

PAVEMENT MATERIALS & DESIGN (110 401466)

SPRING 2019-2020

Dr. Hamza Alkuime January 29, 2020

Major Topics To Be Covered	الجارينينة الجالينينة The Hashemite University	2	
Topics	No. of Weeks	Contact hours*	
Highway Materials (Bituminous Materials, Aggregates, and soil),	6	18	
Pavement Types,	1	3	
Flexible pavement design (design of Hot Mix Asphalt mixture using Marsha method	3	9	
Flexible pavement design (design of pavement thicknesses using AASHTO method)	2	6	
Earth work operations,	1	3	
Drainage and drainage structures, and	1	3	
Rehabilitation and Highway Maintenance	1	3	
Total	15	45	2

الجامعة الجاشفنين

9

Requirements of a pavement

- Sufficient thickness to distribute the wheel load stresses to a safe value on the sub-grade soil,
- Structurally strong to withstand all types of stresses imposed upon it,
- Adequate coefficient of friction to prevent skidding of vehicles,
- Smooth surface to provide comfort to road users even at high speed,
- Produce least noise from moving vehicles,
- Dust proof surface so that traffic safety is not impaired by reducing visibility,
- Impervious surface, so that sub-grade soil is well protected, and
- Long design life with low maintenance cost.

Conventional flexible pavements

Layers –<u>Subbase course</u>

- A layer or layers of specified or selected materials of designed thickness placed on a subgrade to support a base course.
- Usually of somewhat lower quality than the base layer
- In some cases, the subbase may be treated with Portland cement, asphalt, lime, fly ash, or combinations of these admixtures to increase its strength and stiffness

Conventional flexible pavements

Layers –<u>Subbase course</u>

- A subbase layer is not always included, especially with rigid pavements
- Inclusion of a subbase layer is primarily an economic issue
- A subbase layer is typically included when the subgrade soils are of very poor quality and/or suitable material for the base layer is not available locally, and is, therefore, expensive.

23

Conventional flexible pavements

Layers – **Base course**

- A layer or layers of specified or select material of designed thickness placed on a subbase or subgrade (if a subbase is not used) to provide a uniform and stable support for binder and surface courses.
- It usually consists of high-quality aggregates, such as crushed stone, crushed slag, gravel and sand, or combinations of these materials.
- The specifications for base materials are usually more stringent than those for the lower-quality subbase materials.

https://www.youtube.com/watch?v=aDe03CSbcSL

Conventional flexible pavements

Layers – <u>Surface (Wearing) course</u>

- The surface course is usually constructed on top of a base layer of unbound coarse aggregate, but
- often is placed directly on the prepared subgrade for low volume roads
- Must be:
 - 1. Tuff to resist distortion under traffic
 - 2. Provide smooth, uniform, and skid resistant riding surface.
 - *3. Waterproof to protect the entire pavement from the weakening effects of water.*
- If the above requirements can not be met, the use of seal coat is recommended.

weathered and deteriorated surfaces

Extend the service life of dry and
 Popular treatment; low cost

Full depth flexible pavements Advantages 1. Have no permeable granular layers to entrap water and impair performance. 2. Reduced construction time. 3. Construction seasons may be extended. 4. Provide & retain uniformity in the pavement structures. 5. Less affected by moisture or frost. 6. Little or no reduction in subgrade strength because moisture do not build up in subgrade when full-depth asphalt is used.

Perpetual Pavement

a flexible but strong <u>asphalt</u> <u>pavement</u> that doesn't exhibit structural damage even when very high traffic flows over long periods of time

43

Perpetual Pavement

- The bottom layer is designed to be strong but flexible to resist strains that could cause cracks to form from the bottom up.
- Intermediate layer adds additional structural protection,
- Final layer, made of rutresistant hot-mix asphalt (HMA), requires only minimal maintenance

Rigid pavements Image: Constraint of the second state of the

Prestressed Concrete Pavements (PCP)

- The pre application of a compressive stress to the concrete greatly reduces the tensile stresses caused by traffic and thus decrease the thickness of concrete required.
- Has less probability of cracking and fewer transverse joints and therefore results in less maintenance and longer pavement life.
- Used more frequently for airport pavements than for highway pavements because the saving of thickness for airport pavements is much greater than for highways.

لجامعة الماشينة

Composite pavements

- Consists of multiple structurally significant layers of different heterogeneous compositions
- Composed of both HMA & PCC.
- Using PCC bottom layer & HMA top layer results in an ideal pavement with most desirable characteristics.
- PCC provide strong base
- HMA provides a smooth non-reflective surface.
- Very expensive and rarely used.
- Most of the available are the rehabilitation of PCC using asphalt overlays.

الجامعة الماشفنين **Composite pavements** Typical composite pavement sections. Country of Country AC Overlay AC Overlay AC Overlay C Overlay Existing ATB Unbound Base ATB Rigid Pavement **Unbound Base** ATB CTB Existing Existing Existing Pavement Pavement Pavement

