

ECP Detailing Hisham Qasrawi

Notations

قاعدة مسلحة أو عادية	=	ق	
عمود	=	٤	
كمرة	=	ای	
ميدة	=	م	
کابولی	=	کا	
بلاطة	=	ب	
حائط خرساني (أو مباني)	=	۲	
خرسانة عادية	=	خنع	
خرسانة مسلحة	=	خ*م	
قطر أو علامة لأسياخ الصلب الطري العادي – ربّبة ٣٥٠/٢٤٠	=	ϕ	
صلب تسليح عالي المقاومة - ربّبة ٢٠/٣٦٠	=		
صلب تسليح عالي المقاومة - ربّبة ٢٠٠/٤٠٠	=		
شبك تسليح ملحوم - ربّبه ٢٠/٤٥٠ م	=	Φ	
المسافة بين محاور الأسياخ	=	#	
		کل أو @	

				ليمتر	بالما	ف S	المضا	لطول	لأدنى ا	الحد ال	: ()	(-٣)	، رقم	جدول		
٤٠	۲۲	۸۲	۲٥	77	۲.	11	18	١٦	115	١٣	11	1+	٨	٦	التطر	الشكل
															رتبة الصلب	
۳٦.	89.	۲٦.	۲۳۰	۲	۱۸۰	۱۸۰	18.	10+	15.	14+	11+	1	۸.	۳.	ϕ	
٦٨.	00.	٤٨٠	۳۳.	44.	۲٦.	۲0.	Y£.	41.	19.	11.	17.	15.		٨٠	#	
٤٥٠	۳۹.	۳۱۰	Υ٨٠	۲0۰	44.	41+	۲	۱۸۰	17.	10.	15.	14.	۹.	۷.	ϕ	$ \longrightarrow $
0	٤٠٠	۳0۰	۳۰۰	41.	۲٤٠	۲۳۰	44.	۲	۱۷۰	17.	10.	14.	1	٨٠	#	
٥٤٠	٤٢٠	۳۷۰	۲۲۰	44.	۲۲.	۲0.	۲٤٠	41+	١٨٠	۱۷۰	17.	15.	11+	٨.	ϕ	
ογ.	٤٩.	۳٩.	٣٤٠	۳	۲۷.	۲۹۰	۲۰.	44.	11.	۱۸۰	17.	12.	11.	۹.	#	

Welded splices Direct

Welded splices Additional Bars

 $_{\emptyset 1}$ مساحة الاسياخ $_{\emptyset 0}$ مساحة السيخ $_{0}$

شكل (٣-٥) تفاصيل وصلات اللحام باستخدام أسياخ إضافية

Area of steel bars

جدول رقم (٣-٤) مساحة ومحيط الأعداد المتكررة من الأقطار المختلفة لأسياخ صلب التسليح

