
Notes to instructors
Introduction

The following ideas and information are provided to assist the instructor in the design and implementation
of the course. Traditionally this course is taught at Washington State University and the University of Idaho as a
three-credit semester course which means 3 hours of lecture per week for 15 weeks. Basically the first 11 chapters
and Chapter 13 (Flow Measurements) are covered in Mechanical Engineering. Chapters 12 (Compressible Flow)
and Chapter 14 (Turbomachinery) may be covered depending on the time available and exposure to compressible
flow in other courses (Thermodynamics). Open channel flow (Chapter 15) is generally not covered in Mechanical
Engineering. When the text is used in Civil Engineering, Chapters 1-11 and 13 are nominally covered and Chapters
14 and 15 may be included if time permits and exposure to open channel flow may not be available in other courses.
The book can be used for 10-week quarter courses by selecting the chapters, or parts of the chapters, most appropriate
for the course.

Author Contact

Every effort has been made to insure that the solution manual is error free. If errors are found (and they
will be!) please contact Professors Crowe or Elger.

Donald Elger Clayton Crowe
Mechanical Engineering Dept School of Mechanical Eng. & Matl. Science
University of Idaho Washington State University
Moscow, ID 83844-0902 Pullman, WA 99164-2920
Phone (208) 885-7889 Phone (509) 335-3214
Fax (208) 885-9031 Fax (509) 335-4662
e-mail: delger@uidaho.edu e-mail: crowe@mme.wsu.edu

Design and Computer Problems

Design problems (marked in the text in blue) are those problems that require engineering practices such
as estimation, making asummptions and considering realistic materials and components. These problems provide a
platform for student discussion and group activity. One approach is to divide the class into small groups of three or
four and have these groups work on the design problems together. Each group can then report on their design to
the rest of the class. The role of the professor is to help the student learn the practices of the design review—that is,
teach the student to ask in-depth questions and teach them how to develop meaningful and in-depth answers. This
dialogue stimulates interest and class discussion. Solutions to most design problems are included in the solution
manual.

Computer-oriented problems (marked in the text is blue) are those problems may best be solved using
software such as spreadsheets, TK Solver or MathCad. The choice is left to the student. The answer book also
includes the results for the computer-oriented problems.
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PROBLEM 2.1

Situation: An engineer needs density for an experiment with a glider.
Local temperature = 74.3 ◦F = 296.7K.
Local pressure = 27.3 in.-Hg = 92.45 kPa.

Find: (a) Calculate density using local conditions.
(b) Compare calculated density with the value from Table A.2, and make a recom-
mendation.

Properties: From Table A.2, Rair = 287 J
kg·K , ρ = 1.22 kg/m

3.

APPROACH

Apply the ideal gas law for local conditions.

ANALYSIS

a.) Ideal gas law

ρ =
p

RT

=
92, 450N/m2

(287 kg/m3) (296.7K)

= 1.086 kg/m3

ρ = 1.09 kg/m3 (local conditions)

b.) Table value. From Table A.2

ρ = 1.22 kg/m3 (table value)

COMMENTS

1. The density difference (local conditions versus table value) is about 12%. Most
of this difference is due to the effect of elevation on atmospheric pressure.

2. Answer ⇒ Recommendation—use the local value of density because the effects
of elevation are significant.
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PROBLEM 2.2

Situation: Carbon dioxide is at 300 kPa and 60oC.

Find: Density and specific weight of CO2.

Properties: From Table A.2, RCO2 = 189 J/kg·K.

APPROACH

First, apply the ideal gas law to find density. Then, calculate specific weight using
γ = ρg.

ANALYSIS

Ideal gas law

ρCO2 =
P

RT

=
300, 000

189(60 + 273)

= 4.767 kg/m3

Specific weight
γ = ρg

Thus

γCO2 = ρCO2 × g

= 4.767× 9.81
= 46.764 N/m3
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PROBLEM 2.3

Situation: Methane is at 500 kPa and 60oC.

Find: Density and specific weight.

Properties: From Table A.2, RMethane = 518 J
kg·K .

APPROACH

First, apply the ideal gas law to find density. Then, calculate specific weight using
γ = ρg.

ANALYSIS

Ideal gas law

ρHe =
P

RT

=
500, 000

518(60 + 273)

= 2.89 kg/m3

Specific weight
γ = ρg

Thus

γHe = ρHe × g

= 2.89× 9.81
= 28.4 N/m3
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PROBLEM 2.4

Situation: Natural gas (10 ◦C) is stored in a spherical tank. Atmospheric pressure is
100 kPa.
Initial tank pressure is 100 kPa-gage. Final tank pressure is 200 kPa-gage.
Temperature is constant at 10 ◦C.

Find: Ratio of final mass to initial mass in the tank.

APPROACH

Use the ideal gas law to develop a formula for the ratio of final mass to initial mass.

ANALYSIS

Mass
M = ρV (1)

Ideal gas law

ρ =
p

RT
(2)

Combine Eqs. (1) and (2)

M = ρV−
= (p/RT )V−

Volume and gas temperature are constant so

M2

M1
=

p2
p1

and

M2

M1
=

300 kPa
200 kPa

= 1.5
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PROBLEM 2.5

Situation: Water and air are at T = 100oC and p = 5 atm.

Find: Ratio of density of water to density of air.

Properties: From Table A.2, Rair = 287 J/kg·K. From Table A.5, ρwater = 958 kg/m3.

APPROACH

Apply the ideal gas to air. Look up the density of water in Table A.5.

ANALYSIS

Ideal gas law

ρair =
p

RT

=
506, 600

287(100 + 273)

= 4.73 kg/m3

For water
ρwater = 958 kg/m

3

Ratio

ρwater
ρair

=
958

4.73

= 202
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PROBLEM 2.6

Situation: Oxygen (p = 400 psia, T = 70 ◦F)fills a tank. Tank volume = 10 ft3. Tank
weight =100 lbf.

Find: Weight (tank plus oxygen).

Properties: From Table A.2, RO2 = 1555 ft·lbf/(slug ·o R) .

APPROACH

Apply the ideal gas law to find density of oxygen. Then find the weight of the oxygen
using specific weight (γ) and add this to the weight of the tank.

ANALYSIS

Ideal gas law

pabs. = 400 psia× 144 psf/psi = 57, 600 psf
T = 460 + 70 = 530◦R

ρ =
p

RT

=
57, 600

1555× 530
= 0.0699 slugs/ft3

Specific weight (oxygen)

γ = ρg

= 0.0699× 32.2
= 2.25 lbf/ft3

Weight of filled tank

Woxygen = 2.25 lbf/ft3 × 10 ft3
= 22.5 lbf

Wtotal = Woxygen +Wtank

= 22.5 lbf + 100 lbf

Wtotal = 122.5 lbf

COMMENTS

For compressed gas in a tank, pressures are often very high and the ideal gas assump-
tion is invalid. For this problem the pressure is about 27 atmospheres—it is a good
idea to check a Thermodynamics reference to analyze whether or not real gas effects
are significant.
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PROBLEM 2.7

Situation: Air is at an absolute pressure of p = 600 kPa and a temperature of
T = 50oC.

Find: (a) Specific weight, and (b) density

Properties: From Table A.2, R = 287 J
kg·K .

APPROACH

First, apply the ideal gas law to find density. Then, calculate specific weight using
γ = ρg.

ANALYSIS

Ideal gas law

ρair =
P

RT

=
600, 000

287(50 + 273)

= 6.47 kg/m3

Specific weight

γair = ρair × g

= 6.47× 9.81
= 63.5 N/m3
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PROBLEM 2.8

Situation: Consider a mass of air with a volume of 1 cubic mile.

Find: Mass of air in a volume of 1 mi3. Express the answer using units of slugs and
kg.

Properties: From Table A.2, ρair = 0.00237 slugs/ft
3.

Assumptions: The density of air is the value at sea level for standard conditions.

ANALYSIS

Units of slugs

M = ρV

= 0.00237 slug
ft3
× (5280)3 ft3

M = 3.49× 108 slugs
Units of kg

M =
¡
3.49× 108 slug¢×µ14.59 kg

slug

¶
M = 5.09× 109 kg

COMMENTS

The mass will probably be somewhat less than this because density decreases with
altitude.
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PROBLEM 2.9

Situation: This problem involves the effects of temperature on the properties of air.
The application is a bicyclist.

Find: a.) Plot air density versus temperature for a range of -10oC to 50oC.
b.) Plot tire pressure versus temperature for the same temperature range.

Properties: From Table A.2, Rair = 287 J/kg/K.

Assumptions: For part b, assume that the bike tire was initially inflated to ptire = 450
kPa, abs at T = 20oC.

APPROACH

Apply the ideal gas law.

ANALYSIS

Ideal gas law

ρ =
p

RT
=

101000

287× (273 + T )

Temperature (o C)
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PROBLEM 2.10

Situation: A design team needs to know how much CO2 is needed to inflate a rubber
raft.
Raft is shown in the sketch below.
Inflation pressure is 3 psi above local atmospheric pressure. Thus, inflation pressure
is 17.7 psi = 122 kPa.

Find: (a)Estimate the volume of the raft.
(b) Calculate the mass of CO2 in grams to inflate the raft.

Properties: From Table A.2, RCO2 = 189 J/kgK.

Assumptions: 1.) Assume that the CO2 in the raft is at 62 ◦F = 290K.
2.) Assume that the volume of the raft can be approximated by a cylinder of diameter
0.45 m and a length of 16 m (8 meters for the length of the sides and 8 meters for
the lengths of the ends plus center tubes).

APPROACH

Mass is related to volume by m = ρ∗Volume. Density can be found using the ideal
gas law.

ANALYSIS

Volume contained in the tubes.

∆V— =
πD2

4
× L

=

µ
π × 0.452

4
× 16

¶
m3

= 2.54m3

∆V— = 2.54m3

Ideal gas law

ρ =
p

RT

=
122, 000N/m2

(189 J/ kg · K) (290K)
= 2.226 kg/m3
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Mass of CO2

m = ρ×Volume
=

¡
2.226 kg/m3

¢× ¡2.54m3¢
= 5.66 kg

m = 5.66 kg

COMMENTS

The final mass (5.66 kg = 12.5 lbm) is large. This would require a large and poten-
tially expensive CO2 tank. Thus, this design idea may be impractical for a product
that is driven by cost.
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PROBLEM 2.11

Situation: The application is a helium filled balloon of radius r = 1.3m.
p = 0.89 bar = 89 kPa.
T = 22 ◦C = 295.2K.

Find: Weight of helium inside balloon.

Properties: From Table A.2, RHe = 2077 J/kg·K.

APPROACH

Weight is given by W = mg. Mass is related to volume by m = ρ∗Volume. Density
can be found using the ideal gas law.

ANALYSIS

Volume in a sphere

Volume =
4

3
πr3

=
4

3
π1.33m3

= 9.203m3

Ideal gas law

ρ =
p

RT

=
89, 000N/m2

(2077 J/ kg · K) (295.2K)
= 0.145 kg/m3

Weight of helium

W = ρ×Volume× g

=
¡
0.145 kg/m3

¢× ¡9.203m3¢× ¡9.81m/ s2¢
= 13.10N

Weight = 13.1 N
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PROBLEM 2.12

Situation: In the wine and beer industries, fermentation involves glucose (C6H12O6)
being converted to ethyl alcohol (CH3CH2OH) plus carbon dioxide gas that escapes
from the vat.

C6H12O6 → 2(CH3CH2OH) + 2(CO2)

The initial specific gravity is 1.08.
Specific gravity of alcohol is 0.80.
Saturated solution (water + sugar) has a specific gravity of 1.59.

Find: (a.) Final specific gravity of the wine.
(b.) Percent alcohol content by volume after fermentation.

Assumptions: All of the sugar is converted to alcohol.

APPROACH

Imagine that the initial mixture is pure water plus saturated sugar solution and then
use this visualization to find the mass of sugar that is initially present (per unit
of volume). Next, apply conservation of mass to find the mass of alcohol that is
produced (per unit of volume). Then, solve for the problem unknowns.

ANALYSIS

The initial density of the mixture is

ρmix =
ρwVw + ρsVs

Vo

where ρw and ρs are the densities of water and sugar solution (saturated), Vo is the
initial volume of the mixture, and Vs is the volume of sugar solution. The total
volume of the mixture is the volume of the pure water plus the volume of saturated
solution

Vw + Vs = Vo

The specific gravity is initially 1.08. Thus

Si =
ρmix

ρw
= (1− Vs

Vo
) +

ρs
ρw

Vs
Vo

1.08 = (1− Vs
Vo
) + 1.59

Vs
Vo

Vs
Vo

= 0.136

Thus, the mass of sugar per unit volume of mixture

ms

Vo
= 1.59× 0.136
= 0.216 kg/m3
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The molecular weight of glucose is 180 and ethyl alcohol 46. Thus 1 kg of glucose
converts to 0.51 kg of alcohol so the final density of alcohol is

ma

Vo
= 0.216× 0.51
= 0.110 kg/m3

The density of the final mixture based on the initial volume is

mf

Vo
= (1− 0.136) + 0.110
= 0.974 kg/m3

The final volume is altered because of conversion

Vf
Vo

=
mw

ρwVo
+

ma

ρaVo

=
Vw
Vo
+
0.51ms

ρaVo

=
Vw
Vo
+
0.51ρs
ρa

Vs
Vo

= 0.864 +
0.51× 1.59

0.8
× 0.136

= 1.002

The final density is

mf

Vf
=

mf

Vo
× Vo

Vf

= 0.974× 1

1.002
= 0.972 kg/m3

The final specific gravity is
Sf = 0.972

The alcohol content by volume

Va
Vf

=
ma

ρaVf

=
ma

Vo

1

ρa

Vo
Vf

= 0.110× 1

0.8
× 1

1.002
= 0.137

Thus,
Percent alcohol by volume = 13.7%
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PROBLEM 2.13

Situation: This problem involves the viscosity and density of air and water.

Find: (a)Change in viscosity and density of water for a temperature change of 10oC
to 70oC.
(b)Change in viscosity and density of air for a temperature change of 10oC to 70oC.

APPROACH

For water, use data from Table A.5. For air, use data from Table A.3

ANALYSIS

Water

µ70 = 4.04× 10−4N·s/m2
µ10 = 1.31× 10−3N·s/m2
∆µ=-9. 06×10−4 N · s/m2

ρ70 = 978 kg/m
3

ρ10 = 1000 kg/m
3

∆ρ=-22 kg/m3

Air

µ70 = 2.04× 10−5 N · s/m2
µ10 = 1.76× 10−5 N · s/m2
∆µ = 2. 8× 10−6 N ·s/m2

ρ70 = 1.03 kg/m
3

ρ10 = 1.25 kg/m
3

∆ρ = −0.22 kg/m3
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PROBLEM 2.14

Situation: Air at 10oC and 60oC.

Find: Change in kinematic viscosity from 10oC to 60oC.

Properties: From table A.3, ν60 = 1.89× 10−5 m2/s, ν10 = 1.41× 10−5 m2/s.

APPROACH

Use properties found in table A.3.

ANALYSIS

∆vair,10→60 = (1.89− 1.41)× 10−5 = 4.8×10−6 m2/s
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PROBLEM 2.15

Situation: This problem involves viscosity of SAE 10W-30 oil, kerosene and water.

Find: Dynamic and kinematic viscosity of each fluid at 38oC.

APPROACH

Use property data found in Table A.4, Fig. A.2 and Table A.5.

ANALYSIS

Oil (SAE 10W-30) kerosene water

µ(N · s/m2) 6.7×10−2 1.4×10−3 (Fig. A-2) 6.8×10−4
ρ(kg/m3) 880 993

ν(m2/s) 7.6×10−5 1.7×10−6 (Fig. A-2) 6.8×10−7
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PROBLEM 2.16

Situation: Air and water at 20oC.

Find: (a)Ratio of dynamic viscosity of air to that of water.
(b)Ratio of kinematic viscosity of air to that of water.

Properties: From Table A.3, µair,20◦C = 1.81× 10−5 N·s/m2; ν = 1.51× 10−5 m2/s
From Table A.5, µwater,20◦C = 1.00× 10−3 N·s/m2; ν = 1.00× 10−6 m2/s

ANALYSIS

µair/µwater =
1.81× 10−5N · s/m2
1.00× 10−3N · s/m2 = 1.81×10−2

νair/νwater =
1.51× 10−5m2/ s
1.00× 10−6m2/ s = 15.1
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PROBLEM 2.17 Computer Problem - no solution is provided.
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PROBLEM 2.18

Situation: Sutherland’s equation and the ideal gas law describe behaviors of common
gases.

Find: Develop an expression for the kinematic viscosity ratio ν/νo, where ν is at
temperature T and pressure p.

Assumptions: Assume a gas is at temperature To and pressure po, where the subscript
”o” defines the reference state.

APPROACH

Combine the ideal gas law and Sutherland’s equation.

ANALYSIS

The ratio of kinematic viscosities is

ν

νo
=

µ

µo

ρo
ρ
=

µ
T

To

¶3/2
To + S

T + S

po
p

T

To

ν
νo
=po

p

³
T
To

´5/2
To+S
T+S
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PROBLEM 2.19

Situation: The viscosity of air is µair (15
oC) = 1.78× 10−5 N·s/m2.

Find: Dynamic viscosity µ of air at 200 ◦C using Sutherland’s equation.

Properties: From Table A.2, S = 111K.

ANALYSIS

Sutherland’s equation

µ

µo
=

µ
T

To

¶3/2
To + S

T + S

=

µ
473

288

¶3/2
288 + 111

473 + 111
= 1.438

Thus

µ = 1.438µo
= 1.438× ¡1.78× 10−5N · s/m2¢

µ = 2.56× 10−5 N·s/m2
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PROBLEM 2.20

Situation: Kinematic viscosity of methane at 15oC and 1 atm is 1.59× 10−5m2/ s.
Find: Kinematic viscosity of methane at 200oC and 2 atm.

Properties: From Table A.2, S = 198 K.

APPROACH

Apply the ideal gas law and Sutherland’s equation.

ANALYSIS

ν =
µ

ρ
ν

νo
=

µ

µo

ρo
ρ

Ideal-gas law
ν

νo
=

µ

µo

po
p

T

To

Sutherland’s equation

ν

νo
=

po
p

µ
T

To

¶5/2
To + S

T + S

so

ν

νo
=

1

2

µ
473

288

¶5/2
288 + 198

473 + 198
= 1.252

and

ν = 1.252× 1.59× 10−5 m2/s
= 1.99× 10−5m2/ s
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PROBLEM 2.21

Situation: Nitrogen at 59oF has a dynamic viscosity of 3.59× 10−7 lbf · s/ ft2.
Find: µ at 200oF using Sutherland’s equation.

Properties: From Table A.2, S =192oR.

ANALYSIS

Sutherland’s equation

µ

µo
=

µ
T

To

¶3/2
To + S

T + S

=

µ
660

519

¶3/2
519 + 192

660 + 192
= 1.197

µ = 1.197×
µ
3.59× 10−7 lbf · s

ft2

¶
= 4. 297× 10−7

µ = 4.30× 10−7 lbf-s/ft2
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PROBLEM 2.22

Situation: Helium at 59oF has a kinematic viscosity of 1.22× 10−3 ft2/ s.
Find: Kinematic viscosity at 30oF and 1.5 atm using Sutherland’s equation.

Properties: From Table A.2, S =143oR.

APPROACH

Combine the ideal gas law and Sutherland’s equation.

ANALYSIS

ν

νo
=

po
p

µ
T

To

¶5/2
To + S

T + S

=
1.5

1

µ
490

519

¶5/2
519 + 143

490 + 143
= 1.359

ν = 1.359×
µ
1.22× 10−3 ft

2

s

¶
= 1. 658× 10−3 ft

2

s

ν = 1.66× 10−3 ft2/ s
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PROBLEM 2.23

Situation: Information about propane is provided in the problem statement.

Find: Sutherland’s constant.

ANALYSIS

Sutherland’s equation

S

To
=

µ
µo

¡
To
T

¢1/2 − 1
1− µ

µo

¡
To
T

¢3/2
Also

µ

µo
= 1.72

To
T

=
373

673

Thus

S

To
= 0.964

S = 360 K
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PROBLEM 2.24

Situation: Information about ammonia is provided in the problem statement.

Find: Sutherland’s constant.

ANALYSIS

Sutherland’s equation

S

To
=

µ
µo

¡
To
T

¢1/2 − 1
1− µ

µo

¡
To
T

¢3/2 (1)

Calculations

µ

µo
=

3.46× 10−7
2.07× 10−7 = 1.671 (a)

To
T

=
528

852
= 0.6197 (b)

Substitute (a) and (b) into Eq. (1)

S

To
= 1.71

S = 903 oR
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PROBLEM 2.25

Situation: Information about SAE 10W30 motor oil is provided in the problem state-
ment.

Find: The viscosity of motor oil at 60 ◦C, µ(60oC), using the equation µ = Ceb/T .

APPROACH

Use algebra and known values of viscosity (µ) to solve for the constant b. Then,
solve for the unknown value of viscosity.

ANALYSIS

Viscosity variation of a liquid can be expressed as µ = Ceb/T . Thus, evaluate µ at
temperatures T and To and take the ratio:

µ

µo
= exp

·
b(
1

T
− 1

To
)

¸
Take the logarithm and solve for b.

b =
ln (µ/µo)

( 1
T
− 1

To
)

Data

µ/µo = 0.011/0.067 = 0.164

T = 372

To = 311

Solve for b
b = 3430 (K)

Viscosity ratio at 60oC

µ

µo
= exp[3430(

1

333
− 1

311
)

= 0.4833

µ = 0.4833× 0.067
= 0.032 N · s/m2

28



PROBLEM 2.26

Situation: Information about grade 100 aviation oil is provided in the problem state-
ment

Find: µ(150oF), using the equation µ = Ceb/T .

APPROACH

Use algebra and known values of viscosity (µ) to solve for the constant b. Then,
solve for the unknown value of viscosity.

ANALYSIS

Viscosity variation of a liquid can be expressed as µ = Ceb/T . Thus, evaluate µ at
temperatures T and To and take the ratio:

µ

µo
= exp

·
b(
1

T
− 1

To
)

¸
Take the logarithm and solve for b

b =
ln (µ/µo)

( 1
T
− 1

To
)

Data

µ

µo
=

0.39× 10−3
4.43× 10−3 = 0.08804

T = 670

To = 560

Solve for b
b = 8293 (oR)

Viscosity ratio at 150oF

µ

µo
= exp[8293(

1

610
− 1

560
)

= 0.299

µ = 0.299×
µ
4.43× 10−3 lbf · s

ft2

¶
= 1.32× 10−3 lbf-s/ft2
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PROBLEM 2.27

Situation: This problem involves the creation of a computer program to find Suther-
land’s constant and application to CO2.

Find: Develop a computer program and carry out the activities described in the
textbook.

ANALYSIS

Sutherland’s constant

S

273
=

µ
µo

¡
273
T

¢1/2 − 1
1− µ

µo

¡
273
T

¢3/2 (1)

Program Eq. (1), process data and take the average

S = 127 K

Define error

error = 100×
¯̄̄̄
¯
µ
µo
− µ

µo
|calc

µ
µo

¯̄̄̄
¯

The results are

T(K) 260 270 280 290 300 350 500 1000 1500
µ
µo
|calc .9606 .991 1.021 1.050 1.079 1.217 1.582 2.489 3.168

error(%) .013 .039 .084 .118 .108 .366 .486 1.17 3.56

COMMENTS

The error is less than 0.5% for temperatures up to 500 K. The error is greater than
3.5% for temperatures above 1500K.
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PROBLEM 2.28

Situation: Oil (SAE 10W30) fills the space between two plates. Plate spacing is
∆y = 1/8 = 0.125 in.
Lower plate is at rest. Upper plate is moving with a speed u = 25 ft/ s.

Find: Shear stress.

Properties: Oil (SAE 10W30 @ 150 ◦F) from Figure A.2: µ = 5.2× 10−4 lbf·s/ft2.
Assumptions: 1.) Assume oil is a Newtonian fluid. 2.) Assume Couette flow (linear
velocity profile).

ANALYSIS

Rate of strain

du

dy
=

∆u

∆y

=
25 ft/ s

(0.125/12) ft

= 2400 s−1

Newton’s law of viscosity

τ = µ

µ
du

dy

¶
=

µ
5.2× 10−4 lbf · s

ft2

¶
×
µ
2400

1

s

¶
= 1. 248

lbf

ft2

τ = 1.25 lbf/ ft2
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PROBLEM 2.29

Situation: Air and water at 40 ◦C and absolute pressure of 170 kPa

Find: Kinematic and dynamic viscosities of air and water.

Properties: Air data from Table A.3, µair = 1.91× 10−5 N·s/m2
Water data from Table A.5, µwater = 6.53× 10−4 N·s/m2, ρwater = 992 kg/m3.

APPROACH

Apply the ideal gas law to find density. Find kinematic viscosity as the ratio of
dynamic and absolute viscosity.

ANALYSIS

A.) Air
Ideal gas law

ρair =
p

RT

=
170, 000

287× 313.2
= 1.89 kg/m3

µair = 1.91× 10−5 N· s
m2

ν =
µ

ρ

=
1.91× 10−5

1.89

νair = 10.1× 10−6m2/ s
B.) water

µwater = 6.53× 10−5 N·s/m2

ν =
µ

ρ

ν =
6.53× 10−4

992

νwater = 6.58× 10−7 m2/s
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PROBLEM 2.30

Situation: Water flows near a wall. The velocity distribution is

u(y) = a
³y
b

´1/6
where a = 10m/ s, b = 2mm and y is the distance from the wall in units of mm.

Find: Shear stress in the water at y = 1 mm.

Properties: Table A.5 (water at 20 ◦C): µ = 1.00× 10−3N · s/m2.

ANALYSIS

Rate of strain (algebraic equation)

du

dy
=

d

dy

·
a
³y
b

´1/6¸
=

a

b1/6
1

6y5/6

=
a

6b

µ
b

y

¶5/6
Rate of strain (at y = 1mm)

du

dy
=

a

6b

µ
b

y

¶5/6
=

10m/ s

6× 0.002m
µ
2mm

1mm

¶5/6
= 1485 s−1

Shear Stress

τ y=1mm = µ
du

dy

=

µ
1.00× 10−3 N · s

m2

¶¡
1485 s−1

¢
= 1.485Pa

τ (y = 1mm) = 1.49Pa
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PROBLEM 2.31

Situation: Information is provided in problem statement.

Find: Shear stress at walls.

ANALYSIS

Velocity distribution
u = 100y(0.1− y) = 10y − 100y2

Rate of strain

du/dy = 10− 200y
(du/dy)y=0 = 10 s−2 (du/dy)y=0.1 = −10 s−1

Shear stress

τ 0 = µ
du

dy
= (8× 10−5)× 10 = 8× 10−4 lbf/ft2

τ 0.1 = 8× 10−4 lbf/ft2

Plot

0.00

0.02

0.04

0.06

0.08

0.10

D
is

ta
nc

e

Velocity
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PROBLEM 2.32

Situation: Information is provided in problem statement.

Find: (a) Maximum and minimum shear stress.
(b) Maximum shear stress at wall.

ANALYSIS

τ = µdV/dy

τmax ≈ µ(∆V/∆y) next to wall

τmax = (10−3N · s/m2)((1 m/s)/0.001 m) = 1.0 N/m2

The minimum shear stress will be zero, midway between the two walls, where the
velocity gradient is zero.

35



PROBLEM 2.33

Situation: Glycerin is flowing in between two stationary plates. The plate spacing is
B = 5cm.
The velocity distribution is

u = − 1
2µ

dp

dx

¡
By − y2

¢
where the pressure gradient is dp/dx = −1.6 kN/m3
Pressure gradient

Find:
a.) Velocity and shear stress at12 mm from wall (i.e. at y = 12mm).
b.) Velocity and shear stress at the wall (i.e. at y = 0mm).

Properties: Glycerin at 20 ◦C from Table A.4: µ = 1.41N · s/m2.

APPROACH

Find velocity by direct substitution into the specified velocity distribution. Find
shear stress using τ = µ (du/dy), where the rate-of-strain (i.e. the derivative du/dy)
is found by differentiating the velocity distribution.

ANALYSIS

a.) Velocity (at y = 12mm)

u = − 1
2µ

dp

dx

¡
By − y2

¢
= − 1

2 (1.41N · s/m2)
¡−1600N/m3¢ ¡(0.05m) (0.012m)− (0.012m)2¢

= 0.258 7
m

s

u (y = 12mm) = 0.259m/ s

Rate of strain (general expression)

du

dy
=

d

dy

µ
− 1
2µ

dp

dx

¡
By − y2

¢¶
=

µ
− 1
2µ

¶µ
dp

dx

¶
d

dy

¡
By − y2

¢
=

µ
− 1
2µ

¶µ
dp

dx

¶
(B − 2y)
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Rate of strain (at y = 12mm)

du

dy
=

µ
− 1
2µ

¶µ
dp

dx

¶
(B − 2y)

=

µ
− 1

2 (1.41N · s/m2)
¶µ
−1600 N

m3

¶
(0.05m− 2× 0.012m)

= 14.75 s−1

Shear stress

τ = µ
du

dy

=

µ
1.41

N · s
m2

¶¡
14.75 s−1

¢
= 20. 798Pa

τ (y = 12mm) = 20.8Pa

b.) Velocity (at y = 0mm)

u = − 1
2µ

dp

dx

¡
By − y2

¢
= − 1

2 (1.41N · s/m2)
¡−1600N/m3¢ ¡(0.05m) (0m)− (0m)2¢

= 0.00
m

s

u (y = 0mm) = 0m/ s

Rate of strain (at y = 0mm)

du

dy
=

µ
− 1
2µ

¶µ
dp

dx

¶
(B − 2y)

=

µ
− 1

2 (1.41N · s/m2)
¶µ
−1600 N

m3

¶
(0.05m− 2× 0m)

= 28.37 s−1

Shear stress (at y = 0mm)

τ = µ
du

dy

=

µ
1.41

N · s
m2

¶¡
28.37 s−1

¢
= 40.00Pa

τ (y = 0mm) = 40.0Pa

COMMENTS
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1. As expected, the velocity at the wall (i.e. at y = 0) is zero due to the no slip
condition.

2. As expected, the shear stress at the wall is larger than the shear stress away
from the wall. This is because shear stress is maximum at the wall and zero
along the centerline (i.e. at y = B/2).
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PROBLEM 2.34

Situation: Laminar flow occurs between two parallel plates–details are provided in
the problem statement.

Find: Is the maximum shear greater at the moving plate or the stationary plate?

ANALYSIS

τ = µdu/dy

µdu/dy = −µ(1/2µ)(dp/ds)(H − 2y) + utµ/H

Evaluate τ at y = H :

τH = −(1/2)(dp/ds)(H − 2H) + utµ/H

= (1/2)(dp/ds)H + utµ/H

Evaluate τ at y = 0

τ 0 = −(1/2)(dp/ds)H + utµ/H

Observation of the velocity gradient lets one conclude that the pressure gradient dp/ds
is negative. Also ut is negative. Therefore |τh| > |τ 0| . The maximum shear stress
occurs at y = H.

Maximum shear stress occur along the moving plate where y = H .
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PROBLEM 2.35

Situation: Laminar flow occurs between two parallel plates–details are provided in
the problem statement.

Find: Position (y) of zero shear stress.

ANALYSIS

τ = µdu/dy

= −µ(1/2µ)(dp/ds)(H − 2y) + utµ/H

= −(1/2)(dp/ds)(H − 2y) + utµ/H

Set τ = 0 and solve for y

0 = −(1/2)(dp/ds)(H − 2y) + utµ/H

y = (H/2)− (µut/(Hdp/ds))
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PROBLEM 2.36

Situation: Laminar flow occurs between two parallel plates–details are provided in
the problem statement.

Find: Derive an expression for plate speed (ut) to make the shear stress zero at y = 0.

ANALYSIS

From solution to 2.34

τ = µdu/dy = 0 at y = 0

du/dy = −(1/2µ)(dp/ds)(H − 2y) + ut/H

Then, at y = 0 : du/dy = 0 = −(1/2µ)(dp/ds)H + ut/H

Solve for ut : ut = (1/2µ)(dp/ds)H
2

Note : because dp/ds < 0, ut < 0.
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PROBLEM 2.37

Situation: A damping device is described in the problem statement.

Find: Torque on shaft.

Properties: From Table A.4, µ(38oC)=3.6× 10−2 N·s/m2.

ANALYSIS

Rdθ θ
R

∆R

Rsin

dT = rdF

dT = rτdA

where τ = µ(dV/dy) = µ(∆V/∆R)

= µ(ωR sin θ/∆R)

= 3.6× 10−2 N · s/m2)(10× 2π/60) rad/s(0.05 m sin θ/10−3 m)
= 1.885 sin θ N/m2

dA = 2πR sin θRdθ

= 2πR2 sin θRdθ

= 2πR2 sin θdθ

r = R sin θ

Then

dT = R sin θ(1.885 sin θ)(2πR2 sin θdθ)

dT = 11.84R3 sin3 θdθ

T = 11.84R3
πZ
0

sin3 θdθ

= 11.84(0.05)3[−(1/3) cos θ(sin2 θ + 2)]π0
= 11.84(0.05)3[−(1/3)(−1)(2)− (−1/3)(1)(2)]

Torque =1.97× 10−3N · m
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PROBLEM 2.38

Situation: Oxygen at 50 ◦F and 100 ◦F.

Find: Ratio of viscosities: µ100
µ50
.

ANALYSIS

Because the viscosity of gases increases with temperature µ100/µ50 > 1. Correct
choice is (c) .
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PROBLEM 2.39

Situation: This problem involves a cylinder falling inside a pipe that is filled with oil.

Find: Speed at which the cylinder slides down the pipe.

Properties: SAE 20W oil from Figure A.2: µ(10oC) = 0.35 N·s/m2.

ANALYSIS

τ = µdV/dy

W/(πdc) = µVfall/[(D − d)/2]

Vfall = W (D − d)/(2πdcµ)

Vfall = 20(0.5× 10−3)/(2π × 0.1× 0.2× 3.5× 10−1)
= 0.23 m/s
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PROBLEM 2.40

Situation: This problem involves a cylinder falling inside a pipe–details are provided
in problem statement.

Find: Weight of cylinder.

Properties: From Figure A.2, µ(10oC)=0.35 N·s/m2.

ANALYSIS

Newton’s second law
−W + Fτ = ma

−W + πdcµV/[(D − d)/2] = (W/g) a

−W + (π × 0.1× 0.2× 3.5× 10−1V )/(0.5× 10−3/2) =Wa/9.81

Substituting V = 0.5 m/s and a = 14 m/s2 and solving yields W = 18.1N
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PROBLEM 2.41

Situation: A disk is rotated very close to a solid boundary–details are provided in
problem statement.

Find: (a) Ratio of shear stress at r = 2 cm to shear stress at r = 3 cm.
(b) Speed of oil at contact with disk surface.
(c) Shear stress at disk surface.

Assumptions: Linear velocity distribution: dV/dy = V/y = ωr/y.

ANALYSIS

τ = µdV/dy = µωr/y

τ 2/τ 3 = (µ× 1× 2/y)/(µ× 1× 3/y) = 2/3 = 0.667

V = ωr = 2× 0.03 = 0.06 m/s

τ = µdV/dy = 0.01× 0.06/0.002 = 0.30 N/m2
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PROBLEM 2.42

Situation: A disk is rotated very close to a solid boundary–details are provided in
problem statement.

Find: Torque to rotate disk.

Assumptions: Linear velocity distribution: dV/dy = V/y = ωr/y.

ANALYSIS

τ = µdV/dy

τ = µωr/y

= 0.01× 5× r/0.002 = 25r N/m2

d Torque = rτdA

= r(10r)2πrdr = 50πr3dr

Torque =

0.05Z
0

50πr3dr = 50πr4/4
¯̄
0.5
0

Torque =2.45×10−4 N·m
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PROBLEM 2.43

Situation: In order to provide damping for an instrument, a disk is rotated in a
container of oil.

Find: Derive an equation for damping torque as a function of D,S, ω and µ.

APPROACH

Apply the Newton’s law of viscosity.

ANALYSIS

Shear stress

τ = µ
dV

dy

=
µrω

s

Find differential torque–on an elemental strip of area of radius r the differential
shear force will be τdA or τ(2πrdr). The differential torque will be the product of
the differential shear force and the radius r.

dTone side = r[τ(2πrdr)]

= r[(µrω/s)(2πrdr)]

= (2πµω/s)r3dr

dTboth sides = 4(rπµω/s)r3dr

Integrate

T =

D/2Z
0

(4πµω/s)r3dr

= (1/16)πµωD4/s
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PROBLEM 2.44

Situation: One type of viscometer involves the use of a rotating cylinder inside a fixed
cylinder. The temperature range is 50 to 200oF.

Find: (a) Design a viscometer that can be used to measure the viscosity of motor oil.

Assumptions:

1. Motor oil is SAE 10W-30. Data from Fig A-2: µ will vary from about 2 ×
10−4lbf-s/ft2 to 8× 10−3lbf-s/ft2.

2. Assume the only significant shear stress develops between the rotating cylinder
and the fixed cylinder.

3. Assume we want the maximum rate of rotation (ω) to be 3 rad/s.

ANALYSIS

One possible design solution is given below.
Design decisions:

1. Let h = 4.0 in. = 0.333 ft

2. Let I.D. of fixed cylinder = 9.00 in. = 0.7500 ft.

3. Let O.D. of rotating cylinder = 8.900 in. = 0.7417 ft.

Let the applied torque, which drives the rotating cylinder, be produced by a force
from a thread or small diameter monofilament line acting at a radial distance rs.
Here rs is the radius of a spool on which the thread of line is wound. The applied
force is produced by a weight and pulley system shown in the sketch below.

h rc

∆r
W

Pulley

The relationship between µ, rs, ω, h, and W is now developed.

T = rcFs (1)

where T = applied torque
rc = outer radius of rotating cylinder
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Fs = shearing force developed at the outer radius of the rotating cylinder but Fs =
τAs where As = area in shear = 2πrch

τ = µdV/dy ≈ µ∆V/∆r where ∆V = rcω and ∆r = spacing

Then T = rc(µ∆V/∆r)(2πrch)

= rcµ(rcω/∆r)(2πrch) (2)

But the applied torque T =Wrs so Eq. (2) become

Wrs = r3cµω(2π)h/∆r

Or

µ = (Wrs∆r)/(2πωhr3c) (3)

The weight W will be arbitrarily chosen (say 2 or 3 oz.) and ω will be determined by
measuring the time it takes the weight to travel a given distance. So rsω = Vfall or
ω = Vfall/rs. Equation (3) then becomes

µ = (W/Vf)(r
2
s/r

3
c)(∆r/(2πh))

In our design let rs = 2 in. = 0.1667 ft. Then

µ = (W/Ff)(0.1667
2/.37083)(0.004167/(2π × .3333)

µ = (W/Vf)(.02779/.05098)

µ = (W/Vf)(1.085× 10−3) lbf · s/ft2

Example: If W = 2oz. = 0.125lb. and Vf is measured to be 0.24 ft/s then

µ = (0.125/0.24)(1.085× 10−3)
= 0.564× 10−4 lbf · s/ ft2

COMMENTS Other things that could be noted or considered in the design:

1. Specify dimensions of all parts of the instrument.

2. Neglect friction in bearings of pulley and on shaft of cylinder.

3. Neglect weight of thread or monofilament line.

4. Consider degree of accuracy.

5. Estimate cost of the instrument.
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PROBLEM 2.45

Situation: Water in a 1000 cm3 volume is subjected to a pressure of 2× 106N/m2.
Find: Volume after pressure applied.

Properties: From Table A.5, E = 2.2× 109 Pa

ANALYSIS

Modulus of elasticity

E = −∆p
V—
∆V—

∆V— = −∆p

E
V—

= −
·
(2× 106) Pa
(2.2× 109) Pa

¸
1000 cm3

= −0.9091 cm3

Final volume

V—final = V—+∆V—

= (1000− 0.9091) cm3
= 999.1 cm3

V—final = 999 cm3

51



PROBLEM 2.46

Situation: Water is subjected to an increase in pressure.

Find: Pressure increase needed to reduce volume by 1%.

Properties: From Table A.5, E = 2.2× 109 Pa.

ANALYSIS

Modulus of elasticity

E = −∆p
V—
∆V—

∆p = E
∆V—
V—

= − ¡2.2× 109 Pa¢µ−0.01× V—
V—

¶
=

¡
2.2× 109 Pa¢ (0.01)

= 2. 2× 107 Pa

∆p = 22MPa
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PROBLEM 2.47

Situation: Very small spherical droplet of water.

Find: Pressure inside.

ANALYSIS

Refer to Fig. 2-6(a). The surface tension force, 2πrσ, will be resisted by the pressure
force acting on the cut section of the spherical droplet or

p(πr2) = 2πrσ

p = 2σ/r

= 4σ/d
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PROBLEM 2.48

Situation: A spherical soap bubble has an inside radius R, a wall-thickness t, and
surface tension σ.

Find: (a) Derive a formula for the pressure difference across the bubble
(b) Pressure difference for a bubble with a radius of 4 mm.

Assumptions: The effect of thickness is negligible, and the surface tension is that of
pure water.

APPROACH

Apply equilibrium, then the surface tension force equation.

ANALYSIS

Force balance

p

2 x 2 Rπ σ

Surface tension force

X
F = 0

∆pπR2 − 2(2πRσ) = 0

∆p = 4σ/R

∆p4mm rad. = (4× 7.3× 10−2 N/m)/0.004 m = 73.0 N/m2
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PROBLEM 2.49

Situation: A water bug with 6 legs, each with a contact length of 5 mm, is balanced
on the surface of a water pond.

Find: Maximum mass of bug to avoid sinking.

Properties: Surface tension of water, from Table A.5, σ = 0.073 N/m.

APPROACH

Apply equilibrium, then the surface tension force equation.

ANALYSIS

Force equilibrium

Upward force due to surface tension = Weight of Bug

FT = mg

To find the force of surface tension (FT ), consider the cross section of one leg of the
bug:

θ

F F

Surface tension
force on one
side of leg

Cross section
of bug leg

Assume  is small
Then cos  =1; F cos = F

θ
θ θ

Surface tension force

FT = (2/leg)(6 legs)σc

= 12σc

= 12(0.073 N/m)(0.005 m)

= 0.00438N

Apply equilibrium

FT −mg = 0

m =
FT

g
=
0.00438N

9.81m2/ s

= 0.4465× 10−3 kg

m = 0.447× 10−3 kg
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PROBLEM 2.50

Situation: A water column in a glass tube is used to measure pressure.
Part of the water column height is due to pressure in a pipe, and part is due to
capillary rise.
Additional details are provided in the problem statement.

Find: Height of water column due to surface tension effects.

Properties: From Table A.5: surface tension of water is 0.005 lbf/ft.

ANALYSIS

Surface tension force

∆h = 4σ/(γd) = 4× 0.005/(62.4× d) = 3.21× 10−4/d ft.
d = 1/4 in. = 1/48 ft.; ∆h = 3.21× 10−4/(1/48) = 0.0154 ft. = 0.185 in.

d = 1/8 in. = 1/96 ft.; ∆h = 3.21× 10−4/(1/96) = 0.0308 ft. = 0.369 in.

d = 1/32 in. = 1/384 ft.; ∆h = 3.21× 10−4/(1/384) = 0.123 ft.= 1.48 in.
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PROBLEM 2.51

Situation: Two vertical glass plates are spaced 1 mm apart.

Find: Capillary rise (h) between the plates.

Properties: From Table A.5, surface tension of water is 7.3× 10−2 N/m.

APPROACH

Apply equilibrium, then the surface tension force equation.

ANALYSIS

θ

σσ
y

y

Equilibrium

X
Fy = 0

Force due to surface tension = Weight of fluid that has been pulled upward

(2c)σ = (hct) γ

Solve for capillary rise (h)

2σc− hctγ = 0

h =
2σ

γt

h =
2× (7.3× 10−2)
9810× 0.0010

= 0.0149 m

= 14.9 mm
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PROBLEM 2.52

Situation: A spherical water drop has a diameter of 1-mm.

Find: Pressure inside the droplet.

Properties: From Table A.5, surface tension of water is 7.3× 10−2 N/m

APPROACH

Apply equilibrium, then the surface tension force equation.

ANALYSIS

Equilibrium (half the water droplet)

Force due to pressure = Force due to surface tension

pA = σL

∆pπR2 = 2πRσ

Solve for pressure

∆p = 2σ/R

∆p = 2× 7.3× 10−2/(0.5× 10−3) = 292 N/m2
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PROBLEM 2.53

Situation: A tube employing capillary rise is used to measure temperature of water.

Find: Size the tube (this means specify diameter and length).

APPROACH

Apply equilibrium and the surface tension force equation.

ANALYSIS

The elevation in a column due to surface tension is

∆h =
4σ

γd

where γ is the specific weight and d is the tube diameter. For the change in surface
tension due to temperature, the change in column elevation would be

∆h =
4∆σ

γd
=
4× 0.0167
9810× d

=
6.8× 10−6

d

The change in column elevation for a 1-mm diameter tube would be 6.8 mm . Spe-
cial equipment, such the optical system from a microscope, would have to be used to
measure such a small change in deflection It is unlikely that smaller tubes made of
transparent material can be purchased to provide larger deflections.
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PROBLEM 2.54

Situation: A glass tube is immersed in a pool of mercury–details are provided in the
problem statement.

Find: Depression distance of mercury: d

APPROACH

Apply equilibrium and the surface tension force equation.

ANALYSIS

cos θπdσ = ∆hγ
πd2

4

Solving for ∆h results in

∆h =
4 cos θσ

γd

Substitute in values

∆h =
4× cos 40× 0.514

(13.6× 9810)× 0.001
= 0.0118m

∆h = 11.8mm
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PROBLEM 2.55

Situation: A soap bubble and a droplet of water both with a diameter of 2mm, falling
in air. The value of surface tension is equal.

Find: Which has the greater pressure inside.

ANALYSIS

The soap bubble will have the greatest pressure because there are two surfaces (two
surface tension forces) creating the pressure within the bubble. The correct choice is
a)
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PROBLEM 2.56

Situation: A hemispherical drop of water at 20oC is suspended under a surface.

Find: Diameter of droplet just before separation

Properties: Table A.5 (water at 20 ◦C): γ = 9790N/m3,[for surface tension, see
footnote (2)] σ = 0.073N/m. .

ANALYSIS

Equilibrium.

Weight of droplet = Force due to surface tensionµ
πD3

12

¶
γ = (πD)σ

Solve for D

D2 =
12σ

γ

=
12× (0.073 N/m)
9790 N/m3

= 8. 948× 10−5m2

D = 9. 459× 10−3m

D = 9.46mm
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PROBLEM 2.57

Situation: Surface tension is being measured by suspending liquid from a ring with
a mass of 10 grams, an outside diameter of 10 cm and an inside diameter of 9.5 cm.
Force to pull ring is weight corresponding to 14 gms.

Find: Surface tension

ANALYSIS

Equilibrium.

(Upward force) = (Weight of fluid) + (Force due to surface tension)

F = W + σ(πDi + πDo)

Solve for surface tension

σ =
F −W

π(Di +Do)

=
(0.014− 0.010) kg× 9.81m/ s2

π(0.1 + 0.095)m

= 6. 405× 10−2 kg
s2

σ = 0.0641 N/m
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PROBLEM 2.58

Situation: The boiling temperature of water decreases with increasing elevation.
Change in vapor pressure with temperature is −3.1 kPaoC

.
Atmospheric pressure (3000 m) is 69 kPa.

Find: Boiling temperature at an altitude of 3000 m.

Properties: Vapor pressure of water at 100oC is 101 kN/m2.

Assumptions: Assume that vapor pressure versus boiling temperature is a linear
relationship.

APPROACH

Develop a linear equation for boiling temperature as a function of elevation.

ANALYSIS

Let BT = "Boiling Temperature." Then, BT as a function of elevation is

BT (3000 m) = BT (0 m) +
µ
∆BT

∆p

¶
∆p

Thus,

BT (3000 m) = 100 ◦C+
µ−1.0 ◦C
3.1 kPa

¶
(101− 69) kPa

= 89. 677 ◦C

Boiling Temperature (3000 m) = 89.7 ◦C
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PROBLEM 3.1

Situation: A Crosby gage tester is applied to calibrate a pressure gage.
A weight of 140 N results in a reading of 200 kPa.
The piston diameter is 30 mm.

Find: Percent error in gage reading.

APPROACH

Calculate the pressure that the gage should be indicating (true pressure). Compare
this true pressure with the actual pressure.

ANALYSIS

True pressure

ptrue =
F

A

=
140N

(π/4× 0.032) m2
= 198, 049 kPa

Percent error

% Error =
(precorded − ptrue) 100

ptrue

=
(200− 198) 100

198
= 1.0101%

% Error = 1.01%
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PROBLEM 3.2

Situation: Two hemispherical shells are sealed together.
Exterior pressure is patm = 14.5 psia. Interior pressure is 0.1patm.
Inner radius is 6 in. Outer radius is 6.25 in.
Seal is located halfway between the inner and outer radius.

Find: Force required to separate the two shells.

APPROACH

Apply equilibrium to a free body comprised of one shell plus the air inside.

ANALYSIS

Free body diagram

pinsideA

patmAFpull

Equilibrium. P
Fy = 0

Fpull + piA− patmA = 0

Solve for force

Fpull = (patm − pi)A

= (1− 0.1) ¡14.5 lbf/ in2¢ ¡π × 6.1252 in2¢
= 1538 lbf

Fpull = 1540 lbf
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PROBLEM 3.3

Situation: This is an applied problem. To work the problem, we recorded data from
a parked vehicle. Relevant information:

• Left front tire of a parked VW Passat 2003 GLX Wagon (with 4-motion).

• Bridgestone snow tires on the vehicle.
• Inflation pressure = 36 psig. This value was found by using a conventional
"stick-type" tire pressure gage.

• Contact Patch: 5.88 in × 7.5 in. The 7.5 inch dimension is across the tread.
These data were found by measuring with a ruler.

• Weight on the front axle = 2514 lbf. This data was recorded from a sticker
on the driver side door jamb. The owners manual states that this is maximum
weight (car + occupants + cargo).

Assumptions:

1. The weight on the car axle without a load is 2000 lbf. Thus, the load acting
on the left front tire is 1000 lbf.

2. The thickness of the tire tread is 1 inch. The thickness of the tire sidewall is
1/2 inch.

3. The contact path is flat and rectangular.

4. Neglect any tensile force carried by the material of the tire.

Find:
(a) Apply engineering principles to estimate the size of the contact patch.
(b) Compare the estimated area of contact with the measured area of contact.

APPROACH

To estimate the area of contact, apply equilibrium to the contact patch.

ANALYSIS

Equilibrium in the vertical direction applied to a section of the car tire

piAi = Fpavement
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where pi is the inflation pressure, Ai is the area of the contact patch on the inside of
the tire and Fpavement is the normal force due to the pavement. Thus,

Ai =
Fpavement

pi

=
1000 lbf

36 lbf/ in2

= 27.8 in2

Comparison. The actual contact patch has an area Ao = 5.88 in×7.5 in = 44.1 in2.
Using the assumed thickness of rubber, this would correspond to an inside contact
area of Ao = 4.88 in× 5.5 in = 26.8 in2.
Thus, the predicted contact area

¡
27.8 in2

¢
and the measured contact area

¡
26.8 in2

¢
agree to within about 1 part in 25 or about 4%.

COMMENTS

The comparison between predicted and measured contact area is highly dependent
on the assumptions made.
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PROBLEM 3.4

Situation: An air chamber is described in the problem statement.

Find: Number of bolts required at section B-B.

Assumptions: Same force per bolt at B-B.

ANALYSIS

Hydrostatic force

F per bolt at A−A = p(π/4)D2/20

p(π/4)D2/20 = p(π/4)d2/n

n = 20× (d/D)2
= 20× (1/2)2

n = 5
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PROBLEM 3.5

Situation: A glass tube is inserted into water.
Tube length is L = 10 cm. Tube diameter is d = 0.5mm.
Depth of insertion is 2 cm. Atmospheric pressure is patm = 100 kPa.

Find: Location of water line in tube.

Properties: Density of water is ρ = 1000 kg/m3. Surface tension (from Table A.5;
see footnote 2) is σ = 0.073N/m.

ANALYSIS

p Ai

p Al

2 cm l

Equilibrium (system is a very thin layer of fluid)X
Fz = 0

−piA+ pcA+ σπd = 0 (1)

where pi is the pressure inside the tube and pc is the pressure in water at depth c.

Ideal gas law (constant temperature)

piV−i = patmV−tube
pi = patm(V−tube /V−i)

= patm(0.10Atube/((.08 + c)(Atube))

pi = patm(0.10/(.08 + c)) (2)

Hydrostatic equation (location 1 is the free surface of the water; location 2 is at a
depth c)

pc = patm + ρgc (3)

Solve Eqs. (1) to (3) simultaneously for c, pi and pc (we used TK Solver)

c = 0.019233m

pi = 100772Pa

pc = 100189Pa

c = 1.92 cm
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PROBLEM 3.6

Situation: A reservoir is described in the problem statement.

Find: Describe the gage pressure along a vertical line.

ANALYSIS

Correct graph is (b).
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PROBLEM 3.7

Situation: A closed tank with Bourdon-tube gages tapped into it is described in the
problem statement.

Find:
(a) Specific gravity of oil.
(b) Pressure at C.

APPROACH

Apply the hydrostatic equation.

ANALYSIS

Hydrostatic equation (from oil surface to elevation B)

pA + γzA = pB + γzB

50, 000 N/m2 + γoil (1 m ) = 58,530 N/m2 + γoil (0 m)

γoil = 8530 N/m2

Specific gravity

S =
γoil
γwater

=
8530 N/m2

9810 N/m2

Soil = 0.87

Hydrostatic equation (in water)

pc = (pbtm of oil) + γwater (1m)

Hydrostatic equation (in oil)

pbtm of oil = (58, 530Pa + γoil × 0.5m)

Combine equations

pc = (58, 530Pa + γoil × 0.5m) + γwater (1m)

= (58, 530 + 8530× 0.5) + 9810 (1)
= 72, 605 N/m2

pc = 72.6 kPa
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PROBLEM 3.8

Situation: A manometer is described in the problem statement.

Find: Water surface level in the left tube as compared to the right tube.

ANALYSIS

(a) The water surface level in the left tube will be higher because of greater surface
tension effects for that tube.
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PROBLEM 3.9

Situation: A force is applied to a piston—additional details are provided in the problem
statement.

Find: Force resisted by piston.

APPROACH

Apply the hydrostatic equation and equilibrium.

ANALYSIS

Equilibrium (piston 1)

F1 = p1A1

p1 =
F1
A1

=
4× 200N
π · 0.042m2

= 1.592× 105 Pa

Hydrostatic equation

p2 + γz2 = p1 + γz1

p2 = p1 + (Sγwater) (z1 − z2)

= 1.592× 105 Pa + ¡0.85× 9810N/m3¢ (−2m)
= 1.425× 105 Pa

Equilibrium (piston 2)

F2 = p2A2

=
¡
1.425× 105N/m2¢Ãπ (0.1m)2

4

!
= 1119N

F2 = 1120 N

74



PROBLEM 3.10

Situation: A diver goes to a depth of 50 meters.

Find: (a) Gage pressure.
(b) Ratio of pressure to normal atmospheric pressure.

APPROACH

Apply the hydrostatic equation.

ANALYSIS

Hydrostatic equation

p = γ∆z = 9790× 50
= 489, 500 N/m2

p = 489.5 kPa gage

Calculate pressure ratio

p50
patm

=
489.5 + 101.3

101.3

p50/patm = 5.83
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PROBLEM 3.11

Situation: Water and kerosene are in a tank. T = 20 ◦C.
The water layer is 1 m deep. The kerosene layer is 0.5 m deep.

Find: Gage pressure at bottom of tank.

Properties: From Table A.5: γwater = 9790 N/m
3 γkerosene = 8010 N/m

3.

APPROACH

Apply the manometer equation.

ANALYSIS

Manometer equation (add up pressure from the top of the tank to the bottom of the
tank).

patm + γk (0.5m) + γw (1.0m) = pbtm

Solve equation

pbtm = 0 + γk (0.5m) + γw (1.0m)

=
¡
8010N/m3

¢
(0.5m) +

¡
9790N/m3

¢
(1.0m)

= 13.8 kPa

pbtm = 13.8 kPa-gage

76



PROBLEM 3.12

Situation: A hydraulic lift is being designed.
Capacity = 20,000 lbf (10 tons). Weight of lift = 1000 lbf.
Lift speed = 6 feet in 20 seconds. D = 2 to 8 inches.
Piston pump data. Pressure range 200 to 3000 psig. Capacity = 5, 10 and 15 gpm.

Find: (a) Select a hydraulic pump capacity (gpm).
(b) Select a cylinder diameter (D)

APPROACH

Apply equilibrium to find the smallest bore diameter (D) that works. Then find the
largest bore diameter that works by considering the lift speed requirement. Select
bore and pump combinations that meet the desired specifications.

ANALYSIS

Equilibrium (piston)
F = pA

where F = 21, 000 lbf is the load that needs to be lifted and p is the pressure on the
bottom of the piston. Maximum pressure is 3000 psig so minimum bore area is

Amin =
F

pmax

=
21, 000 lbf

3000 in2

= 7.0 in2
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Corresponding minimum bore diameter is

D =

r
4

π
A

Dmin = 2.98 in

The pump needs to provide enough flow to raise the lift in 20 seconds.

A∆L = V̇∆t

where A is the bore area, ∆L is stroke (lift height), V̇ is the volume/time of fluid
provided by the pump, and ∆t is the time. Thus, the maximum bore area is

Amax =
V̇∆t

∆L

Conversion from gallons to cubic feet
¡
ft3
¢
: 7.48 gal=1 ft3. Thus, the maximum

bore diameter for three pumps (to meet the lift speed specification) is given in the
table below.

pump (gpm) pump (cfm) A (ft2) Dmax (in)
5 0.668 0.037 2.61
10 1.337 0.074 3.68
15 2.01 0.116 4.61

Since the minimum bore diameter is 2.98 in., the 5 gpm pump will not work. The 10
gpm pump can be used with a 3 in. bore. The 15 gpm pump can be used with a 3
or 4 in. bore.

1.) The 10 gpm pump will work with a bore diameter between 3.0 and 3.6 inches.

2.) The15 gpm pump will work with a bore diameter between 3.0 and 4.6 inches.

COMMENTS

1. These are preliminary design values. Other issues such as pressure drop in the
hydraulic lines and valves would have to be considered.

2. We recommend selecting the 15 gpm pump and a 4.5 inch bore to provide
latitude to handle pressure losses, and to reduce the maximum system pressure.
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PROBLEM 3.13

Situation: A liquid occupies an open tank.
At a depth of 5m, pressure is p = 75 kPa.

Find: Specific weight and specific gravity of the liquid.

APPROACH

Apply the hydrostatic equation between the top surface and a depth of 5 m.

ANALYSIS

Hydrostatic equation. (location 1 is on the top surface; location 2 is at depth of 5
m).

p1
γ
+ z1 =

p2
γ
+ z2

patm
γ
+ 5m =

p2
γ
+ 0m

Since patm = 0

γ =
p2
(5m)

=
75, 000N/m2

(5m)

γ = 15 kN/m3

Specific gravity

S =
15 kN/m3

9.8 kN/m3

S = 1.53
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PROBLEM 3.14

Situation: A tank with an attached manometer is described in the problem statement.

Find: Increase of water elevation in manometer.

Properties: From Table A.5, γw=9790 N/m
3.

Assumptions: Ideal gas.

APPROACH

Apply the hydrostatic equation and the ideal gas law.

ANALYSIS

Ideal gas law (mole form; apply to air in the manometer tube)

pV− = n<T
Because the number of moles (n) and temperature (T ) are constants, the ideal gas
reduces to Boyle’s equation.

p1V−1 = p2V−2 (1)

State 1 (before air is compressed)

p1 = 100, 000 N/m
2 abs

V−1 = 1 m×Atube
(a)

State 2 (after air is compressed)

p2 = 100, 000 N/m
2 + γw(1 m−∆c)

V−2 = (1 m−∆c)Atube
(b)

Substitute (a) and (b) into Eq. (1)

p1V−1 = p2V−2¡
100, 000N/m2

¢
(1 m×Atube) =

¡
100, 000 N/m2 + γw(1 m−∆c)

¢
(1 m−∆c)Atube

100, 000 = (100, 000 + 9810 (1−∆c)) (1−∆c)

Solving for ∆c
∆c = 0.0826 m
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PROBLEM 3.15

Situation: A tank fitted with a manometer is described in the problem statement.

Find: Deflection of the manometer.(∆h)

APPROACH

Apply the hydrostatic principle to the water and then to the manometer fluid.

ANALYSIS

Hydrostatic equation (location 1 is on the free surface of the water; location 2 is the
interface)

p1
γwater

+ z1 =
p2

γwater
+ z2

0Pa

9810N/m3
+ 0.15m =

p2
9810N/m3

+ 0m

p2 = (0.15m)
¡
9810N/m3

¢
= 1471.5Pa

Hydrostatic equation (manometer fluid; let location 3 be on the free surface)

p2
γman. fluid

+ z2 =
p3

γman. fluid
+ z3

1471.5Pa

3 (9810N/m3)
+ 0m =

0Pa

γman. fluid
+∆h

Solve for ∆h

∆h =
1471.5Pa

3 (9810N/m3)
= 0.0500m

∆h = 5.00 cm
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PROBLEM 3.16

Situation: An odd tank is described in the problem statement.

Find:
(a) Maximum gage pressure.
(b) Where will maximum pressure occur.
(c) Hydrostatic force on side C-D.

APPROACH

Apply the hydrostatic equation, and then the hydrostatic force equation.

ANALYSIS

Hydrostatic equation

0 + 4× γH2O + 3× 3γH2O = pmax

pmax = 13× 9, 810
= 127, 530 N/m2

pmax = 127.5 kPa

Answer ⇒ Maximum pressure will be at the bottom of the liquid that has a specific
gravity of S = 3.

Hydrostatic force

FCD = pA

= (127, 530− 1× 3× 9810)× 1 m2
FCD = 98.1 kN
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PROBLEM 3.17

Situation: Sea water at a point 6 km deep is described in the problem statement.

Find: % difference in sea water density.

APPROACH

Apply the hydrostatic equation to find the change in pressure. Use bulk modulus to
relate change in pressure to change in density.

ANALYSIS

Hydrostatic equation

∆p = γ (∆h)

= 10, 070× 6× 103

Bulk modulus

EV = ∆p/(dρ/ρ)

(dρ/ρ) = ∆p/Ev

= (10, 070× 6× 103)/(2.2× 109)
= 27.46× 10−3

dρ/ρ = 2.75%
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PROBLEM 3.18

Situation: A steel pipe and chamber weigh 600 lbf.
The dimension c = 2.5 ft.

Find: Force exerted on chamber by bolts (FB)

APPROACH

Apply equilibrium and the hydrostatic equation.

ANALYSIS

Equilibrium. (system is the steel structure plus the liquid within)

(Force exerted by bolts) + (Weight of the liquid) +

(Weight of the steel) = (Pressure force acting on the bottom of the free body )

FB +Wliquid +Ws = p2A2 (1)

Hydrostatic equation. (location 1 is on surface; location 2 at the bottom)

p1
γ
+ z1 =

p2
γliquid

+ z2

0 + 5c =
p2

1.2γwater
+ 0

p2 = 1.2γwater5c

= 1.2× 62.4× 5× 2.5
= 936 psfg

Area

A2 =
πD2

4
=

πc2

4

=
π × 2.52
4

= 4.909 ft2

Weight of liquid

Wliquid =

µ
A2c+

πd2

4
4c

¶
γliquid

=

µ
A2c+

πc3

16

¶
(1.2) γwater

=

Ã¡
4.909 ft2

¢
(2.5 ft) +

π (2.5 ft)3

16

!
(1.2)

µ
62.4

lbf

ft3

¶
= 1148. 7 lbf
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Substitute numbers into Eq. (1)

FB + (1148. 7 lbf) + (600 lbf) =
¡
936 lbf/ ft2

¢ ¡
4.909 ft2

¢
FB = 2846. 1

FB = 2850 lbf
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PROBLEM 3.19

Situation: A metal dome with water is described in the problem statement.

Find: Force exerted by bolts.

APPROACH

Apply equilibrium and the hydrostatic equation.

ANALYSIS

Equilibrium (system is comprised of the dome/pipe apparatus plus the water within)X
Fz = 0

Fbolt = Fpressure −WH2O −Wmetal (1)

Weight of water

WH2O = (2/3)π63 × 62.4 + 12× (π/4)× (3/4)2 × 62.4
= 28, 559 lbf

Hydrostatic equation (location 1 is on free surface; location 2 is at the bottom of the
dome).

p (bottom) = γz = γ6c

= (62.4) (6) (3)

= 1123.2 lbf/ ft2

Pressure force

FPressure = p (bottom)A

= (1123.2)
¡
π · 62¢

= 127, 030 lbf

Substitute numbers into Eq. (1)

Fbolt = Fpressure −WH2O −Wmetal

= 127, 030 lbf − 28, 559 lbf − 1300 lbf
= 97171

Fbolt = 97, 200 lbf downward
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PROBLEM 3.20

Situation: A metal dome with water is described in the problem statement.

Find: Force exerted by the bolts.

APPROACH

Apply equilibrium and the hydrostatic equation.

ANALYSIS

X
Fz = 0

pbottomAbottom + Fbolts −WH2O −Wdome = 0

where pbottomAbottom = 4.8× 9, 810× π × 1.62 = 378.7 kN
WH2O = 9, 810(3.2× (π/4)× 0.22 + (2/3)π × 1.63)

= 85.1 kN

Then Fbolts = −378.7 + 85.1 + 6
Fbolts = −287.6 kN
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PROBLEM 3.21

Situation: A tank under pressure with a dome on top is described in the problem
statement.
L = 2 ft. S = 1.5. pA = 5 psig. Wdome = 1000 lbf.

Find: (a) Vertical component of force in metal at the base of the dome.
(b) Is the metal in tension or compression?

APPROACH

Apply equilibrium to a free body comprised of the dome plus the water within. Apply
the hydrostatic principle to find the pressure at the base of the dome.

ANALYSIS

Equilibrium

1000 lbf

Wl
FdFd

p
B

X
Fz = 0 (1)

Fd + pBA−Wliquid −Wdome = 0 (4)

Hydrostatic equation
pB + γzB = pA + γzA

pB = pA −
¡
γH2O

¢
S∆z

= (5 psig)
¡
144 in2/ ft2

¢− ¡62.4 lbf/ ft3¢ (1.5) (3 ft)
= 439.2 psfg

Weight of the liquid

Wliquid =
¡
γH2O

¢
(S) (Volume)

=
¡
62.4 lbf/ ft3

¢
(1.5)

µ
2

3
π23 ft3

¶
= 1568 lbf

Pressure Force

FB = pBA

= (439.2 psfg)
¡
π × 22 ft2¢

= 5519 lbf
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Substitute into Eq. (1).

Fd = −FB +Wliquid +Wdome

= − (5519 lbf) + (1568 lbf) + (1000 lbf)
= −2951 lbf

Fd = 2950 lbf (metal is in tension)
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PROBLEM 3.22

Situation: A piston system is described in the problem statement.

Find: Volume of oil to be added to raise piston by 1 in.

ANALYSIS

h

Volume
added

Volume added is shown in the figure. First get pressure at bottom of piston

Hydrostatic force

ppAp = 10 lbf

pp = 10/Ap

= 10/((π/4)× 42)
= 0.796 psig = 114.6 psfg

Hydrostatic equation

γoilh = 114.6 psfg

h = 114.6/(62.4× 0.85) = 2.161 ft = 25.9 in

Finally

V−added = (π/4)(42 × 1 + 12 × 26.9)
V−added = 33.7 in.3
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PROBLEM 3.23

Situation: An air bubble rises from the bottom of a lake.

Find: Ratio of the density of air within the bubble at 34 ft to the density at 8 ft.

Assumptions: a.) Air is ideal gas. b.) Temperature is constant. c.) Neglect surface
tension effects.

APPROACH

Apply the hydrostatic equation and the ideal gas law.

ANALYSIS

Ideal gas law

ρ =
p

RT

ρ34 =
p34
RT

; ρ8 =
p8
RT

ρ34
ρ8

=
p34
p8

where p is absolute pressure (required in ideal gas law).

Hydrostatic equation

p8 = patm + γ (8 ft)

= 2120 lbf/ ft2 +
¡
62.4 lbf/ft3

¢
(8 ft)

= 2619 lbf/ft2

p34 = patm + γ (34 ft)

= 2120 lbf/ ft2 +
¡
62.4 lbf/ft3

¢
(34 ft)

= 4241.6 lbf/ft2

Density ratio

ρ34
ρ8

=
4241.6 lbf/ft2

2619 lbf/ft2

= 1. 620

ρ34/ρ8 = 1.62
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PROBLEM 3.24

Situation: A liquid’s mass density property is described in the problem statement.

Find: Gage pressure at 10 m depth.

ANALYSIS

ρ = ρwater(1 + 0.01d)

or γ = γwater(1 + 0.01d)

dp/dz = −γ
dp/dd = γwater(1 + 0.01d)

Integrating
p = γwater(d+ 0.01d

2/2) + C

For boundary condition pgage = 0 when d = 0 gives C = 0.

p (d = 10m) = γwater(10 + 0.01× 102/2)
p (d = 10m) = 103 kPa
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PROBLEM 3.25

Situation: A liquid’s mass density property is described in the problem statement.

Find: Depth where pressure is 60 kPa.

ANALYSIS

ρ = ρwater(1 + 0.01d)

or γ = γwater(1 + 0.01d)

dp/dz = −γ
dp/dd = γwater(1 + 0.01d)

Integrating
p = γwater(d+ 0.01d

2/2) + C

For boundary condition pgage = 0 when d = 0 gives C = 0.

p = γwater(d+ 0.01 d
2/2)

60, 000 N/m2 = (9810 N/m3)(d+ .005 d2)

Solving the above equation for d yields

d = 5.94m
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PROBLEM 3.26

Situation: A liquid’s mass density property is described in the problem statement.

Find: Pressure at depth of 20 ft.

ANALYSIS

dp/dz = −γ
= −(50− 0.1 z)

p = −
−20Z
0

(50− 0.1 z) dz

= −50 z + 0.1 z2/2 |−200

= 1000 + 0.1× 400/2
p = 1020 psfg
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PROBLEM 3.27

Situation: A pipe system is described in the problem statement.

Find: Gage pressure at pipe center.

APPROACH

Apply the manometer equation.

ANALYSIS

Manometer equation. (add up pressures from the pipe center to the open end of the
manometer)

ppipe + (0.5 ft)(62.4 lbf/ft
3) + (1 ft)(2× 62.4 lbf/ft3)

−(2.5 ft)(62.4 lbf/ft3) = 0
ppipe = (2.5− 2− 0.5) ft (62.4 lbf/ft3) = 0

p (center of pipe) = 0.0 lbf/ ft2
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PROBLEM 3.28

Situation: A pipe system is described in the problem statement.

Find: Gage pressure at pipe center.

APPROACH

Apply the manometer equation.

ANALYSIS

Manometer equation (from A to the open end of the manometer)

pA + (2.0 ft)(62.3 lbf/ft
3)− (2/12 ft)(847 lbf/ft3) = 0

pA = −124.6 lbf/ft2 + 141.2 lbf/ft2 = +16.6 lbf/ft2
pA = +0.12 psi
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PROBLEM 3.29

Situation: A piezometer (d = 0.5mm) is connected to a pipe. The fluid is water
Surface tension is relevant. Liquid level in the piezometer is 15 cm

Find: Estimate gage pressure in pipe A.

Properties: From Table A-5: γH2O = 9790N/m
3. From the footnote in Table A-5,

σH2O = 0.073N/m.

Assumptions: For capillary rise, assume a small contact angle—cos θ ≈ 1.

APPROACH

Apply equilibrium to a free body comprised of a 15 cm column of water.

ANALYSIS

Equilibrium (vertical direction)

pAA−W + Fσ = 0 (1)

Weight of the water column
W = γ

¡
πd2/4

¢
L (2)

Force due to surface tension
Fσ = σπd (3)

Combine Eqs. (1) to (3):

pA
¡
πd2/4

¢− γ
¡
πd2/4

¢
L+ σπd = 0

Thus
pA = γL− 4σ

d

Calculations:

pA =
¡
9790N/m3

¢
(0.15m)− 4 (0.073N/m)

0.0005m
= 884Pa-gage

pA = 884Pa-gage
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PROBLEM 3.30

Situation: A pipe system is described in the problem statement.

Find: Pressure at the center of pipe B.

APPROACH

Apply the manometer equation.

ANALYSIS

Manometer equation (add up pressures from the open end of the manometer to the
center of pipe B).

pB = 0

+
¡
0.30m× 20, 000N/m3¢

− ¡0.1m× 20, 000N/m3¢
− ¡0.5m× 10, 000N/m3¢

= −1000Pa

pB = −1.00 kPa-gage
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PROBLEM 3.31

Situation: A container is described in the problem statement.

Find: Pressure in the air within the container

APPROACH

Apply conservation of mass to find the decrease in liquid level in the container. Then,
apply the hydrostatic equation.

ANALYSIS

Conservation of mass (applied to liquid)

Gain in mass of liq. in tube = Loss of mass of liq. in container

(Volume change in tube) ρliquid = (Volume change in container ) ρliquid
V−tube = V−container

(π/4)D2
tube × c = (π/4)D2

container × (∆h)container

(∆h)container =

µ
Dtube

Dcontainer

¶2
c

(∆h)container = (1/8)2 × 40
= 0.625 cm

Hydrostatic equation

pcontainer = (c sin 10◦ +∆h)ρg

= (40 sin 10◦ + 0.625)× 10−2 × 800× 9.81
pcontainer = 594 Pa
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PROBLEM 3.32

Situation: A container is described in the problem statement.

Find: Pressure in the air within the container

APPROACH

Apply conservation of mass to find the decrease in liquid level in the container. Then,
apply the hydrostatic equation.

ANALYSIS

Conservation of mass (applied to liquid)

Gain in mass of liq. in tube = Loss of mass of liq. in container

(Volume change in tube) ρliquid = (Volume change in container ) ρliquid
V−tube = V−container

(π/4)D2
tube × c = (π/4)D2

container × (∆h)container

(∆h)container =

µ
Dtube

Dcontainer

¶2
c

(∆h)container = (1/10)2 × 3
= 0.03 ft

Hydrostatic equation

pcontainer = (c sin 10◦ +∆h)γ

= (3 sin 10◦ + .03)× 50
= 27. 548 lbf/ ft2

pcontainer = 27.5 psfg
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PROBLEM 3.33

Situation: A piston scale is described in the problem statement.

Find: Select a piston size and standpipe diameter.

ANALYSIS

First of all neglect the weight of the piston and find the piston area which will give
reasonable manometer deflections. Equating the force on the piston, the piston area
and the deflection of the manometer gives

W = ∆hγA

where γ is the specific weight of the water. Thus, solving for the area one has

A =
W

γ∆h

For a four foot person weighing 60 lbf, the area for a 4 foot deflection (manometer
near eye level of person) would be

A =
60

62.4× 4 = 0.24 ft
2

while for a 250 lbf person 6 feet tall would be

A =
250

62.4× 6 = 0.66 ft
2

It will not be possible to maintain the manometer at the eye level for each person so
take a piston area of 0.5 ft2. This would give a deflection of 1.92 ft for the 4-foot, 60
lbf person and 8 ft for the 6-foot, 250 lbf person. This is a good compromise.

The size of the standpipe does not affect the pressure. The pipe should be big enough
so the person can easily see the water level and be able to read the calibration on
the scale. A 1/2 inch diameter tube would probably suffice. Thus the ratio of the
standpipe area to the piston area would be

Apipe
Apiston

=
0.785× 0.52
0.5× 144 = 0.0027

This means that when the water level rises to 8 ft, the piston will only have moved
by 0.0027× 8 = 0.0216 ft or 0.26 inches.
The weight of the piston will cause an initial deflection of the manometer. If the
piston weight is 5 lbf or less, the initial deflection of the manometer would be

∆ho =
Wpiston

γApiston
= 0.16 ft or 1.92 inches

This will not significantly affect the range of the manometer (between 2 and 8 feet).
The system would be calibrated by putting knows weights on the scale and marking
the position on the standpipe. The scale would be linear.
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PROBLEM 3.34

Situation: A pipe system is described in the problem statement.

Find: Gage pressure at center of pipe A.
(a) units of pounds per square inch
(b) units of kilopascals.

APPROACH

Apply the manometer equation.

ANALYSIS

Manometer equation

pA = 1.31× 847− 4.59× 62.4
= 823.2 psf

pA = 5.72 psig

pA = 0.4× 1.33× 105 − 1.4× 9810
pA = 39.5 kPa gage
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PROBLEM 3.35

Situation: A U-tube manometer is described in the problem statement.

Find: Specific weight of unknown fluid.

ANALYSIS

Volume of unknown liquid is V–= (π/4)d2c = 2 cm3

V− = (π/4)(0.5)2c = 2

c = 10.186 cm

Manometer equation (from water surface in left leg to liquid surface in right leg)

0 + (10.186 cm - 5 cm)(10−2 m/cm)(9,810 N/m3)
−(10.186 cm)(10−2 m/cm)γliq. = 0

508.7 Pa − 0.10186γliq. = 0

γliq. = 4, 995 N/m
3
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PROBLEM 3.36

Situation: A U-tube is described in the problem statement.

Find: (a) Locate the water surface.
(b) Locate the mercury surfaces.
(c) Find the maximum pressure in tube.

Properties: (a) Mercury from Table A.4: γHg = 847 lbf/ ft
3. (b) Water from Table

A.4: γH20 = 62.4 lbf/ ft
3

APPROACH

Since the mercury column has a length of 1.0 ft, write an equation that involves
yL and yR. Apply the manometer equation to develop a second equation, and then
solve the two equations simultaneously. Apply the hydrostatic equation to find the
maximum pressure.

ANALYSIS

Water

1.5 ft

Hg

y L

yR

Since the column of mercury is 1.0 ft long:

yL + yR = 1 ft− 8 in

12 in/ ft
(1)

= 0.333 ft

Manometer equation

0 + (1.0× 62.4) + (yL × 847)− (yR × 847) = 0 (2)

yL − yR = −0.0737 ft

Combine eqns. (1) and (2):

2yL = 0.333− 0.0737
yL = 0.130 ft
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The water/mercury interface is 0.13 ft above the horizontal leg.

The air/water interface is 1.13 ft above the horizontal leg.

yR = 0.333− yL

= 0.203 ft

The air/mercury interface is 0.203 ft above the horizontal leg.

Hydrostatic Equation.

pmax = 0.203× 847
pmax = 172 psfg
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PROBLEM 3.37

Situation: A U-tube is described in the problem statement.

Find: (a) Design the manometer.
(b) Predict probable degree of accuracy.

ANALYSIS

Consider the manometer shown in the figure.

h

• Use a manometer fluid that is heavier than water. The specific weight of the
manometer fluid is identified as γm.

• Then ∆hmax = ∆pmax/(γm − γH2O).

• If the manometer fluid is carbon-tetrachloride (γm = 15, 600),∆hmax = 60 ×
103/(15, 600− 9, 180) = 13.36 m –(too large).

• If the manometer fluid is mercury (γm = 133, 000),∆hmax = 60×103/(1333, 000−
9, 810) = 0.487 m–(O.K.). Assume the manometer can be read to ±2 mm.
Then % error = ±2/487 = ±0.004 = ±0.4%. The probable accuracy for full
deflection (0.5m) is about 99.6%. For smaller pressure differences the possible
degree of error would vary inversely with the manometer deflection. For ex-
ample, if the deflection were 10 cm = 0.1 m, then the possible degree of error
would be ±2% and the expected degree of accuracy would be about 98%.

COMMENTS

Error analysis is much more sophisticated than presented above; however, this simple
treatment should be enough to let the student have an appreciation for the subject.
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PROBLEM 3.38

Situation: A manometer is described in the problem statement.

Find: Design a apparatus to measure specific weights from 50 lbf/ ft3 to 100 lbf/ ft3

ANALYSIS

One possible apparatus might be a simple glass U-tube. Have each leg of the U-tube
equipped with a scale so that liquid levels in the tube could be read. The procedure
might be as described in steps below:

1. Pour water into the tube so that each leg is filled up to a given level (for example
to 15 in. level).

2. Pour liquid with unknown specific weight into the right leg until the water in
the left leg rises to a given level (for example to 27 in. level).

3. Measure the elevation of the liquid surface and interface between the two liquids
in the right tube. Let the distance between the surface and interface be c ft.

4. The hydrostatic relationship will be γH2O(2
0) = γcc or γc = 2YH2O/c.

5. To accommodate the range of γ specified the tube would have to be about 3 or
4 ft. high.

The errors that might result could be due to:

1. error in reading liquid level

2. error due to different surface tension

(a) different surface tension because of different liquids in each leg

(b) one leg may have slightly different diameter than the other one; therefore,
creating different surface tension effect.

Sophisticated error analysis is not expected from the student. However, the
student should sense that an error in reading a surface level in the manometer
will produce an error in calculation of specific weight. For example, assume
that in one test the true value of c were 0.28 ft. but it was actually read as 0.29
ft. Then just by plugging in the formula one would find the true value of γ
would be 7.14 γH2O but the value obtained by using the erroneous reading would
be found to be 6.90 γH2O. Thus the manometer reading produced a -3.4% error
in calculated value of γ. In this particular example the focus of attention was
on the measurement of c. However, the setting of the water surface in the left
leg of the manometer would also involve a possible reading error, etc.

107



COMMENTS

Other things that could be considered in the design are:

1. Diameter of tubing

2. Means of support

3. Cost

4. How to empty and clean tube after test is made.
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PROBLEM 3.39

Situation: A pipe system is described in the problem statement.

Find: Pressure at center of pipe A.

ANALYSIS

Manometer equation

pA = (0.9 + 0.6× 13.6− 1.8× 0.8 + 1.5)9, 810 = 89, 467 Pa
pA = 89.47 kPa
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PROBLEM 3.40

Situation: A pipe system is described in the problem statement.

Find: (a) Difference in pressure between points A and B.
(b) Difference in piezometric head between points A and B.

APPROACH

Apply the manometer equation.

ANALYSIS

Manometer equation

pA − (1m)
¡
0.85× 9810N/m3¢+ (0.5m) ¡0.85× 9810N/m3¢ = pB

pA − pB = 4169Pa

pA − pB = 4.169 kPa

Piezometric head

hA − hB = (
pA
γ
+ zA)− (pB

γ
+ zB)

=
pA − pB

γ
+ (zA − zB)

=
4169N/m2

0.85× 9810N/m3 − 1m
= −0.5 m

hA − hB = −0.50 m
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PROBLEM 3.41

Situation: A manometer is described in the problem statement.

Find: Manometer deflection when pressure in tank is doubled.

ANALYSIS

p− patm = γh

For 150 kPa absolute pressure and an atmospheric pressure of 100 kPa,

γh = 150− 100 = 50 kPa

For an absolute pressure of 300 kPa

γhnew = 300− 100 = 200 kPa

Divide equations to eliminate the specific weight

hnew
h

=
200

50
= 4.0

so
hnew = 4.0h
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PROBLEM 3.42

Situation: A manometer tapped into a vertical conduit is described in the problem
statement.

Find: (a) Difference in pressure between points A and B
(b) Piezometric pressure between points A and B .

Properties: From Table A.4, γHg = 847 lbf/ft
3.

γoil = (0.95)(62.4 lbf/ft3)

= 59.28 lbf/ft3

ANALYSIS

Manometer equation

pA + (18/12) ft (γoil) + (2/12) ft. γoil + (3/12) ft γoil
−(3/12) ft γHg − (2/12) ft γoil = pB

thus

pA − pB = (−1.75 ft.)(59.28 lbf/ft3) + (0.25 ft.)(847 lbf/ft3)
pA − pB = 108.01 lbf/ft2

Piezometric head

hA − hB = (pA − pB)/γoil + zA − zB

hA − hB = (108.01 lbf/ft)/(59.28 lbf/ft3) + (1.5− 0)
hA − hB = 3.32 ft.
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PROBLEM 3.43

Situation: Two manometers attached to an air tank are described in the problem
statement.

Find: Difference in deflection between manometers.

ANALYSIS

The pressure in the tank using manometer b is

pt = patm − γw∆hb

and using manometer a is
pt = 0.9patm − γw∆ha

Combine equations
patm − γw∆hb = 0.9patm − γw∆ha

or
0.1patm = γw(∆hb −∆ha)

Solve for the difference in deflection

∆hb −∆ha =
0.1patm
γw

=
0.1× 105
9.81× 103
∆hb −∆ha = 1.02 m
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PROBLEM 3.44

Situation: A manometer measuring pressure difference is described in the problem
statement.

Find: (a) Pressure difference.
(b) Piezometric pressure difference between points A and B.

APPROACH

Apply the manometer equation and the hydrostatic equation.

ANALYSIS

Manometer equation

pB = pA + 0.03γf − 0.03γm − 0.1γf
or

pB − pA = 0.03(γf − γm)− 0.1γf
Substitute in values

pB − pA = 0.03(9810− 3× 9810)− 0.1× 9810
pB − pA = −1.57 kPa

Change in piezometric pressure

pzB − pzA = pB + γfzB − (pA + γfzA)

= pB − pA + γf(zB − zA)

But zB − zA is equal to 0.1 m so from equation above

pzB − pzA = pB − pA + 0.1γf
= 0.03(9810− 3× 9810)
= −588.6 Pa

pzB − pzA = −0.589 kPa
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PROBLEM 3.45

Situation: A tank has a small air tube in it to measure the surface level of the
liquid—additional details are provided in the problem statement.

Find: Depth of liquid in tank.

Assumptions: Neglect the change of pressure due to the column of air in the tube.

ANALYSIS

pgage − (d− 1)γliquid = 0

20, 000− ((d− 1)× 0.85× 9, 810) = 0

d = (20, 000/(0.85× 9, 810)) + 1
d = 3.40 m
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PROBLEM 3.46

Situation: The atmosphere is described in the problem statement.

Find: The correct statement.

ANALYSIS

dp/dz = γ

Because γ becomes smaller with an increase in elevation the ratio of (dp/dz)’s will
have a value greater than 1.
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PROBLEM 3.47

Situation: The boiling point of water is described in the problem statement.
Tsea level = 296 K= 23◦C

Find: Boiling point of water at 1500 and 3000 m for standard atmospheric conditions.

APPROACH

Apply the atmosphere pressure variation equation that applies to the troposphere.

ANALYSIS

For standard atmosphere
Atmosphere pressure variation (troposphere)

p = p0[(T0 − α(z − z0))/T0]
g/αR

= 101.3[296− 5.87(z − z0))/296]
g/αR

where
g/αR = 9.81/(5.87× 10−3 × 287) = 5.823

So
p1,500 = 101.3[(296− 5.87(1.5))/296]5.823 = 84.9 kPa
p3,000 = 101.3[(296− 5.87(3.0))/296]5.823 = 70.9 kPa

From table A-5,

Tboiling, 1,500 m ≈ 95 ◦C (interpolated)

Tboiling, 3,000 m ≈ 90 ◦C (interpolated)
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PROBLEM 3.48

Situation: This problem involves pressure variation from a depth of 10m in a lake to
4000m in the atmosphere.

Find: Plot pressure variation.

Assumptions: Atmospheric pressure is 101 kPa. The lake surface is at sea level.

ANALYSIS

Atmosphere pressure variation (troposphere)

pA = 101.3

µ
1− 5.87× 10

−3 × z

296

¶5.823
Pressure in water

pw = 101.3 + 9.810× z

P re s s u re  (k P a )

4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0
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PROBLEM 3.49

Situation: A woman breathing is described in the problem statement.

Find: Breathing rate at 18,000 ft.

Assumptions: Volume drawn in per breath is the same.
Air is an ideal gas.

ANALYSIS

Let bV–ρ = constant where b = breathing rate = number of breaths for each unit of
time, V–= volume per breath, and ρ = mass density of air. Assume 1 is sea level and
point 2 is 18,000 ft. elevation. Then

b1V−1 ρ1 = b2V−2 ρ2
b2 = b1(V−1 /V−2)(ρ1/ρ2)

then b2 = b1(ρ1/ρ2) but ρ = (p/RT )

Thus, b2 = b1(p1/p2)(T2/T1)

p2 = p1(T2/T1)
g/αR

p1/p2 = (T2/T1)
−g/αR

Then b2 = b1(T2/T1)
1−g/αR

Since the volume drawn in per breath is the same

b2 = b1(ρ1/ρ2)

Ideal gas law
b2 = b1(p1/p2)(T2/T1)
p1/p2 = (T2/T1)

−g/αR

b2 = b1(T2/T1)
1−g/αR

where b1 = 16 breaths per minute and T1 = 59
◦F = 519◦R

T2 = T1 − α(z2 − z1) = 519− 3.221× 10−3(18, 000− 0) = 461.0 oR
b2 = 16(461.0/519)1−32.2/(3.221×10

−3×1,715)

b2 = 28.4 breaths per minute
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PROBLEM 3.50

Situation: A pressure gage in an airplane is described in the problem statement.

Find: Elevation and temperature when pressure is 75 kPa.

ANALYSIS

Atmosphere pressure variation (troposphere)

p = p0[(T0 − α(z − z0))/T0]
g/αR

75 = 95[(283− 5.87(z − 1))/283]9.81/(5.87×10−3×287)
z = 2.91 km

T = T0 − α(z − z0)

= 10− 5.87(2.91− 1)
T = −1.21oC
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PROBLEM 3.51

Situation: A pressure gage in an airplane is described in the problem statement.

Find: Elevation when pressure is 10 psia.

ANALYSIS

Atmosphere pressure variation (troposphere)

p = p0[(T0 − α(z − z0))/T0]
g/αR

10 = 13.6[((70 + 460)− 3.221× 10−3(z − 2, 000))/(70 + 460)]32.2/(3.221×10−3×1,715)
z = 10, 452 ft
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PROBLEM 3.52

Situation: Denver, CO (the mile-high city) is described in the problem statement.

Find: (a) Pressure in both SI and traditional units.
(b) Temperature in both SI and traditional units.
(c) Density in both SI and traditional units.

ANALYSIS

Atmosphere pressure variation (troposphere)

T = T0 − α(z − z0)

= 533− 3.221× 10−3(5, 280− 0) = 516◦R
= 296− 5.87× 10−3(1, 609− 0)

T = 287 K = 516 ◦R

p = p0(T/T0)
g/αR

= 14.7(516/533)5.823

p = 12.2 psia

pa = 101.3(287/296)9.81/(5.87×10
−3×287)

pa = 86.0 kPa = 12.2 psia

Ideal gas law

ρ = p/RT

= (12.2× 144)/1, 715× 516)
= 0.00199 slugs/ft3

ρ = 86, 000/(287× 287)
ρ = 1.04 kg/m3 = 0.00199 slugs/ft3
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PROBLEM 3.53

This problem involves the Martian atmosphere. Some relevant data.

• Temperature at the Martian surface is T = −63 ◦C = 210K The pressure at
the Martian surface is p = 7 mbar.

• The atmosphere consists primarily of CO2 (95.3%) with small amounts of ni-
trogen and argon.

• Acceleration due to gravity on the surface is 3.72 m/s2.
• Temperature distribution. Approximately constant from surface to 14 km.
Temperature decreases linearly at a lapse rate of 1.5oC/km from 14 to 34 km.

Find: Pressure at an elevation of 8 km.
Pressure at an elevation of 30 km.

Assumptions: Assume the atmosphere is totally carbon dioxide.

Properties: CO2 (from Table A.2): the gas constant is R =189 J/kg·K.

APPROACH

Derive equations for atmospheric pressure variation from first principles.

ANALYSIS

A.) Elevation of 8 km.

Differential equation describing pressure variation in a hydrostatic fluid

dp

dz
= −ρg (1)

Ideal gas law
ρ =

p

RT
(2)

Combine Eqs. (1) and (2)
dp

dz
= − p

RT
g (3)

Integrate Eq. (3) for constant temperature

ln
p

po
= −(z − zo)g

RT
(4)

Substitute in values

ln
p

po
= − (8000m) (3.72m/ s2)

(189 J/ kg · K) (210K)
= −0.7498
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Thus

p

po
= exp(−0.7498)
= 0.4725

and

p = (7mbar)× 0.4725
= 3.308 mbar

p(z = 8km) = 3.31mbar

B.) Elevation of 30 km.

Apply Eq. (4) to find the pressure at z = 14 km

p14 km
po

= exp

·
− (14000m) (3.72m/ s

2)

(189 J/ kg · K) (210K)
¸

= exp(−1.3122)
= 0.2692

p14 km = (7mbar) (0.2692)

= 1. 884 mbar

In the region of varying temperature Eq. (3) becomes

dp

dz
=

pg

R[To + α(z − zo)]

where the subscript o refers to the conditions at 14 km and α is the lapse rate above
14 km. Integrating gives

p

po
=

·
To − α(z − zo)

To

¸g/αR
Calculations for z = 30km.

p

(1. 884 mbar)
=

·
210− 0.0015(30000− 14000)

210

¸3.72/(0.0015×189)
= 0.2034

p = (1. 884 mbar) 0.2034

= 0.3832mbar

p(z = 30 km) = 0.383mbar
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PROBLEM 3.54

Situation: Standard atmospheric conditions are described in the problem statement.

Find: (a) Pressure at 30 km altitude.
(b) Density at 30 km altitude.

ANALYSIS

The equation for pressure variation where the temperature increases with altitude is

dp

dz
= −γ = pg

R[To + α(z − zo)]

where the subscript o refers to the conditions at 16.8 km and α is the lapse rate above
16.8 km. Integrating this equation gives

p

po
=

·
To + α(z − zo)

To

¸−g/αR
Substituting in the values gives

p

po
=

·
215.5 + 1.38× (30− 16.8)

215.5

¸−9.81/(1.38×0.287)
= 1.084−24.8

= 0.134

Thus the pressure is

p = 0.134× 9.85
= 1.32 kPa.

Ideal gas law

ρ =
p

RT

=
1.32

0.287× 234
ρ = 0.0197 kg/m3
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PROBLEM 3.55

Situation: The US standard atmosphere from 0 to 30 km is described in the problem
statement.

Find: Design a computer program that calculates the pressure and density.

ANALYSIS

The following are sample values obtained using computer calculations.

altitude (km) temperature (oC) pressure (kPa) density (kg/m3)
10 -35.7 27.9 0.409
15 -57.5 12.8 0.208
25 -46.1 2.75 0.042
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PROBLEM 3.56

Situation: A submerged gate is described in the problem statement.

Find: (a) Net force on gate.
(b) Moment required to keep gate closed.

ANALYSIS

Hydrostatic force
Force of slurry on gate = p̄sA and it acts to the right. Force of water on gate = p̄wA
and it acts to the left

Fnet = (p̄s − p̄w)A

= (8γs − 8γw)A
= (8 ft)(16 ft2)(150 lbf/ft3 − 60 lbf/ft3)

Fnet = 11, 520 lbf

Because the pressure is uniform along any horizontal line the moment on the gate is
zero; therefore, the moment required to keep the gate closed is zero.
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PROBLEM 3.57

Situation: Two submerged gates are described in the problem statement.

Find: How the torque changes with increasing water depth H.

APPROACH

Apply hydrostatic force equation.

ANALYSIS

Let the horizontal gate dimension be given as b and the vertical dimension, h.

Torque (gate A)
TA = F (ycp − ȳ)

where F = the hydrostatic force acting on the gate and (ycp − ȳ) is the distance
between the center of pressure and the centroid of the gate. Thus

TA = γ(H − (h/2))(bh)(I/ȳA)
= γ(H − (h/2))(bh)(bh3/12)/(H − (h/2))(bh))

TA = γbh3/12

Therefore, TA does not change with H.

