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FOREWORD 
 

This one of a kind book explains the fundamental concepts of structural 
dynamics and earthquake engineering with exceptional clarity and an un-
precedented quantity of numerical examples that help the reader fully 
understand the concepts being discussed.   
 
 Professor Armouti has done a phenomenal job of explaining the dif-
icult concepts of linear and nonlinear dynamics and structural response to 
earthquake excitations. The presentation style, simplicity of language, 
and many examples make these concepts readily understandable even to 
those who face them for the first time. 
 
 This ideal textbook for teaching a first undergraduate or graduate 
course in earthquake engineering not only explains the structural dyn-
mics theories necessary for understanding linear and nonlinear response 
to earthquake excitations, but also covers the basic design of earthquake 
resistant steel and reinforced concrete buildings, bridges and isolated 
systems, in accordance with the latest codes of the United States.  
 
 Students will appreciate the wealth of numerical examples presented 
for every small and large issue discussed. Instructors will appreciate the 
simplicity of the presentation, the extensive number of solved examples 
and the problems contained at the end of the first five chapters. Last, but 
not least, engineering practitioners will find this book to be an invaluable 
source of information regarding response of various systems and 
components to earthquake excitations.  
 
 When I was first presented with the manuscript of this book by the In-
ternational Code Council, the first thought that crossed my mind was: an 
earthquake engineering book from Jordan for the U.S. market? This initial 
reaction, however, rapidly faded when I went over the contents and the 
presentation of the book. I did strongly recommend publication of this 
textbook for the U.S. market. I am very pleased that this unique book is 
now available to students and practitioners of earthquake engineering in 
this country.  
 
Farzad Naeim, Ph.D., S.E., Esq. 
President Elect,  
Earthquake Engineering Research Institute 
 
Vice President and General Counsel 
John A. Martin & Associates, Inc. 
Los Angeles, California 
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INTRODUCTION 
 
 
 
 
 
 
Earthquake engineering is the science that studies the behavior of 
structures under earthquake excitation and provides the rules on how to 
design structures to survive seismic shocks. Earthquakes are wild and 
violent events that can have 
dramatic effects on structures. In 
fact, many structures have 
collapsed during earthquakes 
because earthquake-induced 
forces or displacements ex-
ceeded the ultimate capacity of 
the structures. Therefore, the 
study of structural behavior at 
full capacity is a necessary 
element of earthquake en-
gineering. 
 
Earthquakes are extremely random and oscillatory in nature (as shown in 
Fig. 1-1). Because earthquakes cause structures to largely deform in 
opposite directions, earthquake en-
gineering also requires an under-
standing of structural behavior under 
cyclic loading. Figure 1-2 shows an 
example of cyclic loading in the 
inelastic range. Furthermore, the 
extreme randomness and uncertain 
occurrence of earthquakes also 
require the use of a probability 
approach in the analysis and design 
of structures that may experience 
seismic excitation. 
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The civil engineering field is basically distinguished by two design 
philosophies: elastic design and plastic (inelastic) design. In the elastic 
design philosophy, structures are designed to remain elastic, and no 
internal force redistribution is permitted during the lifetime of the structure. 
Elastic design can be characterized by its reversibility: the uniqueness 
between stress-strain or load-displacement (F- ) relationships and whether 
those relationships are linear or nonlinear, as seen in Figure 1-3 (a) and 
(b). This behavior implies the recovery of the work done by the external 
loads after their removal. However, in the plastic design philosophy, the 
relationship between stress and strain or between load and displacement is 
not unique. In this philosophy, plastic deformations are defined as those 
deformations that remain permanent after the removal of forces. Such 
deformations result in a hysteresis loop as shown in Figure 1-3 (c). This 
behavior also implies that dissipation of energy has occurred. In addition, 
because redistribution of internal forces is permitted, the restoring force 
(resistance of the structure) depends on both material properties and 
loading history. 

Earthquake-resistant structures can be designed to remain elastic under 
large earthquakes. However, such design requires high strength and, in 
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turn, high cost, which might not be economically feasible. As shown in 
Figure 1-4, and as will be described later, the inelastic response of 
structures under seismic excitation permits them to be designed with a 
strength less than their elastic strength demand. Experience from previous 
earthquakes and inelastic dynamic analysis shows that elastic and inelastic 
displacements remain within the same range. 
 
Inelastic dynamic analysis shows that structures with strength less than 
their elastic strength demand can survive earthquake excitation if they 
possess enough capacity to deform in the inelastic region. Therefore, we 
rely on inelastic behavior (yielding and ductility) to design structures with 
strength less than their elastic strength demand. This implies that designing 
structures with strength less than their elastic strength demand imposes 
requirements on the structure other than the traditional requirements in 
structural design. These requirements include good ductility, good energy 
dissipation and good self-centering capacity of the structure. 
 
Therefore, the objective of this book is to provide an understanding of the 
behavior of structures under earthquake excitation, the characteristics of 
earthquakes and the relationship between the force reduction factor and 
ductility demand. This understanding will provide the knowledge needed to 
realize the requirements for achieving ductility capacity to meet ductility 
demand and, eventually, for designing cost-effective structures that can 
survive earthquake excitation. 
 
Modern seismic codes have set the following objectives as their ultimate 
goals of earthquake-resistant design: 
 
1. Prevent nonstructural damage 

caused by minor and frequent 
earthquakes. 

2. Prevent structural damage dur-
ing moderate and less frequent 
earthquakes. 

3. Prevent collapse of structures 
during major and rare earth-
quakes (ultimate goal is to 
protect human life). 

4. Maintain functionality of es-
sential facilities during and 
after any earthquake (i.e., hos-
pitals, fire departments and po-
lice stations). This would also 
include lines of transportation 
(e.g., bridges). 

 
Achieving the first and second objectives in reference to Figure 1-5 
requires that a minimum stiffness, k, and minimum strength, Fy, be 

FIGURE 1-5
SEISMIC DESIGN OBJECTIVES 

 
F 

Elastic Strength 
Demand Fe

e 

Fy

y inel 

k

Fs

s 

Min. Stiffness, k, 
to Achieve s

Min. Strength 
to Achieve Fy 



Chapter One 

4 

provided to keep structural response within acceptable performance limits, 
usually within the elastic range. Although minimum stiffness requirements 
limit the elastic deformations needed to achieve objective one (prevent 
nonstructural damage), minimum strength requirements will ensure the 
achievement of objective two (prevent structural damage). Objectives three 
and four are achieved by using the reserved capacity of structures that are 
due to the inelastic response of structures. 
 
To achieve these objectives, one must understand structural analysis, 
structural dynamics, inelastic behavior of structures and earthquake 
characteristics. This book covers these essential areas through detailed 
analysis of the characteristics of earthquakes, elastic and inelastic 
response of structures to dynamic loading (earthquake excitation), behavior 
of structures under earthquake excitation and design of earthquake-
resistant structures. 
 
In addition to the introduction, the contents of this book may be grouped 
into four main topics: nature and properties of earthquakes, theory and 
analysis, practical application and treatment by seismic codes, and 
special topics. The twelve chapters of the book are organized in a logical 
sequence of topics, and therefore, the reader is advised to start the book 
with Chapter 1 and proceed chapter by chapter. To receive the maximum 
benefit of this book, it is highly recommended that the basics (Chapters 1 
through 5) be studied before going to practical applications and special 
topics. Brief description of the main topics and pertinent chapters are 
given in the following paragraphs.  
 
A general introduction to the subject is given in Chapter 1. The nature 
and characteristics of earthquakes are treated in Chapter 2. Chapter 2 
does not intend to provide the reader with the geological base of earth-
quakes; rather, it intends to provide a basic understanding of earthquakes 
necessary for their direct incorporation in the analysis and design of 
structures. 
 
The basic theory and analysis of earthquake engineering from a structural 
viewpoint is treated in Chapters 3, 4 and 5. Elastic dynamic analysis is 
treated in Chapter 3; inelastic dynamic analysis in Chapter 4. Dynamic 
analysis and vibration properties of structures subjected to earthquakes 
only are treated in these chapters. The behavior of structures under 
seismic excitation is treated in Chapter 5. The core of modern earthquake 
engineering is presented in this chapter. The basic seismic parameters 
and definitions, such as ductility, energy dissipation and others, are also 
given in this chapter. Ample figures and examples are included in these 
chapters to further illustrate concepts and ideas. 
 
Practical applications and treatment of seismic codes are covered in 
Chapters 6, 7, 8 and 9. Chapter 6 treats seismic provision and design re-
quirements of buildings using the 2006 International Building Code® 
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(IBC®) and includes the ASCE 7-05 Standard as the book reference code 
for seismic provisions. Force calculations, drift limitations, selection of 
seismic systems, methods of analysis and other pertinent issues are 
presented in this chapter. Comprehensive examples are used to illustrate 
concepts as deemed necessary. 
 
Chapter 7 treats, in depth, provisions and design of reinforced concrete 
buildings according to ACI-318. Chapter 7 is used as a model of practical 
application of seismic design, and hence, comprehensive treatment and 
design of various systems such as types of frames and types of shear 
walls are provided. Comprehensive and detailed examples are presented 
for illustration and practice. Chapter 8 introduces seismic provisions of 
structural steel buildings according to AISC seismic provisions. Basic 
provisions and identification of systems are illustrated in this chapter 
without giving examples. This chapter intends to give the reader a flavor 
of the variation of seismic requirements when the material is changed. 
Masonry and wood structures are not addressed in this book. 
 
Practical applications and treatment of bridges are covered in Chapter 9, 
which treats seismic provision and design requirements according to the 
AASHTO Code. This chapter presents, in detail, the methods used in 
AASHTO to calculate seismic forces in bridges with comprehensive and 
illustrative examples. New simplified and efficient methods are also 
presented in this chapter which are based on published developments of 
the author. 
 
The last group of chapters, Chapters 10 through 12, presents special 
topics pertinent to earthquake engineering. Concise presentation of 
geotechnical aspects such as liquefaction and popular problems in 
foundations pertinent to earthquake effects are presented in Chapter 10. 
The basis and development of synthetic earthquake records, which are 
usually needed in explicit inelastic dynamic analysis, are presented in 
Chapter 11. The modern technique of seismic isolation is covered in 
Chapter 12. Seismic isolation is usually used to alleviate harmful effect of 
earthquakes, and to control and protect structures from damage under 
seismic excitation.   
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2 
 
 
 
 
 

CHARACTERISTICS 
 OF EARTHQUAKES 

 
 
 
 
 

2.1  Causes of Earthquakes 

As mentioned in Chapter 1, it is important to understand the nature of 
earthquakes in order to understand further their effect on structures and 
consequently to develop rational methods of their analysis. However, this 
book does not intend to study earthquakes from the geological point of 
view; rather, it intends to highlight their characteristics from an engineering 
point of view that would be closely related to engineering analysis. 
Therefore, only a brief introduction will be given on the origin, location and 
subjective measurements, such as the Richter and Mercalli scales, of 
earthquakes. More attention will be given to their instrumental mea-
surements such as acceleration, power spectral density and response 
spectrum. Such measurements are directly used to evaluate and analyze 
the direct impact of earthquakes on structures. 
 
Earthquakes can occur as the result of activities such as tectonic move-
ments, volcanic activities, cave collapses, natural and man-made 
explosions, and the filling of reservoirs. The reservoir-induced Koyna 
earthquake in India in 1967 resulted in the deaths of about 180 people.  
The collapse of the World Trade Center towers in New York on September 
11, 2001, generated an earthquake of 5.2 magnitude on the Richter scale. 
However, earthquakes can most reliably be explained by tectonic 
movements, which generate 90 percent of all earthquake phenomena. 
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2.2  Plate Tectonic Theory 

The crust of the earth is divided into several large tectonic plates that 
sometimes encompass more than one continent. These plates include the 
Eurasian Plate, African Plate, North American Plate, South American Plate, 
Australian Plate and Pacific Plate, among others. Figure 2-1 shows the 
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extent of some of these plates. Major geological faults are formed along the 
boundaries of these plates, and these faults are the main source of 
earthquakes. 
 
The tectonic plates are in continuous movement against each other. 
However, friction forces between these plates prevent differential 
displacements at the boundaries of the plates. This action generates 
energy buildup along plate boundaries in a form of strain energy that is 
stored in the plates. 
 
When the stored energy increases to levels that exceed the ability of the 
friction forces to hold the plate boundaries together, sliding along those 
boundaries occurs, creating a phenomenon known as elastic rebound. 
Elastic rebound releases the stored energy in the form of seismic strain 
waves in all directions. This marks the onset of an earthquake event. 
Figure 2-2 shows the different types of seismic strain waves that are 
generated by earthquakes. 
 

Strain waves are classified into two main groups: body waves and surface 
waves. Body waves are classified as fast primary waves or P-waves, and 
slow shear waves or S-waves. Body waves can be used to estimate the 
distance of the site of measurement from the earthquake source. Because 
P-waves are faster than S-waves, a measurement of the time difference 
between their arrivals at the site can be converted into a distance. 
 

FIGURE 2-2   
TYPES OF SEISMIC STRAIN WAVES 
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Surface waves are classified as Rayleigh waves, R-waves, and Love 
waves or  L-waves. The shape of their oscillation is shown in Figure 2-2. 
 
Note that these seismic strain waves travel through random media that 
modify the waves with an infinite number of effects, which include filtering, 
amplification, attenuation, reflection and refraction. These random mo-
difications give each site a different wave profile, making it very difficult to 
predict the characteristics of an earthquake at a specific site. 
 
The extreme randomness and uncertainty of earthquake characteristics 
require the use of probabilistic means in the treatment and design of struc-
tures. Therefore, the design and survival of structures is also based on 
probabilistic consideration of earthquake excitations. 
 
The following sections summarize additional measures that are used to de-
scribe earthquakes. 

2.3  Measures of Earthquakes 

Earthquake measures quantify the size and effect of earthquakes. The 
size of an earthquake is measured by the amount of energy released at 
the source, its magnitude, whereas the effect of an earthquake at dif-
ferent locations is measured by its intensity at a specific site. Figure 2-3 
defines the relevant components of an earthquake with its measures at 
the source and at any site. 

FIGURE 2-3
MEASURES OF EARTHQUAKES
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2.3.1  Magnitude 

The size of an earthquake at its source is known as the magnitude of the 
earthquake and is measured by the Richter scale. The magnitude, M, is 
given as 
 M = log A 
where: 
A = Amplitude in m measured on a Wood-Anderson type seismometer. 
The earthquake may be described in general terms according to the 
value of M as follows: 
 
M = 1 to 2: Earthquake is barely noticeable. 
M < 5: Earthquake is not expected to cause structural damage. 
M > 5: Earthquake is expected to cause structural damage. 
M = 8, 9: Earthquake causes the most structural damage recorded. 
 
Note that ground motion intensity decreases with the distance from focus. 
Therefore, M does not measure local destructiveness of earthquakes. 
The M-value is only an indication of the energy released. 

2.3.2  Intensity 

Intensity is a subjective measure of the local destructiveness of an 
earthquake at a given site. Intensity scales are based on human feelings 
and observations of the effect of ground motion on natural and man-made 
objects. 
 
The most popular scale of intensity is called the Modified Mercalli scale 
(MM). This scale is divided into twelve grades (I to XII) as follows: 
 

I.  Not felt except under exceptionally favorable circumstances. 
II.   Felt by persons at rest. 

III.   Felt indoors; may not be recognized as an earthquake. 
IV.   Windows, dishes and doors disturbed; standing motor cars rock 

  noticeably. 
V.   Felt outdoors; sleepers wakened; doors swung. 

VI.   Felt by all; walking unsteady; windows and dishes broken. 
VII.   Difficult to stand; noticed by drivers; fall of plaster. 

VIII:  Steering of motor cars affected; damage to ordinary masonry. 
IX. 

 
  General panic; weak masonry destroyed, ordinary masonry 
  heavily damaged. 

X. 
 

  Most masonry and frame structures destroyed with foundations; 
  rails bent slightly. 
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XI.   Rails bent greatly; underground pipes broken. 
XII.   Damage total; objects thrown into the air. 

  
Note that MM depends on the magnitude of the earthquake and on the 
distance between the site and the source. This scale may be expressed as 
a function of magnitude and distance from the epicenter by the following 
expression:  
  
 MM = 8.16 + 1.45 M � 2.46 ln r 
 
where: 
MM = Modified Mercalli scale intensity grade. 
M = Earthquake magnitude (Richter scale). 
R = Distance from epicenter (km). 
 
A plot of this relation is shown in Figure 2-4. 

 
Example 1 
 
A maximum amplitude of 47 inches (1.2 meters) is recorded on a Wood-
Anderson seismometer at a standard Richter station. Describe the 
expected damage in a city located 99.44 miles (160 km) from the 
earthquake epicenter. 
 
Solution 
 
(1) Richter scale magnitude 
 
  M = log A = log 1.2 x 106 = 6.08 
 
(2) Modified Mercalli scale intensity 
 

FIGURE 2-4
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 MM = 8.16 + 1.45 M � 2.46 ln r 
 MM = 8.16 + 1.45 (6.08) � 2.46 ln (160) 
 MM = 4.5  grade V 
 
Therefore, the damage in the city may be described as grade V according 
to the Modified Mercalli scale: The earthquake was felt outdoors, sleepers 
wakened and doors swung. 

2.3.3  Instrumental Scale 

 
In general, both magnitude and intensity scales of earthquakes are useful 
in estimating the size and severity of earthquakes. However, they are not 
useful for engineering purposes, especially in structural engineering.  
Structural engineers need a quantitative measure that can be used in 
analysis and design. This measure is provided in an accelerogram, which 
is a record of the ground acceleration versus time. 
 
Figure 2-5 shows a sample accelerogram record of the famous El Centro 
Earthquake that occurred on May 1940, killing nine people and damaging 
80 percent of the buildings in Imperial, California. The accelerogram 
contains important parameters of the earthquake, such as peak ground 
acceleration (PGA), total duration and length of continuous pulses. The 
accelerogram can be mathematically analyzed to obtain other important 
parameters of an earthquake, such as frequency content, peak ground 
velocity, peak ground displacement and power spectral density. Ac-
celerograms are also used to construct response spectra. 
 

FIGURE 2-5
SAMPLE EARTHQUAKE RECORD 
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A correlation between the peak ground acceleration and the Modified 
Mercalli scale has been observed. Statistical analysis shows that the 
following approximate relations may be used for estimate purposes. 
 
On the average, PGA (in g) is given as 
 
  PGAavg = 0.1 x 10 -2.4 + 0.34 MM 
 
A conservative value of PGA (in g) is given as 
 
  PGAdesign = 0.1 x 10 -1.95 + 0.32 MM 

Table 2-1 can be used as a guideline to estimate the relationship be-
tween the shown earthquake parameters and its effects. 
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TABLE 2-1 
APPROXIMATE RELATIONSHIPS BETWEEN PGA, MM, UBC 

ZONING, AND IBC ZONING  CRITERION 

MM PGA (g) UBC 
zone (Z) 

IBC 
Mapped spectral 
acceleration at 

short period (Ss) 
IV < 0.03 
V 0.03 � 0.08 
VI 0.08 � 0.15 

1 around 30 

VII 0.15 � 0.25 2 around 75 
VIII 0.25 � 0.45 
IX 0.45 � 0.60 

3 around 115 

X 0.60 � 0.80 
XI 0.80 � 0.90 
XII > 0.9 

4 around 150 

2.3.4  Fourier Amplitude Spectrum 

At any time function f(t) can be transformed into its frequency domain as 
a function of frequency, F(j ), and vice versa using Fourier transform 
pairs: 

 dtetfjF tj



 )()(  

 )(
2
1     )( dejFtf tj


  

 
An earthquake accelerogram is composed of an infinite number of 
harmonics. The frequencies of these harmonics, known as frequency 
content, can also be found. The power associated with these frequencies 
can also be obtained from Fourier analysis because the power spectral 
density is directly proportional to the square of Fourier Amplitude, |F(j )|. 
Figure 2-6 shows a Fourier Amplitude Spectrum for the El Centro 
earthquake. More information on this subject is given in Chapter 12. 

2.3.5  Power Spectral Density 

The power spectral density, S( ), is another measure of the energy 
associated with each frequency contained in the earthquake. Power 
spectral density is directly proportional to the square of Fourier amplitude 
in the following form: 
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Power spectral density is widely used in constructing synthetic 
earthquakes. Synthetic earthquake records can be used as standard 
records in design, similar to the use of actual earthquake records, as 
shown in Chapter 12. 

2.3.6  Response Spectrum 

Response spectrum is the most useful measure of earthquakes for 
engineers. Response spectrum is a chart that plots the response of a 
single degree of freedom (SDOF) oscillator to a specific earthquake. By 
varying the frequency (or the period) and the damping ratio of the system, 
the maximum structural response quantities can be evaluated in terms of 
maximum displacement, maximum velocity, and maximum acceleration of 
the system. A detailed analysis of response spectrum is provided in the 
next chapter. As an example, Figure 2-7 shows a sample response 
spectrum of the El Centro earthquake. 

The different measurements and characteristics introduced in the 
previous sections serve different purposes in the following chapters. For 
example, some earthquake measurements such as acceleration profile 
and response spectrum are necessary and will be used in the next 
chapters to study and quantify the engineering effect of earthquakes on 
structures, whereas other measurements such as Fourier spectrum and 
power spectral density function are necessary and will be used to ge-
nerate synthetic earthquakes as another necessary component for 
analysis of structures under seismic excitations. 
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LINEAR 
ELASTIC 

DYNAMIC 
ANALYSIS 

 
 
 
 
 

3.1  Introduction 

Structural dynamics is a well-
established science with a rich 
and complete foundation of liter-
ature. The objective of this book 
is to focus on the aspects of sup-
port excitation that are due to 
earthquakes. For extensive study 
on the many other aspects of 
structural dynamics, the reader 
may refer to any textbook on 
structural dynamics. 

3.2  Single Degree of Freedom 
System 

3.2.1  System Formulation 
 
An idealized single degree of freedom (SDOF) dynamic system is shown in 
Figure 3-1. The system consists of a concentrated mass, m, subjected to a 

 
Displacement, u

FIGURE 3-1
 SINGLE DEGREE OF FREEDOM 

 SYSTEM 

m
p(t)

fI 
fD 
fS 

External 
Load,  
p(t) 

Vertical Load, 
N = 0 Spring, k 

Dashpot, c

mass, m
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force varying with time, p(t), where its motion is resisted by its inertial force, 
fI, a viscous dashpot, c, and an elastic spring, k. The mass can move in its 
only degree of freedom, in direction u. 
 
Dynamic equilibrium may be established 
with the help of the D�Alembert Principle, 
which states that dynamic equilibrium 
can be established similar to static equi-
librium if the inertial force is considered a 
reaction to its motion in a direction op-
posite to the direction of its acceleration. 
As shown in Figure 3-2, this principle is 
expressed in mathematical form as  
 
 p(t) = fI  
 
where:   
 fI  = m ü 
 
Using the D�Alembert Prin-
ciple, and in reference to 
Figure 3-1, dynamic equi-
librium for a single degree 
of freedom system sub-
jected to an external force, 
p(t), can be established as 
follows:  
 

 FX = 0 
fI + fD + fS = p(t) 

p(t)ukucum   
 
where: 
fI  = Inertial force. 
fD = Damping force, which is modeled as a viscous force proportional to 

the velocity. 
fS  = Spring force. 
p(t) = Any external force acting upon the mass. 
m = Mass. 
c = Coefficient of viscous damping. 
k = Spring stiffness. 
u = Displacement in the shown direction. 
u  = Mass velocity. 
ü = Mass acceleration. 
 
For an SDOF structure with properties m, c and k as shown in Figure 3-3, 
and subjected to ground motion ug (t) where p(t) = 0 and N = 0, dynamic 
equilibrium requires that: 

m P(t) fI

FIGURE 3-2
D’ALEMBERT PRINCIPLE 
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 fI + fD + fS = 0 
 0 ukucum tot  
 0)(  ukucuum g  
 gumukucum   
 
Note that in the case of support excitation, or earthquake loading, the 
equation of motion will be identical to the regular SDOF system shown 
earlier, with ground acceleration acting as an external force, p(t) = � müg. 
Remember that only relative displacements cause internal straining 
actions.  
 
In structural dynamics, the 
equation of motion may be 
divided by the mass m to yield 
the following: 
 

guumkumcu  )/()/(
 

or 
 

guuuu  22  
 
where: 

= Circular frequency (rad/s). 
= Damping ratio, dimensionless quantity,  = c/ccr. 

ccr = Critical coefficient of damping, ccr = 2 mk . 
 
For c < ccr, or undercritically damped structures, the free vibration solution 
( gu = 0) is given as: 
 
 u(t) = e �  t {A cos d t + B sin d t} 
 
where A and B are constants determined from initial conditions. d is the 

damped frequency, which is equal to d = 21 . However, for most 
structural engineering applications,  << 1.0 (2%, 5%) and, therefore, d  

. A plot of the above solution is shown in Figure 3-4. 
 
Note that for free vibration, damping decreases by the so-called logarithmic 
decrement, , which is given by the following expression: 
 
 = ln (un / un+1)  2   (for  << 1.0) 

FIGURE 3-4
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Few examples that have single degree of freedom exist in practice. For 
example, the elevated water tower tank shown in Figure 3-5 is considered 
an SDOF system because the mass is con-
centrated in one location inside the tank. 

3.2.2  Response Spectrum of Elastic 
Systems 

The solution of the equation of motion under 
the excitation of a specific excitation is ob-
tained by numerical analysis and will be shown 
later. During the excitation time of the earth-
quake, the solution yields the response dis-
placement history of the system as shown in 
Figure 3-6. 

 
For a specific ground motion, ug(t), we are only interested in the maximum 
response of the structure, or |umax|, which will be denoted by Sd. Sd is 
known as the spectral displacement that is defined as the maximum 
relative displacement of an SDOF system subjected to a specific ground 
motion (earthquake). Note that at the time of maximum displacement, the 
force in the spring reaches its maximum value, fs,max, because the velocity 
equals zero and the damping force, fD, will be equal to zero. Therefore: 
 
 fs,max = k Sd 
 
If both sides of the above equation are divided by m, then 
 
 fs,max / m = (k/m).Sd  
 
Because 2 = k/m, and if the quantity fs,max /m is defined as Sa, then 
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 Sa = 2 Sd 
 
Sa is known as the spectral pseudo-acceleration as it is not the actual 
acceleration of the mass. Instead, it is an acceleration look-alike parameter  
that produces the maximum spring force when multiplied by the mass. This 
maximum spring force is known as the base shear of the structure. 
 
Knowing Sa, the force in the spring may now be given in the following form: 
 
 fs,max = m Sa 
 
A third quantity of interest in the response spectrum analysis is known as 
the spectral pseudovelocity, Sv, which is related to the maximum kinetic 
energy of the system and is defined as the maximum total velocity of the 
system. When the maximum strain energy, U, of the system is equated 
with the maximum kinetic energy, T, of the system, then 
 
 Umax = Tmax 
 
  (1/2) k u2

max = (1/2) m u 2
max  

 
(Note that at u max, ü  = 0.) 
 
 k Sd 

2 = m Sv 
2 

 
Similar to the case of spectral acceleration, if both sides of the equation 
above are divided by m, and we notice that k/m is the square of the 
frequency, then the equation above becomes 
 
 Sv =  Sd 
 
Sv is also referred to as the maximum earthquake response integral. 
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For a specific system and a specific earthquake, the quantities Sd, Sv and Sa 
are related through the system frequency or the system period. The 
response spectrum is constructed for a specific earthquake by varying the 
system period (T1, T2, T3, etc.) and the damping ratio ( 1, 2, 3, etc.). For 
each combination of T and , the system response is evaluated in terms of 
Sd, Sv or Sa. The results are then plotted in a form similar to Figure 3-7, 
which shows a spectral velocity response spectrum plot for the El Centro 
Earthquake. 
 
Because Sd, Sv and Sa are related 
through the system frequency 
(period), they can be plotted on a 
single chart using the log-log 
scale. The resulting chart is called 
a Tripartite Chart where Sd and Sa 
appear with constant lines at 45°. 
Figure 3-8 shows such a chart for 
the El Centro Earthquake. 
 
Plotted on tripartite paper, re-
sponse spectra exhibit general 
shapes as shown in Figure 3-9. If the maximum ground parameters�
maximum ground displacement, d, maximum ground velocity, v and 

FIGURE 3-8
SAMPLE RESPONSE SPECTRUM, TRIPARTEIT CHART (m  3.28 ft) 
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maximum ground acceleration, a�are also plotted on the same chart, they 
basically follow the same trend. 
 
This figure shows that for very short 
period systems where period tends to 
zero (T  0 and k  ), the spectral 
acceleration approaches peak ground 
acceleration, or Sa  a. For very long 
period systems where period tends to 
infinity (T   and k  0), the spectral 
displacement approaches peak ground 
displacement, or Sd  d. This behavior 
is depicted in Figure 3-10. 
 
The relationships shown in Figure 3-10 
constitute the basic concept behind 
base isolation, or seismic isolation, 
where the structures can be isolated 
from the ground at the base or isolated 
internally to reduce the amount of 
acceleration imparted to the structure. 
Remember that seismic isolation in-
duces large displacements in the 
structure, which must be accom-
modated by the system. Therefore, 
seismic isolation is generally a simple 
trade-off between large forces and 
large displacements under earthquake 
excitations. 
 
Many seismic isolation systems have already been developed and installed 
in buildings and bridges. One popular seismic isolation system is the Lead-
Rubber Bearing system shown in 
Figure 3-11. In this system, the 
lead core restricts the structure 
displacement under normal loads 
(nonseismic). Under earthquake 
excitation, the lead yields and 
gives control to the rubber to ac-
commodate large displacement. 
This yielding of the lead core also 
serves as an energy dissipater. 
Chapter 13 provides a compre-
hensive discussion of this subject. 
 
In addition to the measures of 
earthquakes given in Chapter 2, spectral velocity is also used as a measure 
of earthquakes by defining a quantity known as the response spectrum inte- 
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gral, SI. This integral is an energy measure because spectral velocity is 
related to kinetic energy. SI is expressed as the area under the response 
spectrum:  
 
 SI =  Sv dT 
 
where T is the system period. 

3.2.3  Design Response Spectrum 

As illustrated in Chapter 2, the shape of a specific response spectrum is 
extremely jagged and erratic with peaks and valleys as the period varies. 
 
In real structures, exact cal-
culations of the period are 
very difficult as the period is 
a function of both mass and 
stiffness (T = 2 km / ). 
Whereas the stiffness is 
affected by nonstructural el-
ements, which are usually 
not considered in the anal-
ysis, the mass is simply a 
random quantity that de-
pends on the occupancy of 
the structure at the time of 
the excitations. 
 
For design purposes, many response spectra are usually added together 
and smoothened to yield a smooth design response spectrum as an upper 
limit as shown in Figure 3-12. 
 
Response spectrum analysis is usually accepted for regular structures and 
for simple irregular structures. For complex structures, especially in high-risk 
regions of special importance, response spectrum procedures are not 
acceptable. Instead, the explicit inelastic dynamic analysis that is necessary 
requires many numbers from actual or synthetic acceleration records. This 
very involved task requires a special understanding of structure stiffness 
(hysteresis loops) and special skills in modeling of structures.  
 
As discussed before, response spectrum can be used as a measure of 
earthquakes because it reflects the amplifications of ground motions 
parameters d, v and a. A study of actual earthquake records conducted by 
Seed et al. in the United States used the response spectrum in different site 
conditions. 
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DESIGN RESPONSE SPECTRUM 



Linear Elastic Dynamic Analysis 
 

 25 

Figure 3-13 shows the results of the Seed study, which represent lines of  
average results of many records. Each site condition (type of soil 
characteristics) exhibits a different response shape. In general, harder sites 
are characterized by high energy at higher frequencies. 
 
In seismic codes in the United States, these shapes constitute the basic 
response spectrum shapes for design. A more in-depth discussion is 
provided in the design chapters 6 and 9. 
 
Example 3-1 
 
(1) The single degree of  

freedom structure 
shown in Example 
3-1, Figure 1, has 
the following  
properties: 

 
 m = 600 kN.s2/m 
    (3.43 kip.sec2/in) 
  
 EIc = 20 x 103 kN.m2 
 (6.696 x 106 kip.in2) 
  
 c = 220  kN.s/m 

  (1.257 kip.sec/in) 
 

FIGURE 3-13
ELASTIC RESPONSE SPECTRUM, SEED ET AL. 

(AVERAGED FIELD MEASUREMENTS) 
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Determine the maximum displacement and base shear force if the 
structure is excited by the El Centro Earthquake. 

 
(2) Repeat requirements in (1) if the stiffness of the structure is 

increased to: 
         
 EI = 60 x 103 kN.m2   
    (20.91 x 106 kip.in2) 
 
Solution 
 
Part (1) 
 
Stiffness: If column stiffness is kc, then: 
 
 kc = 12 EI / L3  = 12 (20 x 103) / (3)3 = 8,889 kN/m (50.8 kip/in) 
 
 ktot = 2 (8,889) = 17,778 kN/m (101.6 kip/in) 
 
Frequency:  
 = mk /  = 600/778,17  = 5.44 rad/s  
Damping: 
 ccr  =  2 mk =  2 )600(778,17 = 6,532 kN.s/m 
  (37.33 kip.sec2/in) 
 

= c / ccr = 220 / 6,532 = 0.034  3% 
 
 T = 2  /  = 2  / 5.44 = 1.15 s 
 
knowing T and , the response spectrum given in Figure 3-8 may be used 
to directly read the response spectrum quantities Sd, Sv and Sa, which read 
 
 Sd = 0.15 m, Sv  = 0.8 m/s,  Sa = 4 m/s2  
  (5.9 in) (31.5 in/sec) (157.5 in/sec2)  
 
Therefore, displacement and base shear are given as: 
 
 umax = Sd = 0.15 m     (5.9 in) 
 Vmax = fs,max = m Sa = 600 (4) = 2,400 kN (540 kip) 
 
Part (2) 
 
Stiffness: If column stiffness is kc, then: 
 
 kc = 12 EI / L3  = 12 (60 x 103 ) / (3)3 = 26,667 kN/m (152 kip/in) 
 ktot = 2 (26,667) = 53,334 kN/m     (305 kip) 
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Frequency:  
 
  = mk / = 600/334,53  = 9.43 rad/s  
Damping: 
 ccr  =  2 mk   =  2 )600(334,53 = 11,313 kN.s /m 
     (64.65 kip.sec2/in) 

 = c / ccr = 220 / 11,313 = 0.019  2% 
 
 T = 2  /  = 2  / 9.43 = 0.66 s 
 
knowing T and , the response spectrum given in Figure 3-8 may be used 
to directly read the response spectrum quantities Sd, Sv and Sa, which read 
 
 Sd = 0.09 m, Sv  = 0.9 m/s, Sa = 7 m/s2  
  (3.54 in) (35.43 in/sec) (275.6 in/sec2)  
 
Therefore, displacement and base shear are given as: 
 
 umax = Sd = 0.09 m    (3.54 in) 
 Vmax = fs,max = m Sa = 600(7) = 4,200 kN (944 kip) 
 
Note from (1) and (2) that increasing stiffness attracts more earthquake 
force. Therefore, increasing strength, which in most cases inherently in-
creases the stiffness of the structure, may not be conducive to earthquake 
design. 

3.3  Generalized Single Degree of Freedom 

The dynamic solution to a structural system can be simplified and treated as 
an SDOF if its vibration can be expressed in a single quantity. Doing so will 
restrict all of the displacements of the structure to a specified deflected 
shape�the shape function. The results of such analysis are only as good 
as the conformance of the assumed shape with the exact one. 
 
For an assumed shape function, (x), the displacement of the structure, 
v(x,t), which is a function of time and space, may be expressed as a product 
of two functions: one function of space, (x), and one function of time, z(t). 
This technique is known in mathematics as a separation of variables. 
Accordingly, the displacement is written as: 
 
 v(x,t) = (x)  z(t) 
 
where z(t) is defined as a generalized coordinate. The principle of virtual 
work may be used to formulate such problems. For example, this principle 
can be applied to the vertical cantilever (shear wall) shown in Figure 3-14. In 
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this example, the cantilever has a uniformly distributed mass, m, uniform 
damping, c, and uniform flexure stiffness, EI. 
 
Using the virtual work principle, we let the external forces go through a 
virtual displacement, v. Hence, the virtual work done by external forces, fI 
and fD, is equated with the internal work stored by the system (strain 
energy). 
 
A review of flexure properties reveals 
that the following relations hold: 
 
Because v(x,t) = (x) z(t), then 
  
 = z 
 zv     
 zv .      
and also zv     

ggtot vzvvv   
 
For beam displacement-curvature, or 
v-  relations, the following relations 
also hold: 
 
 vv  ; 
 M = EI  = vIE  
 
Knowing the above relations, and with reference to Figure 3-14, the virtual 
work equation is expressed as follows: 
 
 Wext = Wint 
 
where: 
 
Wext =  dxvff DI )(   

 =  dxvvcvm tot )(   =  dxvvcvmvm g )(  

=  dxzzcvmzm g )(  

=  dxzcvmzmz g )( 22  

 
Wint = dxM  = dxEI )(  =  dxvvEI )()(  

 = dxzzEI )()(  = dxzEIz 2)(  
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FIGURE 3-14
GENERALIZED SDOF 
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By setting Wext = Wint and noting that z cancels out, the equation of motion 
of the system may be written as: 
 
  dxmvdxEIzdxczdxmz g)( 222  

or gvzkzczm £***   
 
where m* is defined as generalized mass, c* as generalized damping and k* 
as generalized stiffness. The quantity £ is defined as the earthquake ex-
citation factor. 
 
Similar to the SDOF case considered earlier, if the above equation is divided 
by m*, the equation of motion reduces to the following form: 
 

 gvzzz  22  
where  is defined as the participation factor,  
 

 = � £ / m* 

 
Note that the above equation is identical to an SDOF system, except that 
the acceleration is modified by a participation factor . Therefore, for a given 

 and  = ** / mk , or T = 
2 / , the response spec-
trum of an earthquake can 
be used to find the max-
imum response values of the 
system: Sd, Sv and Sa. Note 
also that because gv is mul-

tiplied by  in the equation of 
motion, the response spec-
trum must also be multiplied 
by  as shown in Figure 3-
15. Thus, the generalized 
displacement, zmax, is given 
as 
 
 zmax =  Sd, 
 
and since vmax =  zmax, the maximum displacement, vmax, is given as 
 
 vmax =   Sd 
 
The accuracy of this solution largely depends on the choice of the deflected 
shape . Because  is only an approximation of the true shape, its 
derivatives will be less accurate. Therefore, finding forces from derivatives is 

T 

Sv

 
Modified Spectrum,  gv  

Response Spectrum, gv  

FIGURE 3-15
MODIFIED RESPONSE SPECTRUM 
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considered a poor approximation. For example, if  is chosen as  = 1 � 
cos x / 2H for the cantilever example given in Figure 3-14, the shear force 
at the base can be given in terms of derivatives as V = � EI v��. Note that the 
shear at the base is maximum whereas the derivative gives the shear at the 
base as zero (  v��), a completely erroneous 
result! 
 
A more accurate approximation is to find the 
force, fs, first and then evaluate shears and 
moments accordingly. The force, fs, may be 
found by noting that the true vibration mode 
shape must satisfy the differential equation  
(mü + EIuiv = 0) in undamped harmonic free 
vibration. From structural dynamics, the so-
lution to this equation is given as  
(u = uo cos  t). Differentiating the solution 
twice shows that (ü = � 2 u). Therefore, the 
differential equation may be written as 
 
 m ü + EI uiv = 0 
 m (� 2 u) + fs = 0 
or 
 fs = m 2  ( z) 
hence,  
 fs,max = m 2 zmax   
  = m 2 (  Sd) 
 
 fs,max = m   Sa 
 
This relationship gives the earth-
quake-induced maximum forces in 
the structure. Note that the force dis-
tribution is proportional to the as-
sumed shape function as shown in 
Figure 3-18. The reaction of this max-
imum force at the base, or the total 
earthquake-induced force that is 
known as the base shear, VB, may be 
expressed as follows: 
 
 VB =   fs,max dx 
 
The required shape function for this 
analysis may be approximated with various functions. A good guess for 
these shapes is to use the deflected shape from static loadings: top con-
centrated force, uniformly distributed load or triangle loading as shown in 
Figure 3-17. 
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Example 3-2 
 
The cantilever wall shown in Example 3-2, Figure 1, has the following 
properties: 
 
uniform mass:   m = 0.77 kN.s2/m 2 (112 x 10-6 kip.sec2/in/in) 
uniform inertia:  EI = 0.4 x 106  kN.m2 (139 x 106 kip.in2) 
 
This figure also shows that the wall is carrying two concentrated masses 
at the top and at midheight.  The deflected shape of this structure is given 
as 
 (x) = 1 – cos (  x / 2H)  
 
The structure is excited by the El Centro earthquake with  = 5%. This 
wall must be analyzed under two conditions: 
 
(A) If the wall does not carry any concentrated masses. 
(B) If the wall carries both concentrated masses, M1 and M2, as shown in 

the same figure. 
  
For both cases (A) and (B), determine: 
 
(1) The maximum top displacement, base moment and base shear. 
(2) The maximum displacement, moment and shear at midheight. 
 
Solution 
 
Case (A) : 
 
Wall without concentrated 
masses: 
 
Part (A-1) 
 
Shape function: 
 

(x) = 1 � cos (  x / 2H) 
(x) = (   / 2H) sin (  x / 2H) 
(x) = (   / 2H)2 cos (  x / 2H) 

 
Generalized parameters: 
 
  m* = 0  H   m   dx  
 = m 0  H (1 � cos (  x / 2H))2 dx 
 = 0.227 mH 
 = 0.227 (0.77)(30) = 5.244 kN.s2/m  
  (0.030 kip.sec2/in) 

 
x, u vtop 

, v 

 (x)  

EXAMPLE 3-2, FIGURE 1 
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 k* = 0  H EI ( "   dx  
 = 0  H EI {(  / 2H)2 cos (  x / 2H)} dx   
 = EI (  / 2H)4 (H / 2)  
 = 400 x 103  (  / 2 x 30)4 (30 / 2) = 45.096 kN/m  
  (0.258 kip /in) 
 
 £ = 0  H  m r dx  
  = m 0  H {1 � cos (  x / 2H)} (1) dx  
  = 0.363 mH = 0.363 (0.77)(30) = 8.385 kN.s2/m  
  (0.048 kip.sec2/in) 
 

 = £ / m* = 8.386 / 5.244 = 1.599 
 

 = ** / mk  = 244.5/096.45  = 2.93 rad/s 

 T = 2   /  = 2  / 2.932 = 2.14 s 
 
with T = 2.14 sec and  = 5%, the El Centro earthquake response spectrum 
given in Figure 3-8 yields 
 
 Sd = 0.23 m (9 in), Sa = 2.0 m/s2 (79 in/sec2) 
 
Therefore, the resulting displacements 
and forces are given as 
 
vtop =   Sd  
 = 1(1.599)(0.23)= 0.37 m (14.7 in) 
 
fs,top = m   Sa 
 = 0.77(1)(1.599)(2.0)  
 = 2.462 kN/m (0.014 kip/in) 
 
Base shear, VB, in Example 3-2, 
Figure 2: 
 
 VB = 0  H fs,max  dx   
 = 0  H  m   Sa dx   
 = m   Sa  0  H  {1 � cos (  x / 2H)} dx   
 = m   Sa  (0.363H)  
 = 0.77(1.599)(2.0)(0.363)(30) = 26.82 kN (6.03 kip) 
 
 
Base Moment, MB, in Example 3-2, Figure 2:  
 

 (x) 

 
fs,top = 2.462 kN/m 

EXAMPLE 3-2, FIGURE 2  BASE 
REACTIONS 

 MB = 596 kN.m 

H

 VB = 26.82 kN 

 (0.014 kip/in) 

 (5275 kip.in) 

 (6.03 kip) 
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 MB = 0  H fs,max  x dx   
 = 0  H  m   Sa x dx   
 = m   Sa  0  H  {1 � cos (  x / 2H)} x dx   
 = m   Sa  (0.269 H2)  
 = 0.77(1.599)(2.0)(0.269)(302) = 596 kN.m (5,275 kip.in) 
 
Part (A-2) 
 
Similarly, displacements and forces at the midheight of 15 m can be found 
by integration as follows: 
 
 vmid =   Sd = [1 � cos(  x /2H)]  Sd  
  = {1 � cos(  (15) / 2 (30))(1.599)(0.23) = 0.108 m (4.25 in)}  
 
 Vmid=  15  30 fs,max  dx  
  = 15  30  m   Sa dx   
  = m   Sa(0.313 H)  
  = 0.77(1.599)(2.0)(0.313)(30) = 23.12 kN (5.2 kip) 
 
 Mmid = 15  30 fs,max  (x�15)  dx  
  = 15  30 m   Sa (x�15) dx   
  = m   Sa  (0.093 H2)  
  = 0.77(1.599)(2.0)(0.093)(302) = 206 kN.m (1,823 kip.in) 
 
Case (B):  Wall with concentrated masses: 
 
Results from case (A) can be used in this case. 
 
Part (B-1) 
 
Shape function values at concentrated mass locations: 
 
  (x) = 1 � cos (  x / 2H) 
  (15) = 1 � cos [  (15) / 2H] = 0.293 
  (30) = 1 � cos [  (30) / 2H] = 1.0 
 
Generalized parameters: 
 
 m* = 0  H   m   dx +  i Mi i   
  = same as case A + 1 M1 1 + 2 M2 2   
  = 5.244 + 10(1)2 + 20(0.293)2  
  = 5.244 + 10 + 1.717 = 16.961  kN.s2/m (0.097 kip.sec2/in) 
 
 k* = same as case A = 45.096 kN/m (0.258 kip/in)  
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 £ = 0  H  m r dx +  i Mi r   
  = same as case A + 1 M1 r + 2 M2 r   
  = 8.385 + 10(1)(1) + 20(0.293)(1)  
  = 8.385 + 10 + 5.86 = 24.245 kN.s2/m (0.139 kip.sec2/in) 
  
   = £ / m* = 24.245  /16.961  = 1.429 
 

 = ** / mk  = 961.16/096.45  = 1.63 rad/s 
  
 T = 2  /  = 2  /1.63 = 3.85 s 
 
with T = 3.85 seconds and  = 5%, the El Centro earthquake response 
spectrum given in Figure 3-8 yields 
 
 Sd = 0.20 m (7.9 in), Sa = 0.53 m/s2 (20.9 in/sec2) 
 
Therefore, displacements and forces are given as 
 
 vtop =   Sd  
  = 1(1.429)(0.20) = 0.286 m (11.26 in) 
 
  fs,top = m   Sa 

= 0.77(1)(1.429)(0.53)  
  = 0.583 kN/m  
   (0.003 kip/in) 
 
 Fs 1 = M1 1  Sa 
  = 10(1)(1.429)(0.53)  
  = 7.57 kN (1.70 kip) 
 
 Fs 2 = M2 2  Sa 
  = 20(0.293)(1.429)(0.53)  
  = 4.44 kN (1.0 kip) 
 
Base shear, VB,  in Example 3-2,  
Figure 3: 
 
 VB =  0  H fs,max  dx + Fs 1 + Fs 2  
  = m  Sa(0.363 H) + 7.57 + 4.44  
  = 0.77(1.429)(0.53)(0.363)(30) + 7.57 + 4.44  
  = 6.35 + 7.57 + 4.44  = 18.36 kN (4.13 kip) 
 
Base Moment, MB, in Example 3-2, Figure 3: 
 
 MB =  0  H fs,max  x dx  + Fs 1 (H) + Fs 2 (H / 2) 

 (x) 

 
fs,top = 0.583 kN/m 

EXAMPLE 3-2, FIGURE 3 
BASE REACTIONS 

 MB = 435 kN.m 
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  = m   Sa  (0.269 H2) + Fs 1 (H) + Fs 2 (H / 2) 
  = 0.77(1.429)(0.53)(0.269)(302) + 7.57(30) + 4.44(15) 
  = 141 + 227 + 67 = 435 kN.m (3850 kip.in) 
 
Part (B-2) 
 
Similarly, displacements and forces at the midheight of 15 m can be found 
by integration as follows: 
 
 vmid =    Sd = [1 � cos(  x /2H)]  Sd  
  = {1 � cos( (15) / 2(30))(1.429)(0.20) = 0.084 m (3.3 in) 
 
The shear force at midheight will have a jump at the location of Fs 2. Thus, 
 
Shear force above Fs 2 equals to 
 
  Vmid = 15  30 fs,max  dx + Fs 1 
 = m  Sa(0.313 H) + Fs 1 
 = 0.77(1.429)(0.53)(0.313)(30) + 7.57 
 = 5.48 + 7.57 = 13.05 kN (2.934 kip) 
 
Shear force below Fs 2 equals to 
 
  Vmid = 15  30 fs,max  dx + Fs 1 + Fs  

   = m  Sa(0.313 H) + Fs 1 + Fs 2 

    = 0.77(1.429)(0.53)(0.313)(30) + 7.57 + 4.44 

   = 5.48 + 7.57 + 4.44 = 17.49 kN (3.932 kip) 

 

  Mmid = 15  30 fs,max (x�15) dx + Fs 1 (H/2) 

   = m  Sa(0.093 H2) + Fs 1(H /2) 

   = 0.77(1.429)(0.53)(0.093)(302) + 7.57 (15)   
   = 49 + 114 = 163 kN.m (1443 kip.in) 

3.4  Multiple Degrees of Freedom System (MDOF) 

3.4.1  Multiple Degrees of Freedom System in 2-D Analysis 

 
A multiple degree of freedom system (MDOF) consists of multiple lumped 
(concentrated) masses (m1, m2, etc.), where these masses are subjected to 
varying forces with time as shown in Figure 3-18. The movement of each 
mass is resisted by its inertial force, fi, damping force, fD, and elastic stiff-
ness, fs. By establishing the dynamic equilibrium of each mass in the di-
rection of its movement, Figure 3-19 shows the equilibrium of mass, m2, 
which requires that 
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  Fx2 = 0 
 )()( 1221222 uukuucum tot  0)()( 233233  uukuuc  
 
Similarly, by taking  Fxi = 0 at each mass, substituting ütot = ü + üg, and 
rearranging the equations, they can be put in matrix form as follows: 
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or   
 guRMUKUCUM }]{[}]{[}]{[}]{[   
 
where: 
[M] = Mass matrix (square matrix). 
[C] = Damping matrix (square matrix). 
[K] = Stiffness matrix (square matrix). 
{U}, }{U , }{U  = Displacement, velocity and acceleration matrices (column 

matrices). 
{R} = Earthquake loading vector, or influence vector. 
 = vector of rigid body displacements resulting from unit support 

displacement in direction of ground motion. 
 

 

m2 P(t) = 0 

FIGURE 3-19
DYNAMIC EQUILIBRIUM 
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FIGURE 3-18
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In general, for N-degrees of freedom, there are square matrices, N x N, and 
column matrices, N x 1, of order. The complete formulation from the 
equilibrium equation yields N-coupled linear differential equations, which 
can be solved by numerical analysis. However, for a linear elastic system, 
the solution may be simplified using the technique of Modal Analysis, also 
known as Modal Superposition. 
 
Modal Analysis 
 
Consider the case of an undamped MDOF system in free vibration: 
 
 [M]{Ü} + [K]{U} = {0} 
 
By separation of variables, x and t, the displacement, U(x,t), may be given 
as {U(x,t)} = [ (x)].{Z(t)}, where n(x) is the nth mode of vibration associated 
with an nth frequency, n. Zn is defined as the nth modal coordinate. Note 
that n has a fixed shape that vibrates with frequency n and has an 
amplitude Zn. 
 
The mode shape, n(x), is found by solving the eigenvalue problem, which is 
also known as the characteristic-value problem. The solution may be 
obtained by assuming a solution to the free vibration in the form {U} = { } sin 

t. Differentiating twice and substituting in the free vibration equation yields 
the following: 
 
Let the solution be:  
 
 {U} = { } sin t 
 
Differentiating twice:  
 
 {Ü} = � 2 { } sin t = � 2 {U} 
 
Substitution in free vibration yields: 
 
 [M]{Ü} + [K]{U} = {0} 
 � 2[M]{U} + [K]{U} = {0} 
 � 2 [M]{ } sin t + [K]{ } sin t = {0} 
 � 2 [M]{ } + [K]{ } = {0} 
 
Rearranged:  
 
  [K]{ } � 2[M]{ } = {0} 
  [[K] � 2[M]]{ } = {0} 
 
The last equation above represents a set of N-linear homogeneous 
equations. The solution can only be obtained for relative values of { }. 
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Therefore, for { }  {0}, Kramer's rule requires that the following determinant 
equals to zero: 
 
 | { [K] � 2 [M] } | =  0 
 
The equation above is known as the frequency equation, where 2 is its 
eigenvalue or characteristic value. Solving an eigenvalue problem, the 
above frequency equation yields N frequencies ( 1, 2, N) and N-mode 
shapes ({ 1}, { 2}, . . . { N}), where the lowest frequency is called the 
fundamental frequency of the system and is associated with the 
fundamental mode, or the first mode of vibration. 
 
Orthogonality of mode shapes 
 
The mode shapes n(x) obtained from the eigenvalue solution exhibit the 
property of orthogonality: 
 
 { m

T [M]{ n = {0} . . . for n   m 
 { mT [K]{ n = {0}  . . . for n   m 
 
Orthogonality may be proved as follows: 
 
Because [K]{ n} � n

2[M]{ n} = {0} 
 
Premultiply by { m}T leads to 
 { m}T [K] { n} � n

2 { m}T [M] { n} = {0}   . . . . (1) 
 
Switching subscripts leads to 
 { n}T [K] { m} � m

2 { n}T [M] { m} = {0}  . . . . (2) 
 
Since [{ n}T [K] { m}]T = { m}T [K]T { n } = { m}T [K] { n} . . .  (3) 
 
and    [{ n}T [M] { m}]T = { m}T [M]T { n} = { m}T [M] { n}  . . .  (4) 
 
By taking the transpose of (2) and substitution from (3) and (4), (2) becomes 
  { m}T [K] { n} � m

2 { m}T [M] { n} = {0}  . . . (5) 
 
Subtraction of (5) from (1),  
 { m}T [M] { n} { m

2 � n
2} = {0}  . . .  (6) 

 
As can be seen from equation (6), 
  { m }T [M] { n } = {0} . . . if m  n. 
     
Therefore, if {U(x,t)} is given as  {U(x,t)} = [ (x)].{Z(t)}, the equation of motion 
may be written as: 
  guRMZKZCZM }]{[}]{][[}]{][[}]{][[   
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Premultiply by [ (x)]T results in 
 g

TTTT uRMZKZCZM }]{[][}]{][[][}]{][[][}]{][[][   
 
Because of orthogonality, the equation above results in diagonal matrices in 
the form: 
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These are N-uncoupled equations in the form: 
 
 gnnnnnnn uZkZcZm £***   
 
The equation above is known as the modal equation of motion, where: 
 
 mn

* = { n}T [M] { n}, . . . modal mass of mode n. 
 cn

* = { n}T [C] { n}, . . . modal damping of mode n. 
 kn

* = { n}T [K] { n}, . . . modal stiffness of mode n. 
 £n

  = { n}T [M] {R}, . . . modal earthquake excitation factor of mode n. 
 
Dividing the modal equation by mn

* results in 
 
 gnnnnn uZZZ  22  
 
where n is the modal participation factor for mode n which is equal to 
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n
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n
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Note the similarity of the modal equation of motion and the SDOF system. 
Using the same procedure for an SDOF solution, the maximum modal 
response values of Sdn, Svn and San may be found from the response 
spectrum using Tn = 2  / n. Therefore, Zn,max and Un,max are given as Zn,max = 

n Sdn, and since {Un,max} = { n} Zn,max., the modal displacements are given as 
   
  {Un,max} = { n} n,max 
  {Un,max} = { n} n Sdn 
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Because the modal accelerations from previous sections are given as 
 
 {Ün,max}, =  2 {Un,max},  
 
the modal forces are given as 
 
 {fsn,max} = [M] {Ün,max} 
 {fsn,max} = [M] ( 2) {Un,max} 
 {fsn,max} = [M] ( 2) { n} n,max 
 {fsn,max} = [M] ( 2) { n} n Sdn 
 {fsn,max} = [M] { n} n San 
 
In summary, the displacements and mode shapes are given in forms similar 
to those of the generalized single degree of freedom system by replacing 
the continuous functions by their counterpart matrices: 
 
 {Un,max} = { n} n Sdn 
 {fsn,max} = [M] { n} n San 
 
The procedures above are performed for N-modes yielding N-
displacements and N-modal forces. Of course, the modal forces result in 
modal shears and modal moments. The total response of the structure will 
be equal to the summation of all modal quantities (modal superposition). 
However, on account of the difference of modal frequencies (periods), the 
vibration modes do not usually vibrate in phase. Therefore, the summation 
of their absolute values will be conservative. The summation of absolute 
values is abbreviated as SABS and is given in the following form: 
 
 {U}max =  | {Un,max} | 
 {Fs}max =  | {Fsn,,max} | 
 
A more realistic summation procedure is the square root of the sum of 
squares, SRSS, which is given by the following form: 
 

 }{}{
1

2
max,max 

N

nUU  

 

  }{}{
1

2
max,max, 

N

sns FF  

 
 
The SRSS method gives satisfactory answers if the natural periods of the 
structure are well separated (if they are unlikely to vibrate in phase). 
However, because periods might come close to each other in 3-D struc-
tures, there is a likelihood that the modes will vibrate in phase. If this occurs, 
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the SABS method should be used. Remember that the SABS is always an 
upper bound solution. 
 
Better formulas exist and are incorporated in commercial programs. For 
example, a more general complete quadratic combinations (CQC) method 
could be used. This method is based 
on probabilistic correlation of the 
periods of the mode shapes and re-
quires statistical analysis as de-
scribed by Clough (1993).  
 
Caution:  
 
One must observe the right sequence 
of summation before adding the 
modal quantities.  For example, the 
SRSS values of the interstory drift, i, 
should be obtained by adding the 
squares of the interstory drift from 
each mode and then by taking the 
square root of the summation. It 
would be wrong to obtain the 
interstory drift by taking the difference of the SRSS of the displacement of 
the adjacent stories. Figure 3-20 illustrates the summation sequence if the 
displacements of stories 1 and 2 are given in the first and second mode as 
follows: 
 

Mode 1:  {U1,max} = 
1
2

  Mode 2:  {U2,max} = 
3
5  

 

SRSS of story 1:  u1 = 22 52   = 5.39 

SRSS of story 2:  u2 = 22 31  = 3.16 

SRSS of interstory: n = 22 23  = 3.6 
 
The correct interstory drift is the SRSS of the interstory drift, or 3.6. It would 
be wrong to consider the interstory drift as the difference between the SRSS 
of the displacement of adjacent stories, for example (5.39 � 3.16 = 2.23), or 
even (5.39 + 3.16 = 8.55). 
 
Example 3-3 
 
The structure shown in Example 3-3, Figure 1, is idealized as 2DOF, v1 and 
v2. The structure properties are given as shown in the figure as 
 
 M = 15 kN.s2/m  (0.086 kip.sec2/in) 

FIGURE 3-20
INTERSTORY DRIFT 
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u1

 
u2

1
2
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 EI = 1500 kN.m2  
            (522,708 kip.in2) 
 L = 1 m (39.37 in) 
 
Calculate the maximum SRSS base 
shear and base moment if the 
structure is excited by the El Centro 
earthquake along its axis ZZ. Take  
 = 2%. Note that the members are 

considered axially rigid. 
 
Solution 
 
Define relevant matrices: 
 
(1) Displacement vector: 
   

 
2

1}{
v
v

U  

 
(2)  Mass matrix:   
 
The mass matrix is constructed by applying unit acceleration in each DOF 
and calculating the corresponding resulting inertial forces. Remember 
that the acceleration of all other DOF must be kept zero, hence: 
 
Applying unit acceleration along v1 results in matrix element m11 = 2 m 
Applying unit acceleration along v2 results in matrix element m22 = 1 m 
 

Therefore,  
10
02

][ mM  

(3) Stiffness matrix:   
 
The stiffness matrix can be constructed in 
the usual procedures either by the stiff-
ness method or the flexibility method. If 
the stiffness method is used, the matrix 
must be condensed by kinematic con-
densation procedures to eliminate the 
rotational DOF. In this case, it is easier to 
use the flexibility method where the flex-
ibility matrix can be directly constructed 
without the rotational DOF. The inverse of 
the flexibility matrix will result in the re-
quired stiffness matrix. 
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Flexibility Method: 
 
Apply unit force in the direction of each DOF. Then find displacements 
accordingly. For example: 
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ff
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By applying unit force in direction 1 as 
shown in Example 3-3, Figure 2, the 
corresponding displacements may be 
found using any method in structural 
analysis (for example, virtual work). The 
resulting displacements are calculated as 
follows: 
 
 v1 = f11 = 8 L3 / (3 EI) 
 v2 = f21 = 2 L3 / (EI) 
 
Similarly, the corresponding displace-
ments may also be found by applying unit force in direction 2 as shown in 
Example 3-3, Figure 3. The resulting displacements are calculated as 
follows: 
 
 v1 = f12 =  2 L3 / (EI) 
 v2 = f22 = 7 L3 / (3 EI) 
 
The results above can be arranged to 
yield the flexibility matrix as follows: 
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The stiffness matrix can now be obtained 
by taking the inverse of [F] to yield: 
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Stiffness Method with Kinematic Condensation:  
 
When we use the stiffness formulation in reference to Example 3-3, Figure 
4, the given structure has four DOFs, two displacements (v1, v2) and two 
rotations ( 1, 2), provided the structure has axial rigidity. The global stiffness 
matrix may be assembled with the usual procedures and arranged by 
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separation of the displacement DOFs from the rotational DOFs. If the 
matrices are partitioned, they can be given in the following form: 
 

 
}{
}{

][][
][][

}{
}{

2221

1211 v
KK
KK

M
F

 

 
where {F} and {v} are the force and displacement submatrices, and {M} and 
{ } are the moment and rotational submatrices. Insofar as the external mo-
ments at the rotational DOFs will always be zero, the rotational DOFs may 
be eliminated as follows: 
 
Multiplying the bottom row in the matrix above and noting that {M} = 0 yields 
 
since {M = [K 21] {v} + [K 22] { } = {0} 
then { } = � [K 22 ] �1 [K 21] {v}  
 
Multiplying the first row of the original matrix 
yields 
 
    {F} = [K 11] {v} + [K 12] { }  
 
substitution of { }, as previously obtained from 
the equation above, yields 
 
   {F} = [K 11] {v} + [K 12] {�[K 22] �1 [K 21] {v}}  
   {F} = {[K 11] � [K 12] {[K 22] �1 [K 21]} {v}   
 
Using the sign convention given in Example 3-3, Figure 4, the relevant 
matrices are constructed as follows: 
 
Element stiffness matrix is given for the beam element shown in Example  
3-3, Figure 5, as follows: 
 

{V} = [ke] {v}, or, 











j

j

i

i

j

j

i

i

v

v

LLLL
LL
LLLL

LL

L
EI

M
V
M
V

4626
612612
2646

612612

22

22

3
 

 
Partitioned global matrix,    
 

 
120
05.1

][ 311
L
EIK   






LL
L

L
EIK

66
05.1

][ 312  

 





L
LL

L
EIK

60
65.1

][ 321   22

2

322 42
26][
LL
LL

L
EIK  

EXAMPLE 3-3, FIGURE 5 
ELEMENT STIFFNESS 

MATRIX 

L 

 
Vi , vi

Mi , i Mj , j 

Vj , vj 
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The inverse is 





22

223
1

22 /6/2
/2/4

20
][

LL
LL

EI
LK  

 
After performing the matrix multiplication above, the final matrix will be 
 
 {F} =  [K ] {v}   
 

where  





86
67

20
3][ 3L
EIK  

 
which is the same result obtained by the force method. 
 
(4) Eigenvalue solution:   
 
 | [K] � 2 [M] | =  0  
 

 




86
67

20
3

3L
EI 0

10
022  m  

 
If  is set to (  = 2 m (20 L3) / 3EI), the equation above becomes 

 

 0
86

627





 

 
expansion of the determinant yields  (7 � 2 ) (8 � ) � 36 = 0 
or     2 � 11.5  + 10 = 0 
 
Solution of the quadratic equation above yields two roots of ( 1 = 0.948 
and 2 = 10.55). 
 
For each value of , there will be a frequency and an associated mode 
shape, which are obtained as follows: 
 
For 1 = 0.948:

Frequency 1
2 = 1 (3EI /20mL3) = 0.948 (3 EI /20 mL3)   

 1 = 0.377 3/ LmEI   

Mode shape, let v1 arbitrarily be 1, then 
 

  




0
01

)948.0(86
6)948.0(27

2v
 



Chapter Three 

46 

Multiplication of the first row yields 
 
 7 � 2 (0.948) (1) � 6 v2 = 0         v2 = 0.85 
 
Therefore, mode 1 becomes   
 
 { 1} = {1.0   0.85}T 
 
Similarly for mode 2, we have 
 
For 2 = 1.258: 
 
Frequency 2

2 = 2 (3EI /20mL3) = 10.55 (3EI / 20mL3) 
 

hence,   2 = 1.258 3/ LmEI  
 
Mode shape, let v1 arbitrarily be 1, then 
 

 




0
01

)55.10(86
6)55.10(27

2v
 

 
Multiplication of the first row yields 
 
  7 � 2 (10.55) (1) � 6 v2 = 0 
 
hence,  v2 = � 2.35 
 
Therefore, mode 2 becomes  { 2} = {1.0 � 2.35}T 
 
Summary of results:  
 

 
3258.1

377.0
}{

mL
EI

 ,  



35.285.0

11
][ 21  

 
(5) Modal analysis:   
 
The earthquake loading vector, {R}, is constructed by giving the structure 
unit rigid body motion in the direction of the earthquake as shown in Ex-
ample 3-3, Figure 6. Then calculate the displacements of the DOFs ac-
cordingly. For example: 
 

{R} = 
 894.0

447.0
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Because the construction of vector {R} 
completes the construction of all 
required matrices for modal analysis, 
the analysis can be started mode by 
mode to find earthquake-induced forces 
in the form 
 
 {fs,max} = [M] { } Sa 
 
Mode (1):  
 
{fs1} = [M] { 1} 1 Sa1 
£1 = { 1}T [M] {R} 
   
 
 
 

 =
 894.0

447.0
10
02

)15}(85.00.1{  = 2.01 kN.s2/m (0.011 kip.sec2/in) 

 
m1

* = { 1}T [M] { 1} 

 = 
85.0
0.1

10
02

)15}(85.00.1{   

 = 40.84 kN.s2/m 
  (0.233 kip.sec2/in) 
  
 

1 = £1 / m1
* = 2.01 / 40.84 = 0.049 

 

1 = 0.377 3/ LmEI  

 = 0.377 )115(/500,1 x   
 = 3.77 rad/s      
 
T1 = 2  / 1 = 2 /3.77  =  1.67 s 
 
With T1 = 1.67 seconds and 1 = 2%, Sa1 can be directly read from the El 
Centro response spectrum curves given in Chapter 2 to yield Sa1 = 2.2 m/s2 
(86.6 in/sec2). Thus, the modal forces are given as 
 
{fs1} = [M] { 1} 1 Sa1 

 = 
37.1
23.3

)2.2()049.0(
85.0
0.1

10
02

)15( kN     kip
308.0
726.0

 

 
 

EXAMPLE 3-3, FIGURE 6 
RIGID BODY MOTION 

L

v1 

v2 2L 

Z

 
Z 

v1= 0.447 

v 2
 =

 -0
.8

94
 

vzz = 1 

 
L  

 
 

3.23 kN 

2L 

EXAMPLE 3-3, FIGURE 7 
 MODAL FORCES, MODE (1) 

1.37 kN 

V1 = 3.23 kN 

M1 = 7.83 kN.m 
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With these forces applied as shown in Example 3-3, Figure 7, the reactions 
at the base may be calculated by statics to yield the base shear, V1, and 
base moment, M1. 
  
 V1 = 3.23 kN 
  
 M1 = 3.23(2) + 1.37(1) = 7.83 kN.m (69.3 kip.in) 
 
Similarly, mode (2) can be evaluated as follows: 
 
Mode (2):   
 
{fs2} = [M] { 2} 2 Sa2 
 
£2 = { 2}T [M] {R} 
 

 = 



894.0

447.0
10
02

)15}(35.20.1{  = 44.85 kN.s2/m   

  (0.256 kip.sec2/in) 
m2

* = { 2}T [M] { 2} 
 

 = 



35.2
0.1

10
02

)15}(35.20.1{  = 112.98 kN.s2/m   

  (0.646 kip.sec2/in) 
 

 = £2/m2
* = 44.85 / 112.98 = 0.398 

 

2 = 1.258 3/ LmEI  
 
 = 1.258 )115(/500,1 x  = 12.58 
rad/s      
 
T2 = 2 / 2 = 2 /12.58  =  0.5 s 
 
With T2 = 0.5 second and  2 = 2%, Sa2 
can be directly read from the El Centro re-
sponse spectrum curves given in Chapter 
2 to yield Sa2 = 10 m/s2. Thus, the modal 
forces are given as: 
 
{fs2} = [M] { 2} 2 Sa2 
  

 = )0.10()398.0(
35.2
0.1

10
02

)15(


 

L  
 
 

120 kN 

2L 

EXAMPLE 3-3, FIGURE 8 
 MODAL FORCES, MODE (2) 

140 kN 

V2 = 120 kN 

M2 = 100 kN.m 
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140

120
 kN     


kip

475.31
978.26

 

 
With these forces applied as shown in Example 3-3, Figure 8, the reactions 
at the base may be calculated by statics to yield the base shear, V2, and 
base moment, M2: 
 
  
 V2 = 120 kN  (26.978 kip) 
  
 M2 = 120(2) � 140(1) = 100 kN.m (885 kip.in) 
 
The final results are obtained by adding values from mode 1 and mode 2, 
including the base shear and base moments. If the SRSS method of sum-
mation is used, the base shear and base moments are calculated as follows 
 

 Vmax = 2
2

2
1 VV    

   

  = 22 12023.3   = 120.04 kN (26.987 kip) 
 

 Mmax = 2
2

2
1 MM   = 22 10083.7  = 100.31 kN.m     

   (888 kip.in) 
 
In this example, mode (1) has little effect on the final force. This is not nec-
essarily the usual case in analysis. 
 
The earthquake-induced displacements may be found for each mode by 
statics that are due to modal forces or may be found using the modal 
displacement equations. The required Sdn may be read directly from the 
response spectrum or may be calculated from San. Using modal dis-
placement procedure results in 
 
 {Un,max} = { n} n Sdn 
 
Mode (1):     {U1} = { 1} 1 Sd1,    
 
where  Sd1 = Sa1 / 1 = 2.2/3.772 = 0.15 m    (5.9�) 
 

Therefore, 
25,006.0
35,007.0

)15.0()049.0(
85.0
0.1

2

1

v
v

m     
"246.0
"289.0

 

 
Mode (2): {U2} = { 2} 2 Sd2,    
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where Sd2 = Sa2 / 2 = 10/12.582 = 0.063 m 
 
Therefore, 
 

 






9,058.0
1,025.0

)063.0()398.0(
35.2
0.1

2

1

v
v

m  
 "319.2

"988.0
 

 
The SRSS displacements become, 
 

   v1,max = 22 1,025.035,007.0  = 0.026 m (1.024 ) 
  

 v2,max = 22 9,058.025,006.0  = 0.059 m  (2.323 ) 
 
Example 3-4 
 
Because the structure shown in 
Example 3-4, Figure 1, has very 
stiff beams, it will be idealized as 
two degrees of freedom. The 
structure properties are given as 
follows: 
 
mass:  
m1 = 0.2  kN.s2/mm  
(1.143 kip.sec2/in) 
 
m2 = 0.4  kN.s2/mm  
(2.286 kip.sec2/in) 
stiffness: 
 
k1 = 12 EI1/L1

3 = 50 kN/mm  
       (285.7 kip/in) 
 
k2 = 12 EI2/L2

3 = 100 kN/mm 
  (571.4 kip/in) 
 
damping: = 5% 
 
If the structure is excited by the El Centro 
earthquake in the direction shown in the 
same figure, calculate the maximum dis-
placements, maximum story forces and 
maximum reactions (the base shear and 
base moment using the SRSS combining 
method). 

 
m1

m2

EXAMPLE 3-4, 
FIGURE 2 

m1

m2

ü1 = 1

m1

m2

ü2 = 1

EXAMPLE 3-4, FIGURE 1 

u2

u1

 
m1

m2

k1

k2

EQ

k1

k2

L1 = 3 m
(9.84 ft)

L2 = 3 m
(9.84 ft)
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Solution 

(1) Displacement vector: 
2

1}{
u
u

U  

(2) Mass matrix:   
 
The mass matrix may be found as in the previous examples by applying unit 
acceleration along each degree of freedom as shown in Example 3-4, 
Figure 2, and then by calculating the resulting forces. Accordingly, the mass 
matrix is given as 
  

 
20
01

2.0][M  kN.s2/mm 

      

 (1.143
20
01

kip.sec2/in) 

 
(3) Stiffness matrix:   
 
Because the beams are stiff enough to prevent joint rotations, the stiffness 
matrix can be constructed by simply applying unit displacements in the 
direction of each degree of freedom (as shown in Example 3-4, Figure 3) 
and by calculating the resulting forces. Accordingly, the stiffness matrix is 
given as 
 

 





31
11

100][K  kN/mm 

   

 (571.4




31
11

kip/in) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
m1

m2

EXAMPLE 3-4, 
FIGURE 3 

u2 = 1

100

200
200

100100

100

u1 = 1
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(4) Eigenvalue solution: 
 
   | [K] � 2[M] | =  0  

 

 




31
11

100 0
20
01

)2.0(2   

 
If  is set to (  = 2 (0.2) / (100) = 2 / 500), the equations above become 

 

 0
231
11





 

 
Expansion of the determinant yields  (1 � ) (3 � 2 ) �1 = 0  
 
or  2 � 2.5  + 1 = 0 
 
Solution of the quadratic equation above yields two roots of :   
 
  1 = 0.5 and  2 = 2.0 
 
For each value of  there will be a frequency and an associated mode 
shape which are obtained as follows: 
 
For 1 = 0.5:

Frequency 1
2 = 1 (500) = 0.5 (500) = 250 

 1 = 250  = 15.81 rad/s 

Mode shape: let u1 arbitrarily be 1, then 
 

 




0
01

)5.0(231
1)5.0(1

2u
 

 
Multiplication of the first row yields 
 
 0.5 � u2 = 0        u2 = 0.5 
 
Therefore, mode 1 becomes  { 1} = {1.0   0.5}T 
 
Similarly for mode 2, we have 
 
For 2 = 2: 
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Frequency 2
2 = 2 (500) = 2(500) = 1,000 

 2 = 000,1 = 31.62 rad/s 
 
Mode shape: let v1 arbitrarily be 1, then 
 

 




0
01

)2(231
1)2(1

2u
 

 
Multiplication of the first row yields 
 
 �1 � u2 = 0        u2 = �1 
 
Therefore, mode 2 becomes  
 
 { 2} = {1.0 �1}T 
 
The results summary is given below and 
shown graphically in Example 3-4, Figure 4. 
 
  

   
62.31
81.15

 

  



15.0

11
][ 21  

 
(5) Modal analysis:   
 
The earthquake loading vector, {R}, is constructed by giving the structure 
unit rigid body motion in the direction of the earthquake and then calculating 
the displacements of the DOFs accordingly: 
 

 {R} = 
1
1

 

Mode (1):   

£1 = { 1}T [M] {R}  = 
1
1

20
01

)2.0(}5.00.1{  = 0.4 kN.s2/mm 

   

m1
* = { 1}T [M] { 1} = 

5.0
0.1

20
01

)2.0(}5.00.1{  = 0.3  kN.s2/mm 

  (1.714 kip.sec2/in) 
1 = £1 / m1

* = 0.4 / 0.3 = 1.333 
 
T1 = 2 / 1 = 2 /15.81 = 0.4 s 

.

EXAMPLE 3-4, FIGURE 4

11 22
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With T1 = 0.4 second and 1 = 5%, Sd1 and Sa1 can be directly read from the 
El Centro response spectrum curves (Figure 3-8) to yield Sd1 = 0.022 m 
(0.87�) and Sa1 = 6 m/s2 (237 in/sec2). Thus, the modal response is given as 
 

{U1} = { 1} 1 Sd1 = 
15
29

)22()333.1(
5.0
0.1

2

1

u
u

mm   
"59.0
"14.1

 

  
{fs1} = [M] { 1} 1 Sa1   

 = 
600,1
600,1

)000,6()333.1(
5.0
0.1

20
01

)2.0( kN     kip
360
360

 

 
 
Mode (2):   

£2
 = { 2}T [M] {R} = 

1
1

20
01

)2.0(}11{ = � 0.2  kN.s2/mm 

  (�1.143 kip.sec2/in) 
 
 

m2
* = { 2}T [M] { 2} = 




1
1

20
01

)2.0(}11{ = 0.6  kN.s2/mm 

  (3.429 kip.sec2/in) 
 

2 = £2 / m2
* = � 0.2 / 0.6 = �0.333 

 
 T2 = 2  / 2 = 2  /31.62 = 0.2 s 
 
With T2 = 0.2 second and 2 = 5%, Sd1 and Sa1 can be directly read from the 
El Centro response spectrum curves (Figure 3-8) to yield Sd2 = 0.007 m 
(0.28 in) and Sa2 = 7 m/s2 (276 in/sec2). Thus, the modal response is given 
as 
 

{U2} = { 2} 2 Sd2 = 






2
2

)7()333.0(
1

1

2

1

u
u

mm   


"79.0
"79.0

 

  

{fs2} = [M] { 2} 2 Sa2 = )000,7()333.0(
1

1
20
01

)2.0( 


 

 

  



932
466

kN   


kip
210
105

 

 
Finally, the total response is found using the SRSS method. Summary of 
modal response of modes 1 and 2 is shown in Example 3-4, Figure 5, 
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hence: 

 u1,max =  2  29 22  = 29.07 mm (1.144 in) 

 u2,max =  2  15 22   = 15.13 mm (0.596 in) 
 

 Vmax =  466  3,200 22  = 3,233 kN (727 kip) 

 Mmax =  0  14,400 22   = 14,400 kN.m (127,454 kip.in) 
 

Example 3-5 
 
A two-story building is idealized as a prismatic stick model with 2DOF as  
shown in Example 3-5, Figure 1 (a). The mass and properties of the model 
are given as follows:  
 
mass: m1 = 100  kN.s2/m (0.571 kip.sec2/in) 
 m2 = 200  kN.s2/m (1.143 kip.sec2/in) 
stiffness: EI = 3 x 106  kN.m2 (1,045 x 106 kip.in2) 
 
The building is excited by the rotational component of an earthquake as 
shown in the same figure. The earthquake has a rotational response 
spectrum as shown in Example 3-5, Figure 1 (b). 
 

EXAMPLE 3-4, FIGURE 5

 
 

29 mm
(1.14 in)

15 mm
(0.59 in)

Mode  1

1,600 kN 
(360 kip)

1,600 kN 
(360 kip)

V1,max = 3,200 kN 
(720 kip)

M1,max = 14,400 kN.m 
(127,454 kip.in)

 
 

-2 mm 
(-0.79 in)

+2 mm 
(+0.79 in)

Mode  2

466 kN 
(105 kip)

932 kN 
(210 kip)

V2,max = 466 kN
(105 kip)

M2,max = 0 kN.m 
(0 kip.in)
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Calculate the maximum displacements, maximum story forces and max-
imum reactions using the SRSS combining method. 
 
Solution 
 
(1) Displacement vector:  

{U} = 
2

1

u
u  

(2) Mass matrix:   
 
As in the previous examples, the mass 
matrix may be found by applying unit 
acceleration along each degree of 
freedom (as shown in Example 3-5, Figure 
2) and then calculating the resulting 
forces. Accordingly, the mass matrix is 
given as 
 

  
2000
0100

][M  kN.s2/m 

    

in/sec.kip
143.10
0571.0 2  

 
(3) Stiffness matrix:   
 
Because the beam is a cantilever 
with rotational DOF, it will be easier 
to construct the stiffness matrix 
from the flexibility matrix than 
constructing the general stiffness 

EXAMPLE 3-5, FIGURE 3

6/EI
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Beam

3/EI
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Force-
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(9.84 ft)
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(9.84 ft)

6
M-Diagonal

3

 
m1

m2

EXAMPLE 3-5, FIGURE 2
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m2

ü1 = 1

m1

m2

ü2 = 1

EXAMPLE 3-5, FIGURE 1
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(b) EQ Response Spectrum 

T (sec) 

u2

 
u1
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(9.84 ft)
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m1

m2

EI
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(a) Idealized Structure 
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matrix and kinematically condensing the rotational DOF as illustrated in 
Example 3-3. 
 
The flexibility matrix can be constructed by simply applying unit dis-
placements in the direction of each degree of freedom. In the following 
analysis, the conjugate beam method is used to calculate the required 
displacements. 
 
u1-direction 
 
Apply unit force at joint 1 as shown in Example 3-5, Figure 3. The resulting 
bending moment and conjugate beam will be as shown. Accordingly, the 
resulting displacements at joints 1 and 2 are calculated as follows: 
 
f11 = q (L)2 / 3 EI 
 = 6 (6)2 / 3 (3 x 106)  
 = 24 x 10�6 m 
 (945 x 10�6 in) 
 
 
f21 = 6 (3)2 / 3 (3 x 106) 
 + 3 (3)2 / 6 (3 x 106) 
 = 7.5 x 10�6 m 
 (295 x 10�6 in) 
 
u2-direction 
 
Apply unit force at joint 2 as shown in Example 3-5, Figure 4. The resulting 
bending moment and conjugate beam will be as shown. Accordingly, the 
resulting displacements at joints 1 and 2 are calculated as follows: 
 
  f12 = 1/2 q (L) (L + 2/3 L)  / 3 EI 
  = 1/2 3 (3) (5) / (3 x 106) = 7.5 x 10�6 m (295 x 10�6 in) 
 
 f22 = 3 (3)2 / 3 (3 x 106 = 3 x 10�6 m (118 x 10�6 in) 
 
Accordingly, the flexibility matrix, [F], is given as  
 

  

35.7
5.724

10][ 6

2221

1211

ff
ff

F  m/kN 

 

  kip/in
118295
295945

10 6  

 
The stiffness matrix is obtained by taking the inverse of matrix [F].  Because 
the determinant of  |[F]| = (24(3) � (7.5)2) x 10�12 = 15.75 x 10�12, [K] will be 

EXAMPLE 3-5, FIGURE 4

 
u1

u2
F2 = 1

Force-Diagonal

3 m

3 m 
(9.84 ft)

3/EI
Conjugate 

Beam

3
M-Diagonal
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245.7
5.73

492,63
245.7

5.73
1075.15

10][
12

6

x
K  kN/m 

 

 



kip/in

245.7
5.73

363  

 
(4) Eigenvalue solution:   
 
 | [K] � 2 [M] | =  0  
 

 




245.7
5.73

492,63 0
20
01

)100(2   

 
If  is set to (  = 2 (100) / (63,492) = 2 / 634.92), the equation above 
becomes 

 0
2245.
5.73





 

 
expansion of the determinant yields (3 � ) (24 � 2 ) � (7.5)2 = 0 
or  2 2 � 30  + 15.75 = 0 
 
Solution of the above quadratic equation yields two roots of :  
 

1 = 0.545  and 2 = 14.455 
 
For each value of  there will be a frequency and an associated mode 
shape that are obtained as follows: 
 
For 1 = 0.545:

Frequency 1
2 = 1 (634.92) = 0.545 (634.92) = 346  

 1 = 346 = 18.60 rad/s 

Mode shape: let u1 arbitrarily be 1, then 
 

 




0
01

)0545(2245.7
5.7)545.0(3

2u
 

 
Multiplication of the first row yields 
 
 2.455 � 7.5 u2 = 0         u2 = 0.327 
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Therefore, mode 1 becomes  { 1} = {1.0   0.327}T 
 
Similarly for mode 2, we have 
 
For 2 = 14.455: 

Frequency 2
2 = 2 (634.92) = 14.455 (634.92) = 9178 

 2 = 178,9 = 95.80 rad/s 
 
Mode shape: let u1 arbitrarily be 1, then 
 

  




0
01

)455.14(2245.7
5.7)455.14(3

2u
 

 
Multiplication of the first row yields 
 
  �11.455 � 7.5 u2 = 0        u2 = �1.527 
 
Therefore, mode 2 becomes  
 
 { 2} = {1.0 � 1.527}T 
 
The summary of results is given below and 
shown graphically in Example 3-5, Figure 5. 
 

   
80.95
60.18

, 

 

 



527.1327.0
11

][ 21  

 
(5) Modal analysis:   
 
The earthquake loading vector, {R}, is 
constructed by giving the structure a unit 
rigid body motion in the direction of the 
earthquake and then calculating the dis-
placements of the DOFs accordingly. In 
this example, the rigid body motion will be 
a unit rotation, (  = 1), of the member 
around its base as shown in Example 3-5, 
Figure 6. Thus, the displacement of joint 1 
and 2 will be equal to its distance from the 
base times the base rotation.  
 

.

EXAMPLE 3-5, FIGURE 5

11 22

R2 = 3 m 
(118 in)

 
R1 = 6 m 
(236 in)  3 m 

(9.84 ft)

 3 m 
(9.84 ft)

EXAMPLE 3-5, FIGURE 6
RIGID BODY ROTATION 

 = 1
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Consequently, the vector {R} is given as: 
 
 R1 = 6(1) = 6 m (236 in) 
 R2 = 3(1) = 3 m (118 in) 
 

 
3
6

}{R  m   in
118
236

 

Mode (1):   
 
 £1 = { 1}T [M] {R}   

 =
3
6

20
01

)100(}327.00.1{   

 = 796.2 kN.s2 (179 kip.sec2) 
 

 m1
* = { 1}T [M] { 1} = 

327.0
0.1

20
01

)100(}327.00.1{  

 = 121.39 kN.s2/m (0.694 kip.sec2/in) 
 

1 = £1 / m1
* = 796.2 / 121.39 = 6.559 m (258 in) 

 
 T1 = 2  / 1 = 2  /18.6  =  0.34 s. 
 
Note that, unlike the displacement spectrum, the participation factor of the 
rotational response spectrum has a unit of meter. Refer to the rotational 
response spectrum in Example 3-5, Figure 1, at T1 = 0.34 seconds. Sv1 is 
read as 0.085 rad/s. Thus: 
   
 Sd1 =  Sv1 / 1 = 0.085 /18.6 = 0.005 rad 
 Sa1 =  Sv1 . 1 = 0.085 (18.6) = 1.581 rad/s2 

 
The modal response is given as 
 

 {U1}= { 1} 1 Sd1 = )005.0()559.6(
327.0
0.1

2

1


u
u

 

 

 
011.0
033.0

m  in
433.0
3.1

 

 
 {fs1} = [M] { 1} 1 Sa1  
 

                        = )581.1()559.6(
327.0
0.1

20
01

)100(  
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           = 
678
037,1

kN        kip
152
233

 

 
Mode (2):   
 

  £2
 = { 2}T [M] {R} = 

3
6

20
01

)100(}527.11{  

  = � 316.2 kN.s2  (�71.088 kip.sec2) 

  m2
* = { 2}T [M] { 2} = 




527.1
1

20
01

)100(}527.11{  

        = 566.35 kN.s2/m  (3.236 kip.sec2/in) 
 

2 = £2 / m2
* = � 316.2 / 566.35 = � 0.558 m (�21.969 in) 

 
  T2 = 2  / 2 = 2  / 95.8 =  0.066 s. 
 
Similar to first mode, refer to the response spectrum in Example 3-5, Figure 
1, at T2 = 0.066 sec, Sv 2 is read as 0.017 rad/s, hence 
 
 Sd2 =  Sv2 / 2 = 0.017 / 95.8 = 0.000,2 rad 
 Sa2 =  Sv2 . 2 = 0.017 (95.8) = 1.629 rad/s2 

 {U2} = { 2} 2 Sd2  = )2,000.0()558.0(
527.1
1

2

1 



u
u

 

  =


2,000.0
1,000.0

m          


in
008.0
004.0

 

 
     {fs2} = [M] { 2} 2 Sa2   

EXAMPLE 3-5, FIGURE 7 

 
 

33 mm
(1.3 in)

11 mm 
(0.433 in)

Mode  1

1,037 kN 
(233 kip)

678 kN 
(152 kip)

V1,max = 1,715 kN 
(385 kip)

M1,max = 8,256 kN.m 
(73,074 kip.in)

 
 

� 0.1 mm 
(0.004 in)

+ 0.2 mm 
(0.008 in)

Mode  2

91 kN 
(20.46 kip)

278 kN 
(62.50 kip)

V2,max = 187 kN
(42.04 kip)

M2,max = 288 kN.m 
(2,549 kip.in)
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              = )629.1()558.0(
527.1
1

20
01

)100( 


 

 

              = 


278
91

kN        


kip
50.62
46.20

 

 
Finally, the total response is found using the SRSS method.  The summary 
of modal response of modes 1 and 2 is shown in Example 3-5, Figure 7, 
which is evaluated as follows: 
 

 u1,max =   0.1   33 22  = 33 mm (1.3 in) 

 u2,max =   0.2   11 22  = 11.002 mm (0.435 in) 
 

 Vmax =   187   1,715 22   = 1,725 kN (388 kip) 

 Mmax =   288   8,256 22  = 8,261 kN.m (73,118 kip.in) 
 
Importance of Modes 
 
The advantage of modal 
analysis with response spec-
trum technique is that only a 
few modes significantly con-
tribute to the response of the 
structure. Experience in dynam-
ic analysis shows that the par-
ticipation factor  diminishes 
rapidly with higher modes.  
 
For low-rise buildings (short 
period), the higher modes pick 
up less forces than lower 
modes as shown in Figure 3-21. For tall buildings (long period), higher 
modes pick up more forces than lower modes. Therefore, higher modes 
should be investigated with care in high-rise buildings. 
 
Seismic codes include this behavior in their response spectra by lifting up 
the curves of the response in the long period range to accommodate the 
effect of higher modes in the long period range. 

T 

Sd 
Sv 

3 2 1 

FIGURE 3-21
IMPORTANCE OF HIGHER MODES 

3 2 1 

 
Higher modes 

Short Buildings Tall Buildings 
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3.4.2  Multiple Degrees of Freedom System in 3-D Analysis 

Buildings with rigid floors (diaphragms) where vertical acceleration of the 
ground is neglected can be modeled with at least three dynamic DOF: the 
three mass movements u, v and  as shown in Figure 3-22.  
 
If the center of mass (CM) 
coincides with the center of 
resistance (CR), also known as 
center of stiffness or center of 
rigidity, the resulting mass and 
stiffness matrices will be diagonals. 
For example, if a rectangular 
diaphragm with constant thickness 
(uniform mass) is supported by four 
circular columns with stiffness k as 
shown in Figure 3-23, the resulting 
matrices will be as follows: 
 
For a displacement vector,  
{U} = {u  v  }T, the mass and stiff-
ness matrices take the following form: 
 

 

00
00
00

][
m

m
m

M v

u

, 

00
00
00

][
k

k
k

K v

u

 

 
where mu and mv are the translational 
mass coefficients, and m  = Ip is the 
mass polar moment of inertia ku and kv 
are the translational stiffness co-
efficients, and k  is the rotational stiff-
ness coefficient. 
 
Eigenvalue formulation yields 
 
  [K � 2 M] { } = {0} 
 
Frequency equation is given as 
 

 0
)(00

0)(0
00)(

2

2

2









mk
mk

mk

vv

uu

 

FIGURE 3-22
RIGID DIAPHRAGM 

 DEGREES OF FREEDOM

u

v

Rigid Diaphragm

FIGURE 3-23 
SYMMETRIC DIAPHRAGM 

u

 
v kk
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The results are three independent equations of the form (ki � i
2 mi = 0), 

which yields three frequencies: 
 
 i

2 =  / ii mk  
 
Eigenvectors can be obtained as follows. 
 
Mode (1) is given in the u-direction with frequency and mode shape u, 

u, and by setting u arbitrarily to 1, the mode shape is obtained as follows: 
 

 







0
0
01

)(00
0)(0
00)(

2

2

2

v
mk

mk
mk

u

vuv

uuu

 

 
The second row yields    (kv � u

2 mv) v = 0 
The third row yields    (k  � u

2 m )  = 0 
 
Because (ku � u

2 mu = 0) and consequently (kv � u
2 mv  0), (k  � u

2 m  
 0), the two equations above require that v = 0 and  = 0. 

 
Similarly, in the v-direction, for v =1, the other two displacements are u = 
0 and  = 0. Similarly, in the -direction, for  = 1, the other two dis-
placements are u = 0 and v = 0. 
 
Therefore, the three mode shapes are given as 
 

 

100
010
001

][][ vu  

 
Using the earthquake loading vector, {R}, it can be shown that the 
participation factor, , only exists for the mode shape in the direction of 
excitation, whereas they vanish for the other modes. The implication of 
these results is that structures in which the center of mass and center of 
resistance coincide have uncoupled degrees of freedom. It is also implied 
that their modes of vibration are only excited by a ground motion in the di-
rection of their freedom. In other words, { u} is excited only by gu , { v} is 

excited only by gv , and { } is excited only by g . 
 
This important result states that the torsional modes, which are 
dangerous modes, will not be excited by translational ground motion. 
However, many symmetric buildings fail in torsional response during 
earthquakes because torsional response can occur for many reasons, 
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including accidental asymmetry (or the coupling of the system because of 
local failures during an excitation). Furthermore, even though we design 
for translational earthquake components, earthquakes also contain some 
rotational components. For these reasons, even if structural systems are 
selected symmetric, seismic codes prescribe a minimum additional 
amount of eccentricity known as accidental eccentricity for design. For 
example, the UBC and IBC codes require a minimum accidental ec-
centricity by displacing the mass 5% as shown in Figure 3-24. The mass 
should be displaced 5% along side B if the earthquake excitation is in 
the longitudinal direction along side A. Remember that this mass dis-
placement is added to any existing 
eccentricity. 
 
In general, buildings may be modeled 
as space frames with rigid diaphragms 
using standard structural analysis soft-
ware. The mass is allocated at the 
nodes as concentrated masses as 
shown in Figure 3-25. 
 
Experience and skills in modeling are 
important aspects of dynamic analysis 
because of the effort involved. For ex-
ample, the dynamic DOFs can be 
taken different from static DOFs. 
Although the rotational DOFs are very 
important in static analysis, they may not 
contribute much to dynamic analysis. 
These rotational DOFs might be elim-
inated in dynamic analysis. The kin-
ematic condensation illustrated in 
Example 3-1 may be used for this 
purpose. 
 
Mass distribution is also an important 
step in the modeling process. Mass 
allocation must be distributed in a 
manner that captures the location of the 
center of mass with respect to the center 
of resistance because this location 
represents the rotational degree of 
freedom of the entire floor. This al-
location is also important because the 
torsional effect of the earthquake is 
related to this distribution. Example 3-7 
illustrates this point. 
 

 
 

Mass

FIGURE 3-25 
3-D FRAME MODEL

Node 
or 

Joint

Column

Beam

FIGURE 3-24 
ACCIDENTAL ECCENTRICITY

 
5% A

A

B

5% B
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It is important to point out that the mass allocation at the nodes is 
performed for structures with rigid diaphragms. In a structure with flexible 
diaphragms, the floors must at least be explicitly modeled as 2D 
elements. As an example, a 3D shell element may be used to model the 
floor where the mass is directly applied to the surface of the elements. 
 
Very complex structures such as nuclear power plants may require finite 
element analysis. Many commercial software programs are available for 
this purpose. 
 
Example 3-6 
 
A 150 mm (5.9 in) concrete slab is supported by four circular columns, 
which are located as shown in Example 3-6, Figure 1. The slab is con-
sidered rigid, and the columns are weightless and totally fixed to the slab. 
The clear height of the columns is 3 m (9.84 ft). The concrete mass is 
given as c = 25 kN/m3 (0.159 kip/ft3). 
 
(1) Express the mass matrix and mode shapes in terms of the slab 

centroid coordinates, u, v and  as shown in Example 3-6, Figure 1.  
 
(2) If the El Centro earthquake acts in the direction of coordinate u, 

determine the maximum dynamic displacement at the top of each 
column in the first mode of vibration. Damping ratio is taken as  
 = 2%. 