Re	ferences
1.	http://gonzalocamacho.com/2015/09/19/roadway-maintenance-chip-seal-or-seal-coat/
2.	https://www.youtube.com/watch?v=5cMLAOCGMfA
3.	https://pavementinteractive.org/
4.	https://www.slideshare.net/arslan000/lecture01-33441631?from_action=save
5.	https://www.civil.iitb.ac.in/tvm/1100_LnTse/401_InTse/plain/plain.html
6.	https://www.slideshare.net/arslan000/lecture01-33441631?from_action=save
7.	https://vaasphalt.org/pavement-guide/pavement-design-by-use/driveways/residentail-driveway1revised/
8.	https://www.youtube.com/watch?v=aDe03CSITSU
9.	https://www.academia.edu/30421209/CONSTRUCTION_OF_SUBGRADE_SUBBASE_AND_BASE_LAYERS
10.	https://www.fhwa.dot.gov/engineering/geotech/pubs/05037/
11.	https://www.researchgate.net/publication/237802061 Mix Type Selection for Perpetual Pavements/figures?l o=1
12.	https://engineeringdiscoveries.com/2019/03/20/typical-cross-section-types-and-failure-criteria-of-rigid- pavement/
13.	https://engineering.purdue.edu/JTRP/Highlights/reducing-joint-spacing-for-high-performance-concrete- pavement
14.	http://onlinemanuals.txdot.gov/txdotmanuals/pdm/rigid_pave_design.htm 61

PAVEMENT MATERIALS & DESIGN (110 401466) SPRING 2019-2020

Lecture. No. 2 Bituminous materials Part I (asphalt types, uses, and behavior)

Dr. Hamza Alkuime

Major Topics To Be Covered		الجامعة الجاغينة (The Hastern es University
Topics	No. of Weeks	Contact hours*
Highway Materials Bituminous materials Soil 	6	18
 Aggregates Pavement Types, Flexible pavement design (design of Hot Mix Asphalt mixture using Marsha method 	1 3	3 9
Flexible pavement design (design of pavement thicknesses using AASHTO method)	2	6
Earth work operations,	1	3
Drainage and drainage structures, and	1	3

2

Historical Background

Asphalt VS. Tars

ASPHALT	TARS
•Residue of petroleum (Separated by fractional distillation) or as native asphalt	•Residues from the destructive distillation (chemical change) of organic substances such as coal, wood, or petroleum
 Used extensively as binders for highways 	 Crude tars must undergo further refinement to become road tars
 Dissolve in petroleum oils Black color More resistance to weathering Less susceptible to temp. Has no odor Used in highways & airports 	 Do not dissolve in petroleum oils, therefore it is used to seat asphalt concrete surfaces to improve oil resistance of asphalt surfaces Brown or Black color Used in airport, auto parking, fueling areas. More expensive

<section-header><section-header><section-header><section-header><text><image><image><image><image><image><table-row><table-row><table-row><table-row><table-row><table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row></table-row>

Asphalt types

Cutback asphal Table 2-4. Selected Requirements for Rapid-Curing (RC) Cutback Asphalts

Tests	RC-70	RC-250	RC-800	RC-3000
Kinematic viscosity at 140°F(60°C),cSt	70-140	250-500	800-1600	3000-6000
Flash Point (İag Open-cup) °F(°C), minimum		80(27)	80(27)	80(27)
Residue from distillation to 680°F(360°C), percent by volume, minimum	55	65	75	80
Tests on residue from distillation: Viscosity at 140°F(60°C), P Ductility at 77°F(25°C), cm, minimum	600-2400 100	600-2400 100	600-2400 100	600-2400 100

Asphalt types Cutback asphalt	Table 2–5. Selected Re Asphalts	quiremen	ts for Me	dium–C	aring (M	C) Cutback
	Tests	MC-30	MC-70	MC-250	MC-800	MC-3000
	Kinematic viscosity at 140°F(60°C),cSt	30-60	70-140	250-500	800-1600	3000-6000
	Flash Point (Tag Open-cup) °F(°C), minimum	100(38)	100(38)	. 150(66)	150(66)	150(66)
	Residue from distillation to 680°F(360°C), percent by volume, minimum	50	55	67	75	80
	Tests on residue from distillation: Viscosity at 140°F(60°C), P Ductility at 77°F(25°C), cm, minimum	300-1200 100	300-1200 100	300-1200 100	300-1200 100	300-1200 100

Asphalt types

Emulsified asphalt (emulsion)

- It's a mixture of asphalt cement, water, and emulsifying agent (e.g., soap) (1-2% by volume).
- It classified as liquid asphalts because they are liquid at ambient temperatures
- Emulsions are made to reduce the asphalt viscosity for lower application temperatures
- Emulsifier gives surface charge to asphalt droplets suspended in water medium

Asphalt types Image: Constraint of the second

Asphalt types

Emulsified asphalt (emulsion)

■ Emulsified asphalts are further graded according to their "setting" rate including

انچاوجينا الجائزيين The Hashem of University

- The setting rate is controlled by the type and amount of the emulsifying agent
- Anionic emulsified asphalts are classified into
 - ➢Rapid setting (RS)
 - ➤Medium setting(MS)
 - ➤Slow setting (SS)
- cationic emulsified asphalts are classified into
 - ➢ Rapid setting (CRS)
 - ➤Medium setting(CMS)
 - Slow setting (CSS)

Tests	1	Rapid-Settii	ng			Mediu	m-Setting				Slow-Setting	ß
	RS-1	RS-2	HFRS-2	MS-1	MS-2	MS-2h	HFMS-1	HFMS-2	HFMS-2h	HFMS-2s	SS-1	SS-1h
Tests on emulsions:	14565											
Viscosity, Saybolt Furol at 77°F	20-100	-	-	20-100	100+	100+	20-100	100+	100+	50+	20-100	20-100
Viscosity, Saybolt Furol at 122°F	-	75-400	75-400		-	1/23	20-100	100+	100+	50+	20-100	20-100
Minimum Residue by distillation, %	55	63	63	44	65	65	55	65	65	65	57	57
Tests on residue from distillation:						8					-	
Penetration at 77°F, 100 g, 5s	100-200	100-200	100-200	100-200	100-200	40-90	100-200	100-200	40-90	200+	100-200	40-90
Float test, 140°F, s	-	-	1200		2	-	1200	1200	1200	1200	-	-

