moisture correction factor:

Weight of container plus air-dried soil = 109.57 g



Weight of container plus oven-dried soil = 106.35 g

Weight of container = 59.57 g

For sieve analysis of fine aggregate:

MECHANICAL ANALYSIS GRAPH

Hydrometer

$$D_{10} = \text{_____} \quad 5D_{15} = \text{_____} \quad 20D_{15} = \text{_____} \quad C_u = \frac{D_{60}}{D_{10}} = \left(\frac{\text{_____}}{\text{_____}} \right) =$$

$$D_{15} = \text{_____} \quad C_c = \frac{(D_{10})^2}{(D_{60})(D_{10})} = \left(\frac{(\text{_____})^2}{\text{_____} \times \text{_____}} \right) =$$

$$D_{30} = \text{_____}$$

$$D_{60} = \text{_____}$$

$$D_{100} = \text{_____}$$

$$5D_{15} = \text{_____}$$

Data sheet
Sieve analysis

Sieve No	Sieve Diameter (mm)	Sieve Mass (g)	Sieve Mass + retained Soil Mass (g)
1	25	550.29	617.4
(3/4)	19	554.70	589.57
(1/2)	12.500	542.90	588.6
(3/8)	9.5000	542.60	564.90
# 4	4.7500	511.40	558.64
# 10	2.00	486.20	519.5
# 20	.85	424.80	437.70
# 40	.425	385.90	391.70
# 60	.25	359.10	360.49
# 100	0.1500	354.60	353.80
# 200	0.0750	337.60	344.32
pan		364.35	365.55

Data sheet
Hydrometer analysis

R₁ = 1

R₂ = 1-1 DIV T = 24°

elapsed time (min)	actual hydrometer reading	composite correction
15sec=0.25	1.02 + 18 DIV	
30sec=0.5	1.02 + 17 DIV	
1	1.02 + 16 DIV	
2	1.02 + 15 DIV	
4	1.02 + 10 DIV	
8	1.02 + 8 DIV	
15	1.02 + 7 DIV	
19 hours 20	1 + 7 div	

next day

T = 24°, R₁, R₂ the same.

CIVIL ENGINEERING

جامعة الهاشمية
الجامعة الهاشمية

قسم الهندسة المدنية

م.م.آيات المدح

25.6.2018

ATTERBERG LIMIT
Liquid and Plastic Limits of a Soil

Student Name:

عبد الله طارق العبدلي

ID#: 1639799

Section: 1

Date: 2/7/2018

9/10

Objective

to know the liquid and plastic limit for the fine grain soil to help us in soil classification and activity of the soil and liquidity index and plastic index.

Equipment

Liquid limit and plastic limit

- ① Balance
- ② Bowl
- ③ groote
- ④ casagrande bol
- ⑤ plate (glass) LL pL
- ⑥ seven cups (9B, 5B, A2, 2A), (1A, D1, 6B)

~~⑦ oven~~

Procedure

According to ASTM D-4318

Data and Results

Table 1

Liquid Limit Determination				
can no.	9B	5B	A2	2A
Mass of wet soil + can	63.22	69.70	53.27	60.91
Mass of dry soil + can	53.18	60.7	46.1	52.6
Mass of can	30.48	31.17	30.84	30.69
Mass of dry soil	32.74	29.53	15.263	29.912
Mass of moisture	9.42	9	7.17	8.31
Water content ,w%	40.39	30.48	46.99	37.93
No. of blows, N	22	31	18	24

Table 2

Plastic limit Determination			
can no.	1A	D1	6B
Mass of wet soil + can	36.36	35.79	34.79
Mass of dry soil + can	35.6	35.1	34.2
Mass of can	30.86	30.80	30.58
Mass of dry soil	4.74	4.3	3.62
Mass of moisture	0.76	0.69	0.59
Water content, w%	16.03	16.05	16.29

% clay = 28% (From the previous Experiment)

W_n (natural water content) = 25

$$\text{PL of (w_c)} = \frac{1A + D1 + 6B}{3}$$

$$= \frac{16.03 + 16.05 + 16.29}{3}$$

$$= 16.12\%$$

$$\text{PI} = LL - PL = 37 - 16.12$$

$$= 20.88\%$$

$$LI = \frac{W_n - PL}{LL - PL} = \frac{25 - 16.12}{37 - 16.12}$$

$$= 0.4253$$

$$\text{Activity (A)} = \frac{PI}{\% \text{ clay}} = \frac{20.88\%}{28\%}$$

~~16.03~~

~~16.05~~

~~16.29~~

Required

(LL) Liquid limit 37% (from the graph)
 (PL) Plastic Limit 16.12%
 (PI) Plasticity Index 20.88%
 (LI) Liquidity index 0.4253
 One Point liquid Limit 31.28%
 Activity 0.7457

5B :-

N = 31

- mass of wet soil + can = 69.7 (g)
- mass of dry soil + can = 60.7 (g)
- mass of can = 31.17 (g)

$$\text{mass of dry soil} = \text{mass of (dry soil + can)} - \text{mass of can}$$

$$(Ms) = 60.7 - 31.17 = 29.53 (g)$$

$$\text{mass of moisture (M_w)} = \text{mass of (wet soil + can)} - \text{mass of (dry soil + can)}$$

$$= 69.7 - 60.7 = 9 (g)$$

$$\text{water content (w_c)} = \frac{M_w}{Ms} * 100\% = \frac{9}{29.53} * 100\% = 30.48\%$$

LL

$$\text{one point method} \rightarrow LL = w_c \left(\frac{N}{25} \right)^{0.121}$$

$$= 30.48 \left(\frac{31}{25} \right)^{0.121} = 31.28\%$$

- Multi point method from graph at 25 below = 37%

Conclusion and Discussion

Soil classification

$A = 0.7457 < 0.75 \rightarrow$ In active clay

$LL = 37\% < 50\% \rightarrow$ low plastic

$PI = 20.88\%$

$PI_{(line)} = 0.73(37 - 20) = 12.41$

$PI_{soil} > PI_{(line)}$

$20.88 > 12.41 \rightarrow$ soil clay \boxed{CL}

$0 < LI < 1$

$0 < 0.4253 < 1 \rightarrow$ plastic solids

Why using soil pass sieve #40?

If use sieve # 200 then wash the soil, the soil will all become lumps, but if we use # 40, that will avoid lumps after washing and fine grain soil wouldn't be loss.

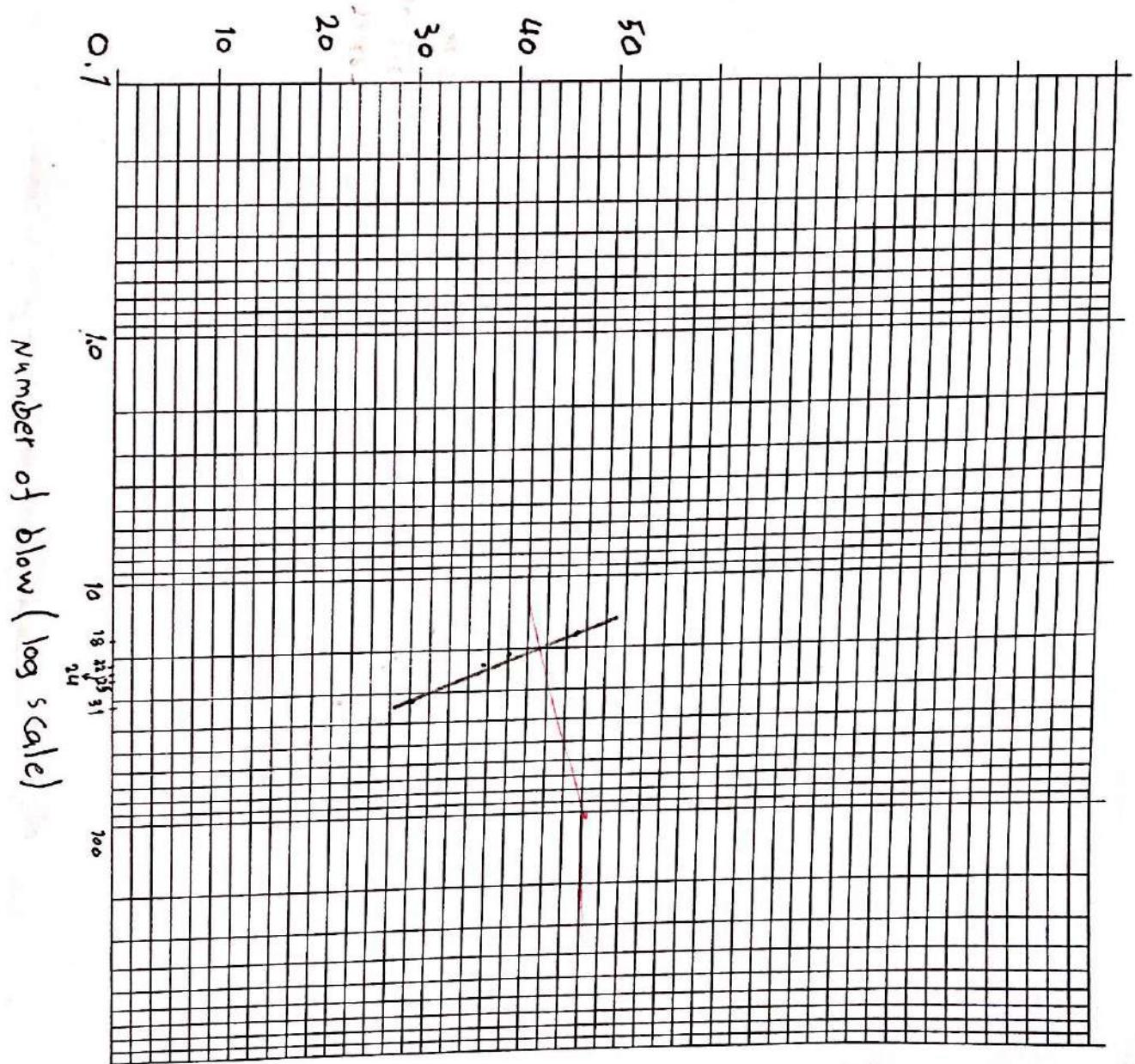
\leftarrow

\leftarrow

Plot Water content, w% versus # of blows in log scale for (x axis).