 
 
 

 

EXAMPLE 3-6, FIGURE 1

 ISOMETRIC

3 m 
(9.84 ft)

Columns 
Dia = 250 mm 

(9.84 in) 
fc  = 30 MPa 

(4.35 ksi)

h = 150 mm  (5.9 in)

PLAN

C4C3
 u

C2C1

v

9 m  (29.53 ft)

 6 m  (19.69 ft)

4 
m

  (
13

.1
2 

ft)
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Solution 
 
Part (1) 

(1) Displacement vector: {U} = v
u

  

 
(2) Mass matrix is given only for the slab since columns are weightless: 
 
weight per m2:   w =  h = 25 (0.15)  
  = 3.75 kN/m2 (0.544 x 10-3 kip/in2) 
 
mass per m2:   m = w/g = 3.75/9.81  
  = 0.3823  kN.s2/m/m2 (1.408x10-6 kip.sec2/in3) 
 
area: A = 9 (6) = 54 m2 (83,700 in4) 
 
polar moment of inertia: 
 Ip = Ix + Iy = 6 (9)3 / 12 + 9 (6)3 / 12  
  = 526.5 m4 (1.265 x 109 in4) 
 

mass matrix: 

5.52600
0540
0054

][ mM , (kN, m, s units) 

   

  )unitssecin,kip,(,
10 x 265.100

0700,830
00700,83

][
9

mM  

 
(3) Stiffness matrix: 
 
stiffness of concrete columns 
 
modulus of elasticity: 
 Ec = 4,700  'cf  = 4,700  30 = 25,700 MPa (3,727 ksi) 
 
moment of inertia: 
 Ic =  D4 / 64 =  (250)4 / 64 = 192 x 106 mm4 (461 in4) 

 EI = 25,700 (192 x 106) = 4,928 x 109 N.m2 

    (1.717 x 1012 kip.in2) 
 
column stiffness: 
 kc = 12 EI / L3 =12 (4,928) /(3)3 = 2,190 kN/m (12.51 kip/in) 
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The stiffness matrix is constructed by giving the slab unit displacements 
in the direction of each degree of freedom, u, v and , and then calculat-
ing the resulting forces and moments accordingly. 
 
Unit displacement in u-direction as shown in Example 3-6, Figure 2. For 
example, u = 1, v = 0, and  = 0 result in the following: 
 
 Fu = 4 kc (1) = 4 kc  kN/m (4 kc kip/in) 
 Fv = 0 

F  = (2 x 3 � 2 x 1) kc (1) 
  = 4 kc  kN.m/m (157 kc kip.in/in) 
 

Unit displacement in v-direction as shown in Example 3-6, Figure 3: for 
example, v = 1, u = 0, and  = 0 result in the following: 
 
Fu = 0 
Fv = 4 kc (1) = 4 kc kN/m (4 kc kip/in) 
F = (2 x 1.5 � 2 x 4.5) kc (1) 
 = � 6 kc kN.m/m (� 236 kc kip.in/in) 
 
Unit displacement (rotation) in -direction as 
shown in Example 3-6, Figure 4: for 
example,  = 1, u = 0, and v = 0 result in the 
third column of the stiffness matrix. For unit 
rotation, calculations become easier if the 
concept of the instantaneous center is 
utilized: the displacement of any point in 
any direction equals rotation times the 
perpendicular distance to the instantaneous 
center. In this case, the centroid of the slab 
is the instantaneous center. Accordingly, 
and in reference to Example 3-6, Figure 4, 
the forces in column 3 may be calculated as 
follows: 
 
For the horizontal component in column C3, 
 

 
 
 
u = 1

 EXAMPLE 3-6, FIGURE 2 

3 m 
(9.84 ft)

1 m 
(3.28 ft)

kckc

kckc

v = 1

EXAMPLE 3-6, FIGURE 3 

4.5 m 
 

(14.76 ft)

kckc

kckc

1.5 m 
 

(4.92 ft)
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Fu = kc (1m)   
= kc (1) (1)  

 = kc kN/rad  
(39.37 kc kip/rad) 
 
For the vertical com-
ponent in column C3, 
 
Fv = kc (4.5m)   
 = kc (4.5) (1)  
 = 4.5 kc kN/rad 
 (177 kc kip/rad) 
 
Similarly, the rest of the 
force components in all 
columns are calculated with resulting values as shown in Example 3-6, 
Figure 4. 
 
With these values known, the total forces needed for the stiffness matrix 
can be evaluated by equilibrium as follows: 
 
 Fu = 4 kc  kN/rad (157 kc kip/rad) 
 Fv = � 6 kc  kN/rad (�236 kc kip/rad) 
 F  = [(4.5 x 4.5 x 2) + (1.5 x 1.5 x 2) + (3 x 3 x 2) + (1 x 1 x 2)] kc 
  = 65 kc kN.m/rad (100,750 kc kip.in/rad) 
 

stiffness matrix: 
units,,

6564
640

404
][

smkN
kK c



   

 

stiffness matrix: 
)unitsin,kip,(

750,100236157
23640

15704
][

s
kK c



   

Part (2) 
 
(1) Eigenvalue solution:   
 
 | [K] � 2 [M] | =  0  
 

 




6564
640

404

ck 0
5.52600

0540
0054

2  m  

 
If  is set to (  = 2 m / kc), the equation above becomes 

= 1

 EXAMPLE 3-6, FIGURE 4 

4.5 kc

4.5 kc
3 kc

3 kc

1.5 kc

1 kc 1 kc 1.5 kc

1 m 
(3.28 ft)

3 m 
(9.84 ft)

C3

4.5 m 
 

(14.76 ft)

1.5 m 
 

(4.92 ft)
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 0
5.5266564

65440
40544









 

 
expansion of the determinant yields  
 
  (4 � 54 ).{(4 � 54 ) (65 � 526.5 ) � 36 � 16} = 0 
or  (4 � 54 ).{2,8431 2 � 5,616  + 208} = 0 
 
Solution of the equation above yields three roots of 
 

1 = 0.049,4, 2 = 0.074,1, 3 = 0.148,1 
 
For each value of  there will be a frequency and an associated mode 
shape which are obtained as follows: 
 
For 1 = 0.049,4:

Frequency 1
2 = 1 (kc /m) = 0.049,4 (2,190 /0.3823)     

 1 = 16.8 rad/s 

Mode shape: let u arbitrarily be 1, then 
  

 







0
0
01

)0494.0(5.5266564
6)0494.0(5440

40)0494.0(544
v  

 

or 





0
0
01

3964
6333.10

40333.1
v  

 
The first row yields: 1.333 + 4  = 0,      = � 0.333 
The second row yields: 1.333 v � 6  = 0,     v = � 1.5 
 
Therefore, mode 1 becomes  { 1} = {1.0   �1.5   �0.333}T 
 
Although second and third modes can be found with identical procedures. 
However, they are not required for this example. Note that the mode 
shape includes a rotational component because the center of mass and 
center of resistance do not coincide as explained earlier. 
 
(2) Modal analysis:   
 
Earthquake loading vector, {R}: 
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This vector is constructed by giving the structure unit rigid body motion in 
the direction of the earthquake. For an earthquake in direction u, the dis-
placements will be as shown in Example 3-6, Figure 2: 
 

 {R} = 
0
0
1

 

Mode (1):   
 
 £1 = { 1}T [M] {R} 

  = 

0
0
1

5.52600
0540
0054

)3823.0(}333.05.10.1{   

  = 20.6  kN.s2/m     (0.118 kip.sec 2/in) 
 
     m1

* = { 1}T [M] { 1} 

            = 




333.0
5.1

1

5.52600
0540
0054

)3823.0(}333.05.10.1{   

          = 89.27  kN.s 2/m     (0.510 kip.sec 2/in) 
 

1 = £1 / m1
*  = 20.6 / 89.27 = 0.231 

 
 T1 = 2  / 1  = 2  / 16.8  = 0.374 s. 
 
With T1 = 0.374 second and 1 
= 2%, Sd1 can be directly read 
from the El Centro response 
spectrum curves given in 
Figure 3-8 to yield Sd1 = 0.04 
m (1.57 in). Thus, the first 
mode displacements are given 
as 

11}{}{ dSv
u

U   

 

)04.0()231.0(
333.0
5.1

1
      





 

EXAMPLE 3-6, FIGURE 5 

4.5 m 
 

(14.76 ft)

1.5 m 
 

(4.92 ft)

1 m 
(3.28 ft)

3 m 
(9.84 ft)

v

C3

C1
C2

C4
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rad003.0

014.0
009.0

   m
m



  

 

 




rad
in
in

003.0
55.0
35.0

 

 
Knowing these displacements, the two components of the displacement, ui 
and vi, at the top of each column can be found by instantaneous center. 
With reference to Example 3-6, Figure 5: 
 
C1: u1 = u + 3 v1 = v � 4.5  
 u1 = 0.009 + 3 (�0.003) = 0 
 v1 = 0.014 � 4.5 (�0.003) = � 0.000,5 m (0.02 in) 

 max =  5,000.00 22  = 0.000,5 m (0.02 in) 
 
C2: u2 = u + 3 v2 = v + 1.5  
 u2 = 0.009 + 3 (�0.003) = 0 
  v2 = � 0.014 + 1.5 (� 0.003) = � 0.018,5 m (0.73 in) 

 max =  5,018.00 22  = 0.018,5 m (0.73 in) 
 
C3: u3 = u � 1 v3 = v � 4.5  
 u3 = 0.009 � 1 (� 0.003) = 0.012 m 
  v3 = � 0.014 � 4.5 (� 0.003) = � 0.000,5 m (0.02 in) 

  max =  22 5,000.0012.0  = 0.012,0 m (0.47 in) 
 
C4: u4 = u � 1 v4 = v + 1.5  
 u4 = 0.009 � 1 (�0.003) = 0.012 
  v4 = � 0.014 + 1.5 (�0.003) = �0.018,5 m (0.73 in) 

 max =  5,018.0012.0 22  = 0.022 m (0.87 in) 
 
The force can be found with similar procedures using the proper equations 
for modal force calculations: two forces and a moment in the form {fs1} = [M] 
{ 1} 1 Sa1.   
 
Example 3-7 
 
Use standard structural analysis software to find the frequencies and 
mode shapes of the structure given in Example 3-6, which is also shown 
in Example 3-7, Figure 1. For this purpose, consider two schemes of 
modeling: 
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(1) Allocation of mass to frame 
nodes (joints). 

(2) Allocation of mass to a sin-
gle location at the center of 
mass. 

 
Solution 
 
Part (1) 
 
The structure may be modeled 
as a space frame (3-D) with 
eight nodes and four members 
as shown in Example 3-7, 
Figure 2. The nodes are numbered 
1 through 8. The supports are input 
as totally fixed nodes. The rigidity of 
the diaphragm may be introduced by 
the concept of the master node 
where all nodes are restricted to the 
displacement of one node in the 
plane of the diaphragm. For ex-
ample, node 5 may be declared as a 
master node for nodes 6, 7 and 8. 
 
Some software programs can 
explicitly declare the rigid diaphragm feature. In this case, the four nodes 
5, 6, 7 and 8 are declared as constrained to a rigid diaphragm at the level 
of the slab.  
 
For this example, and if the input 
is given to the computer in kN-m 
units, the material should be 
given as Ec = 25.7 x 106 kN.m2 
(3,727 ksi). Section properties are 
given to the computer for the four 
members as the circular section 
of diameter = 0.25 m (9.84 in). 
 
Because the columns are as-
sumed to be weightless, their 
density is assigned to zero. The 
mass of the slab is allocated at 
four nodes: 5, 6, 7 and 8. 
 
The mass must be allocated at the nodes with consideration for the offset 
of the center of mass, CM, from the center of resistance, CR, as shown in 
Example 3-7, Figure 3. 

EXAMPLE 3-7, FIGURE 2 
SPACE FRAME MODEL

 1  2

 3  4

 5  6

 7  8

 X

 Z
 Y

EXAMPLE 3-7, FIGURE 1 

 ISOMETRIC

3 m 
(9.84 ft) Columns 

Dia = 250 mm 
(9.84 in) 

fc  = 30 MPa 
(4.35 ksi)

h = 150 mm  (5.9 in)

PLAN

C4 C3 

 X

C2 C1

Y

9 m  (29.53 ft)
6 m  (19.69 ft)

6 
m

  (
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m

  (
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EXAMPLE 3-7, FIGURE 3 

CR
CM

 1.5 m 
(4.92 ft)

1 
m

 
(3

.2
8 

ft)



Chapter Three 

74 

The modeling of the mass must be considered in the two horizontal 
directions, X and Y. This is analogous to directions u and v in Example 3-
6. The total mass of the slab is calculated as given in Example 3-6 as 
 
 Mtot = m A = 0.3823 (54) 
  = 20.644 kN.s2/m (0.118 kip.sec2/in) 
 
Direction X 
 
The eccentric moment of mas-
ses, Mm, about center of re-
sistance is given as the total 
mass multiplied by the distance 
between CM and CR, or emr, as 
shown in Example 3-7, Figure 
4:  
 
 Mm = Mtot . emr  
  = 20.644 (1) 
 = 20.644 kN.s 2 
 (4.641 kip.sec 2) 
 
The share of each node from the total mass is calculated in a way similar to 
the procedures used to find forces in piles. This may be given by the follow-
ing expression: 
 

 i
j

mtot
i r

r

MM
M

2.No
     

where 
 No. = 4 node 
   rj

2 = 2(2)2 + 2(2)2 = 16 m2 (24,800 in2) 
 

   )2(
16
644.20

4
644.20

8,7 M  = 5.161 + 2.581  

      = 7.742 kN.s2/m (0.044 kip.sec 2/in) 
 

   )2(
16
644.20

4
644.20

6,5 M  = 5.161 � 2.581  

    = 2.580 kN.s2/m (0.0147 kip.sec2/in) 
 
 
 
 
 
 
 

EXAMPLE 3-7, FIGURE 4 
MASS IN DIRECTION X
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Direction Y 
 

 
Similar to direction X, the mass is allocated as shown in Example 3-7, 
Figure 5.  
 
Moment of mass: 
 
 Mm = Mtot . emr  
       = 20.644 (1.5)  
       = 30.966  kN.s2  (0.177 kip.sec2) 

 
Mass distribution: 
 
No. = 4 node 

 rj
2 = 2(3)2 + 2(3)2  

 = 36 m2  (55,800 in2) 
 

 )3(
36
966.30

4
644.20

8,6 M  

  = 5.161 + 2.581  
  = 7.742 kN.s2/m 
           (0.044 kip.sec2/in) 

 

)31(
36
966.30

4
644.20

7,5 M  

  = 5.161 � 2.581  
  = 2.580 kN.s2/m  
           (0.0147 kip.sec2/in) 

 
The final distribution of the mass to the four nodes is shown in Example 
3-7, Figure 6. These masses can be input directly in some software 
programs such as SAP2000. They are given as joint mass in directions X 
and Y. 

EXAMPLE 3-7, FIGURE 6
FINAL MASS 

DISTRIBUTION (kN.s 2) 

87

65

7.7427.742

2.580 2.580

7.742

7.742

2.580

2.580

EXAMPLE 3-7, FIGURE 5
 MASS IN DIRECTION Y 

87

65
CR

CM

3 m 
(9.84 ft)

2 m 
(6.56 ft)

 

3 m 
(9.84 ft)

1.5 m 
(4.92 ft)
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The input data above were fed to SAP2000 to yield the results shown in 
Example 3-7, Figure 7, as animated by SAP2000. 

 
Part (2) 
 
In this scheme, the total mass will be input to the program at a single 
node. Similar to part (1), the mass must be input in both directions, X and 
Y. To do this, a new node must be created at the center of mass and 
must also be attached to 
the rigid diaphragm. This 
task is accomplished by in-
troducing node number 9 
as shown in Example 3-7, 
Figure 8. 
 
This model was run through 
SAP2000 to yield results as 
in Part (1). Example 3-7, 
Table 1, shows the com-
parison between the pe-
riods that resulted from dif-
ferent solution schemes of 
Example 3-6 and Example 
3-7. 

EXAMPLE 3-7, FIGURE 7
FREQUENCIES AND MODE SHAPES, SAP2000 OUTPUT

 
.

(a) Mode 1 
T = 0.3646 sec

(b) Mode 2 
T = 0.3073 sec

9

 
20.644  kN.s 2/m 

(0.118  kip.sec 2/in)

20.644 
(0.118)

EXAMPLE 3-7, FIGURE 8
SINGLE NODE MASS  

87

65
CR

CM

3 
m

  (
9.

84
 ft

)

X

Y

4.5 m 
(14.76 ft)
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Example 3-7, Table 1 Comparison between Fundamental Periods  
Solution scheme Period 

Rigid floor with two displacements and rotation, manual  
(Ex. 3-6) 0.374 s 

Mass allocated to frame nodes, SAP2000 (Ex. 3-7) 0.365 s 
Mass allocated to single node, SAP2000 (Ex. 3-7) 0.342 s 

 
Combination Effect of Different Ground Motions 
 
The combination of the directional effect of different ground motion 
components may be summarized by the following research findings: 
 

 The horizontal component of the ground motion has equal 
intensity in all directions. 

 The vertical component of the ground motion is about two thirds 
its intensity in the horizontal direction. 

 The horizontal components in any two orthogonal directions and 
the vertical component are approximately uncorrelated; they do 
not take place simultaneously. 

 
Consequently, the same design response spectrum can be used for any 
two perpendicular directions. The vertical response spectrum may be 
obtained by multiplying the horizontal response spectrum by 2/3, or any 
other factor deemed appropriate. 
 
Combining the values from the three motions in the three directions may 
be accomplished using the SRSS 
combining method; for any quan-
tity A, the maximum value is 
given as 
 
(Amax)2 = (Ax)2 + (Ay)2 + (Az)2  
 
where Ax, Ay and Az are the 
resulting values of any event A 
from the earthquake excitations in 
directions x, y and z, respectively. 

3.5  Shear Beam 

The deflection of a shear beam is 
due to sliding strips (planes) that 
remain parallel to each other as 
shown in Figure 3-26. In this de-

 
x, u

vg 

y, v 

m
c 

EI

FIGURE 3-26
SHEAR BEAM MODEL 
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V + dV 

dx 
L 

R
ef

er
en

ce
 A

xi
s  



Chapter Three 

78 

formation pattern, no rotation or curvature is allowed. Recall that curva-
ture is defined as rotation per unit length, or (  = M / EI). For a shear 
beam, the curvature, , tends to zero as the flexural rigidity, EI, of the 
member approaches . 
 
Figure 3-27 shows the deformation of a shear element, dx, which is given 
as follows: 
 
shear strain  = dv / dx = v  
 
shear force V =  A  
                  = G  A = G A v  
 
Equilibrium of the differential element with constant mass per unit length, 
m, is given as shown in Figure 3-27: 
 
 dV � fI = 0,   
 
by substitution from above 

 0)(  vdxmdx
x
V  

  0)(  vmvAG
x

 

 0 vAGvm  
 
The equation above is the differential equation of a prismatic beam with 
constant area, A, and with constant mass per unit length, m, that vibrates 
in pure shear mode. For forced vibration with earthquake excitation, the 
differential equation becomes 
 
 gvrmvAGvm   
 
The frequencies and mode 
shapes can be extracted similar 
to the MDOF procedures. Be-
cause the shear beam is a 
continuous system, it is con-
sidered an MDOF with infinite 
number of degrees of freedom. 
Consequently, the beam has an 
infinite number of frequencies 
and an infinite number of mode 
shapes that can be found as 
follows: 
 
 

FIGURE 3-27
SHEAR DIFFERENTIAL ELEMENT 

dV 

fI 

m dx 

V 

 
 

V + dV

dx 

 
dv =  dx 
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Consider the free vibration equation: 
 
 0 vAGvm  

 0 v
m
AGv ,  by setting c2 = GA / m, then 

 02  vcv  
 
Using separation of variables technique, the displacement function, v(x,t), 
may written as 
 
 v(x,t) = (x) Z(t) 
 
Substitution in the differential equation yields 
 
 02  ZcZ  

 2 c
Z
Z  

 
Because (x) and Z(t) are two independent quantities, the above equation 
can only be satisfied if  

 
Z
Z  = constant and 2c = constant 

For convenience, let this constant equal to � 2. Thus, 
2

Z
Z             02  ZZ   

22 c     02

2


c
 

 
with  k2 = 2 / c2,  
 
the second equation becomes 
 
  + k2  = 0 
 
and the solution is: 
  = A cos kx + B sin kx 
 
where A and B are constants determined by boundary conditions (BC).  
For the vertical cantilever given earlier, the boundary conditions are given 
as zero displacement at the base and zero shearing force at the top as 
shown in Figure 3-28: 
 
BC #1: v(0) = 0,          (0) = 0 =  A cos 0 = 0, 
therefore,  A  = 0 

v(0) = 0 

 
V  v (L) = 0 

FIGURE 3-28
BOUNDARY 
CONDITIONS 

L 



Chapter Three 

80 

BC #2: v (L) = 0,  
hence,   (L) = 0  
 k B cos kL = 0 
 
Therefore, and in reference to Figure 
3-29: 
 
cos kL = 0 
kn L = (  / 2).(2n � 1); 
  n = 1, 2, 3, . . . 
 
From the results above, frequencies 
and mode shapes are obtained as 
follows 
 
frequencies: 
 kn L = ( / 2) (2n � 1)  ;   let n = ( / 2) (2n � 1) 
 ( n / c) L = n 

 
L
c

nn   where )12(
2

 nn   

 
since  c =  / mGA , the frequency, n, is given as  
 

  )12(
2

, 
2

 n
mL
GA

nnn  

 
mode shapes:  with constant B taken arbitrarily equal to 1, the mode 
shapes are given as 
 
 n =  B sin kn x = sin ( / 2).(2n � 1) (x / L), 
 

  )12(
2

,sin  n
L
x

nnn  

 
With these given frequencies and mode shapes, modal analysis can be 
used in the usual manner for finding modal mass, m*, modal earthquake 
excitation factor, £n, and modal participation factor, n. The earthquake-
induced forces and displacements for each mode are found from the 
response spectrum as given before: 
 
 vn,max = n n Sdn 
 fsn,max = m n n San 
 
The final forces and displacements are found by combining modal 
quantities by any applicable method such SABS, SRSS or CQC. 

co
s 

k n
L 

FIGURE 3-29
COS knL SOLUTION 

/2

knL 
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The shear beam can be utilized to 
analyze regular buildings that have 
constant uniform distribution of 
mass and stiffness and rigid dia-
phragms and stiffness. For this 
analysis to be valid, the girder 
needs to be stiff enough to prevent 
nodal rotations of the columns, 
hence simulating shear defor-
mations. This condition is usually 
satisfied if (EI/Lgirder > 2 EI/Lcolumn). 
The relevant parameter of the shear 
beam may be obtained from such a 
building by analogy. The following 
analogy can be made in reference 
to Figure 3-30. 
 
Because it is required to find the parameter c (c =  / mGA ) in order to 
find the frequencies and mode shapes, it will be required to find the 
equivalent shear beam axial rigidity, GA, and equivalent uniform mass 
distribution per unit length, m. These quantities can be found with refer-
ence to Figure 3-30 as: 
 
equivalent mass, m = M / h 
equivalent shear strain,  = / h 
 
where M is the story mass and  is the relative displacement between 
adjacent stories. 
 
Because the shear force for a shear beam is given as 
 
 V = .A  
 = G .A = GA.  
or V = GA. / h 
 
and because the shear 
force (story shear) for a 
building is given as 
 
V =  12 EI. / h3  
 =  (12 EI / h2).( / h) 
 
a comparison of the two 
equations above shows 
that the equivalent GA 
of the buildings is given 
as: 

FIGURE 3-30
SHEAR BEAM BUILDING 

H h = 0

= 0

 
M

FIGURE 3-31
SHEAR BEAM MODE SHAPES 

-1

n = 2
Mode 2

2H/3

1

n = 1
Mode 1

1

n = 3
Mode 3

2H/5

2H/5
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 GA =  (12 EI / h2) 
 

Hence, 
2

12
    

hm
EI

c   

 
H
c

nn   , )12(
2

 nn , n = 1, 2, 3, . . . 

 
H
x

nn sin  

  
The first three mode shapes are shown in Figure 3-31. 
 
The modal participation factor, modal base shear, and modal base 
moments are given as follows: 
 
Participation factor, n 
 
£ = 0  H  m r dx  
 = m 0  H  (1) dx 
 = m 0  H {sin ( n x / H)} dx = � m H / n [cos n x / H]0H = m H / n 
 
 m* = 0  H   m   dx = m 0  H    dx 
  = m 0  H (sin2 ( n  x / H)) dx = m [H / 2]0H = m H / 2 
 

n = £ / m* = 2 / n 
 
Base shear, VB 
 
VB = 0  H fs  dx =   m  n Sa  dx  = m  n Sa     dx = m (2 / n) Sa (H / n) 
             = m H Sa  (2 / n

2) 
 
Base moment, MB 
 
 MB = 0  H fs  x dx =   m  n Sa  x dx  = m  n Sa     x dx  
 
since    x dx =    x {sin ( n x / H)} dx = integration by parts = H2 / n

2, 
 
then 
 MB= m (2 / n) Sa (H2 / n

2) 
 = m H2 Sa (2 / n

3) 
 
Example 3-8 
 
For preliminary design purposes, the tall building shown in Example 3-8, 
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Figure 1, will be assumed to behave as a uniform shear beam. 
 

(1) Determine the frequency ( ), 
the mode shape ( ), and the 
participation factor ( ) for 
each of the first five modes. 
Note that (x) is a continuous 
function. 

 
(2) Compute the approximate 

maximum top displacement 
base shear and base over-
turning moment by the SRSS 
method, including the first 
five modes. Assume that the 
velocity response spectrum 
value for each mode is 0.5 
m/s (19.69 in/s).  

 
Solution 
 
Part (1) 
 
Frequencies, 

H
c

nn   

)12(
2

   nn , n = 1, 2, 3, . . .    

 
where:  

 2

6

2 )3(100
)10x2(1212


hm

EIc = 163.3 m/s (6429 in/s)  

  
H = 150 m    (492 ft) 
 

hence, )
2

9,
2

7,
2

5,
2

3,
2

(089.1
150

3.163
 nn  

   n = 1.71, 5.13, 8.55, 11.97, 15.39 rad/s 
 

mode shapes,  
H
x

nn sin  

 )
2

9,
2

7,
2

5,
2

3,
2

(
150

sin
150

sin xx
nn   

 
 See Figure 3-31 for plots of the first three modes. 

Story height: 
h = 3 m (9.84 ft) 

15
0 

m
  (

49
2 

ft)

 
Story mass: 
mt = 300 kN.s2/m 
(1.714 kip.sec2/in) 

Total column stiffness: 
 EI = 2 x 106 kN.m2 

(697 x 106 kip.in2) 

EXAMPLE 3-8, FIGURE 1
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participation factor, 
 
 n = 2 / n = 2 / {( )(1, 3, 5, 7, 9)}  
 = 4/ , 4/3 , 4/5 , 4/7 , 4/9  
  = 1.273, 0.424, 0.255, 0.182, 0.141 
 
Part (2) 
 
top displacement,  
 utop = n Sdn 
 
where:  
 n = 2 / n = 1.273, 0.424, 0.255, 0.182, 0.141     . . .  see part (1) 
 Sdn = Svn/ n = 0.5 / (1.71, 5.13, 8.55, 11.97, 15.39) . . .  see part (1) 
 = 0.29, 0.097, 0.058, 0.042, 0.032 m 
  = (11.417, 3.819, 2.283, 1.653, 1.260 in) 
 
Therefore, the top displacements that are due to first five modes are 
 
 utop = 0.369, �0.041,  0.015,  �0.008,  0.005 m  
 (14.528, �1.614, 0.590,  �0.315,  0.197 in)  
 
% of the first mode:  utop = 100%, 11%, 4%, 2%, 1% 
 
SRSS: utop = 0.372 m (14.646 in) 
 = (100.8% of the first mode) 
 
base shear, VB = m H San  (2 / n

2) 
 
where:   
 m H = 100(150) = 15,000 kN.s2/m (85.714 kip.sec2/in) 
 San = Svn . n = 0.5 (1.71, 5.13, 8.55, 11.97, 15.39) . . .  see part (1) 
 = 0.855, 2.565, 4.275, 5.985, 7.695 m/s2 
 (33, 100, 168, 235, 302 in/s2) 
 
 2 / n

2 = 2 / {( )2(12, 32, 52, 72, 92)} 
 
 VB = 10,394, �3,462, 2,082, �1,486, 1,151 kN 
   (2,337, �778, 468, �334, 259 kip) 
 
% of the first mode: VB = 100%, 33%, 20%, 14%, 11% 
  
SRSS: VB = 11,309 kN (2,542 kip) 
 = (109% of the first mode) 
 
base moment,  MB = m H2 San  (2 / n

3) 
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where:   
 m H2 = 100 (150)2 = 2.25 x 106 kN.s2 (505,845 kip.sec2) 
 San = Svn . n = 0.5 (1.71, 5.13, 8.55, 11.97, 15.39) . . .  see part (1) 
 = 0.855, 2.565, 4.275, 5.985, 7.695 m/s2 
 (33, 100, 168, 235, 302 in/s2) 
 
 2 / n

2 = 2 / {( )2(12, 32, 52, 72, 92)} 
 
   MB = 992,515, �110,193, 39,762, 20,271, 12,215 kN.m 
 (8,784,750, �975,318, 351,933, 179,419, 108,115 kip.in) 
 
% of the first mode:  MB = 100%, 11%, 4%, 2%, 1% 
  
SRSS: MB = 999,685 kN.m     (8,848,212 kip.in) 
 = (100.7% of the first mode) 

3.6  Cantilever Flexure Beam 

Cantilever flexure beams can be found in most buildings. If the structural 
system of the building consists mainly of shear walls, or if the building 
behavior is dominated by flexure modes, the behavior of the cantilever 
flexure beam is an appropriate model for analyzing building behavior. 
 
The deflection of a beam in flexure is due to 
rotation of its plane sections. Curvature, , 
is defined as the rotation per unit length  
(  = d /dx). 
 
Figure 3-32 shows a vertical cantilever with 
uniformly distributed mass, m, damping, c, 
and flexure stiffness, EI. 
 
Figure 3-33 shows the well-known 
deformation of a flexure element, dx, which 
is summarized as follows: 
 
Flexure strain = curvature  
  
 =  = � v  
 
Moment  = M = EI  = � EI v  
 
Static equilibrium of the infinitesimal element, dx, requires that 
 
 dM = Vdx 
or V = M  
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FIGURE 3-32   
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Dynamic equilibrium of the infinitesimal mass (m.dx) requires that 
 
 dV � fI = 0,  
 
by substitution from above 

 0)(  vdxmdx
x
V ,  

 0)'(  vmM
x

 

 0 vmM  

 0 ivvEIvm  
 
 
Because the earthquake loading can be applied as external load, as 
shown in the previous chapter, the equation of motion in this case 
becomes 
 
 g

iv vrmvEIvm   
 
Because the frequencies and mode shapes can be extracted in a way 
similar to the shear beam system, the cantilever flexure beam is 
considered an MDOF with an infinite number of degrees of freedom. 
Therefore, the beam has an infinite number of frequencies and an infinite 
number of mode shapes that can be found as follows: 
 
To find the frequencies and mode shapes, consider the free vibration 
equation: 
 0 ivvEIvm  

 0 ivv
m
EIv , by setting c2 = EI/m, then 

 02  ivvcv  
 
Using the separation of variables technique, the displacement function, 
v(x,t) may written as 
 
 v(x,t) = (x) Z(t) 
 
Substitution in the differential equation yields 
 
 02  ZcZ iv  
 

 2
iv

c
Z
Z

  

FIGURE 3-33
FLEXURE DIFFERENTIAL ELEMENT 

dV 

fI 

m dx 

V 

V + dV

dx  

 
M + dM
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Because (x) and Z(t) are two independent quantities, the equation above 
can only be satisfied if 
  

 
Z
Z , = constant, 

and 2
iv

c = constant 

 
For convenience, let this constant = � 2. 
Therefore, 
 

2
Z
Z      02  ZZ  

22 
iv

c      0
2

2


c
iv  

 
With k4 = 2/c2, the second equation 
becomes 
 
 iv � k4  = 0 
Solution: 
   

 = A cos kx + B sin kx  
 + C cosh kx + D sinh kx 
 
where A, B, C and D are constants de-
termined by boundary conditions. Recall 
that the hyperbolic functions take the 
shape shown in Figure 3-34. For the 
vertical cantilever given earlier, the boun-
dary conditions are given as zero dis-
placement and zero slope at the base, 
and zero shear and zero moment at the 
top as shown in Figure 3-35. Applying 
these four boundary conditions leads to 
the following: 
 
 cosh kl cos kl + 1 = 0 
 
A graphical solution to this equation is 
shown in Figure 3-36. Values of kL that 
satisfy this equation are  
 
 k1L = 1.875 

FIGURE 3-36 
SOLUTION CONDITION 

kL 

1.0
cos kL 

 
cosh kL 

 
cosh 

sinh 

FIGURE 3-34 
HYPERPOLIC FUNCTIONS 

v(0) = 0 
 (0) = 0  v� 

M(L) = 0  v�  
V(L) = 0  v��� 

FIGURE 3-35 
BOUNDARY CONDITIONS 

L 
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 kn L  ( /2) (2n � 1), 
 n = 2, 3, . . . 
 
From the results above, frequencies and mode shapes are obtained as 
follows: 
 
Frequencies: 
 
Because kn

4 = ( n/c)2 
 
and letting  k =  / L 
 
then n

4/L4 = ( n/c)2 
 
or n

2 = n
4 c2/L4 = n

4 EI/m L4 
 

 









..,.4,3,2();12(
2

875.1
,

coshcos
sinhsin 1

nn
K

nnn

nn
n  

 
Recall that the mode shapes are given with relative values. Solving for 
the mode shapes, they are given in the following expression: 
 

 n = (sin nx/L � sinh nx/L) + Kn (cosh nx/L � cos nx/L). 
 

where: 









...,4,3,2();12(
2

875.1
,

coshcos
sinhsin 1

nn
K

nnn

nn
n   

The first three mode shapes are 
shown in Figure 3-37. 
 
The modal participation factor, 
modal base shear, and modal 
base moments are obtained by 
integration as in the case of the 
shear beam.  
 
Because of the complicated pro-
cedures of integration, only the 
resulting expressions are given 
here: 
 
Participation factor, n

n = £ / m* = 4 / ( n Kn) 

FIGURE 3-37
MODE SHAPES OF CANTILEVER 

FLEXURE BEAM 

-2

n = 2
Mode 2

+2.724

n = 1
Mode 1

+2

n = 3
Mode 3

0.5 L

0.37 L

0.77 L
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Base shear, VB  
VB = m H Sa {4 / ( n Kn)2} 
 
Base moment, MB 
MB = m H2 Sa {4 / ( n

3
 Kn)} 

 
where n and  Kn are as defined before. 
 
Once frequencies and mode shapes are defined, modal analysis can be 
used as in all previous cases: modal quantities mn

*, £n and n can be 
calculated for each mode. With a specified response spectrum, the re-
sponse values for each mode can be evaluated as 
 
 vn,max  = n n Sdn 
 
 fsn,max = m n n San 
 
The total response is then combined from all modes using any 
combination method, SABS, SRSS or CQC as applicable. 
 
The flexure beam can be used to model regular buildings with shear walls 
as their lateral force resisting elements because shear walls behave 
primarily as vertical cantilever with flexure domination. Note that the 
shear beam can be used to idealize frame buildings as discussed earlier. 
In general, because buildings usually contain both systems (shear walls 
and frames), their response will be a mixture of both beams. Note that the 
curvature of the first mode in each beam is reversed; therefore, the 
combined effect of the beams tends to follow a straight line.  
 
In most seismic codes, an equivalent lateral static force procedure is 
offered for regular buildings. This force distribution is usually taken close 
to a straight line distribution, which is compatible with the combined effect 
of both shear beam and flexure beam. 
 
Comparison between shear beam and cantilever flexure beam 
 
Table 3-2 shows a comparison that may be drawn between the shear 
beam and the cantilever flexure beam if the mode shapes shown in 
Figure 3-37 are normalized to a value of 1.0 at the top of the beam. The 
comparison considers the participation factor at the top, which is 
proportional to the lateral displacement, (vtop = n Sd), base shear, which 
is proportional to {(2/ n

2) and (4/( n Kn)2)}, and base moment, which is 
proportional to {(2/ n

3) and (4/( n
3
 Kn))} for shear and flexure beam as 

given in previous equations. 
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TABLE 3-2  

COMPARISON BETWEEN SHEAR BEAM AND CANTILEVER FLEXURE 
BEAM 

 MODE PARTICIPATION 
FACTOR, n 

BASE 
SHEAR 

BASE 
MOMENT 

 2/ n 2/ n
2 2/ n

3 

1 1.273 
(100%) 

0.811 
(100%) 

0.516 
(100%) 

2 0.424 
(33%) 

0.090,1 
(11%) 

0.019,1 
(4%) 

Shear 
Beam 

3 0.255 
(20%) 

0.032,4 
(4%) 

0.004,1 
(1%) 

 4/ n Kn 4/( n Kn)2 4/( n
3

 Kn) 

1 1.566 
(100%) 

0.613 
(100%) 

0.445 
(100%) 

2 0.868 
(55%) 

0.188 
(31%) 

0.039,4 
(9%) 

Cantilever 
Flexure 
Beam 

3 0.509 
(33%) 

0.064,8 
(11%) 

0.008,25 
(2%) 

 
Example 3-9 
  
A tall steel building is designed to resist lateral forces by a series of core 
concentric frames, a core of vertical trusses, as shown in Example 3-9, 
Figure 1.  
 
If the building is assumed to behave as a flexure beam and is subjected 
to an earthquake having the response spectrum of Sa = (1/T)  1.0 m/s2 
(  39.37 in/sec2), 
 

(*) Compute the top maximum displacement, base shear and base 
moment for the first and second mode. 
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 1
50

 m
  (

49
2 

ft)

  
4 m 

(13 12 f )
 
Share of each truss 
from story mass: 
 mt = 6 kN.s2/m 
(0.034 kip.sec2/in) 

Column size: 
W 360 x 382  (SI) 
[W 14 x 257  (imperial)] 
A = 48,774 mm2 

(75.6 in2) 
Story height: 
h = 3 m (9.84 ft) 

EXAMPLE 3-9, FIGURE 1

Solution 
 
(1) Structural properties: 
 
Modulus of elasticity: 
Es = 200 x 103 MPa 
        (29,000 ksi) 
 
Mass: 
M = mt/3 = 6/3   
 = 2 kN.s2/m/m   
(0.29 x 10-3 kip.sec2/in2) 
 
Moment of inertia: Because 
the core truss resists lateral 
loads, and because it con-
sists of concentric bracing, 
the moment of inertia is 
idealized as a cross section 
that consists of two beams 
spaced 4 meters apart, 
accordingly: 
 
 I   A d2 
 I  48,774 (2,000)2 (2) = 390,192 x 106 mm4 (937,440 in2) 
 
Therefore,  EI = 200 x 103 (390,192 x 106) = 78 x 1015 N.mm2 
 = 78 x 106 kN.m2 (27 x 109 kip.in2) 
 
Modal analysis: 
 
Mode 1: 

Frequency: 
4

6
2

4
2
11

)150(2
1078)875.1( x

mL
EI = 0.98 rad/s 

Period: T1 = 2  / 1 = 2 /0.98 = 6.41 s 
 
Spectrum acceleration: Sa1 = 1/T1 = 1/6.41 = 0.156 m/s2 (6.14 in/sec2) 
 
Spectrum displacement: Sd1 = Sa1 / 1

2 = 0.156/0.982 = 0.159 m (6.26 in)  
 
Top displacement: vtop,1 = 1 Sd1,       . . . (see Table 2 for 1) 
 = 1.566 (0.159) = 0.25 m (9.84 in) 
 
Base shear: VB1 = m H Sa1  {4/( 1K1)2} , . . . (see Table 2 for 4/( 1K1)2) 
  = (2)(150)(0.156)(0.613) = 29 kN (6.52 kip) 
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Base moment: MB1 = m H2 Sa1  (4/ 1
3 K1) , . . . (see Table 2 for 4/ 1

3 K1) 
 = (2)(150)2(0.156)(0.445) = 3,124 kN.m  
  (26,650 kip.in) 
 
Mode 2: 

Frequency: 4

6
2

4
2
22

)150(2
1078)712.4( x

mL
EI

 = 6.16 rad/s 

 
Period: T2 = 2 / 2 = 2 /6.16 = 1.019 s 
 
Spectrum acceleration: Sa2 = 1/T2 = 1/1.019 = 0.98 m/s2 (38.6 in/s2) 
 
Spectrum displacement: Sd2 = Sa2/ 2

2 = 0.98/6.162 = 0.026 m (1.02 in) 

 
Top displacement: vtop,2  = 2 Sd2 , . . . (see Table 2 for 2) 
 = 0.868 (0.026) = 0.023 m (0.91 in) 
 
Base shear: VB2 = m H Sa2  {4/( 2K2)2} , . . . (see Table 2 for 4/( 2K2)2) 
 = (2)(150)(0.98)(0.188) = 55 kN (245 kip) 
 
Base moment: MB2 = m H2 Sa2  (4/ 2

3 K2
) , . . . (see Table 2 for 4/ 2

3 K2) 
         = (2)(150)2(0.98)(0.039) = 1,720 kN.m 
  (15,224 kip.in) 
SRSS results: 
 

 vtop =   0.023  0.249 22  = 0.250 m (9.84 in)   

 VB =   55  29 22  = 62 kN (13.94 kip) 

 MB =  1,720  3,124 22  = 3,566 kN.m (31,563 kip.in) 

3.7  Simple Flexure Beam 

Simple flexure beams are 
usually found in bridges. The 
deck of a single-span bridge 
behaves as a simple flexure 
beam simply supported at the 
ends as shown in Figure 3-38. 
For more details on bridges, 
see Chapter 10. 
 
 
 

FIGURE 3-38
SIMPLE FLEXURE BEAM 
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The governing differential equation of the simple flexure beam is the 
same differential equation for the cantilever flexure beam: 
 
 0 ivvEIvm  
 
With earthquake loading applied as external load, the equation of motion 
in this case becomes 
 
 g

iv vrmvEIvm   
 
The frequencies and mode shapes can be extracted in a way that is 
similar to the cantilever flexure beam. Therefore, for an infinite number of 
DOF, the beam will have an infinite number of frequencies and an 
associated infinite number of mode shapes. 
 
The solution to the beam differential equation is obtained for the vertical 
flexure beam as follows: 
 
  = A cos kx + B sin kx + C cosh kx + D sinh kx 
 
where k4 = 2/c2, and where A, B, C and D are constants determined by 
boundary conditions. The bound-
ary conditions are given as zero 
displacement and zero moment at 
both ends of the beam as shown 
in Figure 3-39. Applying these 
four boundary conditions leads to 
zero values for constants A, C 
and D. Thus, the mode shape is 
given by the following expression: 
 
 = B sin kx 
 
For the nontrivial solution (B  0), the above equation can be satisfied if 
sin kx = 0. Since (L) = 0, then 
 
 sin (kL) = 0 
or (kL) = n , n = 0, 1, 2, 3, . . . 
 
From the above results, frequencies and mode shapes are obtained as 
follows: 

 
v(0) = 0 
M (0) = 0  v��

FIGURE 3-39
BOUNDARY CONDITIONS 

L

 
v(L) = 0 
M (L) = 0  v�� 
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Frequencies: 
 
Since kn

4  = ( n/c)2 
 
then kn

4 L4 =  ( n/c)2 L4  = (n )4 

 
or n

2 = (n )4 c2/L4  = (n )4 EI/m L4 
 

 ,)(
4

2

mL
EInn    

    n = 1, 2, 3, . . .  
 
Remember that mode shapes are 
given with relative values. Thus, by 
selecting constant B = 1 and 
substituting kn L = n  the mode 
shapes are given in the following 
expression: 
 

n = sin (n  x /L),  
 n = 1, 2, 3,  . . .  
 
The first three mode shapes are 
shown in Figure 3-40. 
 
The modal participation factor, modal base shear and modal base 
moments are obtained by integration as in the case of the shear beam. 
 
Participation factor, n: 

dxm
dxrm

mn

n
n

£
* 

dxLxn
dxLxn
)/(sin

)/(sin
2

  , n = 1, 2, 3,  . . .  

 
 n =  4/n ,  n = 1, 3, 5, . . .   
 n  =  0, n = 2, 4, 6, . . .    
 
Once frequencies and mode shapes are defined, modal analysis can be 
used as in all previous cases: modal quantities mn

*, Ln, and n can be 
calculated for each mode. With a specified response spectrum, response 
values for each mode can be evaluated as 

FIGURE 3-40
MODE SHAPES OF SIMPLE 

FLEXURE BEAM 

 
 
 

L

Mode 1

Mode 2

Mode 3
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 vn,max = n n Sdn 
 
 fsn,max = m n n San 
 
The total response is then combined from all modes using any 
combination method, SABS, SRSS or CQC as applicable. 

3.8  Axial Beam 

An axial beam is a beam in axial vibration, 
or vibration along its centroidal axis. A 
vertical column and a shear wall are 
considered axial beams under earthquake 
vertical components. 
 
The deflection of an axial beam is due to 
elongation of its axial elements as shown 
in Figure 3-41. In this deformation pattern, 
no rotation or curvature is allowed.  
 
Figure 3-42 shows deformation of an axial 
element, dx, which is given as follows: 
 
axial strain =  = du/dx = u  
axial force = N =  A = E  A = E A u  
 
Equilibrium of a differential element with 
constant mass is given in Figure 3-42. For 
constant mass intensity per unit length, m, 
equilibrium requires: 
 
 dN � fI = 0,   
 
by substitution from above: 

 0)(  udxmdx
x
N ,   

  0)(  umuAE
x

 

 0 uAEum  
 
The equation above is the differential 
equation of a prismatic beam that has a 
constant cross sectional area, A, and con-
stant mass per unit length, m, and that 

 
x, u 

ug 

m
c 

EA

FIGURE 3-41 
AXIAL BEAM 
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FIGURE 3-42 
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vibrates in pure axial mode. For forced vibration with earthquake 
excitation, the differential equation becomes 
 
 gurmuAEum   
 
Because the equation above is analogous to the differential equation of 
the shear beam derived in the previous section, the same expression for 
frequencies and mode shapes apply for both cases: 
 
frequencies: 

 
2mL

EA
nn   

 )12(
2

   nn  

 
mode shapes: 
  

 )12(
2

 nn  

 
The first three mode shapes 
shown in Figure 3-43 are 
exactly the same as those 
for shear beam modes. 
 
With these given frequencies and mode shapes, modal analysis can be 
used in the usual manner: finding modal mass, m*, modal earthquake 
excitation factor, £n, and modal participation factor, n. The earthquake-
induced forces and displacements for each mode are found from the 
response spectrum as given before: 
   
 vn,max = n n Sdn 
 
 fsn,max = m n n San 
 
The final forces and displacements are then combined using any 
applicable method such SABS, SRSS or CQC. 

3.9  Finite Element Methods 

Finite element methods are the most general and powerful methods for 
structural analysis. They offer an approximate (next to exact) solution for 
practically any kind of problem in structural mechanics, dynamics and 
many other fields of engineering. 
 

1

n = 3
Mode 3

2H/5

2H/5

FIGURE 3-43
AXIAL BEAM MODE SHAPES 

1

n = 1
Mode 1

-1

n = 2
Mode 2

2H/3
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The application of finite element analysis in structural dynamics is well 
recognized and appreciated because it offers a solution for any 
continuous system, including one-dimensional, two-dimensional and 
three-dimensional problems. 
 
The major advantage of finite element analysis is that the differential 
equation of the system is not required as in the case of the finite 
differences method. Furthermore, boundary conditions can also be de-
scribed without any complications as in the finite differences method. 
 
Finite element formulation can be developed by many methods such as 
virtual work, least squares or the Galerkin method. The two most powerful 
approaches that are frequently applied in finite element formulation are 
the virtual work method and Galerkin method. The Galerkin formulation 
requires the differential equation of the system, whereas the virtual work 
method can be used to formulate the problem can be formulated without 
the differential equation. 

3.9.1  Finite Element Concept in Structural Engineering 

The virtual work concept can be used to illustrate finite element analysis. 
Virtual work is a well-known and well-established concept and tool in 
structural engineering. When virtual work is used to develop mechanics 
problems, this approach usually requires evaluation of the external work 
and the internal work represented by strain energy of a deformed system. 
In order to evaluate the work quantities, the deformation characteristics of 
the structure are required. 
 
Because the exact deformation characteristics of structures are not 
always known, finite element analysis can then be used to assume a 
deformed shape known as the shape function. The finite element concept 
states that if the displacements at the 
ends of any element are given, the 
displacements between the end points 
can be interpolated using some shape 
functions. For example, if the dis-
placement of the beam end, i, as 
shown in Figure 3-44 is given as vi, the 
displacement, v(x), of any point inside 
the beam between ends i and j may be 
interpolated if the deflected shape is known or approximated by the 
function, (x), such that 
 
 V =  (x) vi 
 
For this reason, the shape functions are also known as interpolating 
functions. In the finite element field, the end points of the elements are 

vi 

FIGURE 3-44 
BEAM DEFORMATION 

x 

v v =  (x) vi 

i j 
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known as nodes and the displacement in between these nodes is known 
as field displacement.  
 
Restricting the field displacement to the assumed shape function results 
in converting a continuous system of an infinite number of DOFs to a 
discrete system with a finite number of DOFs at the defined nodes of the 
system. Because the shape function plays an important role in finite 
element analysis, the accuracy of the solution will be as good as the 
accuracy of the shape function in representing the exact deformed shape. 
 
The literature is rich in describing the various shape functions for different 
systems. The shape functions used in structural analysis are usually of 
the Hermitian polynomial type. For example, linear shape functions are 
used for truss elements, whereas cubic polynomials are used for beam 
elements.  
 
Although a lumped mass may be used in dynamic analysis, a more 
accurate solution is obtained if the mass is considered to be distributed. 
Consideration of distributed mass in dynamic analysis may be developed 
using finite element analysis. The following sections will use the virtual 
work approach and the Galerkin approach to demonstrate such de-
velopment for beam elements, which are used for most practical 
structural engineering problems. 

3.9.2  Stiffness Matrix  (Virtual Work Approach) 

The beam element formulation may be simplified if it is remembered that 
beam behavior is dominated by flexure. The well-known element stiffness 
matrix [4 x 4] excluding axial deformation is usually given as a function of 
nodal displacements and nodal rotations. This matrix is constructed using 
basic structural analysis theories and may be found in any textbook on 
structural engineering. Figure 3-45 shows a reference numbering of the 
classical beam element that designates a nodal displacement and a nodal 
rotation, v1 and v2, at node i with a nodal displacement and a nodal rotation, 
v3 and v4, at node j. For each node displacement, there will be a consistent 
end-member force associated with these displacements. For example, 
there will be a nodal force and a nodal moment, p1 and p2, at node i with a 
nodal force and a nodal moment, p3 and p4, at node j. This matrix may be 
expressed as follows: 
 
  {P} = [km] {V},   
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where: 
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km

4626

612612

2646

612612

][

22

2323

22

2323

 

 
The constants E and I are the modulus of elasticity and the moment of 
inertia of the cross section, respectively. 
 
In this section, the beam element stiffness matrix will be developed using 
the finite element approach for demonstration purposes. 
 
For the beam nodal displace-
ments as defined in Figure 3-45, 
a shape function is associated 
with each nodal displacement as 
shown in Figure 3-46. These 
shape functions are the well-
known Hermitian polynomials, 
which may be expressed math-
ematically as follows: 
 

1 = + 1 � 3 (x/L)2 + 2 (x/L)3    
2 = + x (1�x/L)2  
3 = + 3 (x/L)2 � 2 (x/L)3  

4 = �  (x2/L) (1�x/L) 
 
In general, any stiffness element 
in the stiffness matrix can be 
found by giving the force under 
consideration a virtual displace-
ment in the direction associated with that element. 
 
As an example, the element k12 in the matrix above, which represents the 
nodal force, p1, due to unit rotation, v2, may be evaluated by giving the 
system of forces due to v1 a virtual nodal displacement of v2. 
 
Recall that the curvature, , is the negative of the second derivative of 
displacement, v�, and the moment is proportional to curvature through its 
flexure stiffness. Recall also that the rotation, , is the integration of cur-
vature over length: 

1.0
1 

FIGURE 3-46
SHAPE FUNCTIONS OF BEAM 
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FIGURE 3-45 
CLASSICAL BEAM ELEMENT 
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 = � v� 
Hence, = � v� 
and M = EI  = � EIv�  
and =   dx 
 
Consequently, if the forces p11 
and p21 due to displacement v1 
given in Figure 3-47 (a) are 
given a virtual displacement v2 
as shown in Figure 3-47 (b), the 
principle of virtual work requires 
that the virtual work done by 
external loads must equal the 
virtual internal work (strain 
energy) stored by the system. 
Thus: 
 
  Wext =   Wint 
 
 p21. v2 =  Mint  =  (EI )  ( dx) 
 =  (� EIv ) (� v" dx 
 =  (EI 1  v1) ( 2  v2  dx 
 
Canceling v2 on both sides 
yields 
 
 p21 =   {EI 2  1  dx} v1 
 
since (p21 = k21 v1), the stiffness 
term is given as 
 
 k21 =   EI 2  1  dx 
 
Note that the subscripts of the 
force, p, match the subscripts of 
the shape functions in the inte-
grand. Therefore, using the same procedures, it can be shown that the 
general element, kij, of the stiffness matrix of the beam is given by the fol-
lowing general expression: 
 
 kij =   EI i  j  dx 
 
As an example, the element k11 may be evaluated as follows: 
 
 

FIGURE 3-47
VIRTUAL DISPLACEMENT 
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 v(x) = 2 v2 v2

FIGURE 3-48
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 k11 =   EI 1  1  dx 
where: 
 1 = 1 � 3 (x/L)2 + 2(x/L)3 
 1  =  � 6 (x/L)(1/L) + 6(x/L)2(1/L) 
 1  =  � 6/L2 + 12 x/L3 

 
 k11 = EI   ( 1 )2 dx 
 = EI   (� 6/L2 + 12 x/L3)2 dx 
 = 12 EI/L3 
 
The answer (12EI/L3) is an exact answer of the beam stiffness because 
the assumed shape function is the same exact deflected shape of the 
beam under these deformations. This is not usually the case in general 
finite element formulation. 
 
Another example of interest in this context is the truss element. The truss 
shape functions are given as straight lines, as shown in Figure 3-48, and 
may be mathematically expressed as 
 
 1 = 1 � x/L 
 2 = x/L 
 
Recall that the strain, , is the first 
derivative of displacement, u , and 
the axial force is proportional to 
axial strain through its axial stiff-
ness. In addition, the displacement, 
u, is the integration of strain over 
length: 
 = u  
Hence, = u  
and P = EA   = EAu   
and u =   dx 
 
Consequently, if the force p11 due to the displacement u1 given in Figure 
3-49 (a) is given a virtual displacement v1 as shown in Figure 3-49 (b). 
The principle of virtual work requires that the virtual work done by 
external loads must equal the virtual internal work (strain energy) stored 
by the system: 
 
    Wext =   Wint 
 
  p11. u1 =  Pint u  
 =  (EA )  ( dx) 

FIGURE 3-49
VIRTUAL DISPLACEMENT 
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 =  (EAu ) ( u  dx 
 =  (EA 1  u1) ( 1  u1 dx 
 
Canceling u1 on both sides yields 
 
 p11 =   {EA 1  1  dx} u1 
 
Because (p11 = k11 u1), the stiffness term is given as 
 
 k11 =   EA 1  1  dx 
 
Similar to the beam element, the general element, kij, of the stiffness 
matrix of the truss is given in the following expression: 
 
 kij =   EA i  j  dx 
 
The same procedure used for the beam element can be used to easily 
show that the element (k11) in the stiffness matrix of the truss is given as 
 
 k11 =   EA 1  1  dx = EA/L 
 
It should be noted again that the answer (EI/A) is an exact answer 
because the assumed shape function is the exact deflected shape of the 
truss. For the nodal numbering given by Figure 3-48, the truss element 
stiffness matrix is given as 
 

 





11
11

][
L

EAkm  

3.9.3  Mass Matrix  (Galerkin  Approach) 

The Galerkin approach is another useful method to formulate the finite 
element problems if the differential equation of the system is known. The 
Galerkin method falls under the general concept of error minimization, 
especially the concept of weighted residuals. Because the shape 
functions are an approximate representation of the actual displacement 
fields, the Galerkin method uses the concept of weighted residuals to 
minimize the error by assuming the weights of residuals as the shape 
functions themselves. The Galerkin method is considered the most ac-
curate one among all methods in this category. 
 
Application of the method will be demonstrated by using a simple case of 
a truss element. Recall that the differential equation of truss element
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under dynamic loading as developed under the axial beam section is 
given as 
 gurmuEAum   
 
Assume an approximate displacement field, u(x), such that  
 
 u(x,t) = j  j (x) uj(t) 
 
where (x) is a shape function and ui(t) is the nodal displacement. The 
Galerkin method minimizes the error over the entire domain so that the 
integration of the error over the entire domain is zero. This may be 
expressed as follows. 
 
If the function u(x,t) is defined as u(x,t) = ,uEAum  the differential 
equation given above can be written as 
 
 u(x,t) = �  m r üg 
 
The approximate function is given as 
 
 u(x,t) = uEAum   

 
The error between the two functions is given as the difference between 
the original and the approximate function such that 
 
 error  =  u(x,t) �  u(x,t) = )()( gurmuAEum   

 
The Galerkin method states that the summation of the error components 
multiplied by their weights is set to zero.  The weights are considered to 
be the shape functions themselves: 
  0. dxweighterror  

  0.)( dxurmuAEum ig , i = 1, 2 

  2 1,   ,.)(.)( idxurmdxuAEum igi  

 
substituting u(x,t) = j  j (x) uj(t), 
 
 
  dxurmdxuEAum igijjjjj

.)(.)"(  

 
 dxurmdxuEAum igjjijjij

)()"(
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Using integration by parts, the second integration can be converted to 
symmetrical integration with reduction of the second derivative to the first 
derivative: 
 
 

 xduEAduEAdxuEA jjijjijji ''0'"  

 
Therefore, the above integration becomes 
 

 dxurmdxuEAum igjjijjij
)()''(  

 
The integration above yields three quantities in terms of mass, m, axial 
stiffness, EA, and ground acceleration, üg. These quantities are defined 
as the consistent mass matrix [M], the axial stiffness matrix [km], and the 
excitation matrix [£], such that 
 
 mij =  m i j dx 
 kij  =  EA i  j  dx 
 £ij =  m r j dx 
 
Note that the second matrix is the stiffness matrix, which is the same 
matrix obtained by the virtual work approach given in the previous 
section. 
 
The first integral is known as the consistent mass matrix because it is 
based on shape functions that are consistent with the stiffness shape 
function. This result may also be obtained by the virtual work approach 
given in the previous section. If this integration is carried out for the four 
nodal quantities of the truss, it yields the known consistent mass matrix of 
the truss element which is given as 
 

 
14070
70140

420
][

Lm
mm  

 
where m is the mass density per unit length of the member. 
 
The same procedures may be applied to the beam element to yield the 
4x4 mass consistent matrix of the beam as 
 
 mij =  m i j dx 
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In matrix form, 

  











22

22

422313
221561354
313422
135422156

420
][

LLLL
LL

LLLL
LL

Lmmm  

3.9.4  Other Matrices 

Other important element matrices may be developed using the same 
concept and procedures of the Galerkin approach. Examples of such 
matrices include the damping matrix, [C], and the well-known geometric 
stiffness matrix, [KG], that is utilized for stability analysis of frames. These 
matrices are given as follows: 
 
Damping matrix: cij =  c i  j  dx 
 
Geometric stiffness matrix: kGij = �  P I' j'  dx 
 
In matrix form: 

 












22

22

433
336336

343
336336

30
][

LLLL
LL

LLLL
LL

L
PkGm  

 
The geometric stiffness matrix also has special importance in second order 
analysis. Since the beam nodal forces that are due to any change in 
geometry are related to the nodal displacement through the geometric 
stiffness matrix, [kGm], and because the beam nodal forces that are due to 
transverse loads are related to the nodal displacement through the ordinary 
stiffness matrix, [km], the total nodal forces of the beam may be expressed 
as 
 
 {Q} = [[km] + [kGm]] {U} 
 
The effective stiffness matrix of the beam element, including the effect of 
axial load, may expressed as follows: 
 
 [keff] = [km] + [kGm] 
 
where: 
[keff] = Element effective stiffness matrix including the effect of axial load. 
[km] = Beam stiffness matrix excluding the effect of axial load. 
[kGm] = Element geometric stiffness matrix as defined above. 
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The presence of the axial load in the beam reduces its lateral stiffness. 
Knowing the effective global stiffness matrix of the structure, the second 
order effect can be included in dynamic analysis by adding the geometric 
stiffness matrix to the system. This can be expressed in the following form: 
 
 geff uRMUKUCUM }]{[}]{[}]{[}]{[   

or gG uRMUKKUCUM }]{[}]{][][[}]{[}]{[   
 
The equation above is the general dynamic equation that includes material 
and geometric nonlinearity of the structure. The solution of this equation 
must be solved incrementally using numerical methods as shown in the 
next chapter. 

3.9.5  Mass Matrix in 2-D 

The development of the mass matrix in 1-D as given in previous sections 
may be extended to 2-D problems. The consistent mass matrix in 2-D may 
be developed with the same procedures implemented in one-dimension 
analysis. As an example, the con-
sistent mass matrix of a 2-D triangle 
plane stress element shown in Figure 
3-50 may be developed using the 
three linear shape functions of N1, N2 
and N3 for the three nodes 1, 2 and 3. 
The shape function N1 is used if either 

1 = 1, or 2 = 1. An example of shape 
function N1 when 1 = 1 is also shown 
in Figure 3-50. 
 
In 2-D analysis, the approximate field 
displacement, u, consists of two com-
ponents in two dimensions x and y as 
u1 and u2: 
 
 U = u1 + u2 
 
where: 
 u1 = N1 1 + N2 3 + N3 5   
 u2 = N1 2 + N2 4 + N3 6   
 
This may be expressed in matrix form as 
 
 {U} = [N] { } 
 
where:   
 

FIGURE 3-50
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321

321
62 000

000
][

NNN
NNN

N x  

 
The elements of the mass matrix are evaluated by the following 
expression: 
 mij =  m {[N]T [N]}  dx 

3.9.6  Application of Consistent Mass Matrix 

Application of the consistent mass matrix arises when a more accurate 
dynamic solution is needed, or when the use of the lumped mass 
approximation becomes infeasible. For example, if the frame shown in 
Figure 3-51 (a) must be analyzed taking into account the effect of mass 
distribution over its members, the use of the consistent mass matrix 
becomes the logical choice for analysis. 
 
The frame shown in Figure 3-51 (a) consists of three beam elements 
connected by four joints and has fixed supports at joints 1 and 4. The frame 
may be modeled with three beam elements as marked in circles, and with 
four nodes as shown in Figure 3-51 (b). Since the frame has fixed supports 
at joints 1 and 4, it would only have degrees of freedom at joints 2 and 3. 
The degrees of freedom are given as two displacements and one rotation 
at each of nodes 2 and 3 as shown in Figure 3-51 (b). Accordingly, the 
displacement vector will have six components: u2, v2, 2, u3, v3 and 3. In 
matrix notations, the displacement vector may be expressed as follows: 
 
  {U} = {u2  v2  2  u3  v3  3}T 

 
Consequently, the corresponding dynamic equation takes the following 
form: 
 guRMUKUCUM }]{[}]{[}]{[}]{[   

FIGURE 3-51
DISCRETIZATON OF FRAME STRUCTURE 

2 3 

1 4 

(a)  Frame Layout

2 2 3 

1 4 

v2 

u2 

v3 

3

u3 

(b)  Discretization

Element 

Node

2

1 3



Chapter Three 

108 

where: 
[M] = 6 x 6 consistent mass matrix (nondiagonal) 
[C] = 6 x 6 damping matrix (nondiagonal) 
[K] = 6 x 6 stiffness matrix (nondiagonal) 
 
Unlike the lumped mass formulation, the consistent mass matrix 
formulation includes the rotational dynamic degrees of freedom of the 
system. The rotational structural degrees of freedom exist in the stiffness 
matrix in both cases. They explicitly exist in the case of the consistent mass 
matrix solution in terms of 2 and 3. However, they implicitly exist in the 
case of the lumped mass solution as they are kinematically condensed and 
incorporated in the displacement degrees of freedom as shown in previous 
sections. 
 
The solution of the equation of motion above depends on the orthogonality 
of the damping matrix [C]. The modal analysis procedures outlined in 
previous sections require orthogonality to be valid. It was proven that 
orthogonality exists for both mass and stiffness matrices [M] and [K]. In 
order to apply modal analysis to the equation above, the matrix [C] also 
has to be orthogonal. Therefore, the damping matrix can be considered 
orthogonal if it can be expressed as a linear combination of the two 
matrices [M] and [K]. In mathematical form, this may be expressed as 
follows: 
 
 [C] =  [M] +  [K] 
 
where  and  are constants.  
 
If the damping matrix [C] is orthogonal, the solution of the equation of 
motion follows exactly the same procedures given in previous sections. 
Otherwise, the matrices will be mathematically coupled, and recurrence to 
numerical methods becomes necessary as will be shown in the next 
chapter. 

3.10  Incoherence 

If all the supports of the structure are excited by the same acceleration 
signal that reaches all supports at the same instance, the excitation is 
said to be coherent. Therefore, incoherence is a term used to describe 
the excitation of the structure by the application of different excitation 
signals at different support locations. In building structures, incoherence 
may not be of concern insofar as the foundations are usually tied together 
and located in compact region. Thus, it is usually assumed that the same 
earthquake signal will reach all supports at the same time with the same 
acceleration profile. 
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However, incoherence may need to be considered in bridges, especially 
in long bridges where different earthquake signals may reach their 
abutments and piers. 
 
Incoherence may be included in the analysis using the earthquake 
loading vector {R} as defined in the MDOF presentation. The earthquake 
loading vector is defined and specified for building structures as the 
resulting displacement of all DOFs due to a unit rigid body motion in the 
direction of the earthquake. This definition is valid for buildings given 
before, since coherence was implied in the analysis. The more general 
definition of the earthquake loading vector {R}, in case of incoherence, 
will be the resulting displacement of all DOFs due to a unit displacement 
of the excited support. This definition implies that the deflected shape of 
the structure due to unit displacement of each support is known in order 
to formulate such problems. 
 
The next section will illustrate this by examining for incoherence one span 
beam with different cases of supporting conditions. 
  
Case (1):   Simple support with discrete mass 
 
The simply supported beam with two lumped masses (m1 and m2) as 
shown in Figure 3-52 is considered a two-DOF system with DOFs at the 
mass locations. If this beam is subjected to coherent excitation�that is, 
both supports A and B are excited by the same earthquake at the same 
instant�the earthquake loading vector {R} will be the displacement of 
masses m1 and m2 due to rigid body motion in the direction of the 
earthquake as shown in Figure 3-52 (a). Accordingly, the resulting {R} will 
be 
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On the other hand, if the beam is subjected to incoherent excitation�that 
is, if only support B is excited by the earthquake as shown in Figure 3-52 
(b)�the resulting {R} will be the displacement of the two masses due to 
unit movement of support B without any movement of support A. Because 
the beam is simply supported, the deflected shape due to this motion is a 
straight line, as shown in Figure 3-52 (b). Because the masses are 
equally spaced across the beam, {R} will be 
 

 

3
2

3
1

inc
/

/
}{R  

 
The general equation of motion derived earlier is still applicable with 
vector {R} as derived above. Therefore, the equation of motion for a 
discrete system with this incoherent excitation is still given as 
  
 guRMUKUCUM }]{[}]{[}]{[}]{[   
 
where {R} = {1/3  2/3}T, and all other components are the same as defined 
in the MDOF section. 
 
Case (2):   Simple support with uniform mass 
 
The simply supported beam with uniformly distributed mass, m, as shown 
in Figure 3-53, is considered a continuous system with infinite DOFs. As a 
result, it must be treated at the differential level. If this beam is subjected to 
coherent excitation�that is, both supports A and B are excited by the 
same earthquake at the same instant�the earthquake loading vector r(x) 
will be a continuous function and is given as defined before. r(x) will be the 
displacement of the mass density, m, due to rigid body motion in the 
direction of the earthquake as shown in Figure 3-53 (a). Accordingly, the 
resulting r(x) will be 
 
 rcoh(x) = 1 
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On the other hand, if the beam is subjected to incoherent excitation�that 
is, if only support B is excited by the earthquake as shown in Figure 3-53 
(b)�the resulting r(x) will be the displacement of the mass density due to 
unit movement of support B without any movement of support A. Because 
the beam is simply supported, the deflected shape due to this motion is a 
straight line as shown in Figure 3-53 (b). Thus,  
 
 rinc(x) = x/L 
 
The general equation of motion derived earlier still applies with vector r(x) 
as derived above. Therefore, the equation of motion for a continuous sys-
tem with this incoherent excitation is still given as  
 
 g

iv vxrmvEIvm )(  
 
where r(x) = x/L, and all other components are the same as defined in the 
MDOF section. 
 
Case (3):   Fixed support with discrete mass 
 
The fixed-end beam with the lumped masses (m1 and m2) shown in Figure 
3-54 is considered a two-DOF system with DOFs at the mass locations. If 
this beam is subjected to coherent excitation�that is, both supports A and 
B are excited by the same earthquake at the same instant�the earthquake 
loading vector {R} will be the displacement of masses m1 and m2 due to 
rigid body motion in the direction of the earthquake as shown in Figure 3-
54 (a). Accordingly, the resulting {R} will be 
 

 
1
1

}{ cohR  

 
On the other hand, if the beam is subjected to incoherent excitation�that 
is, if only support B is excited by the earthquake as shown in Figure 3-54 
(b)�the resulting {R} will be the displacement of the two masses due to 

FIGURE 3-54
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unit movement of support B without any movement of support A. Because 
the beam is fixed at both supports, the deflected shape due to this motion 
is a not a straight line as in case (1). 
Instead, it takes the shape of the 
shape function of this displacement. 
The cubic deflected shape developed 
for this displacement as derived in the 
finite element section may be used. 
This shape, (x), is shown in Figure 3-
55 and given as 
 

(x) = + 3 (x /L)2 � 2 (x /L)3 
 
Therefore, the R values are given as 
 
 R1 = (L/3) = 3(1/3)2 � 2(1/3)3  = 0.259 
 
 R2 = (2L/3) = 3(2/3)2 � 2(2/3)3  = 0.741 

 
Accordingly, the {R} vector will be 
   

 
741.0
259.0

}{ incR  

 
As stated before, the equation of motion for a discrete system with this 
incoherent excitation is still given as 
 
 guRMUKUCUM }]{[}]{[}]{[}]{[   
 
where {R} = {0.259  0.741}T, and all other components are the same as 
defined in the MDOF section. 
 
Case (4):   Fixed support with uniform mass 
 
The fixed-end beam with uniformly distributed mass, m, as shown in Figure 
3-56 is considered a continuous system with infinite DOFs. Thus, it must be 
treated at the differential level. If this beam is subjected to coherent 
excitation�both supports A and B are excited by the same earthquake at 
the same instant�the earthquake loading vector r(x) will be a continuous 
function and is given as defined before. r(x) will be the displacement of the 
mass density, m, due to rigid body motion in the direction of the earthquake 
as shown in Figure 3-56 (a). Accordingly, the resulting r(x) will be 
 
 rcoh(x) = 1 

1.0 

 (x) 

x 

FIGURE 3-55
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On the other hand, if the beam is subjected to incoherent excitation�if 
only support B is excited by the earthquake as shown in Figure 3-56 (b)�
the resulting r(x) will be the displacement of the mass density due to unit 
movement of support B without any movement of support A. Because the 
beam is fixed at both supports, the deflected shape due to this motion is 
not a straight line as in case (1). Instead, it takes the shape of the shape 
function of this displacement. The same cubic deflected shape used in 
case (3) may be used: 
 
 rinc(x) = (x) 
where: 
 (x) = + 3(x/L)2 � 2(x/L)3 
 
 
The general equation of motion derived earlier still applies with vector r(x) 
as derived above. Therefore, the equation of motion for a continuous sys-
tem with this incoherent excitation is still given as 
  
 g

iv vxrmvEIvm )(  
 
where r(x) = (x), and all other components are the same as defined in 
the MDOF section. 
 
Example 3-10 
 
A simply supported bridge with span, L, and uniform mass, m, is excited 
by an earthquake in the direction shown in Example 3-10, Figure 1. 
Evaluate the participation factor of the first mode in the following two 
cases: 
 
(1) Both supports are excited by the earthquake at the same time with 

the same intensity (coherent excitation). 
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(2) Only support B is excited by the earthquake with the same intensity 
given in (1) (incoherent excitation). 

 

Solution 
 
The participation factor of the continuous system is given for the first 
mode by the following expression: 

dxm
dxrm

m
 £
*



 
where  is the first mode shape of a simple beam, which is derived in 
Section 3.7, Simple Flexure Beam.  is given as  
 

 = sin (  x/L) 
 
The denominator, m*, is common to both cases and will be evaluated at 
this stage as follows: 
 
  m* =   m  dx = m  2 dx = m  sin2 (  x/L) dx = m.L/2 
 
 
Part (1): Coherent excitation, Example 3-10, Figure 1 (a) 
 
Since r(x) = 1, the integration of (£) is evaluated as follows: 
 
  £ =   m r(x) dx = m   dx = m  sin (  x/L) dx = 2.m.L/  
 
Therefore,   = £/m* = (2.m. L/ ) / (m.L/2) = 4/  
 
 
Part (2): Incoherent excitation, Example 3-10, Figure 1 (b) 
 
Since r(x) = x/L, the integration of (£) is evaluated as follows: 
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  £ =   m r(x) dx = m   (x/L) dx 
  = m  (x/L) sin (  x/L) dx = m.L/  
 
Therefore,   = £/m* = (m. L/ ) / (m.L/2) = 2/  
 
The participation factor that results from the excitation of one support is 
only one half its value when both supports are excited. This means that, 
for this example, the displacements and the earthquake-induced forces in 
the incoherence case will be half the values of the coherence case. 
Remember that the displacement and induced forces are directly pro-
portional to the modal participation factor as follows: 
 
 vmax =  Sd 
 fs,max = m   Sa 
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PROBLEMS 
 
 
Problem 3-1 
 
A stiff beam is supported by two 
columns and a viscous damper 
as shown in Problem 3-1, Figure 
1. The frame is fixed at A and 
hinged at B. The total mass is 
concentrated in the beam. The 
mass, the flexure stiffness of 
each column, and the coefficient 
of damping are given as follows: 
 
M = 500 kN.s2/m (2.857 kip.s2/in) 
EI = 30x103 kN.m2

 (10x106 kip.in2)  
C = 200 kN.s/m (1.143 kip.s/in) 
 
If the structure is excited by the El Centro earthquake: 
1. Determine the maximum displacement and base shear. 
2.  Determine the distribution of the base shear to the columns. 
 
Problem 3-2 
 
A structure is idealized as a 3DOF system as shown in Problem 3-2, 
Figure 1. The structure is subjected to an earthquake that has the di-
rection shown in the figure. The velocity response spectrum of the earth-
quake is given in Problem 3-2, Figure 2. Assuming that the damping 
ratio,  = 2%, and the cross section of the frame is constant with  
EI = 100 x 103 kN.m2 (35 x 106 kip.in2), find: 

L = 3 m
(9.84 ft)

EI =
 30 x 103

kN.m2

c = 200 kN.s 

 
m = 500 kN.s2/m 

(2.857 kip.s2/in) 
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1. The frequencies and their mode shapes 
2. The modal displacements of each mass due to first mode only 
3. The modal base shears due to first mode only 
4. The modal base moments due to first mode only 
 
Problem 3-3 
 
The building shown in Problem 3-3, Figure 1, has the mass matrix and 
vibration properties as shown. The structure is excited by a horizontal 
earthquake with acceleration response spectrum values for the three 
modes as given in the Sa column shown. 

 
(1) For each mode of vibration, calculate the maximum displacement, 

overturning moment and shear force at each story level. 

(2) By the square root of sum of squares (SRSS) method, determine 
approximate total maximums for each of the response quantities of 
part A. 

 
Problem 3-4 
 
Part (A): 
 
The frame shown in Problem 3-4, Figure 1, has the uniform mass and 
flexural stiffness shown in the figure. If the structure is excited by the El 
Centro earthquake in the direction Z-Z as given in the figure, use the 
consistent mass matrix to: 
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(1) Find the first two frequencies and mode shapes 
 
(2) Find the SRSS displacement and rotation of the tip of cantilever, B, 

due to the first two modes 

(3) Find the SRSS base shear and moment due to the first two modes. 
 
Part (B): 
 
If the frame shown in Problem 3-4, Figure 1, is idealized as 2DOF as 
shown in Problem 3-4, Figure 2, and is subjected to the same excitation, 
repeat items (1), (2) and (3) given in Part (A). Compare results from both 
parts. 
 
Problem 3-5 
 
A structure is idealized as a 3DOF system as shown in Problem 3-5, 
Figure 1. The structure is subjected to an earthquake having the direction 
shown in the same figure with a velocity response spectrum as shown in 
the Problem 3-5, Figure 2. The damping ratio is given as  = 2%. 

The mass of the structure is lumped into three equal masses, m = 1 kN.s2 
/m (5.71 x 10-3 kip.s2 /in), located as shown in Problem 3-5, Figure 1.  

The following are required: 

(1) Find the frequencies and their mode shapes. 
(2) Find the SRSS displacements of each mass. 
(3) Find the SRSS base shear. 
(4) Find the SRSS base moment. 
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Problem 3-6 
 
A 150 mm (6 in) concrete slab is supported by hollow circular shaft, which 
is located as shown in Problem 3-6, Figure 1. The slab is considered 
rigid, the shaft is weightless and totally fixed to the slab. The clear height 
of the shaft is 5 m (16.4 ft). The concrete mass is given as c = 2.5 
kN.s2/m /m3 (0.0049 kip.s2 /ft/ft3). 

(1) Express mass matrix and mode shapes in terms of the slab centroid 
coordinates, u, v, u, v and z as shown in Problem 3-6, Figure 2.   
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(2) If the El-Centro earthquake acts in the direction of coordinate v, 
determine the maximum dynamic displacement at the top of the shaft 
in the first mode of vibration.  Damping ratio is taken as  = 2%. 

 
Problem 3-7 
 
The vertical cantilever wall shown in Problem 3-7, Figure 1, has the 
following properties: 
 
Uniform mass, m = 1 kN.s2/m2  
           (145 x 10-6 kip. s2/in2) 
 
Uniform inertia, EI = 0.5 x 106 kN.m2 
          (174 x 106 kip.in2) 
 
The deflected shape of this structure may be 
expressed as 
 (x) = 1 � cos (  x/2H)  
 
The structure is excited by a rotational 
earthquake component having constant 
response spectral velocity,  
Sv = 0.5 rad/s. 
 
If the damping ratio,  is 5%, find the 
maximum top displacement, base shear and 
base moment. 
 
Problem 3-8 
 
A simply supported bridge with span, L, and uniform mass, m, is excited 
by an earthquake in the direction shown in Problem 3-8, Figure 1. 
Evaluate the participation factor of the first mode in the following two 
cases: 
 
(1) Both supports are excited by the earthquake at the same time with 

the same intensity (coherent excitation). 
  
(2) Only support B is excited by the earthquake with the same intensity 

given in (1) (incoherent excitation). 
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PROBLEM 3-8, FIGURE 1
FIXED BEAM WITH DISTRIBUTED MASS 
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4 
 
 
 
 
 

NONLINEAR 
 AND 

INELASTIC 
DYNAMIC 

ANALYSIS 
 
 
 
 
 

4.1  Introduction 

As noted in Chapter 1, it is important to differentiate between nonlinear 
elastic behavior and inelastic behavior. Nonlinear elastic behavior is char-
acterized by a unique relationship between load and displacement and 
between stress and strain. Such elastic behavior does not result in energy 
dissipation in the system as in the case of cable structures. However, in-
elastic behavior is not characterized by such uniqueness; instead, inelastic 
behavior depends mainly on the loading history. Such inelastic behavior 
results in hysteresis loops, which are the source of energy dissipation in the 
system, as in the case of material yielding. Because closed-form solutions 
of nonlinear and inelastic systems do not exist in general, reverting to in-
cremental analysis is necessary. 
 
Earthquake-resistant structures are typically designed with ultimate 
resistance from two to eight times less than their elastic strength demand, 
ESD. This reduction in ESD is possible owing to the inelastic response of 
structures as long as they also exhibit some desirable properties. Such 
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properties include frequency shift, ductility and energy dissipation capacity 
of the structure, provided that the structure also has self-centering capacity. 
 
For this reason, understanding 
the inelastic behavior of 
structures is essential. Inelastic 
behavior is mainly a structural 
property that depends on the 
shape and size of the 
structure�s hysteresis model. 
The hysteresis model is 
defined as the relationship 
between the structure dis-
placement, , and its restoring 
force, F, under cyclic loading 
as shown in Figure 4-1. The 
restoring force, F, is history 
dependent: the force-displacement relationship is not unique and can only 
be evaluated according to loading history of the system. 
 

 
Figure 4-2 shows several examples of hysteresis models used in practice. 
A series of straight lines define the first three types�the elasto-plastic, the 
bi-linear, and the stiffness degrading models�whereas the fourth type, the 
smooth stiffness degrading model, is defined with curved lines. Most of 
these models exhibit kinematic hardening: the yield surface shifts, but does 
not expand as the maximum displacement changes.   
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For example, in Figure 4-2 (b), the line o-a-b is defined as the backbone 
curve with yielding point at location a. The unloading branch, b-c-d, may be 
characterized as two-fold magnification of the backbone curve: line b-c is 
twice line o-a. This behavior is observed in most models except in the 
stiffness degrading model shown in Figure 4-2 (c), which is specifically 
developed for reinforced concrete structures. It is worthwhile to also men-
tion that the smooth stiffness degrading model shown in Figure 4-2 (d) is 
more representative in describing the energy dissipation in small cycle 
vibration. For example, cycling between points g-h in Figure 4-2 (d) results 
in small loops (energy dissipation), whereas such cycling in all other mod-
els does not result in loops (thus, no energy dissipation has occurred). 
 
In the inelastic response, the structure stiffness, k, is not constant. 
Therefore, the classical solution of the elastic systems presented in the 
previous chapter will not apply. Clearly, all of the techniques given in the 
elastic systems, such as superposition, cannot be applied to this system. 
The following sections will address how to handle inelastic systems. 

4.2  Single Degree of Freedom System 

An inelastic single degree of 
freedom system consists of 
concentrated mass, m, 
damping, c, and restoring 
force, F = f(u), as shown in 
Figure 4-3. This system is 
characterized by the in-
elasticity of its restoring 
force (by the relationship 
between displacement, u, 
and restoring force, F). The 
equilibrium equation devel-
oped in the previous chapter 
for elastic SDOF system is 
still valid: 
 
 gumukucum   
 
Because k is not constant but is a function of displacement, u, the 
differential equation above cannot be solved in the usual manner. Instead, 
numerical methods may be used as a powerful technique for operating 
directly on the differential equation. The following sections review some of 
the popular numerical methods that are frequently used in dynamic 
analysis. 
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4.3  Numerical Methods 

Numerical methods are used as the general solution to the general 
problems of nonlinear inelastic systems. Numerical methods can also be 
used to solve elastic systems. 
 
For convenience, the equation of motion may be written in the following 
form: 
 
 ii pfucum   
where:  
fi = Restoring force (hysteresis model). 
pi  = External applied load (= � m üg). 
 
The damping may also exhibit nonlinearity similar to stiffness. 
 
Three popular methods used in dynamic analysis are considered to be 
solutions to an initial value problem: 
1. Central differences method (a branch of the general finite differences 

method). 
2. Newmark-  method. 
3. Wilson-  method. 

4.3.1  Central Differences Method 

The central differences method 
is an approximation of de-
rivatives over small intervals of 
the function. Because the vel-
ocity is the tangent of the 
displacement function, it can be 
approximated as the slope of the 
cord between the two dis-
placements of (ui-1) and (ui+1) 
over a finite interval of time (2 t) 
as shown in Figure 4-4 (a). 
Accordingly, the velocity, iu , at 
time step, i, and time interval, t, 
is approximated as 
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u ii
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2
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Similarly, the acceleration can be approximated as the difference between 
two velocities at time steps (i  1) and (i + 1) over time intervals (2 t) as 
shown in Figure 4-4 (b). To increase the accuracy of acceleration cal-
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culations, intermediate steps at (i  1/2) may be introduced as shown in 
Figure 4-4 (b). As a result, the acceleration may be given as 
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Inserting the two operators of velocity and acceleration (1) and (2) into the 
equation of motion yields 
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The equation above gives the central differences method in its basic form. 
The basic form is given in contrast to the central differences method in its 
summed form, which is usually implemented to reduce the roundoff errors 
in computers. The summed form of the central differences method takes 
the following form: 
 
If the quantity z is defined as: 
 

 
t
uu

z ii
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The central differences equation takes the following form: 
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1

1
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t
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t
mz iiii  

then, 
  
 ui+1 = ui + t zi+1 
 
The central differences method is not a self-starting method. For given ini-
tial conditions, a Taylor series is usually used to start the algorithm as 
follows: 

 0

2

001 2
ututuu   
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The selected time interval ( t) should be small enough to capture the 
variation and details of the hysteresis model and the earthquake record. In 
addition, t should be small enough to ensure convergence (stability of 
algorithm). A time interval from one fifth to one tenth of the fundamental 
period is usually good enough to satisfy these conditions: 
 

 Tt
10
1

5
1  

4.3.2  Newmark-  Methods 

Unlike the central differences method, Newmark-  methods lack 
mathematical evidence. However, they are popular methods in dynamic 
analysis proposed by Newmark. For this purpose, Newmark proposed the 
following system of equations: 
 
  1111   iiii pukucum   . . .  (1) 

 11 22   iiii ututuu   . . .  (2) 

 1
22

1 )
2
1(   iiiii utututuu   . . .  (3) 

 
Knowing iii uuu and,  at step i, the three unknowns 111 and,  iii uuu  
at step i + 1 can be found by simultaneously solving equations (1), (2) and 
(3) above. 
 
The parameter, , may be 
chosen anywhere between 0 < 
 < 1/4 . The variation of the 

parameter, , offers a group of 
submethods known by the 
following names: 
 

= 1/4 (constant acceleration 
method) 

= 1/6 (linear acceleration 
method) 

= 1/8 (method exists, but is 
unnamed) 

= 1/12 (Fox and Goodman 
method) 

= 0 (explicit Newmark method) 
 
The stability of algorithm of the methods above depends on the selection of 
the time interval ( t). Figure 4-5 shows the relationship between the time 

t/T 

 
Ta/T

2

 = 1/4

FIGURE 4-5
RELATIONSHIP BETWEEN TIME 

INTERVAL AND APPARENT PERIOD 

1

0.2 0.4 0.6 

 = 0 1/61/12



Nonlinear and Inelastic Dynamic Analysis 

129 

interval and the apparent period, Ta, normalized to the structural period, T. 
Because the constant acceleration method (  = 1/4) does not collapse, as 
shown in this figure, this is known as the unconditionally stable method. 
The numerical stability of the other methods depends mainly on the value 
of the time interval ( t): the linear acceleration method (  = 1/6) is nu-
merically stable for values of ( t <  0.55T). 

4.3.3  Wilson-  Method 

The Wilson-  method is simply an extension of the linear acceleration 
method in its differential form. It is applied by following the same pro-
cedures of the linear acceleration method (  = 1/6), using the time in-
crement of  instead of t where  = t. 
 
This method is unconditionally stable if  > 1.37. 
 
Example 4-1 
 
The structure in Example 4-1, Figure 1, has an SDOF system with 
properties as shown in the figure. If the structure is subjected to the forcing 
function in Example 4-1, Figure 1 (c), calculate the first few displacements 
using the central differences method and the Newmark-  method. Take the 
time increment as t = 0.1 seconds. 

 
(1) Central differences method: 
 
Because this method is not self-starting, a Taylor series is required to start 
the algorithm: 
 
Step 1: 
 
Because initial conditions are all zero, the displacement, u1, at step 1 will 

EXAMPLE 4-1, FIGURE 1
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be zero and the restoring force, f1, will also be zero: 
  

  0

2

001 2
ututuu  = 0,        f1 = 0 

 
Step 2: u0  = 0, u1 = 0,  f1 = 0,  p1 = 5 
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 = 0.455 < uy 
 
Similarly, the next step of displacements is found by calculating steps 3 and 
4 as follows: 
 





)455.0)(1.0(201.02.0
2
1.0)455.058()1.0(2.0

2
1.01.0 2
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3 xu

 
 = 1.347 > uy 
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 = 2.176 > uy 
 
These systematic procedures can be continued up to any required elapsed 
time (u5, u6, . . . etc.). 
 
(2) Newmark-  method: 
 
For the given initial conditions of zero displacement, zero velocity and zero 
acceleration (i.e., at step 0), the displacement, velocity and acceleration at 
step 1 are found by solving the following three equations:  
 
 1111 pukucum   . . . (1) 

 1001 22
ututuu   . . . (2) 

 0

2

001 2
ututuu   . . . (3) 

 
substituting the initial conditions, 
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 52.01.05)0(52.01.0 1111  uuuu  . . . (4) 

 1111 05.0
2
1.0)0(

2
1.00 uuuu   . . . (5) 

 0)0(
2

)1.0()0(1.00 1

2

1  uu  . . . (6) 

 
Equation (6) yields u1 = 0. 
Substitution of Equation (5) into (4) yields: 
 
 45.455)05.0(2.01.0 111  uuu  . . . (7) 
 
substitution of Equation (7) into (5) yields: 
 
 27.2)45.45(05.0 11  uu  . . . (8) 
 
The displacement, velocity, and acceleration in step 1 are found as given 
by Equations (6), (8) and (7), respectively. To find the displacement, 
velocity, and acceleration in step 2, repeat the procedures above by solving 
the three equations. For example, Equation (3) yields 
 

 1

2

112 2
ututuu   . . . (9) 

 439.0)45.45(
2

)27.2(1.00
2

2 
tu  . . . (10) 

 
The displacement in step 1 is given as 0.439 instead of 0.455 as found by 
central differences method. Of course, the results should be closer and will 
be almost identical if the time increment, t, is small enough (for example, 
0.001 seconds). 
 
Example 4-2 
 
(1) The SDOF structure in Example 4-2, 

Figure 1, is excited by an earthquake 
that has the accelerogram shown in 
Example 4-2, Figure 2. If the structure is 
elastic with an infinite elastic strength, 
find the maximum force, Fe, and the 
maximum displacement, ue, reached 
during this excitation, assuming the 
structure has no damping (  = 0). Plot 
displacement and restoring force 
histories. 

  
 

F

EXAMPLE 4-2, FIGURE 1 
STRUCTURAL SYSTEM

 
m = 100 kN.s2/m 

(0.571 kip.sec2/in) 
u

k = 1000 kN/m 
(5.71 kip/in) 

 = 0 
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NOTE: Take t = 0.2 s and displacement history = 6 s for sections (1) 
and (2). 
 

 
(2) The structure in Section (1) is designed to carry a lateral static load 

equal to 50 kN (11.24 kip) at its ultimate state with elasto-plastic 
hysteretic behavior as shown in Example 4-2, Figure 3. Find the 
maximum force, Fmax, and maximum displacement, umax, under the 
excitation of the same earthquake shown in Example 4-2, Figure 2. 
Plot displacement and restoring force history. 

 
 
(3) Make a graphical comparison between the resulting maximum forces 

and maximum displacements resulting from section (1) and section 
(2). In other words, make a comparison between the elastic response 
and the inelastic response by plotting these values on a figure with 
(u) as abscissa and (F) as ordinate. 

 
Solution 
 
The solution can be obtained by integrating the equation of motion using 
the central differences method with procedures identical to those laid out 
in Example 4-1. The results are summarized in Example 4-2, Table 1, 
and are described in the following sections. 
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EXAMPLE 4-2, TABLE 1 
STRUCTURAL RESPONSE 

(kip = 4.448 kN, m = 39.37 inch) 

  ELASTIC RESPONSE
INELASTIC 
RESPONSE 

Step No. Time, ue, Fe, uine, Fine, 
 sec m kN m kN 
0 0.00 0.000 0.0 0.000 0.0 
1 0.20 0.000 0.0 0.000 0.0 
2 0.40 -0.008 -8.0 -0.008 -8.0 
3 0.60 -0.029 -28.8 -0.029 -28.8 
4 0.80 -0.062 -62.1 -0.062 -50.0 
5 1.00 -0.103 -102.5 -0.107 -50.0 
6 1.20 -0.142 -142.0 -0.173 -50.0 
7 1.40 -0.157 -156.6 -0.250 -50.0 
8 1.60 -0.133 -132.6 -0.331 -50.0 
9 1.80 -0.072 -71.6 -0.408 -50.0 
10 2.00 0.010 10.1 -0.474 -50.0 
11 2.20 0.088 87.7 -0.519 -50.0 
12 2.40 0.138 138.3 -0.536 -50.0 
13 2.60 0.150 149.5 -0.518 -31.3 
14 2.80 0.125 124.9 -0.462 24.0 
15 3.00 0.082 82.4 -0.385 50.0 
16 3.20 0.047 46.9 -0.287 50.0 
17 3.40 0.025 24.6 -0.177 50.0 
18 3.60 0.017 16.5 -0.064 50.0 
19 3.80 0.018 17.8 0.046 50.0 
20 4.00 0.020 20.0 0.144 50.0 
21 4.20 0.014 14.1 0.221 50.0 
22 4.40 0.003 2.7 0.279 50.0 
23 4.60 -0.010 -9.9 0.316 50.0 
24 4.80 -0.018 -18.5 0.334 50.0 
25 5.00 -0.020 -19.7 0.332 47.7 
26 5.20 -0.013 -13.0 0.310 26.2 
27 5.40 -0.001 -1.1 0.278 -5.7 
28 5.60 0.011 11.2 0.249 -35.3 
29 5.80 0.019 19.0 0.233 -50.0 
30 6.00 0.019 19.3 0.238 -45.5 
31 6.20 0.012 11.8 0.260 -22.8 
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(1) The solution to this section is the elastic case where the stiffness is 
constant and equal to 1000 kN/m (5.71 kip/in). Step-by-step inte-
gration yields the displacement history from step 0, with zero initial 
values, and proceeds to step 31 at elapsed time equals to 6.2 
seconds. The resulting displacement at each step is given in meters 
as shown in Example 4-2, Table 1. Note that the absolute maximum 
elastic force, 156.6 kN (35.21 kip), and absolute maximum elastic 
displacement, 0.157 m (6.18 in), have been reached at step 7 at 
elapsed time equals to 1.4 seconds. A graphical plot of the dis-
placement history is also shown in Example 4-2, Figure 4. 

 
(2) The solution to this section is the inelastic case where the stiffness is 

not constant and must be tracked according to the previous 
displacement reached as given by the hysteresis model in Example 
4-2, Figure 3. The step-by-step integration yields the displacement 
history from step 0, with zero initial values, and proceeds to step 31 
at elapsed time equals to 6.2 seconds. The resulting displacement at 
each step is given in meters as shown in Example 4-2, Table 1. Note 
that the absolute maximum inelastic displacement, 0.536 m (21.1 in), 
has been reached at maximum strength, 50 kN (11.24 kip), and at 
step 12 at elapsed time equals to 2.4 seconds. A graphical plot of the 
displacement history is shown in Example 4-2, Figure 4. 

 
(3)  A graphical relationship is plotted between the restoring force and the 

displacement as shown in Example 4-2, Figure 5. The elastic 
response is plotted in dashed lines, whereas the inelastic response is 
plotted with solid lines. 
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Example 4-2, Figure 4, shows that the displacement in the inelastic case 
is much larger than the displacement in the elastic case. This result is al-
so obvious in Example 4-2, Figure 5. However, the force in the elastic 
case is larger than the force in the inelastic case. As expected, the force 
in the inelastic case cannot exceed the structure strength (the yield level 
of the structure). 
 
This example highlights an extremely important conclusion, mentioned in 
earlier chapters, with respect to inelastic response of structures to 
earthquake excitations. If the structure is designed with strength, Fy = 50 
kN (11.24 kip), less than the elastic strength demand, Fe = 156.6 kN 
(35.21 kip), then the structure can survive the excitation as long as the 
maximum displacement does not reach the ultimate displacement 
capacity of the structure, u = 1 m (39.37 in). 

4.4  Multiple Degrees of Freedom System 

Similar to a single degree of freedom system, an inelastic MDOF system 
can only be solved by numerical methods. The numerical methods ex-
plained in the previous sections for an SDOF system are equally applicable 
for an MDOF system. 
 