Tests	Rapid-S	etting	Medium	Setting	Slow-Se	etting
	CRS-1	CRS-2	CMS-2	CMS-2h	CSS-1	CSS-1h
Tests on emulsions:						
Viscosity, Saybolt	8					
Furol at 77°F	-	· • ·	· · · ·		20-100	20-100
Viscosity, Saybolt						
Furol at 122°F	20-100	100-400	50-450	50-450		-
Distillation						
Oil distillate %	3	3	12	12		-
Minimum maidue 04	60	65	65	65	57	57
Minimum residue, %	00	(0	0)	0)	"	57
Tests on residue						
from distillation test:					55	
Home distingtion costs						
Penetration at 77°F.	100-250	100-250	100-250	40-90	100-250	40-90
100 g. 5s						

Table 2-3. Selected Requirements for Cationic Emulsified Asphalts

 Asphalt types
 Image: Comparison of the comparison of th

	Paving Applications of Asphalt	
Term	Description	Application
Hot mix asphalt	Carefully designed mixture of asphalt cement and aggregates	Pavement surface, patching
Cold mix	Mixture of aggregates and liquid asphalt	Patching, low volume road surface, asphalt stabilized base
Fog seal	Spray of diluted asphalt emulsion on existing pavement surface	Seal existing pavement surface
Prime coat	Spray coat asphalt emulsion to bond aggregate base and asphalt concrete surface	Construction of flexible pavement
Tack coat	Spray coat asphalt emulsion between lifts of asphalt concrete	Construction of new pavements or between an existing pavement and an overlay
Chip seal	Spray coat of asphalt emulsion (or asphalt cement or cutback) followed with aggregate layer	Maintenance of existing pavement or low volume road surfaces
Slurry seal	Mixture of emulsion, well-graded fine aggregate and water	Resurface low volume roads
Microsurfacing	Mixture of polymer modified emulsion, well-graded crushed fine aggregate, mineral filler, water and additions	Texturing, sealing, crack filling, rut filling, and minor leveling

Asphalt uses

Compaction of hot mix asphalt

35

Asphalt uses

Applying fog seal (diluted emulsion) for preserving existing pavement

ألجا معة الجاشية

Asphalt uses

 Spraying tack coat (emulsion) on existing asphalt pavement before placing an asphalt overlay

37

Asphalt uses

 Applying microsurfacing for preserving existing pavement.

HOW ASPHALT BEHAVES

Low Temperature Behavior

- In cold climates (e.g., winter days) or under rapid loading (e.g., fast moving trucks), asphalt cement behaves like an *elastic* solid.
- Elastic solids are like rubber bands; when loaded they deform, and when unloaded, they return to their original shape. Any elastic deformation is completely recovered

HOW ASPHALT BEHAVES

Aging Behavior

- Because asphalt cements are composed of organic molecules, they react with oxygen from the environment.
- This reaction is called oxidation and it changes the structure and composition of asphalt molecules.
- Oxidation causes the asphalt cement to become more brittle, generating the term oxidative hardening or age hardening
- Because of this hardening, old asphalt pavements are more susceptible to cracking

PAVEMENT MATERIALS & DESIGN (110 401466) SPRING 2019-2020

Lecture. No. 3 Bituminous materials Part II (Asphalt cement physical tests)

Dr. Hamza Alkuime

Major Topics To Be Covered	ن المناطق المنطقة المناطقة المناطقة المنطقة المناطقة المنطقة المنطقة المناطقة المنطقة المنطقة المنطقة المنطقة ا The Hadron to University المنطقة			
Topics	No. of Weeks	Contact hours*		
Highway Materials Bituminous materials Soil 	6	18		
 Aggregates Pavement Types, 	1	3		
Flexible pavement design (design of Hot Mix Asphalt mixture using Marsha method	3	9		
Flexible pavement design (design of pavement thicknesses using AASHTO method)	2	6		
Earth work operations,	1	3		
Drainage and drainage structures, and	1	3		
Dehabilitation and Highway Maintananaa	1			

HOW ASPHALT BEHAVES

Aging Behavior

- Because asphalt cements are composed of organic molecules, they react with oxygen from the environment.
- This reaction is called oxidation and it changes the structure and composition of asphalt molecules.
- Oxidation causes the asphalt cement to become more brittle, generating the term oxidative hardening or age hardening
- Because of this hardening, old asphalt pavements are more susceptible to cracking

Asphalt cement physical tests Physical testing on asphalt cements can be categorized as follows : >Consistency tests >Durability tests >Purity tests >Safety tests >Other tests

Consistency (viscosity) tests
1. Absolute (dynamic) viscosity test
 Dynamic (absolute) viscosity is the tangential force per unit area required to move one horizontal plane with respect to an other plane - at an unit velocity
➢It is a measure of internal resistance.
This test is performed <u>at 140ÊF (60Ê C</u>),
This temperature represent the maximum Hot Mix Asphalt (HMA) pavement surface temperature during the summer in the United states
Two types of capillary tube are used to perform the viscosity test
≻Asphalt Institute Tube
➤Zietfuchs Cross-Arm Tube
15

Consistency (viscosity) tests

1. Absolute (dynamic) viscosity test

الجامعة الهاشمنة

Consistency (viscosity) te	sts الجامعة الجامعة الحاضية 💽
2. Kinematic viscosity test at	275ÊF (135Ê C)
<i>Example 2–1:</i> An asphalt cement tokes. Its specific gravity is 1.03.	t has a kinematic viscosity of 800 centis- What is its absolute viscosity in poises?
1 stoke	e = 100 centistokes
Absolute viscosity in poises	 kinematic viscosity in stokes x specific gravity 8 x 1.03
	= 8.24