Torque (gate B)

TB = F ((h/2) + ycp − ȳ)

= γ(H − (h/2))(bh)((h/2) + ycp − ȳ)

= γ(H − (h/2))(bh)((h/2) + I(ȳA))

= γ(H − (h/2))(bh)[(h/2) + (bh3/12)/((H − (h/2))bh)]
= γ(H − (h/2))bh2/2 + γbh3/12

Thus, TA is constant but TB increases with H.

Case (b) is a correct choice.

Case (c) is a correct choice.
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PROBLEM 3.58

Situation: Two submerged gates are described in the problem statement.

Find: Choose the statements that are valid.

ANALYSIS

The correct answers obtained by looking at the solution to problem 3.57 are that
a, b, and e are valid statements.
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PROBLEM 3.59

Situation: A submerged gate is described in the problem statement.

Find: Force of gate on block.

ANALYSIS

Hydrostatic force

Fhs = p̄A

= yγA

= (10m)× ¡9810N/m3¢× (4× 4) m2
= 1. 569 6× 106N

Center of pressure

ycp − ȳ =
I

ȳA

=
bh3/12

ȳA

=
(4× 43/12) m4
(10m) (4× 4) m2

= 0.133 33m

Equilibrium (sum moments about the pivot)

Fhs (ycp − ȳ)− Fblock (2m) = 0¡
1. 569 6× 106N¢ (0.133 33m)− Fblock (2m) = 0

Fblock = 1.046× 105N (acts to the left)

Fgate = 105 kN (acts to the right)
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PROBLEM 3.60

Situation: Concrete forms are described in the problem statement.

Find:
a.) Hydrostatic force per foot on form
b.) Force exerted on bottom tie.

ANALYSIS

Hydrostatic force

Fhs = pA = ȳγA

= 4.5 ft× 150 lbf/ ft3 × (9 ft)
Fhs = 6075

lbf
ft

Center of pressure

ycp = ȳ +
I

ȳA

= 4.5 +
(1× 93)/12
4.5× 9

= 6.00 ft

Equilibrium (sum moments about the top tie)

Fbottom tie =
Fhs × ycp

h

=
2 ft× 6075 lbf/ ft× 6.00 ft

9 ft
8100 lbf

Fbottom tie = 8100 lbf (tension)
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PROBLEM 3.61

Situation: A rectangular gate is hinged at the water line. The gate is 4 ft high by
12 ft wide.

Find: Force to keep gate closed.

Properties: From Table A.4, γWater = 62.4 lbf/ft
3

ANALYSIS

Hydrostatic Force (magnitude):

FG = p̄A

=
¡
γH2O × ȳ

¢ ¡
48 ft2

¢
=

¡
62.4 lbf/ ft3 × 2 ft¢ ¡48 ft2¢

= 5950 lbf

Center of pressure. Since the gate extends from the free surface of the water, FG

acts at 2/3 depth or 8/3 ft. below the water surface.

Equilibrium. ( moment center is the hinge)X
M = 0

(FG × 8/3 ft)− (4 ft)F = 0

F =
5950 lbf × 8/3 ft

4 ft

F = 3970 lbf to the left
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PROBLEM 3.62

Situation: A submerged gate is described in the problem statement. The gate is 6 ft
by 6 ft.

Find: Reaction at point A.

APPROACH

Find the hydrostatic force and the center of pressure. Since the gate is in equilibrium,
sum moments about the stop.

ANALYSIS

Hydrostatic force (magnitude)

F = p̄A

= (3 m + 3 m× cos 30◦)(9810 N/m3)× 36 m2
F = 1, 977, 000 N

Center of pressure

ȳ = 3 + 3/ cos 30o

= 6.464 m

ycp − y =
I

ȳA

=
(64/12)m4

6.464 m× 24 m2
= 0.696 m

Equilibrium.
Take moments about the stop X

Mstop = 0

6RA − (3− 0.696)× 1, 977, 000 = 0

RA = 759, 000N

Reaction at point A = 759 kN . This force is normal to gate and acting at an angle
of 30o below the horizontal.
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PROBLEM 3.63

Situation: A submerged gate is described in the problem statement.

Find: Force P required to begin to open gate.

ANALYSIS

The length of gate is
√
42 + 32 = 5 m

Hydrostatic force

F = p̄A = yγA

= (3)(9810)(2× 5)
= 294.3 kN

Center of pressure

ycp − ȳ =
Ī

ȳA

=
(2× 53) /12
(3) (2× 5)

= 0.694 4 m

Equilibrium. X
Mhinge = 0

294.3× (2.5 + 0.694 4)− 3P = 0
P = 313 kN
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PROBLEM 3.64

Situation: A submerged gate opens when the water level reaches a certain value.
Other details are given in the problem statement.

Find: h in terms of c to open gate.

APPROACH

As depth of water increase, the center of pressure will move upward. The gate will
open when the center of pressure reaches the pivot..

ANALYSIS

Center of pressure (when the gate opens)

ycp − ȳ = 0.60c− 0.5c
= 0.10c (1)

Center of pressure (formula)

ycp − ȳ =
Ī

ȳA

=
(c× c3) /12

(h+ c/2)c2
(2)

Combine Eqs. (1) and (2)

0.10c =
(c× c3) /12

(h+ c/2)c2

0.10 =
c

12(h+ c/2)

h =
5

6
c− 1

2
c

=
1

3
c

h = c/3
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PROBLEM 3.65

Situation: A butterfly valve is described in the problem statement.

Find: Torque required to hold valve in position.

ANALYSIS

Hydrostatic force

F = p̄A = yγA

= (30 ft× 62.4 lb/ft3)(π ×D2/4) ft2)

= (30× 62.4× π × 102/4) lb
= 147, 027 lb

Center of pressure

ycp − ȳ = I/ȳA

= (πr4/4)/(ȳπr2)

= (52/4)/(30/.866)

= 0.1804 ft

Torque

Torque = 0.1804× 147, 027
T = 26, 520 ft-lbf
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PROBLEM 3.66

Situation: A submerged gate is described in the problem statement.

Find: Will gate fall or stay in position.

ANALYSIS

Hydrostatic force

F = p̄A

= (1 + 1.5)9, 810× 1× 3×√2
= 104, 050

Center of pressure

ycp − ȳ =
I

ȳA

=

¡
1× (3√2)3¢ /12

(2.5×√2)(1× 3√2)
= 0.4243 m

Overturning moment

M1 = 90, 000× 1.5
= 135, 000 N ·m

Restoring moment

M2 = 104, 050× (3√2/2− 0.424)
= 176, 606N · m
> M1

So the gate will stay in position.
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PROBLEM 3.67

Situation: A submerged gate is described in the problem statement.

Find: Will gate fall or stay in position.

ANALYSIS

F = (4 + 3.535)62.4× (3× 7.07
√
2) = 14, 103 lbf

ycp − ȳ = 3× (7.07√2)3/(12× 7.535√2× 3× 7.07√2)
= 0.782 ft

Overturning moment M1 = 18, 000× 7.07/2 = 63, 630 N ·m
Restoring moment M2 = 14, 103(7.07

√
2/2− 0.782)

= 59, 476 N ·m<M1

So the gate will fall.
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PROBLEM 3.68

Situation: A submerged gate is described in the problem statement.

Find: (a) Hydrostatic force (F ) on gate, (b) Ratio (RT/F ) of the reaction force to
the hydrostatic force.

ANALYSIS

F = p̄A

= (h+ 2h/3)γ(Wh/ sin 60◦)/2

F = 5γWh2/3
√
3

ycp − ȳ = I/ȳA =W (h/ sin 60◦)3/(36× (5h/(3 sin 60◦))× (Wh/2 sin 60◦))

= h/(15
√
3)

ΣM = 0

RTh/ sin 60
◦ = F [(h/(3 sin 60◦))− (h/15√3)]

RT/F = 3/10
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PROBLEM 3.69

Situation: A submerged gate is described in the problem statement.

Find: (a) Magnitude of reaction at A.
(b) Comparison to that for a plane gate.

ANALYSIS

a)

FHydr = p̄A = (0.25c+ 0.5c× 0.707)× ξWc = 0.6036γWc2

ycp − ȳ = I/ȳA = (Wc3/12)/(((0.25c/0.707) + 0.5c)×Wc)

ycp − ȳ = 0.0976cX
Mhinge = 0

Then − 0.70RAc+ (0.5c+ 0.0976c)× 0.6036γWc2 = 0

RA = 0.510γWc2

b) The reaction here will be less because if one thinks of the applied hydrostatic
force in terms of vertical and horizontal components, the horizontal component will
be the same in both cases, but the vertical component will be less because there is
less volume of liquid above the curved gate.
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PROBLEM 3.70

Situation: A submerged gate is described in the problem statement.

Find: Force required to hold gate in place.

APPROACH

To develop an equation for the force P , apply equilibrium by summing moments about
the hinge. Solving this equation requires the hydrostatic force. The hydrostatic force
can be found by calculating the pressure at the depth of the centroid and by finding
the line of action. To find the line of action, calculate the equivalent depth of liquid
that account for the pressure acting the free surface.

ANALYSIS

Hydrostatic equation (from free surface of the liquid to centroid of the gate)

p1
γliquid

+ z1 =
p2

γliquid
+ z2

p1
Sγwater

+
³
y1 +

y2
2

´
=

p2
Sγwater

+ 0

(5× 144) lbf/ ft2
0.8× ¡62.4 lbf/ ft3¢ +

µ
1 ft +

10 ft

2

¶
=

p2

0.8× ¡62.4 lbf/ ft3¢
p2 = 1019.5 lbf/ ft2

Hydrostatic force

F = p̄A = p2A

=
¡
1019.5 lbf/ ft2

¢
(10 ft× 6 ft)

= 61170 lbf

Line of action of hydrostatic force

ycp − ȳ =
I

ȳA
(1)

I =
bh3

12
=
6 ft (10 ft)3

12
= 500 ft4

A = (10 ft× 6 ft) = 60 ft2

To find ȳ in Eq. (1), apply the hydrostatic equation to locate an equivalent free
surface where pressure is zero.

0

γliquid
+ hequivalent =

p1
γliquid

+ 0

hequivalent =
(5× 144) lbf/ ft2
0.8× ¡62.4 lbf/ ft3¢

= 14. 423 ft

141



ȳ = hequivalent +
10 ft

2
= 14. 423 ft +

10 ft

2
= 19. 423 ft

Back to Eq. (1)

ycp − ȳ =
I

ȳA

=
500 ft4

(19. 423 ft) 60 ft2

= 0.429 ft

Equilibrium. (sum moments about the hinge)

−Py2 + F
³y2
2
+ 0.429 ft

´
= 0

P = F

µ
1

2
+
0.429 ft

y2

¶
= 61170 lbf

µ
1

2
+
0.429 ft

10 ft

¶
= 33209 lbf

P = 33, 200 lbf
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PROBLEM 3.71

Situation: A concrete form is described in the problem statement.

Find: Moment at base of form per meter of length.

ANALYSIS

F = p̄A = (1.5/2)24, 000× (1.5/ sin 60◦) = 31, 177 N
ycp − ȳ = I/ȳA

= 1× (1.5/ sin 60◦)3/(12× (1.5/2 sin 60◦))× (1.5/ sin 60◦))
= 0.2887 m

Sum moment at base

M = 31, 177× (1.5/2 sin 60◦ − 0.2887)
= 18, 000 N ·m/m

M = 18 kN·m/m
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PROBLEM 3.72

Situation: A submerged gate is described in the problem statement.

Find: Gate is stable or unstable.

ANALYSIS

ycp = (2/3)× (8/ cos 45◦) = 7.54 m
Point B is (8/cos 45◦) m-3.5 m=7.81 m along the gate from the water surface; there-
fore, the gate is unstable.
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PROBLEM 3.73

Situation: A submerged gate is described in the problem statement.

Find: Minimum volume of concrete to keep gate in closed position.

ANALYSIS

F = p̄A = 1× 9, 810× 2× 1 = 19, 620 N
ycp − ȳ = I/ȳA = (1× 23)/(12× 1× 2× 1) = 0.33 m

W = 19, 620× (1− 0.33)/2.5 = 5, 258 N
V− = 5, 258/(23, 600− 9, 810)

V− = 0.381 m3
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PROBLEM 3.74

Situation: A submerged gate is described in the problem statement.

Find: Minimum volume of concrete to keep gate in closed position..

ANALYSIS

F = 2.0× 62.4× 2× 4 = 998.4 lbf
ycp − ȳ = (2× 43)/(12× 2.0× 2× 4) = 0.667 ft

W = 998.4(2.0− 0.667)/5 = 266 lbf
V− = 266/(150− 62.4)

V− = 3.04 ft3
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PROBLEM 3.75

Situation: A submerged gate is described in the problem statement.

Find: Length of chain so that gate just on verge of opening.

APPROACH

Apply hydrostatic force equations and then sum moments about the hinge.

ANALYSIS

Hydrostatic force

FH = p̄A = 10× 9, 810× πD2/4

= 98, 100× π(12/4)

= 77, 048 N

ycp − ȳ = I/(ȳA)

= (πr4/4)/(10× πD2/4)

ycp − ȳ = r2/40 = 0.00625 m

Equilibrium X
MHinge = 0

FH × (0.00625 m)− 1× F = 0

But F = Fbuoy −W

= A(10 m− c)γH2O − 200
= (π/4)(.252)(10− c)(9, 810)− 200
= 4815.5 N− 481.5c N− 200 N
= (4615.5− 481.5c) N

where c = length of chain

77, 048× 0.00625− 1× (4615.5− 481.5c) = 0

481.55− 4615.5 + 481.5c = 0

c = 8.59 m

cpy -y

F

FH
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PROBLEM 3.76

Situation: Three submerged gates are described in the problem statement.

Find: Which wall requires the greatest resisting moment.

ANALYSIS

The horizontal component of force acting on the walls is the same for each wall.
However, walls A−A0 and C −C 0 have vertical components that will require greater
resisting moments than the wall B−B0. If one thinks of the vertical component as a
force resulting from buoyancy, it can be easily shown that there is a greater ”buoyant”
force acting on wall A−A0 than on C 0C 0. Thus,

wall A−A0 will require the greatest resisting moment.
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PROBLEM 3.77

Situation: A radial gate is described in the problem statement.

Find: Where the resultant of the pressure force acts.

ANALYSIS

dF=pdA

Consider all the differential pressure forces acting on the radial gate as shown. Be-
cause each differential pressure force acts normal to the differential area, then each
differential pressure force must act through the center of curvature of the gate. Be-
cause all the differential pressure forces will be acting through the center of curvature
(the pin), the resultant must also pass through this same point (the pin).
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PROBLEM 3.78

Situation: A curved surface is described in the problem statement.

Find: (a) Vertical hydrostatic force.
(b) Horizontal hydrostatic force.
(c) Resultant force.

ANALYSIS

FV = 1× 9, 810× 1×+(1/4)π × (1)2 × 1× 9, 810
FV = 17, 515 N

x = M0/FV

= 1× 1× 1× 9, 810× 0.5 + 1× 9, 810×
1Z
0

√
1− x2xdx/17, 515

= 0.467 m

FH = p̄A

= (1 + 0.5)9, 810× 1× 1
FH = 14, 715 N

ycp = ȳ + Ī/ȳA

= 1.5 + (1× 13)/(12× 1.5× 1× 1)
ycp = 1.555 m

FR =
p
(14, 715)2 + (17, 515)2

FR = 22, 876 N

tan θ = 14, 715/17, 515

θ = 40◦20
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PROBLEM 3.79

Situation: A radial gate is described in the problem statement.

Find: Hydrostatic force acting on gate.

ANALYSIS

x

y

60o

From the reasoning given in the solution to problem 3.94, we know the resultant
must pass through the center of curvature of the gate. The horizontal component of
hydrostatic force acting on the gate will be the hydrostatic force acting on the vertical
projection of the gate or:
Hydrostatic force

FH = p̄A

= 25 ft× 62.4 lb/ft3 × 40 ft× 50 ft
FH = 3, 120, 000 lb

The vertical component of hydrostatic force will be the buoyant force acting on the
radial gate. It will be equal in magnitude to the weight of the displaced liquid (the
weight of water shown by the cross-hatched volume in the above Fig.).
Thus,

FV = γV−
where V− = [(60/360)π × 502 ft2 − (1/2)50× 50 cos 30◦ ft2]× 40 ft

= 226.5 ft2 × 40 ft
= 9600 ft3

Then FV = (62.4 lbf/ft3)(9060 ft3) = 565, 344 lbs

Fresult = 3, 120, 000 i + 565, 344 j lbf

acting through the center of curvature of the gate.
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PROBLEM 3.80

Situation: A metal surface with liquid inside is described in the problem statement.

Find: Magnitude, direction, and location of horizontal and vertical components.

ANALYSIS

FH = p̄A

= −2.5× 50× (3× 1)
FH = −375 lbf/ft
(force acts to the right)

FV = V− γ = (1× 3 + π × 32 × 1
4
)50

FV = 503.4 lbf/ft (downward)

ycp = 2.5 + 1× 33/(12× 2.5× 1× 3)
ycp = 2.8 ft above the water surface
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PROBLEM 3.81

Situation: A plug is described in the problem statement.

Find: Horizontal and vertical forces on plug.

ANALYSIS

Hydrostatic force

Fh = p̄A

= γzA

= 9810× 2× π × 0.22
Fh = 2465 N

The vertical force is simply the buoyant force.

Fv = γV−
= 9810× 4

6
× π × 0.253

Fv = 321 N
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PROBLEM 3.82

Situation: A dome below the water surface is described in the problem statement.

Find: Magnitude and direction of force to hold dome in place.

ANALYSIS

FH = (1 + 1)9810× π × (1)2
= 61, 640 N = 61.64 kN

This 61.64 kN force will act horizontally to the left to hold the dome in place.

(ycp − ȳ) = I/ȳA

= (π × 14/4)/(2× π × 12)
= 0.125 m

The line of action lies 0.125 m below the center of curvature of the dome.

FV = (1/2)(4π × 13/3)9, 810
= 20, 550 N

FV = 20.55 kN

To be applied downward to hold the dome in place.
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PROBLEM 3.83

Situation: A dome below the water surface is described in the problem statement.

Find: Force on the dome.

ANALYSIS

(4/3)(r/

Vertical projection

The horizontal component of the hydrostatic force acting on the dome will be the
hydrostatic force acting on the vertical projection of the bottom half of the dome.

Hydrostatic force

FH = p̄A

p̄ = (4/3)(5/π) ft (62.4 lbf/ft3)

= 132.4 lbf/ft2

FH = (132.4 lbf/ft2)(π/8)(102) ft2 = 5, 199 lbf

The vertical component of force will be the buoyant force acting on the dome. It
will be the weight of water represented by the cross-hatched region shown in the Fig.
(below).

Dome

Thus,

FV = γV−
= (62.4 lbf/ft3)((1/6)πD3/4) ft3

FV = 8, 168 lbf

The resultant force is then given below. This force acts through the center of curva-
ture of the dome.

Fresult = 5, 199i+ 8, 168j lbf
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PROBLEM 3.84

Situation: A block of material is described in the problem statement.

Find: Specific weight and volume of material.

ANALYSIS

Win air = 700 N = V− γblock (1)

Win water = 400 N = (V− γblock − V− γwater) (2)

γwater = 9810 N/m
3 (3)

SolveEqs. (1), (2), and (3)

V− = 0.0306 m3

γblock = 22, 900 N/m
3
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PROBLEM 3.85

Situation: A weather balloon is described in the problem statement.

Find: Maximum altitude of balloon.

Assumptions: T0 = 288 K

ANALYSIS

Initial Volume

V−0 = (π/6)D3
0

= (π/6) (1m)3

= 0.524 m3

Ideal gas law

ρ0,He =
p0,He
RHeT0

=
111, 300

(2077)(288)

= 0.186 kg/m3

Conservation of mass
m0 = malt.

V−0 ρ0,He = V−alt. ρHe
V−alt. = V−0 ρ0,He

ρHe

Equilibrium X
Fz = 0

Fbuoy. −W = 0

V−alt. ρairg − (mg + WHe) = 0

Eliminate V–alt.

(V−0 ρ0/ρHe)ρairg = (mg + V−0 ρ0,Heg)
Eliminate ρ’s with equation of state

(V0ρ0)(palt./Rair)g

(palt. + 10, 000)/(RHe)
= (mg + V0ρ0g)

(0.524)(0.186)(9.81)(2077)palt.
(palt. + 10, 000)(287)

= (0.1)(9.81) + (0.524)(0.186)(9.81)

Solve
palt. = 3888 Pa
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Check to see if palt. is in the troposphere or stratosphere. Using Eq. (3.15) solve for
pressure at top of troposphere.

p = p0

·
T0 − α(z − z0)

T0

¸g/αR
= 101, 300[(296− 5.87× 10−3)(13, 720)/296]5.823
= 15, 940 Pa

Because palt. < pat top of troposphere we know that palt. occurs above the stratosphere.
The stratosphere extends to 16.8 km where the temperature is constant at -57.5oC.
The pressure at the top of the stratosphere is given by Eq. (3.16)

p = p0e
−(z−z0)g/RT

= 15.9 exp(−(16, 800− 13, 720)× 9.81/(287× 215.5))
= 9.75 kPa

Thus the balloon is above the stratosphere where the temperature increases linearly
at 1.387oC/km. In this region the pressure varies as

p = p0

·
T0 + α(z − z0)

T0

¸−g/αR
Using this equation to solve for the altitude, we have

3888

9750
=

·
215.5 + 1.387× (z − 16.8)

215.5

¸−9.81/(0.001387×287)
0.399 = [1 + 0.00644× (z − 16.8)]−24.6

z = 22.8 km

158



PROBLEM 3.86

Situation: A rock is described in the problem statement.

Find: Volume of rock.

ANALYSIS

V− γ = 918 N

V− (γ − 9, 810) = 609 N

V− = (918− 609)/9, 810
V− = 0.0315 m3
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PROBLEM 3.87

Situation: A rod is described in the problem statement.

Find: Describe the liquid.

ANALYSIS

Rod weight = (2LAγW + LA(2ρW ))g

= 4LAγWg

= 4LAγW

Buoyancy force

Buoyant force < V− γLiq = 3LAγLiq
Rod weight = Buoyant force

4LAγW < 3LAγLiq
γLiq > (4/3)γW .

The liquid is more dense than water so is answer c).
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PROBLEM 3.88

Situation: A person floating is a boat with an aluminum anchor.

Find: Change of water level in pond in the pond.

ANALYSIS

Weight anchor = 0.50 ft3 × (2.2× 62.4 lb/ft3) = 68.65 lb.
The water displaced by boat due to weight of anchor

= 68.65 lb/(62.4 lb/ft3) = 1.100 ft3

Therefore, when the anchor is removed from the boat, the boat will rise and the water
level in the pond will drop:

∆h = 1.10 ft3/500 ft2 = 0.0022 ft

However, when the anchor is dropped into the pond, the pond will rise because of the
volume taken up by the anchor. This change in water level in the pond will be:

∆h = 0.500 ft3/500 ft2 = .001 ft

Net change =-.0022 ft + .001 ft = -.0012 ft = -.0144 in.
The pond level will drop 0.0144 inches.
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PROBLEM 3.89

Situation: An inverted cone containing water is described in the problem statement.

Find: Change of water level in cone.

ANALYSIS

S = 0.6 =⇒ γblock = 0.6γwater

Weight of displaced water = weight of block

V−W γW = V−b γb
V−W = (γb/γW )V−b

V−W = 0.6V−b = 120 cm3

Then the total volume below water surface when block is floating in water = V
–W,org. + 120 cm3

V−W,orig. = (π/3)(10 cm)3

= 1047.2 cm3

V−final = 1047.2 cm3 + 120 cm3

(π/3)h3final = 1167.2 cm3

hfinal = 10.368 cm

∆h = 0.368 cm
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PROBLEM 3.90

Situation: Concrete cylindrical shells are described in the problem statement.

Find: Height above water when erected.

ANALYSIS

The same relative volume will be unsubmerged whatever the orientation; therefore,

L

h

sV

usV

V−u.s.
V−s =

hA

LA
=

LAu.s.
LA

or h/L = Au.s./A

Also,

cos θ = 50/100 = 0.50

θ = 60◦ and 2θ = 120◦

So
Au.s. = (1/3)πR

2 −R cos 60◦R sin 60◦

Therefore

h/L = R2 [((1/3)π)− sin 60◦ cos 60◦)] /πR2 = 0.195
h = 7.80 m
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PROBLEM 3.91

Situation: A cylindrical tank is described in the problem statement.

Find: Change of water level in tank.

ANALYSIS

∆V−W γW = W block

∆V−W = 2 lbf/(62.4 lbf/ft3) = 0.03205 ft3

∴ ∆hAT = ∆V−W

∆h = ∆V−W /Aτ = 0.03205 ft3/((π/4)(12) ft2)

∆h = 0.0408 ft

Water in tank will rise 0.0408 ft.
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PROBLEM 3.92

Situation: A floating platform is described in the problem statement.

Find: Length of cylinder so that it floats 1 m above water surface.

ANALYSIS

X
Fy = 0

−30, 000− 4× 1, 000L+ 4× (π/4)× 12 × 10, 000(L− 1) = 0

L = 2.24 m
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PROBLEM 3.93

Situation: A floating block is described in the problem statement.

Find: Depth block will float.

Assumptions: The block will sink a distance y into the fluid with S = 1.2.

ANALYSIS

X
Fy = 0

−W + pA = 0

−(6L)2 × 3L× 0.8γwater + (L× γwater + y × 1.2γW )36L2 = 0

y = 1.167L

d = 2.167L
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PROBLEM 3.94

Situation: A cylindrical tank holds water. Water depth is 2 ft (before addition of
ice). Cylinder is 4 ft high and 2 ft in diameter. A 5 lbm chunk of ice is added to
the tank.

Find: (a) Change of water level in tank after ice is added, (b) change in water level
after the ice melts, (c) explain all processes.

ANALYSIS

Change in water level (due to addition of ice)

Wice = Fbuoyancy

= ∆V—WγW

So

∆V—W =
Wice

γW
=

5 lbf

62.4 lbf/ ft3

= 0.0801 ft3

Rise of water in tank (due to addition of ice)

∆h =
∆V—W
Acyl

=
0.0801 ft3

(π/4)(2 ft)2
= 0.02550 ft = 0.3060 in

∆h = 0.306 in <== (due to addition of ice)

Answer ⇒ When the ice melts, the melted water will occupy the same volume of
water that the ice originally displaced; therefore, there will be no change in water
surface level in the tank after the ice melts.
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PROBLEM 3.95

Situation: A partially submerged wood pole is described in the problem statement.

Find: Density of wood.

ANALYSIS

MA = 0

−Wwood × (0.5L cos 30◦) + FB. × (5/6)L cos 30◦ = 0

−γwood ×AL× (0.5L cos 30◦) + ((1/3)ALγH2O)× (5/6)L cos 30◦ = 0

γwood = (10/18)γH2O
γwood = 5, 450 N/m

3

ρwood = 556 kg/m
3
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PROBLEM 3.96

Situation: A partially submerged wood pole is described in the problem statement.

Find: If pole will rise or fall.

ANALYSIS

Sum moments about A to see if pole will rise or fall. The forces producing moments
about A will be the weight of the pole and the buoyant force.

W

FB

X
MA = −(1/2)(L cosα)(LγpA) + (3/4)(L cosα)(L/2)γliqA

= L2A cosα[−(1/2)γp + (3/8)γliq]
= K(−80 + 75)

A negative moment acts on the pole; therefore, it will fall.
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PROBLEM 3.97

Situation: A floating ship is described in the problem statement.

Find: How much the ship will rise or settle.

ANALYSIS

Draft = (38, 000× 2, 000)/40, 000γ
=

1900

γ
ft

Since γ of salt water is greater than γ of fresh water, the ship will take a greater draft
in fresh water.

(1900/62.4)− (1900/64.1) = 0.808 ft
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PROBLEM 3.98

Situation: A submerged spherical buoy is described in the problem statement.

Find: Weight of scrap iron to be sealed in the buoy.

ANALYSIS

X
FV = 0;FB − Fs − Fw − Fc = 0

Fs = FB − Fw − Fc

= (4/3)π(0.6)3 × 10, 070− 1600− 4, 500
Fs = 3010 N of scrap
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PROBLEM 3.99

Situation: A balloon used to carry instruments is described in the problem statement.

Find: Diameter of spherical balloon.

Assumptions: Standard atmospheric temperature condition.

APPROACH

Apply buoyancy force and the ideal gas law.

ANALYSIS

W

F
B

WI

Ideal gas law

T = 533− 3.221× 10−3 × 15, 000 = 485R
ρair = (8.3× 144)/(1, 715× 485)

= 0.001437 slugs/ft3

ρHe = (8.3× 144)/(12, 429× 485)
= 0.000198 slugs/ft3

EquilibriumX
F = 0

= FL − Fb − Fi

= (1/6)πD3g(ρair − ρHe)− πD2(0.01)− 10
= D3 × 16.88(14.37− 1.98)10−4 −D2 × 3.14× 10−2 − 10

D = 8.35 ft

172



PROBLEM 3.100

Situation: A buoy is described in the problem statement.

Find: Location of water level.

ANALYSIS

The buoyant force is equal to the weight.

FB =W

The weight of the buoy is 9.81× 460 = 4512 N.
The volume of the hemisphere at the bottom of the buoy is

V =
1

2

π

6
D3 =

π

12
13 =

π

12
m3

The buoyant force due to the hemisphere is

FB =
π

12
(9.81)(1010) = 2594 N

Since this is less than the buoy weight, the water line must lie above the hemisphere.
Let h is the distance from the top of the buoy. The volume of the cone which lies
between the top of the hemisphere and the water line is

V =
π

3
r2oho −

π

3
r2h =

π

3
(0.52 × 0.866− h3 tan2 30)

= 0.2267− 0.349h3

The additional volume needed to support the weight is

V =
4512− 2594
9.81× 1010 = 0.1936 m

3

Equating the two volumes and solving for h gives

h3 =
0.0331

0.349
= 0.0948 m3

h = 0.456 m
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PROBLEM 3.101

Situation: A hydrometer is described in the problem statement.

Find: Weight of hydrometer.

ANALYSIS

Fbuoy. = W .

V− γW = W

(1 cm3 + (5.3 cm)(0.01 cm2))(0.13) m3/cm3(γW ) = W .

(1.53 cm3)(10−6 m3/cm3)(9810 N/m3) = W .

W = 1.50× 10−2 N
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PROBLEM 3.102

Situation: A hydrometer is described in the problem statement.

Find: Specific gravity of oil.

ANALYSIS

Fbuoy. = W

(1 cm3 + (6.3 cm)(0.1 cm2))(0.013) m3/cm3γoil = 0.015 N

(1 + 0.63)× 10−6 m3γoil = 0.015 N

γoil = 9202 N/m3

S = γoil/γW
= 9202/9810

S = 0.938
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PROBLEM 3.103

Situation: A hydrometer is described in the problem statement.

Find: Weight of each ball.

ANALYSIS

Equilibrium (for a ball to just float, the buoyant force equals the weight)

FB =W (1)

Buoyancy force

FB =

µ
πD3

6

¶
γfluid (2)

Combine Eq. (1) and (2) and let D = 0.01m.

W =

µ
πD3

6

¶
Sγwater

=

Ã
π (0.01)3

6

!
S (9810)

= 5.136× 10−3S (3)

The following table (from Eq. 3) shows the weights of the balls needed for the required
specific gravity intervals.

ball number 1 2 3 4 5 6
sp. gr. 1.01 1.02 1.03 1.04 1.05 1.06

weight (mN) 5.19 5.24 5.29 5.34 5.38 5.44
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PROBLEM 3.104

Situation: A hydrometer is described in the problem statement.

Find: Range of specific gravities.

ANALYSIS

When only the bulb is submerged;

FB = W .

(π/4)
£
0.022 × 0.08¤× 9810× S = 0.035× 9.81

S = 1.39

When the full stem is submerged;

(π/4)
£
(0.02)2 × (0.08) + (0.01)2 × (0.08)¤ 9, 810× S

= 0.035× 9.81
S = 1.114

Range 1.114 to 1.39
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PROBLEM 3.105

Situation: A hydrometer is described in the problem statement.

Find: Design a hydrometer to measure the specific weight of liquids.

Assumptions: The hydrometer will consist of a stem mounted on a spherical ball as
shown in the diagram. Assume also for purposes of design than the diameter of the
stem is 0.5 in and the maximum change in depth is 2 in.

ANALYSIS

½ in

2 in

Since the weight of the hydrometer is constant, the volumes corresponding to the
limiting fluid specific weights can be calculated from

W = γ60V−60 = γ70V−70
or

V−70
V−60 =

60

70
= 0.857

The change in volume can be written as

V−60 −V−70 = V−60 (1− V−70
V−60 ) = 0.143V−60

The change in volume is related to the displacement of the fluid on the stem by

A∆h

V−60 = 0.143

For the parameters given above the volume of the hydrometer when immersed in
the 60 lbf/ft3 liquid is 2.74 in3. Assume there is one inch of stem between the lower
marking and the top of the spherical ball so the volume of the spherical ball would be
2.55 in3 which corresponds to a ball diameter of 1.7 in. The weight of the hydrometer
would have to be

W = γ60V−60 = 0.0347 lbf/in3 × 2.74 in3 = 0.095 lbf

If one could read the displacement on the stem to within 1/10 in, the error would in
the reading would be 5%.
Other designs are possible. If one used a longer stem displacement, a larger volume
hydrometer would be needed but it would give better accuracy. The design will
depend on other constraints like the volume of fluid and space available.
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PROBLEM 3.106

Situation: A barge is described in the problem statement.

Find: Stability of barge.

ANALYSIS

Draft = 400, 000/(50× 20× 62.4)
= 6.41 ft < 8 ft

GM = I00/V−−CG
=

£
(50× 203/12)/(6.41× 50× 20)¤− (8− 3.205)

= 0.40 ft

Will float stable
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PROBLEM 3.107

Situation: A floating body is described in the problem statement.

Find: Location of water line for stability and specific gravity of material.

ANALYSIS

For neutral stability, the distance to the metacenter is zero. In other words

GM =
Ioo
V− −GC = 0

where GC is the distance from the center of gravity to the center of buoyancy.

Moment of inertia at the waterline

Ioo =
w3L

12

where L is the length of the body. The volume of liquid displaced is hwL so

GC =
w3L

12hwL
=

w2

12h

The value for GC is the distance from the center of buoyancy to the center of gravity,
or

GC =
w

2
− h

2

So
w

2
− h

2
=

w2

12h
or µ

h

w

¶2
− h

w
+
1

6
= 0

Solving for h/w gives 0.789 and 0.211. The first root gives a physically unreasonable
solution. Therefore

h

w
= 0.211

The weight of the body is equal to the weight of water displaced.

γbVb = γfV

Therefore

S =
γb
γf
=

whL

w2L
=

h

w
= 0.211

The the specific gravity is smaller than this value, the body will be unstable (floats
too high).
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PROBLEM 3.108

Situation: A block of wood is described in the problem statement.

Find: Stability.

ANALYSIS

draft = 1× 7500/9, 810 = 0.7645 m
cfrom bottom = 0.7645/2 = 0.3823m

Metacentric height

G = 0.500 m; CG = 0.500− 0.3823 = 0.1177 m
GM = (I/V−)−CG

= ((πR4/4)/(0.7645× πR2))− 0.1177
= 0.0818 m− 0.1177 m (negative)

Thus, block is unstable with axis vertical.
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PROBLEM 3.109

Situation: A block of wood is described in the problem statement.

Find: Stability.

ANALYSIS

draft = 5,000/9,810

= 0.5097 m

Metacentric height

GM = I00/V−−CG
=

£
(π × 0.54/4)/(0.5097× π × 0.52)¤− (0.5− 0.5097/2)

= −0.122 m, negative

So will not float stable with its ends horizontal.
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PROBLEM 3.110

Situation: A floating block is described in the problem statement.

Find: Stability.

ANALYSIS

Analyze longitudinal axis

GM = I00/V−−CG
= (3H(2H)3/(12×H × 2H × 3H))−H/2

= −H/6

Not stable about longitudinal axis.

Analyze transverse axis.

GM = (2H × (3H)3/(12×H × 2H × 3H))− 3H/4

= 0

Neutrally stable about transverse axis.
Not stable
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PROBLEM 4.1

Situation: The valve in a system is gradually opened to have a constant rate of
increase in discharge.

Find: Describe the flow at points A and B.

ANALYSIS

B: Non-uniform, unsteady.

A: Unsteady, uniform.
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PROBLEM 4.2

Situation: Water flows in a passage with flow rate decreasing with time.

Find: Describe the flow.

ANALYSIS

(b) Unsteady and (d) non-uniform.

(a) Local and (b) convective acceleration.
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PROBLEM 4.3

Situation: A flow pattern has converging streamlines.

Find: Classify the flow.

ANALYSIS

Non-uniform; steady or unsteady.
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PROBLEM 4.4

Situation: A fluid flows in a straight conduit. The conduit has a section with constant
diameter, followed by a section with changing diameter.

Find: Match the given flow labels with the mathematical descriptions.

ANALYSIS

Steady flow corresponds to ∂Vs/∂t = 0
Unsteady flow corresponds to ∂Vs/∂t 6= 0
Uniform flow corresponds to Vs∂Vs/∂s = 0
Non-uniform flow corresponds to Vs∂Vs/∂s 6= 0
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PROBLEM 4.5

Situation: Pathlines are shown in figure. Discharge is constant and flow is nonturbu-
lent.

Find: Describe the flow.

ANALYSIS

True statements: (a), (c).
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PROBLEM 4.6

Situation: Dye is injected into a flow field. The streakline is shown.

Find: Draw a pathline of the particle.

ANALYSIS

The streakline shows that the velocity field was originally in the horizontal direction
to the right and then the flow field changed upward to the left. The pathline starts
off to the right and then continues upward to the left.
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PROBLEM 4.7

Situation: A hypothetical flow has the following characteristics:
For 0 ≤ t ≤ 5 seconds, u = 2 m/s, v = 0
For 5 < t ≤ 10 seconds, u = 3 m/s, v = −4 m/s

At time zero a dye streak was started, and a particle was released.

Find: For t = 10 s, draw to scale the streakline, pathline of the particle, and stream-
lines.

ANALYSIS

From 0<t<5, the dye in the streakline moved to the right for a distance of 10 m. At
the same time a particle is released from the origin and travels 10 m to the right.
Then from 5<t<10, the original line of dye is transported in whole downward to the
right while more dye is released from the origin. The pathline of the particle proceeds
from its location at t=5 sec downward to the right.
At 10 sec, the streamlines are downward to the right.
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PROBLEM 4.8

Situation: A dye streak is produced in a flow that has a constant speed. The origin
of the streak is point A, and the streak was produced during a 10 s interval.

Find: (a) Sketch a streamline at t = 8 s.
(b) Sketch a particle pathline at t = 10 s (for a particle that was released from point
A at time t = 2 s).

ANALYSIS

At 8 seconds (near 10 sec) the streamlines of the flow are horizontal to the right.

Streamlines at t = 8 s

Initially the flow is downward to the right and then switches to the horizontal direction
to the right. Thus one has the following pathline.

Particle pathline for a particle released at t = 2 s
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PROBLEM 4.9

Situation: A periodic flow field is described in which streamline pattern changes every
second and repeats every two seconds.

Find: Sketch a streakline at t = 2.5 s.

ANALYSIS

From time t = 0 to t = 1 s dye is emitted from point A and will produce a streak
that is 10 meters long (up and to the right of A). See Fig. A below. In the next
second the first streak will be transported down and to the right 10 meters and a new
streak, 10 ft. long, will be generated down and to the right of point A (see Fig. B
below). In the next 0.5 s streaks in Fig. B will move up and to the right a distance
of 5 meters and a new streak 5 meters in length will be generated as shown in Fig.
C.
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PROBLEM 4.10

Situation: The figure below shows a pathline and a particle line for a flow. The
fluid particle was released from point A at t = 0 s. The streakline was produced by
releasing dye from point A from t = 0 to 5 s.

Find: (a)Sketch a streamline for t = 0 s.
(b) Describe the flow as steady or unsteady.

ANALYSIS

In the above sketch, the dye released at t = 0 s is now at point B. Therefore, a
streamline corresponding to t = 0 s should be tangent to the streakline at point B.
We can reach the same conclusion by using the pathline.

In the above sketch, the path of a fluid particle at t = 0 s is shown by the dotted line
at point A. There, a streamline corresponding to t = 0 s should be tangent to the
pathline at point A. Thus, streamlines at t = 0 appear as shown below:

The flow is unsteady because the streakline, streamlines and pathlines differ.
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PROBLEM 4.11

Situation: A velocity field is defined by u = 5 m/s and v = −2t m/s, where t is time.
Find: (a) Sketch a streakline for t = 0 to 5 s.
(b) Sketch a pathline for a particle for t = 0 to 5 s. The particle is released from the
same point as the dye source.
(c) Sketch streamlines at t = 5 s.

ANALYSIS

Particle pathline.
Since u = dx/dt, we may write dx = udt. This can be integrated to give the x-position
of a particle at any time t:

x = xo +

Z
udt = xo +

Z
5dt

x = xo + 5t

Similarly,

y = yo +

Z
vdt = 0 +

Z
−2tdt

y = yo − t2

Letting xo = yo = 0,we can construct a table of coordinates

t (s) x (m) y(m)
0 0 0
1 5 -1
2 10 -4
3 15 -9
4 20 -16
5 25 -25

The (x, y) data from this table are plotted in the figure below
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Streakline.

To construct the streakline, solve for the displacement of dye particles. The dye
particle released at time t = 1 s will reach a position given by

x = xo +

Z 5

1

udt

= 0 +

Z 5

1

5dt = 21

y = yo +

Z 5

1

vdt

= 0 +

Z 5

1

−2tdt = 0− t2|51 = −24

The dye particle released at time t = 2 s will reach a position given by

x = 0 +

Z 5

2

5dt = 15

y = 0 +

Z 5

2

−2tdt = −21

Performing similar calculations for each time yields the coordinates of the streakline.
These results are plotted in the above figure.
Streamlines (at t = 5 s)

Dye released at t = 5 s is at point A in the sketch above. Therefore,a streamline
corresponding to t = 5 s should be tangent to the streakline at point A. We can reach
the same conclusion by using the pathline. The path of a fluid particle at t = 5 s is
at point B. There, a streamline corresponding to t = 0 s should be tangent to the
pathline at point B. The streamlines are shown below

Animation An animation of the solution can be found at
http://www.justask4u.com/csp/crowe.
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PROBLEM 4.12

Situation: Fluid flows along a circular path. It first moves in the clockwise direction
at π rad/s for 1 second and then reverses direction with the same rate.

Find: (a) Draw a pathline at time t = 2 s.
(b) Draw a streakline at time t = 2 s.

ANALYSIS

Pathline

For the first second the particle will follow the circular streamline (clockwise) through
an angle of π radians (1/2 circle). Then for the 2nd second the particle reverses its
original path and finally ends up at the starting point. Thus, the pathline will be
shown:

Streakline

For the first second a stream of dye will be emitted from staring point and the streak
from this dye will be generated clockwise along the streamline until the entire top half
circle will have a steak of dye at the end of 1 second. When the flow reverses a new
dye streak will be generated on the bottom half of the circle and it will be superposed
on top of the streak that was generated in the first second. The streakline is shown
for t=1/2 sec., 1 sec. & 2 sec.

Animation An animation of the solution can be found at
http://www.justask4u.com/csp/crowe.
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PROBLEM 4.13

Situation: Fluid flows in a three-dimensional flow field. The fluid moves in each of
coordinate directions at 1 m/s for one second.

Find: (a) Sketch a pathline on a three dimensional coordinate at time t = 3 s.
(b) Sketch a streakline at time t = 2 s.

ANALYSIS

The final pathline and streakline are shown below.

x x

y y

z z
Pathline Streakline
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PROBLEM 4.14

Situation: A droplet moves from location A to B in a uniform flow field leaving a
trail of vapor.

Find: Sketch the location of the vapor trail.

ANALYSIS

The vapor will produce a vapor trail as shown.

A

Vapor is transport from the droplet in the flow direction as the droplet proceeds
upward to the right.
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PROBLEM 4.15

Situation: Fluid flows in a two dimensional flow field with u = 20t2 and v = 30t1/2.
The period of time is 0 ≤ t ≤ 1. The pathline and streakline begin at the origin.
Find: Write a computer program to give the coordinates of (a) streakline and (b)
pathline.

ANALYSIS

The computed streaklines and pathline are shown below.

x-coordinate

0 2 4 6 8

y 
co

or
di

na
te

0

5

10

15

20

25

Pathline

Streakline

In FORTRAN:
Dimension statements
Initial values
do 10 i=1,N
t=t+dt
u=20*t**2
v=30*sqrt(t)
xp(i+1)=xp(i)+u*dt
yp(i+1)=yp(i)+v*dt
do 20 j=i,1,-1
xs(j+1)=xs(j)+u*dt
ys(j+1)=ys(j)+v*dt

20 continue
10 continue
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PROBLEM 4.16

Situation: A series of flows are described in the problem statement.

Find: Classify the flows as one dimensional, two dimensional, or three dimensional.

ANALYSIS

a. Two dimensional e. Three dimensional
b. One dimensional f. Three dimensional
c. One dimensional g. Two dimensional
d. Two dimensional
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PROBLEM 4.17

Situation: Flow past a circular cylinder with constant approach velocity.

Find: Describe the flow as:
(a) Steady or unsteady.
(b) One dimensional, two dimensional, or three dimensional.
(c) Locally accelerating or not, and is so, where.
(d) Convectively accelerating or not, and if so, where.

ANALYSIS

(a) Steady.
(b) Two-dimensional.
(c) No.
(d) Yes, convective acceleration is present at all locations where the streamlines
curve. Also, convective acceleration is present at each where a fluid particles changes
speed as it moves along the streamline.
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PROBLEM 4.18

Situation: A flow with this velocity field: u = xt+ 2y, v = xt2 − yt, w = 0.

Find: Acceleration, a, at location (1,2) and time t = 3 seconds.

ANALYSIS

Acceleration in the x-direction

ax = u∂u/∂x+ v∂u/∂y + w∂u/∂z + ∂u/∂t

= (xt+ 2y)(t) + (xt2 − yt)(2) + 0 + x

At x = 1 m, y = 2 m and t = 3 s

ax = (3 + 4)(3) + (9− 6)(2) + 1 = 21 + 6 + 1 = 28 m/s2

Acceleration in the y-direction

ay = u∂v/∂x+ v∂v/∂y + w∂v/∂z + ∂v/∂t

= (xt+ 2y)(t2) + (xt2 − yt)(−t) + 0 + (2xt− y)

At x = 1 m, y = 2 m and t = 3 s

ay = (3 + 4)(9) + (9− 6)(−3) + (6− 2) = 63− 9 + 4 = 58 m/s2

a = 28 i+ 58 j m/s2
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PROBLEM 4.19

Situation: Air is flowing around a sphere. The x-component of velocity along the
dividing streamline is given by u = −Uo(1− r3o/x

3).

Find: An expression for the x-component of acceleration (the form of the answer
should be ax = ax (x, ro, Uo)).

ANALYSIS

ax = u∂u/∂x+ ∂u/∂t

= −U0(1− r30/x
3)∂/∂x(−U0(1− r30/x

3)) + ∂/∂t(−U0(1− r30/x
3))

= U2
0 (1− r30/x

3)(−3r30/x4) + 0
ax = −(3U2

0 r
3
0 /x

4)(1− r30 / x
3)
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PROBLEM 4.20

Situation: A velocity field at r = 10 m where Vθ = 10t.

Find: Magnitude of acceleration at r = 10 m and t = 1 s.

ANALYSIS

Vθ = 10t

atang. = Vθ∂Vθ/∂s+ ∂Vθ/∂t

atang. = 0 + 10 m/s2

anormal = V 2
θ /r

= (10t)2/r = 100t2/10 = 10t2

at t = 1s

anormal = 10 m/s2

atotal =
q
a2tang. + a2normal =

√
200

atotal = 14.14 m/s2
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PROBLEM 4.21

Situation: Flow occurs in a tapered passage. The velocity is given as

V = Q/A

and
Q = Qo −Q1

t

to

The point of interest is section AA, where the diameter is 50 cm. The time of interest
is 0.5 s.

Find: (a) Velocity at section AA: V
(b) Local acceleration at section AA: ac
(c) Convective acceleration at section AA: ac

ANALYSIS

Q = Q0 −Q1t/t0 = 0.985− 0.5t (given)

V = Q/A (given)
∂V

∂s
= +2

m
s
per m (given)

The velocity is

V = Q/A

= (0.985− 0.5× 0.5)/(π/4× 0.52)
V = 3.743 m/s

Local acceleration

ac = ∂V/∂t = ∂/∂t(Q/A)

= ∂/∂t((0.985− 0.5t)/(π/4× 0.52))
= −0.5/(π/4× 0.52)

ac = −2.55 m/s2

Convective acceleration

ac = V ∂V/∂s

= 3.743× 2
ac = +7.49 m/s2
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PROBLEM 4.22

Situation: One-dimensional flow occurs in a nozzle. Velocity varies linearly from 1
ft/s at the base to 4 ft/s at the tip. The nozzle is 18 inches long.

Find: (a) Convective acceleration: ac
(b) Local acceleration: ac

ANALYSIS

Velocity gradient

dV/ds = (Vtip − Vbase)/L

= (4− 1)/1.5
= 2 s−1

Acceleration at mid-point

V = (1 + 4)/2

= 2.5 ft/s

ac = V
dV

ds
= 2.5× 2

ac=5 ft/s2

Local acceleration

ac = 0
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PROBLEM 4.23

Situation: One-dimensional flow occurs in a nozzle and the velocity varies linearly
with distance along the nozzle. The velocity at the base of the nozzle is 1t (ft/s) and
4t (ft/s) at the tip.

Find: Local acceleration midway in the nozzle: ac

ANALYSIS

ac = ∂V/∂t

V = (t+ 4t)/2

= 2.5t (ft/s)

Then

ac = ∂/∂t(2.5t)

ac=2.5 ft/s2
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PROBLEM 4.24

Situation: Flow in a two-dimensional slot with

V = 2
³qo
b

´µ t

to

¶
Find: An expression for local acceleration midway in nozzle: al

ANALYSIS

V = 2

µ
qo
b

¶µ
t

to

¶
but b = B/2

V =

µ
4qo
B

¶µ
t

to

¶
al = ∂V/∂t

al=4qo/(Bto)
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PROBLEM 4.25

Situation: Flow in a two-dimensional slot and velocity varies as

V = 2
³qo
b

´µ t

to

¶
Find: An expression for convective acceleration midway in nozzle: ac

ANALYSIS

ac = V ∂V/∂x

The width varies as
b = B − x/8

V = (q0/t0)2t(B − x/8)−1

∂V/∂x = (q0/t0)2t(1/8)(B − x/8)−2

ac = V ∂V/∂x = V (q0/t0)
24t2(1/8)/(B − (1/8)x)−3

At x = 2B

ac = (1/2)(q0/t0)
2t2/((3/4)B)3

ac = 32/27(q0/t0)
2t2/B3

209



PROBLEM 4.26

Situation: Water flow in a nozzle with

V = 2t/(1− 0.5x/l)2

Find: With L = 4 ft, and x = 0.5L and t = 3 s, find (a) the local acceleration and
(b) the convective acceleration

ANALYSIS

ac = ∂V/∂t

= ∂/∂t[2t/(1− 0.5x/L)2]
= 2/(1− 0.5x/L)2
= 2/(1− 0.5× 0.5L/L)2

ac = 3.56 ft/s2

ac = V (∂V/∂x)

= [2t/(1− 0.5x/L)2]∂/∂x[2t/(1− 0.5x/L)2]
= 4t2/((1− 0.5x/L)5L)
= 4(3)2/((1− 0.5× 0.5L/L)54)

ac = 37.9 ft/s2
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PROBLEM 4.27

Situation: Flow through an inclined pipe at 30o from horizontal and decelerating at
0.3g.

Find: Pressure gradient in flow direction.

APPROACH

Apply Euler’s equation.

ANALYSIS

l

30o

Euler’s equation

∂/∂c(p+ γz) = −ρac
∂p/∂c+ γ∂z/∂c = −ρac

∂p/∂c = −ρac − γ∂z/∂c

= −(γ/g)× (−0.30g)− γ sin 30◦

= γ(0.30− 0.50)
∂p/∂c = −0.20γ
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PROBLEM 4.28

Situation: Kerosene (S=0.80) is accelerated upward in vertical pipe at 0.2g.

Find: Pressure gradient required to accelerate flow.

APPROACH

Apply Euler’s equation.

ANALYSIS

Applying Euler’s equation in the z-direction

∂(p+ γz)/∂z = −ρaz = −(γ/g)× 0.20g
∂p/∂z + γ = −0.20γ

∂p/∂z = γ(−1− 0.20)
= 0.80× 62.4(−1.20)

∂p/∂z = −59.9 lbf/ft3
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PROBLEM 4.29

Situation: A hypothetical liquid with zero viscosity and specific weight of 10 kN/m3

flows through a vertical tube. Pressure difference is 12 kPa.

Find: Direction of acceleration.

APPROACH

Apply Euler’s equation.

ANALYSIS

Euler’s equation

ρac = −∂/∂c(p+ γz)

ac = (1/ρ)(−∂p/∂c− γ∂z/∂c)

Let c be positive upward. Then ∂z/∂c = +1 and ∂p/∂c = (pA − pB)/1 = −12, 000
Pa/m. Thus

ac = (g/γ)(12, 000− γ)

ac = g((12, 000/γ)− 1)
ac = g(1.2− 1.0) m/s2

ac has a positive value; therefore, acceleration is upward. Correct answer is a).
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PROBLEM 4.30

Situation: A piston and water accelerating upward at 0.5g.

Find: Pressure at depth of 2 ft. in water column.

APPROACH

Apply Euler’s equation.

ANALYSIS

Euler’s equation

ρac = −∂/∂c(p+ γz)

Let c be positive upward.

ρ(0.5 g) = −∂p/∂c− γ∂z/∂c

(γ/g)(0.5g) = −∂p/∂c− γ(1)

∂p/∂c = −γ(0.5 + 1) = −1.5γ

Thus the pressure decreases upward at a rate of 1.5γ. At a depth of 2 ft.:

p2 = (1.5γ)(2) = 3γ

= 3 ft.× 62.4 lbf/ft3
p2 = 187.2 psfg
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PROBLEM 4.31

Situation: Water stands with depth of 10 ft in a vertical pipe open at top and sup-
ported by piston at the bottom.

Find: Acceleration of piston to create a pressure of 9 psig immediately above piston.

APPROACH

Apply Euler’s equation.

ANALYSIS

Euler’s equation

∂/∂s(p+ γz) = −ρas
Take s as vertically upward with point 1 at piston surface and point 2 at water surface.

−∆(p+ γz) = ρas∆s

−(p2 − p1)− γ(z2 − z1) = ρas∆s

−(0− 9× 144)− 62.4× 10 = 1.94× 10as
as = (9× 144− 62.4× 10)/19.4

as = 34.6 ft/s2
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PROBLEM 4.32

Situation: Water accelerates at 6m/ s2 in a horizontal pipe.

Find: Pressure gradient.

APPROACH

Apply Euler’s equation.

ANALYSIS

Euler’s equation with no change in elevation

(∂p/∂s) = −ρas
= −1, 000× 6

∂p/∂s = −6, 000 N/m3
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PROBLEM 4.33

Situation: Water accelerated from rest in horizontal pipe, 100 m long and 30 cm in
diameter, at 6 m/s2. Pressure at downstream end is 90 kPa gage.

Find: Pressure at upstream end.

APPROACH

Apply Euler’s equation.

ANALYSIS

Euler’s equation with no change in elevation

(∂p/∂s) = −ρas
= −1, 000× 6
= −6, 000 N/m3

pdownstream − pupstream = (∂p/∂s)∆s

pupstream = 90, 000 + 6, 000× 100
= 690, 000 Pa, gage

pupstream = 690 kPa, gage
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PROBLEM 4.34

Situation: Water stands at depth of 10 ft in a vertical pipe closed at the bottom by
a piston.

Find: Maximum downward acceleration before vaporization assuming vapor pressure
is zero (abs).

APPROACH

Apply Euler’s equation.

ANALYSIS

Applying Euler’s equation in the z-direction with p = 0 at the piston surface

∂/∂z(p+ γz) = −ρaz
∆(p+ γz) = −ρaz∆z

(p+ γz)at water surface − (p+ γz)at piston = −ρaz(zsurface − zpiston)

patm − pv + γ(zsurface − zpiston) = −12 ρaz
14.7× 144− 0 + 62.4(10) = −10× 1.94az

az = −141.3 ft/s2
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PROBLEM 4.35

Situation: A liquid with zero viscosity and specific weight of 100 lbf/ft3 flows through
a conduit. Pressure are given at two points.

Find: Which statements can be discerned with certainty.

APPROACH

Apply Euler’s equation.

ANALYSIS

Euler’s equation

−∂/∂c(p+ γz) = ρac
−∂p/∂c− γ∂z/∂c = ρac

where ∂p/∂c = (pB − pA)/c = (100− 170)/2 = −35 lb/ft3 and ∂z/∂c = sin 30◦ = 0.5.
Then

ac = (1/ρ)(35− (100)(0.5))
= (1/ρ)(−15 ) lbf/ft3

• Because ac has a negative value we conclude that Answer ⇒ (d) the accelera-
tion is in the negative c direction .

• Answer ⇒ The flow direction cannot be established; so answer (d) is the only
answer that can be discerned with certainty.
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PROBLEM 4.36

Situation: Velocity varies linearly with distance in water nozzle.

Find: Pressure gradient midway in the nozzle.

APPROACH

Apply Euler’s equation.

ANALYSIS

Euler’s equation
d/dx(p+ γz) = −ρax

but z =const.; therefore

dp/dx = −ρax
ax = aconvective = V dV/dx

dV/dx = (80− 30)/1 = 50 s−1
Vmid = (80 + 30)/2 = 55 ft/s

= (55 ft/s)(50 ft/s/ft) = 2, 750 ft/s2

Finally

dp/dx = (−1.94 slug/ft3)(2, 750 ft/s2)
dp/dx = −5, 335 psf/ft

220



PROBLEM 4.37

Situation: Tank accelerated in x-direction to maintain liquid surface slope at -5/3.

Find: Acceleration of tank.

APPROACH

Apply Euler’s equation.

ANALYSIS

Euler’s equation. The slope of a free surface in an accelerated tank.

tanα = ax/g

ax = g tanα

= 9.81× 3/5
ax = 5.89 m/s2
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PROBLEM 4.38

Situation: Closed tank full of liquid accelerated downward at 1.5g and to the right at
0.9g. Specific gravity of liquid is 1.1. Tank dimensions given in problem statement.

Find: (a) pC − pA.
(b) pB − pA.

APPROACH

Apply Euler’s equation.

ANALYSIS

Euler’s equation Take c in the z-direction.

−dp
dc
− γ

dc

dc
= ρal

(dp/dc) = −ρ(g + ac)

= −1.1× 1.94(32.2− 1.5× 32.2)
= 34.4 psf/ft

pB − pA = −34.4× 4
pB − pA = −137.6 psf

Take c in the x-direction. Euler’s equation becomes

−dp
dx

= ρax

pC − pB = ρaxL

= 1.1× 1.94× 0.9g × 3
= 185.5 psf

pC − pA = pC − pB + (pB − pA)

pC − pA = 185.5− 137.6
pC − pA = 47.9 lbf/ft2
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PROBLEM 4.39

Situation: Closed tank full of liquid accelerated downward at 2/3g and to the right at
one g. Specific gravity of liquid is 1.3. Tank dimensions given in problem statement

Find: (a) pC − pA.
(b) pB − pA.

APPROACH

Apply Euler’s equation.

ANALYSIS

Euler’s equation in z direction

dp/dz + γ = −ρaz
dp/dz = −ρ(g + az)

dp/dz = −1.3× 1, 000(9.81− 6.54)
= −4, 251 N/m3

pB − pA = 4, 251× 3
= 12, 753 Pa

pB − pA = 12.753 kPa

Euler’s equation in x-direction

−dp
dx

= ρax

pC − pB = ρaxL

= 1.3× 1, 000× 9.81× 2.5
= 31, 882 Pa

pC − pA = pC − pB + (pB − pA)

pC − pA = 31, 882 + 12, 753

= 44, 635 Pa

pC − pA = 44.63 kPa
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PROBLEM 4.40

Situation: Truck carrying tank with open top will not accelerate or decelerate more
than 8.02 ft/s2. Tank dimensions given in problem statement.

Find: Maximum depth before spilling.

APPROACH

Apply Euler’s equation.

ANALYSIS

Euler’s equation applied to slope of an accelerated free surface.

tanα = ax/g = 8.02/32.2 = 0.2491

tanα = h/9

h = 9 tanα = 9× 0.2491 = 2.242 ft
dmax = 7− 2.242

dmax = 4.758 ft
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PROBLEM 4.41

Situation: Truck carries cylindrical tank (axis vertical) and will not accelerate or
decelerate more than 1/3g. Truck also goes around unbanked curve with radius of 50
m.

Find: Maximum depth that tank can be filled before spilling and maximum speed on
curve.

APPROACH

Apply Euler’s equation on straight section and on the unbanked curve.

ANALYSIS

d

D

D

α

Euler’s equation On straight section, the slope of a free surface is

tanα = ax/g

= (1/3)g/g

= 1/3

tanα = 1/3 = (D − d)/(0.5D)

thus d = D − (1/6)D = (5/6)D

Tank can be 5/6 full without spilling

On unbanked curve

tanα = 1/3

Then 1/3 = an/g

an = (1/3)g

V 2/r = (1/3)g

or V =
p
(1/3)gr

V = 12.8 m/s
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PROBLEM 4.42

Situation: An accelerating tank is described in the problem statement.

Find: Explain the conditions shown.

ANALYSIS

The correct choice is (b). The tank is placed on a vehicle with constant speed
moving about a circular track.
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PROBLEM 4.43

Situation: Rectangular tank with opening at top corner carries oil (S=0.83) and
accelerates uniformly at 19.62 m/s2.Depth of oil at rest is 2 m. Tank dimensions
given in problem.

Find: Maximum pressure in tank during acceleration.

ANALYSIS

Euler’s equation The configuration for the liquid in the tank is shown in the diagram.

3 m

4 m

2 m

x

x+ 1.5x

The liquid surface intersects the bottom at a distance x from the right side. The
distance in the x direction between the contact surface at the bottom and the top is
3/ tanα = 1.5

tan θ = as/g = 2

area of air space = 4× 1
4 = 3× (x+ 1.5 + x)/2

x = 0.583 m

The maximum pressure is at the bottom, left corner and is equal to

pmax/γ = (4− 0.583)
= 0.83× 1000× 19.62× 3.417

pmax = 55.6 kPa
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PROBLEM 4.44

Situation: A water jet is described in the problem statement.

Find: Height h jet will rise.

APPROACH

Apply the Bernoulli equation from the nozzle to the top of the jet. Let point 1 be
in the jet at the nozzle and point 2 at the top.

ANALYSIS

Bernoulli equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2

where p1 = p2 = 0 gage

V1 = 20 ft/s

V2 = 0

0 + (20)2/2g + z1 = 0 + 0 + z2

z2 − z1 = h = 400/64.4

h = 6.21 ft
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PROBLEM 4.45

Situation: A pitot tube measuring airspeed on an airplane at 10,000 ft where the
temperature is 23oF and the pressure is 10 psia. The pressure difference is 10 inches
of water.

Find: Airspeed.

APPROACH

Apply the Pitot tube equation.

ANALYSIS

Pitot tube equation

V =
p
2∆pz/ρ

∆pz = γH2OhH2O

= 62.4× (10/12)
= 52 psf

Ideal gas law

ρ = p/(RT )

= (10)(144)/((1, 716)(483))

= 0.00174 slugs/ft3

V =

q
2× 52 lbf/ft2/(0.00174 slugs/ft3)

V = 244 ft/s
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PROBLEM 4.46

Situation: A stagnation tube in a tank is rotated in a tank 10 cm below liquid surface.
Arm is 20 cm long and specific weight of fluid is 10,000 N/m3.

Find: Location of liquid surface in central tube.

APPROACH

Pressure variation equation for rotating flow from pt. 1 to pt. 2 where pt. 1 is at
liquid surface in vertical part of tube and pt. 2 is just inside the open end of the pitot
tube.

ANALYSIS

10 cm

1

Elevation view Plan view

0

2

Pressure variation equation- rotating flow

p1/γ − V 2
1 /2g + z1 = p2/γ − V 2

2 /2g + z2

0− 0 + (0.10 + c) = p2/γ − r2ω2/2g − 0 (1)

where z1 = z2. If we reference the velocity of the liquid to the tip of the pitot tube
then we have steady flow and Bernoulli’s equation will apply from pt. 0 (point ahead
of the pitot tube) to point 2 (point at tip of pitot tube).

p0/γ + V 2
0 /2g + z0 = p2/γ + V 2

2 /2g + z2

0.1γ/γ + r2ω2/2g = p2/γ + 0 (2)

Solve Eqs. (1) & (2) for c
c = 0 liquid surface in the tube is the same as the elevation as outside liquid surface.
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PROBLEM 4.47

Situation: A glass tube with 90o bend inserted into a stream of water. Water in tube
rises 10 inches above water surface.

Find: Velocity.

APPROACH

Apply the Bernoulli equation.

ANALYSIS

Hydrostatic equation (between stagnation point and water surface in tube)

ps
γ
= h+ d

where d is depth below surface and h is distance above water surface.

Bernoulli equation (between freestream and stagnation point)

ps
γ

= d+
V 2

2g

h+ d = d+
V 2

2g

V 2

2g
= h

V = (2× 32.2× 10/12)1/2
V = 7.33 fps
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PROBLEM 4.48

Situation: A glass tube in a 3 m/s stream of water.

Find: Rise in vertical leg relative to water surface.

APPROACH

Apply the Bernoulli equation.

ANALYSIS

Apply hydrostatic equation between stagnation point and water surface in tube

ps
γ
= h+ d

From application of the Bernoulli equation

ps
γ

= d+
V 2

2g

h+ d = d+
V 2

2g

h =
V 2

2g

= 32/(2× 9.81)
= 0.459 m

h = 45.9 cm
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PROBLEM 4.49

Situation: A Bourdon tube gage attached to plate in 40 ft/s air stream.

Find: Pressure read by gage.

ANALYSIS

Because it is a Bourdon tube gage, the difference in pressure that is sensed will be
between the stagnation point and the separation zone downstream of the plate.
Therefore

∆Cp = 1− (Cp,back of plate)

∆Cp = 1− (neg. number)
∴ ∆p/(ρV 2

0 /2) = 1 + positive number

∆p = (ρV 2
0 /2)(1 + positive number)

Case (c) is the correct choice.
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PROBLEM 4.50

Situation: An air-water manometer is connected to a Pitot tube to measure air ve-
locity. Manometer deflects 2 in. The air is at 60oF and 15 psia.

Find: Velocity.

APPROACH

Apply the Pitot tube equation calculate velocity. Apply the ideal gas law to solve
for density.

ANALYSIS

Ideal gas law

ρ = p/RT

= 15× 144/(1, 715)(60 + 460)
= 0.00242 slugs/ft

Pitot tube equation
V = (2∆pz/ρ)

1/2

From the manometer equation

∆pz = γw∆h(1− γa/γw)

but γa/γw ¿ 1 so

V = (2γw∆h/ρ)1/2

= (2× 62.4× (2.0/12)/0.00242)1/2
V = 92.7 fps
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PROBLEM 4.51

Situation: A flow-metering device is described in the problem. Air has density of 1.2
kg/m3 and a 10 cm deflection of water measured on manometer.

Find: Velocity at station 2.

APPROACH

Apply the Bernoulli equation and the manometer equation.

ANALYSIS

Bernoulli equation
p1/γ + V 2

1 /2g = p2/γ + V 2
2 /2g = pt/γ

Manometer equation

p1 + 0.1× 9810−
neglectz }| {

0.1× 1.2× 9.81 = pt

pt − p1 = 981 N/m2 = ρV 2
1 /2

V 2
1 = 2× 981/1.2
V1 = 40.4 m/s

V2 = 2V1

V2=80.8 m/s

235



PROBLEM 4.52

Situation: A spherical Pitot tube is used to measure the flow velocity in water. The
velocity at the static pressure tap is 1.5Vo. The piezometric pressure difference is 3
kPa.

Find: Free stream velocity: Vo

APPROACH

Apply the Bernoulli equation between the two points. Let point 1 be the stagnation
point and point 2 at 90◦ around the sphere.

ANALYSIS

Bernoulli equation

pz1 + ρV 2
1 /2 = pz2 + ρV 2

2 /2

pz1 + 0 = pz2 + ρ(1.5V0)
2/2

pz1 − pz2 = 1.125ρV 2
0

V 2
0 = 3, 000/(1.125× 1, 000) = 2.67 m2/s2

V0 = 1.63 m/s
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PROBLEM 4.53

Situation: A device for measuring the water velocity in a pipe consists of a cylinder
with pressure taps at forward stagnation point and at the back on the cylinder in the
wake. A pressure difference of 500 Pa is measured.

Find: Water velocity: Vo

APPROACH

Apply the Bernoulli equation between the location of the two pressure taps. Let point
1 be the forward stagnation point and point 2 in the wake of the cylinder.

ANALYSIS

The piezometric pressure at the forward pressure tap (stagnation point, Cp = 1) is

pz1 = pz0 + ρ
V 2

2

At the rearward pressure tap
pz2 − pz0

ρ
V 20
2

= −0.3

or

pz2 = pz0 − 0.3ρV
2
0

2

The pressure difference is

pz1 − pz2 = 1.3ρ
V 2
0

2

The pressure gage records the difference in piezometric pressure so

V0 = (
2

1.3ρ
∆p)1/2

= (
2

1.3× 1000 × 500)
1/2

= 0.88 m/s
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PROBLEM 4.54

Situation: The design of a spherical Pitot tube measuring the flow velocity. Velocity
varies as V = Vo sin θ.

Find: (a) Angle θ for pressure tap.
(b) Equation for free-stream velocity.
(c) Effect of offset angle β.

APPROACH

(a) Apply the Bernoulli equation between the free stream and the location of the
pressure tap gives.
(b) Apply the Bernoulli equation between the stagnation point, tap A, and pressure
tap B.
(c) Let the pressure tap on the axis of the probe be tap A and the other one tap B.

ANALYSIS

(a) Bernoulli equation

po +
1

2
ρV 2

o = p+
1

2
1.52V 2

o sin
2 θ

But at the pressure tap location p = po so

2.25 sin2 θ = 1

Solving for θ gives

θ = 41.8o

(b) Bernoulli equation

pA = pB +
1

2
1.52ρV 2

o sin
2 θ = pB +

1

2
1.52ρV 2

o

1

2.25
or

Vo =
q

2(pA−pB)
ρ

(c) The pressure at tap A would be

pA = po − 1
2
ρV 2

o 1.5
2 sin2 β = po − 1.125ρV 2

o sin
2 β

The pressure at tap B would be

pB = po − 1.125ρV 2
o sin

2(β + 41.8o)

The pressure difference would be

pA − pB = 1.125ρV
2
o

£
sin2(β + 41.8o)− sin2 β¤
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Solving for the velocity gives

Vo =

s
pA − pB

1.125ρ
£
sin2(β + 41.8o)− sin2 β¤

which will designated at the “true” velocity, VT . The “indicated” velocity, VI , is the
one calculated assuming that tap A is at the stagnation point. The ratio of the
indicated velocity to the true velocity would be

VI
VT
=
q
2.25

£
sin2(β + 41.8o)− sin2 β¤

The error is

error =
VT − VI

VT
= 1− VI

VT

Angle β, degrees

0 2 4 6 8 10 12

0

2

4

6

8

10

12

14

16

Er
ro

r, 
%
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PROBLEM 4.55

Situation: A Pitot tube measuring the flow velocity in water is described in the
problem statement.

Find: Explain how to design the Pitot tube.

ANALYSIS

Three pressure taps could be located on a sphere at an equal distance from the
nominal stagnation point. The taps would be at intervals of 120o. Then when the
probe is mounted in the stream, its orientation could be changed in such a way as to
make the pressure the same at the three taps. Then the axis of the probe would be
aligned with the freestream velocity.
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PROBLEM 4.56

Situation: Two Pitot tubes are connected to air-water manometers to measure air
and water velocities.

Find: The relationship between VA and VW .

V =
p
2g∆h =

p
2∆pz/ρ

ANALYSIS

The ∆pz is the same for both; however,

ρw >> ρa

Therefore VA > VW . The correct choice is b).
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PROBLEM 4.57

Situation: A Pitot tube measures the velocity of kerosene at center of 12 inch pipe.
Deflection of mercury–kerosene manometer is 5 inches.

Find: Velocity.
Properties From table A.4 ρker = 1.58 slugs/ft

3.γker = 51 lbf/ft
3

APPROACH

Apply the Pitot tube equation and the hydrostatic equation.

ANALYSIS

Hydrostatic equation

∆pz = ∆h(γHG − γker)

= (5/12)(847− 51)
= 332 psf

Pitot tube equation

V = (2∆pz/ρ)
1/2

= (2× 332/1.58)1/2
V = 20.5 fps
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PROBLEM 4.58

Situation: A Pitot tube for measuring velocity of air at 20oC at std. atm. pressure.
Differential pressure gage reads 3 kPa.

Find: Air velocity.
Properties From table A.3 ρ(20oC)= 1.2 kg/m3

APPROACH

Apply the Pitot tube equation.

ANALYSIS

Pitot tube equation

V = (2∆pz/ρ)
1/2

= (2× 3, 000/1.2)1/2
V = 70.7 m/s
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PROBLEM 4.59

Situation: A Pitot tube is used to measure the velocity of air at 60oF and std. atm.
pressure. A pressure difference of 11 psf is measured.

Find: Air velocity.
Properties From table A.3 ρa(60

oF)= 0.00237 slugs/ft3

APPROACH

Apply the Pitot tube equation.

ANALYSIS

Pitot tube equation

V =
p
2∆pz/ρ

V = (2× 11/0.00237)1/2
V = 96.3 fps
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PROBLEM 4.60

Situation: A Pitot tube measures gas velocity in a duct. The gas density is 0.12
lbm/ft3 and the piezometric pressure differene is 0.9 psi.

Find: Gas velocity in duct.

APPROACH

Apply the Pitot tube equation.

ANALYSIS

Pitot tube equation The density is 0.12 lbm/ft3/32.2 = 0.00373 slugs/ft3

V =
p
2∆pz/ρ

= [2× 0.9× 144/0.00373]1/2
V = 264 ft/s
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PROBLEM 4.61

Situation: A sphere moving horizontally through still water at 11 ft/s. Velocity at
point A induced by moving sphere is 1 ft/s with respect to earth.

Find: Pressure ratio: pA/p0

APPROACH

Apply the Bernoulli equation.

ANALYSIS

A

1 ft/s

By referencing velocities to the spheres a steady flow case will be developed. Thus,
for the steady flow case V0 = 11 ft/s and VA = 10 ft/s. Then when Bernoulli’s
equation is applied between points 0 and A it will be found that pA/p0 > 1 (case c)
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PROBLEM 4.62

Situation: A body moving horizontally through still water at 13 m/s. Velocity at
points B and C induced by body are 5 m/s and 3 m/s.

Find: Pressure difference: pB − pC

ANALYSIS

Bernoulli equation Refer all velocities with respect to the sphere. Flow is then steady
and the Bernoulli equation is applicable.

pB − pC = (1, 000/2)[(13− 3)2 − (13− 5)2]
= 18, 000 Pa

pB − pC = 18 kPa
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PROBLEM 4.63

Situation: Water in a flume is described in the problem statement.

Find: If gage A will read greater or less than gage B.

ANALYSIS

Both gage A and B will read the same, due to hydrostatic pressure distribution in
the vertical in both cases. There is no acceleration in the vertical direction.
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PROBLEM 4.64

Situation: An apparatus is used to measure the air velocity in a duct. It is connected
to a slant tube manometer with a 30o leg with the indicated deflection. The air in
the duct is 20oC with a pressure of 150 kPa, abs. The manometer fluid has a specific
gravity of 0.7.

Find: Air velocity

APPROACH

Apply the Bernoulli equation.

ANALYSIS

The side tube samples the static pressure for the undisturbed flow and the central
tube senses the stagnation pressure.
Bernoulli equation

p0 + ρV 2
0 /2 = pstagn. + 0

or V0 =
q
(2/ρ)(pstagn. − p0)

But

pstagn. − p0 = (0.067− 0.023) sin 30◦ × 0.7× 9, 810 = 151.1 Pa
ρ = p/RT = 150, 000/(287× (273 + 20)) = 1.784 kg/m3

Then

V0 =
p
(2/1.784)(151.1)

V0=13.02 m/s
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PROBLEM 4.65

Situation: A spherical probe with pressure coefficients given is used to find gas ve-
locity. The pressure difference is 4 kPa and the gas density is 1.5 kg/m3.

Find: Gas velocity.

APPROACH

Apply the definition of pressure coefficient.

ANALYSIS

Pressure coefficient

∆Cp = 1− (−0.4)
∆Cp = 1.4 = (pA − pB)/(ρV

2
0 /2)

V 2
0 = 2(4, 000)/(1.5× 1.4)

V0 = 61.7 m/s
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PROBLEM 4.66

Situation: An instrument used to find gas velocity in smoke stacks. Pressure coeffi-
cients are given. Connected to water manometer with 0.8 cm deflection. The gas is
at 101 kPa, abs and the temperature is 250oC. The gas constant is 200 J/kgK.

Find: Velocity of stack gases.

ANALYSIS

Ideal gas law

ρ = p/RT

= 101, 000/(200× (250 + 273))
= 0.966 kg/m2

Manometer equation
∆pz = (γw − γa)∆h

but γw À γa so

∆pz = γw∆h

= 9790× 0.008
= 78.32 Pa

(pA − pB)z = (CpA − CpB)ρV
2
0 /2

(pA − pB)z = 1.3ρV 2
0 /2

V 2
0 = 2× 78.32/(1.3× 0.966)

V0 = 11.17 m/s
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PROBLEM 4.67

Situation: A spherical probe is used to measure water velocity. Pressure taps located
at stagnation point and max width. A deflection of 5 cm measured on mercury
manometer. Velocity at maximum width is 1.5 times the free stream velocity.

Find: Free-stream velocity.

APPROACH

Apply the Bernoulli equation between points 1 and 2. Let point 1 be at the stagnation
point and point 2 be at the 90◦ position. At the 90◦ position U = 1.5U sinΘ = 1.5U .

ANALYSIS

Bernoulli equation

pz1 +

=0z }| {
ρV 2

1 /2 = pz2 + ρV 2
2 /2

pz1 − pz2 = ρV 2
2 /2

(γHg − γH2O)∆h = (ρ/2)(1.5U)2

((γHg/γH2O)− 1)∆h = (1/2g)(1.5U)2

(13.6− 1)× 0.05 = (1/2g)(2.25)U2

U = 2.34 m/s
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PROBLEM 4.68

Situation: The wake of a sphere which separates at 120o. The free stream velocity of
air (ρ = 1.2 kg/m3) is 100 m/s.

Find: (a) Gage pressure.
(b) Pressure coefficient.

APPROACH

Apply the Bernoulli equation from the free stream to the point of separation and the
pressure coefficient equation.

ANALYSIS

Pressure coefficient
Cp = (p− p0)/(ρV

2/2)

Bernoulli equation

p0 + ρU2/2 = p+ ρu2/2

p− p0 = (ρ/2)(U2 − u2)

or
(p− p0)/(ρU

2/2) = (1− (u/U)2)
but

u = 1.5U sin θ

u = 1.5U sin 120◦

u = 1.5U × 0.866

At the separation point

(u/U) = 1.299

(u/U)2 = 1.687

Cp = 1− 1.687
Cp = −0.687

pgage = Cp(ρ/2)U
2

= (−0.687)(1.2/2)(1002)
= −4, 122 Pa

pgage = −4.122 kPa gage
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PROBLEM 4.69

Situation: A pressure transducer is connected between taps of spherical Pitot tube
and reads 120 Pa. Air density is 1.2 kg/m3.

Find: Free-stream velocity.

APPROACH

Apply the Bernoulli equation between the stagnation point (forward tap) and the
side tap where u = 1.5U. Neglect elevation difference.

ANALYSIS

u = 1.5U sin θ

uθ=90◦ = 1.5U(1)

= 1.5U

Bernoulli equation

p1 + ρV 2
1 /2 = p2 + ρV 2

2 /2

p1 − p2 = (ρ/2)(V 2
2 − V 2

1 )

p1 − p2 = (1.2/2)((1.5U)2 − 0)
120 = 1.35U2

U = 9.43 m/s
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PROBLEM 4.70

Situation: A Pitot tube used to measure the airspeed of an airplane. Calibrated to
provide correct airspeed with T = 17oC and p=101 kPa, abs. Pitot tube indicates 60
m/s when pressure is 70 kPa, abs and temperature is -6.3oC.

Find: True airspeed.

APPROACH

Apply the Pitot tube equation.

ANALYSIS

Pitot tube equation

V = K
p
2∆pz/ρ

then

Vcalibr. = (K/
p
ρcalibr.)

p
2∆pz

Vtrue = (K/
p
ρtrue)

p
2∆pz (1)

Vindic. = (K/
p
ρcalib.)

p
2∆pz (2)

Divide Eq. (1) by Eq. (2):

Vtrue/Vindic. =
p
ρcalib./ρtrue

=

s
pcalib
ptrue

Ttrue
Tcalib

= [(101/70)× (273− 6.3)/(273 + 17)]1/2
= 1.15

Vtrue = 60× 1.15
Vtrue = 69 m/s
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PROBLEM 4.71

Situation: Two pressure taps are located at ±30o from the horizontal plane on a
cylinder and connected to a water manometer. Air with a density of 1.2 kg/m3

moving at 50 m/s approaches the cylinder at 20o from the horizontal plane.

Find: Deflection of water manometer.

APPROACH

Evaluate the pressure coefficient at the two taps locations to find pressure difference.

ANALYSIS

One pressure tap is located 10o from the stagnation point and the other at 50o.The
pressure coefficients at the two locations are

Cp = 1− 4 sin2 θ
Cp,50 = 1− 4 sin2 50◦

= 1− 4(0.766)2 = −1.347
Cp,10 = 1− 4(0.174)2 = +0.879

Pressure coefficient difference,

Cp,10 − Cp,50 = 0.879− (−1.347) = 2.226

Equating the pressure difference to the manometer deflection

∆p = ∆CpρairV
2
0 /2

= 2.226× 1.2× 502/2
= 3340 Pa

∆h = ∆p/γH2O
= 3340/9810

= 0.340 m

∆h = 34.0 cm
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PROBLEM 4.72

Situation: Check equations for pitot tube velocity measurement provided by instru-
ment company.

Find: Validity of pitot tube equations provided.

APPROACH

Apply the Bernoulli equation

ANALYSIS

Applying the Bernoulli equation to the Pitot tube, the velocity is related to the change
in piezometric pressure by

∆pz = ρ
V 2

2

where ∆pz is in psf, ρ is in slugs/ft3 and V is in ft/s. The piezometric pressure
difference is related to the "velocity pressure" by

∆pz(lbf/ft
2) = γw(lbf/ft

3)hv(in)/12(in/ft)

= 62.4× hv/12

= 5.2hv

The density in slugs/ft3 is given by

ρ(slug/ft3) = d (lbm/ft3)/gc(lbm/slug)

= d/32.2

= 0.03106d

The velocity in ft/min is obtained by multiplying the velocity in ft/s by 60. Thus

V = 60

r
2× 5.2hv
0.03106d

= 1098

r
hv
d

This differs by less than 0.1% from the manufacturer’s recommendations. This could
be due to the value used for gc but the difference is probably not significant compared
to accuracy of "velocity pressure" measurement.
From the ideal gas law, the density is given by

ρ =
p

RT

where ρ is in slugs/ft3, p in psfa and T in oR. The gas constant for air is 1716 ft-
lbf/slug-oR. The pressure in psfg is given by

p (psfg) = Pa(in-Hg)× 13.6× 62.4 (lbf/ft3)/12(in/ft)
= 70.72Pa
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where 13.6 is the specific gravity of mercury. The density in lbm/ft3 is

d = gcρ

= 32.2× 70.72Pa

1716× T

= 1.327
Pa

T

which is within 0.2% of the manufacturer’s recommendation.
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PROBLEM 4.73

Situation: The flow of water over different surfaces is described in the problem state-
ment.

Find: Relationship of pressures.

ANALYSIS

The flow curvature requires that pB > pD + γd where d is the liquid depth. Also,
because of hydrostatics pC = pD + γd. Therefore pB > pC . Also pA < pD + γd so
pA < pC . So pB > pC > pA.
The valid statement is (b).
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PROBLEM 4.74

Situation: The velocity vector V = 10xi− 10yj describes a flow field.
Find: Is the flow irrotational?

ANALYSIS

In a two dimensional flow in the x− y plane, the flow is irrotational if (Eq. 4.34a)

∂v

∂x
=

∂u

∂y

The velocity components and derivatives are

u = 10x
∂u

∂y
= 0

v = −10y ∂v

∂x
= 0

Therefore the flow is irrotational.
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PROBLEM 4.75

Situation: A velocity field is described by u = −ωy v = ωx

Find: Vorticity and Rate of rotation

ANALYSIS

Rate of rotation

ωz = (1/2)(∂v/∂x− ∂u/∂y)

= (1/2)(ω − (−ω))
= (1/2)(2ω)

ωz = ω

Vorticity is twice the average rate of rotation; therefore, the vorticity = 2ω
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PROBLEM 4.76

Situation: A two-dimensional velocity field is given by

u =
C(y2 − x2)

(x2 + y2)2
, v =

−Cxy
(x2 + y2)2

Find: Check if flow is irrotational.

ANALYSIS

Apply equations for flow rotation in x− y plane.

∂v/∂x− ∂u/∂y = (2Cy/(y2 + x2)2)− (2C(y2 − x2)2y/(y2 + x2)3)

+(2Cy/(y2 + x2)2)− (4Cxy(2x)/(y2 + x2)3)

= 0 The flow is irrotational
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PROBLEM 4.77

Situation: A velocity field is defined by u = xt+ 2y, v = xt2 − yt.

Find: (a) Acceleration at x = y = 1 m and t = 1 s.
(b) Is the flow rotational or irrotational?

ANALYSIS

Irrotational flow:
∂u/∂y = 2; ∂v/∂x = t2 ∂u/∂y 6= ∂v/∂x

Therefore, the flow is rotational.
Determine acceleration:

ax = u∂u/∂x+ v∂u/∂y + ∂u/∂t

ax = (xt+ 2y)t+ 2(xt2 − yt) + x

ay = u∂v/∂x+ v∂v/∂y + ∂v/∂t

= (xt+ 2y)t2 + (xt2 − yt)(−t) + (2xt− y)

a = ((xt+ 2y)t+ 2t(xt− y) + x)i+ (t2(xt+ 2y)− t2(xt− y) + (2xt− y)) j

Then for x =l m, y =l m, and t =l s the acceleration is:

a = ((1 + 2) + 0 + 1) i+ ((1 + 2) + 0 + (2− 1)) j m/s
a = 4 i+ 4 j m/s2
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PROBLEM 4.78

Situation: Fluid flows between two stationary plates.

Find: Find rotation of fluid element when it moves 1 cm downstream

APPROACH

Apply equations for rotation rate of fluid element..

ANALYSIS

The rate of rotation for this planar (two-dimensional) flow is

ωz =
1

2
(
∂v

∂x
− ∂u

∂y
)

In this problem, v = 0 so

ωz = −1
2

∂u

∂y
= 8y

The time to travel 1 cm is

∆t =
1

u

=
1

2(1− 4y2)
The amount of rotation in 1 cm travel is

∆θ = ωz∆t

∆θ =
4y

(1− 4y2)

Animation An animation of the solution can be found at
http://www.justask4u.com/csp/crowe.
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PROBLEM 4.79

Situation: A velocity distribution is provided for a combination of free and forced
vortex.

vθ =
1

r

£
1− exp(−r2)¤

Find: Find how much a fluid element rotates in one circuit around the vortex as a
function of radius.

ANALYSIS

The rate of rotation is given by

ωz =
1

r

d

dr
(vθr)

ωz =
1

r

d

dr
[1− exp(−r2)]

= exp(−r2)

The time to complete one circuit is

∆t =
2πr

vθ

=
2πr2

[1− exp(−r2)]
So, the total rotation in one circuit is given by

∆θ = ωz∆t

∆θ

2π
(rad) = r2

exp(−r2)
1− exp(−r2)

A plot of the rotation in one circuit is shown. Note that the rotation is 2π for r→ 0
(rigid body rotation) and approaches zero (irrotational) as r becomes larger.
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Animation An animation of the solution can be found at
http://www.justask4u.com/csp/crowe.
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PROBLEM 4.80

Situation: Closed tank 4 feet in diameter with piezometer attached is rotated at 15
rad/s about a vertical axis.

Find: Pressure at bottom center of tank.

APPROACH

Apply the equation for pressure variation equation- rotating flow.

ANALYSIS

Pressure variation equation- rotating flow

p+ γz − ρr2ω2/2 = pp + γzp − ρr2pω
2/2

where pp = 0, rp = 3 ft and r = 0, then

p = −(ρ/2)(9× 225) + γ(zp − z)

= (1.94/2)(2025) + 62.4× 2.5
= −1808 psfg = −12.56 psig

p = −12.6 psig
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PROBLEM 4.81

Situation: A tank 1 foot in diameter and 1 foot high with liquid (S=0.8) is rotated
on 2 foot arm. The speed is 20 ft/s and pressure at point A is 25 psf.

Find: Pressure at B.

APPROACH

Apply the pressure variation equation- rotating flow from point A to point B.

ANALYSIS

Pressure variation equation- rotating flow

pA + γzA − ρr2Aω
2/2 = pB + γzB − ρr2Bω

2/2

pB = pA + (ρ/2)(ω
2)(r2B − r2A) + γ(zA − zB)

where ω = VA/rA = 20/1.5 = 13.333 rad/s and ρ = 0.8× 1.94 slugs/ft3. Then

pB = 25 + (1.94× 0.80/2)(13.332)(2.52 − 1.52) + 62.4× 0.8(−1)
= 25 + 551.5− 49.9

pB = 526.6 psf
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PROBLEM 4.82

Situation: A closed tank with liquid (S=1.2) is rotated about vertical axis at 10 rad/s
and upward at 4 m/s2.

Find: Difference in pressure between points A and B: pB − pA

APPROACH

Apply the pressure variation equation for rotating flow between points B & C. Let
point C be at the center bottom of the tank.

ANALYSIS

Pressure variation equation- rotating flow

pB − ρr2Bω
2/2 = pC − ρr2Cω

2/2

where rB = 0.5 m, rC = 0 and ω = 10 rad/s. Then

pB − pC = (ρ/2)(ω2)(0.52)

= (1200/2)(100)(0.25)

= 15, 000 Pa

pC − pA = 2γ + ρazc

= 2× 11, 772 + 1, 200× 4× 2
= 33, 144 Pa

Then

pB − pA = pB − pC + (pC − pA)

= 15, 000 + 33, 144

= 48, 144Pa

pB − pA = 48.14 kPa
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PROBLEM 4.83

Situation: A U-tube rotating about one leg. Before rotation, the level of liquid in
each leg is 0.25 m. The length of base and length of leg is 0.5 m.

Find: Maximum rotational speed so that no liquid escapes from the leg.

APPROACH

Apply the pressure variation equation for rotating flow. Let point 1 be at top of
outside leg and point 2 be at surface of liquid of inside leg.

ANALYSIS

At the condition of imminent spilling, the liquid will be to the top of the outside leg
and the leg on the axis of rotation will have the liquid surface at the bottom of its
leg.
Pressure variation equation- rotating flow

p1 + γz1 − ρr21ω
2/2 = p2 + γz2 − ρr22ω

2/2

where p1 = p2, z1 = .5 m and z2 = 0

γ × 0.5− (γ/g)× .52ω2/2 = 0

ω2 = 4g

= 2
√
g

ω = 6.26 rad/s
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PROBLEM 4.84

Situation: A U-tube rotating about one leg at 60 rev/min. Liquid at bottom of U-
tube has specific gravity of 3.0. There is a 6 inch height of fluid in outer leg. Distance
between legs is 1 ft.

Find: Specific gravity of other fluid.

APPROACH

Apply the pressure variation equation for rotating flow between points 1 & 2.

ANALYSIS

Pressure variation equation- rotating flow

3

2 1

S=3.0

p2 + γz2 − ρr22ω
2/2 = p1 + γz1 − ρr21ω

2/2

where z2 = z1, r1 = 0, r2 = 1 ft. and ω = (60/60)× 2π = 2π rad/s. Then

p2 = (1.94× 3)(12)(2π)2/2 = 114.9 psfg (1)

Also, by hydrostatics, because there is no acceleration in the vertical direction

p2 = 0 +
1

2
× γf (2)

where γf is the specific weight of the other fluid. Solve for γf between Eqs. (1) &
(2)

γf = 229.8 lbf/ft3

S = γf/γH2O
= 229.8/62.4

S = 3.68
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PROBLEM 4.85

Situation: A U-tube rotating about one leg at 32.12 rad/s. Geometry given in problem
statement.

Find: New position of water surface in outside leg.

APPROACH

Apply the pressure variation equation for rotating flow between the water surface in
the horizontal part of the tube and the water surface in the vertical part of the tube.

ANALYSIS

A preliminary check shows that the water will evacuate the axis leg. Thus fluid
configuration is shown by the figure.

d

0.40+d

Pressure variation equation- rotating flow

p1 + γz1 − ρr21ω
2/2 = p2 + γz2 − ρr22ω

2/2

where r1 = d, r2 = 0.30 m and (z2 − z1) = 0.50 + d. Then

(ρω2/2)(r22 − r21) = γ(0.50 + d)

(1, 000× 32.122/2)(0.32 − d2) = (0.50 + d)9, 810

Solving for d yields d = 0.274 m
Then

z2 = 0.50 + 0.274

z=0.774 m
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PROBLEM 4.86

Situation: A U-tube is attached to rotating platform and platform rotating at 4 rad/s.

Find: Elevation of liquid in smaller leg of U-tube.

APPROACH

Apply the pressure variation equation for rotating flow between the liquid surface in
the large tube and the liquid surface in the small tube for conditions after rotation
occurs.

ANALYSIS

1 2

Pressure variation equation- rotating flow
Let 1 designate large tube and 2 the small tube.

γz1 − (ρ/2)r21ω2 = γz2 − (ρ/2)r22ω2
z1 − z2 = (ρ/2γ)(ω2)(r21 − r22)

= ((γ/g)/(2γ))ω2(r21 − r22)

= (ω2/(2g))(0.42 − 0.22)
= (42/(2g))(0.12)

= 0.0978 m = 9.79 cm

Because of the different tube sizes a given increase in elevation in tube (1) will be
accompanied by a fourfold decrease in elevation in tube (2). Then z1 − z2 = 5∆z
where ∆z = increase in elevation in (1)

∆z1 = 9.79 cm/ 5=1.96 cm or z1 = 21.96 cm

Decrease in elevation of liquid in small tube

∆z2 = 4∆z1 = 7.83

z2 = 20 cm− 7.83 cm
z2=12.17 cm
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PROBLEM 4.87

Situation: A manometer with mercury (S=13.6) at the base is rotated about one leg.
Water with height of 10 cm in central leg at is described in the problem statement.
The length of the base is one meter. Height of mercury in outer leg is 1 cm.

Find: Rotational speed.