المحيط			(مم ۲)	اخ		القد					
/ سيخ	۱.	٩	λ	٧	٦	٥	٤	٣	۲	١	العدد لمر (م
مم											ح)
۱۸,۸	የለ٣	400	227	۱۹۸	١٧٠	151	۱۱۳	٨o	٥٦	۲۸	۲
20,1	0.7	504	٤٠٢	302	۳.۲	101	۲۰۱	101	1	٥.	Α
۳١,٤	γλο	٧٠٧	٦٢٨	00,	٤٧١	۳۹۳	۳١٤	222	107	٧A	۱۰
۳۷,۷	1171	1.14	9.0	۲۹۲	٦٧٩	077	207	۳۳۹	777	۱۱۳	١٢
٤٠,٩	۱۳۲۸	1190	1.77	979	٧٩٦	775	٥٣١	۳۹۸	777	۱۳۳	۱۳
٤٤,٠	102.	۱۳۸٦	1222	١•٧٨	972	٧٧٠	717	574	۳۰۸	102	۱ ٤
٥٠,٣	۲ • ۱ ۱	141.	١٦٠٨	١٤٠٧	17.7	10	٨٠٤	٦.٣	٤٠٢	۲۰۱	١٦
07,7	4057	2291	۲۰۳۷	1774	1077	1777	1.14	٧٦٤	0.9	100	١A
०१,४	የለሞኘ	2007	2229	۱۹۸٦	۲۰۷۱	١٤١٨	1170	٨٥١	٥٦٧	۲٨٤	١٩
٦٢,٨	3121	7777	2012	2199	۱۸۸۵	1011	1707	957	٦٢٨	۳١٤	۲.
٦٩,١	۳۸۰۳	٣٤٢٣	3.51	7777	7777	19.1	1071	1151	771	۳۸۰	۲۲
٧٨,٥	٤٩.٩	٤٤١٨	397V	3627	8950	7202	۱۹٦٣	١٤٧٣	٩٨٢	591	۲٥
۸٨, •	717.	0022	5971	5812	٣٦٩٦	۳۰۸۰	4575	1828	۱۳۳۲	717	۲۸
٥٥	٨٠٤٢	۸۳۲۷	7575	٥٦٣.	5240	٤•٢١	3411	2512	١٦٠٨	٨٠٤	۳۲
۱۲0,۷	17077	1171.	10٣	٨٧٩.	٧٥٤.	ግለአም	0.77	۳۷۷۰	2012	1808	٤٠

Simple beam

SIMPLE BEAM

Continuous beam

Bar schedule for beams

MEMBER	BAR MARK	TYPE & SIZE	NO. OF MEMBERS	NO. OF BARS IN EACH MEMBER	TOTAL NO. OF BARS	CODE SHAPE	LENGTH A (mm)	LENGTH B (mm)	LENGTH C (mm)	LENGTH D (mm)	LENGTH E (mm)	TOTAL LENGTH (mm)	TOTAL WEIGHT (Kg)
	1	Ø 18	1	2	2	SH–5	550	6250	550			7205	
Beam	2	Ø 16	1	2	2	SH-1	4000					4000	
imple	3	Ø 12	1	2	2	SH-4	550	1500				2005	
S	4	Ø12	1	2	2	SH-1	3750					3750	
	5	Ø8	1	25	25	SH-8	550	200				1600	
	6	Ø 18	Ľ	2	4	SH-4	550	5950				6445	
Beam	7	Ø 18	2	2	4	SH-1	4000					4000	
snon	8	Ø 12	2	2	4	SH-4	550	4055				4570	
Contin	9	Ø22	2	2	4	SH-1	3840					3840	
	10	Ø22	2	3	6	SH-1	2500					2500	
	11	øв	2	50	50	SH-8	550	200				1600	

Bar schedule for solid slab

MEMBER	BAR MARK	TYPE & SIZE	NO. OF MEMBERS	NO. OF BARS IN EACH MEMBER	TOTAL NO. OF BARS	CODE SHAPE	LENGTH A (mm)	LENGTH B (mm)	LENGTH C (mm)	LENGTH D (mm)	LENGTH E (mm)	TOTAL LENGTH (mm)	TOTAL WEIGHT (Kg)
(1	Ø12	1	19	19	SH-1	2400					2400	
	2	Ø12	1	20	20	SH-1	3250					3250	
) s	3	Ø8	1	14	14	SH-1	6250					6250	
n Axe.	4	Ø8	1	14	14	SH-1	5750					5750	
3etwee	5	Ø 8	1	10	10	SH-1	2750					2750	
Slab i	6	Ø12	Ľ	46	46	SH-1	5750					5750	
Solid	7	\$10 .	2	57	57	SH-4	80	1050				1100	

.com

Solid two-way-slab

tes.com

Ribbed slab (one- and two-way)

...plates.com

Ribbed slab (one- and two-way)

s.com

Ribbed slab (one- and two-way) Hidden beams

ates.com

Solid ribbed two-way slab with hidden beams

.com

Solid slabs (with or without drop beams)