The formulas given for an SDOF are identical: central differences, 
Newmark-  and Wilson-  methods. For application, we simply replace the 
single quantities m, c, k, u, f and p by their matrix counterparts: 
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m    [M]NxN 
c    [C]NxN 
k   [K]NxN 
u    {U}Nx1 
f    {F}Nx1 
p    {P}Nx1 

 
For example, if the MDOF equation of motion is given as 
 
 guRMUKUCUM }]{[}]{[}]{[}]{[   
 
then the central differences method for the next step displacement at step i 
+ 1 is given as a function of the step i as follows: 
 

 



 }{][2}{][][
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For large structures, computation time and storage requirements also 
become very large in terms of computer resources, especially when time 
history is needed. Special problems arise if the true hysteretic behavior is 
needed. Therefore, explicit inelastic dynamic analysis is usually performed 
either in research areas or for very complex and special structures such as 
nuclear power plants. Of course, this problem becomes worse if finite el-
ement analysis is used. 
 
Because of these shortcomings, inelastic dynamic analysis is not used in 
practice. Instead, research and codes have focused on indirectly incor-
porating inelastic dynamic analysis into elastic analysis. An example of this 
would be using parameters such as force reduction factor, R, and global 
ductility demand, d, with some relationships between them. This will be 
discussed in the following chapters. 
 
Example 4-3 
 
A frame with a diagonal viscous 
damper is shown in Example 4-
3, Figure 1. The frame members 
have uniform mass distribution 
and constant cross section. The 
frame is intended to behave 
elastically under the excitation of 
its supports by a horizontal 
component of an earthquake 
profile along the line A-B as 
shown in Example 4-3, Figure 2. 
The frame members have the 

8 m  (26.25 ft) 

EXAMPLE 4-3, FIGURE 1 
FRAME LAYOUT 

6 m 
(19.69 ft)

Damper 
C 

A B 

 
D E 



Nonlinear and Inelastic Dynamic Analysis 

137 

following properties: 
 
M = 100 kN.s2/m/m (0.0145 kip.sec2/in2) 
EA = 6 x 106 kN (1.35x106 kip)     
EI = 0.3 x 106 kN.m2 (105x106 kip.in2) 
 
The damper has the following coef-
ficient of viscous damping: 
 
C = 220  kN.s/m 
      (1.257 kip.sec/in)           
 
Use the central differences method and 
the consistent mass matrix to find the 
horizontal displacement history. 
 
For calculation purposes, take the time 
interval, t = 0.1 s. 
 
Solution 
 
Because the consistent mass matrix is needed, the frame may be 
discretized into three finite elements and four nodes as shown in Example 
4-3, Figure 3. Because the supports are fixed at nodes 1 and 4, the only left 
degrees of freedom are the displacements at joints 2 and 3. In plane 
frames, each node would have three degrees of freedom, two dis-
placements and one rotation. Con-
sequently, the frame would have a 
total of six degrees of freedom, two 
displacements, and one rotation at 
joint 2 and also at joint 3. These 
degrees of freedom are designated d1 
through d6 as shown in Example 4-3, 
Figure 3. 
 
The solution of this problem requires 
the construction of the relevant 
matrices in the general equation of 
motion as stated above: 
 
 guRMUKUCUM }]{[}]{[}]{[}]{[   
 
The relevant matrices in the equation of motion above are the global mass 
matrix, [M], the global damping matrix, [C], the global stiffness matrix, [K], 
and the earthquake loading vector, {R}, that is associated with the global 
displacement vector {U}. Construction of these matrices may be ac-
complished by any convenient standard assembly process given in matrix  
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structural analysis context. In this example, sample elements will be 
constructed by inspection for demonstration purposes. 
 
Chapter 3, Section 3.9, provides finite element formulation and relevant 
element matrices. For convenience, the stiffness and mass element ma-
trices are repeated below. 
 
1. Beam element stiffness matrix:  
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2. Truss element stiffness matrix:  
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3. Beam element mass matrix:  
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4. Truss element stiffness matrix:  
 


14070
70140

420
][ Lmmm  

 
5. The damping matrix can be deduced for a linear damper by noticing that 

the force system resembles truss behavior. Therefore, by replacing the 
stiffness of the truss by the damping coefficient, C, the element 
coefficient of damping matrix becomes:  
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Note that the force develops in the damper due to nodal velocities (not 
nodal displacements). 
 
(1) Displacement and loading vectors {U} and {R}: 
 
The displacement vector will contain 
the number of rows equal to the 
number of degrees of freedom, or six 
rows. Thus, {U} is given as 
 
 {U} = {d1 d2 d3 d4 d5 d6}T 

 
Because the earthquake is ho-
rizontal and will excite all supports 
simultaneously, the loading vector 
will take values according to the 
displacement of the DOFs as a result 
of rigid body displacement in the 
direction of the earthquake. By 
inspection, the {R} vector associated 
with the displacement vector takes 
the following values: 
 
 {R} = {1 0 0 1 0 0} 

 
where d3 and d6 are rotational degrees of freedom. 
 
(2) Stiffness matrix: 
 
The global stiffness matrix is constructed by the assembly process. The 
assembly process may be described as the summation of all nodal forces 
(or moments) at each node as a result of the contribution of all member 
reactions at that node. In order to visualize such a contribution, the frame 
may be separated into its discretized components, or into three beams as 
shown in Example 4-3, Figure 4. Consequently, the matrix elements are 
evaluated by inspection as follows. 
 
The global matrix element K11 is given as the forces that develop in 
direction 1 due to unit displacement in direction 1. Thus, the contribution of 
all elements meeting at the node will be a shearing force from element 1 
and an axial force from element 2 due to this unit displacement in  
direction 1: 
     
 K11 = km11

1 + km11
2  

 = 12 EI/L3 + EA/L  
  = 12 (0.3 x 106)/(6)3 + 6 x 106/8  
  = 767 x 103 kN/m (4,383 kip/in) 
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Similarly, K21 is given as the forces that develop in direction 2 due to unit 
displacement in direction 1. Thus, the contribution of all elements meeting 
at the node will be an axial force from element 1 and a shearing force from 
element 2 due to this unit displacement in direction 1: 
 
   K21 = 0 + 0 = 0 
 
Similarly, K31 is given as the moment in direction 3 due to unit displacement 
in direction 1. Thus, the contribution of all elements meeting at the node will 
be a moment from element 1 and a moment from element 2 due to unit 
displacement in direction 1: 
 
   K31 = km21

1 + 0 
 = 6 EI/L2 + 0  
 = 6 (0.3 x 106)/(6)2 + 0  
 = 50 x 103 kN/m (286 kip/in) 
 
The same reasoning used to obtain answers for K11, K21 and K31 above can 
be applied to the rest of the matrix elements to yield the global stiffness 
matrix [K] as follows: 

  [K] = 10 3 













350285075280
28100702870

50076700750
752803502850
28702810070
00750500767

 

 
Note that [K] above has constant elements because the behavior is elastic.  
If inelastic analysis were performed, these elements will be a function of the 
displacement history as shown under the section of single degree of 
freedom.  
 
(3) Mass matrix: 
 
The global mass matrix is constructed by the assembly process with the 
same reasoning applied to produce the stiffness matrix in (2). For example, 
the global matrix element M11 is given as the forces that develop in di-
rection 1 due to unit acceleration in direction 1. Thus, the contribution of all 
elements meeting at the node will be a shearing force from element 1 and 
an axial force from element 2 due to this unit acceleration in direction 1: 
 
   M11 = mm11

1 + mm11
2  

   = m L1 (156)/420 + m L2 (140)/420  
   = 100 (6) (156)/420 + 100 (8) (140)/420  

 = 490 kN.s2/m (2.8 kip.sec2/in) 
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Similarly, the next two elements, M21 and M31, are evaluated as follows: 
 
   M2 = 0 + 0 = 0 
and 
   M31  = mm21

1 + 0 
   = m L1 (22 L)/420  
  = 100 (6) (22)(6)/420  
 = 189 kN.s2/m (1.08 kip.sec2/in) 
 
The same reasoning used to obtain answers in M11, M21 and M31 above can 
be applied to the rest of the matrix elements to yield the global mass matrix 
[M] as follows: 
 

  [M] = 









6933351893661980
33549701981030

189049000133
3661980693335189
19810303354970
001331890490

 kN.s2/m 

 
(4) Damping matrix: 
 
The global damping matrix may be constructed by examining the state of 
force-displacement at the nodes of concern. By referring to Example 4-3, 
Figure 1, we see that the damping force will only develop due to velocity of 
node E. (Note the activation of the DOFs d4 and d5 shown in Example 4-3, 
Figure 3.) The damping matrix can be developed with reasoning similar to 
that used to develop both mass and stiffness matrices. 
 
The global matrix element C11 is 
given as the force that develops in 
direction 1 due to unit velocity in 
direction 1. Thus, the contribution of 
all elements meeting at the node will 
be an axial force from the damper in 
the direction of the damper. The 
component of this force is then 
evaluated by resolving this force in 
direction 1.  
 
Example 4-3, Figure 5, shows the 
forces that develop in the structure 
due to unit velocity in direction d4. 
Insofar as the force in the damper is 
along its axis and is also proportional 
to the coefficient of damping, C, then 

d5

d4 

EXAMPLE 4-3, FIGURE 5   
DAMPER FORCE AT NODE 3 

cos  = 0.8 

4d = 1 

Damper
C

Beam

sin  = 0.6 

3

 
Force in 
 Damper 

FD 
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 FD = C (0.8 4d ) = 0.8 C  
 
Resolving this force in directions 4 and 5 yields: 
 
 F4 = FD  cos  = 0.8 C (0.8)  
      = 0.64 C = 0.64 (220)  
      = 141 kN (31.70 kip) 
 
 F5 = FD  sin  = 0.8 C (0.6)  
      = 0.48 C = 0.48 (220)  
 = 106 kN (23.83 kip) 
 
Similarly, it can be shown that F4 and F5 due to unit velocity in direction 5 
will be 106 kN (23.83 kip) and 141 (31.70 kip), respectively. By noting that 
the damper will not be affected by the other degrees of freedom, the 
damping matrix can be given as 
 

 [C] = 

000000
0141106000
0106141000
000000
000000
000000

kN 

 
Note also that the formal development of the damping matrix is usually ac-
complished through the assembly process using tensor transformation. 
 
(5) Central differences method: 
 
In order to solve the given dynamic equation, namely 
 
 guRMUKUCUM }]{[}]{[}]{[}]{[  , 
 
we must apply the following central differences operator: 
 

 



 }{][2}{][][
2

}}{}{{][
2

][}{ 1
2

1

1 iiiii UMUMCtFPtCtMU

 
Because this method is not self-starting, a Taylor series is used to start the 
algorithm. 
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Step 1: 
 
Because initial conditions are all zeros, the displacement vectors, {U1}, at 
step 1 will be zero, and the restoring force vector, {F1}, will also be zero: 
  
  t = 0.1, t1  = 0 s,  üg = 5 m/s 2 (197 in/sec 2) 

  }{
2

}{}{}{ 0

2

001 UtUtUU  = {0},  

 
{F1} is calculated as 
 
  {F1} = [K] {U1} = [K] {0} = {0} 
 
{P1} is calculated as 
 
   {P1} =  [M] {R} üg =  [M] {R} (5) = { .31150E + 04 

+.00000E + 00 
.94500E + 03 
.31150E + 04 
+.00000E + 00 
.94500E + 03} kN 

Step 2:  
 
   t = 0.1, t2 = 0.2 s,  üg = 10 m/s2 (394 in/sec2) 
 {U0} = {0}, {U1} = {0}, 
  {F1} = {0}, {P1} = as in step 1  
 
Therefore,  
 

 



 }{][2}{][][
2

}}{}{{][
2

][}{ 1
2

1

1 iiiii UMUMCtFPtCtMU  





}{][2}{][][
2

}}{}{{][
2

][   }{ 1011
2

1

2 UMUMCtFPtCtMU

 





}0{][2}0{][][
2
1.0}}0{}{{)1.0(][

2
1.0][   }{ 1

2
1

2 MMCPCMU  

 
  {U2} = { .50170E � 01 

.58114E � 04 
.80461E � 04 
.49258E � 01 
+.57090E � 03 
+.12614E � 04} m 
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  {F2} is calculated as 
   
 {F2} = [K] {U2} = {.15409D + 04 

.64417D + 02 
.25533D + 04 
.15276D + 03 
+.57720D + 03 
.24821D + 04} kN 

 
{P2} is calculated as 
 
  {P2} =  [M] {R} üg =  [M] {R} (10) = {.62300E + 04 

+.00000E + 00 
.18900E + 03 
.62300E + 04 
+.00000E + 00 
.18900E + 03} kN 

Step 3:  
 
  t = 0.1, t2 = 0.3 s,  üg = 15 m/s2 (591 in/sec2) 
{U1} = {0}, {U2} = as in step 2, 
  {F2} = as in step 2, {P2} = as in step 2  
 
Therefore,  
 

 



 }{][2}{][][
2

}}{}{{][
2

][}{ 1
2

1

1 iiiii UMUMCtFPtCtMU  
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2

][   }{ 2122
2

1
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}{][2}0{][][
2
1.0}}{}{{)1.0(][

2
1.0][   }{ 222

2
1

3 UMMCFPCMU

 
   {U3} = {.55685D-01 

.28052D-01 
+.94445D-01 
.94257D-01 
+.24491D-01 
+.98861D-01} m 

 
These systematic procedures can be continued up to any required elapsed 
time: {U4}, (U5}, etc. Note that each step would also yield the restoring force 
and, if required, a software program may be developed to carry these 
procedures and calculate the internal forces as well. 
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4.5  Equivalent Linearization 

The energy dissipation capacity explained in previous sections is also 
termed Hysteretic Damping. The hysteretic damping and softening effect 
can be explained and quantified using the concept of equivalent lineari-
zation, which may be explained by consideration of the response of linear 
damped system in free vibration. If a cycle is considered with an average 
amplitude (A) and frequency ( ), one can write 
 
   U = A sin t . . .  (1) 
  u  = A cos t . . .  (2) 
 
Recall that the spring force, fs, is pro-
portional to the displacement: 
 
  fs  = k.u  . . .  (3) 
 
which may be plotted as shown in Fig-
ure 4-6. 
 
Since the damping force, fD, is pro-
portional to velocity, then 
 

fD = c u  . . .  (4) 
 

Substitution of velocity from (2) into (4) 
yields 
 
  fD = c A cos t 

  = c A   t sin1 2  
 

Replacing (sin2 t) by (u/A)2 from (1) 
yields 

 

  fD = c A 2)/(1 Au or 
   fD 

2 = c2  A2  {1 � (u/A)2} 
or 

  0.1)()( 22 
A
u

Ac
fD  

 
The equation above is an equation of ellipse, which is plotted graphically in 
Figure 4-7. It can be noted from Figure 4-7 that the area of the ellipse re-
presents a hysteretic loop, which is also the energy dissipated in one cycle 
of vibration due to viscous damping. 
 

u 

 
fs

FIGURE 4-6
SPRING FORCE-
DISPLACEMENT 
RELATIONSHIP

+A -A

k 

u 

 
fD

FIGURE 4-7
DAMPING FORCE- 
DISPLACEMENT 
RELATIONSHIP

A

c.A.  
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If Figures 4-6 and 4-7 are graphically superposed, the resulting graph 
resembles a nonlinear system as shown in Figure 4-8. In other words, the 
relationship between the summation of the elastic force and the viscous 
force (fs + fD) and between the displacement, u, forms a hysteresis loop 
similar to nonlinear systems. 
 
Consequently, the relationships 
above may be used to evaluate the 
hysteretic damping (the energy 
dissipated by a nonlinear system in 
terms of the damping ratio of a 
viscous system).  
 
If the energy dissipated by a non-
linear system is approximated by 
an elliptical shape, the energy 
dissipated will be the area of the 
ellipse, which is given as  times 
its major and minor radii a and b: 
 
 Area = .a.b 
  = (A).(c A) =  A2 (c) ( ) 

 
When we substitute (c = 2  mk ) and (  = mk / ) in the equation 
above, the area becomes 

 
 Area =  A2 {(2  mk ) ( mk / )} 
          = 2  A2 (k) = 2  (kA) A  

 
Therefore, the area of the ellipse, or the 
energy dissipated (ED), becomes 
 
  ED = 2  (fs,max) A 
 
The area of the strain energy (Ue,max) 
(the area of the two elastic energy 
triangles shown in Figure 4-9) equals to 
 
  Ue,max  = 1/2 fs,max . A + 1/2 fs,min  A 
   = fs,max  A  
 
If (fs,max.A) is substituted into the energy dissipation expression given 
above, then 

 
 ED = 2  (Ue,max) 
 

k

u 

 
fs + fD

FIGURE 4-8
SPRING AND DAMPING FORCE- 
DISPLACEMENT RELATIONSHIP

A

c.A.

u 

 
 

fs

FIGURE 4-9
ELASTIC ENERGY
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Rearranging the expression above, the equivalent viscous damping of the 
hysteresis loop may be given with reference to Figure 4-10 as 
 

max,2
1

e
eq U

ED
  

)(
Loop Hysteresis

2
1

OCDOABleeq


  

 
Note that  is proportional to energy 
dissipation. 
 
The development above implies that it 
would be possible to approximate an 
inelastic system with a hysteretic loop 
similar to the system shown in Figure 4-
11 by using an equivalent linear system 
with equivalent frequency, eq, equiv-
alent stiffness, keq, and equivalent vis-
cous damping, eq, such that 
 
  keq = F max/ max 

eq = mkeq /  

  
eqcr

eq

e
eq c

c
U

ED

,max,2
1

  

 
This system is also described by an 
equivalent equation of motion: 
 
         geqeq umukucum   
or 
       geqeqeq uuuu  2  
 
The system in this case will have an 
initial elastic stiffness, ko, and an initial 
frequency, o, given as 
 
 o = mko /  
 
Example 4-4 
 
An SDOF structure is shown in 
Example 4-4, Figure 1. The structure 
is excited by an earthquake that has 

keq 

u 

 
F

FIGURE 4-11
EQUIVALENT SYSTEM

ko 
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the response spectrum shown in Example 4-4, Figure 2 (b). The figure 
also shows the structural properties and its response parameters in terms 
of the hysteresis loop shown in Example 4-4, Figure 2 (a). The system 
viscous damping, v = 0. If the system viscous damping is ignored, i.e., v 
= 0, do the following: 
 

(1) Find the elastic strength demand by finding the maximum elastic 
response in terms of maximum elastic force and maximum elastic 
displacement due to this excitation. 

(2) Use the equivalent linearization concept to find the maximum actual 
displacement due to this excitation. 

 
Solution 
 
(1) Elastic response: 

 
 ko = Fy/ y = 1,600/0.02 = 80,000 kN/m (457 kip/in) 

o = mko /  = 000,1/000,80 = 8.94 rad/s 
  T = 2 / o = 2 /8.94 = 0.7 s 
 
Using response spectrum with T = 0.7 s, and  = 0, spectral velocity is 
given in Example 4-4, Figure 1 (c), as Sv = 0.56 m/s (22 in/sec). As a result, 
 
 Sd =  Sv/  = 0.56/(8.94) = 0.062 m  (2.44 in) 

 Sa =  Sv = 8.94 (0.56) = 5.006 m/s2 (197 in/sec2) 
 

e = Sd = 0.062 m     (2.44 in) 
 Fe = m Sa = 1,000 (5.006) = 5,006 kN (1,125 kip) 
 
 
 

EXAMPLE 4-4, FIGURE 2 
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(2) Inelastic response: 
 
In the case of inelastic response, the maximum displacement will not be 
known at this stage. Therefore, the solution is obtained by iterative pro-
cedures through assuming initial displacement and finding the resulting 
force until the force converges to the yield force. 
 
Trial 1: Starting with max = e = 0.062 m (2.44 in) 

 
 keq = Fy/ max = 1,600/0.062 = 25,806 kN/m (147 kip/in) 

eq = mkeq / = 000,1/806,25  = 5.080 rad/s 

  Teq = 2 / eq = 2 /5.080 = 1.24 s 
 
Equivalent damping 
 

 
max,2

1     
e

eq U
ED

  

 ED = area of loop = 2 Fy (2 max � 2 y)  
  = 2 (1,600) {2(0.062) � 2 (0.02)} = 268.8 kN.m (2,379 kip.in) 
 
 Ue,max =  Fmax max = 1,600 (0.062) = 99.2 kN.m (878 kip/in) 
 

 
2.99
8.268

2
1     eq = 0.43 = 43% 

 
with Teq = 1.24 s and eq = 43%, spectral velocity is given in Example 4-4, 
Figure 1 (c), as Sv  0.45 m/s (17.72 in/sec). As a result, 
 

Sd =  Sv/ eq = 0.45/(5.08) = 0.089 m (3.5 in) 

Sa = eq Sv = 5.08 (0.45) = 2.286  m/s2 (90 in/sec2) 
 

max = Sd = 0.089 m (3.5 in) 
Fmax = m Sa = 1,000 (2.286) = 2,286 kN (514 kip) 

 
Trial 2: Use max =  0.1 m   (3.94 in) 

 
keq = Fy/ max = 1,600/0.1 = 16,000 kN/m (91.43 kip/in) 

eq = mkeq /  = 000,1/'000,16  = 4 rad/s 

  Teq = 2 / eq = 2 /4 = 1.57 s 
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Equivalent damping: 
 

 
max,2

1     
e

eq U
ED

  

 ED = area of loop = 2 Fy (2 max � 2 y)  
  = 2 (1,600) {2(0.1) � 2 (0.02)} = 512 kN.m (4,532 kip.in) 
 Ue,max =  Fmax max = 1,600 (0.1) = 160 kN.m (1,416 kip.in) 
 

  %5151.0
160
512

2
1      eq  = 0.51 = 51% 

 
with Teq = 1.57 s, and eq = 51%, spectral velocity is given in Example 4-4, 
Figure 1 (c), as Sv  0.4 m/s (15.75 in/sec). As a result, 
 
  Sd =  Sv/ eq = 0.4/(4) = 0.1 m (3.94 in) 

 Sa = eq Sv = 4 (0.4) = 1.6 m/s2 (63 in/sec2) 
 
 max = Sd = 0.1 = 0.1 m   (3.94 in) 
 Fmax = m Sa = 1,000 (1.6) = 1,600 kN (360 kip) 
 
Because the resulting force is 1,600 kN (360 kip), which coincides with the 
yield force of the structure, the correct solution is reached, and the final 
result is  
 

max = 0.1 m (3.94 in) 
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PROBLEMS 
 
 
Problem 4-1 
 
A frame with a diagonal viscous 
damper is shown in Problem 4-1, 
Figure 1. The frame members 
have uniform mass distribution 
and constant cross section. The 
frame is intended to behave 
inelastically under the excitation of 
its supports by a horizontal com-
ponent of an earthquake profile 
along line A-B as shown in 
Problem 4-1, Figure 2. The frame 
members have the following 
properties: 
 
M = 100 kN.s2/m/m  
         (0.0145 kip.s2/in/in) 
E = 25x106 kN/m2  (3,625 ksi) 
A = 0.24 m2  (372 in2) 
I = 0.0128 m4  (30,752 in4) 
My = 1,500 kN.m (13,277 kip.in) 
 
The damper has the following co-
efficient of viscous damping: 
 
C = 220 kN.s/m (1.257 kip.s/in)  
 
Use the central differences method and the consistent mass matrix to find 
the horizontal displacement history. 
 
For calculation purposes, take the time interval, t = 0.1 s. 
 
Problem 4-2 
 
An elevated tank is supported by a single column as shown in Problem 4-2, 
Figure 1 (a). The structure is subjected to an earthquake as shown in 
Problem 4-2, Figure 1 (b). Find the displacement history of the horizontal 
displacement of the tank in the two following cases: 
 
(1) Ignore the effect of the tank mass on the stiffness of the column (use 

first order analysis). 
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(2) Consider the effect of the tank mass on the stiffness of the column 
(use second order analysis). The geometric stiffness matrix is given 
in Chapter 3, Section 3.9.2.  

 

 
 

PROBLEM 4-2, FIGURE 1 
 

(a) Structure Layout 
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5 
 
 
 
 
 

BEHAVIOR OF 
STRUCTURES UNDER 
SEISMIC EXCITATION 

 
 
 
 
 

5.1  Introduction 

Previous chapters have shown that structures can be designed and 
constructed with much less strength than their elastic strength demand in 
order to reduce the extremely high cost associated with elastic response. 
This reduction imposes additional structural requirements to the tra-
ditional structural requirements of ductility, energy dissipation and self-
centering capacity. Such requirements can be evaluated and quantified 
using explicit inelastic dynamic analysis. 
 
Ideally, one would use simplified rules and procedures when doing an 
explicit inelastic dynamic analysis on account of the complex, time-
consuming nature of this analysis and the need for practical and relatively 
quick solutions to design problems in practice. 
 
Such simplifications do exist in earthquake engineering in terms of 
seismic structural properties and force-reduction parameters. Figure 5-1 
illustrates this concept by showing the inelastic response of a structure to 
earthquake excitation. If the structure is designed to remain elastic during 
excitation, the structure will experience an induced elastic force and 
inelastic displacement equal to Ve and e. However, experience from 
previous actual earthquakes and inelastic dynamic analysis shows that 
the structure can be designed with strength less than the elastic demand, 
Vy, resulting in maximum inelastic displacement, M. Because M is larger  
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than the yield displacement y), there will be a tradeoff between large 
force and large displacement. 
 
For these reasons, let us consider the following necessary quantities and 
expressions before proceeding with this concept. 

5.1.1  Force-Reduction Factor, R 

The force-reduction factor is de-
fined as the ratio of the elastic 
strength demand to the actual yield 
level of the structure. With ref-
erence to Figure 5-2, R may be 
expressed as 
 

  
y

e

F
F

R   

 
It should be noted that R may also 
be expressed in terms of dis-
placements as 

  
y

eR   

 
where Fe and e are the maximum force and maximum displacement due 
to the linear elastic response of the structure during the entire time of 
excitation by the earthquake. 
  
 

FIGURE 5-1
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Fy and y are the force and displacement at first significant yield as shown 
in Figure 5-2. Because the inelastic response of actual structures is not well 
defined by straight line segments, as in the ideal case, the first significant 
yield is not necessarily the formation of the first plastic hinge in the 
structure. Figure 5-3 provides various definitions for the first significant 
yield: the first yielding point of the structure as shown in Figure 5-3 (a), the 
intersection of the initial tangent and the collapse load as shown in Figure 
5-3 (b), or equal energy absorption as shown in Figure 5-3 (c). 

5.1.2  Ductility 

Ductility is the capacity of the structure to undergo large deformations 
without any significant reduction in strength. Figure 5-4 shows how the 

ductility of structures may be described as high, low or even brittle. Ductility 
is usually expressed as a ductility ratio of the maximum deformation under 
consideration to the actual yield deformation. Deformation under 
consideration may include top displacement, plastic hinge rotation, cur-
vature and cyclic inelastic displacement. Ductility ratios for different struc-
tural elements are defined below.  
 

FIGURE 5-4
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For buildings, ductility is expressed in terms of the displacement at the top 
of the building, as shown in Figure 5-5, and is defined as the top dis-
placement ductility ratio,   
 

  
y

µ  

 
For beam elements, the ductility may be 
expressed in terms of rotation at specified lo-
cations along the axis of the beam. This is 
usually expressed as a rotational ductility 
ratio,   

  
y

µ   

 
The ductility of beam elements may also be 
expressed in terms of the curvature, , of sections along the axis of the 
beam. This is usually given as a curvature ductility ratio,   

 
y

µ   

 
For cyclic behavior, the ductility 
may be expressed as an ac-
cumulation of plastic defor-
mations. For example, the cyclic 
ductility ratio, c, for the model 
in Figure 5-6 is expressed as 
 

  
y

piy
c


µ  

 
For each ductility ratio defined 
above, two sets of ductility ratios 
are specified: ductility capacity 
and ductility demand. Ductility capacity is the maximum usable ductility of 
the structure (the top displacement ductility capacity,  c) and is expressed 
as 
 

  
y

u
c µ  

 
where u is the maximum usable top displacement of the structure.  
Similarly, there is rotational ductility capacity,  c; curvature ductility capac-
ity,  c and so forth. 
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The second set of ductility ratios, ductility demand, is the maximum ductility 
that is reached during earthquake excitation. In other words, ductility de-
mand is the top displacement ductility 
demand  d = M/ y), where M is the 
maximum displacement reached dur-
ing earthquake excitation. Similarly, 
there is rotational ductility demand, 
 d; curvature ductility demand,  d; 
and so forth. 
 
Because the top displacement is a 
global quantity, it may be referred to 
as the global ductility: global ductility 
demand, d, and global ductility 
capacity, c. Conversely, curvature 
and rotation are considered local 
ductility. Thus, they are referred to as 
local ductility: local ductility demand, 
ld, and local ductility capacity, lc. 
  
The global ductility ratio is generally a 
function of the local ductility ratio, as 
will be shown later in this chapter. 

5.1.3  Energy Dissipation Capacity 

The energy dissipation capacity of the structure is its capacity to dissipate 
portions of the absorbed energy. In this context, it is important to distin-

guish between energy absorption and energy dissipation. Energy ab-
sorption is the total energy imparted to the structure during excitation as 
shown in Figure 5-7. Energy dissipation is the energy dissipated in the 
structure in any form. For example, the plastic deformations shown in 
Figure 5-8 dissipate energy in the form of heat. A portion of the absorbed 
energy is not dissipated in the structure. In Figure 5-8, the elastic energy is 

FIGURE 5-7
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converted back into kinetic energy, causing the structure to swing in the 
other direction during vibration. 
 
The energy dissipation in these figures is characterized by the size of the 
hysteresis loop, and the loop size is proportional to hysteretic damping. In 
addition, the energy dissipation capacity of the structure is different from its 
ductility. The energy dissipation may be characterized as low or high, re-
gardless of the ductility of the structure. This difference is illustrated in 
Figure 5-9, which shows systems of low- and high-energy dissipation ca-
pacities for the same ductility ratio of the structure. Elastic systems exhibit 
zero energy dissipation without formation of hysteresis loops as shown in 
Figure 5-9 (a). 

5.1.4  Self-Centering Capacity 

Self-centering capacity is the capacity of an inelastic structure to return to 
its original position when subjected to vibration in the inelastic range as 
shown in Figure 5-10 (a). If the structure does not return to its original 
position, the system does not have self-centering capacity, as shown in 
Figure 5-10 (b). Instead, the system exhibits permanent plastic deformation 
known as plastic drift. Analysis and experience have shown that structures 
with post-yielding stiffness around 10% or higher than their initial elastic 
stiffness exhibit self-centering capacity.  

5.1.5  Frequency Shift 

Frequency shift is a property of inelastic systems that is related to the 
change of stiffness due to yielding of the structure. Because the frequency 
is proportional to the square root of the stiffness ( eq = mkeq / ), any  
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yielding of the system causes changes in the stiffness, as shown in Figure 
5-11. This results in a change in the frequency and in the period. 
Remember that attracted forces from earthquakes are a function of the 
structural period (as discussed in the 
section on response spectrum analysis). 
Therefore, the force and displacement will 
interact with this frequency shift during 
excitation. 
 
General Note 
 
In earthquake engineering, ductility is a 
directly used quantity in design. For 
example, the force-reduction factor is 
usually expressed in terms of ductility demand (as will be shown in the 
following sections). The other properties, such as energy dissipation, self-
centering capacity and frequency shift, are only implicitly considered in the 
relationships of force reduction even though they have a large effect on 
such relations. 

5.2  Relationship Between Force Reduction and Ductility Demand 

Because of the extreme random-
ness and uncertainty of earth-
quakes, the relationship between 
the force-reduction factor, R, and 
the global ductility demand, d, can 
only be established through sta-
tistical or probabilistic means. Ex-
perience and inelastic dynamic 
analysis indicate that the ductility 
demand is function of the amount of 
force reduction. As a general trend, 
ductility demand increases as the 
force reduction increases (as shown 
in Figure 5-12). Figure 5-12 shows 
that a reduction of the actual 
strength of the structure from elastic 
strength demand, Fe, to level Fy1 will result in the maximum inelastic 
displacement of M1.  Each level of reduction in the figure—to level 2 or 3, 
for example—requires ductility demand associated with that level as 
marked by the envelope line. The envelope also indicates that large re-
duction in the strength requires larger ductility demand from the structure. 
 
Newmark has proposed two approximate rule of thumb relationships 
between R and d based on the structural period. Newmark has found that 
for long period structures, the maximum elastic and maximum inelastic 

Displacement 

S
tre

ng
th

 

Fy1

Fe

 y1 e

Elastic Response 

Inelastic 

Envelope 

M1

3
2

1

FIGURE 5-12
STRUCTURAL RESPONSE 

FIGURE 5-11 
FREQUENCY SHIFT 

 
F

ko

keq< ko 



Chapter Five 

160 

displacements remain within the same range. For short period structures, 
the maximum elastic energy and the maximum inelastic energy absorbed 
by the structure remain within the same range. Accordingly, Newmark has 
proposed the following two famous relationships: 
 
1. Equal Displacement Criterion (EDC) for long period structures 
2.  Equal Energy Criterion (EEC) for short period structures 
 
Nassar and Krawinkler propose a more general relationship. These criteria 
will be explained in the following sections. 

5.2.1  Equal Displacement Criterion 

As mentioned earlier, in equal displacement criterion, the maximum elastic 
displacement and the maximum inelastic displacements remain the same 
during the excitation. This can be seen in Figure 5-13. Because of similarity 
in triangles O-Fy- y and O-Fe- M, the following relationships are deduced: 
 
since e = M  
 

and  
y

e

y

e

F
F

R     . . . (1) 

and  
y

e

y

M
d    . . . (2) 

by equating (1) and (2), the relationship 
between R and d becomes 
 
 R = d 
 
This relation is only valid for long period 
structures. The long period term is only a 
relative quantity associated with the dominant period of the earthquake.  

5.2.2  Equal Energy Criterion 

As mentioned earlier, in equal energy 
criterion, the maximum elastic absorbed 
energy and the maximum inelastic 
absorbed energy remain the same during 
the excitation. This can be seen in Figure 
5-14 due to equality of areas O-Fe- e and 
O-Fy-Fy- M. For example, A1 and A2 yields 
 
since A1 = A2  
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and  
y

e

y

e

F
F

R      

and  
y

M
d     

by equating area A1 and A2, the relationship between R and d can be 
shown to be 
  1µ2  dR  
 
This relationship is only valid for short period structures. The short period is 
only a relative quantity associated with the dominant period of the earth-
quake.  

5.2.3  General Relationship Between R and d 

All relationships between the force-reduction factor and the global ductility 
demand are based on statistical measures. This section illustrates the need  

 
for statistical evaluation by presenting and discussing the inelastic 
response of a single degree of freedom system to nine earthquake records. 
The parametric study is performed using inelastic dynamic analysis with 
variation of the period and the yielding level of a bilinear hysteresis 
model. The parameter variation includes six periods and six levels of 
yielding of the hysteresis model for each earthquake record that results in 
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324 pairs of R and d values. The bilinear model is selected with 10% 
post-yielding stiffness.   
 
Figure 5-15 shows the results of this parametric study. The response is ex-
tremely scattered, and ductility demand increases tremendously for short 
periods. This structural behavior is considered the norm in the response of 
structures to earthquakes due to the extreme randomness in earthquakes, 
as noted in previous chapters. 
 
For these reasons, Nassar and Krawinkler have conducted statistical 
evaluation of the response of different hysteresis models to sixteen actual 
earthquake records. Nassar and Krawinkler’s finders were consistent with 
the general trend. They concluded that the relationship between R and d 
can only be evaluated by statistical means and proposed the following 
expression to describe this relationship: 
 
  R = [C.(d �1) + 1]1/C         
 
where C is given as 

 
T
b

T
TC

a

a





1
   

 
For a bilinear model with 10% post-yielding stiffness, Nassar and 
Krawinkler used nonlinear regression analysis to produce values of a = 
0.8 and b = 0.29. Figure 5-16 uses these values to show a plot of the 
parameter C versus the period T. This figure also shows results from the 
response of the elasto-plastic model (p = 0). 
 
Both the Newmark criteria of equal displacement and equal energy are 
embedded in the above relationship:  
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when  C = 1   R = d 
 
and when  C = 2   1µ2  dR  
  
The parameter C can also be viewed as an indication for ductility demand. 
For example, if C = 1, the relationship tends to the equal displacement 
criterion where ductility demand is equal to the force-reduction value. 
However, if C = 2, the relationship tends to the equal energy criterion 
where ductility demand exceeds the force-reduction value. Therefore, 
higher values of C indicate higher ductility demand which increases by 
shortening the structural period as clearly shown in Figure 5-16. 
 
In conclusion, the structural response to earthquakes is extremely random. 
The data points are extremely scattered. For these reasons, there is 
always a need for statistical evaluation of the structural demand. In 
addition, seismic codes are generally cautious when they address this 
issue (the high uncertainty with the structural demand). As a result, the 
assignment of (R) and (d) in seismic codes is based in part on judgment, 
experiments and experience from previous earthquakes and from practice. 
The codes always emphasize that the given requirements are minimum 
requirements. 
 
In general, the equal displacement criterion and the equal energy criterion 
are still the most popular in practice. The equal energy criterion may be 
viewed as an upper bound criterion because it requires more ductility de-
mand than the equal displacement criterion. 
 
Example 5-1 
 
Example 5-1, Figure 1, shows a short period building that is excited by an 
earthquake. Inelastic dynamic analysis results in the hysteretic behavior 
shown in this figure, which also shows one asymmetric hysteresis loop at 
the maximum response. 
 
(1) Calculate the hysteretic damping in terms of equivalent viscous 

damping. 
 
(2) Calculate the global ductility demand for this building. 
 
(3) Calculate the elastic design force and the maximum elastic 

displacement as if this building is required to be constructed as an 
essential facility to remain elastic during the earthquake given in the 
figure. 
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Solution 
 
Part (1): Equivalent viscous damping (see Chapter 4) 
 

 
max,2

1       
e

eq U
ED

  

where: 
 

  ED = area of loop = (100 + 60) (150)(2) = 48,000 kN.mm 
  (424,848 kip.in) 
 
  Ue,ma = Fmax max  
 = 0.5 {(150)(100) + (150)(120)} = 16,500 kN.mm 
  (146,042 kip.in) 
 

 
500,16
000,48

2
1       eq  = 0.46 = 46% 

 
Part (2): Global ductility demand: 
 
initial stiffness: ko = Fy/ e = 2 Fy/2 e 
   = 2(150)/(100 – 40) = 5 kN/mm                        
  (28.571 kip/in) 
yield displacement: y =  Fy/ko = 150/5  = 30 mm (1.18 in) 
maximum displacement: M = from figure = 120 mm (4.72 in)  
 

Therefore, ductility demand: 
30

120µ 
y

M
d = 4  

Part (3): Elastic strength demand: 
 

  
 

F 
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Because the building is of the short period type, use equal energy criterion 
for  the R-d relationship: 
 
 1)4(21µ2     dR = 2.65 
 
since R = Fe/Fy 
or 2.65  = Fe/150  
 
required elastic force: Fe = 397 kN (89 kip) 
 
Example 5-2 
 
The smooth stiffness-degrading (SSD) hysteresis shown in Example 5-2, 
Figure 1, is subjected to an excitation based on the record of an earth-
quake in southern California (EQ15.stn). Table 5-1 below summarizes the 
results from inelastic dynamic analysis in consistent units. Use the fol-
lowing steps to analyze the results: 

 
(1) Calculate the force-reduction factor, R, and the global ductility 

demand, d, for each case in the table. 
  
(2) Plot all data points obtained from (1) as discrete points, using d as 

an abscissa and R as an ordinate.  
 
(3) Use the chart from (2) to plot the Newmark rule of thumb 

relationships between R and d (namely, the equal displacement 
criterion, EDC, and equal energy criterion, EEC, on the same chart).  

Smooth Stiffness-Degrading (SSD) Hysteresis Model 
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y
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M Time, t
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TABLE 5-1 
INELASTIC DYNAMIC ANALYSIS RESULTS 

 
Case 
No. 

T, 
sec Fy y Fe M Case

No. 
T, 

sec Fy y Fe M 

 
1 
2 
3 
4 
5 
6 

 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 

 
800 
800 
800 
800 
800 
800 

 
0.66 
0.66 
0.66 
0.66 
0.66 
0.66 

 
800 

1030
1260
1490
1720
1950

 
0.66
0.58
1.02
1.36
1.61
3.42

 
19 
20 
21 
22 
23 
24 

 
0.5
0.5
0.5
0.5
0.5
0.5

 
30 
30 
30 
30 
30 
30 

 
0.68 
0.68 
0.68 
0.68 
0.68 
0.68 

 
30 
60 
90 
120 
150 
180 

 
0.68 
1.36 
1.95 
2.49 
2.90 
2.96 

 
7 
8 
9 

10 
11 
12 

 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 

 
180 
180 
180 
180 
180 
180 

 
0.64 
0.64 
0.64 
0.64 
0.64 
0.64 

 
180 
252 
324 
396 
468 
540 

 
0.64
0.68
1.10
1.74
2.22
3.85

 
25 
26 
27 
28 
29 
30 

 
1 
1 
1 
1 
1 
1 

 
25 
25 
25 
25 
25 
25 

 
0.64 
0.64 
0.64 
0.64 
0.64 
0.64 

 
25 
56 
87 
118 
149 
180 

 
0.64 
1.39 
1.85 
2.65 
2.50 
3.11 

 
13 
14 
15 
16 
17 
18 

 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 

 
90 
90 
90 
90 
90 
90 

 
0.71 
0.71 
0.71 
0.71 
0.71 
0.71 

 
90 
124 
158 
192 
226 
260 

 
0.71
1.01
1.32
2.42
2.98
3.53

 

 
31 
32 
33 
34 
35 
36 

 
2 
2 
2 
2 
2 
2 

 
20 
20 
20 
20 
20 
20 

 
0.69 
0.69 
0.69 
0.69 
0.69 
0.69 

 
20 
32 
44 
56 
68 
90 

 
0.69 
1.05 
1.41 
1.59 
2.23 
3.34 

    
Solution 
 
Part (1): Consider case 6 in Table 5-1: 
 
Force-reduction factor: R = Fe/Fy = 1950/800 = 2.44 
Global ductility demand: d = M/ y = 3.42/0.66 = 5.18 
 
The rest of the values are calculated in a similar way and are provided in 
Table 5-2: 
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TABLE 5-2 
CALCULATED R AND d VALUES 

 
Case T Fy Fe y M d R Case T Fy Fe y M d R 

                
1 .1 800 800 0.66 0.66 1.00 1.00 19 .5 30 30 0.68 0.68 1.00 1.00 
2 .1 800 1030 0.66 0.58 0.88 1.29 20 .5 30 60 0.68 1.36 2.00 2.00 
3 .1 800 1260 0.66 1.02 1.55 1.58 21 .5 30 90 0.68 1.95 2.88 3.00 
4 .1 800 1490 0.66 1.36 2.05 1.86 22 .5 30 120 0.68 2.49 3.67 4.00 
5 .1 800 1720 0.66 1.61 2.44 2.15 23 .5 30 150 0.68 2.90 4.27 5.00 
6 .1 800 1950 0.66 3.42 5.18 2.44 24 .5 30 180 0.68 2.96 4.35 6.00 
                
7 .2 180 180 0.64 0.64 1.00 1.00 25 1 25 25 0.64 0.64 1.00 1.00 
8 .2 180 252 0.64 0.68 1.07 1.40 26 1 25 56 0.64 1.39 2.17 2.24 
9 .2 180 324 0.64 1.10 1.73 1.80 27 1 25 87 0.64 1.85 2.89 3.48 
10 .2 180 396 0.64 1.74 2.74 2.20 28 1 25 118 0.64 2.65 4.14 4.72 
11 .2 180 468 0.64 2.22 3.49 2.60 29 1 25 149 0.64 2.50 3.90 5.96 
12 .2 180 540 0.64 3.85 6.06 3.00 30 1 25 180 0.64 3.11 4.86 7.20 
                

13 .3 90 90 0.71 0.71 1.00 1.00 31 2 20 20 0.69 0.69 1.00 1.00 
14 .3 90 124 0.71 1.01 1.44 1.38 32 2 20 32 0.69 1.05 1.52 1.60 
15 .3 90 158 0.71 1.32 1.87 1.76 33 2 20 44 0.69 1.41 2.05 2.20 
16 .3 90 192 0.71 2.42 3.42 2.13 34 2 20 56 0.69 1.59 2.31 2.80 
17 .3 90 226 0.71 2.98 4.22 2.51 35 2 20 68 0.69 2.23 3.24 3.40 
18 .3 90 260 0.71 3.53 5.00 2.89 36 2 20 80 0.69 3.34 4.86 4.00 

 
 
Parts (2) and (3): Example 
5-2, Figure 2, is a graphical 
presentation of the results in 
Table 5-2. The figure shows 
that the results are gen-
erally random and scat-
tered. Note the wide spread 
of results at large ductility 
demand. In addition, the 
response of all short period 
cases is close to the equal 
energy criterion. This im-
plies higher ductility de-
mand for structures with 
short periods than for those 
with long periods. 
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5.3  Relationship Between Global Ductility and Local Ductility 

As discussed in previous sections, reduction of the elastic strength demand 
by an R-value imposes ductility demand on the structure, d. For safe de-
sign, the structure must possess enough ductility capacity to equal or 
exceed the imposed ductility demand. In terms of global ductility, this con-
dition is given as 
 
 c  d  . . . as safe design condition 
 
The global ductility capacity (c) is a function of local ductility capacity, lc, 
which in turn, is a function of local section properties. 
 
In structural engineering, the deformations of frame structures are generally 
dominated by flexure. Therefore, ductility is usually expressed in terms of 
flexure deformation (curvature, ): 
 

lc =   = u/ y 
 
Because shear behavior is brittle, shear failure must be avoided in seismic 
design. Instead, the ductility is provided through flexure behavior. Global 
and local ductility are related by the laws of the Theory of Structures. By 
knowing forces and moments, the rotations and curvatures can be found, 
and deflection can be evaluated. 
 
For example, Figure 5-17 shows a 
vertical elastic steel column that is 
subjected to a horizontal force, H. 
The moment and curvature dia-
grams for this system are drawn in 
Figure 5-17. For a linear elastic 
system, the curvature will be 
directly proportional to the 
moment (  = M/EI). Knowing 
curvature, the top displacement 
deflection can be evaluated, for 
example, by integrating the cur-
vature over the height of the 
column. Structural theory methods 
such as conjugate beam, virtual 
work and others will also be valid. 
 
As noted earlier, seismic design requires the calculation of ductility ratios in 
the inelastic stage. As a result, deformations are required in the inelastic 
range. For example, if the steel column in Figure 5-17 is loaded beyond its 
elastic limits, the top displacement at first yield and at ultimate state can be 
found using the same principle as in the elastic case: by integrating the 
curvature at first yield and then at ultimate state. The difference from the 
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elastic case will be in the relationship between the moment and the 
curvature, which is nonlinear. 
 
Figure 5-18 (a) illustrates the column section properties in terms of the M-  
relationship. The moment at first yield is drawn in Figure 5-18 (b). The 
corresponding curvature distribution will also be linear insofar as the yield 
state is not exceeded. Thus, the behavior will be identical to the linear 
elastic case. The displacement at first yield is calculated by integration of 
the curvature given in Figure 5-18 (b). 

 
The moment at ultimate state is shown in Figure 5-18 (c). This will also be 
linear due to the given loading condition. However, the curvature will not be 
linear as in the first yield case. The curvature, in this case, must be found 
from the moment-curvature relationship given in Figure 5-18 (a), which by 
inspection, yields the curvature distribution shown in Figure 5-18 (c). Fi-
nally, the top displacement at ultimate state is simply calculated by in-
tegration of the curvature distribution given in Figure 5-18 (c). 
 
An empirical expression is 
developed for the length of the 
plastic hinge region for rein-
forced concrete beams. For 
Figure 5-19, this expression is 
 
 p = 0.5 d + 0.05 Z 
where: 
d = Effective depth of the 

section. 
Z = Distance from critical 

section to the point of 
contraflexure. 

   = H for cantilevers. 
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5.4  Local Ductility Capacity 

For ultimate curvature, local ductility is evaluated by the laws of structural 
mechanics using equilibrium, compatibility (strain compatibility), and 
constitutive relationships (material properties). Note that local ductility is 
highly affected by axial loads. In general, axial loads reduce the ductility of 
the cross section. 
 
An understanding of how material properties affect ductility capacity is 
essential because such properties depend on loading schemes and 
responding modes. For example, the response of concrete in the flexure 
mode is different from its response in the shear mode. To evaluate material 
properties, the loading schemes may be classified in terms of state of 
stresses and in terms of loading histories. Although the state of stress 
affects concrete behavior as a material, loading history affects both 
concrete and steel behavior at the material level. 
 
In general, the behavior of the material and the corresponding evaluation of 
ductility capacity may be classified according to loading schemes as 
monotonic and cyclic behavior. The evaluation of ductility capacity for the 
monotonic case and the cyclic case will be addressed in separate sections 
below. 
 
The evaluation of cyclic ductility capacity is more complicated than 
monotonic ductility capacity. However, the vibrations caused by earth-
quakes induce large cyclic displacements in the structures. Thus, cyclic 
ductility capacity is the more realistic evaluation to consider when 
addressing the reliable safety of a structure. 

5.5  Evaluation of Monotonic Local Ductility Capacity 

The evaluation of monotonic local ductility capacity depends on the 
monotonic material behavior of both concrete and steel. Such behavior is 
described in the following sections. 

5.5.1  Monotonic Behavior of Concrete 

Plain concrete is known to be a brittle material. However, the ductility and 
strength of concrete under monotonic compressive loading can be im-
proved by lateral confinement. Because concrete behaves according to the 
Coulomb failure criterion, the lateral confinement of concrete creates a 
triaxial state of stresses that improves its strength. The confinement of 
concrete improves the monotonic as well as cyclic behavior of concrete. 
The improvement in concrete quality due to confinement is tremendous. 
Figure 5-20 (b) indicates that the strength due to confinement may be 
increased to three times its unconfined strength, whereas its confined strain 
capacity can be as high as 10 times its unconfined strain capacity. 
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The compressive strength capacity of confined concrete may be expressed 
in terms of confined lateral pressure: 
 
  fcon = fc  + 4.1 fp 
 
where: 
fc  = Unconfined compressive strength of concrete. 
fcon = Confined compressive strength of concrete. 
fp = Lateral confining pressure. 
 
Steel and concrete perform in different ways in terms of material failure. 
Both materials fail eventually in shear. However, concrete material de-
pends on cohesion and internal friction to resist external forces, whereas 
steel material depends only on cohesion to resist such forces. In other 
words, because steel as a material does not have an internal angle of 
friction, its behavior is analogous to cohesion soil (pure clay). In contrast, 
the behavior of concrete as a material is analogous to cohesion-friction 
soils (a clay-sand mix).  
 
Consequently, the failure of steel is independent of any confinement lateral 
pressure. As shown in Figure 5-21 (a), the shear strength of steel remains 
constant regardless of any external lateral pressure. The steel strength 
bounded by Coulomb envelope as shown in Figure 5-21 (a) may be ex-
pressed mathematically as follows: 
 
 u = C 
 
where: 

u = Ultimate shear strength capacity of steel. 
C = Internal cohesion. 
 

FIGURE 5-20
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In contrast, the failure of concrete depends on the external lateral pressure. 
Figure 5-21 (b) shows how the shear strength of concrete increases by 
increasing lateral pressure. The concrete strength bounded by the Coul-
omb envelope shown in Figure 5-21 (b) may be expressed mathematically 
as follows: 
 
 u = C + n tan 
 
where: 

u = Ultimate shear strength capacity of steel. 
C = Internal cohesion. 

n = Normal stress on failure plane.  
= Internal angle of friction. 

5.5.2  Monotonic Behavior of Steel 

Unlike concrete, the properties of steel as a material are well established 
and well defined. Figure 5-22 (a) shows the stress-strain diagram of steel 
as obtained from a monotonic test on a steel coupon that is free of residual 
stresses. The steel behavior is linear up to its yielding stress, followed by a 
well-defined yielding plateau, and continues into a strain hardening region, 
which marks the increase of stress up to its ultimate capacity. The steel 
shown in the figure exhibits a high level of ductility. 
 
However, in structural members, the behavior will not be linear as in the 
coupon test case. The residual stresses that usually result from production 
processes change the properties of the steel. Figure 5-22 (b) shows the 
shape of the stress-strain curve of steel that would occur during the stub 
column test. As can be observed, the steel loses its linearity and shows 

FIGURE 5-21
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nonlinear behavior similar to concrete material. This behavior is extremely 
important in the study of stability in steel structures. In fact, inelastic sta-
bility, where the effect of residual stresses is considered in the stability of 
steel structures, is reflected in the column curves in the LRFD manual of 
the AISC code. 

5.5.3  Idealized Strain Compatibility Analysis 

Local ductility capacity may be evaluated in the simplest ideal case when 
the material is linear elastic and perfectly plastic, sections are homo-
geneous, and the loading is monotonic. Note that steel material behaves 
linearly if it is free of residual stresses, whereas concrete is considered 
linear as long as its stress does not exceed 0.45 fc . In this case, the 
curvatures at first yield and at ultimate state are evaluated as follows. 
 
Curvature at first yield: 
 
Curvature at first yield is evaluated when the maximum strain in the section 
reaches yield stress. Figure 5-23 shows the state of stresses and strains at 
first yield for steel and for reinforced concrete sections. Figure 5-23 (a) 
shows the state of strain and stress for a steel section subjected to bending 
moment and axial load. Because of the presence of the axial load, the 
neutral axis will not be at the midpoint of the section. Thus, one side of the 
section will yield before the other. The curvature in this case is evaluated 
as the yield strain divided by the distance to the neutral axis: 
 

 y = y/x1 
 
Figure 5-23 (b) shows the state of strain and stress for a reinforced 
concrete section subjected to bending moment with or without axial load. 
Because reinforced concrete sections are designed as under-reinforced 
sections, the steel will yield long before concrete crushing occurs. If the 
stress in concrete is within half its crushing strength (fc ), the curvature at 
first yield is evaluated in reference to the strain in the steel: 

FIGURE 5-22
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 y = y/x2 
 
Curvature at ultimate state: 
 
Curvature at ultimate state is evaluated when the maximum strain in the 
section reaches its capacity. Figure 5-24 shows the state of stresses and 
strains at ultimate state for steel and for reinforced concrete sections.  
Figure 5-24 (a) shows the state of strain and stress for a steel section sub-
jected to bending moment and axial load. The curvature in this case is 
evaluated as the ultimate strain divided by the distance to the neutral axis: 
 
 u = u/c1 

Figure 5-24 (b) shows the state of strain and stress for a reinforced 
concrete section subjected to bending moment with or without axial load. 
Note that the distribution of concrete stresses at ultimate state is nonlinear. 
However, the equivalent rectangular block given by the ACI code may be 
considered an alternative. Consequently, the curvature at ultimate state is 
evaluated in reference to the strain in the concrete: 

 
 u = cu/c1 

 

FIGURE 5-23
CURVATURE AT FIRST YIELD 

 

(b) Reinforced Concrete Section 

Cross section Strain Stress 

c

y

fc 

y 
x1

fy/n 

N.A
x2

As

y 

(a) Steel Section 

Cross section Strain Stress
s < y 

y

yx1 

s < y

N.A 
x2 

FIGURE 5-24
CURVATURE AT ULTIMATE STATE 

 

(b) Reinforced Concrete Section 

Cross section Strain Stress 

cu 

s > y

0.85 fc  

u
c1

fy 

N.A
c2

As

a 

u

(a) Steel Section 
Cross section Strain Stress

s < u 

y

uc1 

y

N.A 
c2 



Behavior of Structures Under Seismic Excitation 
 

175 

Unfortunately, the earthquake loading effect is not monotonic. Vibrations 
during an earthquake induce large cyclic displacements in the structure. 
Because cyclic behavior is completely different than monotonic behavior, 
cyclic behavior should be used when studying the behavior of structures. 
Cyclic behavior of structures is addressed in the next section. 
 
Example 5-3 
 
The steel column in Example 5-3, Figure 1, is subjected to a horizontal 
monotonic loading, F, and a constant axial load, P = 0: 
 
(1) Calculate the moment and curvature at first yield, My, y. 
(2) Calculate the moment and curvature at ultimate state, Mu, u. 
(3) Calculate the local ductility (curvature) ratio, lc. 
(4) Calculate the top displacement ductility ratio, c. 

Solution 
 
For first yield, refer to Example 5-
3, Figure 2. 
 
Moment of inertia: 
I = 300(400)3/12 –290(360)3/12  
 = 473 x 106 mm4 (1,136 in4) 
 
Elastic section modulus: 
Sx = I/x = 473 x 106/200  
   = 2,362 x 103 mm3 (144 in3) 
 

Moment:  
My = Sx y = 2,362 x 103 (350)  
 = 827 x 106 N.mm 
 (7,320 kip.in) 
 

y

EXAMPLE 5-3, FIGURE 2 
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Curvature: 
y = y /x1 = 0.001,75/200  

 = 9 x 10–6 rad/mm 
   (0.229 x 10–3 rad/in) 
 
Yield displacement: 
Refer to Example 5-3, Figure 3. 
 
By using the conjugate beam method, 
the moment of the curvature distribution 
about the top yields: 

y = y L2/3 = 9 x 10–3 (5)2/3 = 0.075 m 
    (2.95 in) 
 
For ultimate state, refer to Example 5-3, Figure 4. 
 
Neutral axis = area bisector: 
c1 = c2  
 
Plastic section modulus: 
Zx = {300(20)(190)  
 + 10(180)2/2}(2) 
  = 2,604 x 103 mm3 (159 in3) 
 
Moment: 
Ultimate moment is equal to plastic 
moment. Thus, 
 
Mu = Mp = Zx y  
    = 2,604 x 103 (350) = 911 x 106 N.mm (8,063 kip.in) 
 
Curvature: 

u = u /c1 = 0.02/200 = 100 x 10–6 rad/mm (2.540 x 10–3 rad/in) 
 
For ultimate displacement, 
refer to Example 5-3, Figure 5.  
 
Length of plastic zone, Lp, is 
obtained by proportionality of 
moments: 
 
My/Mu = Le/(Le + Lp)  
827/911 = Le/5 
 

Le = 4.54 m (178.7 in)   
 Lp = 0.46 m (18.1 in) 
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By using the conjugate beam method and dividing the plastic zone into two 
triangles by the dashed line as shown in Example 5-3, Figure 5, the 
moment of the curvature distribution about the top yields 
 

u = y (Le)2/3 + 1/2 y (Lp)(Le + Lp/3) + 1/2 u (Lp)(Le + 2/3 Lp) 
 = 9 x 10–3 (4.54)2/3 + 1/2 (9 x 10–3).(0.46).(4.54 + 0.46/3) 
  + 1/2 (100 x 10–3).(0.46).(4.54 + 2/3 (0.46)) 
  = 0.183 m (7.2 in) 
 
Ductility ratios 
 
Local ductility: 
 lc =   = u/ y  

  = 100/9 = 11.1 
 
Global ductility: 

 c =   = u/ y  
   = 183/75 = 2.4 

 
Global and local ductility ratios are not the same. In general, local ductility 
demand is much higher than global ductility demand. 
 
Example 5-4 
 
Consider the column in Example 5-3 to be subjected to an axial load of 
P = 1,000 kN (224.8 kip): 
 
(1) Calculate moment and curvature 

at first yield, Mya, ya. 
(2) Calculate moment and curvature 

at ultimate state, Mua, ua. 
(3) Calculate local ductility (cur-

vature) ratio, lc. 
(4) Calculate top displacement duc-

tility ratio, c. 
 
Solution 
 
For first yield, refer to Example 5-4, 
Figure 1. 
 
Neutral axis, distance x1: 
 
Cross sectional area:  A = 300 x 20 x 2 + 360 x 10  
  = 15,600 mm2 (24.18 in2) 

EXAMPLE 5-4, FIGURE 1 
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Moment:  
Stress at top flange is yield stress: 
 

y = � P/A � Mya/Sx
 

  � 350 = – 1,000 x 103/15,600 – Mya/2,362 x 103 

Thus, Mya = 675 x 106 N.mm (5,974 kip.in) 
 
Stress at bottom flange: 
  

b = � P/A + Mya/Sx
 

  = – 1,000 x 103/15,600 + 675 x 106/2,362 x 103 

 = 222 N/mm2 (MPa) (32.19 ksi) 
  
Find x1 by proportionality to extreme fiber stresses: 
 
 x1/(x1 + x2) = y/( y + b) 
 x1/(400) = 350/(350 + 222) 
Thus,  x1 = 245 mm (9.65 in) 
 
Curvature: 

ya = y /x1 = 0.001,75/245 
     = 7 x 10–6 rad/mm 
       (0.178 x 10-3 rad/in) 
 
For yield displacement, refer to Example 5-4, Figure 2. Use the conjugate 
beam method to determine the moment of curvature about the top: 
 

y = y L2/3 = 7 x 10–3 (5)2/3 = 0.058 m (2.28 in) 
 
For the ultimate state, refer to Example 5-4, Figure 3. 
 
The neutral axis can be found by considering the central symmetrical 
shape for axial load: 
 
  P = y tw h 
  1,000 x 103 = 350 (10) (h)   h = 286 mm (11.26 in) 
 
  c2 = {(c1 + c2) � h}/2 = (400 – 286)/2 = 57 mm (2.24 in)   
 c1 = 400 – 57 = 343 mm (13.5 in) 
 
The plastic section modulus in the presence of the axial load, Zxa, equals 
the plastic section modulus minus the central core: 
 
  Zxa = Zx � first moment area of central core 
  = 2,604 x 103 – 10 (286)2/4 = 2,400 x 103 mm3 (146 in3) 
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Moment: ultimate moment = plastic moment: 
 
 Mua = Mpa = Zxa y  
 = 2,400 x 103 (350) = 840 x 106 N.mm (7,435 kip.in) 
 
Curvature: ua = u /c1  
  = 0.02/343 = 58 x 10–6 rad/mm (1.473 x 10-3 rad/in) 
 
Ultimate displacement: Refer to Example 5-4, Figure 4.  
 
The length of plastic zone, Lp, is obtained by proportionality of moments: 
 
Mya/Mua = Le/(Le+ Lp)  
675/840 = Le/5  
 
Thus, 
 Le = 4.02 m (13.2 ft) 
 Lp = 0.98 m (3.2 ft) 
 
Determine the mo-
ment of curvature a-
bout the top by using 
the conjugate beam 
method and dividing 
the plastic region into 
two triangles by the dashed line: 
 

u = ya (Le)2/3 + 1/2 ya (Lp)(Le+ Lp/3) + 1/2 ua (Lp)(Le + 2/3 Lp) 
= 7 x 10–3 (4.02)2/3 + 1/2 (7 x 10–3).(0.98)(4.02 + 0.98/3)  

 + 1/2 (58 x 10–3)(0.98)(4.02 + 2/3 (0.98)) 
  = 0.185 m (7.28 in) 
 
Ductility ratios 
 
Local ductility: lc =   = ua/ ya = 58/7 = 8.3 
Global ductility: c =   = u/ y = 185/58 = 3.2 
 

EXAMPLE 5-4, FIGURE 3 
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Remember that the global and local ductility ratios are not the same. In 
general, local ductility demand is much higher than global ductility demand. 
 
Example 5-5 
 
The shear wall in Example 5-5, Figure 1, is subjected to a horizontal 
monotonic loading, F, and a constant axial load, P = 5,000 kN (1,124 kip): 
 

(1) Evaluate the yield curvature, y, assuming linear elastic concrete 
behavior.  

(2) Evaluate the ultimate curvature, u, using the ACI rectangular stress 
block distribution. 

(3) Evaluate the curvature ductility factor,  . 

 
Solution 
 
Concrete modulus of elasticity: Ec = 4,700 'cf  

   = 4,700 30  = 26,000 MPa (3,770 ksi) 
ACI parameter, 1:  1 = 0.85 
Modular ratio: n = Es/Ec = 200/26 = 7.7 
 
For first yield, refer to Example 5-5, Figure 2. 
 
Similarity of triangles (0-1-2 and 4-1-3): 
x1/d = c/( c + y) 
 
Multiply top and bottom by Ec: 
x1/d = fc/(fc + fy/n) = fc/(fc + 420/7.7)  . . . (1) 
 
Also similarity of triangles within area 0-1-2: 
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s / c = (x1 � d )/x1 = 1 � (d /x1) 
 
Multiply top and bottom by Ec: 
fs /fc = n{1 � (d /d).(d/x1)}  
 = 7.7 – 0.405 d/x1 
 
Substitute from (1) into the 
equation above: 
 fs /fc = 7.3 fc � 22.11           . . . (2) 
 
Equilibrium: 
  P = Cc + Cs � T 
 
  5 x 106 = 1/2 fc.x1.b + As  fs  – As fy 
  5 x 106 = 1/2 fc.x1.(400) + (6,000) fs  – (6,000)(420) 
 
Substitute x1 from (1) and fs  from (2) in the equation above, resulting in 
  803.8 fc2 � 5,263.4 fc � 417,452.6 = 0 
 
Solving the quadratic equation above in fc results in 
  fc = 26.3 MPa (3.814 ksi) 
 
from (1): x1 = 3,800 (26.3)/(26.3 + 420/7.7) = 1,236 mm (48.66 in) 
from (2): fs   = 7.3 (26.3) – 22.11 = 170 MPa (24.65 ksi)  
 
curvature: y = y/(d � x1) = 0.0021/(3,800 – 1,236)  
   = 0.82 x 10–6 rad/mm (0.021 x 10-3 rad/in) 
  
For ultimate state, refer to Example 5-5, Figure 3. 
 
Similarity of triangles: 

s / c = (c1 � d )/c1  
s /0.003 = (c1 � 200)/c1  

 
Multiply top and bottom by  
Es = 200,000 (29,000 ksi); 
fs  = 600 (c1 � 200)/c1     . . . (1) 
 
Equilibrium: 
 
  P = Cc + Cs � T 
 5 x 106 = 0.85 fc .a.b + As  fs  � As fy 
  5 x 106 = 0.85 (30).(0.85c1).(400) + (6,000) fs – (6,000)(420) 
 
Substituting fs  from (1) results in 
  8.67 c1

2 – 3,920 c1 – 720,000 = 0 
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Solving the quadratic equation above in c1 results in 
  c1 = 592 mm (23.3 in) 
 
Curvature: u = cu/c1 = 0.003/592  
 = 5.07 x 10–6 rad/mm (0.129 x 10-3 rad/in) 
 
Ductility ratio:   = u/ y = 5.07/0.82 = 6.18 
 
Example 5-6 
 
The steel frame in Example 5-6, Figure 1, is subjected to a horizontal 
load, F. The columns have the cross section and material properties 
given in Example 5-3. Use those results (My and Mu) and ignore the effect 
of axial load on the curvature and moment to determine the following:  
 
(1) Construct the load displacement curve, F-  relationship. 
(2) Calculate ductility capacity, c. 
 
Solution 
 
To enhance understanding, reread 
Example 5-3 before reading this 
example. 
 
At first yield 
 
From Example 5-3: 
My = 827 kN.m (7,320 kip.in) 

y = 9 x 10–6 rad/mm 
 (0.229 x 10–3 rad/in) 
 
The static solution of this frame indicates that the horizontal shears are 
equal at the supports. Thus,  
 
 My = 5 (Fy/2) 
 
827 = 5 (Fy/2)  Fy = 331 kN 
  (74.42 kip)

EXAMPLE 5-6, FIGURE 1 
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Yield displacement may be found using the virtual work concept. Example 
5-6, Figure 3 (b), shows the bending moment that occurs when a unit force 
is applied in the direction of the required displacement. Example 5-6, Fig-
ure 3 (a), shows the curvature distribution at first yield due to yielding force, 
Fy. 
 
Using the virtual work equation, 
 

y =  M1  ds 
  = integration of two diagrams shown in Example 5-6, Figure 3 
 
For this purpose, the known expression for integration of two trapezoids 
may be used: 
 
Integration = (S/6) {2 u1 .v1 + 2 u2 .v2 + u1 .v2 + u2 .v1}  
 
 = integration of two triangles + trapezoid   
 = (5/6){(2)(0.009)(2.5)}(2) + (7/6) {(2)(0.009)(2.5)(2) – (0.009)(2.5)(2)} 

y = 0.128 m (5 in)  
 
At ultimate state 
 
From Example 5-3: 
Mu = 911 kN.m (8,063 kip.in) 

u = 100 x 10–6 rad/mm 
 (2.54 x 10–3 rad/in) 
 
The static solution of this frame 
also indicates that the 
horizontal shears are equal at 
the supports as shown in 
Example 5-6, Figure 4. Thus, 
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  Mu = 5 (Fu
 /2) 

  911 = 5 (Fu/2)  Fu = 364 kN (81.83 kip) 

Ultimate displacement may also be found using the virtual work concept. 
Example 5-6, Figure 5 (b) shows the bending moment that occurs when 
unit force is applied in the direction of the required displacement. Example 
5-6, Figure 5 (a) provides the curvature distribution at ultimate state due to 
ultimate force, Fu. The procedures for finding the yield curvature are iden-
tical to the procedures in Example 5-3, which are obtained by the pro-
portionality of the moments along the member: 
 
Using virtual work equation, 
 

u =  M1  ds 
 = integration of diagrams shown in Example 5-6, Figure 5: 
 
Columns: integration of two columns: 
= (4.54/6).{(2)(0.009)(2.27)} (2) 
+ (0.46/6) {(2)(0.009)(2.27) + (2)(0.1)(2.5) + (0.009)(2.5) + (0.1)(2.27)} (2) 
= 0.183 
+ beam: integration of one beam, consider twice half beam: 
= (3.18/6).{(2)(0.009)(2.27)} (2) 
+ (0.32/6) {(2)(0.009)(2.27) 
+ (2)(0.1)(2.5) + (0.009)(2.5)  
+ (0.1)(2.27)} (2) 
= 0.084 
 

u = 0.183 + 0.084  
 = 0.267 m (10.51 in) 
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Knowing the forces and 
displacements at yielding 
and at ultimate makes it 
possible to construct the 
force displacement dia-
gram shown in Example 
5-6, Figure 6. 
 
Ductility capacity: 
 
c = u/ y  
 = 0.267/0.128 = 2.09 
 
 
5.5.4  General Strain Compatibility Analysis 

The general strain compatibility analysis is usually needed when a more 
precise evaluation of ductility capacity is required. It would also be required 
if the actual material properties are not idealized where the actual ultimate 
section capacity needs to be evaluated. For example, the actual stress-
strain of concrete is nonlinear and can best be approximated by parabola. 
Previous sections have shown that the stress-strain curve of steel is also 
nonlinear in the range of strain hardening. 
 
The general strain compatibility analysis is usually performed by iterative 
procedures to establish force equilibrium in the section by variation of the 
state of strain and, in turn, to determine the state of stress in the section. 
Such a procedure is best illustrated by the following example. 
 
Example 5-7 
 
An 800 x 800 mm box section is reinforced with eight 20 bars located as 
shown in Example 5-7, Figure 1 (a). The cross-sectional area of each bar 
is given as 314 mm2. The material properties are given as follows: 
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Steel: idealized elasto-plastic curve with yield stress, fy = 420 MPa 
 (60 ksi), and modulus of elasticity, Es = 200 GPa (29,000 ksi). 
 
Concrete: Concrete stress-strain is approximated as parabola as shown 

in Example 5-7, Figure 1 (b). This may be expressed as 
follows: 

 
  fc/fc  = 2 ( / co)  ( / co)2 

 
where: 
fc  = 30 MPa (4.35 ksi) 

co = 0.002 
cu = 0.003 

 
Consider this cross section to be subjected to an axial load, Pn = 900 kN 
(202 kip): 
 
(1) Evaluate curvature at first yield, y.  
(2) Evaluate curvature at ultimate state, u.  
 
Solution 
 
(1) At first yield: 
At first yield, the state of strain and stress will be as shown in Example 5-
7, Figure 2. The strain in the steel will be at its yield level, whereas the 
strain in the concrete is unknown. A starting point value of the neutral 
axis, x1, is first assumed in order to find the strain and stress in the con-
crete. Knowing x1 makes it possible to establish the strain in the concrete 
and all steel levels: 
 
Trial 1: Let x1 = 250 mm (9.84 in). Thus, 
  
  x2 = (d4 � x1) = 750 � 250 = 500 mm (19.69 in) 
 
Strain in steel at level d4 will be at yielding, fs = fy = 420 MPa (60 ksi)  
 
Thus, 
 y = fy/Es = 420/200,000 = +0.002,1 
 
Therefore, the curvature at this stage, , is given as 
 
 = y/x2 = 0.002,1/500 = 4.2 x 10–6 rad/mm (0.107x10–3 rad/in) 
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Strains: 
 
Strain in the extreme compression fibers of concrete (compression): 
   cm =  x1 = �4.2 x 10–6 (250) = –0.001,050 
 
Strain in the upper edge of the hollow core (compression): 
 2 =  (x1 � d2) = �4.2 x 10–6 (250 – 100) = –0.000,630 
 
Strain in steel at level d1 (As1 compression): 
 1 =  (x1 � d1) = �4.2 x 10–6 (250 – 50) = –0.000,840 

Strain in steel level d3 (As2 tension): 
 2 =  (d3 � x1) = +4.2 x 10–6 (400 – 250) = +0.000,630 
 
Stresses: 
 
Stress in extreme compression fibers of concrete (compression): 
  fcm = fc  {2 ( m/ co)  ( m/ co)2}  
  fcm =  30 {2 (0.001,050/0.002)  (0.001,050/0.002)2}  
  =  23.231 MPa (3.368 ksi) 
 
Stress in the upper edge of the hollow core (compression): 
  fc2 = fc  {2 ( 2/ co)  ( 2/ co)2}  
  fc2 =  30 {2 (0 000,630/0.002)  (0.000,630/0.002)2}  
  =  15.923 MPa (2.309 ksi) 
 
Stress in steel at level d1 (As1 compression): 
  fs1 = Es 1 = 200,000 (0.000,840) = 168.000 MPa (24.36 ksi) 

Stress in steel at level d3 (As2 tension): 
  fs2 = Es 3 = 200,000 (0.000,630) = +126.000 MPa (+18.27 ksi) 
 
Forces: 
 
The force in the concrete will be equal to the area of the stress diagram. 
Because the neutral axis passes through the hollow core, the concrete 

EXAMPLE 5-7, FIGURE 2
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force may be calculated as a hollow core force, Fc2 [at depth = 100 mm 
(3.94 in)], subtracted from a rectangular section force, Fc1 [at depth = 250 
mm (9.84 in)]. 
 
The area of the stress diagram may be evaluated by the integration of the 
parabola that describes the stress as given above. For ease of cal-
culations, the average stress under the stress diagram, fcav, may be cal-
culated by dividing the integrated function by its length: 
 
since fc = fc  {2 ( / co)  ( / co)2}  
then fcav = [  fc  {2 ( / co)  ( / co)2} d ]/  
or fcav = fc  {( / co)  (1/3) ( / co)2} 
   
Therefore: 
 
  fcav.1 = 30 {(0.001,050/0.002)  (1/3) (0.001,050/0.002)2}  
  = 12.994 MPa     (1.884 ksi) 
  fcav.2 = 30 {(0.000,630/0.002)  (1/3) (0.000,630/0.002)2}  
  = 8.458 MPa     (1.226 ksi) 
 
  Fc1 = fcav,1 x1 bf = (12.994)(250)(800)  
      =  2,598,800 N     (584 kip) 
  Fc2 =  fcav,2 (x1  d2) (bf – 2t) = (8.458)(250  100)(600)  
  = 761,220 N     (171 kip) 
 
  Fs1 = As1 fs1 = 3 (314) (168.000) = 158,256 N (36 kip) 
  Fs2 = As2 fs2 = 2 (314) (+126.000) = +79,128 N (+18 kip) 
  Fs3 = As3 fy = 3 (314) (420) = +395,640 N (+89 kip) 
 
Because all internal forces in the section are calculated, equilibrium 
requires that the summation of these forces be equal to the external force 
of 900 kN (202 kip). If compression is taken as positive, the summation of 
force in kN is calculated as 
 
   Fi = Fc1  Fc2 + Fs1  Fs2  Fs3  
 = 2,599  761 + 158  79  396  
 = 1,521 kN (220 kip) > Pn = 900 kN (202 kip) 
  
When the summation of internal forces is larger than the external applied 
load, the resulting compressive internal force must be reduced to reach 
900 kN (202 kip). Therefore, the second trial must proceed with a smaller 
value of concrete strain: for example, a smaller value of x1, such as 150 
mm (5.9 in). This iterative procedure is continued until equilibrium is 
reached. If iterative trials continue, the final equilibrium state will be 
reached at x1 = 200.5 mm (7.89 in), which also yields the following final 
results: 
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 x1 = 200.5 mm (7.89 in) 
    x2 = 549.5 mm (21.63 in)    
  y = 3.82 x 10-6 rad/mm (0.097 x 100-3 rad/in) 
 

cm = 0.000,766, 2 = 0.000,384, s1 = 0.000,575, s2 = 0.000,762 
 
In MPa: fcm = 18.584, fc2 =10.416, fs1 = 115, fs2 = 152, fs3 = 420 
In ksi: fcm = 2.695, fc2 =1.51, fs1 = 16.675, fs2 = 22.14, fs3 = 60.9 
 
In kN: Fcm = 1,608, Fc2 = 325, Fs1 = 108, Fs2 = 95, Fs3 = 396 
In kip: Fcm = 362, Fc2 = 73, Fs1 = 24, Fs2 = 21, Fs3 = 89 
 
  Fi = 900 kN (202 kip) 
 
The moment at first yield, My, can be readily calculated from the final trial 
by simply summing the moments of internal forces about the gross 
centroid of the section: 
 
  My =  Fi ri 
where: 
ri = The distance from the section’s gross centroid to the point of 

application of force, i. 
 
(2) At ultimate state: 
 
The state of strain and stress at ultimate state is as shown in Example 5-
7, Figure 3. The strain in the concrete will be at its ultimate level ( cu), 
whereas the strain in the steel is unknown. The first step to finding the 
strain and stress in the concrete is to assume a starting point value of the 
neutral axis, c1. However, the neutral axis depth at ultimate state will be 
smaller than its depth at yield state. Knowing c1 makes it possible to 
establish the strain in the concrete and in all steel levels: 

Trial 1: Let c1 = 100 mm (3.94 in). Thus, 
  
  c2 = (d4 – c1) = 750 – 100 = 650 mm (25.59 in) 

EXAMPLE 5-7, FIGURE 3
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The curvature at this stage, , is given as 
  = cu/c1 = 0.003/100 = 30 x 10–6 rad/mm (0.762 x 10–3 rad/in) 
 
Strains: 
 
Strain in the extreme compression fibers of concrete (compression): 
   cm = c1 = –30 x 10–6 (100) = –0.003 
 
Strain in the upper edge of the hollow core (compression): 
 2 =  (c1 � d2) = –300–6 (100 – 100) = 0. 
 
Strain in steel at level d1 (As1 compression): 
 1 =  (c1 � d1) = –30 x 10–6 (100 – 50) = –0.001,500 
 
Strain in steel level d3 (As2 tension): 
 2 =  (d3 � c1) = +30 x 10–6 (400 – 100) = +0.009 
 
Strain in steel level d4 (As3 tension): 
 2 =  c2 = +30 x 10–6 (650) = +0.019,5 
 
Stresses: 
 
Stress in extreme compression fibers of concrete (compression): 
  fcm = fc  {2 ( m/ co)  ( m/ co)2}  
  fcm = 30 {2 (0.003/0.002)  (0.003/0.002)2}  
  = 22.500 MPa (3.263 ksi) 
 
Stress in the upper edge of the hollow core (compression): 
  fc2 = fc  {2 ( 2/ co)  ( 2/ co)2}  
 = 0. MPa (0. ksi) 
 
Stress in steel at level d1 (As1 compression): 
  fs1 = Es 1 = 200,000 (0.001,500) = 300 MPa (43.5 ksi) 
 
Stress in steel at level d3 (As2 tension): 
  fs2 = Es 3 = 200,000 (0.009) = +1,800 MPa (+261 ksi) 
 
Since the calculated  fs2 > 420 MPa     (60.9 ksi), 
then  fs2 = 420 MPa     (60.9 ksi) 
 
Stress in steel at level d4 (As3 tension): 
  fs3 = Es 3 = 200,000 (0.019,5) = +3,900 MPa (+565.5 ksi) 
 
Since the calculated  fs2 > 420 MPa (60.9 ksi),   
then  fs3 = 420 MPa  (60.9 ksi) 
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Forces: 
The force in the concrete will be equal to the area of the stress diagram. 
Because the neutral axis passes through the upper edge of the hollow 
core, the concrete force will only be Fc1 (at depth = 100 mm). 
 
Similar to the yield stage, the average stress under the stress diagram, 
fcav, may be calculated as follows: 
 
 fcav = fc  {( / co)  (1/3) ( / co)2} 
   
Thus, 
  fcav.1 = 30 {(0.003/0.002)  (1/3) (0.003/0.002)2}  
  = 22.500 MPa (3.263 ksi) 
 
  Fc1 = fcav,1 c1 bf = (22.500)(100)(800)  
  = 1,800,000 N (404.676 kip) 
 
  Fs1 = As1 fs1 = 3 (314) (300) = 282,600 N (63.534 kip)  
  Fs2 = As2 fs2 = 2 (314) (+420) = +263,760 N (59.298 kip)  
  Fs3 = As3 fy = 3 (314) (420) = +395,640 N (88.948 kip)  
 
Because all internal forces in the section are calculated, equilibrium 
requires that the summation of these forces be equal to the external force 
of 900 kN (202 kip). If compression is taken as positive, the summation of 
force in kN is calculated as: 
 
   Fi  = Fc1  Fc2 + Fs1  Fs2  Fs3  
 = 1,800  0. + 283  264  396  
     = 1,423 kN (319.919 kip) > Pn = 900 kN (202 kip) 
  
Because the summation of internal forces is larger than the external 
applied load, the resulting compression internal force must be reduced to 
reach 900 kN (202 kip). Therefore, the second trial must proceed with a 
smaller value of concrete strain: a smaller valued of c1, such as 50 mm 
(1.97 in). Such an iterative procedure would continue until equilibrium is 
reached. If iterative trials continue, the final equilibrium state will be 
reached at c1 = 81.5 mm, which also yields the following final results: 
 
     c1 = 79.9 mm (3.15 in)   
  c2 = 674.1 mm (26.54 in)   
  y = 39.52 x 10-6 rad/mm (1 x 10-3 rad/in) 
 

cm = 0.003, s1 = 0.001,024, s2 = 0.012,810, s3 = 0.026,644  
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In MPa: fcm = 22.500, fc2 = 0., fs1 = 205, fs2 = 420, fs3 = 420 
In ksi: fcm = 3.263, fc2 = 0., fs1 = 29.725, fs2 = 60.9, fs3 = 60.9 
 
In kN: Fcm = 1,366, Fc2 = 0., Fs1 = 193, Fs2 = 264, Fs3 = 396 
In kip: Fcm = 307, Fc2 = 0., Fs1 = 43, Fs2 = 59, Fs3 = 89 
 
  Fi = 900 kN (202 kip) 
 
Similar to the case of yield state, the moment at ultimate state, Mu, can be 
readily calculated from the final trial by simply summing the moments of 
internal forces about the gross centroid of the section: 
 
  Mu =  Fi ri 
where: 
ri = The distance from the section’s gross centroid to the point of 

application of force, i. 

5.6  Evaluation of Cyclic Local Ductility Capacity 

As noted earlier, the evaluation of cyclic local ductility capacity depends 
on the cyclic material behavior of both concrete and steel. Such behavior 
is described in the following sections. 

5.6.1  Cyclic Behavior of Concrete 

Similar to monotonic behavior, ductility and strength of concrete under 
cyclic loading can also be improved by lateral confinement. Figure 5-25 
shows the effect of confinement on the cyclic behavior of concrete. This ef-
fect is similar to the case of monotonic loading in terms of the great im-
provement in strength and ductility. However, cyclic loading results in a 
reduction in stiffness upon reloading, causing a phenomenon known as 
stiffness degradation of the material. 

(b) Confined Concrete

3

2

1

12 8
Strain - / co 

4

S
tre

ss
, f

c/f
c

 

fp = 0.13 fc  

FIGURE 5-25
EXPERIMENTAL RESULTS FROM CYCLIC TESTS ON CONCRETE 

CYLINDERS 

 

30 

20 

10 

0.0080.0060.004 
Strain  

0.002 

S
tre

ss
, f

c, 
M

P
a ksi

4

2



Behavior of Structures Under Seismic Excitation 
 

193 

Stiffness degradation is usually associated with cyclic behavior of both 
confined and unconfined concrete. However, the previous experimental re-
sults show that the ultimate deformation remains the same. In addition, 
reloading results in permanent deformation in concrete which may be 
characterized as plastic offset. 

5.6.2  Cyclic Behavior of Steel 

Cyclic tests on steel coupons also 
indicate that the linearity of steel is 
lost once the yield stress is ex-
ceeded. Figure 5-26 shows the 
cyclic behavior of steel as a material 
after yielding has occurred. The fig-

ure shows that pure linear behavior 
disappears in the unloading stage, 
but is more defined in the reloading 
region. This loss of linearity is 
known as the Bauschinger effect. 
 
Figure 5-27 shows experimental results from cyclic tests on steel. Figure 5-
27 (a) shows results of specimens under the large compressive strains 
expected to occur in steel structures. For specific behavior of reinforcing 
steel, Figure 5-27 (b) shows test results of specimens under small 
compressive strains. The steel undergoes small strain values due to the 
relative rigidity of the surrounding concrete. Both results show that the be-
havior of steel as a material is characterized by nonlinear behavior and 
expansion of steel cycles with increasing maximum stress amplitudes. 

FIGURE 5-27
EXPERIMENTAL RESULTS FROM CYCLIC TESTS ON STEEL 
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5.6.3  Cyclic Strain Compatibility Analysis 

Previous sections have shown that a material’s cyclic properties are 
different than its monotonic properties. This difference has to be considered 
in the evaluation of cyclic strain compatibility analysis. The obvious dif-
ference is the change of the shape and the size of the stress-strain curves 
that result from cyclic effect. This effect may be incorporated by describing 
such shapes by proper functions (for example, by approximation with 
straight line segments). 
 
The Modified Ramberg-Osgood function is useful for expressing cyclic 
steel behavior for the purpose of determining strain compatibility. This func-
tion was developed to describe the stress-strain curves of prestressed 
strands and bars. Modified Ramberg-Osgood function is expressed as 
follows: 

  





)/1(]).(1[
1.

CCso
B

AAE  

where: 
C = Tuning parameter obtained from cyclic experimental tests. 
Es = Modulus of elasticity of steel (200 GPa). 

= Strain of steel at any instant. 
= Stress of steel for a given strain value. 

o, A, B = As defined in Figure 5-28. 
  
The other important difference between cyclic strain compatibility analysis 
and monotonic strain compatibility analysis as presented earlier is the 
origin of the stress-strain cycle at the start of calculations. In monotonic 
analysis, the state of strain (and stress) at rest will be zero: thus, the strain 
at any instant is measured 
from a reference of zero as 
shown previously. For cyclic 
behavior, strain compatibility 
analysis does not start from 
rest where stresses and 
strains are zero. In cyclic load-
ing, a previous load cycle in-
duces compressive strains in 
the concrete and in the steel.  
 
Therefore, the origin of the 
strain and stress at the start of 
the analysis has to be found 
according to conditions of 
compatibility and equilibrium. 
Such a requirement creates additional unknown needs to be found (such 
as the value of strain and, in turn, the value of stress at the start of the 
iterative cycle of analysis). The additional unknown in this analysis may be 
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found by introducing two compound cycles of iterations in the analysis: the 
first cycle will be to find the state of equilibrium, whereas the second cycle 
will be to find the strains and stresses at the starting point of analysis.  
 
This procedure is similar to the case of monotonic analysis and may be 
used to establish the cyclic moment-curvature curves of the section. More 
details on the method, development and its implementation may be found 
in the author dissertation included in the bibliography at the end of the 
book. 

5.7  Precast Concrete Structures 

For many years, precast concrete has been regarded as a nonseismic 
system and been prevented from being used as a seismic system. The 
main reason for this perception was the lack of confidence in the 
performance of the connections during earthquakes. It has been felt that 
precast elements are not tied well enough at the connection to withstand 
severe shaking. It was not until 2002 when the ACI code began to permit 
precast systems to be used as earthquake-resistant structural systems. 
 
Recent developments of connection hardware have proven by analysis and 
experimentation that connections built with such hardware can actually 
withstand earthquake shaking and can hold precast elements tied together 
during an earthquake. The literature is rich with information on connection 
details that can successfully be used for seismic resistance. For example, 
the connection manuals of the Prestressed Concrete Institute (PCI) offer a 
wide variety of such detailing. 
 
Strong connections can be constructed with a variety of systems and 
techniques. For example, spliced sleeve, angles and plates anchored to 
concrete by steel bars or studs can be used for nonprestressed concrete. 
In contrast, wet joints can be cast in place to provide strong connections as 
well. In prestressed members, continuity can be provided by couplers and 
other anchorage hardware provided by the manufacturers. 
 
Figure 5-29 shows several examples of such connections. Figure 5-29 (a) 
shows an example of a strong connection for a precast shear wall, which 
includes a splice sleeve across the connections to provide continuity of the 
vertical main reinforcement. Figure 5-29 (b) shows a steel coupler that 
maintains continuity of the bars across prestressed precast concrete 
connection. 
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Experimental tests of the connections shown in Figure 5-29 as part of 
shear wall systems show that such connections have a performance similar 
to a cast-in-place system if they are designed properly. Figure 5-30 shows 
the resulting hysteretic behavior of the tested walls that use these 
connections, illustrating that precast systems can develop both ductility and 
energy dissipation capacity. The ductility levels achieved in these tests 
reach up to a ductility ratio of 5. These values are comparable to those 
provided by cast-in-place systems.  
 
Note that the hysteresis loops in Figure 5-30 are generally narrow and the 
size of the prestressed wall exhibits narrower loops than its nonprestressed 
counterpart. This narrow appearance of the loops is not necessarily a 
precast property. It can be attributed to the level of the axial load in the 
member, as will be explained in Section 5.11, Effect of Axial Load on 
Hysteretic Behavior. 
 
The design of precast concrete systems follows in principle the capacity 
design philosophy by directing yielding in the members while ensuring that 
the connections remain within their elastic range. To guarantee such 
behavior, the connections are usually designed for a strength that is at 
least 50 percent higher than the maximum forces that can develop in the 
joining members. 

FIGURE 5-29
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The behavior of precast elements depends mainly on the presence of 
prestressing. In general, prestressed members tend to exhibit narrower 
hysteretic behavior, indicating a reduced capacity for energy dissipation. 
This behavior is due to the fact that prestressing induces a large amount of 
strain in the steel before the application of the external forces. In addition, 
prestressing induces large internal axial loads in the system, which tend to 
reduce the size of the hysteresis loops. This will be shown in a later 
section. 

5.8  Effect of Structure Configuration on Ductility 

In general, behavior of structures depends on the material itself, the con-
struction detailing and the structural configuration. For example, steel as a 
material is very good in terms of ductility and energy dissipation. However, 
it has to be properly designed and carefully detailed in order to achieve 
such material characteristics. Because of its high strength-to-weight ratio, 

FIGURE 5-31
EFFECT OF STRUCTURAL CONFIGURATION ON DUCTILITY 
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steel is generally used in construction in relatively thin components. From a 
stability point of view, such construction is vulnerable under loading. Steel 
elements and members must be properly sized and detailed to prevent 
premature local and global buckling before attaining their full material 
ductile capacity. Figure 5-31 shows examples of the effect of the size and 
bracing system on the local and global ductility. 

5.9  Second Order Effect on Ductility 

Ductility is affected by the presence of axial loads both at the section level 
and at the system level. Previous sections explained the effect of the axial 
load on section ductility and demonstrated that axial loads reduce section 
ductility. At the system level, axial loads also reduce ductility through the 
phenomenon of the P-  effect. The behavior of frames under heavy axial 
loads shown in Figure 5-31 indicates that the second order effect would 
result in total loss of the system ductility as the axial load approaches the 
axial plastic capacity of the columns. 

5.10  Undesirable Hysteretic Behavior 

Because hysteretic behavior is 
an indicator of a structure’s 
ductility and energy dissipa-
tion, it can be viewed as an 
indicator of good (or bad) 
behavior of a structure. Poor 
hysteretic behavior is an 
indicator of bad structural be-
havior under seismic exci-
tation. Undesirable hysteretic 
behavior can result from both 
material deterioration and un-
favorable structural config-
uration that may be sum-
marized as follows. 
 
(A) Undesirable hysteretic behavior due to material deterioration: 
 
(1) Stiffness degradation: 
 Stiffness degradation is a typical behavior of well-detailed reinforced 

concrete structures. Such degradation is shown in Figure 5-33 (a). 

FIGURE 5-32
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(2) Pinching: 
 Pinching is typical of shear-controlled or bond-controlled behavior in re-

inforced concrete members. Pinching is usually associated with severe 
stiffness degradation as shown in Figure 5-33 (b). 

 
(3) Slip-Lock behavior: 
 Slip-lock behavior is characterized as extreme pinching degradation. 

Slip-lock usually creates shocks waves through the structure similar to 
brake and passenger reactions in cars. This type of behavior may be 
described by the hysteresis loops shown in Figure 5-33 (c). 

 

 
(4) Strength degradation: 
 Strength degradation is another type of material deterioration that may 

result from cyclic loading effect in structures. Such behavior is shown in 
Figure 5-33 (d). 

 
(B) Undesirable hysteretic behavior due to unfavorable structural 

configuration: 
 
(1) Unsymmetrical strength: 
 Unsymmetrical strength can result in accumulation of plastic drift in one 

direction that affects the stability of vibration. Such behavior is shown in 
Figure 5-34 (a). 

 
(2) P-  effect: 
 The P-  effect can result in overall negative stiffness. The stability of the 

structure under large loads becomes a problem that can lead to pre-
mature catastrophic failures. Such behavior is shown in Figure 5-34 (b). 

FIGURE 5-33
MATERIAL DEGRADATION EFFECT ON HYSTERETIC BEHAVIOR 
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In general, stiffness degradation is unavoidable in reinforced concrete 
structures. However, analysis shows that such structures behave better 
than elasto-plastic models. With the exception of stiffness degradation, the 
undesirable hysteretic properties defined above will affect the validity of the 
force-reduction factor-ductility demand relationships given in previous 
sections. Therefore, the following characteristics should be avoided in 
design: 
 
1. Low energy dissipation (small loops) 
2. Severe stiffness degradation (pinching of hysteresis loops) 
3. Strength degradation 
4. Yielding in only one direction 

5.11  Effect of Axial Load on Hysteretic Behavior 

Experimental tests demonstrate that axial loads tend to reduce the 
energy dissipation of structures (as shown in the reduced size of the re-
sulting hysteresis loops). Because the presence of axial loads in the 
structure increases the amount of energy imparted to the structure due to 
the work done by the external 
loads, the apparent decrease in 
the size of the hysteresis loops 
is due to the increase in the en-
ergy input to the structure. This 
results in a decrease in the rel-
ative (not the absolute) energy 
dissipated in the structure.  
 
Hysteretic behavior of steel 
material is known to follow the 
kinematic hardening laws of 
plasticity: the yielding surface 
will shift around according to 

FIGURE 5-34
STRUCTURAL CONFIGURATION EFFECT ON HYSTERETIC BEHAVIOR 
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the applied loading history without any expansion of the yielding surface. 
Hysteresis loops of steel material can also be described by Masing type 
behavior. Masing loops are characterized as a two-fold magnification of 
the skeleton curve (the virgin monotonic load-deformation curve at first 
loading). Such behavior is portrayed in Figure 5-35. 
 
Reinforced concrete sections follow Masing type behavior because their 
behavior under pure bending moment is basically controlled by re-
inforcing steel. Figure 5-35 shows how such behavior exhibits fatness of 
the hysteresis loops and, as a result, indicates good energy dissipation 
capacity, a desired property in earthquake-resistant structures. 
 
Even though experimental results show that the size of hysteresis loops 
tends to decrease by increasing axial loads, the amount of energy 
dissipated by structures remains the same. The apparent reduction in 
energy dissipation capacity is attributed to the increase in the energy 
input to the structure rather than to the decrease in the absolute energy 
dissipation capacity of the material. Furthermore, it will be shown later 
that the apparent reduction in the size of the loops is directly related to 
the level of axial load value in the section. 