Consistency (viscosity)	tests	الججاريجيعة المجاشينية The Hardern as University
3. Penetration test		
8.1 Where the cond mentioned, the temperat be 25°C [77°F], 100 g, a may be used for special	itions of test ar ure, load, and time and 5 s, respectivel testing, such as th	e not specifically e are understood to y. Other conditions e following:
Temperature, °C [°F]	Load, g	Time, s
0 [32]	200	60
4 [39.2]	200	60
45 [113]	50	5
46.1 [115]	50	5
In such cases the speci	fic conditions of te	st shall be reported.

Consistency (viscosity) tests
A. Softening point test
Definition

It is the temperature at which an ashphalt cement cannot support the weight of a steel ball and starts flowing

Significance and use

To determine the temperature at which a phase change occurs in the asphalt cement

It is measured by the ring and balls method in accordance with ASTM D36

77

Durability tests

1. Thin Film Oven test (TFO)

The consistency of the material is determined before and after the TFO procedure using either the penetration test or a viscosity test to estimate the amount of hardening that will take place in the material when used to produce plant hot-mix asphalt.

The specimen shall have a minimum percentage retained penetration or maximum viscosity

Durability tests Distillation test Used to separate volatile from nonvolatile substances. Distillation used in Cutback asphalt

Other tests Specific Gravity (S.G)

The pycnometer method is used to determine the specific gravity of asphalt cements.

69

Superpave: The Future of Asphalt
Limitation of pre-superpave asphalt property measurements
 Another limitation to these tests and specifications is that the tests do not give information for the entire range of typical pavement temperatures.
Although viscosity is a fundamental measure of flow, it only provides information about higher temperature viscous behavior the standard test temperatures are 60°C and 135 °C.
Lower temperature elastic behavior cannot be realistically determined from this data to completely predict performance.
As well, penetration describes only the consistency at a medium temperature (25°C). No low temperature properties are directly measured in the current grading systems
The penetration and viscosity asphalt specifications can classify different asphalts with the same grading, when in fact these asphalts may have very different temperature and performance characteristics

Superpave: The Future of Asphalt

Limitation of pre-superpave asphalt property measurements

- Asphalts A and B display the same temperature dependency, they have much different consistency at all temperatures
- Asphalts A and C have the same consistency at low temperatures, but remarkably different high temperature consistency
- Asphalt B has the same consistency at 60°C, but shares no other similarities with Asphalt
- Because these asphalts meet the same grade specifications, one might erroneously expect the same characteristics during construction and the same performance during hot and cold weather conditions.

77

Superpave: The Future of Asphalt Superpave binder property measurements Equipment Purpose Performance Parameter Rolling Thin Film Oven (RTFO) Simulate birder aging (hardening) during Resistance to aging (durability) during HMA production and construction construction Pressure Aging Vessel (PAV) Simulate binder aging (hardcning) during Resistance to aging (durability) during HMA service life service life Rotational Viscometer (RV) Measure binder properties at high con-Handling and pumping struction temperatures Dynamic Shear Rheometer (DSR) Measure binder properties at high and Resistance to permanent deformation intermediate service temperatures (rutting) and fatigue cracking Bending Beam Rheometer (BBR) Measure binder properties at low service Resistance to thermal cracking temperatures Direct Tension Tester (DTT) Measure binder properties at low service Resistance to thermal cracking temperatures

Superpave: The Future of Asphalt

Equipment	Purpose	Performance Paran
Rolling Thin Film Oven (RTFO)	Simulate binder aging (hardening) during HMA production and construction	Resistance to aging (durability) construction
Pressure Aging Vessel (PAV)	Simulate binder aging (hardening) during	Resistance to aging (durability)

Equipment	Purpose	Performance Parameter	
Rolling Thin Film Oven (RTFO)	Simulate binder aging (hardening) during HMA production and construction	Resistance to aging (durability) during construction	
Pressure Aging Vessel (PAV)	Simulate binder aging (hardening) during HMA service life	Resistance to aging (durability) during service life	
Rotational Viscometer (RV)	Measure binder properties at high con- struction temperatures	Handling and pumping	

الجامعة الجاشمنة

Superpave: The Fu	uture of Asphalt	ری انگرانی انگری انگر The Hadem et University
Superpave binder pr	operty measurements	
	suucion competatures	
Dynamic Shear Rheometer (DSR)	Measure binder properties at high and intermediate service temperatures	Resistance to permanent deformation (rutting) and fatigue cracking
Bending Beam Rheometer (BBR)	Measure binder properties at low service temperatures	Resistance to thermal cracking
Direct Tension Tester (DTT)	Measure binder properties at low service temperatures	Resistance to thermal cracking
		× .
		81
		-

PAVEMENT MATERIALS & DESIGN (110 401466) SPRING 2019-2020

Lecture. No. 4 Bituminous materials Part III (Asphalt cement grading systems)

Dr. Hamza Alkuime

Major Topics To Be Covered	ر الجاريون الجارليون المحاليون المحاليون الجور الجو The Hadren to University	
Topics	No. of Weeks	Contact hours*
Highway Materials Bituminous materials Soil 	6	18
 Aggregates Pavement Types, 	1	3
Flexible pavement design (design of Hot Mix Asphalt mixture using Marsha method	3	9
Flexible pavement design (design of pavement thicknesses using AASHTO method)	2	6
Earth work operations,	1	3
Drainage and drainage structures, and	1	3
Dehabilitation and Highway Maintananaa	1	<u></u>