(أ) شريحة العمود

• To resist earthquakes

(ب) شريحة الوسط

Beams

(س-س)	قطاع

Beams'	Table	
		_

									_	
Beam	E	Bot. Rft.			p. Rft		St	irrups,	Dece este	
Туре	Long	Short	At Supp.	Right	Mid.	Left	Right	Mid.	Left	Remarks
B1	1 ø 22	1 ,\$ 2	1/2 2	1 # 4	1 ø 22	1 # 4	8Ø6	805	8 Ø6	
Beam	t	ب	و	ა	ھ	ه + و	Stir	rrups/	'n	
C1	1 ¢2 2	_	_	1 ¢ 4	1 ,\$ 6 4	1 ¢6 4	1ø9 7	1 ø 7	1ø0 7	
Contilever	ج	_	—	ა	J	J	Stir	rrups/	′m	

TYPE	Length
а	Max. 0.10 L _{n1}
b	Max. 0.125 L _{n1}
С	Min. 0.15 L _{n1}
d	Min. 1.00 L _{n2}
е	Bigger of 12⋬or 25 cm

ملاحظات:

- التسليح (و) هو التسليح الخاص بحسابات الأحمال الجانبية [يرجع الى بند (٦-٧-٢-٢)
 - يراعى دراسة اجهادات القص لتحديد كمية و مسافة توزيع الكانات المقاومة للقص ·
 - يراعى حساب الكانات الاضافية الخاصة باماكن توقف الاسياخ طبقا للبند (٤-٢-٥-٣)

Continuous beams (span difference <20%)

- يراعى حساب الكانات الاضافية الخاصة باماكن توقف الأسياخ طبقًا للبند (٤-٢-٥-٣)

om - لا تبعد اول كانة اكثر من ٥٠ مم من وجه الركيزة

Typical column sections

Tvpical column sections

١٤ سيخ

٨ أسياخ

Staircase: slab type

• Staircase:

cantilever type

Single footing

 Combined footing

Combined footing:
Edge column

Formwork design

Hisham Qasrawi

Basic principles of design

- Important factors in design are:
 - safety (the structure doesn't fall down);
 - serviceability (how well the structure performs in term of appearance and deflection);
 - economy (an efficient use of materials and labor); and
- Several alternative designs should be prepared and their costs compared.

- **Dead loads** permanent; including self-weight, floor covering, suspended ceiling, partitions, etc.
- Live loads not permanent; the location is not fixed; including furniture, equipment, and occupants of buildings
- Wind load (exerts a pressure or suction on the exterior of a building);
- Earthquake loads (the effects of ground motion are simulated by a system of horizontal forces);
- Snow load (varies with geographical location and drift);
- **Other loads** (hydrostatic pressure, soil pressure)
- If the load is applied suddenly, the effects of IMPACT must be accounted for.
- Vibrations
- Any nearby loading that may affect the structure

Minimum loads

- The formwork should be designed for a live load of not (2.4 kPa) of horizontal projection.
- When motorized carts are used, the live load should not be less than (3.6 kPa).
- The design load for combined dead and live loads should not be less than (4.8 kPa) or (6.0 kPa) if motorized carts are used

Basic elements of wall

Typical wall form

Typical member ties

Typical slab formwork

ACI 347

- The variables used in the pressure formulas are defined as follows:
- *p* = lateral pressure of concrete
- *h* = depth of fluid or plastic concrete from top of placement to point of consideration,
- w = unit weight of concrete,
- *R* = rate of placement,
- *T* = temperature of concrete during placement,
- C_W = unit weight coefficient; and
- *Cc* = chemistry coefficient.