5.11.1  Rigid Bar Idealization 

The effect of axial load on hysteretic 
behavior may be explained by 
examining an idealized structure. 
The structure is represented by a 
simplified rigid bar model supported 
by springs as shown in Figure 5-36. 
This idealization may be viewed as 
a model for a shear wall: the rigid 
bar represents the concrete portion, 
which is supported by springs as its 
reinforcement. The bar is also sup-
ported by rigid pipes. The interface 
between the bar and pipe marks the 
critical section of the wall at the 
base as also shown in the same 
figure. The model dimensions are given as width, L, and height, H. The 
springs are identified by their stiffness, ks, and their yield strength, Ty. The 
model is subjected to a constant axial load, N, and to a varying lateral 
force, Q. To understand the behavior of this model, the effect of axial load 
and the effect of springs on its behavior will be considered separated. 
Three cases will be examined as follows: Case 1 considers the model 
without springs and subject to forces, Q and N, only. Case 2 considers 
the model with springs and subject to force, Q, only (i.e., in the absence 
of N). Case 3 will be examined by combining Cases 1 and 2 together. 

FIGURE 5-36 
RIGID BAR IDEALIZATION 

Rigid Bars 

Rigid Pipe Spring, ks,Ty  

Q

 
N

H

L

 

A B 



Chapter Five 

202 

Case 1: Rigid Bar under Axial Load and without Springs 
 
In the absence of springs, the rigid bar exhibits rocking type behavior. 
The behavior of the bar in this case may be examined with reference to 
Figure 5-37. If the bar is subject to lateral force, Q, as shown in Figure 5-
37 (a), the bar remains in position (  = 0) as long as the force, Q, is less 
than the quantity, QyN, which may be viewed as the yielding force of the 
bar only in the presence of axial load. The force, QyN, may be evaluated 
by considering the bar equilibrium in the state shown in Figure 5-37 (a). 
Taking moments of all forces about point B yields the following: 
 
  QyN (H) = N (L/2) 
Thus,  QyN = (N/2) . (L/H) 

 
The equation above indicates that as far as Q < QyN, the bar remains in 
position. On the other hand, if Q = QyN, or slightly exceeded, the bar will 
move horizontally as shown in Figure 5-37 (b). Upon removal of the force, 
Q, the bar returns to its original position. This behavior is depicted 
graphically by the hysteretic behavior shown in Figure 5-37 (b). Such 
behavior is characterized by ductile behavior without any energy 
dissipation capacity. 
 
Case 2: Rigid Bar with Springs and without Axial Load 
 
In the absence of the axial load, the rigid bar behaves in a way similar to 
sections under pure bending moment. The behavior of the bar in this 
case may be examined with reference to Figure 5-38. If the bar is subject 
to lateral force, Q, as shown in Figure 5-38 (a), the top of the bar 
displaces horizontally proportional to the amount of the force, Q, as long 
as Q is less than the quantity, QyT, which may also be viewed as the 

FIGURE 5-37
CASE 1: RIGID BAR UNDER AXIAL LOAD WITHOUT SPRINGS
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yielding force of the bar only in the presence of springs. The force, QyT, 
may be evaluated by consideration of the bar equilibrium in the state 
shown in Figure 5-38 (a). Taking moments of all forces about point B 
yields the following: 
 
  QyT (H) = Ty (L) 
Thus,  QyT = Ty (L/H) 
 
The equation above indicates that as long as Q < QyT, the bar behaves 
elastically. However, if Q = QyT, or slightly exceeded, the bar will yield 
with a force in the left spring equal to Ty, as shown in Figure 5-38 (b). 

Upon removal of the force, Q, the bar returns to a position that depends 
on the amount of plastic deformation induced in the spring. This behavior 
is demonstrated by the hysteretic behavior shown in Figure 5-38 (b). 
Such behavior is characterized by ductile behavior that results in energy 
dissipation proportional to the size of the hysteresis loops. 
 
Case 3: Rigid Bar with Springs and under Axial Load 
 
If Cases 1 and 2 are combined, the behavior of the bar in Case 3 may be 
examined with reference to Figure 5-39. If the bar is subject to lateral 
force, Q, as shown in Figure 5-39 (a), the bar remains in position (  = 0) 
as long as the force, Q, is less than the quantity, QyN, as defined in Case 
1. If Q exceeds QyN, the load-deformation curve will follow a linear elastic 
path as shown in Figure 5-39 (b), and similar to the path in Case 2. The 
bar yielding force, Qy, may be evaluated by considering the bar 
equilibrium in the state shown in Figure 5-39 (a). Taking moments of all 
forces about point B yields the following: 
 
  Qy (H) = N (L/2) + Ty (L) 

FIGURE 5-38
CASE 2: SPRINGS WITHOUT AXIAL LOAD 
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Thus,  Qy = (N/2). (L/H) + Ty (L/H) 
or  Qy = (N/2 + Ty) (L/H) 
 

Upon removal of the force, Q, the bar displaces back in the negative 
direction along the linear elastic path first and then horizontally as 
indicated in Figure 5-39 (b) to the position of zero displacement. A 
comparison of Figures 5-37, 5-38 and 5-39 indicates that the energy dis-
sipation of the system is constant in the three cases. This is represented 
by the area of the hysteresis loop marked with depth, 2QyT, on each side 
of the displacement axis.  However, the energy absorbed by the system 
is simply the summation of the energy absorbed in Cases 1 and 2. Con-
sequently, the ratio of the energy dissipated to the energy absorbed in the 
system of Case 2 will be relatively larger than the ratio in Case 3, even 
though the amount of energy dissipated in both cases is the same. This 
reduction in the relative energy dissipation is what makes hysteresis 
loops of actual structures appear narrower in the presence of axial loads. 
 
Furthermore, Figure 5-39 (b) indicates that the upper hysteresis loop in 
the positive load-displacement region remains in the first quarter of the 
figure as long as the yielding force of the spring, Ty, is less (N/2). 
Otherwise, the two loops on both sides of the displacement axis will 
interfere with each other, rendering this analysis invalid. In this context, a 
bearing wall may be defined as a wall in which its hysteresis loops are 
separated by the displacement axis. It can be deduced from Figure 5-38 
(b) that this definition may be expressed in terms of N and Ty by defining 
the bearing wall as a wall that is subject to an axial load (N) larger than 
the yielding force of the total flexural reinforcement (2Ty) in the section. 
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5.11.2  Energy Dissipation Factor ( N) 

This section introduces an energy dissipation factor to quantify the 
reduction in the energy dissipation capacity of the system that is due to 
the presence of axial load and also to construct the unloading branch of 
the hysteresis loops. Figure 5-40 shows the rigid bar model from Case 3 
combined with Masing type loops as presented in previous sections. 
 

Recall that this simplified rigid bar is assumed to model concrete as a 
rigid portion with reinforcement as elastic springs. In real structures, con-
crete exhibits some elastic stiffness. Therefore, if the concrete flexibility is 
considered, the loading branch from rest to yielding point of the skeleton 
curve of the Masing loop may be replaced by an equivalent elastic seg-
ment O-A as shown in Figure 5-40 (b). When the skeleton curve is 
defined, which is segment O-A-B in Figure 5-40 (b), the Masing loop can 
now be drawn as two-fold magnification of the skeleton curve as segment 
B-C-D.  
 
The energy dissipation factor, N, is now introduced as the ratio of the 
depth of the actual loop, marked with distance dL in Figure 5-40 (b), to the 
depth of the Masing loop, marked with distance dM in Figure 5-40 (b). In 
reference to Figure 5-40 (a) and (b), N can be expressed mathematically 
as 
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FIGURE 5-40
DEFINITION OF ENERGY DISSIPATION FACTOR, N 
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According to the definition of bearing walls given previously, the 
maximum value of N will be reached when Ty = N/2, which results in 

N = 0.5. This result indicates that the maximum reduction in energy dis-
sipation capacity in bearing walls is 50%. 
 
The other important application of this energy dissipation factor is the 
prediction of the unloading branch of actual hysteresis loops in the 
presence of axial loads. The unloading branch of reinforced concrete 
structures, and also of steel structures, under pure bending moment 
without axial loads can be constructed from the skeleton curve using 
Masing Criterion. This makes it possible to construct the unloading 
branch of reinforced concrete and steel structures in the presence of axial 
loads using the energy dissipation factor, N. Accordingly, if the skeleton 
curve is constructed for a wall (or for a beam, for example), the unloading 
branch can be simply calculated by multiplying the Masing unloading 
branch by the energy dissipation factor, N. 
 
This result has a special useful application in inelastic dynamic analysis 
because it tremendously reduces the effort to model the unloading 
branches of hysteresis 
models. In this case, it 
would only be necessary to 
construct the loading 
branch (skeleton curve) of 
the model. The unloading 
branch will simply be an 
outcome as a function of 
the loading branch, the 
Masing loop and the en-
ergy dissipation factor, N. 
Full development of this 
factor and the effect of 
prestressing on the hys-
teretic behavior of shear 
walls may be found in 
Armouti (1993). 
 
The application of energy dissipation factor in actual structures may be 
demonstrated through its application to the experimental results shown in 
Figure 5-30 (a). The calculations of the unloading branch of the hys-
teresis loops may be outlined, with reference to Figure 5-41, as follows: 
 
1. Define the skeleton curve (the virgin monotonic curve shown as curve 

O-A) in Figure 5-41. 
 
2.  From the end of the skeleton curve at point A, draw a Masing loop that 

is a two-fold magnification of the skeleton curve (evaluate the quantity 
dM and draw the curve A-B through depth dM as shown in Figure 5-41). 

FIGURE 5-41
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3.  Calculate the energy dissipation factor, N, as defined above: 

      
2/NT

T

y

y
N


  

4.  Evaluate the reduced loop depth, dL, as defined earlier (dL = N . dM). 
 
5.  Draw the actual (reduced) loop (draw the curve A-B through depth dL 

as shown in Figure 5-41). 
 
The results of applying the outlined procedures above to the wall shown 
in Figure 5-30 (a) are shown in Figure 5-42.  

5.12  Design Considerations 

Because structures are designed with strength less than their elastic 
strength demand, and because ductility is required to achieve such re-
duction, design must ensure that ductility can be achieved without 
premature and brittle failures. To achieve this, flexural ductility must be 
guaranteed by preventing brittle failures such as shear, connection, bond, 
stability and foundation failures. 
 
Examples of ductility assurance may be given as in the case of concrete 
confinement by closely spaced stirrups (hoops) and by prevention of local 
and global buckling of steel structures. In addition, brittle components 
such as shear elements, connections, and foundations must be designed 
with forces that exceed the maximum probable developed forces in the 
ductile elements. 
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Such requirements apply to shear calculations as shown in Figure 5-43. If 
the actual plastic moments in the beam are given as Mp as shown in 
Figure 5-43 (a), the shear force is calculated to exceed the maximum 
probable shear in the section by considering the plastic moments are Mpr 
as shown in Figure 5-43 (b). As a result, 
     

  
 Mpr = f (1.25 fy  1.40 fy) 
 
where Mp = f (fy) only. 
 
The design shearing force, Vu, shown in Figure 5-43 (b) is given as 
 
  Vu = Vu(qu) + Vu(Mpr) 
 = qu L/2 +  Mpr/L 
 
The same concept applies to connections. For example, if the beam in 
Figure 5-44 has a plastic moment capacity, Mp, the connection cannot 
develop more than Mp in the column. Of course, this can be seen by eq-
uilibrium consideration of the joint as a free body diagram. In this case, 
the connection should be designed for Mpr. Thus, the beam yields first, 
leaving the connection in the elastic range (stronger than the beam). 
 
The same concept also applies to 
foundations: foundation design is 
based on Mpr rather than on Mp. 
Figure 5-45 illustrates such re-
quirements. 
 
Mpr may actually develop in the beam 
due to strain hardening as noted in the 
section on cyclic behavior of material. 
This additional strength beyond yield-
ing level is known as overstrength. To 
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summarize this lengthy consideration in simple words, brittle elements 
must be kept elastic during earthquake excitation. 
 
The short column phenomenon also 
lies in this category of ductility as-
surance. Because the shear in the 
column is equal to the summation of 
the end moments divided by the 
height of the column, the shear force 
will be inversely proportional to its 
length. Consequently, very short col-
umns develop very high shears at the 
development of end plastic moments. 
This results in premature brittle 
failures prior to the development of 
the end plastic moments. Such phen-
omena must be avoided. 
 
Keep in mind that inelastic displacements, M, are also relatively large. 
Because this may result in a high P-  effect, all members including 
nonseismic elements should be designed accordingly. 

5.13  Capacity Design 

The capacity design concept has 
been developed and used for 
many years in New Zealand. 
Although this concept is not 
explicitly stated in seismic codes 
developed in the United States 
by the International Code Council 
(ICC), it is implicitly a natural 
consequence of the force-reduction factor. As a result, it is implicitly 
embedded in many systems, including the special truss moment frames 
given in Chapter 9.  
 
Capacity design can be understood by considering the well-known ductile 
chain shown in Figure 5-46. This chain has five links numbered 1 to 5. 
The yielding force capacity of links 1, 2, 4 and 5 is larger than the yield 
force capacity of link 3. It can be seen from equilibrium consideration of 
each link, as a free body diagram, that the maximum force that the chain 
can take is limited to the maximum capacity of its weakest link (link 3). 
Because the strength of the chain is limited by its weakest link, the other 
links will never be subjected to a force larger than the force in link 3. 
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Consequently, if link 3 is provided with ductile material, the chain can 
sustain the maximum force and experience yielding, whether the other 
links are ductile or not, as long as the strength of the links is larger than 
the yielding of the ductile link (link 3).  
 
Once link 3 has yielded, the chain will develop a mechanism. 
Furthermore, the weak link in the chain may be any of the other four links. 
This means that the failure mode of the structure (the chain) can be 
controlled by the designer as desired. 
 
Previous sections discuss the extreme randomness and uncertainty in the 
prediction of earthquake characteristics. In addition, because the struc-
tural response to earthquakes is extremely scattered, the most sophis-
ticated structural analysis will only produce crude force predictions. 
Because of these high uncertainties, it would be prudent to control the 
structural behavior rather than try to predict extremely random events. 
This concept may be implemented through capacity design. 
 
This simple chain concept can be applied to more complex structures. To 
do so, a designer first selects a proper mechanism and then identifies the 
plastic links and hinges along with their roles in the chain concept. This 
selection is analogous to selecting a weak link to be ductile in the chain 
described above. The other elements of the structure are then designed 
to remain elastic by distributing 
internal equilibrium through the rest 
of the structure, starting from the 
selected plastic regions. Conse-
quently, the structure behavior will 
be guided by the designer’s se-
lection of events, not by an earth-
quake’s characteristics. The fol-
lowing example further illustrates 
this simple concept. 
 
Example 5-8 
 
A simple three-member steel truss, 
A-B-C, is shown in Example 5-8, Figure 1. The truss is located in a 
seismic zone where a truss must be designed to resist a seismic force, 
QE, equal to 600 kN (135 kip): 
 
(1) Use capacity design to size the truss members if it is only feasible to 
detail the bottom chord as a ductile member. The material is given as 
steel, y = 350 MPa (50 ksi). 
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Solution 
 
Because the bottom chord is feasible to be ductile, this member will be 
selected as the weak link in the structure. The bottom chord will be de-
signed to yield, whereas the rest of the members will be designed to 
remain elastic. 
 
To understand the force distribution in the truss, the truss is analyzed for 
unit force at joint C. The resulting internal forces are shown in Example 5-
8, Figure 2. 
 
It can be realized from the equilibrium of joint B that the internal forces, F, 
in the members are given as 
 
   Fx = 0 
  F1 = F2 cos 45 = 0.707 F2 
 
Because equilibrium cannot 
be violated, the result above 
indicates that the force in 
one of these two members 
will be limited to the max-
imum of the other. 
Therefore, if member 1 is 
designed to yield with F1 = 
Qy1, then the force F2 will be 
limited to 
 
F2 = 1.414 F1 = 1.414 Qy1 
 
The force F2 cannot exceed 
Qy1, regardless of the actual strength of member 2. This is an important 
conclusion: if member 2 is designed for strength larger than 1.414 Qy1, 
the member does not have to be ductile insofar as it will never reach its 
maximum strength, regardless of the intensity of the earthquake. 
 
The design force of member 1 can be obtained from Example 5-8, Figure 
2. Since F1 = 0.5 QE, then 
 
 F1 = 0.5 QE = 0.5 (300) = 300 kN (67.45 kip) 
 
Cross-sectional area: 
 
 A1 = F1/ y = 300,000/350 = 857 mm2 (1.33 in2) 

 
To keep the other two members elastic, they must be designed with a 
force that exceeds their expected equilibrium forces. Thus, by spreading 
internal equilibrium from joint B, the member forces are found as follows. 
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At joint B: 
  Fx= 0 
 F2 = F1/cos 45 = 1.414 F1 = 1.414 (300)  
    = 424 kN (95.32 kip) 
 
The design force of member 2 must be increased above 424 kN (95.32 
kip) in order to remain elastic (for example, by 15%). Thus, the area is 
given as: 
 
Cross-sectional area: A2 = 1.15 F2/ y = 1.15 (424,000/350  
            = 1,393 mm2 (2.16 in2) 

   
Member 3 will be treated in a similar way in order to find the same force 
limitation from equilibrium.  
 
Cross-sectional area: A3 = 1.15 F2/ y  
    = 1.15 (424,000/350  
  = 1,393 mm2 (2.16 in2) 

 
In this example, design can be accomplished with a controlled failure 
pattern. Such a controlled failure scheme needs fewer detailing re-
quirements for ductility because the mechanism is selected beforehand 
and is directed toward member 1. Of course, the design may take another 
direction by directing the mechanism toward any other member and then 
proceeding with design as shown above. To make this design feasible, 
only member 1 has to be detailed for ductility (members 2 and 3 do not). 

5.14  Pushover Analysis 

Pushover analysis is a relatively modern technique used to construct the 
global load-deformation curve, known as the pushover curve, of the 
structure up to its failure. Pushover analysis includes nonlinear static 
analysis procedures that utilize monotonic inelastic properties of the 
material to construct the pushover curve. Such procedures were ex-
plained in previous sections to 
evaluate the local and global 
ductility capacities. This anal-
ysis is mainly intended for use 
in performance-based seismic 
design, which basically de-
fines performance in terms of 
displacement of the pushover 
curve. Levels of performance 
are usually defined as shown 
in Figure 5-47 through im-
mediate occupancy level (IO), 
life safety level (LS), and col-
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lapse prevention level (CP). More details of the analysis procedures and 
the acceptance criteria of these levels are found in the FEMA publication, 
NEHRP Guidelines for the Seismic Rehabilitation of Buildings, FEMA 
273. 
 
The author believes that such performance-based levels cannot be guar-
anteed to work as intended by the designer because of the inherent high 
levels of randomness, scatter and uncertainty in the level of earthquake 
intensity characteristics. Such high levels of uncertainties render the level 
of response of structures highly unpredictable. In addition, utilization of 
monotonic material properties may not reflect the actual behavior of 
structures under earthquake excitation. Therefore, it may be worth the 
effort to examine pushover analysis under cyclic properties. 

5.15  Recommended Versus Undesirable Structural Systems 

In general, seismic design prefers simplicity in structural systems and 
structural forms. Structures that exhibit good ductility, energy dissipation, 
and self-centering capacity are recommended. The following systems are 
recommended: 
 
1. Systems with simplicity in plans. Structures with square and circular 

shapes are preferred. 
2. Systems with compactness in shape. Avoid structures with long 

extended wings. 
3. Systems with symmetry and large torsional resistance. 
4. Systems with vertical uniformity and continuity. Avoid structures with 

sudden changes in mass and stiffness. 
  
Examples of various systems are shown in Figures 5-48 through 5-50. 
Figure 5-48 (a) shows structural walls installed inside the building with 
small torsional rigidity, whereas Figure 5-49 (a) shows better arrangement 
of the structural walls that provide large torsional resisting capacity. Figure 
5-48 (b), for example, shows a structure with long extended wings. This 
kind of structure will usually perform poorly in earthquakes because the 
arrangement could result in severe torsional moments at the junction 
regions. A better arrangement would be to separate the wings from the 
main structure as shown in Figure 5-49 (b). 
 
Another undesirable system is to have plastic hinges develop in columns, 
which results in the story mechanism shown in Figure 5-48 (c). This system 
is also known as the weak column-strong beam system. Such a system 
puts severe ductility demand on the columns and creates severe stability 
problems for the columns. A better solution would be to enforce the plastic 
hinges to develop in the beams to create what is known as strong column-
weak beam system as shown Figure 5-49 (c). This system is also known 
as overall mechanism. Such a system is capable of dissipating energy 
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through plastic deformation in the beams while preserving the integrity of 
the columns in terms of stability and low ductility demands. 

The soft story is another undesirable system that should be avoided. Such 
a system is shown in Figure 5-48 (d). Because of the extreme sudden 
change between the columns on the ground floor and the rest of the build-
ing, the building would behave as a rigid body supported by the columns 
below. This puts very high ductility demands on the columns that cannot be 
achieved and also creates a severe stability problem for these columns. 
Many failures have occurred in previous earthquakes that are due to this 
soft story phenomenon. 
 
Shear walls are considered excellent systems for seismic resistance be-
cause of their high rigidity and ability to provide large resistance associated 
with reasonable ductility. To be efficient, shear walls must be continuous 
from the top of the building to the foundations. They must not, in any case, 
be terminated at the first floor. Shear walls may be designed to stand alone 
as independent members, or they can be coupled with beams as shown in 
Figure 5-49 (d). 
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Examples of undesirable irregularities are also shown in Figure 5-50 for 
both vertical and horizontal directions. These irregularities—sudden 
changes in stiffness, strength, or both—should be avoided because they 
usually require large ductility demand at these sudden changes that is 
either difficult or very expensive to achieve in these structures. 

5.16  Strain Rate 

The time rate of application of external loads affects the properties of 
material. The dynamic aspects of this rapid application is extensively ad-
dressed in various chapters of this book. Rapid application also affects 
the material properties of the structural elements. 
 
In general, loading rates may be classified into three categories: static, 
quasi-static and dynamic rate. Static loading is merely a theoretical case 
insofar as it assumes that the load is applied to the structure during an 
infinite period of time. The practical slow application of loads that is used 
in lab-oratories results in a negligible dynamic effect known as quasi-
static loading. Rapid loading induces dynamic effect in the structure and 
is known as dynamic loading. 

FIGURE 5-49
RECOMMENDED SEISMIC SYSTEMS 
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From a practical point of view, dynamic loading may or may not affect 
material properties. Very rapid application of loads induces relatively high 
strain rates that can change the material properties such as stiffness. A 
ship striking a bridge is an example of a high rate of application of loads. 
In contrast, a relatively less rapid application of loads may induce a neg-
ligible effect on the material properties. 
 
Earthquake loading is considered to be the second type of dynamic 
loading in which the effect of strain rates on the material properties may 
be neglected. In this case, the analysis may be performed using the 
material properties obtained from the quasi-static response. 

FIGURE 5-50
UNDESIRABLE SEISMIC IRREGULARITIES 

(b) Complicated Plan Shapes

 (a) Vertical Irregularity (Setbacks) 

. 



Behavior of Structures Under Seismic Excitation�Problems 

 217 

PROBLEMS 
 
 
Problem 5-1 
 
An elevated tank is supported by a weightless, reinforced concrete single 
column with the following properties:  
 
  fc  = 30 MPa (4.350 ksi) cu = 0.003 
  fy = 300 MPa (43.5 ksi) As,tot = 1% Ag 
 
The structure is subjected to an earthquake as shown in Problem 5-1, 
Figure 1 (a), and having a constant spectral pseudo-velocity of Sv = 0.7 
m/s (28 in/sec). 
 
For simplicity, consider an idealized moment curvature relationship as 
shown in Problem 5-1, Figure 1 (c), and also consider that compression 
steel is yielding with tension steel. 

The structure�s global ductility capacity, c, is 5. Check the structural 
safety against both Equal Displacement Criterion and Equal Energy 
Criterion during the earthquake excitation. 
 
NOTE: Consider the effect of the tank weight on the capacity and ductility 
of the column. 
 
Problem 5-2 
 
The short period building shown in Problem 5-2, Figure 1 (a), is subjected 
to an earthquake. Inelastic dynamic analysis results in the hysteretic be-
havior shown in the figure. Problem 5-2, Figure 1 (b), shows one non-
symmetric hysteresis loop at the maximum response: 
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(1) Calculate the hysteretic damping in terms of equivalent viscous 

damping. 
(2) Calculate the global ductility demand for this building. 
(3) If this building is required to be constructed as an essential facility 

and remains elastic during the same given earthquake, calculate the 
elastic design force and the maximum elastic displacement. 

 
 Problem 5-3 
 
A long period shear wall is shown in Problem 5-3, Figure 1 (a). The elas-
tic response to an earthquake excitation is shown in Problem 5-3, Figure 
1 (b). The wall has been designed using the force-reduction factor con-
cept. Structural analysis shows that the wall moment-curvature relation-
ship is as shown in Problem 5-3, Figure 2. 
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(1) Calculate the force-reduction factor and global ductility demand for 
this wall. 

(2) Determine whether this wall can survive this earthquake without 
collapse. 

 

 
Problem 5-4 
 
A frame with two fixed supports at its base has a total mass, m, and 
dimensions as shown in Problem 5-4, Figure 1. The frame has an infinite 
stiff beam, with steel columns having the cross section shown in Problem 
5-4, Figure 2. The column stress-strain curve is also given in Problem 5-4, 
Figure 3. 

 
The frame is excited by an EQ having the response spectrum shown in 
Problem 5-4, Figure 4, and acting in the direction shown in Problem 5-4, 
Figure 1. 
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Assuming  = 2%, do the following: 
 
(1) Calculate the elastic force and elastic displacement due to this EQ, 

(for example, ESD). 
(2) Find the force-reduction factor, R. 
(3) Find the global ductility demand, d. 
(4) Check the frame safety in terms of the global ductility capacity, c. 

 
Problem 5-5 
 
A rigid concrete slab is supported by four circular columns as shown in 
Problem 5-5, Figure 1. The columns are fixed at both ends and located as 
shown. The columns are 240 mm (9.45 in) in diameter with effective 
depth, d, of 180 mm (7 in). The effective height of columns is 4 m (13 ft). 

 
The mass and stiffness matrices are given in terms of the centroid coor-
dinates u, v and  as follows: 
 

My  = Mu

y

PROBLEM 5-5, FIGURE 2
MOMENT-CURVATURE 

u

1.5 x 10-3 rad/m
38 x 10-6 rad/in 

20 x 10-3 rad/m 
508 x 10-6 rad/in 

C2 C1 

PROBLEM 5-5, FIGURE 1
STRUCTURAL LAYOUT

u

10 m 
(32.80 ft) 

6 m 
(19.68 ft) 

4 m 
(13.12 ft) 

6 
m

E
Q

 

  
v 

y  = 350 
(50)

Stress 
 MPa (ksi)

Strain 0.00175 0.0175

PROBLEM 5-4, FIGURE 3 
MATERIAL PROPERTIES 

Es = 200,000 MPa 
(29,000 ksi)

Sv 
m/s (in/sec)

1

 = 5%

 = 2%
1.2 (47)
1.0 (39)

2

PROBLEM 5-4, FIGURE 4  
EQ RESPONSE SPECTRUM

T (sec)



Behavior of Structures Under Seismic Excitation�Problems 

 221 

),,kN(
68000
0600
0060

2 smm   ,        ),kN(
8880

840
004

410 mk


  

 

)sec in,kip,(
038,1200
0686.00
00686.0

m ,  

 

)inkip,(
344,3197370

73737.90
0037.9



k  

 
The moment, M, and curvature, , relationship are given as shown in 
Problem 5-5, Figure 2. 
 
If the earthquake response spectrum is given as Sa = (1/T)  1 m/s2 (39 
in/sec2), do the following: 
 
(1) Find the fundamental fre-

quency and its mode shape 
for this structure. 

(2) For only column 3, find the 
top displacement and top 
force due to the first mode. 

(3) Check the safety of column 3 
against the Equal Energy 
Criterion, EEC, and the 
criterion in the 2006 edition of 
the International Building 
Code® (IBC®). 

 
Problem 5-6 
 
The reinforced concrete I-section shown in Problem 5-6, Figure 1, is 
reinforced with 7 25 (7 #8) bars located as shown. The cross-sectional 
area of each bar is given as 491 mm2 (0.79 in2). 
 
If this cross section is subjected to factored axial load, Pu = 900 kN (202 
kip), then calculate the ultimate curvature capacity of the cross section. 
 
Material Properties: 
  
  fc  = 30 MPa (4.350 ksi) 
 cu = 0.003 
  fy = 420 MPa (60 ksi) 
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6 
 
 
 
 
 

DESIGN OF 
EARTHQUAKE- 

RESISTANT BUILDINGS 
 (ICC) 

 
 
 
 
 

6.1  Introduction 

For many years, the Uniform Building Code (UBC) has been recognized 
internationally as a model code, especially for seismic provisions. In fact, 
many countries have adopted UBC provisions as the foundation of their 
local building codes. After the last version of the UBC was issued in 1997, 
the UBC was merged with two other building codes to form the 
International Building Code (IBC). The first version of the IBC was pub-
lished in 2000 as a unified building code in the United States. 
 
Because the IBC is a merger of the UBC and two other building codes, it 
continues the same philosophy of all three codes. In fact, most of the 
seismic codes in the United States are based on the provisions of the 
National Earthquake Hazard Reduction Program (NEHRP), as admin-
istered by the Federal Emergency Management Agency (FEMA). As a 
result, the IBC addresses the same main issues as the last version of the 
UBC, with some changes in the format of force calculations and seismic 
maps. 
 
This chapter presents the IBC as the current model code for seismic 
provisions and design. Because the IBC also refers to ASCE 7, Minimum 
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Design Loads for Buildings and Other Structures, published by the 
American Society of Civil Engineers, this chapter will also discuss ASCE 7 
when necessary. 
  
Because of the extreme uncertainty in earthquakes and their effect on 
structures, building codes cannot clearly and precisely define the required 
seismic parameters, such as the response modification factor, R, and the 
global ductility demand, d. Therefore, in addition to theory, codes rely on 
experience and engineering judgment to define levels of strength and 
ductility of structures in different seismic regions. As a result, codes do not 
leave much room for the engineer to decide on the proper selection of R 
and  combinations. Instead, codes limit the use of structural systems in 
seismic regions to those that have performed well in previous earthquakes 
and have been extensively tested in research laboratories. 
 
For example, the IBC identifies and permits structural systems such as, but 
not limited to, ordinary, intermediate and special moment frames. Ordinary 
shear walls, special shear walls, concentrically braced frames and ec-
centrically braced frames are also identified and permitted. In addition, the 
IBC allows combination of frames and shear walls or braced frames, which 
are identified as dual systems. 
 
The codes explicitly state that any system not listed in their tables shall not 
be permitted unless the system is proven by theory and experiment to be 
capable of resisting earthquakes. As may be expected, this is a very dif-
ficult and involved task for engineers to complete in practice. 
 
For each identified system, the codes usually assign fixed values of R and 
d without any flexibility for the engineer to examine or define such values. 
Instead, the codes describe specific conditions and level of detailing for 
each identified system, implying that the systems achieve the intended 
behavior. Furthermore, codes do not guarantee intended performance. In-
stead, they explicitly state that such requirements are minimum re-
quirements that need to be included in the system. This statement clearly 
reflects the uncertainty in structural performance and in earthquake 
characteristics. 
 
In general, codes define seismic hazard through the use of seismic zoning 
maps, which are based on probabilistic measures. The strength level of the 
structure is then provided according to these maps. 

6.2  Definition of Structural Components 

The basic structural components of an earthquake-resistant system are 
shown in Figure 6-1. The main structural system usually consists of frames, 
shear walls, or a combination of both (a dual system). These elements are 
connected at the floor level by diaphragms. 
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If the earthquake excitation is as shown in Figure 6-1, the seismic resisting 
elements are given as the marked frames and the shear walls shown as 
active in this direction. These elements are forced to act as one unit 
because they are connected through diaphragms. The diaphragms can be 
rigid or flexible. Diaphragms may be idealized as rigid according to ASCE 
7-05 if they consist of concrete slabs or concrete-filled metal decks with 
span-to-depth ratios of 3 or less that have no horizontal irregularities. In 
addition, the ACI code requires such concrete decks to be at least 50mm 
thick to qualify as rigid diaphragms. In rigid diaphragms, forces are dis-
tributed to frames and walls according to their relative rigidity. Flexible 
diaphragms, however, require special modeling of diaphragms because 
they deform in plane and interact with other structural elements. Flexible 
diaphragms may be modeled as shell elements in finite element analysis in 
conjunction with overall modeling of the structure. To determine the design 
forces in lateral force-resisting systems, ASCE 7 allows the treatment of 
flexible diaphragms as simple beams between vertical supporting 
elements. 

Rigid diaphragms are designed to transfer the in-plane forces generated by 
an earthquake to the lateral force supporting elements, such as frames or 
shear walls. A diaphragm may be analyzed as an I-beam in the transverse 

FIGURE 6-1
BASIC COMPONENTS OF EARTHQUAKE-RESISTANT BUILDING  
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direction with its thickness as its web and the surrounding exterior beams 
as its flanges. These are the marked diaphragm chords in Figure 6-1, 
which may also be termed boundary elements. The junctions between the 
diaphragms and the lateral force supporting elements must be designed to 
transfer the diaphragm forces to these elements. Such components are 
known as drags, struts or collectors because they collect forces from dia-
phragms and transfer them to supporting elements. 

6.3  Seismic Design Category 

The IBC classifies a building into a Seismic Design Category (SDC) 
according to the building�s Occupancy Category and its region of seismic 
hazard. The Occupancy Categories are classified into four groups: I, II, III 
and IV. Each category is assigned an importance factor, I, according to its 
functionality as given in Table 6-1. The Seismic Design Categories are 
classified into the six categories of A, B, C, D, E and F according to Table 
6-2. For convenience, Tables 6-1 and 6-2 are also provided in Appendix 6-
1 at the end of this chapter. 
 

 
TABLE 6-1 

IMPORTANCE FACTOR 

OCCUPANCY 
CATEGORY  

SEISMIC 
IMPORTANCE 

FACTOR, I 
I Low hazard to humans, such as agricultural facilities 1 
II Other than II, III and IV 1 

III Hazardous to humans because of large number of 
occupants, such as schools and public areas 1.25 

IV 
Essential facilities either important for security or for 
major services such as rescue operations, health 
services, transportation and communications 

1.5 
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TABLE 6-2 
SEISMIC DESIGN CATEGORY (SDC) 

OCCUPANCY 
CATEGORY SDS SD1 

I or II III IV 
SDS < 0.167 g SD1 < 0.067 g A A A 

0.167 g  SDS < 0.33 g 0.067 g  SD1 < 0.133 g B B C 
0.33 g  SDS < 0.50 g 0.133 g  SD1 < 0.20 g C C D 

0.50 g  SDS 0.20 g  SD1 D D D 
     

S1  0.75 g E E F 
 
SDS and SD1 given in the table above are the design spectral acceleration at 
short period and at a 1-second period, respectively. These are defined in 
the next section. 

6.4  Zoning Classification 

The IBC divides the United States into contour lines that plot the spectral 
acceleration for a maximum considered earthquake (MCE) at bedrock. The 
maximum considered earthquake is based on a 2 percent probability that it 
would be exceeded in a 50-year period. This probability implies a return 
period of 2,500 years.  Note that the spectral acceleration in these maps is 
not the design spectral acceleration. As will be shown later, the design 
spectral acceleration is taken as 2/3 of the spectral acceleration obtained 
from the maximum considered earthquake indicated in these maps. 
 
For each region, the IBC assigns two spectral acceleration values for the 
maximum considered earthquake; one value for spectral acceleration at 
short period, Ss, and another value for spectral acceleration at a 1-second 
period, S1. These spectral accelerations given in seismic hazard maps are 
measured at bedrock. The effects of the site characteristics are considered 
by using factors Fa and Fv for short period and at a 1-second period, 
respectively. Values of Fa and Fv are listed in Tables 6-A3 and 6-A4 in 
Appendix 6-1 at the end of this chapter. As shown in those two tables, sites 
are classified into the six classes of A, B, C, D, E and F, implying that there 
are six distinct response spectra in this classification. 
 
Accordingly, the maximum considered earthquake spectral acceleration at 
the base level for each site is defined at short period as SMS and at 1-
second period as SM1. These quantities are evaluated as follows: 
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 SMS = Fa Ss 
 SM1 = Fv S1 
 
where:  
Fa and Fv =  Soil factor for short period and at 1-second period, 

respectively, as listed in Tables 6-A3 and 6-A4 in Appendix 6-
1 at the end of this chapter. 

Ss and S1 = Spectral acceleration values listed in seismic maps for short 
period and at 1-second period, respectively. 

6.5  Response Spectra 

The response spectra in the IBC are defined for six site classes: A, B, C, D, 
E and F. The design spectral acceleration for each site class is given as 
SDS and SD1 for short period and at 1-second period, respectively. The res-
ponse spectra SDS and SD1 are taken as 2/3 of the spectral acceleration for 
the maximum considered earthquake SMS and SM1: 
     
 SDS = 2/3  SMS 
 SD1 = 2/3  SM1 
 
where SMS and SM1 are defined by the expressions above in the previous 
section. 
 
Once SDS and SD1 are defined for the site, the response spectrum can be 
constructed as shown in Figure 6-2, which is expressed mathematically as 
follows: 

1.0
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Controlling periods: 
 
Ts = SD1/SDS 
To = 0.2 Ts 
TL = Long-period transition period assigned to regions by the code 
 
For T  To, the response spectrum Sa is given as: 
 

  Sa =  
o

DS T
TS 6.04.0   

 
For T between To and Ts, the response spectrum Sa is given as 
 
  Sa = SDS 
 
For T  Ts, and less than TL, the response spectrum Sa is given as: 
 

  Sa =  
T

SD1   

 
For T > TL, the response spectrum Sa is given as 
 

  Sa =  
2

1

T
TS LD   

 
The response spectrum value starts at Sa = 0.4. SDS at T = 0. In the ab-
sence of any other information, the code allows peak ground acceleration, 
PGA, to be taken as 0.4 SDS. 
 
The six classifications of soil classes follow, in principle, the response 
spectra curves defined by Seed et al., and explained in Chapter 2. The 
spectra curves reflect the fact that the response spectra are simply a 
function of the site characteristics. At this point, IBC soil classification may 
be summarized in broad terms as follows: 
 
1. Soil Type A: Hard rock 
2. Soil Type B: Rock 
3. Soil Type C: Very dense soil and soft rock 
4. Soil Type D: Stiff soil profile 
5. Soil Type E: Soft soil profile 
6. Soil Type F: Needs special evaluation 

6.6  Design Requirements of Seismic Design Categories 

The design forces and requirements of structures are given according to 
their Seismic Design Categories. The mass weight to be considered for 
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seismic force calculations is given as: 
 
1. Total dead load 
2. 5 percent of live load in storage areas and warehouses 
3. Actual load of partitions if they are considered as lump sum loads; 

actual load shall not be less than 0.48 kN/m2 (10 psf) 
4. 20 percent of the snow load if intensity of the snow exceeds 1.44 kN/m2 

(30 psf) 
5. Permanent equipment 
 
Seismic Design Category A 
 
The seismic forces in the structure may be calculated directly for each floor 
as follows: 
 Fx = 0.01 wx 
where: 
Fx = Seismic force applied to level x. 
wx = Share of story from the mass weight as defined earlier. 
 
The force is allowed to be applied separately in each of two orthogonal 
directions of the structure. The orthogonality effect can be neglected in this 
category. In addition, the special seismic load combination that includes 
seismic force, Em, does not need to be considered in this category. (Seis-
mic force will be explained later.) 
 
Connections in this category must be designed for horizontal forces equal 
to 5 percent of the vertical dead and live loads applied to these con-
nections. 
 
Seismic Design Category B and C 
 
The seismic forces in the structure may be calculated using any of the four 
methods given in the next section as applicable. Other design requirements 
will be given as they develop throughout the next sections. 
 
Seismic Design Category D, E, and F 
 
The seismic forces in the structure may be calculated using any of the four 
methods given in the next section as applicable. Other design requirements 
will be given as they develop throughout the next sections. 

6.7  Earthquake-Induced Forces 

The IBC does not explicitly give details about force calculations. However, 
the code does require that all force calculations be made according to 
ASCE 7 standards. In its 2005 version, ASCE 7-05 offers four methods of 
analysis to evaluate earthquake-induced forces in structures: 
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1. Simplified lateral force analysis procedure 
2. Equivalent lateral force procedure 
3. Modal response spectrum analysis 
4. Time-history analysis 
 
Because all methods expect the structure to go into its inelastic range, the 
structure must be designed accordingly. In methods 1, 2 and 3, inelastic 
response is incorporated in the structure through the concept of response 
modification factor, R, in association with inelastic displacement, x, as ex-
plained in previous chapters. 
 
In method 4, elastic dynamic analysis may be performed, resulting in 
elastic earthquake-induced forces. In this case, the concept of R- is also 
utilized to find design forces and displacements as done in methods 1, 2 
and 3. However, if method 4 is used and utilizes the structure actual in-
elastic property, R and x  relations will not apply. Instead, an actual 
hysteresis model based on experimental data must be used. In this case, 
the resulting forces and displacements will be the final design quantities as 
explained in previous chapters.  
 
The IBC also uses an importance factor, I, to reflect the importance of the 
structure as given in Table 6-A1. In summary, I is given a value of 1.25 for 
hazardous facilities whose failure may result in a large number of cas-
ualties. I is given a value of 1.5 for essential facilities that are expected to 
remain functional during and after earthquakes. 
 
The IBC also classifies structures into buildings and nonbuilding types. In 
general, the nonbuilding classification includes building-like structures such 
as water tanks, towers and vessels. This classification does not include 
bridges, which are addressed in bridge codes such as the ones published 
by the American Association of State Highway and Transportation Officials 
(AASHTO). The IBC assigns R-values for each group of the types above. 
Selected systems are given in Tables 6-A6 and 6-A7 in Appendix 6-1 of 
this chapter. 
 
The IBC also assigns ductility ratios for each system individually, which is 
designated as displacement amplification factor, Cd. Values of Cd are also 
listed in Tables 6-A6 and 6-A7. 
 
According to the code, only structural systems that are listed in those tables 
can be used as seismic-resistant systems. If a system is not listed, it can 
be used only if its seismic structural properties can be verified by an ap-
proved cyclic test and adequate analysis that prove its integrity. As may be 
expected, this is a very difficult task to complete. 
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The IBC defines the first significant yield as the design level similar to the 
definition in provisions issued 
by the National Earthquake 
Hazards Reduction Program 
(NEHRP). Accordingly, the 
design level, Vs, is given as 
shown in Figure 6-3. This 
strength level is reduced from 
the elastic strength demand 
by the R-factor. The code also 
defines a system overstrength 
factor, o, which brings the 
structure to its fracture level, 
Vm. This level includes any 
strain-hardening effect of the 
material that may come early 
in the structure because of 
cyclic effect. 
 
Accordingly, the code format for maximum force, Em, that may develop in 
any member is given as 
 
 Em = o QE + 0.2 SDS D 
 
where QE is the force resulting from the horizontal component of the design 
earthquake (base shear). This will be explained later in this chapter. The 
second term includes the effect of the vertical component of the earth-
quake, which is given proportional to the dead load, D. 
 
The weight of the structure included in the force calculations that represent 
the structure�s mass will be as defined earlier. The sum of these weights 
will be referred to in this book as the mass weight, W. 
 
Because the application of these four methods of analysis depends on 
structural regularity, the regularity of structures will be discussed before an 
in-depth consideration of the analysis methods. 

6.7.1  Regularity of Structures 

In general terms, the response of regular structures to dynamic forces is 
dominated by the first mode of vibration. Therefore, dynamic analysis will 
be greatly simplified and may be performed with an equivalent static 
procedure that uses a force distribution close to the first mode of vibration. 
In contrast, the response of irregular structures to dynamic forces cannot 
easily be predicted. Therefore, explicit dynamic analysis is required to 
obtain the equivalent forces and their distribution in the structure. The IBC 
allows an equivalent lateral static procedure for regular structures and 
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some irregular structures, among other conditions (as will be seen later). 
Irregularity is defined in IBC Table 12.3-1 for horizontal irregularity and in 
Table 12.3-2 for vertical irregularity. 
 
In addition, the code prohibits the irregularities outlined in the following sec-
tions to exist in Seismic Design Category D through F as follows: 
 
SDC D :  Vertical irregularity Type 5b shall not be permitted. 
 
SDC E or F : Horizontal irregularity Type 1b shall not be permitted. Ver-

tical irregularity Type 1b, 5a or 5b shall not be permitted. 
 
Horizontal Irregularity 
 
In a plan, irregularity may exist because of displacements, geometry and 
discontinuity. These irregularities may be summarized as follows: 

 
1a. Torsional irregularity in rigid diaphragms: 
 When the maximum displacement of one corner of the 

diaphragm exceeds 1.2 times the average displacement of 
both corners in each direction. 

 
1b. Extreme torsional irregularity in rigid diaphragms: 
 When the maximum displacement of one corner of the 

diaphragm exceeds 1.4 times the average displacement of 
both corners in each direction. 

 
2. Re-entrant corners: 
 When the projection of both ends of a re-entrant exceeds 

15 percent of the structure dimension. 
 

3. Diaphragm discontinuity: 
 Diaphragm discontinuity is considered when opening in the 

diaphragms exceeds 50 percent of its area. A 50 percent 
difference in a diaphragm�s stiffness between adjacent 
stories is also considered irregular. 
 

4. Out-of-plane offsets in the vertical direction. 
 

5. Nonparallel systems: 
 When lateral-load-resisting elements are not parallel or not 

symmetric about the major orthogonal axes of the structure. 
 
Vertical Irregularity 
 
In the vertical direction, irregularity may exist due to changes in stiffness, 
weight, geometry and discontinuity. These irregularities may be summariz-
ed as follows: 
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1a. Stiffness irregularity�soft story: 
 A story is considered soft if its stiffness is less than 70 

percent of the story above or less than 80 percent of the 
average stiffness of the three stories above. 

 
1b. Stiffness irregularity�extreme soft story: 
 A story is considered extremely soft if its stiffness is less 

than 60 percent of the story above or less than 70 percent 
of the average stiffness of the three stories above. 

 
2. Weight (mass) irregularity: 
 Weight irregularity exists if there is a 150 percent difference 

in the mass of adjacent floors. A lighter roof is excluded 
from this definition. 

 
3. Vertical geometric irregularity: 
 Vertical geometric irregularity exists if there is a 130 percent 

difference in the horizontal dimension of the lateral force 
system between adjacent floors. 

 
4. In-plane discontinuity in a vertical lateral-force-resisting 

element: 
 In-plane discontinuity exists if there is an in-plane offset of 

the element in the vertical direction equal to the length of 
the element. 

 
5. Capacity discontinuity, also known as weak story: 
 A story is considered weak if its strength is less than 80 

percent of the story above. 

6.7.2  Simplified Lateral Force Analysis Procedure 

This method may be applied to simple, three-story buildings with bearing 
wall or building frame systems, subject to strength and geometry limit-
ations. Some of these limitations may be highlighted as follows: 
 
1. Seismic design category is determined according to SDS value. 
2. Structures shall only be in Occupancy Categories I and II. 
3. Site class shall be a class other than E or F. 
4. Structures will have at least two lines of lateral resisting systems in 

each major direction, provided that at least one line of resistance lies 
on each side of the center of mass. 

5. Story strength shall not be less than 80 percent of the story above. 
 
If the limitations above, among others, are satisfied, then the total base 
shear, V, may be calculated using the following expression: 
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 W
R
SF

V DS  

 
where: 
F = 1.0 for one-story buildings,  
 = 1.1 for two-story buildings, and 
 = 1.2 for three-story buildings. 
R = Response modification factor as per 

Table 6-A6. 
SDS = Design spectral acceleration at short 

period as defined earlier. In calcu-
lating SDS, SS need not be taken as 
larger than 1.5. 

W = The mass weight defined earlier. 
 
Because the period of low-rise buildings 
is very short, such buildings will fall in the 
range of periods less than Ts

 as given in 
Figure 6-2. For such structures, the code 
implies that the force may conservatively 
be calculated at the maximum values in 
the response spectrum range, SDS. 
However, the code takes one more pre-
caution by increasing the force by the fac-
tor F, as seen in the final expression 
above. 
 
Vertical Distribution of Base Shear 
 
In this simplified method, floor force is 
directly proportional to floor mass weight: 
 

 V
W
w

F x
x   

 
where Fx is the floor force and wx is the 
floor mass weight as shown in Figure 6-4. 
 
Substituting the base shear value, V, in 
the equation above, the floor forces may 
be expressed in the following form: 
 

 x
DS

x w
R
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Unless otherwise calculated by more refined methods, the story drift, , in 
this method may be taken as 1 percent of the story height. The story drift, 

, given in this section is the relative displacement between stories. 
 
Example 6-1 
 
A two-story residential building with story height equal to 3 m (9.84 ft) is 
shown in Example 6-1, Figure 1. The building will be constructed in a 
region with the mapped acceleration coefficient at short period, Ss, equal to 
123. The site is classified as soil Type C. 
 
The structural system of the building consists of four reinforced concrete 
moment frames in each direction, which are spaced as shown in the plan. 
The interior frames have double the stiffness of the exterior frames. The 
center of mass, CM, of each floor is offset by 1.5 m (4.92 ft) from the center 
of rigidity in both directions. 
 
The first and the second floor carry a total mass weight of intensity equal to 
qD = 10 kN/m2 (209 psf) and 7 kN/m2 (146 psf), respectively. 
 
One must find the design seismic force for each of the four frames marked 
1 through 4 on the plan if the earthquake direction is along these frames (in 
the short direction as shown in the figure). 
 
Solution 
 
The simplified lateral force analysis procedure may be used because the 
building is residential, placing it in Occupancy Category I, and the building 
has only two stories. Refer to Appendix 6.1 for relevant IBC tables. 
 
(1) Seismic coefficients Fa and SDS: 
 
For the given SS value and soil Type C, the site coefficient Fa is 1.0 (from 
Table 6-A3, Appendix 6-1). Accordingly, the seismic coefficient SDS is cal-
culated as follows: 
 
  SMS = Fa Ss  = 1.0 (1.23) = 1.23 
 SDS = 2/3  SMS =  2/3  (1.23) = 0.82 
 
(2) Occupancy and Category: 
 
A residential building is in Occupancy Category I. Knowing the SDS = 0.82, 
we can refer to Table 6-A2, Appendix 6-1, for Occupancy Category I and 
determine that the building is in Seismic Design Category D. 
 
(3) Response modification factor, R: 
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Table 6-A6 in Appendix 6-1 states that ordinary and intermediate moment 
frames are not permitted for Seismic Design Category D. Nevertheless, 
special moment frames are permitted. Therefore, if a special moment 
frame system is selected for the building, the response modification factor, 
R, is obtained for SMF as R = 8. 
 
(4) Mass weight, W: 
 
Area of each floor: A = 9(12) = 108 m2 (1,162 ft2) 
Mass weight of first floor:  w1 = qD.A = 10(108) = 1,080 kN (243 kip) 
Mass weight of second floor:  w2 = qD.A = 7(108) = 756 kN (170 kip) 
 
Total mass weight of the building:  
   
 W = w1 + w2 = 1,080 + 756 = 1,836 kN (413 kip) 
 
(5) Base shear, V: 
 
The building is a two-story building with factor F = 1.1. Thus, 
 

  W
R
SF

V DS   

  )836,1(
8

)82.0(1.1
V = 0.112(1,836) = 206 kN (46 kip) 

 
(6) Vertical force distribution (floor forces), Fx: 
 

  V
W
w

F x
x   

  )207(
836,1
080,1

1 F  

 =121 kN (27 kip) 

  )207(
836,1
756

2 F  

  = 85 kN (19 kip) 
 
These forces are shown in Example 6-1, Figure 2. 
 
(7) Horizontal distribution of forces due to Fx, excluding effect of 

eccentricity: 
 
The frame forces due to a force applied at the center of rigidity is 
proportional to frame stiffness because all frames displace the same a-
mount, , as shown in Example 6-1, Figure 3. The relative stiffness of the 
four frames is stated in the example above as k1 = k, k2 = 2k, k3 = 2k and

EXAMPLE 6-1, FIGURE 2 
FLOOR FORCES

 
 85 kN 
(19 kip)
 121 kN 
(27 kip)

Elevation

 207 kN 
(46 kip)
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k4 = k for frames 1 through 4, respectively. 
Thus, the share of each frame from the floor 
force becomes 
 

iii
j

i k
k

Fk
kk

Fk
k
FQ

6)2()2(



  

 
Because the first floor force is F1 = 121 kN (27 
kip), then 
 
Q1 = Q4 = (121/6k)(k) = 20.17 kN     (4.5 kip) 
Q2 = Q3 = (121/6k)(2k) = 40.33 kN     (9.1 kip) 
 
Because the second floor force is F2 = 85 kN 
(19 kip), then 
 
Q1 = Q4 = (85/6k)(k) = 14.17 kN (3.2 kip) 
Q2 = Q3 = (85/6k)(2k) = 28.33 kN (6.4 kip) 
 
(8) Horizontal force distribution due to 

eccentricity of force, Fx: 
 
Because the center of mass does not coincide 
with the center of rigidity, this eccentricity will 
generate a torsional moment, Mtor. The force 
distribution due this moment is proportional to 
rotational stiffness of each frame because all 
frames have the same rotational angle as 
shown in Example 6-1, Figure 4. Because the 
moment is acting counterclockwise, the forces 
in frames 3 and 4 will be opposite in direction 
to the forces in frames 1 and 2 as shown in 
Example 6-1, Figure 4. Thus, the share of each 
frame from the floor force becomes 
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where torsional moment Mtor = F.e. 
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Because the first floor force is F1 = 121 kN (27 kip) and eccentricity is 
e = 1.5 m, then 
 
Mtor,1 = 121(1.5) = 182 kN.m (1,611 kip.in) 
Q1 = Q4 = (182/88k)(k)(6)  
  = 12.41 kN (2.8 kip) 
Q2 = Q3 = (182/88k)(2k)(2)  
  = 8.27 kN (1.8 kip) 
 
Because the second floor force is F2 = 85 kN 
(19 kip) and eccentricity is e = 1.5 m (4.9 ft), 
then 
 
Mtor,2 = 85(1.5) = 128 kN.m (1,133 kip.in) 
 
Q1 = Q4 = (128/88k)(k)(6)  
  = 8.73 kN (2 kip) 
Q2 = Q3 = (128/88k)(2k)(2)  
  = 5.82 kN (1.3 kip) 
 
The final forces applied to the frames are ob-
tained by the summation of both force and 
moment components as follows: 
 
First floor: 
 
Q1 = 20.17 � 12.41 = 7.76 kN (1.7 kip) 
Q2 = 40.33 � 8.27 = 32.06 kN (7.2 kip) 
Q3 = 40.33 + 8.27 = 48.60 kN (10.9 kip) 
Q4 = 20.17 + 12.41 = 32.58 kN  

   (7.3 kip) 
 
Second floor: 
 
Q1 = 14.17 � 8.73  
 = 5.44 kN (1.2 kip) 
Q2 = 28.33 � 5.82  
 = 22.51 kN (5.1 kip) 
Q3 = 28.33 + 5.82  
 = 34.15 kN (7.7 kip) 
Q4 = 14.17 + 8.73  
 = 22.90 kN (5.1 kip) 
 
The frame forces at the first floor level are shown in Example 6-1, Figure 5, 
while the forces in frame 3 are shown in Example 6-1, Figure 6. 

Elevation
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6.7.3  Equivalent Lateral Force Procedure 

The IBC allows the use of this method as presented by ASCE 7. It may be 
applied to the following cases: 
  
1. Regular structures with period T < 3.5 Ts, where Ts = SD1/SDS, which is 

the controlling period in the response spectra of Figure 6-2. 
2.  All light-frame structures. 
3. Irregular structures with period T < 3.5 Ts, and having plan irregularity 

2, 3, 4 or 5 as defined in previous sections. 
4. Irregular structures with period T < 3.5 Ts, and having vertical 

irregularity 4 or 5 as defined in previous sections. 
 
The total base shear, V, is obtained from the response spectra shown in 
Figure 6-2, which may be expressed as follows: 
 
 V = Cs W 
where: 
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where: 
I = Importance factor as defined earlier.  
R = Response modification factor as given in Table 6-A6. 
SD1 = Design spectral acceleration at 1-second period. 
SDS = Design spectral acceleration at short period. 
T = The fundamental period of the structure. 
W = The mass weight as defined earlier. 
 
An approximate fundamental period may be calculated using the following 
expression: 
 Ta = Ct (hn)x 

where: 
Ct and x  = Coefficients from Table 6-3. 
hn = Total height of the building above the base in meters (in feet). 
 
Alternatively, for concrete and steel moment frames in buildings that are 12 
stories high with a minimum story height of 3 m (10 ft), the approximate 
period may be estimated as a function of the number of stories, N, as 
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 Ta = 0.1 N 
 
The fundamental period of the structures, T, may also be calculated by 
established methods in structural dynamics as given in Chapter 3.  
However, if the period, T, is calculated by rigorous analysis, the period shall 
not exceed the following value: 
 
 T  Cu Ta  
 
 

 
TABLE 6-3 

APPROXIMATE PERIOD CALCULATION COEFFICIENTS 

STRUCTURE TYPE 
Ct 

hn IN 
METERS 
(FEET) 

x 

Steel moment frames free to deflect under 
seismic forces 

0.0724 
(0.028) 0.8 

Reinforced concrete moment frames free to 
deflect under seismic forces 

0.0466 
(0.016) 0.9 

Eccentrically braced steel frames 0.0731 
(0.03) 0.75 

All other structural systems 0.0488 
(0.02) 0.75 

 
where: 
Cu = Coefficient for upper limit on calculated period, which is dependant 

on the design spectral response acceleration at 1 second, SD1, as 
given in Table 6-4. 

Ta = Approximate fundamental period as calculated above. 
 

 
TABLE 6-4 

COEFFICIENT FOR UPPER LIMIT ON CALCULATED PERIOD 

SD1  0.4 0.3 0.2 0.15   0.1 

Cu 1.4 1.4 1.5 1.6 1.7 
 
Vertical Distribution of Base Shear 
 
In this method, the code assumes a power distribution of forces as shown 
in Figure 6-5. This distribution, of course, assumes that a structure re-
sponds in its first mode of vibration only. The floor force, Fx, is given by the 
following expression: 
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 Fx = Cvx V 

 
k

ii

k
xx

vx
hw

hwC   

 
where wx and hx are the weight and 
height of the story under con-
sideration, whereas wi and hi are the 
weight and height of all stories, in-
cluding the story under consideration. 
The power k is taken as follows: 
 
k = 1 for T   0.5 sec. 
k = 2 for T   2.5 sec. 
k = By interpolation for periods in 

between. 
 
The values of k above indicate that for 
long-period structures, the value of k 
increases the degree of curvature, re-
sulting in the transfer of more force to 
the upper stories as illustrated in 
Figure 6-5. This action is meant to in-
clude the effect of higher modes for 
long-period structures. Because the 
value of k = 2 is on the conservative 
side, k may be taken as 2 instead of 
interpolation for the period range 
between 0.5 and 2.5 seconds. 
 
Example 6-2 
 
An eight-story building with story 
height equal to 3 m (9.84 ft) is shown 
in Example 6-2, Figure 1. The building 
will be constructed in a region with 
mapped acceleration coefficient at 
short period and at 1 second period 
equal to Ss = 50 and S1 = 16, re-
spectively. The long-period transition 
period TL = 8 sec. The site is classified 
as Soil Type C. 
 
The structural system of the building 
consists of four reinforced concrete 
moment frames spaced in each di-
rection as shown in the plan. The in-
terior frames have double the stiffness 
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of the exterior frames. The center of mass, CM, of each floor is offset by 
1.5 m (4.92 ft) from the center of rigidity in both directions. 
 
The first seven floors carry a total mass weight of intensity equal to qD = 10 
kN/m2 (209 psf) each. The eighth floor carries a total mass weight of in-
tensity equal to 7 kN/m2 (146 psf). 
 
One must find the design seismic force for each of the four frames marked 
1 through 4 on the plan if the earthquake direction is along these frames (in 
the short direction as also shown in the same figure). 
 
Solution 
 
Because the building is regular, the equivalent lateral force procedure may 
be used if it satisfies the period limitations outlined earlier. This condition is 
illustrated in step (3) below. 
 
Refer to Appendix 6.1 for the relevant IBC tables. 
 
(1) Seismic coefficients Fa, Fv, SDS and SD1: 
 
The seismic coefficient Fa and Fv are obtained from IBC tables included in 
Appendix 6-1 as Tables 6-A3 and 6-A4. For Ss = 0.50, Fa = 1.2 and 
S1 = 0.16, Fv = 1.65. 
 
Accordingly, the seismic coefficients SDS and SD1 are calculated as follows: 
 
 SMS = Fa Ss  = 1.2(0.50) = 0.60 
 SDS = 2/3  SMS =  2/3(0.60) = 0.40 
 
 SM1 = Fv S1  = 1.65(0.16) = 0.264 
 SD1 = 2/3  SM1 =  2/3(0.264) = 0.176 
 
(2) Occupancy, category and importance, I: 
 
A residential building is in Occupancy Category I. When we refer to Table 
6-A2, Appendix 6-1, for information on that category and on an SDS of 0.40 
and an SD1 of 0.176, we can determine that the building is in Seismic 
Design Category C. 
 
The importance factor, I, is 1. 
 
(3) Period, T, and response modification factor, R: 
 
Determine the response spectrum-controlling period, Ts, and the limiting 
period, Tlimit, as follows: 
 
 Ts = SD1lSDS = 0.176/0.4 = 0.44 sec 
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 Tlimit = 3.5 Ts  = 3.5(0.44) = 1.54 sec 
 
The approximate period, Ta, is calculated as 
 
 Ta = Ct (hn)x 
 
where building height hn = 8 (3 m) = 24 m (78.74 ft), Ct = 0.0466 and  
x = 0.9 for reinforced moment frames. Consequently, the period is given as 
 
 Ta = Ct (hn)x = 0.0466(24)0.9 = 0.81 sec 
 
Because Ta = 0.81 sec < Tlimit = 1.54 sec and the structure is regular, the 
equivalent lateral force procedure may be used. 
 
Table 6-A6, Appendix 6-1, indicates that ordinary moment frames are not 
allowed for Seismic Design Category C, but intermediate and special mo-
ment frames are permitted. Therefore, if an intermediate moment frame is 
selected for the building, the response modification factor, R, is obtained for 
IMF as R = 5. 
 
(4) Mass weight, W: 
 
Area of each floor, A = 9(12) = 108 m2 (1,163 ft2) 
Mass weight of each of the first seven floors: 
wi = qD.A = 10(108) = 1,080 kN (243 kip) 
Mass weight of the eighth floor: w8 = qD.A = 7(108) = 756 kN (170 kip) 
 
Total mass weight of the building: 
   
 W =  wi = 1,080(7) + 756 = 8,316 kN (1,870 kip) 
 
(5) Base shear, V: 
 
Because T < TL and S1 < 0.6 g, the coefficient Cs is given as follows: 
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Therefore,  Cs = 0.043 
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and thus, V = Cs W = 0.043(8,316) = 358 kN (80 kip) 
 
(6) Vertical force distribution (floor forces), Fx: 
  
Distribution of the base shear is given as a function of Cvx: 
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Because T = 0.81 sec, which is more than 0.5 and less than 2.5, the k-
factor should be interpolated unless taken as 2: 
 
 K = 1 + (0.81 - 0.5)/(2.5 - 0.5) = 1.16 
 

Thus, 
16.1

16.1

ii

xx
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hw
hwC   

 
The best way to perform the calculations above is by tabulated form, as 
shown in Example 6-2, Table 1. For demonstration purposes, a sample cal-
culation of the force at floor level 5 is given as: 
 
 w5 = 1,080 kN (243 kip) 
 h5 = 15 m (49.21 ft) 
 w5 h5 

1.16 = 1,080 (15)1.16 = 24,986 (22,194) 
  wi hi 

1.16 = From Example 6-2, Table 1 = 168,536 (150,710) 
 Cv5= 24,986/168,536 = 0.148,3 
 
Consequently, the force at floor level 5 is given as 
 
 F5 = Cv5 V = 0.148,3 (358) = 53 kN (12 kip) 
 
The calculation procedures will be the same for the rest of the forces, with 
results as tabulated in Example 6-2, Table 1. 
 
Base shear and its distribution are shown in Example 6-2, Figure 2. 
 
(7) Horizontal distribution of forces due to Fx: 
 
The horizontal distribution of each floor force will be similar to the force 
distribution demonstrated in Example 6-1. Each frame force will be com-
posed of two components: one due to the force applied at the center of rig-
idity and another one due to the eccentricity of the force due to an offset of 
1.5 meters (4.92 feet) of the center of mass. See Example 6-1 for details. 
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EXAMPLE 6-2, TABLE 1 
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3 1,080 
(243) 
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(150,710) 
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(80) 
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6.7.4  Modal Response Spectrum Analysis 

The IBC allows the use of this method as presented by ASCE 7, Section 
12.9. In ASCE 7, this method is used for structures that do not conform to 
the requirements of the simplified method or the equivalent lateral force 
procedure method. In modal response spectrum analysis, structures are 
modeled as multiple degrees of freedom systems where the resulting fre-
quencies and mode shapes are extracted as illustrated in Chapter 3. This 
method, of course, is only valid for elastic systems. 
 
For each mode, the spectral forces and displacements are found and then 
combined as needed (by SABS, SRSS or CQC, for example). The com-
bined forces are then divided by the response modification factor, R, to ob-
tain the design forces. Similarly, inelastic displacements are amplified by a 
ductility demand factor, which is explicitly given by the IBC as Cd (see 
Table 6-A6, Appendix 6-1). 
 
The IBC response spectrum defined in Figure 6-2 is used according to the 
given soil profile and proper zone mapped factors Ss and S1. Alternatively, 
a site-specific response spectrum is permitted if it takes all site char-
acteristics into consideration, including seismic hazard analysis. A damping 
ratio,  = 5 percent, is used for building this kind of response spectrum. 
 
Even though not explicitly given in the code, it has been general practice to 
take the vertical component of the earthquake as 2/3 of the horizontal 
component. 
 
In modal analysis procedures, the obtained torsion need not be amplified 
by the torsion amplification factor, Ax. This factor will be defined later. 
 
According to the ASCE 7 standards, the base shear obtained using 
response spectrum procedure shall not be less than 85 percent of the base 
shear obtained by the equivalent lateral force procedure. In addition, the 
base shear obtained using equivalent lateral force procedures shall be 
based on the period obtained from modal analysis, but it shall not exceed 
the upper limit of the period given in that section: Tmodal  Cu.Ta. 
Consequently, if the base shear obtained by response spectrum procedure 
is less than 85 percent of the force obtained by the equivalent lateral force 
procedure, then all relevant force quantities, such as base shear and 
internal forces (but not the drifts), obtained from the response spectrum 
procedure shall be multiplied by the following quantity: 
 
 Multiplication factor = 0.85 V l Vt  
where: 
V = Base shear obtained from the equivalent lateral force procedure. 
Vt = Base shear obtained from the response spectrum procedure. 
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The response modification above indicates that the code is more 
concerned about the distribution of the force inside the structure as 
determined by the response spectrum model. Consequently, the force dis-
tribution inside the structure must be maintained with revised values ac-
cording to the conditions above. 
 
Example 6-3 
 
A six-story building with a story height equal to 3 m (9.84 ft) is shown in 
Example 6-3, Figure 1. The building will be constructed in a region with 
mapped acceleration coefficient at short period and at 1-second period 
equal to Ss = 50 and S1 = 15, respectively. The mapped long-period tran-
sition period is given as TL = 8 sec. The site is classified as Soil  
Type C. 
 
The structural system of the building 
consists of reinforced concrete mo-
ment frames in each direction and 
spaced as shown in the plan. All 
columns and all beams are  
500 x 500 mm (20 x 20 in). The 
material used is concrete grade,  
fc  = 25 MPa (3.625 ksi), with 
reinforcement grade, fy = 420 MPa  
(60 ksi). 
 
Each floor carries a total mass 
weight of intensity equal to qD = 10 
kN/m2 (209 psf).  
 
The modal analysis procedure must 
be used to find the design seismic 
force for each of the four frames 
marked 1 through 4 on the plan if the 
earthquake direction is along these 
frames as also shown in the figure. 
 
Solution 
 
Note that the equivalent lateral force 
procedure may be used. 
 
(1) Seismic coefficients Fa, Fv, SDS 

and SD1: 
 
The seismic coefficients Fa and Fv are obtained from the IBC tables 
provided in Appendix 6-1 as Tables 6-A3 and 6-A4. Ss = 0.50, Fa = 1.2, 
S1 = 0.15 and Fv = 1.65. 
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Accordingly, the seismic coefficients SDS and SD1 are calculated as follows: 
 
SMS = Fa Ss  
 = 1.2(0.50)  = 0.60 
SDS = 2/3  SMS  
        =  2/3(0.60) = 0.40 
 
SM1 = Fv S1   
 = 1.65(0.15) = 0.248 
SD1 = 2/3  SM1  
 =  2/3(0.248) = 0.165 
 
(2) Group, category, and importance, I: 
 
A residential building is in Occupancy Category I. When we refer to Table 
6-A2, Appendix 6-1, for Occupancy Category I and for an SDS of 0.40 and 
an SD1 of 0.165, we can determine that the building is in Seismic Design 
Category C. This building is similar to the one in Example 6-2 in that in-
termediate moment frames may also be used for this building, which has 
an R-factor equal to 5. 
 
The importance factor, I, is equal to 1. 
 

 
 
 

 
 

 
(3)  Design response spectrum: 
 
The design response spectrum can be determined from the IBC spectrum, 
which is a function of the seismic coefficients. The IBC spectrum and its 
controlling parameters are shown in Example 6-3, Figure 2 (a). These 
parameters are calculated as follows: 
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 SDS = 0.40  SD1 = 00165  . . . as given above 
 0.4 SDS = 0.4(0.40) = 0.16 
 Ts = SD1/SDS = 0.165/0.40 = 0.413 sec 
 To = 0.2 Ts = 0.2(0.41) = 0.083 sec 
 TL = given = 8 sec 
 
The final response spectrum is shown in Example 6-3, Figure 2 (b). 
 
To use this spectrum in a computer program, you will need to provide pairs 
of period and acceleration. For example, the following pairs from Example 
6-3, Table 1, may be used for computer input. 
 

 
EXAMPLE 6-3, TABLE 1 

DESIGN RESPONSE SPECTRUM PAIRS 
T 

(s) 0 0.083 0.413 0.5 0.6 0.8 1 2 4 5 8 10 

Sa 
(g) 0.16 0.40 0.40 0.33 0.275 0.206 0.165 0.083 0.041 0.033 0.021 0.013 

 
(4) Periods and mode shapes: 
 
To obtain the periods and the mode shapes, the building must be modeled 
as multiple degrees of freedom as illustrated in Chapter 3. For structures 
with more than 3 DOFs, hand calculations become unreasonable and com-
puter analysis will be needed. 
 
Because modeling is considered an art, it must be handled carefully to 
capture the dynamic aspects of the problem and to provide accuracy and 
efficiency. The building may be modeled as a space frame structure if the 
floors of the building are stiff enough to be considered rigid: As identified 
earlier, diaphragms may be idealized as rigid if they consist of concrete 
slabs or concrete-filled metal decks with span-to-depth rations of 3 or less 
that have no horizontal irregularities according to ASCE 7-05 and be at 
least 50 mm thick according to ACI. The mass may be lumped and applied 
as concentrated node masses at the nodes. 
 
If the diaphragm is not stiff enough, it must be modeled as a flexible 
diaphragm using the finite element model: the diaphragm is modeled with 
plate elements or more generally as shell elements. The diaphragm el-
ements are then connected to the beams and columns at their nodes. In 
this case, the mass is directly applied to the diaphragm shell elements as 
surface mass density. In practice, most building slabs qualify as rigid 
diaphragms. 
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(5) Modeling: 
 
Example 6-3, Figure 3, shows 
the building modeled as a 3-D 
space frame with lumped mas-
ses. The mass will be lumped 
and allocated to the nodes at the 
intersection of beams and col-
umns. The supports may be 
modeled as either hinge or fixed 
supports as required by design. 
This example considers fixed 
supports. 
 
The distribution of the mass over 
all nodes produces a more ac-
curate and realistic distribution of 
the mass. However, the lumped 
masses may be limited to a few 
nodes as long as the location of 
the center of mass is preserved. 
It is also important to displace the actual center of mass a distance equal to 
5 percent of the dimension perpendicular to earthquake excitation as re-
quired by the code. This is illustrated in the following calculations. 
 
The model shown in Example 6-3, Figure 3, can easily be entered into any 
standard structural analysis software with proper numbering of nodes and 
members. The reference global coordinate system is capital X, Y and Z as 
shown in the figure. This is a standard operation these days. 
 
Material: Concrete: Ec = 4,700 25  = 23,500 MPa     (3,400 ksi) 
 
Geometry of members is calculated for all members with respect to their six 
degrees of freedom (referenced to their local member axes marked with 
small letters as shown in Example 6-3, Figure 4). If the dimensions of the 
section are given as b x h, the required quantities are calculated as follows: 
 
Ax = cross sectional area = b x h 
Ay = shear area = (5/6) b x h 
Az = shear area = (5/6) b x h 
Ix = torsional constant  
 = (h.b3/3).(1 � 0.63 b/h) 
Iy, Iz = effective moment of inertia   
 = 0.35 Ig for beams and  
 = 0.70 Ig for columns 

x

EXAMPLE 6-3, FIGURE 4 
LOCAL COORDINATES

z

 
y

 
Lumped Mass

Node

Column

Beam

Support

EXAMPLE 6-3, FIGURE 3   
3-D FRAME MODEL

X

Y
 

ZEQ 



Chapter Six 

 252

where the gross moment of inertia is taken as b.h3/12 for the major axis 
and h.b3/12 for the minor axis. The results are shown in Example 6-3, 
Table 2. 
 

 
EXAMPLE 6-3, TABLE 2 
MEMBER PROPERTIES 

SIZE Ax Ay Az Ix Iy Iz 
MEMBER m 

(ft) 
m2 
(ft2) 

m2 
(ft2) 

m2 
(ft2) 

x10�3 m4 
(ft4) 

x10�3 m4

(ft4) 
x10�3 m4 

(ft4) 

Beams 0.5 x 0.5 
(1.6 x 1.6) 

0.25 
(2.69)

0.208 
(2.24) 

0.208
(2.24)

7.708 
(0.893) 

1.823 
(0.211) 

1.823 
(0.211) 

Columns 0.5 x 0.5 
(1.6 x 1.6) 

0.25 
(2.69)

0.208 
(2.24) 

0.208
(2.24)

7.708 
(0.893) 

3.646 
(0.422) 

3.646 
(0.422) 

 
(6) Mass: 
 
For consistency of units, the mass is preferably given in kN.s2/m, which is 
simply the weight divided by the gravitational acceleration. Thus, the mass 
density of all floors may be calculated in these weight units as 
 
  mD = qD /g   
 = 10/9.81  
 = 1.02 kN.s2/m/m2 (3.76 x 10-6 kip.s2/in/in2) 
 
For mass calculation, subdivide the floor into areas A1 and A2 as shown in 
Example 6-3, Figure 5. 
 
For each floor, the subarea and 
submass, M1 and M2, are cal-
culated as follows: 
 
 A1 = 8(8) = 64 m2  
    (689 ft2) 
M1 = mD A1 = 1.02(64)  
 = 65.28 kN.s2/m 
          (0.373 kip.s2/in) 
 
A2 = 4(12) = 48 m2  
  (517 ft2) 
M2 = mD A2 = 1.02(48)  
 = 48.96 kN.s2/m 
          (0.280 kip.s2/in) 
 
Mtot = M1 + M2   
 = 65.28 + 48.96   
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      = 114.24 kN.s2/m (0.653 kip.s2/in) 
 
(7) Mass allocation: 
 
The total mass must be distributed to the nodes in two directions: along 
direction X and Y. 
 
Along direction Y 
 
The mass allocation for this direction is found as follows: 
 
Because the earthquake is acting along direction Y, an accidental 
eccentricity of 5 percent must be introduced perpendicular to direction Y: 
 
    E = 5% (12 m) = 0.6 m (1.97 ft) 
 
Center of mass, CM, is found by taking the moment of the two masses 
about any axis (for example, about line 1). Accordingly, CM1 from line 1 is 
calculated as 
 
  CM1 = {M1(4) + M2(10)}/Mtot  
            = {65.28(4) + 48.96(10)}/114.24  
            = 6.571 m (21.56 ft) 
 
Center of resistance, CR, is found by taking the moment of stiffness of the 
fifteen columns about any axis (for example, about line 1). Accordingly, 
CR1 from line 1 is calculated as 
 
  CR1 = {3(4 m) + 5(8) + 4(12)}/15  
          = 6.667 m (21.87 ft) 
 
Actual eccentricity of mass is shown in Example 6-3, Figure 6: 
 
 e = 6.667 � 6.571  
   = 0.096 m (0.31 ft) 
 
Adding accidental eccentricity, the final eccentricity will be 
 
 etot = 0.096 + 0.6  
        = 0.696 m (2.28 ft) 
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The share of each node from the total mass is calculated in a way similar to 
the procedures used for finding forces in piles:  

 i
j

m
i r

r

M
No
M

M
2

tot

.
  

where: 
Mm = eccentric moment of masses about CR, and is given as 
Mm = Mtot . etot = 114.24 (0.696) = 79.511 (kN,m) units 
 [1.49 (kip,in) units] 
Mtot = total mass = 114.24 kN.s2/m (0.653 kip.sec2/in) 
No. = number of nodes = 17 nodes 

 rj
2 = polar moment of inertia of masses about CR and is given as 

 = 3(6.667)2 + 3(6.667 � 4)2 + 7(8 � 6.667)2 + 4(12 � 6.667)2  
 = 280.887 m2 (3,023 ft2) 
 
Accordingly, the mass allocation is given for each floor as  
 

iii rrM 283.072.6
887.280
511.79

17
24.114

  

 
Masses in Line 1: M1 = 6.72 + 0.283(6.667) = 8.607 kN.s2/m  
  (0.049 kip.sec2/in) 
Masses in Line 2: M2 = 6.72 + 0.283(6.667 � 4) = 7.475 kN.s2/m 
  (0.043 kip.sec2/in) 
Masses in Line 3: M3 = 6.72 � 0.283(8 � 6.667) = 6.343 kN.s2/m 
   (0.036 kip.sec2/in) 
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Masses in Line 4: M4 = 6.72 � 0. 283(12 � 6.667) = 5.210 kN.s2/m 
 (0.030 kip.sec2/in) 
 
The total masses in one line may be lumped and placed on one node. For 
example, the total masses in line 3 are 7 x 6.343 = 44.401 (7 x 0.036 
= 0.252), which may be placed on the node at the intersection of lines C 
and 3. This action is less accurate than allocation of the mass to all nodes. 
 
The mass can now be entered into the available software program.  
 
Along direction X 
 
The mass distribution along direction X will be evenly distributed to the 
nodes insofar as the CM and the CR lie on the same line C (zero 
eccentricity). Consequently, the mass allocation for each node will be 
simply 
 
 Mi = Mtot/No. = 114.24/17 = 6.72 kN.s2/m 
  (0.038 kip.sec2/in) 
 
The mass distribution above is for the given direction of the earthquake 
excitation (along direction Y). For an excitation along direction X, accidental 
eccentricity must be induced perpendicular to direction X. It should be 
cautioned that the mass cannot be evenly distributed to the nodes in 
direction X, even for the given symmetry in this direction. The accidental 
eccentricity must be introduced to this direction by displacing the center of 
mass in the perpendicular direction. This is 5 percent of 12 m (39.37 ft) = 
0.6 m (1.97 ft). 
 
(8) Base shear, V: 
 
The base shear is found by adding all reactions from the computer output. 
 
(9) Force distribution through the structure: 
 
After completing the input and selection of the analysis procedure, 
including selection of the required modes to be considered for the analysis, 
one can initiate analysis by software program and receive output that 
identifies all periods and their mode shapes, all elastic nodal forces, all 
elastic displacements, all internal moments, shears and normal forces. 
  
(10) Result samples: 
 
The information above was entered into the SAP2000 software program for 
analysis. Key results for the first three modes are given in Example 6-3, 
Table 3, as a reference for those who would like to try this example in 
software analysis. Note that the summation of total reactions in any 
direction is the base shear in that direction. 
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EXAMPLE 6-3, TABLE 3 
SAP2000 OUTPUT OF RESPONSE SPECTRUM ANALYSIS 

MODE 
NUMBER 

PERIOD, 
T 

(sec) 

 MODE SHAPE, 
 

TOTAL 
REACTIONS,

VX 
kN (kip) 

TOTAL 
REACTIONS, 

VY  
kN (kip) 

1 0.781 Displacement in direction 
X  0  0 

2 0.743 

Displacement in direction 
Y 

 (with slight clockwise 
torsion) 

 0 
 

877 
(197) 

3 0.641 Torsion  0 
 

401 
(90) 

SRSS 
 (mode 3)    0 

 
964 

(217) 
SRSS 

 (mode 10)    0 
 

988 
(222) 

 
(11) Check base shear with the equivalent lateral force procedure: 
 
Refer to Example 6-2 for details of calculations. 
 
Period: Ta = Ct (hn)x = 0.0466(18)0.9 = 0.628 sec 
 
Period upper limit: for S1 = 0.15,  Coefficient Cu = 1.6 
 Tu = Cu Ta = 1.6(0.628) = 1.00 sec  
 
Therefore, because T < Tu, use calculated period from model: 
 T = 0.743 
 
Mass: Mtot  (114.24)(6) = 685 kN.s2/m      (6 floors) 
 (3.914 kip.sec2/in) 

Weight: W = Mtot g = (685)(9.81) = 6,724 kN (6 floors) 
 (1,512 kip) 

 
Using the equivalent lateral force procedure, V, the elastic base shear is 
calculated at R = 1, which is given as: 
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01.0
222.0

40.0sC  

 
Therefore,  Cs = 0.222 
 
Thus, V = Cs W = 0.222(6,724) = 1,493 kN (336 kip) 
 
  85% of base shear = 0.85 (1,493) = 1,269 kN (285 kip) 
  
Because the base shear obtained from the response spectrum analysis  
(Vt = 988 kN, or 222 kip) is less than 85 percent of the base shear obtained 
from the equivalent lateral force procedure (0.85V = 1,269 kN, or 285 kip), 
the final results obtained from computer analysis for elastic response must 
be increased to match 0.85V, except the drift values: 
 
 Velastic = 0.85 V/Vt = 0.85(1,493)/988 = 1.28 
 
The final forces for design must then be divided by the R factor. 
Considering that we use intermediate concrete frames as shown in Step 2 
above (R = 5), the final design force for each member will be 
 

 
5
28.1)(

computer
compute

design F
R

aboveratioF
F r

  

 Fdesign = 0.26 Fcomputer 
 
All results from the computer output (except the drift) must be increased 
according to the increase in the base shear value (multiplied by the factor 
0.26). In addition, the drift is only multiplied by 1/R (for example: 1/5 = 0.2). 

6.7.5.  Time-History Analysis 

The IBC allows the use of time-history analysis as presented by ASCE 7, 
Chapter 16. This is the general method used for large, important and 
complex structures. Time history analysis is conducted with numerical 
methods (see Chapter 5 of this book). To include directional effect, the 
code requires the simultaneous application of earthquake records to both 
major directions. 
 
Because this type of analysis requires ground motion records, the code 
also requires use of a suite of pairs of records. These records shall reflect 
site characteristics and seismic hazard and can either be scaled from ac-
tual records or artificially generated (synthetic records). 
 
The code also specifies that if seven records are used in the analysis, the 
maximum response quantities may be taken as the average of the resulting 
values. However, if less than seven records are used in the analysis, the 



Chapter Six 

 258

response values shall be taken as the maximum value of all records for 
each quantity. 
 
Time-history analysis may be performed using elastic and inelastic 
structural properties. In the elastic analysis procedure, the design forces 
and displacements are obtained by modifying the results of the computer 
output by the factors R and . In the inelastic analysis procedure, the de-
sign forces and displacements are directly obtained from the analysis. For 
inelastic analysis, an approved hysteresis model is needed (based on the 
experimental and analytical results discussed earlier). In addition, the code 
requires the design to be reviewed by an independent team of experts (for 
example, licensed professional engineers). 
 
Example 6-4 
 
A guyed mast with a 
total height equal to 40 
m (131 ft) is shown in 
Example 6-4, Figure 1. 
The mast lies in a seis-
mic zone with mapped 
spectral acceleration at 
short period, SS. equal 
to 105. The soil at the 
site is Type B. The 
structural system of the 
mast consists of a ver-
tical reinforced concrete 
shaft with a circular 
diameter equal to 1.6 m 
(5.25 ft). The mast has 
a fixed support at end A 
and is tied to four steel 
cables (wires) at B. The 
cables are equally spaced and located at 20 m from the base. The 
diameter of all cables is 50 mm. The material used is concrete and steel of 
grades fc  = 25 MPa (3.625 ksi) and fy = 420 MPa (60 ksi), respectively. 
  
Find the design elastic seismic force for this structure if the earthquake 
direction is along line D-F as shown in the figure. 
 
Solution 
 
The cables (wires) are nonlinear structures and do not resist compression 
forces. As a result, this structure as a whole behaves in a nonlinear 
manner. This case cannot be solved with the methods of simplified analysis 
procedure, equivalent lateral force procedure, and modal response spectral  
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analysis because they are only valid for elastic behavior. A time-history an-
alysis is the only option left. 
 
Approximate linear analysis may be performed for cable structures. If the 
cable is pretensioned, such analysis considers the cable to be an elastic 
element with average stiffness within the range of operation. This method 
is widely used in wind engineering for guyed communication towers. 
 
(1) Seismic coefficients Fa, SDS and I: 
 
The seismic coefficient Fa is obtained from the IBC including in Appendix 6-
1 as Table 6-A3. For Soil Type B, Fa = 1. Accordingly, the seismic co-
efficient SDS is calculated as follows: 
 
  SMS = Fa Ss  = 1.0(0.42) = 1.05 
  SDS = 2/3  SMS =  2/3(1.05) = 0.70 
 
The importance factor, I, is equal to 1. 
 
(2) Design ground motion: 
 
Because the system is nonlinear where explicit dynamic analysis is 
needed, a representative ground motion is needed. According to the IBC, a 
suite of records must be used for such analysis. The selection of 
appropriate records for analysis will be addressed in Chapter 11 using syn-
thetic earthquake records. In this example, only one record will be used. 
For actual problems, the analysis must be repeated under the excitation of 
the selected suite of different representative records. For demonstration 
purposes, the El Centro earthquake record portrayed in Chapter 2, Figure 
2-5, will be used for this analysis. 
 
Because the Peak Ground Acceleration, PGA, can be arbitrarily assigned 
to any earthquake record which is usually normalized to one, the PGA must 
be calibrated to reflect the intensity of the site under consideration. For 
dynamic analysis, the term effective peak acceleration, or EPA, is usually 
associated with such analysis because the PGA itself is not a good 
parameter for analyzing the effect of earthquakes, especially when it 
comes to inelastic behavior. Recall from Chapter 2 that when the period of 
the structure tends to zero, the pseudo-acceleration of the response 
spectrum approaches the PGA. The code design response spectrum 
indicates that the spectrum curves start with a value of 0.40 SDS at zero 
period as shown in Figure 6-2. Therefore, for a normalized earthquake 
record, the 0.40 SDS should be assigned as its PGA. 
 
Consequently, for this example, the input file for the normalized El Centro 
earthquake should include an EQ scale factor equal to 0.40 SDS times the 
gravitational acceleration: 
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  EQ scale factor = 0.40 SDS (g) = 0.40(0.70)(9.81)  
  = 2.747 m/s2 (108 in/s2) 
 
(3) Modeling: 
 
The mast can be modeled as a 3-D structure with the mast as a beam 
element. The cables may be modeled with special nonlinear elements, 
such as cable elements or tension-only link elements. This selection, of 
course, depends on the software to be used. In either way, the cable el-
ements must not resist any compressive forces. Therefore, the analysis is 
carried out incrementally, and the stiffness is updated as a function of the 
stresses in the cables. The stiffness components are turned to zero for any 
compressive stress or strain that appears in the matrix. Fortunately, these 
procedures are performed by the software, not by the user. 
 
For simplicity and demonstration purposes, the mast will be considered 
braced in the direction perpendicular to the earthquake direction and, as a 
result, will be analyzed as a 2-D structure in the direction of excitation 
(along line D-F as shown in Example 6-4, Figure 2). 
 
The model shown in Example 6-4, 
Figure 2, can easily be entered into any 
standard structural analysis software 
with the proper numbering of nodes and 
members. This is a standard operation. 
For example, if SAP2000 software is 
used, the structure in Example 6-4, Fig-
ure 2, may be modeled with five nodes 
between A and C connecting four beam 
elements from joint A to joint C. The 
cables may be modeled with two nodes 
each at D and B, with cables modeled as 
a two-hook element for cables D-B and 
F-B. In SAP2000 software, the hook 
element is defined to act as a tension-
only link. The rest of the input data may 
be calculated as follows: 
 
Material is given for concrete, fc  = 25 MPa (3.625 ksi). Thus, 
 
  Ec = 4,700 25 = 23,500 MPa (3,400 ksi) 
 
Calculate the geometry of members for all members with respect to their 
six degrees of freedoms. If the local member axes are as shown in Ex-
ample 6-4, Figure 4, with dimensions as diameter d, the required quantities 
are calculated as follows: 
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 Ax = cross sectional area =  d2/4 
 Ay = shear area =  d2/4 
 Az = shear area =  d2/4 
 Ix = torsional constant  
  =  d4/32 
Iy, Iz = effective moment of inertia is 
taken as 0.5 Ig, judged from the fact 
that the mast is not a pure beam and 
yet not heavily loaded enough in the 
axial direction to qualify as a column 
(Ieff = 0.5 Ig = 0.50  d4/64). 
 
The resulting quantities are shown in Example 6-4, Table 3.  
 

 
EXAMPLE 6-4, TABLE 3 
MEMBER PROPERTIES 

SIZE Ax Ay Az Ix Iy Iz 
MEMBER m 

(in) 
m2 

(in2) 
m2 

(in2) 
m2 

(in2) 
m4 

(ft4) 
m4 

(ft4) 
m4 

(ft4) 

Beam 1.6 x 1.6 
(63 x 63) 

2.01 
(3,116) 

2.01 
(3,116)

2.01 
(3,116)

0.643
(74.5)

0.161 
(18.65) 

0.161 
(18.65) 

Cable D = 0.05 
(1.97) 

0.001963 
(3.04) � � � � � 

 
(4) Mass: 
 
For consistency of units, the mass is preferably given in kN.s2/m (kip.s2/in), 
which is simply the weight divided by the gravitational acceleration. In most 
commercial software, the mass can be assigned to the member through 
density of the member, including any additional distributed mass. 
Consequently, 
 mast = 25 kN/m3 (159 pcf)  

mast = 2.5 kN.s2/m/m3  (0.234 x 10-6 kip.s2/in/in3) 
 cable = 77 kN/m3 (490 pcf) 
 cable = 7.8 kN.s2/m/m3  (0.730 x 10-6 kip.s2/in/in3) 
 
(5) Base shear, V: 
 
The base shear history may be traced from the computer output to find its 
maximum value. 
 
(6) Force distribution through the structure: 
 
After completing the input, selecting the analysis procedure and running 
the software program, one may obtain the history of all elastic nodal forces,  
 

x
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elastic displacements, internal moments shears, and normal forces by 
consulting the output file. 
 
(7) Result samples: 
 
The information from the example above was entered into SAP2000 
software. Key results are given for the first three modes in Example 6-4, 
Table 4, as a reference for readers who want to analyze this example with 
their own software. 
 
As noted earlier, approximate linear analysis may be performed for cable 
structures using average stiffness within the range of operation. Therefore, 
Example 6-4, Table 4, also includes linear analysis of the structure for 
comparison purposes. In the linear analysis, the cables are modeled as 
truss members where they can take compressive forces as well as tension 
forces. Such compression, of course, will be offset by the pretension force 
in the cable. It should be noted, however, that the structural period will be 
different in both cases. Therefore, direct comparison between forces and 
displacements will not be consistent. The comparison between the two 
structures will only be feasible if it is viewed on the global level. 
 
Review of Example 6-4, Table 4, indicates that the minimum force in the 
cables is zero because the cable is slack under contraction. In addition, the 
base shear is higher in the linear case because the structure will be stiffer. 
As a result, it has a shorter period, which attracts more forces (as can be 
seen from the El Centro response spectrum). The relative stiffness of the 
two structures is also obvious if the displacement and base shear ratios are 
compared for both cases.  
 
 

 
EXAMPLE 6-4, TABLE 4 

SAP2000 OUTPUT OF NONLINEAR TIME-HISTORY ANALYSIS 
DISPLACEMENT 

mm 
(inch) 

BASE SHEAR 
kN 

(kip) 

CABLE FORCE 
kN 

(kip) 
ANALYSIS 

CASE 
Min. Max. Min. Max. Min. Max. 

Linear �300 
(�11.8) 

266 
(10.5) 

�1,673 
(�376) 

1,243 
(279) 

�888 
(�200)

942 
(212) 

Nonlinear �262 
(�10.3) 

255 
(10.0) 

�963 
(�217) 

�916 
(�206) 

0 
(0) 

913 
(205) 

6.7.6  Directional Effect 

Depending on the occupancy category, the IBC requires that the effect of 
earthquake components from the three major directions be considered. For 
example, for Seismic Design Category (SDC) A and B, this requirement is 
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satisfied if the seismic design forces are applied separately and inde-
pendently in each of the two major orthogonal directions. 
 
SDC C shall conform to SDC B. In addition, the directional effect for struc-
tures that have horizontal irregularities (Type 5) may be satisfied by taking 
100 percent of the forces from one direction plus 30 percent of the forces 
from the perpendicular direction. Alternatively, the structures mentioned 
above may satisfy the directional effect requirement by the simultaneous 
application of orthogonal pairs of ground motion acceleration histories in a 
time-history analysis. 
 
For SDC D, E and F, the directional effect shall satisfy the requirements of 
SDC C. In addition, the code calls for special requirements of columns and 
walls that form part of two or more intersecting seismic systems. 
 
In summary, the directional effect in two perpendicular directions (when 
required) and the vertical direction may be combined as follows. 
 
The effect of both major horizontal components of the earthquake, Ex and 
Ey, shall be combined to form two load cases, QE, such that 
 
 QE1 = Ex + 0.3 Ey . . . case (1) 
 QE2 = 0.3 Ex + Ey . . . case (2) 
 
The effect of the vertical component of an earthquake, Ev, is calculated 
from the total vertical seismic force, which is taken as a fraction of the dead 
load, D. The effect of the vertical component is given as a function of the 
seismic coefficient, SDS, as follows: 
 
 Ev = 0.2 SDS D 
 
Consequently, the effect of the vertical component of the earthquake will be 
proportional to the effect of the dead load, D, by the amount of 0.2 SDS. 
 
Knowing the effect of both horizontal and vertical components including the 
directional effect, the design earthquake force, E, or Em, is taken as follows: 
 
 E =  QE    0.2 SDS D 
  
 Em = oQE    0.2 SDS D 
 
where: 
E = Effect of the combined horizontal and vertical components of an 

earthquake. 
Em = Estimated maximum force that can develop in the structure due to 

system overstrength effect. 
o = System overstrength factor as defined in Table 6-A6. 

= Reliability/redundancy factor as defined in the following section. 
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Redundancy Factor (  
 
The redundancy factor, , is intended to encourage redundant force paths 
in the structure, which is inversely proportional to redundancy. In other 
words, the code requires larger design seismic forces for less redundant 
systems. The code assigns two values for the redundancy factor that are 
outlined in the following two cases:  
  
Case 1:  = 1 
 
The redundancy factor is permitted to be 1.0 in the following conditions: 
 
1. Structures in Seismic Design Category B or C. 
2. Drift calculations and P-delta effect. 
3. Design of nonstructural components. 
4. Design of nonbinding structures that are not similar to buildings. 
5. Design of collector elements, splices and their connections for which 

load combinations with overstrength factor are used. 
6. Design of members or connections where the load combinations of 

overstrength are required for design. 
7. Diaphragm loads as determined by the following equation: 

 px
i

i
px w

w
F

F   (outlined in Section 6.10.1) 

8. Structures with damping systems designed in accordance with ASCE 7-
05 standards. 

 
Case 2: = 1.3 
 
The redundancy factor shall be taken as  = 1.3 for Seismic Design Cat-
egory D, E or F. However,  is permitted to be 1.0 for these seismic de-sign 
categories if one of the following two conditions is met: 
 
1. Each story resisting more than 35 percent of the base shear in the 

direction of interest shall comply with Table 6-3. 
 