APPROACH

Apply the pressure variation equation for rotating flow between pts. (1) & (2).

ANALYSIS

(2)
(1)

10 cm

However p1 = (0.10 m)(γH2O) because of hydrostatic pressure distribution in the
vertical direction (no acceleration).
Pressure variation equation- rotating flow

p1 + γz1 − ρr21ω
2/2 = p2 + γz2 − ρr22ω

2/2

where p2 = 0, z2 − z1 = 0.01 m, r1 = 0 and r2 = 1 m. Then

0.1γH2O + 0 + 0 = 0 + γHg × 0.01− (γHg/g)× 12ω2/2
ω2 = ((2g)(0.01γHg − 0.1γH2O))/γHg
ω = (2× 9.81)(.01− (0.1/13.6))

ω = 0.228 rad/s
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PROBLEM 4.88

Situation: A manometer is rotated about one leg. There is a 25 cm height difference
in liquid (S=0.8) between the legs. The length of the base is 10 cm.

Find: Acceleration in g’s in leg with greatest amount of oil..

APPROACH

Apply the pressure variation equation for rotating flow between the liquid surfaces of
1 & 2Let leg 1 be the leg on the axis of rotation. Let leg 2 be the other leg of the
manometer.

ANALYSIS

Pressure variation equation- rotating flow

p1 + γz1 − ρr21ω
2/2 = p2 + γz2 − ρr22ω

2/2

0 + γz1 − 0 = γz2 − (γ/g)r22ω2/2
ω2r22/(2g) = z2 − z1

an = rω2

= (z2 − z1)(2g)/r

= (0.25)(2g)/r2
= (0.25)(2g)/0.1

an = 5g
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PROBLEM 4.89

Situation: A fuel tank rotated at 3 rev/min in zero-gravity environment. End of
tank 1.5 m from axis of rotation and fuel level is 1 m from rotation axis. Pressure in
non-liquid region is 0.1 kPa and density of fuel is 800 kg/m3.

Find: Pressure at exit (point A).

APPROACH

Apply the pressure variation equation for rotating flow from liquid surface to point
A. Call the liquid surface point 1.

ANALYSIS

Pressure variation equation- rotating flow

p1 + γz1 − ρr21ω/2 = pA + γzA − ρr2Aω
2/2

pA = p1 + (ρω
2/2)(r2A − r21) + γ(z1 − zA)

However γ(z1 + zA) = 0 in zero-g environment. Thus

pA = p1 + ((800 kg/m
3)/2)(6π/60 rad/s)2(1.52 − 12)

= 100 Pa+ 49.3 Pa

pA = 149.3 Pa
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PROBLEM 4.90

Situation: A rotating set of tubes is described in the problem statement.

Find: Derive a formula for the angular speed when the water will begin to spill.

APPROACH

Start with pressure variation equation for rotating flow. Let point 1 be at the liquid
surface in the large tube and point 2 be at the liquid surface in the small tube.

ANALYSIS

Pressure variation equation- rotating flow

p1 + γz1 − pr21ω
2/2 = p2 + γz2 − ρr22ω/2

l

1

2

3.75

The change in volume in leg 1 has to be the same as leg 2. So

∆h1d
2
1 = ∆h2d

2
2

∆h1 = ∆h2

µ
d22
d21

¶
=

∆h2
4

The elevation difference between 1 and 2 will be

z2 − z1 = 3c+
3c

4
= 3.75c

Then p1 = p2 = 0 gage, r2 = c, and z2 − z1 = 3.75c so

ρr22ω
2/2 = γ(3.75c)

(γ/(2g))(c2)ω2 = 3.75γc

ω2 =
7.5g

c

ω =
p
7.5g/c
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PROBLEM 4.91

Situation: Mercury is rotating in U-tube at ω and mercury levels shown in diagram.

Find: Level of mercury in larger leg after rotation stops.

APPROACH

Apply the pressure variation equation for rotating flow from the liquid surface in the
small tube (S) to the liquid surface in the large tube (L).

ANALYSIS

Pressure variation equation- rotating flow

pS + γaS − ρr2Sω
2/2 = pL + γzL − ρr2Lω

2/2

But pS = pL, rS = 0.5c and rL = 1.5c. Then

(ρ/2)ω2(r2L − r2S) = γ(zL − zS)

(γ/2g)ω2(1.52c2 − 0.52c2) = γ(2c)

ω2 = 2g/c

ω =
p
2g/(5/12)

ω = 12.43 rad/s

Change in volume of Hg in small tube is same as in large tube. That is

∀s = ∀L
∆zsπd

2/4 = ∆zLπ(2d)
2/4

∆zs = 4∆zL

Also

∆zs +∆zL = 2c

4∆zL +∆zL = 2× (5/12) ft = 0.833 ft
∆zL = 0.833 ft/5 = 0.167 ft

Mercury level in large tube will drop 0.167 ft from it original level.
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PROBLEM 4.92

Situation: Water in a 1 cm diameter tube, 40 cm long. Closed at one end and rotated
at 60.8 rad/s.

Find: Force exerted on closed end.

APPROACH

Apply the pressure variation equation for rotating flow from the open end of the tube
to the closed end.

ANALYSIS

Pressure variation equation- rotating flow

p1 = γz1 − ρr21ω
2/2 = p2 + γz2 − ρr22ω

2/2

where z1 = z2. Also let point 2 be at the closed end; therefore r1 = 0 and r2 = 0.40
m.

p2 = (ρ/2)(0.402)(60.8)2

= 500× 0.16× 3697
= 295.73 kPa

Then

F = p2A = 295, 730× (π/4)(.01)2
F = 23.2 N
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PROBLEM 4.93

Situation: Mercury in rotating manometer with dimensions shown on figure.

Find: Rate of rotation in terms of g and c.

APPROACH

Apply the pressure variation equation for rotating flow from the mercury surface in
the left tube to the mercury surface in the right tube. Then pc = pr.

ANALYSIS

Pressure variation equation- rotating flow

γzc − ρr2cω
2/2 = γzr − ρr2rω

2/2

ω2(γ/2g)(r2r − r2c ) = γ(zr − zc)

ω2 = 2g(zr − zc)/(r
2
r − r2c )

= 2g(c)/(9c2 − c2)

ω =
p
g/(4c)
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PROBLEM 4.94

Situation: A U-tube rotated around left leg. Rotated at 5 rad/s and then 15 rad/s.
Dimensions given on problem figure.

Find: (a) water level in tube at 5 rad/s.
(b) water level for 15 rad/s.

APPROACH

Apply the pressure variation equation for rotating flow between the water surface
and the left leg and the water surface in the right leg. At these surfaces pc = pr = 0
gage.

ANALYSIS

Pressure variation equation- rotating flow
(a) Assume that there is fluid in each leg of the manometer.

γzl − ρr2l ω
2/2 = γzr − ρr2rω

2/2

zl − zr = −r2rω2/2g = −ω2c2/2g
where the subscript l refers to the left leg and r to the right leg. Because the manome-
ter rotates about the left leg rl = 0.Then

zl − zr = −5
2 × 0.252
2× 9.81

= 0.080 m = 8 cm (1)

Also

zl + zr = 1.4c

= 35 cm (2)

Solving Eqs. (1) and (2) for zl and zr yields

zc=13.5 cm and zr=21.5 cm

(b) Assume as before that the liquid exists in both vertical legs. Then

zl − zr = −ω2c2/2g
= −15

2 × 0.32
2× 9.81

= 1.032 m = 103.2 cm (3)

Solving Eqs. 2 and 3 for zl and zr yields zl = 69.1 cm and zr = −34.1 cm which is an
impossible answer. The fluid then must not totally fill the lower leg and must look
like
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l

1

1.4  +d

Let subscript 1 refer to location of liquid in lower leg as shown. Applying equation
for pressure variation equation- rotating flow gives

γz1 − ρr21ω
2/2 = γzr − ρr2rω

2/2

where z1 = 0 and rr = c so

−r21ω2/2g = zr − c2ω2/2g

zr = ω2/2g(c2 − r21)

The total length of liquid in the legs has to be the same before rotation as after so

c− r1 + zr = 2× 0.7c+ c

zr = 1.4c+ r1

One can now write
1.4c+ r1 = ω2/2g(c2 − r21)

or

1.4 +
r1
c

=
cω2

2g

·
1−

³r1
c

´2¸
=

0.3× 152
2× 9.81

·
1−

³r1
c

´2¸
= 1.032

·
1−

³r1
c

´2¸
Solving the quadratic equation for r1/c gives

r1
c
= 0.638

With c = 30 cm,
r1=19.15 cm and zr=61.15 cm
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PROBLEM 4.95

Situation: U-tube rotated about vertical axis at 8 rad/s and then at 20 rad/s.

Find: Pressures at points A and B.

Assumptions: pV = 0

APPROACH

Apply the pressure variation equation for rotating flow.

ANALYSIS

Pressure variation equation- rotating flow Writing out the equation

pA + γzA − ρr2Aω
2/2 = pR + γzR − ρr2Rω

2/2

where pR = 0 gage, rA = 0, rR = 0.64 m and zR − zA = 0.32 m The density is 2000
kg/m3 and the specific weight is 2× 9810 = 19620 N/m3. For a rotational speed of 8
rad/s

pA = γ(zR − zA)− ρr2Rω
2/2

pA = 0.32× 19620− 2000× 0.642 × 82/2
= −19, 936 Pa

pA = −19.94 kPa
pB = γ(zR − zA)

= 0.32× 19620
pB = 6.278 kPa

Now for ω = 20 rad/s solve for pA as above.

pA = 19620× 0.32− 2000× 0.642 × 202/2
= −157, 560 Pa;

which is not possible because the liquid will vaporize. Therefore the fluid must
have the configuration shown in the diagram with a vapor bubble at the center.

0.32 m+r

vapor

r
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Assume pr = 0.Therefore, pA = pV = −101 kPa abs . Now the equation for rotating
flows becomes

pr − ρr2ω2/2 = pB − ρ× rR
2ω2/2

where pr = pV = −101 kPa, The height of the liquid in the right leg is now
0.32 + r. Then

−101, 000− 2000× 202r2/2 = 19620× (0.32 + r)− 2000× 0.642 × 202/2
−101, 000− 400, 000r2 = 6278 + 19620r − 163, 840
r2 + 0.04905r − 0.1414 = 0

Solving for r yields r = 0.352 m. Therefore

pB = (0.32 + 0.352)× 19620
= 13, 184Pa

pB = 13.18 kPa
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PROBLEM 4.96

Situation: Water in U-tube rotated around one leg and end of leg is closed with air
column.

Find: Rotational speed when water will begin to spill from open tube.

APPROACH

Apply the pressure variation equation for rotating flow between water surface in leg
A-A to water surface in open leg after rotation.

ANALYSIS

When the water is on the verge of spilling from the open tube, the air volume in the
closed part of the tube will have doubled. Therefore, we can get the pressure in the
air volume with this condition.

pi∀i = pf∀f
and i and f refer to initial and final conditions

pf = pi∀i/∀f = 101 kPa× 1
2

pf = 50.5 kPa, abs = −50.5 kPa, gage

Pressure variation equation- rotating flow

pA + γzA − ρr2Aω
2/2 = popen + γzopen − ρropenω

2/2

pA + 0− 0 = 0 + γ × 6c− ρ(6c)2ω2/2

−50.5× 103 = 9810× 6× 0.1− 1000× 0.62 × ω2/2

−50.5× 103 = 5886− 180ω2
w2 = 313.3

ω = 17.7 rad/s
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PROBLEM 4.97

Situation: A centrifugal pump consisting of a 10 cm disk is rotated at 2500 rev/min.

Find: Maximum operational height: z

APPROACH

Apply the pressure variation equation for rotating flow from point 1 in vertical pipe
at level of water to point 2 at the outer edge of the rotating disk.

ANALYSIS

Pressure variation equation- rotating flowThe exit pressure of the pump is atmospheric.
Let point 1 be the liquid surface where z = 0 and point 2 the pump outlet.

p1 + γz1 − ρr21ω
2/2 = p2 + γz2 − ρr22ω

2/2

0 + 0− 0 = 0 + γz2 − ρr22ω
2/2

0 = z2 − 0.052ω2/2g

The rotational rate is

ω = (2, 500 rev/min)(1 min/60 s)(2π rad/rev)=261.8 rad/s

Therefore

z2 = ((0.05)(261.8))2/(2× 9.81)
z2 = 8.73 m
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PROBLEM 4.98

Situation: A tank rotated at 5 rad/s about horizontal axis and water in tank rotates
as a solid body.

Find: Pressure gradient at z = −1, 0,+1.

APPROACH

Apply the pressure variation equation for rotating flow.

ANALYSIS

Pressure variation equation- rotating flow

∂p/∂r + γ(∂z/∂r) = −ρrω2
∂p/∂z = −γ − ρrω2

when z = −1 m

∂p/∂z = −γ − ρω2

= −γ(1 + ω2/g)

= −9, 810(1 + 25/9.81)
∂p/∂z = −34.8 kPa/m

when z = +1 m

∂p/∂z = −γ + ρω2

= −γ(1− ω2/g)

= −9810× (1− 25/9.81)
∂p/∂z = 15.190 kPa/m

At z = 0

∂p/∂z = −γ
∂p/∂z=-9.810 kPa/m
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PROBLEM 4.99

Situation: A rotating tank is described in the problem 4.98.

Find: Derive an equation for the maximum pressure difference.

APPROACH

Apply the pressure variation equation for rotating flow.

ANALYSIS

Below the axis both gravity and acceleration cause pressure to increase with decrease
in elevation; therefore, the maximum pressure will occur at the bottom of the cylin-
der. Above the axis the pressure initially decreases with elevation (due to gravity);
however, this is counteracted by acceleration due to rotation. Where these two ef-
fects completely counter-balance each other is where the minimum pressure will occur
(∂p/∂z = 0). Thus, above the axis:

∂p/∂z = 0 = −γ + rω2ρ minimum pressure condition

Solving: r = γ/ρω2; pmin occurs at zmin = +g/ω2.Using the equation for pressure
variation in rotating flows between the tank bottom where the pressure is a maximum
( zmax = −r0) and the point of minimum pressure.

pmax + γzmax − ρr20ω
2/2 = pmin + γzmin − ρr2minω

2/2

pmax − γr0 − ρr20ω
2/2 = pmin + γg/ω2 − ρ(g/ω2)2ω2/2

pmax − pmin = ∆pmax = (ρω
2/2)[r20 − (g/ω2)2] + γ(r0 + g/ω2)

Rewriting

∆pmax =
ρω2r20
2
+ γr0 +

γg
2ω2
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PROBLEM 4.100

Situation: A tank 4 ft in diameter and 12 feet long rotated about horizontal axis and
water in tank rotates as a solid body. Maximum velocity is 20 ft/s.

Find: Maximum pressure difference in tank and point of minimum pressure.

APPROACH

Same solution procedure applies as in Prob. 4.99.

ANALYSIS

From the solution to Prob. 4.99 pminoccurs at z = γ/ρω2 where ω = (20 ft/s)/2.0 ft
= 10 rad/s. Then

zmin = γ/ρω2

= g/ω2

= 32.2/102

zmin = 0.322 ft above axis

The maximum change in pressure is given from solution of Problem 4.99

∆pmax =
ρω2r20
2

+ γr0 +
γg

2ω2

=
1.94× 102 × 22

2
+ 62.4× 2 + 62.4× 32.2

2× 102
= 388 + 124.8 + 10.0

∆pmax=523 lbf/ft2
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PROBLEM 4.101

Situation: Incompressible and inviscid liquid flows around a bend with inside radius
o1 1 m and outside radius of 3 m. Velocity varies as V = 1/r.

Find: Depth of liquid from inside to outside radius.

APPROACH

Apply the Bernoulli equation between the outside of the bend at the surface (point
2) and the inside of the bend at the surface (point 1).

ANALYSIS

Bernoulli equation

(p2/γ) + V 2
2 /2g + z2 = (p1/γ) + V 2

1 /2g + z1

0 + V 2
2 /2g + z2 = 0 + V 2

1 /2g + z1

z2 − z1 = V 2
1 /2g − V 2

2 /2g

where V2 = (1/3) m/s; V1 = (1/1) m/s. Then

z2 − z1 = (1/2g)(12 − 0.332)
z2 − z1 = 0.045 m

290



PROBLEM 4.102

Situation: The velocity at outlet pipe from a reservoir is 16 ft/s and reservoir height
is 15 ft.

Find: Pressure at point A.

APPROACH

Apply the Bernoulli equation.

ANALYSIS

Bernoulli equation Let point 1 be at surface in reservoir.

(p1/γ) + (V
2
1 /2g) + z1 = (pA/γ) + (V

2
A/2g) + zA

0 + 0 + 15 = pA/62.4 + 16
2/(2× 32.2) + 0

pA = (15− 3.98)× 62.4
pA = 688 psfg

pA=4.78 psig
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PROBLEM 4.103

Situation: The velocity at outlet pipe from a reservoir is 6 m/s and reservoir height
is 15 m.

Find: Pressure at point A.

APPROACH

Apply the Bernoulli equation.

ANALYSIS

Bernoulli equation Let point 1 be at reservoir surface.

(p1/γ) + (V
2
1 /2g) + z1 = (pA/γ) + (V

2
A/2g) + zA

0 + 0 + 15 = pA/9810 + 6
2/(2× 9.81) + 0

pA = (15− 1.83)× 9810
pA = 129, 200 Pa, gage

pA=129.2 kPa, gage

292



PROBLEM 4.104

Situation: The flow past a cylinder in a 40 m/s wind. Highest velocity at the maxi-
mum width of sphere is twice the free stream velocity.

Find: Pressure difference between highest and lowest pressure.

Assumptions: Hydrostatic effects are negligible and the wind has density of 1.2 kg/m3.

APPROACH

Apply the Bernoulli equation between points of highest and lowest pressure.

ANALYSIS

The maximum pressure will occur at the stagnation point where V = 0 and the point
of lowest pressure will be where the velocity is highest (Vmax = 80 m/s).
Bernoulli equation

ph + ρV 2
h /2 = pc + ρV 2

c /2

ph + 0 = pc + (ρ/2)(V
2
max)

ph − pc = (1.2/2)(802)

= 3, 840 Pa

ph − pc = 3.84 kPa
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PROBLEM 4.105

Situation: Velocity and pressure given at two points in a duct and fluid density is
1000 kg/m3.

Find: Describe the flow.

APPROACH

Check to see if it is irrotational by seeing if it satisfies Bernoulli’s equation.

ANALYSIS

The flow is non-uniform.
Bernoulli equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2

(10, 000/9, 810) + (1/(2× 9.81)) + 0 = (7, 000/9, 810) + 22(2× 9.81) + 0
1.070 6= 0.917

Flow is rotational. The correct choice is c.
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PROBLEM 4.106

Situation: Water flowing from a large orifice in bottom of tank. Velocities and eleva-
tions given in problem.

Find: pA − pB.

APPROACH

Apply the Bernoulli equation.

ANALYSIS

Bernoulli equation

pA
γ
+ zA +

V 2
A

2g
=

pB
γ
+ zB +

V 2
B

2g

pA − pB = γ[(V 2
B − V 2

A)/2g − zA]

= 62.4[(400− 64)/(2× 32.2)− 1]
pA − pB = 263.2 psf
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PROBLEM 4.107

Situation: Ideal flow past an airfoil in a 80 m/s airstream. Velocities on airfoil are 85
and 75 m/s and air density is 1.2 kg/m3.

Find: Pressure difference between bottom and top.
Assumption: The pressure due to elevation difference between points is negligible.

ANALYSIS

The flow is ideal and irrotational so the Bernoulli equation applies between any two
points in the flow field

p1 + γz1 + ρV 2
1 /2 = p1 + γz1 + ρV 2

1 /2

p2 − p1 = (ρ/2)(V 2
1 − V 2

2 )

p2 − p1 = (1.2/2)(852 − 752)
= 960 Pa

p2 − p1 = 0.96 kPa
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PROBLEM 4.108

Situation: Horizontal flow between two parallel plates and one is fixed while other
moves.

Find: Is the Bernoulli equation valid to find pressure difference between plates?

ANALYSIS

This is not correct because the flow between the two plates is rotational and the
Bernoulli equation cannot be applied across streamlines. There is no acceleration of
the fluid in the direction normal to the plates so the pressure change is given by the
hydrostatic equation so

p1 − p2 = γh
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PROBLEM 4.109

Situation: A cyclonic storm has a wind speed of 15 mph at r = 200 mi.

Find: Wind speed at r = 50 and 100 miles: V50 & V100.

ANALYSIS

V r = Const.

(15 mph) (200 mi.) = Const.

V100 = Const./100 mi.

= (15 mph)(200 mi./100 mi.)

V100 = 30 mph

V50 = (15 mph)(200/50)

V50 = 60 mph

298



PROBLEM 4.110

Situation: A tornado is modeled as a combined forced and free vortex and core has a
diameter of 10 mi. At 50 mi. from center, velocity is 20 mph. The core diameter is
10 miles. The wind velocity is V = 20 mph at a distance of r = 50 miles,

Find: (a) Wind velocity at edge of core: V10
(b) Centrifugal acceleration at edge of core: ac

ANALYSIS

The velocity variation in a free vortex is

V r = const

Thus
V50(50) = V10(10)

Therefore
V10 = V50

50

10
= 5× 20 = 100 mph

Acceleration (Eulerian formulation)

V = 100× 5280/3600 = 147 ft/s
ac = V 2/r

= 1472/(10× 5280)
ac = 0.409 ft/s2
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PROBLEM 4.111

Situation: A whirlpool modeled as free and forced vortex. The maximum velocity is
10 m/s at 10 m.

Find: Shape of the water surface.

APPROACH

Apply the Bernoulli equation to the free vortex region.

ANALYSIS

Bernoulli equation

z10 +
V 2
max

2g
= z +

V 2

2g
= 0

The elevation at the juncture of the forced and free vortex and a point far from the
vortex center where the velocity is zero is given by

z10 = −V
2
max

2g

In the forced vortex region, the equation relating elevation and speed is

z10 − V 2
max

2g
= z − V 2

2g

At the vortex center, V = 0, so

z0 = z10 − V 2
max

2g
= −V

2
max

2g
− V 2

max

2g
= −V

2
max

g

z = − 10
2

9.81
= −10.2 m

In the forced vortex region

V =
r

10
10 m/s = r

so the elevation is given by

z = −10.2 + r2

2g

In the free vortex region

V = 10
10

r

so the elevation is given by
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z = z10 +
V 2
max

2g
− 100
2g

µ
10

r

¶2
=
−510
r2
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PROBLEM 4.112

Situation: Tornado modeled as combination of forced and free vortex with maximum
velocity of 350 km/hr at 50 m.

Find: Variation in pressure.

APPROACH

Apply the pressure variation equation-rotating flow to the vortex center and the
Bernoulli equation in the free vortex region.

ANALYSIS

From the pressure variation equation-rotating flow, the pressure reduction from at-
mospheric pressure at the vortex center is

∆p = −ρV 2
max

which gives

∆p = −1.2× (350× 1000
3600

)2 = −11.3 kPa
or a pressure of p(0) = 100−11.3 = 88.7 kPa. In the forced vortex region the pressure
varies as

p(0) = p− ρ
V 2

2

In this region, the fluid rotates as a solid body so the velocity is

V =
r

50
Vmax = 1.94r

The equation for pressure becomes

p = 88.7 + 2.26r2/1000 for r ≤ 50 m
The factor of 1000 is to change the pressure to kPa. A the point of highest velocity
the pressure is 94.3 kPa.
Bernoulli equation

p(50) +
1

2
ρV 2

max = p+
1

2
ρV 2

In the free vortex region so the equation for pressure becomes

p = p(50) +
1

2
ρV 2

max

·
1− (50

r
)2
¸

for r ≥ 50 m

p = 94.3 + 5.65×
·
1− (50

r
)2
¸
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PROBLEM 4.113

Situation: A tornado is modeled as a forced and free vortex.

Find: Pressure coefficient versus nondimensional radius.

APPROACH

Apply Eq. 4.48 for the vortex center and the Bernoulli equation in the free vortex
region.

ANALYSIS

From Eq. 4.48 in the text, the pressure at the center of a tornado would be −ρV 2
max

so the pressure coefficient at the center would be

Cp =
−ρV 2

max
1
2
ρV 2

max

= −2

For the inner, forced-vortex region the pressure varies as

p(0) = p− 1
2
ρV 2

so the pressure coefficient can be written as

Cp =
p− po
1
2
ρV 2

max

= −2 + ( V

Vmax
)2 for r ≤ rc

Cp = −2 + ( r
rc
)2

so the pressure coefficient at the edge of the forced vortex is -1.
Bernoulli equation

p(rc) +
1

2
ρV 2

max = p+
1

2
ρV 2

Pressure coefficient

Cp =
p− po
1
2
ρV 2

max

=
p(rc)− po
1
2
ρV 2

max

+ [1− (rc
r
)2] for r ≥ rc

Cp = −1 + [1− (rc
r
)2] = −(rc

r
)2

304



0 1 2 3 4 5

-2

-1

0

Pr
es

su
re

 c
oe

ffi
ci

en
t

Nondimensional radius (r/r )c

305



PROBLEM 4.114

Situation: A weather balloon in a tornado modeled as a forced-free vortex.

Find: Where the balloon will move.

ANALYSIS

The fluid in a tornado moves in a circular path because the pressure gradient pro-
vides the force for the centripetal acceleration. For a fluid element of volume ∀ the
relationship between the centripetal acceleration and the pressure gradient is

ρ
V 2

r
= ∀dp

dr

The density of a weather balloon would be less than the local air so the pressure
gradient would be higher than the centripetal acceleration so the
balloon would move toward the vortex center.

306



PROBLEM 4.115

Situation: The pressure distribution in a tornado.

Find: If the Bernoulli equation overpredicts or underpredicts the pressure drop.

ANALYSIS

As the pressure decreases the density becomes less. This means that a smaller pressure
gradient is needed to provide the centripetal force to maintain the circular motion.
This means that the Bernoulli equation will overpredict the pressure drop.
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PROBLEM 4.116

Situation: A two dimensional flow in the x − y plane is described in the problem
statement.

ANALYSIS

a) Substituting the equation for the streamline into the Euler equation gives

u∂u
∂x
dx+ u∂u

∂y
dy = −g ∂h

∂x
dx

v ∂v
∂x
dx+ v ∂v

∂y
dy = −g ∂h

∂y
dy

or

∂
∂x

³
u2

2

´
dx+ ∂

∂y
(u

2

2
)dy = −g ∂h

∂x
dx

∂
∂x

³
v2

2

´
dx+ ∂

∂y
(v

2

2
)dy = −g ∂h

∂y
dy

Adding both equations

∂

∂x

µ
u2 + v2

2

¶
dx+

∂

∂y

µ
u2 + v2

2

¶
dy = −g(∂h

∂x
dx+

∂h

∂y
dy)

or

d(
u2 + v2

2
+ gh) = 0

b) Substituting the irrotationality condition into Euler’s equation gives

u∂u
∂x
+ v ∂v

∂x
= −g ∂h

∂x

v ∂v
∂y
+ u∂u

∂y
dy = −g ∂h

∂y

or

∂
∂x
(u

2+v2

2
+ gh) = 0

∂
∂y
(u

2+v2

2
+ gh) = 0
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PROBLEM 4.117

Situation: Different flow patterns are created by breathing in or out.

Find: Why it is easier to blow a candle out while exhaling rather than inhaling.

ANALYSIS

The main point to this question is that while inhaling, the air is drawn into your
mouth without any separation occurring in the flow that is approaching your mouth.
Thus there is no concentrated flow; all air velocities in the vicinity of your face are
relatively low. However, when exhaling as the air passes by your lips separation
occurs thereby concentrating the flow of air which allows you to easily blow out a
candle.
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PROBLEM 4.118

Situation: High winds can lift roofs from buildings.

Find: Explain why winds lift roofs rather than force them downward.

ANALYSIS

If a building has a flat roof as air flows over the top of the building separation will
occur at the sharp edge between the wall and roof. Therefore, most if not all of
the roof will be in the separation zone. Because the zone of separation will have a
pressure much lower than the normal atmospheric pressure a net upward force will
be exerted on the roof thus tending to lift the roof.
Even if the building has a peaked roof much of the roof will be in zones of separation.
These zones of separation will occur downwind of the peak. Therefore, peaked roof
buildings will also tend to have their roofs uplifted in high winds.
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PROBLEM 5.1

Situation: Water flows in a 25 cm diameter pipe. Q = 0.04 m3/s.

Find: Mean velocity: V

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

V = Q/A

= 0.04/(π/4× 0.252)
V = 0.815 m/s
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PROBLEM 5.2

Situation: Water flows in a 16 in pipe. V = 3 ft/s.

Find: Discharge in cfs and gpm.

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

Q = V A

= (3 ft/s)(π/4× 1.3332)
Q = 4.19 ft3/s

= (4.17 ft3/s)(449 gpm/ft3/s)

Q = 1880 gpm
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PROBLEM 5.3

Situation: Water flows in a 2 m diameter pipe. V = 4 m/s.

Find: Discharge in m3/s and cfs.

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

Q = V A

= (4)(π/4× 22)
Q = 12.6 m3/s

Q = (12.6 m3/s)(1/0.02832)(ft3/s)/(m3/s)

Q = 445 cfs
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PROBLEM 5.4

Situation: An 8 cm. pipe carries air, V = 20 m/s, T = 20oC, p = 200 kPa-abs.

Find: Mass flow rate: ṁ

ANALYSIS

Ideal gas law

ρ = p/RT

= 200, 000/(287× 293)
ρ = 2.378 kg/m3

Flow rate equation

ṁ = ρV A

= 2.378× 20× (π × 0.082/4)
ṁ = 0.239 kg/s
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PROBLEM 5.5

Situation: A 1 m pipe carries natural gas, V = 20 m/s, T = 15oC, p = 150 kPa-gage.

Find: Mass flow rate: ṁ

APPROACH

Apply the ideal gas law and the flow rate equation.

ANALYSIS

Ideal gas law

ρ = p/RT

= (101 + 150)103/((518)× (273 + 15))
= 1.682 kg/m3

Flow rate equation

ṁ = ρV A

= 1.682× 20× π × 0.52
ṁ = 26.4 kg/s
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PROBLEM 5.6

Situation: A pipe for an aircraft engine test has ṁ = 200 kg/s and V = 240 m/s.
p = 50 kPa-abs, T = −18 oC.

Find: Pipe diameter: D

APPROACH

Apply the ideal gas law and the flow rate equation.

ANALYSIS

Ideal gas law

ρ = p/RT

= (50× 103)/((287)(273− 18))
= 0.683 kg/m3

Flow rate equation
ṁ = ρAV

So

A = ṁ/(ρV )

= (200)/((0.683)(240))

= 1.22 m2

A = (π/4)D2 = 1.22

D = ((4)(1.22)/π)1/2

D = 1.25 m
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PROBLEM 5.7

Situation: Air flows in a rectangular air duct with dimensions 1.0×0.2 m. Q = 1100
m3/hr.

Find: Air velocity: V

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

V = Q/A

= 1, 100 (m3/hr)/3600 (sec/hr)/(1× 0.20) m2
V = 1.53 m/ s
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PROBLEM 5.8

Situation: In a circular duct the velocity profile is v(r) = Vo (1− r/R) , where Vo is
velocity at r = 0.

Find: Ratio of mean velocity to center line velocity: V̄ /Vo

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

Q =

Z
vdA

where dA = 2πrdr. Then

Q =

Z R

0

V0(1− (r/R))2πrdr
= V0(2π)((r

2/2)− (r3/(3R))) |R0
= 2πV0((R

2/2)− (R2/3))
= (2/6)πV0R

2

Average Velocity

V̄ =
Q

A
V̄

V0
=

Q

A

1

V0

=
(2/6)πV0R

2

πR2
1

V0

V̄ /Vo = 1/3
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PROBLEM 5.9

Situation: Water flows in a rectangular channel. The velocity profile is V (x, y) =
VS(1 − 4x2/W 2)(1 − y2/D2), where W and D are the channel width and depth,
respectively.

Find: An expression for the discharge: Q = Q(VS, D, W )

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

Q =

Z
V · dA =

Z Z
V (x, y)dxdy

=

Z W/2

−W/2

Z D

y=0

VS(1− 4x2/W 2)(1− y2/D2)dydx

Q = (4/9)VSWD
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PROBLEM 5.10

Situation: Water flows in a 4 ft pipe. The velocity profile is linear. The center line
velocity is Vmax = 15 ft/s. The velocity at the wall is Vmin = 12 ft/s.

Find: Discharge in cfs and gpm.

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

Q =

Z
A

V dA

=

Z r0

0

V 2πrdr

where V = Vmax − 3r/r0.

Q =

Z r0

0

(Vmax − (3r/r0))2πrdr
= 2πr20((Vmax/2)− (3/3))
= 2π × 4.00((15/2)− (3/3))

Q = 163.4 cfs

= 163.4× 449
Q = 73, 370 gpm
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PROBLEM 5.11

Situation: Water flows in a 2 m pipe. The velocity profile is linear. The center line
velocity is Vmax = 8 m/s and the velocity at the wall is Vmin = 6 m/s.

Find: (a) Discharge: Q
(b) Mean velocity: V

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

Q = 2πr20((Vmax/2)− (2/3)) (see problem 5.10 for derivation)

= 2π × 1((8/2)− (2/3))
Q = 20.94 m3/s

V = Q/A = 20.94/(π × 1)
V = 6.67 m/s
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PROBLEM 5.12

Situation: Air flows in a square duct with velocity profile shown in the figure.

Find: (a) Volume flow rate: Q
(b) Mean velocity: V
(c) Mass flow rate: ṁ (if density is 1.2 kg/m3)

ANALYSIS

dQ = V dA

dQ = (20y)dy

Q = 2

Z 0.5

0

V dA

= 2

Z 0.5

0

20ydy

= 40y2/2|0.50
= 20× 0.25

Q = 5 m3/s

V = Q/A

= (5 m3/s)/(1 m2)

V = 5 m/s

ṁ = ρQ

= (1.2 kg/m3)(5 m3/s)

ṁ = 6.0 kg/s
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PROBLEM 5.13

Situation: An open channel flow has a 30o incline. V = 18 ft/s. Vertical depth is 4
ft. Width is 25 ft.

Find: Discharge: Q

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

Q = V ×A

= 18× 4 cos 30◦ × 25
Q = 1, 560 cfs
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PROBLEM 5.14

Situation: An open channel flow has a 30o incline. Velocity profile is u = y1/3 m/s.
Vertical depth is 1 m. Width is 1.5 m.

Find: Discharge: Q

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

Q =

Z 0.866

0

y1/3(2 dy)

= 1.5

Z 0.866

0

y1/3dy

= (1.5/(4/3))y4/3|0.866 m0

Q = 0.93 m3/s

324



PROBLEM 5.15

Situation: Open channel flow down a 30o incline. Velocity profile is u = 10 (ey − 1)
m/s. Vertical depth is 1 m and width is 2 m.

Find: (a) Discharge: Q
(b) Mean velocity: V̄

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

Q =

Z 0.866

0

V dy

Q =

Z 0.866

0

(10)(ey − 1)2 dy
= [(2)(10)(ey − y)]0.8660

Q = 10.23 m3/s

V̄ = Q/A

= (10.23 m3/s)/(2× 0.866 m2)
V̄ = 5.91 m/s
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PROBLEM 5.16

Situation: Water (20o C, γ = 9790 N/m3) enters a weigh tank for 15 min. The
weight change is 20 kN.

Find: Discharge: Q

ANALYSIS

Q = V/∆t

= W/(γ∆t)

= 20, 000/(9790× 15× 60)
Q = 2.27× 10−3 m3/s

326



PROBLEM 5.17

Situation: Water enters a lock for a ship canal through 180 ports. Port area is 2× 2
ft. Lock dimensions (plan view) are 105 × 900 ft. The water in the lock rises at 6
ft/min.

Find: Mean velocity in each port: Vport

APPROACH

Apply the continuity principle.

ANALYSIS

Continuity principle X
VpAp = Vrise ×Arise

180× Vp × (2× 2) = (6/60)× (105× 900)
Vport = 13.1 ft/s
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PROBLEM 5.18

Situation: Water flows through a rectangular and horizontal open channel. The
velocity profile is u = umax(y/d)

n, where y is depth, umax = 3 m/s, d = 1.2 m, and
n = 1/6.

Find: (a) Discharge: q(m3/s per meter of channel width).
(b) Mean velocity: V

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

q =

Z d

0

umax(y/d)
ndy = umaxd/(n+ 1)

= 3× 1.2/((1/6) + 1)
q = 3.09 m2/s

V = q/d

= 3.09/1.2

V = 2.57 m/s
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PROBLEM 5.19

Situation: A flow with a linear velocity profile occurs in a triangular-shaped open
channel. The maximum velocity is 6 ft/s.

Find: Discharge: Q

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

Q =

Z
V dA

where V = 5y ft/s, dA = xdy = 0.5 ydy ft2

q =

Z 1

0

(6y)× (0.5ydy)
= (3y3/3)|10

q = 1 cfs
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PROBLEM 5.20

Situation: Flow in a circular pipe. The velocity profile is V = Vc(1− (r/ro))n.
Find: An expression for mean velocity of the form V = V (Vc, n).

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

Q =

Z
A

V dA

=

Z r0

0

Vc(1− (r/r20))n2πrdr

= −πr20Vc
Z ro

0

(1− (r/r0)2)n(−2r/r2o)dr

This integral is in the form ofZ U

0

undu = Un+1/(n+ 1)

so the result is

Q = −πr20Vc(1− (r/r0)2)n+1/(n+ 1)|r00
= (1/(n+ 1))Vcπr

2
0

V = Q/A

V = (1/(n+ 1))Vc
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PROBLEM 5.21

Situation: Flow in a pipe has a velocity profile of V = 12(1− r2/r2o)

Find: (a) Plot the velocity profile
(b) Mean velocity: V
(c) Discharge: Q

APPROACH

Apply the flow rate equation.

ANALYSIS

r/r0 1− (r/r0)2 V (m/s)
0.0 1.00 12.0
0.2 0.96 11.5
0.4 0.84 10.1
0.6 0.64 7.68
0.8 0.36 4.32
1.0 0.00 0.0

Q =

Z
A

V dA

=

Z r0

0

Vc(1− (r/r20))2πrdr

= −πr20Vc
Z ro

0

(1− (r/r0)2)(−2r/r2o)dr
= (1/2)Vcπr

2
0

V = Q/A

V = (1/2)Vc

V = 6 m/s
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Flow rate equation

Q = V A

= 6× π/4× 12
Q = 4.71 m3/s
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PROBLEM 5.22

Situation: Water (60 oF) flows in a 1.5 in. diameter pipe. ṁ = 80 lbm/min.

Find: Mean velocity: V

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

V = ṁ/ρA

V = (80/60)/
£
(62.37)× (π/4× (1.5/12)2)¤

V = 1.74 ft/s

333



PROBLEM 5.23

Situation: Water (20 oC) flows in a 20 cm diameter pipe. ṁ = 1000 kg/min.

Find: Mean velocity: V

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

V = ṁ/ρA

= (1, 000/60)/
£
(998)× (π/4× 0.202)¤

V = 0.532 m/s
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PROBLEM 5.24

Situation: Water (60 oF) enters a weigh tank for 10 min. The weight change is 4765
lbf.

Find: Discharge: Q in units of cfs and gpm

ANALYSIS

Q = V/∆t

= ∆W/(γ∆t)

= 4765/(62.37× 10× 60)
Q = 0.127 cfs

= 0.127× 449
Q = 57.0 gpm
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PROBLEM 5.25

Situation: Water (60 oF) flows in a 4 in. diameter pipe. V = 8 ft/s.

Find: (a) Discharge: Q in units of cfs and gpm
(b) Mass flow rate: ṁ

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

Q = V A

= 8(π/4× (4/12)2)
Q = 0.698 cfs

= 0.698× 449
Q = 313 gpm

Mass flow rate

ṁ = ρQ

= 1.94× 0.698
ṁ = 1.35 slugs/s

336



PROBLEM 5.26

Situation: As shown in the sketch below, two round plates, each with speed V , move
together. At the instant shown, the plate spacing in h. Air flows across section
A with a speed V 0. Assume V 0 is constant across section A. Assume the air has
constant density.

r

Find: An expression for the radial component of convective acceleration at section A.

APPROACH

Apply the continuity principle to the control volume defined in the problem sketch.

ANALYSIS

Continuity principle

ṁo − ṁi = −d/dt
Z
c.v.

ρdV–

ρV 0A0 = −(−2ρV A)
2V A = V 0A0

The control volume has radius r so

V 0 = 2V A/A0 = 2V (πr2)/(2πrh) = V r/h

Convective acceleration

ac = V 0∂/∂r(V 0)

= V r/h ∂/∂r(V r/h)

= V 2r/h2

ac = V 2D/2h2
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PROBLEM 5.27

As shown in the sketch below, two round plates, each with speed V , move together.
At the instant shown, the plate spacing in h. Air flows across section A with a speed
V 0. Assume V 0 is constant across section A. Assume the air has constant density.

r

Find: An expression for the radial component of local acceleration at section A.

APPROACH

Apply the continuity principle to the control volume defined in the problem sketch .

ANALYSIS

Continuity principle

ṁo − ṁi = −d/dt
Z
c.v.

ρdV–

ρV 0A0 = −(−2ρV A)
2V A = V 0A0

Control volume has radius r so

V 0 = 2V A/A0 = 2V (πr2)/(2πrh) = V r/h

Introducing time as a parameter

h = h0 − 2V t
so

V 0 = rV/(h0 − 2V t)
Local acceleration

∂V 0/∂t = ∂/∂t[rV (h0 − 2V t)−1] = rV (−1)(h0 − 2V t)−2(−2V )
∂V 0/∂t = 2rV 2/(h0 − 2V t)2

but h0 − 2V t = h and r = R so

∂V 0/∂t = 2RV 2/h2

∂V 0/∂t = DV 2/h2
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PROBLEM 5.28

Situation: Pipe flows A and B merge into a single pipe with area Aexit = 0.1 m2.
QA = 0.02t m3/s and QB = 0.008t

2 m3/s.

Find: (a) Velocity at the exit: Vexit
(b) Acceleration at the exit: aexit

Assumptions: Incompressible flow.

APPROACH

Apply the continuity principle.

ANALYSIS

Continuity principle

Qexit = QA +QB

Vexit = (1/Aexit)(QA +QB)

= (1/0.01 m2)(.02t m3/s + 0.008t2 m3/s)

= 2t m/s + 0.8t2 m/s

Then at t = 1 sec,
Vexit = 2.8 m/s

Acceleration

aexit =
∂V

∂t
+ V

∂V

∂x

Since V varies with time, but not with position, this becomes

aexit =
∂V

∂t
= 2 + 1.6t m/s

Then at t = 1 sec
aexit = 3.6 m/s2
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PROBLEM 5.29

Situation: Air flow downward through a pipe and then outward between to parallel
disks. Details are provided on the figure in the textbook.

Find: (a) Expression for acceleration at point A.
(b) Value of acceleration at point A.
(c) Velocity in the pipe.

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

Vr = Q/A = Q/(2πrh)

ac = Vr∂Vr/∂r

= (Q/(2πrh))(−1)(Q)/(2πr2h)
ac = −Q2/(r(2πrh)2)

When D = 0.1 m, r = 0.20 m, h = 0.005 m, and Q = 0.380 m3/s

Vpipe = Q/Apipe

= 0.380/((π/4)× 0.12)
Vpipe = 48.4 m/s

Then

ac = −(0.38)2/((0.2)(2π × 0.2× 0.005)2)
ac = −18, 288 m/s2
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PROBLEM 5.30

Situation: Air flow downward through a pipe and then outward between to parallel
disks as illustrated on figure in problem.

Find: (a) At t = 2 s, acceleration at point A: a2s
(b) At t = 3 s, acceleration at point A: a3s

ANALYSIS

ac = ∂V/∂t = ∂/∂t(Q/(2πrh))

ac = ∂/∂t(Q0(t/t0)/(2πrh))

ac = (Q0/t0)/2πrh

ac;2,3 = (0.1/1)/(2π × 0.20× 0.01) = 7.958 m/s2

From solution to Problem 5.29

ac = −Q2/(r(2πrh)2)

At t = 2s,Q = 0.2 m3/s

ac,2s = −1266 m/s2
a2s = ac + ac = 7.957− 1, 266

a2s = −1, 258 m/s2

At t = 3s, Q = 0.3 m3/s

ac,3s = −2, 850 m/s2
a3s = −2, 850 + 7.957

a3s = −2, 840 m/s2
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PROBLEM 5.31

Situation: Water flows into a tank through a pipe on the side and then out the bottom
of the tank with velocity

√
2gh. Water rising in tank at 0.1 cm/s.

Find: Velocity in the inlet: Vin

APPROACH

Apply the continuity principle. Let the control surface surround the liquid in the
tank and let it follow the liquid surface at the top.

ANALYSIS

Continuity principle

ṁo − ṁi = − d

dt

Z
cv

ρd∀

−ρVinAin + ρVoutAout = − d

dt
(ρAtankh)

−VinAin + VoutAout = −Atank(dh/dt)
−Vin(.0025) +

p
2g(1)(.0025) = −0.1(0.1)× 10−2

Vin =

√
19.62(.0025) + 10−4

0.0025

Vin = 4.47 m/s
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PROBLEM 5.32

Situation: A bicycle tire (∀ = 0.04 ft3) is inflated with air at an inlet flow rate of
Qin = 1 cfm and a density of 0.075 lbm/ft3. The density of the air in the inflated
tire is 0.4 lbm/ft3.

Find: Time needed to inflate the tire: t

APPROACH

Apply the continuity principle. Select a control volume surrounding the air within
tire.

ANALYSIS

Continuity principle

(ρQ)in =
d

dt
Mcv

This equation may be integrated to give

(ρQ)in t =MCV

or

t =
MCV

(ρQ)in

=
0.04× 0.4

0.075× (1/60)
t = 12.8 s
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PROBLEM 5.33

Situation: Conditions in two flow cases are described in the problem statement.

Find: (a) Value of b.
(b) Value of dBsys/dt.
(c) Value of

P
bρV ·A

(d) Value of d/dt
R
cv bρdV–

ANALYSIS

Case (a) Case (b)
1) b = 1 1) B = 1

2) dBsys/dt = 0 2) dBsys/dt = 0
3)

P
bρV ·A =P ρV ·A 3)

P
bρV ·A =P ρV ·A

= −2× 12× 1.5 = 2× 1× 2
= −36 slugs/s −1× 2× 2 = 0

4) d/dt
R
cv bρdV– = +36 slugs/s 4) d/dt

R
cv bρdV– = 0
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PROBLEM 5.34

Situation: Mass is flowing into and out of a tank

Find: Select the statement that is true.

ANALYSIS

Mass flow out

ṁo = (ρAV )2

= 2× 0.2× 5
= 2 kg/s

Mass flow in

ṁi = (ρAV )1

= 3× 0.1× 10
= 3 kg/s

Only selection (b) is valid.
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PROBLEM 5.35

Situation: The level in the tank (see below) is influenced by the motion of pistons A
and B. Each piston moves to the left. VA = 2VB

Find: Determine whether the water level is rising, falling or staying the same.

APPROACH

Apply the continuity principle. Select a control volume as shown above. Assume it
is coincident with and moves with the water surface.

ANALYSIS

Continuity principle

ṁo − ṁi = −d/dt
Z
cv
ρdV–

ρ2VBAA − ρVBAB = −ρd/dt
Z
cv
dV–

where AA = (π/4)3
2;AB = (π/4)6

2 and AA = (1/4)AB. Then

2VB(1/4)AB − VBAB = −d/dt
Z
CV

dV

VBAB((1/2)− 1) = −d/dt
Z
CV

dV–

d/dt

Z
CV

dV– = (1/2)VBAB

d/dt(Ah) = (/12)VBAB

Adh/dt = (1/2)VBAB

Because (1/2)VBAB is positive dh/dt is positive; therefore, one concludes that the
water surface is rising.
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PROBLEM 5.36

Situation: A piston in a cylinder is moving up and control consists of volume in
cylinder.

Find: Indicate which of the following statements are true.

ANALYSIS

a) True b) True c) True d) True e) True
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PROBLEM 5.37

Situation: A control volume is described in the problem statement.

Find: (a) Value of b.
(b) Value of dBsys/dt.
(c) Value of

P
bρV ·A.

(d) Value of d/dt
R
bρdV–.

ANALYSIS

a) b = 1.0

b) dBsys/dt = 0

c)
X

bρV ·A =
X

ρV ·AX
ρV ·A = (1.5 kg/m3)(−10 m/s)(π/4)× (0.04)2 m2

+ (1.5 kg/m3)(−6 m/s)(π/4)× (0.04)2 m2
+ (1.2 kg/m3)(6 m/s)(π/4)× (0.06)2 m2
= −0.00980 kg/s

d) Because
X

bρV ·A+ d/dt

Z
bρdV– = 0

Then d/dt

Z
bρdV– = −

X
bρV ·A

or d/dt
R
bρdV− = +0.00980 kg/s (mass is increasing in tank)

348



PROBLEM 5.38

Situation: A plunger moves downward in a conical vessel filled with oil. At a certain
instant in time, the upward velocity of the oil equals the downward velocity of the
plunger.

Find: Distance from the bottom of the vessel: y

ANALYSIS

Select a control volume surrounding the liquid. The rate at which volume of fluid is
displaced upward is

Vup(D
2 − d2)(π/4)

From the continuity principle

Vdown × πd2/4 = Vup(D
2 − d2)π/4

2d2 = D2

D =
√
2d

But y/D = 24d/2d so D = y/12 so

y = 12
√
2d
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PROBLEM 5.39

Situation: A 6 in. diameter cylinder falls at a speed VC = 3 ft/s. The container
diameter is 8 in.

Find: Mean velocity (VT ) of the liquid in the space between the cylinder and the wall.

APPROACH

Apply continuity principle and let the c.s. be fixed except at the bottom of the
cylinder where the c.s. follows the cylinder as it moves down.

ANALYSIS

Continuity principle

0 = d/dt

Z
ρdV–+ ṁo − ṁi

0 = d/dt(V–)+ VTAA

0 = VCAC + VT (π/4)(8
2 − 62)

0 = −3× (π/4)62 + VT (π/4)(8
2 − 62)

VT = 108/(64− 36)
VT = 3.86 ft/s (upward)
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PROBLEM 5.40

Situation: A round tank (D = 4 ft) is being filled with water from a 1 ft diameter
pipe. In the pipe, V = 10 ft/s

Find: Rate at which the water surface is rising: VR

APPROACH

Apply the continuity principle and let the c.s. move up with the water surface in the
tank.

ANALYSIS

Continuity principle

0 = d/dt

Z
CV

ρdV–+ ṁo − ṁi

0 = d/dt(hAT )− ((10 + VR)Ap)

where AT = tank area, VR =rise velocity and Ap =pipe area.

0 = ATdh/dt− 10Ap − VRAp

but dh/dt = VR so

0 = ATVR − 10Ap − VRAp

VR = (10Ap)/(AT −Ap) = 10(π/4)(1
2)/((π/4)42 − (π/4)12)

VR = (2/3) ft/s
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PROBLEM 5.41

Situation: An 8 in. sphere is falling at 4 ft/s in a 1 ft diameter cylinder filled with
water

4

Find: Velocity of water at the midsection of the sphere

APPROACH

Apply the continuity equation.

ANALYSIS

As shown in the above sketch, select a control volume that is attached to the falling
sphere. Relative to the sphere, the velocity entering the control volume is V1 and the
velocity exiting is V2
Continuity equation

−d/dt
Z
CV

ρdV = 0 = ṁi − ṁo

A1V1 = A2V2

(π × 1.02/4)× 4 = V2π(1.0
2 − .672)/4

V2 = 7.26 fps

The velocity of the water relative to a stationary observer is

V = V2 − Vsphere

V = 7.26− 4.0
= 3.26 ft/s
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PROBLEM 5.42

Situation: Air flows in a rectangular duct. Q = 1.44 m3/s.

Find: (a) Air speed for a duct of dimensions 20× 50 cm: V1
(b) Air speed for a duct of dimensions 10× 40 cm: V2
APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

V1 = Q/A1

= 1.44/(0.2× 0.5)
V1 = 14.4 m/s

V2 = 1.44/(0.1× 0.4)
V2 = 36.0 m/s
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PROBLEM 5.43

Situation: Flow (Q = 0.3 m3/s) enters a pipe that has an inlet diameter of 30 cm.
Outlet diameters are 20 and 15 cm. Each outlet branch has the same mean velocity.

Find: Discharge in each outlet branch: Q20 cm, Q15 cm

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

V = 0.3/(π/4)(0.22 + 0.152)

= 6.11 m/s

Q20 cm = V A20

= 6.11× (π × 0.1× 0.1)
Q20 cm = 0.192 m3/s

Q15 cm = V A15

= 6.11× (π × 0.075× 0.075)
Q15 cm = 0.108 m3/s
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PROBLEM 5.44

Situation: Flow (Q = 0.3 m3/s) enters a pipe that has an inlet diameter of 30 cm.
Outlet diameters are 20 and 15 cm. In the larger outlet (20 cm) the flow rate is twice
that in the smaller outlet (15 cm).

Find: Mean velocity in each outlet branch: V15, V20

ANALYSIS

Continuity principle
Qtot. = 0.30 m3/s = Q20 +Q15

Since Q20 = 2Q15

0.30 = 2Q15 +Q15

Q15 = 0.10 m3/s;

Q20 = 0.20 m3/s;

Flow rate equation

V15 = Q15/A15

V15 = 5.66 m/s

V20 = 0.20/A20

V20 = 6.37 m/s
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PROBLEM 5.45

Situation: Water flows through an 8 in. diameter pipe that is in series with a 6 in
pipe. Q = 898 gpm.

Find: Mean velocity in each pipe: V6, V8

APPROACH

Apply the flow rate equation.

ANALYSIS

Flow rate equation

Q = 898 gpm = 2 cfs

V8 = Q/A8

= 2/(π × 0.667× 0.667/4)
V8 = 5.72 fps

V6 = Q/A6

= 2/(π × 0.5× 0.5/4)
V6 = 10.19 fps
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PROBLEM 5.46

Situation: Water flows through a tee as shown in figure in the textbook.

Find: Mean velocity in outlet B: VB

APPROACH

Apply the continuity principle.

ANALYSIS

Continuity principle

VB = (VAAA − VcAc)/AB

= [(6× π/4× 42)− (4× π/4× 22)]/(π/4× 42)
VB = 5.00 m/s
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PROBLEM 5.47

Situation: Gas flows in a round conduit which tapers from 1.2 m to 60 cm. Details
are provided on the figure with the problem statement.

Find: Mean velocity at section 2: V2

APPROACH

Apply the continuity principle.

ANALYSIS

Continuity principle

V2 = (ρ1A1V1)/(ρ2A2)

= (ρ1D
2
1V1)/(ρ2D

2
2)

= (2.0× 1.22 × 15)/(1.5× 0.62)
V2 = 80.0 m/s
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PROBLEM 5.48

Situation: Pipes A and B are connected to an open tank with surface area 80 ft2.
The flow rate in pipe A is QA = 8 cfm, and the level in the tank is rising at a rate of
1.0 in./min.

Find: (a) Discharge in pipe B: QB

(b) If flow in pipe B entering or leaving the tank.

APPROACH

Apply the continuity principle. Define a control volume as shown in the above sketch.
Let the c.s. move upward with the water surface.

ANALYSIS

Continuity principle

0 = d/dt

Z
CV

ρdV–+
X

ρV ·A
0 = Adh/dt+QB −QA

QB = QA −A dh/dt

= 8− (80)(1.0/12)
QB = +1.33 cfm

Because QB is positive flow is leaving the tank through pipe B.
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PROBLEM 5.49

Situation: A tank with one inflow and two outflows indicated by diagram with prob-
lem statement.

Find: (a) Is the tank filling or emptying.
(b) Rate at which the tank level is changing: dh

dt

ANALYSIS

Inflow = 10× π × 22/144 = 0.8727 cfs
Outflow = (7× π × 32/144) + (4× π × 1.52/144) = 1.571 cfs
Outflow > Inflow, Thus, tank is emptying

dh

dt
= −Q/A
= −(1.571− 0.8727)/(π × 32)

dh
dt
= −0.0247 ft/s
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PROBLEM 5.50

Situation: The sketch shows a tank filled with water at time t = 0 s.

Find: (a) At t = 22 s, if the the water surface will be rising or falling.
(b) Rate at which the tank level is changing: dh

dt

APPROACH

Apply the continuity principle. Define a control volume in which the control surface
(c.s.) is coincident with the water surface and moving with it.

ANALYSIS

Continuity principle

d/dt

Z
cv

ρdV– = ṁi − ṁo

d/dt(ρAh) = (ρAV )in − (ρAV )out
d/dt(ρAh) = ρ(π/4× 12)(1) + ρ(π/4× 0.52)(2)

Adh/dt = (π/4)− (π/8)
Adh/dt = (π/8)

Since Adh/dt > 0, the water level must be rising. While the water column occupies
the 12 in. section, the rate of rise is

dh/dt = (π/8) /A

= π/(8× π/4× 12)
= 1/2 ft/s

Determine the time it takes the water surface to reach the 2 ft. section:

10 = (dh/dt)t;

t = (10)/(1/2) = 20 secs.

Therefore, at the end of 20 sec. the water surface will be in the 2 ft. section. Then
the rise velocity will be:
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dh/dt = π/(8A)

= π/(8× π/4× 22)
dh/dt = 1/8 ft/sec
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PROBLEM 5.51

Situation: A lake is fed by one inlet, Qin = 1000 cfs. Evaporation is 13 cfs per square
mile of lake surface. Lake surface area is A(h) = 4.5+5.5h, where h is depth in feet.

Find: (a) Equilibrium depth of lake.
(b) The minimum discharge to prevent the lake from drying up.

Assumptions: Equilibrium.

APPROACH

Apply the continuity principle.

ANALYSIS

Continuity principle

QEvap. = Qin.¡
13 ft3/s/mi2

¢
(4.5 + 5.5h) mi2 = 1, 000 ft3/s

Solve for depth h :
h = 13.2 ft. at equilibrium

The lake will dry up when h = 0 and QEvap. = Qin.. For h = 0,

13(4.5 + 5.5× 0) = Qin.

Lake will dry up when Qin. = 58.5 ft3/s
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PROBLEM 5.52

Situation: A nozzle discharges water (Qo = 5 cfs) onto a plate moving towards the
nozzle. Plate speed equals half the jet speed.

Find: Rate at which the plate deflects water: Qp

APPROACH

Apply the continuity principle. Select a control volume surrounding the plate and
moving with the plate.

ANALYSIS

Continuity principle
Qin = Qp

Reference velocities to the moving plate. Let Vo be the speed of the water jet relative
to the nozzle. From the moving plate, the water has a speed of Vo + 1/2Vo = 3Vo/2.
Thus

Qp = Qin

= VinAo

= (3Vo/2) (Ao) = (3/2) (VoAo)

= (3/2)Qo

Qp = 7.5 cfs
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PROBLEM 5.53

Situation: A tank with a depth h has one inflow (Q = 20 ft3/s) and one outflow
through a 1 ft diameter pipe. The outflow velocity is

√
2gh.

Find: Equilibrium depth of liquid.

APPROACH

Apply the continuity principle and the flow rate equation.

ANALYSIS

Continuity principle

Qin. = Qout at equilibrium

Qout = 20 ft3/ s

Flow rate equation

Qout = VoutAout

20 = (
p
2gh)(π/4× d2out) where d = 1 ft.

Solving for h yields
h = 10.1 ft.
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PROBLEM 5.54

Situation: Flows with different specific weights enter a closed tank through ports A
and B and exit the tank through port C. Assume steady flow. Details are provided
on figure with problem statement.

Find: At section C:
(a) Mass flow rate.
(b) Average velocity.
(c) Specific gravity of the mixture.

Assumptions: Steady state.

APPROACH

Apply the continuity principle and the flow rate equation.

ANALYSIS

Continuity principle X
ṁi −

X
ṁo = 0

−ρAVAAA − ρBVBAB + ρCVCAC = 0

ρCVCAC = 0.95× 1.94× 3 + 0.85× 1.94× 1
ṁ = 7.18 slugs/s

Continuity principle, assuming incompressible flow

VCAC = VAAA + VBAB

= 3 + 1 = 4 cfs

Flow rate equation

VC = Q/A = 4/[π/4(1/2)2]

=20.4 ft/s

ρC = 7.18/4 = 1.795 slugs/ft3

S = 1.795/1.94

S = 0.925
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PROBLEM 5.55

Situation: O2 and CH4 enter a mixer, each with a velocity of 5 m/s. Mixer conditions:
200 kPa-abs., 100 oC. Outlet density: ρ = 2.2 kg/m3. Flow areas: 1 cm2 for the
CH4, 3 cm2 for the O2, and 3 cm2 for the exit mixture.

Find: Exit velocity of the gas mixture: Vexit

APPROACH

Apply the ideal gas law to find inlet density. Then apply the continuity principle.

ANALYSIS

Ideal gas law

ρ02 = p/RT

= 200, 000/(260× 373)
= 2.06 kg/m3

ρCH4
= 200, 000/(518× 373)
= 1.03 kg/m3

Continuity principleX
ṁi =

X
ṁo

ρeVeAe = ρO2VO2AO2 + ρCH4VCH4ACH4
Ve = (2.06× 5× 3 + 1.03× 5× 1)/(2.2× 3)

Ve = 5.46 m/s
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PROBLEM 5.56

Situation: A 10 m3 tank is filled with air from a compressor with mass flow rate
ṁ = 0.5ρo/ρ and initial density is 2 kg/m

3.

Find: Time to increased the density of the air in the tank by a factor of 2.

APPROACH

Apply the continuity principle.

ANALYSIS

Continuity principle

ṁo − ṁi = − d

dt

Z
CV

ρd∀
−d/dt(ρ∀) = −ṁi

∀(dρ/dt) = 0.5ρ0/ρ

Separating variables and integrating

ρdρ = 0.5ρ0dt/∀
ρ2/2|f0 = 0.5ρ0∆t/∀

(ρ2f − ρ20)/2 = 0.5ρ0∆t/∀
∆t = ∀ρ0

¡
(ρ2f/ρ

2
0)− 1

¢
= 10(2)(22 − 1)

∆t = 60s
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PROBLEM 5.57

Situation: A tire (volume 0.5 ft3) develops a slow leak. In 3 hr, the pressure drops
from 30 to 25 psig. The leak rate is ṁ = 0.68pA/

√
RT , where A is the area of the

hole. Tire volume and temperature (60 oF) remain constant. patm = 14 psia.

Find: Area of the leak.

APPROACH

Apply the continuity principle.

ANALYSIS

Continuity principle
ṁout = −d/dt(ρV–)

Ideal gas law
ρ = p/RT

Combining previous 2 equations

ṁout = −(V–/RT )(dp/dt)

Let ṁout = 0.68A/
√
RT in the above equation

0.68pA/
√
RT = −(V–/RT )(dp/dt)

Separating variables and integrating

(1/p)(dp/dt) = −(0.68A
√
RT )/V–

cn(p0/p) = (0.68A
√
RTt)/V–

Finding area

A = (V–/0.68t
√
RT )cn(p0/p)

= (0.5/[(0.68× 3× 3, 600)
p
1, 716× 520]cn(44/39)

A = 8.69× 10−9 ft2 = 1.25× 10−6 in2
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PROBLEM 5.58

Situation: An O2 bottle (18 oC) leaks oxygen through a small orifice (d = 0.15
mm). As time progresses, the pressure drops from 10 to 5 MPa, abs. The leak rate
is ṁ = 0.68pA/

√
RT , where A is the area of the orifice.

Find: Time required for the specified pressure change.

APPROACH

Apply the continuity principle and the ideal gas law.

ANALYSIS

Continuity principle
ṁout = −d/dt(ρV–)

Ideal gas law
ρ = p/RT

Combining previous 2 equations

ṁout = −(V–/RT )(dp/dt)

Let ṁout = 0.68A/
√
RT in the above equation

0.68pA/
√
RT = −(V–/RT )(dp/dt)

Separating variables and integrating

(1/p)(dp/dt) = −(0.68A
√
RT )/V–

cn(p0/p) = (0.68A
√
RTt)/V–

Finding time

t = (V–/0.68A
√
RT )cn(p0/p)

= 0.1cn(10/5)/(0.68(π/4)(1.5× 10−4)2√260× 291) = 21, 000 s
t = 5h 50 min.
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PROBLEM 5.59

Situation: A 60-cm tank is draining through an orifice. The water surface drops
from 3 to 0.3 m.

Find: Time required for the water surface to drop the specified distance (3 to 0.5 m).

ANALYSIS

From example 5-7 the time to decrease the elevation from h1 to h is

t = (2AT/
p
2gA2)(h

1/2
1 − h1/2)

= 2× (π/4× 0.62)(√3−√0.53)/(√2× 9.81×(π/4)× 0.032)
t = 185 s
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PROBLEM 5.60

Situation: A cylindrical drum of water is emptying through a pipe on the bottom.

D = 2 ft., R = 1 ft.,V =
p
2gh;L = 4 ft.

d = 2 in. = 0.167 ft., h0 = 1 ft.

Find: Time to empty the drum.

APPROACH

Apply the continuity principle. Let the control surface surround the water in the
tank. Let the c.s. be coincident with the moving water surface. Thus, the control
volume will decrease in volume as the tank empties. Let y denote elevation, and
situate the origin at the bottom of the tank.

ANALYSIS

Continuity principle

ṁo − ṁi = −d/dt
Z
cv
ρd∀

+ρV A = −d/dt
Z
cv
ρd∀ (1)

ρ
p
2ghA = −ρd/dt(∀) (2)

dt
p
2ghA = −d∀ (3)

Let d∀ = −L(2x)dy. Substituted into Eq. (3) we have
dt
p
2ghA = 2Lxdy (4)

But h can be expressed as a function of y:

h = R− y

or
dt
p
2g(R− y)A = 2Lxdy

Also

R2 = x2 + y2

x =
p
y2 −R2 =

p
(y −R)(y +R)

dt
p
2g(R− y)A = 2L

p
(y −R)(y +R)dy

dt = (2L/(
p
2gA))

p
(y +R)dy (5)

Integrate Eq. (5)

t|t0 = (2L/(
p
2gA))

Z R

0

p
R+ ydy

= (2L/(
p
2gA))[(2/3)(R+ y)3/2]R0

t = (2L/(
p
2gA))(2/3)((2R)3/2 −R3/2)
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For R = 1
t = (2L/(

p
2gA))(2/3)(23/2 − 1) (6)

In Eq. (5) A = (π/4)d2 = 0.0219 ft2. Therefore

t = (2× 4/
√
64.4× 0.0219))(2/3)(1.828)

t = 55.5 s

COMMENTS The above solution assumes that the velocity of water is uniform
across the jet just as it leaves the tank. This is not exactly so, but the solution
should yield a reasonable approximation.

373



PROBLEM 5.61

Situation: A pipe with discharge 0.03 ft3/s fills a funnel. Exit velocity from the
funnel is Ve =

√
2gh, and exit diameter is 1 in. Funnel section area is AS = 0.1h

2.

Find: Level in funnel at steady state: h

APPROACH

Apply the continuity principle.

ANALYSIS

Continuity principle (steady state)

ṁin = ṁout

or
ρQ = ρAe

p
2gh

Solving for h gives

h =
1

2g

µ
Q

Ae

¶2
=

1

2× 32.2
µ

.03

π/4× (1/12)2
¶2

h = 0.47 ft
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PROBLEM 5.62

Situation: Water drains from a pressurized tank. Tank section area: 1 m2.

Exit velocity: Ve =
q

2p
ρ
+ 2gh. Exit area: 10 cm3.

Supply pressure: p = 10 kPa. Initial tank level: ho = 2 m.

Find: Time for the tank to empty
(a) with given supply pressure.
(b) if supply pressure is zero.

APPROACH

Apply the continuity principle. Define a control surface coincident with the tank
walls and the top of the fluid in the tank.

ANALYSIS

Continuity principle

ρ
dV

dt
= −ρAeVe

Density is constant. The differential volume is Adh so the above equation becomes

−Adh

AeVe
= −dt

or

− Adh

Ae

q
2p
ρ
+ 2gh

= dt

Integrating this equation gives

− A

Ae

1

g

µ
2p

ρ
+ 2gh

¶1/2
|0ho= ∆t

or

∆t =
A

Ae

1

g

"µ
2p

ρ
+ 2gho

¶1/2
−
µ
2p

ρ

¶1/2#
and for A = 1 m2, Ae = 10

−3 m2, ho = 2 m, p = 10 kPa and ρ = 1000 kg/m3 results
in

∆t = 329 s or 5.48 min (supply pressure of 10 kPa)

For zero pressure in the tank, the time to empty is

∆t =
A

Ae

s
2ho
g
=639 s or

∆t = 10.65 min (supply pressure of zero)
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PROBLEM 5.63

Situation: A tapered tank drains through an orifice at bottom of tank. The water
velocity in the orifice is

√
2gh. Dimensions of tank provided in the problem statement.

Find: (a) Derive a formula for the time to drain.
(b) Calculate the time to drain.

APPROACH

Apply the continuity principle.

ANALYSIS

From continuity principle

Q = −AT (dh/dt)

dt = −ATdh/Q

where Q =
√
2ghAj =

√
2gh(π/4)d2j

AT = (π/4)(d+ C1h)
2 = (π/4)(d2 + 2dC1h+ C2

1h
2)

dt = −(d2 + 2dC1h+ C1h
2)dh/(

p
2gh1/2d2j)

t = −
Z h

h0

(d2 + 2dC1h+ C2
1h

2)dh/(
p
2gh1/2d2j)

t = (1/(d2j
p
2g))

Z h0

h

(d2h−1/2 + 2dC1h1/2 + C2
1h

3/2)dh

t = (2/(d2j
p
2g))

£
d2h1/2 + (2/3)dC1h

3/2 + (1/5)C2
1h

5/2
¤h0
h

Evaluating the limits of integration gives

t = (2/(d2j
p
2g))

h
(d2(h

1/2
0 − h1/2) + (2/3)dC1(h

3/2
0 − h3/2) + (1/5)C2

1(h
5/2
0 − h5/2)

i
Then for h0 = 1 m, h = 0.20 m, d = 0.20 m, C1 = 0.3, and dj = 0.05 m

t = 13.6 s
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PROBLEM 5.64

Situation: Water drains out of a trough and water velocity at bottom of trough is√
2gh. Trough dimensions are provided in the problem statement.

Find: (a) Derive a formula for the time to drain to depth h.
(b) Calculate the time to drain to 1/2 of the original depth.

APPROACH

Apply the continuity principle.

ANALYSIS

Continuity principle

ṁo − ṁi = −d/dt
Z
C.V.

ρdV–

ρ
p
2ghAe = −d/dt

Z
C.V.

ρdV–

Mass of water in control volume = ρB×Face area

M = ρB(W0h+ h2 tanα)

Then

ρ
p
2ghAe = −d/dt ρB(W0h+ h2 tanα)p
2ghAe = −BW0(dh/dt)− 2Bh tanα(dh/dt)

dt = (1/(
p
2gAe))(−BW0h

−1/2dh− 2B tanαh1/2dh)

Integrate

t = (1/
p
2gAe)

Z h

h0

−BW0h
−1/2dh− 2B tanαh1/2dh

t = (1/(
p
2gAe))(−2BW0h

1/2 − (4/3)B tanαh3/2)hh0
t = (

√
2Bh

3/2
0 /(
√
gAe))((W0/h0)(1− (h/h0)0.5) + (2/3) tanα(1− (h/h0)1.5))

For W0/h0 = 0.2, α = 30
◦, Aeg

0.5/(h1.50 B) = 0.01 sec.−1 and h/h0 = 0.5 we get

t = 43.5 seconds
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PROBLEM 5.65

Situation: Water drains out of a spherical tank. Tank diameter: 1 m. Hole diameter:
1 cm.
Exit velocity: Ve =

√
2gh. At time zero, the tank is half full.

Find: Time required to empty the tank.

APPROACH

Apply the continuity principle. Select a control volume that is inside of the tank and
level with the top of the liquid surface.

ANALYSIS

Continuity principle

ρ
d∀
dt
= −ρAeVe

Let
d∀
dt
=

d(Ah)

dt
= A

dh

dt

Continuity becomes
dh

dt
= −Ae

A

p
2gh

The cross-sectional area in terms of R and h is

A = π[R2 − (R− h)2] = π(2Rh− h2)

Substituting into the differential equation gives

π(−2Rh+ h2)

Ae

√
2gh

dh = dt

or
π√
2gAe

¡−2Rh1/2 + h3/2
¢
dh = dt

Integrating this equation results in

π√
2gAe

µ
−4
3
Rh3/2 +

2

5
h5/2

¶
|0R= ∆t

Substituting in the limits yields

π√
2gAe

14

15
R5/2 = ∆t

For R = 0.5 m and Ae = 7.85× 10−5 m2, the time to empty the tank is
∆t = 1491 s or 24.8 min
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PROBLEM 5.66

Situation: A tank containing oil is described in the problem statement.

Find: Predict the depth of the oil with time for a one hour period.

ANALYSIS

The numerical solution provides the following results:

Time, min

0 10 20 30 40 50 60 70

D
ep

th
, m

1

2

3

4

5

6
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PROBLEM 5.67

Situation: An end-burning rocket motor has chamber diameter of 10 cm and nozzle
exit diameter of 8 cm. Propellant density is 1800 kg/m3 and regression rate is 1 cm/s.
Pressure and temperature at exit plane are 10 kPa abs and 2000oC. Gas constant is
415 J/kgK.

Find: Gas velocity at nozzle exit plane: Ve

APPROACH

Apply the continuity principle and the ideal gas law.

ANALYSIS

Ideal gas law

ρe = p/RT

= 10, 000/(415× 2273) = 0.0106 kg/m3

The rate of mass decease of the solid propellant is ρpAcṙ where ρp is the propellant
density, Ac is the chamber cross-sectional area and ṙ is the regression rate. This is
equal to the mass flow rate supplied to the chamber or across the control surface.
From the continuity principle

Ve = ρpAcṙ/ (ρeAe)

= 0.01× 1, 750× (π/4× 0.12)/ £0.0106× ¡π/4× 0.082¢¤
Ve = 2, 850 m/s
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PROBLEM 5.68

Situation: An cylindrical-port rocket motor has internal diameter of 20 cm. Propel-
lant with density of 2000 kg/m3 regresses at 1.2 cm/s. Inside propellant diameter is
12 cm and length is 40 cm. Diameter of rocket exit is 20 cm and velocity is 2000 m/s.

Find: Gas density at the exit: ρe

ANALYSIS

Ag = πDL+ 2(π/4)(D2
0 −D2)

= π × 0.12× 0.4 + (π/2)(0.22 − 0.122) = 0.191 m2
ρe = VgρgAg/(VeAe) = 0.012× 2, 000× 0.191/(2, 000× (π/4)× (0.20)2)

ρe = 0.073 kg/m
3
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PROBLEM 5.69

Situation: Mass flow through rocket nozzle is ṁ = 0.65pcAt/
√
RTc and regression

rate is ṙ = apnc . Operates at 3.5 MPa and n = 0.3.

Find: (a) Derive a formula for chamber pressure.
(b) Calculate the increase in chamber pressure if a crack increases burn area by 20%.

APPROACH

Apply the flow rate equation.

ANALYSIS

Continuity principle. The mass flux off the propellant surface equals flow rate through
nozzle.

ρpṙAg = ṁ

ρpap
n
cAg = 0.65pcAt/

p
RTc

p1−nc = (aρp/0.65)(Ag/At)(RTc)
1/2

pc = (aρp/0.65)
1/(1−n)(Ag/At)

1/(1−n)(RTc)1/(2(1−n))

∆pc = 3.5(1 + 0.20)1/(1−0.3)

∆pc = 4.54 MPa

382



PROBLEM 5.70

Situation: A piston moves in a cylinder and drives exhaust gas out an exhaust port
with mass flow rate ṁ = 0.65pcAv/

√
RTc. Bore is 10 cm and upward piston velocity

is 30 m/s. Distance between piston and head is 10 cm. Valve opening 1 cm2, pressure
300 kPa abs, chamber temperature 600oC and gas constant 350 J/kgK.

Find: Rate at which the gas density is changing in the cylinder: dρ/dt

Assumptions: The gas in the cylinder has a uniform density and pressure. Ideal gas.

ANALYSIS

Continuity equation. Control volume is defined by piston and cylinder.

d/dt(ρV ) + 0.65pcAv/
p
RTc = 0

V–dρ/dt+ ρdV–/dt+ 0.65pcAv/
p
RTc = 0

dρ/dt = −(ρ/V–) dV–/dt− 0.65pcAv/V–
p
RTc

V– = (π/4)(0.1)2(0.1) = 7.854× 10−4 m3
(dV–/dt) = −(π/4)(0.1)2(30) = −0.2356 m3/s

ρ = p/RT = 300, 000/(350× 873)
= 0.982 kg/m3

dρ/dt = −(0.982/7.854× 10−4)× (−0.2356)
− 0.65× 300, 000× 1× 10

−4

7.854× 10−4 ×√350× 873
dρ/dt = 250 kg/m3·s
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PROBLEM 5.71

Situation: The flow pattern through a pipe contraction is described in the problem
statement. Discharge of water is 70 cfs and pressure at point A is 3500 psf.

Find: Pressure at point B.

APPROACH

Apply the Bernoulli equation and the continuity principle.

ANALYSIS

Continuity principle

VA = Q/AA = 70/(π/4× 62) = 2.476 ft/s
VB = Q/AB = 70/(π/4× 22) = 22.28 ft/s

Bernoulli equation

pA/γ + V 2
A/2g + zA = pB/γ + V 2

B/2g + zB

pB/γ = 3500/62.4− 2.482/64.4− 22.282/64.4− 4
pB = 2775 lbf/ft2

pB = 19.2 lbf/in2
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PROBLEM 5.72

Situation: The flow of water through a pipe contraction is described in the problem
statement. Velocity at point E is 50 ft/s and pressure and velocity at point C are 15
psi and 10 ft/s.

Find: Pressure at point E.

APPROACH

Apply the Bernoulli equation.

ANALYSIS

Bernoulli equation Bernoulli equation applicable since flow steady, irrotational and
non-viscous.

pC/γ + V 2
C/(2g) + zC = pE/γ + V 2

E/(2g) + zE

(15× 144)/γ + 102/(2g) + zc = pE/γ + 50
2/(2g) + zE

pE/γ = ((15× 144)/γ) + (1/2g)(102 − 502) + zc − zE

pE = 15× 144 + (62.4/64.4)(−2, 400)) + 62.4(3− 1)
= 2, 160 psf − 2, 325 psf+ 125 psf

pE = −40 psf = −0.28 psi
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PROBLEM 5.73

Situation: An annular venturimeter is mounted in a pipe with air flow at standard
conditions. The pipe diameter is 4 in. and the ratio of the diameter of the cylindrical
section to the pipe is 0.8. A pressure difference of 2 in. of water is measured between
the pipe and cylindrical section. The flow is incompressible, inviscid and steady.

Find: Find the volume flow rate

APPROACH

Apply the Bernoulli equation.

ANALYSIS

Take point 1 as upstream in pipe and point 2 in annular section. The flow is incom-
pressible, steady and inviscid so the Bernoulli equation applies

p1 + γz1 + ρ
V 2
1

2
= p2 + γz2 + ρ

V 2
2

2

Also z1 = z2. From the continuity equation

A1V1 = A2V2

But
A2 =

π

4
(D2 − d2)

so

A2
A1

= 1− d2

D2

= 1− 0.82
= 0.36

Therefore
V2 =

V1
0.36

= 2.78V1

Substituting into the Bernoulli equation

p1 − p2 =
ρ

2
(V 2
2 − V 2

1 )

=
ρ

2
V 2
1 (2.78

2 − 1)
= 3.36ρV 2

1

The standard density is 0.00237 slug/ft3 and the pressure difference is

∆p =
2

12
62.4

= 10.4 psf
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Solving for V1

V 2
1 =

10.4

3.36× 0.00237
= 1306

V1 = 36.14 ft/s

The discharge is

Q = A1V1

= 36.14× π

4
×
µ
4

12

¶2
= 3.15 cfs

Q=189.2 cfm
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PROBLEM 5.74

Situation: A venturi-type applicator is used to spray liquid fertilizer. The exit-throat
area ratio is 2 and the exit diameter is 1 cm. Flow in venturi is 10 lpm. The entrance
to the feed tube is 10 cm below venturi throat the level in the container is 5 cm above
the entrance to the feed tube. The flow rate in the feed tube is 0.5

√
∆h in lpm and

∆h is the difference in piezometric head in meters. The liquid fertilizer has same
density as water.

Find: a) The flow rate of liquid fertilizer and b) the mixture ratio of fertilizer to water
at exit.

APPROACH

Use the continuity and Bernoulli equation to find the pressure at the throat and use
this pressure to find the difference in piezometric head and flow rate.

ANALYSIS

The Bernoulli equation is applicable between stations 1 (the throat) and 2 (the exit).

p1
γ
+ z1 +

V 2
1

2g
=

p2
γ
+ z2 +

V 2
2

2g

From the continuity equation

V1 =
A2
A1

V2

= 2V2

Also z1 = z2 so

p1
γ
− p2

γ
=

V 2
2

2g
(1− 22)

= −3V
2
2

2g

At the exit p2 = 0 (gage)
p1
γ
= −3V

2
2

2g

The flow rate is 10 lpm or

Q = 10 lpm× 1 min
60 s

× 10
−3 m3

1 l
= 0.166× 10−3 m3/s

The exit diameter is 1 cm so

A2 =
π

4
0.012

= 7.85× 10−5 m2
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The exit velocity is

V2 =
Q

A2
=
0.166× 10−3
7.85× 10−5

= 2.12 m/s

Therefore

p1
γ

= −3× 2.122

2× 9.81
= −0.687 m

Let point 3 be the entrance to the feed tube. Then

∆h = h3 − h1

=
p3
γ
+ z3 − (p1

γ
+ z1)

=
p3
γ
− p1

γ
+ (z3 − z1)

= 0.05− (−0.687)− 0.1
= 0.637 m

a) The flow rate in the feed tube is

Qf = 0.5
√
0.637

Qf=0.40 lpm

b) Concentration in the mixture

Ql

Ql +Qw
=

0.4

10 + 0.4

Ql

Ql+Qw
=0.038 (or 3.8%)
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PROBLEM 5.75

Situation: Cavitation in a venturi section with inlet diameter of 40 cm and throat
diameter of 10 cm. Upstream pressure is 120 kPa gage and atmospheric pressure is
100 kPa. Water temperature is 10oC.

Find: Discharge for incipient cavitation.

APPROACH

Apply the continuity principle and the Bernoulli equation.

ANALYSIS

Cavitation will occur when the pressure reaches the vapor pressure of the liquid
(pV = 1, 230 Pa abs).
Bernoulli equation

pA + ρV 2
A/2 = pthroat + ρV 2

throat/2

where VA = Q/AA = Q/((π/4)× 0.402)
Continuity principle

Vthroat = Q/Athroat = Q/((π/4)× 0.102)
ρ/2(V 2

throat − V 2
A) = pA − pthroat

(ρQ2/2)[1/((π/4)× 0.102)2 − 1/[((π/4)× 0.402)2]
= 220, 000− 1, 230

500Q2(16, 211− 63) = 218, 770
Q = 0.165 m3/s
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PROBLEM 5.76

Situation: Air with density 0.0644 lbm/ft3 flows upward in a vertical venturi with
area ratio of 0.5. Inlet velocity is 100 ft/s. Two pressure taps connected to manometer
with fluid specific weight of 120 lbf/ft3.

Find: Deflection of manometer.

Assumptions: Uniform air density.

APPROACH

Apply the Bernoulli equation from 1 to 2 and then the continuity principle. Let
section 1 be in the large duct where the manometer pipe is connected and section 2
in the smaller duct at the level where the upper manometer pipe is connected.

ANALYSIS

Continuity principle

V1A1 = V2A2

V2 = V1(A1/A2)

= 100(2)

= 200 ft/s

Bernoulli equation

pz1 + ρV 2
1 /2 = pz2 + ρV 2

2 /2

pz1 − pz2 = (1/2)ρ(V 2
2 − V 2

1 )

= (1/2)(0.0644/32.2)(40, 000− 10, 000)
= 30 psf

Manometer equation

pz1 − pz2 = ∆h(γliquid − γair)

30 = ∆h(120− .0644)

∆h = 0.25 ft.
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PROBLEM 5.77

Situation: An atomizer utilizing a constriction in an air duct is described in the
problem statement.

Find: Design an operable atomizer.

ANALYSIS

Assume the bottom of the tube through which water will be drawn is 5 in. below the
neck of the atomizer. Therefore if the atomizer is to operate at all, the pressure in
the necked down portion must be low enough to draw water 5 in. up the tube. In
other words pneck must be −(5/12)γwater = −26 psfg. Let the outlet diameter of the
atomizer be 0.5 in. and the neck diameter be 0.25 in. Assume that the change in
area from neck to outlet is gradual enough to prevent separation so that the Bernoulli
equation will be valid between these sections. Thus

pn + ρV 2
n /2 = p0 + ρV 2

0 /2

were n and 0 refer to the neck and outlet sections respectively. But

pn = −26 psfg and p0 = 0

or
−26 + ρV 2

0 /2 = ρV 2
0 /2 (1)

VnAn = V0A0

Vn = V0A0/An (2)

= V0(.5/.25)
2

Vn = 4V0

Eliminate Vn between Eqs. (1) and (2)

−26 + ρ(4V0)
2/2 = ρV 2

0 /2

−26 + 16ρV 2
0 /2 = ρV 2

0 /2

15ρV 2
0 /2 = 26

V0 = ((52/15)/ρ)1/2

Assume ρ = 0.0024 slugs/ft2

V0 = ((52/15)/0.0024)1/2

= 38 ft/s

Q = V A = 38× (π/4)(.5/12)2
= .052 cfs

= 3.11 cfm

One could use a vacuum cleaner (one that you can hook the hose to the discharge
end) to provide the air source for such an atomizer.
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PROBLEM 5.78

Situation: A suction device based on a venturi is described in the problem statement.
Suction cup is 1 m below surface and venturi 1 m above. Throat area id 1/4 of exit
area and exit area is 0.001 m2. Cup area is 0.1 m2 and water temperature is 15oC.

Find: (a) Velocity of water at exit for maximum lift.
(b) Discharge.
(c) Maximum load supportable by suction cup.

Properties: From Table A.5 pv(15◦) = 1, 700 Pa.
From Table A.5 ρ = 999 kg/m3.

APPROACH

Apply the Bernoulli equation and the continuity principle.

ANALYSIS

Venturi exit area, Ae,= 10−3 m2, Venturi throat area, At = (1/4)Ae, Suction cup
area, As = 0.1 m2

patm = 100 kPa

Twater = 15◦ C

Bernoulli equation for the Venturi from the throat to exit with the pressure at the
throat equal to the vapor pressure of the water. This will establish the maximum
lift condition. Cavitation would prevent any lower pressure from developing at the
throat.

pv/γ + V 2
t /2g + zt = pe/γ + V 2

emax/2g + ze (1)

Continuity principle

VtAt = VeAe

Vt = Ve(Ae/At) (2)

Vt = 4Ve

Then Eq. (1) can be written as

1, 700/γ + (4Vemax)
2/2g = 100, 000/γ + V 2

emax/2g

Vemax = ((1/15)(2g/γ)(98, 300))1/2

= ((1/15)(2/ρ)(98, 300))1/2

Vemax = 3.62 m/s

Qmax = VeAe

= (3.62 m/s)(10−3m2)

Qmax = 0.00362 m3/s
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Find pressure in the suction cup at the level of the suction cup.

pt + γ∆h = psuction

psuction = 1, 700 Pa+ 9,800× 2
= 21, 300 Pa

But the pressure in the water surrounding the suction cup will be patm + γ × 1 =
(100 + 9.80) kPa, or

pwater − psuction = (109, 800− 21, 300) Pa
= 88, 500 Pa

Thus the maximum lift will be:

Liftmax = ∆pAs = (pwater − psuction)As

= (88, 500 N/m2)(0.1 m2)

Liftmax = 8, 850 N
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PROBLEM 5.79

Situation: A hovercraft is supported by air pressure.

Find: Air flow rate necessary to support the hovercraft.

APPROACH

Apply the Bernoulli equation.

ANALYSIS

The pressure differential necessary to support the hovercraft is

∆pA = Wt

∆p = 2000 lbf/(15× 7) ft2
= 19.05 psfg

Bernoulli equation applied between the flow under the skirt (1) and chamber under
the hovercraft (2). Assume atmospheric pressure where flow exits under skirt. Also
assume the air density corresponds to standard conditions.

p1 + ρ
V 2
1

2
= p2 + ρ

V 2
2

2

ρ
V 2
1

2
= p2 − p1

V1 =

s
2(p2 − p1)

ρ

=

s
2× 19.05 psf

0.00233 slugs/ft3

= 127.9 ft/s

The discharge is

Q = V A

= 127.9 ft/s× 44 ft× 0.25 ft
= 1407 cfs

Q=84,400 cfm
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PROBLEM 5.80

Situation: Water forced out of a cylinder by a piston travelling at 5 ft/s. Cylinder
diameter is 4 in and throat is 2 in.

Find: Force required to drive piston.

APPROACH

Apply the Bernoulli equation and the continuity principle.

ANALYSIS

Continuity principle

V1A1 = V2A2

V2 = V1(D/d)2 = 5× (4/2)2 = 20 ft/s

Bernoulli equation

p1/γ + V 2
1 /2g = V 2

2 /2g

p1 =
ρ

2
(V 2
2 − V 2

1 )

= 1.94× (202 − 520
= 364 psf

Then

Fpiston = p1A1 = 364× (π/4)× (4/12)2
F=31.7 lbf
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PROBLEM 5.81

Situation: A jet of water flowing from a 0.5 ft diameter nozzle with discharge of 20
cfs.

Find: Gage pressure in pipe.

APPROACH

Apply the Bernoulli equation.

ANALYSIS

Bernoulli equation

p1/γ + V 2
1 /2g + z1 = pj/γ + V 2

j /2g + zj

where 1 and j refer to conditions in pipe and jet, respectively

V1 = Q/A1

= 20/((π/4)× 1.02) = 25.5 ft/s
VjAj = V1A1;Vj = V1A1/Aj

Vj = 25.5× 4 = 102 ft/s

Also z1 = zj and pj = 0. Then

p1/γ = (V 2
j − V 2

1 )2g

p1 = γ(V 2
j − V 2

1 )/2g

= 62.4(1022 − 25.52)/64.4
= 9, 451 psfg

p1 = 65.6 psig
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PROBLEM 5.82

Situation: Airflow past a sphere is described in problem 4.19 with Uo = 30 m/s and
ρ = 1.2 kg/m3.

Find: Pressure in the air at x = ro, 1.1ro and 2ro.

APPROACH

Apply the Bernoulli equation.

ANALYSIS

Bernoulli equation

p0 + ρV 2
0 /2 = px + ρV 2

x /2

where p0 = 0 gage. Then

px = (ρ/2)(V 2
0 − V 2

x )

Vx = u = U0(1− r30/x
3)

Vx=r0 = U0(1− 1) = 0
Vx=r0 = U0(1− 1/1.13) = 7.46 m/s
Vx=2r0 = U0(1− 1/23) = 26.25 m/s

Finally

px=r0 = (1.2/2)(303 − 0) = 540 Pa, gage

px=1.1r0 = (1.2/2)(302 − 7.462) = 507 Pa, gage

px=2r0 = (1.2/2)(302 − 26.252) = 127 Pa, gage
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PROBLEM 5.83

Situation: An elbow meter is described in the problem statement where velocity varies
as V = K/r.

Find: (a) Develop an equation for the discharge.
(b) Evaluate the coefficient f(r1/r2).

ANALYSIS

V = K/r

Q =

Z
V dA =

Z
V Ldr = L

Z
(K/r)dr = KLcn(r2/r1) (1)

∆p = (1/2)ρ(V 2
1 − V 2

2 )

∆p = (1/2)ρ((K2/r21)− (K2/r22)) = (K
2ρ/2)((r22)− (r21))/(r21r22) (2)

Eliminate K between Eqs. (1) and (2) yielding:

(2∆p/ρ) = ((Q2)/(L2(cn(r2r1))
2))(r22 − r21)/(r

2
1r
2
2)

Ac = L(r2 − r1)

∴ 2∆p/ρ = (Q2/A2c)(r2 − r1)
2(r22 − r21)/(r

2
1r
2
2(cn(r2/r1))

2)

Q = Ac

p
2∆p/ρ(r1r2cn(r2/r1))/((r2 − r1)(r

2
2 − r21)

0.5)

Q = Ac

p
2∆p/ρ((r2/r1)cn(r2/r1))/((r2/r1 − 1)((r22/r21)− 1)0.5)

For r2/r1 = 1.5 the f(r2/r1) is evaluated

f(r2/r1) = 1.5cn1.5/(0.5× 1.250.5)
f(r2/r1) = 1.088
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PROBLEM 5.84

Situation: A 1 ft diameter sphere moves at 10 ft below surface in water at 50oF.

Find: Speed at which cavitation occurs.

APPROACH

Apply the Bernoulli equation between the freestream and the maximum width.

ANALYSIS

Let po be the pressure on the streamline upstream of the sphere. The minimum
pressure will occur at the maximum width of the sphere where the velocity is 1.5
times the free stream velocity.
Bernoulli equation

po +
1

2
ρV 2

o + γho = p+
1

2
ρ(1.5Vo)

2 + γ(ho + 0.5)

Solving for the pressure p gives

p = po − 0.625ρV 2
o − 0.5γ

The pressure at a depth of 10 ft is 624 lbf/ft2. The density of water is 1.94 slugs/ft3

and the specific weight is 62.4 lbf/ft3. At a temperature of 50oF, the vapor pressure
is 0.178 psia or 25.6 psfa. Substituting into the above equation

25.6 psfa = 624 psfa− 0.625× 1.94× V 2
o − 0.5× 62.4

567.2 = 1.21V 2
o

Solving for Vo gives

Vo = 21.65 ft/s
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PROBLEM 5.85

Situation: A hydrofoil is tested in water at 10oC. Minimum pressure on foil is 70 kPa
abs when submerged 1.8 m and moving at 8 m/s.

Find: Speed that cavitation occurs.

Assumptions: patm = 101 kPa abs; pvapor = 1, 230 Pa abs.

APPROACH

Consider a point ahead of the foil (at same depth as the foil) and the point of minimum
pressure on the foil, and apply the pressure coefficient definition between these two
points.

ANALYSIS

Pressure coefficient
Cp = (pmin − p0)/(ρV

2
0 /2)

where

p0 = patm + 1.8γ = 101, 000 + 1.8× 9, 810 = 118, 658 Pa abs.
pmin = 70, 000 Pa abs; V0 = 8 m/s

Then
Cp = (70, 000− 118, 658)/(500× 82) = −1.521

Now use Cp = −1.521 (constant) for evaluating V for cavitation where pmin is now
pvapor:

−1.521 = (1, 230− 118, 658)/((1, 000/2)V 2
0 )

V0 = 12.4 m/s
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PROBLEM 5.86

Situation: A hydrofoil is tested in water at 10oC. Minimum pressure on foil is 70 kPa
abs when submerged 1.8 m and moving at 8 m/s.

Find: Speed that cavitation begins when depth is 3 m.

APPROACH

Same solution procedure applies as in Prob. 5.85.

ANALYSIS

From the solution to Prob. 5.85, we have the same Cp, but p0 = 101, 000 + 3γ =
130, 430. Then:

−1.521 = (1, 230− 130, 430)/((1, 000/2)V 2
0 )

V0 = 14.37 m/s
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PROBLEM 5.87

Situation: Hydrofoil is tested in water at 50oF. Minimum pressure on foil is 2.5 psi
vacuum when submerged 4 ft and moving at 20 ft/s.