Lateral pressure of concrete

- *p* = lateral pressure (kPa);
- *w* = unit weight of concrete,
- ρ = density of concrete, kg/m3;
- g = gravitational constant,
 9.81 N/kg; and
- *h* = depth of fluid or plastic concrete from top of placement
- to point of consideration in form, (m).

H. Qasra

Condition for application of design equations

- For concrete having a
 - slump of 175 mm or less and
 - placed with normal internal vibration
 - to a depth of 1.2 m or less,
 - formwork can be designed for a lateral pressure as follows

Effect of pumping

- If concrete is pumped from the base of the form, the form should be designed for full hydrostatic head of concrete *wh* plus a minimum allowance of 25% for pump surge pressure.
- In certain instances, pressures can be as high as the face pressure of the pump piston.

Definitions

- For the purpose of applying the pressure formulas,
 - Columns are defined as vertical elements with no plan dimension exceeding (2 m).
 - Walls are defined as vertical elements with at least one plan dimension greater than (2 m).

Columns

• For columns, the formula used to determine the design pressure is

$$p_{max} = C_w C_c \left[7.2 + \frac{785R}{T + 17.8} \right]$$

• with

- a maximum required pressure of 3000 $C_W C_C$ and
- a minimum of 600 C_W
- but never more than wh.

Unit weight coefficient C_W

Density of concrete	C_w
Less than 2240 kg/m ³	$C_w = 0.5[1 + (w/2320 \text{ kg/m}^3)]$ but not less than 0.80
2240 to 2400 kN/m ³	1.0
More than 2400 kg/m ³	$C_w = w/2320 \text{ kg/m}^3$

Chemistry coefficient C_C

Cement type or blend	C_{c}
Types I, II, and III without retarders $*$	1.0
Types I, II, and III with a retarder	1.2
Other types or blends containing less than 70% slag or 40% fly ash without retarders [*]	1.2
Other types or blends containing less than 70% slag or 40% fly ash with a retarder $*$	1.4
Blends containing more than 70% slag or 40% fly ash	1.4

^{*}Retarders include any admixture, such as a retarder, retarding water reducer, retarding midrange water-reducing admixture, or high-range water-reducing admixture (super-plasticizer), that delays setting of concrete.

 For walls with a rate of placement of less than 2.1 m/h and a placement height not exceeding 4.2 m

$$p_{max} = C_w C_c \left[7.2 + \frac{785R}{T + 17.8} \right]$$

with a minimum of 30 C_w kPa, but in no case greater than ρgh.

Walls

 For walls with a placement rate less than 2.1 m/h where placement height exceeds 4.2 m, and for all walls with a placement rate of 2.1 to 4.5 m/h

$$p_{max} = C_w C_c \left[7.2 + \frac{1156}{T + 17.8} + \frac{244R}{T + 17.8} \right]$$

with a minimum of 30 C_w kPa, but in no case greater than ρgh.

Minimum safety factors of formwork accessories*

Accessory	Safety factor	Type of construction	
Form tie	2.0	All applications	
Form on ohor	2.0	Formwork supporting form weight and concrete pressures only	
	3.0	Formwork supporting weight of forms, concrete, construction live loads, and impact	
Form hangers	2.0	All applications	
Anchoring inserts used as form ties	2.0	Precast-concrete panels when used as formwork	

*Safety factors are based on the ultimate strength of the accessory when new.

Horizontal formwork design

Slab from design

- Design of slab forms can be summarized in the following design steps:
 - Step 1: Estimate design loads
 - Step 2: Determine sheathing thickness and the spacing of its supports (joist spacing)
 - Step 3: Determine joist size and spacing of supports (stringer spacing)
 - Step 4: Determine stringer size and span (shore spacing)
 - Step 5: Perform shore design to support stringers
 - Step 6: Check bearing stresses
 - Step 7: Design lateral bracing

Vertical Loads

- Vertical loads on formwork include:
 - the weight of reinforced concrete;
 - the weight of forms themselves (dead load); and
 - the live loads imposed during the construction process (material storage, personnel and equipment).