2.  Structures that are regular in plan at all levels, provided that the seismic 

force-resisting systems consist of at least two bays of seismic force-
resisting perimeter framing on each side of the structure in each 
orthogonal direction at each story resisting more than 35 percent of the 
base shear. The number of bays for a shear wall shall be calculated as 
the length of shear wall divided by the story height of two times the 
length of shear wall divided by the story height for light-framed 
construction. 
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TABLE 6-3 
REQUIREMENTS FOR EACH STORY RESISTING MORE THAN 35 PERCENT 

OF THE BASE SHEAR 

Lateral Force-
Resisting Element 

Removal of an individual brace, or connection thereto, 
would not result in more than a 33 percent reduction in 
story strength, nor does the resulting system have an 
extreme torsional irregularity (horizontal structural 
irregularity Type 1b). 

Moment Frames 

Loss of moment resistance at the beam-to-column 
connections at both ends of a single beam would not 
result in more than a 33 percent reduction in story 
strength, nor does the resulting system have an extreme 
torsional irregularity (horizontal structural irregularity 
Type 1b). 

Shear Walls or Wall 
Pier with a Height-to-
Length Ratio Greater 

than 1.0 

Removal of a shear wall or wall pier with a height-to-
length ratio greater than 1.0 within any story, or collector 
connections thereto, would not result in more than a 33 
percent reduction in story strength, nor does the resulting 
system have an extreme torsional irregularity (horizontal 
structural irregularity Type 1b). 

Cantilever Columns 

Loss of moment resistance at the base connections of 
any single cantilever column would not result in more 
than a 33 percent reduction in story strength, nor does 
the resulting system have an extreme torsional 
irregularity (horizontal structural irregularity Type 1b). 

Other No requirements. 

6.8  Load Combinations 

The IBC load combinations are given in two groups: general combinations 
and special combinations. In addition to the other force effect, the load 
combinations that include seismic effect are given as follows: 
 
(1) General LRFD combinations. Quantities in { } indicate (or): 
 

 U = 1.2D + 
5.0
0.1

 L + 
2.0
7.0

 S + E 

 U = 0.9D + E 
 
Live load factor in the combination above is taken as 1 in the case of public 
assemblies, or when L > 4.8 kN/m2 (100 psf). 
 
Snow load factor in the combination above is taken as 0.7 in the case of 
roofs of configuration that do not shed snow off of the structure (for 
example, sawtooth roofs).  
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(2) Special combinations. This special combination is intended to be used 
with members and elements as specifically required by the code. For 
example, this includes columns subject to vertical reactions from 
discontinuous walls of structures having plan irregularity Type 4 or 
vertical irregularity Type 4. This load combination is given as 

 

 U = 1.2D + 
5.0
0.1

 L + Em 

 U = 0.9D + Em 
 
where: 
D = Dead load. 
L = Live load. 
E = Earthquake-induced forces as defined later in this chapter. 
Em = Maximum possible earthquake-induced forces as defined earlier in 

this chapter. 
S = Snow load. 
{ } = Quantities in { } indicate (or). 
 
Example 6-5 
 
A one-story open structure with height equal to 5 m is shown in Example 6-
5, Figure 1. The structure will be constructed in a region with a mapped ac-
celeration coefficient at a short period equal to Ss = 144 and S1 = 30, re-
spectively. The site is classified as Soil Type B. The structural system 
consists of two reinforced concrete moment frames in each direction 
spaced 8 m (26 ft) in plan. All columns are 0.5 x 0.5 m (20 x 20 in) square 
columns with pinned connection at the base. 
 
The slab carries dead, live and snow loads as follows: 
 
 qD = 20 kN/m2 (418 psf) including weight of columns 
 qL = 10 kN/m2 (209 psf) 
 qS = 2 kN/m2 (42 psf) 
 
One must find the design forces and moments due to seismic load 
combinations, including the directional effect of column C4 at the 
intersection of lines 2 and B shown in Example 6-5, Figure 1. 
 



Design of Earthquake-Resistant Buildings 
 

 267 

Solution 
 
Because the building is regular, the equivalent lateral force procedure may 
be used if it satisfies the period limitations outlined earlier. This condition 
will be illustrated in step (2) below. 
 
Refer to Appendix 6.1 for IBC tables. 
 
(1)  Seismic coefficients Fa, Fv, SDS and SD1: 
 
The seismic coefficient Fa and Fv are obtained from two IBC tables that are 
included in Appendix 6-1 as Tables 6-A3 and 6-A4. For Ss = 1.44, Fa = 1.0, 
and S1 = 0.30, Fv = 1.0. 
 
Accordingly, the seismic coefficients SDS and SD1 are calculated as follows: 
 
 SMS = Fa Ss  = 1.0(1.44) = 1.44 
 SDS = 2/3  SMS =  2/3(1.44) = 0.96 
 
 SM1 = Fv S1  = 1.0(0.30) = 0.30 
 SD1 = 2/3  SM1 =  2/3(0.30) = 0.20 
 
(2) Occupancy, category and importance, I: 
 
A residential building is in Seismic Use Group I. When we refer to Table 6-
A2, Appendix 6-1, for Seismic Use Group I and an SDS of 0.96 and an SD1 
of 0.20, we can determine that the building is in Seismic Design  
Category D. 
 
(3) Period, T, and response modification factor, R: 
 
The response spectrum controlling period, Ts, and limiting period, Tlimit, are 
determined as follows: 
 

EXAMPLE 6-5, FIGURE 1
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 Ts = SD1 l SDS = 0.20/0.96 = 0.208 sec 
 Tlimit = 3.5 Ts  = 3.5(0.208) = 0.73 sec 
 
The approximate period, Ta, is calculated as 
 
 Ta = Ct (hn)x 
 
where building height hn = 5 m (16.4 ft), Ct = 0.044 and x = 0.9 for 
reinforced moment frames. Consequently, the period is given as 
 
 Ta = Ct (hn)x = 0.044(5)0.9 = 0.19 sec 
 
Because Ta < Tlimit and the structure is regular, the equivalent lateral force 
procedure may be used. 
 
According to Table 6-A6, Appendix 6-1, ordinary and intermediate moment 
frames are not allowed for Seismic Design Category D, but special moment 
frames are permitted.  Therefore, if a special moment frame is selected for 
the building, the response modification factor, R, is obtained for SMF as  
R = 8. 
 
(4) Mass weight, W: 
 
Area of each floor:  A = 8(8) = 64 m2 (689 ft2) 
 
The mass weight of the structure should include dead load and snow load 
because its intensity is more than 1.44 kN/m2 (30 psf). Therefore, 
 
Total mass weight of the building is  W = (qD +  qS)A 
 = (20 + 2)(64) 
 = 1,408 kN (317 kip) 
 
(5) Base shear, V: 
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Therefore,  Cs = 0.12 
 
As a result, V = Cs W = 0.12(1,836) = 169 kN (38 kip) 
 



Design of Earthquake-Resistant Buildings 
 

 269 

The total base shear will be applied to the floor because it is only a one-
story building. 
 
(6) Horizontal distribution of forces (refer to Example 6-1 for details): 
 
When we apply an accidental eccentricity of 5 percent of perpendicular 
dimensions, the torsional moment will be 
 
   Mtor = F.e = 169(0.05)(8) = 68 kN.m (602 kip.in) 
 
Because the frames are identical, their stiffness will be the same. Thus, the 
force induced in frames A and B will be 
 

 rk
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Because the structure is 
doubly symmetric, the 
forces induced by earth-
quake excitation in direc-
tion Y will be identical to 
the forces induced by ex-
citation in direction X. 
 
The resulting forces in the 
frames are summarized in 
Example 6-5, Figure 2. 
 
(7) Internal forces: 
 
The internal forces and moments in frame B may be found using any 
structural analysis method. For this frame, the horizontal reactions are 
equal, and the solution can easily be obtained by hand calculations. Such 
analysis yields reactions and moments in the frame as shown in Example 
6-5, Figure 3. 
 
Because the structure is doubly symmetric, the forces and moments in 
frame 2 will be the same as in frame B. Consequently, the horizontal forces 
and moments in Column C4 due to both horizontal earthquake directions, 
Eh, will be given as follows: 
 
 

EQx
EQy

C4

EXAMPLE 6-5, FIGURE 2
FRAME FORCES

94 kN 
(21 kip)

76 kN 
(17 kip)

94 kN 
(21 kip)

 
76 kN 

(17 kip)

A

B
x

y
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Direction X: PEx = 59 kN (13 kip) 
  VEx = 47 kN (11 kip) 
  MEx = 235 kN.m (2,080 kip.in) 
 
Direction Y: PEy = 59 kN (13 kip) 
  VEy = 47 kN (11 kip) 
  MEy = 235 kN.m (2,080 kip.in) 
 

 
(8) Directional Effect: 
 
Even though such analysis is not required by the code for this type of 
structures, it will be presented here for demonstration purposes. Combining 
forces from orthogonal directions is obtained by adding 30 percent of the 
effect of one direction to 100 percent of the effect from the other direction. 
This combining effect results in two load cases for the effect of horizontal 
excitation, Eh1 and Eh2, which are expressed as 
 
 Eh1 = Ex + 0.3Ey Case 1 
 Eh2 = 0.3Ex + Ey Case 2 
 

EXAMPLE 6-5, FIGURE 3
FRAME B FORCES AND MOMENTS

 
235 kN.m 

(2,080 kip.in)

(b) Moments, kN.m (kip.in)

235 
(2,080) 

C4

 
94 

(21)

47 
(11)

47 
(11)59 

(13)
59

(13)

(a) Reactions, kN (kip)

 
8 m (26 ft)

5 m 
(16 ft)

EXAMPLE 6-5, FIGURE 4
INTERNAL ACTIONS DUE TO SEPARATE EXCITATION

(a) Ex Effect

x

 
y

My = 235 kN.m
(2,080 kip.in)

Vx = 47 kN
(11 kip)

P = 59 kN 
(13 kip)

(b) Ey Effect

x

 
y

Mx = 235 kN.m
(2,080 kip.in)

Vy = 47 (11 kip)

P = 59 kN
(13 kip)
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The combining effect is vectorial. The vectorial results of the internal forces 
from excitation directions X and Y are shown in Example 6-5, Figure 4 (a), 
and Example 6-5, Figure 4 (b), respectively. The results of the directional 
combination effect will be as described below. 
 
Case 1: 
 P = PEx + 0.3 PEy = 59 + 0.3(59) = 77 kN (17 kip) 
 Vx = VEx + 0.3 VEy = 47 + 0.3(0) = 47 kN (11 kip) 
 Vy = VEx + 0.3 VEy = 0 + 0.3(47) = 14 kN (3 kip) 
 Mx = MEx + 0.3 MEy = 0 + 0.3(235) = 71 kN.m (628 kip.in) 
 My = MEx + 0.3 MEy = 235 + 0.3(0) = 235 kN.m (2,080 kip.in) 
 
Case 2: 
 P = 0.3 PEx + PEy = 0.3(59) + 59 = 77 kN (17 kip) 
 Vx = 0.3 VEx + VEy = 0.3(47) + 0 = 14 kN (3 kip) 
 Vy = 0.3 VEx + VEy = 0.3(0) + 47 = 47 kN (11 kip) 
 Mx = 0.3 MEx + MEy = 0.3(0) + 235 = 235 kN.m (2,080 kip.in) 
 My = 0.3 MEx + MEy = 0.3(235) + 0 = 71 kN.m (628 kip.in) 
 
These results are shown in Example 6-5, Figure 5. 
 
Because the effect of the vertical component of the earthquake is 
proportional to the dead load effect, the dead load effect will be evaluated 
first. 

 
(9) Dead load: 
 
The dead load effect is determined by finding the distribution of the slab 
load to the beams and, as a result, to the columns. The distribution of the 
slab load to frame B is the shaded area marked in Example 6-5, Figure

EXAMPLE 6-5, FIGURE 5
DIRECTIONAL COMBINATION OF EXCITATION

(a) Eh1 Effect

x

 
y

My = 235 kN.m 
(2,080 kip.in)

Vx = 47 kN (11 kip)

P = 77 kN 
(17 kip) 

Vy = 14 kN (3 kip)

Mx = 71 kN.m
(628 kip.in)

(b) Eh2 Effect

x

 
y

My = 71 kN.m (628 kip.in)

Vx = 14 kN (3 kip)

P = 77 kN 
(17 kip)

Vy = 47 kN (11 kip)

Mx = 235 kN.m 
(2,080 kip.in)
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6 (a). Accordingly, the frame will be subjected to a triangular load with max-
imum intensity equal to: 
  
 (qd)frame = (qD)slab (4 m) = 20(4)  
 = 80 kN/m2 (1,671 psf) 
 
This load is applied to frame B as shown in Example 6-5, Figure 6 (b). The 
solution to this case of loading is obtained by using any structural analysis 
method. For example, the solution in Example 6-5, Figure 6 (b), is obtained 
by using standard software in structural analysis. 
 
In reference to Example 6-5, Figure 6 (b), the internal forces and moments 
in column C4 that are due to the dead load on frame B are given as 
follows: 
   
Frame B: P = 160 kN (36 kip) 
  Vx = 20 kN (4.5 kip) 
  My = 100 kN.m (885 kip.in) 
 
Column C4 will also incur forces and moments from frame 2�s share of the 
dead load. Because frame B and frame 2 are identical in dimensions, 
properties, and loading, the internal forces and moments in column C4 that 
are due to the dead load on frame 2 will be the same. Therefore, 
 

 
Frame 2: P = 160 kN (36 kip) 
  Vy = 20 kN (4.5 kip) 
  Mx = 100 kN.m (885 kip.in) 
  
The total internal forces and moments in column C4 that are due to dead 
load are shown in Example 6-5, Figure 7 (a). They are calculated as 
follows: 

EXAMPLE 6-5, FIGURE 6
DEAD LOAD DISTRIBUTION TO FRAMES
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Share

8 m 
(26 ft)
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(a) Load Distribution

C4

Mjoint 
100 kN.m 

(885 kip.in)

(b) Frame B 
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qd = 80 kN/m 
(0.46 kip/in)

160 kN 
(36 kip)
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(36 kip)
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(4.5 kip)

20 kN 
(4.5 kip)

C4
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 P = 160 + 160 = 320 kN (72 kip) 
 Vx = 20 kN (4.5 kip) 
 Vy = 20 kN (4.5 kip) 
 Mx = 100 kN.m (885 kip.in) 
 My  = 100 kN.m (885 kip.in) 
 
The effect of live load and snow loads will be proportional to the effect of 
the dead load because the load distribution will take the same path with a 
different intensity.  
 
If due to live load, multiply by a factor of 10/20 = 0.5: 
 
Frame B: P = 80 kN (18 kip) 
 Vx = 10 kN (2.25 kip) 
 My = 50 kN.m (443 kip.in) 
 
Frame 2: P = 80 kN (18 kip) 
 Vy = 10 kN (2.25 kip) 
 Mx = 50 kN.m (443 kip.in) 
 

 
If due to snow load, multiply by a factor of 2/20 = 0.1: 
 
Frame B: P = 16 kN (3.6 kip) 
 Vx = 2 kN (0.45 kip) 
 My = 10 kN.m (89 kip.in) 
 
Frame 2: P = 16 kN (3.6 kip) 
 Vy = 2 kN (0.45 kip) 
 Mx = 10 kN.m (89 kip.in) 

EXAMPLE 6-5, FIGURE 7
GRAVITY LOAD EFFECTS IN COLUMN C4

(a) Dead Load Effect
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Vy = 20 kN (4.5 kip)
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(b) Live Load Effect

x

 
y

My = 50 kN.m
 (443 kip.in)

Vx = 10 kN 
(2.25 kip)

P = 160 kN
(36 kip) 
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(443 kip.in)

(c) Snow Load Effect
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y

My = 10 kN.m 
 (89 kip.in)

Vx = 2 kN 
(0.45 kip)

P = 32 kN
(7.2 kip) 

Vy = 2 kN (0.45 kip)

Mx = 10 kN.m 
(89 kip.in)
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The final gravity load effects are shown in Example 6-5, Figure 7. 
 
(10) Vertical earthquake excitation: 
 
The vertical earthquake component is 
given as follows: 
 
 Ev = 0.2 SDS D   
 = 0.2(0.8)D = 0.16D 
 
Therefore, the vertical earthquake 
component will be equal to the dead 
load effect multiplied by a factor of 
0.16.  
 
Not only does the vertical component 
of an earthquake induce vertical forces 
(as is commonly perceived), it also induces shears and moments in the 
structure. Results are shown in Example 6-5, Figure 8. 
 
(11) Horizontal and vertical combination of earthquake effect: 
 
The combination of the horizontal and vertical components is given as 
 
 E =  Eh + Ev  
 
where Eh represents either case 1, Eh1 or case 2, Eh2. Therefore, this 
combination results in two load cases, E1 and E2. Because the structure 
does not satisfy the code requirements for reduction of  as outlined in an 
earlier section,  shall be taken as 1.3 for SDC D. Using  = 1.3, the two 
load cases are given as 
 
 E1 = 1.3Eh1 + Ev 
 E2 = 1.3Eh2 + Ev 
 
The two load cases above are evaluated by graphical inspection as shown 
in Example 6-5, Figure 9. For example, Example 6-5, Figure 9 (a), shows 
the effect of each of the three earthquake components separately, while 
Example 6-5, Figure 9 (b), shows their effect combined according to the 
two equations above. 
 
(12) Load Combinations: 
 
Because all components from dead, live, snow and earthquake effect are 
evaluated, the design load combination can now be evaluated as follows: 
 
 U = 1.2D + 1.0L + 0.2S + E 
 U = 0.9D + E 

EXAMPLE 6-5, FIGURE 8   
Ev EFFECT
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Because the second combination is applied mostly to check uplift 
problems, the first combination will be more critical for the design of the 
members. Therefore, this example will only consider the first load case. 
Furthermore, because the earthquake effect results in two load cases, E1 
and E2, each combination above also breaks down into two load cases. 
The first load combination breaks into the following two load cases: 
 

 
 U1 = 1.2D + 1.0L + 0.2S + E1 
 U2 = 1.2D + 1.0L + 0.2S + E2 
 
For case U1, 
 
 

(a) Separate Effect of Earthquake Components
Eh1 Effect
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EXAMPLE 6-5, FIGURE 9
COMBINATION OF EARTHQUAKE COMPONENTS

(b) Combined Effect of Earthquake Components

E1  Combination
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Mx = 322 kN.m (2,850 kip.in)

E2  Combination
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P = 1.2(320) + 1.0(160) + 0.2(32) + 151 = 701 kN (158 kip) 
Vx = 1.2(20) + 1.0(10) + 0.2(2) + 64 = 98 kN (22 kip) 
Vy = 1.2(20) + 1.0(10) + 0.2(2) + 21 = 55 kN (12 kip) 
Mx = 1.2(100) + 1.0(50) + 0.2(10) + 108 = 280 kN.m (2,478 kip.in)  
My = 1.2(100) + 1.0(50) + 0.2(10) + 322 = 494 kN.m (4,372 kip.in) 
 
For case U2, 
 
P = 1.2(320) + 1.0(160) + 0.2(32) + 151 = 701 kN (158 kip) 
Vx = 1.2(20) + 1.0(10) + 0.2(2) + 21 = 55 kN (12 kip) 
Vy = 1.2(20) + 1.0(10) + 0.2(2) + 64 = 98 kN (22 kip) 
Mx = 1.2(100) + 1.0(50) + 0.2(10) + 322 = 494 kN.m (4,372 kip.in) 
My = 1.2(100) + 1.0(50) + 0.2(10) + 108 = 280 kN.m (2,478 kip.in) 
 
The column can now be designed using the design method provided by the 
applicable design code (for example, the design criterion in the ACI code). 

6.9  Definitions and Requirements of Structural Systems 

Approved structural systems in most codes are similar. In principle, the 
structural systems for building structures may be grouped into three major 
categories: frames, shear walls, and a combination of both (dual systems). 
For each system, the code assigns values for R and o and for Cd as given 
in IBC Table 12.2-1 for building structures. Each system listed in this table 
has associated detailing and design requirements. The ACI code provides 
detailing of reinforced concrete structures for seismic provisions, the AISC 
code provides detailing of steel elements for seismic provisions. These re-
quirements will be described in the next several chapters. 
 
The systems approved by the IBC code are listed in IBC Table 12.2-1. 
Select examples of such popular and frequently used systems are given in 
Appendix 6-1 at the end of this chapter. Remember that some of these sys-
tems are prohibited in high seismic risk regions. For example, concrete 
OMRF are prohibited for Seismic Design Categories C, D, E and F. 
 
For nonbuilding structures, the code assigns values for R, o and Cd as 
given in ASCE 7 Tables 15.4-1 and 15.4-2. Such structures include tanks, 
silos, chimneys, towers, bins and hoppers, signs, and monuments. 

6.10  Special Topics 

6.10.1  Diaphragm Design Forces 

Floor and roof diaphragms shall be designed to resist an in-plane force, 
Fpx, given as 
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pxDS

pxDS
px

i

i
px wIS

wIS
w

w
F

F
2.0

4.0
 

 
where the summation is carried out from the diaphragm under 
consideration to the top of the building. F and w are the forces and weights 
of the floors as defined in previous sections. 

6.10.2  Torsional Effect 

Because torsion has been a major cause of failures in previous 
earthquakes, the design must carefully consider the effect of torsion. The 
code requires an additional torsional moment to be added to the existing 
torsion. The additional torsion, which is also known as accidental ec-
centricity, is introduced to the structure by displacing the actual center of 
mass by an amount equal to 5 percent of 
the structural dimension. This 5 percent is 
given perpendicular to the direction of 
excitation as illustrated in Figure 6-6. 
 
For irregular structures, the additional 
accidental eccentricity given above shall be 
amplified by a factor Ax at each level. The 
amplification factor is given by the 
following:  
 

 0.3
2.1

2

avg

maxxA  

 
where max and avg are the maximum 
and average displacements given in 
reference to Figure 6-7 as 
 
 max = 1  
 avg = ( 1 + 2)/2 

6.10.3  Drift Limitations 

Drift limitations under earthquakes are 
imposed on inelastic displacements. 
The story drift, , is defined as the 
relative displacements between adjacent story displacements, . The story 
displacement, x, at level x is calculated as follows: 
 

 
2

FIGURE 6-7 
TORSIONAL 
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I

C xed
x   

where: 
x = Inelastic displacement at level x. 
xe = Elastic displacement due to base shear at level x. 

Cd = Deflection amplification factor (Appendix 6-1). 
I = Importance factor. 

= Relative inelastic displacement at level x, ( x = x+1 - x). 
 
The value of  shall also be modified to include the P-  effect, if it exists, 
such that 

 
1

P  

 
where  is a stability coefficient (to be defined in the next section). 
 
The story drift limitation is given according to the Seismic Design Category 
in Table 6-A5, Appendix 6-1. 
 
The drift limitations under earthquakes are almost ten times its limitations 
under other service loads. 

6.10.4  Building Separation 

The pounding of adjacent structures 
during an earthquake has caused 
serious damage to structures in 
previous earthquakes, especially when 
floor slabs in adjacent structures meet 
at different levels. To avoid this pound-
ing effect, the IBC requires that build-
ings be set back enough distance to 
prevent pounding. Even though the 
method of calculating the separation 
distance was explicitly stated in pre-
vious versions of the code, the 2006 
version specifies that the designer will 
choose the methods and conditions for 
calculating the appropriate separation to prevent pounding. Remember that 
such separation must be based on the anticipated inelastic displacement of 
the adjacent buildings. 

 
Separation 

Building 1

FIGURE 6-8
BUILDING SEPARATION 

Building 2
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6.10.5  P-  Effect 

The design shall consider the P-  effect 
according to a stability coefficient, , where 
this stability coefficient is calculated as follows: 
 

  
dsxx

x

ChV
P

  

where: 
Cd = Deflection amplification factor. 

= Design story drift as shown in Figure 6-9. 
Px = Total vertical unfactored loads above 

level x. 
Vx = Seismic shear force between level x and level x-1. 
 
The P-  effect shall not be considered if 
 
   0.1 
 
 
The P-  effect shall be considered if 
 
   0.1 
 
However, the structure must be redesigned if 
 
  max 
where: 

  25.05.0
max 

dC
 

 
where  is the ratio of shear demand to shear capacity.  may be 
conservatively taken as equal to 1.0. 
 

FIGURE 6-9 
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APPENDIX  6-1 
 
 
Appendix 6-1 contains information on seismic parameters presented in 
tables based on the IBC and ASCE 7-05.  
 
 

 
TABLE 6-A1 

IMPORTANCE FACTOR 

OCCUPANCY 
CATEGORY DESCRIPTION 

SEISMIC 
IMPORTANCE 

FACTOR, I 
I Low hazard to humans, such as agriculture facilities 1 
II Other than II, III and IV 1 

III Hazardous to humans because of large number of 
occupants, such as schools and public areas 1.25 

IV 

Essential facilities that are either important for 
security or provide major services such as rescue 

operations, health services, transportation and 
communications 

1.5 

 
 

 
TABLE 6-A2 

SEISMIC DESIGN CATEGORY (SDC) 
OCCUPANCY 
CATEGORY SDS SD1 

I or II III IV 
SDS < 0.167 g SD1 < 0.067 g A A A 

0.167 g  SDS < 0.33 g 0.067 g  SD1 < 0.133 g B B C 
0.33 g  SDS < 0.50 g 0.133 g  SD1 < 0.20 g C C D 

0.50 g   SDS 0.20 g   SD1 D D D 
     

S1  0.75 g E E F 
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TABLE 6-A3 

IBC SEISMIC SITE COEFFICIENT AT SHORT PERIOD, Fa 
MAPPED SPECTRAL ACCELERATION AT SHORT PERIOD SITE CLASS 
SS  0.25 SS = 0.50 SS = 0.75 SS = 1.00 SS  1.25 

A 0.8 0.8 0.8 0.8 0.8 

B 1.0 1.0 1.0 1.0 1.0 

C 1.2 1.2 1.1 1.0 1.0 

D 1.6 1.4 1.2 1.1 1.0 

E 2.5 1.7 1.2 0.9 0.9 

F Site-specific investigation is required. 
 

 
TABLE 6-A4 

IBC SEISMIC SITE COEFFICIENT AT ONE SECOND, Fv 
MAPPED SPECTRAL ACCELERATION AT A  

1-SECOND PERIOD SITE CLASS 
S1  0.1 S1 = 0.2 S1 = 0.3 S1 = 0.4 S1  0.5 

A 0.8 0.8 0.8 0.8 0.8 

B 1.0 1.0 1.0 1.0 1.0 

C 1.7 1.6 1.5 1.4 1.3 

D 2.4 2.0 1.8 1.6 1.5 

E 3.5 3.2 2.8 2.4 2.4 

F Site-specific investigation is required. 
 

 
TABLE 6-A5 

DRIFT LIMITATION RATIO ( /hsx) ACCORDING TO THE IBC 
SEISMIC USE GROUP 

BUILDING 
I II III 

Other than masonry shear walls, four stories or less, 
that have been designed to accommodate drifts 0.025 0.020 0.015 

Masonry cantilever shear wall buildings 0.010 0.010 0.010 

Other masonry shear wall buildings 0.007 0.007 0.007 
Masonry wall frame building 0.013 0.013 0.010 

All other buildings 0.020 0.015 0.010 
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TABLE 6-A6 

SELECTED POPULAR BUILDING SEISMIC SYSTEMS FROM 
 ASCE 7-05  

SYSTEM AND HEIGHT 
LIMITATIONS BY CATEGORY IN 

METERS (FEET)2 STRUC-
TURAL 

SYSTEM 
DESCRIPTION 
OF SYSTEM1 R o Cd 

A 
or 
 B 

C D E F 

Concrete 

BSSW3 

BOSW 
NSSW3 
NOSW 
SMF 
IMF 
OMF 

5 
4 
6 
5 
8 
5 
3 

2.5
2.5
2.5
2.5
3 
3 
3 

5 
4 
5 

4.5
5.5
4.5
2.5

NL 
NL 
NL 
NL 
NL 
NL 
NL

NL 
NL 
NL 
NL 
NL 
NL 
NP

48 (160)
NP 

48 (160)
NP 
NL 
NP 
NP 

48 (160)
NP 

48 (160)
NP 
NL 
NP 
NP 

30 (100) 
NP 

30 (100) 
NP 
NL 
NP 
NP 

Steel 

EBF (MC) 
EBF (NMC) 
SCBF 
OCBF 
SMF 
IMF 
OMF 
STMF 

8 
7 
6 

3.25
8 

4.5
3.5
7 

2 
2 
2 
2 
3 
3 
3 
3 

4 
4 
5 

3.25
5.5
4 
3 

5.5

NL 
NL 
NL 
NL 
NL 
NL 
NL 
NL

NL 
NL 
NL 
NL 
NL 
NL 
NL 
NL 

48 (160)
48 (160)
48 (160)
10 (35)

NL 
10 (35)

NP 
48 (160)

48 (160)
48 (160)
48 (160)
10 (35)

NL 
NP 
NP 

30 (100)

30 (100) 
30 (100) 
30 (100) 

NP 
NL 
NP 
NP 
NP 

Dual-
concrete 

SSW with SMF 
SSW with IMF 
OSW with SMF 
OSW with IMF 

7 
6.5
6 

5.5

2.5
2.5
2.5
2.5

5.5
5 
5 

4.5

NL 
NL 
NL 
NL

NL 
NL 
NL 
NL 

NL 
48 (160)

NP 
NP 

NL 
30 (100)

NP 
NP 

NL 
30 (100) 

NP 
NP 

Dual-steel 
EBR with SMF 
SCBR with SMF
SCBR with IMF 

8 
7 
6 

2.5
2.5
2.5

4 
5.5
5 

NL 
NL 
NL

NL 
NL 
NL 

NL 
NL 

10 (35)

NL 
NL 
NP 

NL 
NL 
NP 

 
1The following letters are used to identify systems in the above table: 
CBF Concentrically braced frames 
EBF Eccentrically braced frames 
MC Moment connection 
MF Moment frames 
NMC Nonmoment connection  
SW Shear walls 
TMF Truss moment frames 
 
System grade and bearing or nonbearing walls are identified with the 
following prefixes: 
B Bearing walls 
I Intermediate system grade 
N Nonbearing walls 
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O Ordinary system grade 
S Special system grade 
2NL No limitation 
NP Not permitted 
3Special shear walls include precast special shear walls. 
 
 

 
TABLE 6-A7 

SELECTED NONBUILDING SEISMIC SYSTEMS FROM ASCE 7-05  
SYSTEM AND HEIGHT 

LIMITATIONS BY 
CATEGORY IN METERS 

(FEET)1 NONBUILDING STRUCTURAL 
TYPE R o Cd 

A  
and 
 B 

C D 
E 

 and 
 F 

Cast-in-place silos, stacks and 
chimneys having walls 
continuous to the foundations 

3 1.75 3 NL NL NL NL 

Trussed towers (freestanding or 
guyed), stacks and chimneys  3 2 2.5 NL NL NL NL 

Amusement structures and 
monuments 2 2 2 NL NL NL NL 

Inverted pendulum-type 
structures (except elevated 
tanks,  vessels, bins and 
hoppers) 

2 2 2 NL NL NL NL 

Signs and billboards 3.5 1.75 3 NL NL NL NL 

All other self-supporting 
structures, tanks, or vessels not 
covered by ASCE 7-05 or by 
approved standards that are 
similar to buildings 

1.25 2 2.5 NL NL 15 (50) 15 (50) 

 
1NL  No limitation 
NP  Not permitted 
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TABLE 6-A8 

APPROXIMATE PERIOD CALCULATION COEFFICIENTS 

STRUCTURE TYPE 
Ct 

hn IN 
METER 
(FEET) 

x 

Steel moment frames free to deflect under 
seismic forces 

0.0724 
(0.028) 0.8 

Reinforced concrete moment frames free 
to deflect under seismic forces 

0.0466 
(0.016) 0.9 

Eccentrically braced steel frames 0.0731 
(0.03) 0.75 

All other structural systems 0.0488 
(0.02) 0.75 

 
 

 
TABLE 6-A9 

COEFFICIENT FOR UPPER LIMIT ON CALCULATED PERIOD 

SD1  0.4 0.3 0.2 0.15   0.1 

Cu 1.4 1.4 1.5 1.6 1.7 
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SEISMIC PROVISIONS OF 
REINFORCED CONCRETE 

STRUCTURES 
 (ACI 318) 

 
 
 
 
 

7.1  Introduction 

The American Concrete Institute (ACI) code known as ACI 318 is widely 
recognized for reinforced concrete analysis and design. The IBC adopted 
ACI 318 as the IBC�s official provisions for reinforced concrete design. ACI 
318 offers detailed seismic provisions in Chapter 21. ACI 318 has also re-
vised its load combinations in the 2002 version to follow the general trend 
of load combinations offered by other building codes. 
 
Although ACI 318 does not provide guidelines for force calculations, it does 
provide the detailing required to achieve the properties of the different 
reinforced concrete systems that are used and endorsed by the IBC for 
seismic design. Such systems include ordinary, intermediate and special 
moment frames. They also include ordinary and special shear walls. 
 
The earthquake-relevant load combinations required by the 2002 and later 
versions of ACI 318 are listed as follows: 
 

 U = 1.2D + 
5.0
0.1

 L + 0.2S + E 

 U = 0.9D + E 
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Live load factor in the above combination is taken as 1.0 in case of (1) 
public assemblies, (2) garages or (3) when L > 4.8 kN/m2. 
 
where: 
D = Dead load 
E  = Earthquake-induced forces as defined later in this chapter 
L  = Live load 
S  = Snow load 
{ } = Quantities in { } indicate (or) 
 
Because the behavior of concrete as a material is greatly affected by 
confinement, as explained in Chapter 5, the details of stirrups become 
essential insofar as they provide the confinement requirements for the 
various systems. Therefore, the following sections provide an in-depth 
description of the ACI 318 detailing requirements of various structural 
systems and components. 
 
This chapter covers both SI (kN, m, s) and Imperial (pound, foot, second) 
units. Imperial units are presented in parenthesis. 

7.2  Ordinary Moment Frames (OMF) 

Ordinary moment frames are assigned an R-factor equal to 3.5 by the 
IBC. In order to meet such force reduction, ACI 318 requires these 
frames to conform to all of its provisions from Chapter 1 through Chapter 
20. 
 
The code requires that all design forces and moments of these frames be 
obtained from second-order elastic analysis. Critical sections are then 
designed to reach their ultimate state with concrete stress in compression 
reaching its designated strength, fc , and steel stress reaching its yield 
level, fy. Of course, this design concept is a lower-bound solution of the 
structure. 
 
Detailing of this type of frame is familiar to most engineers and is given 
for both beams and beam-columns. Important requirements and detailing 
of these frames may be highlighted in this section for later use with in-
termediate and special framing systems and elements. 

7.2.1  Ordinary Beams 

According to ACI 318, a member in a frame is considered a beam if the 
intensity of the external factored axial load, Pu, in the member is limited to 
 
  Pu  0.1 fc  Ag 
 
where: 
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Ag = Gross sectional area of the member 
fc  = Compressive strength of concrete 
 
The following reinforcement detailing of ordinary beams is presented. 
 
Main reinforcement 
 
The main reinforcement in ordinary beams is limited to maximum and 
minimum values as a function of the shape of the cross section and to the 
location of its reinforcement. The basic reinforcement ratio is given for a 
singly reinforced rectangular section as defined in Figure 7-1. The section 
has total dimensions of b x h. The reinforcement is placed on the tension 
side of the beam as shown in Figure 7-1. 
 
The reinforcement of a singly reinforced 
rectangular section subjected to pure 
moment may be given in terms of a basic 
reinforcement ratio, , and a basic rein-
forcement index, , which are defined 
as follows: 
 

  
db

As
o   

  
'c

y
oo f

f
  

where: 
As = Area of reinforcement on the ten-

sion side of the cross section 
B = Width of the compression zone of the rectangular section 
D = Effective depth of the beam which is defined as the distance 

between the extreme compression fibers and centroid of steel 
fc  = Characteristics strength of concrete 
fy = Yield stress of steel reinforcement 
 
Accordingly, the minimum basic reinforcement ratio for beams, o,min, is 
given as  
 

 o,min =
yy

c

ff
f 4.1

4
'

 (in SI units) 

or o,min =
yy

c

ff
f 200'3

 (in Imperial units) 

 
The ductility of ordinary beams depends mainly on the amount of steel in 
the section. Prior to the 2002 version of ACI 318, this ductility requirement  
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was enforced by limiting the steel ratio in the section to 75 percent of the 
balanced reinforcement ratio (0.75 b). The 2002 version of ACI 318 in-
troduced ductility requirements in terms of the net tensile strain, t, which 
is defined as the net tensile strain in the tension steel excluding effective 
prestress, creep, shrinkage and temperature. The code considers ductility 
to be a tension-controlled condition, whereas brittleness is con-sidered to 
be a compression-controlled condition. In terms of the net tensile strains, 
these limits are generally given as follows: 
  

t  0.002 compression-controlled condition 
t  0.005 tension-controlled condition 

In order to satisfy ductility requirements in ordinary beams, ACI 318 limits 
the net strain, t, in beams to a minimum value of 0.005 in order to qualify 
as a beam with a strength-reduction factor of = 0.9.  However, the code 
limits this net strain to a minimum of 0.004 at a reduced strength-
reduction factor to be interpolated according to the intensity of the low 
axial load under 0.1 fc  Ag. Note that ACI 318 still permits the use of the 
reinforcement ratio as an alternative reference for ductility (as given in 
Appendix B of the code). 
 
Consequently, the maximum basic reinforcement in the section is 
required to prevent brittle failure and to guarantee ductile failure with 
ample warning (i.e., yielding of the steel before crushing of the concrete). 
In general, this condition may be expressed in terms of the neutral axis 
depth or in terms of a maximum basic reinforcement index, o. These lim-
itations may be set at a net tensile strain of 0.005 and 0.004 as defined 
above.  
 
If the limitations above are referenced to a minimum net tensile strain 
( t, = 0.005), the following limits apply: 

in terms of neutral axis depth, c: 
8
3

d
c  = 0.375 

in terms of basic reinforcement index, o: o  0.32 1   
 

By noting that for a rectangular section, od
a85.0

  

the maximum reinforcement limitations may be stated as follows: 
 

 132.085.0
d

a  

 
However, if the limitations above are referenced to a minimum net tensile 
strain ( t, = 0.004), the following limits apply: 

in terms of neutral axis depth, c: 
7
3

d
c  = 0.429 
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in terms of basic reinforcement index, o: o  0.36 1   
 

By noting that for a rectangular section, od
a85.0

  

the maximum reinforcement limitations may be stated as follows: 
 

 136.085.0
d

a  

 
In this book, the maximum reinforcement limitations will be set at a net 
tensile strain of t, = 0.005 in order to use the strength-reduction factor at 
its maximum value of  = 0.9. 
 
If required, the maximum reinforce-
ment of rectangular sections can be 
increased if compression steel is 
placed in the compression zone as 
shown in Figure 7-2. If the area of 
compression steel is designated as 
As , the reinforcement ratio of com-
pression steel is ', and the 
reinforcement index of compression 
steel is defined as ', then the max-
imum reinforcement of the tension 
steel may be increased such that 

 - ')  0.32 1   
 
where: 

 =
'c

y

f
f

; 
db

As  

 ' = 
'
'

'
c

s

f
f

; 
db

As '
'   

 
The condition above can still be stated in the general form given for 
rectangular, singly reinforced sections if the reinforcement index is 
referenced to the web: 

in terms of neutral axis depth, c: 
8
3

d
c  = 0.375 

in terms of web reinforcement index, w: w  0.32 1   
 
where  w =  - ') 
 

and wd
a85.0
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where w =
'c

y
w f

f
;  

db
A

w

sw
w   

 
Asw = Reinforcing steel required to balance the compression of the web, 
excluding compression steel. 
 
The steel in the compression zone qualifies as double reinforcement if it 
is only required by design. For example, the steel used as hangers for 
stirrups in the compression side does 
not qualify as double reinforcement. 
 
If it exists as part of a flooring 
system, the beam forms with part of 
the floor to create a rectangular sec-
tion with flanges as shown in Figure 
7-3. This combination of the beam 
and the slab is known as a T-section 
if the beam is an interior beam with 
flanges projecting on both sides. If 
the beam, however, is an exterior 
beam with a flange on only one side, 
the section is known as an L-section. 
 
The participating width of the slab 
that acts as an effective part of the T-
section enabling it to behave as one unit is known as the effective width 
of the T-section, bf. For both T- and L-sections, the minimum and 
maximum reinforcement ratios are related to the width of the rectangular 
beam (i.e., the web width). Consequently, the reinforcement ratio of the 
T-section is designated as T and may be expressed as 
 

     
db

A

w

s
T 

 
The minimum reinforcement of the T-section is limited to the following: 

T    o,min     
 
where o,min is the minimum basic reinforcement ratio as defined before. 
 
The maximum reinforcement ratio of tension steel for a flanged section is 
still given by the expression defined for a double reinforcement case: 
 

8
3

d
c  = 0.375 
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or 132.085.0
d

a  

or w   0.32 1   
 
where:

w = Reinforcement index referenced to the web. This is given in terms 
of the reinforcement ratio referenced to the web, w, as follows: 

 

 w = 
'c

y
w f

f
  

and 
db

A

w

sw
w   

 
where: 
Asw = Reinforcing steel required to balance the compression of the web, 

excluding compression in the flanges. 
 
As mentioned before, the flange portions of the T-section are part of the 
flooring system and usually exist as part of the floor�s slab. In general, 
slabs qualify as rigid diaphragms in buildings if the thickness of their solid 
part is equal to or more than 50 mm. 
 
Slabs are usually designed as a rectangular beam if they are solid slabs 
or designed as T-sections if they are ribbed slabs. However, they have 
different minimum reinforcement requirements. The minimum reinforce-
ment of the solid part of the slab is given as a function of the total 
thickness of the solid part of the slab and is known as shrinkage and tem-
perature steel, accordingly: 
 
 As,min = 0.0018 bh for fy = 420 MPa 
 As,min = 0.0020 bh for fy = 300 MPa 
 
where: 
fy = Yield stress of steel reinforcement. 
 
Maximum steel limitations of sections subjected to low intensity of axial 
loads (i.e., Pu < 0.1 fc  Ag or Pu <  Pb) may be addressed by noting from 
their interaction diagrams that the moment capacity increases with higher 
axial loads. Thus, a conservative design would design such sections for 
pure moment without axial load. For sections with low intensity of axial 
load, tension-controlling strain can be expressed in the following form: 
 

  
dbf

P
d

a

wc

n
w '

85.0
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Because the limiting tension-controlled net strain at 0.005 is given as 

 132.085.0
d

a  

 
The limit of maximum steel in the presence of axial load is set as follows: 
 

 132.0
'


dbf

P

wc

n
w  

 
Development of reinforcement 
 
The development of straight reinforcement bars depends on many factors 
such as reinforcement size, location, epoxy coating and the weight of 
concrete. Development length also depends on whether the bars are in 
tension or in compression. 
 
Straight bars in tension: 
 
The basic development length of uncoated bottom straight bars 
embedded in normal weight concrete, d , is given by the following ex-
pressions, but shall not be less than 300 mm (12 in): 
 
In SI units: 

 
'

48.0
c

y

b

d

f

f
d

 for bars with diameter  20 mm 

 
'

60.0
c

y

b

d

f

f
d

 for bars with diameter > 20 mm 

 
In Imperial units: 

 
'

04.0
c

y

b

d

f

f
d

 for bars with diameter  # 6 bars 

 
'

05.0
c

y

b

d

f

f
d

 for bars with diameter > # 6 bars 

 
 
The development length of top bars 
must be increased by 30 percent. 
The top reinforcement is defined as 
any reinforcement that is placed 
over 300 mm of fresh concrete. 
Accordingly, the development 
length is given as 

12db 

FIGURE 7-4
BASIC HOOK 

DEVELOPMENT LENGTH

 
dh  

Standard Hook
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( d )top = 1.3 ( d )bottom 

 
Standard hook in tension: 
 
The basic hook development length, dh , is defined in Figure 7-4.  dh  is 
given as 
 

 
'

24.0
c

y

b

dh

f

f
d

 (in SI units) 

or 

 
'

02.0
c

y

b

dh

f

f
d

 (in Imperial units) 

 
The development length of the hook bar, d , is given as the basic 
length, dh , multiplied by special modifying factors given in the code. 
 
The development length of uncoated bottom hook bars embedded in 
normal weight concrete, d , is given as the basic hook development 
length: 

 
'

24.0
c

y

b

dh

f

f
d

 (in SI units) 

 
'

02.0
c

y

b

dh

f

f
d

 (In Imperial units) 

Splices in tension: 
 
Minimum lap splices are classified as Class A and Class B splices. In 
general, and in normal cases, Class B would be required as follows: 
 
  d3.1splice  

 
Bars in compression: 
 
The basic development length of bars in compression, d , is given by the 
following expressions: 

 y
c

y

b

d f
f

f
d

04.0
'

25.0  (In SI units) 

 y
c

y

b

d f
f
f

d
3,000.0

'
02.0  (in Imperial units) 
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Splices in compression: 
 
Minimum lap splices in compression depend on reinforcement yield 
stress as follows: 
 
In SI units:   
 bye df07.0splic    300 mm for fy  420 MPa 
 by df )2413.0(splice    300 mm for  fy > 420 MPa 
 
In Imperial units: 
  ( by df5,000.0splice    12 in for       fy   60 psi) 
 ( by df )249,000.0(  splice    12 in for       fy > 60 psi) 
 
The splice length shall be increased by one-third for concrete of grade, 
fc   20 MPa (3,000 psi). 
 
Shear reinforcement: 
 
In recent construction practice and due to high labor cost, shear 
reinforcement is only provided in the form of vertical stirrups. The stirrups 
are used to resist shear and to play a critical role in seismic design. 
Stirrups provide the required confinement in seismic design to produce 
ductile members. 
 
According to ACI 318, shear strength of beams, Vn, is given as  
 
 Vn = Vc + Vs 
where: 
Vc = Contribution of concrete to shear strength. 
Vs = Contribution of steel to shear strength. 
 
For reinforcement limitation in shear, define the following quantity, Vbw, as 
a reference quantity such that 
 

 db
f

V w
c

bw 6
'

  (in SI units) 

or  dbfV wcbw '2  (in Imperial units) 
 
The contribution of concrete and steel to shear strength of beams is given 
as follows: 
 Vc = Vbw 

  
s
dfAV yvs   

where: 
Av = Total area of vertical stirrup legs in the cross section. 
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S = Spacing of stirrups along the axis of the beam. 
 
The minimum number of stirrups in any section is given in terms of their 
maximum spacing, s, as follows: 

 

1. For Vs   2 Vbw , 

SI

max

3
'

16
mm600

2

w

yv

wc

yv

b
fA
bf

fA

d

s

imperial50

'75.0

in 24
2

w

yv

wc

yv

b
fA

bf

fA

d

 

2. For Vs  4 Vbw ,  

SI

max

3
'

16
mm300

4

w

yv

wc

yv

b
fA
bf

fA

d

s

imperial50

'75.0

in 12
4

w

yv

wc

yv

b
fA

bf

fA

d

 

 
3. For Vs > 4Vbw, the cross section is not acceptable for resisting shear 

and must be changed in dimensions to satisfy this condition. 

7.2.2  Ordinary Beam-Columns 

According to ACI 318, a member in a frame is considered a column if the 
member is subjected to pure axial load. The member is considered a 
beam-column if the member is subjected to combined bending moment 
and axial load with an intensity of the factored axial load, Pu, exceeding 
the following: 
  Pu  > 0.1 fc  Ag 
 
where fc' and Ag are as defined before. 
 
The following sections present rein-
forcement detailing of ordinary columns 
and beam-columns. 
 
Main reinforcement 
 
The main reinforcement in ordinary 
columns and in beam-columns is limited to 

FIGURE 7-5
RECTANGULAR 
BEAM COLUMN 

Ast = 
8 bars 

b

h

Tie or 
Hoop 
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maximum and minimum values. The reinforcement in beam-columns is 
expressed as the ratio of the total steel to the gross area of the section 
and is known as the gross reinforcement ratio, g. In reference to Figure 
7-5, the gross reinforcement ratio may be expressed as follows: 

 
g

st
g A

A
  

where: 
Ag = Gross sectional area of the member and is equal to b x h for 

rectangular columns as shown in Figure 7-5. 
Ast = Total area of reinforcement in the cross section. 
 
The limits of gross reinforcement ratio, g, are given as 
  g  0.08 
 g  0.01 
 
Development of reinforcement 
 
The development of reinforcement is similar to ordinary moment beams. 
 
Shear reinforcement 
 
In general, internal shear forces in columns are zero. In reality, members 
are rarely subjected to pure axial loads. Therefore, shear forces usually 
exist in columns with at least negligible values. In the presence of axial 
loads, the shear capacity of the concrete is 
increased to reflect the effect of com-
pressive stresses that decrease the effect 
of diagonal tension in the member. If the 
shear is zero or can be safely taken by the 
concrete alone, minimum ties are required 
in the rectangular sections and are provided 
as follows: 
 
1. Minimum diameter of ties is 10 mm (# 3). 
2. Maximum spacing of ties is given as: 
 

 
b

d
d

s t

b

48
16

max  

where: 
b = Dimension of the shorter side of the 

member. 
db = Diameter of the main reinforcement 

bars. 
dt = Diameter of the tie bars. 
 

FIGURE 7-6
SPIRALLY  

REINFORCED COLUMN 

D 

d 

Spiral, 
Asp 

 
Spiral 

Pitch: 
p  80 mm (3 in) 
p  25 mm (1 in) 
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If the shear capacity of the concrete alone in the beam-column is not 
safe, the ties must also follow the shear provisions of beams as given 
before. 
 
For spirally reinforced concrete beam columns as shown in Figure 7-6, 
the minimum lateral reinforcement known as spirals is given as the ratio 
of spirals volume to concrete core volume, s, such that 
 
  s  s,min  
 
where s and s,min are given in the following expressions: 
 

      
pd

Asp
s .

4
         

       
yt

c

c

g
s f

f
A
A '

145.0min,   

where: 
Ac = Area of the concrete core, including diameter of spirals. 
Ag = Gross area of the concrete cross section. 
Asp = Cross sectional area of spiral. 
fc ,  fyt = Designated stresses of concrete and spiral steel. 
P = Spacing of spiral (pitch).  

s = Ratio of the volume of spirals to the volume of concrete. 
 
The spacing of spirals, also known as the pitch of the spirals, is limited to 
 smax = 80 mm (3 in) 
 smin = 25 mm (1 in) 
 
Example 7-1 
 
The frame shown in Example 7-1, 
Figure 1, is part of a building that is 
in a seismic zone that allows the 
use of ordinary moment frames. 
The share of the frame from the 
elastic base shear is calculated as 
Fx = 288 kN (64.75 kip). 
 
Design an ordinary moment frame 
(OMF) to resist the given seismic 
force. Material properties are given 
as fc  = 25 MPa (3.625 ksi) and  
fy = 420 MPa (60 ksi). 

EXAMPLE 7-1, FIGURE 1 

8 m (26.25 ft)

 
Fx 

6 
m

 
(1

9.
68

 ft
)

 
qD = 60 kN/m (0.343 kip/in) 
qL = 45 kN/m (0.257 kip/in) 

400x800 mm
(16x31.5 in) 

40
0x

60
0 

m
m

 
(1

6x
24

 in
)
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Solution 
 
Even though the basic detailing requirements are listed in this section, the 
reader is strongly advised to review the basic ACI design philosophy and 
procedure before solving this example. 
 
The solution will be performed to check three load cases: (1) dead and live 
load effects; (2) dead, live and earthquake load effects; and (3) dead and 
earthquake load effects. 

 
Case 1: Dead and live loads:  
 
The load combination is given as U1 = 1.2D + 1.6L. 
 
Obviously, the given frame is a one-time, statically indeterminate structure. 
Thus, moments, shears and axial loads may be found by any structural 
method. For reinforced concrete structures, the moment of inertia for this 
analysis is given by ACI as follows: 
 
1. Section properties: 
 
Modulus of elasticity: Ec = 4,700 25 = 23,500 MPa (3,408 ksi) 
 
Beam: 
 Ag = 400(800) = 320,000 mm2 (496 in2) 
 Ig = 400(800)3/12 = 17,067 x 106 mm4 (41,004 in4) 
 Ieff = 0.35 Ig = 0.35(17,067 x 106) = 5,973 x 106 mm4  (14,350 in4) 
 
Columns: 
 Ag = 400(600) = 240,000 mm2 (372 in2) 
 Ig = 400(600)3/12 = 7,200 x 106 mm4 (17,298 in4) 

 Ieff = 0.70 Ig = 0.70(7,200 x 106) = 5,040 x 106 mm4  (12,109 in4) 

EXAMPLE 7-1, FIGURE 2
FRAME INTERNAL FORCES

M = 
201 kN.m 

(1,779 kip.in)

(a) Dead Load Effect

 
qD = 60 kN/m 
(0.343 kip/in)

240 kN
(54 kip)

240 kN 
(54 kip)

33 kN
(7.4 kip)

33 kN 
(7.4 kip)

M = 279 
(2,469)

M = 
151 kN.m 

(1,337 kip.in)

(b) Live Load Effect

 
qL = 45 kN/m 
(0.257 kip/in)

180 kN 
(40 kip)

180 kN
(40 kip)

25 kN 
(5.6 kip)

25 kN
(5.6 kip)

M = 209 
(1,850)
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2. Straining actions: 
 
Using the dimensions and properties above, the resulting moments, shears 
and normal forces are constructed for both dead and live loads as shown in 
Example 7-1, Figure 2. 
 
3. Beam moment: 
 
Check beam action: 0.1 fc  Ag = 0.1(25)(320,000)  
  = 800,000 N (800 kN) (180 kip) 
 
Ultimate load: Pu = 1.2PD + 1.6PL 
  = 1.2(33) + 1.6(25) = 80 kN  (18 kip) < limit 
 
Since  Pu = 80 kN (18 kip) < Limit = 800 kN (180 kip),  
 
the member may be designed without the effect of axial load. 
 
*Positive moment region: 
 
 Mu = 1.2MD + 1.6ML  = 1.2(279) + 1.6(209)  
   = 669 kN.m (5,921 kip.in) 
 Mn = Mu/  = 669/0.9 = 744 kN.m (6,585 kip.in) 
 Pn = Pu/  = 80/0.9 = 89 kN     (20 kip) 
 

Design: 2' dbf
M

c

n  = 
2

6

)740()400(25
10 x 744  = 0.136 

 
Using design charts in Appendix 7-1, Sheet 1, the reinforcement index is 
given as  

o = 0.15, o = 0.15(25/420) = 0.008,9    
 As = o b d = 0.008,9(400)(740) = 2,643 mm2 (6 25) 
  [4.10 in2  (6 # 8)] 
 
Check steel limits for tension-controlled action (at  = 0.9): 

Since 
)740()400(25

10 x 89
'

3


dbf
P

wc

n = 0.012, 

then 
dbf

P

wc

n
w '

 = 0.15 + 0.012 = 0.162  

  < 0.32 1 = 0.272  OK 
 *Negative moment region: 
 
 Mu = 1.2MD + 1.6ML   = 1.2(201) + 1.6(151)  
   = 483 kN.m (4,275 kip.in) 
 Mn = Mu/   = 483/0.9 = 536 kN.m (4,744 kip.in) 
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Design: 
2' dbf

M

c

n = 
2

6

)740()400(25
10 x 536 = 0.098 

 
Using the design charts in Appendix 7-1, Sheet 1, the reinforcement index 
is given as  

o = 0.11, o = 0.11(25/420) = 0.006,5   
  As = o b d = 0.006,5(400)(740) = 1,938 mm2 (4 25) 
  [3.00 in2  (4 # 8)] 
 
Check steel limits for tension-controlled action (at  = 0.9): 
 

 
dbf

P

wc

n
w '

 = 0.11 + 0.012 = 0.122  

 < 0.32 1 = 0.272 OK 
 
4. Beam shear:  Using 10 bars for stirrups: 
 
 Vu = 1.2VD + 1.6VL  = 1.2(240) + 1.6(180) = 576 kN (129 kip) 
 Vn = Vu/  = 576/0.75 = 768 kN (173 kip) 
 

Reference: )740()400(
6
25

6
'

 db
f

V w
c

bw = 246,667 N (55 kip) 

Concrete strength: Vc = Vbw = 247 kN (55 kip)   
 
Limits: 2Vbw = 494 kN (111 kip),   4Vbw = 988 kN (222 kip) 
 
Steel: Vs = Vn � Vc = 768 � 247 = 521 kN (117 kip)  
  < 988 kN (222 kip)  OK 
 
Strength spacing: 
 
 V = Av fy d/s  (use 10 for stirrups = 78 mm2 (0.12 in2) 
  521,000 = (156)(420)(740)/s 
  s = 93 mm (3.7 in) 
 
Maximum spacing: since Vs > 2Vbw, then 
 
 S  d/4 = 740/4 = 185 m (7.28 in) 
   300 mm (12 in) 
   16 Av fy/bw 'cf = 16(156)(420)/400 25   
     = 524 mm (20.6 in) 
  3 Av fy/bw = 3(156)(420)/400 = 491 mm (19.3 in) 
 
Therefore, use stirrups: 2 10 @ 90 mm (2 # 3 @ 3.5 in). 
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5. Beam-column moment: 
 
Check beam-column action: 0.1 fc  Ag = 0.1(25)(240,000)  
  = 600,000 N (600 kN) (135 kip) 
 
Ultimate load: Pu = 1.2PD + 1.6PL 
 = 1.2(240) + 1.6(180) = 576 kN (129 kip) < limit 
 
Because Pu = 576 kN (129 kip) < Limit = 600 kN (135 kip), the member 
may be designed as a beam. However, for demonstration purposes of 
beam-column design, the beam will be designed as a beam-column with 
the effect of axial load. 
 
According to ACI 318, frames under gravity loads may be considered to be 
braced and, as a result, may be designed as nonsway members. The 
beam-column may be considered short or long according to the following 
limit against slenderness ratio: 
 
Check slenderness: k u /r  (<,>) 34 � 12(M1/M2)s  40 
   Limit = 34 � 12(M1/M2) = 34 � 12(0) = 34 
 
Effective length factor, k: 
 
The alignment chart in Appendix 7-1, Sheet 7, may be used to find the 
effective length factor for frames: 
 

 
8/973,5
6/040,5

/
/


b

c
A EI

EI
= 1.13 

B =   for pinned support. 
 
When we use Sheet 7 for a nonsway case, k = 0.89. 
 
Slenderness ratio: k u /r = 0.89(6,000)/(0.3 x 600) = 30 < Limit = 34 
 
Because the slenderness ratio is less than the limit, the beam-column is 
considered to be short, which means that the P-  effect is negligible. In this 
case, a second order analysis of moment magnifications is not needed. 
The design may be carried out using the interaction diagrams in Appendix 
7-1, Sheets 3 through 6. Accordingly, 
 
 Pu = already calculated above = 576 kN (129 kip) 
 Pn = Pu/   = 576/0.65 = 886  kN (199 kip) 
 
 Mu = 1.2MD + 1.6ML  = 1.2(201) + 1.6(151)  
  = 483 kN.m (4,275 kip.in) 
 Mn = Mu/   = 483/0.65 = 743 kN.m (6,576 kip.in) 
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Therefore: 
)600()400(25

10886
'

3x
bhf

P

c

n  = 0.148 

 

 
2

6

2 )600()400(25
10743

'
x

bhf
M

c

n  = 0.206 

 
Using Sheet 4 for  = (600 � 120)/600 = 0.8 results in 
 
 = 0.4 
since  = fy/0.85 fc  = 420/(0.85 x 25) = 19.76, then 
 = 0.4/19.76 = 0.02 (> 0.01, < 0.08) OK 
 
Steel: Ast =  b h = 0.02(400)(600) = 4,858 mm2 (8 28) 
   [7.53 in2 (8 # 9)] 
 
6. Beam-column shear: 
 
Beam-column concrete shear strength is affected by axial load as follows: 
 
 Vu = 1.2VD + 1.6VL  = 1.2(33) + 1.6(25) = 80 kN (18 kip) 
 Vn = Vu/    = 80/0.75 = 106 kN (24 kip) 
 

Reference: )540()400(
6
25

6
'

 db
f

V w
c

bw = 180,000 N (40 kip) 

Limits: 2Vbw = 360 kN (81 kip), 4Vbw = 720 kN (162 kip) 
 
Concrete strength: Vc = (1 + 0.07Nu/Ag)Vbw  
  = [1 + 0.07 (576,000)/240,000]Vbw  
   = 1.168(180) = 210 kN (47 kip)   
 
Capacity:  Vc = 0.75(210) = 158 kN (36 kip) > Vu 
 
Because concrete strength is enough, there is no need for stirrups for 
strength, but minimum stirrups must be provided in columns as follows: 
 
Spacing: s  16db = 16(28) = 448 mm (18 in) 
  48ds = 48(10) = 480 mm (19 in) 
  b = 400 mm (16 in) 
 
Therefore, use stirrups that are 10 @ 400 mm  (# 3 @ 16 in) 
 



                    Seismic Provisions of Reinforced Concrete Structures 

303 

Case 2: Dead, live and seismic forces:  
 
Load combination is given as 
       U2 = 1.2D + 1.0L + 1.0E 
 
1. Straining actions: 
 
The seismic force for OMF is given 
by the elastic force divided by the 
R-factor, which is 3.5 for this frame 
as given in Appendix 7-1: 
 
 Fx = Fel/R = 288/3.5  
  = 82 kN (18 kip) 
 
Using the dimensions and properties above, the resulting moments, shears 
and normal forces are constructed for the seismic force as shown in Ex-
ample 7-1, Figure 3. 
 
2. Beam moment: 
 
Check beam action: 0.1 fc  Ag = 0.1(25)(320,000)  
  = 800,000 N (800 kN) (180 kip) 
 
Ultimate load: Pu = 1.2PD + 1.0PL + 1.0PE 
  = 1.2(33) + 1.0(25) + 1.0(41) = 106 kN (24 kip) < limit 
 
Because Pu = 106 kN (24 kip) < Limit = 800 kN (180 kip), the member may 
be designed without the effect of axial load. 
 
*Positive moment region: 
 
 Mu = 1.2MD + 1.0ML + 1.0ME  
 = 1.2(279) + 1.0(209) + 1.0(0)  
  = 53 kN.m  (469 kip.in) < case 1 
 
Therefore, there is no need for design. Case 1 controls. 
 
*Negative moment region: 
 
 Mu = 1.2MD + 1.0ML  + 1.0ME  
  = 1.2(201) + 1.0(151)) + 1.0(247)  
  = 639 kN.m (5,656 kip.in) > case 1 
 Mn= Mu/   = 639/0.9 = 710 kN.m (6,284 kip.in) 
 
 Pn = Pu/  = 106/0.9 = 118 kN (27 kip) 
 

EXAMPLE 7-1, FIGURE 3 
SEISMIC FORCES

 
M = 

247 kN.m 
(2,186 kip.in)

62 kN 
(14 kip)

62 kN
(14 kip)

41 kN 
(9 kip)

41 kN
(9 kip)

Fx = 82 kN
(18 kip)
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Design: 2' dbf
M

c

n
2

6

)740()400(25
10 x 710  = 0.13 

 
Using the design charts in Appendix 7-1, Sheet 1, the reinforcement index 
is given as  

o = 0.14, o = 0.14(25/420) = 0.008,3    
  As = o b d = 0.008,3(400)(740) = 2,467 mm2 (6 25) 
  [3.82 in2 (6 # 8)] 
 
Check steel limits for tension-controlled action (at  = 0.9): 

Since 
)740()400(25

10 x 118
'

3


dbf
P

wc

n = 0.016 

then 
dbf

P

wc

n
w '

 = 0.14 + 0.016 = 0.156  

  < 0.32 1 = 0.272 OK  
 
3. Beam shear:  Using 10 (# 3) bars for stirrups: 
 
 Vu = 1.2VD + 1.0VL  + 1.0VE    
 = 1.2(240) + 1.0(180) + 1.0(62)  
  = 530 kN (119 kip) < case 1 
 
Therefore, there is no need for design. Case 1 controls. 
 
4. Beam-column moment: 
 
Check beam-column action: 0.1 fc  Ag = 0.1(25)(240,000)  
  = 600,000 N (600 kN) (135 kip) 
 
Ultimate load: Pu = 1.2PD + 1.0PL + 1.0PE 
  = 1.2(240) + 1.0(180) + 1.0(62)   
  = 530 kN (119 kip) > limit 
 
Because Pu = 530 kN (119 kip) > Limit = 600 kN (135 kip), the member 
may be designed as a beam. However, for demonstration purposes of 
beam-column design, the beam will be designed as a beam-column with 
the effect of axial load. 
 
According to ACI 318, frames under lateral loads may not be considered to 
be braced. As a result, they shall be designed as sway members. In the 
sway case, the beam-column may be considered to be short or long ac-
cording to the following limit against slenderness ratio: 
 
Check slenderness:  k u /r  (<,>) 22 
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Effective length factor, k: 
 
To find the effective length factor for frames, the alignment chart in 
Appendix 7-1, Sheet 7, may be used again: 
 

 
8/973,5
6/040,5

/
/


b

c
A EI

EI
= 1.13 

B =  for pinned support. 
 
When we use Sheet 7 for the sway case, k = 2.40. 
 
Slenderness ratio: k u /r = 2.40(6,000)/(0.3 x 600) = 80 > Limit = 22 
 
Because the slenderness ratio is more than the limit, the beam-column is 
considered long, which means that the P-  effect must be considered. In 
this case, a second order analysis of moment magnifications is needed. 
These may be evaluated using the sway magnification factor, s, as defined 
by ACI 318. According to ACI 318, the design moment is given by the 
following procedures. 
 
Effective moment of inertia for buckling analysis is different from structural 
analysis for concrete sections. For buckling analysis, EI may be taken as 
 
    EI = 0.25EcIg = 0.25(23,500)(7,200 x 106)  
   = 42,300 x 109 N.mm2 (15 x 106 kip.in2) 
 

Critical Load: 
2

2

2

2

)6x40.2(
)300,42(

)(


k
EIPc = 2,013 kN (453 kip) 

 
Summation of Pc in the entire floor:  Pc = 2,013 (2) = 4,026 kN (905 kip) 
Summation of Pu in the entire floor:  Pu = Pu1 + Pu2 
 
The vertical reactions that are due to seismic forces as given in Example 7-
1, Figure 3, are equal in magnitude and opposite in direction. Therefore, 
they cancel out in the summation: 
 
        Pu = (1.2PD + 1.0PL)(2) = [1.2(240) + 1.0(180)](2)  
  = 936 kN (210 kip) 

Moment magnification: 

c

u
s

P
P





1

1  with limits as 
0.1
5.2s  

  

)026,4(75.0
9361

1



s = 1.45 
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The design moment is given as a combination of the nonsway moments 
and the sway moments as follows: 
 
 M2ns = 1.2(201) + 1.0(151) = 392 kN.m (3,470 kip.in) 
 M2s = 1.0(247) = 247 kN.m (2,186 kip.in) 
 
Consequently, the design moment is given as: 
 
 Mu = M2ns + s M2s 
 Mu = 392 + 1.45(247) = 750 kN.m (6,638 kip.in) 
 
Design may be carried out using the interaction diagrams in Appendix 7-1, 
Sheets 3 through 6.  Accordingly, 
 
 Pu  = already calculated above = 530 kN (119 kip) 
 Pn  = Pu/  = 530/0.65 = 815  kN (183 kip) 
 
 Mn = Mu/   = 750/0.65 = 1,154 kN.m (10,214 kip.in) 
 

Therefore: 
)600()400(25

10 x 815
'

3


bhf
P

c

n  = 0.136 

 

 
2

6

2 )600()400(25
10 x 154,1

'


bhf
M

c

n  = 0.32 

 
Using Sheet 4 for  = (600 � 120)/600 = 0.8, results in 
 
 = 0.8 
since  = fy/0.85 fc  = 420/(0.85 x 25) = 19.76, then 
 = 0.8/19.76 = 0.04 (> 0.01, < 0.08)  OK 
 
Steel: Ast =  b h = 0.04(400)(600) = 7,917 mm2 (16 28) 
  [12.27 in2 (16 # 9)] 
 
5. Beam-column shear: 
 
Beam-column concrete shear strength is affected by axial load as follows: 
 
 Vu = 1.2VD + 1.0VL  + 1.0VE   
  = 1.2(33) + 1.0(25) + 1.0(41) = 106 kN (24 kip) 
 Vn = Vu/   = 106/0.75 = 141 kN (32 kip) 
 

Reference: )540()400(
6
25

6
'

 db
f

V w
c

bw = 180,000 N (40 kip) 
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Limits: 2Vbw = 360 kN  (81 kip),  4Vbw = 720 kN (162 kip) 
 
Concrete strength: Vc = (1 + 0.07Nu/Ag)Vbw  
 = [1 + 0.07(530,000)/240,000)]Vbw  
  = 1.154(180) = 208 kN (47 kip)   
 
Capacity:    Vc = 0.75(208) = 156 kN (35 kip) > Vu 
 
Insofar as concrete strength is enough, there is no need for stirrups for 
strength, but minimum stirrups must be provided in columns as follows: 
 
Spacing: s  16db = 16(28) = 448 mm (18 in) 
   48ds = 48(10) = 480 mm (19 in) 
   b = 400 mm     (16 in) 
 
Therefore, use stirrups that are 10 @ 400 mm (3 @ 16 in) 
 
Case 3: Dead and seismic forces:  
 
The load combination is given as U3 = 0.9D + 1.0E. 
 
1. Affected areas:  
 
An inspection reveals that this load case affects only the beam moment at 
the face. As a result, 
 
 Mu = 0.9MD + 1.0ME  
  = 0.9(201) � 1.0(247) = �66 kN.m (�584 kip.in) 
 Mn = Mu/   = 66/0.9 = 73 kN.m (646 kip.in) 
 

Design:  
2' dbf

M

c

n  = 
2

6

)740()400(25
10 x 73  = 0.013 

 
Using the design charts in Appendix 7-1, Sheets 1 and 2, the reinforcement 
index is given less than minimum. Thus, use the minimum reinforcement: 

o,min = 0.003,3 
  As = o,min b.d = 0.003,3(400)(740) = 977 mm2 (2 25) 

  [1.51 in2 (2 # 8)] 
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2. Development length: 
 
The bottom bars in the beam must be developed in tension. The 
development length is given as 
 

 
25

42048.0
'

48.0 
c

y

b

d

f

f
d

= 40.32  

 
Therefore, d = 40.32(25) = 1,008 mm (40 in) 
 
Because column depth is equal to 540 mm (21 in), the column depth is not 
enough to accommodate 1008 mm (40 in) of straight bar for development. 
Consequently, hook bar must be used for development. The development 
length of standard hook bar is given as 
 

 16.20
25

42024.0
'

24.0 
c

y

b

d

f

f
d

 

 
Therefore, d = 20.16(25) = 504 mm (20 in) 
 
The final design details are shown in Example 7-1, Figure 4. 

EXAMPLE 7-1, FIGURE 4
OMF DETAILING 

Column 

600 mm 
(24 in)

10 @ 300 mm 
(# 3 @ 12 in) 

Beam 

 
400 
mm 

(16 in)
6  28 
 (6 # 9)

2  25 
(2 # 8)

2  16 
 (2 # 5)

10 @ 80 mm 
(# 3 @ 3 in) 

.

6  25 
(6 # 8)

6  28 
(6 # 9)

10 @ 300 mm 
(# 3 @ 12 in) 

10 @ 80 mm 
(# 3 @ 3 in) 

8  28 
(8 # 9)

8  28 
(8 # 9)

2  25 
(2 # 8)
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7.3  Intermediate Moment Frames (IMF) 

Intermediate moment frames are assigned an R-factor equal to 5.5 by the 
IBC. To meet such force reduction, ACI 318 requires these frames to 
conform to its provisions for ordinary moment frames. These frames must 
also conform to the requirements of this section. 
 
This type of frame has enhanced detailing and design requirements over 
that of ordinary moment frames. These requirements enhance its ductility 
and, as a result, increase the allowable force reduction to R = 5.5. 
 
The factored shear forces for both beams and beam-columns of IMF shall 
be evaluated according to the maximum of the basic load combination for 
seismic loading and the maximum possible shear that can develop in the 
section due to plastic moments: 
 

 Vu = 1.2VD + 
5.0
0.1

 VL + 0.2VS + VE 

 )gravity(u
n

n V
M

  

where: 
D, L, S and E = Dead, live, snow and earthquake loads components. 
Mn = Nominal moment of ACI-318 (plastic moment of the 

section). 
n   = Clear span of the member. 

Vu(gravity) = The shear force due to factored gravity loads. 
 
The components of the second equation above are graphically identified 
as shown in Figure 7-7. 
 
Additional requirements are also 
needed for both beams and beam-
columns. For clarity, these require-
ments will also be presented in 
graphical forms. 

7.3.1  Intermediate Beams 

Similar to OMF, intermediate 
beams are identified with a max-
imum factored axial load as 
 
 Pu   0.1 fc  Ag 
 
where fc' and Ag are as defined before. 
 

FIGURE 7-7
DESIGN SHEAR 

 
qu = 1.2 qD +1.0 qLMn,1

Mn,2

qu/2qu/2

 Mn/ n Mn/ n  
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For beams in frames, the ends of the beams are potential locations for 
the development of plastic hinges. Under seismic excitation, there is a 
high likelihood of developing positive plastic hinge as well as negative 
plastic hinge. Consequently, the reinforcement limitations are given for 
main and lateral direction as shown below. 
 
Main reinforcement 
 
The additional main reinforcement design requirements are shown in 
Figure 7-8 and explained below. Refer to Figure 7-8 for the following: 
 
1. The positive moment at the face of the column must exceed one third 

the negative moment strength provided at the face of the supporting 
column as shown in Detail A. 

 
2. The minimum positive and negative moments at midspan must exceed 

one fifth the maximum moment strength provided at the face of the 
supporting column as shown in Detail B. 

 
Lateral reinforcement 
 
The additional stirrup requirements shown in Figure 7-8 may be explained 
as described below. Refer to Figure 7-8 for the following: 

FIGURE 7-8
IMF BEAM REQUIREMENTS AND DETAILING 

M +   M--/3

M --

 
 50 mm  (2 in)

  2h

s  d/4 
     8db

     24ds 

     300 mm  (12 in) 

M    Mmax, face/5

.

Detail A Detail B
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The potential plastic hinge region is assumed to extend a distance (2h) 
from the face of the support. Therefore, over this distance (2h), the 
maximum spacing of stirrups is given in terms of effective depth of the 
member (d), the diameter of main reinforcement (db), the diameter of 
stirrups (ds), and 300 mm as shown in Detail A. The first stirrup shall start 
at least 50 mm from the face of the support as also shown in Detail A. 

7.3.2  Intermediate Beam-Columns 

Similar to OMF, intermediate beam-columns are identified with minimum 
factored axial load as 
 
 Pu > 0.1 fc  Ag 
 
where fc' and Ag are as defined before. 
 
For beam-columns in frames, the ends of the beam-columns are the 
potential locations for the development of plastic hinges. The following 
provisions shall also apply on both sides of any potential location of a 
plastic hinge (for example, potentially under concentrated loads and in 
critical moment section inside the beam). Consequently, the rein-
forcement limitations are given for lateral direction as shown below.  
There is no additional requirement for main steel other than the OMF 
requirements. 
 
Lateral reinforcement: 
 
The additional stirrup requirements in Figure 7-9 may be explained as 
shown below. Refer to Figure 7-9 for the following: 
 
1. The potential plastic hinge region is assumed to extend a distance 

( o ) from the face of the support. This distance is given in terms of the 
clear height of the column (hn), dimensions of the column (h.b) and 
500 mm (18 in) as shown in Detail A. 

 
2. The maximum spacing of the ties in the plastic hinge region is given as 

so and is expressed in terms of the diameter of main reinforcement 
(db), the diameter of ties (ds), half of the shorter side of the column (b 
or h) and 300 mm (12 in) as shown in Detail B. The first tie shall start 
at a distance not more than so/2 as also shown in Detail B. 

 
3. The maximum spacing of ties in the middle of the column (between the 

plastic hinge regions) shall not exceed twice their spacing (2so) as 
shown in Detail C. 

 
4. The ties must continue through the joint. The minimum amount of
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these ties is expressed in terms of maximum spacing, which is similar 
to regular beam stirrups in OMF and is also shown in Detail D. 

 
Example 7-2 
 
The frame shown in Example 7-2, 
Figure 1, is the same frame given in 
Example 7-1. The share of the frame 
from the elastic base shear was 
given as Fx = 288 kN (65 kip). 
 
Design the same frame as an 
intermediate moment-resisting frame 
(IMF) to resist the given seismic 
force. Given material properties are 
the same as fc  = 25 MPa (3.625 ksi) 
and fy = 420 MPa (60 ksi). 
 
Solution 
 
Because this example is intended to be solved in conjunction with Example 
7-1, the reader is advised to review Example 7-1 before working on this 

EXAMPLE 7-2, FIGURE 1 
 

8 m (26.25 ft)

 
Fx 

6 
m

 
(1

9.
68

 ft
)

 
qD = 60 kN/m (0.343 kip/in) 
qL = 45 kN/m (0.257 kip/in) 

400 x 800 mm
(16 x 31.5 in) 

40
0 

x 
60

0 
m

m
 

(1
6 

x 
24

 in
)

FIGURE 7-9
IMF BEAM-COLUMN REQUIREMENTS AND DETAILING 

 2 so
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     24 ds 
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(12 in) 
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s   
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yv
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Detail A

Detail B 

Detail D

Detail C
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second example. Remember to review the basic ACI design philosophy 
and procedures before working on these examples. 
 
The solution will involve checking three load cases: (1) dead and live load 
effects; (2) dead, live and earthquake load effects; and (3) dead and 
earthquake load effects. 
 
Case 1: Dead and live loads:  
 
Load combination is given as U1 = 1.2D + 1.6L. 
 
This load case will be exactly the same as in Example 7-1. See case 1 in 
Example 7-1 for the solution. 
 
Case 2: Dead, live and seismic loads: 
 
Load combination is given as  
U2 = 1.2D + 1.0L + 1.0E. 
 
1. Straining actions: 
 
The seismic force for IMF is 
given by the elastic force divided 
by the R-factor, which is 5.5 for 
this frame as given in Appendix 
7-1. Thus, 
 
 Fx = Fel/R = 288/5.5  
   = 52 kN  (11.69 kip) 
 
Using the above dimensions and properties, the resulting moments, shears 
and normal forces are constructed for the seismic force as shown in 
Example 7-2, Figure 2. 
 
2. Beam moment: 
 
Check beam action: 0.1 fc  Ag = 0.1(25)(320,000)  
  = 800,000 N (800 kN) (180 kip) 
 
Ultimate load: Pu = 1.2PD + 1.0PL + 1.0PE 
  = 1.2(33) + 1.0(25) + 1.0(26)  
   = 91 kN (20 kip) < limit 
 
Since Pu = 91 kN (20 kip) < Limit = 600 kN (180 kip), the member may be 
designed without the effect of axial load. 
 
*Positive moment region: 
 

EXAMPLE 7-2, FIGURE 2 
SEISMIC FORCES

 
M = 

156 kN.m 
(1,381 kip.in)

39 kN 
(8.77 kip)

39 kN 
(8.77 kip)

26 kN 
(5.84 kip)

26 kN 
(5.84 kip)

Fx = 52 kN
(11.69 kip)
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As in Example 7-1. 
 
*Negative moment region: 
 
 Mu = 1.2MD + 1.0ML  + 1.0ME  
  = 1.2(201) + 1.0(151) + 1.0(156)  
  = 548 kN.m (123 kip) > case 1 
 Mn = Mu/    = 548/0.9 = 609 kN.m (5,390 kip.in) 
 Pn = Pu/  = 91/0.9 = 101 kN (23 kip) 
 

Design: 2' dbf
M

c

n  =
2

6

)740()400(25
10609x  = 0.111 

 
Using design charts in Appendix 7-1, Sheet 1, the reinforcement index is 
given as 
  

o = 0.12, o = 0.12(25/420) = 0.007,1    
  As = o b.d = 0.007,1(400)(740) = 2,114 mm2 (5 25) 
    [3.28 in2 (5 # 8)] 
 
Check steel limits for tension-controlled action (at  = 0.9): 
 

Since 
)740()400(25

10 x 101
'

3


dbf
P

wc

n = 0.014 

then 
dbf

P

wc

n
w '

 = 0.12 + 0.014 = 0.134  

  < 0.32 1 = 0.272  OK  
 
Even though 5 25 (5 # 8) is enough, it is more practical to use an even 
number. Therefore, use 6 25 (6 # 8). 
 
For additional requirements for IMF beams, refer to Figure 7-8 for details. 
 
The positive moment at the face and at midspan must be designed for a 
minimum value as a function of the negative moment at the joint. 
Inspection reveals that the maximum design negative moment obtained at 
the joint is 609 kN.m (5,390 kip.in). Thus, 
 

*Moments at face: 
 
Positive moment at face: Mn

+ = Mn
--/3 = 609/3 = 203 kN.m 

   = (1,797 kip.in) 
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Design: 
2' dbf

M

c

n  = 2

6

)740()400(25
10203x  = 0.037 

 
Using design charts in Appendix 7-1, Sheets 1 and 2, the reinforcement 
index is given as less than minimum. Thus, use the minimum rein-
forcement: 

o,min = 0.003,3,    
As = o,min b d = 0.003,3(400)(740) = 966 mm2 (2 25) 

   [1.50 in2 (2 # 8)] 
  
*Moments at midspan: 
 
Both moments at midspan: Mn

 = Mn
face/5 = 609/5 = 122 kN.m 

 
Since this moment (122) is less than face moment (203), the reinforcement 
ratio must also be less than the minimum reinforcement ratio. Thus, use 
the minimum reinforcement: 

o,min = 0.003,3,     
  As = o,min b.d = 0.003,3(400)(740) = 966 mm2 (2 25) 
   [1.50 in2 (2 # 8)] 
 
3. Beam shear:  Using 10 (# 3) bars for stirrups: 
 
 Vu = 1.2VD + 1.0VL  + 1.0VE    
   = 1.2(240) + 1.0(180) + 1.0(39) = 507 kN (114 kip) 
 
For IMF, Vu shall not be less than the following (see Figure 7-7): 
 

     Vu )gravity(u
n

n V
M

  

where 
 Mn1 = 203 kN, Mn2 = 609 kN (137 kip) 
 
Gravity load:  qu = 1.2qD + 1.0qL   
  = 1.2(60) + 1.0(45) = 117 kN/m (0.669 kip/in)  
 

Consequently, Vu 2/)8(117
)6.08(

609203 


  = 577 kN (130 kip) 

 
Therefore,  Vu = 577 kN (130 kip) 
 
 Vn  = Vu/    = 577/0.75 = 770 kN (173 kip) 
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Reference: )740()400(
6
25

6
'

 db
f

V w
c

bw = 246,667 N (56 kip) 

 
Concrete strength: Vc = Vbw = 247 kN (56 kip)   
 
Limits: 2Vbw = 494 kN (111 kip), 4Vbw = 988 kN (222 kip) 
 
Steel: Vs = Vn � Vc = 770 � 247 = 523 kN < 988 kN  OK 
   = (118 kip < 222 kip) OK 
 
Strength spacing: Vs = Av fy d/s 
    (use 10 (# 3) for stirrups = 78 mm2) 
 
 523,000 = (156)(420)(740)/s 
 s = 93 mm (3.66 in) 
 
Maximum spacing over a distance = 2h = 2(800) = 1,600 mm (63 in):  
 
 S  d/4 = 740/2 = 185 mm (7 in) 
   8db = 8(25) = 200 mm (8 in) 
   48ds = 48(10) = 240 mm (9 in) 
   300 mm (12 in) 
   16 Av fy/bw 'cf = 16(156)(420)/400 25  = 524 mm (21 in) 
    3 Av fy/bw = 3(156)(420)/400 = 491 mm (19 in) 
 
Therefore, use stirrups 2 10 @ 90 mm (2 # 3 @ 3.5 in) over a distance 
= 1,600 mm (63 in) from face of column. 
 
4. Beam-column moment: 
 
Check beam-column action: 0.1 fc  Ag = 0.1(25)(240,000)  
  = 600,000 N (600 kN) (135 kip) 
 
Ultimate load: Pu = 1.2PD + 1.0PL + 1.0PE 
  = 1.2(240) + 1.0(180) + 1.0(39)   
   = 507 kN (114 kip) > limit 
 
Because Pu = 507 kN (114 kip) > Limit = 600 kN (135 kip), the member 
may be designed as a beam. However, to demonstrate beam-column 
design, the beam will be designed as a beam-column with the effect of 
axial load. 
 
According to ACI 318, frames under lateral loads may not be considered 
braced, and hence, shall be designed as sway members. In the sway case, 
the beam-column may be considered short or long according to the 
following limit against slenderness ratio: 
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Check slenderness: k u /r  (<,>) 22 
 
Effective length factor, k: 
 
To find the effective length factor for frames, use the alignment chart in 
Appendix 7-1, Sheet 7: 
 

 
8/973,5
6/040,5

/
/


b

c
A EI

EI
= 1.13 

B  =  for pinned support. 
 
Using Sheet 7 for sway case, we find that k = 2.40. 
 
Slenderness ratio: k u /r = 2.40(6,000)/(0.3 x 600) = 80 > Limit = 22 
 
Because the slenderness ratio is more than the limit, the beam-column is 
considered to be long, which means that the P-  effect must be 
considered. In this case, second order analysis of moment magnifications 
are needed. These may be evaluated using the sway magnification factor, 

s, as defined by ACI 318. According to ACI 318, the design moment is 
given by the following procedures. 
 
Effective moment of inertia for buckling analysis is different from structural 
analysis for concrete sections. For buckling analysis, EI is given as in 
Example 7-1: 
 
 EI = 0.25EcIg = 0.25(23,500)(7,200 x 106)  
   = 42,300 x 109 N.mm2 (15 x 106 kip.in2) 
 

Critical Load:  
2

2

2

2

)6x40.2(
)300,42(

)(


k
EIPc = 2,013 kN (453 kip) 

 
Summation of Pc in the entire floor:  Pc = 2,013(2) = 4,026 kN 
          (905 kip) 
Summation of Pu in the entire floor:  Pu = Pu1 + Pu2 
 
The vertical reactions that are due to seismic forces as given in Example 7-
2, Figure 2, are equal in magnitude and opposite in direction. Therefore, 
they cancel out in the summation: 
 
       Pu = (1.2PD + 1.0PL)(2)  
  = [1.2(240) + 1.0(180)](2) = 936 kN (210 kip) 
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Moment magnification: 

c

u
s

P
P





1

1 with limits as 
0.1
5.2s  

 

)026'4(75.0
9361

1



s = 1.45 

 
The design moment is given as a combination of the nonsway moments 
and the sway moments as follows: 
 
 M2ns = 1.2(201) + 1.0(151) = 392 kN.m (3,470 kip.in) 
  M2s = 1.0(156) = 156 kN.m (1,381 kip.in) 
 
Consequently, the design moment is given as 
 
 Mu = M2ns + s M2s 
  Mu = 392 + 1.45(156) = 618 kN.m (5,470 kip.in) 
 
Design may be carried out using the interaction diagrams in Appendix 7-1, 
Sheets 3 through 6.  Accordingly, 
 
 Pu = already calculated above = 507 kN (114 kip) 
 Pn = Pu/  = 507/0.65 = 780  kN (175 kip) 
 Mn = Mu/  = 618/0.65 = 951 kN.m (8,417 kip.in) 
 

Therefore, 
)600()400(25

10 x 780
'

3


bhf
P

c

n  = 0.13 

 
2

6

2 )600()400(25
10 x 951

'


bhf
M

c

n  = 0.264 

 
Using Sheet 4 for  = (600 � 120)/600 = 0.8 results in 
 
 = 0.6 
 
Since  = fy/0.85 fc  = 420/(0.85 x 25) = 19.76,  
 
then = 0.6/19.76 = 0.03     (> 0.01, < 0.08) OK 
 
Steel: Ast =  b h = 0.03(400)(600)  
   = 7,200 mm2 (12 28)     [11.16 in2 (12 # 9)] 
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5. Beam-column shear: 
 
Beam-column concrete shear strength is affected by axial load as follows: 
 
 Vu = 1.2VD + 1.0VL  + 1.0VE   
 = 1.2(33) + 1.0(25) + 1.0(26) = 91 kN (20 kip) 
 
For IMF, Vu shall not be less than the following (refer to Figure 7-7 for 
illustration): 

      Vu )gravity(u
n

n V
M

  

where: 
Mn1 = 730 kN  (164 kip) 
Mn2 = 0 (pinned support) 
 
Gravity load qu = 0 in the column. 
 

 Vu 0
6

730    = 122 kN (27 kip) 

 
Therefore,  Vu = 122 kN     (27 kip) 
 
 Vn = Vu/   = 122/0.75 = 163 kN (37 kip) 
 

Reference: )540()400(
6
25

6
'

 db
f

V w
c

bw = 180,000 N (40 kip) 

Limits: 2Vbw = 360 kN (81 kip), 4Vbw = 720 kN (162 kip) 
 
 
Concrete strength: Vc = (1 + 0.07 Nu/Ag)Vbw  
 = [1 + 0.07(507,000)/240,000]Vbw  
  = 1.148(180) = 207 kN (47 kip)   
 
Capacity:  Vc = 0.75(207) = 155 kN (35 kip) > Vu 

Because concrete strength is enough, there is no need for stirrups for 
strength, but minimum ties must be provided in columns as follows. 
 
Refer to Figure 7-8 for details: 
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Length o : o   hn/6 = 6,000/6 = 1,000 mm (39 in) 
   h, b = 400 mm (16 in) 
   500 mm (20 in) 
Therefore,  o  = 1,000 mm (39 in) 
 
Spacing, so: so  8db = 8(25) = 200 mm (8 in) 
   24ds = 48(10) = 240 mm (9 in) 
  b/2, h/2 = 400/2 = 200 mm (8 in) 
  300 mm (12 in) 
  3 Av fy/bw = 3(156)(420)/400 = 491 mm (19 in) 
 
Therefore,  so = 200 mm (8 in) 
 2so = 400 mm (16 in) 
 so/2 = 100 mm (4 in) 
 
Case 3: Dead and seismic loads:  
 
Load combination is given as U3 = 0.9D + 1.0E. 
 
 
 

EXAMPLE 7-2, FIGURE 3
IMF DETAILING 
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1. Affected areas:  
 
Inspection reveals that this load case affects only the beam moment at the 
face. As a result, 
 
 Mu = 0.9MD + 1.0ME  
 = 0.9(201) � 1.0(156) = 25 kN.m (221 kip.in) 
 
The result above indicates that the moment will not put tension in the 
bottom face of the beam. Thus, no steel is needed in the bottom face of the 
beam for strength. 
 
2. Development length: 
 
For development length, see Example 7-1. 
 
Final design details are shown in Example 7-2, Figure 3. 

7.4  Special Moment Frames (SMF) 

Special moment frames are assigned an R-factor equal to 8.5 by the IBC. 
To meet this force reduction, ACI 318 requires these frames to conform to 
its provisions for ordinary moment frames. These frames must also con-
form to the requirements of this section. 
 
This type of frame has enhanced detailing and design requirements over 
that of ordinary and intermediate moment frames. These requirements 
enhance its ductility and, as a result, increase the allowable force re-
duction to R = 8.5. 
 
This type of frame has stringent requirements in terms of section 
dimensions, detailing, and design forces. Before addressing these re-
quirements, it is important to understand the following definitions: 
 
Seismic hook 
 
A seismic hook is a bend 
of at least 135º with a 
projecting length inside 
the core of a rectangular 
concrete section equal to 
at least 6db or 75 mm (3 
in) as shown in Figure 7-
10 (a). The bend may be 
taken 90º in circular 
hoops. 
 

 135º

= 6 db 
 75 mm
(3 in)

(a) Seismic Hook

90º bent 
= 6 db

(b) Cross Tie

Seismic
Hook

FIGURE 7-10
SEISMIC TIES

.



Chapter Seven 

322 

Crosstie 
 
A crosstie is a straight tie that has a seismic hook on one side and a 90º 
bend on the other. The bend must have at least six times its diameter as 
shown in Figure 7-10 (b). The crossties are intended to ease the instal-
lation of the ties by engaging the seismic hook first and then pushing the 
bend afterward. 
 
Hoops 
 
Hoops are special ties for seismic 
sections that are classified as 
continuous hoops and composed of 
(overlapping) hoops. Continuous 
hoops consist of one continuous 
bar, whereas the composed hoops 
consist of an open stirrup and a 
crosstie arranged as shown in 
Figure 7-11. Continuous hoops 
provide better support than com-
posed hoops. However, composed 
hoops are easier to install. Both 
types of hoops must be detailed to 
conform to seismic hook require-
ments as shown in Figure 7-11. 
 
Probable moment, Mpr 
 
Probable moment, Mpr, is the nominal moment as obtained from ACI 
procedures using stress in steel equal to at least 1.25fy and the strength-
reduction factor,  = 1.0. 
 
Figure 7-12 shows the stress 
distribution to be used to obtain 
this moment. The 1.25fy stress 
used in the evaluation of this 
moment is given as a minimum 
and not an exact quantity. In 
general, the ultimate stress of 
reinforcing steel reaches 1.5fy 
and should be reflected in this 
calculation. The most probable 
moment is an important factor in 
the design insofar as this 
moment accounts for the over-
strength effect. This action is 
needed to keep brittle elements elastic as discussed previously in the 
behavior of structures under seismic excitation. 

FIGURE 7-12
PROBABLE MOMENT 

Stresses 
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FIGURE 7-11
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Similar to previous systems, SMF has requirements for beams and for 
beam-columns that are presented in the following sections. 

7.4.1  Special Beams 

Similar to other types of frames, special beams are identified with a 
maximum factored axial load as 

 
 Pu > 0.1 fc  Ag 
 
where fc' and Ag are as defined before. 
 
Special beams have special requirements in terms of design shear, 
dimensions, main reinforcement and lateral reinforcement as follows. 
 
Design shear, Ve 
 
The design shear force including 
seismic effect, Ve, for special 
beams shall be evaluated ac-
cording to the maximum prob-
able shear that can develop in 
the section due to probable mo-
ments as defined earlier. This 
shear force includes the effect of 
gravity loads and the over-strength effect insofar as the moment is the 
function of the ultimate strength of reinforcement. 
 
Consequently, the required design shear strength may be expressed as 
shown in Figure 7-13 as 
 

      Ve )gravity(u
n

pr V
M

  

 
where: 
D, L, S, and E = Dead, live, snow and earthquake load components. 

n   = Clear span of the member. 
Mpr  = Probable moment of ACI (fs  1.25fy). 
Vu (gravity) = Shear force due to factored gravity loads. 
 
The design shear above must be resisted by the nominal shear strength 
of the member, Vn, which consists of concrete contribution (Vc) and steel 
contribution (Vs) as defined earlier in this chapter. However, the con-
tribution of the concrete shall be ignored under the following two con-
ditions when they occur simultaneously: 
 

FIGURE 7-13
DESIGN SHEAR 

 
qu = 1.2qD + 1.0qLMpr,1

Mpr,2

qu/2qu/2

 Mpr/ n Mpr/ n
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 Vc = 0  if Pu   0.05 fc  Ag 
  and if VE   1/2Ve 
 
where VE is the shear force due to earthquake effect only. 
 
Dimension limitations 
 
The additional requirements for dimensions are shown in Figure 7-14 and 
explained below. Refer to Figure 7-14 for the following details: 
 
1. The web width shall not be less than 0.3 times its height but not less 

than 250 mm (10 in) as shown in Detail A.  
 
2. The transverse projection of the beam over the supporting columns 

shall not exceed three fourths its height as shown in Detail B. 
 
3. The clear span of the beam shall not be less than four times its 

effective depth as shown in Detail C. This requirement is intended to 
guarantee the flexure behavior of the beam without significant shear 
deformations (plane section hypothesis). 

 
Main reinforcement 
 
The additional requirements for main reinforcement design are shown in 
Figure 7-14 and explained below. Refer to Figure 7-14 for the following 
details: 
 
1. The positive moment at the face of the column must exceed one half 

the negative moment strength provided at the face of the supporting 
column as shown in Detail D. 

 
2. The minimum positive and negative moments at midspan must exceed 

one fourth the maximum moment strength provided at the face of the 
supporting column as shown in Detail E. 

 
3. At least two bars at the top and bottom faces of the beam must be 

continuous as shown in Detail F. 
 