الجامعة الجاشينة **Review** 1. Thin Film Oven test (TFO) It is used to simulate hardening (durability) characteristic of asphalt binder during mix production and Asphalt cement (original) construction (Short-term २*२* ageing) Short-term Consistency tests (Asphalt residue) Viscosity Penetration Ductility

 Penetration Grading Binder are classifi results 	system ed based on penet	tration test	
Five penetration i	results are specifie	d	
		Pene	tration
	Grade	min.	max.
	40-50	40	50
	60-70	60	70
	85-100	85	100
	120-150	120	150
	200 200	200	200

Asphalt binder grading systems

Penetration Grading system

- The lower the penetration, the harder the asphalt
- The softest grade (200-300) is used in cold climate, while the hardest grade (40-50) is used in hot Ares (WHY)
- The system also add specification for:

➤Flash point test

➤ Ductility

≻Solubility

➤Thin film oven aging

- Penetration
- Ductility

الجامعة الجاشمنة

Table 2–6. ASTM Requ Cements	tem (/ iremen	ST/ ts f	M D	946 Pen	etra	tion	Gr	adeo	ł A	sphalt
		1		Pe	netrat	ion G	rade		32	
	40	-50	60-	-70	85-	100	120-	150	200	-300
	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Penetration at 77°F (25°C), 100 g, 5 s	40	50	60	70	85	100	120	150	200	300
Flash point, °F (Cleveland open cup)	450	_	450	_	450	_	425	_	350	_
Ductility at 77°F (25°C), 5 cm/min, cm	100	_	100	_	100		100	_	100	
Solubility in trichloroethylene, %	99.0	_	99.0	_	99.0	_	99.0		99.0	
Retained penetration after thin-film oven test, %	55+	_	52+	_	47+	<u></u>	42+		37+	-
Ductility at 77°F (25°C), 5 cm/min, after thin-film oven test, cm	_		50	-	75		100	-	100*	_

Asphalt binder grading systems	الجامعة الجامعية المحمد المناسبة المحمد المحمد المعادية المحمد المناسبة المحمد المناسبة المحمد المحمد المحمد ال
Penetration Grading system	
Disadvantages	
➤Empirical test	
►Shear rate	
✤ High	
✤ Variable	
Mixing and compaction temp.	
➢information not available	
Similar penetrations at 25C (77F) do not	
reflect wide differences in asphalts	
	19

Asphalt binder grading systems

Viscosity Grading system based on original asphalt cement (AC system)

Test			١	liscosity Grade		
Test	AC-2.5	AC-5	AC-10	AC-20	AC-30	AC-40
Viscosity, 60°C [140°F], Pa·s	25 ± 5	50 ± 10	100 ± 20	200 ± 40	300 ± 60	400 ± 80
Viscosity, 135°C [275°F], min, mm ² /s	80	110	150	210	250	300
Penetration, 25°C [77°F], 100 g, 5 s, min	200	120	70	40	30	20
Flash point, Cleveland open cup, min, °C [°F]	165 [325]	175 [350]	220 [425]	230 [450]	230 [450]	230 [450]
Solubility in trichloroethylene, 4 min, %	99.0	99.0	99.0	99.0	99.0	99.0
Tests on residue from thin-film oven test:						
Viscosity, 60°C [140°F], max, Pa-s	125	250	500	1000	1500	2000
Ductility, 25°C [77°F], 5 cm/min, min, cm	100 ^B	100	50	20	15	10

21

Asphalt binder grading systems

Viscosity Grading system based on original asphalt cement (AC system)

TABLE 2 Requirements for Asphalt Cement Viscosity Graded at 60°C [140°F] Based on Original Asphalt

NOTE 1—Table 2 specifies asphalts that are less temperature susceptible than those specified by Table 1. Asphalts that meet Table 2 requirements will also meet Table 1 requirements of the same grade.

Test			Vis	scosity Grade		
lest	AC-2.5	AC-5	AC-10	AC-20	AC-30	AC-40
Viscosity, 60°C [140°F], Pa-s	25 ± 5	50 ± 10	100± 20	200 ± 40	300 ± 60	400 ± 80
Viscosity, 135°C [275°F], min, mm ² /s	125	175	250	300	350	400
Penetration, 25°C [77°F], 100 g, 5 s, min	220	140	80	60	50	40
Flash point, Cleveland open cup, min, °C [F]	165 [325]	175 [350]	220 [425]	230 [450]	230 [450]	230 [450]
Solubility in trichloroethylene, ^A min, %	99.0	99.0	99.0	99.0	99.0	99.0
Tests on residue from thin-film oven test:						
Viscosity, 60°C [140°F], max, Pa-s	125	250	500	1000	1500	2000
Ductility ^B , 25°C [77°F], 5 cm/min, min, cm	100 ^B	100	75	50	40	25

"Solubility in N-Propyl Bromide can be an alternate method to Solubility in TCE.

^B If ductility is less than 100, material will be accepted if ductility at 15°C [60°F] is 100 minimum at a pull rate of 5 cm/min.