Upload

- When slab form members are continuous over several supporting shores, dumping concrete on one span of the form member may cause uplift of the form in other spans.
- Forms must me designed to hold together under such conditions. If form members are not secured to resist this uplift, they should be built as a simple pan.

SLAB FORM EXAMPLE:

- Design forms to support a flat slab floor 8 inches thick of highstrength concrete with a unit weight of 138 lb/ft3, using construction grade Douglas Fir-Larch form in members and steel shoring. Ceiling height is 8 feet and bays are 15×15 feet.
- Assume forms will have continuing reuse.

Orthotropic Nature of Wood Properties

H. Qasrawi

Wood: Strength and Stiffness

Major elastic	constants for five wood sp	pecies at 12% moisture	content. ^a		
Property	Loblolly pine	Sitka spruce	Red oak	Yellow poplar	Balsa
E_{T}/E_{L} E_{R}/E_{L} G_{LR}/E_{L} G_{LT}/E_{L} G_{RT}/E_{L} μ_{LR} μ_{LT} μ_{RT}	0.078 0.113 0.082 0.081 0.013 0.328 0.292 0.382	0.043 0.078 0.064 0.061 0.003 0.372 0.467 0.435	$\begin{array}{c} 0.082\\ 0.154\\ 0.089\\ 0.081\\\\ 0.350\\ 0.448\\ 0.560\\ \end{array}$	0.043 0.092 0.075 0.069 0.011 0.318 0.392 0.703	$\begin{array}{c} 0.015\\ 0.046\\ 0.054\\ 0.037\\ 0.005\\ 0.229\\ 0.488\\ 0.665\end{array}$
$\mu_{\rm TR}$	0.362	0.245	0.292	0.392	0.231

a Values for μ_{RL} , and μ_{TL} are small, seldom used, and often not available. Values of E_L may be estimated by multiplying the modulus of elasticity in static bending given in Table 2 by 1.10.

Mechanical properties for five wood species at 12% moisture content.^a

	Ben	nding	Com	pression	Shear		Tension	
Species	Modulus of rupture (MPa)	Modulus of elasticity (GPa)	Parallel to grain (MPa)	Perpendicular to grain (MPa)	Parallel to grain (MPa)	Parallel to grain (MPa)	Perpendicular to grain (MPa)	Side hardness (kN)ª
Loblolly pine Sitka spruce Red oak Yellow poplar Balsa	88.0 70.0 99.0 70.0 21.6	12.3 10.8 12.5 10.9 3.4	49.2 38.7 46.6 38.2 14.9	5.4 4.0 7.0 3.4	9.6 7.9 12.3 8.2 2.1	88.0 75.8 101.4 154.4	3.2 2.6 5.5 3.7	3.1 2.4 5.7 2.4

a Force at 5.6mm indention.

Design Values

• An important part of wood design is being able to determine design values for the following mechanical properties:

– Bending stress, F_b

- Tension stress parallel to grain, F_t
- Shear stress, F_v
- Compressive stress parallel to grain, F_c
- Compressive stress perpendicular. to grain, F_{cl}
- Modulus of Elasticity, E

Allowable bending strength for wood

- $\mathbf{F}_{b}' = \mathbf{F}_{b} \mathbf{C}_{D} \mathbf{C}_{M} \mathbf{C}_{t} \mathbf{C}_{L} \mathbf{C}_{F} \mathbf{C}_{r} \mathbf{C}_{fu} \mathbf{C}_{i}$
- C_D: Load duration factor
- C_M : Wet service factor
- C_t : Temperature factor
- C_L : Beam stability factor
- C_F : Size factor
- C_r : Repetitive member factor
- C_{fu}: Flat-use factor
- C_i : Incising Factor

C_D: Load duration factor

Load Duration Factor (C_D)

- Wood can support higher stresses if the loads are applied for a short period of time. The tabulated stresses in the NDS apply to normal load duration (floor live load duration=10 years). For other loads, C_D lies in the range of 0.9 to 2.0.
- Duration of load refers to the accumulated length of time that a load is applied during the life of a structure.
- It is the full design load that is of concern, and not the length of time over which a portion of the load may be applied.
- C_D does not apply to $F_{c\perp}$ and E.