Find: Speed that cavitation begins.

APPROACH

Consider a point ahead of the foil (at same depth as the foil) and the point of minimum
pressure on the foil, and apply the pressure coefficient definition between these two

ANALYSIS

pmin = −2.5× 144 = −360 psf gage
p0 = 4γ = 4× 62.4 = 249.6 psf

Then

Cp = (pmin − p0)/(ρV
2
0 /2) = (−360− 249.6)/((1.94/2)× 202)

Cp = −1.571
Now let pmin = pvapor = 0.178 psia = −14.52 psia = −2, 091 psfg
Then

−1.571 = −(249.6 + 2, 091)/((1.94/2)V 2
0 )

V0 = 39.2 ft/s

403



PROBLEM 5.88

Situation: Hydrofoil is tested in water at 50oF. Minimum pressure on foil is 2.5 psi
vacuum when submerged 4 ft and moving at 20 ft/s..

Find: Speed that cavitation begins when depth is 10 ft.

APPROACH

Same solution procedure applies as in Prob. 5.87.

ANALYSIS

From solution of Prob. 5.87 we have Cp = −1.571 but now p0 = 10γ = 624 psf. Then:

−1.571 = −(624 + 2, 091)/((1.94/2)V 2
0 )

V0 = 42.2 ft/s
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PROBLEM 5.89

Situation: A sphere moving in water at depth where pressure is 18 psia. Maximum
velocity on sphere is 1.5 freestream velocity. Water density is 62.4 lbm/ft3 and tem-
perature is 50oF.

Find: Speed at which cavitation occurs.

Properties: From Table A.5 pv(50◦) = 0.178 psia.

APPROACH

Apply the Bernoulli equation between a point in the free stream to the 90◦ position
where V = 1.5V0. The free stream velocity is the same as the sphere velocity
(reference velocities to sphere).

ANALYSIS

Bernoulli equation

ρV 2
0 /2 + p0 = p+ ρ(1.5V0)

2/2

where p0 = 18 psia

ρV 2
0 (2.25− 1)/2 = (18− 0.178)(144)

V 2
0 = 2(17.8)(144)/((1.25)(1.94)) ft2/s2

V0 = 46.0 ft/sec
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PROBLEM 5.90

Situation: Minimum pressure on cylinder moving 5 m/s horizontally in water at 10oC
at depth of 1 m is 80 kPa abs. Atmospheric pressure is 100 kPa.

Find: Velocity at which cavitation occurs.

Properties: From Table A.5 pv(10◦C) = 1, 230 Pa.

APPROACH

Apply the definition of pressure coefficient.

ANALYSIS

Pressure coefficient

Cp = (p− p0)/(ρV
2
0 /2)

p0 = 100, 000 + 1× 9, 810 Pa = 109, 810 Pa
p = 80, 000 Pa

Thus Cp = −2.385

For cavitation to occur p = 1, 230 Pa

−2.385 = (1, 230− 109, 810)/(1, 000V 2
0 /2)

V0 = 9.54 m/s
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PROBLEM 5.91

Situation: A velocity field is defined by u = V (x3 + xy2) and v = V (y3 + yx2).

Find: Is continuity satisfied?

APPROACH

Apply the continuity principle.

ANALYSIS

Continuity equation

(∂u/∂x) + (∂v/∂y) + (∂w/∂z) = V (3x2 + y2) + V (3y2 + x2) + 0

6= 0 Continuity is not satisfied
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PROBLEM 5.92

Situation: A velocity field is given as u = y/(x2 + y2)3/2 and v = −x/(x2 + y2)3/2.

Find: (a) Check if continuity is satisfied.
(b) Check if flow is rotational or irrotational

ANALYSIS

∂u/∂x+ ∂v/∂y = −3xy/(x2 + y2)5/2 + 3xy/(x2 + y2)5/2

= 0 Continuity is satisfied

∂u/∂y − ∂v/∂x = −3y2/(x2 + y2)5/2 + 1/(x2 + y2)3/2

= 3x2/(x2 + y2)5/2 + 1/(x2 + y2)3/2

6= 0 Flow is not irrotational
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PROBLEM 5.93

Situation: A u-component of a velocity field is u = Axy.

Find: (a) What is a possible v-component?
(b) What must the v-component be if the flow is irrotational?

ANALYSIS

u = Axy

∂u/∂x+ ∂v/∂y = 0

Ay + ∂v/∂y = 0

∂v/∂y = −Ay
v = (−1/2)Ay2 + C(x)

for irrotationality

∂u/∂y − ∂v/∂x = 0

Ax− ∂v/∂x = 0

∂v/∂x = Ax

v = 1/2Ax2 + C(y)

If we let C(y) = −1/2Ay2 then the equation will also satisfy continuity.

v = 1/2A(x2 − y2)
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PROBLEM 6.1

Situation: A balloon is held stationary by a force F.
Data: d = 15 mm, v = 50 m/s, ρ = 1.2 kg/m3

Find: Force required to hold balloon stationary: F

Assumptions: Steady flow, constant density.

APPROACH

Apply the momentum principle.

ANALYSIS

Force and momentum diagrams (x-direction terms)

Momentum principle (x-direction)X
Fx =

X
cs

ṁovox −
X
cs

ṁivix

F = ṁv

= ρAv2

= (1.2)

µ
π × 0.0152

4

¶
(502)

F = 0.53 N
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PROBLEM 6.2

Situation: A balloon is held stationary by a force F.
Pressure inside the balloon: p = 8 in.-H2O = 1990 Pa
d = 1 cm, ρ = 1.2 kg/m3

Find: (a)x-component of force required to hold balloon stationary: F
(b)exit velocity: v

Assumptions: Steady, irrotational, constant density flow.

APPROACH

To find the exit velocity, apply the Bernoulli equation. To find the force, apply the
momentum principle.

ANALYSIS

Force and momentum diagrams (x-direction terms)

Bernoulli equation applied from inside the balloon to nozzle exit

p/ρ = v2/2

v =
p
2p/ρ =

p
2× 1990/1.2

v = 57.6 m/ s

Momentum principle (x-direction)X
Fx =

X
cs

ṁovox −
X
cs

ṁivix

F = ṁv = ρAv2 = (1.2)
¡
π × 0.012/4¢ (57.62)

F = 0.31N
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PROBLEM 6.3

Situation: A water jet is filling a tank. The tank mass is 5 kg.
The tank contains 20 liters of water.
Data for the jet: d = 30 mm, v = 15 m/s, T = 15 oC.

Find: (a) Force on the bottom of the tank: N
(b) Force acting on the stop block: F

Properties: Water—Table A.5: ρ = 999 kg/m3, γ = 9800N/m3.

Assumptions: Steady flow.

APPROACH

Apply the momentum principle in the x-direction and in the y-direction.

ANALYSIS

Force and momentum diagrams

Momentum principle (x-direction)X
Fx =

X
cs

ṁovox −
X
cs

ṁivix

F = −(−ṁv cos 70o)

= ρAv2 cos 70o

Calculations

ρAv2 = (999)

µ
π × 0.032

4

¶
(152)

= 158.9 N

F = (158.9 N) (cos 70o)

= 54.3N

F = 54.3N acting to right
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y-direction X
Fy =

X
cs

ṁovoy −
X
cs

ṁiviy

N −W = −(−ṁv sin 70o)

N = W + ρAv2 sin 70o

Calculations:

W = Wtank +Wwater

= (5) (9.81) + (0.02)(9800)

= 245.1 N

N = W + ρAv2 sin 70o

= (245.1 N) + (158.9 N) sin 70o

N = 149 N acting upward
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PROBLEM 6.4

Situation: Water jet is filling a tank. Friction acts on the bottom of the tank. Tank
mass is 25 lbm; tank contains 5 gallons of water.
Jet: d = 2 in., v = 50 ft/s, T = 70 oF.

Find: Minimum coefficient of friction (µ) so force on stop block is zero.

Assumptions: Steady flow, constant density, steady and irrotational flow.

APPROACH

Apply the momentum principle in the x- and y-directions.

ANALYSIS

Force and momentum diagrams

Momentum principle (y-direction)X
Fy =

X
cs

ṁovoy −
X
cs

ṁiviy

N −W = −(−ṁv sin 70o)

N = W + ρAv2 sin 70o

Momentum principle (x-direction)

µN = −(−ṁv cos 70o) = ρAv2 cos 70o

µ =
(ρAv2 cos 70o)

N
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Calculations

ρAv2 = (1.94)
¡
π × (1/12)2¢ (502)

= 105.8 lbf

WH20 = γV–

= (62.37)(5)/(7.481)

= 41.75 lbf

W = (41.75 + 25) lbf

= 66.7 lbf

N = 66.7 + 105.8× sin 70o =
166.2 lbf

µ =
105.8× cos 70o

166.2

µ = 0.22
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PROBLEM 6.5

Situation: A design contest features a submarine powered by a water jet.
Speed of the sub is Vsub = 1.5m/ s.
Inlet diameter is D1 = 25mm. Nozzle diameter is D2 = 5mm.
Hydrodynamic drag force (FD) can be calculated using

FD = CD

µ
ρV 2

sub

2

¶
Ap

Coefficient of drag is CD = 0.3. Projected area is Ap = 0.28m
2.

Find: Speed of the fluid jet (Vjet).

Properties: Water—Table A.5: ρ = 999 kg/m3.

Assumptions: Assume steady flow so that the accumulation of momentum term is
zero.

APPROACH

The speed of the fluid jet can be found from the momentum principle because the
drag force will balance with the net rate of momentum outflow.

ANALYSIS

Momentum equation. Select a control volume that surrounds the sub. Select a
reference frame located on the submarine. Let section 1 be the outlet (water jet)
and section 2 be the inlet. The momentum equation isX

F =
X
cs

ṁovo −
X
cs

ṁivi

FDrag = ṁ2v2 − ṁ1v1x

By continuity, ṁ1 = ṁ2 = ρAjetVjet. The outlet velocity is v2 = Vjet. The x-
component of the inlet velocity is v1x = Vsub. The momentum equation simplifies
to
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FDrag = ρAjetVjet(Vjet − Vsub)

The drag force is

FDrag = CD

µ
ρV 2

sub

2

¶
Ap

= 0.3

Ã
(999 kg/m3) (1.5m/ s)2

2

!¡
0.28m2

¢
= 94.4N

The momentum equation becomes

FDrag = ρAjetVjet [Vjet − Vsub]

94.4N =
¡
999 kg/m3

¢ ¡
1.96× 10−5m2¢Vjet [Vjet − (1.5m/ s)]

Solving for the jet speed gives
Vjet = 70.2m/ s

COMMENTS

1. The jet speed (70.2 m/s) is above 150 mph. This present a safety issue. Also,
this would require a pump that can produce a large pressure rise.

2. It is recommended that the design be modified to produce a lower jet velocity.
One way to accomplish this goal is to increase the diameter of the jet.
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PROBLEM 6.6

Situation: Horizontal round jet strikes a plate.
Water at 70oF, ρ = 1.94 slug/ft3, Q = 2 cfs.
Horizontal component of force to hold plate stationary: Fx = 200 lbf

Find: Speed of water jet: v1

APPROACH

Apply the momentum principle to a control volume surrounding the plate.

ANALYSIS

Force and momentum diagrams

Momentum principle (x-direction)

X
Fx = −ṁv1x

Fx = −(−ṁv1) = ρQv1

v1 =
Fx

ρQ

=
200

1.94× 2

v1 = 51.5 ft/ s
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PROBLEM 6.7

Situation: Horizontal round jet strikes a plate.
Water at 70 oF, ρ = 1.94 slug/ft3.
Pressure at A is pA = 25 psig.
Horizontal component of force to hold plate stationary: Fx = 500 lbf

Find: Diameter of jet: d

APPROACH

Apply the Bernoulli equation, then the momentum principle.

ANALYSIS

Force and momentum diagrams

Bernoulli equation applied from inside of tank to nozzle exit

pA/ρ = v21/2

v1 =

r
2pA
ρ

=

r
2× 25× 144

1.94
= 60.92 ft/s

Momentum principle (x-direction)
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X
Fx = −ṁv1x

Fx = −(−ṁv1) = ρAv21

A =
Fx

ρv21
=

500

1.94× 60.922
A = 0.0694 ft2

d =
p
4A/π

=
p
4× 0.0694/π

d = 0.30 ft
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PROBLEM 6.8

Situation: An engineer is designing a toy to create a jet of water.
Force F1 is the force needed to move the piston.
Force F2 is the force to hold the handle stationary.
Cylinder diameter is D = 80mm. Nozzle diameter is d = 15mm.
Piston speed is Vpiston = 300mm/ s.

Find: (a) Which force (F1 versus F2) is larger? Explain your answer using concepts
of the momentum principle.
(b) Calculate F1.
(c) Calculate F2.

Assumptions: 1.) Neglect friction between the piston and the wall. (2.) Assume the
Bernoulli equation applies (neglect viscous effects; neglect unsteady flow effects).

Properties: Table A.5 (water at 20 ◦C): ρ = 998 kg/m3.

APPROACH

To find the larger force, recognize that the net force must be in the direction of accel-
eration. To solve the problem, apply the momentum equation, continuity equation,
equilibrium equation, and the Bernoulli equation.

ANALYSIS

Finding the larger force (F1 versus F2). Since the fluid is accelerating to the right
the net force must act to the right. Thus, F1 is larger than F2. This can also be
seen by application of the momentum equation.

Momentum equation (x-direction) applied to a control volume surrounding the toy.

X
Fx = ṁvout

F1 − F2 = ṁvout

F1 − F2 = ρ

µ
πd2

4

¶
V 2
out (1)

Notice that Eq. (1) shows that F1 > F2.
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Continuity equation applied to a control volume situated inside the toy.

Qin = Qoutµ
πD2

4

¶
Vpiston =

µ
πd2

4

¶
Vout

Vout = Vpiston
D2

d2

= (0.3m/ s)

µ
80mm

15mm

¶2
Vout = 8.533m/ s

Bernoulli equation applied from inside the toy to the nozzle exit plane.

pinside +
ρV 2

piston

2
=

ρV 2
out

2

pinside =
ρ
¡
V 2
out − V 2

piston

¢
2

=
(998 kg/m3)

¡
(8.533m/ s)2 − (0.3m/ s)2¢

2
= 36.29 kPa

Equilibrium applied to the piston (the applied force F1 balances the pressure force).

F1 = pinside

µ
πD2

4

¶
= (36290Pa)

Ã
π (0.08m)2

4

!
F1 = 182N

Momentum principle (Eq. 1)

F2 = F1 − ρ

µ
πd2

4

¶
V 2
out

= 182N− ¡998 kg/m3¢Ãπ (0.015m)2

4

!
(8.533m/ s)2

F2 = 169N

COMMENTS

1. The force F1 is only slightly larger than F2.

2. The forces (F1 and F2) are each about 40 lbf. This magnitude of force may be
too large for users of a toy. Or, this magnitude of force may lead to material
failure (it breaks!). It is recommended that the specifications for this product
be modified.
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PROBLEM 6.9

Situation: Water jet from a fire hose on a boat.
Diameter of jet is d = 3 in., speed of jet is V = 70 mph = 102.7 ft/s.

Find: Tension in cable: T

Properties: Table A.5 (water at 50 ◦F): ρ = 1.94 slug/ ft3.

APPROACH

Apply the momentum principle.

ANALYSIS

Force and momentum diagrams

Flow rate

ṁ = ρAV

=
¡
1.94 slug/ ft3

¢ ¡
π × (1.5/12 ft)2¢ (102.7 ft/ s)

= 9.78 slug/ s

Momentum principle (x-direction)

X
F = ṁ (vo)x

T = ṁV cos 60o

T = (9.78 slug/ s)(102.7 ft/ s) cos 60o

= 502. 2 lbf

T = 502 lbf
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PROBLEM 6.10

Situation: Water jet (5 oC) from a fire hose on a boat with velocity, v = 50 m/s, and
density, ρ = 1000 kg/m3.
Allowable load on cable: T = 5.0 kN.

Find: (a) Mass flow rate of jet: ṁ
(b)Diameter of jet: d

APPROACH

Apply the momentum principle to find the mass flow rate. Then, calculate diameter
using the flow rate equation.

ANALYSIS

Force and momentum diagrams

Momentum principle (x-direction)

X
F = ṁ (vo)x

T = ṁv cos 60o

ṁ = T/ (v cos 60o) = 5000/(50× cos 60o)
ṁ = 200 kg/ s

Flow rate

ṁ = ρAv = ρπd2v/4

d =

s
4ṁ

ρπv

=

r
4× 200

1000× π × 50
= 7. 136× 10−2m
d = 7.14 cm
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PROBLEM 6.11

Situation: Water (60 oF) flows through a nozzle.
d1 = 3 in, d2 = 1 in., p1 = 2000 psfg, p2 = 0 psfg

Find: (a) Speed at nozzle exit: v2
(b) Force to hold nozzle stationary: F

Assumptions: Neglect weight, steady flow.

APPROACH

Apply the continuity principle, then the Bernoulli equation, and finally the momen-
tum principle.

ANALYSIS

Force and momentum diagrams

Continuity principle

A1v1 = A2v2

v1 = v2

µ
d2
d1

¶2
(1)

Bernoulli equation applied from 1 to 2

p1
ρ
+

v21
2
=

v22
2

(2)

Combining Eqs. (1) and (2)

p1 = ρ

µ
v22
2

¶Ã
1−

µ
d2
d1

¶4!

2000 = 1.94×
µ
v22
2

¶
×
Ã
1−

µ
1

3

¶4!
v2 = 45.69 ft/s

From Eq. (1)

v1 = v2

µ
d2
d1

¶2
= 45.69×

µ
1

3

¶2
= 5.077 ft/s
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Flow rate

ṁ1 = ṁ2 = ṁ

= (ρAv)2

= 1.94×
Ã
π

4
×
µ
1.0

12

¶2!
× 45.69

= 0.4835 slug/s

Momentum principle (x-direction)

X
Fx = ṁ [(vo)x − (vi)x]

F + p1A1 = ṁ (v2 − v1)

F = −p1A1 + ṁ (v2 − v1)

F = −(2000 lbf/ ft2)×
Ã
π

4
×
µ
3

12

¶2!
ft2

+(0.4835 slug/ s)× (45.69− 5.077) ft/ s
= −78.5 lbf

Force on nozzle = 78.5 lbf to the left
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PROBLEM 6.12

Situation: Water (15 oC) flows through a nozzle, ρ = 999 kg/m3.
d1 = 10 cm., d2 = 2 cm., v2 = 25 m/s.

Find: (a)Pressure at inlet: p1
(b)Force to hold nozzle stationary: F

Assumptions: Neglect weight, steady flow, p2 = 0 kPa-gage.

APPROACH

Apply the continuity principle, then the Bernoulli equation, and finally the momen-
tum principle.

ANALYSIS

Force and momentum diagrams

Continuity principle

A1v1 = A2v2

v1 = v2 (d2/d1)
2

= 25× (2/10)2
= 1.0 m/s

ṁ1 = ṁ2

= (ρAv)2

= 999×
µ
π × 0.022

4

¶
× 25

= 7.85 kg/s

Bernoulli equation applied from 1 to 2

p1/ρ+ v21/2 = v22/2

p1 =
³ρ
2

´ ¡
v22 − v21

¢
=

µ
999

2

¶
(252 − 12)

= 3. 117× 105 Pa

p1 = 312 kPa
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Momentum principle (x-direction)

X
Fx = ṁ [(vo)x − (vi)x]

F + p1A1 = ṁ (v2 − v1)

F = −p1A1 + ṁ (v2 − v1)

F = −(311.7× 103)
µ
π × 0.12
4

¶
+ (7.85) (25− 1)

= −2259. 7N

Force on nozzle = 2.26 kN to the left
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PROBLEM 6.13 The problem involves writing a program for the flow in a nozzle
and applying it to problems 6.12 and 6.14. No solution is provided.
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PROBLEM 6.14

Situation:
Pressurized air drives a water jet out of a tank. The thrust of the water jet reduces
the tension in a supporting cable.
W = 200N (water plus the container). Tension in cable: T = 10N.
Nozzle diameter (d = 12mm) . H = 425mm.

Find: The pressure in the air that is situated above the water.

Assumptions: Assume that the Bernoulli equation can be applied (i.e. assume irro-
tational and steady flow).

APPROACH

Apply the momentum equation to find the exit velocity. Then, apply the Bernoulli
equation to find the pressure in the air.

ANALYSIS

Section area of jet

A2 =
πd2

4

=
π (0.012m)2

4
= 1. 131 × 10−4m2

Momentum equation (cv surrounding the tank; section 2 at the nozzle)X
F = ṁovo

−T +W = ṁv2

(−10 + 200) N = ρA2v
2
2
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Solve for exit speed (v2)

190N =
¡
999 kg/m3

¢ ¡
1.131× 10−4m2¢ v22

v2 = 41.01m/ s

Bernoulli equation (location 1 is on the water surface, location 2 is at the water jet).

pair +
ρv21
2
+ ρgz1 = p2 +

ρv22
2
+ ρgz2

Let v1 ≈ 0, p2 = 0 gage and ∆z = 0.425m.

pair =
ρv22
2
− ρg∆z

=
(999 kg/m3) (41.01m/ s)2

2
− ¡999 kg/m3¢ (9.81m/ s2) (0.425m)

= (835, 900Pa)

µ
1.0 atm

101.3 kPa

¶

pair = 8.25 atm
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PROBLEM 6.15

Situation: Free water jet from upper tank to lower tank, lower tank supported by
scales A and B.
Q = 2 cfs, d1 = 4 in., h = 1 ft, H = 9 ft
Weight of tank: WT = 300 lbf, surface area of lower tank: 4 ft2

Find: (a) Force on scale A: FA

(b) Force on scale B: FB

Properties: Water at 60 oF: ρ = 1.94 slug/ft3, γ = 62.37 lbf/ft3.

APPROACH

Apply the momentum principle.

ANALYSIS

Force and momentum diagrams

Flow rate

ṁ = ρQ

= 1.94× 2.0
= 3.88 slug/s

v1 =
Q

A1
=
4Q

πD2

=
4× 2.0

π × (4/12)2
= 22.9 ft/s

Projectile motion equations
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v2x = v1 = 22.9 ft/s

v2y =
p
2gH

=
√
2× 32.2× 9

= 24.1 ft/s

Momentum principle (x-direction)

X
Fx = ṁ [(vo)x − (vi)x]
−FB = −ṁ (v2x)
−FB = −3.88× 22.9

FB = 88.9 lbf

Momentum principle (y-direction)

X
Fy = ṁ

h
(vo)y − (vi)y

i
FA −WH2O −WT = −ṁ (v2y)

FA = WH2O +WT − ṁ (v2y)

FA = (62.37× 4× 1) + 300− (3.88× (−24.1))
FA = 643.0 lbf
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PROBLEM 6.16

Situation: Gravel (γ = 120 lbf/ft3) flows into a barge that is secured with a hawser.
Q = 50 yd3/min = 22.5 ft3/s, v = 10 ft/s

Find: Tension in hawser: T

Assumptions: Steady flow.

APPROACH

Apply the momentum principle.

ANALYSIS

Force and momentum diagrams

Momentum principle (x-direction)

X
Fx = ṁ (vo)x − ṁ (vi)x

−T = −ṁ(v cos 20) = −(γ/g)Q(v cos 20)
T = (120/32.2)× 22.5× 10× cos(20) = 788 lbf

T = 788 lbf
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PROBLEM 6.17

Situation: A fixed vane in the horizontal plane; oil (S = 0.9).
v1 = 18 m/s, v2 = 17 m/s, Q = 0.15 m3/s

Find: Components of force to hold vane stationary: Fx, Fy

APPROACH

Apply the momentum principle.

ANALYSIS

Force and momentum diagrams

Mass flow rate

ṁ = ρQ

= 0.9× 1000× 0.15
= 135 kg/s

Momentum principle (x-direction)

X
Fx = ṁ (vo)x − ṁ (vi)x

Fx = ṁ(−v2 cos 30)− ṁv1

Fx = −135(17 cos 30 + 18)

Fx = −4.42 kN (acts to the left)
Momentum principle (y-direction)
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X
Fy = ṁ (vo)y − ṁ (vi)y

Fy = ṁ (−v2 sin 30)
= 135 (−17 sin 30)
= −1.15 kN

Fy = −1.15 kN (acts downward)
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PROBLEM 6.18

Situation: A fixed vane in the horizontal plane; oil (S = 0.9).
v1 = 90 ft/s, v2 = 85 ft/s, Q = 2.0 cfs

Find: Components of force to hold vane stationary: Fx, Fy

APPROACH

Apply the momentum principle.

ANALYSIS

Force and momentum diagrams

Mass flow rate

ṁ = ρQ = 0.9× 1.94× 2.0 = 3.49 slug/s
Momentum principle (x-direction)

X
Fx = ṁ (vo)x − ṁ (vi)x

Fx = ṁ(−v2 cos 30)− ṁv1

Fx = −3.49(85 cos 30 + 90)
Fx=-571 lbf (acts to the left)

y-direction

X
Fy = ṁ (vo)y − ṁ (vi)y

Fy = ṁ (−v2 sin 30) = 3.49 (−85 sin 30) = −148 lbf
Fy = −148 lbf (acts downward)

437



PROBLEM 6.19

Situation: A horizontal, two-dimensional water jet deflected by a fixed vane, ρ = 1.94
slug/ft3.
v1 = 40 ft/s, width of jets: w2 = 0.2 ft, w3 = 0.1 ft.

Find: Components of force, per foot of width, to hold the vane stationary: Fx, Fy

Assumptions: As the jet flows over the vane, (a) neglect elevation changes and (b)
neglect viscous effects.

APPROACH

Apply the Bernoulli equation, the continuity principle, and finally the momentum
principle.

ANALYSIS

Force and momentum diagrams

Bernoulli equation

v1 = v2 = v3 = v = 40 ft/s

Continuity principle

w1v1 = w2v2 + w3v3

w1 = w2 + w3 = (0.2 + 0.1) = 0.3 ft

Momentum principle (x-direction)

X
Fx =

X
ṁo (vo)x − ṁi (vi)x

−Fx = ṁ2v cos 60 + ṁ3(−v cos 30)− ṁ1v

Fx = ρv2(−A2 cos 60 +A3 cos 30 +A1)

Fx = 1.94× 402 × (−0.2 cos 60 + 0.1 cos 30 + 0.3)
Fx = 890 lbf/ft (acts to the left)

Momentum principle (y-direction)
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X
Fy =

X
ṁo (vo)y

Fy = ṁ2v sin 60 + ṁ3(−v sin 30)
= ρv2(A2 sin 60−A3 sin 30)

= 1.94× 402 × (0.2 sin 60− 0.1 sin 30)
Fy = 382 lbf/ft (acts upward)
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PROBLEM 6.20

Situation: A water jet is deflected by a fixed vane, ṁ = 25 lbm/s = 0.776 slug/s.
v1 = 20 ft/s

Find: Force of the water on the vane: F

APPROACH

Apply the Bernoulli equation, and then the momentum principle.

ANALYSIS

Force and momentum diagrams

Bernoulli equation
v1 = v2 = v = 20 ft/s

Momentum principle (x-direction)X
Fx = ṁo (vo)x − ṁi (vi)x

−Fx = ṁv cos 30− ṁv

Fx = ṁv(1− cos 30) = 0.776× 20× (1− cos 30)
Fx = 2.08 lbf to the left

y-direction X
Fy = ṁo (vo)y

−Fy = ṁ(−v cos 60) = −0.776× 20× sin 30
Fy = 7.76 lbf downward

Since the forces acting on the vane represent a state of equilibrium, the force of water
on the vane is equal in magnitude & opposite in direction.

F = −Fxi−Fyj

= (2.08 lbf)i+(7.76 lbf)j
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PROBLEM 6.21

Situation: A water jet strikes a block and the block is held in place by friction—
however, we do not know if the frictional force is large enough to prevent the block
from sliding.
v1 = 10 m/s, ṁ = 1 kg/s, µ = 0.1, mass of block: m = 1 kg

Find:
(a) Will the block slip?
(b) Force of the water jet on the block: F

Assumptions:
1.) Neglect weight of water.
2.) As the jet passes over the block (a) neglect elevation changes and (b) neglect
viscous forces.

APPROACH

Apply the Bernoulli equation, then the momentum principle.

ANALYSIS

Force and momentum diagrams

Bernoulli equation
v1 = v2 = v = 10 m/s

Momentum principle (x-direction)X
Fx = ṁo (vo)x − ṁi (vi)x

−Ff = ṁv cos 30− ṁv

Ff = ṁv(1− cos 30)
= 1.0× 10× (1− cos 30)

Ff = 1.34 N
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y-direction X
Fy = ṁo (vo)y

N −W = ṁ(v sin 30)

N = mg + ṁ(v sin 30)

= 1.0× 9.81 + 1.0× 10× sin 30
= 14.81 N

Analyze friction:

• Ff (required to prevent block from slipping) = 1.34 N

• Ff (maximum possible value) = µN = 0.1× 14.81 = 1.48 N

block will not slip

Equilibrium of forces acting on block gives

F = (Force of the water jet on the block)

= −(Force needed to hold the block stationary)
= −Ff i+ (W −N)j

So

F =(1.34N) i+(−5.00N) j
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PROBLEM 6.22

Situation: A water jet strikes a block and the block is held in place by friction,
µ = 0.1.
ṁ = 1 kg/s, mass of block: m = 1 kg

Find: Maximum velocity (v) such that the block will not slip.

Assumptions: Neglect weight of water.

APPROACH

Apply the Bernoulli equation, then the momentum principle.

ANALYSIS

Force and momentum diagrams

Bernoulli equation
v1 = v2 = v

Momentum principle (x-direction)X
Fx =

X
cs

ṁovox −
X
cs

ṁivix

−µN = ṁv cos 30− ṁv

N = ṁv (1− cos 30) /µ
y-direction X

Fy =
X
cs

ṁovoy −
X
cs

ṁiviy

N −W = ṁ(v sin 30)

N = mg + ṁ(v sin 30)

Combine previous two equations

ṁv (1− cos 30) /µ = mg + ṁ(v sin 30)

v = mg/ [ṁ (1/µ− cos 30/µ− sin 30)]
v = 1× 9.81/ [1× (1/0.1− cos 30/0.1− sin 30)]

v = 11.7m/ s
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PROBLEM 6.23

Situation: A water jet strikes plate A and a portion of this jet passes through the
sharp-edged orifice at the center of the plate.
v = 30 m/s, D = 5 cm, d = 2 cm

Find: Force required to hold plate stationary: F

Properties: ρ = 999 kg/m3

Assumptions: Neglect gravity.

APPROACH

Apply the momentum principle.

ANALYSIS

Force and momentum diagrams (only x-direction vectors shown)

Momentum principle (x-direction)

X
F =

X
cs

ṁovo −
X
cs

ṁivi

−F = ṁ2v − ṁ1v

F = ρA1v
2 − ρA2v

2

= ρv2
³π
4

´
(D2 − d2)

= 999× 302 × π

4
× (0.052 − 0.022)

F=1.48 kN (to the left)
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PROBLEM 6.24

Situation: 2D liquid jet strikes a horizontal surface.
v1 = v2 = v3 = v

Find: Derive formulas for d2 and d3 as a function of b1 and θ.

Assumptions: Force associated with shear stress is negligible; let the width of the jet
in the z-direction = w.

APPROACH

Apply the continuity principle, then the momentum principle.
Continuity principle

ṁ1 = ṁ2 + ṁ3

ρwb1v = ρwd2v + ρwd3v

b1 = d2 + d3

Force and momentum diagrams

Momentum principle (x-direction)

X
Fx =

X
cs

ṁovo −
X
cs

ṁivi

0 = (ṁ3v + ṁ2(−v))− ṁ1v cos θ

0 =
¡
ρwd3v

2 − ρwd2v
2
¢− ρwb1v

2 cos θ

0 = d3 − d2 − b1 cos θ

Combining x-momentum and continuity principle equations

d3 = d2 + b1 cos θ

d3 = b1 − d2

d2 = b1(1− cos θ)/2
d3 = b1(1 + cos θ)/2
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PROBLEM 6.25

Situation: A 2D liquid jet impinges on a vertical wall.
v1 = v2 = v

Find: (a) Calculate the force acting on the wall (per unit width of the jet): F/w
(b) Sketch and explain the shape of the liquid surface.

Assumptions: 1.) Steady flow. 2.) Force associated with shear stress is negligible.

APPROACH

Apply the momentum principle.

ANALYSIS

Let w = the width of the jet in the z-direction. Force and momentum diagrams

Momentum principle (x-direction)X
Fx =

X
cs

ṁovox −
X
cs

ṁivix

−F = −ṁv1 sin 45
o

F = ρwtv2 sin 45o

The force on that acts on the wall is in the opposite direction to force pictured on
the force diagram, thus

F/w = ρtv2 sin 45o (acting to the right)
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y-direction X
Fy =

X
cs

ṁovoy −
X
cs

ṁiviy

−W = ṁ (−v)− ṁ (−v) cos 45o
W = ṁv(1− cos 45o)

COMMENTS

Thus, weight provides the force needed to increase y-momentum flow. This weight
is produced by the fluid swirling up to form the shape show in the above sketches.
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PROBLEM 6.26

Situation: A jet engine (ramjet) takes in air, adds fuel, and then exhausts the hot
gases produced by combustion.
At the inlet: v1 = 225 m/s
At the exit: ρ2 = 0.25 kg/m

3 A2 = 0.5 m2

Find: Thrust force produced by the ramjet: T

Assumptions: 1.) Neglect the mass addition due to the fuel (that is, ṁin = ṁout =
ṁ = 50 kg/s). 2.) Assume steady flow.

APPROACH

Apply the momentum principle.

ANALYSIS

Force and momentum diagrams

where F is the force required to hold the ramjet stationary.

Calculate exit velocity

ṁ2 = ρ2A2v2

v2 = ṁ2/(ρ2A2) = 50/(0.25× 0.5) = 400 m/s

Momentum principle (x-direction)

X
Fx =

X
cs

ṁovox −
X
cs

ṁivix

F = ṁ(v2 − v1) = 50(400− 225)
T = 8.75 kN (to the left)
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PROBLEM 6.27

Situation: A horizontal channel is described in the problem statement.

Find: Develop an expression for y1.

APPROACH

Apply the momentum principle.

ANALYSIS

Momentum principle (x-direction) (cs passes through sections 1 and 2)

X
Fx = ṁv2

(pA)1 − (pA)2 = ρQv2

(By21γ/2)− (By22γ/2) = ρQ(Q/y2B)

y1=
p
y22 + (2/(gy2))× (Q/B)2
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PROBLEM 6.28

Situation: An end section of a pipe has a slot cut in it—additional information is
provided in the problem statement.

Find: (a)How the pressure will change in the pipe from x = 0 to x = L.
(b) Devise a way to solve for the pressure distribution.

Assumptions: Neglect viscous resistance.

APPROACH

Apply the momentum principle and the continuity principle.

ANALYSIS

Obtain the pressure variation along the pipe by applying the momentum equation in
steps along the pipe (numerical scheme). The first step would be for the end segment
of the pipe. Then move up the pipe solving for the pressure change (∆p) for each
segment. Then pend +

P
∆p would give the pressure at a particular section. The

momentum equation for a general section is developed below.

Momentum principle (x-direction)

ΣFx =
P
cs

ṁoVox −
P
cs

ṁiVix

p1A1 − p2A2 = ρQ2(Q2/A2)− ρQ1(Q1/A1)

but A1 = A2 = A so we get

p1 − p2 = (ρ/A2)(Q2
2 −Q2

1) (1)

As section 1 approaches section 2 in the limit we have the differential form

−dp = (ρ/A2)dQ2 = 2(ρ/A2)QdQ

Continuity principle

Q1 −Q2 = ∆y
p
2p/ρ∆x

Q1 = Q2 +∆y
p
2p/ρdx
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In the limit at ∆x→ 0 we have

dQ = −∆y
p
2p/ρdx

The differential equation for pressure becomes

dp = 2(ρ/A2)dQ2 = 2(ρ/A2)Q∆y
p
2p/ρdx

Integrating the momentum equation to evaluate Q at location x we have

Q = −∆y

Z xp
2p/ρdξ

so the equation for pressure distribution is

p |∆L
0 = (4/A2)∆y2

Z ∆L

0

p1/2
·Z x

0

p1/2dξ

¸
dx

where L is some distance along the pipe.

COMMENTS

This equation has to be integrated numerically. One can start at the end of the pipe
where the pressure is known (atmospheric pressure). The one can assume a linear
pressure profile over the interval ∆L. An iterative solution would be needed for each
step to select the slope of the pressure curve (pressure gradient). The pressure will
decrease in the direction of flow.
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PROBLEM 6.29

Situation: A cone is supported by a vertical jet of water.
Weight of the cone is W = 30N. Speed of the water jet as it emerges from the orifice
is V1 = 15m/ s.
Jet diameter at the exit of the orifice is d1 = 2cm.

Find: Height to which cone will rise: h.

Assumptions: Based on application of the Bernoulli equation, assume that the speed
of the fluid as it passes by the cone is constant (V2 = V3) .

APPROACH

Apply the Bernoulli equation and the momentum principle.

ANALYSIS

c.s.

V
1

1

2

3

60 o

Bernoulli equation

V 2
1

2g
+ 0 =

V 2
2

2g
+ h

V 2
2 = (15)2 − 2gh

V 2
2 = (15)2 − 2gh = 225− 2× 9.81h

V 2
2 = 225− 19.62h

Momentum principle (y-direction). Select a control volume surrounding the cone.

X
Fy = ṁovoy − ṁiviy

−W = ṁ(v3y − v2)

−30 = 1000× 15× π × (0.01)2(V2 sin 30◦ − V2)

Solve for the V2
V2 = 12.73 m/s
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Complete the Bernoulli equation calculation

V 2
2 = 225− 19.62h

(12.73)2 = 225− 19.62h

h = 3.21m
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PROBLEM 6.30

Situation: A 180o pipe bend (6 in. diameter) carries water.
Q = 6 cfs p = 20 psi gage

Find: Force needed to hold the bend in place: Fx (the component of force in the
direction parallel to the inlet flow)

APPROACH

Apply the momentum principle.

Assumptions: The weight acts perpendicular to the flow direction; the pressure is
constant throughout the bend.

ANALYSIS

Momentum principle (x-direction)

X
Fx =

X
cs

ṁovox −
X
cs

ṁivix

2pA− Fx = −2ṁv

Calculations

pA = (20× 144) ¡π/4× 0.52¢ = 565.5 lbf
ṁv = ρQ2/A = 1.94× 62/(π/4× 0.52) = 355.7 lbf
Fx = 2(pA+ ṁv) = 2× (565.5 + 355.7) lbf

Fx=1840 lbf (acting to the left, opposite of inlet flow)
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PROBLEM 6.31

Situation: Hot gas flows through a return bend–additional details are provided in
the problem statement.

Find: Force required to hold the bend in place: Fx

APPROACH

Apply the continuity principle, then the momentum principle.

ANALYSIS

100 ft/s

x

2

1

ṁ = 1 lbm/s = 0.0311 slugs/s

At section (1):

v1 = 100 ft/s

ρ1 = 0.02 lbm/ft3 = 0.000621 slugs/ft3

At section (2):
ρ2 = 0.06 lbm/ft

3 = 0.000186 slugs/ft3

Continuity principle

ρ1v1A1 = ρ2v2A2

v2 = (ρ1/ρ2)(A1/A2)v1

v2 = (0.02/0.06)(1/1)v1

= 33.33 ft/s

Momentum principle (x-direction)X
Fx =

X
⊂s

ṁovox −
X
cs

ṁivix

= ṁ(v2 − v1)

Fx = 0.0311(−33.33− 100)
Fx = −4.147 lbf
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PROBLEM 6.32

Situation: Fluid (density ρ, discharge Q, and velocity V ) flows through a 180o pipe
bend–additional details are provided in the problem statement.. Cross sectional
area of pipe is A.

Find: Magnitude of force required at flanges to hold the bend in place.

Assumptions: Gage pressure is same at sections 1 and 2. Neglect gravity.

APPROACH

Apply the momentum principle.

ANALYSIS

Momentum principle (x-direction)X
Fx =

X
cs

ṁovox −
X
cs

ṁivix

p1A1 + p2A2 + Fx = ṁ(v2 − v1)

thus

Fx = −2pA− 2ṁV

Fx = −2pA− 2ρQV

Correct choice is (d)
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PROBLEM 6.33

Situation: Water flows through a 180o pipe bend–additional details are provided in
the problem statement.

Find: External force required to hold bend in place.

APPROACH

Apply the momentum principle.

ANALYSIS

Flow rate equation

v = Q/A = 20/(π × 0.5× 0.5) = 25.5 fps

Momentum principle (x-direction)X
Fx =

X
cs

ṁovox −
X
cs

ṁivix

p1A1 + p2A2 + Fx = ṁ(v2 − v1)

thus

Fx = −2pA− 2ṁv

= −2(15× 144(π/4× 12) + 1.94× 20× 25.5)
= −5, 370 lbf

Momentum principle (y-direction)X
Fy = 0

−Wbend −WH20 + Fy = 0

Fy = 200 + 3× 62.4 = 387.2 lbf

Force required
F = (−5370i+ 387j) lbf
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PROBLEM 6.34

Situation: Water flows through a 180◦ pipe bend–additional details are provided in
the problem statement.

Find: Force that acts on the flanges to hold the bend in place.

APPROACH

Apply the continuity and momentum equations.

ANALYSIS

Flow rate

v1 =
Q

A

=
4× 0.3m3/ s
π × (0.2m)2

= 9.549 m/s

Continuity. Place a control volume around the pipe bend. Let section 2 be the exit
and section 1 be the inlet

Q = A1v1 = A2v2

thus v1 = v2

Momentum principle (x-direction). Place a control volume around the pipe bend.
Let section 2 be the exit and section 1 be the inlet.X

Fx =
X
cs

ṁovox −
X
cs

ṁivix

2pA+ Fx = ρQ (−v2)− pQv1

Fx = −2pA− 2ρQv
Calculations

2pA = (2)(100, 000)(
π

4
)(0.22)

= 6283N

2ρQV = (2)(1000)(0.3)(9.55)

= 5730N

Fx = − (2pA+ 2ρQv)
= − (6283N + 5730N)
= −12.01 kN

Momentum principle (z-direction). There are no momentum flow terms so the mo-
mentum equation simplifies to
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Fz = Wbend +Wwater

= 500 + (0.1)(9810)

= 1.481 kN

The force that acts on the flanges is

F = (−12.0i+ 0j+1.48k) kN
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PROBLEM 6.35

Situation: A 90◦ pipe bend is described in the problem statement.

Find: Force on the upstream flange to hold the bend in place.

APPROACH

Apply the momentum principle.

ANALYSIS

Velocity calculation

v = Q/A = 10/((π/4× 1.02) = 12.73 ft/s

Momentum principle (x-direction)X
Fx =

X
cs

ṁovox −
X
cs

ṁivix

pA+ Fx = ρQ(0− v)

Fx = 1.94× 10(0− 12.73)− 4× 144× π/4× 12 = −699 lbf

y-direction

Fy = ρQ(−v − 0)
Fy = −1.94× 10× 12.73 = −247 lbf

z-direction X
Fz = 0

−100− 4× 62.4 + Fz = 0

Fz = +350 lbf

The force is
F = (−699i − 247j + 350k) lbf
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PROBLEM 6.36

Situation: A 900 pipe bend is described in the problem statement.

Find: x−component of force applied to bend to hold it in place: Fx

APPROACH

Apply the momentum principle.

ANALYSIS

Velocity calculation

v = Q/A = 10/(π × 12/4) = 12.73 m/s

Momentum principle (x-direction)X
Fx =

X
cs

ṁvox −
X
cs

ṁvix

pA+ Fx = ρQ(0− v)

300, 000× π × 0.52 + Fx = 1000× 10× (0− 12.73)
Fx = −362, 919 N = -363 kN
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PROBLEM 6.37

Situation: Water flows through a 30o pipe bend–additional details are provided in
the problem statement.

Find: Vertical component of force exerted by the anchor on the bend: Fa

APPROACH

Apply the momentum principle.

ANALYSIS

Velocity calculation

v = Q/A

= 31.4/(π × 1× 1)
= 9.995 ft/sec

Momentum principle (y-direction)X
Fy = ρQ(v2y − v1y)

Fa −Wwater −Wbend − p2A2 sin 30
◦ = ρQ(v sin 30◦ − v sin 0◦)

Fa = π × 1× 1× 4× 62.4 + 300
+8.5× 144× π × 1× 1× 0.5
+1.94× 31.4× (9.995× 0.5− 0)
Fa = 3310 lbf
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PROBLEM 6.38

Situation: Water flows through a 60o pipe bend and jets out to atmosphere–additional
details are provided in the problem statement.

Find: Magnitude and direction of external force components to hold bend in place.

APPROACH

Apply the Bernoulli equation, then the momentum principle.

ANALYSIS

Flow rate equation

v1 = 10/4 = 2.5 m/s

Q = A1v1 = π × 0.3× 0.3× 2.5 = 0.707 m3/s

Bernoulli equation

p1 = p2 + (ρ/2)(v
2
2 − v21)

= 0 + (1000/2)(10× 10− 2.5× 2.5)
= 46, 875 Pa

Momentum principle (x-direction)

Fx + p1A1 = ρQ(−v2 cos 60◦ − v1)

Fx = −46, 875× π × 0.3× 0.3 + 1000× 0.707× (−10 cos 60◦ − 2.5)
= −18, 560 N

y-direction

Fy = ρQ(−v2 sin 60◦ − v1)

Fy = 1000× 0.707× (−10 sin 60◦ − 0)
= −6123 N

z-direction

Fz −WH20 −Wbend = 0

Fz = (0.25× 9, 810) + (250× 9.81) = 4, 905 N

Net force
F = (−18.6i− 6.12j+ 4.91k) kN
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PROBLEM 6.39

Situation: Water flows through a nozzle–additional details are provided in the prob-
lem statement.

Find: Vertical force applied to the nozzle at the flange: Fy

APPROACH

Apply the continuity principle, then the Bernoulli equation, and then the momentum
principle.

ANALYSIS

Continuity principle

v1A1 = v2A2

v1 = v2A2/A1 = 65 ft/s

Q = v2A2 = (130 ft/s)(0.5 ft2)

= 65 cfs

Bernoulli equation

p1/γ + v21/2g + z1 = p2/γ + v22/2g + z2

p1/γ = 0 + (1302/2g) + 2− (652/2g)
p1 = 62.4(262.4 + 2− 65.6)
p1 = 12, 400 lbf/ft2

Momentum principle (y-direction)

p1A1 −WH20 −Wnozzle + Fy = ρQ(v2 sin 30
◦ − v1) (1)

Momentum flow terms

ρQ(v2 sin 30
◦ − v1) = (1.94)(62.5) [(130 sin 30◦)− 65]

= 0 lbf

Thus, Eq. (1) becomes

Fy = WH20 +Wnozzle − p1A1

= (1.8× 62.4) + (100)− (12400× 1)
= −12, 190 lbf

Fy = 12, 200 lbf (acting downward)
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PROBLEM 6.40

Situation: Gasoline flows through a 135o pipe bend–additional details are provided
in the problem statement.

Find: External force required to hold the bend: F

APPROACH

Apply the momentum principle.

ANALYSIS

1

2

45o

y

x

Flow rate

Q = vA = 15× π/4× 12
= 11.78 cfs

Momentum principle (x-direction)X
Fx = ρQ(v2x − v1x)

p1A1 + p2A2 cos 45
◦ + Fx = ρQ(−v2 cos 45◦ − v1)

Fx = −pA(1 + cos 45◦)− ρQv(1 + cos 45◦)
= −(1440)× (π/4× 12)(1 + cos 45◦)
−(0.8× 1.94)(11.78)(15)(1 + cos 45◦)

= −2400 lbf
Momentum principle (y-direction)X

Fy = ρQ(v2y − v1y)

p2A2 sin 45
◦ + Fy = ρQ(−v2 sin 45◦ − 0)

Fy = −pA sin 45◦ − ρQv2 sin 45
◦

Fy = −(1440)(π/4× 12) sin 45◦ − (0.8× 1.94)(11.78)(15) sin 45◦
Fy = −994 lbf

Net force
F = (−2400i− 994j) lbf
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PROBLEM 6.41

Situation: Gasoline flows through a 135o pipe bend–additional details are provided
in the problem statement.

Find: External force required to hold the bend in place: F

APPROACH

Apply the momentum principle.

ANALYSIS

Discharge

Q = 8× π/4× 0.15× 0.15
= 0.141 m3/s

Momentum principle (x-direction)X
Fx = ṁ(v2x − v1x)

p1A1 + p2A2 cos 45
◦ + Fx = ρQ(−v2 cos 45◦ − v1)

Fx = −pA(1 + cos 450)− ρQv(1 + cos 45◦)

= −(100, 000)(π/4× 0.152)(1 + cos 45◦)
−(1000× 0.8)(0.141)(8)(1 + cos 45◦)

= −4557 N

Momentum principle y-directionX
Fy = ρQ(v2y − v1y)

p2A2 sin 45
◦ + Fy = −ρQv2 sin 45◦

= −(100, 000)(π/4× 0.152) sin 45◦
−(1, 000× 0.8)(0.141)(8) sin 45◦

= −1, 888 N

Net force
F = (−4.56i− 1.89j) kN
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PROBLEM 6.42

Situation: Water flows through a 60o reducing bend–additional details are provided
in the problem statement.

Find: Horizontal force required to hold bend in place: Fx

APPROACH

Apply the Bernoulli equation, then the momentum principle.

ANALYSIS

Bernoulli equation

v1 = v2A2/A1

= 50(1/10)

= 5 m/s

p1 + ρv21/2 = p2 + ρv22/2

Let p2 = 0, then

p1 = −(1, 000)/2)(52) + (1, 000/2)(502)
p1 = 1237.5 kPa

Momentum principle (x-direction)X
Fx = ṁ(v2x − v1x)

p1A1 + Fx = ρA2v2(v2 cos 60
◦ − v1)

Fx = −1, 237, 000× 0.001 + 1, 000× 0.0001× 50(50 cos 60◦ − 5)
Fx = 1140 N
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PROBLEM 6.43

Situation: Water flows through a three dimensional pipe bend–additional details are
provided in the problem statement.

Find: Force that the thrust block exerts on the bend: F

APPROACH

Apply the momentum principle in each coordinate direction (x, y and z). To keep
track of directions (this is a problem in three dimensions), use unit vectors to represent
the velocity and pressure terms.

ANALYSIS

2

V1

V2

p A2 2

p A1 1

1

Flow speed

V =
Q

A

=
4× 16m3/ s
π (1.3m)2

= 12.05m/ s

Inlet velocity vectors (written using direction cosines)

v1 = V1[(13/c1)j− (10/c1)k]

where c1 =
√
132 + 102. Thus

v1 = (12.05m/ s) [0.793j− 0.6097k]

Exit velocity vector (written using direction cosines)

v2 = V2[(13/c2)i+ (19/c2)j− (20/c2)k]

where c2 =
√
132 + 192 + 202. Then

v2 = (12.05m/ s) [0.426i+ 0.623j− 0.656k]
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Pressure forces (written using direction cosines)

Fp1 = p1A1(0.793j− 0.6097k)
Fp2 = p2A2(−0.426i− 0.623j+ 0.656k)

Weight

W = (Wwater +Wmetal)k

= ((−3× 9810)− 10000)k
= (−39 430N)k

Momentum equation (x-direction)X
Fx = ρQ(v2x − v1x)

Fx − 0.426× p2A2 = ρQ[(12.05m/ s) (0.426)− 0]
where

p2A2 = 25, 000× (π/4)× (1.3)2
= 33, 183N

ρQ = 1000× 16
= 16, 000 kg/ s

Thus

Fx = (p2A2) (0.426) + (ρQ) (12.05m/ s) (0.426)

= (33, 183N) (0.426) + (16, 000 kg/ s) (12.05m/ s) (0.426)

= 96, 270N

Momentum equation (y-direction) X
Fy = ρQ(v2y − v1y)

Fy + p1A1 (0.793)− p2A2 (0.623) = ρQ[0.623V2 − 0.793V1]
where

p1A1 = 20, 000× (π/4)(1.3)2
= 26, 546 N

ρQ[0.623V2 − 0.793V1] = 16, 000 [(0.623) (12.05)− (0.793) (12.05)]
= −32, 780N

Thus

Fy = −p1A1 (0.793) + p2A2 (0.623) + ρQ[V2 (0.623)− V1 (0.793)]

= − (26, 546N) (0.793) + (33, 183N) (0.623)− (32, 780N)
= −33, 160N
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Momentum equation (z-direction)X
Fz = ρQ(v2z − v1z)

Fz − p1A1 (0.6097) + p2A2(0.656)−W = ρQ [V2 (−0.656)− V1 (−0.6097)]

Evaluate the momentum flow terms

ρQ [V2 (0.656)− V1 (−0.6097)] = 16, 000 [12.05 (−0.656)− 12.05 (−0.6097)]
= −8927N

The momentum equation becomes

Fz = p1A1 (0.6097)− p2A2(0.656) +W + ρQ [(V2 (0.656)− V1 (−0.6097)]
Fz = (26, 546N) (0.6097)− (33, 183N) (0.656) + (39 430N)− (8927N)

Fz = 24, 920N

Net force
F = (96.3i− 33.2j+ 24.9k) kN
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PROBLEM 6.44

Situation: Water flows through a tee–—additional details are provided in the problem
statement.

Find: Pressure difference between sections 1 and 2.

APPROACH

Apply the continuity principle, then the momentum principle.

1 2

3 500 kg/s

ANALYSIS

Continuity principle

ṁ1 + 500 kg/s = ṁ2

ṁ1 = (10 m/s)(0.10 m2)(1000 kg/m3) = 1000 kg/s

ṁ2 = 1000 + 500 = 1500 kg/s

v2 = (ṁ2)/(ρA2) = (1500)/((1000)(0.1)) = 15 m/s

Momentum principle (x-direction)X
Fx = ṁ2v2x − ṁ1v1x − ṁ3v3x

p1A1 + p2A2 = ṁ2v2 − ṁ1v1 − 0
A(p1 − p2) = (1500)(15)− (1000)(10)

p1 − p2 = (22, 500− 10, 000)/0.10
= 125, 000 Pa

= 125 kPa
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PROBLEM 6.45

Situation: Water flows through a wye–additional details are provided in the problem
statement.

Find: x−component of force to hold wye in place.

APPROACH

Apply the momentum principle.

1 2

3
30o

x

Flow rate

v1 = Q1/A1 = 20 ft/s

v2 = Q2/A2 = 12 ft/s

Q3 = 20− 12 = 8 ft3/s
v3 = Q3/A3 = 32 ft/s

Momentum principle (x-direction)X
Fx = ṁ2v2 + ṁ3v3 cos 30

◦ − ṁ1v1

Fx + p1A1 − p2A2 = (20ρ)(−20) + (12ρ)(+12) + (32 cos 30◦)(ρ)(8)
Fx + (1000)(1)− (900)(1) = −400ρ+ 144ρ+ ρ(8)(32)(0.866)

Fx = −100 + 1.94(−34.3)
Fx = −166.5 lbf (acting to the left)
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PROBLEM 6.46

Situation: Water flow through a horizontal bend and T section–additional details
are provided in the problem statement.

y

x

1

2

3

ṁ1 = 10 lbm/s

ṁ2 = ṁ3 = 5 lbm/s

A1 = A2 = A3 = 5 in2

p1 = 5 psig

p2 = p3 = 0

Find: Horizontal component of force to hold fitting stationary: Fx

APPROACH

Apply the momentum principle.

ANALYSIS

Velocity calculations

v1 = ṁ1/ρA1

= (10/32.2)/ [(1.94)(5/144)]

= 4.61 ft/s

v2 = ṁ2/ρA2

= (5/32.2)/ [(1.94)(5/144)]

= 2.31 ft/s

Momentum principle (x-direction)X
Fx = −ṁ2v2 − ṁ1v1

p1A1 + Fx = −ṁ2v2 − ṁ1v1

Fx = −p1A1 − ṁ2v2 − ṁ1v1

= −(5× 5)− (5/32.2)(2.31)− (10/32.2)(4.61)
Fx = −26.8 lbf
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PROBLEM 6.47

Situation: Water flows through a horizontal bend and T section–additional details
are provided in the problem statement.

y

x

1

2

3

v1 = 6 m/s p1 = 4.8 kPa

v2 = v3 = 3 m/s p2 = p3 = 0

A1 = A2 = A3 = 0.20 m2

Find: Components of force (Fx, Fy) needed to hold bend stationary.

APPROACH

Apply the momentum principle.

ANALYSIS

Discharge

Q1 = A1v1 = 0.2× 6 = 1.2 m3/s
Q2 = Q3 = A2v2 = 0.2× 3 = 0.6 m3/s

Momentum principle (x-direction)X
Fx = −ṁ2v2 − ṁ1v1

p1A1 + Fx = −ρ(Q2v2 +Q1v1)

Fx = −p1A1 − ρ(Q2v2 +Q1v1)

= −4800× 0.2− 1000(0.6× 3 + 1.2× 6)
Fx = −9.96 kN (acts to the left)

y-direction X
Fy = ṁ3(−v3)
Fy = −ρQ3v3 = −1000× 0.6× 3

Fy=-1.8 kN (acts downward)
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PROBLEM 6.48

Situation: Water flows through a horizontal tee–additional details are provided in
the problem statement.

Find: Components of force (Fx, Fy) needed to hold the tee in place.

APPROACH

Apply the momentum principle.

ANALYSIS

Velocity calculations

V1 =
0.25

(π × 0.075× 0.075)
= 14.15 m/s

V2 =
0.10

(π × 0.035× 0.035)
= 25.98 m/s

V3 =
(0.25− 0.10)

(π × 0.075× 0.075)
= 8.49 m/s

Momentum equation (x-direction)

Fx + p1A1 − p3A3 = ṁ3V3 − ṁ1V1

Fx = −p1A1 + p3A3 + ρV3Q− ρV1Q

Fx = − (100, 000× π × 0.075× 0.075) + (80, 000× π × 0.075× 0.075)
+ (1000× 8.49× 0.15)− (1000× 14.15× 0.25)

Fx = −2617N

Momentum equation y-direction

Fy + p3A3 = −ρV3Q
Fy = −ρV3Q− p3A3

Fy = −1000× 25.98× 0.10− 70, 000× π × 0.035× 0.035
= −2867 N

Net force
F = (−2.62i− 2.87j) kN

475



PROBLEM 6.49

Situation: Water flows through an unusual nozzle–additional details are provided in
the problem statement.

y

x

Find: Force at the flange to hold the nozzle in place: F

APPROACH

Apply the momentum principle.

APPROACH

Apply the continuity principle, then the Bernoulli equation, and finally the momen-
tum principle.

ANALYSIS

Continuity principle

vpAp =
X

vjAj

vp = 2× 30× 0.01/0.10
= 6.00 m/s

Bernoulli equation
ppipe/γ + v2p/2g = pjet/γ + v2j/2g

Then

pp = (γ/2g)(v2j − v2p)

= 500(900− 36)
= 432, 000 Pa

Momentum principle (x-direction)

ppAp + Fx = −vpρvpAp + vjρvjAj

Fx = −1000× 62 × 0.10 + 1, 000× 302 × 0.01− 432, 000× 0.1
Fx = −37, 800 N

y-direction

Fy = ṁ(−vj) = −vjρvjA
= −30× 1000× 30× 0.01
= −9000 N
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z-direction X
Fz = 0

−200− γV–+ Fz = 0

Fz = 200 + 9810× 0.1× 0.4
= 592 N

Net force
F = (−37.8i− 9.0j+ 0.59k) kN
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PROBLEM 6.50

Situation: Water flows through a converging nozzle–additional details are provided
in the problem statement.

1 2

x
v1

v2

Find: Force at the flange to hold the nozzle in place: F

APPROACH

Apply the Bernoulli equation to establish the pressure at section 1, and then apply
the momentum principle to find the force at the flange.

ANALYSIS

Continuity equation (select a control volume that surrounds the nozzle).

Q1 = Q2 = Q = 15 ft3/ s

Flow rate equations

v1 =
Q

A1
=
4×Q

πD2
1

=
4× ¡15 ft3/ s¢

π (1 ft)2

= 19.099 ft/ s

v2 =
Q

A2
=
4×Q

πD2
2

=
4× ¡15 ft3/ s¢
π (9/12 ft)2

= 33. 953 ft/ s

Bernoulli equation

p1 +
ρv21
2

= p2 +
ρv22
2

p1 = 0 +
ρ(v22 − v21)

2

=
1.94 slug/ ft3(33. 9532 − 19.0992) ft2/ s2

2
= 764.4 lbf/ ft2

Momentum principle (x-direction)

p1A1 + F = ṁv2 − ṁv1
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Calculations

p1A1 = (764.4 lbf/ ft2)(π/4)(1 ft)2

= 600.4 lbf

ṁv2 − ṁv1 = ρQ (v2 − v1)

= (1.94 slug/ ft3)(15 ft3/ s) (33. 953− 19.098) ft/ s
= 432. 3 lbf

Substituting numerical values into the momentum equation

F = −p1A1 + (ṁv2 − ṁv1)

= −600.4 lbf + 432. 3 lbf
= −168. 1 lbf

F = −168 lbf (acts to left)
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PROBLEM 6.51

Situation: Water flows through a converging nozzle–additional details are provided
in the problem statement.

Find: Force at the flange to hold the nozzle in place: Fx

APPROACH

Apply the Bernoulli equation, and then the momentum principle.

ANALYSIS

Velocity calculation

v1 = 0.3/(π × 0.15× 0.15) = 4.244 m/s
v2 = 4.244× 9 = 38.196 m/s

Bernoulli equation

p1 = 0 + (1, 000/2)(38.196
2 − 4.2442) = 720 kPa

Momentum principle (x-direction)

Fx = −720, 000× π × 0.152 + 1, 000× 0.3(38.196− 4.244)
Fx = −40.7 kN (acts to the left)
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PROBLEM 6.52

Water flows through a nozzle with two openings–additional details are provided in
the problem statement

Find: x-component of force through flange bolts to hold nozzle in place.

APPROACH

Apply the Bernoulli equation, and then the momentum principle.

ANALYSIS

Velocity calculation

vA = vB = 16× 144/[(π/4)(4× 4 + 4.5× 4.5)]
= 80.93 fps

v1 = 16/(π × 0.5× 0.5)
= 20.37 fps

Bernoulli equation

p1 = 0 + (1.94/2)(80.93× 80.93− 20.37× 20.37) = 5951 psf

Momentum principle (x-direction)

Fx = −5, 951× π × 0.5× 0.5× sin 30◦ − 80.93× 1.94× 80.93× π × 2
×2/144− 20.37× 1.94× 16.0 sin 30◦

Fx = −3762 lbf
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PROBLEM 6.53

Situation: Water flows through a nozzle with two openings–additional details are
provided in the problem statement.

Find: x-component of force through flange bolts to hold nozzle in place: Fx

APPROACH

Apply the Bernoulli equation, and then the momentum principle.

ANALYSIS

Velocity calculation

vA = vB = 0.5/(π × 0.05× 0.05 + π × 0.06× 0.06) = 26.1 m/s
v1 = 0.5/(π × 0.15× 0.15) = 7.07 m/s

Bernoulli equation

p1 = (1, 000/2)(26.1
2 − 7.072) = 315, 612 Pa

Momentum principle (x-direction)X
Fx = ṁovox −mivix

Fx + p1A1 sin 30 = −ṁvA − ṁvi sin 30

Fx = −315, 612× π × 0.152 × sin 30◦ − 26.1× 1, 000× 26.1
×π × 0.052 − 7.07× 1000× 0.5 sin 30◦ = −18, 270 N = -18.27 kN
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PROBLEM 6.54

Situation: Water flows through a nozzle that is bolted onto a pipe–additional details
are provided in the problem statement.

1 2

Find: Tension load in each bolt: T

APPROACH

Apply the continuity principle, then the Bernoulli equation, and finally the momen-
tum principle.

ANALYSIS

Continuity principle
v2 = (A1/A2)v1 = 4v1

Bernoulli equation

(v21/2g) + (p1/γ) = (v22/2g) + (p2/γ)

15(v21/2g) = (200, 000/9810)

v1 = 5.16 m/s

v2 = 20.66 m/s

Q = 0.365 m3/s

Momentum principle (x-direction)

X
Fx = ṁovox − ṁivix

Fbolts + p1A1 = ρQ(v2 − v1)

Thus

Fbolts = −p1A1 + ρQ(v2 − v1)

Fbolts = −200, 000× π × 0.152 + 1000× 0.365(20.66− 5.16)
= −8440 N

Force per bolt = 1413 N
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PROBLEM 6.55

Situation: Water jets out of a two dimensional slot.
Flow rate is Q = 5 cfs per ft of slot width. Slot spacing is H = 8 in. Jet height is
b = 4 in.

Find: (a)Pressure at the gage.
(b)Force (per foot of length of slot) of the water acting on the end plates of the slot.

APPROACH

To find pressure at the centerline of the flow, apply the Bernoulli equation. To find
the pressure at the gage (higher elevation), apply the hydrostatic equation. To find
the force required to hold the slot stationary, apply the momentum principle.

ANALYSIS

Continuity. Select a control volume surrounding the nozzle. Locate section 1 across
the slot. Locate section 2 across the water jet.

Q1 = Q2 = Q =
5 ft3/ s

ft

Flow rate equations

V1 =
Q

A1
=

5 ft2/ s

(8/12) ft

= 7.5 ft/ s

V2 =
Q

A2
=

5 ft2/ s

(4/12) ft

= 15. ft/ s

Bernoulli equation

p1 =
ρ

2
(V 2
2 − V 2

1 )

=
1.94 slug/ ft3

2
(152 − 7.52) ft

2

s2

p1 = 163. 69 lbf/ ft2

Hydrostatic equation. Location position 1 at the centerline of the slot. Locate
position 3 at the gage.

p1
γ
+ z1 =

p3
γ
+ z3

163. 69 lbf/ ft2

62.4 lbf/ ft3
+ 0 =

p3

62.4 lbf/ ft3
+
(8/12) ft

2

p3 = 142. 89 psf

484



p3 = 143 lbf/ ft
2 = 0.993 lbf/ in2

Momentum principle (x-direction)X
Fx = ṁV2 − ṁV1

Fx + p1A1 = ρQ(V2 − V1)

Fx = −p1A1 + ρQ(V2 − V1) (1)

Calculations

p1A1 =
¡
163. 69 lbf/ ft2

¢
(8/12 ft)

= 109. 13 lbf/ ft (a)

ρQ(V2 − V1) =
¡
1.94 slug/ ft3

¢ ¡
5 ft2/ s

¢
(15. ft/ s− 7.5. ft/ s)

= 72. 75 lbf/ ft (b)

Substitute (a) and (b) into Eq. (1)

Fx = − (109. 13 lbf/ ft) + 72. 75 lbf/ ft
= −36. 38 lbf

ft

The force acting on the end plates is equal in magnitude and opposite in direction
(Newton’s third law).

Fwater on the end plates = 36. 38
lbf
ft
acting to the right
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PROBLEM 6.56

Situation: Water is discharged from a two-dimensional slot–additional details are
provided in the problem statement

Find: (a)Pressure at the gage.
(b)Force (per foot of length of slot) on the end plates of the slot.

APPROACH

Apply the Bernoulli equation, then the hydrostatic equation, and finally the momen-
tum principle.

ANALYSIS

Velocity calculation

vb = 0.4/0.07 = 5.71 m/s

vB = 0.40/0.20 = 2.00 m/s

Bernoulli equation

pB = (1000/2)(5.71
2 − 2.002) = 14.326 kPa

Hydrostatic equation

pgage = 14, 326− 9810× 0.1 = 13.3 kPa

Momentum principle (x-direction)X
Fx = ṁovox − ṁivix

Fx + pBAB = ρQ(vb − vB)

thus

Fx = −14, 326× 0.2 + 1000× 0.4(5.71− 2.00)
= −1, 381 N
= -1.38 kN/m
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PROBLEM 6.57

Situation: Water flows through a spray head–additional details are provided in the
problem statement.

v1

v2

30o

Find: Force acting through the bolts needed to hold the spray head on: Fy

APPROACH

Apply the Bernoulli equation, and then the momentum principle.

ANALYSIS

Velocity calculation

v1 = Q/A1 = 3/(π/4× 0.52) = 15.28 ft/s

Bernoulli equation

p1 =
ρ

2

¡
v22 − v21

¢
=

1.94

2

¡
652 − 15.282¢

= 3872.

Momentum principle (y-direction)X
Fy = ṁovoy − ṁiviy

Fy + p1A1 = ρQ(−v2 sin 30◦ − v1)

Fy = (−3872)(π/4× 0.52) + 1.94× 3(−65 sin 30◦ − 15.28)
= -1040 lbf
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PROBLEM 6.58

Situation: An unusual nozzle creates two jets of water–additional details are provided
in the problem statement.

Find: Force required at the flange to hold the nozzle in place: F

APPROACH

Apply the continuity principle, then the momentum principle.

ANALYSIS

Continuity principle

v1 =
Q

A

=
2× 80.2× π/4× 12

π/4× 42
= 10.025 fps

Momentum principle (x-direction)P
Fx =

P
ṁox − ṁivix

p1A1 + Fx = ṁ2v2x + ṁ3v3x − ṁ1v1x

Fx = −43× π × 22 + 1.94× 80.22 × π × .52/144

−(1.94× 80.2× π × 0.52/144)× 80.2 sin 30
−(1.94× 10.025× π × 0.16672)× 10.025

= −524.1 lbf

Momentum principle (y-direction)X
Fy = ṁoy − ṁiviy

Fy = ṁ3v3y = ρAv3(−v3 cos 30◦)
= −1.94(π/4× (1/12)2)80.22 cos 30◦
= −58.94 lbf

Net force
F=(-524.1i-58.9j) lbf
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PROBLEM 6.59

Situation: Liquid flows through a ”black sphere”–additional details are provided in
the problem statement.

v2

y

x

v1
v3

30o

Find: Force in the inlet pipe wall required to hold sphere stationary: F

APPROACH

Apply the continuity principle, then the momentum principle.

ANALYSIS

Continuity principle

A1v1 = A2v2 +A3v3

v3 = v1
A1
A3
− v2

A2
A3

= 50 ft/ s

µ
22

12

¶
− 100 ft/ s

µ
12

12

¶
= 100 ft/ s

Momentum principle (x-direction)

Fx = ṁ3v3x

= −ρA3v23 sin 30◦

= −(1.94× 1.2)
Ã
π (1/12)2

4

!
(1002) sin 30◦

= −63.49 lbf

y-direction
Fy −W + p1A1 = ṁ2v2y + ṁ3v3y − ṁ1v1y

thus
Fy =W − p1A1 + ṁ2v2 −m3v3 cos 30

◦ − ṁ1v1
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Calculations

W1 − p1A1 = 200− 60× π × 12
= 11.50 lbf

ṁ2v2 = ρA2v
2
2

= (1.2× 1.94)
Ã
π (1/12)2

4

!
(1002)

= 126.97 lbf

ṁ3v3 cos 30
◦ = ρA3v

2
3 cos 30

◦

= (1.2× 1.94)
Ã
π (1/12)2

4

!
(100)2 cos 30◦

= 109.96 lbf

ṁ1v1 = ρA1v
2
1

= (1.2× 1.94)
Ã
π (2/12)2

4

!
(502)

= 126. 97 lbf

thus,

Fy = (W − p1A1) + ṁ2v2 − (m3v3 cos 30
◦)− ṁ1v1

= (11.50) + 126.97− (109.96)− 126. 97
= −98. 46 lbf

Net Force
F = (−63.5i− 98.5j) lbf
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PROBLEM 6.60

Situation: Liquid flows through a ”black sphere”–additional details are provided in
the problem statement.

Find: Force required in the pipe wall to hold the sphere in place: F

APPROACH

Apply the continuity principle, then the momentum principle.

ANALYSIS

Continuity principle

v3 = (10× 52 − 30× 2.52)/(2.52)
= 10 m/s

Momentum principle (x-direction)

Fx = −10 sin 30◦ × 1500× 10× π × 0.01252
= −36.8 N

Momentum principle (y-direction)

Fy = −400, 000× π × 0.0252 + 600 + (1500π)
×(−102 × 0.0252 + 302 × 0.01252
−102 × 0.01252 cos 30◦)

= 119 N

Net Force
F = (−36.8i+ 119j) N
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PROBLEM 6.61

Situation: Liquid flows through a “black box”–additional details are provided in the
problem statement.

1

2

3

x

4

Find: Force required to hold the “black box” in place: F

APPROACH

Apply the continuity principle, then the momentum principle.

ANALYSIS

Continuity principle

Q4 = 0.6− 0.10
= 0.50 m3/s

Momentum principle (x-direction)

Fx = −ṁ1v1x − ṁ3v3x
= −ṁ1v1 + ṁ3v3

= 0

y-direction

Fy = ṁ2v2y + ṁ4v4y
Fy = ρQ2v2 − ρQ4v4

= (2.0× 1000)(0.1)(20)− (2.0× 1000)(0.5)(15)
= −11.0 kN

Net Force
F = (0i− 11.0j) kN
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PROBLEM 6.62

To verify Eq. (6.11) the quantities Q, v1, v2,b, y1, y2 and FG will have to be measured.
Since a laboratory is available for your experiment it is assumed that the laboratory
has equipment to obtain Q. The width b can be measured by a suitable scale. The
depths y1 and y2 can be measured by means of piezometer tubes attached to openings
in the bottom of the channel or by means of point gages by which the actual level of
the surface of the water can be determined. Then v1 and v2 can be calculated from
v = Q/A = Q/(by).

The force on the gate can be indirectly evaluated by measuring the pressure distribu-
tion on the face of the gate. This pressure may be sensed by piezometers or pressure
transducer attached to small openings (holes) in the gate. The pressure taps on the
face of the gate could all be connected to a manifold, and by appropriate valving
the pressure at any particular tap could be sensed by a piezometer or pressure trans-
ducer. The pressures at all the taps should be measured for a given run. Then by
integrating the pressure distribution over the surface of the gate one can obtain FG.
Then compare the measured FG with the value obtained from the right hand side of
Eq. (6.11). The design should be such that air bubbles can be purged from tubes
leading to piezometer or transducer so that valid pressure readings are obtained.

493



PROBLEM 6.63

Situation: Water flows through a sluice gate––additional details are provided in
the problem statement.

2
F

0.6 ft

3 ft

1

Find: Force of water (per unit width) acting on the sluice gate.

APPROACH

Apply the Bernoulli equation, and then the momentum principle.

ANALYSIS

Bernoulli equation

v21/2g + z1 = v22/2g + z2

(0.6/3)2v22/2g + 3 = v22/2g + 0.6

v2 = 12.69 fps

v1 = 2.54

Q = 7.614 cfs/ft

Momentum principle (x-direction)X
Fx = ρQ(v2x − v1x)

Fx + p1A1 − p2A2 = ρQ(v2 − v1)

Fx = −62.4× 3.0× 3.0/2 + 62.4× 0.6× 0.6/2 + 1.94× 7.614
×(12.69− 2.54) = -120 lbf/ft
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PROBLEM 6.64

Situation: A flow in a pipe is laminar and fully developed–additional details are
provided in the problem statement.

Find: Derive a formula for the resisting shear force (Fτ) as a function of the parame-
ters D, p1, p2, ρ, and U.

APPROACH

Apply the momentum principle, then the continuity principle.

ANALYSIS

Momentum principle (x-direction)

X
Fx =

Z
cs

ρv(v · dA)

p1A1 − p2A2 − Fτ =

Z
A2

ρu22dA− (ρAu1)u1

p1A− p2A− Fτ = −ρu21A+
Z
A2

ρu22dA (1)

Integration of momentum outflow term

u2 = umax(1− (r/r0)2)2
u22 = u2max(1− (r/r0)2)2Z

A2

ρu22dA =

r0Z
0

ρu2max(1− (r/r0)2)22πrdr

= −ρu2maxπr20
r0Z
0

(1− (r/r0)2)2(−2r/r20)dr

To solve the integral, let

u = 1−
µ
r

ro

¶2
Thus

du =

µ
−2r
r2o

¶
dr
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The integral becomes

Z
A2

ρu22dA = −ρu2maxπr20
0Z
1

u2du

= −ρu2maxπr20
µ
u3

3
|01
¶

= −ρu2maxπr20
µ
0− 1

3

¶
=

+ρu2maxπr
2
0

3
(2)

Continuity principle

UA =

Z
udA

=

r0Z
0

umax(1− (r/r0)2)2π rdr

= −umaxπr20
r0Z
0

(1− (r/r0)2)(−2r/r20) dr

= −umaxπr20(1− (r/r0)2)2/2|r00
= umaxπr

2
0/2

Therefore
umax = 2U

Substituting back into Eq. 2 givesZ
A2

ρu22dA = 4ρU
2πr20/3

Finally substituting back into Eq. 1, and letting u1 = U , the shearing force is given
by

Fτ=πD2

4
[p1 − p2 − (1/3)ρU2]
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PROBLEM 6.65

Situation: A swamp boat is powered by a propeller–additional details are provided
in the problem statement.

1

2

Find: (a) Propulsive force when the boat is not moving.
(b) Propulsive force when the boat is moving at 30 ft/s.

Assumptions: When the boat is stationary, neglect the inlet flow of momentum—that
is, assume v1 ≈ 0.

APPROACH

Apply the momentum principle.

ANALYSIS

a.) Boat is stationary

Momentum principle (x-direction) Select a control volume that surrounds the boat.X
Fx = ṁv2 − ṁv1

Fstop ≈ ṁv2

Mass flow rate

ṁ = ρA2v2

=
¡
0.00228 slug/ ft3

¢Ãπ (3 ft)2

4

!
(90 ft/ s)

= 1.451 slug/ s

Thus

Fstop = ṁv2

= (1.451 slug/ s) (90 ft/ s)

= 130.59 lbf

Force (stationary boat) = 131 lbf

b.) Boat is moving
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Momentum principle (x-direction). Select a control volume that surrounds the boat
and moves with the speed of the boat. The inlet velocity is v1 = 30 ft/sX

Fx = ṁ (v2 − v1)

= (1.451 slug/ s) (90− 30) ft/ s
Fx = ρQ(v2 − v1)

Fx = 0.00228× 636.17(90− 30)
= 87.1 lbf

Force (moving boat) = 87.1 lbf
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PROBLEM 6.66

Situation: Air flows through a windmill–additional details are provided in the prob-
lem statement.

Find: Thrust on windmill.

APPROACH

Apply the continuity principle, then the momentum principle.

ANALYSIS

Continuity principle
v2 = 10× (3/4.5)2 = 4.44 m/s

Momentum principle (x-direction)X
Fx = ṁ(v2 − v1)

Fx = ṁ(v2 − v1)

= (1.2)(π/4× 33)(10)(4.44− 10)
Fx = −472.0 N (acting to the left)

T = 472 N (acting to the right)
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PROBLEM 6.67

Situation: A jet pump is described in the problem statement.

Find: (a) Derive a formula for pressure increase across a jet pump.
(b) Evaluate the pressure change for water if Aj/Ao = 1/3, vj = 15 m/s and vo = 2
m/s.

APPROACH

Apply the continuity principle, then the momentum principle.

ANALYSIS

Continuity principle

v1 = v0D
2
0/(D

2
0 −D2

j ) (1)

v2 = (v0D
2
0 + vjD

2
j )/D

2
0 (2)

Momentum principle (x-direction)X
Fx = ṁ(v2 − v1)

(p1 − p2)πD
2
0/4 = −ρv21π(D2

0 −D2
j )/4− ρv2jπD

2
j/4 + ρv22πD

2
0/4

thus,

(p2 − p1) = ρv21(D
2
0 −D2

j )/D
2
0 + ρv2j ×D2

j/D
2
0 − ρv22 (3)

Calculations

v1 = v0/(1− (Dj/D0)
2)

= 2/(1− (1/3))
= 3 m/s

v2 = v0 + vj(D
2
j/D

2
0)

= 2 + 15(1/3)

= 7 m/s

from Eq. (3)

p2 − p1 = ρ
£
v21
¡
1− (Dj/D0)

2
¢
+ v2j (Dj/D0)

2 − v22
¤

= 1000
£
32(1− (1/3)) + 152(1/3)− 72¤

= 32 kPa
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PROBLEM 6.68

Situation: The problem statement describes a jet pump.
2 6v /2g2

x
vj

4ft y∆

1

v= 1 ft/s

Find: Develop a preliminary design by calculating basic dimensions for a jet pump.

APPROACH

Apply the momentum principle, then the continuity principle.

ANALYSIS

Momentum principle (x-direction)
Carry out the analysis for a section 1 ft wide (unit width) and neglect bottom friction.X

Fx = ṁ2v2 − ṁ1v1 − ṁjvj

γy21/2− γy22/2 = −1ρ(1× (4−∆y))− vjρ(vj∆y) + v2ρ(v2y2) (1)

but y2 = 4 ft + 6 v2/2g

= 4 + 6/2g = 4.0932 ft

Continuity principle

v2y2 = v1(4−∆y) + vj∆y

v2 = v1(4−∆y)/y2 + vj∆y/y2

Assume
∆y = 0.10 ft

Then
v2 = 1(3.9)/(4.093) + vj × 0.1/4.0392 = 0.9528 + 0.02476vj (2)

Combine Eqs. (1) and (2)

v2j − (0.9528 + 0.02476v2j × 40.932 = 5g(y22 − y21)− 39.0
= 82.44 ft2/s2

Solving:
vj = 12.1 ft/s Aj = 0.10 ft2

If circular nozzles were used, then Aj = (π/4)d
2
j ; dj = 4.28 in. Therefore, one could

use 8 nozzles of about 4.3 in. in diameter discharging water at 12.1 ft/s

COMMENTS

Like most design problems, this problem has more than one solution. That is, other
combinations of dj, vj and the number of jets are possible to achieve the desired
result.
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PROBLEM 6.69

Situation: Lift and drag forces are being measured on an airfoil that is situated in a
wind tunnel–additional details are provided in the problem statement.

y pu

8 m/s

2

12 m/s0.25 m

0.25 m
L

D

0.5 m

x pl

1m

c.v. c.s.

1

10 m/s

Find: (a) Lift force: L
(b) Drag force: D

APPROACH

Apply the momentum principle.

ANALYSIS

Momentum principle (x-direction)X
Fx =

X
cs

ṁv0 − ṁ1v1

−D + p1A1 − p2A2 = v1(−ρv1A) + va(ρvaA/2) + vb(ρvbA/2)

−D/A = p2 − p1 − ρv21 + ρv2a/2 + ρv2b/2

where

p1 = pu(x = 0) = pc(x = 0) = 100 Pa, gage

p2 = pu(x = 1) = pc(x = 1) = 90 Pa, gage

then

−D/A = 90− 100 + 1.2(−100 + 32 + 72)
−D/A = −5.2

D = 5.2× 0.52 = 1.3 N

Momentum principle (y-direction) X
Fy = 0

−L+
Z 2

1

pcBdx−
Z 1

0

puBdx = 0 where B is depth of tunnel

−L+
Z 1

0

(100− 10x+ 20x(1− x))0.5dx−
Z 1

0

(100− 10x− 20x(1− x))0.5dx = 0

−L+ 0.5(100x− 5x2 + 10x2 − (20/3)x3)|10 − 0.5(100x− 5x2 − 10x2 + (20/3)x3|10 = 0
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thus,

−L+ 49.167− 45.833 = 0

L = 3.334 N
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PROBLEM 6.70

Situation: A torpedo-like device is being tested in a wind tunnel–additional details
are provided in the problem statement.

c.s.Drag

Force of device on air= -Drag

Find: (a) Mass rate of flow.
(b)Maximum velocity at the outlet section.
(c)Drag on the device and support vanes.

APPROACH

Apply the momentum principle.

ANALYSIS

Mass flow rate

ṁ = ρvA

=
¡
0.0026 slug/ ft3

¢× (120 ft/ s)×µπ(3.0 ft)2
4

¶
= 2.205 slug/ s

ṁ = 2.205 slug/ s

At the outlet section Z 0

0

vdA = Q

But v is linearly distributed, so v = vmax(r/r0). ThusZ r0

0

µ
vmax

r

ro

¶
2πrdr = vA

2vmaxr
2
0

3
= vr20

vmax =
3v

2

=
3 (120 ft/ s)

2
vmax = 180 ft/ s

vmax = 180 ft/ s
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Momentum principle (x-direction)X
Fx =

Z r0

0

ρv22dA− ṁv1 (1)

a.) Forces analysis X
Fx = p1A1 − p2A2 −D (a)

b.) Outlet velocity profile

v2 = vmax
r

ro

=

µ
3v

2

¶µ
r

ro

¶
(b)

c.) Outlet momentum flowZ r0

0

ρv22dA =

Z r0

0

ρ

·µ
3v

2

¶µ
r

ro

¶¸2
2πrdr

= 2πρ

µ
3v

2

¶2 Z r0

0

µ
r

ro

¶2
rdr

= 2πρ

µ
3v

2

¶2µ
r2o
4

¶
(c)

Substituting Eqns. (a) and (c) into the momentum equation (1) givesX
Fx =

Z r0

0

ρv22dA− ṁv1

p1A1 − p2A2 −D = 2πρ

µ
3v

2

¶2µ
r2o
4

¶
− ṁv1

D = p1A1 − p2A2 − 2πρ
µ
3v

2

¶2µ
r2o
4

¶
+ ṁv1 (2)

Calculations (term by term)

p1A1 = (144× 0.24)×
µ
π × 32
4

¶
= 244.3 lbf

p2A2 = (144× 0.1)×
µ
π × 32
4

¶
= 101. 9 lbfZ r0

0

ρv22dA = 2πρ

µ
3v

2

¶2µ
r2o
4

¶
= 2π (0.0026)

µ
3 (120)

2

¶2µ
1.52

4

¶
= 297. 7 lbf

ṁv1 = (2.205) (120)

= 264. 6 lbf
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Substituting numerical values into Eq. (2)

D = p1A1 − p2A2 − 2πρ
µ
3v

2

¶2µ
r2o
4

¶
+ ṁv1

= 244.3 lbf − 101. 9 lbf − 297. 7 lbf + 264. 6 lbf
= 109.3 lbf

D = 109.3 lbf
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PROBLEM 6.71

Situation: A tank of water rests on a sled–additional details are provided in the
problem statement.

Find: Acceleration of sled at time t

APPROACH

Apply the momentum principle.

ANALYSIS

This type of problem is directly analogous to the rocket problem except that the
weight does not directly enter as a force term and pe = patm. Therefore, the appro-
priate equation is

M dvs/dt = ρv2eAe − Ff

a = (1/M)(ρv2e(π/4)d
2
e − µW )

where µ =coefficient of sliding friction and W is the weight

W = 350 + 0.1× 1000× 9.81 = 1331 N
a = (g/W )(1, 000× 252(π/4)× 0.0152 − (1331× 0.05))
= (9.81/1, 331)(43.90) m/s2

= 0.324 m/s2
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PROBLEM 6.72

Situation: A fluid jet strikes a wave that is moving at a speed vv = 7 m/s. D1 = 6
cm. Speed of the fluid jet is 20 m/s, relative to a fixed frame.

45o

x

y

v1

vv

v2

Find: Force of the water on the vane.

ANALYSIS

Force and momentum diagrams
Select a control volume surrounding and moving with the vane. Select a reference
frame attached to the moving vane.

Momentum principle (x-direction)X
Fx = ṁv2x − ṁv1x

−Fx = −ṁv2 cos 45
◦ − ṁv1

Momentum principle (y-direction)X
Fy = ṁv2y − ṁv1y

Fy = ṁv2 sin 45
◦

Velocity analysis

• v1 is relative to the reference frame = (20− 7) = 13.
• in the term ṁ = ρAv use v which is relative to the control surface. In this case
v = (20− 7) = 13 m/s

• v2 is relative to the reference frame v2 = v1 = 13 m/s

Mass flow rate

ṁ = ρAv

= (1, 000 kg)(π/4× 0.062)(13)
= 36.76 kg/s
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Evaluate forces

Fx = ṁv1(1 + cos 45)

= 36.76× 13(1 + cos 45) = 815.8 N

which is in the negative x−direction.

Fy = ṁv2 sin 45

= 36.76× 13 sin 45 = 338.0 N

The force of the water on the vane is the negative of the force of the vane on the
water. Thus the force of the water on the vane is

F = (815.8i−338j) N
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PROBLEM 6.73

Situation: A cart is moving with steady speed–additional details are provided in the
problem statement.

17 m/s

17 m/s

17 m/s

y

x

2

3

1

45o

Find: Force exerted by the vane on the jet: F

APPROACH

Apply the momentum principle.

ANALYSIS

Make the flow steady by referencing all velocities to the moving vane and let the c.v.
move with the vane as shown.

Momentum principle (x-direction)

Fx = ṁ2v2x − ṁ1v1

Fx = (172 cos 45◦)(1000)(π/4)(0.12)/2− (17)(1000)(17)(π/4)(0.12)
= +802− 2270 = −1470 N

Momentum principle (y-direction)

Fy = ṁ2v2y − ṁv3y

= (17)(1, 000)(sin 45◦)(17)(π/4)(0.12)/2− (17)2(1000)(π/4)(0.12)/2
= −333 N

F(water on vane) = (1470i+ 333j) N
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PROBLEM 6.74

Situation: A cart is moving with steady speed–additional details are provided in the
problem statement.

Find: Rolling resistance of the cart: Frolling

ANALYSIS

Let the control surface surround the cart and let it move with the cart at 5 ft/s.
Then we have a steady flow situation and the relative jet velocities are shown below.

55 ft/s

55 ft/s

55 ft/s

y

x

2

3

1

45o

Momentum principle (x-direction)X
Fx = ṁ2v2x − ṁ1v1

Calculations

ṁ1 = ρA1V1

= (1.94)(π/4× 0.12)55
= 0.838 kg/s

ṁ2 = 0.838/2

= 0.419 kg/s

Frolling = ṁ1v1 − ṁ2v2 cos 45
◦

= 0.838× 55− 0.419× 55 cos 45◦
Frolling = 29.8 lbf (acting to the left)
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PROBLEM 6.75

Situation: A water is deflected by a moving cone.
Speed of the water jet is 25m/ s (to the right). Speed of the cone is 13m/ s (to the
left). Diameter of the jet is D = 10 cm.
Angle of the cone is θ = 50o.

Find: Calculate the external horizontal force needed to move the cone: Fx

Assumptions: As the jet passes over the cone (a) assume the Bernoulli equation
applies, and (b) neglect changes in elevation.

APPROACH

Apply the momentum principle.

ANALYSIS

Select a control volume surrounding the moving cone. Select a reference frame fixed
to the cone. Section 1 is the inlet. Section 2 is the outlet.
Inlet velocity (relative to the reference frame and surface of the control volume).

v1 = V1 = (25 + 13) m/ s

38m/ s

Bernoulli equation. Pressure and elevation terms are zero, so

V1 = V2 = v2 = 38m/ s

Momentum principle (x-direction)

Fx = ṁ(v2x − v1)

= ρA1V1 (v2 cos θ − v1)

= ρA1V
2
1 (cos θ − 1)

=

µ
1000

kg

m3

¶
×
µ
π × (0.1m)2

4

¶
× (38m/ s)2 (cos 50o − 1)

= −4.051 kN

Fx = 4.05 kN (acting to the left)
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PROBLEM 6.76

Situation: A jet of water is deflected by a moving van–additional details are provided
in the problem statement.

Find: Power (per foot of width of the jet) transmitted to the vane: P

APPROACH

Apply the momentum principle.

ANALYSIS

Select a control volume surrounding the moving cone. Select a reference frame fixed
to the cone.

Velocity analysis

v1 = V1 = 40 ft/s

v2 = 40 ft/s

Momentum principle (x-direction)X
Fx = ṁ(v2x − v1)

Fx = 1.94× 40× 0.3× (40 cos 50− 40)
= −332.6 lbf

Calculate power

P = Fv

= 332.6× 60
= 19,956 ft-lbf/s = 36.3 hp
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PROBLEM 6.77

Situation: A sled of mass ms = 1000 kg is decelerated by placing a scoop of width
w = 20 cm into water at a depth d = 8 cm.

Find: Deceleration of the sled: as

ANALYSIS

Select a moving control volume surrounding the scoop and sled. Select a stationary
reference frame.

Momentum principle (x-direction)

0 =
d

dt
(msvs) + ṁv2x − ṁv1x

Velocity analysis

v1x = 0

V1 = 100 m/s

V2 = 100 m/s

v2 = 100 m/s[− cos 60i+ sin 60j] + 100i m/s
v2x = 50 m/s

The momentum principle equation simplifies to

0 = msas + ṁv2x (1)

Flow rate

ṁ = ρA1V1

= 1000× 0.2× 0.08× 100
= 1600 kg/s

From Eq. (1).

as = −ṁv2x
ms

=
(−1600)(50)

1000

= -80 m/s2
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PROBLEM 6.78

Situation: A snowplow is described in the problem statement.

Find: Power required for snow removal: P

APPROACH

Apply the momentum principle.

ANALYSIS

Momentum principle (x-direction)
Select a control volume surrounding the snow-plow blade. Attach a reference frame
to the moving blade. X

Fx = ρQ(v2x − v1)

Velocity analysis

V1 = v1 = 40 ft/s

v2x = −40 cos 60◦ cos 30◦
= −17.32 ft/s

Calculations X
Fx = 1.94× 0.2× 40× 2× (1/4)(−17.32− 40)

= −444.8 lbf

Power

P = FV

= 444.8× 40
= 17, 792 ft-lbf/s

P = 32.3 hp
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PROBLEM 6.79

Maximum force occurs at the beginning; hence, the tank will accelerate immediately
after opening the cap. However, as water leaves the tank the force will decrease,
but acceleration may decrease or increase because mass will also be decreasing. In
any event, the tank will go faster and faster until the last drop leaves, assuming no
aerodynamic drag.
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PROBLEM 6.80

Situation: A cart is moving with a steady speed along a track.
Speed of cart is 5m/ s (to the right). Speed of water jet is 10m/ s.
Nozzle area is A = 0.0012m2.

Find: Resistive force on cart: Fr

APPROACH

Apply the momentum principle.

ANALYSIS

Assume the resistive force (Fr) is caused primarily by rolling resistance (bearing
friction, etc.); therefore, the resistive force will act on the wheels at the ground
surface. Select a reference frame fixed to the moving cart. The velocities and
resistive force are shown below.

5 m/s

5 m/s

2

1

c.s.

x

Fr

Velocity analysis

V1 = v1 = v2 = 5 m/s

ṁ = pA1V1

= (1000)(0.0012)(5)

= 6 kg/s

Momentum principle (x-direction)X
Fx = ṁ(v2 − v1)

−Fr = 6(−5− 5) = −60 N

Fr = 60 N (acting to the left)
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PROBLEM 6.81

Situation: A jet with speed vj strikes a cart (M = 10 kg), causing the cart to
accelerate.
The deflection of the jet is normal to the cart [when cart is not moving].
Jet speed is vj = 10 m/s. Jet discharge is Q = 0.1 m3/s.

Find: (a)Develop an expression for the acceleration of the cart.
(b)Calculate the acceleration when vc = 5 m/s.

Assumptions: Neglect rolling resistance.
Neglect mass of water within the cart.

APPROACH

Apply the momentum principle.

ANALYSIS

Select a control surface surrounding the moving cart. Select a reference frame fixed
to the nozzle. Note that a reference frame fixed to the cart would be non-inertial.

Force and momentum diagrams

y

x

m v
2 2

.

m v
1 1

.