4. The splice location shall not be less than 2d from the face of the 

support or from the critical section of any plastic hinge as shown in  
Detail F. 
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Lateral reinforcement 
 
The additional requirements for lateral reinforcement are shown in Figure 
7-14 and explained below. Refer to Figure 7-14 for the following details: 
 
1. The potential plastic hinge region is assumed to extend a distance of 

2h from the face of the support. Therefore, over this distance (2h), the 
maximum spacing of stirrups is given in terms of the effective depth of 
the member (d), the diameter of main reinforcement (db), the diameter 
of stirrups (ds) and 300 mm (12 in) as shown in Detail D. The first stir-
rup shall start at least 50 mm (2 in) from the face of the support as 
also shown in Detail D. 

 
2. The spacing of stirrups in the middle of the beam shall not exceed d/2 

as shown in Detail E. 
 
3. The spacing of stirrups over the splice length shall not exceed d/4 or 

100 mm (4 in) as shown in Detail F. 
 
 

.

FIGURE 7-14
SMF BEAM REQUIREMENT AND DETAILING 
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M -
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7.4.2  Special Beam-Columns 

Similar to other types, special beam-columns are identified with a max-
imum factored axial load as 
 
 Pu > 0.1 fc  Ag 
 
Where fc' and Ag are as defined before. 
 
Special beam-columns have special requirements in terms of design 
forces, dimensions, main reinforcement and lateral reinforcement as 
follows. 
 
Design Forces 
 
Design Moment 
 
To force the plastic hinges in the beams to achieve a weak beam-strong 
column mechanism as explained under recommended seismic systems in 
Chapter 5, the flexural strength of the 
columns must exceed the flexural 
strength of the beams. For this reason, 
ACI 318 requires that the summation of 
the design moments of columns be 20 
percent larger than the summation of the 
design moments of the girders meeting at 
the same joint. This requirement may be 
expressed with reference to Figure 7-15 
as 
 
  Mnc  6/5  Mnb 
 
Design Shear, Ve 
 
The design shear force including seismic effect, Ve, for special beam-
columns shall be evaluated according to the maximum probable shear 
that can develop in the section due 
to probable moments as defined 
earlier. This shear force includes 
the effect of gravity loads and the 
over-strength effect since the 
moment is a function of the ultimate 
strength of reinforcement. 
 
Consequently, the required design 
shear strength may be expressed 
as shown in Figure 7-16 as 

FIGURE 7-15
JOINT MOMENTS

Mg,1 Mg,2

Mc,2

Column
 

Beam

 
Mc,1

FIGURE 7-16
DESIGN SHEAR 

 
qu = 1.2qD + 1.0qLMpr,1

Mpr,2

qu/2qu/2

 Mpr/ n Mpr/ n
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 Ve )gravity(u
n

pr V
M

  

 
However, the design shear shall not be less than the factored maximum 
seismic load combination, including seismic forces: 
 

  Vu   1.2VD + 
5.0
0.1

 VL + 0.2VS + VE 

 
where: 
D, L, S, and E = Dead, live, snow and earthquake load components. 

n  = Clear span of the member. 
Mpr = Probable moment of ACI (fs  1.25fy). 
Vu (gravity) = Shear force due to factored gravity loads. 
 
The design shear above must be resisted by the nominal shear strength 
of the member, Vn, which consists of concrete contribution, Vc, and steel 
contribution, Vs, as defined earlier in this chapter. However, the 
contribution of the concrete shall be ignored under the following two 
conditions when they occur simultaneously: 
 
  Vc = 0  if Pu  0.05 fc  Ag 
  and if VE  1/2Ve 
 
where VE is the shear force due to earthquake effect only. 
 
Dimension limitations 
 
The additional requirements for dimensions are shown in Figure 7-17, 
which requires that the width of one side of the section not be less than 
0.4 times its other side, but not less than 300 mm as shown in Detail A.  
 
Main reinforcement: 
 
The additional requirements for main reinforcement design are shown in 
Figure 7-17 and explained below. Refer to Figure 7-17 for the following 
details: 
 
1. The gross reinforcement ratio, g, is limited to a maximum and 

minimum as follows: 
 g  0.06 (preferably  0.04) 
  g  0.01 
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2. The splice location shall be limited to the center half of the beam-
column to keep the splice outside of the regions of the plastic hinges 
as shown in Detail E. The spacing of the splice hoop shall be the 
same as in the plastic hinge region (as shown in Detail C). 

 
Lateral reinforcement details 
 
Before addressing these requirements, it is important to understand the 
following definitions: 
 
1. The distance center to center of the outer hoop is designated as bc (for 

example, hc1 in direction 1 and hc2 in direction 2 as shown in Figure 7-
18). bc indicates either bc1 or bc2 according to the direction under 
consideration. 

 
2. The distance center to center between crossties is designated as hx. 

hx is given as the maximum value of hx1 and hx2, where hx1 and hx2 
indicate the distance between crossties in directions 1 and 2, 
respectively, as shown in Figure 7-18. 

 
3. hx shall not exceed 350 mm (14 in) as shown in Figure 7-18. 
 

FIGURE 7-17
SMF BEAM-COLUMN REQUIREMENTS AND DETAILING 
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4. All hooks shown in 
Figure 7-18 shall be 
seismic hooks as defined 
earlier. The 90º

 bend of 
consecutive crossties 
shall be on opposite 
sides of the column. 

 
The additional requirements 
for lateral reinforcement are 
shown in Figure 7-17 and 
explained below. Refer to 
Figure 7-17 for the following 
details: 
 
1. The potential plastic hinge region is assumed to be within a distance 

( o ) from the face of the support. The minimum length of plastic hinge 
region ( o ) is given as a function of the clear span of the beam-
column, the dimensions of the section and 500 mm (18 in) as shown 
in Detail B. Therefore, over this distance ( o ), the maximum spacing 
of hoops is given in terms of the diameter of main reinforcement (db), 
the sides of the section and the limit to a quantity, so, as defined in 
Detail C. 

 
2. The amount and spacing of hoops in the plastic hinge region must ex-

tend through the joint as shown in Detail C. This extension is waived if 
the joint is confined by members framing to the joint. 

 
3. The spacing of hoops in the middle of the beam shall neither exceed 

6db nor 150 mm (6 in) as shown in Detail D. 
 
4. The spacing of hoops over the splice length shall conform to the re-

quirements of hoops in the plastic hinge region that are given in Detail 
C. The splice reinforcement must also develop as a tension splice. 

 
Minimum lateral reinforcement 
 
The minimum hoops required in the potential plastic hinge region for 
confinement (over the length, o ) depend on the shape of the section. 
Minimum hoops for rectangular and circular sections are given as follows. 
 

FIGURE 7-18
HOOP DIMENSIONS

bc1 

bc2

hx1hx1 hx1 

hx2

hx2

1. bc = (bc1 or bc2) 
2. hx = max (hx1 or hc2) 

hx1  350 mm
(14 in) 

 
Alternate Hook hx2   350 mm (14 in) 
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Rectangular Sections 
 
The minimum area of hoops, Ash, in any directions of the rectangular 
section shall be as 
 

 



yt
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ch

g
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f
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1
'

3.0

 

 
where: 
Ach = Area of concrete core, including hoops, which is given as 
  Ach = (bc1 + dh).(bc2 + dh) 
Ag = Gross area of the concrete section. 
Ash = Area of hoops for shear. 
bc = Center-to-center dimension of the hoop in the direction under 

consideration as shown in Figure 7-19. 
dh = Diameter of hoops. 
fc  = Characteristic strength of concrete. 
fyt = Yield stress of hoop reinforcement. 
S = Spacing of hoops along the member. 
 
Circular and Spiral Sections 
 
The minimum volume of hoops, s, in circular sections with hoops or with 
spirals shall be as 
 

  

yt

c

ch

g

yt

c
s

f
f

A
A

f
f

'
145.0

'
12.0



 

where: 
Ach = Area of concrete core, including hoops. 
Ag = Gross area of the concrete section. 
fc  = Characteristic strength of concrete. 
fyt = Yield stress of hoop reinforcement. 
 
Concrete cover protection 
 
The maximum allowable concrete cover must be 100 mm. In other words, 
when concrete cover exceeds 100 mm, additional hoops are needed 
within the outer 100 mm cover spaced at 300 mm. 
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7.4.3  Special Joints 

As noted in the previous section, the 
beam-column hoops in the plastic 
hinge region must be extended into 
the joint area as shown in Figure 7-
17. However, there are additional re-
quirements for joints in SMF in terms 
of design forces and detailing 
requirements. 
 
Force requirements 
 
Design forces of the joints must be 
based on the probable moment, Mpr, 
which is based on factored yield 
stress, fy , such that 
 
 fy   1.25fy  
 
Consequently, the design forces will 
consist of direct shear and forces 
from moments. As an example, for 
the state of internal shear and 
moment shown in Figure 7-19 (a), 
the design shear force at face x-x in 
Figure 7-19 (b) will be as follows: 
 
 Vu = V3 � T1 � C2 
 
This shearing force must be resisted by the nominal shear capacity of the 
joint, which is given according to the number of sides of the joints that are 
framing into members. Accordingly, the nominal shear capacity is given 
as 
 
   jcn AfV '7.1  four sides framing 

  imperial)'20( jcn AfV     

   jcn AfV '2.1  three sides framing 

  imperial)'15( jcn AfV    

   jcn AfV '0.1  others 

  imperial)'12( jcn AfV    
 
where Aj = effective area of the joint cross section. 
 

FIGURE 7-19
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Additional requirements 
 
The reinforcement bar sizes, db, that pass through the joint must not 
exceed 5 percent of the adjacent column dimension as shown in Figure 
7-20: 
 db  0.05hcol 
 
Development of reinforcement 
 
The development of reinforcement in special beam-columns is given as a 
function of a basic hook development length, dh , as defined in Figure 7-
21. dh  is given as 

   
mm150

8

'
19.0 b

b
c

y
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d

f

f
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8
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d
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f
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The development length of straight 
bars is given as a function of the basic 
hook development length for top and 
bottom reinforcement. This develop-
ment length is also a function of the 
confinement of concrete. The de-
velopment length, d , of straight bars 
for different conditions is given by the 
following expressions. 
 
Confined concrete: 
 
Development length in confined concrete is defined for top and bottom 
reinforcement. The top reinforcement is defined as any reinforcement that 
is placed over 300 mm (12 in) of fresh concrete. Accordingly, the 
development length is given as 
 
Top bars: 
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Bottom bars: 

 In SI units: d  = 2.5 dh  
mm375

20

'
463.0 b

b
c

y d
d

f

f
 

 In Imperial units: d  = 2.5 dh  
in 15

26

'
039.0 b

b
c

y d
d

f

f
 

Example 7-3  
 
The frame shown in Example 7-3, 
Figure 1, is the same frame given in 
Examples 7-1 and 7-2. The share of 
the frame from the elastic base shear 
was given as Fx = 288 kN (65 kN). 
 
Design the same frame as a special 
moment frame (SMF) to resist the 
given seismic forces. Material prop-
erties are given as the same: fc  = 25 
MPa (3.625 ksi) and fy = 420 MPa (60 
ksi). 
 
Solution 
 
Because this example is intended to be solved in conjunction with Example 
7-1, the reader is advised to solve Example 7-1 before working on this ex-
ample. Be sure to review the basic ACI 318 design philosophy and pro-
cedures before solving this example. 
 
The solution will be performed to check three load cases: (1) dead and live 
load effects; (2) dead, live and earthquake load effects; and (3) dead and 
earthquake load effects. 
 
Case 1: Dead and live loads:  
 
Load combination is given as 
 
U1 = 1.2D + 1.6L. 
 
This load case will be exactly the 
same as in Example 7-1. See case 
1 in Example 7-1 for the solution of 
this case. 
 
Case 2: Dead, live and seismic 
forces: 
 
Load combination is given as 

EXAMPLE 7-3, FIGURE 2 
SEISMIC FORCES

 
M = 

102 kN.m 
(903 kip.in)

26 kN 
(5.8 kip)

26 kN 
(5.8 kip)
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(3.82 kip)

17 kN 
(3.82 kip)

Fx = 34 kN
(7.64 kip)

EXAMPLE 7-3, FIGURE 1 
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 U2 = 1.2D + 1.0L + 1.0E 
 
1. Straining actions: 
 
The seismic force for SMF is given as the elastic force divided by the R-
factor, which is 8.5 for this frame as given in Appendix 7-1: 
 
  Fx = Fel/R = 288/8.5 = 34 kN (7.64 kip) 
 
Using the dimensions and properties above, the resulting moments, shears 
and normal forces are constructed for the seismic force as shown in 
Example 7-3, Figure 2. 
 
2. Beam moment: 
 
Check beam action: 0.1 fc  Ag = 0.1(25)(320,000)  
 = 800,000 N (800 kN) (180 kip) 
 
Ultimate load: Pu = 1.2PD + 1.0PL + 1.0PE 
  = 1.2(33) + 1.0(25) + 1.0(17)  
   = 81 kN (18 kip) < limit 
 
Because Pu = 81 kN (18 kip) < Limit = 800 kN (180 kip), the member may 
be designed without the effect of axial load. 
 
*The dimensions of special beam must satisfy the following: 
 
Minimum width: b, h  250 mm (10 in) 
Section limitations:    0.3h = 0.3(800) = 240 mm (9 in) 
 
The section width equals 400 mm (16 in) and satisfies the limitations 
above. 
 
*Positive moment region: As in Example 7-1. 
 
*Negative moment region: 
 
 Mu = 1.2MD + 1.0ML  + 1.0ME  
 = 1.2(201) + 1.0(151)) + 1.0(102)  
  = 494 kN.m (4,372 kip.in) > case 1 
 Mn = Mu/   = 494/0.9 = 549 kN.m (4,859 kip.in) 
 Pn = Pu/  = 81/0.9 = 90 kN 
 

Design: 2' dbf
M

c

n  = 2

6

)740()400(25
10 x 549  = 0.10 
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Using design charts in Appendix 7-1, Sheet 1, the reinforcement index is 
given as  

o = 0.11,  o = 0.11(25/420) = 0.006,5    
  As = o b d = 0.006,5(400)(740) = 1,938 mm2 (4 25) 
          [3.00 in2 (4 # 8)] 
 
Check steel limits for tension-controlled action (at  = 0.9): 
 

Since  
)740()400(25

10 x 90
'

3


dbf
P

wc

n = 0.012, 

then 
dbf

P

wc

n
w '

 = 0.11 + 0.012 = 0.122  

  < 0.32 1 = 0.272 OK 
  
Additional requirements for SMF beams (refer to Figure 7-14 for details): 
 
*The positive moment at the face and at midspan must be designed for a 
minimum as a function of the negative moment at the joint. By inspection, 
the maximum design negative moment obtained at the joint is 549 kN.m 
(4,859 kip.in).  
 

*Moments at face: 
 
Positive moment at face:  
 
 Mn

+ = Mn
--/2 = 549/2 = 275 kN.m (2,434 kip.in) 

 

Design:  2' dbf
M

c

n  = 
2

6

)740()400(25
10 x 275  = 0.050 

 
Using design charts in Appendix 7-1, Sheets 1 and 2, the reinforcement 
index is given as less than minimum. Thus, use minimum reinforcement: 
  

o,min = 0.003,3,    
As = o,min b d = 0.003,3(400)(740) = 966 mm2 (2 25) 

   [1.50 in2 (2 # 8)] 
 
*Moments at midspan: 
 
Both moments at midspan: 
 
  Mn

 = Mn
face/4 = 549/5 = 138 kN.m (1,221 kip.in) 
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Design: 2' dbf
M

c

n  = 
2

6

)740()400(25
10 x 138  = 0.025 

 
Using design charts in Appendix 7-1, Sheets 1 and 2, the reinforcement 
index is given as less than minimum. Thus, use minimum reinforcement: 

o,min = 0.003,3,     
  As = o,min b.d = 0.003,3(400)(740) = 966 mm2 (2 25) 
   [1.50 in2 (2 # 8)] 
 
3. Beam shear:  Using 10 (#3) bars for stirrups: 
 
 Vu = 1.2VD + 1.0VL  + 1.0VE    
  = 1.2(240) + 1.0(180) + 1.0(26)  
   = 494 kN (111 kip) 
 
For SMF, Vu shall not be less than the following (refer to Figure 7-14 for 
illustration): 

     Ve )gravity(  u
n

pr V
M

  

where: 
 Mn1  1.25 Mn1 = 1.25(549) = 686 kN.m (6,072 kip.in) 
 Mn2  1.25 Mn2 = 1.25(275) = 344 kN.m (3,045 kip.in) 
 
Gravity load:  qu = 1.2qD + 1.0qL   
  = 1.2(60) + 1.0(45) = 117 kN/m (0.669 kip/in) 
 

Consequently, Ve 2/)8(117
)6.08(

344686   


  = 607 kN (136 kip) 

Therefore,  Ve = 607 kN 
 
 Vn = Ve/    = 607/0.75 = 809 kN (182 kip) 
 

Reference: )740()400(
6
25

6
'

   db
f

V w
c

bw = 246,667 N (56 kip) 

 
Concrete strength must be ignored if both of the following conditions exist: 
 
First limit: If Pu  0.05 fc  Ag = 0.05(25)(320,000) = 400,000 N (90 kip) 
Second limit: If VE  1/2Ve = 1/2 (607) = 303 kN (68 kip) 
 
First limit: Pu = 81 kN (18 kip)  limit = 400 kN (90 kip) . . . exists  
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Second limit: VE = 26 kN (9 kip)  limit = 303 kN (68 kip) . . . does not 
exist 

 
Because only one of the conditions above exists, the concrete shear 
strength may be used for resistance: 
 
Concrete strength: 
 
  Vc = Vbw = 247 kN (56 kip)   
 
Limits: 2Vbw = 494 kN (111 kip),  4Vbw = 988 kN (222 kip) 
 
Steel: Vs = Vn � Vc = 809 � 247 = 562 kN (126 kip) 
  < 988 kN (222 kip)    OK 
 
Strength spacing: 
  Vs = Av fy d/s [use 10 (#3) for stirrups = 78 mm2] 
 562,000 = (156)(420)(740)/s 
 S = 86 mm (3.4 in) 
 
 Maximum spacing over a distance = 2h = 2(800) 

= 1,600 mm (63 in):  
 
 S  d/4 = 740/2 = 185 mm (7 in) 
  8db = 8(25) = 200 mm (8 in) 
   48ds = 48(10) = 240 mm (9 in) 
  300 mm (12 in) 
  16 Av fy/bw 'cf = 16(156)(420)/400 25   
          = 524 mm (21 in) 
  3 Av fy/bw = 3(156)(420)/400 = 491 mm (19 in) 
 
Therefore, use stirrups that are 2 10 @ 80 mm (2 # 3 @ 3 in) over a 
distance = 1,600 mm (63 in) from the face of the column. 
 
4. Beam-column moment: 
 
Check beam-column action: 0.1 fc  Ag = 0.1(25)(240,000)  
  = 600,000 N (600 kN) (135 kip) 
 
Ultimate load: Pu = 1.2PD + 1.0PL + 1.0PE 
  = 1.2(240) + 1.0(180) + 1.0(26)   
  = 494 kN (111 kip) > limit 
 
Because Pu = 494 kN (111 kip) > Limit = 600 kN (135 kip), the member 
must be designed as a beam-column with the effect of axial load. 
 
*The dimensions of special beam-column must satisfy the following: 
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Minimum width: b, h  400 mm (16 in) 
Section limitations:  b  0.4h = 0.4(600) = 240 mm (9 in) 
 
The section width equals 400 mm (16 in) and satisfies the limitations 
above. 
 
According to ACI 318, frames under lateral loads may not be considered 
braced and shall be designed as sway members. In the sway case, the 
beam-column may be considered short or long according to the following 
limit against slenderness ratio: 
 
Check slenderness:  k u /r  (<,>) 22 
 
Effective length factor, k: 
 
To find the effective length factor of frames, use the alignment chart in 
Appendix 7-1, Sheet 7: 
 

 
8/973,5
6/040,5

/
/


b

c
A EI

EI
= 1.13 

B =  for pinned support. 
 
Using Sheet 7, sway case, k = 2.40 
 
Slenderness ratio: k u /r = 2.40(6,000)/(0.3 x 600) = 80 > Limit = 22 
 
Because the slenderness ratio is more than the limit, the beam-column is 
considered long, which means that the P-  effect must be considered. In 
this case, second order analyses of moment magnifications are needed. 
These may be evaluated using the sway magnification factor, s, as defined 
by ACI 318. According to ACI 318, the design moment is given by the pro-
cedures described below. 
 
Effective moment of inertia for buckling analysis is different from structural 
analysis for concrete sections. For buckling analysis, EI is given as in Ex-
ample 7-1: 
 
 EI = 0.25 EcIg = 0.25(23,500)(7,200 x 106)  
 = 42,300 x 109 N.mm2 (15 x 106 kip.in2) 
 

Critical Load:  2

2

2

2

)6 x40.2(
)300,42(

)(


k
EIPc = 2,013 kN (453 kip) 

 
Summation of Pc in the entire floor:  Pc = 2,013(2) = 4,026 kN 
         (905 kip) 
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Summation of Pu in the entire floor:  Pu = Pu1 + Pu2 
 
Note that the vertical reactions due to seismic forces as given in Example 
7-2, Figure 2, are opposite and cancel out in the summation: 
 
       Pu = (1.2PD + 1.0PL)(2)   
 = [1.2(240) + 1.0(180)](2) = 936 kN (210 kip) 
 

Moment magnification: 

c

u
s

P
P





1

1 with limits as 
0.1
5.2s  

 

)026,4(75.0
9361

1




s

= 1.45 

 
The design moment is given as a combination of the nonsway moments 
and the sway moments as follows: 
 
 M2ns = 1.2(201) + 1.0(151) = 392 kN.m (3,470 kip.in) 
 M2s = 1.0(102) = 102 kN.m (903 kip.in) 
 
Therefore, the design moment is given as follows: 
 
 Mu = M2ns + s M2s 
 Mu = 392 + 1.45(102) = 534 kN.m (4,726 kip.in) 
 
The beam-column moment must be 20 percent larger than girder mo-
ments:  
 
   Mnc  6/5  Mnb = 6/5(549) = 659 kN.m 
 
Therefore,  Mu = 659 kN.m 
 
Design may be accomplished using interaction diagrams given in Appendix 
7-1, Sheets 3 through 6.  Accordingly, 
 
 Pu = already calculated above = 494 kN (111 kip) 
 Pn = Pu/   = 494/0.65 = 760 kN (171 kip) 
 
 Mn = Mu/   = 659/0.65 = 1014 kN.m (8,975 kip.in) 
 

Therefore: 
)600()400(25

10760
'

3x
bhf

P

c

n   = 0.127 
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2

6

2 )600()400(25
10 x 1014

'


bhf
M

c

n  = 0.281 

 
Using Sheet 4 for  = (600 � 120)/600 = 0.8, results in 
 
 = 0.66 
since  = fy/0.85 fc  = 420/(0.85 x 25) = 19.76, then 
 = 0.66/19.76 = 0.033 (> 0.01, < 0.08)  OK 
 
Steel: Ast =  b.h = 0.033(400)(600)  
  = 7,620 mm2 (12 28) [11.81 in2 (12 # 9)] 
 
5. Beam-column shear: 
 
Beam-column concrete shear strength is affected by axial load as follows: 
 
 Vu = 1.2VD + 1.0VL  + 1.0VE   
 = 1.2(33) + 1.0(25) + 1.0(17) = 82 kN (18 kip) 
 
For SMF, Vu shall not be less than the following (refer to Figure 7-16 for 
illustration): 

    Ve )gravity( u
n

pr V
M

  

where 
 Mn1  1.25Mn1 = 1.25(659) = 824 kN.m (7,293 kip.in) 
  Mn2 = 0 kN.m (pinned support) 
 
Gravity load:  qu = 0 in the column   
 

Consequently,    Ve 0
)4.06(

824 


 = 147 kN (33 kip) 

 
Therefore,  Ve = 147 kN (33 kip) 
 
  Vn = Ve/  = 147/0.75 = 196 kN (44 kip) 
 

Reference: )540()400(
6
25

6
'

 db
f

V w
c

bw = 180,000 N (40 kip) 

 
Concrete strength must be ignored if both of the following conditions exist: 
 
First limit: If Pu  0.05 fc  Ag = 0.05 (25) (240,000)  
       = 300,000 N (67 kip) 
      
Second limit: If VE  1/2Ve = 1/2(147) = 74 kN (17 kip) 
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First limit: Pu = 494 kN (111 kip)  limit = 300 kN (67 kip)  
  . . . does not exist 
 
Second limit: VE = 17 kN (4 kip)  limit = 74 kN (17 kip)   
  . . . does not exist 
 
Because none of the conditions above exists, the concrete shear strength 
may be used for resistance: 
 
Concrete strength: Vc = (1 + 0.07 Nu/Ag)Vbw  
  = [1 + 0.07(494,000)/240,000](180)  
  = 1.144(180) = 206 kN (46 kip)  
 
Capacity:  Vc = 0.75(206) = 154 kN (35 kip)  
 
Limits: 2Vbw = 309 kN (69 kip), 4Vbw = 618 kN (139 kip) 
 
Steel: Vs = Vn � Vc = 196 � 206 = � ve kN  
   < 618 kN (139 kip) OK 
 
Strength spacing: Because Vs is negative, there is no need for stirrups for 

strength. 
 
Minimum stirrups and detailing in columns are given as follows 
(refer to Figure 7-17 for details): 
 
Length, o : o    hn/6 = 6,000/6 = 1,000 mm (39 in)  
   h, b = 400 mm (16 in)  
   500 mm (20 in) 
Therefore,  o  = 1,000 mm (39 in) 
 
Spacing in the potential plastic hinge region (i.e., over length, o ): 
 S  6db = 6(25) = 150 mm (6 in) 
   b/4, h/4 = 400/4 = 100 mm (4 in) 
   so = 100 + (350 � 300)/3  
 = 117 mm (> 100 mm, < 150 mm) 
  [4.6 in (> 4 in, < 6 in] 
 
Therefore, s = 100 mm (4 in) and must extend into the joint. 
 
Spacing in middle of the member:  
 
 S  6db = 6(25) = 150 mm (6 in) 
  150 mm (6 in) 
 
*Minimum hoops in potential plastic hinge region (i.e., over length, o )  
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in the transverse direction: 
 

 



yt

cc

ch

g

yt

cc
sh

f
fbs

A
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f
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'
09.0
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'

3.0

 

 

 2mm4031
520 x 320
600 x 400

420
)25()510(1003.0 shA (0.62 in2) 

2mm273
420

)25()510(10009.0  (0.42 in2) 

 
Therefore, use six legs of 10 (#3) hoops. 
 
In the longitudinal direction: 
 
 Ash = (403 mm2/510)(310) = 245 mm2 (0.38 in2) 
 
Therefore, use four legs of 10 (#3) hoops. 
 
Case 3: Dead and seismic forces:  
 
Load combination is given as U3 = 0.9D + 1.0E. 
 
1. Affected areas:  
 
Inspection reveals that this load case affects only the beam moment at the 
face: 
 Mu = 0.9MD + 1.0ME  
  = 0.9(201) � 1.0(102) = 79 kN.m (699 kip.in) 
 
This result indicates that the moment will not put tension in the bottom face 
of the beam. Thus, no steel for strength is needed in the bottom face of the 
beam. 
 
2. Development length: 
 
For development length, see Example 7-1. 
 
The final design details are shown in Example 7-3, Figure 3. 
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7.5  Ordinary Shear Walls (OSW) 

Similar to the case of ordinary moment frames, ordinary shear walls are 
designed and detailed according to ACI 318 for nonseismic provisions that 
are given in Chapter 1 through Chapter 20. 
 
Shear walls are classified into tall walls and squat walls. Walls are 
considered tall if their span/depth ratio satisfies the beam theory hypothesis 
of plane section, which implies that shear deformations are negligible; thus, 
the strain distribution is linear across the section. In principle, this behavior 
is usually guaranteed if the span/depth ratio is 5 or more. However, this as-
sumption may apply for span/depth ratios as low as 2. 
 
Walls are considered squat if they do not satisfy the plane section 
hypothesis, which is characterized by significance of shear deformations. In 
this case, shear deformations must be considered where the walls are 
analyzed as deep beams. Recent developments in truss models (strut and 
tie) offer an attractive solution for such walls. In principle, the behavior of 
squat walls is not ductile, because it is dominated by shear behavior. 

EXAMPLE 7-3, FIGURE 3
SMF DETAILING 

Beam 

 
400 mm
(16 in)

4  28 
(4 # 9)

2  25 
(2 # 8)

2  16 
(2 # 5)

 10 @ 80 
mm 

(#3 @ 3 in) 

.

6  25 
(6 # 8)

4  28 
(4 # 9)

3  20 
(3 # 6)

 10 @ 150 mm
(#3 @ 6 in) 

1,
00

0 
m

m
 

(3
9 

in
)

 10 @ 100 mm
(#3 @ 4 in) 

 
1,600 mm 

(63 in)50 mm 
(2 in) 

10 @ 80 mm 
(#3 @ 3 in) 2  25 

(3 # 8)

6  28 
(6 # 9)

6  28 
(6 # 9)

 10 @  80 mm 
(#3 @ 3 in) 

Column

600 mm 
(24 in) 

6 
28

 
(6

 #
 9

)

6 
28

 
(6

 #
 9

)

4 
20

 
(4

 #
 6

)

4 legs  10 @ 100 mm 
(4 legs #3 @ 4 in) 

Seismic
Hook 

6 legs  10 @ 100 mm 
 (6 legs #3 @ 4 in) 
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Tall walls are considered excellent 
systems in resisting lateral loads 
because they have large strength 
and rigidity. In addition, they exhibit 
reasonable ductility that makes 
them also attractive for seismic re-
sistance. Tall walls may be anal-
yzed and designed as beam-
columns. However, they have de-
tailing that differs from beam-
column detailing requirements. 
 
Ordinary walls inherit enough 
ductility to allow them to be 
designed for response modification 
factors as specified by the IBC 
seismic code. Because axial loads 
affect ductility, as noted in Chapter 
5, shear walls are also classified 
as bearing and nonbearing shear 
walls. For example, the IBC as-
signs a value of R-factor equal to 
4.5 for ordinary bearing walls and a 
value of R-factor equal to 5 for 
ordinary nonbearing walls. 
 
Before proceeding, consider the necessary wall components shown in 
Figure 7-22. ACI allows the effective depth of the wall, when needed for 
calculations, to be taken as 80 percent of the wall length: 
 
 d = 0.8 w  
 
Force requirements  
 
The force requirements for walls are analogous to those for beams if the 
following quantity is defined as a reference quantity, Vh, such that 
 

 dh
f

V c
h 6

'
  (in SI units) 

  dhfV ch '2  (in Imperial units) 
 
where d is taken as 80 percent of the wall length (d = 0.8 w ) as shown in 
Figure 7-22. The maximum allowable shear strength, Vn, of the wall is 
taken as 
 Vn  5Vh 
 

FIGURE 7-22
ORDINARY SHEAR WALL 

COMPONENTS

hw 

 
Horizontal 

Reinforcement, 
t 

s 

Elevation 

Sectional Plan

s2

 
Longitudinal 

Reinforcement, 
 

w

Acv

h 
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The shear strength is calculated as in beams: 
 
 Vc = Vh 

 
s
dfAV yvs   

 
Reinforcement requirements 
 
The minimum reinforcement requirements of walls are given as a function 
of the amount of factored external shear in the section. 
 
(1) For Vu > 1/2   Vh 
 
Transverse reinforcement:  
 

t = 0.002,5 spaced at s such that 
 
 S  w /5 
   3h 
   450 mm (18 in) 
 
The longitudinal reinforcement is given as a function of the transverse 
reinforcement as follows:  

= 0.002,5 + 0.5 
w

wh
5.2 ( t �0.002,5) t 

   0.002,5 spaced at s2 such that 
 
 s2  w /3 
      3h 
      450 mm (18 in) 
 
(2) For Vu  1/2   Vh 
 
Transverse reinforcement:  

t = 0.002,0 for bars with 
)ksi60(420

)5(#mm16
MPaf

d

y

b  

   = 0.002,5 otherwise     
 
Longitudinal reinforcement:  

= 0.001,2 for bars with 
)ksi60(420

)5(#mm16
MPaf

d

y

b  

  = 0.001,5 otherwise 
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Example 7-4 
 
The residential building shown in Example 7-4, Figure 1, is a bearing-wall 
type building subjected to a horizontal earthquake excitation in direction 
y. The building is six stories with 200 mm (8 in) solid, one-way slabs 
spanning in direction x. The slabs are supported by ten shear walls as 
shown in the same figure.  
 
Each wall has 300 mm (12 in) width with the following material properties: 
  
 fc  = 30 MPa (4.350 ksi) 
  fy = 420 MPa (60 ksi) 
 Ieff = 0.5Ig 
   
The following loading has to be considered in the design of the building: 
 
1. Own weight (slabs and shear walls). 
2. Superimposed dead load, qSDL = 2 kN/m2 (42 psf). 
3. Live load, qL = 3 kN/m2 (63 psf). 
4. Wind load, qw = 1 kN/m2 (21 psf). 
5. Seismic loading according to the IBC with the following parameters: 

5.1 Mapped acceleration coefficient at short period and at 1-second 
period equal to Ss = 50 and S1 = 13, respectively. 

5.2 The site is classified as Soil Type C. 
5.3 The long-period transition period, TL = 8 seconds. 

 
(A) If the gravity loads are assumed to be totally carried by the walls in 

direction y and their reactions on the walls are uniformly distributed 
over the wall cross section, design one interior shear wall (#3 on the 
plan) using ACI 318 provisions. 

 
(B) Consider the IBC provisions to include torsional effect, drift limitations 

and the P-  effect.  
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Solution 
 
The example will be solved by carrying out by design for the seismic load 
case (1.2D + 1.0L + 1.0E), and then checking for the basic load (1.2D + 
1.6L). 
 
(1) Seismic coefficients Fa, Fv, SD and SD1: 
 
The seismic coefficients Fa and Fv are obtained from IBC Tables A3 and 
A4, Appendix 6-1: Ss = 0.50, Fa = 1.2, S1 = 0.13 and Fv = 1.7. 
 
Accordingly, the seismic coefficients SDS and SD1 are calculated as follows: 
 
 SMS = Fa Ss  = 1.2(0.50) = 0.60 
 SDS = 2/3 SMS = 2/3(0.60) = 0.40 

EXAMPLE 7-4, FIGURE 1
BUILDING LAYOUT 
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 SM1 = Fv S1  = 1.7(0.13) = 0.221 
 SD1 = 2/3 SM1 = 2/3(0.221) = 0.147 
 
(2) Group, Category and Importance, I: 
 
A residential building in Occupancy Category I has an SDS of 0.40 and an 
SD1 of 0.147, according to Table A2, Appendix 6-1. Based on this infor-
mation, the building is in Seismic Design Category C. 
 
The importance factor, I, is 1. 
 
(3) Period, T; response modification factor, R; and coefficient of 

displacement, Cd: 
 
Response spectrum controlling period, Ts, and limiting period, Tlimit: 
 
 Ts = SD1 l SDS = 0.147/0.4 = 0.37 
 Tlimit = 3.5 Ts  = 3.5(0.37) = 1.30 
 
The approximate period, Ta, is calculated as 
 
 Ta = Ct(hn)x 
 
where building height, hn, is 20 m (66 ft).  Coefficients Ct and x are obtained 
from Appendix 6-1, Table A8, as Ct = 0.0488 and x = 0.75. Consequently, 
the period is given as 
 
 Ta = Ct(hn)x = 0.0488(20)0.75 = 0.46 sec 
 
Because Ta = 0.46 s < Tlimit = 1.3 s and the structure is regular, the eq-
uivalent lateral force procedure may be used. 
 
In reference to Table A6, Appendix 6-1, ordinary bearing shear walls are 
allowed for Seismic Design Category C without height limitation.  There-
fore, if an ordinary bearing shear wall is selected for the building, the re-
sponse parameters are obtained for BOSW as R = 4.5 and Cd = 4. 
 
(4) Gravity loads: 
 
Slabs: 
 qD = h = 25(0.2) = 5 kN/m2 (104 psf) 
 qSDL = 2 kN/m2 (42 psf) 

  qL = 3 kN/m2 (63 psf) 
 
Walls:  
 qwall = b = 25(0.3) = 7.5 kN/m2 (157 psf) 
 
(5) Mass weight (see Chapter 6): 
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 W = D + 0.25 warehouse + partitions + equipment 
 
where D = slabs + walls 
 D = 7(10)(15)(6) + 7.5(26)(20)  
 = 6,300 + 3,900 = 10,200 kN (2,293 kip) 
 
Because there are no warehouse loads, partitions or equipment given, then 
 
 W = 10,200 kN (2,293 kip) 
 
(6) Horizontal seismic force (base shear) (see Chapter 6): 
 
According to the parameters obtained above, 
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01.0
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Therefore,  Cs = 0.071 
As a result, V = Cs W = 0.071(10,200) = 724 kN (163 kip) 
 
(7) Wind effect: 
 
Total wind force:      
 Fw = 1(15)(20) = 300 kN (67 kip) < V = 724 kN (163 kip) 
 
Therefore, seismic force controls design. 
 
(8) Distribution of base shear to floors (see Chapter 6): 
 
 Fx = Cvx V 

where: k
ii

k
xx

vx
hw

hwC   

 
Since  T = 0.52  0.5, then k = 1. 
 
Because floor weights are the same, the equation above reduces to 
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1

1

i

x
vx

h
h

C   

 and V
h

h
F

i

x
x   

where:    
 

 hi = 3.333 + 6.667  
 + 13.333 + 16.667 + 20 
 = 70 m (230 ft)  
 
As a result, the floor force is 
given as 
 
fx = hx(724)/70  
 = 10.343 hx kN/m 
 (0.059 hx kip/in) 
 
The distribution above is a triangle with zero value at the base. Therefore, 
the force may be treated as a distributed triangular load as shown in 
Example 7-4, Figure 2, with intensity at the top equal to 
 
 fx = 724(2)/20 = 72.4 kN/m (0.414 kip/in) 
 
(9) Torsional effect (see Chapter 6): 
 
Because the building is symmetric, the only torsion that exists is the ac-
cidental torsion: 
 
 Mtor = V.emin  
 = 724 (0.05 x 15)  
 = 543 kN.m (4,806 kip.in) 
 
Distribution of torsional moment to shear walls is given as 
 

 ii
jj

i rk
rk

M
Q

2
tor   

 
where:   kj rj

2 = k(1.52 + 7.52)(2) = 117k 
 
Therefore, 

 Q3 )5.1(
117
543 k

k
  = 7 kN (1.6 kip) 

 
(10) Vertical seismic force (see Chapter 6): 
 

EXAMPLE 7-4, FIGURE 2
BUILDING FORCE

V = 724 kN
(163 kip)

10 m (33 ft)

V

 
fx = 72.4 kN/m 
(0.414 kip/in)

20
 m

 (6
6 

ft)
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 Ev = 0.2SDS D 
   = 0.2(0.4)(1)D = 0.08D 
 
Total vertical load:  
     
 Qv = 0.08(10,200) = 816 kN (183 kip) 
 
(11) Redundancy factor (see Chapter 6): 
 
For Seismic Design Category C, the redundancy factor is  = 1. 
 
(12) Wall share from seismic force (see Chapter 6): 
 
Horizontal force acting at 2/3 from 
the base: 
 
VE = V/4 + Q3  
 = 724/4 + 7  
 = 181 + 7 = 188 kN (42 kip) 
 
Vertical force acting at center: 
This force is proportional to dead 
load which is calculated in the next 
step as 2,340 kN (526 kip). As a 
result, 
 
PE = 0.08PD = 0.08(2,340) 
  = 187 kN (42 kip) 
 
The effect of these forces is shown in Example 7-4, Figure 3. 
 
(13) Design forces:  
 
Axial loads: 
 
 PD = (qD + qSDL)(tributary area)(number of floors) + own weight 
  = (5 + 2)[(10)(1.5+3)](6) = 2,340 kN (526 kip) 
 PL = (qL)(tributary area)(number of floors) 
  = (3)[(10)(1.5+3)](6) = 810 kN (182 kip) 
 PE = 187 kN (from step above) (42 kip) 
 
Maximum shear force at the base: 
 
 VD = 0, VL = 0, VE = 188 kN (42 kip) 
 
Maximum bending moment at the base: 
 
 MD = 0, ML = 0 

EXAMPLE 7-4, FIGURE 3 
WALL 3, SEISMIC FORCES

10 m (33 ft)

VE = 
188 kN
(42 kip)

 
PE = 187 kN 

(42 kip)

20
 m

  (
66

 ft
)
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 ME = 188(2/3 )(20) = 2,507 kN.m (4,656 kip.in) 
  
(14) Flexure design: 
 
Check beam-column action: 
 
      Limit = 0.1 fc  Ag = 0.1(30)(300)(3,000) = 2,700 x 103 N (607 kip) 
    Pu = 1.2PD + PL + PE = 1.2(2,340) + 810 + 187 = 3,805 kN (855 kip) 
 
Because Pu is more than the limit above, the wall shall be designed as 
beam-column, including the effect of axial load (see section on moment 
frames): 
 
      Pn = Pu /   = 3,805/0.65 = 5,854 kN (1,316 kip) 
 
     Mu = 1.2MD + ML + ME = 1.2(0) + 0 + 2,507  
   = 2,507 kN.m (22,189 kip.in) 
     Mn = Mu /  = 2,507/0.65 = 3,857 kN.m (34,138 kip.in) 
 

Therefore, 
)000,3()300(30

10 x 854,5
'

3


bhf
P

c

n  = 0.217 

 

 
2

6

2 )000,3()300(30
10 x 857,3

'


bhf
M

c

n  = 0.048 

 
Using Appendix 7-1, Sheet 4, for  = 0.8 results in 
  < 0 (use minimum steel) 
 
since  = fy/0.85 fc  = 420/(0.85 x 30) = 16.47, then 
  = 0.0/16.47 = 0.0 (< 0.01, therefore, use 0.01)  
 
Steel: Ast=  b.h = 0.01(300)(3,000) = 9,000 mm2 (13.95 in2) 
  = 4,500 mm2 each side; use 5 25 each face 
  (6.98 in2 each side; use 5 # 8 each face) 
 
(15) Shear design: 
 
The shear strength of walls is usually controlled by minimum shear 
reinforcement. Therefore, it is good practice to provide the wall with 
minimum reinforcement first and then to check its capacity accordingly. 
 
Reference: 

 )000,3()300(
6
30

6
'

        cv
c

cv A
f

V = 822,000 N (185 kip) 

 Vcv = 0.75(822) = 616 kN (138 kip) 
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  1/2 Vcv = 308 kN (69 kip) 
     Vu = 1.2VD + VL + VE = 1.2(0) + 0 + 188 = 188 kN (42 kip) 
      Vn = Vu /   = 188/0.75 = 251 kN (56 kip) 
 
Because Vu = 188 kN (42 kip) is < Vcv = 616 kN (138 kip), and < 1/2 Vcv = 
308 kN (69 kip), the minimum reinforcement is given as follows: 
 
Transverse reinforcement:  
 

t = 0.002,0 spaced at s2 such that 
 s2  w /5 = 3,000/5 = 600 mm (24 in) 
 3 h = 3(300) = 900 mm (35 in) 
   450 mm (18 in) 
 
 As = 0.002,0(300)(1,000) = 600 mm2/m (0.28 in2/ft)  
Use  2 layers 4 10/m each (2 layers #3 @ 10/in each) 
 
Longitudinal reinforcement:  

= 0.001,2 spaced at s1 such that 
 
  s1   w /3 = 3,000/3 = 1,000 mm (39 in) 
            3h = 3(300) = 900 mm (35 in) 
            450 mm (18 in) 
   
  As = 0.001,2(300)(1,000) = 360 mm2/m (0.17 in2/ft)   
Use  2 layers 3 10/m each (2 layers #3 @ 12/in each) 
 
Final details are shown in Example 7-4, Figure 4. 
 
(16) Check load combination of dead and live loads alone: 
 
This load case requires the check of wall safety about the weak axis for 
strength and stability: 
 
 Pu = 1.2PD + 1.6PL 
 Pu = 1.2(2,340) + 1.6(810) = 4,104 kN (923 kip) 
 
Strength: as a column.  Shear reinforcement will be ignored. As a result, 
 
 Pn = 0.8(0.85 fc  Ag + Ast fy) 
 Pn = 0.8[0.85 (30)(300)(3,000) + (9,000)(420)]  
 = 21,384 x 103 N (4,808 kip) 
 Pn = 0.65(21,384) = 13,900 kN (3,125 kip) 
   > Pu = 4,104 kN (923 kip) OK 
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Stability:  
 Ec = 4,700 30 = 25,750 MPa (3,734 ksi) 
 Ig = 3(0.3)3/12 = 0.006,75 m4 (16,217 in4) 
 
 EI = 0.25 Ec Ig  
 = 0.25(25,750,000)(0.006,75)  
 = 43,450 kN.m2 (15 x 106 in4) 
 

Critical Load: 
2

2

2

2

)333.3x1(
)450,43(

)(
  

k
EIPc = 38,606 kN (8,679 kip) 

 
 Pc = 0.75(38,606) = 28,954 kN (6,509 kip)  

           
  > Pu = 4,104 kN (923 kip) OK 
 
(17) Drift limitations: 
 
For this example, the deflection 
may be calculated by conjugate 
beam method as shown in Exam-
ple 7-4, Figure 5. 
 
Because the load is linear, the mo-
ment will be a third degree para-
bola which has its centroid at 1/5 
from base: 
 

S = (1/4 Mb H)(4/5H)/EI 
 
 
 
 

EXAMPLE 7-4, FIGURE 4
WALL DETAILING

 10 @ 250 mm 
(#3 @ 10 in) 

U-shape 

Section in Wall

300 mm 
(12 in) 

 10 @ 300 mm 
(#3 @ 12 in) 

each face 

 10 @ 250 mm 
(#3 @ 10 in) 

each face 

 
5  25 
(5 # 8)  

each face 

EXAMPLE 7-4, FIGURE 5 
WALL DEFLECTION

 
3rd-Degree 
Parabola

Conjugate Beam

Mb/EI

H
 =

 2
0 

m
 

(6
6 

ft)

H/5 

Beam

Mb = 2,507 kN.m
(22,189 kip.in)

VE = 
188 kN
(42 kip)
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where: 
E = 4,700 'cf       = 4,700 30   
 = 25,740 MPa (3,732 ksi) 
I = 0.5Ig  
 = 0.5(0.3)(3)3/12  
 = 0.337,5 m4 (810,847 in4) 
 
Therefore, 

S = [1/4(2,507)(20)][4/5(20)] 
           /[(25.75 x 106)(0.337,5)] 
        = 0.023 m (23 mm) (0.91 in) 

M = Cd S = 4(23)  
        = 92 mm (3.62 in) 
 
IBC drift limitations are given in Appendix 6-1, Table A5, for SUG-I as 
0.020H. Therefore, 
 all = 0.020H = 0.020(20,000) = 400 mm (15.75 in) 

M = 92 mm (3.62 in) OK 
 
(18) P-  Effect: 
 
Calculate stability coefficient,  
 

 
dsxx

x

ChV
P

  = 
)4)(20(188

)092.0)(810340,2(   = 0.02 

 
Because  = 0.02 < 0.1, the P-  effect needs not be considered. 

7.6  Special Shear Walls  (SSW) 

Special shear walls have more stringent requirements that increase their 
ductility, thereby allowing more force reduction. Special shear walls are 
listed in the IBC with an assigned R-factor equal to 5 for bearing walls and 
6 for nonbearing walls. 
 
Special shear walls may be designed with or without openings. Such walls 
will be covered in the following sections. 
 
Similar to its provisions for ordinary shear walls, the ACI code allows the ef-
fective depth of the wall, when needed for calculations, to be taken as 80 
percent of the wall length: 
 
 d = 0.8 w  
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7.6.1  Special Shear Walls without 
Openings 

Special shear walls components are 
shown in Figure 7-23. They consist of 
web (bw. w ) with or without flanges. If 
present, the effective width, bf, of the 
flange is given as 
 
bf = bw + 0.25hw  (on each side of the 

web) 
  spacing to adjacent flanges, sw 
  actual dimensions 
 
The end regions of special shear walls 
are known as boundary elements, 
regardless of whether or not they have 
flanges. These elements are classified 
as either boundary elements or special 
boundary elements. The need for 
special boundary elements is dis-
cussed later in this section.  
 
The requirements of special shear walls 
are given in terms of force re-
quirements, reinforcement require-
ments, and boundary element re-
quirements. 
 

Force requirements 

The force requirements are defined for 
the shear strength of the wall, Vn, 
which is given as a function of the 
height-to-length ratio, (hw/ w ). The 
height-to-length ratio defines the bor-
derline between tall and squat walls 
as shown in Figure 7-24. Accordingly, 
the shear strength is given as 
 

)'( ytcccvcv ffAV   
 
where Acv is the horizontal gross 
sectional area of the wall web as 
shown in Figure 7-23. 
 

FIGURE 7-23  
SPECIAL SHEAR WALL 

COMPONENTS 

hw 

Transverse 
Reinforcement, 

t 

s 

Elevation 

s2

 
Longitudinal 

Reinforcement,
 

w

 
Acv = bw w  

Sectional Plan 

bf 

bw

tf  0.25hw b

Boundary 
Element

s w
 

  0
.2

5h
w

 

FIGURE 7-24
TALL VERSUS SQUAT WALL 

hw

Elevation 

w

 
Tall Wall 

hw

w  

Elevation 

Squat Wall 

w

wh
> 2

w

wh
< 2 
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c = 
5.1

2

4
1

6
1

w

w

w

w

hfor

hfor
 

 
For values of hw/ w between 2 and 1.5, c may be linearly interpolated.  
 
For values of hw/ w  less than 2, reinforcement shall be 
 
  t 
 
Reinforcement requirements 
 
Similar to ordinary shear walls, the minimum reinforcement requirements of 
special shear walls are given as a function of the amount of factored 
external shear in the section. 
 
(1) For Vu > 1/2  Vcv 
 
Horizontal and vertical reinforcement ratios shall not be less than 0.002,5:  

t, min = 0.002,5 
, min = 0.002,5 

 
(2) For Vu  1/2  Vcv 
 
Transverse reinforcement ratios shall not be less than the following:  

t, min = 0.002,0 for bars with db   16 mm (  #5) 
 = 0.002,5 otherwise     
 
Longitudinal reinforcement:  

, min = 0.001,2 for bars with db   16 mm (  #5) 
 = 0.001,5 otherwise     
 
Spacing of all reinforcement is limited to 450 mm: 
      
 s1  450 mm (  18 in) 
    s2  450 mm (  18 in) 
 
If Vu > Vcv, then two curtains of reinforcement must be used. 
 
Development length at the plastic hinge region shall be increased by 25 
percent: 
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  ( d ) plastic hinge  = 1.25 d  
 
Boundary element requirements 
 
Special boundary elements, SBE, are 
needed to provide additional ductility at 
the ends of the walls. These are the 
critical sections because they are the 
most strained sections. ACI 318 sug-
gests two methods to evaluate the need 
for such special boundary elements: the 
displacement method and the stress 
method. 
 
The dimensions of the boundary 
elements are defined in Figure 7-25 as 
height, hb, and depth (or length), b . The 
boundary elements may have the same 
thickness of the web, may be enlarged, 
or may be flanged as shown in Figure 7-
25. 
 
Regardless of the type of the boundary 
element, or the method of evaluation, the 
length (depth) of the boundary element, 

b , is given as 
 
 b  = c � 0.1 w  
  c/2  tf + 300 mm (12 in) 
 
where c is the distance from the neutral axis to the extreme compression 
fibers. c is evaluated at ultimate state under the action of Pu and Mn. 
 
As mentioned earlier, the need for special 
boundary elements may be determined by 
using a displacement method or a stress 
method as follows. 
 
(1) Displacement Method 
 
The displacement method only applies to 
shear walls that are continuous in the vertical 
direction and that have only one critical 
section for moment and axial load.  For shear 
walls that satisfy these conditions, the special 
boundary elements, SBE, are needed if 
 

FIGURE 7-25
TYPES OF  

BOUNDARY ELEMENT 

hb 

(A) Constant

b  

b  

(B) Enlarged

(C) Flanged

tf 

 
w

FIGURE 7-26 
SBE DISPLACEMENT 

METHOD 

hb    w  

     
u

u

V
M
4

 

b  

 
w
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)/(600 wu

w

h
c  

 
For calculation purposes only: 
 

 007.0
w

u

h
  

 
where u = design displacement. 
 
The height of the SBE, hb, as shown in Figure 7-26 is given as 
 
 hb  w  

  
u

u

V
M
4

 

 
(2) Stress Method 
 
This method is the more general method and can be used without the 
restrictions imposed on the displacement method as given previously. 
 
According to this method, the SBE is 
needed if 
 
 fcm > 0.2fc  
 
where fcm is the stress in the extreme 
compression fibers calculated using 
gross concrete section and the linear 
elastic model under factored loads: 
 

 M
g

u

g

u
cm X

I
M

A
p

f   

 
The stress (fcm) as calculated above is a nominal stress used as an 
indicator, not an actual stress, because it is based on ultimate quantities 
where the behavior is nonlinear at this stage. 
 
The height of the SBE, hb, must extend in the region where the stress (fcm) 
exceeds 0.15fc , as shown in Figure 7-27, where 
 
 fc  0.15fc  
 

FIGURE 7-27
SBE STRESS METHOD 

hb

b  

 
w

fcm 
 0.15 fc� 

fcm 
< 0.15 fc� 
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Detailing of boundary elements 
 
(1) If SBE is needed: 
 
The transverse reinforcement and detailing of the needed SBE shall be as 
follows: 
 
The minimum area of hoops, Ash, in both directions of the boundary 
element section shall be as 
 

   
yt

c
csh f

f
bsA

'
09.0  

 
The maximum spacing of the transverse reinforcement is given as 
 
  S  6db

    
4

,
4

hb  

   so;   
 
where:  

so = 100 mm + )
3

350( xh  

[so = 4 in + )
3

14
( xh

]Imperial 

  150 mm (6 in) 
   100 mm (4 in)
 
 
Notations and definitions are the same as given for the special beam-
column and as shown in Figure 7-28. 
 
Similar to the special beam-column, the maximum allowable concrete 
cover must be 100 mm (4 in). In other words, when concrete cover 
exceeds 100 mm, additional hoops are needed within the outer 100 mm 
cover and spaced at 300 mm (12 in). 
 
The special boundary element lateral reinforcement details must extend 
into the supporting system at the foundation level as shown in Figure 7-29.  
Figure 7-29 (a) shows the wall supported by a stiff foundation wall, 
whereas Figure 7-29 (b) shows the wall supported directly by the 
foundation. The figure indicates that the SBE shall extend in the wall 
foundation at least the development length of the main bars passing 
through the SBE. If the wall is supported directly by the foundation, the 
SBE shall extend at least 300 mm in the foundation. 
 

FIGURE 7-28
DETAILING OF BOUNDARY ELEMENT 

bc1 

bc2

hx1hx1 hx1 

hx2

hx2

1. bc = (bc1 or bc2) 
2. hx = max (hx1 or hx2) 

hx1   350 mm
(14 in) 

 
Alternate Hook 

hx2   350 mm (14 in) 
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The web reinforcement must 
be anchored (developed) 
inside the SBE.  The develop-
ment length for seismic mem-
bers is given in the section on 
special beam-columns. The 
anchorage length is portrayed 
in Figure 7-29. 
 
(2) If SBE is not needed: 
 
If the SBE is not needed 
according to the conditions 
given in the previous section, 
the following requirements 
shall apply: 
 
(A) If Vu  1/2Vcv: 
 
 No requirements are needed. 
 
(B) If Vu > 1/2Vcv: 
 
The transverse reinforcement must have a standard hook as in Figure 7-30 
(a) or U-shape stirrups as shown in Figure 7-30 (b). 

(C) If the longitudinal rein-
forcement at the edge of 
the wall, , exceeds 
the following: 

     
  
  2.8/fy 
   (  400/fy) Imperial 

 

FIGURE 7-30
DETAILING WALL ENDS 

U-Shape

(b) U-Shape Stirrup

Splice

12db

(a) Standard Hook

 

Foundation
Wall 

FIGURE 7-29
EXTENSION OF SPECIAL BOUNDARY 

 ELEMENT INTO FOUNDATIONS 

d

  300 mm 

w  

(b) Wall in Direct 
Foundation 

SBE

(a) Wall in Wall 
Foundation 

d

d

 
w

Foundation

FIGURE 7-31
DETAILING OF BOUNDARY ELEMENT 

hx 1hx 1 hx 1 

hx 2

hx 2

hx 1   350 mm (14 in) 

 
Alternate Hook 

hx 2   350 mm
(14 in) 
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then the boundary element must meet the following requirements: 
 
*The boundary element must be provided with length, b , such that 
 
 b  = c � 0.1 w  
  c/2 
 
* The maximum spacing of crossties inside the boundary element as given 

in Figure 7-31 is limited to 
 
 hx1   350 mm (14 in) 
 hx2   350 mm (14 in) 
 
* The crossties shown in Figure 7-31 must be installed with alternate 

hooks. 
* The maximum spacing of hoops, s, inside the boundary element is given 

as 
 S  200 mm (8 in) 
Example 7-5 
 
Repeat Example 7-4 for this example, using special shear walls instead 
of ordinary shear walls. For convenience, the problem is stated again in 
this section. 
 
The residential building shown in Example 7-5, Figure 1, is a bearing-wall 
type building subjected to a horizontal earthquake excitation in direction 
y. The building is six stories with 200 mm (8 in) solid one-way slabs 
spanning in direction x. The slabs are supported by ten shear walls as 
shown in the same figure.   
 
Each wall has a 300 mm width with the following material properties: 
  
  f c  = 30 MPa (4.350 ksi) 
  fy = 420 MPa (60 ksi) 
 Ieff = 0.5Ig 
  
The following loading has to be considered in the design of the building: 
 
1. Own weight (slabs and shear walls). 
2. Superimposed Dead Load: qSDL = 2 kN/m2 (42 psf) 
3. Live Load: qL = 3 kN/m2 (63 psf) 
4. Wind Load: qw = 1 kN/m2 (21 psf) 

5. Seismic loading according to the IBC with the following parameters: 
5.1. Mapped acceleration coefficient at short period and at 1-second 

period equal to Ss = 50 and S1 = 20, respectively. 
5.2. The site is classified as soil Type C. 
5.3. The long-period transition period, TL, equals 8 seconds. 
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(A) If the gravity loads are assumed to be totally carried by the walls in 

direction y and their reactions on the walls are uniformly distributed 
over the wall cross section, then design one interior shear wall (#3 
on the plan) using ACI 318 provisions for special shear walls (SSW). 

 
Solution 
 
Special bearing shear walls are assigned an R-value of 5.5 in the IBC as 
given in Chapter 7. However, for comparison purposes, and in order to a-
void repetition of the same calculations in Example 7-4, an R-value of 4.5 
will be used in this example. The selection of an R-value of 4.5 for special  
bearing shear walls is conservative. After all, we design structures to meet 
minimum requirements for seismic effect. 

EXAMPLE 7-5, FIGURE 1
BUILDING LAYOUT 

 
L = 15 m  (49 ft)

ELEVATION

H
 =

 2
0 

m
 (6

6 
ft)

 
1st

2nd

3rd

4th

5th

6th

3.33 m (11 ft)

3.33 m (11 ft)

3.33 m (11 ft)

3.33 m (11 ft)

3.33 m (11 ft)

3.33 m (11 ft)

2 m 
(6.5 ft)

4 m 
(13 ft)

2 m 
(6.5 ft)

 
4 m 

(13 ft)

3 m 
(10 ft)

15 m  (49 ft) 

#3

3.5 m  (11.5 ft) 

3.0 m (10 ft) 

3.5 m  (11.5 ft) 

PLAN 

y

EQ 

One-Way Slab 
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The basic design procedures will 
repeat exactly steps 1 through 18 
of Example 7-4. The solution of this 
example begins with step 19. 
 
(19) Length of boundary elements: 
 
The length of the boundary element 
is a function of the neutral axis 
depth, c, as shown in Example 7-5, Figure 2.  Therefore, the depth (c) 
needed is calculated by using Pu as required by ACI. 
 
To calculate c, the equilibrium of forces shown in Example 7-5, Figure 2, 
requires that 
 
 Pu = Cc + Cs + T 
 
Where Cc and Cs are compression in concrete and steel, respectively, and 
T is the tension force in the tension steel. 
 
   Pu = 0.85fc .a.b + As  fs  � As fy 
 
In the equation above, the quantity a and the stress in the compression 
steel are found either by iteration or by considering the compatibility and 
equilibrium equations as shown in Chapter 5. However, it will be easier and 
more conservative to neglect the compression steel because this neglect 
produces higher values of c. (This is obvious from the equation above.)  
Because shear reinforcement is ignored in this calculation, ignoring the 
compression steel is considered a reasonable compromise. The reader is 
encouraged to do refined analysis and make comparisons. By ignoring the 
compression steel, the above equation reduces to  
 
  Pu = 0.85 fc .a.b � As fy 
 
  3,805 x 103 = 0.85(30).(a)(300) � (4,500)(420) 
 A = 744 mm (29 in) 
 C = a/ 1 = 744/0.85 = 875 mm (35 in) 
 
Therefore, the length of the boundary element,  
 
 b  = c � 0.1 w  
 = 875 � 0.1(3,000) = 575 mm (23 in) 
  c/2 = 875/2 = 438 mm (17 in) 
 
 
 
 

EXAMPLE 7-5, FIGURE 2

Section

c
N.A

As

Strain Stress 

cu

 s > y

0.85 fc  

fy 

a 
As

 
Cs

Cc

T 

Forces
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Therefore, use b = 580 mm (23 in). 
 
(20) Check the need for special boundary elements (SBE): 
 
Using the stress method: 
 
 Ag = 300(3,000) = 900,000 mm2 (1,395 in2) 

 Ig = 300(3,000)3/12 = 675,000 x 106 mm4 (1,621,694 in4) 

 

 M
g

u

g

u
cm X

I
M

A
p

f   

 )500,1(
10x 000,675

10507,2
10x 900
10x 805,3

6

6

3

3 xfcm   

 
 fcm = 4.23 + 5.57 = 9.8 MPa (1.424 ksi) 
 
Since   fcm = 9.8 (1.424 ksi)  
  > 0.20fc  = 0.20(30) = 6 MPa (0.870 ksi), 
 
then SBE is needed. 
 
The SBE must extend over the area where the stress is in excess of 
0.15fc  = 0.15(30) = 4.5 MPa (0.653 ksi). Analysis of the fcm equation 
above reveals that the axial load alone produces 4.25 MPa (0.616 ksi). 
Therefore, the SBE must extend over the entire wall [i.e., hb = 20 m  (66 
ft)]. 
 
(21) Detailing of SBE: 
 
Minimum hoops: 
 
The maximum spacing of the transverse reinforcement is given as 
 
  S  6db = 6(25) = 150 mm (6 in)

       
4

,
4

hb = 300/4 = 75 mm (3 in) 

  so;  
 
where:  

 so = 100 + )
3

350
( xh

 

  150 mm (6 in) 
  100 mm (4 in)
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Because so must be larger than 100 mm (4 in), the 75 mm (3 in) calculated 
for spacing, s, is the controlling factor, and there is no need to calculate so.  
 
Maximum spacing of hoops inside the SBE is 75 mm (3 in). 
 
Minimum amount of hoops: 
 
* In the transverse direction: 
 

yt

c
csh f

f
bsA

'
09.0  =

420
30)600()75(09.0  

  = 289 mm2 (4 10) [0.45 in2 (4 # 3)] 
 

* In the longitudinal direction: use the same equation above or by 
proportionality to dimensions: 

 
 Ash = 289(260)/600 = 125 mm2 (2 10)  [0.19 in2 (2 # 3)] 
 
Details are shown in Example 7-5, Figure 3.  

7.6.2  Special Shear Walls with Openings 

Because the presence of openings in shear walls creates regions of 
disturbed stress flow, the wall cannot be treated as a single beam element 
as in the case of shear walls without openings. The exact solution will be 
difficult and may not be available. However, engineering solutions do exist 
in practice and are given in forms of modeling. 
 

EXAMPLE 7-5, FIGURE 3
WALL DETAILING 

 10 @ 250 mm 
(#3 @ 10 in) 

U-shape 

300 mm 
(12 in) 

 10 @ 300 mm 
(#3 @ 12 in) 

each face 

 10 @ 250 mm 
(#3 @ 10 in) 

each face 

 
5  25 
(5 # 8)  

each face 

580 mm (23 in)
SBE

Hoop with Seismic 
Hook = 75 mm (3 in)

 10 @ 75 mm 
(#3 @ 3 in) 

Crossties with 
 Seismic Hook
 10 @ 75 mm
(#3 @ 3 in) 
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Two popular schemes of modeling shear walls are the finite element model 
and the equivalent frame model. Figure 7-32 shows the concept of such 
modeling.   
 
In finite element modeling, the 
wall is divided into finite el-
ements using either the plate 
element or the more popular 
shell element. Most structural 
software programs offer such 
elements in their libraries. 
Even though finite element 
models are considered similar 
to an exact solution if the 
material properties can be 
correctly included, these types 
of models generate tre-
mendous amounts of data to 
process. This makes the finite 
element model less attractive 
in engineering practice. 
 
The equivalent frame model involves less modeling effort and provides 
reasonable results with engineering a sense of wall behavior. Internal 
moments, shears, normal forces and other straining actions may be pro-
duced by such models. 
 
Nevertheless, ACI 318 requires 
additional precautions for walls with 
openings in terms of shear strength 
and protection of wall segments 
between openings. ACI 318 defines 
the region between two horizontal 
openings or between an opening and 
the edge of the wall as a vertical 
segment, or a pier, as shown in 
Figure 7-33. In addition, the code de-
fines the region between two vertical 
openings or between an opening and 
the edge of the wall as horizontal 
segments. This is also shown in the 
same figure.  
 
If the horizontal cross sectional area of the pier is designated as Acp such 
that 
 
 Acp = bp. p  
 

 
Vertical Segment 

(Pier)  

FIGURE 7-33
OPENINGS IN SHEAR WALLS 
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 Segment 

1p  
2p

3p  
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Opening 
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Element Model

FIGURE 7-32
MODELING SCHEMES OF SHEAR 
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then the following quantity is defined as a reference for further calculations: 

 Vcp = 
6

'cf Acp 

 (Vcp = '2 cf Acp)Imperial 

 
The equations for walls without openings given in the previous section still 
apply to walls with openings. For these, we replace the ratio (hw/ w ) in the 
given equations with the maximum ratio of the wall, and each of its 
segments (hw/ w ) becomes the following: 
 
 hw/ w = max[(hw/ w ), (hp/ p )] 
 
Additional requirements for walls with openings are given in terms of 
maximum shear strength such that 
 
 Vn,pier  5Vcp 
and 
  (Vn)piers  4Vcv 
 
The code also requires that precautions must be taken to assure sound 
force path around openings. Such requirements may be achieved, for ex-
ample, using capacity design concepts. The recently introduced concept of 
the strut-and-tie model in the ACI 318 may also help in this area. For this 
purpose, the next section covers special detailing for horizontal piers, which 
are defined as coupling beams. 

7.7  Coupling Beams 

Experience from previous earthquakes indicates that the horizontal 
segments defined in the previous section are susceptible to shear failure. 
Many examples in many earth-
quakes reflect such vulnerability of 
these elements. For this reason, 
the code requires that these 
elements, known as coupling 
beams, be reinforced with special 
detailing with or without crossing 
diagonal trusses as shown in 
Figure 7-34. 
 
With or without diagonal trusses, 
the detailing of the coupling beam 
shall satisfy the requirements of 
special moment frames as given 
earlier. Because the diagonal 

FIGURE 7-34
COUPLING BEAMS 

Opening  

 
Coupling Beam 

Diagonal Truss
Avd 

 

n  

Opening  
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trusses are not effective in shallow coupling beams, the diagonal trusses 
may only be used as follows: 
 
Diagonal trusses shall not be used if 
   
 n /d  4 
 
Diagonal trusses may be used as required by analysis if 
 
 n /d < 4 
 
Diagonal trusses shall be used if 
 
 n /d < 2 
and if Vu > 2Vbw  
 
where: 
d = Effective depth of coupling beam 

n  = Clear span of coupling beam as in Figure 7-34 
Vbw = The reference value for shear strength defined earlier: 
 
 ( 'cf  bw.d/6)SI or (2 'cf  bw.d)Imperial 

 
Detailing of coupling beams with diagonal trusses 
 
The detailing of coupling beams with diagonal 
trusses is given for both the coupling beams 
and the diagonals as follows: 
 
Diagonal trusses 
 
The minimum dimensions of the diagonals 
(including hoops) are given in terms of the 
coupling beam width, bw, as shown in Figure 
7-35: 
 
Horizontal dimension:  bw/2 
Vertical dimension:  bw/5 
 
The diagonal truss must have at least 
four bars. The nominal shear strength of 
the two diagonals may be calculated as 
follows: 
 
 Vn = 2Avd fy sin   
  5Vbw 

 
Horizontal

  bw/2 

  bw/5 
Vertical 

FIGURE 7-35  
DIMENSIONS OF 

DIAGONAL TRUSS 

FIGURE 7-36
COUPLING BEAMS 

 
Diagonal  

Avd 

 
 d  

 
Hoops 



Chapter Seven 

370 

where: 
= The horizontal angle shown in Figure 7-36. 

Avd = Area of longitudinal bars as shown in Figure 7-36. 
fy = Yield strength of reinforcement. 
Vbw = Shear strength reference quantity as defined earlier. 
 
The minimum lateral reinforce-
ment of the diagonals as indi-
cated in Figure 7-36 must follow 
the requirements of hoops in the 
potential plastic hinge region of 
special moment frames. These 
requirements are detailed in 
Section 8.4.2. and also shown in 
Figure 7-17. Note that the 
minimum cover of the diagonal 
must be used in calculating the 
gross area in the relevant 
equations of minimum hoop 
areas. 
 
Coupling beams 
 
The minimum reinforcement of coupling beams with diagonals shall follow 
the requirements of deep beams, consequently and in reference to Figure 
7-37: 
 
  Av = 0.002,5 bw s1 
  Avh = 0.001,5 bw s2 
 
The maximum spacing of both vertical and horizontal reinforcement, s1 and 
s2, are given as 
 
 s1  d/5 
   300 mm (12 in) 
 
  s2   d/5 
   300 mm (12 in) 

7.8  Diaphragms and Trusses 

Diaphragms are horizontal slabs that function to distribute the earthquake-
induced forces to the framing system. 

FIGURE 7-37
COUPLING BEAMS 
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Structural system 
 
Diaphragms may be considered rigid and behave as a beam in their plane 
if they meet minimum thickness requirements. The components of rigid 
diaphragms are shown in 
Figure 7-38, which shows a 
plan of a diaphragm with an 
earthquake force acting as 
shown in the same figure.  The 
edges of the diaphragm per-
pendicular to the earthquake 
excitation are defined as 
struts, chords or boundary 
elements.  These boundary el-
ements act as flanges of a 
steel I-section under flexure 
action. They are designed to 
resist force, Pu, that is given as 
follows: 
 

   uu
u

MQ
P 

2
 

 
where: 
Mu = Maximum bending moment resulting from simple beam action in 

resisting the seismic force as shown in Figure 7-38. 
Qu = Any acting force perpendicular to earthquake excitation as shown in 

Figure 7-38. 
 
The rigidity of the diaphragm 
depends on the flooring system.  
For example, if the diaphragm 
consists of a solid slab as shown in 
Figure 7-39 (a), the minimum 
thickness of the diaphragm to be 
considered rigid is 50 mm (2 in). 
 
If the flooring system consists of 
topping slabs on precast floors, the 
minimum thickness of the topping 
slabs in the case of  composite 
action is 50 mm (2 in), whereas the 
minimum thickness of the  non-
composite action is 65 mm as 
shown in Figure 7-39 (b) and (c). 
 
If the diaphragm does not meet the rigidity requirements, the diaphragm is 
considered flexible and must be modeled with the structure to include its 

FIGURE 7-38
RIGID DIAPHRAGM ACTION 
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FIGURE 7-39
RIGID DIAPHRAGM ACTION 

(b) Composite Floor 
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(21/2 in) 
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behavior. As an example, the flexible diaphragm may be modeled as a 
plate or shell element using finite element models.  
  
Shear strength 
 
The shear strength capacity of the diaphragm is limited to maximum values 
as follows: 
 Vn  4Vcv 
where: 
Vcv = The reference shear strength defined for shear walls. 
Vn = Nominal shear strength of the diaphragm, which is given as follows: 
 

 Vn = Acv ( 6
'cf + t fy) (for solid diaphragms) 

 Vn = Acv(2 'cf + t fy)]Imperial   
 
 Vn = Acv t fy  (for topping diaphragms) 
 
The equations above indicate that the concrete shear capacity, Vc, is 
ignored for topping. The minimum reinforcement of the diaphragm in its 
web is given as the same for slabs: 
 
 As,min = 0.001,8 b h [for fy = 420 MPa (60 ksi)] 
 As,min = 0.002,0 b h [for fy = 300 MPa (40 ksi)]  
 
With maximum spacing: s  500 mm 
 
Diaphragm chords and truss members 
 
As explained earlier, the diaphragm structural system is considered a beam 
with its chords acting as a flanged section.  Therefore, the chords will be 
subjected to axial force, Pu, as given in the previous section. 
 
The chord is designed as a column (truss member) to resist the force, Pu, 
with minimum hoops as follows: 
 

 
w

yv

b
fA

s
3

  

  (
w

yv

b
fA

s
50

)Imperial 

 
Additional detailing requirements are needed if the stress in the chord 
under the force Pu, and using E and Ag, exceeds 0.20fc . This condition is 
similar to the special boundary element requirement in special shear walls. 
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If the stress exceeds the 0.20fc , then 
minimum lateral reinforcement and 
spacing requirements shall follow the 
details of special beam-columns of 
special moment frames as given ear-
lier. 
 
Additional spacing limitations are given 
as shown in Figure 7-40. 
 
The requirements above also apply to 
truss members. 

7.9  Foundations 

The design of foundations shall follow the general procedures provisions 
for regular design. As failure of foundations is catastrophic, they are 
considered to be part of the critical path in the force transfer system and 
must be designed to be stronger than the superstructure. In other words, 
the plastic hinges in the structure must be forced to form in the columns 
and walls while keeping the foundations in the elastic range. This 
philosophy is similar to shear design in the main members. Consequently, 
the requirements and detailing of foundations may be given as follows. 
 

 
Strength requirements 
 
In order to force the plastic hinge in the column, the foundations must be 
designed for the probable moment, Mpt, as shown in Figure 7-41 (a). The 
probable moment is given as defined in special moment frames as follows: 
 
 Mpr = f(  1.25fy) 
 

FIGURE 7-40
CHORD DETAILS 
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FIGURE 7-41
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Detailing requirements 
 
Special detailing is required for the connections between the columns and 
the foundations, which are given as follows: 
 
1. In fixed supports of columns, the 

reinforcement must be bent toward 
the center of the foundation. Such 
detail is shown in Figure 7-41 (b). 

 
2. If a member with special detailing 

lies within a distance (dF/2) as 
shown in Figure 7-41 (c), the 
special detailing must continue into 
the foundations at least a distance 
of dF, where dF is the effective 
depth of the foundation. 

 
3. If uplift forces exist as in pile foundations, the top reinforcement of the 

foundation as shown in Figure 7-42 must satisfy minimum 
reinforcements of beams: 

 

  
yy

c
o ff

f 4.1
4

'
min,   

  (
yy

c
o ff

f 200'3
min,  )Imperial 

 
The minimum reinforcement of foundations follows the provisions of slabs. 
Therefore, the requirement above is more stringent than regular foundation 
requirements. 

7.10  Precast Concrete 

For many years, precast and prestressed concrete was excluded from 
seismic codes. During the past, there was a general perception that pre-
cast concrete was not suited for seismic resistance because of its weak 
connectivity. As a result, it would not hold together during ground shaking. 
As discussed in Chapter 5, research and experimental work prove that 
precast concrete can be used for seismic resistance if it is designed to 
behave according to the philosophy of seismic behavior and design. 
 
ACI 318 first introduced precast concrete as seismic-resistant elements in 
its 2002 edition. ACI provisions present three precast systems that can be 
used as earthquake-resistant structures: Precast Special Moment Frames, 
Precast Intermediate Shear Walls and Precast Special Shear Walls.  

FIGURE 7-42 
UPLIFT FORCE DETAILING 

o,min 
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7.10.1  Precast Special Moment Frames 

To qualify as special moment frames, special moment precast frames must 
satisfy all the requirements of the cast-in-situ special moment frames. In 
addition, precast frames are classified as having either ductile connections 
or strong connections. The ductile connections are intended to behave as 
monolithic concrete, whereas strong connections are intended to remain 
elastic during plastification of the member during the development of mech-
anisms. The requirements of each type of these connections are given in 
the following sections. 
 
Precast special frames with ductile connections 
 
In precast special frames with ductile connections, the shear friction cap-
acity of the connections, Vn, shall exceed twice the maximum probable 
shear force, Ve, that can develop at the face of the connection: 
 
 Vn  2Ve 
 
where: 
Ve = The maximum probable shear that can develop in the section as 

defined for the special beams and special beam columns in earlier 
sections. 

 Vn = Nominal shear friction capacity, which is calculated according to ACI 
provisions as follows:  

 
 Vn = Avf fy  
 
and  is given for normal weight concrete according to Table 7-1: 
 

 
TABLE 7-1 

COEFFICIENT OF FRICTION FOR NORMAL WEIGHT CONCRETE () 
Concrete placed monolithically 1.4 
Concrete placed against hardened concrete with surface 
intentionally roughened 1.0 

Concrete placed against hardened concrete not intentionally 
roughened 0.6 

Concrete anchored by studs or stud-like devices 0.7 
 
Precast special frames with strong connections 
 
In precast special frames with strong connections, the following additional 
requirements must be satisfied: 
 
 
 



Chapter Seven 

376 

1. The span depth ratio must exceed 4 times for regions of potential plastic 
hinge developments. 

 
2. Primary reinforcement shall be continuous across the connections and 

must be developed outside both strong connections and potential 
plastic hinge regions. 

 
3. Connection strength shall satisfy the following: 
 
(a) Beam-to-beam connections 
 
  Sn  Se 
where: 
Se = Maximum probable force in flexure, shear or axial that can develop in 

the connections due to design mechanism of inelastic behavior. 
Sn = Nominal strength of the connections in flexure, shear or axial. 

= Strength reduction factor as applicable. 
 
(b) Column-to-column connections: 
 
 Sn  1.4Se 
 
Where Se, Sn and  are as defined above. 
 
In addition, the design moment, Mn, and the design shear strength, Vn, of 
the connections shall not be less than the following: 
 
 Mn  0.4Mpr (of the column within its height) 
 Vn  Ve (as determined for cast-in-place special frames) 

7.10.2  Precast Intermediate Shear Walls 

The IBC does not define precast intermediate shear walls in its seismic 
systems. However, ACI 318 defines precast intermediate shear walls in its 
seismic section without any reference on their use. The only requirements 
given by ACI 318 for precast intermediate shear walls are for the con-
nections between the panels and also between the panels and the 
foundations. 
 
For design philosophy where yielding is intended in the connections, the 
code restricts yielding to reinforcement or steel elements. For design phil-
osophy where connections are not intended to yield, the connections shall 
develop strength, Sn, such that:  
 
 Sn  1.5Sy 
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where: 
Sy = Yield strength of the connection, based on fy, for moment, shear or 

axial load. 

7.10.3  Precast Special Shear Walls 

Precast special shear walls shall satisfy all the requirements of both cast-
in-place special shear walls and precast intermediate shear walls as laid 
out in previous sections. 

7.11  Nonseismic-Resisting Systems 

Because the entire structure undergoes maximum inelastic displacements, 
M, all structural members including those not intended for earthquake 

resistance must be capable of accommodating such large displacements. 
Therefore, the nonseismic elements must also be detailed to sustain these 
large seismic demands. In addition, the nonseismic elements will also be 
subjected to a large P-  effect, which must be addressed. 
 
General Requirements (A) 
 
The general requirements in this section are required if detailed analysis of 
the effect of inelastic displacements are not considered. These require-
ments must be met if the induced moments and shears due to u exceed 
the design strengths: 
 

    
nu V

M
V
M

  

 
Beam requirements   
 
If the gravity-factored axial loads do not exceed 0.1fc  Ag, then 
 
 Pu  0.1 fc  Ag 
 
Where fc' and Ag are as defined before. 
 
The maximum main reinforcement ratio shall be limited to 

 
 o,max = 0.025 
 
Beam-column requirements   
 
If gravity-factored axial loads exceed 0.1 fc  Ag, then 
 
 Pu > 0.1 fc  Ag 
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Where fc' and Ag are as defined before. 
 
The member must be detailed as in special beam-columns in terms of 
minimum hoops areas, maximum spacing, and connection requirements. 
Such detailing is given under the section of special moment resisting 
frames. 
 
General Requirements (B) 
 
The general requirements given in (A) may be relaxed if the induced 
moments and shears that are due to u do not exceed the design strengths: 
 

 
nu V

M
V
M

  

 
The following requirements are relaxed: 
 
The maximum spacing of lateral reinforcement over the entire length of the 
member shall be as follows: 
 
If Pu > 0.1 fc  Ag, 
then s  so   
 s  6db   
 s  150 mm (6 in) 
 
If Pu > 0.35Po, 
then s  so and 
 
the minimum hoops are relaxed to the following: 
 
Rectangular Sections 
 
The minimum area of hoops, Ash, in any direction of the rectangular 
section shall be as shown below: 
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where: 
Ach = Area of concrete core including hoops, which is given as 
   Ach = (bc1 + dh).(bc2 + dh) 
Ag = Gross area of the concrete section. 
Ash = Area of hoops for shear. 
bc = Center-to-center dimension of the hoop in the direction under 

consideration as shown in Figure 7-19. 
dh = Diameter of hoops. 
fc  = Characteristic strength of concrete. 
fyt = Yield stress of hoop reinforcement. 
S = Spacing of hoops along the member. 
 
Circular and Spiral Sections 
 
The minimum volume of hoops, s, in circular sections with hoops or with 
spirals shall be as shown below: 
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yt

c
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where: 
Ach = Area of concrete core, including hoops. 
Ag = Gross area of the concrete section. 
fc  = Characteristic strength of concrete. 
fyt = Yield stress of hoop reinforcement. 
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APPENDIX  7-1 
 
 
Sheet 1 
 
Sheet 1 helps the design 
of singly reinforced con-
crete rectangular beams 
and slabs subjected to 
pure bending moment. 
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Sheet 2 Reinforcement Properties and Details (SI Units) 
 
 

REINFORCEMENT LIMITATIONS IN BEAMS 

fy fc' Ec 1 conv min min o,max o,max o,max o,max 

MPa MPa MPa -- Ratio Ratio at  t = 0.005 
at 0.32 1 

at  t = 0.004 
at  0.36 1 

20 21 000 0.85 0.0120 0.0047 0.070 0.0181 0.272 0.0206 0.310 
25 23 500 0.85 0.0150 0.0047 0.056 0.0226 0.272 0.0258 0.310 
30 25 750 0.85 0.0180 0.0047 0.047 0.0271 0.272 0.0310 0.310 

300 

35 27 800 0.81 0.0210 0.0049 0.042 0.0301 0.259 0.0344 0.295 
20 21 000 0.85 0.0086 0.0033 0.070 0.0129 0.272 0.0147 0.310 
25 23 500 0.85 0.0107 0.0033 0.056 0.0161 0.272 0.0184 0.310 
30 25 750 0.85 0.0129 0.0033 0.047 0.0194 0.272 0.0221 0.310 

420 

35 27 800 0.81 0.0150 0.0035 0.042 0.0215 0.259 0.0246 0.295 
 
 

REINFORCEMENT LIMITATIONS IN SLABS 

fy conv min o,max 

MPa Ratio (See Below) Ratio 

300 Same as beams As,min = 0.0020 b.h Same as beams 

420 Same as beams As,min = 0.0018 b.h Same as beams 
 
 

REINFORCEMENT SCHEDULE 
Bar Dia Mass Nominal Area, mm2 

mm kg /m 1 2 3 4 5 6 7 8 9 10 
6 0.222 28 56 84 112 140 168 196 224 252 280 

8 0.395 50 100 150 200 250 300 350 400 450 500 

10 0.617 78 156 234 312 390 468 546 624 702 780 

12 0.888 113 226 339 452 565 678 791 904 1017 1130 

14 1.210 154 308 462 616 770 924 1078 1232 1386 1540 

16 1.580 201 402 603 804 1005 1206 1407 1608 1809 2010 

18 2.000 254 508 762 1016 1270 1524 1778 2032 2286 2540 

20 2.470 314 628 942 1256 1570 1884 2198 2512 2826 3140 

22 2.980 380 760 1140 1520 1900 2280 2660 3040 3420 3800 

25 3.850 491 982 1473 1964 2455 2946 3437 3928 4419 4910 

28 4.830 616 1232 1848 2464 3080 3696 4312 4928 5544 6160 

32 6.310 804 1608 2412 3216 4020 4824 5628 6432 7236 8040 
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Sheet 3 Reinforcement Properties and Details (Imperial Units) 
 
 

REINFORCEMENT LIMITATIONS IN BEAMS 

fy fc' Ec 1 conv min min o,max o,max o,max o,max 

ksi ksi ksi -- Ratio Ratio at  t = 0.005 
at 0.32 1 

at  t = 0.004 
at  0.36 1 

4 3 600 0.85 0.0180 0.0050 0.050 0.0271 0.272 0.0310 0.310 
5 4 030 0.80 0.0225 0.0053 0.042 0.0319 0.256 0.0364 0.291 
6 4 420 0.75 0.0270 0.0058 0.039 0.0359 0.240 0.0410 0.273 

40 

7 4 770 0.70 0.0315 0.0063 0.036 0.0390 0.224 0.0446 0.255 
4 3 600 0.85 0.0120 0.0033 0.050 0.0181 0.272 0.0206 0.310 
5 4 030 0.80 0.0150 0.0035 0.042 0.0213 0.256 0.0243 0.291 
6 4 420 0.75 0.0180 0.0039 0.039 0.0239 0.240 0.0273 0.273 

60 

7 4 770 0.70 0.0210 0.0042 0.036 0.0260 0.224 0.0298 0.255 
 
 

REINFORCEMENT LIMITATIONS IN SLABS 

fy conv min o,max 

ksi Ratio (See Below) Ratio 

40 Same as beams As,min = 0.0020 b.h Same as beams 
60 Same as beams As,min = 0.0018 b.h Same as beams 

 
 

 
REINFORCEMENT SCHEDULE 

Bar Dia Mass Nominal Area, in2 

# in lb /ft 1 2 3 4 5 6 7 8 9 10 
# 3 0.375 0.376 0.11 0.22 0.33 0.44 0.55 0.66 0.77 0.88 0.99 1.10 

# 4 0.500 0.668 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 

# 5 0.625 1.043 0.31 0.62 0.93 1.24 1.55 1.86 2.17 2.48 2.79 3.10 

# 6 0.750 1.502 0.44 0.88 1.32 1.76 2.20 2.64 3.08 3.52 3.96 4.40 

# 7 0.875 2.044 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 

# 8 1.000 2.670 0.79 1.58 2.37 3.16 3.95 4.74 5.53 6.32 7.11 7.90 

# 9 1.128 3.400 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 

# 10 1.270 4.303 1.27 2.54 3.81 5.08 6.35 7.62 8.89 10.16 11.43 12.70 

# 11 1.410 5.313 1.56 3.12 4.68 6.24 7.80 9.36 10.92 12.48 14.04 15.60 

# 14 1.693 7.650 2.25 4.50 6.75 9.00 11.25 13.50 15.75 18.00 20.25 22.50 

# 18 2.257 13.600 4.00 8.00 12.00 16.00 20.00 24.00 28.00 32.00 36.00 40.00 
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Sheet 4 Interaction Diagram,  = 0.9 
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Sheet 5 Interaction Diagram,  = 0.8 
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Sheet 6 Interaction Diagram,  = 0.7 
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Sheet 7 Interaction Diagram,  = 0.6 
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Sheet 8 Effective Length Factor by Alignment Chart  
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8 
 
 
 
 
 

INTRODUCTION TO THE  
 AISC SEISMIC 

PROVISIONS FOR 
STRUCTURAL STEEL 

BUILDINGS  
 
 
 
 
 

8.1  Introduction 

The excellent ductility and energy dissipation capacity of steel as a 
material makes it ideal for earthquake-resistant structures. However, as 
explained in Chapter 5, steel components are often slender owing to the 
high cost of material. Slender members and components of steel 
structures exhibit less ductile behavior and premature failures when their 
members or components lose their stability. To achieve the required 
ductility and energy dissipation capacity, such premature failures must be 
prevented, which can be accomplished by special detailing of steel el-
ements, such as bracing and stiffening of elements at local and global 
levels. 
 
Details of the steel provisions are given by the American Institute of Steel 
Construction (AISC) in the Seismic Provisions for Structural Steel 
Buildings (referred to in this chapter as the AISC standard or the 
standard). These details are so overwhelming that we would need a sep-
arate book to cover them adequately. This chapter will highlight the re-
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quirements of the standard in general terms and examine the nature of 
various systems. Refer to LRFD provisions and the supplemental seismic 
provisions referenced at the end of the book for full details and de-
scription of the seismic requirements of the steel systems. These re-
quirements are given in separate provisions entitled Seismic Provisions 
for Structural Steel Buildings. The document is an extension to their main 
LRFD provisions of steel design. 

8.2  General Requirements 

The AISC standard has general requirements that apply to load com-
binations, material, and connections for all structural systems. These 
requirements are summarized as follows.  
 
Load combinations 
 
The load combinations in the AISC standard are required to follow the 
load combinations given by the applicable seismic code under 
consideration. However, when AISC requires amplification of seismic for-
ces in their provisions, the horizontal seismic force, E,  as obtained from 
the applicable seismic code shall be multiplied by the overstrength factor, 

o. Furthermore, when the applicable seismic code does not provide val-
ues for the overstrength factor, o, the AISC requires the use of their 
values of o as given in Table A1 in Appendix 8-1 at the end of this 
chapter. 
 
Material 
 
Steel intended for seismic-resisting elements where inelastic defor-
mations are expected shall be limited to a maximum yield stress, Fy, of 
345 MPa (50 ksi).  
 
When required by the standard, the strength of members and 
connections shall be designed for an expected yield stress that is mul-
tiplied by an amplification factor, Ry, such that 
 
 Fye = Ry Fy 
where: 
Fy = Nominal yield stress of steel. 
Fye = Expected yield stress of steel. 
Ry = One of the following five options: 

 1.5 for shapes and bars of material grade (Fy = 250 MPa) (36 ksi). 
 1.3 for shapes and bars of material grade (Fy = 290 MPa) (42 ksi). 
 1.3 for hollow structural sections. 
 1.4 for steel pipes. 
 1.1 for all other cases. 
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Connections 
 
When used, bolts shall be pretensioned high-strength bolts inserted in 
standard holes or short-slotted holes perpendicular to the line of action of 
the force. Faying surfaces shall be prepared as Class A or better Slip-
Critical joints. The joint bearing capacity, Qn, shall be limited to the 
following: 
 
 Qn  2.4 d.t.Fu 
where: 
d = Nominal diameter of the bolt. 
Fu = Ultimate tensile stress of steel. 
T = Thickness of the connected plate. 
 
If weld is used in the connections of the seismic-resisting elements, the 
welding procedure must be in accordance with AWS D.1 and approved by 
the Engineer of Record and must satisfy the Charpy V-notch (CVN) 
toughness requirements such that 
 
 CVN  27 J (N.m) @ �29º C. (20 ft-lb @ �20º F.) 
 
Shear studs are not permitted in the plastic hinge regions. These regions 
are defined as the zone with length equal to half the depth of the member 
on each side of the theoretical location of the plastic hinge. 
 
Local Buckling 
 
In addition to LRFD limitations for local buckling, members must also 
satisfy the limitations of width thickness ratios, ps, given in Table A2 in 
Appendix 8-1. 
 
Columns 
 
The high uncertainty in column seismic loads may be underestimated in 
regular force calculations because of many reasons, such as overturning 
moment effect and vertical earthquake component effect. Therefore, 
when the ultimate load without overstrength factor exceeds 40 percent of 
the factored nominal strength (Pu/  Pn > 0.4), the column loads must be 
designed with load combinations stipulated by the applicable seismic 
code and shall be amplified by overstrength factor.. However, the design 
load need not exceed 1.1 times the amplified yield stress of the connecting 
elements such as beams and braces (  1.1Ry). 
 
Welded splices in columns shall be located at least 1.2 m (4 ft) from the 
beam-to-column connections. For columns with a clear height of 2.4 m (8 
ft) or less, the splice shall be located in the middle of the column. 
 
 



Chapter Eight 

392 

8.3  Structural Systems 

Three groups of structural systems are considered in the AISC standard 
to resist seismic effect: regular moment frames, truss moment frames and 
braced frames. Regular frames include ordinary moment frames (OMF), 
intermediate moment frames (OMF) and special moment frames (SMF). 
Only one type of truss moment frame is given in the code: special truss 
moment frames (STMF). Braced frames include ordinary concentrically 
braced frames (OCBF), special concentrically braced frames (SCBF) and 
eccentrically braced frames (EBF). Key details on each of these systems 
will be presented in the next section.  

8.3.1  Ordinary Moment Frames (OMF) 

Ordinary moment frames are 
expected to withstand minimal 
inelastic deformation in their 
members and connections. The 
code permits fully restrained 
(FR) as well as partially re-
strained (PR) moment con-
nections to be used in OMF. To 
achieve this expectation, the 
code has requirements for 
beam-to-column connections 
and continuity plates. 
 
For general width-thickness ratio 
limitations, see the seismic pro-
visions of the standard. 
 
Beam-to-column connections 
 
The required design strength of 
the connections for FR moment 
connections shall be based on 
the amplified yield stress:  
 
 Mu  1.1 Ry Mp 
 
where: 
Mp = Plastic moment of the beam. 
Mu = Required flexure strength of 

the connection. 
Ry = Yield stress amplification 

factor as specified earlier. 
 

FIGURE 8-1
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This requirement is intended to force the plastic deformation in the beam 
while keeping the connection in its elastic range. 
 
Shear strength requirements 
 
The connection must be designed to resist the factored gravity loads and 
the shear resulting from the maximum probable moment. The design 
shearing force, Vu, is expressed with reference to Figure 8-1 as 
 
  Vu = Vu(qu) + Vu(Mpr) 
  = qu L/2 +  Mpr/L 
 
where: 
 Mpr = 1.1 Ry Fy Z 
 
where: 
Fy = Specified yield stress of the beam. 
Ry = Yield stress amplification factor as specified earlier. 
Z = Plastic section modulus of the beam. 
 
Continuity plates 
 
Continuity plates must be designed to transfer the beam flange force to 
the column web. The thickness of continuity plates, tp, shall be equal to or 
more than the beam flange thickness, tbf : 
 
  tp  tbf 
 
Welding of continuity plates to column flange designated as weld 1 in 
Figure 8-2 shall either be full penetration or double-sided fillet welds. 
 
Welding of continuity plates to column web designated as weld 2 in 
Figure 8-2 is required to have minimum design shear strength. See AISC 
provisions for more details. 

8.3.2  Intermediate Moment Frames (IMF) 

Ordinary moment frames are expected to withstand limited inelastic 
deformation in their members and connections. The requirements of in-
termediate moment frames to achieve such capacity are given in terms of 
beam-to-column connections, lateral support of beams, and strength re-
quirements. 
 
Beam-to-column connections 
 
Ductility requirements 
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The connection must be capable of sustaining an interstory drift angle of 
at least 0.02 rad. 
 
Flexural strength requirements 
 
The connections shall be designed for flexure moment determined at the 
column face, equal to at least 80 percent of the nominal plastic moment 
of the connected beam at its specified interstory drift angle. 
 
Shear strength requirements 
 
The shear strength requirements shall be similar to the requirements of 
ordinary moment frame (OMF) given in the previous section.  

8.3.3  Special Moment Frames (SMF) 

Special moment frames are expected to achieve significant inelastic ro-
tation capacity. The requirements of special moment frames are given in 
terms of beam-to-column connections, panel zones of beam-to-column 
connections, lateral support of beams and strength requirements. 
 
Beam-to-column connections 
 
Ductility requirements 
 
The connection must be capable of sustaining an interstory drift angle of 
at least 0.04 rad. This capacity must be demonstrated by an approved 
qualified cyclic test according to AISC testing procedures. 
 
Flexural strength requirements 
 
The connections shall be designed for flexure moment, determined at the 
column face, equal to at least 80 
percent of the nominal plastic 
moment of the connected beam at its 
specified interstory drift angle. 
 