Table for Load Duration Factor

Shortest-Duration Load in Combination	C _D
Dead load	0.9
Floor live load	1.0
Snow load	1.15
Roof live load	1.25
Wind or seismic force	1.6
Impact	2.0

C_M : Wet service factor

	Property (MPa (lb/in ²))			
Coefficients	MOR	UTS	UCS	
B ₁	16.6 (2,415)	21.7 (3,150)	9.6 (1,400)	
B ₂	0.276 (40)	0.552 (80)	0.234 (34)	

^aMOR is modulus of rupture; UTS, ultimate tensile stress; and UCS, ultimate compressive stress.

$$P_2 = P_1 + \left(\frac{P_1 - B_1}{B_2 - M_1}\right) \left(M_1 - M_2\right)$$

where M_1 is moisture content 1 (%), M_2 is moisture content 2 (%), and B_1 , B_2 are constants from Table 6–7.

For *E*, the following equation applies:

$$E_1 = E_2 \left(\frac{1.857 - (0.0237M_2)}{1.857 - (0.0237M_1)} \right)$$

where E_1 is property (MPa, lb/in²) at moisture content 1 and E_2 is property (MPa, lb/in²) at moisture content 2.

For MOR, ultimate tensile stress (UTS), and ultimate compressive stress (UCS), the following ASTM D1990 equations apply:

For MOR ≤ 16.7 MPa (2,415 lb/in²) UTS ≤ 21.7 MPa (3,150 lb/in²) UCS ≤ 9.7 MPa (1,400 lb/in²) $P_1 = P_2$

Thus, there is no adjustment for stresses below these levels.

For MOR > 16.6 MPa (2,415 lb/in²) UTS > 21.7 MPa (3,150 lb/in²) UCS > 9.7 MPa (1,400 lb/in²)

Also, $C_M = 1.0$ In-service moisture content less than 19%

C_t : Temperature factor

		Factor			
Design values	In-service moisture content	<i>T</i> ≤ 37°C (T ≤ 100°F)	37°C < <i>T</i> ≤ 52°C (100°F < <i>T</i> ≤ 125°F)	52°C < <i>T</i> ≤ 65°C (125°F < <i>T</i> ≤ 150°F)	
F _t , E	Wet or dry	1.0	0.9	0.9	
$F_{ m b},F_{ m v},F_{ m c},F_{ m c_{ot}}$	Dry	1.0	0.8	0.7	
	Wet	1.0	0.7	0.5	

C_F : Size factor

Exponent	MOR	UTS	UCS
W	0.29	0.29	0.13
1	0.14	0.14	0

^aMOR is modulus of rupture; UTS, ultimate tensile stress; and UCS, ultimate compressive stress.

- where
- P_1 is property value (MPa, lb/in²) at volume 1,
- P_2 property value (MPa, lb/in²) at volume 2,
- W_1 width (mm, in.) at P_1 ,
- W2 width (mm, in.) at P_2 ,
- L_1 length (mm, in.) at P_1 , and L_2 length (mm, in.) at P_2 .
- Exponents are defined in Table

C_F : Size factor

- Approximate method
- The size of a wood member has an effect on its strength. For dimension lumber, the size affects F_t , F_c , and F_b . The values of C_F are given at the beginning of Table 4A.
- For timbers, C_F applies only to F_b:
 - $C_F = (300/d)^{1/9}$
 - When d, depth of timber, is less than 300 mm., $C_F=1$