W

N

(Mv )=Ma
c c

d
dt

Momentum principle (x-direction)X
Fx =

d

dt
(mvc) + ṁ2v2x = −ṁ1v1

Momentum accumulation

Note that the cart is accelerating. Thus,

d

dt

Z
cv

vxρdV =
d

dt
vc

Z
cv

ρdV =
d

dt
(Mvc)

= mac
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Velocity analysis

V1 = vj − vc [relative to control surface]

v1 = vj [relative to reference frame (nozzle)]

from conservation of mass

v2y = (vj − vc)

v2x = vc

ṁ2 = ṁ1

Combining terms X
Fx =

d

dt
(Mvc) + ṁ(v2x − v1)

0 = Mac + ρA1(vj − vc)(vc − vj)

ac =
(ρQ/vj)(vj−vc)2

M

Calculations

ac =
1, 000× 0.1/10(10− 5)2

10

ac = 25 m/ s
2 (when vc = 5m/ s)

519



PROBLEM 6.82

Situation: A hemispherical nozzle sprays a sheet of liquid at a speed v through a 180◦

arc. Sheet thickness is t.

v

ydθ

θ

Find: An expression for the force in y-direction to hold the nozzle stationary.
The math form of the expression should be Fy = Fy(ρ, v, r, t).

APPROACH

Apply the momentum principle.

ANALYSIS

Momentum principle (y-direction)

Fy =

Z
cs

vyρV · dA

=

Z π

0

(v sin θ)ρv(trdθ)

= ρv2tr

Z π

0

sin θdθ

Fy=2ρV 2tr
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PROBLEM 6.83

Situation: The problem statement describes a planar nozzle.

Find:
a.) Derive an expression for f (θ)
b.) Derive an expression for λ (θ)

ANALYSIS

Define Ae as the projection of the exit area on the y plane. Use the momentum
equation to solve this problem and let the control surface surround the nozzle and
fuel chamber as shown above. The forces acting on the system are the pressure forces
and thrust, T . The pressure forces in the x-direction are from p0 and pe. Writing
the momentum equation in the x-direction we have:

T + p0Ae − peAe =

Z
A

vxρV · dA

T + p0Ae − peAe =

Z
2(v cos θ)ρ(−vLRdθ)

T + p0Ae − peAe = −2v2ρLR
Z θ

0

cos θdθ

T + p0Ae − peAe = −2v2ρLR sin θ
But

ṁ = 2

Z θ

0

ρvdA = 2

Z θ

0

ρvLRdθ = 2ρvLRθ

T + p0Ae − peAe = −2ρv2LRθ(sin θ/θ)
T + p0Ae − peAe = −vṁ sin θ/θ

T = ṁv(− sin θ/θ) + peAe − p0Ae

T = ṁvf(θ) +Ae(pe − p0)λ(θ)

where

f(θ) = − sin θ/θ
λ(θ) = 1
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PROBLEM 6.84

Situation: Air flows through a turbofan engine. Inlet mass flow is 300 kg/ s.
Bypass ratio is 2.5. Speed of bypass air is 600m/ s.
Speed of air that passes through the combustor is 1000m/ s.

m2

m1

.

.

300 m/s

600 m/s

1,000 m/s

c.s.

A B

Additional details are given in the problem statement.

Find: Thrust (T ) of the turbofan engine.

Assumptions: Neglect the mass flow rate of the incoming fuel.

APPROACH

Apply the continuity and momentum equations.

ANALYSIS

Continuity equation
ṁA = ṁB = 300 kg/ s

also

ṁB = ṁcombustor + ṁbypass

= ṁcombustor + 2.5ṁcombustor

ṁB = 3.5ṁcombustor

Thus

ṁcombustor =
ṁB

3.5
=
300 kg/ s

3.5
= 85. 71 kg/ s

ṁbypass = ṁB − ṁcombustor

= 300 kg/ s− 85. 71 kg/ s
= 214.3 kg/ s
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Momentum equation (x-direction)X
Fx =

X
ṁvout − ṁvin

Fx = [ṁbypassVbypass + ṁcombustorVcombustor]− ṁAVA

= [(214.3 kg/ s) (600m/ s) + (85. 71 kg/ s) (1000m/ s)]− (300 kg/ s) (300m/ s)
= 124, 290N

T = 124, 300 N
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PROBLEM 6.85

Situation: A problem in rocket-trajectory analysis is described in the problem state-
ment.

Find: Initial mass of a rocket needed to place the rocket in orbit.

ANALYSIS

M0 = Mf exp(Vb0λ/T )

= 50 exp(7200/3000)

= 551.2 kg
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PROBLEM 6.86

Situation: A toy rocket is powered by a jet of water–additional details are provided
in the problem statement.

Find: Maximum velocity of the rocket.

Assumptions: Neglect hydrostatic pressure; Inlet kinetic pressure is negligible.

ANALYSIS

Newtons 2nd law. X
F = ma

T −W = ma

where T =thrust and W =weight

T = ṁve

ṁve −mg = mdvR/dt

dvR/dt = (T/m)− g

= (T/(mi − ṁt))− g

dvR = ((Tdt)/(mi − ṁt))− gdt

vR = (−T/ṁ)cn(mi − ṁt)− gt+ const.

where vR = 0 when t = 0. Then

const. = (T/ṁ) ln(mi)

vR = (T/ṁ) ln((mi)/(mi − ṁt))− gt

vRmax = (T/ṁ) ln(mi/mf)− gtf

T/ṁ = ṁve/ṁ = ve

Bernoulli equation
(neglecting hydrostatic pressure)

pi + ρfv
2
i /2 = pe + ρfv

2
e/2

The exit pressure is zero (gage) and the inlet kinetic pressure is negligible. So

v2e = 2pi/ρf
= 2× 100× 103/998
= 200 m2/s2

ve = 14.14 m/s

ṁ = ρeveAe

= 1000× 14.14× 0.1× 0.052 × π/4

= 2.77 kg/s
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Time for the water to exhaust:

t = mw/ṁ

= 0.10/2.77

= 0.036s

Thus

vmax = 14.14 ln((100 + 50)/50)− (9.81)(0.036)
= 15.2 m/s
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PROBLEM 6.87

Situation: A rocket with four nozzles is described in the problem statement.

Find: Thrust of the rocket (all four nozzles).

APPROACH

Apply the momentum principle.

ANALYSIS

Momentum principle (z-direction)X
Fz = ṁvz[per engine]

T − paAe cos 30
◦ + peAe cos 30

◦ = −ve cos 30◦ρveAe

T = −1× 0.866
×(50, 000− 10, 000 + 0.3× 2000 × 2000)

= −1.074× 106 N

Thrust of four engines

Ttotal = 4× 1.074× 106
= 4.3× 106N
= 4.3 MN
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PROBLEM 6.88

Situation: A rocket nozzle is connected to a combustion chamber.
Mass flow: ṁ = 220 kg/ s. Ambient pressure: po = 100 kPa.
Nozzle inlet conditions: A1 = 1m

2, u1 = 100m/ s, p1 = 1.5MPa-abs.
Nozzle exit condition? A2 = 2m

2, u2 = 2000m/ s, p2 = 80 kPa-abs.

Assumptions: The rocket is moving at a steady speed (equilibrium).

Find: Force on the connection between the nozzle and the chamber.

APPROACH

Apply the momentum principle to a control volume situated around the nozzle.

ANALYSIS

Momentum principle (x-direction)X
Fx = ṁovox − ṁivix

F + p1A1 − p2A2 = ṁ(v2 − v1)

where F is the force carried by the material that connects the rocket nozzle to the
rocket chamber.

Calculations (note the use of gage pressures).

F = ṁ(v2 − v1) + p2A2 − p1A1

= (220 kg/ s) (2000− 100)m/ s + ¡−20, 000N/m2¢ ¡2m2¢
− ¡1, 400, 000N/m2¢ ¡1m2¢

= −1.022× 106 N
= −1.022 MN

The force on the connection will be

F = 1.022 MN

The material in the connection is in tension.
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PROBLEM 6.89

Situation: A problem related to the design of a conical rocket nozzle is described in
the problem statement.

Find: Derive an expression for the thrust of the nozzle.

APPROACH

Apply the momentum principle.

ANALYSIS

Momentum principle (x-direction)

X
F =

Z
vρv · dA

T =

Z α

0

ve cos θρve

Z 2π

0

sin θrdφrdθ

T = 2πr2ρv2e

Z α

0

cos θ sin θdθ

= 2πr2ρv2e sin
2 α/2

= ρv2e2πr
2(1− cosα)(1 + cosα)/2

Exit Area

Ae =

Z α

0

Z 2π

0

sin θrdφrdθ = 2πr2(1− cosα)

T = ρv2eAe(1 + cosα)/2 = ṁve(1 + cosα)/2
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PROBLEM 6.90

Situation: A valve at the end of a gasoline pipeline is rapidly closed–additional
details are provided in the problem statement.

Find: Water hammer pressure rise: ∆p

ANALYSIS

Speed of sound

c =
p
Ev/ρ

= ((715)(106)/(680))0.5

= 1025 m/s

Pressure rise

∆p = ρvc

= (680)(10)(1025)

= 6.97 MPa
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PROBLEM 6.91

Situation: A valve at the end of a long water pipeline is rapidly closed–additional
details are provided in the problem statement.

Find: Water hammer pressure rise: ∆p

ANALYSIS

c =

s
Ev

ρ

=

r
2.2× 109
1000

= 1483 m/s

tcrit = 2L/c

= 2× 10, 000/1483
= 13.5 s > 10 s

Then

∆p = ρvc

= 1000× 4× 1483
= 5, 932, 000 Pa

= 5.93 MPa
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PROBLEM 6.92

Situation: A valve at the end of a water pipeline is instantaneously closed–additional
details are provided in the problem statement.

Find: Pipe length: L

ANALYSIS

Determine the speed of sound in water

c =

s
Ev

ρ

=

r
2.2× 109
1000

= 1483 m/s

Calculate the pipe length

t = 4L/c

3 = 4L/1483

L=1112 m
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PROBLEM 6.93

Situation: A valve at the end of a water pipeline is closed during a time period of 10
seconds.
Additional details are provided in the problem statement.

Find: Maximum water hammer pressure: ∆pmax

ANALYSIS

Determine the speed of sound in water

c =

s
Ev

ρ

c =

r
320, 000

1.94
= 4874 ft/s

Determine the critical time of closure

tcrit = 2L/c

= 2× 5× 5280/4874
= 10.83 s > 10 s

Pressure rise

∆pmax = ρvc

= 1.94× 8× 4874
= 75,644 psf = 525 psi
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PROBLEM 6.94

Situation: A valve at the end of a long water pipe is shut in 3 seconds–additional
details are provided in the problem statement

Find: Maximum force exerted on valve due to the waterhammer pressure rise: Fvalve

ANALYSIS

tcrit =
2L

c

=
2× 4000
1485.4

= 5.385 s > 3 s

Fvalve = A∆p

= Aρ(Q/A)c

= ρQc

= 998× 0.03× 1483
= 44.4 kN
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PROBLEM 6.95

Situation: The easy way to derive the equation for waterhammer pressure rise is to
use a moving control volume.

Find: Derive the equation for waterhammer pressure rise (Eq. 6.12).

ANALYSIS

V+c cP
ρ

p+
v=c
= +

∆ρ

ρ ρ ∆ρ

Continuity equation

(v + c)ρ = c(ρ+∆ρ)

∴ ∆ρ = vρ/c

Momentum principle (x-direction)X
Fx =

X
vxρv ·A

pA− (p+∆p)A = −(V + c)ρ(V + c)A+ c2(ρ+∆ρ)A

∆p = 2ρvc− c2∆ρ+ v2ρ

= 2ρvc− c2vρ/c+ v2ρ

= ρvc+ ρv2

Here ρv2 is very small compared to ρvc

∴ ∆p = ρvc
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PROBLEM 6.96

Situation: The problem statement describes a waterhammer phenomena in a pipe.

Find: Plot a pressure versus time trace at point B for a time period of 5 seconds.
Plot a pressure versus distance trace at t = 1.5 s.

ANALYSIS

v = 0.1m/ s

c = 1483m/ s

ppipe = 10γ − ρv2pipe/2

≈ 98, 000 Pa

∆p = ρvc

= 1000× 0.10× 1483
∆p = 148, 000 Pa

Thus

pmax = p+∆p

= 98, 000 + 148, 000

= 246 kPa- gage

pmin = p−∆p = −50 kPa gage
The sequence of events are as follows:

∆t Σ∆t
Pressure wave reaches pt B. 1000/1483 = 0.674 s 0.67 s

Time period of high pressure at B 600/1483 = 0.405 s 1.08 s
Time period of static pressure at B 2000/1483 = 1.349 s 2.43 s

Time period of negative pressure at B 600/1483 = 0.405 s 2.83 s
Time period of static pressure at B 2000/1483 = 1.349 s 4.18 s
Time period of high pressure at B 600/1, 483 = 0.405 s 4.59 s
Time period of static pressure atB 2000/1483 = 1.349 s 5.94 s

Results are plotted below:

200 kPa

100 kPa

0

0 1 2 3 4 5
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200 kPa

100 kPa

500 m 1,000 m
0

Figure 1:

At t = 1.5 s high pressure wave will have travelled to reservoir and static wave will
be travelling toward valve.

Time period for wave to reach reservoir = 1300/1483 = 0.877 s. Then static wave
will have travelled for 1.5 − 0.877 s = 0.623 s. Distance static wave has travelled
= 0.623 s ×1, 483 m/s = 924 m. The pressure vs. position plot is shown below:
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PROBLEM 6.97

Situation: A water hammer phenomenon occurs in a steel pipe–additional details
are provided in the problem statement.

Find: (a) The initial discharge.
(b) Length from A to B.

ANALYSIS

c = 1483 m/s

∆p = ρ∆vc

t = L/c

L = tc = 1.46 s × 1, 483 = 2165 m

∆v = ∆p/ρc

= (2.5− 0.2)× 106 Pa/1.483× 106 kg/m2s = 1.551 m/s

Q = vA = 1.551× π/4 = 1.22 m3/s
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PROBLEM 6.98

Situation: Water is discharged from a slot in a pipe–additional details are provided
in the problem statement.

Find: Reaction (Force and Moment) at station A−A

APPROACH

Apply the momentum principle and the moment of momentum principle.

ANALYSIS

y

x

Plan View

vy = −(3.1 + 3x) m/s
Momentum principle (y-direction)

X
Fy =

Z
vyρv · dA

Fy = −
Z 1.3

0.3

(3.1 + 3x)× 1, 000× (3.1 + 3x)× 0.015dx = −465 N
Ry = 465 N

Flow rate

Q =

Z
vdA = 0.015

Z 1.3

0.3

(3.1 + 3x)dx = 0.0825 m3/s

v1 = Q/A = 0.0825/(π × 0.042) = 16.4 m/s

Momentum principle (z-direction)X
Fz = −ṁ1v1

Fz − pAAA −Wf = −ṁv1

Fz = 30, 000× π × 0.042 + 0.08× π × 0.042 × 9, 810
+1.3× π × 0.0252 × 9, 810 + 1000× 0.0825× 16.4

= 1530 N

Rz = −1530 N
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Moment-of-momentum (z−direction)

Tz =

Z
cs

rvρv · dA

= 15

Z 1.3

0.3

(3.1 + 3r)2rdr = 413.2 N ·m

Moment-of-momentum (y-direction)

Ty +Wrcm = 0

where W=weight, rcm=distance to center of mass

Ty = −1.3π × 0.0252 × 9810× 0.65 = −16.28 N ·m

Net reaction at A-A

F = (465j− 1530k)N
T = (16.3j− 413k)N · m
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PROBLEM 6.99

Situation: Water flows out a pipe with two exit nozzles–additional details are pro-
vided in the problem statement.

30o

1

2

3

Find: Reaction (Force and Moment) at section 1.

APPROACH

Apply the continuity equation, then the momentum principle and the moment of
momentum principle.

ANALYSIS

Continuity principle equation

v1 = (0.1× 50 + 0.2× 50)/0.6 = 25 ft/s
Momentum equation (x-direction)X

Fx = ṁ3v3x + ṁ2v2x

Fx = −20× 144× 0.6− 1.94× 252 × 0.6 + 1.94× 502 × 0.2
+1.94× 502 × 0.1× cos 60◦ = −1,243 lbf

Momentum equation (y-direction)X
Fy = ṁ2v2y

Fy = 1.94× 50× 50× 0.1× cos 30◦ = 420 lbf
Moment-of-momentum (z−direction)

r2ṁ2v2y = (36/12)(1.94× 0.1× 50)50 sin 60◦ = 1260 ft-lbf
Reaction at section 1

F = (1243i− 420j)lbf
M = (−1260k) ft-lbf
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PROBLEM 6.100

Situation: Water flows out a pipe with two exit nozzles–additional details are pro-
vided in the problem statement.

2 y

x
3

30o

Find: Reaction (Force and Moment) at section 1.

APPROACH

Apply the continuity principle, then the momentum principle and the moment of
momentum principle.

ANALYSIS

Continuity principle equation

V1 = (0.01× 20 + 0.02× 20)/0.1 = 6 m/s

Momentum equation (x-direction)X
Fx =

X
ṁovox −

X
ṁivix

Fx + p1A1 = ṁ3v3 + ṁ2v2 cos 30− ṁ1v1

Fx = −200, 000× 0.1− 1000× 62
×0.1 + 1000× 202 × 0.02
+1000× 202 × 0.01× cos 30◦

= -12,135 N

Momentum equation (y-direction)

Fy −W = ṁ2v2 sin 30
◦

Weight

W = WH2O +Wpipe

= (0.1)(1)(9810) + 90

= 1071 N
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thus

Fy = 1000× 202 × 0.01× sin 30◦ + 1, 071
= 3071 N

Moment-of-momentum (z−direction)

Mz −Wrcm = r2ṁ2v2y

Mz = (1071× 0.5) + (1.0)(1000× 0.01× 20)(20 sin 30◦)
= 2535 N ·m

Reaction at section 1

F = (12.1i− 3.1j) kN
M = (−2.54k) kN · m
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PROBLEM 6.101

Situation: A reducing pipe bend held in place by a pedestal. Water flow. No force
transmission through the pipe at sections 1 and 2.
Assume irrotational flow. Neglect weight

1

2
2 ft

y

x



thus

Fx = −2, 880× 0.196− 2, 471× 0.0873− 3.875(10.19 + 22.92) = −909.6 lbf

Moment-of-momentum (z−direction)

mz − rp1A1 + rp2A2 = −rṁv2 + rṁv1

mz = r(p1A1 − p2A2)− rṁ(v2 − v1)

where r = 1.0 ft.

Mz = 1.0(2, 880× 0.196− 2, 471× 0.08753)− 1.0× 3.875(22.92− 10.19)
= 300.4 ft-lbf

Moment-of-momentum (y-direction)

My + p1A1r3 + p2A2r3 = −r3ṁv2 − r3ṁ1v1

where r3 = 2.0 ft.

My = −r3[p1A1 + p2A2 + ṁ(v1 + v2)]

= −2.0× 909.6
My = −1819 ft-lbf

Net force and moment at 3

F = −910i lbf
M = (−1820j+ 300k) ft-lbf
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PROBLEM 6.102

Situation: Arbitrary contol volume with length ∆s.

Find: Derive Euler’s equation using the momentum equation.

ANALYSIS

v

p
A

∆s

p

W= A s

1

2
(p + p )/21 2

Continuity equation
d

dt

Z
ρdV + ṁo − ṁi = 0

For a control volume that is fixed in spaceZ
∂ρ

∂t
dV + ṁo − ṁi = 0

For the control volume shown above the continuity equation is expressed as

∂ρ

∂t
Ā∆s+ (ρvA)2 − (ρvA)1 = 0

where Ā is the average cross-sectional area between 1 and 2 and the volume of the
control volume is Ā∆s. Dividing by ∆s and taking the limit as ∆s→ 0 we have

A
∂ρ

∂t
+

∂

∂s
(ρvA) = 0

In the limit the average area becomes the local area of the stream tube.

The momentum equation for the control volume isX
Fs =

d

dt

Z
ρvdV + ṁovo − ṁivi

For a control volume fixed in space, the accumulation term can be written as

d

dt

Z
ρvdV =

Z
∂

∂t
(ρv)dV
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The forces are due to pressure and weightX
Fs = p1A1 − p2A2 + (

p1 + p2
2

)(A2 −A1)− γĀ∆s sin θ

where the third term on the right is the pressure force on the sloping surface and θ is
the orientation of control volume from the horizontal. The momentum equation for
the control volume around the stream tube becomes

∂

∂t
(ρv)Ā∆s+ ρAv2v2 − ρAv1v1 = (p1 − p2)Ā− γĀ∆s sin θ

Dividing by ∆s and taking limit as ∆s→ 0, we have

A
∂

∂t
(ρv) +

∂

∂s
(ρAv2) = −∂p

∂s
A− γA sin θ

By differentiating product terms the left side can be written as

A
∂

∂t
(ρv) +

∂

∂s
(ρAv2) = v[A

∂ρ

∂t
+

∂

∂s
(ρvA)] +Aρ

∂v

∂t
+Aρv

∂v

∂s

The first term on the right is zero because of the continuity equation. Thus the
momentum equation becomes

ρ
∂v

∂t
+ ρv

∂v

∂s
= −∂p

∂s
− γ sin θ

But sin θ = ∂z/∂s and ∂v/∂t + v∂v/∂s = as, the acceleration along the path line.
Thus the equation becomes

ρas = − ∂

∂s
(p+ γz)

which is Euler’s equation.
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PROBLEM 6.103

Situation: A helicopter rotor uses two small rockets motors–details are provided in
the problem statement.

Find: Power provided by rocket motors.

APPROACH

Apply the momentum principle. Select a control volume that encloses one motor,
and select a stationary reference frame.

ANALYSIS

Velocity analysis

vi = 0

Vi = rw

= 3.5× 2π
= 21.991 m/ s

V0 = 500 m/ s

v0 = (500− 21.99) m/ s
= 478.01m/ s

Flow rate

ṁ = ρAiVi

= 1.2× .002× 21.991
= 0.05278 kg/s

Momentum principle (x-direction)

Fx = ṁv0 − ṁvi

= ṁv0

= 0.05278× 478
= 25.23 N

Power

P = 2Frw

= 2× 25.23× 3.5× 2π
= 1110W

P = 1.11 kW
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PROBLEM 6.104

Situation: A rotating lawn sprinkler is to be designed.
The design target is 0.25 in. of water per hour over a circle of 50-ft radius.

Find: Determine the basic dimensions of the lawn sprinkler.

Assumptions:
1.) The Bernoulli equation applies.
2.) Assume mechanical friction is present.

APPROACH

Apply the momentum principle.

ANALYSIS

Flow rate. To supply water to a circle 50 ft. in diameter at a 1/4 inch per hour
requires a discharge of

Q = ḣA

= (1/48)π(502/4)/3600

= 0.011 cfs

Bernoulli equation. Assuming no losses between the supply pressure and the sprinkler
head would give and exit velocity at the head of

V =

r
2p

ρ

=

r
2× 50× 144

1.94
= 86 ft/s

If the water were to exit the sprinkler head at the angle for the optimum trajectory
(45o), the distance traveled by the water would be

s =
V 2
e

2g

The velocity necessary for a 25 ft distance (radius of the spray circle) would be

V 2
e = 2gs = 2× 32.2× 25 = 1610
Ve = 40 ft/s

This means that there is ample pressure available to do the design. There will be
losses which will affect the design. As the water spray emerges from the spray head,
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atomization will occur which produces droplets. These droplets will experience aero-
dynamic drag which will reduce the distance of the trajectory. The size distribution
of droplets will lead to small droplets moving shorted distances and larger droplets
farther which will contribute to a uniform spray pattern.

The sprinkler head can be set in motion by having the water exit at an angle with
respect to the radius. For example if the arm of the sprinkler is 4 inches and the
angle of deflection at the end of the arm is 10 degrees, the torque produced is

M = ρQrVe sin θ

= 1.94× 0.011× 40× sin 10
= 0.148 ft-lbf

The downward load on the head due to the discharge of the water is

Fy = ρQVe sin 45

= 1.94× 0.011× 40× sin 45
= 0.6 lbf

The moment necessary to overcome friction on a flat plate rotating on another flat
plate is

M = (2/3)µFnro

where µ is the coefficient of friction and ro is the radius of the plate. Assuming a 1/2
inch radius, the limiting coefficient of friction would be

µ =
3

2

M

Fnro

=
3

2

0.148

0.6× (1/24)
= 8.9

This is very high, which means there is adequate torque to overcome friction.

These are initial calculations showing the feasibility of the design. A more detailed
design would now follow.
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PROBLEM 6.105

Following the same development in the text done for the planar case, there will be
another term added for the two additional faces in the z-direction. The rate of change
of momentum in the control volume plus the net efflux through the surfaces becomes

1

∆x∆y∆z

Z
cv

∂

∂t
(ρu)dV +

ρuux+∆x/2 − ρuux−∆x/2

∆x

+
ρuvy+∆y/2 − ρuvy−∆y/2

∆y
+

ρuwz+∆z/2 − ρuwz−∆z/2

∆z

where w is the velocity in the z−direction and ∆z is the size of the control volume
in the z−direction. Taking the limit as ∆x, ∆y, and ∆z → 0 results in

∂

∂t
(ρu) +

∂

∂x
(ρuu) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw)

In the same way, accounting for the pressure and shear stress forces on the three-
dimensional control volume leads to an additional shear stress term on the z-face.
There is no additional pressure force because there can only be a force due to pressure
on the faces normal to the x-direction. The force terms on the control volume become

px−∆x/2 − px+∆x/2

∆x
+

τxx |x+∆x/2 −τxx |x−∆x/2

∆x

+
τ yx |y+∆y/2 −τ yx |y−∆y/2

∆y
+

τ zx |z+∆z/2 −τ zx |z−∆z/2

∆z

Taking the limit as ∆x, ∆y, and ∆z → 0 results in

−∂p
∂x
+

∂τxx
∂x

+
∂τ yx
∂y

+
∂τ zx
∂z

The body force in the x-direction is

ρgx∆V–
∆x∆y∆z

= ρgx
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PROBLEM 6.106

Substituting in the constitutive relations gives

∂τxx
∂x

+
∂τ yx
∂y

+
∂τ zx
∂z

= 2µ
∂2u

∂x2
+ µ

∂

∂y
(
∂u

∂y
+

∂v

∂x
) + µ

∂

∂z
(
∂u

∂z
+

∂w

∂x
)

This can be written as

∂τxx
∂x

+
∂τ yx
∂y

+
∂τ zx
∂z

= µ(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
) + µ

∂

∂x
(
∂u

∂x
+

∂v

∂y
+

∂w

∂z
)

The last term is equal to zero from the Continuity principle equation for an incom-
pressible flow, so

∂τxx
∂x

+
∂τ yx
∂y

+
∂τ zx
∂z

= µ(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
)
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PROBLEM 7.1

Situation: An engineer is estimating power for a water pik.
Water jet diameter is d = 1/8 in. = 3.175mm. Exit speed is V2 = 40m/ s.

Find: Estimate the minimum electrical power in watts.

Properties: At 10 ◦C, density of water is ρ = 1000 kg/m3.

Assumptions: 1.) Neglect all energy losses in the mechanical system—e.g. motor,
gears, and pump.
2.) Neglect all energy losses in the fluid system—that is, neglect losses associated with
viscosity.
3.) Neglect potential energy changes because these are very small.
4.) Assume the velocity distribution in the water jet is uniform (α = 1) .

APPROACH

In the water pik, electrical energy is converted to kinetic energy of the water. Balance
electrical power with the rate at which water carries kinetic energy out of the nozzle.

ANALYSIS

Power =
Amount of kinetic energy that leaves the nozzle

Each interval of time

=
∆m

V 22
2

∆t

where ∆m is the mass that has flowed out of the nozzle for each interval of time (∆t) .
Since the mass per time is mass flow rate: (∆m/∆t = ṁ = ρA2V2)

Power =
ṁV 2

2

2

=
ρA2V

3
2

2
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Exit area

A2 = π/4× ¡3.175× 10−3m¢2
= 7.917× 10−6m2

Thus.

Power =
(1000 kg/m3) (7.917× 10−6m2) (40m/ s)3

2

Power = 253W

COMMENTS

Based on Ohm’s law, this device would draw about 2 amps on a standard household
circuit.
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PROBLEM 7.2

Situation: A turbine is described in the problem statement.

Find: Power output.

APPROACH

Apply the energy principle.

ANALYSIS

Energy principle

Q̇− Ẇs = ṁ[(h2 − h1) + (V
2
2 − V 2

1 )/2]

−10− Ẇs = 4, 000[(2, 621− 3, 062) + (502 − 102)/(2× 1, 000)] kJ/hr
Ẇs = 489 kW
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PROBLEM 7.3

Situation: A small wind turbine is being developed.
Blade diameter is D = 1.0m. Design wind speed is V = 15 mph = 6.71m/ s.
Air temperature is T = 50 ◦F = 10 ◦C. Atmospheric pressure is p = 0.9 bar = 90 kPa.
Turbine efficiency is η = 20%.

Find: Power (P ) in watts that can be produced by the turbine.

APPROACH

Find the density of air with the idea gas law. Then, find the kinetic energy of the
wind and use 20% of this value to find the power that is produced.

ANALYSIS

Ideal gas law

ρ =
p

RT

=
90, 000Pa

(287 J/ kg · K) (10 + 273) K
= 1.108 kg/m3

ANALYSIS

Rate of KE =
Amount of kinetic energy

Interval of time

=
∆mV 2/2

∆t
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where ∆m is the mass of air that flows through a section of area A = πD2/4 for
each unit of time (∆t) . Since the mass for each interval of time is mass flow rate:
(∆m/∆t = ṁ = ρAV )

Rate of KE =
ṁV 2

2

=
ρAV 3

2

The area is A2 = π/4× (1.0m)2 = 0.785m2

Rate of KE =
(1.103 kg/m3) (0.785m2) (6.71m/ s)3

2

Rate of KE = 130.9W

Since the output power is 20% of the input kinetic energy

P = (0.2) (130.9W)

P = 26.2W

COMMENTS

The amount of energy in the wind is diffuse (i.e. spread out). For this situation,
a wind turbine that is 1 m in diameter in a moderately strong wind (15 mph) only
provides enough power for approximately one 25 watt light bulb.
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PROBLEM 7.4

Situation: A compressor is described in the problem statement.

Find: Power required to operate compressor.

APPROACH

Apply the energy principle.

ANALYSIS

Energy principle

Ẇ = Q̇+ ṁ(V 2
1 /2− V 2

2 /2 + h1 − h2)

The inlet kinetic energy is negligible so

Ẇ = ṁ(−V 2
2 /2 + h1 − h2)

= 1.5(−2002/2 + 300× 103 − 500× 103)
Ẇ = -330 kW
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PROBLEM 7.5

Situation: Flow through a pipe is described in the problem statement.

Find: (a)Velocity and (b)temperature at outlet.

ANALYSIS

h1 + V 2
1 /2 = h2 + V 2

2 /2 (1)

h1 − h2 = V 2
2 /2− V 2

1 /2

ṁ = ρ1V1A = (p1/RT1)V1A

or
T1 = p1V1A/(Rṁ)

where

A = (π/4)× (0.08)2 = 0.00503 m2
h1 − h2 = cp(T1 − T2) = [cpp1V1A/(Rṁ)]− [cpp2V2A/(Rṁ)] (2)

cpp1A(Rṁ) = 1, 004× 150× 103 × 0.00503/(287× 0.5)
= 5, 279 m/s

and
c2p2A/(Rṁ) = (100/150)× (5, 279) = 3, 519 m/s

V1 = ṁ/ρ1A

where
ρ1 = 150× 103/(287× 298) = 1.754 kg/m3

Then
V1 = 0.50/(1.754× 0.00503) = 56.7 m/s (3)

Utilizing Eqs. (1), (2) and (3), we have

56.7× 5, 279− 3, 519V2 = (V 2
2 /2)− (56.72/2) (4)

Solving Eq. (4) yields V2 = 84.35 m/s

cp(T1 − T2) = (84.352 − 56.72)/2 = 1, 950 m2/s2
T2 = T1 − (1, 950/cp)

= 20◦C− 1, 905/1, 004
T2 = 18.1◦C
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PROBLEM 7.6

Situation: A hypothetical velocity distribution in a pipe is described in the problem
statement.

Find:
(a) Kinetic energy correction factor: α
(b)Mean velocity in terms of Vmax.

ANALYSIS

Definition of average velocity

V̄ =
1

A

Z
A

V (r)dA

Velocity profile

V (r) = Vmax − 0.5Vmax r
r0

V (r) = Vmax(1− 0.5 r
r0
)

Then

V̄ =

µ
Vmax
πr20

¶Z r0

0

µ
1− r

2r0

¶
2πrdr

=

µ
2πVmax
πr20

¶Z r0

0

µ
r − r2

2r0

¶
dr

=

µ
2πVmax
πr20

¶µ
r2o
2
− r3o
6r0

¶
= V̄ = 2

3
Vmax

Kinetic energy correction factor

α =

µ
1

πr20

¶Z r0

0


³
1− r

2r0

´
Vmax

2
3
Vmax

3 2πrdr
=

µ
2

r20

¶µ
3

2

¶3 Z r0

0

µ
1− r

2r0

¶3
rdr
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Performing the integration (we used the computer program Maple)

α =
351

320

or
α = 1. 097
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PROBLEM 7.7

Situation: A hypothetical velocity distribution in a rectangular channel is described
in the problem statement.

Find: Kinetic energy correction factor: α

ANALYSIS

V̄ = Vmax/2 and V = Vmaxy/d

Kinetic energy correction factor

α = (1/d)

Z d

0

(Vmaxy/((Vmax/2)d))
3dy

= (1/d)

Z d

0

(2y/d)3dy

α = 2
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PROBLEM 7.8

Situation: Velocity distributions (a) through (d) are described in the problem state-
ment.

Find: Indicate whether α is less than, equal to, or less than unity.

ANALYSIS

a) α = 1.0 ; b) α > 1.0 ; c) α > 1.0 ; d) α > 1.0
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PROBLEM 7.9

Situation: A velocity distribution is shown in case (c) in problem 7.8.

Find: Kinetic energy correction factor: α

ANALYSIS

Kinetic energy correction factor

α = (1/A)

Z
A

(V/V̄ )3dA

Flow rate equation

V = Vm − (r/r0)Vm
V = Vm(1− (r/r0))
Q =

Z
V dA

=

Z r0

0

V (2πrdr)

=

Z r0

0

Vm(1− r/r0)2πrdr

= 2πVm

Z r0

0

[r − (r2/r0)]dr

Integrating yields

Q = 2πVm[(r
2/2)− (r3/(3r0))]r00

Q = 2πVm[(1/6)r
2
0]

Q = (1/3)VmA

Thus
V = Q/A = Vm/3

Kinetic energy correction factor

α = (1/A)

Z r0

0

[Vm(1− r/r0)/((1/3)Vm)]
32πrdr

= (54π/πr20)

Z r0

0

(1− (r/r0))3rdr

α =2.7
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PROBLEM 7.10

Situation: A velocity distribution is shown in case (d) in problem 7.8.

Find: Kinetic energy correction factor: α

ANALYSIS

Flow rate equation

V = kr

Q =

Z r0

0

V (2πrdr)

=

Z r0

0

2πkr2dr

= 2πkr30/3

V̄ = Q/A

= ((2/3)kπr30)/πr
2
0

= 2/3 k r0

Kinetic energy correction factor

α = (1/A)

Z
A

(V/V̄ )3dA

α = (1/A)

Z r0

0

(kr/(2/3 kr0))
32πrdr

α = ((3/2)32π/(πr20))

Z r0

0

(r/r0)
3rdr

α = ((27/4)/r20)(r
5
0/(5r

3
0))

α = 27/20
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PROBLEM 7.11

Situation: The kinetic energy correction factor for flow in a pipe is 1.08.

Find: Describe the flow (laminar or turbulent).

ANALYSIS

b) turbulent
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PROBLEM 7.12

Situation: The velocity distribution in a pipe is described in the problem statement.

Find: Derive formula for kinetic energy correction factor as a function of n.

ANALYSIS

Flow rate equation

u/umax = (y/r0)
n = ((r0 − r)/r0)

n = (1− r/r0)
n

Q =

Z
A

udA

=

Z r0

0

umax(1− r/r0)
n2πrdr

= 2πumax

Z r0

0

(1− r/r0)
nrdr

Upon integration
Q = 2πumaxr

2
0[(1/(n+ 1))− (1/(n+ 2))]

Then

V̄ = Q/A = 2umax[(1/(n+ 1))− (1/(n+ 2))]
= 2umax/[(n+ 1)(n+ 2)]

Kinetic energy correction factor

α =
1

A

Z r0

0

[umax(1− r/r0)
n/(2umax/((n+ 1)(n+ 2)))]

32πrdr

Upon integration one gets

a = (1/4)[((n+ 2)(n+ 1))3/((3n+ 2)(3n+ 1))]

If n = 1/6, then

α = (1/4)[((1/6 + 2)(1/6 + 1))3/((3× 1/6 + 2)(3× 1/6 + 1))]
α = 1.077
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PROBLEM 7.13

Situation: The velocity distribution in a pipe is described in the problem statement.

u/umax = (y/d)
n

Find: Derive formula for kinetic energy correction factor.

ANALYSIS

Solve for q first in terms of umax and d

q =

Z d

0

udy =

Z d

0

umax(y/d)
ndy = umax/d

n

Z d

0

yndy

Integrating:

q = (umax/d
n)[yn+1/(n+ 1)]d0

= umaxd
n+1d−n/(n+ 1)

= umaxd/(n+ 1)

Then
ū = q/d = umax/(n+ 1)

Kinetic energy correction factor

α = (1/A)

Z
A

(u/ū)3dA

= 1/d

Z d

0

[umax(y/d)
n/(umax/(n+ 1))]

3dy

= ((n+ 1)3/d3n+1)

Z d

0

y3ndy

Integrating

α = ((n+ 1)3/d3n+1)[d3n+1/(3n+ 1)]

= (n+ 1)3/(3n+ 1)

When n = 1/7

α = (1 + 1/7)3/(1 + 3/7)

α = 1.045
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PROBLEM 7.14

Situation: Flow though a pipe is described in the problem statement.

Find: Kinetic energy correction factor: α.

ANALYSIS

Kinetic energy correction factor

α =
1

A

Z
A

µ
V

V̄

¶3
dA

The integral is evaluated usingZ
A

µ
V

V̄

¶3
dA ' 1

V̄ 3

X
i

π(r2i − r2i−1)(
vi + vi−1

2
)3

The mean velocity is 24.32 m/s and the kinetic energy correction factor is 1.187.
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PROBLEM 7.15

Situation: Water flows from a pressurized tank, through a valve and out a pipe.

Section 1 (air/water interface in tank): p1 = 100 kPa, z1 = 12m.
Section 2 (pipe outlet): p2 = 0kPa, z2 = 0m, V2 = 10m/ s.
Head loss for the system depends on a minor loss coefficient (KL) . The equation for
head loss is:

hL = KL
V 2

2g

Find: Find the value of the minor loss coefficient (KL) .

Properties: Water @ 15 ◦C from Table A.5: γ = 9800N/m3.

Assumptions: 1.) Assume steady flow.
2.) Assume the outlet flow is turbulent so that α2 = 1.0.
3.) Assume water temperature is 15 ◦C.
4.) Assume the velocity at section 1 is negligible—that is V1 ≈ 0.

APPROACH

Apply the energy equation to a control volume surrounding the water. Analyze each
term and then solve the resulting equation to find the minor loss coefficient.

ANALYSIS

Energy equation

p1
γ
+ α1

V 2
1

2g
+ z1 + hp =

p2
γ
+ α2

V 2
2

2g
+ z2 + ht + hL (1)

Analyze each term:

• At the inlet. p1 = 100 kPa, V1 ≈ 0, z1 = 12m
• At the exit , p2 = 0kPa, V2 = 10m/ s, α2 = 1.0.
• Pumps and turbines. hp = ht = 0
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• Head loss. hL = KL
V 2

2g

Eq. (1) simplifies to

p1
γ
+ z1 = α2

V 2
2

2g
+KL

V 2
2

2g

(100, 000Pa)

(9800N/m3)
+ 12m =

(10m/ s)2

2 (9.81m/ s2)
+KL

(10m/ s)2

2 (9.81m/ s2)

22.2m = (5.097m) +KL (5.097m)

Thus
KL = 3.35

COMMENTS

1. The minor loss coefficient (KL = 3.35) is typical of a valve (this information is
presented in Chapter 10).

2. The head at the inlet
³
p1
γ
+ z1 = 22.2m

´
represents available energy. Most of

this energy goes to head loss
³
KL

V 22
2g
= 17.1m

´
. The remainder is carried as

kinetic energy out of the pipe
³
α2

V 22
2g
= 5.1m

´
.
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PROBLEM 7.16

Situation: Water flowing from a tank is described in the problem statement.

Find: Pressure in tank.

APPROACH

Apply the energy equation from the water surface in the tank to the outlet.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 + hL

p1/γ = V 2
2 /2g + hL − z1 = 6V

2
2 /2g − 10

V2 = Q/A2 = 0.1/((π/4)(1/12)
2) = 18.33 ft/s

p1/γ = (6(18.332)/64.4)− 10 = 2.13 ft
p1 = 62.4× 21.3 = 1329 psfg

p1 = 9.23 psig
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PROBLEM 7.17

Situation: A pipe draining a tank is described in the problem statement.

Find: Pressure at point A and velocity at exit.

Assumptions: α2 = 1

APPROACH

To find pressure at point A, apply the energy equation between point A and the pipe
exit. Then, then apply energy equation between top of tank and the exit.

ANALYSIS

Energy equation (point A to pipe exit).

pA
γ
+ zA + αA

V 2
A

2g
+ hp =

p2
γ
+ z2 + α2

V 2
2

2g
+ ht + hL

Term by term analysis: VA = V2 (continuity); p2 = 0-gage; (zA − zB) = y; hp = 0,
ht = 0, hL = 0. Thus

pA = −γy
= −62.4× 4

pA = -250 lb/ft2

Energy equation (top of tank and pipe exit)

p1/γ + α1V
2
1 /2g + z1 + hp = p2/γ + α2V

2
2 /2g + z2 + ht + hL

z1 = V 2
2 /2g + z2

V2 =
p
2g(z1 − z2)

=
√
2× 32.2× 14
V2 = 30.0 ft/s
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PROBLEM 7.18

Situation: A pipe draining a tank is described in the problem statement.

Find: Pressure at point A and velocity at the exit.

Assumptions: α1 = 1.

APPROACH

To find pressure at point A, apply the energy equation between point A and the pipe
exit. Then, then apply energy equation between top of tank and the exit.

ANALYSIS

Energy equation

pA
γ
+ zA + αA

V 2
A

2g
+ hp =

p2
γ
+ z2 + α2

V 2
2

2g
+ ht + hL

Term by term analysis: VA = V2 (continuity); p2 = 0-gage; (zA − zB) = y; hp = 0,
ht = 0, ḣL = 0. Thus

pA = −γy
pA = − ¡9810N/m3¢ (2m)

pA = −19.6 kPa

Energy equation

p1/γ + α1V
2
1 /2g + z1 + hp = p2/γ + α2V

2
2 /2g + z2 + ht + hL

z1 = V 2
2 /2g + z2

V2 =
p
2g(z1 − z2)

=
√
2× 9.81× 10
V2 = 14.0 m/s
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PROBLEM 7.19

Situation: Flow through a pipe is described in the problem statement.

Find: Pressure difference between A and B.

ANALYSIS

Flow rate equation

VA = Q/A1

= 1.910m/s

VB =

µ
20

12

¶2
× VA

= 5.31 m/s

Energy equation

pA − pB = 1γ + (ρ/2)(V 2
B − V 2

A) ;

pA − pB = 1× 9810× 0.9 + (900/2)(5.312 − 1.912)
= 19.88 kPa
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PROBLEM 7.20

Situation: Water flowing from a tank is described in the problem statement.

Find: Discharge in pipe.

Assumptions: α = 1.

APPROACH

Apply the energy equation from the water surface in the reservoir (pt. 1) to the outlet
end of the pipe (pt. 2).

ANALYSIS

Energy equation
p1
γ
+

V 2
1

2g
+ z1 =

p2
γ
+

V 2
2

2g
+ z2 + hL

Term by term analysis:

p1 = 0; p2 = 0

z2 = 0; V1 ' 0

The energy equation becomes.

z1 =
V 2
2

2g
+ hL

11m =
V 2
2

2g
+ 5

V 2
2

2g
= 6

V 2
2

2g

V 2
2 =

µ
2g

6

¶
(11)

V2 =

sµ
2× 9.81m/ s2

6

¶
(11m)

V2 = 5.998 m/s

Flow rate equation

Q = V2A2

= (5.998m/ s)
¡
9 cm2

¢µ10−4m2
cm2

¶
= 5. 398 2× 10−3 m

3

s

Q = 5.40× 10−3 m3/ s
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PROBLEM 7.21

Situation: An engineer is estimating the power that can be produced by a small
stream.
Stream discharge: Q = 1.4 cfs. Stream temperature: T = 40 ◦F.
Stream elevation: H = 34 ft above the owner’s residence.

Penstock

Turbine & Generato

H

Find: Estimate the maximum power in kilowatts that can be generated.
(a) The head loss is 0.0 ft, the turbine is 100% efficient and the generator is 100%
efficient.
(b) The head loss is 5.5 ft, the turbine is 70% efficient and the generator is 90%
efficient.

APPROACH

To find the head of the turbine (ht), apply the energy equation from the upper water
surface (section 1) to the lower water surface (section 2). To calculation power,
use P = η(ṁght), where η accounts for the combined efficiency of the turbine and
generator.

ANALYSIS

Energy equation

p1
γ
+ α1

V 2
1

2g
+ z1 =

p2
γ
+ α2

V 2
2

2g
+ z2 + ht + hL (1)

Term by term analysis

p1 = 0; V1 ≈ 0
p2 = 0; V2 ≈ 0

z1 − z2 = H

Eq. (1) becomes

H = ht + hL

ht = H − hL

Flow rate

ṁg = γQ

=
¡
62.4 lbf/ ft3

¢ ¡
1.4 ft3/ s

¢
= 87.4 lbf/ s

577



Power (case a)

P = ṁght

= ṁgH

= (87.4 lbf/ s) (34 ft) (1.356 J/ ft · lbf)
= 4.02 kW

Power (case b).

P = ηṁg (H − hL)

= (0.7)(0.9) (87.4 lbf/ s) (34 ft− 5.5 ft) (1.356 J/ ft · lbf)
= 2.128 kW

Power (case a) = 4.02 kW

Power (case b) = 2.13 kW

COMMENTS

1. In the ideal case (case a), all of the elevation head is used to make power.
When typical head losses and machine efficiencies are accounted for, the power
production is cut by nearly 50%.

2. From Ohm’s law, a power of 2.13 kW will produce a current of about 17.5 amps
at a voltage of 120V. Thus, the turbine will provide enough power for about
1 typical household circuit. It is unlikely the turbine system will be practical
(too expensive and not enough power for a homeowner).
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PROBLEM 7.22

Situation: Flow in a pipe is described in the problem statement.

Find: Pressure at station 2.

APPROACH

Apply flow rate equation and then the energy equation.

ANALYSIS

Flow rate equation

V1 =
Q

A1
=

6

0.8
= 7.5 ft/s

V 2
1

2g
= 0.873 ft

V2 =
Q

A2
=

6

0.2
= 30 ft/s

V 2
2

2g
= 13.98 ft

Energy equation

p1
γ
+

V 2
1

2g
+ z1 =

p2
γ
+

V 2
2

2g
+ z2 + 6

15× 144
0.8× 62.4 + 0.873 + 12 =

p2
γ
+ 13.98 + 0 + 6

p2
γ

= 36.16 ft

p2 = 36.16× 0.8× 62.4
= 1185 psfg

p2 = 8.23 psig
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PROBLEM 7.23

Situation: Water flowing from a tank is described in the problem statement.

Find: (a) Discharge in pipe
(b) Pressure at point B.

Assumptions: γ = 9810 N/m

APPROACH

Apply the energy equation.

ANALYSIS

Energy equation

preser./γ + V 2
r /2g + zr = poutlet/γ + V 2

0 /2g + z0

0 + 0 + 5 = 0 + V 2
0 /2g

V0 = 9.90 m/s

Flow rate equation

Q = V0A0

= 9.90× (π/4)× 0.202
Q = 0.311 m3/s

Energy equation from reservoir surface to point B:

0 + 0 + 5 = pB/γ + V 2
B/2g + 3.5

where

VB = Q/VB = 0.311/[(π/4)× 0.42] = 2.48 m/s
V 2
B/2g = 0.312 m

pB/γ − 5− 3.5 = 0.312

pB = 11.7 kPa

580



PROBLEM 7.24

Situation: A microchannel is described in the problem statement.

Find: Pressure in syringe pump.

APPROACH

Apply the energy equation and the flow rate equation.

ANALYSIS

Energy equation

p1
γ

= hL + α2
V 2

2g

=
32µLV

γD2
+ 2

V 2

2g
(1)

Flow rate
The cross-sectional area of the channel is 3.14×10−8 m2. A flow rate of 0.1 µl/s is
10−7 l/s or 10−10 m3/s. The flow velocity is

V =
Q

A

=
10−10

3.14× 10−8
= 0.318× 10−2 m/s
= 3.18 mm/s

Substituting the velocity and other parameters in Eq. (1) gives

p1
γ

=
32× 1.2× 10−3 × 0.05× 0.318× 10−2

7, 850× 4× (10−4)2 + 2× (0.318× 10
−2)2

2× 9.81
= 0.0194 m

The pressure is

p1 = 799 kg/m3 × 9.81 m/s2 × 0.0194 m
p1 =152.1 Pa
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PROBLEM 7.25

Situation: A fire hose is described in the problem statement.

Find: Pressure at hydrant.

APPROACH

Apply the energy equation.

ANALYSIS

Energy equation

p1
γ
+ z1 =

V 2
2

2g
+ z2 + hL

where the kinetic energy of the fluid feeding the hydrant is neglected. Because of the
contraction at the exit, the outlet velocity is 4 times the velocity in the pipe, so the
energy equation becomes

p1
γ

=
V 2
2

2g
+ z2 − z1 + 10

V 2

16× 2g
p1 =

µ
1.625

2g
V 2 + 50

¶
γ

=

µ
1.625

2× 9.81 × 40
2 + 50

¶
9810

= 1. 791× 106 Pa

p1 = 1790 kPa
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PROBLEM 7.26

Situation: A siphon is described in the problem statement.

Find: Pressure at point B.

ANALYSIS

Flow rate equation

Vc = Q/A2

Vc = 2.8/((π/4)× (8/12)2)
= 8.02 ft/s

Energy equation (from reservoir surface to C)

p1/γ + V 2
1 /g + z1 = pc/γ + V 2

c /2g + zc + hL

0 + 0 + 3 = 0 + 8.022/64.4 + 0 + hL

hL = 2.00 ft

Energy equation (from reservoir surface to B).

0 + 0 + 3 = pB/γ + V 2
B/2g + 6 + (3/4)× 2 ; VB = VC = 8.02 ft/s

pB/γ = 3− 1− 6− 1.5 = −5.5 ft
pB = −5.5× 62.4

= −343 psfg
pB = -2.38 psig
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PROBLEM 7.27

Situation: Flow though a pipe is described in the problem statement.

Find: Force on pipe joint.

APPROACH

Apply the momentum principle, then the energy equation.

ANALYSIS

x
Vx

p =02

Fj

p A1 1

Momentum Equation X
Fx = ṁVo,x − ṁVi,x

Fj + p1A1 = −ρV 2
xA+ ρV 2

xA

Fj = −p1A1
Energy equation

p1
γ
+

V 2
1

2g
+ z1 =

p2
γ
+

V 2
2

2g
+ z2 + hL

p1 − p2 = γhL

p1 = γ(3) = 187.2 psfg

Fj = −187.2× ( 9
144

)

Fj = −11.7 lbf
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PROBLEM 7.28

Situation: A siphon is described in the problem statement.

Find:
a.) Discharge.
b.) Pressure at point B.

APPROACH

Apply the energy equation from A to C, then from A to B.

ANALYSIS

Head loss

hcpip e =
V 2
p

2g

htotal = hcpip e + hcoutlet = 2
V 2
p

2g

Energy equation (from A to C)

0 + 0 + 30 = 0 + 0 + 27 + 2
V 2
p

2g

Vp = 5.42 m/s

Flow rate equation

Q = VpAp

= 5.42× (π/4)× 0.252
Q = 0.266 m3/s

Energy equation (from A to B)

30 =
pB
γ
+

V 2
p

2g
+ 32 + 0.75

V 2
p

2g
pB
γ

= −2− 1.75× 1.497 m

pB = −45.3 kPa, gage
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PROBLEM 7.29

Situation: A siphon is described in the problem statement.

Find: Depth of water in upper reservoir for incipient cavitation.

APPROACH

Apply the energy equation from point A to point B.

ANALYSIS

Flow rate equation

V = Q/A

=
8× 10−4 m3/s
1× 10−4 m2

= 8m/ s

Calculations

V 2/2g = 82/(2× 9.81) = 3.262 m
hL,A→B = 1.8V 2/2g = 5.872 m

Energy equation (from A to B; let z = 0 at bottom of reservoir)

pA/γ + V 2
A/2g + zA = pB/γ + V 2

B/2g + zB + hL

100, 000/9, 810 + 0 + zA = 1, 230/9, 810 + 3.262 + 10 + 5.872

zA = depth = 9.07m
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PROBLEM 7.30

Situation: Flow though a pipe is described in the problem statement.

Find: Direction of flow.

Assumptions: Assume the flow is from A to B.

APPROACH

Apply the energy equation from A to B.

ANALYSIS

Energy equation

pA/γ + V 2
A/2g + zA = pB/γ + V 2

B/g + zB + hL

(10, 000/9, 810) + 10 = (98, 100/9, 810) + 0 + hL

hL = 1.02 + 10 = 10.0

= +1.02

Because the value for head loss is positive it verifies our assumption of downward
flow. Correction selection is b)
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PROBLEM 7.31

Situation: A system with a machine is described in the problem statement.

Find: Pressures at points A and B.

Assumptions: Machine is a pump

APPROACH

Apply the energy equation between the top of the tank and the exit, then between
point B and the exit, finally between point A and the exit.

ANALYSIS

Energy equation

z1 + hp =
V 2
2

2g
+ z2

Assuming the machine is a pump. If the machine is a turbine, then hp will be negative.
The velocity at the exit is

V2 =
Q

A2
=

10
π
4
0.52

= 50.93 ft/s

Solving for hp and taking the pipe exit as zero elevation we have

hp =
50.932

2× 32.2 − (6 + 12) = 22.3 ft

Therefore the machine is a pump.
Applying the energy equation between point B and the exit gives

pB
γ
+ zB = z2

Solving for pB we have

pB = γ(z2 − zB)

pB = −6× 62.4 = −374 psfg
pB=-2.6 psig

Velocity at A

VA =

µ
6

12

¶2
× 50.93 = 12.73 ft/s

Applying the energy equation between point A and the exit gives
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pA
γ
+ zA +

V 2
A

2g
=

V 2
2

2g
so

pA = γ(
V 2
2

2g
− zA − V 2

A

2g
)

= 62.4× (50.93
2 − 12.732
2× 32.2 − 18)

= 1233 psfg

pA = 8.56 psig
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PROBLEM 7.32

Situation: A system is described in the problem statement.

Find: Pressure head at point 2.

ANALYSIS

Let Vn = velocity of jet from nozzle:
Flow rate equation

Vn =
Q

An
=

0.10

((π/4)× 0.102) = 12.73 m/s
V 2
n

2g
= 8.26 m

V2 =
Q

A2
=

0.10

((π/4)× 0.32) = 1.41 m/s
V 2
2

2g
= .102 m

Energy equation

p2
γ
+ 0.102 + 2 = 0 + 8.26 + 7

p2
γ
= 13.16 m
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PROBLEM 7.33

Situation: A pump draws water out of a tank and moves this water to elevation C.
Diameter of inlet pipe is 8 in. Diameter of outlet pipe is DC = 4 in.
Speed of water in the 4 in pipe is VC = 12 ft/ s. Power delivered to the pump is 25 hp.
Pump efficiency is η = 60%. Head loss in pipe (between A & C) is hL = 2V 2

C/2g.

Find: Height (h)above water surface.

APPROACH

Apply the energy equation from the reservoir water surface to the outlet.

ANALYSIS

Energy equation

p1
γ
+ α1

V 2
1

2g
+ z1 + hp =

p2
γ
+ α2

V 2
2

2g
+ z2 + hL

0 + 0 + 0 + hp = 0 +
V 2
c

2g
+ h+ 2

V 2
c

2g

hp = h+ 3
V 2
c

2g
(1)

Velocity head
V 2
c

2g
=
122

64.4
= 2.236 ft (2)

Flow rate equation

Q = VCAC

=

µ
12 ft

s

¶Ã
π (4/12 ft)2

4

!
= 1.047 ft3/ s

Power equation

P ( hp) =
Qγhp
550η

hp =
P (550) η

Qγ

=
25 (550) 0.6

1.047 (62.4)

= 126.3 ft (3)
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Substitute Eqs. (2) and (3) into Eq. (1)

hp = h+ 3
V 2
c

2g

126.3 ft = h+ (3× 2. 236) ft
h = 119.6 ft

h = 120 ft
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PROBLEM 7.34

Situation: A system with pump is described in the problem statement.

Find: Height above water surface.

ANALYSIS

Energy equation

0 + 0 + 0 + hp = 0 + h+ 3.0
V 2
c

2g

V 2
C

2g
=

32

(2× 9.81) = 0.459 m

P =
Qγhp
0.6

hp =
25, 000× 0.6

(3× π/4× 0.102 × 9, 810) = 64.9 m
h = 64.9− 3.0× .459

h = 63.5 m
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PROBLEM 7.35

Situation: A system with pump is described in the problem statement.

Find: Horsepower delivered by pump.

APPROACH

Apply the flow rate equation, then the energy equation from A to B. Then apply the
power equation.

ANALYSIS

Flow rate equation

VA =
Q

AA
=

3.0

((π/4)× 12) = 3.82 ft/sec
V 2
A

2g
= 0.227 ft

VB =
Q

AB
=

3.0

((π/4)× 0.52) = 15.27 ft/s
V 2
B

2g
= 3.62 ft

Energy equation

pA
γ
+

V 2
A

2g
+ zA + hp =

pB
γ
+

V 2
B

2g
+ zB

5× 144

62.4
+ 0.227 + 0 + hp = 60× 144

62.4
+ 3.62 + 0

hp = 130.3 ft

Power equation

P (hp) =
Qγhp
550

= 3.0× 62.4× 130.3
550

P = 44.4 hp
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PROBLEM 7.36

Situation: A system with pump is described in the problem statement.

Find: Power supplied to flow.

APPROACH

Apply the flow rate equation. Then apply the energy equation from reservoir surface
to end of pipe. Then apply the power equation.

ANALYSIS

Flow rate equation

V = Q/A

= 8/((π/4)× 12)
= 10.2 m/s

Energy equation

p1/γ + V 2
1 /2g + z1 + hp = p2/γ + V 2

2 /2g + z2 + hL

0 + 0 + 40 + hp = 0 + V 2/2g + 20 + 7V 2/2g

V 2/2g = 10.22/(2× 9.81) = 5.30 m

Then

40 + hp = V 2/2g + 20 + 7V 2/2g

hp = 8× 5.30 + 20− 40
= 22.4 m

Power equation

P = Qγhp

= 8× 9810× 22.4
P = 1.76 MW
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PROBLEM 7.37

Situation: A system with pump is described in the problem statement.

Find: Power pump must supply.

APPROACH

Apply the flow rate equation, then the energy equation from reservoir surface to the
10 m elevation. Then apply the power equation.

ANALYSIS

Flow rate equation

V = Q/A

= 0.25/((π/4)× 0.32)
= 3.54 m/s

V 2/2g = 0.639 m

Energy equation

0 + 0 + 6 + hp = 100, 000/9810 + V 2/2g + 10 + 2.0V 2/2g

hp = 10.19 + 10− 6 + 3.0× 0.639
hp = 16.1 m

Power equation

P = Qγhp

= 0.25× 9.180× 16.1
P = 39.5 kW
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PROBLEM 7.38

Situation: A system with pump is described in the problem statement.

Find: Horsepower pump supplies.

APPROACH

Apply the flow rate equation, then the energy equation. Then apply the power
equation.

ANALYSIS

Flow rate equation

V12 = Q/A12 = 6/((π/4)× 12) = 7.64 ft/sec
V 2
12/2g = 0.906 ft

V6 = 4V12 = 30.56 ft/sec

V 2
6 /2g = 14.50 ft

Energy equation

(p6/γ + z6)− (p12/γ + z12) = (13.55− 0.88)(46/12)/0.88
(p12/γ + z12) + V 2

12/2g + hp = (p6/γ + z6) + V 2
6 /2g

hp = (13.55/0.88− 1)× 3.833 + 14.50− 0.906
hp = 68.8 ft

Power equation

P (hp) = Qγhp/550

P = 6× 0.88× 62.4× 68.8/550
P = 41.2 hp
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PROBLEM 7.39

Situation: A system with a turbine is described in the problem statement.

Find: Power output from turbine.

APPROACH

Apply the energy equation from the upstream water surface to the downstream water
surface. Then apply the power equation.

ANALYSIS

Energy equation

p1
γ
+

V 2
1

2g
+ z1 =

p2
γ
+

V2
2g
+ z2 + hL + hT

0 + 0 + 35 = 0 + 0 + 0 + 1.5
V 2

2g
+ hT

V =
Q

A
=

400

((π/4)× 72) = 10.39 ft/s
V 2

2g
= 1.68 ft

ht = 35− 2.52 = 32.48 ft

Power equation

P (hp) = Qγht × 0.9

550

=
(400)(62.4)(32.48× 0.9)

550

P = 1326 hp
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PROBLEM 7.40

Situation: A system with a turbine is described in the problem statement.

Find: Power produced by turbine.

Assumptions:
(a) All head loss is expansion loss.
(b) 100% efficiency.

APPROACH

Apply the energy equation from the upstream water surface to the downstream water
surface. Then apply the power equation.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 + ht + hL

0 + 0 + 15 m = 0 + 0 + 0 + ht + V 2/2g

ht = 15 m− (52/2g)
= 13.73 m

Power equation

P = Qγht

= (1 m3/s)(9810 N/m3)(13.73 m)

P = 134.6 kW
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PROBLEM 7.41

Situation: A system with a turbine is described in the problem statement.

Find:
(a) Power generated by turbine.
(b) Sketch the EGL and HGL.

APPROACH

Apply the energy equation from the upper water surface to the lower water surface.
Then apply the power equation.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 +
X

hL + ht

0 + 0 + 100 ft = 0 + 0 + 4 ft + ht

ht = 96 ft

Power equation

P = (Qγht)(eff.)

P (hp) = Qγht(eff.)/550 = 1, 000× 62.4× 96× 0.85/550
P = 9258 hp

Turbine

EGL

HGL
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PROBLEM 7.42

Situation: A system with a pump is described in the problem statement.

Find: Power delivered by pump.

APPROACH

Apply the energy equation from the reservoir water surface to point B. Then apply
the power equation.

ANALYSIS

Energy equation

p/γ + V 2/2g + z + hp = pB/γ + V 2
B/2g + zB

0 + 0 + 40 + hp = 0 + 0 + 64; hp = 25 m

Flow rate equation

Q = VjAj = 25× 10−4 m2 × Vj

where Vj =
p
2g × (65− 35) = 24.3 m/s

Q = 25× 10−4 × 24.3 = 0.0607 m3/s

Power equation

P = Qγhp

P = 0.0607× 9, 810× 25
P = 14.89 kW
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PROBLEM 7.43

Situation: A system with a pump is described in the problem statement.

Find: Power delivered by pump.

ANALYSIS

0 + 0 + 110 + hp = 0 + 0 + 200; hp = 90 ft

P (hp) = Qγhp/550

Q = VjAj = 0.10 Vj

Vj =
p
2g × (200− 110) = 76.13 ft/s

Q = 7.613 ft3/s

Power equation

P = Qγhp

P = 7.613× 62.4× 90/550
P = 77.7 hp
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PROBLEM 7.44

Situation: A system with a pump is described in the problem statement.

Find: Power required for pump.

ANALYSIS

Energy equation

hp = z2 − z1 + hL

Expressing this equation in terms of pressure

γhp = γz2 − γz1 +∆ploss

Thus pressure rise across the pump is

γhp = 53 lbf/ft
3 × 200 ft +60× 144 lbf/ft2 = 19, 240 psf

Flow rate equation

Q = V ×A

Q = 3500 gpm× 0.002228 ft
3/s
gpm

= 7.80 cfs

Power equation

Ẇ = Qγhp

= 7.80× 19, 240/550
Ẇ = 273 hp
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PROBLEM 7.45

Situation: A system with a pump is described in the problem statement.

Find: Time required to transfer oil.

APPROACH

Apply the energy equation between the top of the fluid in tank A to that in tank B.

ANALYSIS

Energy equation

hp + zA = zB + hL

or

hp + zA = zB + 20
V 2

2g
+

V 2

2g

Solve for velocity

V 2 =
2g

21
(hp + zA − zB)

V 2 =
2× 9.81
21

(60 + zA − zB)

V = 0.966 6 (60 + zA − zB)
1/2

The sum of the elevations of the liquid surfaces in the two tanks is

zA + zB = 21

So the energy equation becomes

V = 0.9666(81− 2zB)1/2
Continuity equation

dzB
dt

= V
Apipe
Atank

= V
(0.2m)2

(12m)2

=
¡
2.778× 10−4¢V

=
¡
2.778× 10−4¢ 0.9666(81− 2zB)1/2

= 2.685× 10−4(81− 2zB)1/2

Separate variables

dzB
(81− 2zB)1/2 = 2.685× 10

−4dt
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Integrate

20 ftZ
1

dzB
(81− 2zB)1/2 =

∆tZ
0

2.685× 10−4dt
¡−√81− 2zB¢20 ft1 ft

=
¡
2.685× 10−4¢∆t³

−
p
81− 2 (20) +

p
81− 2 (1)

´
=

¡
2.685× 10−4¢∆t

2. 485 1 =
¡
2.685× 10−4¢∆t

∆t = 9256 s

∆t = 9260 s = 2.57 hr
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PROBLEM 7.46

Situation: A system with a pump is described in the problem statement.

Find:
(a) Write a computer program to show how the pressure varies with time.
(b) Time to pressurize tank to 300 kPa.

APPROACH

Apply the energy equation between the water surface at the intake and the water
surface inside the tank.

ANALYSIS

Energy equation

hp + z1 =
p2
γ
+ z2 + hL

Expressing the head loss in terms of the velocity allows one to solve for the velocity
in the form

V 2 =
2g

10
(hp + z1 − zt − pt

γ
)

Substituting in values

V = 1.401(46− zt − 10.19 3

4− zt
)1/2

The equation for the water surface elevation in the tank is

∆zt = V
Ap

At
∆t =

V

2500
∆t

A computer program can be written taking time intervals and finding the fluid level
and pressure in the tank at each time step. The time to reach a pressure of 300 kPa
abs in the tank is 698 seconds or 11.6 minutes. A plot of how the pressure varies
with time is provided.
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PROBLEM 7.47

Situation: A system with two tanks connected by a pipe is described in the problem
statement.

Find: Discharge between two tanks: Q

APPROACH

Apply the energy equation from water surface in A to water surface in B.

ANALYSIS

Energy equation

pA/γ + V 2
A/2g + zA = pB/γ + V 2

B/2g + zB +
X

hL

pA = pB = patm and VA = VB = 0

Let the pipe from A be called pipe 1. Let the pipe from B be called pipe 2
Then X

hL = (V1 − V2)
2/2g + V 2

2 /2g

Continuity principle

V1A1 = V2A2

V1 = V2(A2/A1)

However A2 = 2A1 so V1 = 2V2. Then the energy equation gives

zA − zB = (2V2 − V2)
2/2g + V 2

2 /2g

= 2V 2
2 /2g

V2 =
p
g(zA − zB)

=
p
10g m/s

Flow rate equation

Q = V2A2

=
³p

10g m/s
´
(20 cm2)(10−4 m2/cm2)

Q = 0.0198 m3/s

608



PROBLEM 7.48

Situation: Flow through a pipe is described in the problem statement.

Find:
a) Horizontal force required to hold transition in place.
b) Head loss.

APPROACH

Apply the flow rate equation, the sudden expansion head loss equation, the energy
equation, and the momentum principle.

ANALYSIS

Flow rate equation

V40 = Q/A40 = 1.0/((π/4)× 0.402) = 7.96 m/s
V 2
40/2g = 3.23 m

V60 = V40 × (4/6)2 = 3.54 m/s
V 2
60/2g = 0.639 m

Sudden expansion head loss equation

hL = (V40 − V60)
2/2g

= 0.996 m

Energy equation

p40/γ + V 2
40/2g = p60/γ + V 2

60/2g + hL

p60 = 70, 000 + 9810(3.23− 0.639− 0.996) = 85, 647 Pa
Momentum principle

p  A1 1
p  A22

Fx

X
Fx = ṁoVx,o − ṁiVx,i

70, 000× π/4× 0.42 − 85, 647× π/4× (0.62) + Fx = 1000× 1.0× (3.54− 7.96)
Fx = −8796 + 24, 216− 4, 420

= 11, 000 N

Fx = 11.0 kN
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PROBLEM 7.49

Situation: Flow through a pipe is described in the problem statement.

Find: Head loss.

APPROACH

Apply the continuity principle, then the sudden expansion head loss equation.

ANALYSIS

Continuity principle

V8A8 = V15A15

V15 =
V8A8
A15

= 4× (8/15)2 = 1.14 m/s

Sudden expansion head loss equation

hL =
(V8 − V15)

2

(2g)

hL =
(4− 1.14)2
(2× 9.81)
hL = 0.417 m
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PROBLEM 7.50

Situation: Flow through a pipe is described in the problem statement.

Find: Head loss

APPROACH

Apply the flow rate equation, then the sudden expansion head loss equation.

ANALYSIS

Flow rate equation

V6 = Q/A6 = 5/((π/4)× (1/2)2) = 25.46 ft/s;
V12 = (1/4)V6 = 6.37 ft/s

Sudden expansion head loss equation

hL = (V6 − V12)
2/(2g)

= (25.46− 6.37)2/(2× 32.2)
hL = 5.66 ft

611



PROBLEM 7.51

Situation: Flow through a pipe is described in the problem statement.

Find:
(a) Horsepower lost.
(b) Pressure at section 2.
(c) Force needed to hold expansion.

APPROACH

Find the head loss by applying the sudden expansion head loss equation, first solving
for V2 by applying the continuity principle. Then apply the power equation, the
energy equation, and finally the momentum principle.

ANALYSIS

Continuity equation

V2 = V1(A1/A2)

= 25(1/4)

= 6.25 ft/s

Sudden expansion head loss equation

hL = (V1 − V2)
2/(2g)

hL = (25− 6.25)2/64.4
= 5.46 ft

a)Power equation

P (hp) = Qγh/550

Q = V A = 25(π/4)(52) = 490.9 ft3/s

P = (490.9)(62.4)(5.46)/550

P = 304 hp

b)Energy equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 + hL

(5× 144)/62.4 + 252/64.4 = p2/γ + 6.25
2/64.4 + 5.46

p2/γ = 15.18 ft

p2 = 15.18× 62.4
= 947 psfg

p2 = 6.58 psig
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c)Momentum equation X
Fx = ṁoVx,o − ṁiVx,i

ṁ = 1.94× (π/4)× 52 × 25
= 952.3 kg/s

p1A1 − p2A2 + Fx = ṁ(V2 − V1)

(5)(14)π/4)(52)− (6.57)(144)(π/4)(102) + Fx = 952.3× (6.25− 25)
Fx = 42,426 lbf
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PROBLEM 7.52

Situation: Flow through a pipe is described in the problem statement.

Find: Longitudinal force transmitted through pipe wall.

APPROACH

Apply the energy equation, then the momentum principle.

ANALYSIS

1

2

c.s.

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 + hL

but V1 = V2 and p2 = 0. Therefore

p1/γ = −50 + 10
p1 = −2496 lbf/ft2

Momentum principle X
Fy = ṁVy,o − ṁVy,i = ρQ(V2y − V1y)

−p1A1 − γAL− 2L+ Fwall = 0

Fwall = 1.5L+ γA1L− p1A1

= 75 + (π/4)× 0.52(62.4× 50− 2, 496)
= 75 + 122.5

Fwall = 197.5 lbf
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PROBLEM 7.53

Situation: Flow through a pipe is described in the problem statement.

Find: (a) Pressure at outlet of bend.
(b) Force on anchor block in the x-direction.

APPROACH

Apply the energy equation, then the momentum principle.

ANALYSIS

Energy equation

p50/γ + V 2
50/2g + z50 = p80/γ + V 2

80/2g + z80 + hL

where p50 = 650, 000 Pa and z50 = z80
Flow rate equation

V80 = Q/A80 = 5/((π/4)× 0.82) = 9.947 m/s
V 2
80/2g = 5.04 m

Continuity equation

V50 = V80 × (8/5)2 = 25.46 m/s
V 2
50/2g = 33.04 m

hL = 10 m

Then

p80/γ = 650, 000/γ + 33.04− 5.04− 10
p80 = 650, 000 + 9, 810(33.04− 5.04− 10) = 826, 600 Pa

p80 = 826.6 kPa

Momentum principle

X
Fx = ṁVo − ṁVi = ρQ(V80,x − V50,x)

p80A80 + p50A50 × cos 60◦ + Fx = 1, 000× 5(−9.947− 0.5× 25.46)
Fx = −415, 494− 63, 814− 113, 385

= −592, 693N
Fx = -592.7 kN
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PROBLEM 7.54

Situation: Flow through a pipe is described in the problem statement.

Find: Head loss at pipe outlet.

APPROACH

Apply the flow rate equation, then the sudden expansion head loss equation.

ANALYSIS

Flow rate equation

V = Q/A

= 10((π/4)× 12)
= 12.73 ft/sec

Sudden expansion head loss equation

hL = V 2/2g

hL = 2.52 ft
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PROBLEM 7.55

Situation: Flow through a pipe is described in the problem statement.

Find: Head loss at pipe outlet.

APPROACH

Apply the flow rate equation, then the sudden expansion head loss equation.

ANALYSIS

Flow rate equation

V = Q/A

= 0.50/((π/4)× 0.52)
= 2.546 m/s

Sudden expansion head loss equation

hL = V 2/2g

= (2.546)2/(2× 9.81)
hL =0.330 m
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PROBLEM 7.56

Situation: Flow through a pipe is described in the problem statement.

Find: Maximum allowable discharge before cavitation.

Properties: From Table A.5 pv = 2340 Pa, abs.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2

0 + 0 + 5 = p2,vapor/γ + V 2
2 /2g + 0

p2,vapor = 2340− 100, 000 = −97, 660 Pa gage

Then

V 2
2 /2g = 5 + 97, 660/9, 790 = 14.97 m

V2 = 17.1 m/s

Flow rate equation

Q = V2A2

= 17.1× π/4× 0.152
Q = 0.302 m3/s
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PROBLEM 7.57

Situation: Flow through a pipe is described in the problem statement.

Find:
a.) Head (H) at incipient cavitation.
b) Discharge at incipient cavitation.

Properties: From Table A.5 pv = 2340 Pa, abs.

APPROACH

First apply the energy equation from the Venturi section to the end of the pipe. Then
apply the energy equation from reservoir water surface to outlet:

ANALYSIS

(b) Energy equation from Venturi section to end of pipe:

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 + hL

pvapor/γ + V 2
1 /2g = 0 + V 2

2 /2g + 0.9V
2
2 /2g

pvapor = 2, 340 Pa abs. = −97, 660 Pa gage
Continuity principle

V1A1 = V2A2

V1 = V2A2/A1

= 2.56V2

Then
V 2
1 /2g = 6.55V

2
2 /2g

Substituting into energy equation

−97, 660/9, 790 + 6.55V 2
2 /2g = 1.9V 2

2 /2g

V2 = 6.49 m/s

Flow rate equation

Q = V2A2

= 6.49× π/4× 0.42
Q = 0.815 m3/s

Energy equation from reservoir water surface to outlet:

z1 = V 2
2 /2g + hL

H = 1.9V 2
2 /2g

H = 4.08 m
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PROBLEM 7.58

Situation: A system with a machine is described in the problem statement.

Find: (a) Direction of flow.
(b) What kind of machine is at point A.
(c) Compare the diameter of pipe sections.
(d) Sketch the EGL.
(e) If there is a vacuum at anywhere, if so where it is.

ANALYSIS

(a) Flow is from right to left.
(b) Machine is a pump.
(c) Pipe CA is smaller because of steeper H.G.L.
(d)

EGL

(e) No vacuum in the system.
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PROBLEM 7.59

Situation: A system with a reservoir, pipe, and nozzle is described in the problem
statement.

Find:
(a) Discharge (Q) .
(b) Draw the HGL and EGL.

APPROACH

Apply the energy equation from the reservoir surface to the exit plane of the jet.

Assumptions:

ANALYSIS

Energy equation. Let the velocity in the 6 inch pipe be V6. Let the velocity in the
12 inch pipe be V12.

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

6 /2g + z2 + hL

0 + 0 + 100 = 0 + V 2
6 /2g + 60 + 0.025(1000/1)V

2
12/2g

Continuity principle

V6A6 = V12A12

V6 = V12(A12/A6)

V6 = V12
122

62
= 4V12

V 2
6 /2g = 16V 2

12/2g

Substituting into energy equation

40 = (V 2
12/2g)(16 + 25)

V 2
12 = (40/41)2× 32.2

V12 = 7.927 ft/s

Flow rate equation

Q = V12A12

= (7.927)(π/4)(12)

Q = 6.23 ft3/s
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EGL

HGL
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PROBLEM 7.60

Situation: A hydroelectric power plant is described in example 7.5.

Find: Draw the HGL and EGL.

ANALYSIS

EGL

HGL

1.52 m

EGL

HGL

V /2g
2

E1.=610m
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PROBLEM 7.61

Situation: A flow system is described in problem 7.57.

Find: Draw the HGL and EGL.

ANALYSIS

EGL

HGL
0.71m

10 m (approx.)
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PROBLEM 7.62

Situation: A reservoir and pipe system is described in example 7.3.

Find: Draw the HGL and EGL.

ANALYSIS

37.2 m

42.6 m

2000 m

80 m
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PROBLEM 7.63

Situation: A system with a black box is described in the problem statement.

Find: What the black box could be.

ANALYSIS

Because the E.G.L. slopes downward to the left, the flow is from right to left. In
the ”black box” there could either be a turbine, an abrupt expansion or a partially
closed valve. Circle b, c, d.
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PROBLEM 7.64

Situation: A system with an HGL is described in the problem statement.

Find: Whether this system is possible, and if so under what conditions.

ANALYSIS

This is possible if the fluid is being accelerated to the left.
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PROBLEM 7.65

Situation: A system with two tanks connected by a tapered pipe is described in the
problem statement.

Find: Draw the HGL and EGL.

ANALYSIS

EGL

HGL
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PROBLEM 7.66

Situation: A system with an HGL and EGL is described in the problem statement.

Find: See problem statement.

ANALYSIS

(a) Solid line is EGL, dashed line is HGL.
(b) No; AB is smallest.
(c) From B to C.
(d) pmax is at the bottom of the tank.
(e) pmin is at the bend C.
(f) A nozzle.
(g) above atmospheric pressure.
(h) abrupt expansion.
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PROBLEM 7.67

Situation: A system with two tanks connected by a pipe is described in the problem
statement and figure 7.8.

Find: Discharge of water in system

APPROACH

Apply energy equation from upper to lower reservoir.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 +
X

hL

0 + 0 + 100 = 0 + 0 + 070 +
X

hLX
hL = 30 m

hL = .02× (L/D)(V 2/2g)

30 = 0.02× (200/0.3)(V 2
u /2g) + (0.02(100/0.15) + 1.0)V

2
d /2g (1)

Flow rate equation

Vu = Q/Au = Q/((π/4)× 0.32) (2)

Vd = Q/Ad = Q/((π/4)× 0.152) (3)

Substituting Eq. (2) and Eq. (3) into (1) and solving for Q yields:

Q = 0.110 m3/s
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PROBLEM 7.68

Situation: A system with a pump is described in the problem statement.

Find:
(a) Power supplied to the pump.
(b) Sketch the HGL and EGL.

APPROACH

Apply the flow rate equation to find the velocity. Then calculate head loss. Next
apply the energy equation from water surface to water surface to find the head the
pump provides. Finally, apply the power equation.

ANALYSIS

Flow rate equation

V = Q/A

= 3.0/((π/4)× (8/12)2)
= 8.594 ft/sec

Head loss

hL =

µ
0.018

L

D

V 2

2g

¶
+

µ
V 2

2g

¶
= 0.018

µ
3000

8/12

¶
8.5942

2 (32.2)
+
8.5942

2 (32.2)

= 94. 04 ft

Energy equation

p1
γ
+ α1

V 2
1

2g
+ z1 + hp =

p2
γ
+ α2

V 2
2

2g
+ z2 + hL

0 + 0 + 90 + hp = 0 + 0 + 140 + 94.04

hp = 144.0 ft

Power equation

P = Qγhp

= 3.0× 62.4× 144
= 26957

ft lbf

s

= 26957
ft lbf

s

µ
ft · lbf
550 hp · s

¶
P = 49.0 hp
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EGL

HGL

EGL

HGL
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PROBLEM 7.69

Situation: A system with two tanks connected by a pipe is described in the problem
statement.

Find: (a) Discharge in pipe.
(b) Pressure halfway between two reservoirs.

APPROACH

To find the discharge, apply the energy equation from water surfaceA to water surface
in B. To find the pressure at location P, apply the energy equation from water surface
A to location P .

ANALYSIS

Energy equation

pA/γ + V 2
A/2g + zA = pB/γ + V 2

B/2g + zB + hL

0 + 0 +H = 0 + 0 + 0 + 0.01× (300/1)V 2
p /2g + V 2

p /2g

16 = 4V 2
p /2g

Vp =
√
4× 2× 9.81 = 8.86 m/s

Flow rate equation

Q = V A

= 8.86× (π/4)× 12
Q = 6.96 m3/s

Energy equation between the water surface in A and point P :

0 + 0 +H = pp/γ + V 2
p /2g − h+ 0.01× (150/1)V 2

p /2g

16 = pp/γ − 2 + 2.5V 2
p /2g

where V 2
p /2g = 4 m. Then

pp = 9, 810(16 + 2− 10)
pp = 78.5 kPa

EGL
HGL

p/γ

V /2g=4 m2
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PROBLEM 7.70

Situation: A system with two reservoirs connected by a pipe is described in the
problem statement.

Find: Elevation in left reservoir.

APPROACH

Apply the energy equation from the left reservoir to the right reservoir.

ANALYSIS

Energy equation

pL/γ + V 2
L/2g + zL = pR/γ + V 2

R/2g + zR + hL

0 + 0 + zL = 0 + 0 + 110 + 0.02(200/1.128)(V 2
1 /2g)

+0.02(300/1.596)(V 2
2 /2g) + (V1 − V2)

2/2g + V 2
2 /2g

Flow rate equation

V1 = Q/A1

= 16/1 = 16 ft/s

V2 = 8 ft/s

Substituting into the energy equation

zL = 110 + (0.02/2g)((200/1.238)(162) + (300/1.596)(82)) + ((16− 8)2/64.4) + 82/64.4
= 110 + 16.58 + 0.99 + 0.99

zL = 128.6 ft

EGL
HGL

V /2g1
2

V /2g2
2

V1 V2
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PROBLEM 7.71

Situation: A system with a pump is described in the problem statement.

Find: (a) Pump power.
(b) Sketch the HGL and EGL.

APPROACH

Apply the energy equation from the upper reservoir surface to the lower reservoir
surface.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 + hp = p2/γ + V 2

2 /2g + z2 + hL

0 + 0 + 150 + hp = 0 + 0 + 250 +
X

0.018(L/D)(V 2/2g) + V 2/2g

Flow rate equation

V1 = Q/A1 = 3/((π/4)× 12) = 3.82 m/s
V 2
1 /2g = 0.744 m

V2 = Q/A2 = 4V1 = 15.28 m/s

V 2
2 /2g = 11.9 m

Substituting into the energy equation

hp = 250− 150 + 0.018[(100/1)× 0.744 + (1, 000/0.5)× 11.9] + 11.9
= 541.6 m

Power equation

P = Qγhp/eff.

= 3× 9, 810× 541.6/0.74
P = 21.54 MW

EGL

HGLh =535 mp

11.9 m

0.794 m
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PROBLEM 7.72

Situation: A system showing the HGL and EGL is described in the problem statement
and in Figure 7.9.

Find: (a) Water discharge in pipe
(b) Pressure at highest point in pipe.

APPROACH

First apply energy equation from reservoir water surface to end of pipe to find the V
to calculate the flow rate. Then to solve for the pressure midway along pipe, apply
the energy equation to the midpoint:

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 + hL

0 + 0 + 200 = 0 + V 2/2g + 185 + 0.02(200/0.30)V 2/2g

14.33V 2/2g = 15

V 2/2g = 1.047

V = 4.53 m/s

Flow rate equation

Q = V A

= 4.53× (π/4)× 0.302
Q = 0.320 m3/s

Energy equation to the midpoint:

p1/γ + V 2
1 /2g + z1 = pm/γ + V 2

m/2g + zm + hL

0 + 0 + 200 = pm/γ + V 2
m/2g + 200 + 0.02(100/0.30)V

2/2g

pm/γ = −(V 2/2)(1 + 6.667)

= (−1.047)(7.667) = −8.027 m
pm = −8.027γ

= −78, 745 Pa
pm = -78.7 kPa
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PROBLEM 7.73

Situation: A system with a pump is described in the problem statement.

Find: Time required to fill tank to depth of 10 m.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 + hp = p2/γ + V 2

2 /2g + z2 + hL

but p1 = p2 = 0, z1 = 0, V1 = 0, V2 ' 0. The energy equation reduces to
0 + 0 + 0 + hp = 0 + 0 + (2 m+ h) + hL

where h =depth of water in the tank

20− (4)(104)Q2 = h+ 2 + V 2/2g + 10V 2/2g

where V 2/2g is the head loss due to the abrupt expansion. Then

18 = (4)(104)Q2 + 11(V 2/2g) + h

V = Q/A

(11V 2)/2g = (11/2g)(Q2/A2) = (1.45)(105)Q2

18 = 1.85× 105Q2 + h

Q2 = (18− h)/((1.85)(105))

Q = (18− h)0.5/430

But Q = ATdh/dt where AT = tank area, so

∴ dh/dt = (18− h)0.5/((430)(π/4)(5)2) = (18− h)0.5/8, 443

dh/(18− h)0.5 = dt/8, 443

Integrate:
−2(18− h)0.5 = (t/8, 443) + const.

But t = 0 when h = 0 so const. = −2(18)0.5. Then
t = (180.5 − (18− h)0.5)(16, 886)

For h = 10 m

t = (180.5 − 80.5)(16, 886)
= 23, 880 s

t = 6.63 hrs

637



PROBLEM 7.74

Situation: A system showing the HGL and EGL is described in the problem state-
ment.

Find:
(a) Direction of flow.
(b) Whether there is a reservoir.
(c) Whether the diameter at E is uniform or variable.
(d) Whether there is a pump.
(e) Sketch a physical set up that could exist between C and D.
(f) Whether there is anything else revealed by the sketch.

ANALYSIS

(a) Flow is from A to E because EGL slopes downward in that direction.
(b) Yes, at D, because EGL and HGL are coincident there.
(c) Uniform diameter because V 2/2g is constant (EGL and HGL uniformly spaced).
(d) No, because EGL is always dropping (no energy added).
(e)

(f) Nothing else.
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PROBLEM 7.75

Situation: A system with a reservoir and a pipe is described in the problem statement.

Find:
(a) Discharge
(b) Draw HGL and EGL
(c) location of maximum pressure
(d) location of minimum pressure
(e) values for maximum and minimum pressure

APPROACH

Apply the energy equation from reservoir water surface to jet.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 + hL

0 + 0 + 100 = 0 + V 2
2 /2g + 30 + 0.014(L/D)(V

2
p /2g)

100 = 0 + V 2
2 /2g + 30 + 0.014(500/0.60)V

2
p /2g

Continuity equation

V2A2 = VpAp

V2 = VpAp/AL

V2 = 4Vp

Then

V 2
p /2g(16 + 11.67) = 70

Vp = 7.045 m/s

V 2
p /2g = 2.53 m

Flow rate equation

Q = VpAp

= 7.045× (π/4)× 0.602
Q = 1.992 m3/s
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pmin

EGL
HGL

pmax

40.5 m

pmin : 100 = pmin/γ + V 2
p /2g + 100 + 0.014(100/0.60)V

2
p /2g

100 = pmin/γ + 100 + 3.33× 2.53
pmin = -82.6 kPa, gage

pmax/γ = 40.5− 2.53 m
pmax = 372.5 kPa
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PROBLEM 7.76

Situation: A wind mill is described in problem 6.66.

Find: Power developed by windmill.

Assumptions: Negligible head loss.

APPROACH

Apply energy equation from upstream end to downstream end and the continuity
principle to find the head delivered to the turbine. Then apply the power equation.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g = p2/γ + V 2

2 /2g + ht

ht = V 2
1 /2g − V 2

2 /2g

Continuity principle

V2 = V1A1/A2 = V1(3/4.5)
2 = 0.444V1

V 2
2 /2g = 0.197V 2

1 /2g

Then substituting into the energy equation

ht = 102/(2× 9.81)[1− 0.197]
= 4.09 m

Power equation

P = Qγht

= 10(π/4)× 32 × 1.2× 9.81× 4.09
P = 3.40 kW
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PROBLEM 7.77

Situation: A design of a subsonic wind tunnel is described in the problem statement.

Find: Power required.

APPROACH

To find the head provided by the pump, apply the energy equation from upstream
end to downstream end . Then apply the power equation.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 + hp = p2/γ + V 2

2 /2g + z2 + hL

0 + 0 + 0 + hp = 0 + V 2
2 /2g + 0 + 0.025V

2
T /2g

Continuity principle

VTAT = V2A2

V2 = VTAT/A2

= VT × 0.4
V 2
2 /2g = 0.16V 2

T /2g

Substituting into the energy equation

hp =
V 2
T

2g
(0.185)

=
602

2× 9.81(0.185)
hp = 33.95 m

Power equation

P = Qγhp

= (V A) (ρg)hp

= (60× 4) (1.2× 9.81) (33.95)
P = 95.9 kW
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PROBLEM 7.78

Situation: Flow through a pipe accelerated around a disk—additional details are pro-
vided in the problem statement.

Find:
(a) Develop an expression for the force required to hold the disk in place in terms of
U, D, d, and ρ.
(b) Force required under given conditions.

APPROACH

Apply the energy equation from section (1) to section (2), and apply the momentum
principle.

ANALYSIS

Control volume

U2

F   disk on fluid

U1

Energy equation

p1 + ρU2
1/2 = p2 + ρU2

2/2

p1 − p2 = ρU2
2/2− ρU2

1/2

but

U1A1 = U2(π/4)(D
2 − d2)

U2 = U1D
2/(D2 − d2) (1)

Then
p1 − p2 = (ρ/2)U

2
1 [(D

4/(D2 − d2)2 − 1] (2)

Momentum principle for the C.V.

X
Fx = ṁoUo − ṁiUi = ρQ(U2x − U1x)

p1A− p2A+ Fdisk on fluid = ρQ(U2 − U1)

Ffluid on disk = Fd = ρQ(U1 − U2) + (p1 − p2)A
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Eliminate p1 − p2 by Eq. (2), and U2 by Eq. (1):

Fd = ρUA(U1 − U1D
2/(D2 − d2)) + (ρU2/2)[(D4/(D2 − d2)2 − 1]A

Fd = ρU2πD2/8[1/(D2/d2 − 1)2]

When U = 10 m/s, D = 5 cm, d = 4 cm and ρ = 1.2 kg/m3

Fd = (1.2× 102π × (0.05)2/8)[1/((0.05/0.04)2 − 1)2]
Fd = 0.372 N
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PROBLEM 8.1

Situation: Consider equations: (a) Q = (2/3)CL
√
2gH3/2, (b) V = (1.49/n)R2/3S1/2,

(c) hf = f(L/D)V 2/2g, (d) D = 0.074R−0.2e BxρV 2/2.

Find: Determine which equations are homogeneous.

a

Q = (2/3)CL
p
2gH3/2

[Q] = L3/T = L(L/T 2)1/2L3/2

L3/T = L3/T homogeneous

b

V = (1.49/n)R2/3S1/2

[V ] = L/T = L−1/6L2/3 not homogeneous

c

hf = f(L/D)V 2/2g

[hf ] = L = (L/L)(L/T )2/(L/T 2) homogeneous

d

D = 0.074R−0.2e BxρV 2/2

[D] = ML/T 2 = L× L× (M/L3)(L/T )2 homogeneous
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PROBLEM 8.2

Situation: Consider variables: (a) T (torque), (b) ρV 2/2 (c)
p
τ/ρ (d) Q/ND3

Find: Determine the dimensions of the variables.

a [T ] =ML/T 2 × L = ML2/T 2

b [ρV 2/2] = (M/L3)(L/T )2 = M/LT 2

c [
p
τ/ρ] =

p
(ML/T 2)/L2)/(M/L3) = L/T

d [Q/ND3] = (L3/T )/(T−1L3) = 1→ Dimensionless
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PROBLEM 8.3

Situation: Liquid is draining out of a tank–details are provided in the problem
statement.

Find: The π−groups.

APPROACH

Use the step-by-step method.

ANALYSIS

∆h L ∆h
d

0 ∆h
d

0 ∆h
d

0
t T t T t T
ρ M

L3
ρd3 M

D L D
d

0 D
d

0 D
d

0
d L

γ M
L2T 2

γd2 M
T 2

γ
ρd

1
T 2

γt2

ρd
0

h1 L h1
d

0 h1
d

0 h1
d

0

In the first step, length is taken out with d. In the second step, mass is taken out
with ρd3. In the third step, time is taken out with t. The functional relationship is

∆h
d
= f(D

d
,γt

2

ρd
,h1
d
)

This can also be written as

∆h

d
= f(

d

D
,
gt2

d
,
h1
d
)
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PROBLEM 8.4

Situation: Small amplitude waves move on a liquid surface–details are provided in
the problem statement.

Find: Dimensionless functional form for wave celerity.

APPROACH

Use the exponent method.

ANALYSIS

V = f(h, σ, γ, g)

where [V ] = L/T, [h] = L, [σ] =M/T 2, [γ] =M/(L2T 2), [g] = L/T 2

[V ] = [haσbγcgd]

L/T = (La)(M b/T 2b)(M c/(L2cT 2c)(Ld/T 2d)

L : 1 = a− 2c+ d

M : 0 = b+ c

T : 1 = 2b+ 2c+ 2d

Determine the exponents b, c & d in terms of a

0− 2c+ d = 1− a

b+ c+ 0 = 0

2b+ 2c+ 2d = 1

Solution yields: b = −c, d = 1/2
−2c+ 1/2 = 1− a =⇒ −2c = 1/2− a =⇒ c = −1/4 + a/2

b = 1/4− a/2

Thus

V = haσ(1/4−a/2)γ(−1/4+a/2)g1/2

=
¡
g1/2σ1/4/γ1/4

¢
(hγ1/2/σ1/2)a

Which can also be written as

V 4γ/(g2σ) = f(h2γ/σ)

Alternate forms:

(V 4γ/(g2σ))(σ/h2γ) = f(h2γ/σ)

V 2/(gh)2 = f(h2γ/σ)

or
V/
p
gh = f(h2γ/σ)
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PROBLEM 8.5

Situation: Capillary rise in a tube is described in the problem statement.