Data sheet

Plastic limit


Can #	Can Wt. (g)	Can+Wet Soil (g)	Can+oven Dry Soil (g)
1 A	30.86	36.36	35.6
D1	30.80	35.79	35.1
6 B	30.58	34.79	34.2

Liquid limit

Can #	Can Wt. (g)	Can+Wet Soil (g)	Can+oven Dry Soil (g)	Blows #
9 B	30.49	63.22	53.8	22
5 B	31.17	69.70	60.7	31
A2	30.84	53.27	46.1	18
2 A	30.69	60.91	52.6	24

$$W_c = 37\%$$

water content (%)

CIVIL ENGINEERING

جامعة الهاشمية
كلية الهندسة المدنية

27-6-2018

Compaction

Student Name:

عبدالله عاصي

ID#: 9639799

Section: 1

Date: 4/7/2018

8,5
10

Objective

* to determine maximum density and optimum water content of soil ~~that is obtained from compaction test.~~

Equipment

- ① balance.
- ② compaction mold.
- ③ compaction hammer.
- ④ Graduated cylinder.
- ⑤ Pan for mixing.
- ⑥ steel Rod.
- ⑦ cans.
- ⑧ Jack.

Procedure

According to ASTMD-1557.

Data and Results

Table 1

Group #	M _m (g)	M _{m+s} (g)	Can #	Can Wt. (g)	Can+Wet Soil (g)	Can+Oven Dry Soil (g)
1	3280	4769	5B	31.12	69.75	65.3
2	31308	4903	9B	30.68	74.02	67.88
3	3282	4960	A2	30.88	59.62	54.67
4	3305	53012	5B	30.95	52.53	47.51
5	3280	5069	2A	30.75	55.70	49.6

Table 2

Group #	W %	ρ_{wet} (g/cm ³)	ρ_{Dry} (g/cm ³)
1	13.079	1.577	1.395
2	16.505	1.69	1.452
3	20.807	1.778	1.472
4	30.314	1.808	1.387 x
5	32.361	1.9	1.435

Table 3: Zero-air voids curve Determination

Group #	W % <u>Assume</u> □ omc	ρ_{Dry} (g/cm ³)
1	31	1.46
2	32	1.44
3	33	1.38
4	34	1.33

Sample of calculations

Group (5)

Hint: volume = 944 cm³
GS = 2.7

$$W_c \% = \frac{m_w}{m_s} * 100 \% = \frac{55.7 - 49.6}{49.6 - 30.75} * 100 \% = 32.361 \%$$

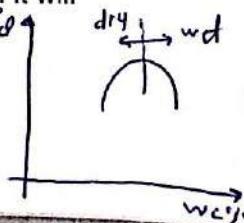
$$\rho_{wet} = \frac{m_{m+s} - m_m}{V} = \frac{50.69 - 32.80}{944} = 1.9 \text{ g/cm}^3$$

$$\rho_{dry} = \frac{\rho_{wet}}{1 + W_c \%} = \frac{1.9}{1 + 32.361 \%} = 1.435 \text{ g/cm}^3$$

* Table 3 assume $W_c = 27.5 \%$

$$\rho_d = \frac{\rho_w G_s}{1 + G_s + W} = \frac{1 + 2.7}{1 + (2.7 + 27.5 \%)} = 1.55 \text{ g/cm}^3$$

- * above $W_{opt} \%$ water starts to replace soil particles in the mold and since $\rho_w < \rho_s$ the dry density starts to decrease.
- * at $W_{opt} \%$ the density become to its maximum value and it doesn't increase after that.


Plot dry density (ρ_{dry}) versus moisture content% ($W\%$) and in the same figure plot the zero air voids curve.

Conclusion and Discussion

$$O_w = 20.807 \%$$

$$\rho_{dry\ maximum} = 1.472 \text{ g/cm}^3$$

Why the value of dry density will be increase up to the maximum then it will be decrease? As the water content increase, the particles ρ_d develop larger water films around them which tend to make the particle easier to move and reoriented into a tenser configuration.

Data sheet

Group #	M _{mold} (g)	M _{mold+soil} (g)	Can #	Can Wt. (g)	Can+Wet Soil (g)	Can+oven Dry Soil (g)
1	3.280	4.769	5B	31.12	69.75	
2	3.368	4.903	9B	30.68	74.02	
3	3.282	4.96	A2	30.88	59.62	
4	3.305	5.062	5B	30.95	52.53	
5	3.280	5.069	2A	30.75	55.70	

dry

Figure 1.1
relation between $(W_e)^{1/2}$

zero air void

water content

dry \longleftrightarrow wet

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

W_e

CIVIL ENGINEERING

جامعة الملك عبد العزيز

جامعة الملك عبد العزيز

11-7-2018

جامعة الملك عبد العزيز

Consolidation

Student Name: عبد الله عاصي

ID#: 1639799

Section: 1

Date: 29/7/2018

16,5
25

Objective

- Determine the coefficient of permeability :-
- ① voids ratio (e), compression index (C_c), Recompression index (C_r), preconsolidation pressure (σ'_c), coefficient of permeability (k) Mv, TV.
- ② Determine coefficient of consolidation and O.C.R.
- ③ Determine C_v by two methods (Casagrande, Taylor).

Equipment

- ① loads (kg).
- ② can.
- ③ Balance.
- ④ consolidation test apparatus (geotometer tester).
- ⑤ stop watch.

Procedure

consolidation test, ASTM D-2453.

Sample of calculation

$H_s = M_s / (G_s \cdot A \cdot \rho_w)$	$e_0 = (H_t - H_s) / H_s$	Stress _(MPa) = P / A
$\frac{142}{(2.7) \times (38.465) \times (1)} = 13.67 \text{ mm}$	$\frac{20 - 13.67}{13.67} = \cancel{0.463}$	$\frac{50 + 9.81}{0.003847} = 0.128 \text{ MPa}$

$H_f = H_t \cdot \text{deformation}$	$H_v = H_t - H_s$	$e = H_v / H_s$
$20 - (0.01 \times 75) = 19.25$	$19.25 - 13.67 = 5.58$	$\frac{5.58}{13.67} = 0.408$

Consolidation Test

$M_s = 142$ g $G_s = 2.70$

$H = 2\text{cm}$
 $D = 7\text{cm}$

$A = 38.465 \text{ cm}^2$
 0.003847 m^2

Hint: (Div * .01) = Deformation in (mm)

Load = 50kg

hr	Time min	sec	Dial Reading Div	Time (min)	Time ^{0.5} (min ^{0.5})	Deformation (mm)	Hf	Hv	e
0	0	8	75	0.13	0.37	0.75	19.25	5.58	0.408
0	0	15	81	0.25	0.50	0.81	19.19	5.52	0.404
0	0	30	86	0.5	0.71	0.86	19.14	5.47	0.400
0	1	0	92.5	1	1.00	0.925	19.075	5.405	0.395
0	2	0	97	2	1.41	0.97	19.03	5.36	0.391
0	4	0	102.5	4	2.00	1.025	18.975	5.305	0.388
0	8	0	107.75	8	2.83	1.0775	18.925	5.2525	0.384
0	16	0	112	16	4.00	1.12	18.88	5.21	0.381
0	30	0	116	30	5.48	1.16	18.84	5.17	0.378
1	0	0	119	60	7.75	1.19	18.81	5.14	0.376
2	0	0	121	120	10.95	1.21	18.79	5.12	0.375
4	0	0	123	240	15.49	1.23	18.77	5.10	0.373
8	0	0	124	480	21.91	1.24	18.76	5.09	0.372
24	0	0	125	1440	37.95	1.25	18.75	5.08	0.371