H. Qasrawi

C_r : Repetitive member factor

- If all of the following are true:
 - The lumber is (50 100 mm) thick.
 - Spaced no more than (600 mm) on center.
 - No less than three parallel members acting in the system.
 - All members must be joined together by some load distributing element (plywood, sheathing, flooring, roofing, etc.) in order to distribute the load amongst the various members.
- Then a 15% increase in the capacity of the members can be used (Cr = 1.15)

C_L : Beam stability factor

$$C_{L} = \frac{1 + (F_{bE} / F_{b}^{*})}{1.9} - \sqrt{\left[\frac{1 + F_{bE} / F_{b}^{*}}{1.9}\right]^{2} - \frac{F_{bE} / F_{b}^{*}}{0.95}}$$

where:

- F_b* = reference bending design value multiplied by all applicable adjustment factors except C_{fu}, C_V, and C_L and
- $F_{bE} = 1.20E_{min}' / R_b^2$

Modulus of Elasticity for Beam and Column Stability, E_{min}'

 $E_{min} = 1.03E (1 - 1.645 (COV_E)) / 1.66$

- where:
- E = reference modulus of elasticity,
- 1.03 = adjustment factor to convert E to a pure bending basis except that the factor is
- 1.05 for glued laminated timber,
- 1.66 = factor of safety, and
- COV_E = coefficient of variation in modulus of elasticity (given in NDS Appendix F).
- E_{min}'(represents an approximate 5% lower exclusion value on pure bending modulus of elasticity, divided by a 1.66 factor of safety),

C_i : Incising Factor

- For the modulus of elasticity, C_i 0.95
- For bending, tension, shear, and compression parallel to grain, C_i 0.80.
- For compression perpendicular to grain as well as for non-incised treated lumber, the incising factor is taken as 1.0.

C_{fu}: Flat-use factor

C_{fu} = 1.0 for member loaded in edge-wise bending.

Allowable bending strength for wood

- C_D: Load duration factor
- C_M : Wet service factor
- C_t : Temperature factor
- C_i : Incising Factor
Deflection

Max.
$$\Delta = f\left(\frac{P, w, L}{I, E'}\right)$$

 $\begin{array}{ll} Max. \ \ \Delta_L \leq allow. \ \Delta_L \\ Max. \ \Delta_{TL} \leq allow. \ \Delta_{TL} \end{array}$

- $E' = E C_M C_t C_i$
- C_M : Wet service factor
- C_t : Temperature factor
- C_i : Incising Factor

 Δ_{L} : Live load deflection Δ_{TL} : Live load deflection

Bearing at supports

• $\mathbf{F}_{C\perp}$ = $\mathbf{F}_{C\perp} \mathbf{C}_{M} \mathbf{C}_{t} \mathbf{C}_{i} \mathbf{C}_{b}$

- C_M : Wet service factor
- C_t : Temperature factor
- C_i : Incising Factor

$$C_b = rac{l_b + 10 \ \mathrm{mm}}{l_b}$$

 C_b: bearing area factor = 1.0 is conservative conservatively

Compression parallel to the grains

- $F_c^* = F_c C_D C_M C_t C_F C_i$
- C_D: Load duration factor
- C_M : Wet service factor
- C_t : Temperature factor
- C_F : Size factor
- C_i : Incising Factor

Axial tension

• $F_t = F_t C_D C_M C_t C_F C_i$

- C_D: Load duration factor
- C_M : Wet service factor
- C_t : Temperature factor
- C_L : Beam stability factor
- C_F : Size factor
- C_i : Incising Factor

Axial compression

- $F_c' = F_c C_D C_M C_t C_F C_P C_i$
- C_D: Load duration factor
- C_M : Wet service factor
- C_t : Temperature factor
- C_L : Beam stability factor
- C_F : Size factor
- C_P : Column stability factor
- C_i : Incising Factor