Shear strength requirements 
 
The shear strength requirements 
shall be similar to the requirements of 
ordinary and intermediate moment 
frame (OMF and IMF) given in 
previous sections. FIGURE 8-3
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Panel zone 
 
The thickness of the panel zone and each of its doubler plates shall be at 
least equal to the following: 
 
  T  (dz + wz)/90 
 
where dz and wz are defined in Figure 8-3. If doublers are attached to the 
web by plug welds, only the total thickness of all plates together need to 
satisfy the condition above. 
 
The design shear strength of the panel zone, Rv, shall be based on the 
following criteria: 
 
(a) When Pu  0.75Py: 

 
pcb

fcfc
pcyv tdd

tb
tdFR

23
16.0  

 
where: 
bcf = Width of column flange. 
db = Overall beam depth. 
dc = Overall column depth. 
Fy = Specified yield stress of the panel zone. 
tcf = Thickness of column flange. 
tp = Total thickness of the panel zone (including doublers). 
 
(b) When Pu > 0.75Py: 
 
The design shear strength shall be according to LRFD specifications. 
 
Lateral support of beams 
 
Bracing of the beams must be provided at the locations of axial loads and 
at any abrupt change in cross sections. Bracing must not exceed the 
following: 
 

 b  0.086 ry 
y

s

F
E

 

 
where: 
Es = Modulus of elasticity of steel. 
Fy  = Yield stress of steel. 

b  = Unbraced length of the beam. 
ry = Radius of gyration about the y-axis (weak axis). 
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The required strength of the lateral bracing shall be designed for a force 
equal to 2 percent of the beam flange�s nominal strength (Fy bf tf.) 
 
The required strength of the lateral bracing adjacent to plastic hinges 
shall be designed for a force equal to 6 percent of the expected beam 
flange�s strength (Ry Fy bf tf). 
 
Column-beam moment ratios 
 
The summation of the plastic moments of the columns at any joint must 
exceed the summation of the plastic moments of the associated beams. 
With reference to Figure 8-4, this condition may be expressed as follows: 
 

 0.1
*

*


pb

pc

M

M
 

 
The column moment, M*

pc shall be calculated as follows: 
 
 M*

pc = Zc(Fyc � Puc/Ag) 
 
where: 
Ag = Gross sectional area of the column. 
Fyc = Specified yield stress of the column. 
Puc = Factored axial load in the column. 
Zc = Plastic section modulus of the column. 
 
The beam moment, M*

pb, shall be cal-culated 
as follows: 
 
 M*

pb = 1.1 Ry Fyb Zb + Mv  
 
where: 
Fyb = Specified yield stress of the beam. 
Mv = The additional moment due to shear amplification from the location 

of the plastic hinge to the column centerline. 
Ry = Yield stress amplification factor as specified earlier. 
Zb = Plastic section modulus of the beam. 
 
This requirement is in line with the strong column-weak beam design 
philosophy. 

8.3.4  Special Truss Moment Frames (STMF) 

Special truss moment frames, or STMF, are expected to experience 
significant inelastic deformation within a specially designed segment of 
the truss. STMF dissipate energy by flexure yielding of the top and bot-
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tom chords and by axial yielding of the diagonals of a part of the frame 
called the special segment. The special segment is defined as follows. 

 
The STMF and its components are shown in Figure 8-5. The STMF 
consists of vertical columns with horizontal truss in between that acts as a 
beam. The middle portion of the truss is known as a special segment that 
consists of either Vierendeel panels or cross diagonals (X-shaped) con-
nected at their intersection. Both types may not be mixed in the same 
truss. 
 
In principle, the special segment is expected to yield under seismic exci-
tation while the rest of the truss remains elastic. This philosophy is in line 
with the capacity design philosophy in Section 5.10 (Capacity Design). 
 
The STMF shall satisfy the following limitations. 
 
Dimension limitations 
 
Refer to Figure 8-5 for the following: 
 
Overall span,    20.0 m (65 ft) 
Panel depth, dp  dp  1.8 m (6 ft) 
 
Special Segments 
 
The special segment must be located within the middle half of the truss 
span with the following limitations: 
 
Special segment length, ss  ss   0.1  
  ss   0.5  
 
Panel dimensions, p  p   0.67dp 
  p   1.50dp 

FIGURE 8-5
SPECIAL TRUSS MOMENT FRAME (STMF)
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The width-thickness ratio of the chord members shall comply with the 
limitations, ps, given in Table A2 in Appendix 8-1. 
 
Diagonals of the panel shall be made of flat bars and must be inter-
connected at their intersections with a force, Q, equal to 
 
  Q  0.25Pnt 
 
where Pnt is the nominal tensile strength of the diagonal members. 
 
The special segments must also satisfy special compactness limitations 
as given in the AISC seismic provision tables. 
 
Bracing 
 
The top and bottom chords of the special segments must be laterally 
braced at both ends of the segment and also in between, according to 
LRFD specifications. Braces shall be designed for a force, Qbr, as follows: 
 
Within the special segment: Qbr = 0.050Pnc 
Outside the special segment: Qbr = 0.025Pnc 
 
where Pnc is the force in the chord connected to the brace. 
 
See the seismic provisions for more details of this system. 

8.3.5  Ordinary Concentrically Braced  Frames (OCBF) 

Ordinary concentrically braced frames, or OCBF, are expected to ex-
perience limited inelastic deformations. These frames must satisfy the re-
quirements of OMF and additional requirements for the bracing system. 
Several basic requirements are summarized in the following items. 
 
Strength requirements 
 
Other than brace connections, the strength of OCBF members and 
connections shall be provided according to the load combinations 
stipulated by the applicable seismic code, including the overstrength 
factor. 
 
Brace connections 
 
Brace connections shall be designed for the tension forces of the brace 
using the amplified yield stress of the brace such that 
 
 Pn  Ry Fy Ag 

 



AISC Seismic Provisions for Structural Steel Buildings 

399 

where: 
Ag = Gross sectional area of the brace. 
Fy = Specified yield stress of the brace. 
Ry = Yield stress amplification factor as specified earlier. 
 
Brace requirements 
 
The slenderness ratio of the braces that are used in a V-type or inverted 
V-type configuration shall be limited to the following: 
 

 K /r  4.23 
y

s

F
E

 

 
where: 
K = Effective length factor. 

 = Unsupported length of the brace. 
R = Critical radius of gyration. 

8.3.6  Special Concentrically Braced Frames (SCBF) 

Special concentrically braced frames, or SCBF, are expected to ex-
perience significant inelastic deformations. In addition to the requirements 
of SMF, this kind of frame has additional requirements for the bracing 
system and for the columns.  Several basic requirements are summarized 
in the following items. 
 
Brace requirements 
 
The braces shall be designed with the following limitations of strength: 
 
The tension brace as shown in Figure 
8-6 shall carry 30 percent to 70 percent 
of the total horizontal force. This re-
quirement is waived if the strength of 
each brace in compression is designed 
with the load combination stipulated by 
the applicable seismic code, including 
the overstrength factor. 
 
The strength of the compression brace 
shall be limited to the following: 
 
 c Pn  Pu 

 
where: 
Pn = Nominal axial capacity of the brace. 

FIGURE 8-6 
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Pu = External factored force. 
b = Strength-reduction factor in compression. 

 
The brace slenderness ratio must also be limited to the following: 
 

 K /r  5.87 
y

s

F
E

 

where: 
 = Unsupported length of the brace. 

K = Effective length factor. 
r = Critical radius of gyration. 
 
The braces must be compact sections 
and must satisfy the slenderness ratio 
requirements, ps, as given in Table A2 
in Appendix 8-1. 
 
Brace configurations 
 
Bracing of the K-type is not permitted in this type of structure.  
 
If a V-type or an inverted V-type is used, as shown in Figure 8-7, the 
braces shall meet the following requirements: 
 
1. The intersecting beam with the braces must be continuous. 
2. The frame shall carry the dead and live loads without the braces. 
3. The unbalanced force effect applied to the beam shall be based on full 

yielding of the tension brace and 30 percent of the capacity of the 
compression brace. (See the standard for more details.) 

4. The top and bottom flanges of the intersecting beam with braces shall 
be designed for lateral force equal to 2 percent of the flange nominal 
strength: 

  Qbr = 0.02 Fy bf tf 
 
Brace connections 
 
The brace connections shall be designed using the maximum expected 
force that can be transferred to the brace by the system. However, the 
brace strength need not exceed the nominal tensile strength of the 
bracing member, which is determined as follows: 
 
 Pn  Ry Fy Ag 
 
where: 
Ag = Gross sectional area of the brace. 
Fy = Specified yield stress of the brace. 
Ry = Yield stress amplification factor as specified earlier. 

FIGURE 8-7
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Furthermore, the tensile strength as given above shall not be less than 
the strength required by Section J4 in LRFD specifications, which in-
cludes tension rupture on the effective net section, and block shear rup-
ture strength.  
 
If the brace is designed to buckle, the connection of the brace shall be 
designed for flexure to resist the brace plastic flexure capacity determined 
as 1.1 Ry Mp. 
 
See the seismic provisions for more details of this system. 

8.3.7  Eccentrically Braced Frames (EBF) 

Eccentrically braced frames, or EBF, are expected to experience sig-
nificant inelastic deformations. EBF dissipate energy by flexure yielding of 
the link members. This is defined as follows. 
 
As bracing elements cause obstruction of the bays they occupy, EBF are 
generally used to create room for entrances such as doors inside the 
building. To make such space, the braces in this system do not meet at a 
common point as they would in V-type, for example. Instead, the braces 
intersect the beams at different points. Because of this arrangement, EBF 
are generally less stiff than concentrically braced frames.  
 
In EBF, the braces are configured to form stiff triangulation with part of 
the beams, leaving the other part as a link. For example, Figure 8-8 
shows some arrangements that create qualified links. In principle, the 
links are expected to yield under seismic excitation while the rest of the 
members, including beams and braces, remains elastic. This philosophy 
is in line with the capacity design philosophy given in Section 5.10 
(Capacity Design). 

FIGURE 8-8
ECCENTRICALLY BRACED FRAMES 
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General Link Requirements 
 
The links shall satisfy the following general requirements: 
 
1. Links shall be designed with steel grade less or equal to 345 MPa (50 

ksi). 
2. Links shall satisfy the width-thickness limitations given in Table A-2 in 

Appendix 8-1 at the end of this chapter.  
3. Webs of the links shall be one piece without doublers or penetrations.  
 
Link rotation angle 
 
The link rotation angle, p, is defined 
as the deviation of the ends of the link 
from the line connecting the end of the 
link with the rest of the beam. As an 
illustration, p is shown in Figure 8-9: 
the elastic triangle attached to the link 
is considered to displace as a rigid 
piece. All deformations given in Figure 
8-9 are plastic deformations which are 
assumed to dominate the defor-
mations. Thus, the elastic deforma-
tions are excluded. Figure 8-9 demon-
strates that the following relations 
hold: 
 
 p = p/h 
 p = (L/e) p 
 
The link rotation angle shall not exceed the following values: 
 

p  0.08  for  e  1.6 Mp/Vp 
p  0.02  for  e  2.6 Mp/Vp 

 
Interpolations shall be used for values in between. 
 
Link shear strength 
 
The shear strength of the link is given as a function of the level of axial 
load, Pu, in the member. The quantity, Vp, is identified as a reference 
quantity for shear strength as follows: 
 
 Vp = 0.6 Fy Aw 
 Aw = tw(db � 2 tf) 
 
 
 

FIGURE 8-9
LINK ROTATION ANGLE 

p

p

h

 
e

L

p



AISC Seismic Provisions for Structural Steel Buildings 

403 

where: 
Aw = Area of the link web as given above. 
db = Overall depth of the link. 
Fy = Specified yield stress of the link. 
tf = Thickness of the link flange. 
tw = Thickness of the link web. 
 
Accordingly, the shear strength of the link is given as follows: 
 
(a) When Pu  0.15Py, the effect of Pu on the shear strength may be 

ignored. Thus, the nominal shear strength shall satisfy the following: 
    
  Vn  Vu 
 
where: 

= 0.9. 
Vn = Nominal shear strength which is given as: 
     
 Vn = 2Mp/e 
  Vp 
 
where: 
e = Length of the link as shown in Figure 8-10. 
Mp = Plastic moment of the link (Z Fy). 
Vu = External factored shear force. 
 
(b) When Pu > 0.15Py, the nominal shear strength shall satisfy the 

following: 
 
(c)  
 Vn  Vu 
 
where: 

= 0.9. 
Vn = Nominal shear strength which is given as: 
 Vn = 2Mpa/e 
  Vpa 
 
where: 
e  = Length of the link as shown in Figure 8-10, which shall not exceed 

the following: 
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 Mpa = Plastic moment in presence of axial load: 
   1.18Mp[1 � (Pu/Py)] 

 
 Vpa = Plastic shear capacity in presence of axial load: 

 

 Vp 2)/(1 yu PP  
 
Link stiffeners 
 
Both end and intermediate stiffeners, as shown in Figure 8-10, must be 
provided in the link region. The stiffeners shall satisfy the following re-
quirements. 
 
End stiffeners 
 
End stiffeners shall be provided on both sides of the web. The width and 
thickness of the end stiffeners shall meet the following limitations: 
 
bst  bf � 2tw 
tst  (0.75tw, 10 mm) (3/8 in) 
 
where: 
bf = Width of the link flange. 
bst = Width of the stiffener. 
tst = Thickness of the stiffener. 
tw = Thickness of the link web. 
 
Intermediate stiffeners 
 
Intermediate stiffeners shall be 
provided for short links as follows: 
 
(a) For e  1.6Mp/Vp,  

The inelastic response in this case is dominated by shear 
yielding. The spacing of the stiffeners is given in terms of the link 
rotation angle, p, as follows: 

 
 For p  0.08, s  30tw � d/5 
 For p  0.02, s  52tw � d/5 
 Interpolations shall be used for values in between. 
 
(b) For e (  5Mp/Vp and  2.6 Mp/Vp):  

The inelastic response in this case is dominated by flexure 
yielding. Stiffeners shall be placed from each end of the link at a 
distance: 
 

 S = 1.5bf 

FIGURE 8-10
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(c) For e (  2.6Mp/Vp and  1.6Mp/Vp): 

The inelastic response in this case results from a combination of 
shear and flexure yielding. The stiffeners shall be provided as in 
(a) and (b) above. 

 
(d) For e  5Mp/Vp:   
 No stiffeners are required. 
 
The intermediate stiffeners shall be provided on both sides of the link if 
the link is 635 mm (25 in) or deeper. Only one-side stiffeners are required 
for depths less than 635 mm (25 in). One-side stiffeners shall satisfy the 
following thickness requirements: 
     
 bst   bf/2 � tw 
 tst  (tw, 10 mm) (3/8 in) 
 
where: 
bf = Width of the link flange. 
bst = Width of the stiffener. 
d = Overall depth of the link. 
e, Mp, Vp = As defined before. 
tst = Thickness of the stiffener. 
tw = Thickness of the link web. 
 
Lateral support of links 
 
The top and bottom flanges of the link shall be provided with lateral sup-
ports at their ends. The lateral supporting elements shall be designed for 
a force equal to 6 percent of the flange nominal strength: 
 
 Qbr = 0.06 Fy bf tf 
 
where: 
bf = Width of the link flange. 
Fy = Specified yield stress of the link flange. 
tf = Thickness of the link flange. 
 
See the seismic provisions for more details of this system. 

8.4  Allowable Stress Design Approach 

The modern philosophy of earthquake design that is presented in this 
book depends on the inelastic behavior of the structure in its ultimate 
state. Naturally, this philosophy is consistent with the ultimate strength 
design approach which is known as the load and resistant factor design, 
LRFD. Therefore, using the allowable stress design (ASD) approach de-
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feats the purpose of applying such concepts. However, the AISC pro-
visions permit the use of the ASD approach as it may still be in use in 
practice. 
 
To remain within the scope of the ultimate strength concept in conjunction 
with the ASD approach, the AISC code still requires the structures to be 
designed for the combinations of factored loads when seismic effect is in-
cluded. To overcome this difficulty on the stress side, the code has raised 
the allowable stresses by a factor of 1.7 to resist the combinations of the 
factored loads. 
 
See the seismic provisions for more details on this subject. 
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APPENDIX  8-1 
 
 
This appendix to Chapter 8 contains some of the relevant AISC seismic 
provisions (2002) presented in tables for seismic parameters.  
 
 
 

 
TABLE A1 

SYSTEM OVERSTRENGTH FACTOR, o 

 SEISMIC FORCE�RESISTING SYSTEM 
 

o 

 

1 All moment-frame systems  3 
2 Eccentrically braced frames, EBF 2.5 
3 All other systems 2 

 
 
 

 
TABLE A2  

LIMITING WIDTH THICKNESS RATIOS, ps, FOR COMPRESSION ELEMENTS 
LIMITING WIDTH- 

THICKNESS RATIOS  DESCRIPTION OF ELEMENT 
WIDTH-

THICKNESS 
RATIO ps 

(Seismically Compact) 
Flanges of I-shaped rolled, hybrid 
or welded beams [a], [b], [f], [h] b/t  0.30 ys FE /  

Flanges of I-shaped rolled, hybrid 
or welded columns [a], [c] b/t  0.30 ys FE /  

Flanges of channels, angles and 
I-shaped rolled, hybrid, or welded 
beams and braces [a], [d], [h] 

b/t  0.30 ys FE /  

Flanges of I-shaped rolled, hybrid 
or welded columns [a], [e] b/t  0.38 ys FE /  

Flanges of H-pile sections b/t  0.45 ys FE /  

Flat bars [g] b/t  2.5 
Legs of single angle, legs of 
double angle members with 
separators, or flanges of tees [h] 

b/t  0.30 ys FE /  

U
N

ST
IF

FE
N

ED
 E

LE
M

EN
TS

 

Webs of tees [h] d/t  0.30 ys FE /  
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Webs in flexural compression in 
beams in SMF, unless noted 
otherwise [a] 

h/tw 2.45 ys FE /  

Other webs in flexural 
compression [a] h/tw 3.14 ys FE /  

For Pu/ b Py  0.125: 
3.14 

y

s

F
E


yb

u

P
P

54.11  

For Pu/ b Py > 0.125: 

Webs in combined flexure and 
axial compression [a], [b], [c], [d], 
[e], [f], [h] 

h/tw 

1.12 

y

s

F
E


yb

u

P
P

33.2  

Round HSS in axial and/or flexure 
compression [d], [h] D/t 0.044 ys FE /  

Rectangular HSS in axial and/or 
flexure compression [d], [h] 

b/t  
or 

 h/tw 

0.64 ys FE /  

ST
IF

FE
N

ED
 E

LE
M

EN
TS

 

Webs of H-pile sections h/tw 0.94 ys FE /  

[a] For hybrid beams, use the yield 
strength of the flange Fyf instead of 
Fy. 

[b] Required for beams in SMF. 
[c] Required for beams in SMF. See 

code for exceptions. 
[d] Required for beams and braces in 

SCBF.  

[e] See code for exceptions. 
[f] Required for link in EBF. 
[g] Diagonal web members within the 

special segment of STMF. 
[h] Chord members of STMF. 
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DESIGN OF 
EARTHQUAKE- 

RESISTANT BRIDGES 
 (AASHTO CODE) 

 
 
 
 
 

9.1  Introduction 

Bridges are generally addressed in separate codes than those for building 
structures. Provisions and design requirements for bridges in the United 
States are published by the American Association of State Highway and 
Transportation Officials (AASHTO). This chapter provides a brief review of 
bridge components before discussing the seismic provisions and design 
procedures of the AASHTO code.  
 
Figure 9-1 shows a typical cross section in a conventional modern highway 
bridge. The bridge usually consists of three main groups: the super-struc-
ture, the substructure and the foundation. The superstructure usually con-
tains the deck system that carries the traffic. The deck system is the main 
slab with or without supporting girders. The girders usually sit on elasto-
meric pads, which are considered part of the superstructure. If the slab is 
designed without girders, it is directly supported by the substructure. 
 
The substructure lies below the superstructure and contains the supporting 
system of the superstructure. Substructure includes the cap beams (if 
needed), the columns, and/or the piers. The substructure sits on top of the
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foundation system required by the site: a typical shallow foundation or a 
deep pile foundation. 

 
Seismic design of conventional bridges usually assumes that the bridge 
mass is distributed in the superstructure, which is assumed to be capable 
of transferring the load to the substructure. The substructure is assumed to 
carry and resist the seismic forces and transfer their effect to the foun-
dations. 
 
Modern conventional bridges may be seismically isolated at the border be-
tween the superstructure and the substructure at the elastomeric pad level. 
In these days, it is common for a seismic isolation system to use special 
elastomeric pads specifically designed for this purpose. 

Seismic design of the conventional bridges described above are covered 
by AASHTO. Unconventional bridges are not. Instead, unconventional brid-
ges need special dynamic treatment that depends on the characteristics of 
the bridge under consideration. 
 

FIGURE 9-1
TYPICAL CROSS SECTION OF CONVENTIONAL MODERN BRIDGE 
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(a) Straight Bridge
 (Plan View)

FIGURE 9-2
MAJOR DIRECTIONS OF SEISMIC EXCITATIONS 
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Seismic evaluation of bridges usually considers two horizontal directions of 
seismic excitations. One direction is along the axis between abutments of 
the bridge. This is known as the longitudinal direction (shown in Figure 9-
2). The other direction is perpendicular to the first one and is known as the 
transverse direction. The effect of the two directions is then combined. This 
will be discussed in greater detail in this chapter. 

9.2  AASHTO Procedures for Bridge Design 

AASHTO provisions are based on the National Earthquake Hazards 
Reduction Program, NEHRP, administered by the Federal Emergency 
Management Agency (FEMA) in the United States. In fact, this program is 
the origin of all modern seismic codes. AASHTO standard procedures 
apply to conventional steel and concrete girder and box girders with 
multiple spans of less than or equal to 150 meters each. Suspension 
bridges, cable-stayed bridges, arches and movable bridges are not cov-
ered by AASHTO standards and require individual treatment by spec-
ialized engineers. 
 
AASHTO divides the United States into seismic zones with contour lines. 
Each zone is given an effective peak ground acceleration, EPA, or simply, 
acceleration coefficient, A. The EPA is based on an 80 percent to 90 
percent probability that the value of A will not be exceeded in a 50-year 
period. This implies a 475-year return period. The effective peak ground 
acceleration is the same as the seismic zone factor, Z, given by the  
IBC presented in Chapter 6. AASHTO identifies four seismic zones  
and assigns each zone a range of acceleration coefficient as shown in 
Table 9-1.  
 

 
TABLE 9-1 

AASHTO SEISMIC ZONES AND COEFFICIENTS 
ZONE 1 2 3 4 

Acceleration 
coefficient, A 

 0.09 
 

 0.19 
> 0.09 

 0.29 
> 0.19 

 
> 0.29 

 
The effective peak acceleration is as defined in previous chapters and may 
be viewed as a nominal quantity based on response spectrum analysis of 
earthquake records. Similar to Ca in the IBC, the acceleration coefficient, A, 
is assigned to the PGA for normalized records in case of time history anal-
ysis as explained in Chapter 6. 
 
AASHTO requires jurisdiction authorities to consider social/survival and se-
curity/defense requirements and then classify their bridges into the 
importance categories of critical, essential or other. For example, essential 
bridges should be functional during and after an earthquake. 
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In addition to this classification, AASHTO 
defines a regular bridge as a bridge with 
six spans or less and without any abrupt or 
unusual change in mass, stiffness or 
geometry along its spans. The geometry 
and stiffness requirements of regularity for 
straight bridges are given in Table 9-2. 
Curved bridges are considered regular as 
long as the subtended angle is less than 
90 degrees (as shown in Figure 9-3). 
 
 

 
TABLE 9-2 

REGULAR BRIDGE REQUIREMENTS OF STRAIGHT BRIDGES 
PARAMETER VALUE 

Number of spans 2 3 4 5 6 
Maximum span 

length ratios 3 2 2 1.5 1.5 

Maximum pier 
stiffness ratio � 4 4 3 2 

 
 
Dynamic analysis of bridges is not 
required for the type of single-span 
bridges shown in Figure 9-4. However, 
AASHTO requires the connections 
between the bridge and the abutments 
to be designed for minimum forces to 
guarantee that the bridge is tied well 
during an earthquake. 
 
AASHTO requires dynamic analysis 
for multispan bridges with two spans 
or more, as shown in Figure 9-5. The 
method of analysis (procedures) depends on the bridge�s regularity, 
seismic importance category and number of spans. AASHTO specifies four 
methods of analysis for seismic analysis and design of bridges: uniform 
load method (UL), single-mode spectral method (SM), multimode method 
(MM) and time history analysis method (TH). Table 9-3 summarizes the 
method of analysis required for seismic evaluation of the general bridge 
layout shown in Figure 9-5. 

FIGURE 9-3
REGULAR  

CURVED BRIDGE 

< 900

Bridge

FIGURE 9-4
SINGLE SPAN BRIDGE 

 
Span 

(Plan View)

Abutment
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TABLE 9-3 

METHOD OF ANALYSIS FOR SEISMIC EFFECT 
MULTISPAN 

Other  Essential Critical SEISMIC 
ZONE 

SINGLE-
SPAN 

BRIDGES 
Regular Ir-

regular Regular Ir-
regular Regular Ir-

regular 
1 � � � � � � 
2 SM/UL SM SM/UL MM MM MM 
3 SM/UL MM MM MM MM TH 
4 

No 
seismic 
analysis 
required 

SM/UL MM MM MM TH TH 
 
The uniform load method is a simplified method that models the bridge as a 
single DOF system with lumped mass. 
 
The single-mode method assumes that the bridge only responds in the first 
mode. In the multiple mode method, the bridge is analyzed using modal 
superposition (response spectrum) as given in Chapter 3.  
 
Table 9-3 indicates that single bridges and bridges in Seismic Zone 1 do 
not need seismic analysis. However, they do need to satisfy detailing re-
quirements in terms of connections and seismic seats. These will be ex-
plained in the following sections. 

9.3  Response Spectra 

The design response spectra used by AASHTO are adopted from NEHRP. 
The response spectra are defined for four major types of soil profiles: rock, 
stiff and deep cohesionless sand, soft to medium clay, and soft clay (as 
shown in Figure 9-6). These response spectra were used by the Uniform 
Building Code (UBC) up to the 1997 edition when the number of spectra 

FIGURE 9-5
MULTIPLE SPAN BRIDGE  
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was expanded from four to five. These are marked for Soil Types SA to SE 
as given in Chapter 6. 
 
The elastic response spectra used for bridges and shown in Figure 9-6 
may be expressed mathematically as follows: 
 
(1) Soil Types I and II: 

 

 A
T

SAC
m

sm 5.22.1
3

2  

where: 
A = Effective peak ground acceleration or the zone factor. 
Csm = Response spectrum normalized to 1.0 g. 
S = Soil profile factor, which is given as 
 S = 1.0 for Soil Profile Type I as shown in Figure 9-6. 
 S = 1.2 for Soil Profile Type II as shown in Figure 9-6. 
Tm = Period of the bridge in seconds (to be discussed later). 
 
(2) Soil Types III and IV: 
 

  



3.00.2
3.05.22.1

3
2 AforA

AforA

T

SAC
m

sm  

 
where: 
A = Effective peak ground acceleration (or the zone factor). 
Csm = Response spectrum for period Tm normalized to 1.0 g. 
S = Soil profile factor, which is given as 
S   = 1.5 for Soil Profile Type III as shown in Figure 9-6. 
S   = 2.0 for Soil Profile Type IV as shown in Figure 9-6. 
Tm = Period of mode (m) of the bridge in seconds (to be discussed later). 
 
(3) If the period of vibration for any mode exceeds 4 seconds, Csm shall be 

taken as 

   
3

4
3

m
sm

T

SAC   

 
AASHTO requires specific seismic site studies for sites close to active 
faults, for sites where long duration of earthquakes is expected and for re-
gions with higher than normal return periods of earthquakes. 
 
Note that if time history analysis is required where some normalized earth-
quake record is used for input, the acceleration coefficient, A, must be as-
signed to the PGA of the record. 
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9.4  Single-Span Bridges 

Single-span bridges as shown in 
Figure 9-7 are waived from dy-
namic analysis. Of the bridge�s 
main components, the abut-
ments do not need to be anal-
yzed for any seismic forces. 
However, AASHTO does require 
the connections between the 
abutments and the super-struc-
ture to be designed to resist 
seismic-induced forces and dis-
placements to ensure that the bridge 
remains tied together during an earth-
quake. The requirements of single-
span bridges are identical to the 
requirements for bridges in Seismic 
Zone 1 as defined in the following 
sections. 

9.5  Bridges in Seismic Zone 1 

Single-span and multispan bridges are 
waived from dynamic analysis. Of the 
bridge�s main components, the abut-
ments and the piers do not need to be 
analyzed for any seismic forces. How-
ever, AASHTO does require the connections between the superstructure 

FIGURE 9-7
LONGITUDINAL SECTION IN 

SINGLE SPAN BRIDGE  

Abutment Abutment
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FIGURE 9-6
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and between either the abutments or the piers to be designed to resist 
seismic-induced forces and displacements to ensure that the bridge re-
mains tied together during an earthquake. 
 
The force requirements of the connections between the deck and between 
either abutments or piers must be designed to transfer a seismic force, F, 
in both the longitudinal direction and the transverse direction as shown in 
Figure 9-8. The force, F, depends on the acceleration coefficient, A, and 
the soil profile type, which may be grouped as follows. 
 
Soil Types I and II 
 
For A < 0.025, the total hori-
zontal force required to hold any 
piece of the deck between ex-
pansion joints, as shown in 
Figure 9-9 marked with LT, shall 
be taken as 
 
Ftot = 0.1(D + SDL + L) 
 
where: 
D = Dead load over a 

tributary area of segment (LT). 
Ftot = Design force for all connections holding the segment (LT) as shown 

in Figure 9-9. 
L = Live load over a tributary area of segment (LT). 
SDL = Superimposed dead load over a tributary area of segment (LT). 
 
For A > 0.025, 
 
 F = 0.2(D + SDL + L) 
 
Where all quantities are defined as before. 
 
Soil Types III and IV 
 
 F = 0.2(D + SDL + L) 
 
Where all quantities are defined as before. 
 
The bridge must also meet the displacement requirements. These are 
given in terms of minimum seismic seat length as described in later 
sections. 
 

FIGURE 9-9
TRIBUTARY AREA OF LOADS 
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Continuous Deck
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9.6  Bridges in Seismic Zone 2 

Bridges in Seismic Zone 2 must be evaluated with dynamic analysis using 
the methods defined in Table 9-2: uniform load method (UL), single-mode 
spectral analysis method (SM) and multiple mode spectral analysis method 
(MM).  
 
The design forces of the superstructure and substructures may be reduced 
by the force-reduction factor, R, for a selected system. Values of the R-
factor are listed in the AASHTO code and are also listed in Appendix 10-1 
at the end of Chapter 10. Unlike building codes, AASHTO provisions 
assign force reductions for the main structure that are different than those 
assigned for the foundation. 
 
For the main structure components including the superstructure, 
substructure and all components except foundations, the design force, Fd, 
is given as the elastic-induced force, Fel, divided by the R factor given in the 
AASHTO table:  
 
 Fd = Fel/R 
 
For the foundations, the design force may be reduced by only half the 
reduction of the main structure: 
 
 Fd = Fel/(R/2)  Fel 
 
This difference in reduction is intended to force the formation of plastic 
hinges in the substructure and to keep the foundation elastic during the ex-
citation (as explained in previous chapters). 

9.7  Bridges in Seismic Zones 3 and 4 

Bridges in Seismic Zones 3 and 4 must also be evaluated with dynamic 
analysis using methods defined in Table 9-2: uniform load method, single-
mode spectral analysis method and multiple mode spectral analysis 
method.  
 
Similar to bridges in Seismic Zone 2, the design forces of the 
superstructure and substructures may be reduced by the force-reduction 
factor, R, for a selected system. Therefore, for the main components of a 
structure, including superstructure, substructure, and all components ex-
cept foundations, the design force, Fd, is given as the elastic-induced force, 
Fel, divided by the R factor listed in the AASHTO table: 
 
 Fd = Fel/R 
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Unlike bridges in Seismic Zone 2, the design forces of the foundations may 
not be reduced: 
 
 Fd = Fel 
 
This difference in reduction is intended to force the formation of plastic 
hinges in the substructure and to keep the foundation elastic during the 
excitation (as explained in previous chapters). Because Seismic Zones 2 
and 3 expose the bridges to greater hazard, the code does not allow any 
reduction in the force in the foundation. 
 
In these zones, the code also requires design shear forces to be based on 
the maximum probable moments, including the overstrength effect as 
explained in previous chapters. For this purpose, the shear forces must be 
calculated using an increased strength of flexure capacity to include the 
overstrength effect by increasing the nominal capacity as follows: 
 
 Mo.s = 1.30Mn  (for concrete structures) 
 Mo.s = 1.25Mn  (for steel structures) 
 
where: 
Mn = Nominal strength of reinforced concrete section. 
Mo.s = Overstrength moment (most probable moment). 
Mp = Nominal plastic moment of steel section. 

9.8  Methods of Analysis 

As noted earlier, AASHTO specifies four methods of analysis to find 
earthquake-induced forces and displacements: the uniform load method, 
the single-mode spectral method, the multimode method and the time his-
tory analysis method. These methods are presented in the following 
sections. 
 
For both directions, the weight of the bridge per unit length is defined as 
W(x). This includes the weight of the superstructure, the substructure, the 
foundations and any added dead loads. In general, the live load is not 
included in this weight. However, the live load or portion of that may be 
considered as part of the weight of the bridge in special cases as required 
by the authority of jurisdiction. 
 
The method of analysis depends on the presence of intermediate 
expansion joints in the bridge. Because they induce discontinuity in the 
bridge deck, they must be taken into consideration. Accordingly, bridges 
may be classified into continuous bridges (without intermediate expansion 
joints) and discontinuous bridges (with intermediate expansion joints). The 
two types will be treated separately in the following sections. 
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9.8.1  Uniform Load Method 

The uniform load method models the bridge with its mass lumped at the 
location of the maximum displacement that results from application of the 
uniform load to the bridge in each direction. Therefore, for the purpose of 
finding the period of the structure, the bridge is modeled as a single degree 
of freedom system. However, the resulting earthquake-induced forces are 
applied to the structure as uniform forces.  
 
The earthquake-induced forces in the bridge are obtained using the 
response spectra given in Figure 9-6. In general, the bridge is analyzed in 
two perpendicular directions as mentioned earlier: in the longitudinal di-
rection along its major axis between abutments and in a perpendicular 
transverse direction. 

9.8.1.1  Continuous 
Bridges 

Because continuous bridges 
are characterized by the ab-
sence of intermediate ex-
pansion joints, the deck of 
the bridge will consist of one 
piece from abutment to abut-
ment. The bridge must be 
analyzed in both longitudinal 
and transverse directions. 
 
Longitudinal direction 
 
In the longitudinal direction, the bridge deck is considered rigid. As a result, 
the deck and all of its supporting elements will experience the same dis-
placement. The analysis proceeds by applying an arbitrary uniform force, 
Po, along the bridge deck in the direction of excitation and then finding the 
resulting displacement, Vo. For convenience, this force may be taken as 1. 
Because this displacement (deflected shape) is considered the first mode 
of vibration, the earthquake-induced forces will be proportional to this 
deflected shape. For example, if a bridge is supported by two abutments 
and one pier, and the bridge is free to move at the abutments as shown in 
Figure 9-10, then the deck displacement due to a unit uniform force will be 
as shown in the same figure. Because the bridge deck is considered to be 
rigid, the deck displacement along the deck will be constant and equal to 
Vo. 
 
The period of the bridge is given by the following expression: 
 

FIGURE 9-10
LONGITUDINAL EXCITATION  
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Kg
W

K
MT tot22   

 
where: 
g = Ground gravitational acceleration. 
K = Stiffness of the bridge. 
T = Period of the bridge in seconds. 
Wtot = Total weight of the bridge. 
 
The total weight and total stiffness of the bridge are calculated as follows: 
 Wtot =  W(x) dx   
 K = Po L/Vo 
 
Where Po, , and Vo are as defined before and shown in Figure 9-10. 
 
The seismic-induced force per unit length of the bridge, Pe, is given by 
the following expression: 
 
 Pe = Csm Wtot /L 
 
where: 
Csm = Elastic response spectrum coefficient as defined in Figure 9-6. 
L = Total length of the bridge. 
Wtot = Total weight of the bridge as defined previously. 
 
By applying the force (Pe) to the bridge, the internal forces and dis-
placements are calculated in the substructure as shown in Figure 9-11. The 
earthquake-induced elastic displacement of the bridge, Ve, can be scaled 
from Vo by the factor Pe/Po: 
 
 Ve = (Pe/Po)Vo 
 
The resulting earthquake-induced forces are resisted by the substructure 
and consequently transferred to the foundations. For example, the forces in 
the bridge shown in Figure 9-10 are 
resisted by the intermediate pier alone 
without the abutments. If, however, 
the bridge is tied at the abutments, the 
abutments are considered part of the 
supporting system, and the forces 
must be resisted by the abutments 
and the pier according to their stiff-
ness. If the abutment has large stiff-
ness, then the bridge period would 
tend to zero. Thus, the force is taken 
as the limits of the response spectrum 
as applicable. 

FIGURE 9-11
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Transverse direction 
 
In the transverse direction, the bridge deck is not considered rigid. As a 
result, the deck and all of its supporting elements will experience a 
displacement that is a function of the bridge stiffness. The analysis pro-
ceeds by applying an arbitrary uniform force, Po, to the bridge deck in the 
direction of excitation. For convenience, this force may be taken as 1. 
Because of this unit force, the deck will deflect in the transverse direction 
with a maximum displacement, 
Vs,max. Because this displace-
ment represents the displace-
ment of a single degree of 
freedom (SDOF) system, the 
mass may be lumped at this 
location. For example, if a 
bridge is supported by two a-
butments and one pier where 
the bridge is not free to slide at 
the abutments as shown in 
Figure 9-12, then the deck 
displacement due to unit uni-
form force will be as shown in 
the same figure. The mass is 
then lumped at the location of 
the maximum displacement as 
shown. 
 
Accordingly, the period of the bridge is given by the same expression as 
before: 
 
 

Kg
W

K
MT tot22   

 
where: 
g = Ground gravitational accel-

eration. 
K = Stiffness of the bridge (this 

has to be found by structural 
analysis procedures). 

T = Period of the bridge in 
seconds. 

Wtot = Total weight of the bridge. 
 
The total weight of the bridge is 
calculated as before: 
 

FIGURE 9-13
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 Wtot =  W(x) dx 
 
The seismic-induced force per unit length of the bridge will be a uniform 
force, Pe, as shown in Figure 9-13 and will be given by the same ex-
pression as in the case of the longitudinal direction: 
 
 Pe = Csm Wtot /L 
 
where: 
Csm = Elastic response spectrum coefficient as defined in Figure 9-6. 
L = Total length of the bridge. 
Wtot = Total weight of the bridge as defined previously. 
 
By applying this force (Pe) to the bridge, the internal forces and displace-
ments are calculated in the substructure accordingly. The actual earth-
quake-induced elastic displacement, Ve, is also obtained, which will not be 
constant in this case. 
 
As in the case of longitudinal excitation, these induced forces are only 
resisted by the substructure. For example, the forces in the bridge shown in 
Figure 9-13 are resisted by both abutments and the intermediate pier. In 
the transverse direction, the abutments are considered rigid. As a result, 
they act as a restrictive object to the deck. Because this behavior may be 
modeled as a hinge support of the deck, the abutments take part of the 
seismic forces as reactions. 
 
Note that this method can 
overestimate the lateral forces 
at the abutments by up to 100 
percent in the transverse 
direction. This occurs with the 
assumption that the seismic 
force, Pe, is uniform along the 
bridge. In reality, this force is 
equal to Pe at the location of 
maximum displacement and 
goes to zero at the abutments 
following the mode of vibration. 
Therefore, if this over-con-
servative estimate is undesired, 
the bridge should be analyzed 
using the single-mode spectral 
method (to be covered in the 
next section). EXAMPLE 9-1, FIGURE 1

BRIDGE LAYOUT

A2 A1 P1

H = 8 m 
(26.25 ft)

P2
37 m 

(121 ft)
37 m 

(121 ft)
41 m 

(135 ft) 

115 m
(377 ft)

t = 0.6 m 
(23.6 in) 

 
Columns 1.2 m dia. (47.2 in) 

Plan

25 m 
(82 ft) 

10 m (32.8 ft)
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Example 9-1 
 
A three-span bridge is supported by two abutments, A1 and A2, and two 
intermediate piers, P1 and P2, with dimensions as shown in Example 9-1, 
Figure 1. In the longitudinal direction, the deck is free to slide at both abut-
ments. Each pier consists of three circular concrete columns of grade, fc  = 
25 MPa (3.625 ksi). The columns are 1.2 meters (47.2 inches) in diameter 
and directly support the deck with total fixity at both the deck end and the 
foundation end. The bridge weight per unit length, W(x), is constant and 
equal to Wo = 375 kN/m (2.143 kip/in). 
 
If the bridge lies in a region with seismic coefficient of A = 0.19 and is 
supported on Soil Type II, then use the uniform load method to find the 
earthquake-induced elastic forces, moments and displacements in the 
bridge due to longitudinal and transverse directions separately. 
 
Solution 
 
Part 1: Longitudinal direction: 
 
(1) Pier properties: 
 
Because the deck is free to slide 
at both abutments, the piers 
(three columns each) become 
the only seismic supporting 
elements. Because the columns 
are fixed at top and bottom as 
shown in Example 9-1, Figure 2, 
their stiffness is obtained as 
follows: 
 
 Ec = 4,700 'cf  = 4,700 25  = 23,500 MPa (3,408 ksi) 
 Ic = D4/64  = (1.2)4/64  = 0.101,788 m4 (244,547 in4) 
 
Column stiffness is evaluated for fixed-fixed ends as 
      
 kcol = 12 Ec Ic/H3 = 12(23.5 x 1066)(0.101,788)/(8)3  
 = 56,063 kN/m (320 kip/in) 
 
The total stiffness of the piers is equal to the summation of the stiffness of 
each one: 
 
 kp = kcol (No.) = 56,063 (3) = 168,189 kN/m (961 kip/in) 
 ktot = kp (No.) = 168,189 (2) = 336,378 kN/m (1,922 kip/in) 

x 

Po = 1 kN/m

 
Deck 
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(2) Displacement, Vo: 
 
 Vo = Po L/ktot = 1(115)/336,378 = 342 x 10�6 m (0.013 in) 
 
(3) Weight and stiffness: 

  Wtot =  W(x) dx = 375 (115) = 43,125 kN (9,695 kip) 
 
 K = Po L/Vo = 1(115)/342 x 10�6 = 336,257 kN/m (1,921 kip/in) 
 
(4) Period: 

  
Kg

W
T tot2     =

)217,336(81.9
125,432 = 0.718 sec 

 
 
(5) Elastic response spectrum coefficient, Csm: 
 

  A
T

SA
C

m

sm 5.2
2.1

3
2

   

 = 
3

2
)721.0(

)2.1()19.0(2.1 = 0.341 

 
 Csm  2.5A = 2.5(0.19) = 0.475 
 
Therefore, Csm = 0.341 
 
(6) Force per unit length of the bridge:  
 
 Pe = Csm Wtot /L = 0.341 (375)(115)/115 
      = 127.875 kN/m (0.731 kip/in) 
 
(7) Pier forces and displacements:  
 
Total force in the deck: Ftot = Pe L = 127.875 (115) 
 = 14,706 kN (3,306 kip) 
Force on top of each pier: Fp  = Ftot/2 = 14,706/2  
 = 7,352 kN (1,653 kip) 
Force on top of each column: Fcol = Fp/3 = 7,352/3  
 = 2,451 kN (551 kip) 
Moment in each column: Mcol = Fcol(4) = 2,451(4)  
 = 9,804 kN.m (86,775 kip.in) 
Elastic displacement: Ve = (Pe/Po)Vo = 127.875(342 x 10�6)  
 = 0.044 m (1.73 in) 
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The results are shown in Example 9-2, Figure 3. 

 
Part 2: Transverse direction: 
 
(1) Pier properties: 
 
The properties will be the same 
as noted in Part 1: 
 
Ec = 23.500 MPa (3.408 ksi) 
Ic = 0.101,788 m4 (244.547 in4) 
 

(2) Displacement, Vs(x): 
 
The displacement in the trans-
verse direction will not be easy 
to evaluate as in the case of 
longitudinal excitation. In this 
case, the deck is considered to 
be flexible and supported by 
two abutments and two piers 
as shown in Example 9-1, 
Figure 4. Therefore, the sys-
tem is highly statically indeter-
minate. Therefore, in order to 
evaluate Vs(x), the bridge needs to be modeled as a three-dimensional 
frame structure, and using structural analysis software becomes un-
avoidable. 
 
Modeling, of course, is considered an art in addition to an element of 
engineering. For this analysis, the bridge may be modeled as a space 
frame as shown in Example 9-1, Figure 5. The deck is modeled as a 
longitudinal beam with abutments as pinned supports at each end. The 
columns are modeled as vertical beams that are supported as required. To 
preserve the plane section hypothesis of beam theory in the deck, rigid 

x

Pe = 127.875 kN/m 
(0.731 kip/in)

 
Ve = 0.044 m (1.73 in)
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links are required to connect the deck with the columns as shown in 
Example 9-1, Figure 5. Because the maximum displacement of the de-
flected shape is needed, it is important to insert as many nodes as practical 
along the bridge axis. In this example, one node is inserted between the 
piers and abutments for this purpose. 
 
A unit force, Po = 1 kN/m (5.71 x 
10-3 kip/in), may be applied to 
the deck as shown in Example 
9-1, Figure 6. This will result in a 
deflected shape, Vs(x), as also 
shown in the same figure. 
 
The space frame described a-
bove is added as input to 
STAAD software along with the 
node arrangements shown in Example 9-1, Figure 5, and using the ma-
terial and section properties as defined earlier. 
 
The resulting forces and displacements due to Po are taken directly from 
the computer output (STAAD) as shown in Example 9-1, Tables 1 and 2, 
respectively. 
 
 

EXAMPLE 9-1, TABLE 1 
FORCES AND REACTIONS DUE TO UNIT FORCE, 

Po = 1 kN/m (5.71 x 10-3 kip/in) 

SUPPORT PIER 1 PIER 2 
ABUT-
MENT 

1 

ABUT-
MENT 

2 
Force, kN 

(kip) 
12.58 
(2.828) 

13.35 
(3) 

44.23 
(9.943) 

44.84 
(10.08) 

Column 1 2 3 1 2 3 � � 
Force, kN 

(kip) 
4.19 

(0.942) 
4.19 

(0.942)
4.19 

(0.942)
4.45 
(1.0) 

4.45 
(1.0) 

4.45 
(1.0) � � 

 
 
 

EXAMPLE 9-1, TABLE 2 
DISPLACEMENTS, Vs, DUE TO UNIT FORCE, 

 Po = 1 kN/m (5.71 x 10-3 kip/in) 
Node Number 1 2 3 4 5 6 7 
Vs(x10�6 m) 
(x10�3 in) 0 45 

(1.77) 
77 

(3.03) 
91 

(3.58) 
82 

(3.23) 
50 

(1.97) 0 

 
 
 

EXAMPLE 9-1, FIGURE 6
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As can be seen in Example 9-1, Table 2, the maximum displacement along 
the deck takes place at node 4. Therefore, the maximum displacement is 
taken as Vs,max = 91 x 10�6 m (3.58 x 10-3 in). 
 
(3) Weight and stiffness: 

 Wtot =  W(x) dx  = 375(115) = 43,125 kN (9,695 kip) 
 
 K = Po L/Vs,max = 1(115)/91 x 10�6  
 = 1.264 x 106 kN/m (7,223 kip/in) 
 
(4) Period: 

 

 
Kg

W
T tot2  =

)10264.1(81.9
125,432

6x
= 0.371 sec 

 
(5) Elastic response spectrum coefficient, Csm: 
 

 A
T

SA
C

m

sm 5.2
2.1

3
2

  

  

 = 
3

2
)371.0(

)2.1()19.0(2.1 = 0.530 

 
Also, Csm  2.5A = 2.5(0.19) = 0.475 
 
Therefore, Csm = 0.475 
 
(6) Force per unit length of the bridge:  
 
 Pe = Csm Wtot /L = 0.475(375)(115)/115  
  = 178.125 kN/m (1.018 kip/in) 
 
(7) Pier forces and dis-
placements:  
 
The forces and displace-
ments due to seismic force 
are found by applying the 
force Pe to the bridge 
using the same space 
frame model used to find 
Pe as shown in Example 9-
1, Figure 7. The resulting 

Pe = 178.125 kN/m 
(1.018 kip/in) 

 
Deck 

Displacement, Ve(x) 

EXAMPLE 9-1, FIGURE 7
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forces and displacements may be scaled from the first run with Po, by the 
ratio Pe/Po. In other words, the results in Example 9-1, Tables 1 and 2, are 
multiplied by Pe = 178.125 (1.018). The results are given in Example 9-1, 
Tables 3 and 4.  
 
 

EXAMPLE 9-1, TABLE 3 
FORCES DUE TO 

Pe = 178.125 kN/m (1.018 kip/in) 

SUPPORT PIER 1 PIER 2 ABUT-
MENT 1 

ABUT-
MENT 

2 
Force, kN 

(kip) 
2,241 
(504) 

2,378 
(535) 

7,878 
(1,771) 

7,987 
(1,796) 

Column 1 2 3 1 2 3 � � 
Force, kN 

(kip) 
746 

(168) 
746 

(168)
746 

(168)
793 

(178)
793 

(178)
793 

(178) � � 

 
 

EXAMPLE 9-1, TABLE 4 
DISPLACEMENTS, Ve, DUE TO 

 Pe = 178.125 kN/m (1.018 kip/in) 
Node Number 1 2 3 4 5 6 7 

Ve (mm)  
(in) 0 8 

(0.31) 
14 

(0.55) 
16 

(0.63) 
15 

(0.59) 
9 

(0.35) 0 

 
The moments in the columns are also available from the computer output. 
For this example, the moments may also be calculated for each column 
directly from statics as follows: 
 
Pier P1: Mcol = Fcol(4) = 746(4) = 2,984 kN.m (26,411 kip.in) 
Pier P2: Mcol = Fcol(4) = 793(4) = 3,172 kN.m (28,075 kip.in) 
  
The results for pier P1 are shown in Example 9-1, Figure 8. 
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9.8.1.2  Discontinuous Bridges 

Because discontinuous bridges are characterized by the presence of 
intermediate expansion joints, the deck of the bridge is divided into 
separate pieces between the expansion joints. The bridge still needs to be 
analyzed in both longitudinal and transverse directions. 
 
Longitudinal direction 
 
In the longitudinal direction, the deck segments between expansion joints 
are considered rigid: each segment and all of its supporting elements will 
experience the same displacement. Therefore, each piece is analyzed in-
dependently of the other segments. Accordingly, each segment will have its 
own weight, period and induced forces. Therefore, the analysis for each 
segment proceeds by applying an arbitrary uniform force, Po, along the 
bridge segment in the longitudinal direction and by finding the resulting 
displacement, Vo.  
 
For example, if a bridge is supported by two abutments and three piers 
where the bridge is free to slide at the abutments as shown in Figure 9-14, 
then the deck is analyzed as three independent segments: segment 1, 
segment 2, and segment 3. The bridge will have three analysis schemes 
that yield three periods (T1, T2 and T3), three values of independent 
seismic-induced forces (Pe1, Pe2 Pe3), and three independent seismic-
induced displacements (Ve1, Ve2 Ve3). The procedures will be identical to 
the procedures outlined for the continuous bridges and illustrated by 
Example 9-1. 
 

 
Transverse direction 
 
In the transverse direction, the bridge segments will not be independent at 
the location of the expansion joints as in the case of longitudinal directions. 
The expansion joints are usually detailed to accommodate the expansions 
in the longitudinal direction only. The effect of expansion joints in the trans-
verse direction will be the reduction of the bridge stiffness because they act  

FIGURE 9-14
LONGITUDINAL EXCITATION
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as intermediate hinges. Because this effect is addressed in the computer 
structural model, the procedures can be followed exactly as outlined for 
continuous bridges and as illustrated in Example 9-1 

9.8.2  Single-Mode Spectral Method 

The single-mode spectral method assumes that the bridge only responds in 
the first mode. The earthquake-induced forces in the bridge are obtained 
using the response spectra given in Figure 9-6. In general, the bridge is a-
nalyzed in the two perpendicular directions mentioned earlier: the lon-
gitudinal direction along its major axis between abutments and the per-
pendicular transverse direction. 
 
As in the uniform load method, the weight of the bridge per unit length is 
defined as W(x). This includes the weight of the superstructure, the 
substructure, the foundations, and any added dead loads. In general, the 
live load is not included in this weight. However, the live load or a portion of 
it may be considered as part of the weight of the bridge in special cases as 
required by the authority of jurisdiction. 
 
As in the uniform load method, and for the purpose of using this method, 
bridges are classified into continuous and discontinuous bridges depending 
on the presence of expansion joints. 

9.8.2.1  Continuous Bridges 

Continuous bridges are characterized by the absence of intermediate 
expansion joints: the deck of a continuous bridge must consist of one piece 
from abutment to abutment. The bridge must be analyzed in both longi-
tudinal and transverse directions as noted earlier. 
 
Longitudinal direction 
 
In the longitudinal direc-
tion, the bridge deck is 
considered rigid: the deck 
and its supporting ele-
ments will experience the 
same displacement. The 
analysis is similar to the 
uniform load method by 
applying an arbitrary uni-
form force, Po, along the 
bridge deck in the direc-
tion of excitation. For con-
venience, this force may 
be taken as 1. The period 

FIGURE 9-15
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and the elastic earthquake-induced forces in the bridge are given as a 
function of the resulting displacement, Vs(x). For example, if a bridge is 
supported by two abutments and one pier where the bridge is free to slide 
at the abutments as shown in Figure 9-15, the deck displacement due to 
unit uniform force will be as shown in the same figure.   
 
AASHTO defines the three parameters of ,  and  to be used in the 
calculations of the period and the induced forces in the bridge. These 
parameters are defined as follows: 
 
  =  Vs(x) dx (m2) 

  =  W(x) Vs(x) dx (kN.m) 

  =  W(x) Vs(x)2 dx (kN.m2) 
 
where: 
Vs(x) = Displacement of the deck due to unit uniform force, Po. 
W(x) = Weight of the bridge per unit length as defined previously. 
 
The period of the bridge is given by the following expression: 
 

 2
gP

T
o

  

where: 
, = Parameters as given above. 

G = Ground gravitational acceleration. 
Po = Unit uniform force applied to the bridge as shown in Figure 9-15. 
T = Period of the bridge in seconds. 
 
The seismic-induced force per unit length of the bridge is given by the 
following expression: 

 )()( xVxW
C

P s
sm

e   

where: 
, = Parameters as given above. 

Csm = Elastic response spectrum coefficient as defined in Figure 9-6. 
Vs(x) = Displacement of the deck due to unit uniform force, Po. 
W(x) = Weight of the bridge per unit length as defined previously. 
 
Because the bridge deck is considered to be rigid, the deck displacement 
along the deck will be constant and equal to Vo.  If Vo is substituted in the 
parameters above, the following results are obtained: 
 
  =  Vs(x) dx  =  Vo dx  = Vo L 

  =  W(x) Vs(x) dx  =  W(x) Vo  dx = Vo Wtot 
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   =  W(x) Vs(x)2 dx  =  W(x) Vo
2 dx = Vo

2 Wtot 
 
The period of the bridge is given by the following expression: 
  

 
Kg

W
LPg

VW
LVgP

WV
T

o

o

oo

o tottottot
2

222   

 
The expression for the period reduces to the expression of the uniform load 
method. 
 
The seismic-induced force per unit length of the bridge is given by the 
following expression: 
 

 )()( xVxW
C

P s
sm

e   = o
o

smo VxW
WV

CWV
)(

)(
)(

tot
2

tot  

  
 Pe = Csm Wtot /L 
 
The expression for the induced forces reduces to the expression of the 
uniform load method. Therefore, for excitation in the longitudinal direction, 
both the uniform load method and single-mode spectral method are exactly 
the same. As a result, it seems that there is no need for the single-mode 
spectral method. In fact, the reason for that is historical because the single-
mode spectral method appeared in AASHTO provisions first. Because the 
single-mode spectral method tends to be cumbersome, the uniform load 
method was introduced as a simplification, and the single-mode spectral 
method for longitudinal excitation became redundant. 
 
Transverse direction 
 
In the transverse direction, the 
bridge deck is not considered 
rigid: the deck and its sup-
porting elements will ex-
perience a displacement that 
is a function of the bridge 
stiffness. Similar to the 
uniform load method, the a-
nalysis applies an arbitrary 
uniform force, Po, to the 
bridge deck in the direction of 
excitation. For convenience, 
this force may be taken as 1. 
Similar to longitudinal direc-
tion, the period and the elastic 
earthquake-induced forces in 

FIGURE 9-16
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the bridge are given as a function of the resulting displacement, Vs(x). This 
displacement (deflected shape) is considered the first mode of vibration, 
and the earthquake-induced forces will be proportional to this shape. As an 
example, if a bridge is supported by two abutments and one pier where the 
bridge is fixed at the abutments as shown in Figure 9-16, the deck dis-
placement due to unit uniform force will be as shown in the same figure. 
 
The procedures for the transverse direction will be the same for the 
longitudinal direction, taking into consideration that the resulting deflected 
shape is not constant. Instead, the shape is curved according to the 
stiffness of both deck and substructure. 
 
As shown in the equation above, Pe is proportional to Vs because Vs is 
assumed to be the first mode of vibration. By applying this force (Pe) to the 
bridge, the internal forces and displacements are calculated in the 
substructure accordingly. The actual earthquake-induced elastic displace-
ment, Ve, is also obtained. In this case, the displacement will not be 
constant. 
 
The resulting earthquake-induced forces are applied to the bridge 
proportional to the displacement Vs(x) as this is the assumed mode shape 
of vibration. The application of Pe proportional to Vs(x) is more realistic than 
applying it uniformly as in the uniform load method. Consequently, the 
single-mode spectral method is considered to be superior to the uniform 
load method in the transverse direction. In the transverse direction, the 
abutments are considered to be rigid and act as restrictive objects to the 
deck. This behavior may be modeled as pinned support of the deck. As a 
result, the abutments take a portion of the seismic forces as reactions. 
 
Example 9-2 
 
Use the single-mode spectral method to analyze the bridge given in Ex-
ample 9-1.  For convenience, the example is repeated in this section. 
 
A three-span bridge is supported by two abutments, A1 and A2, and two 
intermediate piers, P1 and P2, with dimensions as shown in Example 9-2, 
Figure 1. The deck is free to slide at both abutments. Each pier consists of 
three circular concrete columns of grade, fc  = 25 MPa (3.625 ksi). The 
columns are 1.2 meters (47.2 inches) in diameter and directly support the 
deck with total fixity at both the deck end and the foundation end. The 
bridge weight per unit length, W(x), is constant and equal to Wo = 375 kN/m 
(2.143 kip/in). 
 
If the bridge lies in a region with a seismic coefficient of A = 0.19 and is 
supported on Soil Type II, use the single-mode spectral method to find the 
earthquake-induced elastic forces, elastic moments and elastic dis-
placements in the bridge due to longitudinal and transverse directions 
separately. 
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Solution 
 
Part 1: Longitudinal direction: 
 
Because both the uniform load 
method and single mode spec-
tral method are shown to be the 
same, there is no need to use 
the single-mode spectral meth-
od for this direction. Refer to 
Example 9-1 for analysis of this 
part. 
 
Part 2: Transverse direction: 
 
(1) Pier properties: 
 
The properties of the piers will 
be the same as given in 
Example 9-1: 
 
Ec = 23,500 MPa (3,408 ksi) 
Ic = 0.101,788 m4 (244,547 in4) 
 
(2) Displacement, Vs(x): 
 
Displacement in the transverse 
direction will not be as easy to 
evaluate as longitudinal excitation. 
In this case, the deck is 
considered to be flexible and is 
supported by two abutments and 
two piers as shown in Example 9-
2, Figure 2. Therefore, the system 
is highly statically indeterminate. In order to evaluate Vs(x), the bridge 
needs to be modeled as a three-dimensional frame structure. As a result, 
the use of structural analysis software becomes unavoidable. 
 
The structure may be analyzed 
with the same space frame 
model used in Example 9-1 
(and repeated here for con-
venience as shown in Ex-
ample 9-2, Figure 3). The deck 
is modeled as a longitudinal 
beam with abutments as 
pinned supports at each end. 
The columns are modeled as 
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vertical beams supported as required. In order to preserve the plane 
section hypothesis of beam theory in the deck, rigid links are required to 
connect the deck with the columns as shown in Example 9-2, Figure 3. 
Because the deflected shape needs to be integrated to obtain the 
parameters of ,  and , it is important to insert as many nodes as 
practical along the bridge axis. In this example, one node is inserted 
between the piers and abutments for this purpose. 
 
A unit force of Po = 1 kN/m may be applied to the deck as shown in 
Example 9-2, Figure 4. This will result in a deflected shape, Vs(x), as shown 
in the same figure. 
 
The space frame described 
above is entered into STAAD 
software with the node arrange-
ments shown in Example 9-2, 
Figure 3, using the material and 
section properties that are de-
fined earlier. 
 
The resulting displacements from 
the software program output 
(STAAD) are shown in Example 
9-2, Table 1. These are the same displacements that occurred in the Ex-
ample 9-1 run. 
 

 
EXAMPLE 9-2, TABLE 1 

DISPLACEMENTS, Vs, DUE TO UNIT FORCE, 
Po = 1 kN/m (5.71 x 10-3 kip/in) 

Node Number 1 2 3 4 5 6 7 
Vs(x10�6 m)  

(in) 0 45 
(1.77)

77 
(3.03)

91 
(3.58)

82 
(3.23)

50 
(1.97) 0 

 
(3) Parameters ,  and : 
 
The parameters ,  and  may be obtained by numerical integration using 
the nodal displacements shown in Example 9-2, Table 1. The following nu-
merical integration results are obtained using an Excel spreadsheet: 

=  Vs(x) dx  = numerical integration = 0.006,6 m2 (10.23 in2) 

=  W(x) Vs(x) dx = numerical integration = 2.475 kN.m (21.91 kip.in) 

=  W(x) Vs(x)2 dx = numerical integration = 0.000,174 kN.m2 (0.061 
kip.in2) 

EXAMPLE 9-2, FIGURE 4 
UNIT FORCE APPLICATION 
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Period: 
 

 2
gP

T
o

  =
)6,006.0()81.9(1

174,000.02  = 0.326 sec 

 
(5) Elastic response spectrum coefficient, Csm: 
 

 A
T

SA
C

m

sm 5.2
2.1

3
2

   

 = 
3

2
)326.0(

)2.1()19.0(2.1  = 0.578 

 
Also, Csm  2.5A = 2.5(0.19) = 0.475 
 
Therefore,  Csm = 0.475 
 
(6) Force per unit length of the bridge:  
 

 )()( xVxW
C

P s
sm

e   = sV)375(
174,000.0

)475.0(475.2   

 
  = 2,533,675Vs, kN/m (14,478Vs, kip/in) 
 
(7) Pier forces and displacements:  
 
Earthquake-induced forces 
and displacements are found 
by applying the force Pe to 
the bridge using the same 
space frame model used to 
find Pe as shown in Example 
9-2, Figure 5. The resulting 
displacements from the soft-
ware program output at the 
nodes as defined in Example 
9-2, Figure 3, are given in 
Example 9-2, Table 2.  
 
The resulting forces and displacements are obtained from the computer 
output as shown in Example 9-2, Tables 2 and 3, as follows: 
 
 

Pe = 2,533,675 Vs, kN 
(14,478 Vs, kip/in) 
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EXAMPLE 9-2, TABLE 2 

FORCES AND REACTIONS DUE TO FORCE, 
 Pe = 2,533,675Vs, kN/m (14,478Vs, kip/in) 

SUPPORT PIER 1 PIER 2 ABUT-
MENT 1 

ABUT-
MENT 

2 
Force (kN)  

(kip) 
2,250 
(506) 

2,394 
(538) 

5,986 
(1,346) 

6,090 
(1,369) 

Column 1 2 3 1 2 3 � � 
Force (kN)  

(kip) 
750 

(169) 
750 

(169)
750 

(169)
798 

(179)
798 

(179)
798 

(179) � � 

 
 

EXAMPLE 9-2, TABLE 3 
DISPLACEMENTS, Ve, DUE TO 

 Pe = 2,533,675Vs, kN/m (14,478Vs, kip/in) 
Node No. 1 2 3 4 5 6 7 
Ve (mm)  

(in) 0 8 
(0.31) 

14 
(0.55) 

16 
(0.63) 

15 
(0.59) 

9 
(0.35) 0 

 
The moments in the columns are also available from the computer output. 
For this example, the moments may also be calculated for each column 
directly from statics as follows: 
 
Pier P1:  Mcol = Fcol(4) = 750(4) = 3,000 kN.m (26,553 kip.in) 
Pier P2:  Mcol = Fcol(4) = 798(4) = 3,192 kN.m (28,252 kip.in) 
 
The results for pier P1 are shown graphically in Example 9-2, Figure 6. 
 

Comparing results from the uniform load method and the single-mode 
spectral method reveals that the results are fairly close, except for the re-
actions at the abutments. As mentioned previously, the uniform load meth-
od tends to overestimate abutment reactions up to 100 percent. In this 
example, the ratio is given as follows: 

EXAMPLE 9-2, FIGURE 6
EARTHQUAKE-INDUCED FORCES 

Fcol = 
 750 kN 
(169 kip) 

(c) Column Forces 

Mcol =  
3,000 kN.m 

(26,553 kip.in) 

y

 
Ve = Varies

(a) Transverse Section in Bridge

Deck 

Column

Fp =  
2,250 kN 
(506 kip) 

(b) P1 Forces 



Chapter Nine 

438 

Abutment 1: FUL/FSM= 7,878/5,986 = 1.32 (32 percent higher) 
Abutment 2: FUL/FSM= 7,987/6,090 = 1.31 (31 percent higher) 

9.8.2.2  Sinusoidal Method for Continuous Bridges 

As noted in the previous section, the evaluation of earthquake-induced 
forces and displacements in the transverse direction of continuous bridges 
can be cumbersome. The procedures require the analyst to conduct three 
stages of analysis procedures that include two runs of a space frame pro-
gram with an intermediate stage of numerical integration. These pro-
cedures may be simplified using the sinusoidal method developed by the 
author for continuous bridges. For more details on the development, refer 
to the published paper on this subject as listed in the bibliography (Armouti, 
2002). 
 
This method uses the beam on elastic foundation model in conjunction with 
the minimum total potential concept to evaluate both Vs and Ve. Therefore, 
the earthquake-induced forces are obtained by simplified procedures. 
Because the beam first mode is sinusoidal as presented in Chapter 3, the 
sinusoidal method uses this fact by considering the vibration mode to be 
sinusoidal. 
 
For the development of this 
method, consider the 
bridge given in Example 9-
1, which is supported by 
two abutments, A1 and A2, 
and two piers, P1 and P2.  
In this method, the 
deflected shape of the 
bridge in the transverse 
direction is assumed to be 
sinusoidal as shown in 
Figure 9-17. Accordingly, 
the displace-ment of the 
deck, Vs(x), may be 
expressed in the following 
form: 
  
  Vs(x) = Vo sin x/L 
 
where Vo is the maximum amplitude of the half sine wave at the middle of 
the bridge. 
 
The supporting piers may now be considered elastic supports to the 
bridge with an equivalent stiffness that depends on their boundary con-
ditions. For piers that consist of columns only, the stiffness is given as 

FIGURE 9-17
APPLICATION OF LOAD, PO 

A1 P2P1 A2 

  
Vo 

 kp2  kp1 

Po 

  
Vs(x) = Vo sin x/L 

PLAN

L

Vs(x) 

x 
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 kp =  12 EIc / H3  for fixed-fixed end columns. 
 kp =   3 EIc / H3  for free-fixed end columns. 
 
where: 
H = Height of columns. 
Ic = Moment of inertia of the columns in the pier. 
 
The abutments are considered to be pinned supports in the transverse 
direction as presented earlier. 
 
The principle of minimum total potential is used to calculate Vo. The total 
potential, , is given as the summation of the strain energy, U, and the 
negative of the work done by external forces, WPo. The strain energy is 
the result of the deformation of the deck, Ud, and the deformation of the 
piers, Up. If the integrals in the following expressions are defined over the 
entire length of the bridge, L, then the total potential energy is expressed 
as 
 
  = U � W  
 
Where U = Ud + Up. 
 
The strain energy of a beam in flexure is evaluated as 
 
 Ud =  1/2 EId(V )2 dx 

 = EId/2  (Vo)2 ( /L)4 sin2 ( x/L)dx 
 = 1/4 EId( 4/L3)(Vo)2    
 
The strain energy of the pier is given as 
 
 Up =  1/2 kp (Vp)2  
 =  1/2 kp (Vo)2 sin2 ( xp/L) 
 
The work done by the unit force, Po, is given as 
 
 WPo =  Po Vs(x)dx 
 =  Po Vo sin ( x/L)dx 
 = (2Po L/ Vo 
  
Adding the quantities above results in 
 

= Ud + Up � WPo = U(Vo) 
 
Vo can be found by taking the first derivative of  with respect to Vo: 
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 /  Vo = 0 
 
The Vo that is found and the uniform distribution of mass (weight) that 
bridges usually have along their longitudinal axes [W(x) = Wo] make it 
possible to calculate the parameters ,  and  as follows: 
 

=  Vs(x) dx =  Vo sin( x/L)dx = 2LVo/  

=  W(x) Vs(x) dx = Wo Vo   sin ( x/L) dx = 2L Wo Vo/  
=  W(x) Vs(x)2 dx = Wo(Vo)2  sin2 ( x/L) dx  = Wo(Vo)2 L/2 

 
Substituting the values above in the period and elastic force expressions 
results in 

  2
gP

T
o

  
gP

VW

o

oo
3

  

 

   
L
xVxW

C
P o

sm
e sin)(   

L
xW

C
o

sm sin
4

  

  = Peo sin ( x/L) 
 
The force in the columns due to the earthquake loading (Pe) can also be 
found by similar simplified procedures that use the sinusoidal deflected 
shape. 
 
By applying the earthquake load, Pe = Peo sin ( x/L), to the bridge as 
shown in Figure 9-18, the resulting deflected shape, Ve, due to Pe is also 
assumed to be sinusoidal: 
 
   Ve = Veo sin ( x/L) 
 
If we use the principle of minimum total potential energy to find Veo, then 
 
  = U � W 
 
where U = Ud + Up. 
  
Ud is calculated previously for Vo. Thus, 
 
 Ud = 1/4 EId ( 4/L3)(Veo)2  
 Up =  1/2 kp (Veo)2 sin2 ( xp/L)  
 
The work done by Pe is calculated as 
 
  WPe =  Pe Ve dx 
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   =  Peo sin ( x/L) Veo sin ( x/L) dx 
  = Peo Veo L/2 
 
Adding the quantities 
above results in 
 

 = Ud + Up � WPe 
 
Veo can be found by 
taking the first derivative 
of  with respect to Veo: 
 
  /  Veo = 0 
 
Finally, the elastic forc-
es in the pier (columns) 
are calculated as fol-
lows: 
 
  Fp = kp.Ve(x) 
  Fc = kc.Ve(x) 
 
The ease of application and the accuracy of the results may be 
demonstrated using the example given in Example 9-2, Figure 1. 
 
Relevant parameters and properties are as follows: 
 
Seismic parameters: A = 0.19 
 S = 1.2 
Materials: Ec = 23.5 x 106 kN/m2 (3,408 ksi) 
Deck:  Length, L = 115 m (377 ft) 
 Width, B = 25 m (82 ft) 
 
  Moment of inertia of the deck in the transverse direction: 
 
 
Deck:  Id = t.B3/12 = 0.6(25)3/12 =781.25 m4 (1.211 x 106 in4) 
  W(x) = constant = Wo = 375 kN/m (2.143 kip/in) 
Columns: Ic = D4/64 = (1.2)4/64 = 0.101,788 m4 (244,547 in4) 
 H = 8 m (26.25 ft) 
 
 
Calculation of initial displacement due to uniformly distributed force [Po = 
1 kN/m (5.71 x 10-3 kip/in)]: 
 
 Ud = 1/4 EId( 4/L3)(Vo)2 
 Ud = 1/4(23.5 x 106)(781.25)( 4/1153)(Vo)2   

 Peo Pe(x) = Peo sin x/L 

FIGURE 9-18
APPLICATION OF LOAD, PE 

A1 P2P1 A2 
 kp2  kp1 

  
Ve(x) = Veo sin x/L 

PLAN

L

  
Veo 

x 

Ve(x) 
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  = 293,971(Vo)2 kN.m [2.602 x 106 (Vo)2 kip.in] 
 kc = 12 EIc/H3  = 12(23.5 x 106)(0.101788)/83  
  = 56,063 kN/m (320 kip/in) 
 kp = 3kc = 3(56,063) = 168,189 kN/m (961 kip/in) 
 Up =  1/2kc (Vo)2 sin2 ( xc/L)  
  = 1/2(56,063)(Vo)2 {[3 sin2(37 /115)] + [3 sin2(74 /115)]} 
  = 128,500(Vo)2 kN.m [1.137 x 106 (Vo)2 kip.in] 

WPo = 2 Po L Vo/  
  = 2(1)(115)Vo/  = 73.211Vo  kN.m (648Vo kip.in) 
 

= Ud + Up � WPo 
 = 293,971(Vo)2 + 128,500(Vo)2 � 73.211Vo 
  /  Vo = 844,942Vo � 73.211 = 0 
 
Solving, Vo = 87 x 10�6 m (3.425 x 10-3 in)   
 

 
)81.9()1(

)1087()375( 633 


x

gP
VW

T
o

oo = 0.320 sec  

 
 Csm = 1.2 A S/Tm

2/3   
  = 1.2(0.19)(1.2)/0.322/3 = 0.585 
 
Also, Csm  2.5A = 2.5(0.19) = 0.475. 
 
Therefore, Csm = 0.475. 
 
As a result,  
 Pe = (4/ )Csm Wo sin( x/L) 
 = (4/ )(0.475)(375) sin ( x/115)   
  = 227 sin ( x/115) kN/m [1.297 sin ( x/377)  kip/in] 
 
Pe is the earthquake-induced forces in the bridge that are proportional to 
the vibration mode. To find the displacements and the forces in the bridge 
due to this load, Pe, the minimum total potential is utilized again. In this 
case, the quantities Ud and Up are readily available by replacing Vo by Veo 
in the previous Vo calculations: 
 
 Ud = 293,971(Veo)2 kN.m [2.602 x 106 (Veo)2 kip.in] 
 Up = 128,500(Veo)2 kN.m [1.37 x 106 (Veo)2 kip.in] 
 WPe = Peo Veo L/2 
 = 227 Veo (115)/2 = 13,053Veo kN.m (115,532 kip.in) 
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 = Ud + Up � WPe 
 = 293,971(Veo)2 +128,500(Veo)2 �13,053Veo 
 /  Veo = 844,942Veo � 13,053 = 0 
 
Therefore, Veo = 0.015,448 m (0.61 in). 
 
The forces in the columns are calculated as a function of their stiffness: 
 
 Fc = kc Ve(x) = kc Veo sin ( x/L) 
For pier 1: 
 Fc = 56,063(0.015,448) sin (37 /115) 
 = 734 kN (165 kip) 
For pier 2: 
 Fc = 56,063(0.015,448) sin (74 /115) 
 = 780 kN (175 kip)    
 
These results and the associated effort can be compared with the results 
and effort of using AASHTO procedures by using the space frame model 
as given in Example 9-2. 

9.8.2.3  Discontinuous Bridges 

As noted in the uniform load method, discontinuous bridges are charac-
terized by the presence of intermediate expansion joints. Thus, the deck of 
the bridge is divided into separate pieces between the expansion joints. 
The bridge still needs to be analyzed in both longitudinal and transverse 
directions as noted earlier. 
 
Longitudinal direction 
 
The treatment of the longitudinal direction will be the same as it was in the 
uniform load method presented in the previous section. 
 
Transverse direction 
 
In the transverse direction, the bridge segments will not be independent at 
the location of the expansion joints as they are in longitudinal directions. 
The expansion joints are usually detailed to only accommodate the 
expansions in the longitudinal direction. The effect of the expansion joints 
in the transverse direction will be to reduce the stiffness of the bridge 
because they act as intermediate hinges. Because this effect is addressed 
in the software program�s structural model, the procedures can be followed 
exactly as outlined for continuous bridges and as illustrated in Example 9-1. 
 
The implementation of this method can be demonstrated with the following 
example. 
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Example 9-3 
 
A four-span bridge is supported 
by two abutments (A1 and A2) 
and three intermediate piers 
(P1, P2 and P3) with the 
dimensions shown in Example 
9-3, Figure 1. In the longitudinal 
direction, the deck is free to 
slide at both abutments. Each 
pier consists of two circular 
concrete columns of grade,  
fc  = 25 MPa (3.625 ksi). The 
columns are 1.2 meters (49.2 
inches) in diameter, and 
located 16 meters (52 feet) 
apart as shown. The columns 
are fixed at the foundation level 
and free to rotate at the bridge 
level. The bridge has two 
expansion joints (J1 and J2) 
located as shown in the same figure. The bridge weight per unit length, 
W(x), is constant and equal to Wo = 300 kN/m (1.714 kip/in). 
 
If the bridge lies in a region with seismic coefficient A equal to 0.4 and is 
supported on Soil Type II, use the single-mode spectral method to find the 
earthquake-induced elastic forces, elastic moments, and elastic displace-
ments in the bridge. Remember that the bridge is treated as independent 
segments between expansion joints as explained in Section 9.8.1.3. 
 
Solution 
 
Part 1: Longitudinal direction: 
 
Because the uniform load method 
and single-mode spectral method 
are the same, there is no need to 
use the single-mode spectral meth-
od for this direction. Refer to Ex-
ample 9-1 for the analysis of this 
part. 
 
Part 2: Transverse direction: 
 
(1) Pier properties: 
 
The properties will be the same as given before in Example 9-1: 
 

EXAMPLE 9-3, FIGURE 1
BRIDGE LAYOUT  

A2 A1 P1

H = 7.5 m
(25 ft)

P2
35 m 

(115 ft)
30 m 
(98 ft)

25 m 
(82 ft)

120 m
(394 ft)

t = 0.6 m (23.6 in) 

P3
30 m 
(98 ft) 

J1 J2

 
Columns 1.2 m dia. (47.2 in) 

Plan 

20 m
(66 ft)

16 m (52 ft)

EXAMPLE 9-3, FIGURE 2 
UNIT FORCE APPLICATION

EQ x 

 
Vs(x)

Po = 1 kN/m

 
Pier  

Deck 
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 Ec = 23,500 MPa (3,408 ksi) 
 Ic = 0.101,788 m4 (244,547 in4) 
 
(2) Displacement Vs(x): 
 
The displacement in the transverse direction will not be as easy to evaluate 
as in the case of longitudinal excitation. In this case, the deck is considered 
to be flexible and is supported by two abutments and three piers as shown 
in Example 9-3, Figure 2. There-
fore, the system is highly stat-
ically indeterminate. To evaluate 
Vs(x), the bridge needs to be 
modeled as a three-dimensional 
frame structure. As a result, us-
ing structural analysis software 
becomes unavoidable. 
 
The structure may be analyzed 
with the same space frame 
model as shown in Example 9-3, 
Figure 3. The deck is modeled 
as a longitudinal beam with abut-
ments as pinned supports at 
each end. The columns are 
modeled as vertical beams that 
are supported as required. To 
preserve the plane section 
hypothesis of beam theory in the 
deck, rigid links are required to 
connect the deck with the 
columns. The expansion joints 
are modeled by introducing end release at joints. These are shown as two 
hinges around nodes 3 and 7 in Example 9-3, Figure 3. Because the 
deflected shape needs to be integrated to obtain the parameters ,  and , 
it is important to insert as many nodes as practical along the bridge axis. In 
this example, one node is inserted between the piers and abutments for 
this purpose. 
 
A unit force of Po equal to 1 kN (5.71 x 10-3 kip/in) may be applied to the 
deck as shown in Example 9-3, Figure 4. This will result in a deflected 
shape, Vs(x), as also shown in the same figure. 
 
The space frame described above is entered into the STAAD software 
program with the node arrangements shown in Example 9-3, Figure 3, 
using the material and section properties that are defined earlier. 
 
The resulting displacements from the STAAD program output are shown in 
Example 9-3,Table 1. 

EXAMPLE 9-3, FIGURE 3 
SPACE FRAME MODEL 

3
4

5 6 

7 

2

Deck

Abutment

 
Rigid Link 

Node 

Column Hinge 

 
Hinge 

1

9 

8 

 
Deck 

Displacement, Vs(x) 

EXAMPLE 9-3, FIGURE 4 
UNIT FORCE APPLICATION 

Po = 1 kN/m 
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EXAMPLE 9-3, TABLE 1 
DISPLACEMENTS, Vs, DUE TO UNIT FORCE, 

 Po = 1 kN/m (5.71 x 10-3 kip/in) 
Node Number 1 2 3 4 5 6 7 8 9 
Vs(x10�6 m)  

(in) 0 445 
(17.5)

884 
(34.8)

884 
(34.8)

810 
(31.9)

779 
(30.7)

746 
(29.4)

375 
(14.8) 0 

 
(3) Parameters ,  and : 
 
The parameters ,  and  may be obtained by numerical integration using 
the nodal displacements shown in Example 9-3, Table 1. Numerical in-
tegration results are obtained using the Excel spreadsheet as follows: 

=  Vs(x) dx  = numerical integration = 0.071,661 m2 (111 in2) 

=  W(x) Vs(x) dx = numerical integration = 21.498 kN.m (190 kip.in) 

=  W(x) Vs (x)2 dx = numerical integration = 0.015,457 kN.m2  
 (5.386 kip.in2) 
 
(4) Period: 
 
 

 2
gP

T
o

  =
)661,071.0()81.9(1

457,015.02  = 0.932 sec. 

 
(5) Elastic response spectrum coefficient, Csm: 
 

 A
T

SAC
m

sm 5.22.1

3
2

   

 = 604.0
)932.0(

)2.1()4.0(2.1

3
2

  

 
Also,  Csm  2.5 A = 2.5 (0.4) = 1.0 
 
Therefore,  Csm = 0.604 
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(6) Force per unit length of the bridge:  
 

 )()( xVxW
C

P s
sm

e   = sV)300(
457,015.0

)604.0(498.21   

  = 251,953Vs, kN/m (1,440Vs, kip/in) 
 
(7) Pier forces and displacements:  
 
The earthquake-induced 
forces and displacements 
are found by applying the 
force Pe to the bridge using 
the same space frame 
model used to find Pe as 
shown in Example 9-3, 
Figure 5. The resulting dis-
placements from the com-
puter output at the nodes as 
defined in Example 9-3, 
Figure 3, are given in 
Example 9-3, Table 2.  
 
The resulting forces and displacements are obtained from the software 
program output provided in Example 9-3, Tables 2 and 3, as follows: 
 
 
 

EXAMPLE 9-2, TABLE 3 
FORCES AND REACTIONS DUE TO FORCE,  

Pe = 251,953Vs, kN/m (1,440Vs, kip/in) 

SUPPORT PIER 1 PIER 2 PIER 3 ABUT-
MENT 1 

ABUT-
MENT 

2 
Force (kN)  

(kip) 
6,008 

(1,351) 
5,240 

(1,178) 
4,554 

(1,024) 
1,306 
(294) 

944 
(212) 

Column 1 2 1 2 1 2 � � 
Force (kN)  

(kip) 
3,004 
(675) 

3,004
(675)

2,620
(589)

2,620
(589)

2,277
(512)

2,277
(512) � � 

 

 
Deck 

Displacement, Ve(x) 

EXAMPLE 9-3, FIGURE 5
SEISMIC FORCE APPLICATION 

Pe = 251,953 Vs, kN/m 
(1,440 Vs, kip/in) 
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EXAMPLE 9-2, TABLE 2 
DISPLACEMENTS, Ve, DUE TO 

 Pe = 251,953Vs, kN/m (1,440Vs, kip/in) 
Node Number 1 2 3 4 5 6 7 8 9 

Ve (mm)  
(in) 0 84 

(3.3)
167 
(6.6)

157 
(6.2)

146 
(5.7)

137 
(5.4)

127 
(5) 

64 
(2.5) 0 

 
The moments in the columns are also available from the software 
program�s output. For this example, the moments may also be calculated 
for each column directly from statics as follows: 
 
Pier P1: Mcol = Fcol(4) = 3,004(7.5) = 22,530 kN.m (199,413 kip.in) 
Pier P2: Mcol = Fcol(4) = 2,620(7.5) = 19,650 kN.m (173,922 kip.in) 
Pier P3: Mcol = Fcol(4) = 2,277(7.5) = 17,078 kN.m (151,157 kip.in) 
 
The results for pier P1 are shown in Example 9-3, Figure 6. 

9.8.2.4  Rigid Deck Method for Discontinuous Bridges 

The evaluation of earthquake-induced forces and displacements in the 
transverse direction of discontinuous bridges can also be cumbersome in a 
way that is similar to the case for continuous bridges. The procedures re-
quire the analyst to conduct three stages of analysis procedures that 
include two runs of a space frame program with an intermediate stage of 
numerical integration. These procedures may be simplified using the new 
rigid deck method developed by the author for discontinuous bridges. For 
more details on the development, see the author�s published paper on this 
subject as listed in the bibliography. 
 
Similar to the sinusoidal method, this method uses the beam on elastic 
foundation model in conjunction with the minimum total potential concept to 
evaluate both Vs and Ve. The earthquake-induced forces are obtained by 
simplified procedures.  

EXAMPLE 9-3, FIGURE 6
EARTHQUAKE-INDUCED FORCES 

Fcol = 
 3,004 kN
(675 kip) 

(c) Column Forces 
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y
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(b) P1 Forces 
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Because of the rigidity of the deck in the transverse direction with respect 
to the substructure, the deck segments between the expansion joints may 
be assumed to remain rigid under lateral displacement of the bridge as 
shown in Figure 9-19. As a result, these joints do not store any strain 
energy. This behavior is similar 
to rigid diaphragm behavior in 
buildings. In this case, the 
bridge modeling is greatly sim-
plified by limiting the degrees of 
freedom of each segment to two 
DOF at its ends, where each 
segment is supported by elastic 
supports (the columns). There-
fore, the bridge as a whole can 
be modeled as a series of rigid 
segments (rigid deck model) 
having a number of degrees of 
freedom equal to the number of 
the expansion joints. 
 
For the development of this method, consider the bridge given in 
Example 9-3. This four-span bridge consists of a deck slab directly 
supported by two abutments at A1 and A2 and three intermediate piers 
(P1, P2 and P3) with height, H, as shown in Figure 9-20. The bridge 
contains two expansion joints (J1 and J2) that are modeled as internal 
hinges. The bridge dimensions 
are given as total length, L, with 
four spans in between marked L1 
to L4; breadth, B; and deck (slab) 
thickness, t. In the transverse 
direction, the bridge may be 
modeled as a beam on elastic 
foundation with rigid segments 
between expansion joints. Be-
cause the bridge is transversely 
restricted at the abutments, the 
bridge will have two degrees of 
freedom at the location of 
expansion joints P1 and P3, and 
the rest of the bridge dis-
placements will be expressed in 
terms of these two degrees of 
freedom. 
 

FIGURE 9-20
BRIDGE LAYOUT

A2 A1 P1
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P2
L1 L2 L3 
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FIGURE 9-19
RIGID DECK ASSUMPTION 

EQ
x 

 
Vs(x) Straight Line 

Plan 

Rigid Segment 

Remains Rigid  



Chapter Nine 

450 

With these assumptions, 
the equivalent stiffness of 
the pier can be evaluated 
as follows: 
 
For fixed-fixed end: 
kp =  12 EIc/H3   
 
For free-fixed end: 
kp =  3 EIc/H3   
 
where: 
Ic = Moment of inertia of 

the columns. 
H = Height of columns. 
 
The procedures start by applying a uniform load to the bridge in the 
transverse direction. The resulting deflected shape will consist of three 
straight lines as shown in Figure 9-21. The displacements of the ex-
pansion joints Vs1 and Vs2 are unknown quantities to be found. 
 
The principle of minimum total potential is used to calculate Vs1 and Vs2. 
The total potential, , is given as the summation of the strain energy and 
the negative of the work done by external loads. Because the deck is 
considered to be rigid, the strain energy in this case is only the result of 
the deformation of the piers, Up, while the work done is due to load Po, 
WPo. As a result, 
 
 = U � W 
where: 
 U = Up 
 =  1/2 kp(Vp)2  
 = 1/2 kp1(Vs1)2 + 1/2 kp3(Vs2)2   
 + 1/2 kp2.{[L3 Vs1/(L2 + L3)] + [L2 Vs2/(L2 +L3)]}2 
and 
 W = WPo =  Po Vs dx 
 = Po(area of the deflected shape) 
 = Po.[ 1/2 L1 Vs1 + 1/2 (L2 + L3).(Vs1 +Vs2) + 1/2 L4 Vs2] 
 
Adding the expressions above, the total potential energy becomes 
 

= Up � Wpo 
 = a1(Vs1)2 + a2(Vs2)2 + a3 Vs1  Vs2 � a4 Vs1 � a5 Vs2 
 
where a1, a2, a3, a4 and a5 are constant quantities associated with the 
displacement terms. 
 

FIGURE 9-21
APPLICATION OF LOAD, Po 
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Vs1 and Vs2 can be found by taking the first partial derivative of  with 
respect to Vs1 and Vs2: 
 
 /  Vs1 = 2a1 Vs1 + a3  Vs2 � a4 = 0 
 /  Vs2 = 2a2 Vs2 + a3  Vs1 � a5 = 0 
 
For convenience, these equations may be presented in matrix form such 
that 
 

 
5

4

2

1

23

31

2
2

a
a

V
V

aa
aa

s

s   

 
The size of the coefficient matrix [aij] corresponds to the number of 
expansion joints in the bridge.  
 
Solving the matrix equation above yields the values of Vs1 and Vs2. By 
noting that most bridges have uniform distribution of mass (weight) along 
their longitudinal axes [W(x) = Wo], the parameters , , and  as defined 
before can be calculated as 
 
  =  Vs(x) dx = area under the deflected shape 
 = 1/2 L1 Vs1 + 1/2 (L2 + L3).(Vs1 +Vs2) + 1/2 L4 Vs2  
 

=  W(x) Vs(x) dx = Wo   
 

=  W(x) Vs(x)2 dx = Wo   (Vs)2 dx     
 = Wo(integration of two trapezoids: a standard operation) 
  = Wo.1/3[L1(Vs1)2]  
 + {(L2 + L3).[(Vs1)2 + (Vs2)2 + (Vs1 Vs2)] + L4(Vs2)2]} 
 
Substituting the values above in the period and elastic force expressions 
given before results in 
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gP

T
o

  

   )()( xVxW
C

P s
s

e   

  i.e., Pe  Vs 
 
where Csm  is the normalized acceleration response spectrum as given 
before: 
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The force in the columns due 
to the earthquake loading, Pe, 
can also be found through 
similar simplified procedures 
by making use of the rigid 
segment assumption. 
 
Because earthquake-induced 
force, Pe, is proportional to 
the vibration mode, which is 
the deflected shape, Vs, the 
force (Pe) is applied to  
the bridge as shown in Figure 
9-22. The resulting deflected 
shape, Ve, due to Pe is found 
as before: 
 = U � W  
Where: 
 U = Up       . . . as calculated previously for Vs 
 =  1/2 kp(Vp)2  
 = 1/2 kp1 (Ve1)2 + 1/2 kp3(Ve2)2   
 + 1/2 kp2.{[L3 Ve1/(L2 + L3)] + [L2 Ve2/(L2 + L3)]}2 
 
The work done by Pe is calculated as 
 
 WPe =  Pe Ve dx 
 = integration of two trapezoids 
 = 1/3 L1(Pe1 Ve1) + 1/3 L4(Pe2 Ve2)  
 + 1/6(L2 + L3).(2 Pe1 Ve1 + 2 Pe2 Ve2 + Pe1 Ve2 + Pe2 Ve1) 
 
Adding the expressions above, the total potential energy becomes 

= Up � WPe 
 = a6(Ve1)2 + a7(Ve2)2 + a8 Ve1  Ve2 � a9 Ve1 � a10 Ve2 
 
Ve1 and Ve2 can be found by taking the first partial derivatives of  with 
respect to Ve1 and Ve2: 
 
  /  Ve1 = 2a6 Ve1 + a8 Ve2 � a9 = 0   
 /  Ve2 = 2a7 Ve2 + a8 Ve1 � a10 = 0 
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Solving the matrix equation above yields the values of Ve1 and Ve2.   
 

FIGURE 9-22
APPLICATION OF LOAD, Pe 
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Finally, the elastic forces in the pier (columns) are calculated as 
 
 Fp = kp.Ve(x)  
 Fc = kc.Ve(x) 
 
The ease of application and the accuracy of the results may be 
demonstrated using the bridge in Example 9-3. 
 
Relevant parameters and properties are as follows: 
 
Ic = dc

4/64 = (1.2)4/64 = 0.101,788 m4 (244,547 in4) 
 kc = 3EIc/H3 = 3(25 x 106)(0.101,788)/(7.5)3  
 = 18,096 kN/m (103 kip/in) 
  kp = 2kc = 2(18,096) = 36,191 kN/m (207 kip/in) 
 
The total potential energy of the bridge under displacements Vs1 and Vs2 
is calculated as follows: 

 
Up = 1/2(36,191).{(Vs1)2 + (Vs2)2 + [(25/55)(Vs1) + (30/55)(Vs2)]2 } 
 = 21,834(Vs1)2 + 23,479(Vs2)2 + 8,973 Vs1 Vs2  
 
WPo = (1)[1/2(35)(Vs1) + 1/2(55)(Vs1+ Vs2) + 1/2(30)(Vs2)] 
 = 45(Vs1) + 42.5(Vs2) 
 
Therefore, 
 

 = Up � WPo  
 = 21,834(Vs1)2 + 23,479(Vs2)2 + 8,973 Vs1 Vs2 � 45Vs1 � 42.5Vs2  
 
Taking partial derivatives of  w.r.t. Vs1 and Vs2, we get 
 
 /  Vs1 = 43,668Vs1 + 8,973Vs2 � 45 = 0 
 /  Vs2 = 46,958Vs2 + 8,973Vs1 � 42.5 = 0 
 
In matrix form, the two equations above are given as 
 

  
5.42
0.45

958,46973,8
973,8668,43

2

1

s

s

V
V

  

 
Solving the above matrix equation, Vs1 and Vs2 are obtained as 
 Vs1 = 0.879 mm (0.035 in) 
 Vs2 = 0.737 mm (0.029 in)  
 
The parameters ,  and  are calculated as a function of Vs1 and Vs2: 
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= area under deflected shape which is evaluated for WPo calculations; 
 = 45(Vs1) + 42.5(Vs2) 
 = 45(0.879 x 10�3) + 42.5(0.737 x 10�3) = 0.070,878 m2 (110 in2) 
 
 = Wo  

 = 300(0.070'878) = 21.263 kN.m (188 kip.in) 
 
 = 300(1/3)(10�6){35(0.879)2 + 55[(0.879)2 + (0.737)2  

 + (0.879)(0.737)] + 30(0.737)2}  
 = 0.015,133 kN.m2 (5.274 kip.in2) 
 
Using parameters ,  and , the period and the equivalent earthquake 
forces are calculated as 
 

 
)878,070.0()81.9(1

133,015.0
  T  = 0.927 sec  

 

 
3

2
)927.0(

)2.1()4.0(2.1
sC  = 0.605 

 
Also, Csm   2.5A = 2.5(0.4) = 1.0 
 
Therefore,  Csm = 0.605 
 
 Pe = [(21.263)(0.605)/(0.015,133)](300)Vs  
 = 255,021Vs, kN/m (1,457Vs, kip/in) 

 
 

Substituting the value of Vs1 and Vs2 in the equation above, the intensity 
of the loads at the locations of expansion joints J1 and J2 can be 
calculated as 
 
 Pe1 = 255,021(0.879 x 10�3) = 224 kN/m (1.28 kip/in) 
 Pe2 = 255,021(0.737 x 10�3) = 187 kN/m (1.069 kip/in) 
 
 
Applying the equivalent earthquake forces to the bridge as shown in 
Figure 9-22, the resulting deflected shape Ve is calculated by replacing Vs 
by Ve in the energy and the work done expressions. This results in 
 
 Up = 21,834(Ve1)2 + 23,479(Ve2)2 + 8,973 Ve1 Ve2  
 
 WPe = 1/3(35)(224)(Ve1) + 1/3(30)(187)(Ve2) 
 + 1/6(55)[2(224)(Ve1) + 2(187)(Ve2) + (224)(Ve2) + (187)(Ve1)] 
 = 8,448(Ve1) + 7,380(Ve2) 
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Therefore, the total potential of the bridge under displacements Ve1 and 
Ve2 will be 

 
 = Up � WPe  

 = 21,834(Ve1)2 + 23,479(Ve2)2 + 8,973 Ve1 Ve2 � 8,448(Ve1) + 7,380(Ve2) 
 

Taking partial derivatives of  w.r.t. Ve1 and Ve2, we find that 
 
 /  Ve1 = 43,668Ve1 + 8,973Ve2 � 8,448 = 0 
 /  Ve2 = 46,958Ve2 + 8,973Ve1 � 7,380 = 0 
 
In a procedure similar to solving for Vs1 and Vs2, Ve1 and Ve2 can be 
obtained by solving the two equations above to yield 
 
 Ve1 = 168 mm (6.6 in) 
 Ve2 = 125 mm (4.9 in) 
 
Knowing the earthquake-induced displacements, the earthquake-induced 
forces at the top of columns are calculated as follows: 
 
At pier P1:  Vp1 = Ve1 = 168 mm (6.6 in)  

Thus, Fc = kc Vp1 = 18,096(0.168) = 3,040 kN (683 kip) 
 

At pier P2: Vp2 = (25/55)Ve1 + (30/55)Ve2  
 = (25/55)(168) + (30/55)(125) = 144 mm (5.7 in) 
Thus, Fc = kc Vp2 = 18,096(0.144) = 2,615 kN (588 kip) 

 
At pier P3: Vp3 = Ve2 = 125 mm  

Thus, Fc = kc Vp1 = 18,096(0.125) = 2,262 kN (509 kip) 
 
These results and the associated effort can be compared with the results 
and effort of using AASHTO procedures by using the space frame model. 