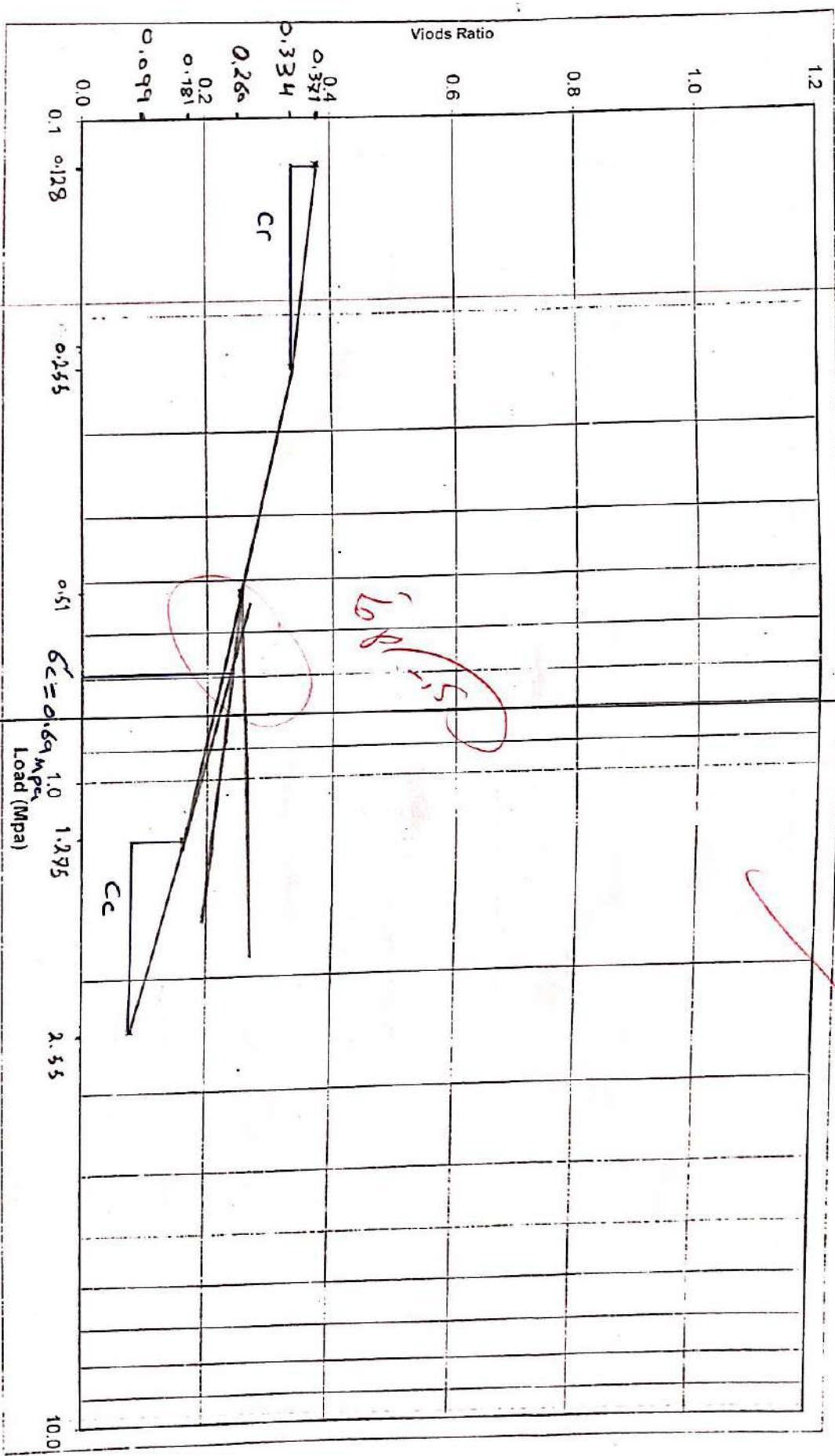
Load = 100kg

hr	Time min	sec	Dial Reading Div	Time (min)	Time ^{0.5} (min ^{0.5})	Deformation (mm)	Hf	Hv	e
0	0	8	130	0.13	0.365148	1.30	18.70	5.03	0.368
0	0	15	132	0.25	0.5	1.32	18.68	5.01	0.366
0	0	30	135	0.5	0.707107	1.35	18.65	4.98	0.364
0	1	0	138	1	1	1.38	18.62	4.95	0.362
0	2	0	142	2	1.414214	1.42	18.58	4.91	0.359
0	4	0	146	4	2	1.46	18.54	4.87	0.356
0	8	0	150.5	8	2.828427	1.505	18.495	4.825	0.353
0	16	0	155	16	4	1.55	18.45	4.78	0.350
0	30	0	159	30	5.477226	1.59	18.41	4.74	0.348
1	0	0	163.5	60	7.745967	1.635	18.365	4.695	0.343
2	0	0	167	120	10.95445	1.67	18.33	4.66	0.341
4	0	0	170	240	15.49193	1.70	18.30	4.63	0.339
8	0	0	173	480	21.9089	1.73	18.27	4.60	0.338
24	0	0	176	1440	37.94733	1.76	18.24	4.58	0.334

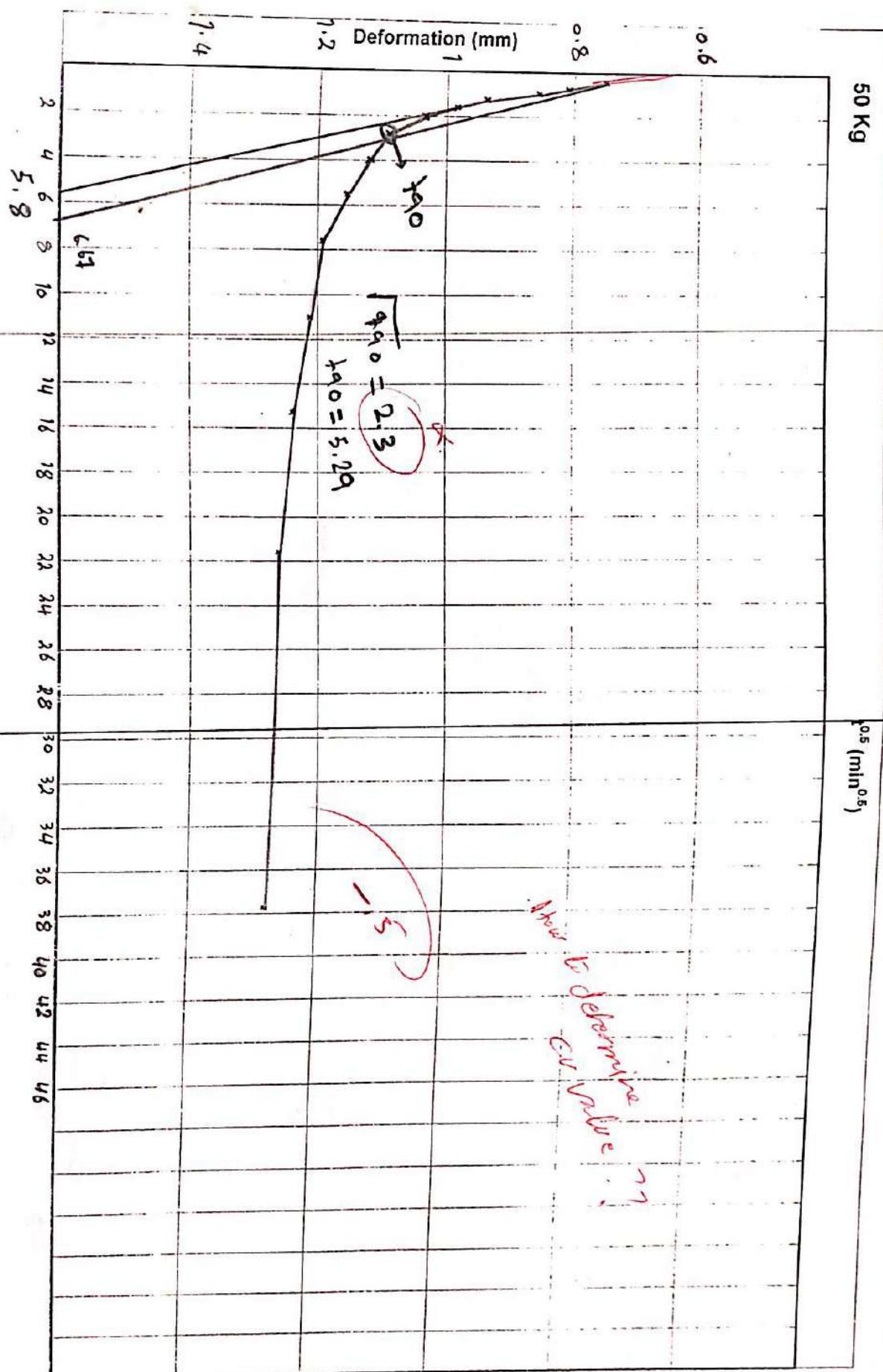
Load= 200kg

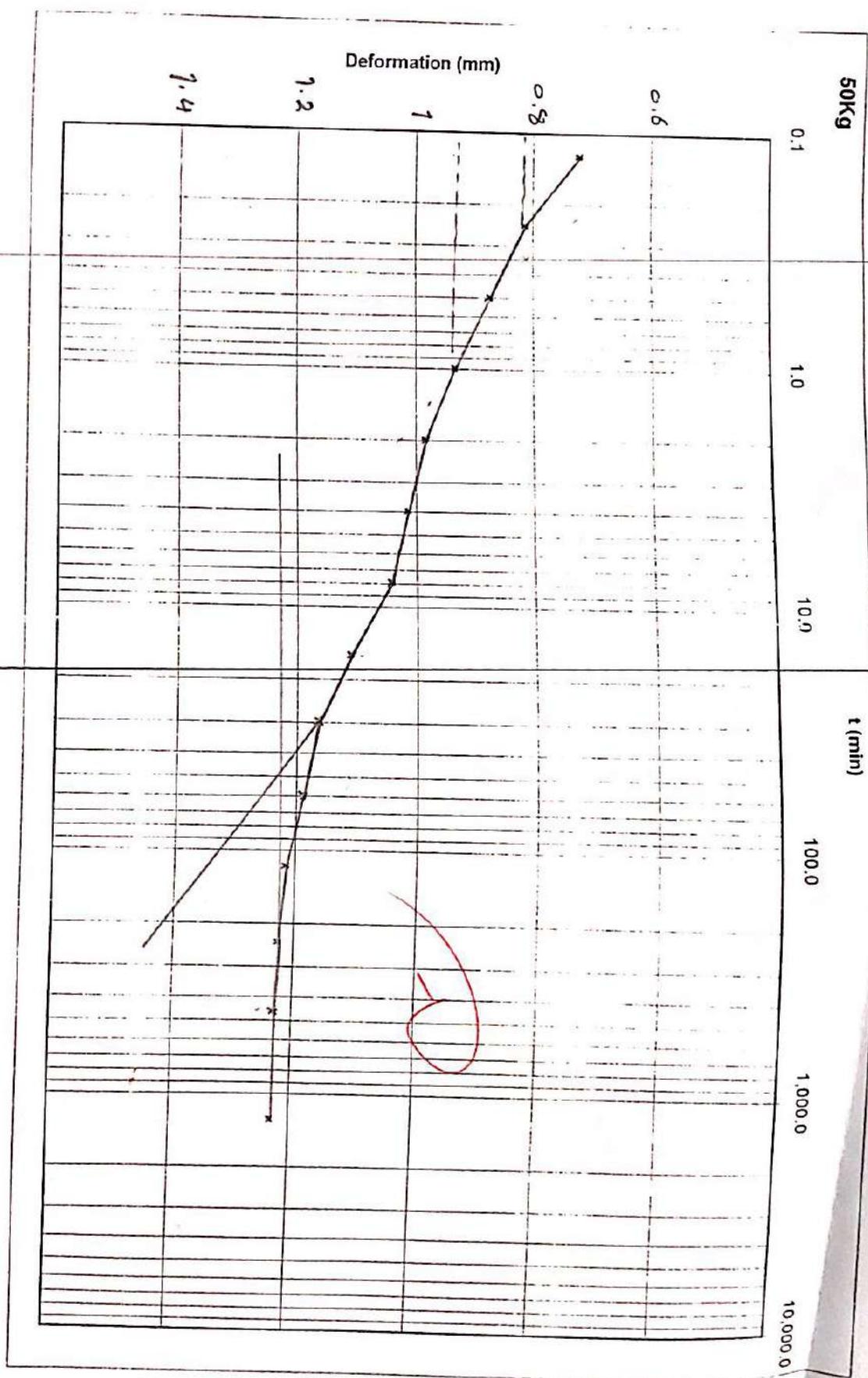
hr	Time min	sec	Dial Reading Div	Time (min)	Time ^{0.5} (min ^{0.5})	Deformation (mm)	Hf	Hv	e
0	0	8	204	0.13	0.365148	2.04	17.96	4.29	0.314
0	0	15	209	0.25	0.5	2.09	17.91	4.24	0.310
0	0	30	213	0.5	0.707107	2.13	17.87	4.20	0.307
0	1	0	217	1	1	2.17	17.83	4.16	0.304
0	2	0	221.5	2	1.414214	2.215	17.785	4.115	0.301
0	4	0	226.5	4	2	2.265	17.735	4.065	0.297
0	8	0	233	8	2.828427	2.33	17.67	4.00	0.293
0	16	0	240.5	16	—	2.405	17.595	3.925	0.287
0	30	0	249	30	5.477226	2.49	17.51	3.84	0.281
1	0	0	259	60	7.745967	2.59	17.44	3.74	0.274
2	0	0	267.5	120	10.95445	2.675	17.325	3.655	0.267
4	0	0	273	240	15.49193	2.73	17.27	3.60	0.263
8	0	0	275.5	480	21.9089	2.755	17.245	3.575	0.261
22	14	0	277	1334	36.52396	2.77	17.23	3.56	0.260