Column Stability Factor

• C_P = 1.0 for fully supported column

$$C_P = rac{1 + F_{cE}/F_c^*}{2c} - \sqrt{\left(rac{1 + F_{cE}/F_c^*}{2c}
ight)^2 - rac{F_{cE}/F_c^*}{c}}$$

$$F_{cE} = rac{0.822 E'_{
m min}}{(l_e/d)^2}$$

 c = buckling and crushing interaction factor for columns

- = 0.80 for sawn lumber columns
- = 0.85 for round timber poles and piles
- = 0.90 for glulam or structural composite lumber columns

Effective length I_e

Column No.	1	2	3	4	5	6
Theoretical effective length factors	0.5	0.7	1.0	1.0	2.0	2.0
Recommended design K_e	0.65	0.8	1.0	1.2	2.1	2.4

Applicability of Adjustment Factors for Sawn Lumber

H. Qasra

		ASD only	ASD and LRFD									
		Load duration factor	Wet service factor	Temperature factor	Beam stability factor	Size factor	Flat use factor	Incising factor	Repetitive member factor	Column stability factor	Buckling stiffness factor	Bearing area factor
$F_b' = F_b$	х	C _D	C _M	Ct	C _L	C _F	C _{fu}	C _i	Cr	_	_	-
$F_t' = F_t$	х	C _D	C _M	Ct	_	C _F	_	C _i	_	_	_	_
$F_v' = F_v$	х	C _D	C _M	Ct	_	_	_	C _i	_	_	_	-
$F_{c\perp}' = F_{c\perp}$	Х	-	C _M	Ct	_	_	_	C _i	_	_	_	C _b
$F_c' = F_c$	х	C _D	C _M	Ct	_	C _F	_	C _i	-	C _P	_	-
E' = E	X	_	C _M	Ct	_	_	-	C _i	_	_	-	-
$E_{\min}' = E_{\min}$	X	-	C _M	Ct	—	_	-	Ci	_	-	C _T	-

Personal Protective Equipment PPE

Hisham Qasrawi

Personal Protective Equipment PPE

What is PPE?

PPE is defined in the Regulations as 'all equipment (including clothing affording protection against the weather) which is intended to be worn or held by a person at work and which protects him against one or more risks to his health or safety', e.g. safety helmets, gloves, eye protection, high visibility clothing, safety footwear and safety harnesses.

Eyes & Face

□ Hazards: chemical or metal splash, dust, projectiles, gas and vapour, radiation. نظارات Options: safety spectacles, goggles أقنعة face shields, visors واقية.

Head

Hazards: impact from falling or flying objects, risk of head bumping, hair entanglement.

Options: a range of helmets and bump caps.

Breathing

Hazards: dust, vapour, gas, oxygen deficient atmospheres.

Options: disposable filtering face piece or respirator, half-or full-face respirators, airfed helmets, breathing apparatus.

Protecting the body

Hazards: temperature extremes, adverse weather, chemical or metal splash, spray from pressure leaks or spray guns, impact or penetration, contaminated dust, excessive wear or entanglement of own clothing.

Options: conventional or disposable overalls, boiler suits, specialist protective clothing, e.g. chain mail aprons, high visibility clothing.

Hands and arms

Hazards: abrasion, temperature extremes, cuts and punctures, impact, chemicals, electric shock, skin infection, disease or contamination.

Options: gloves, gauntlets, mitts, wrist cuffs, armlets أساور.

Feet and legs

- Hazards: wet, electrostatic buildup, slipping, cuts and punctures, falling objects, metal and chemical splash, abrasion.
- Options: safety boots and shoes with protective toe caps and penetration resistant mid-sole, gaiters, spats.

Special equipment

Protect body from fallingSafety harnesses

Х

Key points to remember

PPE is provided;

- □ it offers adequate protection for its intended use;
- those using it are adequately trained in its safe use;
- it is properly maintained and any defects are reported;
- it is returned to its proper storage after use.