Asphalt binder	grading systems
----------------	-----------------

TABLE 3 Requirements for Asphalt C	ement Viscosity	y Graded at 60°C [140°F] Based on Re	esidue from Rolling	Thin-Film Over
Tests on Residue from Rolling Thin-Film Oven	8		Viscosity Gra	ide	
Test: ^A	AR-1000	AR-2000	AR-4000	AR-8000	AR-16000
Viscosity, 60°C [140°F], Pa•s	100 ± 25	200 ± 50	400 ± 100	800 ± 200	1600 ± 400
Viscosity, 135°C [275°F], min, mm ² /s	140	200	275	400	550
Penetration, 25°C [77°F], 100 g, 5 s, min	65	40	25	20	20
% of original penetration, 25°C [77°F], min		40	45	50	52
Ductility, 25°C [77°F], 5 cm/min, min, cm	100 ^B	100 ^B	75	75	75
Tests on original asphalt:					
Flash point, Cleveland open cup, min, °C	205 [400]	220 [425]	225 [440]	230 [450]	240 [460]
[°F]	2002/0000 # - 0000 # 0		2.0001700 × 40.554.14.0	20000000 00000 	0.000 (0.000 (0.000 (0.000))
Solubility in trichloroethylene, C min, %	99.0	99.0	99.0	99.0	99.0

PAVEMENT MATERIALS & DESIGN (110 401466) SPRING 2019-2020

Lecture. No. 5 Aggregates

Dr. Hamza Alkuime

Major Topics To Be Covered		الجُلُونِعِينُ الْمِلْاَسْوِينَ The Hashemite University
Topics	No. of	Contact
	Weeks	hours*
Highway Materials	6	18
Bituminous materials		
Aggregates		
• Soil		
Pavement Types,	1	3
Flexible pavement design (design of Hot Mix	3	9
Asphalt mixture using Marsha method		
Flexible pavement design (design of pavement	2	6
thicknesses using AASHTO method)		
Earth work operations,	1	3
Drainage and drainage structures, and	1	3
Dababilitation and Lighway Maintonanaa	1	

Aggregate Sources 1. Natural - Sand and Gravel - Crushed Stone 2. Synthetic (artificial) - Lightweight - Slag - Blast Furnace - Steel Slag 3. Recycled - Reclaimed (or recycled) Asphalt Pavement (RAP) - Recycled Concrete

Aggregate

Production process – Excavation

Aggregate

الججا فربعين الجا شوييين The Hashemite University

Aggregate

Production process – Stockpiling

الجالوجين الجاشييين

<section-header><section-header><section-header><section-header>

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><image>

Sieve analysis example

The Hashemite University		الجلج فيعنين الجا مثينية The Hashemite University	
--------------------------	--	--	--

Example -1

A sieve analysis test was performed on a sample of fine aggregate and produced the following results:

Sieve, mm	4.75	2.36	2.00	1.18	0.60	0.30	0.15	0.075	pan
Amount retained, g	0	33.2	56.9	83.1	151.4	40.4	72.0	58.3	15.6

Calculate the percent passing each sieve, and draw a 0.45 power gradation chart with the use of a spreadsheet program.

27

27

ieve analysis	نېټ الجيالشوينيټن The Hashemite			
Example 1 – So	olution			
Sieve size	Amount Retained, g (a)	Cumulative Amount Retained, g (b)	Cumulative Percent Retained (c) = (b) \times 100/Total	Percent Passing* (d) = 100 - (c)
4.75 mm (No. 4)	0	0	0	100
2.36 mm (No. 8)	33.2	33.2	6	94
2.00 mm (No. 10)	56.9	90.1	18	82
1.18 mm (No. 16)	83.1	173.2	34	66
0.60 mm (No. 30)	151.4	324.6	64	36
0.30 mm (No. 50)	40.4	365.0	71	29
0.15 mm (No. 100)	72.0	437.0	86	14
0.075 mm (No. 200)	58.3	495.3	96.9	3.1
Pan	15.6	510.9	100	
Total	510.9			

Percent passing is computed to a whole percent, except for the 0.075 mm (Nr. 200) material, which is computed to 0.1%.

Sieve analysis example

Example 1 – Solution

Sieve size	Passing* (d) = 100 - (c)
4.75 mm (No. 4)	100
2.36 mm (No. 8)	94
2.00 mm (No. 10)	82
1.18 mm (No. 16)	66
0.60 mm (No. 30)	36
0.30 mm (No. 50)	29
0.15 mm (No. 100)	14
0.075 mm (No. 200) Pan	3.1
Total	

29

10

0.075 0.15 0.3 0.3 1.18

Sieve size

2.36

4.75

Aggregate

😫 الججافيجين المجاشيين 🜊

Example -2

Determine Nominal Maximum Aggregate Size (NMAS)

Sieve size	Cumulative Percent Retained (c) = (b) × 100/Total
4.75 mm (No. 4)	0
2.36 mm (No. 8)	6
2.00 mm (No. 10)	18
1.18 mm (No. 16)	34
0.60 mm (No. 30)	64
0.30 mm (No. 50)	71
0.15 mm (No. 100)	86
0.075 mm (No. 200)	96.9
Pan	100
Total	

Example -2	he mavimur	
Sieve size	Cumulative Percent Retained (c) = (b) × 100/Total	SIZE
4.75 mm (No. 4)	0	
2.36 mm (No. 8)	6	
2.00 mm (No. 10)	18	
1.18 mm (No. 16)	34	
0.60 mm (No. 30)	64	
0.30 mm (No. 50)	71	
0.15 mm (No. 100)	86	
0.075 mm (No. 200)	96.9	
0.075 mm (140. 200)	100	
Pan	100	

Ideal aggregate gradation

Example 2 – maximum density gradation for a maximum size of $\overline{25 \text{ mm}}$.