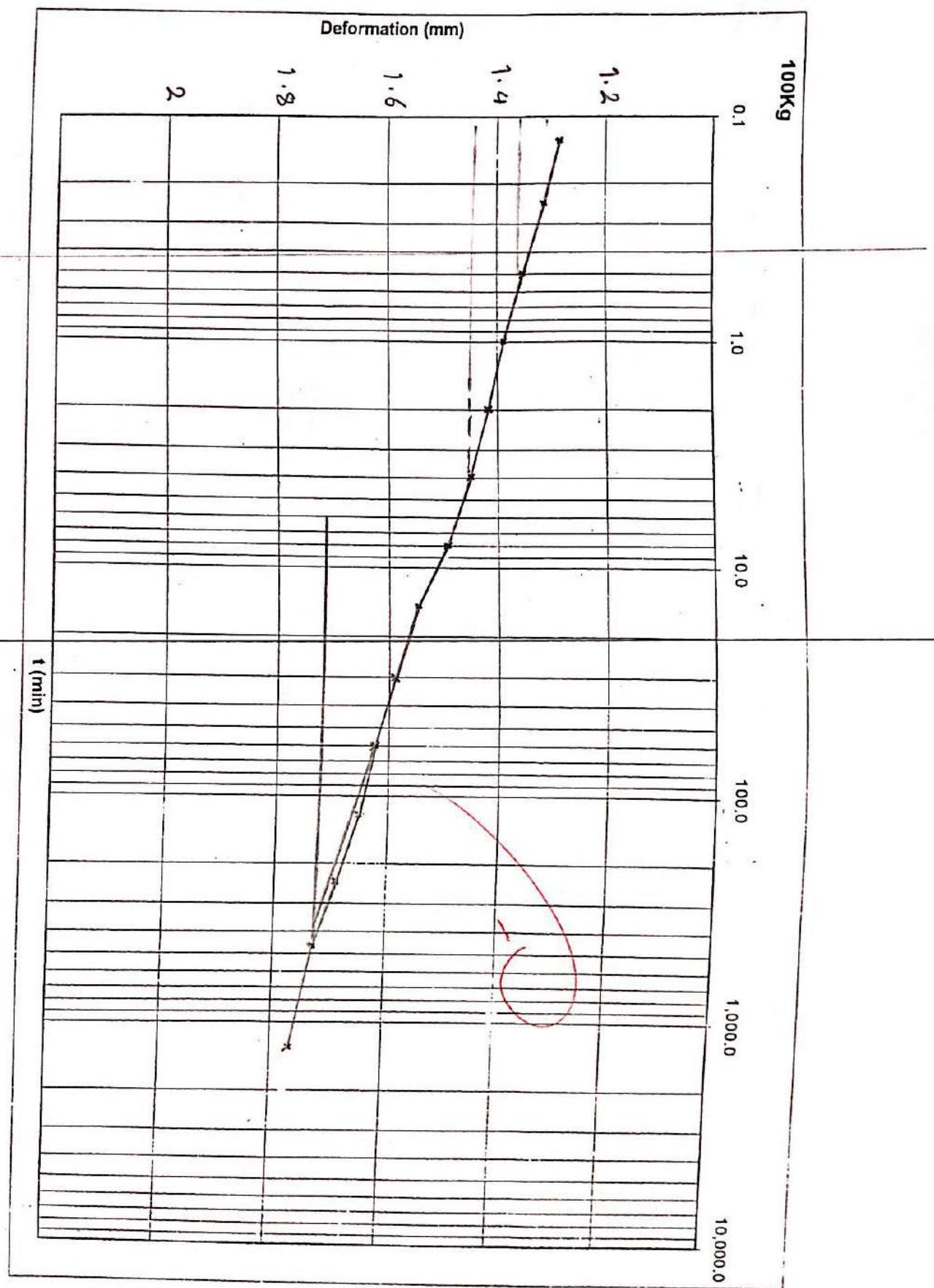
Load= 500kg

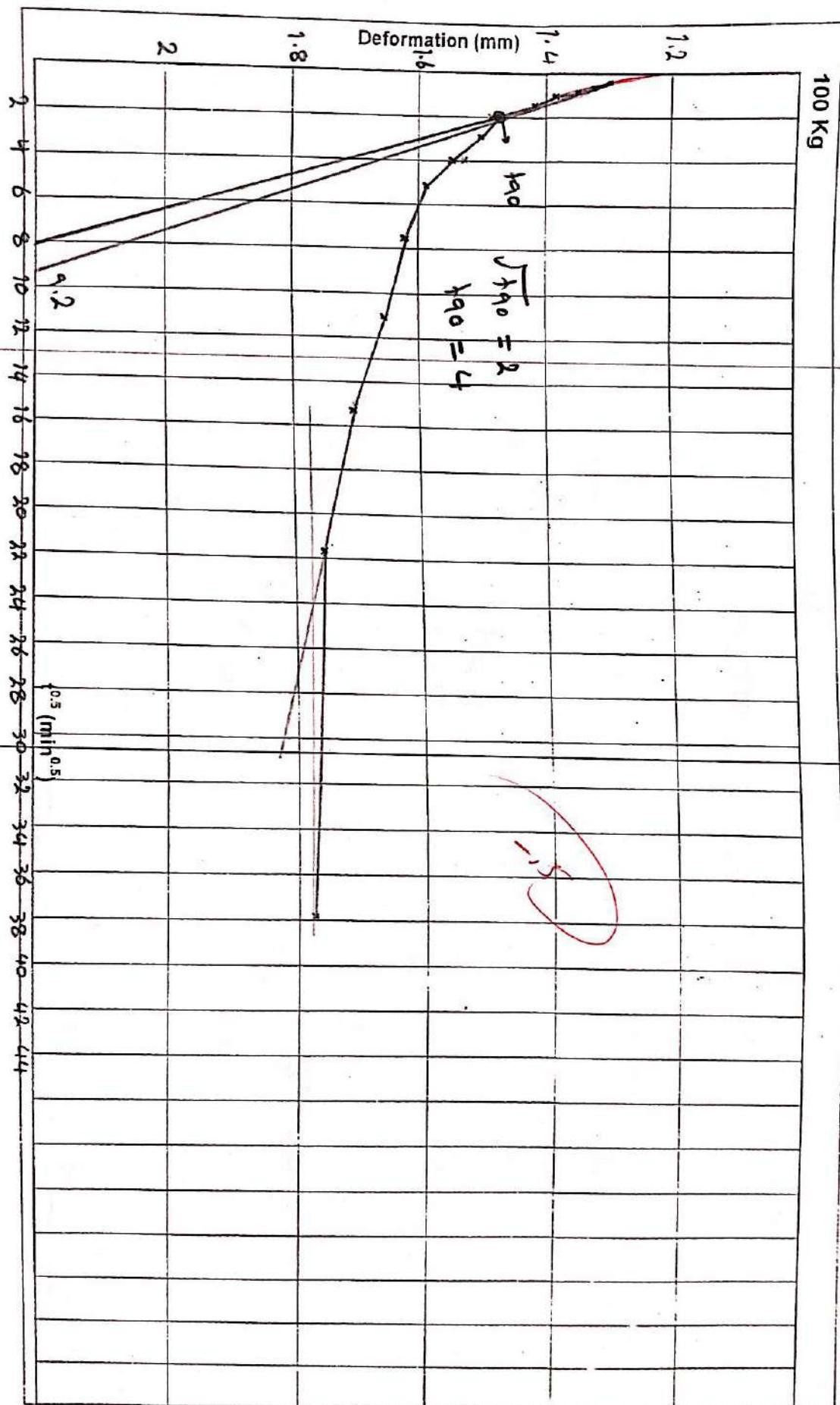

hr	Time min	sec	Dial Reading Div	Time (min)	Time ^{0.5} (min ^{0.5})	Deformation (mm)	Hf	Hv	e
0	0	8	304	0.13	0.365148	3.04	16.96	3.29	0.241
0	0	15	307	0.25	0.5	3.07	16.93	3.36	0.238
0	0	30	309	0.5	0.707107	3.09	16.91	3.24	0.238
0	1	0	312	1	1	3.12	16.88	3.21	0.235
0	2	0	315.5	2	1.414214	3.155	16.845	3.175	0.232
0	4	0	319.5	4	2	3.195	16.805	3.135	0.229
0	8	0	324.5	8	2.828427	3.245	16.755	3.085	0.226
0	16	0	330.5	16	—	3.305	16.695	3.025	0.221
0	30	0	339	30	5.477226	3.39	16.61	2.94	0.215
1	0	0	350	60	7.745967	3.50	16.50	2.83	0.208
2	0	0	364	120	10.95445	3.64	16.36	2.69	0.198
4	0	0	373	240	15.49193	3.73	16.27	2.60	0.190
8	0	0	381	480	21.9089	3.81	16.19	2.52	0.184
23	30	0	385	1410	37.54997	3.85	16.15	2.48	0.181