Find: The π−groups.

APPROACH

Use the step-by-step method.

ANALYSIS

h L h
d

0 h
d

0
d L
σ M

T 2
σ M

T 2
σ
γd2

0

γ M
L2T2

γd2 M
T 2

In the first step, d was used to remove length and in the second γd2 was used to
remove both length and time. The final functional form is

h
d
= f( σ

γd2
)
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PROBLEM 8.6

Situation: Drag force on a small sphere is described in the problem statement.

Find: The relevant π−groups.

APPROACH

Use the step-by-step method.

ANALYSIS

FD
ML
T2

FD
d

M
T 2

FD
µd2

1
T

FD
µV d

0

V L
T

V
d

1
T

V
d

1
T

µ M
LT

µd M
T

d L

In the first step, length is removed with d. In the second, mass is removed with µd
and in the third time is removed with V/d. Finally

FD
µV d

= C
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PROBLEM 8.7

Situation: Drag on a rough sphere is described in the problem statement.

Find: The π−groups.

APPROACH

Use the step-by-step method.

ANALYSIS

FD
ML
T 2

FD
D

M
T 2

FD
ρD4

1
T 2

FD
ρV 2D2 0

D L
ρ M

L3
ρD3 M

µ M
LT

µD M
T

µ
ρD2

1
T

µ
ρV D

0

V L
D

V
D

1
T

V
D

1
T

k L k
D

0 k
D

0 k
D

0

In the first step, length is removed with D. In the second step, mass is removed with
ρD3 and in the final step time removed with V/D. The final functional form is

FD
ρV 2D2 = f(ρV D

µ
, k
D
)

Other forms are possible.
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PROBLEM 8.8

Situation: A spinning ball is described in the problem statement.

Find: The π−groups.

APPROACH

Use the step-by-step method.

ANALYSIS

F ML
T 2

F
D

M
T2

F
ρD4

1
T2

F
ρV 2D2 0

D L
V L

T
V
D

1
T

V
D

1
T

ρ M
L3

ρD3 M
µ M

LT
µD M

T
µ

ρD2
1
T

µ
ρV D

0

ks L ks
D

0 ks
D

0 ks
D

0
ω 1

T
ω 1

T
ω 1

T
ωD
V

0

Length is removed in the first step with D, mass in the second step with ρD3 and
time in the third step with V/D. The functional form is

F
ρV 2D2 = f(ρV D

µ
, ks
D
, ωD

V
)

There are other possible forms.
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PROBLEM 8.9

Situation: Drag on a square plate is described in the problem statement.

Find: The π−groups.

APPROACH

Use the step-by-step method.

ANALYSIS

FD
ML
T 2

FD
B

M
T 2

FD
ρB4

1
T2

FD
ρV 2B2

0

V L
T

V
B

1
T

V
B

1
T

ρ M
L3

ρB3 M
B L
µ M

LT
µB M

T
µ

ρB2
1
T

µ
ρV B

0

u0 L
T

u0
B

1
T

u0
B

1
T

u0
V

0
Lx L Lx

B
0 Lx

B
0 Lx

B
0

Length is removed in first step with B, mass is removed in second with ρB3 and time
is removed in the third with V/B. The function form is

FD
ρV 2B2

= f( µ
ρV B

, u
0
V
, Lx
B
)

Other forms are possible.

653



PROBLEM 8.10

Situation: Flow through a small horizontal tube is described in the problem state-
ment.

Find: The π−groups.

APPROACH

Use the step-by-step method.

ANALYSIS

∆p
∆c

M
L2T 2

∆p
∆c
D2 M

T 2
∆p
∆c

D
µ

1
T

∆p
∆c

D2

µV
0

µ M
LT

µD M
T

V L
T

V
D

1
T

V
D

1
T

D L

Length is removed in the first step with D, mass is removed in the second with µD
and time is removed in the third with V/D. Finally we have

∆p
∆c

D2

µV
= C

or

∆p

∆c
= C

µV

D2
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PROBLEM 8.11

Situation: A centrifugal pump is described in the problem statement.

Find: The π−groups.

APPROACH

Use the step-by-step method.

ANALYSIS

∆p M
LT 2

∆pD M
T 2

∆p
ρD2

1
T 2

∆p
nρD2 0

D L
n 1

T
n 1

T
n 1

T

Q L3

T
Q
D3

1
T

Q
D3

1
T

Q
nD3 0

ρ M
L3

ρD3 M

In the first step, length is removed with D. In the second step, mass is removed with
ρD3 and time is removed in the third step with n. The functional form is

∆p
nρD2 = f( Q

nD3 )
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PROBLEM 8.12

Situation: A bubble is oscillating in an inviscid fluid–additional details are provided
in the problem statement.

Find: The π−groups.

APPROACH

Use the step-by-step method.

ANALYSIS

f 1
T

f 1
T

f 1
T

f
q

ρR2

p
0

p M
LT 2

p
ρ

L2

T 2
p

ρR2
1
T 2

R L R L
ρ M

L3

k 0 k 0 k 0 k 0

In the first step, mass is removed with ρ. In the second step, length is removed with
R and, finally, in third step time is removed with p/ρR2. The final functional form is

fR
q

ρ
p
= f(k)
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PROBLEM 8.13

Situation: The problem statement describes force on a satellite in the earth’s upper
atmosphere.

Find: The nondimensional form of equation.

APPROACH

Use the exponent method.

ANALYSIS

F = λaρbDccd

ML/T 2 = La(M/L3)bLc(L/T )d

= La−3b+c+dM bT−d

Equating powers of M, L and T , we have

T : d = 2

M : b = 1

L : 1 = a− 3 + c+ c

1 = a− 3 + c+ 2

a+ c = 2

a = 2− c

Therefore,

F = λ(2−c)ρDcc2

F/(ρc2λ2) = f(D/λ)

Another valid answer would be

F/(ρc2D2) = f(D/λ)
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PROBLEM 8.14

Situation: The problem statement describes the velocity of ripples moving on the
surface of a small pond.

Find: An expression for V.

APPROACH

Use the step-by-step method.

ANALYSIS

V L
T

V L
T

V
c

1
T

V c1/2ρ1/2

σ1/2
0

c L c L

ρ M
L3

ρ
σ

T2

L3
ρ
σ
c3 T 2

σ M
T2

In the first step, mass is removed with σ. In the second step, length is removed with
c and in the third step, time is removed with ρc3/σ. The functional form is

V
q

cρ
σ
= C

or

V = C

r
σ

ρc
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PROBLEM 8.15

Situation: A circular plate rotates with a speed ω–additional details are provided in
the problem statement.

Find: The π−groups.

APPROACH

Use the step-by-step method.

ANALYSIS

T ML2

T 2
T
D2

M
T 2

T
µD3

1
T

T
µD3ω

0

µ M
LT

µD M
T

ω 1
T

ω 1
T

ω 1
T

S L S
D

0 S
D

0 S
D

0
D L

In the first step, length is removed with D. In the second step, mass is removed with
µD and in the last step, time is removed with ω. The final functional form is

T
µD3ω

= f( S
D
)
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PROBLEM 8.16

Situation: A study involves capillary rise of a liquid in a tube–additional details are
provided in the problem statement.

Find: The π−groups.

APPROACH

Use the step-by-step method.

ANALYSIS

h L h
d

0 h
d

0 h
d

0
t T t T t T

σ M
T2

σ M
T2

σ
ρd3

1
T 2

σt2

ρd3
0

ρ M
L3

ρd3 M

γ M
L2T 2

γd2 M
T2

γ
ρd

1
T 2

γt2

ρd
0

µ M
LT

µd M
T

µ
ρd2

1
T

µt
ρd2

0

d L

In the first step, length is removed with d. In the second step, mass is removed with
ρd3 and in the final step, time is removed with t. The final functional form is

h
d
= f(σt

2

ρd3
,γt

2

ρd
, µt
ρd2
)

660



PROBLEM 8.17

Situation: An engineer characterizing power P consumed by a fan.
Power depends on four variables: P = f (ρ,D,Q, n)

ρ is the density of air
D is the diameter of the fan impeller
Q is the flow rate produced by the fan
n is the rotation rate of the fan.

Find:
(a) Find the relevant π-groups.
(b) Suggest a way to plot the data.

APPROACH

Apply the π-Buckingham theorem to establish the number of π-groups that need to
be found. Apply the step-by-step method to find these groups and then use the
π-groups to decide how a plot should be made.

ANALYSIS

π-Buckingham theorem. The number of variables is n = 5. The number of primary
dimensions is m = 3.

Number of π-group = n−m

= 5− 3
= 2

Step by step method. The variable of interest are P = f (ρ,D,Q, n) . The step-by-
step process is given in the table below. In the first step, the length dimension is
eliminated with D. In the second step, the mass dimension is eliminated with ρD3.
In the third step, the time dimension is eliminated with 1/n.
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P ML2

T3
P
D2

M
T 3

P
ρD5

1
T 3

P
ρD5n3

0

ρ M
L3

ρD3 M
D L

Q L3

T
Q
D3

1
T

Q
D3

1
T

Q
nD3 0

n 1
T

n 1
T

n 1
T

The functional form of the equation using π-groups to characterize the variables is:

P
ρD5n3

= f
¡

Q
nD3

¢
Answer part b ==> Plot dimensionless pressure (P/ρD5n3)on the vertical axis,
dimensionless flow rate (Q/nD3)on the horizontal axis.
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PROBLEM 8.18

Situation: A gas-particle mixture that is flowing in a tube is causing erosion of the
wall–additional details are provided in the problem statement.

Find: Determine a set of π-groups. Express the answer as

eV

E
= f (π1, π2, π3, π4)

APPROACH

Use the exponent method.

ANALYSIS

e = f(Br, σ,E, V, d, Ṁp,D)

where

[e] = M/(L2T ) ; [Br] = dimensionless

[E] = M/(LT 2) ; [σ] =M/(LT 2)

[V ] = L/T ; [d] = L ; [Ṁp] =M/T ; [D] = L

∴ [e] = [EασβV γdδṀε
pD

λ]

M(L2T ) = (M/(LT 2))α(M/(LT 2))β(L/T )γLδ(M/T )εLλ

M : 1 = α+ β + ε

L : 2 = α+ β − γ − δ − λ

T : 1 = 2α+ 2β + γ + ε

Use α, γ and ε as unknowns

α+ 0 + ε = 1− β (5)

α− γ + 0 = 2− β + δ + λ (6)

2α+ γ + ε = 1− 2β (7)

(1) : α+ ε = 1− β

(2) + (3) : 3α+ ε = 3− 3β + δ + λ

(2) + (3)− (1) : 2α = 2− 2β + δ + λ
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α = 1− β + (δ + λ)/2

ε = −α+ 1− β = −1 + β − ((δ + λ)/2) + 1− β = −(δ + λ)/2

= α− 2 + β − δ − λ

= 1− β + ((δ + λ)/2)− 2 + β − (δ + λ) = −1− ((δ + λ)/2)

e = f(E(1−β+((δ+λ)/2)αβV −1−((δ+λ)/2dδṀ−((δ+λ)/2)
p Dλ, Br

or

eV/E = f(σ/E,Ed2/(V Ṁp), ED
2/(ṀpV ), Br)

Alternate form:
eV/E = f(σ/E,Ed2/V Ṁp, d/D,Br)
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PROBLEM 8.19

Situation: The problem statement describes the flow of water or oil through an abrupt
contraction.

Find: The π-groups that characterize pressure drop. Express the answer as

∆pd4

ρQ2
= f(π1, π2)

APPROACH

Use the step-by-step method.

ANALYSIS

∆p M
LT 2

∆pd M
T 2

∆p
ρd2

1
T2

∆pd4

ρQ2
0

Q L3

T
Q
d3

1
T

Q
d3

1
T

ρ M
L3

ρd3 M

µ M
LT

µd M
T

µ
ρd2

1
T

µd
ρQ

0

D L D
d

0 D
d

0 D
d

0
d L

Length is removed with d in the first step, mass with ρd3 in the second step and time
with Q/d3 in the third step. The final form is

∆pd4

ρQ2
= f( µd

ρQ
,D
d
)
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PROBLEM 8.20

Situation: Flow through a transition section (large diameter to small diameter) in a
pipe where the Reynolds number is very large.

Find: Compare viscous forces to inertial forces.

ANALYSIS

Reynolds number ≈ inertial forces
viscous forces

Thus, if Reynolds number is large, the viscous forces are small compared to the inertial
forces.

Answer ==>Viscous forces are relatively small as compared to the inertial forces.
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1.

PROBLEM 8.21

Situation: A solid particle falls through a viscous fluid–additional details are pro-
vided in the problem statement.

Find: Find the π−groups–express the answer in the form:
V√
gD

= f (π1, π2)

APPROACH

Use the exponent method.

ANALYSIS

V a = ρbfρ
c
pµ

dDegf

Writing out the dimensionsµ
L

T

¶a

=

µ
M

L3

¶bµ
M

L3

¶cµ
M

LT

¶d

(L)e
µ
L

T 2

¶f

Setting up the equations for dimensional homogeneity

L : a = −3b− 3c− d+ e+ f
M : 0 = b+ c+ d
T : a = d+ 2f

Substituting the equation for T into the one for L gives

0 = −3b− 3c− 2d+ e− f
0 = b+ c+ d

Solving for e from the first equation and c from the second equation

e = 3b+ 3c+ 2d+ f
c = −d− b

and the equation for e becomes

e = −d+ f

Substituting into the original equation

V d+2f = ρbfρ
−d−b
p µdD−d+fgf

Collecting terms
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µ
V ρpD

µ

¶d

=

µ
Dg

V 2

¶f µρf
ρp

¶b

The functional equation can be written as

V√
gD
= f

³
V ρpD

µ
,
ρf
ρp

´
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PROBLEM 8.22

Situation: A bubble is rising in a liquid–additional details are provided in the prob-
lem statement.

Find: The π−groups.

APPROACH

Use the step-by-step method.

ANALYSIS

The functional relationship is

V = f(ρl, µl, D, σ, g)

Using the step-by-step method

V L
T

V
D

1
T

V
D

1
T

V√
gD

0

ρl
M
L3

ρlD
3 M

µl
M
LT

µlD
M
T

µl
ρlD

2
1
T

µl
ρlD

3/2g1/2
0

D L
σ M

T2
σ M

T 2
σ

ρlD
3

1
T 2

σ
ρlD

2g
0

g L
T2

g
D

1
T 2

g
D

1
T 2

In the first step, D was used to remove the length dimension. In the second step,
ρlD

3 was used to remove the mass dimension and finally, in the third step,
p
g/D

was used to remove the time dimension. The final functional form can be expressed
as

V√
gD
= f

³
µ2l

ρ2lD
3g
, σ
ρlD

2g

´
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PROBLEM 8.23

Situation: The problem statement describes a flow meter.

Find: The π−groups.
APPROACH

Use the exponent method.

ANALYSIS

The functional relationship is

ṁ = f(D,µ,∆p, ρ)

Using the exponent method, we have

ṁa = Dbµc∆pdρe

Writing out the dimensional equation

M

T

a

= Lb

µ
M

LT

¶cµ
M

LT 2

¶dµ
M

L3

¶e

and the equations for the dimensions are

L : 0 = b− c− d− 3e
M : a = c+ d+ e
T : a = c+ 2d

Substituting the equation for time into the equation for mass yields two equations

0 = b− c− d− 3e
0 = −d+ e or d = e

and the first equation becomes

0 = b− c− 4d or b = c+ 4d

Substituting back into the original equation

ṁc+2d = Dc+4dµc∆pdρd

Collecting like powers gives µ
ṁ2

D4ρ∆p

¶d

=

µ
µD

ṁ

¶c

A functional relationship is

ṁ√
ρ∆pD2

= f(
µD

ṁ
)
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The functions can be combined to form

ṁ√
ρ∆pD2 = f( µ√

ρ∆pD
)
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PROBLEM 8.24

Situation: The problem statement describes a torpedo-like device.

Find:
Identify which π−groups are significant.
Justify the answer.

ANALYSIS

• Viscous stresses influence drag. Thus, Reynolds number is significant.
• Because the body in near the surface, the motion will produce waves. These
waves will influence drag. Thus, the Froude number is important.

• A major design consideration is the drag force on the object. The appropriate
π−group is the coefficient of drag (CD)which is defined by

CD =
Fdrag

ρV 2/2Ar

Answer ==> Significant π−groups are Reynolds number, Froude number and the
coefficient of drag.

672



PROBLEM 8.25

Situation: Liquid is moving through a bed of sand–additional details are provided
in the problem statement.

Find: The π−groups.

APPROACH

Use the step-by-step method.

ANALYSIS

The functional relationship is

∆p = f(D,L, α, µ, ρ)

Using the step-by-method

∆p M
LT 2

∆p∆s M
T 2

∆p
ρ∆s2

1
T 2

∆pρ∆s2

µ2
0

D L D
∆s

0 D
∆s

0 D
∆s

0
∆s L
α 0 α 0 α 0 α 0
µ M

LT
µ∆s M

T
µ

ρ∆s2
1
T

ρ M
L3

ρ∆s3 M

In the first step, the length was removed with ∆s. In the second step, the mass was
removed with ρ∆s3. In the third step, time was removed with µ/ρ∆s2. Finally the
functional form is

√
ρ∆p∆s
µ

= f( D
∆s
, α)
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PROBLEM 8.26

Situation: An oscillating fin is being tested in a wind tunnel–additional details are
provided in the problem statement.

Find: The π−groups.

APPROACH

Use the exponent method.

ANALYSIS

The functional relationship is

FD = f(ρ, V, S, ω)

Writing out the dimensional parameters using the exponent method

F a
D = ρbV cSdωe

Including the dimensionsµ
ML

T 2

¶a

=

µ
M

L3

¶bµ
L

T

¶c

L2d
µ
1

T

¶e

Writing the equations for dimensional homogeneity,

M : a = b
L : a = −3b+ c+ 2d
T : 2a = c+ e

Solving for a, b and c in terms of d, and e gives

a = d− e/2
b = d− e/2
c = 2d− 2e

Substituting into the original equation

F
d−e/2
D = ρd−e/2V 2d−2eSdωe

µ
FD

ρV 2S

¶d

=

Ã
F
1/2
D ω

ρ1/2V 2

!e

so

FD

ρV 2S
= f(

F
1/2
D ω

ρ1/2V 2
)
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It is standard practice to eliminate FD from the right side of the equation. To do
this, we may use the concept that π-groups may be combined by multiplication or
division. The result is

FD
ρV 2S

= f
³
ω2S
V 2

´
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PROBLEM 8.27

Situation: The problem statement describes a centrifugal pump.

Find: The π-groups.

APPROACH

Use the step-by-step method.

ANALYSIS

Q = f(N,D, hp, µ, ρ, g)

Q L3

T
Q
D3

1
T

Q
D3

1
T

Q
ND3 0

N 1
T

N 1
T

1
T

1
T

D L

hp L hp
D

0 hp
D

0 hp
D

0
µ M

LT
µD M

T
µ

ρD2
1
T

µ
ρND2 0

ρ M
L3

ρD3 M
g L

T 2
g
D

1
T 2

g
D

1
T 2

g
N2D

0

The functional relationship is

Q
ND3 = f(hp

D
, µ
ρND2 ,

g
N2D

)

Some dimensionless variables can be combined to yield a different form

Q

ND3
= f(

hpg

N2D2
,

µ

ρND2
,

g

N2D
)
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PROBLEM 8.28

Situation: Drag force on a submarine is studied using a 1/15 scale model–additional
details are provided in the problem statement.

Find: (a) Speed of water in the tunnel for dynamic similitude.
(b) The ratio of drag forces (ratio of drag force on the model to that on the prototype).

APPROACH

Dynamic similarity is achieved when the Reynolds numbers are the same.

ANALYSIS

Match Reynolds number

Rem = Rep

Vm =
Lp

Lm

νm
νp

Vp

Vm = 15× 1× 10−6
1.4× 10−6 × 2 = 21.4 m/s

The ratio of the drag force on the model to that on the prototype is

FD,m

FD,p
=

ρm
ρp

µ
Vm
Vp

¶2µ
lm
lp

¶2
=

998

1015

µ
21.4

2

¶2µ
1

15

¶2
= 0.500
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PROBLEM 8.29

Situation: The problem statement describes flow (oil and water) in a pipe.

Find: Velocity of water for dynamic similarity.

APPROACH

Dynamic similarity is achieved when the Reynolds numbers are the same.

ANALYSIS

Match Reynolds number

Rew = Re0
Vwd

νw
=

V0d

ν0

Vw =
V0νw
ν0

= 0.5 m/s (
10−6

10−5
)

= 0.05 m/s
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PROBLEM 8.30

Situation: The problem statement describes flow (oil and water) in a pipe.

Find: Velocity of water for dynamic similarity.

APPROACH

Dynamic similarity is achieved when the Reynolds numbers are the same.

ANALYSIS

Match Reynolds number

Re5 = Re15
V5D5

ν5
=

V15D15

ν15

V5 = V15(
D15

D5
)(
ν5
ν15
)

= (2 m/s)(
15

5
)

µ
10−6

4× 10−6
¶

V5 = 1.5 m/ s

679



PROBLEM 8.31

Situation: The problem statement describes a venturi meter.

Find:
a.) The discharge ratio (Qm/Qp)
b.) Pressure difference (∆pp) expected for the prototype.

ANALYSIS

Match Reynolds number

Rem = Rep

VmLm/νm = VpLp/νp

Vm/Vp = (Lp/Lm)(νm/νp) (1)

Multiply both sides of Eq. (1) by Am/Ap = L2m/L
2
p:

(VmAm)/(VpAp) = (Lp/Lm)× (1)× L2m/L
2
p

Qm/Qp = Lm/Lp

Qm/Qp = 1/10

Cpm = Cpp

(∆p/ρV 2)m = (∆p/ρV 2)p

∆pp = ∆pm(ρp/ρm)(Vp/Vm)
2

= ∆pm(1)(Lm/Lp)
2

= 300× (1/10)2 = 3.0 kPa
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PROBLEM 8.32

Situation: The problem statement describes vortex shedding from a cylinder.

Find: The π−groups.

APPROACH

Use the step-by-step method.

ANALYSIS

n 1
T

n 1
T

n 1
T

nd
V

0
V L

T
V L

T
V
d

1
T

d L d L

ρ M
L3

ρ
µ

T
L2

ρd2

µ
T V dρ

µ
0

µ M
LT

Mass is removed with µ in the first step, length with d in the second step and time
with V/d in the last step. The final functional form is

nd
V
= f(V dρ

µ
)
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PROBLEM 8.33

Situation: Drag is to be measured with a scale model (1/5) of a bathysphere.

Find: The ratio of towing speeds (ratio of speed of the model to the speed of the
prototype).

APPROACH

Dynamic similarity based on matching Reynolds number of the model and prototype.

ANALYSIS

Reynolds number

Rem = Rep
VmLm

νm
=

VpLp

νp

Assume νm = νp

VmLm = VpLp

Vm
Vp
=

Lp

Lm
= 5Vp

Vm/Vp = 5
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PROBLEM 8.34

Situation: A spherical balloon is tested by towing a 1/3 scale model in a lake–
additional details are provided in the problem statement.

Dm = 1 ft; Dp = 3 ft; νp = 1.58× 10−4 ft2/sec;
νm = 1.22× 10−5 ft2/sec; Vm = 5 ft/sec; Fm = 15 lbf

Find: Drag force on the prototype (operates in air).

APPROACH

Dynamic similarity based on Reynolds number and on pressure coefficient.

ANALYSIS

Match Reynolds numbers

Rem = Rep

VmDm/νm = VpDp/νp

or
VpVm = (Dm/Dp)(νp/νm) = (1/3)(1.58× 10−4/1.22× 10−5) (1)

Match pressure coefficients

Cpm = Cpp

∆pm/(ρmV
2
m/2) = ∆pp/(ρpV

2
p /2)

∆pp/∆pm = (ρp/ρm)(V
2
p /V

2
m)

Fp/Fm = (∆ppAp)/(∆pmAm) = (Ap/Am)(ρp/ρm)(V
2
p /V

2
m) (2)

Combine Eq. (1) and (2)

Fp/Fm = (ρp/ρm)(νp/vm)
2 = (0.00237/1.94)(1.58× 10−4/1.22× 10−5)2

= 0.2049

Fp = 15× 0.2049
= 3.07 lbf = 13.7N
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PROBLEM 8.35

Situation: An engineer needs a value of lift force(FL) for an airplane.
Coefficient of lift: CL = 0.4.
Definition of coefficient of lift.

CL = 2
FL

ρV 2S

Density of ambient air: ρ = 1.1 kg/m3.
Speed of the air relative to the airplane: V = 80m/ s.
Planform area (i.e. area from a top view): A = 15m2.

Find: The lift force in units of Newtons.

APPROACH

Use the specified value of CL = 0.4 along with the definition of this π-group.

ANALYSIS

From the definition of CL:

FL = CL

µ
ρV 2

2

¶
S

= (0.4)
(1.1 kg/m3) (80m/ s)2

2

¡
15m2

¢
= 21, 100N

FL = 21.1 kN

COMMENTS

This lift force is about 4750 lbf.
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PROBLEM 8.36

Situation: A 1/5 scale model of a plane is tested in a wind tunnel–additional details
are provided in the problem statement.

Find: Density of the air in tunnel.

APPROACH

Dynamic similarity based on matching Reynolds number and Mach number.

ANALYSIS

Match Reynolds number

Rem = Rep

(V D/ν)m = (V D/ν)p

(Vm/Vp) = (Dp/Dm)(νm/νp)

νm/νp = (VmDm/VpDp)

(µmρp/µpρm) = (VmDm/VpDp)

ρm = ρp(µm/µp)(Vp/Vm)(Dp/Dm) (1)

Match Mach number

Mm = Mp

(V/c)m = (V/c)p

(Vm/Vp) = cm/cp

= ((
√
kRT )m/(

√
kRT )p)

=
q
Tm/Tp = (298/283)

1/2 (2)

Combining Eqs. (1) and (2):

ρm = 1.26(1.83× 10−5/1.76× 10−5)(283/298)1/2(5)
= 6.38 kg/m3

685



PROBLEM 8.37

Situation: Flow in a pipe is being tested with air and water.

Find: Velocity ratio: Vair/Vwater

ANALYSIS

Match Reynolds number

ReA = ReW

VALA/νA = VWLW/νW ; but LA/LW = 1

∴ VAVW = νA/νW ≈ (1.6)(10−4)/(1.2)(10−5)(at 60◦F )
VA/VW > 1

The correct choice is c)
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PROBLEM 8.38

Situation: Pipe flow is being studied–additional details are provided in the problem
statement.

Find: Mean velocity of water in model to insure dynamic similarity.

ANALYSIS

Match Reynolds number

Rem = Rep

Vmdmρm/µm = Vpdpρp/µp
Vm = Vp(dp/dm)(ρp/ρm)(µm/µp)

Vm = (3 ft/s)(48/4)(1.75/1.94)((2.36× 10−5)/(4× 10−4))
Vm = 1.92 ft/s
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PROBLEM 8.39

Situation: A student team is designing a radio-controlled blimp.

Drag force is characterized with a coefficient of drag:.

CD = 2
FD

ρV 2Ap
= 0.3

Blimp speed is V = 750mm/ s. Maximum diameter of the blimp is D = 0.475m.
Projected area is Ap = πD2/4.

Find:
a.) Reynolds number.
b.) Force of drag in newtons.
c.) Power in watts.

Properties: Air at T = 20 ◦C: ρ = 1.2 kg/m3, µ = 18.1× 10−6N · s/m2.
Assumptions: Assume the blimp cross section is round.

APPROACH

Find the Reynolds number by direct calculation. Find the drag force using the
definition of CD. Find power (P ) by using the product of force and speed: P = FDragV.

ANALYSIS

Reynolds number

Re =
V Dρ

µ

=
(0.75m/ s) (0.475m) (1.2 kg/m3)

(18.1× 10−6N · s/m2)
Re = 23, 600

Projected area

Ap =
πD2

4
=

π (0.475m)2

4
= 0.177m2
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Drag force

FD = CD

µ
ρV 2

2

¶
Ap

= (0.3)
(1.2 kg/m3) (0.75m/ s)2

2

¡
0.177m2

¢
FD = 17.9× 10−3N

Power

P = FDV

=
¡
17.9× 10−3N¢ (0.75m/ s)
P = 13.4× 10−3W

COMMENTS

1. The drag force is about 1/50th of a Newton, which is about 1/200th of a lbf.

2. The power is about 10 milliwatts. The supplied power would need to be higher
to account for factors such as propeller efficiency and motor efficiency.
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PROBLEM 8.40

Situation: A 1/1 scale model of a torpedo is being tested in a wind tunnel–additional
details are provided in the problem statement.

Find: Air velocity in wind tunnel.

APPROACH

Dynamic similarity based on Reynolds number.

ANALYSIS

Match the Reynolds number of the model and prototype. This leads to.

Vair = (10)(1/1)(1.41× 10−5/1.31× 10−6)
= 107.6 m/s
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PROBLEM 8.41

Situation: The problem statement describes flow in a conduit (on earth) to be used
to characterize a prototype that will be build on the moon.

Find: Kinematic viscosity of fluid for model on earth.

APPROACH

Dynamic similarity based on Reynolds number and Froude number.

ANALYSIS

Match Froude number

Frmoon = Frearth

(V/
p
gL)m = (V/

p
gL)e

Ve/Vm = (ge/gm)
0.5(Le/Lm)

0.5

= (5)0.5(1)

Match Reynolds number

Rem = Ree

(V L/ν)m = (V L/ν)e

νe = (Ve/Vm)νm = (5)
0.50.5× (10−5) m2/s

νe = 1.119× 10−5 m2/s
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PROBLEM 8.42

Situation: The problem statement describes a 1/15 scale model of a drying tower.

Find: Entry velocity of the model fluid (water).

APPROACH

Dynamic similarity based on Reynolds number.

ANALYSIS

Match Reynolds number

Rem = Rep
VmLm

νm
=

VpLp

νp

Vm = (
Lp

Lm
)(
νm
νp
)Vp

= (15)

µ
1× 10−6
4× 10−5

¶
(12 m/s)

Vm = 4.50 m/s
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PROBLEM 8.43

Situation: A 1/5 scale model is being used to characterize a discharge meter–
additional details are provided in the problem statement.

Find:
a.) Velocity for the prototype.
b.) Pressure difference for the prototype.

APPROACH

Dynamic similarity based on Reynolds number and pressure coefficients.

ANALYSIS

Match Reynolds number

Reprot. = Remodel

Vprot. = Vmodel(Lmodel/Lprot.)(νprot./νmodel)

Vprot. = 1(1/5)(10−5/10−6) = 2.0 m/s

Match pressure coefficients

Cp,m = Cp,p

(∆p/ρV 2)m = (∆p/ρV 2)p
∆pp = ∆pm(ρp/ρm)(Vp/Vm)

2

= 3.0× (860/998)× (2.0/1.0)2
= 10.3 kPa
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PROBLEM 8.44

Situation: Water flowing through a rough pipe is to be characterized by using air flow
through the same pipe–additional details are provided in the problem statement.

Find:
(a) Air velocity to achieve dynamic similarity.
(b) Pressure difference for the water flow.

APPROACH

Dynamic similitude based on Reynolds number and pressure coefficients.

ANALYSIS

Match Reynolds number

Reair = Rewater

(V Dρ/µ)air = (V Dρ/µ)water

Va = Vw(Dw/Da)(ρw/ρa)(µa/µw)

ρw = 1, 000 kg/m3

ρ = ρa, std. atm. × (150 kPa/101 kPa)
= 1.20× (150/101) = 1.78 kg/m3

µa = 1.81× 10−5 N · s/m2
µw = 1.31× 10−3 N · s/m2

Then

Va = 1.5 m/s (1,000/1.78)(1.81× 10−5/1.31× 10−3)
Va=11.6 m/s

Match pressure coefficients

Cpw = Cpa

(∆p/ρV 2)w = (∆p/ρV 2)a

∆pw = ∆pa(ρw/ρa)(Vw/Va)
2

= 780× (1, 000/1.78)(1.5/11.6)2
= 7, 330 Pa = 7.33 kPa
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PROBLEM 8.45

Situation: A device for a minesweeper (a noisemaker) will be studied by using a
1/5 scale model in a water tunnel–additional details are provided in the problem
statement.

Find:
(a) Velocity to use in the water tunnel.
(b) Force that will act on the prototype.

APPROACH

Dynamic similarity based on matching Reynolds number and pressure coefficient.

ANALYSIS

Match Reynolds number

Retunnel = Reprototype

Vtunnel = Vprot.(
5

1
)(
νtunnel
νprot.

)

Vtunnel = 5(
5

1
)(1)

Vtunnel = 25 m/s

Match pressure coefficients

Cptunnel = Cpprototyp eµ
∆p

ρV 2

¶
tunnel

=

µ
∆p

ρV 2

¶
prototypeµ

∆ptunnel
∆pprot.

¶
=

µ
ρtunnel
ρprot.

¶µ
V 2
tunnel

V 2
prot.

¶
Multiply both sides of the equation by Atunnel/Aprot. = L2t/L

2
p.

(∆p×A)tunnel
(∆p×A)prot.

=

µ
ρtunnel
ρprot.

¶
×
µ
V 2
tunnel

V 2
prot.

¶
×
µ
Lt

Lp

¶2
Ftunnel
Fprot.

= (
1

1
)(5)2(

1

5
)2

Ftunnel = Fprot. = 2400 N
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PROBLEM 8.46

Situation: Air forces on a building are to be characterized by using a 1/100 scale
model–additional details are provided in the problem statement.

Find: (a) Density needed for the air in the wind tunnel.
(b) Force on the full-scale building (prototype).

ANALYSIS

Reynolds number

Rem = Rep

(ρV L/µ)m = (ρV L/µ)p

ρm/ρp = (Vp/Vm)(Lp/Lm)(µm/µp)

= (25/300)(100)(1)

= 8.33

ρm = 8.33ρp = 0.020 slugs/ft3

Fm/Fp = (∆pm/∆pp)(Am/Ap) (1)

Cp,m

Cp,p
=

µ
∆pm
ρmV

2
m

¶µ
ρpV

2
p

∆pp

¶
1 =

µ
∆pm
∆pp

¶µ
ρp
ρm

¶µ
V 2
p

V 2
m

¶
=

µ
∆pm
∆pp

¶µ
1

8.33

¶µ
25

300

¶2
Then

∆pm/∆pp = 1, 200 (2)

solve Eqs. (1) and (2) for Fm/Fp

Fm/Fp = 1, 000Am/Ap

= 1200(1/104) = 0.12

Fp =
Fm

0.12

= 417 lbf
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PROBLEM 8.47

Situation: Performance of a large valve will be characterized by recording data on a
1/3 scale model–additional details are provided in the problem statement.

Find:
a) Flow rate to be used in the model (laboratory) test.
b) The pressure coefficient for the prototype.

ANALYSIS

Rem = Rep or (V Dρ/µ)m = (V Dρ/µ)p

Then

Vm/Vp = (Dp/Dm)(ρp/ρm)(µm/µp)

Multiply both sides of above equation by Am/Ap = (Dm/Dp)
2

(Am/Ap)(Vm/Vp) = (Dp/Dm)(Dm/Dp)
2(ρp/ρm)(µm/µp)

Qm/Qp = (Dm/Dp)(ρp/ρm)(µm/µp)

= (1/3)(0.82)(10−3/(3× 10−3))
Qm/Qp = 0.0911

or Qm = Qp × 0.0911
Qm = 0.50× 0.0911 m3/s = 0.0455 m3/s

Cp=1.07
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PROBLEM 8.48

Situation: The moment acting on the rudder of submarine will be studied using a
1/60 scale model–additional details are provided in the problem statement.

Find:
(a) Speed of the prototype that corresponds to the speed in the water tunnel.
(b) Moment that corresponds to the data from the model.

ANALYSIS

Match pressure coefficients

Cpm = Cpp

(∆p/ρV 2)m = (∆p/ρV 2)p

or
∆pm/∆pp = (ρmV

2
m)/(ρpV

2
p ) (1)

Multiply both sides of Eq. (1) by (Am/Ap)× (Lm/Lp) = (Lm/Lp)
3 and obtain

Mom.m/Mom.p = (ρm/ρp)(Vm/Vp)
2(Lm/Lp)

3 (2)

Match Reynolds numbers

VmLm/νm = VpLp/νp
Vm/Vp = (Lp/Lm)(νm/νp)

(3)

Substitute Eq. (3) into Eq. (2) to obtain

Mm/Mp = (ρm/ρp)(νm/νp)
2(Lm/Lp)

Mp = Mm(ρp/ρm)(νp/νm)
2(Lp/Lm)

= 2(1, 026/1, 000)(1.4/1.31)2(60)

= 141 N·m

Also

Vp = 10(1/60)(1.41/1.310)

= 0.179 m/s
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PROBLEM 8.49

Situation: A model hydrofoil is tested in a water tunnel–additional details are pro-
vided in the problem statement.

Find: Lift force on the prototype.

ANALYSIS

Match pressure coefficients

Cpm = Cpp

(∆p/ρV 2)m = (∆p/ρV 2)p

∆pm/∆pp = (ρm/ρp)(V
2
m/V

2
p )

Multiply both sides of the above equation by Am/Ap = (Lm/Lp)
2

(∆pm/∆pp)(Am/Ap) = (ρm/ρp)(V
2
m/V

2
p )(L

2
m/L

2
p) = Fm/Fp (1)

Match Reynolds numbers

(V Lρ/µ)m = (V Lρ/µ)p

(Vp/Vm)
2 = (Lm/Lp)

2(ρm/ρp)
2(µm/µm)

2 (2)

Eliminating (Vp/Vm)2 between Eq. (1) and Eq. (2) yields

Fp/Fm = (ρm/ρp)(µp/µm)
2

Then if the same fluid is used for models and prototype, we have

Fp/Fm = 1

or

Fp = 25 kN
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PROBLEM 8.50

Situation: A 1/8 scale model of an automobile will be tested in a pressurized wind
tunnel–additional details are provided in the problem statement.

Find: Pressure in tunnel test section.

ANALYSIS

Match Mach number

Mm = Mp

Vm/cm = Vp/cp;Vm/Vp = cm/cp (1)

Match Reynolds number

Rem = Rep

VmLmρm/µm = VpLpρp/µp

or
Vm/Vp = (Lp/Lm)(ρp/ρm)(µm/µp) (2)

Eliminate Vm/Vp between Eqs. (1) and (2) to obtain

cm/cp = (Lp/Lm)(ρp/ρm)(µm/µp) (3)

But
c =

p
EV /ρ =

p
kp/ρ =

p
kp/(p/RT ) =

√
kRT

Therefore cm/cp = 1, then from Eq. (3)

1 = (8)(ρp/ρm)(1)

or
ρm = 8ρp

But

ρ = p/RT

so

(p/RT )m = 8(p/RT )p

pm = 8pp

= 8 atm

= 0.808 MPa abs.
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PROBLEM 8.51

Situation: A 1/8 scale model of an automobile will be tested in a pressurized wind
tunnel–additional details are provided in the problem statement.

Find:
a) Speed of air in the wind tunnel to match the Reynolds number of the prototype.
b) Determine if Mach number effects would be important in the wind tunnel.

ANALYSIS

Match Reynolds number

Rem = Rep

VmLmρm/µm = VpLpρp/µp; But ρm/µm = ρp/µp

so
Vm = Vp(Lp/Lm) = 80× 10 = 800 km/hr = 222 m/s

Mach number

M = V/c = 222/345 = 0.644

Because M ≥ 0.3, Mach number effects would be important .
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PROBLEM 8.52

Situation: A satellite is entering the earth’s atmosphere–additional details are pro-
vided in the problem statement.

Find: Determine if the flow is rarefied.

APPROACH

Use the ratio of Mach number and Reynolds number.

ANALYSIS

Mach number and Reynolds number

M/Re = (V/c)(µ/ρV D) = (µ)/(ρcD)

where

ρ = p/RT = 22/(1716× 393) = 3.26× 10−5 slugs/ft3

and c = 975 ft/s and µ = 3.0× 10−7 lbf-s/ft2 so

M/Re = 3.0× 10−7/(3.26× 10−5 × 975× 2) = 4.72× 10−6 < 1
Not rarefied
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PROBLEM 8.53

Situation: Water droplets are in an air stream.
Breakup occurs when W/

√
Re = 0.5.

Vair = 25m/ s, pair = 1.01 kPa, σ = 0.073N/m.

Find: Droplet diameter for break up.

APPROACH

Apply the W/
√
Re = 0.5 criteria, combined with the equations for Weber number

and Reynolds number.

ANALYSIS

Weber number and Reynolds number

W/
√
Re =

ρdV 2
√
ν

σ
√
V d

=
V 3/2
√
ρdµ

σ

So breakup occurs when
V 3/2
√
ρdµ

σ
= 0.5

Solve for diameter

d =

·
0.5σ

V 3/2√ρµ
¸2

=
0.25σ2

V 3ρµ

Calculations

d =
0.25σ2

V 3ρµ

=
0.25× 0.0732

253 × 1.2× (18.1× 10−6)
= 3.93 mm
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PROBLEM 8.54

Situation: The problem statement describes breakup of a liquid jet of heptane..

Find: Diameter of droplets.

Properties: From Table A.3, ρ = 0.95 kg/m3.

ANALYSIS

Weber number
W = 6.0 = ρDV 2/σ

D = 6σ/ρV 2 = 6× 0.02/(0.95× (30)2) = 1.40× 10−4 m = 140 µm
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PROBLEM 8.55

Situation: The problem statement describes breakup of a jet of water into droplets.

Find: Estimated diameter of droplets.

Properties: From Table A.3 ρ = 1.20 kg/m3 and from Table A.5 σ = 0.073 N/m.

ANALYSIS

Weber number

W = 6.0 =
ρDV 2

σ

D =
6σ

ρV 2
=

6× 0.073
(1.2× (20)2) = 9.125× 10

−4 m = 0.91 mm
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PROBLEM 8.56

Situation: A model test is described in the problem statement.

Find: Relationship between kinematic viscosity ratio and scale ratio.

ANALYSIS

Match Froude numbers

Fm = Fp; (
V√
gL
)m = (

V√
gL
)p

or
Vm
Vp

=

s
gmLm

gpLp
(1)

Match Reynolds numbers

Rem = Rep; (
V L

ν
)m = (

V L

ν
)p or

Vm
Vp
= (

Lp

Lm
)(
νm
νp
) (2)

Eliminate Vm/Vp between Eqs. (1) and (2) to obtain:s
gmLm

gpLp
= (

Lp

Lm
)(
νm
νp
), but gm = gp

Therefore: νm/νp = (Lm/Lp)
3/2
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PROBLEM 8.57

Situation: The spillway of a dam is simulated using a 1/20 scale model–additional
details are provided in the problem statement.

Find:
a) Wave height (prototype).
b) Wave period (prototype).

APPROACH

Dynamic similarity based on Froude number.

ANALYSIS

Match Froude number

tp
tm
= (

Lp

Lm
)1/2

Then
wave periodprot = 2× (20)1/2 = 8.94 s

and
wave heightprot = 8 cm × 20 = 1.6 m
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PROBLEM 8.58

Situation: A prototype of a dam is represented with a 1
25
scale model. Other details

are provided in the problem statement.

Find:
a) Velocity for prototype.
b) Discharge for prototype.

APPROACH

Dynamic similarity based on Froude number.

ANALYSIS

Match Froude number

Frm = FrD

Vm/((gm)(Lm))
0.5 = Vp/((gp)(Lp))

0.5

Vp/Vm = (Lp/Lm)
0.5 = 5 (1)

Vp = (2.5)(5) m/s

= 12.5 m/s

Discharge for the prototype is
Qp = VpAp (2)

From Eq. (1)

Vp = Vm

µ
Lp

Lm

¶0.5
(3)

From geometric similarity

Ap = Am

µ
Lp

Lm

¶2
(4)

Combining Eqs. 2, 3 and 4 gives

Qp = Vm

µ
Lp

Lm

¶0.5
Am

µ
Lp

Lm

¶2
= VmAm

µ
Lp

Lm

¶2.5
=

¡
0.1m3/ s

¢
(25)2.5

= 312. 5 m
3

s
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PROBLEM 8.59

Situation: A seaplane model has a 1/12 scale.

Find: Model speed to simulate a takeoff condition at 125 km/hr.

Assumptions: Froude number scaling governs the conditions.

ANALYSIS

Match Froude number

Vm = Vp

s
Lm

Lp

= 125

r
1

12
= 36.1 m/s
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PROBLEM 8.60

Situation: A model spillway has a 1
36
scale.

Discharge for the prototype is 3000 m3/ s.

Find: (a) Velocity ratio.
(b) Discharge ratio.
(c) Model discharge

APPROACH

Dynamic similarity based on Froude number.

ANALYSIS

Match Froude number

Vm/Vp =
q
Lm/Lp (1)

or for this case

Vm/Vp =
p
1/36 = 1/6

Multiply both sides of Eq. (1) by Am/Ap = (Lm/Lp)
2

VmAm/VpAp = (Lm/Lp)
1/2(Lm/Lp)

2

Qm/Qp = (Lm/Lp)
5/2

or for this case

Qm/Qp = (1/36)
5/2 = 1/7,776

Qm = 3000/7776 = 0.386 m3/s
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PROBLEM 8.61

Situation: Flow in a river is to be studied using a 1/64 scale model–additional details
are provided in the problem statement.

Find: Velocity and depth in model at a corresponding point to that specified for the
prototype.

ANALYSIS

Match Froude number

Frm = Frp

Vm/((gm)(Lm))
0.5 = Vp/((gp)(Lp))

0.5

Vm = Vp(Lm/Lp)
0.5 = Vp(1/8) = 1.875 ft/s

Geometric similitude

dm/dp = 1/64

dm = (1/64)dp

= (1/64)(20) = 0.312 ft
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PROBLEM 8.62

Situation: Details are provided in the problem statement..

Find: Velocity and discharge for prototype.

ANALYSIS

Match Froude number

Vp = Vm

q
Lp/Lm (1)

= 7.87
√
30

= 43.1 ft/s

Multiply both sides of Eq. (1) by Ap/Am = (Lp/Lm)
2

VpAp

VmAm
=

µ
Lp

Lm

¶5/2
So

Qp/Qm = (Lp/Lm)
5/2

Qp = 3.53× (30)5/2
= 17,400 ft3/s
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PROBLEM 8.63

Situation: Flow around a bridge pier is studied using a 1/10 scale model.

Find: (a) Velocity and (b)wave height in prototype.

APPROACH

Use Froude model law.

ANALYSIS

Match Froude numbers

Vp = Vm

q
Lp/Lm = 0.90

√
10 = 2.85 m/s

Lp/Lm = 10; therefore, wave heightprot. = 10× 2.5 cm = 25 cm
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PROBLEM 8.64

Situation: A 1/25 scale model of a spillway is tested–additional details are provided
in the problem statement.

Find: Time for a particle to move along a corresponding path in the prototype.

ANALYSIS

Match Froude numbers

Vp/Vm =
q
Lp/Lm

or

(Lp/tp)/(Lm/tm) = (Lp/Lm)
1/2

Then

tp/tm = (Lp/Lm)(Lm/Lp)
1/2

tp/tm = (Lp/Lm)
1/2

tp = 1×√25 = 5 min

Also

Qp/Qm = (Lp/Lm)
5/2

Qp = 0.10× (25)5/2 = 312.5 m3/s
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PROBLEM 8.65

Situation: A tidal estuary is modeled using a 1/250 scale–additional details are
provided in the problem statement.

Find: Velocity and period in the model.

ANALYSIS

Match Froude number

Frm = Frp

or

µ
V√
gL

¶
m

=

µ
V√
gL

¶
p

(1)

Vm
Vp

= (
Lm

Lp
)1/2

because gm = gp. Then

(Lm
tm
)

(Lp
tp
)
=

µ
Lm

Lp

¶1/2
or

tm
tp
=

µ
Lm

Lp

¶1/2
(2)

Then from Eq. (1)

Vm = Vp

µ
Lm

Lp

¶1/2
= 4.0× (1/250)1/2 = 0.253 m/s

From Eq. (2)

tm = (12.5 hr) (1/250)1/2 = 0.791hr = 47.4 min
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PROBLEM 8.66

Situation: The maximum wave force on a 1/36 scale sea wall was 80 N.
T = 10o (model and prototype).

Find: Force on the wall (for the full scale prototype).

Assumptions: Fresh water (model) and seawater (prototype).

APPROACH

Dynamic similarity based on pressure coefficient and Froude number.

ANALYSIS

Match pressure coefficients

Cpm = Cpp ; (∆p/ρV 2)m = (∆p/ρV 2)p

∆pm/∆pp = (ρm/ρp)(Vm/Vp)
2 (1)

Multiply both sides of Eq. (1) by Am/Ap = L2m/L
2
p

(∆pmAm)/(∆ppAp) = (ρm/ρp)(Lm/Lp)
2(Vm/Vp)

2

Match Froude numbers

Vm/Vp =
q
Lm/Lp (2)

Eliminating Vm/Vp from Eqs. (1) and (2) yields

Fm/Fp = (ρm/ρp)(Lm/Lp)
2(Lm/Lp)

Fm/Fp = (ρm/ρp)(Lm/Lp)
3

Fp = Fm(ρp/ρm)(Lp/Lm)
3 = 80(1, 026/1, 000)(36)3 = 3.83 MN
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PROBLEM 8.67

Situation: A model of a spillway is built at a 1/25 scale–additional details are
provided in the problem statement.

Find:
(a) Water discharge in model for dynamic similarity.
(b) Force on the prototype.

APPROACH

Dynamic similitude based on matching pressure coefficients and Froude numbers.

ANALYSIS

Match pressure coefficients

Cpm = Cpp ; (∆p/ρV 2)m = (∆p/ρV 2)p

∆pm/∆pp = (ρm/ρp)(Vm/Vp)
2

Multiply both sides of Eq. (1) by Am/Ap = L2m/L
2
p

(∆pmAm)/(∆ppAp) = (ρm/ρp)(Lm/Lp)
2(Vm/Vp)

2

Fm

Fp
= (ρm/ρp)(Lm/Lp)

2(Vm/Vp)
2 (1)

Match Froude number
Vm
Vp
=

s
Lm

Lp
(2)

Eliminate Vm/Vp from Eqs. (1) and (2)

Fp

Fm
=

µ
ρp
ρm

¶µ
Lp

Lm

¶3
Fp = (22N)

µ
1

1

¶µ
25

1

¶3
= 344.8N

Fp = 345N

Multiply both sides of Eq. (2) by Am/Ap = L2m/L
2
p

VmL
2
m

VpL2p
=

µ
Lm

Lp

¶5/2
Qm

Qp
=

µ
Lm

Lp

¶5/2
Qm =

¡
150m3/ s

¢µ 1
25

¶5/2
= 0.048m3/ s
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Match Froude number

Vp/Vm =
q
Lp/Lm

Qm/Qp = (Lm/Lp)
5/2

Qm = 150× (1/25)5/2 = 0.048 m3/s

From solution to Prob. 8.66 we have:

Fp = Fm(ρp/ρm)(Lp/Lm)
3

= 22(1/1)(25)3 = 344 kN
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PROBLEM 8.68

Situation: A scale model of a dam will be constructed in a laboratory.

Find: The largest feasible scale ratio.

ANALYSIS

Check the scale ratio as dictated by Qm/Qp (see Problem 8.64)

Qm/Qp = 0.90/5, 000 = (Lm/Lp)
5/2

or

Lm/Lp = 0.0318

Then with this scale ratio

Lm = 0.0318× 1, 200 m = 38.1 m

Wm = 0.0318× 300 m = 9.53 m

Therefore, model will fit into the available space, so use

Lm/Lp = 1/31.4 = 0.0318
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PROBLEM 8.69

Situation: A scale model of a ship is tested in a towing tank–additional details are
provided in the problem statement.

Find: Speed for the prototype that corresponds to the model test.

APPROACH

Dynamic similarity based on Froude number.

ANALYSIS

Match Froude number

Vm/
p
gmLm = Vp/

p
gpLp

Vp = Vm
p
Lp/

p
Lm

= (4 ft/s) (150/4)1/2

Vp=24.5 ft/s
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PROBLEM 8.70

Situation: A scale model (1/25) of a ship is described in the problem statement.

Find: (a) Velocity of the prototype.
(b) Wave resistance of the prototype.

ANALYSIS

Follow the solution procedure of Prob. 8.66:

Vm/Vp =
q
Lm/Lp; Vp = 5×

√
25 = 25 ft/s

Fm/Fp = (Lm/Lp)
3; Fp = 2(25)

3 = 31,250 lbf
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PROBLEM 8.71

Situation: A scale model (1/20) of a ship is described in the problem statement.

Find: (a) Velocity of the prototype.
(b) Wave resistance of the prototype.

ANALYSIS

Match Froude number

Frm = Frp
Vm

(gmLm)0.5
=

Vp
(gpLp)0.5

Vp = Vm

µ
Lp

Lm

¶0.5
= 17.9 m/s

Calculate force

Fp = (25 N)
µ
Lp

Lm

¶3
= (25)(20)3

Fp = 200, 000N

Fp = 200 kN
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PROBLEM 8.72

Situation: A scale model
¡
1
20

¢
of a building is being tested–details are provided in

the problem statement.

Find: Drag on the prototype building.

Assumptions: Cpm = Cpp , ρm = ρp

ANALYSIS

Match pressure coefficients

(∆p/(ρV 2/2)m = (∆p/(ρV 2/2)p

∆pm/∆pp = (ρm/ρp)(V
2
m/V

2
p )

Assuming ρm = ρp

Fm/Fp = (∆pm/∆pp)(Am/Ap) = (Vm/Vp)
2(Lm/Lp)

2

(Fp/Fm) = (40/20)2(20)2

Fp = (200 N)(4)(400) = 320, 000 N = 320 kN

Choice (d) is the correct.
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PROBLEM 8.73

Situation: A scale model
¡
1
250

¢
of a building is being tested–details are provided in

the problem statement.

Find:
(a) Pressure values on the prototype.

• windward wall
• side wall
• leeward wall

(b)Lateral force on the prototype in a 150 km/hr wind.

Assumptions: Cp,model = Cp,prot.

ANALYSIS

Match pressure coefficients
Cp,model = Cp,prot.

then

∆pp/((1/2)ρpV
2
p ) = Cpp = Cpm

or

∆pp = Cpm((1/2)ρpV
2
p )

= Cpm × (1/2)× 1.25× (150, 000/3, 600)2
p− p0 = 1085.6Cpm

but p0 = 0 gage so

p = 1085.6Cpm Pa

Extremes of pressure are therefore:

pwindward wall = 1.085 kPa

pside wall = 1085.6× (−2.7) = -2.93 kPa

pleeward wall = 1085× (−0.8) = -868 Pa

Lateral Force:
∆pm/∆pp = ((1/2)ρmV

2
m)/((1/2)ρpV

2
p )
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Multiply both sides of equation by Am/Ap = L2m/L
2
p

(∆pmAm)/(∆ppAp) = (ρm/ρp)(V
2
m/V

2
p )(L

2
m/L

2
p) = Fm/Fp

Fp/Fm = (ρp/ρm)(V
2
p /V

2
m)(L

2
p/L

2
m)

Fp = 20(1.25/1.20)((150, 000/3, 600)2/(20)2)(250)2

Fp = 5.65 MN
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PROBLEM 8.74

Situation: Drag force is measured in a water tunnel and a wind tunnel–details are
provided in the problem statement.

Find:
(a) Find the relevant π-groups.
(b) Write a computer program and reduce the given data.
(c) Plot the data using the relevant π-groups.

ANALYSIS

Performing a dimensional analysis shows that

FD
ρV 2D2 = f(ρV D

µ
)

The independent variable is the Reynolds number. Plotting the data using the di-
mensionless numbers gives the following graph.
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PROBLEM 8.75

Situation: Pressure drop is measured in a pipe with (a) water and (b) oil. Details
are provided in the problem statement.

Find:
(a) Find the relevant π-groups
(b) Write a computer program and reduce the given data
(c) Plot the data using the relevant π-groups

ANALYSIS

Performing a dimensional analysis on the equation for pressure drop shows

∆pD
LρV 2 = f(ρV D

µ
)

where the independent parameter is Reynolds number. Plotting the data using the
dimensionless parameters gives the following graph.
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PROBLEM 9.1

Situation: A block sliding on an oil film is described in the problem statement.

Find: Terminal velocity of block.

APPROACH

Apply equilibrium. Then relate shear force (viscous drag force) to viscosity and solve
the resulting equation.

ANALYSIS

Equilibrium

Fshear = W sin θ

τ = Fshear/As =W sin θ/L2

Shear stress
τ = µdV/dy = µ× V/∆y

W

θ

Fshear

L

L

∆y

or

V = τ∆y/µ

Then

V = (W sin θ/L2)∆y/µ

V = (150 sin 10◦/0.352)× 1× 10−4/10−2
V = 2.13 m/s
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PROBLEM 9.2

Situation: A board sliding on an oily, inclined surface is described in the problem
statement.

Find: Dynamic viscosity of oil

ANALYSIS

From the solution to Prob. 9.1, we have

µ = (W sin θ/L2)∆y/V

µ = (40× (5/13)/32)× (0.02/12)/0.5
µ = 5.70× 10−3 lbf-s/ft2
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PROBLEM 9.3

Situation: A board sliding on an oily, inclined surface is described in the problem
statement.

Find: Dynamic viscosity of oil.

ANALYSIS

From the solution to Prob. 9.1, we have

µ = (20× (5/13)/12)× 5× 10−4/0.12
µ = 3.20× 10−2 N·s/m2

730



PROBLEM 9.4

Situation: Uniform, steady flow occurs between two plates—additional details are
provided in the problem statement.

Find: (a) Other conditions present to cause odd velocity distribution.
(b) Location of minimum shear stress.

ANALYSIS

Upper plate is moving to the left relative to the lower plate.

Minimum shear stress occurs where the maximum velocity occurs (where du/dy =
0).
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PROBLEM 9.5

Situation: A laminar velocity distribution is described in the problem statement.

Find: Whether statements (a) through (e) are true or false.

ANALYSIS

a). True b). False c). False d). False e). True
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PROBLEM 9.6

Situation: A plate being pulled over oil is described in the problem statement.

Find: (a) Express the velocity mathematically in terms of the coordinate system
shown.
(b) Whether flow is rotation or irrotational.
(c) Whether continuity is satisfied.
(d) Force required to produce plate motion.

ANALYSIS

By similar triangles u/y = umax/∆t

y ∆y

U
max

U

U

or

u = (umax/∆y)y

u = (0.3/0.002)y m/s

u = 150 y m/s

v = 0

For flow to be irrotational ∂u/∂y = ∂V/∂x here ∂u/∂y = 150 and ∂V/∂x = 0 . The
equation is not satisfied; flow is rotational .
∂u/∂x+ ∂v/∂y = 0 (continuity equation) ∂u/∂x = 0 and ∂v/∂y = 0

so continuity is satisfied.
Use the same formula as developed for solution to Prob. 9-1, but W sin θ = Fshear.
Then

Fs = AµV/t

Fs = 0.3× (1× 0.3)× 4/0.002
Fs=180 N
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PROBLEM 9.7

Situation: The figure in problem 2.30 is for the velocity distribution in a liquid such
as oil.

Find: Whether each of the statements (a) though (e) is true or false.

ANALYSIS

Valid statements are (c), (e).
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PROBLEM 9.8

Situation: A wire being pulled though a tube is described in the problem statement.

Find: Viscous shear stress on the wire compared to that on the tube wall.

ANALYSIS

The shear force is the same on the wire and tube wall; however, there is less area in
shear on the wire so there will be a greater shear stress on the wire.
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PROBLEM 9.9

Situation: Two plates in oil are described in the problem statement.

Find: Derive an equation for the velocity of the lower plate.

Assumptions: A linear velocity distribution within the oil.

ANALYSIS

The velocity distribution will appear as below:

Equilibrium

(Force on top of middle plate) = (Force on bottom of middle plate)

τ 1A = τ 2A

τ 1 = τ 2

µ1∆V1/t1 = µ2∆V2/t2

µ1 × (V − Vlower)/t1 = µ2Vlower/t2

V µ1/t1 − µ1Vlower/t1 = µ2Vlower/t2

Vlower(µ2/t2 + µ1/t1) = V µ1/t1

Vlower = (V µ1/t1)/(µ2/t2 + µ1/t1)
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PROBLEM 9.10

Situation: A disk in oil is described in the problem statement.

Find: Torque required to rotate disc.

ANALYSIS

τ = µdv/dy

τ = µrω/∆y

dT = rdF

dT = rτdA

dT = r(µrω/∆y)2πrdr

y

dr

Plan View

Then

T =

Z r

0

dT =

Z r0

0

(µω/∆y)2πr3dr

T = (2πµω/∆y)r4/4|r00 = 2πµωr40/(4∆y)

For

∆y = 0.001 ft; r0 = 6” = 0.50 ft; ω = 180× 2π/60 = 6π rad/s
µ = 0.12 lbf-s/ft2

T = (2× 0.12× 6π/0.001)(0.54/4)
T = 222 ft-lbf
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PROBLEM 9.11

Situation: A disk in oil is described in the problem statement.

Find: Torque required to rotate disk.

ANALYSIS

From the solution to Prob. 9.10, we have

T = 2πµωr40/(4∆y)

where

r = 0.10 m

∆y = 2× 10−3 m
ω = 10 rad/s

µ = 6 N · s/m2
T = 2π × 8× 10× 10−4/(4× (2× 10−3))

T = 6.28 N·m
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PROBLEM 9.12

Situation: A cone in oil is described in the problem statement.

r
β θ

T
ω

r0

Find: Derive an equation for the torque in terms of the other variable.

Assumptions: θ is very small.

ANALYSIS

dT = (µu/s)dA× r

= µrω sinβ2πr2dr/(rθ sinβ)

= 2πµωr2dr/θ

T = (µω/θ)(2πr3/3)|r00
T = (2/3)πr30µω/θ
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PROBLEM 9.13

Situation: A plate in glycerin is described in the problem statement.

Find:
a) Sketch the velocity distribution at section A−A.
b) Force required to pull plate.

Properties: Glycerin (Table A.4): µ = 1.41N · s/m2.

ANALYSIS

Velocity distribution:

V=0.4 m/s

F = τA

= µ
dV

dy
A

=
¡
1.41N · s/m2¢µ0.4m/ s

0.002m

¶
× 1m× 2m× 2 sides

= 1128N

F = 1130 N
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PROBLEM 9.14

Situation: A bearing is described in the problem statement.

Find: Torque required to turn bearing.

ANALYSIS

τ = µV/δ

T = τAr

where T = torque, A = bearing area = 2πrb

T = τ2πrbr = τ2πr2b

= (µV/δ)(2πr2b)

where V=rω. Then

= (µ/δ)(rω)(2πr2b)

= (µ/δ)(2πω)r3b

= (0.1/0.001)(2π)(200)(0.009)3(0.1)

T = 9.16× 10−4N · m
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PROBLEM 9.15

Situation: A shaft turning inside a stationary cylinder is described in the problem
statement.

Find: Show that the torque per unit length acting on the inner cylinder is given by
T = 4πµωr2s/(1− (r2s/r2o).

ANALYSIS

Subscript s refers to inner cylinder. Subscript o refers to outer cylinder. The cylinder
is unit length into page.

τ

∆r
r

το

s

Ts = τ(2πr)(r)

To = τ(2πr)(r) + d/dr(τ2πr · r)∆r

Ts − To = 0

d/dr(τ2πr2c)∆r = 0; d/dr(τr2) = 0

Since there is no angular acceleration, the sum of the torques must be zero. Therefore

Ts − To = 0

d/dr(τ2πr2)∆r = 0

d/dr(τr2) = 0

Then

τr2 = C1

τ = µr(d/dr)(V/r)

So

µr3(d/dr(V/r)) = C1

µ(d/dr(V/r)) = C1r
−3

Integrating,
µv/r = (−1/2)C1r−2 + C2
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At r = ro, v = 0 and at r = rs, v = rsω so

C1 = 2C2r
2
0

µω = C2(1− r20/r
2
s)

C2 = µω/(1− r20/r
2
s)

Then

τ s = C1r
−2
s = 2C2(r0/rs)

2 = 2µωr20/(r
2
s − r20) = 2µω/((r

2
s/r

2
0)− 1)

So
Ts = τ2πr2s = 4πµωr

2
s/((r

2
s/r

2
0)− 1)

which is the torque on the fluid. Torque on shaft per unit length

T = 4πµωr2s/(1− (r2s/r20)
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PROBLEM 9.16

Situation: A shaft turning inside a stationary cylinder is described in the problem
statement.

Find: Power necessary to rotate shaft.

APPROACH

Apply the equation developed in Problem 9.15.

ANALYSIS

T = 4πµωcr2s/(1− (r2s/r20))
= 4π × 0.1× (50)(0.01)20.03/(1− (1/1.1)2)
= 0.00109 N ·m

P = Tω

= (0.00109 N ·m) (50 s−1)
P = 0.0543 W
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PROBLEM 9.17

Situation: A viscosity measuring device is described in the problem statement.

Find: Viscosity of fluid.

APPROACH

Apply the equation developed in Problem 9.15.

ANALYSIS

T = 0.6(0.02) = 0.012 N ·m
µ = T (1− r2s/r

2
0)/(4πωcr

2
s)

= 0.012(1− 22/2.252)/(4π(20)(2π/60)(0.1)(0.02)2)
µ = 2.39 N·s/m2
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PROBLEM 9.18

Situation: Oil flows down an inclined surface —additional details are provided in the
problem statement.

Find: (a) Maximum and (b) mean velocity of flow.

ANALYSIS

u = (g sin θ/2ν)y(2d− y)

umax occurs at the liquid surface where y = d, so

umax = (g sin θ(2ν))d2

where θ = 30◦, ν = 10−3 m2/s and d = 2.0× 10−3 m
umax = (9.81× sin 30◦/(2× 10−3))× (2.0× 10−3)2

= 9.81× 10−3 m/s
umax = 9.81mm/ s

V = (gd2 sin θ)/(3ν)

= 9.81× (2.0× 10−3)2 sin 30◦/(3× 10−3)
V = 6.54mm/ s
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PROBLEM 9.19

Situation: SAE 30W oil (100 ◦F) flows down an inclined surface (θ = 20o) .
The Reynolds number is 200.

Find: (a) Depth of oil
(b) discharge per unit width.

Properties: SAE 30W oil (100 ◦F) properties (from Table A.4) are γ = 55.1 lbf/ ft3,
µ = 0.002 lbf · s/ ft2, ν = 0.0012 ft2/ s.

ANALYSIS

Flow rate equation.
q = V d (1)

Reynolds number

Re =
V d

ν
(2)

Combine Eqs. (1) and (2)
Re =

q

ν

q = Re×ν
= 200× ¡0.0012 ft2/ s¢
= 0.240 ft2/ s

q = 0.240 ft2/ s

Since the flow is laminar, apply the solution for flow down an inclined plane.

q =

µ
1

3

¶µ
γ

µ

¶
d3 sin (θ)

0.24 ft2/ s =

µ
1

3

¶µ
55.1 lbf/ ft3

0.002 lbf · s/ ft2
¶
d3 sin (20o)

Solving for depth (d)
d = 0.0424 ft = 0.509 in
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PROBLEM 9.20

Situation: Water flows down a roof —additional details are provided in the problem
statement.
L = 15 ft; Rr = 0.4 in./hr. = 9.26 × 10−6 ft/s, µ = 2.73 × 10−5 lb-s/ft2; γ = 62.4
lbf/ft3; θ = 10◦.

Find: (a) Depth.
(b) Average velocity.

ANALYSIS

Flow rate equation
Total discharge per unit width of roof is:

q = L× 1×Rr (1)

where Rr = rainfall rate. But Eq. 9.8

q = (1/3)(γ/µ)d3 sin θ

or
d = (3qµ/(γ sin θ))1/3 (2)

Combining equations 1 and 2, gives

d = (3LRrµ/(γ sin θ))
1/3

d = (3× 15× 9.26× 10−6 × 2.73× 10−5/(62.4× sin 10◦))1/3
= 1.02× 10−3 ft

d = 0.012 in.

Using Eq. 9.9a
V = 0.137 ft/s
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PROBLEM 9.21

Situation: Flow occurs between two plates—additional details are provided in the
problem statement.

Find: Shear (drag) force on lower plate.

ANALYSIS

u = −(γ/2µ)(By − y2)dh/ds

umax occurs at y = B/2 so

umax = −(γ/2µ)(B2/2−B2/4)dh/ds = −(γ/2µ)(B2/4)dh/ds

From problem statement dp/ds = −1200 Pa/m and dh/ds = (1/γ)dp/ds. Also B = 2
mm= 0.002 m and µ = 10−1N·s/m2. Then

umax = −(γ/2µ)(B2/4)((1/γ)(−1, 200))
= (B2/8µ)(1, 200)

= (0.0022/(8× 0.1))(1, 200)
= 0.006 m/s

umax = 6.0 mm/s

Fs = τA = µ(du/dy)× 2× 1.5
τ = µ× [−(γ/2µ)(B − 2y)dh/ds]

but τplate occurs at y = 0. So

Fs = −µ× (γ/2µ)×B × (−1, 200/γ)× 3 = (B/2)× 1, 200× 3
= (0.002/2)× 1, 200× 3

Fs = 3.6 N
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PROBLEM 9.22

Situation: Flow occurs between two plates—additional details are provided in the
problem statement.

Find: Maximum fluid velocity in x−direction.

APPROACH

Same solution procedure applies as in Prob. 9.21.

ANALYSIS

From the solution to Prob. 9.21, we have

umax = −(γB2/8µ)((1/γ)(dp/ds))

= −(0.012/(8× 10−3))(−12)
umax = 0.150 ft/s
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PROBLEM 9.23

Situation: Flow occurs between two plates—additional details are provided in the
problem statement.

Find: Direction of flow.

APPROACH

Flow will move from a location high energy to a location of low energy. For steady
flow in a constant area pipe, energy is proportional to piezometric head (h) .

ANALYSIS

hA = (pA/γ) + zA = (150/100) + 0 = 1.5

hB = (pB/γ) + zB = (100/100) + 1 = 2

hB > hA

Therefore flow is from B to A: downward
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PROBLEM 9.24

Situation: Glycerin flows downward between two plates—additional details are pro-
vided in the problem statement.

Find: Discharge per unit width.

Properties: Table A.4 (Glycerin) µ = 1.41 N·s/m2 and ν = 1.12× 10−3m2/ s.
Assumptions: Flow will be laminar.

ANALYSIS

q = −B
3γ

12µ

dh

ds

dh/ds = d/ds(p/γ + z)

= (1/γ)dp/ds+ dz/ds

= −1

Then

q = −
µ
B3γ

12µ

¶
(−1)

= −
µ
0.0043 × 12, 300
12× 1.41

¶
(−1)

q = 4. 65× 10−5 m2/s

Now check to see if the flow is laminar (Reynolds number < 1, 000)

Re = V B/ν = q/ν

=
4. 65× 10−5 m2/ s
1.12× 10−3m2/ s

Re = 0.0415 ← Laminar

Therefore, the original assumption of laminar flow was correct.
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PROBLEM 9.25

Situation: Flow occurs between two plates—additional details are provided in the
problem statement.

Find: Maximum fluid velocity in z−direction.

ANALYSIS

The expression for umax is

umax = −B
2γ

8µ

dh

ds

where

dh/ds = dh/dz = d/dz(p/γ + z)

= (1/γ)dp/dz + 1

= (1/(0.8× 62.4))(−8) + 1 = −0.16 + 1 = 0.840

Then

umax = −((0.8× 62.4× 0.012)/(8× 10−3)(0.840)
umax = −0.524 ft/s

Flow is downward.
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PROBLEM 9.26

Situation: Flow occurs between two plates—additional details are provided in the
problem statement.

Find: Maximum fluid velocity in z-direction.

ANALYSIS

umax = −B
2γ

8µ

dh

ds

where

dh/ds = dh/dz = d/dz(p/γ + z)

= (1/γ)dp/dz + 1

= (1/(0.85× 9, 810)(−10, 000) + 1
= −0.199

Then

umax = −(0.85× 9, 810× 0.0022)/(8× 0.1)(−0.199)
= 0.0083 m/s

umax = 8.31 mm/s

Flow is upward.
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PROBLEM 9.27

Situation: Flow occurs between two plates—additional details are provided in the
problem statement.

Find: Maximum fluid velocity in z-direction.

ANALYSIS

From solution to Prob. 9.21 we have

umax = −B
2γ

8µ

dh

ds

where

dh/ds = dh/dz = d/dz(p/γ + z)

= (1/γ)dp/dz + 1

= (1/(0.8× 62.4))(−60)) + 1 = −0.202

Then

umax = −(0.8× 62.4× 0.012)/(8× 0.001)(−0.202)
umax = +0.126 ft/s

The flow is upward.
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PROBLEM 9.28

Situation: Flow occurs between two plates—additional details are provided in the
problem statement.

Find: Pressure gradient in the direction of flow.

Properties: From Table A.4 µ = 2× 10−3 lbf·s/ft2; γ = 55.1 lbf/ft3.

ANALYSIS

Flow rate and maximum velocity

V̄ = q/B

= 0.009/(0.09/12)

= 1.20 ft/s

umax = (3/2)V̄ = 1.8 ft/s

60o

umax = −B
2γ

8µ

dh

ds

dh

ds
= −

µ
8µumax
γB2

¶
= −

µ
8× (2× 10−3)× 1.8
55.1× (0.09/12)2

¶
= −9. 29

But
dh/ds = (1/γ)dp/ds+ dz/ds

where dz/ds = −0.866. Then
−9. 29 = (1/γ)dp/ds− 0.866
dp/ds = γ(−9. 29 + 0.866)

= 55.1(−9. 29 + 0.866)
= −464. 1
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dp/ds = -464 psf/ft
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PROBLEM 9.29

Situation: Flow occurs between two plates—additional details are provided in the
problem statement.

Find: Pressure gradient in direction of flow.

ANALYSIS

From the solution to Prob. 9.28, we have

V̄ = q/B

= 24× 10−4/(0.002)
= 1.2 m/s

umax = (3/2)V̄ = 1.8 m/s

dh

ds
= −8µumax

γB2

dh/ds = −8× 0.1× 1.8/(0.8× 9, 810× 0.0022) = −45.87

But
dh/ds = (1/γ)dp/ds+ dz/ds

where dz/ds = −0.866.Then

−45.87 = (1/γ)dp/ds− 0.866
dp/ds = γ(−45.87 + 0.866)

dp/ds = -353 kPa/m
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PROBLEM 9.30

Situation: Flow occurs between two plates—additional details are provided in the
problem statement.

Find: (a) Derive an expression for the velocity distribution between the plates as a
function of γ, y, L, µ, and U.
(b) Determine the plate velocity as a function of γ, L, and µ for which the discharge
is zero.

ANALYSIS

Consider the fluid element between the plates

y

Fluid element

U
s

Consider the forces on the fluid element

τ ∆y s τ ∆y+ y∆ s

W

−τ y∆s+ γy+∆sy∆s− γ∆s∆y = 0

Divide by ∆s∆y −τ y
∆y

+
τ y+∆y

∆y
− γ = 0

Take the limit as ∆y approaches zero

dτ/dy = γ

But
τ = µdu/dy
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So
d

dy
(µdu/dy) = γ

Integrate

µdu/dy = γy + C1

du/dy =
γ

µ
y + C1

Integrate again

u =
γ

µ

y2

2
+ C1y + C2

Boundary Conditions: At y = 0, u = 0 and at v = L, u = U. Therefore,

C2 = 0 and C1 =
U

L
− γ

µ

L

2

u = γ
µ
y2

2
+
³
U
L
+ γ

µ
L
2

´
y

The discharge per unit dimension (normal to page) is given by

q =

Z L

0

udy

=

Z L

0

·
γ

µ

y2

2
+

µ
U

L
− γ

µ

L

2

¶
y

¸
dy

=
γ

µ

y3

6
+

Uy2

2L
− γ

µ

Ly2

4
|L0

=
γ

µ

L3

6
+

UL

2
− γ

µ

L3

4

For zero discharge
UL

2
=

γL3

4µ
− γ

µ

L3

6
or

U = 1
6
γ
µ
L2
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PROBLEM 9.31

Situation: The flow of mud is described in the problem statement.

Find: (a) Relationships between variables and determine velocity field.
(b) Determine the velocity field when there is flow.

Assumptions: Unit dimension normal to page.

ANALYSIS

(a) First consider the forces on an element of mud ∆x long and y0 deep as shown
below.

∆x

 yo

W sinθτ ∆0 x

W

There will be no motion if γy0 sin θ < τ 0
(b) Consider forces on the element of mud shown below.

∆x

W sinθ τδx

∆y ( +(d /dy) y)τ τ ∆

X
Fx = 0

−τ∆x+ (τ + (dτ/dy)∆y)∆x = 0

(dτ/dy)∆y − γ sin θ∆y = 0

dτ/dy = −γ sin θ
τ = −

Z
γ sin θdy + C

= −γ sin θy + C

when y = 0, τ = 0 so

C = γ sin θy0

τ = −γ sin θy + γ sin θy0 (1)

and
τ = γ sin θ(y0 − y)
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But for the mud
τ = τ 0 + ηdu/dy (2)

Eliminate τ between equations (1) and (2)

τ 0 + ηdu/dy = γ sin θ(y0 − y)

du/dy = [γ sin θ(y0 − y)− τ 0] /η (3)

Upon integration

u = (1/η)
£
γ sin θ(y0y − y2/2)− τ 0y

¤
+ C

when
y = 0, u = 0 =⇒ C = 0

If τ < τ 0, du/dy = 0. Transition point is obtained from Eq. (3)

0 = (γ sin θ(y0 − y)− τ 0)

τ 0 = γ sin θ(y0 − y)

τ 0 = γ sin θy0 − γ sin θy

y =
γ sin θy0 − τ 0

γ sin θ
(4)

yu = y0 − (τ 0/γ sin θ) (5)

When 0 < y < ytr, τ > τ 0 and

u = [γ sin θ(yy0 − y2/2)− τ 0y] /η (6)

When ytr < y < y0, τ < τ 0 so u = umax = utr and the velocity distribution is shown
on the figure.

y
utr

u
ytr

y0
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PROBLEM 9.32

Situation: Glycerin flows between two cylinders —additional details are provided in
the problem statement.

Find: Discharge.

Properties: Table A.4 (Glycerin) µ = 1.41 N·s/m2 and ν = 1.12× 10−3m2/ s.

ANALYSIS

Discharge per unit width between two stationary plates is given by Eq. 9.12. Multiple
this by the average width of the channel

¡
πD
¢
to give

Q = −
µ
B3γ

12µ

¶µ
dh

ds

¶
πD

The change in piezometric head (h) with position (s) is given by

dh

ds
=

d(P
γ
+ z)

ds

=
dz

ds
= −1

Combining equations gives

Q =

µ
B3γ

12µ

¶
πD

=

µ
(0.0013m3) (12, 300N/m3)

12× (1.41N · s/m2)
¶
× π × (0.029m)

= 6.62× 10−8m3/ s

Q = 6.62× 10−8m3/ s
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PROBLEM 9.33

Situation: A bearing is described in the problem statement.

Find: Amount of oil pumped per hour.

ANALYSIS

F = pavg. ×A

= 1/2 pmax ×A

= 1/2 pmax × 0.3 m× 1 m

or

pmax = 2F/0.3 m2 = 2× 50, 000/0.30
= 333, 333 N/m2

Then dp/ds = −333, 333 N/m2/0.15 m = −2, 222, 222 N/m3. For flow between walls
where sin θ = 0, we have

umax = −(γ/2µ)(B ×B/2−B2/4)(d/ds(p/γ))

umax = −(B2/8µ)dp/ds

Vavg. = 2/3umax

= −(1/12)(B2/µ)dp/ds

Then
qper side = V B = −(1/12)(B3/µ)dp/ds

and

qtotal = 2V B = −(1/6)(B3/µ)dp/ds

= −(1/6)× ((6× 10−4 m)3/(0.2 N · s/m2))×−2, 222, 222 N/m3)
= 4.00× 10−4 m3/s

q = 1.44 m3/hr
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PROBLEM 9.34

Situation: Couette flow —described in section 9.2.

Find: Velocity distribution.

APPROACH

Apply the continuity principle and Navier-Stokes equation.

ANALYSIS

The flow is steady and incompressible. There is no pressure gradient in the flow
direction. Let x be in the flow direction and y is the cross-stream direction. In the
Couette flow problem

∂u

∂x
= 0

so from the continuity principle

∂v

∂y
= 0

or v =constant. The constant must be zero to satisfy the boundary conditions.
The x-component of the Naiver Stokes equation reduces to

d2u

dy2
= 0

Integrating twice gives

u = C1y + C2

Applying the boundary conditions that u(0) = 0 and u(L) = U gives

u = U y
L
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PROBLEM 9.35

Situation: This problem involves an Eiffel-type wind tunnel.

Test section width (square) is W = 457mm. Test section length is L = 914mm.

Find: Find the ratio of maximum boundary layer thickness to test section width
(δ (x = L) /W ) for two cases:
(a) Minimum operating velocity (Uo = 1m/ s).
(b) Maximum operating velocity (Uo = 70m/ s).

Properties: Air properties from Table A.3. At T = 20 ◦C and p = 1atm, ν =
15.1× 10−6m2/ s.

APPROACH

Calculate the Reynolds number to establish if the boundary layer flow is laminar or
turbulent. Then, apply the appropriate correlation for boundary layer thickness (i.e.
for δ).

ANALYSIS

Reynolds number for minimum operating velocity

ReL =
UoL

ν

=
(1m/ s) (0.914m)

(15.1× 10−6m2/ s)
= 60, 530 (minimum operating velocity)

Since ReL ≤ 500, 000, the boundary layer is laminar.

Correlation for boundary layer thickness (laminar flow)

δ =
5x

Re1/2x

=
5× (0.914m)√

60, 530
= 18.57mm
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Ratio of boundary layer thickness to width of the test section

δ

W
=
18.57mm

457mm

δ/W = 0.0406 (minimum operating velocity)

Reynolds number (maximum operating velocity)

ReL =
UoL

ν

=
(70m/ s) (0.914m)

(15.1× 10−6m2/ s)
= 4, 237, 000 (maximum operating velocity)

Since ReL ≥ 500, 000, the boundary layer is turbulent.

Correlation for boundary layer thickness (turbulent flow):

δ =
0.16x

Re1/7x

=
0.16× (0.914m)
(4, 237, 000)1/7

= 16.53mm

Ratio of boundary layer thickness to width of the test section

δ

W
=
16.53mm

457mm

δ/W = 0.036 (maximum operating velocity)

COMMENTS

1. Notice that the boundary layer is slightly thinner for the maximum velocity.

2. In both cases (maximum and minimum velocity), the boundary layer thickness
is only a small fraction of the width.
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PROBLEM 9.36

Situation: A fluid flows over a horizontal plate, giving the shear stress distribution
shown in the sketch.

The speed of the fluid free stream is Uo = 2.4m/ s.
The plate is an isosceles triangle with L = 1.5m.

Find: Find the viscous drag force in newtons on the top of the plate.

APPROACH

Since shear stress (τ o) is the tangential force per unit area, integrate over area to find
the drag force.

ANALYSIS

Viscous drag force (Fs)

Fs =

Z
Area

τ o(x)dA

dA = Wdx

Fs =

LZ
0

τ o(x)W (x)dx

Plate width
W (x) = L− x

Shear stress distribution (a = 10Pa and b = 8Pa)

τ o(x) = a− b
x

L

768



Combine equations & integrate

Fs =

LZ
0

τ o(x)W (x)dx

=

LZ
0

³
a− b

x

L

´
(L− x) dx

=

LZ
0

µ
aL− ax− bx+

bx2

L

¶
dx

=

µ
a

2
− b

6

¶
L2

=

µ
10

2
− 8
6

¶
Pa× (1.5m)2

Fs = 8.25N
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PROBLEM 9.37

Situation: A thin plate is held stationary in a stream of water—additional details are
provided in the problem statement.

Find: (a) Thickness of boundary layer.
(b) Distance from leading edge.
(c) Shear stress.

APPROACH

Find Reynolds number. Then, calcuate the boundary layer thickness and shear stress
with the appropriate correlations

ANALYSIS

Reynolds number

Re = U0x/ν

x = Re ν/U0

= 500, 000× 1.22× 10−5/5
x = 1.22 ft

Boundary layer thickness correlation

δ = 5x/Re1/2x (laminar flow)

= 5× 1.22/(500, 000)1/2
= 0.0086 ft

δ = 0.103 in.

Local shear stress correlation

τ 0 = 0.332µ(U0/x) Re
1/2
x

= 0.332× 2.36× 10−5(5/1.22)× (500, 000)1/2
τ 0 = 0.0227 lbf/ft2

770



PROBLEM 9.38

Situation: Flow over a smooth, flat plate —additional details are provided in the
problem statement.

Find: Ratio of the boundary layer thickness to the distance from leading edge just
before transition.

ANALYSIS

Boundary layer thickness

δ/x = 5/Re1/2x (laminar flow)

= 5/(500, 000)1/2

δ/x = 0.0071
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PROBLEM 9.39

Situation: A horizontal plate (part of an engineered system for fish bypass) divides
a flow of water into two streams.

Water temperature is T = 40 ◦F
Free stream velocity is Uo = 12 ft/ s.
Plate dimensions are L = 8 ft and W = 4 ft.

Find: Calculate the viscous drag force on the plate (both sides).

Properties: From Table A.5. Kinematic viscosity is ν = 1.66× 10−5 ft2/ s. Density
is ρ = 1.94 slug/ ft3.

APPROACH

Find the Reynolds number to establish whether the boundary layer is laminar or
mixed. Select the appropriate correlation for average resistance coefficient (Cf) .
Then, calculate the shear (i.e. drag) force (Fs).

ANALYSIS

Reynolds Number.

ReL =
UoL

ν

=
(12 ft/ s) (8 ft)¡
16.6× 10−6 ft2/ s¢ = 5, 783, 000

Thus, the boundary layer is mixed.

Average shear stress coefficient

Cf =
0.523

ln2 (0.06ReL)
− 1520
ReL

=
0.523

ln2 (0.06× 5, 783, 000) −
1520

5, 783, 000
= 0.00295

Surface resistance (drag force)

Fs = Cf
ρV 2

2
A

= 0.00295

¡
1.94 slug/ ft3

¢
(12 ft/ s)2

2
(2× 8 ft× 4 ft)

= 26.38 lbf

Fs = 26.4 lbf

772



PROBLEM 9.40

Situation: Flow over a smooth, flat plate —additional details are provided in the
problem statement.

Find: Ratio of shear stress at edge of boundary layer to shear stress at the plate
surface: τ δ/τ 0

ANALYSIS

At the edge of the boundary layer the shear stress, τ δ, is approximately zero. There-
fore, τ δ/τ 0 ≈ 0. Choice (a) is the correct one.
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PROBLEM 9.41

Situation: Air flows over a device that is used to measure local shear stress—additional
details are provided in the problem statement.

Find: Force due to shear stress on the device

Assumptions: Over the length of the device (1 cm), assume that the local shear stress
coefficient (cf) equals the average shear stress coefficient (Cf) .

ANALYSIS

Reynolds number

Rex =
Ux

ν

=
(25m/ s)× (1m)
(1.5× 10−5m2/ s)

= 1.667× 106

Local shear stress coefficient (turbulent flow)

cf =
0.455

ln2 (0.06Rex)

=
0.455

ln2 (0.06× 1.667× 106)
= 0.003433

Surface resistance (drag force)

Fs = Cf
ρU2

o

2
A

= cf
ρU2

o

2
A

= 0.003433
(1.2 kg/m3) (25m/ s)2

2
(0.01m)2

= 1. 287× 10−4N

Fs = 1.29× 10−4N
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PROBLEM 9.42

Situation: The velocity profile and shear stress for flow over a flat plate are described
in the problem statement.

Find: Equation for boundary layer thickness.

ANALYSIS

u/U0 = (y/δ)
1/2

τ 0 = 1.66U0µ/δ

τ 0 = ρU2
0d/dx

Z δ

0

(u/U0(1− u/U0))dy

= ρU2
0d/dx

Z δ

0

((y/δ)1/2 − (y/δ))dy
= ρU2

0d/dx[(2/3)(y/δ)
3/2 − 1/2(y/δ)2]δ0

1.66U0µ/δ = (1/6)ρU
2
0dδ/dx

δdδ/dx = 9.96µ/(ρU0)

δ2/2 = 9.96µx/(ρU0) = 9.96x
2/Rex

δ = 4.46x/Re1/2x

For the Blasius solution δ = 5x/Re1/2
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PROBLEM 9.43

Situation: Flow over a flat plate —additional details are provided in the problem
statement.

Find: Liquid velocity 1 m from leading edge and 1 mm from surface.

APPROACH

Calculate Reynolds number and then use figure 9-6.

ANALYSIS

Reynolds number
Rex = V x/ν = 1× 1/2× 10−5 = 50, 000

The boundary layer is laminar. Use Fig. 9-6 to obtain u/U0

yRe0.5x /x = 0.001(5× 104)0.5/1 = 0.224

Then from Fig. 9.6 u/U0 ≈ 0.075 ; u = 0.075 m/s
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PROBLEM 9.44

Situation: Flow over a thin, flat plate —additional details are provided in the problem
statement.

Find: Skin friction drag on one side of plate.

ANALYSIS

Reynolds number

ReL = 1.5× 105
Cf = 1.33/Re0.5L

= 0.00343

Surface resistance (drag force)

Fx = CfBLρU
2/2

= .00343× 1× 3× 1, 000× 12/2
Fx = 5.15 N
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PROBLEM 9.45

Situation: Flow over a smooth, flat plate —additional details are provided in the
problem statement.

Find: Velocity 1 m downstream and 3 mm from plate.

ANALYSIS

Reynolds number

Rex = Ux/ν

= 5× 1/10−4
= 5× 104

Since Rex ≤ 500, 000, the boundary layer is laminar.

Laminar velocity profile (use Fig. 9-6 to obtain u/U0)

yRe0.5x
x

=
(0.003)(5× 104)0.5

1
= 0.671

Then from Fig. 9-6 u/U0 = 0.23. Therefore

u = 5× 0.23
u = 1.15 m/ s
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PROBLEM 9.46

Situation: Flow over a flat plate —additional details are provided in the problem
statement.

Find: Oil velocity 1 m from leading edge and 10 cm from surface.

APPROACH

Calculate Reynolds number and apply figure 9-6.

ANALYSIS

Reynolds number
Rex = 1× 1/10−4 = 104

The boundary layer is laminar. Use Fig. 9-6 to obtain u/U0

yRe0.5x /x = 0.10× 102/1 = 10

Therefore the point is outside the boundary layer so u = U0 = 1 m/s.
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PROBLEM 9.47

Situation: Water flows over a submerged flat plate.
Plate length is L = 0.7m and the width is W = 1.5m.
Free stream velocity is Uo = 1.5m/ s.

Find:
(a) Thickness of boundary layer at the location where Rex = 500, 000.
(b) Distance from leading edge.where the Reynolds number reaches 500,000.
(c) Local shear stress.at the location where Rex = 500, 000.

Properties: Table A.5 (water at 10 ◦C): ρ = 1000 kg/m3, µ = 1.31 × 10−3N · s/m2,
ν = 1.31× 10−6m2/ s.
APPROACH

Calculate Reynolds number. Next calculate boundary layer thickness and local shear
stress.

ANALYSIS

Reynolds number

Rex = 500, 000

500, 000 =
U0x

ν

x =
500, 000ν

U0

=
500000× (1.31× 10−6m2/ s)

1.5m/ s

= 0.436 7m

b.) x = 0.437m

Boundary layer thickness correlation

δ =
5x

Re1/2x

....Laminar flow

=
5× 0.436 7m√

500000

= 3.09× 10−3 m
a.) δ = 3.09 mm

Local shear stress correlation

τ 0 = 0.332µ(U0/x)Re
1/2
x

= 0.332× 1.31× 10−3(1.5/0.4367)× (500, 000)1/2

c.) τ 0 = 1.06 N/m2
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PROBLEM 9.48

Situation: Water flows over a submerged flat plate.
Plate length is L = 0.7m and the width is W = 1.5m.
Free stream velocity is Uo = 1.5m/ s.

Find: (a) Shear resistance (drag force) for the portion of the plate that is exposed to
laminar boundary layer flow.
(b) Ratio of laminar shearing force to total shearing force.

Properties: Table A.5 (water at 10 ◦C): ρ = 1000 kg/m3, µ = 1.31 × 10−3N · s/m2,
ν = 1.31× 10−6m2/ s.

ANALYSIS

For the part of the plate exposed to laminar boundary layer flow, the average shear
stress coefficient (Cf) is

Cf =
1.33√
ReL

(laminar BL flow)

=
1.33√
500000

= 0.00188

Transition occurs when Reynolds number is 500,000.

500000 =
Uoxtransition

ν

500000 =
(1.5m/ s)× (xtransition)
1.31× 10−6m2/ s

Solving for the transition location gives

xtransition = 0.436 7m

Surface resistance (drag force) for the part of the plate exposed to laminar boundary
layer is

Fs = Cf
ρU2

o

2
A

= 0.00188

Ã
1000 kg/m3 × (1.5m/ s)2

2

!
(0.436 7m× 1.5m)

= 1. 385N

Reynolds number for the plate

ReL = U0 × L/ν

= 1× 0.7/(1.31× 10−6)
= 8.015× 105
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Thus, the boundary layer is mixed. The average shear stress coefficient (Cf) is

Cf =
0.523

ln2 (0.06ReL)
− 1520
ReL

(mixed BL flow)

=
0.523

ln2 (0.06× 8.015× 105) −
1520

8.015× 105
= 0.00260

Surface resistance (drag force) for the whole plate is

Fstotal = Cf

µ
ρU2

0

2

¶
A

= 0.00260

Ã
1000 kg/m3 × (1.5m/ s)2

2

!
(0.7m× 1.5m)

= 3. 071N

The ratio of drag forces is

Fs (laminar flow)
Fs (total)

=
1. 385N

3. 071N
= 0.451 0

Fslam ./Fstotal = 0.451
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PROBLEM 9.49

Situation: Flow over an airplane wing is described in the problem statement.

Properties: From Table A.3 ν = 1.6× 10−5 m3/s and ρ = 1.17 kg/m3.

Find: (a) Friction drag on wing.
(b) Power to overcome friction drag.
(c) Fraction of chord which is laminar flow.
(d) Change in drag if boundary tripped at leading edge.

APPROACH

(a) Calculate friction drag.
(b) Find power as the product of drag force and speed: P = FsV
(c) Calculate the critical length at a Reynolds number of Re = 5× 105.
(d) Compare the average shear stress coefficients for a mixed boundary layer and
all-turbulent boundary layer.

ANALYSIS

U0 = (200 km/hr)(1,000 m/km)/(3,600 s/hr)

U0 = 55.56 m/s

Reynolds number

Re = U0L/ν

= (55.56)(2)/(1.6× 10−5)
= 6.9× 106

From Fig. 9.14, the flow is mixed laminar and turbulent

Surface resistance (drag force)

Fs = CfBLρU
2
0/2

Cf =
0.523

ln2(0.06Re)
− 1520

Re

= 0.00290

Wing has two surfaces so

Fs,wing = 2× CfBLρU
2
0/2

= (2)(0.00290)(11)(1.17)(55.56)2

Fs,wing = 230 N (a)
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Power

P = Fs,wingU0

= 230× 55.56
P = 12.78 kW (b)

Critical laminar Re = 5× 105 = U0x/ν

xcr = 5× 105ν/U0
= (5× 105)(1.6× 10−5)/55.56

xcr = 14 cm

frac. = xcr/L

= .14/2

frac = .07 (c)

If all of boundary layer is turbulent then

Cf = 0.074/Re0.2

Cf = 0.00317

Then

Ftripped B.L./Fnormal = 0.00317/0.00290

= 1.093

Change in drag with tripped B.L. is 9.3N increase.
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PROBLEM 9.50

Situation: Turbulent flow over a flat plate —additional details are provided in the
problem statement.