الجامعة الجاشفية

Sieve	$P_i = 100 (d_i/D)^{0.45}$	
25 mm (1 in.)	100	
19 mm (3/4 in.)	88	
12.5 mm (1/2 in.)	73	
9.5 mm (3/8 in.)	64	
4.75 mm (No. 4)	47	
2.36 mm (No. 8)	34	
0.60 mm (No. 30)	19	
0.30 mm (No. 50)	14	
0.075 mm (No. 200)	7.3	

الججا فيعتثر الجنا شينيين (

48

47

Sieve analysis example

Example -3

Sieve No.	Sieve Size	Wt. Retained (g)	% Retained	Cumulative % Retained	Cum. % Passing
			(wt. ret./ Total)	-	100 -
inch	mm		100%	Sum % Retained	Cum. Ret.
1.5"	37.5	0	0	0	100
1"	25	0	0	0	100
3/4"	19	25	2.5	2.5	97.5
1/2"	12.5	50	5	7.5	92.5
3/8"	9.5	120	12	19.5	80.5
# 4	4.75	195	19.5	39	61
# 8	2.36	110	11	50	50
# 16	1.18	125	12.5	62.5	37.5
# 30	0.6	145	14.5	77	23
# 50	0.3	115	11.5	88.5	11.5
# 100	0.15	75	7.5	96	4
# 200	0.075	30	3	99	1
Pan	Pan	10	1	100	0
Total		1000	100		

Sieve analysis example

Example -2

Sieve Size	Log (Sieve Size)	(Sieve Size)^0.45	Cum. % Passing
mm			100 - Cum. Ret.
37.5	1.57	5.11	100
25	1.40	4.26	100
19	1.28	3.76	97.5
12.5	1.10	3.12	92.5
9.5	0.98	2.75	80.5
4.75	0.68	2.02	61
2.36	0.37	1.47	50
1.18	0.07	1.08	37.5
0.6	-0.22	0.79	23
0.3	-0.52	0.58	11.5
0.15	-0.82	0.43	4
0.075	-1.12	0.31	1
Pan			0

الججا منعين الجباليثينين The Hashemite University

Aggregate

■ Steps

- 1. Selecting critical sieves for the aggregates in the blend;
- Determining an initial set of proportions a, b, c, etc., which will meet the specification requirements for the critical sieves;
- 3. Checking the calculated blend using the proportions determined for all sieves in the specification requirements; and
- Adjusting the proportions, as necessary, to ensure that the percentages for all sieves are within specification limits.

65

Aggregate

Example -3

Determine a blend of the two aggregates shown in the table below, which will meet the specifications

Sieve	12.5 mm (1/2 in.)	9.5 mm (3/8 in.)	4.75 mm (No. 4)	2.00 mm (No. 10)	0.425 mm (No. 40)	0.180 mm (No. 80)	0.075 mm (No. 200)
Specification	100	95-100	70-85	55-70	20-40	10-20	4-8
Target gradation	100	98	77.5	62.5	30	15	6
% Passing Agg. A (A _i)	100	100	98	90	71	42	19
% Passing Agg. B (B _i)	100	94	70	49	14	2	1

Sieve	12.5 mm (1/2 in.)	9.5 mm (3/8 in.)	4.75 mm (No. 4)	2.00 mm (No. 10)	0.425 mm (No. 40)	0.180 mm (No. 80)	0.075 mm (No. 200)
Specification	100	95–100	70-85	55-70	20-40	10-20	4-8
Target gradation	100	98	77.5	62.5	30	15	6
% Passing Agg. A (A _i)	100	100	98	90	71	42	19
% Passing Agg. B (B _i)	100	94	70	49	14	2	1
30% A _i (a.A _i)	30	30	29.4	27	21.3	12.6	5.7
70% B _i (b.B _i)	70	65.8	49	34.3	9.8	1.4	0.7
Blend (P _i)	100	96	78	61	31	14	6.4

Example

Determine a blend of the three aggregates shown in the table below, which will meet the specifications

	G.		% Passing	5	Gradation I	imite Dongo
Sieve Size	opening (mm)	Agg.A	Agg.B	Agg.C	Lower limit	Upper Limit
1/2"	12.5	100	100	100	100	100
1/4"	6.35	89	100	100	70	100
No. 4	4.76	3	58	98	60	77
No. 8	2.38	1	10	81	52	70
No. 16	1.19	1	8	71	46	63
No. 30	0.6	0	5	62	37	57
No. 50	0.3	0	4	48	24	39
No. 100	0.15	0	3	15	8	28
No. 200	0.08	0	2	10	2	8

Example

		%	Passi	ng	Grad	ation
Sieve Size	Sieve openin	Agg.	Agg.	Agg.	Limits	Range
	(mm)	A	B	C	Lower	Upper Limit
1/2"	12.5	100	100	100	100	100
1/2**	12.3	100	100	100	100	100
1/4"	6.35	89	100	100	70	100
No. 4	4.76	3	58	98	60	77
No. 8	2.38	1	10	81	52	70
No. 16	1.19	1	8	71	46	63
No. 30	0.6	0	5	62	37	57
No. 50	0.3	0	4	48	24	39
No. 100	0.15	0	3	15	8	28
No. 200	0.08	0	2	10	2	8

Example

		%	Passi	ng	Grad	ation	
Sieve Size	Sieve openin	Agg.	Agg.	Agg.	Limits	Limits Range	
	(mm)	A	B	C	Lower	Upper Limit	
1/2"	12.5	100	100	100	100	100	
1/4"	6.35	89	100	100	70	100	
No. 4	4.76	3	58	98	60	77	
No. 8	2.38	1	10	81	52	70	
No. 16	1.19	1	8	71	46	63	
No. 30	0.6	0	5	62	37	57	
No. 50	0.3	0	4	48	24	39	
No. 100	0.15	0	3	15	8	28	
No. 200	0.08	0	2	10	2	8	