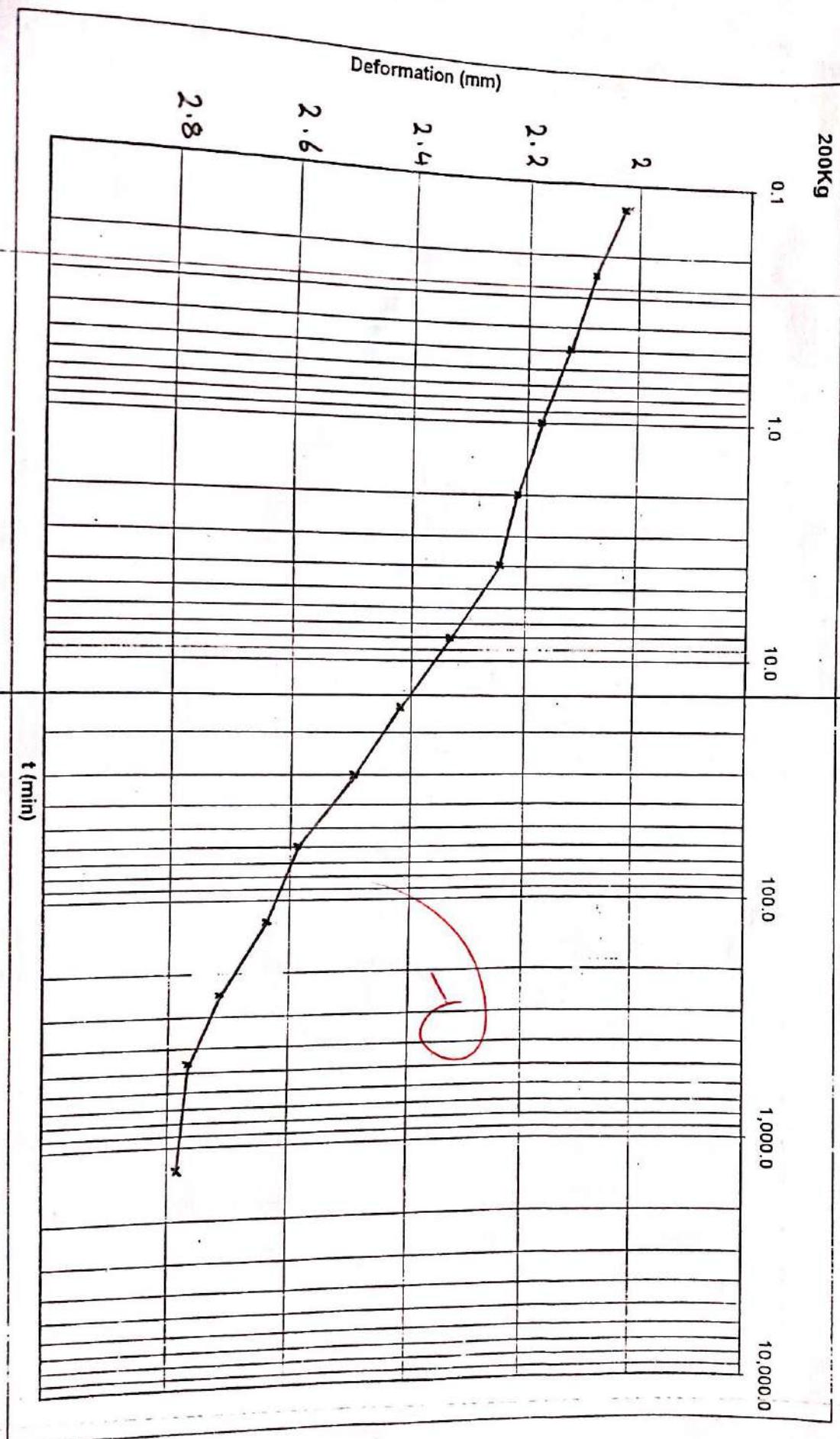
Load= 1000kg

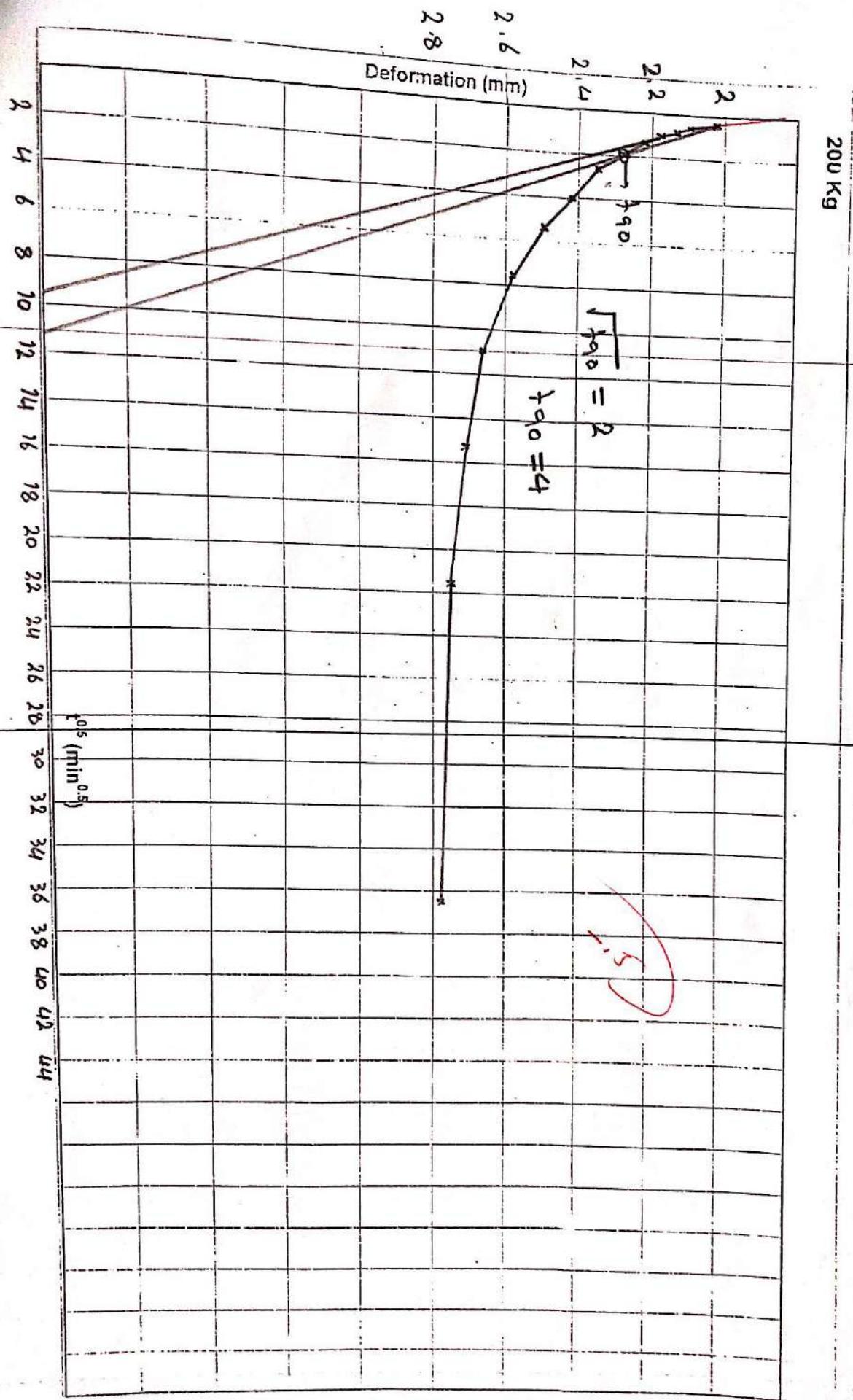

hr	Time min	sec	Dial Reading Div	Time (min)	Time ^{0.5} (min ^{0.5})	Deformation (mm)	Hf	Hv	e
0	0	8	416	0.13	0.365148	4.16	15.84	2.18	0.159
0	0	15	419	0.25	0.5	4.19	15.81	2.14	0.157
0	0	30	422	0.5	0.707107	4.22	15.78	2.11	0.154
0	1	0	426	1	1	4.26	15.74	2.07	0.151
0	2	0	432	2	1.414214	4.32	15.68	2.01	0.147
0	4	0	438	4	2	4.38	15.62	1.95	0.143
0	8	0	445	8	2.828427	4.45	15.55	1.88	0.138
0	16	0	455	16	—	4.55	15.45	1.78	0.130
0	30	0	465	30	5.477226	4.65	15.35	1.68	0.123
1	0	0	478	60	7.745967	4.78	15.22	1.55	0.113
2	0	0	487	120	10.95445	4.87	15.13	1.46	0.102
4	0	0	493	240	15.49193	4.93	15.07	1.40	0.102
8	0	0	495	480	21.9089	4.95	15.05	1.38	0.101
24	0	0	497	1440	37.94733	4.97	15.03	1.36	0.099