Properties: From Table A.5 ρ = 998 kg/m3; ν = 10−6 m2/s.

Find: Velocity 1 cm above plate surface.

ANALYSIS

Local shear stress

u∗ = (τ 0/ρ)
0.5 = (0.1/998)0.5 = 0.01 m/s

u∗y/ν = (0.01)(0.01)/(10−6) = 102

From Fig. 9-10 for u∗y/ν = 100 it is seen that Eq. 9-34 applies

u/u∗ = 5.57 log(yu∗/ν) + 5.56

= 5.75 log(100) + 5.56 = 17.06

u = u∗(17.06) = 0.01(17.06)

u = 0.171 m/s
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PROBLEM 9.51

Situation: Flow over a flat plate —additional details are provided in the problem
statement.

Find: (a) Resistance of plate.
(b) Boundary layer thickness at trailing edge.

ANALYSIS

Reynolds number

ReL = U0L/ν

= 0.15× 1.5/(10−6)
= 2. 25× 105

ReL ≤ 500,000; therefore, laminar boundary layer

Boundary layer thickness

δ = 5x/Re1/2x

= 5× 1.5/(2. 25× 105)1/2 = 1. 581 1× 10−2 m
δ = 15.8 mm

Average shear stress coefficient

Cf = 1.33/Re
1/2
L

= 1.33/(2. 25× 105)1/2
= 0.00280

Surface resistance (drag force)

Fs = CfAρU
2
0/2

= 0.00280× 1.0× 1.5× 2× 1000× 0.152/2
Fs = 0.094 5 N
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PROBLEM 9.52

Situation: Flow over a flat plate —additional details are provided in the problem
statement.

Find: (a) Skin friction drag per unit width of plate.
(b) Velocity gradient at surface 1 m downstream from leading edge.

ANALYSIS

Reynolds number

ReL = U0Lρ/µ

= 20× 2× 1.5/10−5
= 6× 106

Average shear stress coefficient

Cf =
0.523

ln2(0.06Re)
− 1520
Re

= 0.00294

Surface resistance (drag force)

Fs = Cf(2BL)ρU
2
0/2

= 0.00294× (2× 1× 2)(1.5× 202/2)
Fs = 3.53 N

Reynolds number

Re1m = 6× 106 × (1/2)
= 3× 106

Local shear stress coefficient

cf = 0.455/ ln2(0.06Re1m)

= 0.455/ ln2(0.06× 3× 106)
= 0.0031

Local shear stress

τ 0 = cfρU
2
0/2

= 0.0031× 1.5× 202/2
= 0.93 N/m2

τ 0 = µdu/dy

or

du/dy = τ 0/µ

= 0.93/10−5

du/dy = 9.3× 104 s−1
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PROBLEM 9.53

Situation: Start with equation 9.44

Find: Carry out the steps leading to equation 4.47

ANALYSIS

Equation 9.44 is

τ 0
ρ
=
7

72
U2
0

dδ

dx

Substituting in Eq. 9.46 gives

0.010U2
0

µ
ν

U0δ

¶1/6
=
7

72
U2
0

dδ

dx

Cancelling the U0’s and rearranging gives

72

7
× 0.010

µ
ν

U0

¶1/6
= δ1/6

dδ

dx

Separate variables

0.1028

µ
ν

U0

¶1/6
dx = δ1/6dδ

Integrate

6

7
δ7/6 = 0.1028

µ
ν

U0

¶1/6
x+ C

But δ(0) = 0 so the constant is zero. Solving for δ gives

δ = (
7

6
× 0.1028)6/7

µ
ν

U0

¶1/7
x6/7

Dividing through by x results in

δ
x
= 0.16

Re
1/7
x
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PROBLEM 9.54

Situation: Flow over an airplane wing is described in the problem statement.

Find: (a) Speed at which turbulent boundary layer appears.
(b) Total drag at this speed.

ANALYSIS

Reynolds number

Returb = 5× 105

=
Uc

ν

U =
(5× 105)v

c

=
(5× 105)(1.58× 10−4)

5/12

= 189. 6 ft/ s

U = 190 ft/s

Average shear stress coefficient

Cf = 1.33/(5× 105)0.5
= 0.00188

Surface resistance (drag force)

Fs = Cf(ρU
2/2)A

= (0.00188)((0.00237)(189. 6)2/(2))(2)(3)(5/12)

Fs = 0.200 lbf
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PROBLEM 9.55

Situation: Flow over a flat plate —additional details are provided in the problem
statement.

Find: (a) Skin friction drag on top per unit width.
(b) Shear stress on plate at downstream end.

APPROACH

Apply the momentum principle to the c.v. shown. Then calculate the local shear
stress.

ANALYSIS

c.s.

δ

shear stress

y

Momentum principle

X
Fx =

Z
c.v.

VxρV · dA

Fs,plate on c.v. = −ρV 2
1 δ +

Z
ρV 2

2 dA+ ρV1qtop

where

V2 = (Vmax/δ)y = V1y/δ

qtop = V1δ −
Z δ

0

V2dy = V1δ −
Z δ

0

V1y/δdy

qtop = V1δ − V1y
2/2δ|δ0 = V1δ − 0.5V1δ = 0.5V1δ

Then

Fs = −ρV 2
1 δ +

Z δ

0

ρ(V1y/δ)
2dy + 0.5ρV 2

1 δ

= −ρV 2
1 δ + ρV 2

1 δ/3 + 0.5ρV
2
1 δ

= ρV 2
1 δ(−1 + (1/3) + (1/2)) = −0.1667ρV 2

1 δ

For V1 = 40 m/s, ρ = 1.2 kg/m3, and δ = 3× 10−3 m we have

Fs = −0.1667× 1.2× 402 × 3× 10−3
= −0.960N
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or the skin friction drag on top side of plate is Fs = +0.960 N.
Local shear stress

τ 0 = µdV/dy

= 1.8× 10−5 × 40/(3× 10−3)
τ 0 = 0.24 N/m2
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PROBLEM 9.56

Situation: Start with Eq. 9.43

Find: Perform the integration and simplify to obtain Eq. 9.44.

ANALYSIS

Equation 9.43 is

τ 0
ρ
= U2

0

d

dx

Z δ

0

³y
δ

´1/7 ·
1−

³y
δ

´1/7¸
dy

Changing the variable of integration to

η =
³y
δ

´
the integral becomes

Z δ

0

³y
δ

´1/7 ·
1−

³y
δ

´1/7¸
dy = δ

Z 1

0

η1/7
£
1− η1/7

¤
dη

= δ

Z 1

0

[η1/7 − η2/7]dη

Integrating we have

δ

Z 1

0

[η1/7 − η2/7]dη = δ[
7

8
η8/7 − 7

9
η9/7]10 =

7

72
δ

The equation then becomes

τ 0
ρ
=
7

72
U2
0

dδ

dx
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PROBLEM 9.57

Situation: The velocity profile in a boundary layer is replaced by a step profile—
additional details are provided in the problem statement.

Find: Derive an equation for displacement thickness.

ANALYSIS

ṁ =

Z δ

0

ρudy =

Z δ

δ∗
ρ∞U∞dy = ρ∞U∞(δ − δ∗)

ρ∞U∞δ
∗ = ρ∞U∞δ −

Z δ

0

ρudy

= ρ∞U∞

Z δ

0

(1− (ρu)/ρ∞U∞)dy

∴ δ∗ =
Z δ

0

(1− (ρu)/(ρ∞U∞))dy
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PROBLEM 9.58

Situation: Displacement thickness is described in the problem statement.

Find: Magnitude of displacement thickness.

ANALYSIS

The streamlines will be displaced a distance δ∗ = qdefect/V1 where

qdefect =

Z δ

0

(V1 − V2)dy =

Z δ

0

(V1 − V1y/δ)dy

Then

δ∗ = [

Z δ

0

(V1 − V1y/δ)dy]/V1

=

Z δ

0

(1− y/δ)dy

= δ − δ/2

= δ/2

δ∗ = 1.5 mm
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PROBLEM 9.59

Situation: Relationship between shear stress and boundary layer thickness:

τ 0
ρ
= .0225U2

0 (
ν

U0δ
)1/4

Find: (a) The variation of boundary layer thickness with x and Rex.
(b) The variation of Local shear stress coefficient with Rex.
(c) The variation of average shear stress coefficient with ReL.

APPROACH

Apply the integral method represented by Eq. 9.44 and the relationship between
shear stress and boundary layer thickness (above).

ANALYSIS

Evaluating the integral for the 1/7th power profile gives

τ 0
ρ
=
7

72
U2
0

dδ

dx

Substituting in the expression for shear stress gives

0.0225ν1/4

U
1/4
0

=
7

72
δ1/4

dδ

dx

Integrating and using the initial condition at δ(0) = 0 gives

δ
x
= 0.37

Re
1/5
x

Substituting the equation for δ into the equation for shear stress gives

cf =
0.058

Re
1/5
x

Integrating this over a plate for the average shear stress coefficient gives

Cf =
1

L

Z L

0

cfdx

Cf =
0.072

Re
1/5
L
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PROBLEM 9.60

Situation: Flow over two flat plates —additional details are provided in the problem
statement.

Find: Ratio of skin friction drag on two plates.

ANALYSIS

Surface resistance (drag force)

Fs = CfBLρU
2
0/2

where Cf =
0.523

ln2(0.06×ReL) −
1520
ReL

Reynolds number

ReL,30 = 30× 10/10−6 = 3× 108
ReL,10 = 108

Then

Cf,30 = 0.00187

Cf,10 = 0.00213

Then

Fs,30/Fs,10 = (0.00187/0.00213)× 3
Fs,30/Fs,10 = 2.59
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PROBLEM 9.61

Situation: A sign being pulled through air is described in the problem statement.

Properties: From Table A.3 ν = 1.41× 10−5 m2/s and ρ = 1.25 kg/m3.

Find: Power required to pull sign.

APPROACH

Find the average shear stress coefficient (Cf) and then calculate the surface resistance
(drag force). Find power using the product of speed and drag force (P = FsV ).

ANALYSIS

Reynolds number

ReL =
V0L

ν

=
35× 30

1.41× 10−5
ReL = 7. 447× 107

Average shear stress coefficient (Eq. 9.54 or Fig. 9.14)

Cf =
0.523

ln2 (0.06ReL)
− 1520
ReL

(turbulent flow)

=
0.523

ln2 (0.06× 7. 447× 107) −
1520

7. 447× 107
= 0.00221

Surface resistance (drag force)

Fs = CfAρU
2
0/2

Fs = 0.00221× 2× 30× 2× 1.25× 352/2
= 203.0 N

P = FsV = 203.0× 35
P = 7.11 kW
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PROBLEM 9.62

Situation: A plastic panel being lowered in the ocean.
Panel dimensions are L = 1m, W = 3m, and t = 0.003m.
Other data is provided in the problem statement.

Find: Tension in cable.

APPROACH

Apply equilibrium to the panel. Apply the surface resistance equation and the
buoyancy force equation to calculate the unknown forces.

ANALYSIS

Equilibrium X
Fz = 0

T + Fs = FBuoy. −W = 0

T =W − Fs − FBuoy. (1)

T

Fs

W

F .Buoy

Buoyancy force

FBuoy. = γwaterV−
= 0.003× 3× 10, 070
= 90.6 N

Surface resistance (drag force)

Fs = CfAρU
2
0/2

Reynolds number

ReL = V L/ν

= 2× 1/(1.4× 10−6)
= 1. 429× 106

From Fig. 9-14 or Eq. 9.54,
Cf = 0.00299
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So

Fs = 0.00299× 2× 3× 1026× 9/2
= 82.83 N

Eq. (1) gives

T = 250− 82.83− 90.6
T = 76.6 N
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PROBLEM 9.63

Situation: A plate falling though water is described in the problem statement.

Find: Falling speed in fresh water.

APPROACH

Apply equilibrium with the weight, buoyancy and drag force.

ANALYSIS

Equilibrium
W −B = Fs

W − γwaterV− =
1

2
CfAρU

2
0

23.5− 998× 9.81× 0.002 =
1

2
× 1000× 2× 2× Cf × U2

0

or

U2
0 =

0.001962

Cf

Using the equation for the average resistance coefficient (Cf ) and solving gives

U0 = 0.805 m/s
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PROBLEM 9.64

Situation: Flow over a flat plate —additional details are provided in the problem
statement.

Properties: From Table A.5 ν = 10−6 m2/s.

Find: (a) Thickness of viscous sublayer 1 m downstream from leading edge.
(b) Would a roughness element 100 µm high affect the local skin friction coefficient,
if so why?

ANALYSIS

δ0 = 5ν/u∗

where u∗ = (τ 0/ρ)0.5 and
Local shear stress

τ 0 = cfρU
2
0/2

τ 0/ρ = [0.455/ ln2(0.06Rex)]U
2
0/2

Reynolds number

Rex = U0x/ν

= (5)(1)/10−6

= 5× 106

Then

τ 0/ρ = [0.455/ ln2(0.06× 5× 106)](25/2)
τ 0/ρ = 0.0357 m2/s2

u∗ = (τ 0/ρ)
0.5 = 0.189 m/s

Finally
δ0 = 5ν/u∗ = (5)(10−6)/(0.189)

δ0 = 26.4× 10−6 m
Roughness element size of 100 microns is about 4 times greater than the thickness of
the viscous sublayer; therefore, it would definitely affect the skin friction coefficient.
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PROBLEM 9.65

Situation: A model plane falling though air is described in the problem statement.

Properties: From Table A.3 ρ = 1.2 kg/m3; ν = 1.51× 10−5 m2/s.
Find: Falling speed.

APPROACH

Determine the drag force (surface resistance) and apply equilibrium.

ANALYSIS

Surface resistance (drag force)

Fs = Cfρ(U
2
0/2)A

Cf = 0.074/Re0.2

Equilibrium

W . = Fs

3 = 2(0.074/(U0 × 0.1/(1.51× 10−5))0.2)(1.2)(U2
0/2)(1× 0.1)

Solving for U0 yields U0 = 67.6 m/s.
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PROBLEM 9.66

Situation: Flow over a flat plate —additional details are provided in the problem
statement.

Find: Total drag force on plate.

ANALYSIS

The drag force (due to shear stress) is

Fs = Cf
1

2
ρU2

oBL

The density and kinematic viscosity of air at 20oC and atmospheric pressure is 1.2
kg/m3 and 1.5×10−5 N·s/m2, respectively. The Reynolds number based on the plate
length is

ReL =
15× 1

1.5× 10−5 = 10
6

The average shear stress coefficient on the “tripped” side of the plate is

Cf =
0.074

(106)1/5
= 0.0047

The average shear stress coefficient on the “untripped” side is

Cf =
0.523

ln2(0.06× 106) −
1520

106
= 0.0028

The total force is

Fs =
1

2
× 1.2× 152 × 1× 0.5× (0.0047 + 0.0028)

Fs = 0.506 N
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PROBLEM 9.67

Situation: Flow Through two flat plates is described in the problem statement.

Find: (a) Length where boundary layers merge.
(b) Shearing force per unit depth.

Properties: The density and kinematic viscosity of water at these conditions are 1000
kg/m3 and 10−6 m2/s.

APPROACH

Apply the correlation for boundary layer thickness for a tripped leading edge.

ANALYSIS

Boundary layer thickness

δ =
0.37x

Re1/5x

(boundary layer tripped at leading edge)

=
0.37x4/5¡
Uo
ν

¢1/5
Setting δ = 0.002 m and x = L gives

L4/5 =
0.002

0.37

µ
10

10−6

¶1/5
= 0.136

or

L = 0.0826 m

Check the Reynolds number

Rex =
0.0826× 10
10−6

= 8.26× 105

so the equations for the tripped boundary layer (Rex < 107) are valid.

Average shear stress coefficient

Cf =
0.074¡

0.0826×10
10−6

¢1/5
= 0.00485

Surface resistance (drag force).
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Fs

B
= 2× 1

2
ρU2

oCfL

= 998× 102 × 0.00485× 0.0826
Fs
B
= 40.0 N/m
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PROBLEM 9.68

Situation: Develop a computer program with input of Reynolds number and nature
of boundary layer.

Find: Boundary layer thickness, Local shear stress coefficient, and average shear
stress coefficient.

ANALYSIS

Typical results from program.
Normal boundary layer

Reynolds number δ/x cf Cf

5× 105 0.00707 0.000939 0.001881
1.0× 106 0.0222 0.00376 0.002801
1.0× 107 0.01599 0.00257 0.002803

Tripped boundary layer

Reynolds number δ/x cf Cf

1.0× 106 0.0233 0..336 .004669
1.0× 108 0.0115 0.00186 0.00213
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PROBLEM 9.69

Situation: A boat planes in water at a temperature of 60 ◦F . Boat speed is U0 = 70
mph = 102.7 ft/ s.
Model the boat hull as a flat plate with length L = 8 ft and width W = 3 ft.

Find: Power required to overcome skin friction drag.

Properties: From Table A.5 ν = 1.22× 10−5 ft2/s and ρ = 1.94 slug/ ft3.

APPROACH

Power is the product of drag force and speed (P = FsU0) . Find the drag force using
the appropriate correlation.

ANALYSIS

Reynolds number

ReL =
U0L

ν

=
(102.7 ft/ s) (8 ft)

1.22× 10−5 ft2/ s)
= 6.73× 107

Thus, the boundary layer is mixed. From Fig. 9-14 or Eq. 9.54 Cf = 0.00224.

Surface resistance (drag force)

Fs = Cf

µ
ρU2

0

2

¶
A

= 0.00224

Ã¡
1.94 slug/ ft3

¢
(102.7 ft/ s)2

2

!
(8 ft× 3 ft)

= 549.4 lbf.

Power

P = FsU0

= (549.4 lbf) (102.7 ft/ s)

= 56, 420
ft-lbf
s

=

µ
56, 420

ft-lbf
s

¶µ
s · hp

550 ft · lbf
¶

P = 103 hp
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PROBLEM 9.70

Situation: A javelin moving through air is described in the problem statement.

Find: (a) Deceleration.
(b) Drag.
(c) Acceleration in head and tail wind .
(d) Maximum distance.

Properties: From Table A.3 ν = 1.51× 10−5 m2/s and ρ = 1.20 kg/m3.

Assumptions: Turbulent boundary layer where As = πDL = π×0.025×2.65 = 0.208
m2;

ANALYSIS

Surface resistance

Fs = CfAsρU
2
0/2

Reynolds number

ReL = U0L/ν = 30× 2.65/(1.51× 10−5)
= 5.3× 106

Then from Fig. 9-14, Cf = 0.00297. Then

Fs = 0.00297× 0.208× 1.2× 302/2
= 0.334 N

F = ma

or

a = F/m = 0.334/(8.0/9.81)

a = 0.410 m/s2

With tailwind or headwind Cf will still be about the same value: Cf ≈ 0.00297. Then

Fs,headwind = 0.334× (35/30)2
Fs,headwind = 0.455 N

Fs,tailwind = 0.334× (25/30)2
Fs,tailwind = 0.232 N

As a first approximation for maximum distance, assume no drag or lift. So for
maximum distance, the original line of flight (from release point) will be at 45◦ with
the horizontal—this is obtained from basic mechanics. Also, from basic mechanics:

y = −gt2/2 + V0t sin θ
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and
x = V0t cos θ

or upon eliminating t from the above with y = 0, we get

x = 2V 2
0 sin θ cos θ/g

= 2× 322 × 0.7072/9.81
x = 104.4 m

Then
t = x/V0 cos θ = 104.4/(32× 0.707) = 4.61 s

Then the total change in velocity over 4.6 s≈ 4.6× as = 4.6× (−0.41) = −1.89 m/s
and the average velocity is V = (32 + 30.1)/2 = 31 m/s. Then, a better estimate of
distance of throw is: x = 312/9.81 = 98.0 m
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PROBLEM 9.71

Situation: A log is being pulled through water—additional details are provided in the
problem statement.

Find: Force required to overcome surface resistance.

Properties: From table A.5 ν = 1.31× 10−6 m2/s.

ANALYSIS

Reynolds number

ReL = 1.7× 50/(1.31× 10−6)
= 6.49× 107

From Fig. 9-14 Cf = 0.00225
Surface resistance

Fs = CfAsρV
2
0 /2

= 0.00225× π × 0.5× 50× 1, 000× 1.72/2
Fs = 255 N
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PROBLEM 9.72

Situation: A passenger train moving through air is described in the problem state-
ment.

Find: power required.

Properties: From Table A.3 ν = 1.41× 10−5 m2/s.

ANALYSIS

Reynolds number

ReL = U0L/ν = (100, 000/3, 600)× 150/(1.41× 10−5)
Re100 = 2.95× 108
Re200 = 5.9× 108
Cf100 = 0.00187

Cf200 = 0.00173

Surface resistance equation

Fs = CfAρU
2
0/2

Fs100 = 0.00187× 10× 150× 1.25× (100, 000/3, 600)2/2
Fs100 = 1, 353 N

Fs200 = 5, 006 N

Power

P100 = 1, 353× (100, 000/3, 600)
P100 = 37.6 kW

P200 = 5, 006× (200, 000/3, 600)
P200 = 278 kW
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PROBLEM 9.73

Situation: A boundary layer next to the smooth hull of a ship is described in the
problem statement.

Find: (a) Thickness of boundary layer at x = 100 ft.
(b) Velocity of water at y/δ = 0.5.
(c) Shear stress on hull at x = 100 ft.

Properties: Table A.5 (water at 60 ◦F): ρ = 1.94 slug/ ft3 , γ = 62.37 lbf/ ft3,

µ = 2.36× 10−5 lbf · s/ ft2, ν = 1.22× 10−5 ft2/ s.

ANALYSIS

Reynolds number

Rex =
Ux

ν

=
(45)(100)

1.22× 10−5 = 3.689× 10
8

Local shear stress coefficient

cf =
0.455

ln2(0.06Rex)
=

0.455

ln2(0.06 ∗ 3.689× 108)
= 0.001591

Local shear stress

τ 0 = cf

µ
ρU2

0

2

¶
= (0.001591)

µ
1.94× 452

2

¶
τ 0 = 3.13 lbf/ft2 (c)

Shear velocity

u∗ = (τ 0/ρ)
0.5

= (3.13/1.94)0.5

= 1.270 ft/s

Boundary layer thickness (turbulent flow)

δ/x = 0.16Re−1/7x = 0.16
¡
3.689× 108¢−1/7

= 0.009556

δ = (0.009556)(100)

δ = 0.956 ft (a)

δ/2 = 0.48 ft
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From Fig. 9-12 at y/δ = 0.50, (U0 − u)/u∗ ≈ 3 Then

(45− u)/1.27 = 3

u (y = δ/2) = 41.2 ft/s (b)
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PROBLEM 9.74

Situation: A ship moving through water is described in the problem statement.

Find: Skin friction drag on ship.

Properties: From Table A.5 ν = 1.41× 10−5 ft2/s and ρ = 1.94 slugs/ft3.

ANALYSIS

Reynolds number

ReL = U0L/ν

= (30)(600)/(1.41× 10−5)
= 1.28× 109

From Fig. 9-14 Cf = 0.00158.

Surface resistance equation.

Fs = CfAsρU
2
0/2

= (0.00158)(50, 000)(1.94)(30)2/2

Fs = 68, 967 lbf
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PROBLEM 9.75

Situation: A barge in a river is described in the problem statement.

Find: Shear (drag) force.

Properties: ν = 1.2× 10−5 ft2/s and ρ = 1.94 slugs/ft3.

ANALYSIS

Reynolds number

ReL = V L/ν

= 10× 208/(1.2× 10−5)
= 1.73× 108

From Fig. 9-14 Cf = 0.00199.

Surface resistance (drag force)

Fs = CfBLρV
2
0 /2

= (0.00199)(44)(208)(1.94/2)(102)

Fs = 1, 767 lbf
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PROBLEM 9.76

Situation: A supertanker in open seas is described in the problem statement.

Find: (a) Skin friction drag.
(b) Power required.
(c) Boundary layer thickness 300 m from bow.

Properties: From Table A.4 ν = 1.4× 10−6 m2/s and ρ = 1026 kg/m3.

APPROACH

Find Reynolds number, and then calculate the average shear stress coefficient (Cf).
Next, find the drag force and calculate power as the product of drag force and speed
(P = Fs × V ) . To find boundary layer thickness, apply the correlation for a turbulent
boundary layer.

ANALYSIS

Reynolds number

ReL =
U0L

ν

=
(18× 0.515)× 325

1.4× 10−6
= 2. 152× 109

Average shear stress coefficient (Cf) (from Eq.9.54 or Fig. 9.14)

Cf =
0.523

ln2 (0.06ReL)
− 1520
ReL

(turbulent flow)

=
0.523

ln2 (0.06× 2. 152× 109) −
1520

2. 152× 109
= 0.001499

Surface resistance (drag force)

Fs = CfAρU
2
0/2

= 0.001499× 325(48 + 38)× 1026× (18× 0.515)2/2
= 1. 847× 106N

Fs = 1.85 MN

Power

P = 1. 847× 106 × (18× 0.515)
P = 17.1 MW
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Reynolds number

Re300 =
U0x

ν

=
18× 0.515× 300
1.4× 10−6

= 1. 986× 109

Thus, turbulent boundary layer

Correlation for boundary layer thickness (turbulent flow)

δ

x
=

0.16

Re1/7x

=
0.16

(1. 986× 109)1/7
= 7. 513× 10−3

δ = 300m× .007513

δ = 2.25 m
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PROBLEM 9.77

Situation: A model test is to be done to predict the drag on a ship—additional details
are provided in the problem statement.

Find: Wave drag on actual ship.

Properties: From Table A.5 ν = 1.22× 10−5 ft2/s and ρ = 1.94 slugs/ft3.

ANALYSIS

Equilibrium

Frm = Frp

Lm/Lp = 1/100

Vm/(gLm)
0.5 = Vp/(gLp)

0.5

Vm/Vp = (Lm/Lp)
0.5 = 1/10

V 2
m/V

2
p = 1/100

Vm = (1/10)(30 ft/s) = 3 ft/s

Viscous drag on model:

ReL = V L/ν

= (3)(5)/(1.22× 10−5)
= 1.23× 106

Cf = 0.00293 from Fig. 9-14

Surface resistance (drag force)

Fs,m = Cf(1/2)ρV
2A

= (0.00293)(1/2)(1.94)(32)(2.5)

= 0.0639 lbf

∴ Fwave,m = 0.1− 0.0639 = 0.0361 lbf

Assume, for scaling up wave drag, that

(Cp)m = (Cp)p

(∆p/(ρV 2/2))m = (∆p/(ρV 2/2))p

∆pm/∆pp = (ρm/ρp)(V
2
m/V

2
p )

But

Fm/Fp = (∆pm/∆pp)(Am/Ap) = (ρm/ρp)(V
2
m/V

2
p )(Am/Ap)

= (ρm/ρp)(Lm/Lp)
3 = (1.94/1.99)(1/100)3

Fp = Fm(1.99/1.94)(100)
3 = 0.0361(1.99/1.94)(106)

Fp = 3.70× 104 lbf
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PROBLEM 9.78

Situation: A model test is done to predict the drag on a ship—additional details are
provided in the problem statement.

Find: (a) Speed of prototype.
(b) Model skin friction and wave drag.
(c) Ship drag in salt water.

Properties: From Table A.5 νm = 1.00× 10−6 m2/s and ρm = 998 kg/m
3.

From Table A.4 νp = 1.4× 10−6 m2/s and ρm = 1026 kg/m
3.

ANALYSIS

Vm = 1.45 m/s

Vp = (Lp/Lm)
1/2 × Vm

=
√
30× 1.45
Vm = 7.94 m/s

Rem = 1.45(250/30)/(1.00× 10−6) = 1.2× 107
Rep = 7.94× 250/1.4× 10−6 = 1.42× 109

Cf =
0.523

ln2(0.06Re)
− 1520
Re

Cfm = 0.00275

Cfp = 0.00157

Surface resistance (drag force)

Fsm = CfmAρV
2/2

= 0.00275(8, 800/302)998× 1.452/2
Fsm = 28.21 N

Fwavem = 38.00− 28.21
Fwavem = 9.79 N

Fwavep = (ρp/ρm)(Lp/Lm)
3Fwavem = (1, 026/998)30

3(9.79) = 272 kN

Fsp = CfpAρV
2/2 = 0.00157(8, 800)1, 026× 7.942/2 = 447 kN

Fp = Fwavep + Fsp = 272 + 447

Fp = 719 kN
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PROBLEM 9.79

Situation: A hydroplane skims across a lake—additional details are provided in the
problem statement.

Find: Minimum shear stress on smooth bottom.

APPROACH

Minimum τ 0 occurs where cf is minimum. Two points to check: (1) where Rex is
highest; i.e., Rex = ReL and (2) Transition point at Rex = 5× 105 (this is the end of
the laminar boundary layer).

ANALYSIS

(1) Check end of plate

ReL = U0L/ν

= 15× 3/10−6
= 4.5× 107

cf ≈
0.455

ln2(0.06Rex)
= 0.00207

(2) Check transition
Rex = 5× 105

cf = 0.664/Re1/2x

= 0.00094

Local shear stress

τ 0m in = cfminρU
2
0/2

= 0.00094× 998× 152/2
τ 0min = 106 N/m

2
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PROBLEM 9.80

Situation: A water skier is described in the problem statement.

Find: Power to overcome surface resistance.

Properties: From Table A.5 ν = 1.2× 10−5 ft2/s and ρ = 1.94 slugs/ft3.

ANALYSIS

Reynolds number

ReL = V L/ν

= 44× 4/1.2× 10−5
= 147(105) = 1.47(107)

From Fig. 9.14 Cf = 0.0027.

Surface resistance (drag force)

FD (per ski) = 0.0027(4)(1/2)(1.94)(442/2) = 10.14 lbf

FD (2 skis) = 20.28 lbf

Power

P (hp) = 20.28× 44/550
P = 1.62 hp
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PROBLEM 9.81

Situation: A ship is described in the problem statement.

Find: (a) Surface drag.
(b) Thickness of boundary layer at stern.

Properties: From Table A.4 ν = 1.4× 10−6 m2/s.

APPROACH

Apply the surface resistance equation by first finding Reynolds number and Cf . Then
apply the correlation for boundary layer thickness.

ANALYSIS

Reynolds number

ReL = U0L/ν = 10× 80/(1.4× 10−6)
ReL = 5.7× 108

From Fig. 9-14 Cf = 0.00173.

Surface resistance

FD = CfAρU
2
0/2

= 0.00173× 1, 500× 1, 026× 102/2
FD = 133 kN

Boundary layer thickness

δ/x =
0.16

Re1/7x

δ/x = 0.0090

δ = 80× 0.0090
δ = 0.72 m
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PROBLEM 10.1

Situation: Mean-velocity profiles are described in the problem statement.

Find: Match the profiles with the descriptions.

ANALYSIS

a. (3) b. (1) c. (2) d.(1) e. (3) f. (2)
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PROBLEM 10.2

Situation: Liquid flows in a vertical pipe–details are provided in the problem state-
ment

Find: (a) Determine the direction of flow.
(b) Calculate the mean fluid velocity in pipe.

ANALYSIS

Energy equation

p0/γ + αoV
2
0 /2g + z0 = p10/γ + α10V

2
10/2g + z10 + hL

To evaluate, note that αoV
2
0 /2g = α10V

2
10/2g. Substituting values gives

200, 000/8000 + 0 = 110, 000/8000 + 10 + hf

hf = 1.25m

Because hL is positive, the flow must be upward.

Head loss (laminar flow)

hf =
32µLV

γD2

V =
hfγD

2

32µL

=
1.25× 8000× 0.012
32× (3.0× 10−3)× 10

= 1.042m/ s

V = 1.04m/ s
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PROBLEM 10.3

Situation: A viscous oil draining is described in the problem statement.

Find: Valid characterization at the time when the oil surface reaches level of section
2.

ANALYSIS

Valid statements are (a), (d) and (e).

825



PROBLEM 10.4

Situation: Oil is pumped through a 2 in. pipe. Q = 0.25 cfs.

Find: Pressure drop per 100 feet of level pipe.

Properties: Oil Properties: S = 0.97, µ = 10−2 lbf · s/ ft2

ANALYSIS

Flow rate equation

V = Q/A

= 0.05/((π/4)× (1/12)2)
= 9.17 ft/sec

Reynolds number

Re = V Dρ/µ

= 9.17× (1/12)× 0.97× 1.94/10−2
= 144 (thus, flow is laminar)

Pressure Drop

∆p =
32µLV

D2

=
32× 10−2 × 100× 9.17

(1/12)2

= 42, 255
psf
100 ft

= 293 psi/100 ft
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PROBLEM 10.5

Situation: Liquid flows downward in a smooth vertical pipe. D = 1 cm V̄ = 2.0m/ s
p1 = 600 kPa

Find: Pressure at a section that is 10 feet below section 1.

Properties: ρ = 1000 kg/m3 µ = 0.06N · s/m2

ANALYSIS

Reynolds number

Re =
V Dρ

µ

=
2× 0.01× 1000

0.06
= 333

Since Re < 2000, the flow is laminar.

Energy principle

p1/γ + α1V
2
1 /2g + z1 = p2/γ + α1V

2
2 /2g + z2 + hL

Since V1 = V2, the velocity head terms (i.e. kinetic energy terms) cancel. The energy
equation becomes

600, 000/(9.81× 1000) + 10 = p2/γ + 0 + 32µLV/γD
2

p2/γ = 600, 000/γ + 10− 32× 0.06× 10× 2/(γ(0.01)2)
p2 = 600, 000 + 10× 9810− 384, 000

= 314 kPa
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PROBLEM 10.6

Situation: A liquid flows in a pipe. D = 8mm, V = 1m/ s.

Find: (a) Determine if the velocity distribution will be logarithmic or parabolic. (b)
Calculate the ratio of shear stress 1 mm from the wall to the shear stress at the wall..

Properties: ρ = 1000 kg/m3, µ = 10−1 N · s/m2, ν = 10−5m2/ s.

ANALYSIS

Reynolds number

Re =
V Dρ

µ

=
(1)(0.008)(1000)

10−1
= 80 (laminar)

Because the flow is laminar, the velocity distribution will be parabolic. For a par-
abolic velocity distribution

V = Vc(1− r2/R2)

Velocity gradient

dV/dr = −2rVc/R2
Shear stress

τ = µ
dV

dr

Ratio of shear stress

τ 3 mm
τ 4 mm

=

¡
µdV

dr

¢
3 mm¡

µdV
dr

¢
4 mm

=
− (µ2rVc/R2)3 mm
− (µ2rVc/R2)4 mm

=
(r)3 mm
(r)4 mm

Therefore

τ 3 mm
τ 4 mm

=
3

4

= 0.75
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PROBLEM 10.7

Situation: Glycerin flows in a tube–other details are provided in the problem state-
ment.

Find: Pressure drop in units of pascals per 10 m.

Properties: Glycerin at 20 ◦C from Table A.4: µ = 1.41N · s/m2, ν = 1.12 ×
10−3m2/ s.

ANALYSIS

V =
Q

A

=
8× 10−6

(π/4)× 0.0302
= 0.01132 m/s

Reynolds number

Re =
V D

ν

=
0.01132× 0.030
1.12× 10−3

= 0.3032 (laminar)

Then

∆pf =
32µLV

D2

=
32× 1.41× 10× 0.01132

0.0302

= 5675Pa per 10m of pipe length

5.68 kPa per 10 m of pipe length
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PROBLEM 10.8

Situation: Kerosene flows out a tank and through a tube–other details are provided
in the problem statement.

Find: (a) Mean velocity in the tube.
(b) Discharge.

Assumptions: Laminar flow so α = 2.

APPROACH

Apply the energy equation from the surface of the reservoir to the pipe outlet.

ANALYSIS

Energy equation

p1/γ + α1V
2
1 /2g + z1 = p2/γ + 2V

2/2g + z2 + 32µLV/(γD
2)

0 + 0 + 0.50 = 0 + V 2/g + 32µLV/(γD2)

Thus

V 2/g + 32µLV/(γD2)− 0.50 = 0

V 2/32.2 + 32(4× 10−5)(10)V/(0.80× 62.4× (1/48)2)− 0.50 = 0

V 2 + 19.0V − 16.1 = 0

Solving the above quadratic equation for V yields:

V = 0.81 ft/s

Check Reynolds number to see if flow is laminar

Re = V Dρ/µ

= 0.81× (1/48)(1.94× 0.8)/(4× 10−5)
Re = 654.8 (laminar)

Q = V A

= 0.81× (π/4)(1/48)2
= 2.76× 10−4 cfs
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PROBLEM 10.9

Situation: Oil is pumped through a horizontal pipe–other details are provided in the
problem statement.

Find: Pressure drop per 10 m of pipe.

ANALYSIS

Re = V Dρ/µ

= 0.7× 0.05× 940/0.048
= 685

Energy equation

p1/γ + α1V
2
1 /2g + z1 = p2/γ + α2V

2
2 /2g + z2 + 32µLV/γD

2

Simplify

p1 − p2 = 32µLV/D2

= 32× 0.048× 10× 0.7/(0.05)2
p1 − p2 = 4301Pa

p1 − p2 = 4.30 kPa
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PROBLEM 10.10

Situation: SAE 10-W oil is pumped through a tube–other details are provided in
the problem statement

Find: Power to operate the pump.

ANALYSIS

Energy equation

p1/γ + z1 + α1V
2
1 /2g + hp = p2/γ + α2V

2
2 /2g + z2 + hL

Simplify
hp = hL = f(L/D)(V 2/2g)

Flow rate equation

V = Q/A = 7.85× 10−4/((π/4)(0.01)2) = 10 m/s

Reynolds number

Re = V D/ν = (10)(0.01)/(7.6× 10−5) = 1316 (laminar)

Friction factor (f)

f =
64

Re

=
64

1316
= 0.0486

Head of the pump

hp = f(L/D)(V 2/2g)

= 0.0486(8/0.01)(102/((2)(9.81))

= 198 m

Power equation

P = hpγQ

= 198× 8630× ¡7.85 · 10−4¢
= 1341W
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PROBLEM 10.11

Situation: Oil flows downward in a pipe–other details are provided in the problem
statement

Find: Pressure gradient along the pipe.

ANALYSIS

Re = V D/ν

= (2)(0.10)/(0.0057)

= 35.1 (laminar)

−d/ds(p+ γz) = 32µV/D2

−dp/ds− γdz/ds = (32)(10−2)(2)/0.12

−dp/ds− γ(−0.5) = 64

dp/ds = (0.5)(0.9)(62.4)− 64
dp/ds = 28.08− 64

= -35.9 psf/ft
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PROBLEM 10.12

Situation: Fluid flows in a smooth pipe–other details are provided in the problem
statement

Find: (a) Magnitude of maximum velocity, (b) Resistance coefficient, (c) Shear ve-
locity, and (d) Shear stress 25 mm from pipe center.

ANALYSIS

Reynolds number

Re =
V Dρ

µ

=
0.05× 0.1× 800

0.01
= 400

Therefore, the flow is laminar

Vmax = 2V = 10 cm/s

f = 64/Re

= 64/400

= 0.16

u∗/V =
p
f/8

u∗ =
p
0.16/8× 0.05

= 0.00707 m/s

τ 0 = ρu2∗
= 800× 0.007072
= 0.040 N/m2

Get τ r=0.025 by proportions:

0.025/0.05 = τ/τ 0; τ = 0.50τ 0

τ = 0.50× 0.040
= 0.020 N/m2
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PROBLEM 10.13

Situation: Kerosene flows in a pipe.
T = 20oC, Q = 0.02m3/s, D = 20 cm

Find: Determine if the flow is laminar or turbulent.

ANALYSIS

Re = V Dρ/µ

= (Q/A)D/ν

= 4Q/(πDν)

= 4× 0.04/(π × 0.25× 2.37× 10−6)
= 85, 957

Flow is turbulent
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PROBLEM 10.14

Situation: Fluid flows out of a tank through a pipe that has a contraction in diameter
from 2 to 1 m.
Each pipe is 100 m long. Friction factor in each pipe is f = 0.01

Find: Ratio of head loss
hL (1-m pipe)
hL (2-m pipe)

ANALYSIS

hL = f1
L1
D1

V 2
1

2g

hL (1-m pipe)
hL (2-m pipe)

=

µ
f1L1V

2
1 / (D1)

f2L2V 2
2 / (D2)

¶
= (D2/D1)(V

2
1 /V

2
2 )

V1A1 = V2A2

V1/V2 = A2/A1 = (D2/D1)
2

(V1/V2)
2 = (D2/D1)

4

Thus

hL (1-m pipe)
hL (2-m pipe)

= (D2/D1)(D2/D1)
4

= (D2/D1)
5

= 25

= 32

Correct choice is (d).
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PROBLEM 10.15

Situation: Glycerin flows in a pipe
D = 0.5 ft, T = 68oF, V̄ = 2 ft/ s

Find: (a) Determine if the flow is laminar or turbulent. (b) Plot the velocity distrib-
ution.

Properties: Glycerin at 68 ◦F from Table A.4: µ = 0.03 lbf · s/ ft2, ν = 1.22 ×
10−2 ft2/ s.

ANALYSIS

Re =
V D

ν

=
2× 0.5

1.22× 10−2
= 81.97 (laminar)

To find the velocity distribution, begin with Eq. (10.7)

V (r) =
r2o − r2

4µ

·
− d

ds
(p+ γz)

¸
From Eq. (10.10) ·

− d

ds
(p+ γz)

¸
=
8µV

r2o

Combine equations

V (r) =
r2o − r2

4µ

·
8µV

r2o

¸
= 2V

µ
1− r2

r2o

¶
= (4 ft/ s)

Ã
1−

µ
r

ro

¶2!
Create a table of values and plot

r (in) r/r0 V (r) (ft/s)
0 0 4
0.5 1/6 3.89
1.0 1/3 3.56
1.5 1/2 3.00
2 2/3 2.22
2.5 5/6 1.22
3 1 0
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PROBLEM 10.16

Situation: Glycerin (20oC) flows through a funnel–details are provided in the prob-
lem statement.

Find: Mean velocity of glycerine.

Properties: Glycerin at 20 ◦C from Table A.4: ρ = 1260 kg/m3, γ = 12, 300N/m3,
µ = 1.41N · s/m2, ν = 1.12× 10−3m2/ s.
Assumptions: Assume laminar flow (α2 = 2.0) .

ANALYSIS

Energy equation (Let section 1 be the surface of the liquid and section 2 be the exit
plane of the funnel).

p1
γ
+ α1

V 2
1

2g
+ z1 + hp =

p2
γ
+ α2

V 2
2

2g
+ z2 + ht + hL

.

0 + 0 + 0.30 = 0 + 2.0

µ
V 2
2

2g

¶
+ 0 +

32µLV2
γD2

0.30 = 2.0

µ
V 2
2

2× 9.81
¶
+

µ
32× 1.41× 0.2× V2
12300× 0.012

¶
Solve quadratic equation.

V2 = −72. 01
V2 = V2 = 4. 087× 10−2

Select the positive root

V2 = 0.0409 m/s

Check the laminar flow assumption

Re =
V Dρ

µ

=
0.0409× 0.01× 1260

1.41
= 0.365

Since Re ≤ 2000, the laminar flow assumption is valid.
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PROBLEM 10.17

Situation: Castor oil flows in a steel pipe.
Flow rate is Q = 0.2 ft3/ s. Pipe length is L = 0.5mi = 2640 ft.
Allowable pressure drop is 10 psi.

Find: Diameter of steel pipe.

Properties: Viscosity of castor oil is µ = 8.5× 10−3 lbf-s/ft2.
Specific gravity of castor oil is S = 0.85.

Assumptions: Assume laminar flow.

ANALYSIS

∆pf =
32µLV

D2

or

∆pf =
32µLQ

(π/4)×D4

Then

D4 =
128µLQ

π∆pf

=
128× 8.5× 10−3 × 2640× 0.2

π × 10× 144
D4 = 0.126 98

D ≥ 0.5969 ft

Find velocity.

V =
Q

A

=
0.2

π/4× 0.59692
= 0.7147 ft/sec.

Check Reynolds number

Re =
V Dρ

µ

=
0.7147× 0.5969× (0.85× 1.94)

8.5× 10−3
= 82.76

Thus, the initial assumption of laminar flow is valid. Use a pipe with an inside
diameter of

D ≥ 0.597 ft
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PROBLEM 10.18

Situation: Mercury flows downward through a long round tube. T = 20◦C
The tube is oriented vertically and open at both ends.

Find: Largest tube diameter so that the flow is still laminar.

Properties: From Table A.4: µ = 1.5 × 10−3 N·s/m2, ν = 1.2 × 10−7 m2/s, γ =
133, 000 N/m3

Assumptions: The tube is smooth.

ANALYSIS

Energy equation

p1/γ + α1V
2
1 /2g + z1 = p2/γ + α2V

2
2 /2g + z2 + hL

Term by term analysis

p1 = p2; V1 = V2; α1 = α2; z1 − z2 = L

The energy equation
L = hL (1)

Head loss (laminar flow)

hL = hf =
32µLV

γD2
(2)

Combining Eqs. (1) and (2)

hLγD
2

32µV
= hL

γD2

32µV
= 1 (3)

Reynolds number

Re =
V D

ν
= 2000

V =
2000ν

D
(4)

Combining Eqs. (3) and (4)
γD3

64, 000µν
= 1

or

D = 3

r
64, 000µν

γ

= 3

s
(64, 000) (1.5× 10−3) (1.2× 10−7)

133, 000

= 4.43× 10−4m
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PROBLEM 10.19

Situation: Glycerin flows in a steel tube—additional details are provided in the problem
statement

Find: (a) Determine if the flow is laminar or turbulent, (b) Will pressure increase
or decrease in direction of flow? (c) Calculate the rate of change of pressure in the
direction of flow, (d) Calculate shear stress at the center of the tube and (e) Calculate
shear stress at the wall.

Properties: Glycerin at 20 ◦C from Table A.4: ρ = 1260 kg/m3, γ = 12, 300N/m3,
µ = 1.41N · s/m2, ν = 1.12× 10−3m2/ s.

ANALYSIS

Re =
V D

ν

=
0.40× 0.04
1.12× 10−3

= 14.29

Answer ==> Since R ≤ 2000, the flow is laminar.
From solution to Problem 10-11

dh

ds
=
−32µV
γD2

dh

ds
=
−32µV
γD2

=
−32× 1.41× 0.4
12300× 0.042

= −0.917 1

or

(1/γ)dp/ds+ dz/ds = −0.917 1
Because flow is downward, dz/dz = −1. Then

dp/ds = 12300[1− 0.917 1]
= 1019. 7

= 1.02 kPa/m

Answer ⇒ Pressure increases in the direction of flow (downward).
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From Eq. 10-3
τ = γ(r/2)[−dh/ds]

or

τ = 12, 300(r/2)× 0.917 1
At the center of the pipe (r = 0)

τ r=0=0

At the wall (r = 2cm)

τwall = τ 0 = 12, 300(0.02/2)× 0.917 1
τwall = 113N/m

2
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PROBLEM 10.20

Situation: The design might have a physical configuration as shown below. The
design should be based upon solving Eq. 10.17 (hf = 32µLV/(γD2)) for the viscosity
µ. Since this is for laminar flow, the size of pipe and depth of liquid in the tank should
be such that laminar flow will be assured (Re < 1000). For the design suggested here,
the following measurements, conditions, and calculations would have to be made:

Pump

A. Measure tube diameter by some means.
B. Measure γ or measure temperature and get γ from a handbook.
C. Establish steady flow by having a steady supply source (pump liquid from a
reservoir).
D. Measure Q. This could be done by weighing an amount of flow for a given
period of time or by some other means.
E. Measure hf/L by the slope of the piezometric head line as obtained from
piezometers. This could also be obtained by measuring ∆p along the tube by means
of pressure gages or pressure transducers from which hf/L could be calculated.
F. Solve for µ with Eq. 10.17.
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PROBLEM 10.21

Situation: Velocity measurements are made in a 1-ft diameter pipe. Other details
are provided in the problem statement.

Find: Kinematic viscosity of fluid.

ANALYSIS

Since the velocity distribution is parabolic, the flow is laminar. Then

∆pf = 32µLV/D2

ν = µ/ρ = ∆pfD
2/(32LV ρ)

ν = 15× 12/(32× 100× 2/2× 0.9× 1.94)
= 0.00268 ft2/s
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PROBLEM 10.22

Situation: Velocity measurements are made in a 30-cm diameter pipe. Other details
are provided in the problem statement.

Find: Kinematic viscosity of fluid.

ANALYSIS

Following the solution for Problem 10.21,

ν = ∆pfD
2/(32LV ρ)

= 1, 900× (0.3)2/(32× 100× 0.75× 800)
= 8.91× 10−5 m2/s
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PROBLEM 10.23

Situation: Water is pumped through tubes in a heat exchanger–other details are
provided in the problem statement

Find: Pressure difference across heat exchanger

ANALYSIS

Reynolds number (based on temperature at the inlet)

Re20◦ =
V D

ν
=
0.12× 0.005

10−6
= 600

Since Re ≤ 2000, the flow is laminar. Thus,

∆p = 32µLV/D2

Assume linear variation in µ and use the temperature at 25oC. From Table A.5

µavg. = µ25◦

= 8.91× 10−4 N · s/m2

and

∆p = 32µLV/D2

= 32× 8.91× 10−4 × 5× 0.12/(0.005)2
= 684 Pa
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PROBLEM 10.24

Situation: Oil flows through a 2-in. diameter smooth pipe—details are provided in the
problem statement.

Find: (a) The direction of the flow.
(b) Resistance coefficient.
(c) Nature of the flow (laminar or turbulent).
(d) Viscosity of oil.

ANALYSIS

Based on the deflection on the manometer, the static pressure within the right
side of the pipe is larger than the pressure on the left end. Thus, the flow is
downward (from right to left).

Energy principle
p2
γ
+ α2

V 2
2

2g
+ z2 =

p1
γ
+ α1

V 2
1

2g
+ z1 + hL

Term by term analysis
α1V1 = α2V2; z2 − z1 = 2 ft

Darcy Weisbach equation
hL = f(L/D)V 2/(2g)

Combine equations
p2 − p1
γoil

= (−2 ft) + f
L

D

V 2

2g
(1)

Manometer equation

p2 + (4 ft) γoil + (0.33 ft) γoil − (0.33 ft) γHg − (2 ft) γoil = p1

Calculate values

p2 − p1
γoil

= − (4 ft)− (0.33 ft) + (0.33 ft) γHg
γoil

+ (2 ft)

= − (2 ft) + (0.33 ft)
µ
SHg
Soil
− 1
¶

= − (2 ft) + (0.33 ft)
µ
13.6

0.8
− 1
¶

p2 − p1
γoil

= 3.28 ft (2)
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Substitute Eq. (2) into (1)

(3.28 ft) = (−2 ft) + f
L

D

V 2

2g
or

f = 5.28

µ
D

L

¶µ
2g

V 2

¶
= 5.28

µ
1/6

30

¶µ
2× 32.2
52

¶
f = 0.076

Since the resistance coefficient (f) is now known, use this value to find viscosity.

Resistance coefficient (f) (assume laminar flow)

f =
64

Re

0.076 =
64µ

ρV D
or

µ =
0.076ρV D

64

=
0.076× (0.8× 1.94)× 5× (1/6)

64

= 0.00154 lbf · s/ ft2

Check laminar flow assumption

Re =
V Dρ

µ

=
5× (1/6)× (0.8× 1.94)

0.00154
= 840

Answer ⇒ Flow is laminar.
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PROBLEM 10.25

Situation: Oil flows through a 5-cm. diameter smooth pipe—details are provided in
the problem statement.

Find: (a) Flow direction.
(b) Resistance coefficient.
(c) Nature of flow (laminar or turbulent).
(d) Viscosity of oil.

ANALYSIS

Based on the deflection on the manometer, the piezometric head on the right side
of the pipe is larger than that on the left side. Since the velocity at 1 and 2 is the
same, the energy at location 2 is higher than the energy at location 1. Since the a
fluid will move from a location of high energy to a location of low energy, the flow is
downward (from right to left).
Energy principle

p2
γ
+ α2

V 2
2

2g
+ z2 =

p1
γ
+ α1

V 2
1

2g
+ z1 + hL

Assume α1V1 = α2V2. Let z2 − z1 = 1m. Also the head loss is given by the Darcy
Weisbach equation: hf = f(L/D)V 2/(2g). The energy principle becomes

p2 − p1
γoil

= (−1m) + f
L

D

V 2

2g
(1)

Manometer equation

p2 + (2m) γoil + (0.1m) γoil − (0.1m) γHg − (1m) γoil = p1

Algebra gives

p2 − p1
γoil

= − (2m)− (0.1m) + (0.1m) γHg
γoil

+ (1m)

= − (1m) + (0.1m)
µ
SHg
Soil
− 1
¶

= − (1m) + (0.1m)
µ
13.6

0.8
− 1
¶

p2 − p1
γoil

= 0.6m (2)
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Substituting Eq. (2) into (1) gives

(0.6m) = (−1m) + f
L

D

V 2

2g
or

f = 1.6

µ
D

L

¶µ
2g

V 2

¶
= 1.6

µ
0.05

12

¶µ
2× 9.81
1.22

¶
f = 0.0908

Since the resistance coefficient is now known, this value can be used to find viscosity.
To perform this calculation, assume the flow is laminar, and apply Eq. (10.23).

f =
64

Re

0.0908 =
64µ

ρV D
or

µ =
0.0908ρV D

64

=
0.0908× (0.8× 1000)× 1.2× 0.05

64

= 0.068 N · s/m2

Now, check Reynolds number to see if laminar flow assumption is valid

Re =
V Dρ

µ

=
1.2× 0.05× (0.8× 1000)

0.068
= 706

Thus, flow is laminar.

851



PROBLEM 10.26

Situation: A liquid flows through a 3-cm diameter smooth pipe.
The flow rate is doubled.
Other details are provided in the problem statement.

Find: Determine if the head loss would double.

ANALYSIS

hf
L

= 2

=
f

D

µ
V 2

2g

¶
=

f

0.03

µ
12

2× 9.81
¶

= 1.699f

Rearrange

1.699f = 2

f = 1.177

Assume laminar flow:
f = 64/Re

or

Re = 64/1.177 = 54.4 (laminar)

Indeed, the flow is laminar and it will be laminar if the flow rate is doubled.

Answer ⇒ The head loss varies linearly with V (and Q); therefore, the head loss
will double when the flow rate is doubled.
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PROBLEM 10.27

Situation: Oil flows in a 12-in. smooth tube–other details are provided in the prob-
lem statement.

Find: Viscous shear stress on wall.

ANALYSIS

As shown in Eq. (10.21), the resistance coefficient is defined by

τ o =
f

4

µ
ρV 2

2

¶
So

τ o =
0.017

4

µ
(0.82× 1.94) 62

2

¶
= 0.122 lbf/ ft2
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PROBLEM 10.28

Situation: Fluids (oil and a gas) flow through a 10-cm. smooth tube–other details
are provided in the problem statement.

Find: Velocity ratio: (Vmax,oil/Vmax,gas).

ANALYSIS

Reoil =
V Dρ

µ

=
(1)(0.1)(900)

10−1
= 900

Since flow at this Reynolds number is laminar, the centerline velocity is twice the
mean velocity, or

Vmax , oil = 2V̄

For the gas

Regas =
V Dρ

µ

=
(1.0)(0.1)(1)

10−5

= 104

This corresponds to turbulent flow–Thus,

Vmax , gas ≈ 1.08V̄

Therefore

Vmax,oil
Vmax,gas

≈ 2

1.08
> 1

So, case (a) is the correct answer.
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PROBLEM 10.29

Situation: Water flows with a through a horizontal run of PVC pipe
Speed of water: V = 5 ft/ s. Length of the pipe: L = 100 ft.
Pipe is a 2.5" schedule 40: ID = 2.45 in. = 0.204 ft

Find: (a) Pressure drop in psi.
(b) Head loss in feet.
(c) Power in horsepower needed to overcome the head loss.

Properties: Water @ 50 ◦F from Table A.5: ρ = 1.94 slug/ ft3, γ = 62.4 lbf/ ft3,
ν = 14.1× 10−6 ft2/ s.
Assumptions: 1.) Assume ks = 0.
2.) Assume α1 = α2, where subscripts 1 and 2 denote the inlet and exit of the pipe.

APPROACH

To establish laminar or turbulent flow, calculate the Reynolds number. Then find
the appropriate friction factor (f) and apply the Darcy-Weisbach equation to find
the head loss. Next, find the pressure drop using the energy equation. Lastly, find
power using P = ṁghf .

ANALYSIS

Reynolds number

Re =
V D

ν

=
(5 ft/ s) (0.204 ft)¡
14.1× 10−6 ft2/ s¢

= 72, 400

Thus, flow is turbulent.

Friction factor (f) (Swamee-Jain correlation)

f =
0.25£

log10
¡

ks
3.7D

+ 5.74
Re0.9

¢¤2
=

0.25h
log10

³
5.74

72,4000.9

´i2
= 0.0191

Darcy-Weisbach equation

hf = f
L

D

V 2

2g

= 0.0191

µ
100 ft

0.204 ft

¶
(5 ft/ s)2

2× 32.2 ft/ s2
= 3.635 ft
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hf = 3.64 ft (part b)

Energy equation

p1
γ
+ α1

V 2
1

2g
+ z1 + hp =

p2
γ
+ α2

V 2
2

2g
+ z2 + ht + hL

Select a control volume surrounding the pipe. After analysis of each term, the energy
equation simplifies to

p1
γ

=
p2
γ
+ hf

or ∆p = γhf

=
¡
62.4 lbf/ ft3

¢
(3.635 ft)

= 227 psf

= 227

µ
lbf

ft2

¶µ
ft2

144 in2

¶
∆p = 1.58 psi (part a)

Flow rate equation

ṁ = ρAV

=
¡
1.94 slug/ ft3

¢Ãπ (0.204 ft)2

4

!
(5 ft/ s)

= 0.317 slug/ s

Power equation

Ẇ = ṁghf

= (0.317 slug/ s)
¡
32.2 ft/ s2

¢
(3.635 ft)

µ
1.0 hp

550 ft · lbf/ s
¶

= 0.06746 hp

Power to overcome head loss = 0.0675 hp (part c)

COMMENTS

1. The pressure drop for a 100 ft run of pipe (∆p = 227 psf ≈ 1.6 psi )could be
decreased by selecting a larger pipe diameter.

2. The power to overcome the frictional head loss is about 1/15 of a horsepower.
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PROBLEM 10.30

Situation: Water flows with a through a horizontal run of PVC pipe
Speed of water: V = 2m/ s. Length of the pipe: L = 50m.
Pipe is a 2.5" schedule 40: ID = 2.45 in. = 0.0622m.

Find: (a) Pressure drop in kPa.
(b) Head loss in meters.
(c) Power in watts needed to overcome the head loss.

Properties: Water @ 10 ◦C from Table A.5: ρ = 1000 kg/m3, γ = 9810N/m3, ν =
1.31× 10−6m2/ s.
Assumptions: 1.) Assume ks = 0.
2.) Assume α1 = α2, where subscripts 1 and 2 denote the inlet and exit of the pipe.

APPROACH

To establish laminar or turbulent flow, calculate the Reynolds number. Then find
the appropriate friction factor (f) and apply the Darcy-Weisbach equation to find
the head loss. Next, find the pressure drop using the energy equation. Lastly, find
power using P = ṁghf .

ANALYSIS

Reynolds number

Re =
V D

ν

=
(2m/ s) (0.0622m)

(1.31× 10−6m2/ s)
= 94, 960

Thus, flow is turbulent.

Friction factor (f) (Swamee-Jain equation)

f =
0.25£

log10
¡

ks
3.7D

+ 5.74
Re0.9

¢¤2
=

0.25h
log10

³
5.74

94,9600.9

´i2
= 0.0181

Darcy-Weisbach equation

hf = f
L

D

V 2

2g

= 0.0181

µ
50m

0.0622m

¶
(2m/ s)2

2× 9.81m/ s2
= 2.966m
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hf = 2.97m (part b)

Energy equation

p1
γ
+ α1

V 2
1

2g
+ z1 + hp =

p2
γ
+ α2

V 2
2

2g
+ z2 + ht + hL

Select a control volume surrounding the pipe. After analysis of each term, the energy
equation simplifies to

p1
γ

=
p2
γ
+ hf

or ∆p = γhf

=
¡
9810N/m3

¢
(2.966m)

= 29, 096 kPa

∆p = 29.1 kPa (part a)

Flow rate equation

ṁ = ρAV

=
¡
1000 kg/m3

¢Ãπ (0.0622m)2

4

!
(2m/ s)

= 6.077 kg/ s

Power equation

Ẇ = ṁghf

= (6.077 kg/ s)
¡
9.81m/ s2

¢
(2.966m)

= 176.8W

Power to overcome head loss = 177W (part c)

COMMENTS

1. The pressure drop (29 kPa) is about 1/3 of an atmosphere This value could be
decreased by increasing the pipe diameter to lower the speed of the water.

2. The power to overcome the frictional head loss is small, about 1/4 of a horse-
power.
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PROBLEM 10.31

Situation: Water @ 70oF flows through a pipe. D = 6 in Q = 2 cfs

Find: Resistance coefficient.

Properties: From Table A.5 ν(70oF)= 1.06× 10−5 ft2/s

ANALYSIS

Reynolds number

Re =
4Q

πDν

=
4× 2

π × (6/12)× (1.06× 10−5)
= 4.8× 105

From Fig. 10.8 or the Swamee and Jain correction (Eq. 10.26)

f = 0.013
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PROBLEM 10.32

Situation: Water @ 10oC flows through a pipe. D = 25 cm Q = 0.06m3/ s.

Find: Resistance coefficient.

Properties: From Table A.5 ν(10oC) = 1.31× 10−6 m2/s.

ANALYSIS

Re =
4Q

πDν

=
4× 0.06

π × 0.25× (1.31× 10−6)
= 2.33× 105

From Fig. 10.8 or the Swamee and Jain correction (Eq. 10.26)

f = 0.015
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PROBLEM 10.33

Situation: Air (20oC) flows through a smooth tube.
Q = 0.015m3/ s D = 3cm p = 110 kPa-absolute

Find: Pressure drop per meter of tube length

Properties: From Table A.3 µ(20o) = 1.81× 10−5 N·s/m2.

ANALYSIS

V =
Q

A

=
0.015

π/4× 0.032
= 21.2 m/s

ρ =
p

RT

=
110, 000

287× 293
= 1.31 kg/m3

Re =
V Dρ

µ

=
21.2× 0.03× 1.31
1.81× 10−5

= 46031

Friction factor (f) (Moody diagram-Fig. 10-8)

f = 0.0212

Darcy Weisbach equation

hf = f
L

D

V 2

2g

= 0.0212

µ
1m

0.03m

¶Ã
(21.2m/ s)2

2× 9.81m/ s2
!

= 16.19m for a 1.0 m length of pipe

Pressure drop is given by applying the energy equation to a 1.0 m length of pipe

∆p = hfρg

= (16.19m)
¡
1.31 kg/m3

¢ ¡
9.81m/ s2

¢
= 207.6Pafor a 1.0 m length of pipe

∆p
L
= 208 Pa

m
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PROBLEM 10.34

Situation: Glycerin flows through a commercial steel pipe–other details are provided
in the problem statement.

Find: Height differential between the two standpipes.

Properties: Glycerin at 20 ◦C from Table A.4: ρ = 1260 kg/m3, S = 1.26, γ =
12, 300N/m3, µ = 1.41N · s/m2, ν = 1.12× 10−3m2/ s.

ANALYSIS

Energy equation (apply from one standpipe to the other)

p1/γ + α1V
2
1 /2g + z1 = p2/γ + α2V

2
2 /2g + z2 + hL

p1/γ + z1 = p2/γ + z2 + hL

((p1/γ) + z1))− ((p2/γ) + z2) = hL

∆h = hL

Reynolds number

Re =
V D

ν

=
(0.6)(0.02)

1.12× 10−3
= 10.71

Since Re < 2000, the flow is laminar. The head loss for laminar flow is

hL =
32µLV

γD2

=
(32)(1.41)(1)(0.6)

12300× 0.022
= 5. 502m

Energy equation

∆h = hL

= 5.50 m
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PROBLEM 10.35

Situation: Air flows through a smooth tube–other details are provided in the problem
statement.

Find: Pressure drop per foot of tube.

Properties: From Table A.3 µ(80oF) = 3.85× 10−7 lbf-s/ft2.

ANALYSIS

V = Q/A = 25× 4/(60× π × (1/12)2) = 91.67 ft/s
ρ = p/(RT ) = 15× 144/(1716× 540) = 0.00233 slugs/ft3
Re = V Dρ/µ = 91. 67× (1/12)× 0.00233/(3.85× 10−7)

= 4.623× 104

Resistance coefficient (f) (Swamee-Jain correlation; turbulent flow)

f =
0.25£

log10
¡

ks
3.7D

+ 5.74
Re0.9

¢¤2
=

0.25h
log10

³
5.74

(4.623×104)0.9
´i2

= 0.0211

Pressure drop

∆p = f
L

D

µ
ρV 2

2

¶
= 0.0211

µ
1 ft

1/12 ft

¶µ
0.00233× 91.672

2

¶
= 2. 479 psf/ft

∆p = 2.48 psf/ft
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PROBLEM 10.36

Situation: A pipe is being using to measure viscosity of a fluid–details are provided
in the problem statement

Find: Kinematic viscosity.

ANALYSIS

hf = f(L/D)(V 2/2g)

0.50 = f(1/0.01)(32/(2× 9.81))
f = 0.0109

At this value of friction factor, Reynolds number can be found from the Moody
diagram (Fig. 10.8)—the result is

Re = 1.5× 106

Thus

ν =
V D

Re

=
(3)(0.01)

1.5× 106
= 2.0× 10−8 m2/s
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PROBLEM 10.37

Situation: Water flows through a pipe–details are provided in the problem statement.

Find: Resistance coefficient.

ANALYSIS

∆h = hf = 0.90(2.5− 1) = 1.35 ft of water
hf = f(L/D)V 2/2g

f = 1.35× (0.05/4)× 2× 9.81/32
= 0.037
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PROBLEM 10.38

Situation: Water flows through a cast-iron pipe. D = 10 cm V = 4m/ s

Find: (a) Calculate the resistance coefficient.
(b) Plot the velocity distribution.

Properties: From Table A.5 ν(10oC) = 1.31× 10−6 m2/s.

ANALYSIS

Re =
V D

ν

=
4(0.1)

1.31× 10−6
= 3. 053× 105

Sand roughness height

ks
D

=
0.00026

0.1
= 0.002 6

Resistance coefficient (Swamee-Jain correlation; turbulent flow)

f =
0.25£

log10
¡

ks
3.7D

+ 5.74
Re0.9

¢¤2
=

0.25h
log10

³
0.002 6
3.7

+ 5.74
(3. 053×105)0.9

´i2
= 0.0258

f = 0.0258

Velocity profile (turbulent flow)

u

u∗
= 5.75 log (

y

ks
) + 8.5

Friction velocity(u∗)

u∗ =
p
τ 0/ρ (1)

Resistance coefficient

τ o =
f

4

µ
ρV 2

2

¶
(2)

Combine Eqs. (1) and (2)
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u∗ = V

r
f

8

= 4

r
0.0258

8
= 0.227 2m/ s

Velocity profile

u = (0.227 2m/ s)
h
5.75 log

³ y

0.00026

´
+ 8.5

i
The distance from the wall (y) is related to pipe radius (R) and distance from the
centerline (r) by

y = R− r

Velocity Profile

u(r) = (0.227 2m/ s)

·
5.75 log

µ
0.025− r

0.00026

¶
+ 8.5

¸
Plot

1.5

2

2.5

3

3.5

4

4.5

y

0 0.005 0.01 0.015 0.02x
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PROBLEM 10.39

Situation: Flow passes through a pipe–details are provided in the problem statement.

Find: Resistance coefficient.

ANALYSIS

Re = V d/ν

= (1)(0.10)/(10−4)

= 103 (laminar)

f = 64/Re

= 64/1000

= 0.064

Case (a) is correct
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PROBLEM 10.40

Situation: Water (20oC) flows through a brass tube. Smooth walls (ks = 0) .
Tube diameter is D = 3 cm. Flow rate is Q = 0.002m3/ s.

Find: Resistance coefficient

ANALYSIS

Flow rate equation

V =
Q

A

=
0.002

π/4× 0.032
= 2.83 m/s

Reynolds number

Re = V D/ν

= 2.83× 0.03/10−6
= 8.49× 104

Friction factor (f) (Swamee-Jain correlation—Eq. 10.26)

f =
0.25£

log10
¡

ks
3.7D

+ 5.74
Re0.9

¢¤2
=

0.25h
log10

³
0 + 5.74

(8.49×104)0.9
´i2

f = 0.0185
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PROBLEM 10.41

Situation: A train travels through a tunnel.
Air in the tunnel (assume T = 60◦F ) will modeled using pipe flow concepts.
Additional details are provided in the problem statement

Find: (a) Change in pressure between the front and rear of the train.
(b) Power required to produce the air flow in the tunnel.
(c) Sketch an EGL and a HGL.

Properties: From Table A.3 γ = 0.0764 lbf/ft3 and ν = 1.58× 10−4 ft2/s

APPROACH

Apply the energy equation from front of train to outlet of tunnel.

ANALYSIS

Energy equation

p1/γ + α1V
2
1 /2g + z1 = p2/γ + α2V

2
2 /2g + z2 + hL

p1/γ + V 2
1 /2g = 0 + 0 + 0 + V 2

2 /2g + f(L/D)V 2
2 /2g

p1/γ = f(L/D)V 2/2g

ks/D = 0.05/10 = 0.005

Re = V D/ν = (50)(10)/(1.58× 10−4) = 3.2× 106

Resistance coefficient (from Moody diagram, Fig. 10.8)

f = 0.030

Darcy Weisbach equation

p1 = γf(L/D)(V 2/2g)

= (0.0764)(0.03)(2, 500/10)(502/(64.4))

p1 = 22.24 psfg

Energy equation (from outside entrance to rear of train)
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p3/γ + α3V
2
3 /2g + z3 = p4/γ + α4V

2
4 /2g + z4 +

X
hL

0 + 0 + 0 = p4/γ + V 2
4 /2g + 0 + (Ke + f(L/D))V 2/2g

p4/γ = −(V 2/2g)(1.5 + f(L/D))

= −(502/2g)(1.5 + 0.03(2, 500/10))
p4 = −γ(349.4) = −26.69 psf
∆p = p1 − p4

= 22.24− (−26.69)
= 48.93 psf

Power equation

P = FV

= (∆pA)(50)

= (48.93× π/4× 102)(50)
= 192, 158 ft-lbf/s

= 349 hp

EGL
HGL

EGL
HGL

Train
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PROBLEM 10.42

Situation: A siphon tube is used to drain water from a jug into a graduated cylinder.
dtube = 3/16 in. = 0.01562 ft Ltube = 50 in.
Additional details are provided in the problem statement.

Find: Time to fill cylinder.

Assumptions: T ' 60oF with ν = 1.2× 10−5 ft2/s.
Neglect head loss associated with any bend in the Tygon tube.

ANALYSIS

Energy equation (from the surface of the water in the jug to the surface in the grad-
uated cylinder)

pj/γ + αjV
2
j /2g + zj = pc/γ + αcV

2
c /2g + zc +

X
hL (1)

Assume that the entrance loss coefficient is equal to 0.5. It could be larger than 0.5,
but this should yield a reasonable approximation. ThereforeX

hL = (0.5 + fL/D +KE)V
2/2g

The exit loss coefficient, KE, is equal to 1.0. Therefore, Eq. 1 becomes

∆z = zj − zc = (V
2/2g)(1.5 + fL/D)

or V =
p
2g∆z/(1.5 + fL/D) (1)

=
p
2g∆z/(1.5 + f × 267)

Assume f = 0.03 and let ∆z = (21− 2.5)/12 = 1.54 ft. Then

V =
p
(2g)(1.54)/(1.5 + 10.7)

= 2. 85 ft/s

Re =
V D

ν

=
2.85× .01562

1.2× 10−5
= 3710

Resistance coefficient (recalculate)

f =
0.25£

log10
¡

ks
3.7D

+ 5.74
Re0.9

¢¤2
=

0.25£
log10

¡
0 + 5.74

37100.9

¢¤2
= 0.040
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Repeat calculations with a new value of friction factor.

V =
p
2g × 1.54/(1.5 + 10.68)

= 2.85 ft/s

Re =
V D

ν
= 3710

h

dh

Fig. A

Use f = 0.040 for final solution. As a simplifying assumption assume that as the
cylinder fills the level of water in the jug has negligible change. As the cylinder is
being filled one can visualize (see figure) that in time dt a volume of water equal to
Qdt will enter the cylinder and that volume in the cylinder can be expressed as Acdh,
that is

Qdt = Acdh

dt = (Ac/Q)dh

But
Q = VtAt (3)

so

dt = ((Ac/At)/V )dh

Substitute V of Eq. (1) into Eq. (2):

dt = (Ac/At)/(2g∆z/(1.5 + 267f))1/2dh

∀c = .500 liter = 0.01766 ft3

or

0.01766 = Ac × (11.5 in./12)
Ac = 0.01842 ft2

Atube = (π/4)((3/16)/12)2 = 0.0001917 ft2

Ac/At = 96.1

The differential equation becomes
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dt = 96.1/(2g∆z/(1.5 + 10.9))1/2dh

Let h be measured from the level where the cylinder is 2 in full. Then

∆z = ((21 in− 2.5 in)/12)− h

∆z = 1.542− h

Now we have

dt = 96.1/(2g(1.54− h)/12.2)1/2dh

dt = 42.2/(1.54− h)1/2dh

dt = −42.2/(1.54− h)1/2(−dh)

Integrate:

t = −42.2(1.54− h)1/2/(1/2)|h0
= −84.4(1.54− h)1/2|0.750

= −84.4[(0.79)1/2 − (1.54)1/2]
= −84.4(0.889− 1.241)
= 29.7 s

COMMENTS

Possible problems with this solution: The Reynolds number is very close to the point
where turbulent flow will occur and this would be an unstable condition. The flow
might alternate between turbulent and laminar flow.
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PROBLEM 10.43

Situation: Water flows from an upper reservoir to a lower reservoir—additional details
are provided in the problem statement.

Find: (a) Elevation of upper reservoir. (b) Sketch the HGL and EGL. (c) Location
of minimum pressure; value of minimum pressure and (d) What is the type of pipe?

APPROACH

Apply the energy equation between water surfaces of the reservoirs. Then to deter-
mine the magnitude of the minimum pressure, write the energy equation from the
upstream reservoir to just downstream of bend.

ANALYSIS

Energy equation

p1/γ + α1V
2
1 /2g + z1 = p2/γ + α2V

2
2 /2g + z2 +

X
hL

0 + 0 + z1 = 0 + 0 + 100 +
X

hL

where X
hL = (Ke + 2Kb +KE + fL/D)(V 2/2g)

and Ke = 0.50; Kb = 0.40 (assumed); KE = 1.0; fL/D = 0.025× 430/1 = 10.75

V = Q/A = 10.0/((π/4)× 12) = 12.73 ft/s
then

z1 = 100 + (0.5 + 2× 0.40 + 1.0 + 10.75)(12.732)/64.4
= 133 ft

Answer ⇒ The point of minimum pressure will occur just downstream of the first
bend as shown by the hydraulic grade line (below).

H.G.L.
E.G.L.

pmin.

Energy equation

z1 = zb + pb/γ + V 2/2g + (fL/D)V 2/2g +KeV
2/2g +KbV

2/2g

pb/γ = 133− 110.70− (12.732/64.4)(1.9 + 0.025× 300/1) = −1.35 ft
pB = −1.35× 62.4 = -84 psfg = -0.59 psig
Re = V D/ν = 12.73× 1/(1.41× 10−5) = 9.0× 105
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With an f of 0.025 at a Reynolds number of 9 × 105 a value for ks/D of 0.0025
(approx) is read from Fig. 10-8. Answer ⇒ From Table 10.2 the pipe appears to be
fairly rough concrete pipe.
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PROBLEM 10.44

Situation: Water flows out of reservoir, through a steel pipe and a turbine.
Additional details are provided in the problem statement.

Find: Power delivered by turbine.

Properties: From Table A.5 ν(70oF)= 1.06× 10−5 ft2/s
Assumptions: turbulent flow, so α2 ≈ 1.

APPROACH

Apply the energy equation from the reservoir water surface to the jet at the end of
the pipe.

ANALYSIS

Energy equation

p1/γ + α1V
2
1 /2g + z1 = p2/γ + α2V

2
2 /2g + z2 + hT +

X
hL

0 + 0 + z1 = 0 + α2V
2
2 /2g + z2 + hT + (Ke + fL/D)V 2/2g

z1 − z2 = hT + (1 + 0.5 + fL/D)V 2/2g

100 ft = hT + (1.5 + fL/D)V 2/2g

But

V = Q/A = 5/((π/4)12) = 6.37 ft/s

V 2/2g = 0.629 ft

Re = V D/ν = 6.0× 105

From Fig. 10.8 f = 0.0140 for ks/D = 0.00015. Then

100 ft = hT + (1.5 + 0.0140× 1, 000/1)(0.629)
hT = (100− 9.74) ft

Power equation

P = QγhT × eff
= 5× 62.4× 90.26× 0.80
= 22, 529 ft · lbf/s
= 40.96 horsepower
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PROBLEM 10.45

Situation: A fluid flows in a smooth pipe. µ = 10−2N · s/m2 ρ = 800 kg/m3

D = 100mm V̄ = 500mm/ s

Find: (a) Maximum velocity.
(b) Resistance coefficient.
(c) Shear velocity.
(d) Shear stress 25 mm from pipe center.
(e) Determine if the head loss will double if discharge is doubled.

ANALYSIS

Reynolds number

Re =
V Dρ

µ

=
(0.5)(0.1)(800)

10−2
= 4000

Because Re > 2000, assume the flow is turbulent.

a) Table 10.1 relates mean and centerline velocity. From this table,

Vmax = V̄ /0.791

= 0.50/0.791

= 0.632 m/s

b) Resistance coefficient (from Moody diagram, Fig. 10.8)

f = 0.041

c) Shear velocity is defined as

u∗ =
r

τ o
ρ

(1)

Wall shear stress

τ o =
f

4

ρV 2

2
Combine equations

u∗ = V

µ
f

8

¶0.5
= (0.5)

µ
0.041

8

¶0.5
r
0.041× 0.52

8

= 0.0358m/ s

878



d) In a pipe flow, shear stress is linear with distance from the wall. The distance
of 25 mm from the center of the pipe is half way between the wall and the
centerline. Thus, the shear stress is 1/2 of the wall value:

τ 25 mm =
τ o
2

The shear stress at the wall is given by Eq. (1)

τ o = ρu2∗
= 800× 0.03582
= 1.025N/m2

Thus

τ 25 mm =
τ o
2

=
1.025N/m2

2

= 0.513 N/m2

e) If flow rate (Q) is doubled, the velocity will also double. Thus, head loss will be
given by

hf = fnew

µ
L

D

¶
(2V )2

2g

The increase in velocity will increase Reynolds number, thereby decreasing the
friction factor so that fnew < .foriginal Overall the head loss will increase by
slightly less than a factor of 4.0.

No, the increase in head loss will be closer to a factor of 4.0
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PROBLEM 10.46

Situation: This problem involves an energy grade line for steady flow in a pipe in
which no pumps or turbines are present.

Find: Which statements are true about this EGL.

ANALYSIS

The valid statements are: a, b, d. For cases c & e:

Re = V D/ν

= (1)(1)/(10−6)
= 106

Since Re > 3000, the flow at 1 m/s is in the turbulent range; therefore, the head loss
will be more than doubled with a doubling of the velocity.

880



PROBLEM 10.47

Situation: A figure with an EGL and an HGL is missing physical details in some
sections.

Find: (a) What is at points A and C.
(b) What is at point B.
(c) Complete the physical setup after point D.
(d) The other information indirectly revealed by the EGL and HGL.

ANALYSIS

a) Pumps are at A and C
b) A contraction, such as a Venturi meter or orifice, must be at B.
c)

converging pipe

ReservoirC D

d) Other information:
(1) Flow is from left to right
(2) The pipe between AC is smaller than before or directly after it.
(3) The pipe between BC is probably rougher than AB.
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PROBLEM 10.48

Situation: Water (20oC) flows in cast iron pipe. D = 15 cm Q = 0.05m3/ s ks =
0.26mm
from Table A.5 ν(20oC)= 10−6 m2/s

Find: (a) Shear stress at the wall.
(b) Shear stress 1 cm from wall.
(c) Velocity 1 cm from wall.

Properties: Table A.5 (water at 20 ◦C): ρ = 998 kg/m3 , ν = 1.00× 10−6m2/ s.

ANALYSIS

Flow rate equation

V =
Q

A
=

0.05

(π/4)× 0.152
= 2.83 m/s

Reynolds number

Re =
V D

ν
=
2.83× 0.15
10−6

= 4.2× 105

Relative roughness

ks
D

=
0.26mm

150mm
= 1. 733× 10−3

Resistance coefficient (Swamee Jain correlation)

f =
0.25£

log10
¡

ks
3.7D

+ 5.74
Re0.9

¢¤2
=

0.25h
log10

³
1. 733×10−3

3.7
+ 5.74

(4.2×105)0.9
´i2

= 0.0232

Eq. (10-21)

τ 0 = fρV 2/8

τ 0 = 0.0232× 998× 2.832/8
= 23.2 N/m2
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In a pipe flow, the shear stress variation is linear; thus,

τ 1 = (6.5/7.5)× τ 0

= 20.0 N/m2

Velocity distribution (turbulent flow)

u∗ =

r
τ 0
ρ
=

r
23.2

998

= 0.1524 m/s

u

u∗
= 5.75 log

µ
y

ks

¶
+ 8.5

u = u∗

µ
5.75 log

µ
y

ks

¶
+ 8.5

¶
= 0.1524

µ
5.75 log

µ
0.01

0.00026

¶
+ 8.5

¶
= 2.684m/ s

u = 2.68m/ s
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PROBLEM 10.49

Situation: Water flows from one reservoir to another–additional details are given in
the problem statement.

Find: Design a conduit system.

ANALYSIS

One possibility is shown below:

E1 = 100 m

E1 = 85 m-

H.G.L.

E.G.L.

E1 = 70 m

E1 = 55 m-

20 m

Assume that the pipe diameter is 0.50 m. Also assume Kb = 0.20, and f = 0.015.
Then

100− 70 = (0.5 + 2× 0.20 + 1 + 0.015× 130/0.5)V 2/2g

V 2/2g = 5.17

The minimum pressure will occur just downstream of the first bend and its magnitude
will be as follows:

pmin/γ = 100− 85− (0.5 + 0.20 + 1 + ((0.015× 80/0.5) + 1)V 2/2g

= −6.20 m
pmin = −6.20× 9, 810

= -60.8 kPa gage
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PROBLEM 10.50

Situation: Water is pumped through a vertical steel pipe to an elevated tank on the
roof of a building–additional details are provided in the problem statement.

Find: Pressure at point 80 m above pump.

ANALYSIS

Re = 4Q/(πDν)

= 4× 0.02/(π × 0.10× 10−6) = 2.55× 105
ks/D = 4.6× 10−2/100 = 4.6× 10−4

Resistance coefficient
f = 0.0185

Then

hf = (f(L/D)V
2/2g

where

V = 0.02/((π/4)× 0.12) = 2.546 m/s
hf = 0.0185× (80/0.10)× 2.5462/(2× 9.81) = 4.89 m

Energy equation (from pump to location 80 m higher)

p1/γ + α1V
2
1 /2g + z1 = p2/γ + α2V/2g + z2 + hf

1.6× 106/9, 790 + V 2
1 /2g = p2/γ + V 2

2 /2g + 80 + 4.89

V1 = V2

p2 = 769 kPa
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PROBLEM 10.51

Situation: Water drains from a tank through a galvanized iron pipe. D = 1 in.
Total elevation change is 14 ft. Pipe length = 10 ft.

Find: Velocity in pipe.

Properties: Kinematic viscosity of water is 1.22× 10−5 ft2/ s. From Table 10.3 Ke =
0.5. From Table 10.3, ks = 0.006 inches.

Assumptions: Assume turbulent flow (check after calculations are done). Assume
α1 ≈ 1.00.
APPROACH

Apply the energy equation from the water surface in the tank to the outlet of the
pipe. Use the Darcy-Weisbach equation for head loss. Assume turbulent flow and
then solve the resulting equations using an iterative approach.

ANALYSIS

Energy equation

p1
γ
+ α1

V 2
1

2g
+ z1 =

p2
γ
+ α2

V 2
2

2g
+ z2 +

X
hL

0 + 0 + 14 = 0 +
V 2
2

2g
+ 0 + (Ke + f

L

D
)
V 2
2

2g

14 ft =

µ
1 +Ke + f

L

D

¶
V 2
2

2g

14 ft =

µ
1 + 0.5 + f

(120 in)

(1 in)

¶
V 2
2

2g
(1)

Eq. (1) becomes

V 2 =
2× (32.2 ft/ s2)× (14 ft)

1.5 + 120× f

Guess f = 0.02 and solve for V

V 2 =
2× (32.2 ft/ s2)× (14 ft)

1.5 + 120× 0.02
V = 15.2 ft/ s

Reynolds number (based on the guessed value of friction factor)

Re =
V D

ν

=
(15.2 ft/ s) (1/12 ft)

1.22× 10−5 ft2/ s
= 103, 856

886



Resistance coefficient (new value)

f =
0.25£

log10
¡

ks
3.7D

+ 5.74
Re0.9

¢¤2
=

0.25£
log10

¡
0.006
3.7

+ 5.74
1038560.9

¢¤2
= 0.0331

Recalculate V based on f = 0.0331

V 2 =
2× (32.2 ft/ s2)× (14 ft)
1.5 + 120× 0.0331

V = 12.82 ft/ s

Reynolds number (recalculate based on V = 12.82 ft/ s)

Re =
(12.8 ft/ s) (1/12 ft)

1.22× 10−5 ft2/ s
= 874, 316

Recalculate f based on Re = 874, 316

f =
0.25£

log10
¡
0.006
3.7

+ 5.74
8743160.9

¢¤2
= 0.0333

Recalculate V based on f = 0.0333

V 2 =
2× (32.2 ft/ s2)× (14 ft)
1.5 + 120× 0.0333

V = 12.80 ft/ s

Since velocity is nearly unchanged, stop!

V = 12.80 ft/ s

1. The Reynolds number 874,000 is much greater than 3000, so the assumption of
turbulent flow is justified.

2. The solution approach, iteration with hand calculations, is straightforward.
However, this problem can be solved faster by using a computer program that
solves simultaneous, nonlinear equations.
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PROBLEM 10.52

Situation: Water drains from a tank, passes through a pipe and then jets upward.
Additional details are provided in the problem statement.

Find: (a) Exit velocity of water.
(b) Height of water jet.

Properties: From Table 10.2 ks = 0.15 mm = 0.015 cm.
From Table 10.3 Kb = 0.9 and Ke = 0.5.

Assumptions: The pipe is galvanized iron.
The water temperature is 20oC so ν = 10−6 m2/s.
Relative roughness ks/D = .015/1.5 = 0.01. Start iteration at f = 0.035.

APPROACH

Apply the energy equation from the water surface in the tank to the pipe outlet.

ANALYSIS

Energy equation

p1/γ + α1V
2
1 /2g + z1 = p2/γ + α2V

2
2 /2g + z2 +

X
hL

0 + 0 + 5 = 0 + α2V
2
2 /2g + 0 + (Ke + 2Kb + fL/D)V 2

2 /2g

5 = (V 2
2 /2g)(1 + 0.5 + 2× 0.9 + .035× 10/0.015)

5 = (V 2
2 / (2× 9.81))(26.6)

V2 = 1.920 m/s

Reynolds number

Re = V D/ν

= 1.92× 0.015/10−6
= 2.88× 104.

Resistance coefficient (new value)

f =
0.25£

log10
¡

ks
3.7D

+ 5.74
Re0.9

¢¤2
=

0.25£
log10

¡
0.01
3.7
+ 5.74

288000.9

¢¤2
= 0.040

Recalculate V2 with this new value of f

V2 = 1.81 m/s
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Energy equation (from the pipe outlet to the top of the water jet)

h = V 2/2g

= (1.81)2/(2× 9.81)
= 0.1670 m

= 16.7 cm
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PROBLEM 10.53

Situation: Water (60oF) is pumped from a reservoir to a large pressurized tank.
Additional details are given in the problem statement.

Find: Power to operate the pump.

Properties: From Table A.5 ν = 1.22× 10−5 ft2/s
From Table 10.2 ks = 0.002 in = 1. 67× 10−5 ft
From Table 10.3 Ke = 0.03

Assumptions: Assume the entrance is smooth.

ANALYSIS

Flow rate equation

V = Q/A = 1.0/((π/4)D2)

= 1.0/((π/4)(1/3)2)

= 11.46 ft/s

Then

Re = 11.46× (1/3)/(1.22× 10−5) = 3.13× 105
ks/D = 4.5× 10−4

Resistance coefficient (from Moody diagram, Fig. 10.8)

f = 0.0165

Then

fL/D = 0.0165× 300/(1/3) = 14.86
Energy equation (from water surface A to water surface B)

pA/γ + αAV
2
A/2g + zA + hp = p2/γ + α2V

2
2 /2g + z2 +

X
hL

0 + 0 + 0 + hp = (10× 144/62.4) + 0 + (Ke +KE + fL/D)V 2/2g

Thus

hp = 23.08 + (0.03 + 1 + 14.86)(11.462/64.4)

= 55.48 ft

Power equation
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P =
Qγhp
η

=
1.0× 62.4× 55.48

0.9
= 3847 ft · lbf/s
= 6.99 horsepower
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PROBLEM 10.54

Situation: A pump operates between a reservoir and a tank.
Additional details are provided in the problem statement

Find: Time to fill tank.

Properties: From Table 10.3 Ke = 0.5 and KE = 1.0.

APPROACH

Apply the energy equation from the reservoir water surface to the tank water surface.
The head losses will be due to entrance, pipe resistance, and exit.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 + hp = p2/γ + V 2

2 /2g + z2 +
X

hL

0 + 0 + z1 + hp = 0 + 0 + z2 + (Ke + fL/D +KE)V
2/2g

hp = (z2 − z1) + (0.5 + (0.018× 30/0.9) + 1.0)V 2/2g

hp = h+ (2.1)V 2/2g

But the head supplied by the pump is ho(1− (Q2/Q2
max)) so

ho(1−Q2/Q2
max)) = h+ 1.05V 2/g

50(1−Q2/4) = h+ 1.05Q2/(gA2)

50− 12.5Q2 = h+ 1.05Q2/(gA2)

Area
A = (π/4)D2 = (π/4)(0.92) = 0.63m2

So

50− 12.5Q2 = h+ 0.270Q2

50− h = 127.77Q2

√
50− h = 3.57Q

The discharge into the tank and the rate of water level increase is related by

Q = Atank
dh

dt
so

√
50− h = 3.57Atank

dh

dt
or
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dt = 3.57Atank(50− h)−1/2dh

Integrating

t = 2× 3.57Atank(50− h)1/2 + C

when t = 0, h = 0 and Atank = 100 m2 so

t = 714(7.071− (50− h)1/2)

When h = 40 m

t = 2791 s

= 46.5 min
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PROBLEM 10.55

Situation: Kerosene is pumped through a smooth pipe. D = 3 cm V̄ = 4m/ s.
Additional details are provided in the problem statement

Find: Ratio of head loss for laminar flow to head loss for turbulent flow.

(hL)Laminar flow
(hL)Turbulent flow

ANALYSIS

Reynolds number

Re =
V D

ν

=
4× 0.03
2× 10−6

= 6× 104

If the flow is laminar at this Reynolds number

flam =
64

Re

=
64

6× 104
= 1. 07× 10−3

Resistance coefficient (from Moody diagram, Fig.10-8)

fturb = 0.020

Then

(hL)Laminar flow
(hL)Turbulent flow

=
hflam
hfturb

=
flam
fturb

=
0.00107

0.02

= 0.0535

894



PROBLEM 10.56

Situation: Water flows in a uncoated cast iron pipe. D = 4 in Q = 0.02 ft3/ s.

Find: Resistance coefficient f.

Properties: From Table A.5 ν = 1.22× 10−5 ft2/s
From Table 10.2 ks = 0.01 in

ANALYSIS

Reynolds number

Re =
4Q

πDν

=
4× 0.02

π × (4/12)× (1.22× 10−5)
= 6.3× 103

Sand roughness height

ks
D

=
0.01

4
= 0.0025

Resistance coefficient (from Moody diagram, Fig. 10.8)

f = 0.038
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PROBLEM 10.57

Situation: Fluid flows in a concrete pipe. D = 6 in L = 900 ft Q = 3 cfs .µ =
ρν = 0.005 lbf-s/ft2

Additional details are provided in the problem statement

Find: Head loss.

ANALYSIS

Reynolds number

Re = 4Q/(πDν)

= 4(3.0)/(π(1/2)3.33× 10−3)
= 2294 (laminar)

Flow rate equation

V = Q/(πD2/4)

= 3.0/(π/4× 0.52)
= 15.28 ft/s

Head loss (laminar flow)

hf = 32µLV/(γD2)

= 32(5× 10−3)900(15.28)/(1.5× 32.2× (1/2)2)
= 182.2 ft
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PROBLEM 10.58

Situation: Crude oil flows through a steel pipe. D = 15 cm Q = 0.03m3/ s.
Points A and B are 1 km apart. pB = 300 kPa
Additional details are provided in the problem statement.

Find: Pressure at point A.

Properties: From Table 10.2 ks = 4.6× 10−5 m.

ANALYSIS

Reynolds number

Re = V D/ν

= 4Q/(πDν)

= 4× 0.03/(π × 0.15× (10−2/820))
2.09× 104 (turbulent)

Sand roughness height

ks/D = 4.6× 10−5/0.15
= 3.1× 10−4

Flow rate equation

V = Q/A

= 0.03/(π × 0.152/4)
= 1.698 m/s

Resistance coefficient (from Moody diagram, Fig. 10.8)

f = 0.027

Darcy Weisbach equation

hf = f
L

D

V 2

2g

= 0.027

µ
1000

0.15

¶µ
1.6982

2× 9.81
¶

= 26.4 m

Energy equation

pA/γ + αAV
2
A/2g + zA = pB/γ + αBV

2
B/2g + zB + hf

pA = 0.82× 9810[(300000/(0.82× 9810)) + 20 + 26.41]
= 673 kPa
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PROBLEM 10.59

Situation: Water exits a tank through a short galvanize iron pipe. Dtank = 2m Dpipe =
26mm Lpipe = 2.6m
Fully open angle valve: Kv = 5.0

Find: (a) Time required for the water level in tank to drop from 10 m to 2 m.

Assumptions: The pipe entrance is smooth: Ke ≈ 0
The kinetic energy correction factor in the pipe is α2 = 1.0

APPROACH

Apply the energy equation from the top of the tank (location 1) to the exit of the
angle valve (location 2).