9.8.3  Multiple Mode Spectral Method 

AASHTO requires that the multimode spectral analysis method be used for 
bridges in which coupling occurs in more than one of the three coordinate 
directions within each mode of vibration. As a minimum, linear dynamic 
analysis using a three-dimensional model shall be used to represent the 
structure. 
 
This method is simply the modal superposition presented in Chapter 3. As 
mentioned earlier, modeling is considered to be an art and an engineering 
tool. Therefore, the bridge needs to be modeled properly, taking into con-
sideration critical details such as expansion joints, the state of the sup-
porting pads in different directions, and the connections among different 
components. 
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Examples of modeling the bridge in three dimensions are already given in 
the presentation of the previous two methods: the uniform load method and 
the single-mode spectral method. (Refer to those sections for guidance and 
insight.) 
 
The response spectra given in previous sections and shown in Figure 9-6 
should be used for this analysis. Refer to Example 6-3 in Chapter 6 for de-
tails on how to prepare the response spectrum for input in this analysis. 
 
For modes other than the fundamental one, the code limits the response 
spectrum for modes with extreme periods, Tm, as follows: 
 
1. For Tm > 4.0 seconds: 
 
The acceleration coefficient, Csm, shall be taken as 
 

 
3

4
3

m

sm
T

SAC   

 
2. For Tm < 0.3 seconds: 
 
In Soil Profile Types III and IV, the acceleration coefficient, Csm, shall be 
taken as 
 
 Csm = A(0.8 + 4.0Tm) 
 
The elastic design forces are obtained by combining enough modes to 
yield reasonable accuracy. AASHTO requires that the number of modes in-
cluded in this analysis is at least three times the number of spans in the 
model. The modes may be combined using the known complete quadratic 
combination method, CQC. 
 
Because the resulting forces given above are the elastic forces, they 
should be divided by the response modification factor, R. 

9.8.4  Time History Method 

The time history method is the general method in dynamic analysis. Elastic 
time history and inelastic time history analysis may be used. If used, time 
history analysis requires that an earthquake�s records be explicitly included 
in the analysis. 
 
According to AASHTO, the records must be spectrum-compatible and 
should be supplied by the owner. However, if such records are not avail-
able, a minimum of five spectrum-compatible records must generated ac-
cording to the response spectra given in Figure 9-6. Procedures to gen-
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erate such records will be addressed in Chapter 11, which focuses on 
synthetic earthquakes. 
 
As noted earlier, if elastic time history analysis is conducted, the resulting 
forces should be divided by the force modification factor, R. However, if 
explicit inelastic time history analysis is conducted, the resulting design 
forces and displacements will be readily available from the software pro-
gram�s output. 
 
Of course, performing inelastic time history analysis requires a realistic de-
scription of the hysteretic behavior of the structure. This is not an easy task! 

9.8.5  Directional Effect 

The elastic effect of the major horizontal components of the earthquake 
shall be combined to form two load cases such that 
 
 EQ = EQx + 0.3EQy Case 1 
 EQ = 0.3EQx + EQy Case 2 
 
where: 
EQ = Combined earthquake effect. 
EQx = Earthquake effect in the longitudinal direction. 
EQy = Earthquake effect in the transverse direction. 

9.9  Load Combinations 

The load combinations in AASHTO depend on the presence of different 
loading conditions.  The general load combination that includes earthquake 
effect is given in the following expression: 
 
 U = Yp G  + YEQ L + 1.0WA + 1.0FR  + 1.0EQ 
where: 
EQ = Earthquake effect. 
FR = Friction forces. 
G = Gravity-related loads such as dead loads, superimposed dead loads 

and earth pressure. 
L = Live load related loads, including vehicular effects such as impact, 

breaking forces and centrifugal forces.  
U = Ultimate factored design forces. 
WA = Water-related loads. 
YEQ = Load factor of live loads, which must be considered on a project-by-

project basis. In the absence of such information, AASHTO suggests 
in its commentary the use of YEQ = 0.5. 

Yp = Load factor that depends on the type of gravity load under 
consideration.  For each type of load, this factor takes two values: a 
maximum and a minimum. 
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For a complete range of values of load factors, refer to AASHTO�s general 
load combinations. 
 
For example, in the presence of the dead load of structural components 
and nonstructural components, DC; the superimposed dead load of wear-
ing surface and utilities, DW; and half of the live load effect and in the 
absence of water and friction loads, the earthquake load combination will 
be as follows: 
 
 U = 1.25DC + 1.5DW + 0.5L + 1.0EQ 
 U = 0.9DC + 0.65DW + 0.5L + 1.0EQ 

9.10  Design Requirements 

For the load combinations that include an earthquake event, the bridge 
design forces are obtained by dividing the elastic earthquake-induced forc-
es by an appropriate response modification factor, R, as given in Tables 9-
4 and 9-5. 
 

 
TABLE 9-4 

RESPONSE MODIFICATION FACTOR, R, FOR SUBSTRUCTURES 
IMPORTANCE CATEGORY SUBSTRUCTURE 

Critical Essential Other 
Pier Walls 1.5 1.5 2.0 
Reinforced concrete pile bents: 

Vertical piles only 
With batter piles 

 
1.5 
1.5 

 
2.0 
1.5 

 
3.0 
2.0 

Single columns 1.5 2.0 3.0 
Steel or composite steel and concrete 
pile bents: 

Vertical piles only 
With batter piles 

 
 

1.5 
1.5 

 
 

3.5 
2.0 

 
 

5.0 
3.0 

Multiple column bents 1.5 3.5 5.0 
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TABLE 9-5 
RESPONSE MODIFICATION FACTOR, R, FOR CONNECTIONS 

CONNECTION 
ALL 

IMPORTANCE 
CATEGORIES 

Superstructure to abutment 0.8 
Expansion joints within a span of the superstructure 0.8 
Columns, piers or pile bents to cap beam or superstructure 1.0 
Columns or piers to foundations 1.0 
 
As shown in Tables 9-4 and 9-5, the response modification factor depends 
on the importance of the bridge. Note that there are no levels of detailing 
defined for levels of force reductions as in the case of building systems 
given in building codes. However, AASHTO defines R-values only for sub-
structure main members as well as for connections. Consequently, the de-
tailing requirements will be the same for all structural elements. 
 
The requirements for beam-columns and pier walls are presented in the 
following sections. 

9.11  Design Requirements of Reinforced Concrete Beam-Columns 

The design requirements of reinforced concrete beam-columns are given in 
terms of force requirements and detailing requirements. The detailing 
basically follows the detailing of ACI 318 as presented in Chapter 7 for 
beam-columns of special moment frames. The minor changes required for 
reinforced concrete beam-columns are presented in the following sections. 
 
Design requirements are given only for columns and pier walls. There are 
no special requirements for cap beams. The design requirements are given 
according to the seismic zones as follows. 

9.11.1  Bridges in Seismic Zone 1 

There are no design requirements for bridges in this zone except as given 
for the design forces of the connections between the superstructure and 
the substructure as noted in previous sections. In addition, the seismic seat 
requirements that must be satisfied will be presented later in this chapter. 
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9.11.2  Bridges in Seismic Zone 2 

Bridges in Seismic Zone 2 
must satisfy the detailing of 
columns only. There are no 
requirements for pier walls. 
These requirements are giv-
en for the plastic hinge re-
gions and the splice re-
gions. 
 
In a way similar to ACI 318, 
AASHTO defines seismic 
hooks, crossties and hoops 
as follows: 
 
Seismic hooks 
 
A seismic hook is a bar bent of at least 135 degrees with projecting length 
inside the core of a rectangular concrete section. The projecting length 
shall be at least six times the bar diameter, db, but not less than 75 
millimeters (3 inches) as shown in Figure 9-23 (a). 
 
Crossties 
 
A crosstie is a straight tie that has a seismic hook on one side and a 90-
degree bent on the other. The bent must have at least six times its dia-
meter as shown in Figure 9-23 (b). The crossties are intended to ease the 
installation of the ties by engaging the seismic hook first and then pushing 
the 90-degree bent afterwards. 
 
Hoops 
 
Hoops are special ties for seismic 
sections. Hoops are characterized 
as elements that are different than 
ties and are classified as either 
continuous hoops or composed 
(over-lapping) hoops. Continuous 
hoops consist of one continuous 
bar, whereas composed hoops 
consist of an open stirrup and a 
crosstie arranged as shown in 
Figure 9-24. Continuous hoops 
provide better support than 
composed hoops. However, com-
posed hoops are easier to install. 

(a) Continuous
Hoop

Seismic
Hook

FIGURE 9-24
HOOPS

(b) Composed 
Hoop

 
Crosstie

Open 
Stirrup

 135°
= 6db 
 75 mm
( 3 in)

(a) Seismic Hook

90° bent 
= 6db

(b) Cross Tie

Seismic
Hook

FIGURE 9-23
SEISMIC TIES
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Both types of hoops must be detailed to conform to seismic hook 
requirements as shown in Figure 9-24. 
 
Lateral reinforcement details 
 
Before addressing these requirements, the following definitions are 
deemed necessary: 
 
1. The distance center to 

center of the outer hoop is 
designated as hc: hc1 in 
direction 1 and hc2 in 
direction 2 as shown in 
Figure 9-25. hc indicates 
either hc1 or hc2 according 
to the direction under con-
sideration. 

 
2. The distance center to 

center between crossties is 
designated as hx. hx is 
given as the maximum 
value of hx1 and hx2, where 
hx1 and hx2 indicate the 
distance between cross-
ties in directions 1 and 2, 
respectively, as shown in Figure 9-25. 

 
3. hx shall not exceed 360 millimeters (14 inches) as shown in Figure 9-

25. 
 
4. Alternate bars must be supported. The maximum distance of un-

supported bar shall be limited to 150 
millimeters (6 inches) from a sup-ported bar 
as shown in Figure 9-25. 

 
5. All hooks shown in Figure 9-25 shall be 

seismic hooks as defined earlier. The 90-
degree bent of consecutive cross-ties shall 
be on opposite sides of the column. 

 
6. Maximum spacing of main reinforcement in 

a circular column shall be limited to 200 
millimeters (8 inches) as shown in Figure 9-
26. 

 
The additional requirements for lateral rein-forcement are shown in Figure 
9-27 and explained below. Refer to the following details in Figure 9-27: 

FIGURE 9-26 
SPACING OF MAIN 
REINFORCEMENT  

 
 200 mm 
(  8 in) 

Spiral

FIGURE 9-25
HOOP DIMENSIONS 

1. hc = (hc1 or hc2) 
2. hx = max (hx1 or hc2) 

hc1 

hc2

hx1 hx1 hx1 

hx2

hx2

hx1  360 mm 
(  14 in) 

 
Alternate Hook 

hx2  360 mm 
(  14 in) 

 
Alternate Bar 

 150 mm (  6 in) 
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1. The potential plastic hinge region is assumed to be within a distance 
( o ) from the face of the support. The minimum length of the plastic 
hinge region ( o ) is given as a function of the clear span of the 
beam-column, the dimensions of the section and 450 millimeters (18 
inches) as shown in Detail A. Therefore, over this distance ( o ), the 

maximum spacing of stirrups is given in terms of the sides of the 
section and is limited to 100 millimeters (4 inches) as defined in 
Detail B. 

 
2. The amount and spacing of stirrups in the plastic hinge region must 

extend through the cap beam and through the foundation as shown in 
Details C and D. 

 
Splice regions 
 
The splice location shall be limited to the center half of the beam-column 
to keep the splice outside the regions of the plastic hinges as shown in 
Figure 9-27, Detail E. The spacing of the splice hoops shall be the same 
as in the plastic hinge region (see Figure 9-27, Detail B). 
 

FIGURE 9-27
BEAM-COLUMN REQUIREMENTS AND DETAILING 
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Detail A

1. Splice location in 
center half only 

2. Hoops as in Detail B

Detail B 

Detail C
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         380 mm 
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Minimum lateral reinforcement 
 
The minimum hoops depend on the shape of the section. The minimum 
hoops for rectangular and circular sections are given as follows. 
 
Rectangular sections 
 
The minimum area of hoops, Ash, in any direction of the rectangular 
section shall be as follows: 
 

 

y
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where: 
Ac = Area of concrete core, including hoops, which is given as 
  Ach = (hc1 + dh).(hc2 + dh) 
Ag = Gross area of the concrete section. 
Ash = Area of hoops for shear. 
fc  = Characteristic strength of concrete. 
fy = Yield stress of hoop reinforcement. 
hc = Center-to-center dimension of the hoop in the direction under 

consideration as shown in Figure 9-25. 
S = Spacing of hoops along the axis of the member. 
 
The subscript (h) stands for hoop. The coefficient of the second equation 
is 0.12, which is higher than ACI�s corresponding coefficient of 0.09. 
 
Circular and spiral sections 
 
The minimum volume of hoops, s, in circular sections with hoops or with 
spirals shall be as follows: 
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where: 
Ac = Area of concrete core, including hoops. 
Ag = Gross area of the concrete section. 
fc  = Characteristic strength of concrete. 
fy = Yield stress of hoop reinforcement. 
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Development of reinforcement 
 

The development length of all bars shall be 1.25 times the full development 
length in tension for nonseismic regions. 
 
Shear capacity of concrete inside joints 
 
The nominal shear resistance provided by concrete inside the joints, Vn (SI: 
N, Imperial: pound), shall be limited to 
 
 '0.1 cn fdbV      (SI units) 

 '12 cn fdbV      (Imperial units) 
 
where: 
b = Width of column web. 
D = Effective depth of the column (distance from extreme compression 

fibers to centroid of tension steel). 
fc  = Characteristic strength of concrete (SI: MPa, Imperial: psi). 

9.11.3  Bridges in Seismic Zones 3 and 4 

The bridges in Seismic Zones 3 and 4 
must meet all of the requirements for 
Seismic Zone 2. In addition, these bridg-
es must satisfy the following require-
ments. 
 
Dimensions 
 
To satisfy the beam theory hypothesis of 
plain section, to ensure flexure behavior, 
and to prevent premature shear failures, 
the beam-column�s span/depth ratio shall 
not exceed 2.5. The depth is defined as the maximum dimensions of the 
cross section. For flared columns, the section shall be taken as the smaller 
cross section along the column as shown in Figure 9-28: 
 
 Ho  2.5h1 
 
Main reinforcement ratio 
 
The gross reinforcement ratio, g, shall be limited to the following range: 
 

g  6 percent 
g  1 percent 

 

FIGURE 9-28
FLARED COLUMN

Ho 

 
Minimum 
Section 

h1

Elevationx-sec
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Strength-reduction factor 
 
The strength-reduction factor, , shall be taken according to the presence 
of ultimate factored external load, Pu, as follows: 
 
1. For Pu  0.20 fc  Ag:  = 0.5 
2. For Pu = 0:   = 0.9 
 
Where fc  and Ag are the designated compressive strength of concrete and 
the gross sectional area as defined earlier. 
 
The value of  may be linearly interpolated for values of Pu between the 
limits given above. 
 
Shear in end regions (plastic hinge regions) 
 
The shear strength in the end regions shall be taken according to the 
presence of ultimate factored external load as follows: 
 
1. For Pu  0.10 fc  Ag: V = Vc  
2. For Pu = 0: V = 0  
 
where Vc is the designated shear strength of concrete which is given as 
 
  dbfV cc '083.0     (SI units) 

 '0.1 cn fdbV      (Imperial units) 
 
where: 
b = Width of column web. 
D = Effective depth of the column (distance from extreme compression 

fibers to centroid of tension steel). 
fc  = Characteristic strength of concrete (SI: MPa, Imperial: psi). 

9.12  Design Requirements of Reinforced Concrete Pier Walls 

A member is defined as a pier wall if its span/depth ratio does not satisfy 
the requirements of the beam-column of 2.5 as given in the previous 
section. However, if one side of the pier wall satisfies beam-column re-
quirements (the weak axis), it may be designed as a column, while the 
other axis (the strong axis) is designed as a pier wall. The requirements of 
pier walls are given for shear strength and for reinforcement detailing as 
follows: 
 

.
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Reinforcement requirements 
 
The horizontal reinforcement ratio, h, and the vertical reinforcement ratio, 

v, as shown in Figure 9-29 shall satisfy the following minimum criterion: 
 

h  0.002,5 
v  h 

 
Both horizontal and vertical 
reinforcements shall be installed 
in two layers close to the face of 
the pier wall. The maximum 
spacing, s, of both horizontal and 
vertical reinforcement shall be 
limited to 450 millimeters (18 
inches): 
 
 smax = 450 mm (18 in) 
 
The reinforcement shall be prop-
erly developed and spliced. 
Splices shall be staggered. 
 
Shear strength requirements 
 
The shear resistance of the pier 
wall shall be taken as follows: 
 
 
If the nominal shear strength is defined as Vn such that 
 

  dbffV yhcn '165.0   (SI) 

  dbffV yhcn '2   (Imperial) 
 
Then the factored shear strength of the pier wall, Vr, will be given as 
  dbfV cr '66.0  (SI)  

 dbfV cr '8  (Imperial) 
   Vn 
 
where: 
b = Width of column web as shown in Figure 9-29. 
D = Effective depth of the column (distance from extreme compression 

fibers to centroid of tension steel). 
fc  = Characteristic strength of concrete. 
fy  = Yield stress of steel. 

FIGURE 9-29
PIER WALL
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h = Horizontal steel ratio as defined before. 

9.13  Special Topics 

The following complementary issues must be satisfied to ensure the safety 
of the bridge. 

9.13.1  Displacement Requirements (Seismic Seats) 

The requirements of seismic seats in bridges are given in terms of the 
distance between the expansion joints even if there are supports in 
between as illustrated in Figure 9-30. In this case, the seismic seat may 
differ on each side of the expansion joint. The seismic seat distances, N1 
and N2, shown in Figure 9-30 must be at least equal to the following: 

 
 
In metric: N1 = (203 mm + 1.67L1 + 6.67H).(1 + 0.000,125S2) 
In Imperial: N1 = (8 in + 0.02L1 + 0.08H).(1 + 0.000,125S2) 
 
In metric: N2 = (203 mm + 1.67L2 + 6.67H).(1 + 0.000,125S2) 
In Imperial: N2 = (8 in + 0.02L2 + 0.08H).(1 + 0.000,125S2) 
 
where: 
H = Height of substructures. This is given as follows: 
  For single-span bridge: 
 H = 0.0 
  For abutments: 

H = Distance from foundation to top of substructure in meters 
(feet). 

  For piers: 
H = Average distance from foundation to top of all piers that appear 

in the deck segment to the next expansion joint in meters 
(feet). 

L1 = Length of continuous deck segment in meters (feet). 
L2 = Length of continuous deck segment in meters (feet). 

FIGURE 9-30
SEISMIC SEATS IN MULTIPLE SPAN BRIDGES
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N1 = Minimum seismic seat distance to the left of the pier under 
consideration in millimeters (inches). 

N2 = Minimum seismic seat distance to the right of the pier under 
consideration in millimeters (inches). 

S = Skew angle of the support measured from normal to span in degrees. 

9.13.2  Longitudinal Restrainers 

The bridge spans may be restrained by restraining devices to tie the 
superstructure to the substructure at the expansion joints. If used, the re-
strainer must have sufficient slack to accommodate the expected inelastic 
design displacement such that the restrainer becomes active only when 
this displacement is reached. 

9.13.3  Hold-Down Devices 

This section applies to Seismic Zones 2, 3 and 4. Hold-down devices are 
required to tie the superstructure to the substructure at the support loca-
tions under the following conditions. 
 
If the seismic-induced vertical force is designated as Fv and the vertical 
reaction due to permanent loads is designated as Rperm, then the hold-
down devices are required if 
 
 Fv  0.5Rperm  
 
The design force for hold-down devices is calculated as follows: 
 
1. If Fv  1.0Rperm, the design force for hold-down devices FHD is given as 
 
 FHD = 0.1Rperm (calculated as simply supported) 
 
2. If Fv  1.0Rperm, the design force for hold-down devices, FHD, is given as 
 
 FHD = 1.20(Fv � Rperm) 
  0.1Rperm (calculated as simply supported) 

9.13.4  Liquefaction 

Liquefaction is considered to be one of the most dangerous and dramatic 
events that usually cause disastrous collapse in structures. Therefore, the 
site must be treated to prevent such a phenomenon. 
 
The treatment of liquefaction will be addressed in Chapter 10, Geotechnical 
Aspects and Foundations. 
 



469 

10 
 
 
 
 
 

GEOTECHNICAL 
ASPECTS AND 
FOUNDATIONS 

 
 
 
 
 

10.1  Introduction 

Geotechnical engineering is as important for seismic design as it is for 
nonseismic design. Most of the geotechnical aspects in normal design 
must be observed for seismic design, along with additional requirements. 
Because foundation failures are catastrophic and usually result in loss of 
human life, foundations must be carefully designed to be the last structural 
element to fail. 
 
Experience from earthquakes has shown that liquefaction is the most 
dangerous type of foundation failure, which can result in many catastrophic 
structural failures. Therefore, every effort must be made to avoid such 
failures. Stability of slopes and lateral soil pressure are also affected by 
seismic activities and must be treated with dynamic aspects in the case of 
ground motions. Because earthquakes generally increase soil pressure 
and decrease resistance, these must be evaluated accordingly. 
 
Earthquake excitation is transferred to the building through the ground. 
Because the dynamic characteristics at the site greatly affect the ground 
acceleration and its transfer to the structure, dynamic analysis of soil is 
necessary. In addition, the type of soil alters the characteristics and 
intensity of the seismic waves as they travel through the soil. This effect is 
reflected in the types of response spectra given by various codes and 
presented in previous chapters. 
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This chapter neither intends to cover every aspect of geotechnical 
engineering nor to replace the expertise of professional geotechnical 
engineers. However, it will address important issues on the geotechnical 
side that must be considered when evaluating structural safety under 
earthquake excitation. It will also address some of the problems that are 
encountered in foundation design. 

10.2  Wave Propagation 

In is simplest form, soil vibration is similar to the vibration of a thin rod. The 
modes of vibration relevant to soil behavior are the axial and the torsional 
modes of vibrations. The flexure mode of vibration has little application in 
soil dynamics. Therefore, only axial and torsional modes will be examined 
in this section. The flexure mode is extensively analyzed in Chapter 3. 
 
The differential equation of the axial vibration is derived in Chapter 3, 
Section 3.8, Axial Beam. The differential equation is given in terms of 
modulus of elasticity (E), mass per unit length (m), and cross sectional area 
(A) as follows: 
 0 uAEum  
 
Dividing the equation above by m yields the following: 
 
 0)/(  umAEu  

 02
 uvu a  

 
va has units of velocity (m/s) and is known as the wave propagation 
velocity. This is given in terms of modulus of elasticity and mass density as 
 
 // EmEAva   
 
The propagation velocity expression above implies that the propagation 
velocity depends on both stiffness and density of the material. 
 
The torsional vibration mode can be shown to have a differential equation 
that is similar to the development above. The differential equation is given 
in terms of rotational angle, , as follows: 
 
 02

 sv  
 
vs also has units of velocity (m/s) and is known as the shear wave 
propagation velocity. This is given in terms of the shear modulus of elas-
ticity and mass density as 
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 /Gvs   
 
Because the objectives of wave propagation analysis are different than the 
objectives of structural dynamic analysis, the solution of the differential 
equations of wave propagation may be treated differently than the ap-
proach used in the sections of structural dynamics. Therefore, the general 
differential equation of wave propagation may be given in the following 
form: 
 02  uvu  
 
The solution of the differential equation above as a function of space and 
time may be given in the following form: 
 
 u(x,t) = f(vt � x) + g(vt + x) 
 
where f and g can be any arbitrary functions of (vt – x) and (vt + x) that 
satisfy the differential equation given above. Because the argument of  
{f(vt � x)} remains constant as x increases with time, its solution describes 
a displacement wave that is traveling with velocity v in the positive  
x-direction. Similarly, the argument of {g(vt + x)} describes a displacement 
wave that is traveling with velocity v in the negative x-direction. 
 
When subjected to harmonic stress forcing function of the form, 
 
  = o cos f t, 
 
the wave propagation of the stress in the positive and negative directions in 
the rod can be shown to take the following form: 
 
 u(x,t) = A cos ( f t � kx) + B cos ( f t + kx) 
 
where: 
k = Wave number ( f /v). 

f  = Frequency of the forcing function. 
 
Consequently, the wave length, , is given as follows: 
 

 
k

v
f
vTv

ff
f

22
  

 
where the subscript, f, stands for the forcing function. 
 
The wave propagation may be plotted with respect to time and space as 
shown in Figure 10-1. The solution above may also be expressed in its 
complex form equivalence as 
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 u(x,t) = C e j( f t � k x) + D e j( f t + k x) 
 
Remember that the analysis above is given for a simplified case in a one-
dimensional state. This analysis may be refined to include three-
dimensional wave propagation cases. Such analysis may be found in the 
bibliography at the end of the book. 

10.3  Ground Response 

This section develops an expression that can describe the transfer of 
ground motion at the bedrock to the ground surface as a function of soil 
properties. As in the previous section, the analysis of this section takes the 
simplest form to give the reader an indication of the nature of behavior. For 
a more refined analysis, see the bibliography at the end of the book. 
 
For the objectives mentioned 
above, the analysis considers 
linear behavior with uniform soil 
layers above the bedrock that 
have the height, H, as shown in 
Figure 10-2. Any horizontal mo-
tion of the bedrock produces 
vertical propagating shear waves 
that result in horizontal displace-
ment that may be described with 
the expression developed in the 
previous section: 
   
 u(z,t) = C e j(  t � kz) + D e j(  t + kz) 
 
where: 
C = The amplitude of waves traveling upward (�z). 
D = The amplitude of waves traveling downward (+z). 
k = Wave number ( /vs). 

= Circular frequency of the ground shaking. 

 
u 
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t 

T = 2 /  
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At the free surface, where z = 0, the shear stress and shear strain are zero. 
Therefore, 

 0),0( 
z
uGGt  

 
substituting u(z,t) into the shear equation above yields 
 
 Gjk(C e j  k (0))  (D e  � j k (0)) e j  t  = Gjk(C   D) e j  t = 0 
 
The solution above is satisfied when C = D. Thus, 
 
 u(z,t) = 2 C cos kz e j  t 
 
The equation above describes a standing wave of amplitude 2C cos kz and 
has a fixed shape with respect to depth. This equation may be used to de-
fine a transfer function that relates the amplitude of displacements at any 
two points in the soil layer. This is the primary objective of the analysis. To 
find the ratio of the amplitude at the surface to the amplitude at the bed-
rock, z is substituted as zero at the surface and H at the bedrock to yield 
 

)/(cos
1

cos
1

cos2
2

),(
),0(

)(
max

max

s
tj

tj

vHkHekHC
eC

tHu
tu

jF   

 
The modulus of the transfer function above gives the amplification of the 
amplitude of the bedrock at surface, which is expressed as follows: 
 

 
)/(cos

1)(
svH

jF   

 
The expression above will always be one or more than one because the 
maximum value of the cosine function is one. This means that the bedrock 
amplitude will always be amplified and will be at least equal to the am-
plitude of the bedrock itself. In addition, the amplitude amplification is a 
function of the frequency of the bedrock, the height of the overlaying layer 
and the shear velocity of the overlaying layer. 
 
In general, seismic codes give the amplification factors of the ground 
response according to the type of the soil layers above the bedrock, their 
height and their shear velocities. As an example, Chapter 6 in the IBC 
divides the soil profile above bedrock into six categories that are classified 
according to the average properties of the top 30 meters (100 feet) below 
the ground surface. The average properties are indicated by the type of soil 
particles and their shear velocity. For demonstration purposes, the IBC 
classification is given in Table 10-1. As noted in Chapter 6, the response 
amplifications are defined according to this classification.  
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TABLE 10-1 

SOIL PROFILE TYPE 
AVERAGE PROPERTIES FOR TOP 30 M (100 FT) 

SOIL 
PROFILE 

TYPE 
DESCRIPTION 

Shear Wave 
Velocity, vs,  

m/s 
 (ft/sec) 

Standard 
Penetration 

Test 
(blows/foot) 

Undrained 
Shear Strength 

kPa 
 (psf) 

A Hard Rock > 1,500 
(5,000) 

B Rock 760 to 1,500 
(2,500 to 5,000) 

N/A N/A 

C Very Dense Soil 
and Soft Rock 

360 to 760 
(1,200 to 2,500) > 50 > 100 

(2,000) 

D Stiff Soil Profile 180 to 360 
(600 to 1,200) 15 to 50 50 to 100 

(1,000 to 2,000) 

Soft Soil Profile < 180 
(600) < 15 < 50 

(1,000) 

E 
 

Any profile with more than 3.28 m (10 ft) of soil having 
the following characteristics: 

1. Plasticity index, PI > 20 
2. Moisture content, w  40%, and 
3. Undrained shear strength < 24 kPa (500 psf). 

F   

Any profile containing soils having one or more of the 
following characteristics: 
1. Soils vulnerable to potential failure of collapse 

under seismic loading such as liquefiable soils; 
quick and high sensitive clays; and collapsible, 
weakly cemented soils. 

2. Peats and/or highly organic clays [H > 3.28 m (10 
ft)] of peat and/or highly organic clay where H = 
thickness of soil. 

3. Very high plasticity clays [H > 7.5 m (25 ft)] with 
plasticity index of P > 75. 

4. Very thick soft/medium stiff clays [H > 36 m (120 
ft)]. 

   
 

10.4  Liquefaction 

As noted earlier, liquefaction is one of the most dangerous phenomena that 
can result in devastating damage. Liquefaction is associated with saturated 
cohesionless soil under undrained conditions. If such soil conditions exist in 
their loose state and are subjected to sudden application of forces as in the 
case of an earthquake, the pore pressure will develop immediately and 
leave little for the effective stress in the soil mass. As a consequence, the 
shear strength drops suddenly. Before the transfer of the stress from water
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to soil takes place, the soil 
mass behaves as liquid (with 
zero shear strength) and lique-
faction occurs. 
 
The susceptibility of a site to 
liquefaction is related to the 
site’s critical void ratio, CVR. 
Critical void ratio is the void 
ratio that marks the borderline 
between contraction and 
dilation of the soil mass under 
external pressure. In general, a dense sample of sand dilates under 
pressure, whereas a loose sample of sand contracts under pressure. The 
void ratio of the state of densification that causes no change in the volume 
of the sample under external pressure is the critical void ratio. 
 
In general, soil mass with a void ratio larger than the critical void ratio is 
considered susceptible to liquefaction, whereas soil mass with a void ratio 
smaller than the critical void ratio is considered unsusceptible to lique-
faction. This susceptibility condition is marked by the CVR line shown in 
Figure 10-3. 
 
As a general recommendation, loose to medium-dense saturated sites 
should be avoided in practice. If one must use such sites, the liquefaction 
hazard can be reduced by proper drainage and/or proper densification of 
the soil at the site. 
 
Equivalent uniform cyclic shear stress method 
 
Practical evaluation of lique-
faction hazard may be 
related to a quantity known 
as equivalent uniform cyclic 
shear stress, cyc. The 
equivalent uniform cyclic 
shear stress induced by 
earthquake excitation may 
be calculated as a function 
of the total overburden 
pressure, o, by the fol-
lowing expression: 
 

do r
g

a
 max

cyc 65.0  
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where: 
amax  = Effective peak ground acceleration at the site. 

o = Total overburden pressure. 
rd = Stress-reduction factor varying from 1.0 at the surface to 0.9 at a 

depth of 9 meters from the surface. 
cyc = Equivalent uniform cyclic shear stress induced by earthquakes. 

 
The equivalent uniform cyclic shear stress may be divided by the effective 
overburden vertical pressure, o , to yield a normalized quantity identified 
as cyclic stress ratio, CR. The cyclic stress ratio induced by earthquakes is 
designated as CRE and is expressed in the following form: 
 

  
o

do

o
RE

r
g

a
C 65.0 maxcyc

  

 
Based on historical field measurements, we know that liquefaction has 
been triggered in previous earthquakes when the cyclic stress ratio (CRE) 
exceeded a certain threshold value. This threshold cyclic stress ratio, CRT, 
can be correlated to the corrected standard penetration test reading, N1. 
 
The corrected standard penetration test value, N1, may obtained from the 
field standard penetration test, N, using the following expression: 
 
 N1 = CN N 
 
 

FIGURE 10-5
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where CN is a correction coefficient that depends on the effective 
overburden pressures as given in Figure 10-4. 
The threshold cyclic stress ratio that triggers liquefaction (based on 
historical field measurements) is given in Figure 10-5 for earthquake 
magnitudes of 6, 7.5 and 8.5, respectively. To reduce the likely occurrence 
of liquefaction, the values of the 
cyclic stress ratio must satisfy the 
following condition: 
 
 CRE  CRT 
 
The threshold cyclic stress ratio that 
can trigger liquefaction may also be 
determined by laboratory tests. If 
such tests are available, the po-
tential of liquefaction should be 
evaluated and compared with the 
earthquake-induced cyclic stress ra-
tio at different depths as shown in 
Figure 10-6. 
 
Example 10-1 
 
A deposit layer of sand with 
effective unit weights as shown in 
Example 10-1, Figure 1, extends 
10 meters (32.8 feet) below the 
ground surface. The ground water 
table (GWT) extends 3 meters 
(9.84 feet) below the ground 
surface. The corrected standard 
penetration test, N1, is evaluated as 
20 blows per foot. 
 
The site exists in a seismic zone 
that has an effective peak 
acceleration coefficient, amax, equal 
to 0.2 g. 
 
Examine the potential of liquefaction at the midheight of the sand layer, 
using historical data for earthquakes with magnitude, M, equal to 8.5. 
 
Solution 
 
Total overburden pressure at midheight [at a depth of 5 meters (16.4 feet)]: 
 
 o  = d hd + b hb + w hw  
 = 17(3) + 11(2) + 10(2) = 93 kN/m2 (1.94 ksf) 

EXAMPLE 10-1, FIGURE 1 
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Pore pressure:  w = w hw = 10(2) = 20 kN/m2 (0.42 ksf) 
 
Effective overburden pressure: 
 
 o  =  o �  w = 93 – 20 = 73 kN/m2 (1.52 ksf) 

 
Stress-reduction factor, rd, is the interpolation between 1.0 at surface and 
0.9 at a depth of 9.0 meters: 
   
   rd = 1.0 – (0.1/9)(5) = 0.94 
 
Equivalent uniform cyclic shear stress: 
 

 do r
g

a
65.0 max

cyc   

  )94.0(932.065.0cyc 
g

g  = 11.36 kN/m2 (0.24 ksf) 

Induced cyclic stress ratio: 
73

36.11cyc


o
REC  = 0.16 

 
Threshold cyclic stress ratio at N1 = 20 blows per foot: 
  
 CRT = chart, Figure 10-5 = 0.19 
 
Since CRE < CRT, the sand layer at midheight is unlikely to liquefy. 

10.5  Slope Stability 

Normal slope stability is usually checked by considering the equilibrium of 
the soil mass bounded by a potential failure circle shown in the shaded 
area in Figure 10-7. The soil mass driven by its weight, W, is kept in place 
by the cohesion and friction forces, T, along the circle perimeter as shown 
in the same figure. The slope is 
usually required to maintain a 1.5 
factor of safety against sliding. 
 
For ground motion, the same 
procedures are still valid with 
consideration of the effect of 
ground acceleration. It can be 
noted from Figure 10-7 that the 
ground acceleration has two 
components: a horizontal com-
ponent with acceleration co-
efficient, ah, and a vertical com-

FIGURE 10-7
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ponent with acceleration coefficient, av. The horizontal force component 
(ahW) will always tend to add to the driving forces of the slope mass, thus 
worsening the situation. The vertical force component (avW) may or may 
not have an adverse effect on the stability of the driven circle. Its effect is 
decided according to its point of application with respect to the center of the 
driven circle. The vertical component also has an adverse effect by 
reducing the vertical force at the failure surface, thereby reducing the re-
sisting friction forces.  

10.6  Lateral Earth Pressure 

The effect of ground acceleration on earth pressure is somewhat similar to 
the effect on slope stability: the horizontal and vertical components of the 
ground accelerations need to be considered in the failure of the wedge 
behind the retaining structures. Among the popular methods used to evalu-
ate seismic lateral earth pres-
sure is the Mononobe-Okabe 
method, which is considered 
an extension to Coulomb 
failure criterion. 
 
The Mononobe-Okabe method 
considers both active and 
passive lateral seismic earth 
pressure. The total active later-
al force, including seismic ef-
fect, EAE, behind retaining 
walls may be expressed as 
follows: 
 
EAE = 1/2  H2 (1 � kv)KAE 
 
Where the seismic active pressure coefficient, KAE, is given with reference 
to Figure 10-8 as follows: 
   

 
)(coscoscos

)(cos
2

2




AEK  

where: 
= Slope of soil face. 
= Angle of friction between soil and retaining wall. 
= Unit weight of soil. 

H = Height of soil face. 
I = Backfill slope angle.  
kh = Horizontal acceleration coefficient. 
kv = Vertical acceleration coefficient. 

= Angle of friction soil. 
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= 
2

)(cos)(cos
)(sin)(sin1






i
i  

 
= Seismic inertial angle {tan–1[(kh/(1 � kv)]. 

 
The assumed wedge failure is the same as in the static case. The 
additional forces that are considered in seismic analysis are the horizontal 
seismic force (kh W) and the vertical seismic force (kv W). 
 
The equivalent expression for passive earth pressure is given as follows: 
 
 EPE = 1/2  H2 (1 � kv)KPE 
 
Where the seismic active pressure coefficient, KPE, is given as follows: 
 

 
)(coscoscos

)(cos
2

2




PEK  

and where 
 

  = 
2

)(cos)(cos
)(sin)(sin1






i
i  

 
There have been suggestions on how to 
apply this force. For example, some suggest 
one should consider the static component of 
the force to act at 0.33H from the base, as is 
usually done, whereas the dynamic 
component is taken at 0.6H from the base. 
For most practical solutions, AASHTO code 
provisions suggest that one considers the 
total force, including both static and dynamic 
com-ponents, to act at 0.5H from the base 
with uniform distribution of pressure as 
shown in Figure 10-9.  
 
It is important to emphasize that the philosophy of designing retaining walls 
under seismic excitations is to force sliding failures rather than overturning 
failures. The Newmark sliding block concept has shown that sliding of a 
wall will alleviate seismic forces in a way similar to the influence force-
reduction factors have on structural behavior under excitation. Further-
more, if sliding of the wall occurs, it can often be accommodated by the wall 
and will usually not result in catastrophic failures. In contrast, overturning 
usually results in catastrophic failure and loss of the structure.  
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10.7  Foundations 

A foundation is a very important element for the safety of a structure 
because its failure usually causes catastrophic failure of the structure. In 
general, foundation failures should be avoided. For example, seismic 
codes require conditions to force the formation of plastic hinges in the 
superstructure, allowing the foundations to remain in their elastic range as 
explained in previous sections. Consequently, foundations are designed 
with the same concepts and procedures for regular nonseismic cases. 
However, the large overturning moments that result from seismic forces 
need special treatment. 
 
Owing to large overturning moments, especially in nonbearing shear walls, 
the vertical gravity load is not enough to hold the foundation down as 
shown in Figure 10-10 (a). As a result, the foundation cannot carry the load 
by itself. Two solutions may be used to rectify this problem. One solution is 
to use a pile foundation to take the tension forces that are developed at the 
bottom of the foundation as shown in Figure 10-10 (b).  
 
The other solution is to tie the 
foundation to the building by stiff 
girders known as foundation 
walls or strap girders as shown 
in Figure 10-11 (b). These 
foundation walls are similar in 
principle to the strap beams 
used to tie the property line 
footings with an inside footing. 
Figure 10-11 (a) shows a wall 
under large moment but with a 
minimal axial load. As a result, 
this wall will be unstable under 
overturning moment. However, 
the adjacent column is sub-
jected to heavy axial load with or without moment. Figure 10-11 (b) shows 
the arrangement of using a stiff strap girder (foundation wall) to tie the two 
elements together and force them to behave as one unit. In this case, the 
system will act as one unit with a vertical load equal to the column load. 
The effect of the strap girder will be to shift the resultant to the middle 
region and provide stability of the system as a whole.   
 
Obviously, the solution of such problems depends largely on the 
distribution of the structural system of the building. Note the difference 
between wall foundations and foundation walls. Wall foundations are the 
strip footings used to carry wall loads whether they are shear walls or 
regular bearing walls. Foundation walls are the stiff girder systems that tie 
unstable elements with adjacent walls or columns. 

FIGURE 10-10
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The design forces of foundations are required by seismic codes to exceed 
the strength that is developed due to plastic hinging of the superstructure. 
This is intended to guarantee their integrity and prevent any premature 
failures in the foundations. In addition, the codes require special detailing of 
the connections between the foundations and the superstructure. Such 
evaluation and detailing are given in Chapter 8. 
 
Example 10-2 
 
A nonbearing shear wall is sub-
jected to a seismic lateral static 
force equal to 200 kN (44.96 kip) 
acting at a height as shown in 
Example 10-2, Figure 1. The weight 
of the wall is 250 kN (56.21 kip). 
 
(1) Check the stability of the wall 

under these forces. If the wall is 
not stable, examine alternatives 
(2) and (3) to stabilize the wall. 

 
(2) Use four piles under the wall 

foundation. 
 
(3) Use a strap girder (foundation wall) to tie the wall to the adjacent 

column as shown in Example 10-2, Figure 1. 
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FIGURE 10-11
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Solution 
 
Part 1. Wall stability: 
 
Taking moments about point “O” 
shown in Example 10-2, Figure 2, the 
overturning and stabilizing moments 
are calculated as follows: 
 
  Mov = 200(8) = 1,600 kN.m 
   (14,162 kip.in) 
  Mst = 250(2) = 500 kN.m 
 (4,426 kip.in)  
 
Because Mov > Mst, the wall is unstable 
under these forces and must be 
stabilized by other means. 
 
The stability of the wall may also be checked by calculating the eccentricity, 
e, of all forces from the centroid of the foundation: 
 
e =  M/  P = 1,600/250  
           = 6.4 m (21 ft) 
 
Because the eccentricity is outside of the 
foundation limits, the wall is unstable. 
 
Part 2. Pile solution: 
 
Forces and moments acting on the top of 
the pile group: 
 
Q = 250 kN (56.21 kip) 
M = 200(8) 
 = 1,600 kN.m (14,162 kip.in) 
 
The force in each pile, Fp, is found from 
the following expression: 
 

 i
j

i r
r
M

No
QF

2.
  

 
 No. = number of piles = 4 piles 
 
   rj

2 = polar moment of inertia, given as:  
    rj

2 = 2(1.5)2 + 2(1.5)2 = 9 m2 (96.88 ft2)  
 

EXAMPLE 10-2, FIGURE 2 
WALL STABILITY 

FEQ = 200 kN 
(44.96 kip) Wall

 
250 kN (56.21 kip) 

0.5 m 
(1.64 ft) 

7.5 m 
 (24.61 ft) 

4 m 
(13.12 ft)

O 

EXAMPLE 10-2, FIGURE 3 
PILE SOLUTION 

204.17 kN 
(45.9 kip) 

3 m 
(9.84 ft) 

3 m 
(9.84 ft)

 
1,600 kN.m (14,162 kip.in) 

329.17 kN
(74 kip) 

250 kN 
 (56.21 kip) 
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  ii rF
9

600,1
4

250
  

 = 62.5 ± 177.78(1.5)  
 
Compression piles: Fcomp = 62.5 + 266.67 = 329.17 kN (74 kip) 
Tension piles: Ftens = 62.5 – 266.67 = – 204.17 kN (– 45.9 kip) 
 
Part 3. Strap girder solution: 
 
The system will be tied together by a stiff strap girder (S.G) as shown in 
Example 10-2, Figure 4 (a). The statical system of this arrangement con-
sists of a beam (strap girder) with a length equal to 9 meters (29.53 feet) as 
shown in Figure 4 (b), supported at the centroids of the wall and the col-
umn, and loaded by the pressure under the footings. The wall is subjected 
to moment equal to 1,600 kN.m (14,162 kip.in) at its base as calculated in 
Part 2 above. 

 
The reactions of the foundations are found by taking moments about any 
element. For example, if moments are taken about the centroid of the wall 
as in Example 10-2, Figure 4 (b), the reactions are given as  
 
 Rc = {1,000(6) – 1,600}/6 = 733.33 kN (164.87 kip)  
 Rw = 1,250 – 733.33 = 516.67 kN (116.16 kip)  
 
The pressure under each footing is calculated by dividing the reaction force 
by the length of the footing: 
 
qw = 516.67/4 = 129.17 kN/m (8.86 kip/ft) 
qc = 733.33/2 = 366.67 kN/m (25.14 kip/ft 

EXAMPLE 10-2, FIGURE 4
STATICAL SYSTEM OF STRAP GIRDER 

(b) Foundation Reactions 
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7.5 m (24.61 ft) 

 
6 m (19.69 ft) 
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The final loading diagram of 
the strap girder is shown in 
Example 10-2, Figure 5. 
 
The bending moments and 
shearing forces acting on 
this girder can now be drawn 
as a result of the loading 
shown in Example 10-2, 
Figure 5. The resulting dia-
grams are shown in Ex-
ample 10-2, Figure 6. 
 
The depth of the girder may 
be calculated using the 
expression of convenient depth given in Appendix 7-1 of Chapter 7. The 
convenient depth is the depth that covers deflection limitations by providing 
the section with a reinforcement index equal to 0.18. Using such an 
expression for an assumed width of this girder [b = 500 mm (19.69 in), fc  = 
25 MPa (3.625 ksi)], and to calculate this example, let us consider that this 
loading scheme is already factored loading for dead and seismic effect. As 
a result, 

  
bf

M
d

c

n

'
5.2conv  

where  
  Mn = Mu/  = 1,342/0.9 = 1,499 kN.m (13,268 kip.in) 
 

Therefore, 
)500(25

10499,15.2
6

conv
xd = 866 mm (34.1 in) 

 
Use a total depth of the strap girder equal to 1.0 meter (3.28 feet). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EXAMPLE 10-2, FIGURE 5
LOADING DIAGRAM 
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EXAMPLE 10-2, FIGURE 6
SHEAR AND BENDING DIAGRAMS 
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APPENDIX  10-1 
 
 
Sheet  1 Soil Classification  
 
 

 
TABLE A10-1 

SOIL PROFILE TYPE ACCORDING TO IBC CLASSIFICATION 
AVERAGE PROPERTIES FOR TOP 30 M (100 FT) 

SOIL 
PROFILE 

TYPE 
DESCRIPTION

Shear Wave 
Velocity, vs,  

m/s 
 (ft/sec) 

Standard 
Penetration 

Test 
(blows/foot) 

Undrained 
Shear Strength 

kPa 
 (psf) 

A Hard Rock > 1,500 
(5,000) 

B Rock 760 to 1,500 
(2,500 to 5,000) 

N/A N/A 

C Very Dense Soil 
and Soft Rock 

360 to 760 
(1,200 to 2,500) > 50 > 100 

(2,000) 

D Stiff Soil Profile 180 to 360 
(600 to 1,200) 15 to 50 50 to 100 

(1,000 to 2,000) 

Soft Soil Profile < 180 
(600) < 15 < 50 

(1,000) 

E 
 

Any profile with more than 3.28 m (10 ft) of soil having 
the following characteristics: 

1. Plasticity index, PI > 20 
2. Moisture content, w  40%, and 
3. Undrained shear strength < 24 kPa (500 psf). 

F   

Any profile containing soils having one or more of the 
following characteristics: 
1. Soils vulnerable to potential failure of collapse 

under seismic loading such as liquefiable soils, 
quick and high sensitive clays, and collapsible 
weakly cemented soils. 

2. Peats and/or highly organic clays [H > 3.28 m (10 
ft)] of peat and/or highly organic clay where H = 
thickness of soil. 

3.Very high plasticity clays [H > 7.5 m (25 ft)] with 
plasticity index of P > 75. 

4. Very thick soft/medium stiff clays [H > 36 m (120 ft)] 
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Sheet  2 Correction of Standard Penetration Test, SPT 
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Sheet  3 Historical Liquefaction Potential Curves 
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11 
 
 
 
 
 

SYNTHETIC 
EARTHQUAKES 

 
 
 
 
 

11.1  Introduction 

Although earthquake records are commonly used in the dynamic analysis 
of structures, they do not reflect site conditions nor do they represent any 
future earthquake prediction. Earthquakes are characterized by initiation 
of seismic waves by irregular slippage along faults, followed by numerous 
random changes in their travel through random media properties. Re-
search shows that if strong ground motions have anything in common, it 
is their randomness. Therefore, it seems logical to use this property of 
randomness in the analysis of earthquakes. 
 
A probabilistic approach to engineering problems and structural safety is 
now widely accepted. Even for loading conditions with much higher cer-
tainty than earthquake loading, modern codes use a probabilistic ap-
proach and reliability indices as the basis for their provisions. Thus, it 
seems realistic to use a probabilistic approach for a less certain process: 
earthquake loading. 
 
Fourier analysis of earthquakes reveals that earthquakes can be de-
scribed as noise signals. Such signals contain frequency bands of high 
Fourier amplitudes according to the site characteristics of the ground. 
Because the power spectral density function, which is defined as the 
energy per unit frequency, is proportional to Fourier amplitude, the power 
spectral density of specific sites can be constructed from a statistical 
database of actual records. 
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In order to incorporate randomness as well as power spectral distribution 
of the earthquake, ground motions are best simulated by nonstationary 
filtered white noise. Site characteristics are introduced in this simulation 
by the application of filters containing those characteristics, whereas the 
sensitivity of structural response to inelastic properties is addressed by 
the application of nonstationary envelope functions. 

11.2  Fourier Transform 

In review, it is known that any periodic function of time can be approx-
imated by a Fourier series as a summation of sinusoidal functions. The 
trigonometric form of a Fourier series takes the form 
 

 
n

onono tnbtnaatf
1

sincos)(  

 
The constants ao, an and bn are given as follows: 
  

 
T

o
o dttf

T
a )(1  

 
T

o
on dttntf

T
a cos)(2  

 
T

o
on dttntf

T
b sin)(2  

 
The complex form of a Fourier series takes the form: 
 

 


 tjn
n

oectf )(  

 
where 

 



2/

2/
)(1 T

T

tjn
n dtetf

T
c o  

 
However, for nonperiodic functions, the period approaches 0, and o be-
comes vanishingly small ( o = 2 /T). This condition may be represented by 
differential form such that o  d o. Therefore, a Fourier series takes a 
differential form as follows: 
 

 dtetfjF tj



 )()(  

 )(
2
1)( dejFtf tj
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The two equations above are known as Fourier Transform Pairs. This im-
plies that any function in the time domain may be transformed into the 
frequency domain and vice versa. Fourier Transform Pairs have wide ap-
plication in engineering circuits and communication fields. In civil engin-
eering, they are useful in analyzing earthquake signals that are similar to 
noise signals in communication systems. 
 
It is important for us to under-
stand the physical meaning of the 
Fourier Transform. For this pur-
pose, it is necessary to define the 
pulse function as a function that 
has a unit area over an infini-
tesimal interval. To illustrate, con-
sider the rectangular function 
shown in Figure 11-1. In Figure 
11-1 (a), a rectangular function 
has a width of  with a height of 
1/ . Thus, the area bounded by 
this rectangle is one.  
 
Let the width of this rectangular function shrink without changing the area. 
In the limit when   0, the height of this function  . The new function at 
this limit is called the pulse function, as shown in Figure 11-1 (b). The pulse 
function may be represented mathematically as follows: 
 

(t � t0) = 0 for t  t0 
 
The area of one is called the strength of this function and is written as (1). 
Consequently, a function that is given as 

A(t) = B  (t � t0) = 0 
   
is said to have a strength of B written as (B). 
 
Using the pulse function notation, it can be shown that Fourier transform 
pairs of the cosine function (cos o t) are given as 
 
 f(t) = cos o t 
 
 F(j ) = [ (  � 0) + (  � 0)] 
 
This result shown in Figure 11-2 implies that the cosine function that has 
one frequency in the time domain appears with two frequencies in the 
frequency domain that are symmetric about the vertical axis with a strength 
of ( ). This is a property of Fourier transform functions, which can be stated 
as follows: the Fourier transform of real time functions will always be 

FIGURE 11-1
PULSE FUNCTION

(1)

t

 
f(t)

t0

(b) Pulse 
Function

(a) Rectangular 
Function

1/

t

 
f(t)

0 t0
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symmetric about the vertical axis in the frequency domain, known as 
double-sided functions. Figure 11-3 shows an example of popular functions 
in the time domain and their transform in the frequency domain. 
 
The transform of the pulse 
function appears with constant 
value for all frequencies as 
shown in Figure 11-3 (a). 
Because this function contains 
all frequencies, it is termed 
white noise similar to the term 
white color that contains all 
frequencies. All real functions 
in the time domain appear 
symmetric in the frequency 
domain. Therefore, because 
the pulse of Figure 11-3 (c) is 
not symmetric, its function is 
not real in the time domain. It is important to note that a general function 
that appears in Figure 11-3 (d) transforms into another symmetric general 
function. This function is of interest because it represents the acceleration 
signal of the earthquake in the time domain. 

 
Note that the transform process is carried out through mathematical tools 
as the Discrete Fourier Transform or, in an even more efficient scheme, as 
the Fast Fourier Transform. For more on this subject, consult textbooks in 
mathematics and in structural dynamics. 
 
 

FIGURE 11-2
FOURIER TRANSFORM OF COSINE 
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11.3  Power Spectral Density 

Power spectral density is a measure of the power associated with the 
frequency content of a function. This concept is best explained using circuit 
analysis. Consider a resister with resistance equal to 1 ohm. If a current f(t) 
is passing through this resister, the voltage will also be equal to 1 insofar as  
 
 V = i R = f(t) (1) = f(t) 
 
Because the power that is delivered to this resistor is the product of the 
voltage by the current, the power, P, is expressed as 
 
 P = v.i = f(t)2 

 
Accordingly, the total energy, E, delivered to this resistor will be the 
integration of the power over the entire time interval: 
 

 E = 


dttf 2)(  

 
The energy delivered to this resistor may also be expressed in the 
frequency domain if the expression above is used with consideration that 
f(t)2 = f(t).f(t). As a result, 

 E = 


 dttftfdttf )()()( 2  

 
Using the Fourier Transform from the section before, f(t) may replaced by 
its transform as follows: 
 

 E = 


dttftf )()(  

 
 

 dtdejFtf tj)(
2
1)(  

 
By rearranging the terms above, the expression may be reduced to the 
following: 

 E 
 

 )()(
2
1 ddtetfjF tj  
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The expression above indicates that the energy of the system may be 
expressed in the frequency domain as the square of Fourier Amplitude of 
Fourier Transform of the time function. 
 
The average power can now be evaluated by dividing the energy by the 
period when the period tends to infinite: 
 

 P = 


)(
2
1.1lim 2 djF

TT
 

 = 


 )(
2

)(
lim

2

dSd
T

jF
T

 

 
The quantity S( ) is known as the power spectral density since it 
represents some form of power density of the function f(t). As a result, the 
power spectral density may now be expressed as follows: 
 

 
T

jFS
T 2

|)(|lim)(
2

  

 
At this stage, the power associated with the frequency is proportional to the 
square of Fourier amplitude, | F(j ) |2. 
 
The response spectrum represented in many chapters of this book 
represents a kind of amplification of the ground parameters, namely ground 
displacement, ground velocity, and ground acceleration. Therefore, the 
response spectrum can be seen as representing some degree of the power 
associated with the frequency of the ground since the amplification is high 
at resonance (when the frequency of the system and the forcing function 
coincide). This is an important result because the power spectral density 
and the response spectrum can be considered to be two sides of the same 
coin. Because they both measure the energy associated with the frequency 
of the system, the power spectral density may be used to develop the time 
domain earthquake signal. This will be discussed in the next section. 

11.4  Stationary Random Processes 

A random process is defined as a family, or ensemble, of n random 
variables, where each variable is a function of other independent 
variables. The process is said to be random because it can only be 
known in a probabilistic sense.  For synthetic earthquakes, we are inter-
ested in a harmonic random process that is a function of only one 
independent random variable, n. This random process is defined by the 
relation 
 
 xn(t) = An sin ( nt + n)           (n = 1,2, . . . )  
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where: 
An = Amplitude of each individual harmonic wave form. 

n = Circular frequency of each individual harmonic. 
n  = nth sampled value of a random phase angle between 0 and 2 . 

xn(t) = nth member of the ensemble. 
 
This process is considered stationary because the averages of each in-
dividual sample of its family are independent of time. Such averages in-
clude mean values, mean square values, variances, co-variances and 
correlation coefficients. However, the average of greatest interest in a 
stationary random process is the mean square value. For one sample of 
periodic function, the time mean square value denoted as xn(t)2 is given 
as 

 



2/

2/

22 )(1)(
T

T
nn dttx

T
tx  

 
A Fourier series can be used to show that the mean square value [xn(t)2] 
for a periodic function can be expressed in the frequency domain as 
follows: 
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where: 
An = Amplitude of the rth term in Fourier series of the nth harmonic 

function. 
 
Because the power spectral density function is the most representative and 
useful measure of a random process, it is helpful to express the mean 
square in terms of the power spectral density. The mean square value 
[xn(t)2] can also be expressed in terms of the power spectral density using 
Fourier transform pairs as follows: 
  

 





1

2 )(2)(
r

xnrxnn SdStx  

where: 
Sxn = Power spectral density function of the nth harmonic function. 
Sxnr = Power spectral density value of the rth term in the summation above.   
 
When xn(t) is a real function, the power spectral density is symmetric. 
Therefore, a factor of 2 appears in the above summation over the range 
r = 1  . 

11.5  Random Ground Motion Model 

As noted earlier, ground motions are best simulated by nonstationary 
filtered white noise that allows the incorporation of the energy associated 
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with the frequency content while preserving the randomness and 
sensitivity to inelastic dynamic analysis. These elements can be achieved 
by subjecting a stationary filtered white noise to a nonstationary envelope 
function. Accordingly, the simulated ground acceleration, üg(t), may take 
the following form: 
 
 üg(t) = PGA  e(t)  X(t) 
 
where: 
e(t) = Normalized nonstationary envelope function required to describe 

the buildup and subsequent decay of the ground amplitude. 
PGA = Peak ground acceleration. 
X(t) = Stationary filtered white noise ensemble (family). 
 
X(t) can be expressed by a family of harmonics in the form 
 
 X(t) =  xn(t)  
 =  An cos ( nt + n)   (n = 1, 2, . . . m)  (1) 
 
As noted in the previous section, the mean square value of the sample (n) 
in terms of amplitudes is given as 
 
 [xn(t)2] = 1/2  Anr

2 (n = 1, 2, . . m, r = 1, 2, . . . )  (2)      
 
Also, the mean square value of the sample (n) in terms of power spectral 
density is given as 
 
 [xn(t)2] = 2  Sxnr( n)   (n = 1, 2, . . . m, r = 1, 2, . . . )  (3) 
 
Therefore, by comparison of results in (2) and (3), we can conclude that 
 
 An

2 =  4Sxn( )  (n = 1, 2, . . . m)  (4) 
 
As mentioned earlier, Sxn( ) is symmetric and, with its two mirror sides 
about the y-axis, is said to be double-sided. However, if only one side is 
considered in the analysis, the power spectral density is said to be one-
sided. Accordingly, if one-sided power spectral density is considered, the 
amplitude An will be given as 
 
 An

2 = 2Sxn( )  (n = 1, 2, . . . m)  (5) 
 
When we substitute (An) from (5) into the original expression in (1) and 
use Sg to refer to the ground power spectral density, X(t), can now be 
expressed as 
 

)(cos)(2)( nnng tStX    (n = 1, 2, . .  m)  (6) 
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where: 
= Incremental frequency ( max/m). 

M = Number of samples, which is usually taken 250. 
n = The nth generated sample of the ensemble. 

n = Frequency of the nth generated sample (n . 
max = Cutoff value in the PSD distribution (for example, max = 60 in 

Figure 11-4). 
Sg( n) = Earthquake one-sided power spectral density function with 

dimensions  L2/T3. 
n = Random phase angle of the nth generated sample between 0 

and 2 . 
 
Sg( n) is needed to incorporate site characteristics, which can be con-
structed as a filtered white noise. Statistical analysis of actual field earth-
quake records provides both filter shape and white noise amplitude as 
functions of site characteristics. Site characteristics are given in terms of 
dominant ground frequency, g, and ground damping ratio, g. Table 11-1 
provides a number of recommended values for the parameters g and g 
that reflect the characteristics of the major types of site conditions (rock, 
deep cohesionless and soft sites). 
  

 
TABLE 11-1 

SITE CONDITION PARAMETERS 
SOIL TYPE g g 

Rock 
Deep Cohesionless 

Soft 

8
5

2.4  

0.6 
0.6 

 0.85 
 

Knowing g and g, the power spectral density can be expressed in the 
following form: 
 
 Sg( ) = |H( )|2   So (7) 
where: 
 |H( )|2 = Stationary filter.   
 
An appropriate filter may be given as 
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So is the amplitude of white noise, which may be given as 
 
 So  = 4 g / (1 + 4 g

2) g      
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In earthquake engineering, the peak ground acceleration is established 
independently in zoning maps. As a result, the white noise amplitude, So, 
becomes irrelevant as the generated records are normalized. Using the 
values of g and g from Table 11-1 in the above expression for Sg( ), three 
normalized PSD functions can be constructed as shown in Figure 11-4. 
The PSD shapes in Figure 11-4 resemble the measured field response 
spectra shown in Figure 3-13 in Chapter 3, and these are our target 
distribution. 
 
Even though the elastic dynamic 
response can be directly carried 
out in the frequency domain with a 
given Sg( ), this is not possible in 
the case of inelastic dynamic 
analysis because the assumed 
superposition in the frequency 
domain does not apply. For non-
linear systems, the structure re-
sistance is history dependent. 
Therefore, the analysis must be 
completed in the time domain. 
 
Ground motion simulation models are successfully used to model earth-
quakes for elastic dynamic analysis, and this has proven to be useful. How-
ever, response agreement with elastic analysis does not directly lead to an 
acceptable response in the inelastic analysis. 
 
In the inelastic dynamic analysis, the earthquake duration is of concern as 
much as the deformation of the ground. Research has shown that inelastic 
response of structures is even more sensitive to the excitation duration 
than to the peak deformation of the ground. The Amin-Ang envelope 
function is applicable to inelastic dynamic analysis. The Amin-Ang 
envelope function depends on a parameter known as the equivalent 

1 

t1 t2 Time, t 

 
Envelope, 

e(t)

FIGURE 11-5
AMIN-ANG ENVELOPE

e-c(t-t2) 
(t/t1)2

FIGURE 11-4
SITE-DEPENDENT POWER SPECTRAL DENSITY OF EARTHQUAKES 

Frequency (rad/s)  
10 20 30 40 50

2 

1 

60 P
ow

er
 S

pe
ct

ra
l D

en
si

ty
 

(N
or

m
al

iz
ed

) Soft Soil Deep Cohesionless Soil

0 

Rock Site 

0 



Synthetic Earthquakes 

501 

earthquake duration, Tn, which also is also site dependent. Statistical 
analysis of actual records suggests typical values for Tn as 10 seconds for 
rock sites, 15 seconds for deep cohesionless sites and 20 seconds for soft 
sites. 

 
As shown in Figure 11-5, the Amin-Ang envelope function, e(t), is given 
as  
 
 e(t) = (t/t1)2 for t, t1 
 e(t) = 1  for t1 < t <t2 
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 e(t) = e-c(t-t2) for t > t2 
 
t1, t2 (seconds) and c values depend on Tn, which are given for (Tn > 3 
seconds, by the following expression:   
 
 t1 = 1.5 seconds 

t2 = Tn � 2.18 seconds 
 c = 0.18 
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11.6  Implementation of Ground Motion Model 

The concepts above can easily be implemented with computers. Figure 11-
6 shows the results from such an implementation with three generated 
samples of synthetic records for the major site conditions. Each sample is 
based on a corresponding target PSD distribution as given in Figure 11-4. 
 
The target PSD functions in Figure 11-4 are smooth curves because they 
represent an average results over a large number of records. However, the 
PSD shape for each individual record will be jagged. As an illustration, 
Figure 11-7 shows the Fourier amplitude spectrum (proportional to the 
PSD) for each individual record given in Figure 11-6. Nevertheless, the 
trend of each individual PSD distribution follows the general shape of the 
corresponding target PSD distribution as given in Figure 11-4. 

11.7  Validity of Synthetic Earthquakes 

The ground motion model that is based on a stochastic approach has a 
solid mathematical basis. The validity of such models has been proven to 
be sound and well representative in their effect on the structural response. 
In order to examine the validity of synthetic earthquakes, the following 
paragraphs will present the results of a parametric study of an equivalent 
single degree of freedom, ESDOF, system that was subjected to the ex-
citation of nine actual earthquake records and nine synthetic earthquake 
records. 
 
The parametric study used inelastic dynamic analysis and was performed 
for each set of records by varying the period and the yielding level of a 
bilinear hysteresis model shown 
in Figure 11-8. The parameter 
variation included six periods and 
six levels of yielding of the hys-
teresis model for each set of 
earthquake records. This para-
meter variation resulted in 324 
pairs of the force reduction factor, 
R, and the global ductility de-
mand, d. Values for each set of 
records were grouped and statis-
tically analyzed and examined. 
 
The inelastic dynamic analysis results are compiled into two groups as 
shown in Figures 11-9 and 11-10, which plot all data points of R versus d 
at different periods. Figure 11-9 shows the results of the response of the 
ESDOF system to the excitation of the nine actual earthquakes, while 
Figure 11-10 shows the response of the same system to the excitation of 
the nine synthetic earthquakes. 
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Figures 11-9 and 11-10 clearly indicate that the R versus d relationship 
is extremely random in both earthquake groups as shown by the scatter 
of the data points. However, the general shape of the trend of data is 
similar for both cases. Note that the trend of excessive ductility demand 
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at short periods applies to both cases, whereas relatively moderate duc-
tility demand is required at higher periods. 
 
Statistical comparison between the two cases is also presented by 
performing regression analysis and evaluation of dispersion measures. 
Figure 11-11 shows the results of all data points plotted together with two 
trend lines drawn for each group of earthquakes. Figure 11-11 shows that 
the curve that represents synthetic records lies slightly below the curve 
that represents the actual records. However, the trend curves are not too 
far from each other as shown by a comparison of the trend line equations 
with their associated coefficients of determination (r-squared values) that 
appear in the same figure. For the same reduction of elastic strength 
demand (for the same R-value), synthetic earthquakes demand higher 
ductility ratios than their actual counterparts. 
 
Statistical measures are also presented in Tables 11-2 and 11-3. Table 
11-2 shows basic statistical measures within each group of earthquake 
records. The correlation coefficient within each group is almost identical, 
0.606 versus 0.602, implying that each group exhibits the same effect on 
the R versus d relationship. The correlation agreement also indicates 
that synthetic records can be considered to be equivalent to the actual 
records in their dispersion of characteristics and effect on structural 
response. 
       

 
TABLE 11-2 

STATISTICAL MEASURES WITHIN EACH GROUP OF EARTHQUAKE 
RECORDS 

ACTUAL EARTHQUAKE
RECORDS 

SYNTHETIC 
EARTHQUAKE 

RECORDS STATISTICAL 
PARAMETER Global 

Ductility 
Demand 

d) 

Force 
Modification 

Factor 
(R) 

Global 
Ductility 
Demand 

d) 

Force 
Modification 

Factor 
(R) 

Mean 10.90 6.30 17.50 7.00 
Standard Deviation 12.24 5.23 18.71 4.81 

Variance 149.90 27.34 350.09 23.07 
Covariance 38.65 54.01 

Correlation Coefficient 0.606 0.602 
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TABLE 11-3 
STATISTICAL MEASURES ACROSS GROUPS OF EARTHQUAKE RECORDS 

FORCE MODIFICATION 
FACTOR 

(R) 

GLOBAL DUCTILITY 
DEMAND 

d) STATISTICAL 
PARAMETER Actual 

Earthquake
Records 

Synthetic 
Earthquake

Records 

Actual 
Earthquake

Records 

Synthetic 
Earthquake 

Records 
Mean 6.30 7.00 10.90 17.50 

Standard Deviation 5.23 4.81 12.24 18.71 
Variance 27.34 23.07 149.90 350.09 

Covariance 23.07 179.64 
Correlation Coefficient 0.920 0.787 

 
In contrast, Table 11-3 shows basic statistical measures across both 
groups of records. Here, the correlation coefficient between the R-values 
across the two groups is very high. This is anticipated because the R-
values are selected beforehand to establish the parameter variation 
mentioned earlier. However, the correlation coefficient between the 
d�values across the two groups is also high, indicating that ductility 
demand under the excitation of both groups is highly correlated. 
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12 
 
 
 
 
 

SEISMIC ISOLATION 
 
 
 
 
 

12.1  Introduction 

Seismic isolation is a modern technique used to seismically isolate struc-
tures from the ground at the base level. (It is also called base isolation.) 
Isolation is achieved by introducing the isolating system at the base or at 
selected locations in order to reduce the transfer of the ground motion 
effects to the structure. The significant advantage of seismic isolation is its 
ability to minimize the damage usually associated with earthquake events. 
However, the disadvantage of seismic isolation is that it may need to be 
replaced during the lifetime of the structure. 
 
Over the past several decades, seismic isolation has gained in popularity 
and frequency of use, especially in bridges. Seismic isolation is considered 
the only practical solution for historical monuments if the superstructure it-
self cannot be modified or strengthened for obvious reasons. 
 
Today, isolators for seismic isolation systems come in many different forms 
and designs. Lead-rubber bearing isolators are the most popular and 
perhaps the most economical. In addition, because elastomeric bearings 
are installed in bridges for nonseismic performance, including lead-rubber 
bearing isolators would only be a minor modification to the original bear-
ings. Therefore, this chapter will focus on seismic isolation systems that 
use lead-rubber bearing isolators. 
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12.2  The Seismic Isolation Concept  

The basic concept of seismic isolation can be illustrated by a helicopter-
pier analogy. If a helicopter lands on a rigid pier as shown in Figure 12-1 
(a), the helicopter experiences the same acceleration of the ground as it 
is transferred through the supporting rigid pier. However, if the helicopter 
takes off while connected to the ground by a wire (soft support), the heli-
copter does not feel any of the ground acceleration as shown in Figure 
12-1 (b). Even though the helicopter does not feel the acceleration in the 
second case, it will experience the same displacement of the ground rel-
ative to its position. 

 
The same conclusion is reached when we examine the response spectrum 
properties. Recall that the response spectrum acceleration approaches 
zero as the period of the structure approaches infinity (soft support), while 
the response spectrum acceleration approaches the ground acceleration 
as the period approaches zero (stiff support). Figure 12-2 shows these 
limits for the El Centro earthquake. Note that isolators usually have large 
energy-dissipating elements that further reduce the forces and displace-
ments of the system (see the effect of increased damping ratios in Figure 
12-2). 
 
In summary, the target of any seismic isolation system is to elongate the 
period of the structure to limit the transfer of the acceleration from the 
ground to the structure. This also implies that the structure experiences 
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little force, if any. However, this action is associated with large displace-
ments in the isolators that must be accommodated. Remember that seis-
mic isolation is a tradeoff between large forces and large displacements. 
 

12.3  Lead-Rubber Bearing Isolator  

As mentioned earlier, this book will consider the lead-rubber bearing iso-
lation system as a model iso-
lator to explore the concept and 
the design requirements for iso-
lators in general. The lead-rub-
ber bearing isolator consists of 
a rubber pad reinforced with 
laminated steel sheets as 
shown in Figure 12-3. A circular 
lead core is inserted in the 
middle of the rubber pad as 
shown in the same figure. The 
pad is then attached to two 
steel plates at both faces as an 
interface to connect the isolator 
with the structure. 
 
The rubber used in these isolators consists of the same elastomeric 
material used in bridges with special specifications to accommodate 
seismic requirements. The rubber in this case serves as a soft material 
that provides soft support for isolation purposes. The rubber itself is not a 
good energy dissipater, as it is a purely elastic material. Furthermore, un-
der regular loads, the structure may experience large uncomfortable dis-
placements that are due to its low stiffness. In addition, the structure may 
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be subjected to low-frequency vibration under normal conditions. There-
fore, lead core is inserted in the middle of the rubber pad to handle these 
shortcomings. 
 
As a material, lead has moderate stiffness and a large capacity of energy 
dissipation. As a result, it is considered ideal for this system to achieve 
three important goals: 
  
1. Limit large displacements that are due to lateral forces under normal 

conditions because of its elastic stiffness. 
2. Yield under seismic excitations at low force levels to activate the 

function of the rubber as an isolator. 
3. Serve as a damper on account of its large energy dissipation ca-

pacity.  
 
The elastomer as a material is considered to be linear elastic. The 
properties of the elastomer depend on its hardness, which is usually 
specified by the manufacturer. In the absence of manufacturer data, the 
AASHTO code provides the shear modulus of elasticity and creep 
properties for elastomer at different hardness values. This information is 
also provided in Table 12-A1 in Appendix 12-1 at the end of this chapter. 
In contrast, lead as a material exhibits ideal elasto-plastic behavior in 
shear. The lead properties in shear are also given in Table 12-A2 in Ap-
pendix 12-1. 

 
When combined, elastomer and lead form an ideal system that exhibits 
ideal bilinear hysteretic behavior as shown in Figure 12-4. Extensive ex-
perimental testing was conducted on lead-rubber bearings under constant 
vertical load, N, and subjected to varying cyclic shearing force. Some test 
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results are shown in Figure 12-4, which illustrates the contribution of both 
rubber and lead material to stiffness and to energy dissipation. The large 
elastic stiffness and large hysteretic loop are due to lead contribution. Upon 
yielding of lead, the overall effective stiffness of the bearing will only be the 
stiffness of the elastomer. 

12.4  Analysis of Seismically Isolated Structures 

Because of the relatively high stiffness ratio between the structure and 
the isolator, the structure is considered to behave as a rigid body with all 
deformations concentrated in the isolator as shown in Figure 12-5. With 
this assumption, the system may be treated as an equivalent single 
degree of freedom system with its mass concentrated in the building; the 
stiffness and displacements of the system are concentrated in the 
isolator. 
 
Because the isolator properties are 
known through their hysteretic be-
havior, inelastic dynamic analysis can 
be used to analyze the system under 
any excitation as illustrated in Chapter 
4. Indirect analysis using force re-
ductions and ductility demand/capacity 
will also be valid. 
 
In general, the system must be 
designed to meet the required 
specifications and the conditions of serviceability. Such requirements in-
clude, for example, the design of the bearing to carry the vertical gravity 
loads and to meet the strain limitations, a minimum yield force to resist 
wind during normal conditions, and a minimum displacement capacity 
(ductility capacity) to meet the expected large inelastic displacements 
during earthquake excitations. 

12.5  Design of Seismically Isolated Structures 

Design requirements of this section will be given according to AASHTO 
specifications for design of elastomeric bearings. According to AASHTO, 
elastomeric bearings with reinforcement steel sheets may be designed 
using the allowable stress design method. As indicated earlier, the bear-
ing consists of a stack of elastomer layers and steel sheet layers bonded 
together. 
 
The bearing components are typically arranged as shown in Figure 12-6, 
which are usually optimized by the manufacturer. To get a sense of the 
bearing details, view the following dimensions as general dimensions: 
 

m
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- The elastomer layer thickness 
(around 12 mm) between steel 
sheets is designated as hri. 

 
- The total thickness of rubber 

layers is hrt =  hri. 
 
- The total thickness of bearing, 

including steel sheets and end 
plates, is designated as hb.  

 
- The thickness of steel sheets is 

typically taken as 3 millimeters. 
 
- The end steel plates are typ-

ically taken as around 20 millimeters. 
 
- The cover of elastomer around steel sheets is taken as around 12 

millimeters. 
 
The area of steel sheets is designated as the 
bonded area, which is considered the effective 
area in resisting bearing deformations. The 
overall dimensions of the bearing in plan are 
given as follows: 
 
L = Dimension along the axis of the bridge. 
W = Dimension perpendicular to the axis of 

the bridge. 
 
A shape factor, S, is defined as follows: 
 

 
)()2()(areagebultofree

areaplan

rihWL
WLS


  

 
Allowable compressive stress 
 
Allowable compressive stress of elastomer is given as a function of its 
shape factor defined earlier. The allowable compressive stress for steel-
reinforced bearings under dead and live loads, c,all, is given as follows: 
 
 c,all = G.S/  
 c,all  7 MPa (1,000 psi) 
 
where: 

= Factor taken as 1.0 for internal layers and as 1.4 for cover layer as 
defined in Figure 12-6. 

FIGURE 12-7 
BEARING DIMENSIONS 

IN PLAN  

 
Bridge Axis 

L

W

End Plate 

FIGURE 12-6
TYPICAL ELASTOMERIC 

BEARING WITHOUT LEAD CORE 

 
Internal 

Elastomer 
Layer, hri 

Steel Sheet

 
Cover 

Elastomer 
Layer

hb 



Seismic Isolation 

515 

G = Shear modulus of elasticity of the elastomer as given in Table 12-1. 
S = Shape factor as defined earlier.  
 
Bearings (as rubber material) are excluded from the impact effect of live 
loads. 
 
Allowable shear deformation (shear strain) 
 
The maximum shear strain in the bearing measured over pure rubber 
material is given as 0.5. This limitation implies that the total rubber thick-
ness, hrt, excluding steel sheets and end plates, must be at least 
 
 hrt  2 s  
where: 

s = Maximum top displacement of the bearing in the lateral direction 
(see Figure 12-9). 

hrt = Total rubber height of the bearing (hrt =  hri). 
 
Allowable rotation 
 
The maximum rotation of the bearing plan surface, , under the dead and 
live loads is limited to the following: 
 
  2 c/L 
  2 c/W 
 
where: 

c = Instantaneous vertical compressive deflection of the bearing. 
L, W = Bearing dimensions as given in Figure 12-7. 

= Rotation of the bearing, which is due to the rotation of the 
supported beam end. 

 
The instantaneous vertical compressive deflection of the bearing is a 
function of the vertical stress. Unfortunately, the axial stress-strain relation-
ship of rubber is nonlinear. Thus, the deflection is given in AASHTO by 
means of relation charts. Appendix 12-1 presents two charts of vertical 
stress versus vertical strain relationships for elastomer of two hardness 
grades of 50 and 60. 
 
Stability requirements 
 
The total thickness of the bearing is limited to a maximum to prevent the 
toppling and rolling of the bearing under large deformations. These limits 
are given for reinforced bearings as follows: 
 
Rectangular bearings: hb  L/3, W/3 
Circular bearings: hb  D/4 
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where: 
D = Bearing diameter in case of circular bearings. 
hb = Total height of the bearing including steel sheets and end plates. 
L, W = Bearing dimensions as given in Figure 12-7. 
 
The requirements above may be waived if the manufacturer provides the 
bearing with positive mechanical connections to the structure that prevent 
the instability of the bearing. For example, an interface plate bolted to the 
superstructure may be considered as a waiver from this stability re-
quirement as long as the manufacturer proves that his or her product is 
stable under loads. 
 
Lead core dimensions 
 
The lead core diameter, DL, is 
recommended to be limited to 
the least bearing dimensions 
as follows: 
 
 DL  B/3  
 DL  B/6  
 
where B is the least dimen-
sion of the bearing (a min-
imum of L, W or D). 
 
This is not an AASHTO 
requirement. Instead, it is a 
recommendation given by 
lead-rubber bearing manu-
facturers. Figure 12-8 shows 
a typical arrangement of bearings with a lead core. 

Shear stiffness 
 
The bearing stiffness is given as a 
function of the shear stiffness because its 
response is basically in the shear mode as 
shown in Figure 12-9. For a given force, 
Fs, with displacement, s, the stiffness is 
evaluated as follows: 
 
 Fs =  Ar 
 = (Gr )  Ar 
 = Gr Ar ( s/hr) 
 = (Gr Ar /hb) s 
 
Consequently, the shear stiffness of the bearing is given as 
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  kr = Gr Ar /hr 
 
Similarly, the shear stiffness of the lead is given as 
 
  kL = GL AL /hb 
 
where: 
G = Shear modulus of elasticity. 
L = Lead.   
r = Rubber.  
 
The design requirements given above are best illustrated by the following 
example. 
 
Example 12-1 
 
A single-span bridge is shown in 
Example 12-1, Figure 1. The deck is 
supported by two longitudinal gir-
ders. The bridge lies in a seismic 
zone with a seismic coefficient of A 
equal to 0.2. The site is of Soil Type 
II. The total weight of the bridge is 
1,000 kN (224.82 kip). The bridge is 
subjected to a total live load of 500 
kN (112.41 kip). 
 
Also relevant, the short-term forces that are due to wind, breaking forces, 
and others are 50 kN. Shrinkage and temperature displacement is 5 
millimeters. 
 
The available isolators are lead-
rubber bearings with a response 
spectrum provided by the man-
ufacturer. The response spectrum 
is given in Example 12-1, Figure 2, 
for normalized A = 1 and for Soil 
Type I (for rock sites). For any 
other soil type, the response 
spectrum must be multiplied by the 
site amplification factor, S. The iso-
lators also behave according to the 
equal displacement criterion given 
in Chapter 5: elastic and inelastic 
displacements are equal under 
earthquake excitation. The elasto-
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mer has a shear modulus of elasticity of 1.0 MPa (145 psi) layered at 12 
millimeters (0.47 inches). 
 
Use these rubber-lead bearings to isolate the bridge. 
 
Solution 
 
Because the bridge has two main girders, two isolators are needed for 
each girder, resulting in a total of four isolators placed as shown in 
Example 12-1, Figure 1. The design must be carried out in two stages. 
First, the bearings must be designed for dead and live loads and any other 
loading specified by the code. In this example, and for our objectives, our 
design will be limited to treatment of dead, live and seismic load effect. 
 
The bearings will be designed of the same height. Therefore, all loads will 
be equally divided by the number of bearings (by 4). 
 
Part 1: Nonseismic dimensioning: 
 
(1) Each bearing�s share of gravity loads: 
 
 D = 1,000/4 = 250 kN (56.21 kip) 
 L = 500/4 = 125 kN (28.10 kip) 
 
(2) Plan dimensions by trial and error since allowable stresses are a 

function of the shape factor.  Start with c,all = 7 MPa (1,000 psi): 
 
 Areq = (D + L)/ c,all = (250 + 125)(1,000)/7  
  = 53,571 mm2 (83 in2) 
 
Try 231 x 231 millimeters to find the new allowable stress. 
 

Shape factor: 
)12()2()231231(

)231(231
)()2()( 





rihWL

WLS = 4.82 

 c,all = G.S/  = 1.0(4.82)/1 = 4.82 MPa (699 psi) 
 
Therefore,  Areq = (250 + 125)(1,000)/4.82  
 = 77,800 mm2 (120.6 in2) 
 
Try 279 x 279 millimeters (11 x 11 inches) to find the new allowable 
stress. 
 

Shape factor: 
)12()2()279279(

)279(279
)()2()( 





rihWL

WLS = 5.81 

 
c,all = G.S/  = 1.0(5.81)/1 = 5.81 MPa (842 psi) 
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Therefore,  Areq = (250 + 125)(1,000)/5.81  
 = 64,544 mm2 (100 in2) 
 = 254 x 254 mm (10 x 10 in) 
 
Use 280 x 280 millimeters (11 x 11 inches) for overall dimensions. With 
20 millimeters (0.787 inch) horizontal cover on each side, the bonded 
area becomes 240 x 240 millimeters (9.45 x 9.45 inches). 
 
(3) Shear deformations: hrt  2 s = 2(5) = 10 mm (0.39 in)  

Use 1-layer, 12 mm each: hrt = 12 mm (0.47 in) 
  
(4) Rotation should also be checked. This check would be completed in 

a straightforward fashion as a function of the rotation of the girder 
ends. 

 
(5) Stability check: 
 
Because this type of bearings has a positive interface connection, the 
stability limits may be waived. If desired, the stability check for such 
bearing may done as follows: 
 
 Height limit = L/3 = 280/3 = 93 mm (3.66 in) 
 
Total bearing height, hb, is given as follows: 
1-layer rubber 12 mm (0.47 in) 
0-layer of steel sheets, 3 mm (0.12 in) each: 0 mm (0.0 in) 
2-end plates, 12 mm (0.47 in) each: 24 mm (0.94 in) 
2-cover layers, 3 mm (0.12 in) each: 6 mm (0.24 in) 
 
Therefore,  hb = 12 + 0 + 24 + 6 = 42 mm < 93 mm  OK 
               (1.65 in < 3.66 in  OK) 
 
(6) Lead core diameter: 
 
 DL  B/3 = 280/3 = 93 mm (3.66 in) 
 DL  B/6 = 280/6 = 47 mm (1.85 in) 
 
Use 50 millimeters (1.97 inches) diameter core. As a result, the yield 
force of the core, Fy, will be 
 
 AL =  DL

2/4 = (50)2/4 = 1,963 mm2 (3.04 in2) 

 Fy = y AL = 10(1,963) = 19,630 N (19.63 kN) (4.413 kip) 
 
(7) Seismic forces: 
 
Bonded area of rubber: Ar = Abond � AL = (240)2 � (1,963)  
 = 55,637mm2 (86.24 in2) 

Rubber stiffness: kr = Gr Ar/hrt  = 1.0(55,637)/12  
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 = 4,636N/mm (26.49 kip/in) 
Lead stiffness: kL = GL AL/hb = 130(1,963)/42  
 = 6,076 N/mm (34.72 kip/in) 
Total stiffness: kb = kr + kL  = 4,636 + 6,076  
 = 10,712 N/mm (61.21 kip/in) 
 
Yield displacement of the lead core: 
  
 y = Fy/kL = 19,630/6,076 = 3.2 mm (0.13 in) 
 

Period:  
bKg

WT 2  =
)712,10(81.9

2502 = 0.306 sec 

 
Using the response spectrum from Example 12-1, Figure 2, the maximum 
displacement for rock sites and A = 0.2 is given as 
 
 rock = Sd = 0.2(100)(0.306) = 6.12 mm (0.24 in) 
 EQ = S. rock = 1.2(6.12) = 7.34 mm (0.29 in) 
 
Because EQ > y, the lead yields under earthquake excitation. The earth-
quake-induced force may now be calculated as follows: 
 
 Fr = kr EQ = 4,636 (7.34) = 34,047 N (7.65 kip) 
 FEQ = FLC + Fr  = 19.63 + 34.05 = 54 kN (12.14 kip) 

 
If one wants to reduce the earthquake forces, the bearing height may be 
increased. For example, if four layers of rubber are used, the earthquake 
force may be calculated by repeating the calculations above as follows: 
 
Total bearing height, hb, is given as follows: 
4-layer rubber: 48 mm (1.89 in) 
3-layer of steel sheets, 3 mm (0.12 in) each: 9 mm (0.35 in) 
2-end plates, 12 mm (0.47 in) each: 24 mm (0.94 in) 
2-cover layers, 3 mm (0.12 in) each: 6 mm (0.24 in) 
 
Therefore,  hb = 48 + 9 + 24 + 6 = 87 mm (3.43 in) 
  
Bonded area of rubber: Ar = Abond � AL = (240)2 � (1,963)  
 = 55,637 mm2 (86.24 in2) 

Rubber stiffness: kr = Gr Ar/hrt = 1.0 (55,637)/48  
 = 1,159 N/mm (6.62 kip/in) 
Lead stiffness: kL = GL AL/hb = 130 (1,963)/87  
 = 2,933 N/mm (16.76 kip/in) 
Total stiffness: kb = kr + kL = 1,159 + 2,933  
 = 4,092 N/mm (23.38 kip/in) 
 
Yield displacement of lead core:  
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 y = Fy/kLC = 19,630/2,933 = 6.7 mm (0.26 in) 
 

Period:  
bKg

WT 2  =
)092,4(81.9

2502 = 0.496 sec 

 
Using the response spectrum from Example 12-1, Figure 2, the maximum 
displacement for rock sites is given as 
 
 rock = Sd = 0.2(100)(0.496) = 9.92 mm (0.39 in) 
 EQ = S. rock = 1.2(9.92) = 11.9 mm (0.47 in) 
 
Because EQ > y, the lead yields under earthquake excitation. The 
earthquake-induced force may now be calculated as follows: 
 
 Fr = kr EQ = 1,159(11.9) = 13,792 N (3.1 kip) 
 FEQ = FL + Fr  = 19.63 + 13.79 = 33 kN (7.42 kip) 

 
By increasing the bearing height, the value of seismic forces has dropped 
to half of its previous value. 
 
This system of lead-rubber bearing has been extensively used in 
buildings and bridges worldwide over the past three decades. Many real 
life examples from the United States, Japan and New Zealand are cited 
by Skinner et al., 1993. Some of these examples include, for example, 
Salt Lake City and County Building in Utah, and Sierra Point Bridge in 
California (US 101) in the United States, and Moonshine Bridge in Upper 
Hunt in New Zealand.
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APPENDIX 12-1 
 
 
Sheet  1 Material Properties of Elastomeric Bearings 
 
 

 
TABLE 12-A1 

ELASTOMER PROPERTIES AT DIFFERENT HARDNESS LEVELS 
ACCORDING TO THE AASHTO CODE  

Hardness 50 60 70 

Shear modulus, G: 
at 23º C. (MPa) 
at 73º F. (psi) 

 
0.68 � 0.93 
(95 � 130) 

 
0.93 � 1.43 
(130 � 200) 

 
1.43 � 2.14 
(200 � 300) 

Creep deflection at 25 years as 
 percentage of instantaneous 

deflection 
25% 35% 45% 

 
 
As a material, lead exhibits ideal elasto-plastic behavior in shear.  The lead 
properties in shear are given in Table 12-A2. 
 
 

 
TABLE 12-A2 

PROPERTIES OF LEAD MATERIAL  
Shear modulus, G 130 MPa (18.85 ksi) 

Yield stress in shear, y 10 MPa (1.45 ksi) 
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Sheet  2 Stress-Strain Relationship of Elastomer at Hardness 50 and 
60 
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Seismic joints,   215 
Seismic seats,  467 
Shear beam,  77 
Shear beam building,  81 
Shear walls,  85, 215, 265 
 Ordinary,  343 
 Special,  355 
Short column,  209 
Simple flexure beam,  92 
Simplified analysis procedure (see 

Simplified lateral force procedure) 
Simplified force procedure (see 

Simplified lateral force procedure) 
Simplified lateral force procedure,  

231, 234  
Single DOF,  17, 125, 413, 419, 421 
Single span bridges,  412, 415 
Single mode spectral method 

(AASHTO),  412, 418, 422, 430 
Sinusoidal method (bridge),  438 
Slope stability,  478 
Soft story,  214, 234 
Special beams, 323 
Special beam columns, 326 
Special concentrically braced 

moment frames,  392, 399 
Special joints, 331 
Special moment frames,  224  

Concrete,  321 
Steel,  394 

Special boundary element (SSW),  
356, 358, 361 

Special segment (steel),  397, 408 
Special shear walls, 355, 356, 366  

with openings,  366 
without openings,  356 

Special topics 
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AASHTO,  467 
IBC,  276 

Special truss moment frames,  396 
Stationary random processes,  496 
Steel structures,  389 
Stiffness matrix,  42, 98 
Strain compatibility analysis 
 Cyclic, 194 
 General, 185 
 Idealized, 173 
Strain rate,  215 
Strap girder,  481 
Stress method (SSW),  358, 359 
Structural components,  224 
Structural systems,  213 

AISC,  392 
IBC,  276  

Synthetic earthquakes,  491, 503 
System formulation, 17 

T 

Tectonic plates,  8 
Three (3-D),  63 
Time-history analysis 

AASHTO,  418, 456 
IBC,  231, 257  

Torsion,  65, 277 (IBC) 
Transfer function,  473 
Truss element (FEM),  101, 104 
Truss member (ACI),  372 

U 

Undesirable hysteretic behavior,   
198 

Undesirable systems,  213 
Uniform load method (AASHTO),  

419 

V 

Validity of synthetic earthquakes,   
503 

Vertical force distribution of base 
shear (IBC),  235, 241 

Vierendeel panel,  397 
Virtual work,  27, 43, 97, 98, 168 
 

W 

Wave propagation,  470 
Weighted residuals,  102 
Wilson-  method,  129 

Z 

Zoning 
AASHTO,  411 
IBC,  227 

Zoning classification, 227 
Zone factors 
 AASHTO,  411 
 IBC,  227 
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UNIT CONVERSION 
 
 
 
 
 
 
 

The following table includes customized unit conversion factors that are 
intended to facilitate the navigation of unit conversion in this book. It is not 
intended as a general table of unit conversion. 
 
 
 
 
Imperial  SI 
 
 

SI  Imperial 
 

SYMBOLS 
 
kg = kilogram (1000 grams)  
kN = kilo Newton  (1000 Newtons) 
kPa = kilo Pascal (kN/m2) 
m = meter 
mm = millimeter 
MPa = Mega Pascal (MN/m2) 
N = Newton 
Pa = Pascal (N/m2) 
 

SYMBOLS 
 
ft = foot 
in = inch 
kip = kilo pound (1000 pounds) 
ksi = kip/in2 
lb = pound 
pcf = pound/ft3 

psf = pound/ft2 

psi = pound/in2 

LENGTH 
 
m  3.2808 foot 
m  39.37 inch 
 

LENGTH 
 
in = 25.4 mm  
ft = 304.8 mm  
 

AREA 
 
m2  10.7639 foot2 
m2  1550 in2 
 

AREA 
 
in2 = 645.16 mm2  
ft2  92,903 mm2 
 

FORCE 
 
N  0.2248 pound 
kN  0.2248 kip 
 

FORCE 
 
Pound = 4.448 N 
kip = 4.448 kN 
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STIFFNESS 
 
kN/mm  5.71 kip/in 
 

STIFFNESS 
 
kip/in  175 kN/m 
 

MOMENT 
 
kN.m  8.851 kip.in 
 

MOMENT 
 
kip.ft  1.356 kN.m 
 

PRESSURE (STRESS) 
 
MPa = 145 psi 
kPa (kN/m2)  20.886 psf 
 

PRESSURE (STRESS) 
 
ksi  6.897 MPa (  7 MPa) 
psi  6.897 kPa (kN/m2) 

MASS 
 
kg = 2.204 pound 
kN.s/mm  5.71 kip.sec/in 
 

MASS 
 
pound = 0.4536 kg 
kip.sec/in  175 kN.s/m 
 

VISCOUS DAMPING 
 
kN.s2/mm  5.71 kip.sec2/in 
 

VISCOUS DAMPING 
 
kip.sec2/in  175 kN.s2/m 
 

UNIT WEIGHT 
 
kN/m3  6.363 pcf 
 

UNIT WEIGHT 
 
kcf  157 kN/m3 

 
FLEXURE STIFFNESS 
FORCE-LENGTH2 

 
kN.m2  2.42 kip.ft2 

kN.m2  348.472 kip.in2 

 

FLEXURE STIFFNESS 
FORCE-LENGTH2 

 
kip.ft2  0.413 kN.m2 
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