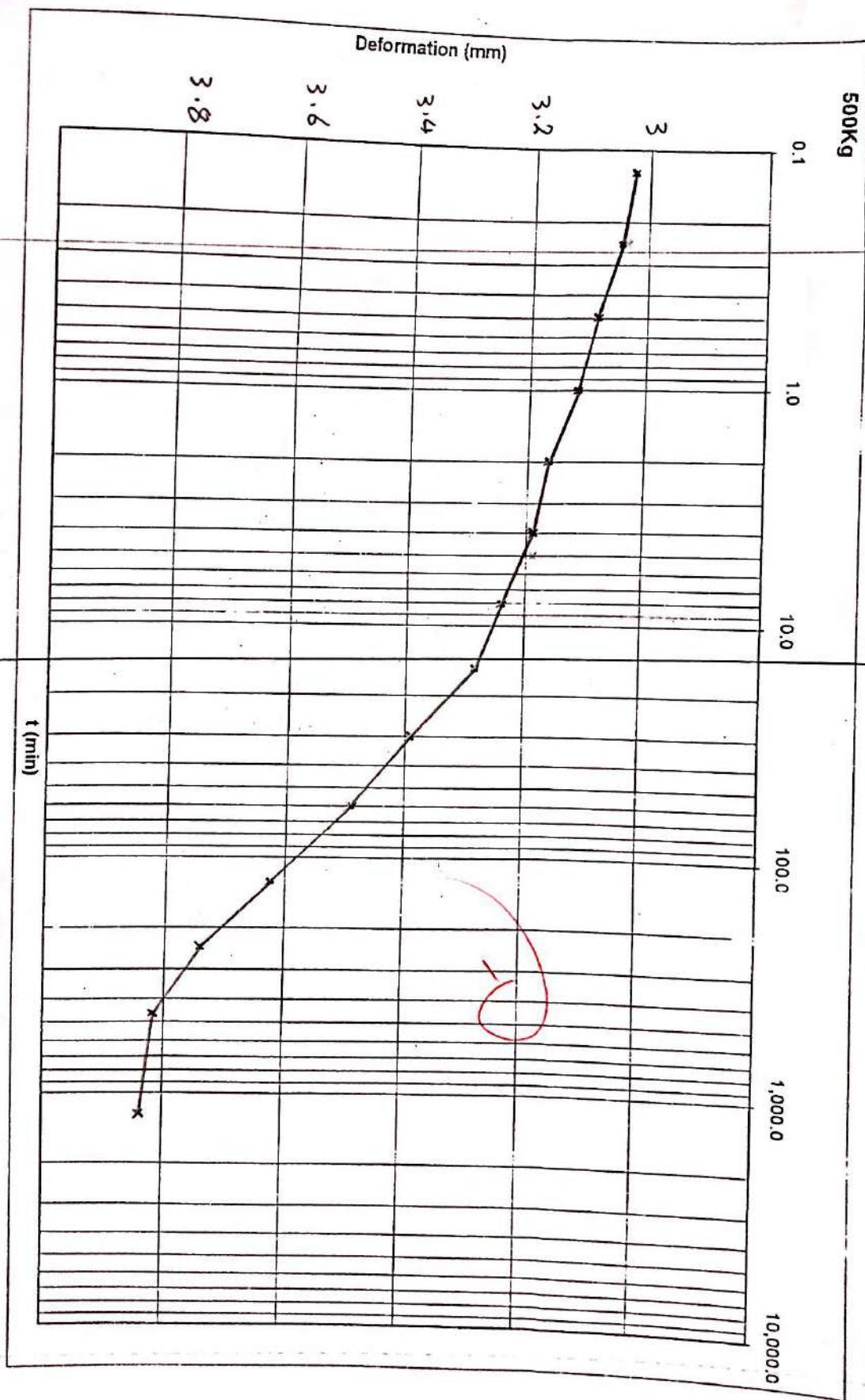

P/A	Cum.	$H_f - H_s$	$(H_f - H_s)/H_s$	$(H_{f(n-1)} + H_{f(n)})/2$	Figures			$0.845 \cdot H^{n/2} \cdot \pi^2 / (4 \cdot t_{50})$	$0.197 \cdot H^{n/2} \cdot \pi^2 / (4 \cdot t_{50})$				
					Load kg	Load MPa	Final Def. ΔH_{cum} (mm)	Height of voids (mm)	Final voids ratio	Avg. Height (mm)	t_{50}	Fitting Time (Min) t_{50}	CV (mm ² /min) from t_{50}
50	0.128	1.25	18.75	5.08	0.371	5.29	1.2	15.04	15.42	18.93	4.2	18.93	4.2
100	0.255	1.76	18.24	4.57	0.234	4	4	18.93	1.3	16.57	1.3	16.57	1.3
200	0.510	2.77	17.23	3.50	0.260	4	12	10.42	0.55	25	0.55	25	0.55
500	1.275	3.85	16.15	2.48	0.181	5.67	25	12.88	0.79	15	0.79	15	0.79
1000	2.550	4.97	15.03	1.36	0.099	4	15	12.88	0.79	15	0.79	15	0.79
			5.08	0.371	19.375								
			4.57	0.334	18.495								
			3.56	0.260	18.735								
			2.48	0.181	18.63								
			1.36	0.099	15.59								


$$c_r = \left| \frac{\Delta e}{\log\left(\frac{\sigma_1}{\sigma_2}\right)} \right| = \left| \frac{0.371 - 0.334}{\log\left(\frac{0.128}{0.253}\right)} \right| = 0.1236$$