Example

		%	Passi	ng	Grad	ation	
Sieve Size	Sieve openin	Agg.	Agg.	Agg.	Limits	Range	
	(mm)	A	B	C	Lower limit	Upper Limit	
1/2"	12.5	100	100	100	100	100	
1/4"	6.35	89	100	100	70	100	
No. 4	4.76	3	58	98	60	77	
No. 8	2.38	1	10	81	52	70	
No. 16	1.19	1	8	71	46	63	
No. 30	0.6	0	5	62	37	57	
No. 50	0.3	0	4	48	24	39	
No. 100	0.15	0	3	15	8	28	
No. 200	0.08	0	2	10	2	8	

Aggregate Properties of aggregate 1. Particle size and gradation. 2. Hardness or resistance to wear. 3. Durability or resistance to weathering. 4. Specific gravity & absorption. 5. Chemical stability 6. Particle shape and surface texture. 7. Freedom from deleterious particles or substances.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

الجامعة الهاشينة Aggregate **Chemical Stability** ■ Aggregate surface chemistry affects bonding to cement. \blacktriangleright Aggregates that have affinity to water are not desirable in the asphalt mixes (Stripping) Aggregate types 1. Hydrophobic Agg. **Water-hating** such as limestone and dolomites have a positive surface charge. > Work well in asphalt concrete (show little or no strength reduction) 2. Hydrophilic Agg > Water-loving such as gravels and silicates (acidic) have a negative surface charge (show reduce strength). ■ Gravels may tend to create a weaker interfacial zone in concrete than limestone aggregates.

Aggregate

Chemical Stability

- Aggregates used in <u>Portland cement concrete</u> can also cause chemical stability problems.
- Aggregates containing <u>deleterious substances</u> (clay lumbs, chert, silt, organic impurities) which <u>react</u> harmfully with the alkalis present in the cement.
- Alkali Silicate Reaction (ASR) results in <u>abnormal</u> <u>expansion of the concrete</u>.

Aggregate

Flat and Elongated Coarse Aggregates

الججافيجتث اللجاشييتئ

 Aggregate

 Uncompacted Voids in Coarse Aggregate

 ■ U = (V - F/G) ~ x 100

 ■ Where:

 > V = volume of cylindrical measure, ml

 > F = net mass of coarse aggregate in measure, g

 > G = bulk dry specific gravity of coarse aggregate (by AASHTO T85 procedure)

 > U = uncompacted voids, percent in the material

Freedom from deleterious particles or substances.

TABLE 5.10	Main Deleterious	Substances and T	heir Effects on	Portland Cement	Concrete
------------	------------------	------------------	-----------------	-----------------	----------

Substance	Harmful Effect
Organic impurities	Delay settling and hardening, may reduce strength gain, may cause deterioration
Minus 0.075 mm (No. 200)	Weaken bond, may increase water materials requirements
Coal, lignite or other low-density materials	Reduce durability, may cause popouts or stains
Clay lumps and friable particles	Popouts, reduce durability and wear resistance
Soft particles	Reduce durability and wear resistance, popouts

Aggregate
Specific Gravity & Absorption
Required for the design of concrete & bituminous mixes.
■ S.G. :
The ratio of the mass of a unit volume of a material to the mass of the same volume of water at stated temperatures
 Conveniently, at 25°C the density of water is 1.000 g/cm3
Due to permeable voids in aggregates, three types of S. G. are defined
►Apparent (Gsa)
≻Bulk (oven-dry) (Gsb)
≻effective (Gse)
≻Gsb < Gse< Gsa

AggregateImage: Constraint of the mass in air of a unit volume of an impermeable material at a stated temperature to the mass in air of equal density of an equal volume of gas-free distilled water at a stated temperature $G_{sa} = \frac{Dry Mass}{App Vol} / 1.000 g/cm^3$ Apparent Volume = volume of solid aggr particle

Aggregate

 ${}^{\star}V = Very important; M = Moderately important; U = Unimportant or importance unknown$

Property	Relative Importance for End Use*			
	Portland Cement Concrete	Asphalt Concrete	Base	
PHYSICAL				
Particle shape (angularity)	М	V	V	
Particle shape (flakiness, elongation)	М	М	М	
Particle size—maximum	M	М	М	
Particle size—distribution	М	М	М	
Particle surface texture	M	V	V	
Pore structure, porosity	V	М	U	
Specific gravity, absorption	V	М	М	
Soundness—weatherability	V	М	М	
Unit weight, voids—loose, compacted	v	М	М	
Volumetric stability—thermal	М	U	U	
Volumetric stability—wet/dry	М	U	М	
Volumetric stability—freeze/thaw	V	M	М	
Integrity during heating	U	М	U	
Deleterious constituents	V	М	М	

125

Aggregate

 ${}^{\star}V$ = Very important; M = Moderately important; U = Unimportant or importance unknown

	Relative Importance for End Use*			
Property	Portland Cement Concrete	Asphalt Concrete	Base	
Solubility	М	U	U	
Surface charge	U	V	U	
Asphalt affinity	U	v	М	
Reactivity to chemicals	V	U	U	
Volume stability—chemical	V	М	M	
Coatings	М	М	U	
MECHANICAL				
Compressive strength	М	U	U	
Toughness (impact resistance)	М	М	U	
Abrasion resistance	М	М	M	
Character of products of abrasion	М	М	U	
Mass stability (stiffness, resilience)	U	v	V	
Polishability	М	М	U	