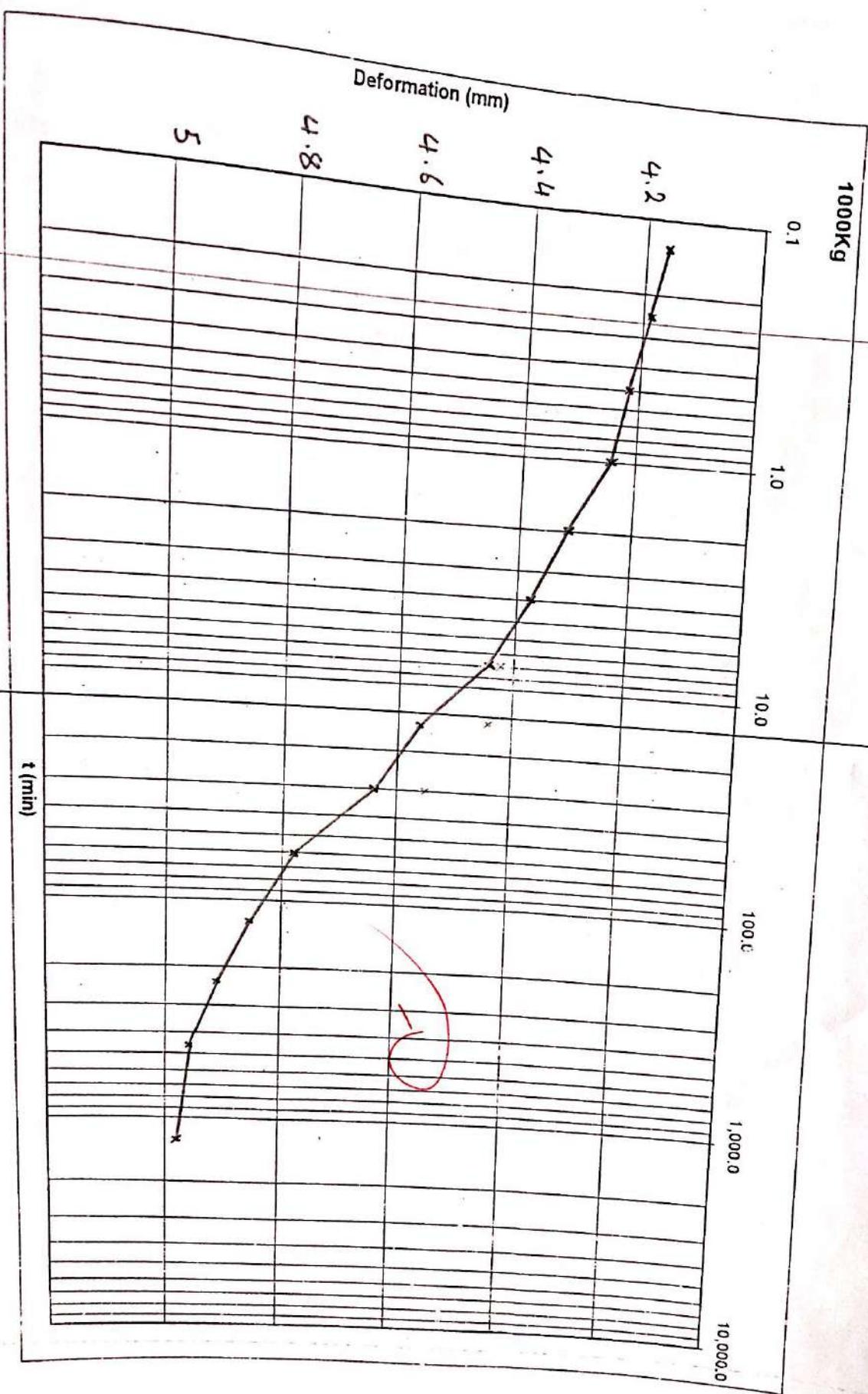


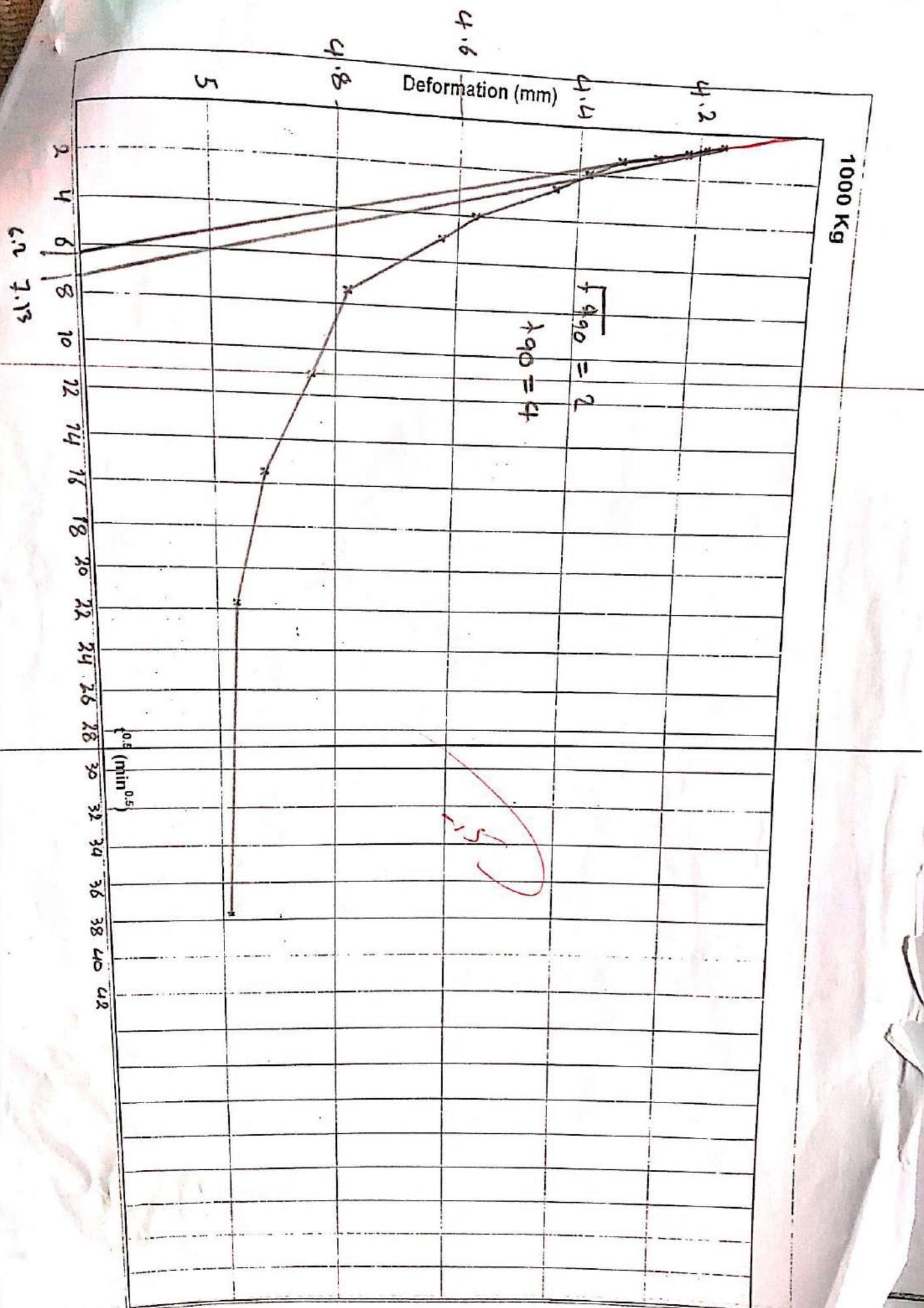

$$c_c = \left| \frac{\Delta e}{\log\left(\frac{\sigma_1}{\sigma_2}\right)} \right| = \left| \frac{0.181 - 0.099}{\log\left(\frac{1.275}{2.55}\right)} \right| = 0.2724$$











CIVIL ENGINEERING

مختبر الهندسة الميكانيكية

جامعة المدينة المنورة

15.7.2018

Direct Shear

Student Name:

عبدالله بن ابراهيم

ID#: 1639799

Section: 1

Date: 23/7/2018

18.5
20

Objective

- ① Determine the shear strength parameters (ϕ, c).
- ② Determine I.f, I_{residual}

Equipment

① loads.	⑥ callibers.
② pan filled with soil.	⑦ Direct shear device.
③ Mofol.	⑧ Balance.
④ dial gage.	
⑤ trowel	

Procedure

According to ASTM D - 3080

Sample of calculations

	σ_n (Kpa)	τ (Kpa)	τ (Kpa) resid
(20)	54.5	62.94	62.94
(40)	109	88.61	88.61
(60)	163.5	165	165

* normal stress σ_n :-

$$\sigma_n = \frac{P}{A} = \frac{20 \times 9.81}{36 \times 10^4} = 54.5 \text{ Kpa}$$

$$\sigma_n = \frac{P}{A} = \frac{40 \times 9.81}{36 \times 10^4} = 109 \text{ Kpa}$$

$$\sigma_n = \frac{P}{A} = \frac{60 \times 9.81}{36 \times 10^4} = 163.5 \text{ Kpa}$$

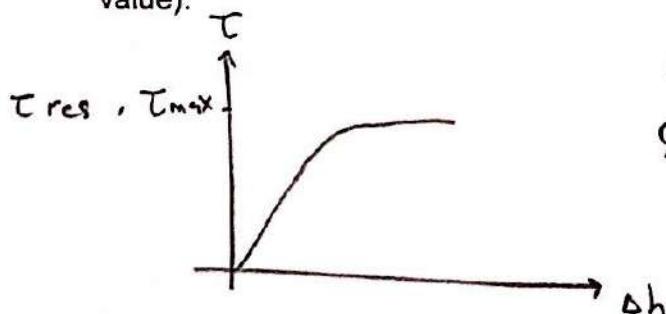
* shear stress τ :-

$$T = 0.01 \times 2200 = 22 \text{ N}$$

$$\tau_1 = \frac{T}{A} = \frac{22 \times 10^3}{36 \times 10^4} = 6.11 \text{ Kpa}$$

$$T = 0.015 \times 2200 = 33 \text{ N}$$

$$\tau_2 = \frac{T}{A} = \frac{33 \times 10^3}{36 \times 10^4} = 9.17 \text{ Kpa}$$


$$T = 0.024 \times 2200 = 52.8 \text{ N}$$

$$\tau_3 = \frac{T}{A} = \frac{52.8 \times 10^3}{36 \times 10^4} = 14.67 \text{ Kpa}$$

-Plot τ (Kpa) versus σ_n .

Discussion and Conclusion

1-the value of (c & ϕ) discuss these value (the type of soil depend on these value).
dense sand:-

$$c = 0$$

$$\phi = 47.98$$

15

load=20 Kg

σn= 54.5

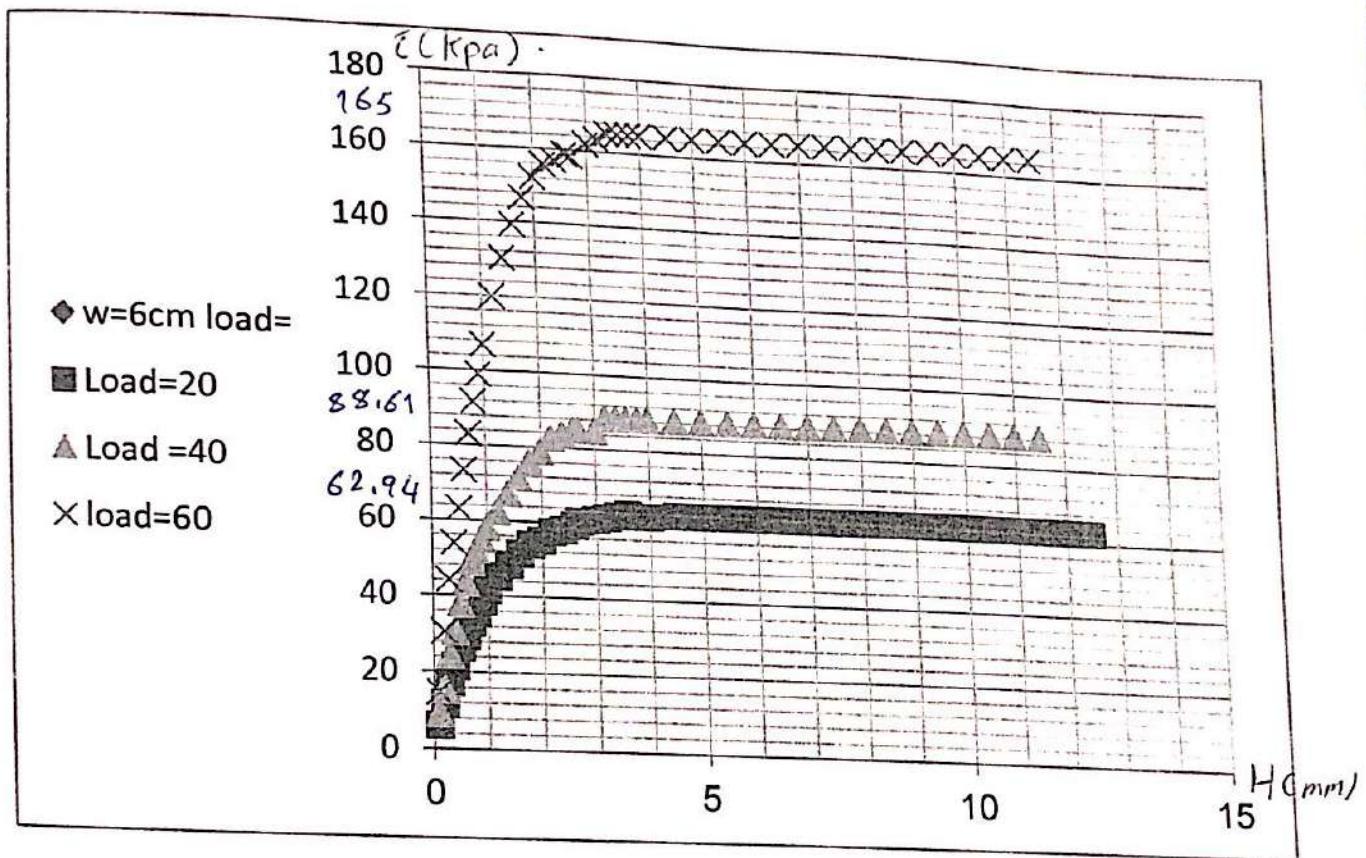
Kpa

load in (mm)*2200=load in (N)

H	V	T	H(.01)mm	V(.01)mm	T(.001)mm	T(N)	AC(mm)	T(Kpa)
10	-0.5	10	0.1	-0.005	0.010	22	3600	6.11
20	-1	19	0.2	-0.01	0.019	41.8	3600	11.61
30	-2	28	0.3	-0.02	0.028	61.6	3600	17.11
40	-4	35	0.4	-0.04	0.035	77	3600	21.39
50	-5.5	43	0.5	-0.055	0.043	94.6	3600	26.28
60	-6.5	48	0.6	-0.065	0.048	105.6	3600	29.33
70	-7	54	0.67	-0.07	0.054	118.8	3600	33
80	-8	58	0.8	-0.08	0.058	127.6	3600	35.44
90	-3	63	0.9	-0.03	0.063	138.6	3600	38.5
100	-2	68	1	-0.02	0.068	149.6	3600	41.56
120	0	74	1.2	0.00	0.074	162.8	3600	45.22
140	4	79	1.4	0.04	0.079	173.8	3600	48.28
160	8	84	1.6	0.08	0.084	184.8	3600	51.33
180	13	88	1.8	0.13	0.088	193.6	3600	53.78
200	18	90	2	0.18	0.090	198	3600	55
220	23	94	2.2	0.23	0.094	206.8	3600	57.44
240	27	95	2.4	0.27	0.095	209	3600	58.6
260	32	97	2.6	0.32	0.097	213.4	3600	59.28
270	35	99	2.7	0.35	0.099	217.8	3600	60.5
300	40	100	3	0.40	0.100	220	3600	61.11
320	43	101	3.2	0.43	0.101	222.2	3600	61.72
340	47	102	3.4	0.47	0.102	224.4	3600	62.33
360	50	103	3.6	0.50	0.103	226.6	3600	62.94
380	53	102	3.8	0.53	0.102	224.4	3600	62.33
400	56	102	4	0.56	0.102	224.4	3600	62.33
450	63	103	4.5	0.63	0.103	226.6	3600	62.94
500	69	103	5	0.69	0.103	226.6	3600	62.94
550	73	103	5.5	0.73	0.103	226.6	3600	62.94
600	78	103	6	0.78	0.103	226.6	3600	62.94
650	80	103	6.5	0.80	0.103	226.6	3600	62.94
700	81	103	7	0.81	0.103	226.6	3600	62.94
750	83	103	7.5	0.83	0.103	226.6	3600	62.94
800	86	103	8	0.86	0.103	226.6	3600	62.94
850	87	103	8.5	0.87	0.103	226.6	3600	62.94
900	89	103	9	0.89	0.103	226.6	3600	62.94
950	89	103	9.5	0.89	0.103	226.6	3600	62.94
1000	89	103	10	0.89	0.103	226.6	3600	62.94
1050	89	103	10.5	0.89	0.103	226.6	3600	62.94
1100	89	103	11	0.89	0.103	226.6	3600	62.94
1150	89	103	11.5	0.89	0.103	226.6	3600	62.94
1200	89	103	12	0.89	0.103	226.6	3600	62.94
1250	89	103	12.5	0.89	0.103	226.6	3600	62.94

oad=40 kg

$\sigma_n = 109$


Kpa

H	V	T	H(.01)mm	V.01mm	T.001mm	T(N)	AC(mm)	T(Kpa)
10	-3	15	0.1	-0.03	0.015	33	3600	9.17
20	-5	25	0.2	-0.05	0.025	55	3600	15.28
30	-5	40	0.3	-0.05	0.040	88	3600	24.44
40	-6	50	0.4	-0.06	0.050	110	3600	30.56
50	-5	62	0.5	-0.05	0.062	136.4	3600	37.89
60	-5	71	0.6	-0.05	0.071	156.2	3600	43.39
70	-4	80	0.7	-0.04	0.080	176	3600	48.89
80	-3	85	0.8	-0.03	0.085	187	3600	51.94
90	-1	90	0.9	-0.01	0.090	198	3600	55
100	0	95	1	0.00	0.095	209	3600	58.06
120	4	102	1.2	0.04	0.102	224.4	3600	62.33
140	8	110	1.4	0.08	0.110	242	3600	67.22
160	11	117	1.6	0.11	0.117	257.4	3600	71.5
180	17	124	1.8	0.17	0.124	272.8	3600	75.78
200	21	129	2	0.21	0.129	283.8	3600	78.83
220	25	135	2.2	0.25	0.135	297	3600	82.5
240	30	137	2.4	0.30	0.137	301.4	3600	83.72
260	36	139	2.6	0.36	0.139	305.8	3600	84.94
270	39	139	2.7	0.39	0.139	305.8	3600	84.94
300	42	139	3	0.42	0.139	305.8	3600	84.94
320	46	145	3.2	0.46	0.145	319	3600	88.61
340	49	145	3.4	0.49	0.145	319	3600	88.61
360	53	145	3.6	0.53	0.145	319	3600	88.61
380	56	145	3.8	0.56	0.145	319	3600	88.61
400	59	145	4	0.59	0.145	319	3600	88.61
450	66	145	4.5	0.66	0.145	319	3600	88.61
500	71	145	5	0.71	0.145	319	3600	88.61
550	76	145	5.5	0.76	0.145	319	3600	88.61
600	82	145	6	0.82	0.145	319	3600	88.61
650	85	145	6.5	0.85	0.145	319	3600	88.61
700	88	145	7	0.88	0.145	319	3600	88.61
750	89	145	7.5	0.89	0.145	319	3600	88.61
800	91	145	8	0.91	0.145	319	3600	88.61
850	93	145	8.5	0.93	0.145	319	3600	88.61
900	93	145	9	0.93	0.145	319	3600	88.61
950	93	145	9.5	0.93	0.145	319	3600	88.61
1000	93	145	10	0.93	0.145	319	3600	88.61
1050	93	145	10.5	0.93	0.145	319	3600	88.61
1100	93	145	11	0.93	0.145	319	3600	88.61
1150	92	145	11.5	0.92	0.145	319	3600	88.61

load=60 kg

σn = 163.5 kPa

H	V	T	H(.01)mm	V.01mm	T.001mm	T(N)	AC(mm)	τ(Kpa)
10	-4	24	0.1	-0.04	0.024	52.8	3600	14.67
20	-5	50	0.2	-0.05	0.050	110	3600	30.56
30	-6	72	0.3	-0.06	0.072	158.4	3600	44
40	-6	88	0.4	-0.06	0.088	193.6	3600	53.78
50	-6	103	0.5	-0.06	0.103	226.6	3600	62.94
60	-6	120	0.6	-0.06	0.120	264	3600	73.33
70	-6	136	0.7	-0.06	0.136	299.2	3600	83.11
80	-6	150	0.8	-0.06	0.150	330	3600	91.67
90	-5	162	0.9	-0.05	0.162	356.4	3600	99
100	-4	175	1	-0.04	0.175	385	3600	106.94
120	-2	196	1.2	-0.02	0.196	413.2	3600	114.78
140	1	213	1.4	0.01	0.213	468.6	3600	130.17
160	5	228	1.6	0.05	0.228	507.6	3600	139.33
180	9	240	1.8	0.09	0.240	528	3600	146.67
200	14	249	2	0.14	0.249	547.8	3600	152.17
220	18	255	2.2	0.18	0.255	561	3600	155.83
240	-2	257	2.4	-0.02	0.257	565.4	3600	157.06
260	26	260	2.6	0.26	0.260	572	3600	158.89
270	30	259	2.7	0.30	0.259	569.8	3600	158.28
300	33	265	3	0.33	0.265	583	3600	161.94
320	37	267	3.2	0.37	0.267	587.4	3600	163.17
340	42	270	3.4	0.42	0.270	594	3600	165
360	45	270	3.6	0.45	0.270	594	3600	165
380	48	270	3.8	0.48	0.270	594	3600	165
400	52	270	4	0.52	0.270	594	3600	165
450	57	270	4.5	0.57	0.270	594	3600	165
500	61	270	5	0.61	0.270	594	3600	165
550	71	270	5.5	0.71	0.270	594	3600	165
600	69	270	6	0.69	0.270	594	3600	165
650	68	270	6.5	0.68	0.270	594	3600	165
700	68	270	7	0.68	0.270	594	3600	165
750	69	270	7.5	0.69	0.270	594	3600	165
800	69	270	8	0.69	0.270	594	3600	165
850	69	270	8.5	0.69	0.270	594	3600	165
900	71	270	9	0.71	0.270	594	3600	165
950	71	270	9.5	0.71	0.270	594	3600	165
1000	71	270	10	0.71	0.270	594	3600	165
1050	63	270	10.5	0.63	0.270	594	3600	165
1100	61	270	11	0.61	0.270	594	3600	165
1150	60	270	11.5	0.60	0.270	594	3600	165