ANALYSIS

Energy equation

h = α2
V 2

2g
+

V 2

2g
(Ke +Kv + f

L

D
)

Term by term analysis

α2 = 1.0

Ke ≈ 0, Kv = 5.0

L/D = 2.6/0.026 = 100.0

Combine equation and express V in terms of h

V =

s
2gh

6 + 100× f

Sand roughness height

ks
D
=
0.15

26
= 5.8× 10−3

Reynolds number

Re =
V × 0.026
10−6

= 2.6× 104V
Rate of decrease of height

dh

dt
= −Q

A
= −0.000531

3.14
V = −0.000169V

A program was written to first find V iteratively for a given h using Eq. 10.26 for
the friction factor. Then a new h was found by

hn = hn−1 − 0.000169V∆t
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where ∆t is the time step. The result was 1424 sec or 23.7 minutes.

COMMENTS

1. When valves are tested to evaluateKvalve the pressure taps are usually connected
to pipes both upstream and downstream of the valve. Therefore, the head loss
in this problem may not actually be 5V 2/2g.

2. The velocity exiting the valve will probably be highly non-uniform; therefore,
this solution should be considered as an approximation only.
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PROBLEM 10.60

Situation: Water flows from point A to B in a cast iron pipe.
Additional information is provided in the problem statement.

Find: Direction and rate of flow.

Properties: From Table A.5 ν = 1.41× 10−5 ft2/s.
From Table 10.2 ks = 0.01 in = 0.000833 ft.

Assumptions: Flow is from A to B.

ANALYSIS

hf = ∆(p/γ + z)

= (−20× 144/62.4) + 30
= −16.2 ft

Therefore, flow is from B to A.

Parameters for the Moody diagram

Re f1/2 = (D3/2/ν)(2ghf/L)
1/2

= (23/2/(1.41× 10−5)× 64.4× 16.2/(3× 5, 280))1/2
= 5.14× 104

ks/D = 4. 2× 10−4

Resistance coefficient (from the Moody diagram,Fig. 10.8)

f = 0.0175

Darcy Weisbach equation

V =
q
hf2gD/fL

=
p
(16.2× 64.4× 2)/(0.0175× 3× 5, 280)

= 2.74 ft/s

Flow rate equation

q = V A

= 2.74× (π/4)× 22
= 8.60 cfs

900



PROBLEM 10.61

Situation: Water flows between two reservoirs. Q = 0.1m3/ s.
The pipe is steel. D = 15 cm.
Additional details are provided in the problem statement

Find: Power that is supplied to the system by the pump.

Properties: From Table 10.2 ks = 0.046 mm.

ANALYSIS

Flow rate equation

V = Q/A

= 0.10/((π/4)× 0.152)
= 5.66 m/s

V 2/2g = 1.63 m

ks/D = 0.0046/15 = 0.0003

Reynolds number

Re = V D/ν = 5.66× 0.15/(1.3× 10−6)
= 6.4× 105

Resistance coefficient (from the Moody diagram, Fig. 10.8)

f = 0.016

Energy equation (between the reservoir surfaces)

p1/γ + α1V
2
1 /2g + z1 + hp = p2/γ + α2V

2
2 /2g + z2 +

X
hL

hp = z2 − z1 +
V 2

2g
(Ke + f(L/D) +KE)

= 13− 10 + 1.63(0.1 + 0.016× 80/(0.15) + 1)
= 3 + 15.7 = 18.7 m

Power equation

P = Qγhp

= 0.10× 9810× 18.7
= 18, 345W

= 18.3 kW
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PROBLEM 10.62

Situation: Water flows between two reservoirs in a concrete pipe.
Other details are provided in the problem statement.

Find: (a) Discharge (concrete pipe).
(b) Discharge (riveted steel).
(c) Pump power for uphill flow (concrete pipe).

Properties: From Table A.5 ν = 1.31× 10−6 m2/s.
Assumptions: Based on data in Table 10.2, for concrete pipe ks = 0.3 mm, and for
riveted steel ks = 0.9 mm

APPROACH

Apply the energy equation from upstream reservoir water surface to downstream
water surface.

ANALYSIS

Energy equation

p1/γ + α1V
2
1 /2g + z1 = p2/γ + α2V

2
2 /2g + z2 + hL

z1 = z2 + hf

100 m = (fL/D)V 2/2g

ks/D = 0.3/103 = 0.0003

Resistance coefficient (from the Moody diagram,Fig. 10.8)

f = 0.016

Then
100m = (0.016× 10, 000/1)V 2/2g

V = (100(2g)/(160))1/2 = 3.50 m/s

Reynolds number

Re = V D/ν = (3.50)(10)/(1.31× 10−6)
= 2.67× 106

Check f from Fig. 10.8 (f = 0.0155) and solve again:

V = 3.55 m/s

Qconcrete = V A

= (3.55)(π/4)D2

Qconcrete = 2.79 m3/s
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For riveted steel: ks/D = 0.9/1000 ' 001 and from Fig. 10.8 f = 0.0198.

QR.S/Qc =
p
0.0155/0.0198 = 0.885

QRiveted.Steel = 2.47 m3/s

Head of the pump

hp = (z1 − z2) + hL

= 100 m+ 100(2.8/2.79)2

= 201 m

Power equation

P = Qγhp

= (2.8)(9, 810)(201)

= 5.52 MW
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PROBLEM 10.63

Situation: A fluid flows through a pipe made of galvanized iron. D = 8cm ν =
10−6m2/ s ρ = 800 kg/m3.
Additional details are provided in the problem statement

Find: Flow rate.

Properties: From Table 10.2 ks = 0.15 mm.

ANALYSIS

Energy equation

p1/γ + α1V
2
1 /2g + z1 = p2/γ + α2V

2
2 /2g + z2 + hf

150, 000/(800× 9.81) + V 2
1 /2g + 0 = 120, 000/(800× 9.81) + V 2

2 /2g + 3 + hf

hf = 0.823

((D3/2)/(ν))× (2ghf/L)1/2 = ((0.08)3/2/10−6)× (2× 9.81× 0.823/30.14)1/2
= 1.66× 104

Relative roughness

ks/D = 1.5× 10−4/0.08 = 1.9× 10−3
Resistance coefficient. From Fig. 10-8 f = 0.025. Then

hf = f(L/D)(V 2/2g)

Solving for V

V =
q
(hf/f)(D/L)2g

=
p
(0.823/0.025)(0.08/30.14)× 2× 9.81 = 1.312 m/s

Q = V A

= 1.312× (π/4)× (0.08)2
= 6.59× 10−3 m3/s
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PROBLEM 10.64

Situation: Oil is pumped from a lower reservoir to an upper reservoir through a steel
pipe. D = 30 cm Q = 0.20m3/ s.
From Table 10.2 ks = 0.046 mm
Additional details are provided in the problem statement

Find: (a) Pump power.
(b) Sketch an EGL and HGL.

APPROACH

Apply the energy equation between reservoir surfaces .

ANALYSIS

Energy equation

p1/γ + α1V
2
1 /2g + z1 + hp = p2/γ + α2V

2
2 /2g + z2 +

X
hL

100 + hp = 112 + V 2/2g(Ke + fL/D +KE)

hp = 12 + (V 2/2g) (0.03 + fL/D + 1)

Flow rate equation

V = Q/A

= 0.20/((π/4)× 0.302)
= 2.83 m/s

V 2/2g = 0.408m

Reynolds number

Re = V D/ν

= 2.83× 0.30/(10−5)
= 8.5× 104

ks/D = 4.6× 10−5/0.3
= 1.5× 10−4

Resistance coefficient (from the Moody diagram, Fig. 10.8)

f = 0.019

Then

hp = 12 + 0.408(0.03 + (0.019× 150/0.3) + 1.0)
= 16.3 m

905



Power equation

P = Qγhp

= 0.20× (940× 9.81)× 16.3 = 2.67× 104W
= 30.1 kW

EGL
HGL
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PROBLEM 10.65

Situation: In a pipe, the resistance coefficient is f =0.06, D = 40 cm, V =
3m/ s, ν = 10−5m2/ s .

Find: Change in head loss per unit meter if the velocity were doubled.

ANALYSIS

Reynolds number

Re = V D/ν

= 3× 0.40/10−5
= 1.2× 105

Since Re > 3000, the flow is turbulent and obviously the conduit is very rough
(f = 0.06); therefore, one would expect f to be virtually constant with increased
velocity. Since hf = f(L/D) (V 2/2g), we expect, hf ∼ V 2, so if the velocity is
doubled, the head loss will be quadrupled.
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PROBLEM 10.66

Situation: A cast iron pipe joins two reservoirs. D = 1.0 ft L = 200 ft.
Additional information is provided in the problem statement.

Find: (a) Calculate the discharge in the pipe.
(b) Sketch the EGL and HGL.

Properties: From Table 10.2 ks = 0.01 in

Assumptions: Water temperature is 60oF: ν = 1.22× 10−5 ft2/s µ = 2.36× 10−5N ·
s/m2 ρ = 1.94 slug/m3

APPROACH

Apply the energy equation from the water surface in the upper reservoir to the water
surface in the lower reservoir.

ANALYSIS

Energy equation

p1/γ + α1V
2
1 /2g + z1 = p2/γ + α2V

2
2 /2g + z2 +

X
hL

0 + 0 + 100 = 0 + 0 + 40 + (Ke + 2Kv ++KE + fL/D)V 22/g

100 = 40 + (0.5 + 2× 0.2 + 1.0 + f × 200/1)V 2/2g

The equation for V becomes

V 2

2g
=

60

1.9 + 200f
(1)

Relative roughness

ks
D

=
0.01

12
= 8. 3× 10−4

Reynolds number

Re =
V D

ν

=
V × 1.0

1.22× 10−5
=

¡
8.20× 104 × V

¢
(2)

Friction factor (Swamee-Jain correlation—Eq. 10.26)

f =
0.25h

log10

³
8. 3×10−4

3.7
+ 5.74

(8.20×104×V )0.9
´i2 (3)
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Solve Eqs. (1) to (3) simultaneously (we applied a computer program, TK Solver)

V = 26.0m/ s

Re = 2, 130, 000

f = 0.019

Flow rate equation

Q = V A

= 26.0(π/4× 12)
= 20.4 cfs
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PROBLEM 10.67

Situation: A small stream fills a reservoir—water from this reservoir is used to create
electrical power.
Discharge is Q = 2 cfs. Elevation difference is H = 34 ft.
Maximum acceptable head loss in the penstock is hf =3 ft.
Penstock length is L = 87 ft.
Penstock is commercial-grade, plastic pipe.

Find: Find the minimum diameter for the penstock pipe.

Properties: Water @ 40 ◦F from Table A.5: ν = 1.66× 10−5 ft2/ s.
Assumptions: 1.) Neglect minor losses associated with flow through the penstock.
2.) Assume that pipes are available in even sizes—that is, 2 in., 4 in., 6 in., etc.
3.) Assume a smooth pipe— ks = 0.
4.) Assume turbulent flow (check this after the calculation is done).

APPROACH

Apply the Darcy-Weisbach equation to relate head loss (hf) to pipe diameter. Apply
the Swamee-Jain correlation to relate friction factor (f) to flow velocity. Also, write
equations for the Reynolds number and the flow rate. Solve these four equations
simultaneously to give values of D, V, f, and Re.

ANALYSIS

Darcy-Weisbach equation

hf = f
L

D

V 2

2g
(1)

Resistance coefficient (Swamee-Jain correlation; turbulent flow)

f =
0.25£

log10
¡
5.74
Re0.9

¢¤2 (2)
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Reynolds number

Re =
V D

ν
(3)

Flow rate equation

Q = V
πD2

4
(4)

Solve Eqs. (1) to (4) simultaneously. The computer program TKSolver was used for
our solution.

f = 0.01448

V = 9.026 ft/ s

D = 6.374 in

Re = 289, 000

Recommendation

Select a pipe with D = 8 in.

COMMENTS

With an 8-inch-diameter pipe, the head loss associated with flow in the pipe will be
less than 10% of the total available head (34 ft). If an engineer selects a pipe that is
larger that 8 inches, then cost goes up.
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PROBLEM 10.68

Situation: Commercial steel pipe will convey water.
Design head loss: hL = 1 ft per 1000 ft of pipe length.

Find: Pipe diameter to produce specified head loss.

Properties: From Table A.5 ν = 1.22× 10−5 ft2/s.
From Table 10.2 ks = 0.002 in = 1. 7× 10−4 ft.
Assumptions: The pipes are available in even inch sizes (e.g. 10 in., 12 in., 14 in.,
etc.)

ANALYSIS

Darcy Weisbach equation

hf = f
L

D

V 2

2g

= f
L

D

Q2

2gA2

= f
8LQ2

gπ2D5

Solve for diameter

D =

µ
f
8LQ2

gπ2hf

¶1/5
Assume f = 0.015

D =

Ã
0.015

8 (1000) (300)2

32.2× π2 × 1

!1/5
= 8.06 ft

Now get a better estimate of f :

Re = 4Q/(πDν) = 3.9× 106

f =
0.25£

log10
¡

ks
3.7D

+ 5.74
Re0.9

¢¤2
=

0.25h
log10

³
0.002/12
3.7×8.06 +

5.74
(3.9×106)0.9

´i2
= 0.0104

Compute D again:

D =

Ã
0.0104

8 (1000) (300)2

32.2× π2 × 1

!1/5
= 7.49 ft

Thus, specify a pipe with D = 90 in
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PROBLEM 10.69

Situation: A steel pipe will carry crude oil. S = 0.93 ν = 10−5m2/ s Q =
0.1m3/ s.
Available pipe diameters are D = 20, 22, and 24 cm.
Specified head loss: hL = 50m per km of pipe length.

Find: (a) Diameter of pipe for a head loss of 50 m.
(b) Pump power.

Properties: From Table 10.2 ks = 0.046 mm.

ANALYSIS

Darcy Weisbach equation

hf = f
L

D

V 2

2g

= f
L

D

Q2

2gA2

= f
8LQ2

gπ2D5

Solve for diameter

D =

µ
f
8LQ2

gπ2hf

¶1/5
Assume f = 0.015

D =

Ã
0.015

8 (1000) (0.1)2

9.81× π2 × 50

!1/5
= 0.19m

Calculate a more accurate value of f

Re = 4Q/(πDν)

= 4× 0.1/(π × 0.19× 10−5)
= 6.7× 104

f =
0.25£

log10
¡

ks
3.7D

+ 5.74
Re0.9

¢¤2
=

0.25£
log10

¡
0.046
3.7×190 +

5.74
670000.9

¢¤2
= 0.021

Recalculate diameter using new value of f
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D = (0.021/0.015)1/5 × 0.19
= 0.203 m = 20.3 cm

Use the next larger size of pipe; D = 22 cm.

Power equation (assume the head loss is remains at hL ≈ 50 m/1,000 m)

P = Qγhf

= 0.1× (0.93× 9810)× 50
= 45.6 kW/km
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PROBLEM 10.70

Situation: Design a pipe to carry water (Q = 15 cfs) between two reservoirs.
Distance between reservoirs = 3 mi.
Elevation difference between reservoirs = 30 ft.

Find: Pipe diameter.

Assumptions: T = 60oF, ν = 1.22× 10−5 ft2/s.
Commercial steel pipe ks = 0.002 in = 0.00017 ft.

ANALYSIS

Energy equation
30 = (Ke +KE + fL/D)(Q2/A2)/2g

Assume f = 0.015. Then

30 = (1.5 + 0.015× 3× 5, 280/D)(Q2/((π/4)2D4)/2g

30 = (1.5 + 237.6/D)(152/(0.617D4)/64.4

30 = (1.5 + 237.6/D)(5.66/D4)

Neglect the entrance and exit losses and solve

D = 2.15 ft

Re = 4Q/(πDν)

= 7.3× 105
ks/D = 0.002/(2.15× 12)

= 0.000078

Resistance coefficient (from the Moody diagram,Fig. 10.8)

f = 0.0135

Solve again

30 = (1.5 + 214/D)(5.66/D4)

D = 2.10 ft = 25.2 in.

Use 26 in. steel pipe. (one possibility)
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PROBLEM 10.71

Situation: Problem 7.78 shows a device that can be used to demonstrate cavitation.
Let D equal diameter of pipe

Find: Design a device that will visually demonstrate cavitation.

Assumptions: water main has a pressure of 50 psig.

ANALYSIS

First you might consider how to physically hold the disk in the pipe. One way to
do this might be to secure the disk to a rod and then secure the rod to streamlined
vanes in the pipe such as shown below. The vanes would be attached to the pipe.

Vane

Rod

Side viewEnd view

Disk

To establish cavitation around the disk, the pressure in the water at this section
will have to be equal to the vapor pressure of the water. The designer will have to
decide upon the pipe layout in which the disk is located. It might be something
like shown below. By writing the energy equation from the disk section to the pipe
outlet one can determine the velocity required at the disk to create vapor pressure
at that sectional. This calculation will also establish the disk size relative to the
pipe diameter. Once these calculations are made, one can calculate the required
discharge, etc. Once that calculation is made, one can see if there is enough pressure
in the water main to yield that discharge with the control valve wide open. If not,
re-design the system. If it is OK, then different settings of the control valve will yield
different degrees of cavitation.

Outlet

Water main
Valve

Reservoir

Elevation View
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PROBLEM 10.72

Situation: A reservoir is described in the problem statement.

Find: Discharge.

Properties: From Table 10.2 ks = 4× 10−4 ft.
From Table A.5 ν = 1.41× 10−5 ft2/s.
From Table 10.3 Ke = 0.5.

APPROACH

Apply the energy equation from water surface in reservoir to the outlet.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 + hL

0 + 0 + 120 = 0 + V 2/2g + 70 + (Ke ++KE + f(L/D))V 2/2g

(V 2/2g)(1.5 + f(L/D)) = 50 ft
V 2

2g
=

50

1.5 + 200f
(1)

Sand roughness height
ks/D = 4× 10−4/0.5 = 0.0008

Reynolds number

Re = 3.54× 104 × V (2)

Solve Eq. 10.26 (for f),Eq. (1) and (2) simultaneously (we used a hand calculator).
The result is

V = 24.6 ft/s

Flow rate equation

Q = V A

= 24.6(π/4)(0.52)

= 4.83 cfs

EGL

HGL

917



PROBLEM 10.73

Situation: A reservoir is described in the problem statement.

Find: Minimum pressure in pipe.

Properties: From Table A.5 ν = 1.41× 10−5 ft2/s.
Assumptions: Ke = 0.10

APPROACH

Apply the energy equation from water surface in reservoir to the outlet.

ANALYSIS

Flow rate equation

V = Q/A

= 50 ft/s

Reynolds number

Re = V D/ν

= (50)(2)/(1.41× 10−5)
= 7.1× 106

Energy equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 +
X

hL

0 + 0 + 600 = 0 + V 2
2 /2g + 200 + (Ke + f(L/D))V 2/2g

400 = (V 2/2g)(1.10 + f(1, 200/2))

400 = (502/64.4)(1.10 + 600f)

f = 0.0153

From Fig. 10.8 ks/D = 0.00035 so

ks = 0.00070 ft

The minimum pressure in the pipe is at the pipe outlet.
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PROBLEM 10.74

Situation: A heat exchanger is described in the problem statement.

Find: Power required to operate heat exchanger with:
(a) clean tubes.
(b) scaled tubes.

Properties: From Table 10.2 ks = 0.15 mm.

ANALYSIS

ṁ/tube = 0.50 kg/s

Q/tube = 0.50/860 = 5.8139× 10−4 m3/s
V = Q/A = 5.8139×10−4/((π/4)× (2× 10−2)2) = 1.851 m/s
Re = V Dρ/µ = 1.851× 0.02× 860/(1.35× 10−4) = 2.35× 105

ks/D = 0.15/20 ≈ 0.007

From Fig. 10.8 f = 0.034. Then

hf = f(L/D)V 2/2g = 0.034(5/0.02)× (1.8512/2× 9.81) = 1.48 m
a) P = Qγhf = 5.8139× 10−4 × 860× 9.81× 1.48× 100

= 726 W

b) ks/D = 0.5/16

= 0.031

so from Fig. 10.8 f = 0.058

P = 728× (0.058/0.034)× (20/16)4 = 3.03 kW
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PROBLEM 10.75

Situation: A heat exchanger is described in the problem statement.

Find: Pump power required.

Assumptions: Smooth bends of 180◦, Kb ≈ 0.7

ANALYSIS

Examination of the data given indicates that the tubing in the exchanger has an
r/d ≈ 1.
Energy equation

p1/γ + V 2
1 /2g + z1 + hp = p2/γ + V 2

2 /2g + z2 + hL

But V1 = V2 and p1 = p2 so

hp = hL + (z1 − z2)

The average temperature = 50◦C so ν = 0.58× 10−6 m2/s

V = Q/A = 3× 10−4/(π/4(0.02)2) = 0.955 m/s
Re = V D/ν = 0.955(0.02)/(0.58× (10−6) = 3.3× 104
f = 0.023

hL = (fL/D + 19Kb)V
2/2g = (0.023(20)/0.02 + 19× 0.7)0.9552/(2× 9.81)

= 1.69 m

hp = z2 − z1 + hL = 0.8 + 1.69 = 2.49 m

P = γhpQ = 9, 685(2.49)3× 10−4
= 7.23 W
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PROBLEM 10.76

Situation: A heat exchanger is described in the problem statement.

Find: Power required to operate pump.

Properties: From Table A.5 ν = 6.58× 10−7 m2/s.
From Table 10.2 ks = 0.0015 mm.

ANALYSIS

Reynolds number

Re =
0.02× 10
6.58× 10−7 = 3.04× 10

5

Flow rate equation

Q =
π

4
× 0.022 × 10 = 0.00314 m3/s

Relative roughness (copper tubing)

ks
D
=
1.5× 10−3 mm

20 mm
= 7.5× 10−5

Resistance coefficient (from Moody diagram)

f = 0.0155

Energy equation

hp =
V 2

2g
(f

L

D
+
X

KL)

=
102

2× 9.81(0.0155×
10 m
0.02 m

+ 14× 2.2) = 196 m

Power equation

P =
γQhp
η

=
9732× 0.00314× 196

0.8
= 7487W

P = 7.49 kW
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PROBLEM 10.77

Situation: A heat exchanger is described in the problem statement.

Find: System operating points.

Properties: From Table 10.2 ks = 1.5× 10−3 mm.

ANALYSIS

Energy equation

hp =
V 2

2g
(
X

KL + f
L

D
)

Substitute in the values for loss coefficients, L/D and the equation for hp

hp0

"
1−

µ
Q

Qmax

¶3#
=

V 2

2g
(14× 2.2 + f × 1000)

Flow rate equation

Q = V A

= 1.767× 10−4V
Combine equations

hp0

"
1−

µ
Q

Qmax

¶3#
= 1.632× 106Q2(30.8 + f × 1000) (1)

Relative roughness

ks
D
=
1.5× 10−3

15
= 10−4

Reynolds number

Re =
V D

ν

=
V × 0.015
6.58× 10−7 = 2.28× 10

4V = 1.29× 108Q

Eq. (1) becomes

F (Q) = hp0

"
1−

µ
Q

Qmax

¶3#
− 1.632× 106Q2(30.8 + f × 1000)

A program was written to evaluate F (Q) by inputting a value for Q and trying
different Q’s until F (Q) = 0. The results are
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hp0 (m) Q (m3/s)
2 0.000356
10 0.000629
20 0.000755
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PROBLEM 10.78

Situation: A system with a reservoir and free jet is described in the problem state-
ment.

Find: The discharge.
(b) Points of maximum pressure.
(c) Point of minimum pressure.

Assumptions: T = 60oF and ν = 1.22× 10−5 ft2/s.
r/d = 2 and Kb = 0.2.
f = 0.028

ANALYSIS

ks/D = 0.004

Energy equation

p1/γ + z1 + V 2
1 /2g = p2/γ + z2 + V 2

2 /2g +
X

hL

100 = 64 + (V 2/2g)(1 + 0.5 +Kb + f × L/D)

= 64 + (V 2/2g)(1 + 0.5 + 0.2 + 0.028× 100/1)
36 = (V 2/2g)(4.5)

V 2 = 72g/4.5 = 515 ft2/s2

V = 22.7 ft/s

Reynolds number

Re = 22.7(1)/(1.22× 10−5) = 1.9× 106
f = 0.028

Flow rate equation

Q = 22.7(π/4)12

= 17.8 cfs

V 2/2g = 36/4.5 = 8.0 ft

EGL

HGL

Elev. = 64 ft

c)  maximum pressure

minimum pressure
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pmin/γ = 100− 95− (V 2/2g)(1 + 0.5) = 5− 8(1.5) = −7 ft
pmin = −7(62.4) = −437 psfg = -3.03 psig

pmax/γ + V 2
m/2g + zm = p2/γ + z2 + V 2

2 /2g +
X

hL

pmax/γ = 64− 44 + 8.0(0.2 + 0.028(28/1)) = 27.9 ft
pmax = 27.9(62.4) = 1, 739 psfg = 12.1 psig
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PROBLEM 10.79

Situation: Gasoline being pumped from a gas tank is described in the problem state-
ment.

Find: Pump power.

Properties: From Fig. A.2 S = 0.68, ν = 5.5× 10−6 ft2/sec.

ANALYSIS

Q = 0.12 gpm = 2.68× 10−4 cfs
d1 = (1/4)(1/12) = 0.0208 ft

d2 = (1/32)(1/12) = 0.0026 ft

d2/d1 = (1/32)/(1/4) = 0.125

γ = 62.4(0.68) = 42.4 lbf/ft3

V1 = Q/A = 2.68× 10−4/(π/4(1/48)2) = 0.786 ft/s
V 2
1 /2g = 0.00959 ft

V2 = (32/4)2 × 0.786 = 50.3 ft/s
V 2
2 /2g = 39.3 ft

Re1 = V1D1/ν

= 0.786(0.0208)/(5.5× 10−6)
= 2, 972

From Fig. 10.8 f ≈ 0.040

p1 = 14.7 psia

z2 − z1 = 2 ft

p2 = 14.0 psia

hL = (fL/D + 5Kb)V
2
1 /2g

= (0.040× 10/0.0208 + 5× 0.21)0.00959 = 0.194 ft
hp = (p2 − p1)/γ + z2 − z1 + V 2

2 /2g + hL

= (14.0− 14.7)144/42.4 + 2 + 39.3 + 0.194 = 39.1 ft
Power equation

P = γhpQ/(550e) = 42.4(39.1)0.000268/(550× 0.8)
= 10.1×10−4 hp

926



PROBLEM 10.80

Situation: A partially-closed valve is described in the problem statement.
from Table 10.2 ks = 0.046 mm

Find: Loss coefficient for valve.

APPROACH

First find Q for valve wide open. Assume valve is a gate valve.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 +
X

hL

2 = 0 + 0 + 0 + (V 2/2g)(0.5 + 0.9 + 0.2 + 0.9 + 1 + fL/D)

V 2 = 4g/(3.5 + fL/D)

Assume f = 0.015. Then

V = [4× 9.81/(3.5 + 0.015× 14/0.1)]1/2 = 2.65 m/s
ks/D ' 0.0005

Re = 2.65× 0.10/(1.3× 10−6) = 2.0× 105

From Fig. 10.8 f = 0.019. Then

V = [4× 9.81/(3.5 + 0.019× 14/0.10)]1/2 = 2.52 m/s
Re = 2.0× 105 × 2.52/2.65 = 1.9× 105; O.K.

This is close to 2.0×105 so no further iterations are necessary. For one-half the
discharge

V = 1.26 m/s

Re = 9.5× 104

and from Fig. 10.8 f = 0.021. So

V 2 = 1.588 = 4× 9.81/(3.3 +Kv + 0.021× 14/0.1)
3.3 +Kv + 2.94 = 24.7

Kv = 18.5
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PROBLEM 10.81

Situation: A water main is described in the problem statement.

Find: The pipe size.

Properties: From Table 10.2 ks = 0.15 mm. Table A.5 (water at 10 ◦C): γ =
9810N/m3, ν = 1.31× 10−6m2/ s.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 + hf

(300, 000/9, 810) + 0 = (60, 000/9, 810) + 10 + hf

hf = 14.46 m

f(L/D)(Q2/A2)/2g = 14.46

f(L/D)[Q2/((π/4)D2)2/2g] = 14.46

(42fLQ2/π2)/2gD5 = 14.46

D = [(8/14.46)fLQ2/(π2g)]1/5

Assume f = 0.020. Then

D = [(8/14.46)× 0.02× 140× (0.025)2/(π2 × 9.81)]1/5
= 0.1027 m

Relative roughness

ks
D

=
0.15

103
= 0.00146

Reynolds number

Re =
4Q

πDν

=
4× (0.025m3/ s)

π × (0.1027m)× (1.31× 10−6m2/ s)
= 2.266× 105

Friction factor (f) (Swamee-Jain correlation)

f =
0.25£

log10
¡

ks
3.7D

+ 5.74
Re0.9

¢¤2
=

0.25h
log10

³
.00146
3.7

+ 5.74
(2.266×105)0.9

´i2
= 2. 271 7× 10−2
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Recalculate pipe diameter

D = 0.1027× (0.0227/0.020)1/5
= 0.105 m

Specify a 12-cm pipe
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PROBLEM 10.82

Situation: A two reservoir system is described in the problem statement.

Find: The discharge.

Properties: From Table 10.3 Kbl = 0.35; Kb2 = 0.16; Kc = 0.39, Ke = 0.5 and
KE = 1.0.
From Table A.5 ν = 1.22× 10−5 ft2/s.
From Table 10.2 ks = 1.5× 10−4 ft.

ANALYSIS

Energy equation

p1/γ + z1 + V 2
1 /2g = p2/γ + z2 + V 2

2 /2g +
X

hL

11 =
X

hL = (V
2
1 /2g)(Ke + 3Kb1 + f1 × 50/1)

+(V 2
2 /2g)(Kc + 2Kb2 +KE + f2 × 30/(1/2))

Assume f1 = 0.015; f2 = 0.016

11× 2g = V 2
1 (0.5 + 3× 0.35 + 0.015(50)) + V 2

2 (0.39 + 2× 0.16 + 1.0 + 0.016(60))
708 = V 2

1 (2.3) + V 2
2 (2.67) = Q2(2.3/((π/4)2(1)4) + 2.67/((π/4)2(1/2)4)) = 73.0Q2

Q2 = 708/73.0 = 9.70

Q = 3.11 cfs

Re = 4Q/(πDν)

Re1 = 4(3.11)/(π(1.22× 10−5)) = 3.2× 105
ks/D1 = 1.5× 10−4/1 = 0.00015
Re2 = 6.5 105; ks/D2 = 0.0003

From Fig. 10.8 f1 = 0.016 and f2 = 0.016. No further iterations are necessary so

Q = 3.11 cfs
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PROBLEM 10.83

Situation: A steel pipe is described in the problem statement.
from Table A.5 ν = 1.31× 10−6 m2/s
provided in problem statement

Find: (a) Discharge and
(b) Pressure at point A.

ANALYSIS

Energy equation

p1/γ + z1 + V 2
1 /2g = p2/γ + z2 + V 2

2 /2g +
X

hL

0 + 12 + 0 = 0 + 0 + (V 2/2g)(1 +Ke +Kv + 4Kb + f × L/D)

Using a pipe diameter of 10 cm and assuming f = 0.025

24g = V 2(1 + 0.5 + 10 + 4(0.9) + 0.025× 1, 000/(0.10))
V 2 = 24g/265.1 = 0.888 m2/s2

V = 0.942 m/s

Q = V A

= 0.942(π/4)(0.10)2

= 0.0074 m3/s

Re = 0.942× 0.1/1.31× 10−6 = 7× 104

From Fig. 10.8 f ≈ 0.025

pA/γ + zA + V 2/2g = p2/γ + z2 + V 2/2g +
X

hL

pA/γ + 15 = V 2/2g(2Kb + f × L/D)

pA/γ = (0.888/2g)(2× 0.9 + 0.025× 500/0.1)− 15 = −9.26 m
pA = 9810× (−9.26)

= -90.8 kPa

Note that this is not a good installation because the pressure at A is near cavitation
level.
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PROBLEM 10.84

Situation: Air flows through a horizontal, rectangular, air-conditioning duct
Duct length is L = 20m. Section area is 4 by 10 inches (102 by 254 mm).
Air speed is V =10 m/s. Sand roughness height for the duct material is ks =
0.004mm.

Find: (a) The pressure drop in inches of water.
(b) The power in watts needed to overcome head loss.

Properties: Air at 20 ◦C from Table A.3: ρ = 1.2 kg/m3, γ = 11.8N/m3. ν =
15.1× 10−6m2/ s.
Assumptions: 1.) Neglect all head loss associated with minor losses.
2.) Assume α1 = α2, where α is the kinetic energy correction factor and sections 1
and 2 correspond to the duct inlet and outlet, respectively.

APPROACH

To account for the rectangular section, use hydraulic diameter. Calculate Reynolds
number and then choose a suitable correlation for the friction factor (f) . Apply the
Darcy-Weisbach equation to find the head loss (hf). Apply the energy equation to
find the pressure drop, and calculate power using P = ṁghf .

ANALYSIS

Hydraulic diameter (DH) (four times the hydraulic radius)

DH =
4A

P

=
4 (0.102m) (0.254m)

(0.102m + 0.102m + 0.254m + 0.254m)
= 0.1456m

Reynolds number

Re =
V DH

ν

=
(10m/ s) (0.1456m)

(15.1× 10−6m2/ s)
= 96, 390

Friction factor (f) (Swamee-Jain correlation)

f =
0.25h

log10

³
ks

3.7DH
+ 5.74

Re0.9

´i2
=

0.25h
log10

³
4×10−6m

3.7×(0.1456m) +
5.74

96,3900.9

´i2
= 0.0182
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Darcy-Weisbach equation

hf = f
L

D

V 2

2g

= 0.0182

µ
20m

0.1456m

¶µ
102m2/ s2

2× 9.81m/ s2
¶

= 12.72m

Energy equation (section 1 and 2 are the inlet and exit of the duct)µ
p

γ

¶
1

=

µ
p

γ

¶
2

+ hL

Thus

∆p = γairhf

=
¡
11.8N/m3

¢
(12.72m)

= 150Pa

= 150Pa

µ
1.0 in.-H2O
248.8Pa

¶
∆p = 0.6 in.-H2O

Power equation

P = γQhf

= ∆pAV

= (150Pa) (0.102m× 0.254m) (10m/ s)
P = 38.9W

COMMENTS

The power to overcome head loss is small (39W)–this is equivalent to the power
required to light a small light bulb.
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PROBLEM 10.85

Situation: An electrostatic air filter is being tested.

Pressure drop is ∆p =3 in.-H20. Air speed is V = 10m/ s.

Find: The minor loss coefficient (K) for the filter.

Properties: Air @ 20 ◦C from Table A.3: ρ = 1.2 kg/m3, γ = 11.8N/m3. ν =
15.1× 10−6m2/ s.

APPROACH

Apply the energy equation to relate the pressure drop to head loss. Then, find the
minor loss coefficient using hL = KV 2/2g.

ANALYSIS

Energy equation (select a control volume surrounding the filter)µ
p

γ

¶
1

=

µ
p

γ

¶
2

+ hL

Thus

hL =
∆p

γair

=
(3 in.-H2O)

³
249.2 Pa

in.-H2O

´
11.8N/m3

= 63.36m

Head loss

hL =
KV 2

2g

K =
2ghL
V 2

(1)

=
2 (9.81m/ s2) (63.36m)

(10m/ s)2

= 12.43

K = 12.4 (2)
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COMMENTS

1.) This minor loss coefficient is larger than the coefficient for any components listed
in Table 10.3.
2.) Combining Eqs. (1) and (2) gives K = ∆p/(ρV 2/2). Thus, the pressure drop for
the filter is about 12 times larger that the pressure change that results when the flow
is brought to rest.
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PROBLEM 10.86

Situation: A system with two tanks is described in the problem statement.

Find: The pump power.

Properties: From Table 10.3 Ke = 0.03;Kb = 0.35;KE = 1.0.
From Table A.5 ν = 10−6 m2/s.
From Table 10.2 ks = 0.046 mm.

APPROACH

Apply the energy equation from the water surface in the lower reservoir to the water
surface in the upper reservoir.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 + hp = p2/γ + V 2

2 /2g + z2 +
X

hL

0 + 0 + 200 m+ hp = 0 + 0 + 235 m + (V 2/2g)(Ke +Kb +KE + fL/D)

Flow rate equation

V = Q/A

= 0.314/((π/4)× 0.32)
= 4.44 m/s

V 2/2g = 1.01 m

Reynolds number

Re = V D/ν

= 4.44× 0.3/10−6
= 1.33× 106

ks/D ≈ 0.00015

Resistance coefficient (from the Moody diagram, Fig. 10.8)

f = 0.00014

So

fL/D = 0.014× 140/0.3 = 6.53
hp = 235− 200 + 1.01(0.03 + 0.35 + 1 + 6.53)

= 43.0 m

Power equation

P = Qγhp

= 0.314× 9, 790× 43.0
= 132 kW
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PROBLEM 10.87

Situation: A two-tank system with the pump from Fig. 10.16 is described in the
problem statement.

Find: Discharge.

APPROACH

Same solution procedure applies as in Prob. 10.85.

ANALYSIS

From the solution to Prob. 10.85, we have

hp = 35 + 8.38V
2/2g

hp = 35 + 8.38[(Q/((π/4)× 0.32)2/2g] = 35 + 85.6Q2

System data computed and shown below:

Q(m3s) → 0.05 0.10 0.15 0.20 .30
hp(m) → 35.2 35.8 36.9 38.4 42.7

Then, plotting the system curve on the pump performance curve of Fig.10-16 yields
the operating point

Q = 0.25 m3/s

937



PROBLEM 10.88

Situation: A system with an injector pipe is described in the problem statement.

Find: If the system will operate as a pump.

ANALYSIS

For the system to operate as a pump, the increase in head produced by the jet must be
greater than 9 ft (the difference in elevation between the lower and upper reservoir).
Consider the head change between a section just to the right of the jet and far to the
right of it with zero flow in the lower pipe. Determine this head change by applying
the momentum equation.

1 2

x

V1 = 60 ft/s

Q = V1A1 = 2.94 cfs

V2 = Q/A2 = (60)(π/4)(3
2)/((π/4)(122))

V2 = 60(32/122) = 3.75 ft/sX
Fx = ṁoVo − ṁiVi

p1A1 − p2A2 = (3.75)(1.94)(3.75× (π/4)(12))− (60)(1.94)(60× (π/4)(1/4)2)
A(p1 − p2) = 1.94(−176.7 + 11.04)

p2 − p1 = 321 psf

h2 − h1 = (321 lbf/ft2)/(62.4 lbf/ft3) = 5.15 ft

The change in head of 5.15 ft is not enough to overcome the static head of 9.0 ft.;
therefore, the system will not act as a pump.

938



PROBLEM 10.89

Situation: A pump is described in the problem statement.

Find: Discharge.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 + hp = p2/γ + V 2

2 /2g + z2 +
X

hL

0 + 0 + 10 + hp = 0 + 0 + 20 + V 2
2 /2g(Ke + fL/D + k0)

hp = 10 + (Q2/(2gA2))(0.1 + 0.02× 1, 000/(10/12) + 1)
A = (π/4)× (10/12)2 = 0.545 ft2

hp = 10 + 1.31Q2
cfs

1 cfs = 449 gpm

hp = 10 + 1.31Q2
gpm/(449)

2

hp = 10 + 6.51× 10−6Q2
gpm

Q→ 1,000 2,000 3,000
h→ 16.5 36.0 68.6

Plotting this on pump curve figure yields Q ≈ 2, 950 gpm
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PROBLEM 10.90

Situation: A pump is described in the problem statement.

Find: Pumping rate.

ANALYSIS

hp = 20 ft - 10 ft = 10 ft
Then from the pump curve for 10.89 one finds Q = 4, 700 gpm.
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PROBLEM 10.91

Situation: Water pumping from a reservoir is described in the problem statement.

Find: Pump power.

Properties: From Table 10.2 ks = 0.046 mm.

Assumptions: From Table A.5 ν = 1.31× 10−6 mm.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 + hp = p2/γ + V 2

2 /2g + z2 +
X

hL

0 + 0 + 100 + hp = 0 + V 2
2 /2g + 140 + V 2

2 /2g(0.03 + fL/D)

Flow rate

V2 = Q/Ap

= 25/((π/4)× 1.52)
= 14.15 m/s

Reynolds number

Re =
V D

ν

=
14.15× 1.5
1.31× 10−6

= 1.620× 107
ks
D

=
0.046

1500
= 0.00003

Friction factor (Moody Diagram) or the Swamee-Jain correlation:

f =
0.25£

log10
¡

ks
3.7D

+ 5.74
Re0.9

¢¤2
=

0.25h
log10

³
0.00003
3.7

+ 5.74
(1.620×107)0.9

´i2
= 0.009995

≈ 0.01

Then

hp = 140− 100 + V 2
2

2g

µ
1.03 + 0.010× 300

1.5

¶
= 140− 100 + 14.152

2× 9.81
µ
1.03 + 0.010× 300

1.5

¶
hp = 70.92m
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Power equation

P = Qγhp

=
¡
25m3/ s

¢× ¡9810N/m3¢× (70.92m)
= 17.4 MW
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PROBLEM 10.92

Situation: Two pipes and their reservoirs are described in the problem statement.

Find: Difference in water surface between two reservoirs.

Assumptions: T = 20oC so ν = 10−6 ft2/s .

ANALYSIS

ks/D15 = 0.1/150 = 0.00067

ks/D30 = 0.1/300 = 0.00033

V15 = Q/A15 = 0.1/((π/4)× 0.152) = 5.659 m/s
V30 = 1.415 m/s

Re15 = V D/ν = 5.659× 0.15/10−6 = 8.49× 105
Re30 = 1.415× 0.3/10−6 = 4.24× 105

Resistance Coefficient (from the Moody diagram, Fig. 10-8)

f15 = 0.0185

f30 = 0.0165

Energy equation

z1 − z2 =
X

hL

z1 − z2 = (V 2
15/2g)(0.5 + 0.0185× 50/0.15)

+(V 2
30/2g)(1 + 0.0165× 160/0.30) + (V15 − V30)

2/2g

z1 − z2 = (5.6592/(2× 9.81))(6.67)
+((1.4152/(2× 9.81))(9.80) + (5.659− 1.415)2/(2× 9.81)

z1 − z2 = 1.632(6.67) + 1.00 + 0.918 = 12.80 m
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PROBLEM 10.93

Situation: Two pipes and their reservoirs are described in the problem statement.

Find: Difference in water surface elevation between two reservoirs.

Properties: From Table 10.3 Ke = 0.5 and KE = 1.0.

Assumptions: T = 68◦F so ν = 1.1× 10−5 ft2/s.

APPROACH

Apply the energy equation from the water surface in the tank at the left to the water
surface in the tank on the right.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 +
X

hL

z1 = z2 + (Ke + f1L1/D1)V
2
1 /2g + (V1 − V2)

2/2g + ((f2L2/D2) +KE)V
2
2 /2g

Calculate velocities and Reynolds number

V1 = Q/A1 = Q/((π/4)(1/2)2) = 25.48 ft/s

Re1 = 25.48× (1/2)/1.1× 10−5) = 1.16× 106
V 2
1 /2g = 10.1 ft

V2 = V1/4 = 6.37 ft/s

Re2 = 6.37× 1/1.1× 10−5 = 5.8× 106
V 2
2 /2g = 0.630

ks/D1 = 4× 10−4/0.5 = 8× 10−4
ks/D2 = 4× 10−4

From Fig. 10.8 f1 = 0.019 and f2 = 0.016

z1 − z2 = h = (0.5 + .019× 150/(1/2))10.1 + (25.48− 6.37)2/64.4
+((0.016× 500/1) + 1)0.630

= 62.6 + 5.7 + 5.7

= 74.0 ft
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PROBLEM 10.94

Situation: Oil flowing through a pipe is described in the problem statement.

Find: Discharge of oil.

Properties: From Table 10.3 Ke = 0.50;Kv = 5.6.
From Table 10.2 ks = 1.5× 10−4 ft.

APPROACH

Apply the energy equation from reservoir water surface to pipe outlet.

ANALYSIS

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 +
X

hL

0 + 0 + 100 ft = 0 + V 2
2 /2g + 64 + (V

2/2g)(Ke +Kv + fL/D)

Assume f = 0.015 for first trial. Then

(V 2/2g)(0.5 + 5.6 + 1 + 0.015× 300/1) = 36
V = 14.1 ft/s

Re = V D/ν = 14.1× 1/10−4 = 1.4× 105
ks/D = 0.00015

From Fig. 10.8 f ≈ 0.0175.
Second Trial:

V = 13.7 ft/s

Re = 1.37× 105

From Fig. 10.8 f = 0.0175.so

Q = V A

= 13.7× (π/4)× 12
= 10.8 ft3/s

EGLHGL
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PROBLEM 10.95

Situation: A system with a reservoir and a smooth pipe is described in the problem
statement.

Find: (a) Pump horsepower.
(b) Pressure at midpoint of long pipe.

Properties: From Table 10.3 Kb = 0.19.
From Table A.5 ν = 1.22× 10−5 ft2/s.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 + hp = p2/γ + V 2

2 /2g + z2 +
X

hL

0 + 30 + 0 + hp = 0 + 60 + (V
2/2g)(1 + 0.5 + 4Kb + fL/D)

V = Q/A = 2.0/((π/4)× (1/2)2) = 10.18 ft/sec
V 2/2g = 1.611 ft

Re = 4Q/(πDν) = 4× 2/(π × (1/2)× 1.22× 10−5)
= 4.17× 105

From Table 10.8 f = 0.0135 so

hp = 30 + 1.611(1 + 0.5 + 4× 0.19 + 0.0135× 1, 700/(1/2)) = 107.6 ft
P = Qγhp/550

= 24.4 horsepower

Pressure at midpoint of long pipe

pm/γ + zm = z2 + hL

pm = γ[(z2 − zm) + hL]

pm = 62.4[(60− 35) + 0.0135× (600/0.5)× 1.611]
pm = 3, 189 psf = 22.1 psig

EGL

HGL

HGL

EGL
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PROBLEM 10.96

Situation: A pump system is described in the problem statement.

Find: Pump power.

Properties: From Table 10.2 ks = 0.046 mm.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 + hp = p2/γ + V 2

2 /2g + z2 +
X

hL

0 + 0 + 20 + hp = 0 + 0 + 40 + V 2/2g(Ke + 2Kb +K0 + fL/D)

hp = 20 + V 2/2g(0.5 + 2× 0.19 + 1 + fL/D)

V = Q/A = 1.2/((π/4× 0.62) = 4.25 m/s
V 2/2g = 0.921 m

Re = V D/ν = 4.25× 0.6/(5× 10−5) = 5.1× 104
ks/D = 0.00008

Resistance coefficient (from Moody diagram, Fig. 10.8)

f = 0.021

So
hp = 20 + 0.921(0.5 + 0.38 + 1 + 6.65) = 27.9 m

Power equation

P =
Qγhp
η

=
1.2× 0.94× 9810× 27.9

0.80

= 386 kW
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PROBLEM 10.97

Situation: A system with an upstream reservoir is described in the problem statement.

Find: Elevation of water surface in upstream reservoir.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 +
X

hL

0 + 0 + z1 = 0 + 0 + 12 + (V 2
30/2g)(0.5 + fL/D) + (V 2

15/2g)(Kc + f(L/D) + 1.0)(8)

V30 = Q/A30 = 0.15/((π/4)× 0.302) = 2.12 m/s
V 2
30/2g = 0.229 m (9)

V15 = 4V30 = 8.488 m/s

V 2
15/2g = 3.67 m

D2/D1 = 15/30 = 0.5→ KC = 0.37

Then

z1 = 12 + 0.229[0.5 + 0.02× (20/0.3)] + 3.67[0.37 + 0.02(10/0.15) + 1.0]
z1 = 22.3 m

H.G.L.

E.G.L.

E.G.L.
H.G.L.

V /2g2

p/g

z
0

A

A
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PROBLEM 10.98

Situation: A tank with piping system is described in the problem statement.

Find: (a) Sketch the EGL and HGL.
(b) Where cavitation might occur.

ANALYSIS

H.G.L.
E.G.L.

Cavitation could occur in the venturi throat section or just downstream of the abrupt
contraction (where there will be a contraction of the flow area).
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PROBLEM 10.99

Situation: A system with a steel pipe is described in the problem statement.

Find: Pressure at point A.

Properties: From Table 10.3 Kb = 0.9, Kv = 10.
From Table 10.2 ks = 5× 10−4 ft.
From Table A.5 ν = 1.41× 10−5 ft2/s.

ANALYSIS

Energy equation

pA/γ + V 2
A/2g + zA = p2/γ + z2 + V 2

2 /2g +
X

hL

pA/γ + 20 + 0 = 0 + 90 + 0 + V 2/2g(0.5 + 2Kb +Kv + f(L/D) + 1)

V = Q/A = (50/449)/((π/4)(2/12)2) = 5.1

V 2/2g = 5.12/64.4 = 0.404

Re = 5.1(2/12)/(1.41× 10−5) = 6× 104
ks/D = 5× 10−4 × 12/2 = 0.003

Resistance coefficient (from Moody diagram, Fig. 10.8)

f = 0.028

Energy equation becomes

pA = γ[70 + 0.404(0.5 + 2× 0.9 + 10 + (0.028× 240/(2/12)) + 1.0)]
= 62.4× 91.7 = 5722 psfg = 39.7 psig
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PROBLEM 10.100

Situation: A system with two reservoirs is described in the problem statement.

Find: Water surface elevation in reservoir A.

Properties: (a) From Table 10.2 ks = 0.26 mm. (b) From Table A.5 ν = 1.3 × 10−6
m2/s.

ANALYSIS

ks/D20 = 0.26/200 = 0.0013

ks/D15 = 0.0017

V20 = Q/A20 = 0.03/((π/4)× 0.202) = 0.955 m/s
Q/A15 = 1.697 m/s

Re20 = V D/ν = 0.955× 0.2/(1.3× 10−6) = 1.5× 105
Re15 = 1.697× 0.15/1.3× 10−6 = 1.9× 105

From Fig. 10-8: f20 = 0.022; f15 = 0.024

z1 = z2 +
X

hL

z1 = 110 + V 2
20/2g(0.5 + 0.022× 100/0.2 + 0.19)

+V 2
15/2g[(0.024× 150/0.15)

+1.0 + 0.19)]

= 110 + 0.0465(11.7) + 0.1468(25.19)

= 110 + 0.535 + 3.70 = 114.2 m
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PROBLEM 10.101

Situation: A pipe system must supply water flow from an elevated tank to the
reservoir—additional details are provided in the problem statement.

Find: Design the pipe system.

ANALYSIS

One possible design given below:

L ≈ 300 + 50 + 50 = 400 m; Kb = 0.19

50 =
X

hL = V 2/2g(Ke + 2Kb + f(L/D) + 1.0) = V 2/2g(1.88 + f(L/D))

50 = [Q2/(2gA2)](f(L/D) + 1.88) = [2.52/(2× 9.81×A2)]((400 f/D) + 1.88)

Assume f = 0.015. Then

50 = [0.318/((π/4)2 ×D4)](0.015× (400/D)) + 1.88)

Solving, one gets
D ≈ 0.59m = 59 cm

Try commercial size D = 60 cm. Then

V60 = 2.5/((π/4)× 0.62) = 8.84 m/s
Re = 8.8× 0.6/10−6 = 5.3× 106; ks/D = 0.0001 and f ≈ 0.013

Since f = 0.13 is less than originally assumed f , the design is conservative. So use
D = 60 cm and L ≈ 400 m.

60 cm steel pipe
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PROBLEM 10.102

Situation: A pipe system must supply water flow from an elevated tank to the
reservoir—additional details are provided in the problem statement.

Find: Design the system.

Assumptions: Steel pipe will be used.

APPROACH

First write the energy equation from the reservoir to the tank and assume that the
same pipe configuration as used in the solution to P10-99 is used. Also a pump, two
open gate valves, and two bends will be in the pipe system.

ANALYSIS

Assume L ≈ 400 ft.

p1/γ + V 2
1 /2g + z1 + hp = p2/γ + V 2

2 /2g + z2 +
X

hL

0 + 0 + 450 + hp = 0 + 0 + 500

+(V 2/2g)(Ke + 2Kb + 2Kv +KE + fL/D)

Assume V ≈ 2 m/s; A = Q/V = 1.0/2 = 0.50 m2

A = (π/4)D2 = 0.50 or D = .799 m Choose a pipe size of 0.80 m

Then

V = Q/A = 1.0/((π/4)× 0.82) = 1.99 m/s and V 2/2g = 0.202 m

ks/D = 0.00006; Re = V D/ν = 1.6/10−6 = 1.6× 106

Then f = 0.012 (from Fig. 10-8)

hp = 50 + (V 2/2g)(0.5 + 2× 0.2 + 2× 0.19 + 1.0 + 0.012× 400/1)
= 50 + 1.43 = 51.43 m

P = Qγhp = 2.0× 9, 810× 51.43
= 1.01 MW

Design will include 0.80 m steel pipe and a pump with output of 1.01 MW

COMMENTS

An infinite number of other designs are possible. Also, a design solution would
include the economics of the problem to achieve the desired result at minimum cost.
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PROBLEM 10.103

Situation: Design lab equipment to illustrate cavitation.
Use a venturi nozzle to create the low pressure.
Assume a water source with a pressure of p = 50 psig.

Find: Specify the components, the primary dimensions and parameters (flow rates)

ANALYSIS

There are many possible design solutions. The venturi nozzle should be fabricated
from clear material so that cavitation can be observed.
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PROBLEM 10.104

Situation: The guidelines for an experiment to verify the momentum principle are
described in the problem statement.

Find: Design the equipment and the experimental procedure.

APPROACH

Because you want to design equipment to illustrate cavitation, it would be desirable
to make the flow restriction device from clear plastic so that one may observe the
formation of cavitation bubbles. The design calculation for pressure and discharge
would be the same as given for 10.71.

ANALYSIS

Equipment for the momentum experiment is shown below:

Counter Wgt

Pivot point Vane
Scops

Weight

Necessary measurements and calculations:

a) Discharge. This could be done by using a scale and tank to weigh the flow of
water that has occurred over a given period of time.

b) The velocity in the jet could be measured by means of a stagnation tube or solving
for the velocity by using Bernoulli’s equation given the pressure in the nozzle
from which the jet issues.

c) Initially set the counter balance so that the beam is in its horizontal equilibrium
position. By opening a valve establish the jet of water. Apply necessary
weight at the end of the beam balance to bring the beam back to horizontal
equilibrium. By calculation (using moment summation) determine the force
that the jet is exerting on the vane. Compare this force with the calculated
force from the momentum equation (using measured Q, V , and vane angle).
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PROBLEM 10.105

Situation: A pipe system is described in the problem statement.

Find: Ratio of discharge in line B to that in line A.

ANALYSIS

hLA = hLB

0.2V 2
A/2g = 10V 2

B/2g (1)

VA =
√
50VB

QB/QA = VBAB/VAAA

= VBAB/VA((1/2)AB) (2)

QB/QA = 2VB/VA

Solve Eqs. (1) and (2) for QB/QA:

QB/QA = 2× VB/
√
50VB

= 0.283
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PROBLEM 10.106

Situation: Divided flow is described in the problem statement.

Find: Ratio of velocity in line A to B.

ANALYSIS

Globe valve wide openB

A
Gate valve half open

X
hLB =

X
hLA

hL,globe + 2hL,elbow = hL,gate + 2hL,elbow

10V 2
B/2g + 2(0.9V

2
B/2g) = 5.6V 2

A/2g + 2(0.9V
2
A/2g)

11.8V 2
B/2g = 7.4V 2

A/2g

VA/VB = 1.26
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PROBLEM 10.107

Situation: A parallel piping system is described in the problem statement.

Find: Division of flow of water.

ANALYSIS

V1/V2 = [(f2/f1)(L2/L1)(D1/D2)]
1/2

Initially assume f1 = f2
Then

V1/V2 = [(1, 500/1, 000)(0.50/0.40)]
1/2

= 1.369

V1 = 1.37V2

1.2 = V1A1 + V2A2

1.2 = 1.37V2 × (π/4)× 0.52 + V2 × (π/4)× 0.42
V2 = 3.04 m/s

Then V1 = 1.37× 3.04 = 4.16 m/s

Q1 = V1A1

= 4.16(π/4)× 0.52

= 0.816 m3/s

Q2 = 0.382 m3/s
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PROBLEM 10.108

Situation: A parallel piping system is described in the problem statement.

Find: Discharge in pipe 1.

ANALYSIS

hf,1 = hf,2

f(L/D)(V 2
1 /2g) = f(4L/D)(V 2

2 /2g)

V 2
1 = 4V 2

2

V1 = 2V2

Thus

Q1 = 2Q2

= 2 cfs
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PROBLEM 10.109

Situation: A parallel piping system is described in the problem statement.

Find: The pipe having the greatest velocity.

ANALYSIS

hp,A = hf,B = hf,C

f(L/D)(V 2/2g)A = f(L/D)(V 2/2g)B = f(L/D)(V 2/2g)C

0.012(6, 000/1.5)V 2
A = 0.02(2, 000/.5)V 2

B = .015(5, 000)V 2
C

48V 2
A = 80V 2

B = 75V
2
C

Therefore, VA will have the greatest velocity. Correct choice is a).
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PROBLEM 10.110

Situation: A parallel piping system is described in the problem statement.

Find: Ratio of discharges in two pipes.

ANALYSIS

(V1/V2) = [(f2/f1)(L2/L1)(D1/D2)]
1/2

Let pipe 1 be large pipe and pipe 2 be smaller pipe. Then

(V1/V2) = [(0.014/0.01)(L/3L)(2D/D)]1/2 = 0.966

(Q1/Q2) = (V1/V2)(A1/A2) = 0.966× (2D/D)2 = 3.86

(Qlarge/Qsmall) = 3.86
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PROBLEM 10.111

Situation: A parallel piping system is described in the problem statement.

Find: (a) Division of flow.
(b) Head loss.

ANALYSIS

Q18 +Q12 = 14 cfs

hL18 = hL12
f18(L18/D18)(V

2
18/2g) = f12(L12/D12)(V

2
12/2g)

f18 = 0.018 = f12

so

L18Q
2
18/D

5
18 = L12Q

2
12/D

5
12

Q2
18 = (D18/D12)

5(L12/L18)Q
2
12

= (18/12)5(2, 000/6, 000)Q2
12

= 2.53Q2
12

Q18 = 1.59Q12

1.59Q12 +Q12 = 14

2.59Q12 = 14

Q12 = 5.4 cfs

Q18 = 1.59Q12

= 1.59(5.4)

= 8.6 cfs

V12 = 5.4/((π/4(1)2) = 6.88

V18 = 8.6/((π/4)(18/12)2) = 4.87

hL12 = 0.018((2, 000)/1)(6.88)2/64.4 = 26.5

hL18 = 0.018(6, 000/1.5)(4.872/64.4) = 26.5

Thus, hLA−B = 26.5 ft
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PROBLEM 10.112

Situation: A parallel piping system is described in the problem statement.

Find: (a) Division of flow.
(b) Head loss.

ANALYSIS

Q = Q14 +Q12 +Q16

25 = V14 × (π/4)× (14/12)2 + V12 × (π/4)× 12 + V16 × (π/4)× (16/12)2; (1)

Also, hf14 = hf12 = hf16 and assuming f = 0.03 for all pipes

(3000/14)V 2
14 = (2000/12)V

2
12 = (3000/16)V

2
16 (2)

V 2
14 = 0.778V

2
12 = 0.875V

2
16

From Eq(1)

25 = 1.069V14 + 0.890V14 + 1.49V14

V14 = 7.25 ft/s

and V12 = 8.22, V14 = 7.25 ft/s; V16 = 7.25 ft/s

Q12 = 6.45 ft3/s

Q14 = 7.75 ft3/s

Q16 = 10.8 ft3/s

V24 = Q/A24 = 25/(π/4× 22) = 7.96 ft/s;
V30 = 5.09 ft/s

hLAB = (0.03/64.4)[(2, 000/2.00)(7.96)2 + (2, 000/1)× (8.21)2
+(3, 000/(30/12)× (5.09)2] = 106.8 ft
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PROBLEM 10.113

Situation: A parallel piping system is described in the problem statement.

Find: (a) Division of flow between pipes.
(b) Head loss.

Properties: From Table 10.2 ks = 0.046 mm.

ANALYSIS

Call pipe A-B pipe and pipe ACB pipe 2. Then

hf,1 + hp = hf,2

ks/D = 0.046/500 ' 0.0001

Assume f1 = f2 = 0.013 (guess from Fig. 10-8)

f(L1/D1)(V
2
1 /2g) + hp = f(L2/D2)(V

2
2 /2g)

0.013(2, 000/0.5)(V 2
1 /2g) + hp = 0.013(6, 000/0.5)(V 2

2 /2g)

2.65V 2
1 + hp = 7.951V 2

2 (1)

Continuity principle

(V1 + V2)A = 0.60 m3/s

V1 + V2 = 0.60/A = 0.6/((π/4)(0.52)) = 3.0558

V1 = 3.0558− V2 (2)

By iteration (Eqs. (1), (2) and pump curve) one can solve for the division of flow:

Q1 = 0.27 m3/s

Q2 = 0.33 m3/s

Head loss determined along pipe 1

hL = f(L/D)(V 2
1 /2g)

V1 = Q1/A = 0.27/((π/4)(0.5
2)) = 1.38 m/s

hl = 0.013(2000/0.5)(1.382/(2× 9.81))
= 5.05 m
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PROBLEM 10.114

Situation: A parallel piping system is described in the problem statement.

Find: Discharge through pump and bypass line.

ANALYSIS

21

Valve

Pump

Qp = Qv + 0.2

(p2 − p1)/γ = hp

A = (π/4)(0.12)

= 0.00785 m2

KvV
2
v /2g = KvQ

2
v/(2gA

2) = hp

hp = 100− 100(Qv + 0.2)

(0.2)(Q2
v)/(2× 9.81× (0.00785)2) = 100− 100Qv − 20

165Q2
v + 100Qv − 80 = 0

Solve by quadratic formula

Qv = 0.456 m3/s

Qp = 0.456 + 0.2

= 0.656 m3/s
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PROBLEM 10.115

Situation: Air and water flow are described in the problem statement.

Find: The relation of the two hydraulic radii.

ANALYSIS

Rh = A/P

Rh,A = (A/P )A = 16/16 = 1

Rh,W = (A/P )W = 8/8 = 1

∴ Rh,A = Rh,W

The correct choice is (a).
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PROBLEM 10.116

Situation: Air flowing through a horizontal duct is described in the problem state-
ment.

Find: Pressure drop over 100 ft length.

Properties: From Table A.3 ν = 1.58× 10−4 ft2/s and ρ = 0.00237 slug/ft3.
From Table 10.2 ks = 0.0005 ft.

ANALYSIS

h = (6 in)(cos 30◦) = 5.20
A = (6)(5.20)/2 = 15.6 in2 = 0.108 ft2

Rh = A/P = 15.6 in2/(3× 6) = 0.867 in.
4Rh = 3.47 in. = 0.289 ft.

ks/4Rh = 0.0005/0.289. = 0.00173

Re = (V )(4Rh)/ν = (12)(0.289)/(1.58× 10−4) = 2.2× 104

From Fig. 10.8 f = 0.030 so the pressure drop is

∆pf = (f(L/4Rh)(ρV
2/2)

∆pf = 0.030(100/0.289)(0.00237× 122/2)
∆pf = 1.77 lbf/ft2
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PROBLEM 10.117

Situation: Uniform flow of water in two channels is described in the problem state-
ment.

Find: Relate flow rates of two channels.

ANALYSIS

Q = (1.49/n)AR
2/3
h S1/2

QA/QB = R
2/3
h,A/R

2/3
h,B = (Rh,A/Rh,B)

2/3

where Rh,A = 50/20 = 2.5; Rh,B = 50/(3× 7.07) = 2.36
Rh,A > Rh,B

∴ QA > QB

The correct choice is (c).
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PROBLEM 10.118

Situation: A cold-air duct is described in the problem statement.

Find: Power loss in duct.

Properties: From Table A.3 ν = 1.46× 10−5.
From Table A.2 ρ = 1.22 kg/m3.

Assumptions: ks = .15 mm= 1.5× 10−4 m

ANALYSIS

Hydraulic radius

A = 0.15 m2

P = 2.30 m

R = A/P = 0.0652 m

4R = 0.261 m

Flow rate equation

V = Q/A

= 6/0.15

= 40 m/s

Reynolds number

Re = V × 4R/ν
= 40× 0.261/(1.46× 10−5)
= 7.15× 105

Friction factor (f) (turbulent flow: Swamee-Jain equation)

f =
0.25£

log10
¡

ks
3.7D

+ 5.74
Re0.9

¢¤2
=

0.25h
log10

³
1.5×10−4
3.7×0.261 +

5.74
(7.15×105)0.9

´i2
= 0.01797 ≈ 0.018

Darcy Weisbach equation

hf = f(L/D)(V 2/2g)

= 0.018× (100/0.261)(402/(2× 9.81))
= 562.4 m
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Power equation

Ploss = Qγhf

= 6× 1.22× 9.81× 562.4
= 40.4 kW
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PROBLEM 10.119

Situation: An air conditioning system is described in the problem statement.

Find: Ratio of velocity in trapezoidal to rectangular duct.

ANALYSIS

∆hrect = ∆htrap

∴ hf,rect = hf,trap

(fbL/4Rb)V
2
b /2g = (faL/4Ra)V

2
a /2g

Rb = Ab/Pb = 2/6 = 0.333 ft

Ra = Aa/Pa = 1.4/6 = 0.233 ft

V 2
a /V

2
b = Ra/Rb = 0.70

Vtrap/Vrect = 0.84
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PROBLEM 10.120

Situation: Water flowing though a concrete duct is described in the problem state-
ment.

Find: Estimate resistance coefficient.

ANALYSIS

f = f(Re, ks/4R)

R = A/P = 0.7 m2/3.4 m = 0.206 m

Re = V (4R)/ν

= 10× 4× .206× 106
= 8.2× 106

ks/4R = 10−3 m/0.824 m

= 1.2× 10−3
= .0012

From Fig. 10.8: f ≈ 0.020 Choice (b) is the correct one.
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PROBLEM 10.121

Situation: A wood flume is described in the problem statement.

Find: Discharge of water.

Assumptions: n = 0.012

APPROACH

Apply Manning’s formula.

ANALYSIS

Manning’s formula

Q = (1/n)AR
2/3
h S

1/2
0

A = (1)(2)/2 = 1 m2

Rh = A/P

= 1/2(12 + 12)0.5 = 0.35 m

Q = (1/0.012)(1)(0.35)2/3(0.0015)0.5

Q = 1.60 m3/s
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PROBLEM 10.122

Situation: A rock-bedded stream is described in the problem statement.

Find: Discharge.

Assumptions: ks = 30 cm.

ANALYSIS

From Fig. 10.8 f ≈ 0.060

R = A/P ≈ 2.21 m
ks/4R = 0.034

from Fig. 10.8 f ≈ 0.060

C =
p
8g/f

= 36.2 m1/2s−1

Q = CA
√
RS

= 347 m3/s
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PROBLEM 10.123

Situation: A concrete channel is described in the problem statement.

Find: Discharge.

Assumptions: ks = 10−3 m

ANALYSIS

A = 4.5 m2

P = 6 m

R = A/P = 0.75 m

ks/4R = 0.333× 10−3

From Fig. 10.8 f = 0.016

hf/L = fV 2/(2g4R)

V =
p
(8g/f)RS = 1.92 m/s

Re = 1.92× 3/(1.31× 10−6) = 4.4× 106 f = 0.015

From Fig. 10.8 f = 0.015
Then

V = 1.92×
p
0.016/0.015 = 1.98 m/s

Finally,

Q = 1.98× 4.5
= 8.91 m3/s
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PROBLEM 10.124

Situation: A concrete channel is described in the problem statement.

Find: Discharge.

Assumptions: ks = 0.003

ANALYSIS

R = A/P = 4× 12/(12 + 2× 4) = 2.4
ks/(4R) = 0.003/(4× 2.4) = 0.00031

Ref1/2 = ((4R)3/2/ν)(2gS)1/2 × (2g × 5/8, 000)1/2
= 4.9× 105;

From Fig. 10.8 f = 0.015

V =
p
8gRS/f

=
p
8g × 2.4× 5/(0.015× 8, 000)

= 5.07

Q = 5.07(4)12

= 243 cfs

Alternate solution:
Assume n = 0.015

Q = (1.49/n)AR2/3S1/2

= (1.49/0.015)4× 12(2.4)2/3 (5/8, 000)1/2
= 214 cfs
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PROBLEM 10.125

Situation: Channels of rectangular cross section are described in the problem state-
ment.

Find: Cross-sectional areas for various widths.

Assumptions: n = 0.015

ANALYSIS

Q = 100 cfs

S = 0.001

Q = (1.49/n)AR0.667S0.5

or Qn/(1.49S0.5) = AR0.667

31.84 = AR0.667

31.84 = (by)(by/(b+ 2y))0.667

For different values of b one can compute y and the area by. The following table
results

b (ft) y (ft) A (ft2) y/b
2 16.5 33.0 8.2
4 6.0 24.0 1.5
6 3.8 22.5 0.63
8 2.8 22.4 0.35
10 2.3 23.3 0.23
15 1.7 25.5 0.11

Area (m2 )

22 23 24 25 26
0

1

2

Minimum area at y/b=0.5 (verified)

y/
b
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PROBLEM 10.126

Situation: Sewer partially fills a concrete pipe.
The slope is 1 foot of drop per 1000 feet of length.
Pipe diameter is D = 3 ft. Depth of sewer is y = 1.5 ft.

Find: The discharge.

Assumptions: Assume that the properties of the sewer are those of clean water.
Assume an Manning’s n-value of n = 0.013.

APPROACH

Using Manning’s equation (traditional units).

ANALYSIS

Hydraulic radius

Rh =
Ac
Pwet

=
πD2/8

πD/2
=

D

4

=
3 ft

4
= 0.75 ft

Flow area

A =
πD2

8
=

π (3 ft)2

8
= 3. 534 ft2

Manning’s equation (traditional units)

Q =
1.49

n
AR

2/3
h

p
So

=
1.49

0.013
× 3. 534× 0.752/3

r
1 ft

1000 ft

= 10. 57 ft3/ s

Q = 10. 6 ft3/ s
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PROBLEM 10.127

Situation: A sewer pipe is described in the problem statement.

Find: The discharge.

Assumptions: n = 0.012

ANALYSIS

Q = (1.49/n)AR0.667h S0.50

2’ 2’

1.5’

2.5’

2.5’

θ

cos θ = 1.5 ft/2.5 ft

θ = 53.13◦

A = πr2((360◦ − 2× 53.13◦)/360) + 0.5× 4 ft× 1.5 ft
A = 16.84 ft2

P = πD((360◦ − 2× 53.13◦)/360) = 11.071 ft
Rh = A/P = 1.521 ft

R0.667h = 1.323

Then Q = (1.49/0.012)(16.84)(1.323)(0.001)0.5

Q = 87.5 cfs
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PROBLEM 10.128

Situation: A concrete channel is described in the problem statement.

Find: Average velocity and discharge.

Assumptions: ks = 0.003 ft
ν = 1.41× 10−5 ft2/s\

ANALYSIS

R = A/P = (10 + 12)6/(10 + 6
√
5× 2) = 132/36.8 = 3.58

(ks/4R) = 0.003/(4× 3.58) = 0.00021
Ref1/2 = ((4R)3/2/ν)(2gS)1/2 = [(4× 3.58)3/2/1.41× 10−5](2g/2000)1/2

= 6.9× 105

From Fig. 10.8 f = 0.014. Then

V =
p
8gRS/f

=
p
8g × 3.58/(2000× 0.014)

= 5.74 ft/s

Q = V A

= 5.74× 132
= 758 cfs

Alternate method, assuming n = 0.015

V = (1.49/n)R2/3S1/2

= (1.49/0.015)(3/3.58)2/3(1/2, 000)1/2

= 5.18 fps

Q = 5.18(132)

= 684 cfs
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PROBLEM 10.129

Situation: A concrete channel is described in the problem statement.

Find: Depth of flow in trapezoidal channel.

Assumptions: n = 0.012

APPROACH

Using Manning’s equation (traditional units).

ANALYSIS

Flow area

Ac =

µ
10 ft + (10 ft + 2d)

2

¶
d

= 10d+ d2

Wetted perimeter

Pwet = 10 ft + 2×
√
2d2

= 10 + 2
√
2d

Hydraulic radius

Rh =
Ac
Pwet

=
10d+ d2

10 + 2
√
2d

Manning’s equation (traditional units)

Q =
1.49

n
AcR

2/3
h

p
So

1000 =
1.49

0.012
× ¡10d+ d2

¢×µ 10d+ d2

10 + 2
√
2d

¶2/3r
1 ft

500 ft

Solve this equation (we used a computer program—Maple) to give d = 5. 338 ft.

d = 5. 34 ft
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PROBLEM 10.130

Situation: A channel is described in the problem statement.

Find: Discharge in trapezoidal channel.

Assumptions: n = 0.012

ANALYSIS

Q = (1.49/n)AR2/3S1/2

A = 10× 5 + 52, P = 10 + 2√52 + 52 = 24.14 ft
R = A/P = 75/24.14 = 3.107 ft

Then

Q = (1.49/0.012)(75)(3.107)2/3(4/5, 280)1/2

= 546 cfs
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PROBLEM 10.131

Situation: A channel is described in the problem statement.

Find: The uniform flow depth.

Assumptions: n = 0.015

ANALYSIS

Q = (1/n)AR2/3S1/2

25 = (1.0/0.015)4d(4d/(4 + 2d))2/3 × 0.0041/2

Solving for d yields: d = 1.6 m
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PROBLEM 10.132

Situation: A channel is described in the problem statement.

Find: The depth of flow.

Assumptions: n = 0.015

ANALYSIS

Q = (1.49/n)AR2/3S1/2

500 = (1.49/0.012)12d(12d/(12 + 2d))2/3 × (10/8, 000)1/2

Solving for d yields: d = 4.92 ft
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PROBLEM 10.133

Situation: A channel is described in the problem statement.

Find: Depth of flow in channel.

Assumptions: n = 0.015

ANALYSIS

Q = (1.49/n)A R
2/3
h S

1/2
0

3, 000 = ((1.49)/(0.015))(10d+ 2d2)((10d+ 2d2)/(10 + 2
√
5d))2/3(0.001)1/2

955 = (10d+ 2d2)((10d+ 2d2)/(10 + 2
√
5d))2/3

Solving for d gives d = 10.1 ft
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PROBLEM 10.134

Situation: A canal is described in the problem statement.

Find: Design a canal having the best hydraulic section for the design flow.

ANALYSIS

For best hydraulic section, the shape will be a half hexagon as depicted below
assume n = 0.015 (concrete, wood forms unfinished - Table 10.3)

b

b

y
45 deg

Manning’s equation
Q = (1.49/n)AR0.667h S0.50

Then

900 = (1.49/0.015)AR0.667h (0.002)0.5

AR0.667h = 202.6

But A = by +y2 where y = b cos 45◦ = 0.707b

A = 0.707b2 + 0.50b2 = 1.207b2

Rh = A/P = 1.207b2/3b = 0.4024b

Thus

AR0.667h = 202.6 = 1.207b2(0.4024b)0.667

b2.667 = 308; b = 8.57 ft
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PROBLEM 10.135

Situation: Sources and loads are described in the problem statement.

Find: Load distribution and pressure at load points.

ANALYSIS

An assumption is made for the discharge in all pipes making certain that the conti-
nuity equation is satisfied at each junction. The following figure shows the network
with assumed flows.

A

B C

D E

10 cfs 10 cfs

5 cfs

5 cfs 0 
cf

s

0 
cf

s

k=0.3021

k=0.3021

k=0.00944

k=1.059 k=
2.

29
4

k=
0.

75
16

15 cfs 10 cfs

5 cfs

Darcy-Weisbach equation

hf = f

µ
L

D

¶µ
V 2

2g

¶
= 8

µ
fL

gD5π2

¶
Q2

= kQ2.

where k = 8
³

fL
gD5π2

´
. The loss coefficient, k, for each pipe is computed and shown

in Fig. A. Next, the flow corrections for each loop are calculated as shown in the
accompanying table. Since n = 2 (exponent on Q), nkQn−1 = 2kQ. When the
correction obtained in the table are applied to the two loops, we get the pipe discharges
shown in Fig. B. Then with additional iterations, we get the final distribution of
flow as shown in Fig. C. Finally, the pressures at the load points are calculated.

Loop ABC
Pipe hf = kQ2 2kQ
AB +0.944 0.189
AD -26.475 10.590
BD 0 0P

kQ2
c −

P
kQ2

cc -25.53
P
2KQ = 10.78

∆Q=-22.66/9.062=2.50 cfs
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Loop BCDE
Pipe hf 2kQ
BC +30.21 6.042
BD 0 0
CE 0 0
DE -7.55 3.02

+22.66 9.062
∆Q=-25.53/10.78=-2.40 cfs

A
B C

D E

12.4 cfs 7.5 cfs

7.5 cfs

2.6 cfs

4.
9 

cf
s

2.
5 

cf
s

10 cfs

5 cfs

15 cfs

A
B C

D E

11.4 cfs 9.0 cfs

6.0 cfs

3.60 cfs

2.
40

 c
fs

1.
0 

cf
s

10 cfs

5 cfs

15 cfs

pC = pA − γ(kABQ
2
AB + kBCQ

2
BC)

= 60 psi × 144 psf/psi− 62.4(0.00944× 11.42 + 0.3021× 9.02)
= 8640 psf − 1603 psf
= 7037 psf

= 48.9 psi

pE = 8640− γ(kADQ
2
AD + kDEQ

2
DE)

= 8640− 62.4(1.059× 3.52 + 0.3021× 62)
= 7105 psf

= 49.3 psi
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PROBLEM 10.136

Situation: A platform is described in the problem statement.

Find: Scope the system and make enough calculations to justify the feasibility.

Assumptions: Assume that the equipment will have a maximum weight of 1,000 lbf
and assume that the platform itself weighs 200 lbf. Assume that the platform will
be square and be 5 ft on a side.

ANALYSIS

The plan and elevation view are shown below:

A=9 sq. ft.

View A-A

A A

Assume that a plenum 1 ft inside the perimeter of the platform will be the source of
air for the underside of the platform.
Now develop the relationship for pressure distribution from plenum to edge of plat-
form. The flow situation is shown below.

Plenum

1 ft

y

Determine the hf from the plenum to the edge of the platform:

hf = f(L/D)V 2/2g

Assume f = 0.02, R = A/P = ∆yB/2B = ∆y/2 and L = 1 ft.

hf = (0.02× 1/(∆y/2))V 2/2g

= (0.02/∆y)V 2/g

= 0.02V 2/(∆yg)

Multiply both sides by γ

∆pf = γhf = (0.02/∆y)ρV 2

Assume ρ = 0.0023 slugs/ft3.Then
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∆pf = (0.02/∆y)(.0023)V 2

= (46V 2/∆y)× 10−6

pavg.(over 4 ft2 area) = (23 V 2/∆y)× 10−6

Also determine the ∆p due to the change in momentum as the flow discharges from
the plenum.

p 1 p 2

Momentum equation (x-direction)X
Fx = ṁoVo − ṁiVi

B∆y(p1 − p2) = V (ρV B∆y)

∆pmom = ρV 2

The pressure force on the platform is given by
The pressure within the 9 ft2 interior area of the platform will be

∆pmom +∆pf = V 2(.0023 + (46/∆y)× 10−6)
The pressure force on platform is given by

F = 9 ft2 × (∆pmom +∆pf) +∆pf,avg. × 12 ft2
F = 9× V 2[.0023 + (46/∆y)× 10−6)] + 12V 2[(23V 2/∆y)× 10−6]
F = V 2[9× .0023 + (9× 46/∆y)× 10−6 + 12× 23× 10−6/∆y]

F = V 2[9× .0023 + 690× 10−6/∆y]

Let ∆y = 1/8 in.= 0.01042 ft
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f = V 2[9× .0023 + 690× 10−6/.01042]
= V 2[0.0207 + 0.662]

F = .0869V 2

1200 = .0869V 2

V 2 = 13, 809 ft2/s2

V = 117.5 ft/s

Q = 117.5×∆y × 12 = 14.69 ft3/s
∆p = V 2(.0023 + 46× 10−6/∆y)

= V 2(.0023 + 46× 10−6/0.01042)
= V 2(.0023 + .00441)

= 92.7 psf

Power equation

P = Q∆p/550

= 14.69× 92.7/550
= 2.48 hp

Assume 50% efficiency for blower, so required power ≈ 5 horsepower. Blower could
be driven by gasoline engine and also be located on the platform.
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PROBLEM 10.137

Situation: A system for measuring the viscosity of a gas is described in the problem
statement.

Find: Design the system.

ANALYSIS

There are two design constraints; 1) the Reynolds number in the tube should be less
than 1000 to insure that the flow in laminar and a closed form expression is available
to the viscosity and 2) the pressure differential along the tube should sufficiently low
that compressibility effects on the gas will not be important yet large enough that
a measurement can be made with acceptable accuracy. Although not stated in the
problem assume that the density of the gases ranges from 0.8 kg/m3 to 1.5 kg/m3.
As a start assume the tube has a 1 mm internal diameter. The Reynolds number
corresponding to the highest density and lowest viscosity would be

Re =
V × 10−3 × 1.5

10−5
= 150V

The maximum velocity should not exceed 6 m/s. The pressure drop for laminar flow
in a pipe is

∆p = 32
µLV

D2

Assume the length of the tube is 500 mm (0.5 m), the pressure drop for the largest
viscosity would be given by

∆p = 32
1.5× 10−5 × 0.5V

10−6
= 240V

For a velocity of 6 m/s, the pressure drop would be 1,440 Pa or 0.2 psig. or about
5 in of water. If the initial pressure were atmospheric, this would represent about
a 1% change in pressure which would be acceptable to avoid compressibility effects.
Compressibility effect could also be reduced by operating at a higher pressure where
the percentage change in pressure would be even smaller.
This design could now be refined to conform with the equipment available for mea-
suring pressure. Another issue to consider is the design of the entrance to the tube
to minimize entrance losses and exit losses such as a sudden expansion. There is also
the problem of measuring a small discharge. An idea to consider would be attaching
the end of the tube to an inflatable bag immersed in water and measuring the dis-
placement of the water with time. Another idea is measuring the pressure drop in a
tank supplying the tube and calculating the mass change with time.
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PROBLEM 10.138

Situation: A problem associated with a pressure tap is described in the problem
statement.

Find: Develop ideas to avert the problem.

ANALYSIS

One idea is to use a purge line as shown in the figure. There is a continuous flow
of gas out the pressure tap which keeps the tap clean. The flow rate should be high
enough to keep the tap clean and low enough not of affect the readings. The purge
gases would be introduced close to the tap so the head loss associated with friction
would be minimized. The largest pressure drop would be the sudden expansion loss
at the tap exit. If po is the nominal pressure being measured at the tap, then the
ratio of the sudden expansion losses to the nominal pressure is

ρV 2

2po

and this ratio should be kept as small as possible. If the ratio is 0.01 then an error
of 1% would be produced in the pressure measurement. The flow rate should be just
sufficient to keep the taps clean. This value will depend on the experimental condi-
tions.

pressure
gage

purge
gas

Flow
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PROBLEM 11.1

Situation: A hypothetical pressure-coefficient distribution acts on an inclined plate.
Other details are provided in the problem statement

Find: Coefficient of drag.

Assumptions: Viscous effects are negligible.

ANALYSIS

Force normal to plate

Fn = ∆paverage ×A

= Cp,aveρV
2
0 /2× c× 1

= 1.5× ρV 2
0 /2× c× 1

For unit depth of plate and a length c. Force parallel to free stream direction is the
drag force and is equal to

FD = Fnormal cos 60
◦

= (1.5ρV 2
0 /2)× c× 1/2

The drag coefficient is defined from the drag force as

CD =
FD

1
2
ρV 2

0 A
=
(1.5ρV 2

0 /2)× c× 1/2
1
2
ρV 2

0 × c× 1
= 1.5
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PROBLEM 11.2

Situation: Fluid flow past a square rod. The pressure coefficient values are shown in
the problem statement.

Find: Direction from which the flow is coming.

ANALYSIS

Flow is from the N.E. direction.
Correct choice is d)

995



PROBLEM 11.3

Situation: A pressure distribution is described in the problem statement.

Find: Drag coefficient for rod.

APPROACH

Apply drag force.

ANALYSIS

The drag coefficient is based on the projected area of the block from the direction of
the flow which is the area of each face of the block. The force contributing to drag
on the downstream face is

FD = 0.5ApρV
2
o /2

The force on each side face is

Fs = 0.5ApρV
2
o /2

Then the drag force on one side is

Fs sinα = 0.5ApρV
2
o /2× 0.5

The total drag force is

FD = 2((0.5ApρV
2
o /2)× 0.5) + 0.5ApρV

2
o /2 = CDApρV

2
o /2

Solving for CD one gets CD = 1.0
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PROBLEM 11.4

Situation: A pressure distribution is described in the problem statement.

Find: Drag coefficient for the block.

ANALYSIS

The drag coefficient is based on the projected area of the block from the flow direction,
Ap. The drag force on the windward side is

Fw = 0.8× 1
2
ρV 2

0 Ap

The force on each of the two sloping sides is

Fs = −1.2× 1
2
ρV 2

0 Ap

The total drag force on the rod is

FD = 0.8× 1
2
ρV 2

0 Ap − 2(−1.2× 1
2
ρV 2

0 Ap) sin 30
o

=
1

2
ρV 2

0 Ap(0.8 + 1.2)

The drag coefficient is

CD =
FD

1
2
ρV 2

0 Ap

= 2.0
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PROBLEM 11.5

Situation: A wind tunnel can produce air velocity of 100ft/s, 3ft×3ft test section.
Find: The design objective is to design an experiment to measure the drag coefficient
of spheres of varying surface roughness.

ANALYSIS

The drag force equation is

FD = CDApρV
2/2

or CD = FD/(ApρV
2/2)

Thus FD, Ap, and V will have to be measured. The air density ρ can be obtained
by measuring the air temperature with a thermometer and the air pressure with a
barometer and solving for ρ by the equation of state.

You will need to decide how to position the sphere in the wind tunnel so that its sup-
port does not have an influence on flow past the sphere. One possible setup might
be as shown below.

Rod

Force dynamometer

Pitot tube

The sphere is attached to a rod and the rod in turn is attached to a force dynamometer
as shown. Of course the rod itself will produce drag, however; its drag can be
minimized by enclosing the vertical part of the rod in a streamlined housing. The
horizontal part of the rod would have negligible drag because much of it would be
within the low velocity wake of the sphere and the drag would be skin friction drag
which is very small. The air velocity approaching the sphere could be measured
by a Pitot tube inserted into the wind tunnel. It would be removed when the
drag of the sphere is being measured. The projected area of the sphere would be
obtained by measuring the sphere diameter and then calculating the area. The
pressure transducer is placed outside the wind tunnel. Blockage effects could also be
addressed in the design of this experiment.

Another design consideration that could be addressed is size of sphere. It should be
large enough to get measurable drag readings but not so large as to produce significant
blockage.
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PROBLEM 11.6

Situation: A runner is competing in a 10 km race.
Running speed is a 6:30 pace (i.e. each mile takes six minutes and 30 seconds). Thus,
V = 4.127m/ s.
The product of frontal area and coefficient of drag is CDA = 8.0 ft

2 = 0.743m2.
One “food calorie” is equivalent to 4186 J.

Find: Estimate the energy in joules and kcal (food calories) that the runner needs to
supply to overcome aerodynamic drag.

Properties: Density of air is 1.22 kg/m3.

Assumptions: Assume that the air is still—that is, there is no wind.

APPROACH

Energy is related to power (P ) and time (t) by E = Pt. Find power using the
product of speed and drag force (P = V FDrag) . Find time by using distance (d) and
speed (d = V t) .

ANALYSIS

Find the time to run 10 km.

t =
d

V

=
10, 000m

4.127m/ s

= 2423 s (40min and 23 s)

Drag force

FDrag = CDARef

µ
ρV 2

2

¶
=

¡
0.743m2

¢Ã(1.22 kg/m3) (4.127m/ s)2
2

!
= 7.72N

Power

P = FDragV

= (7.72N) (4.127m/ s)

= 31.9W

Energy

E = Pt

= (31.9 J/ s) (2423 s)

= 77.2 kJ
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Energy = 77.2 kJ = 18.4 Food Calories

COMMENTS

1. The drag force (7.72N) is small, about 1.7 lbf.

2. The power to overcome drag is small (31.9W) . Based on one of the author’s
(DFE) experience in sports, a fit runner might supply 180W to run at a 6:30
pace. Thus, the power to overcome drag is about 1/6 of the total power that
the runner supplies.

3. The energy that the runner expends (18.4 Food Calories) can be acquired by
eating a small amount of food. For example, a small piece of candy. .
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PROBLEM 11.7

Situation: Wind (Vo = 35m/ s) acts on a tall smokestack.
Height is h = 75m. Diameter is D = 2.5m.

Find: Overturning moment at the base.

Assumptions: Neglect end effects—that is the coefficient of drag from a cylinder of
infinite length is applicable.

Properties: Air at 20 ◦C from Table A.3: ρ = 1.2 × 99/101.3 = 1. 17 kg/m3, ν =
1.51× 10−5m2/ s.

ANALYSIS

Reynolds number

Re =
VoD

ν

=
(35m/ s)× (2.5m)
1.51× 10−5m2/ s

= 5.79× 106

Drag force
From Fig. 11.5 CD ≈ 0.62 so

FD = CDAp
ρV 2

0

2

= 0.62× (2.5× 75m2)× (1. 17 kg/m
3)× (35m/ s)2
2

= 83.31 kN

Equilibrium. Sketch a free-body diagram of the stack—the overturning moment Mo

is

Mo = h/2× FD

Mo = (75/2) m× (83.31 kN)
= 3.12 MN·m
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PROBLEM 11.8

Situation: Wind acts on a flag pole. Additional details are provided in the problem
statement.

Find: Moment at bottom of flag pole.

Properties: From Table A.3 ν = 1.51× 10−5 m2/s and ρ = 1.20 kg/m3.

ANALYSIS

Reynolds number

Re = V D/ν = 25× 0.10/(1.51× 10−5) = 1.66× 105

Drag force
From Fig. 11-5: CD = 0.95 so the moment is

M = FDH/2 = CDApρ(V
2
0 /2)×H/2

= 0.95× 0.10× (352/2)× 1.2× 252/2
= 21.8 kN·m
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PROBLEM 11.9

Situation: Flow from 2 to 6 m3/ s though a 50cm diameter pipe.

Find: Design a flow measuring device that consists of a small cup attached to a
cantilevered support.

ANALYSIS

The cup, sphere or disk should probably be located at the center of the pipe (as
shown below) because the greatest velocity of the air stream in the pipe will be at
the center.

cup

Force dynamometer

Streamlined support strut

You want to correlate V and Q with the force acting on your device. First, neglecting
the drag of the support device, the drag force is given as

FD = CDApρV
2
0 /2

or V0 = (2FD/(CDAp))
1/2

You can measure temperature, barometric pressure, and gage pressure in the pipe.
Therefore, with these quantities the air density can be calculated by the equation
of state. Knowing the diameter of the cup, sphere or disk you can calculate Ap.
Assume that CD will be obtained from Table 11.1 or Fig. 11.11. Then the other
quantity that is needed to estimate V0 is the drag FD. This can be measured by a
force dynamometer as indicated on the sketch of the device. However, the support
strut will have some drag so that should be considered in the calculations. Another
possibility is to minimize the drag of the support strut by designing a housing to fit
around, but be separate from the vertical part of the strut thus eliminating most of
the drag on the strut. This was also suggested for Problem 11.5.

Once the centerline velocity is determined it can be related to the mean velocity in
the pipe by Table 10.1 from which the flow rate can be calculated. For example, if
the Reynolds number is about 105 then V̄ /Vmax ≈ 0.82 (from Table 10.1) and

Q = V̄ A

Q = 0.82VmaxA

There may be some uncertainty about CD as well as the drag of the support rod;
therefore, the device will be more reliable if it is calibrated. This can be done as
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follows. For a given flow make a pitot-tube-velocity-traverse across the pipe from
which Q can be calculated. Also for the given run measure the force on the force
dynamometer. Then plot F vs. Q. Do this for several runs so that a curve of F vs.
Q is developed (calibration completed).
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PROBLEM 11.10

Situation: Wind acts on a cooling tower. Height is H = 350 ft.
Average diameter is D = 250 ft. Wind speed is Vo = 200 mph = 293.3 ft/ s.

Find: Drag (FD) acting on the cooling tower.

Properties: Air at 60 ◦F (Table A.3) has properties of ρ = 0.00237 slugs/ft3; ν =
1.58× 10−4 ft2/s.
Assumptions: 1.) Assume the coefficient of drag of the tower is similar to the coeffi-
cient of drag for a circular cylinder of infinite length (see Fig. 11.5).
2.) Assume the coefficient of drag for a cylinder is constant at high Reynolds numbers.

ANALYSIS

Reynolds number

Re =
VoD

ν

=
293.3× 250
1.58× 10−4

= 4. 641× 108

From Fig. 11-5 (extrapolated) CD ≈ 0.70. The drag force is given by

FD = CDARef
ρV 2

2

= 0.70× (250 ft× 350 ft)
¡
0.00237 slugs/ft3

¢
(293.3 ft/ s)2

2

= 6. 244× 106 slug · ft
s2

FD = 6. 24× 106 lbf
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PROBLEM 11.11

Situation: A cylindrical rod is rotated about its midpoint–additional details are
provided in the problem statement.

Find: a) Derive an equation for the power to rotate rod.
b) Calculate the power.

ANALYSIS

For an infinitesimal element, dr, of the rod

dFD = CD(dr)dρV
2
rel./2

where Vrel. = rω. Then

dT = rdFD = CDρd(V
2
rel./2)rdr

Ttotal = 2

Z r0

0

dT = 2

Z r0

0

CDdρ((rω)
2/2)rdr

Ttotal = CDdρω
2

Z r0

0

r3dr = CDdρω
2r40/4

but r0 = L/2 so

Ttotal = CDdρω
2L4/64

or

P = Tω = CDdρω
3L4/64

d

r ro

r

Then for the given conditions:

P = 1.2× 0.02× 1.2× (50)3 × 1.54/64
= 285 W
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PROBLEM 11.12

Situation: A ping-pong ball is supported by an air jet.
Mass of the ball is m = 2.6× 103 kg.
Diameter of the ball is D = .038m. Air temperature is T = 18 ◦C = 291.2K. Air
pressure is p = 27 inches-Hg. = 91.4 kPa.

Find: The speed of the air jet.

Properties: Gas constant for air from Table A.2 is 287 J/ kg · K. Air from Table A.3:
µ = 1.80× 10−5N · s/m2.
Assumptions: Assume the ping-pong ball is stationary (stable equilibrium).

APPROACH

For the ball to be in equilibrium, the drag force will balance the weight. Relate
the drag force to the speed of the air and apply the Cliff and Gauvin correlation to
estimate the coefficient of drag. Solve the resulting system of equation to find the
speed of the air jet.

ANALYSIS

Ideal gas law

ρ =
p

RT

=
91, 400Pa

(287 J/ kg · K) (291.2K)
= 1.094 kg/m3

Equilibrium
mg = FDrag (1)

Drag force

FDrag = CDARef

µ
ρV 2

2

¶
= CD

µ
πD2

4

¶µ
ρV 2

2

¶
(2)

Cliff and Gauvin correlation (drag on a sphere)

CD =
24

ReD

¡
1 + 0.15Re0.687D

¢
+

0.42

1 + 4.25× 104Re−1.16 (3)

Reynolds Number

Re =
V Dρ

µ
(4)
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Solve Eqs. (1) to (4) simultaneously. The computer program TKSolver was used for
our solution.

Re = 21, 717

FDrag = 0.026N

CD = 0.46

V = 9.45m/ s

Vjet = 9.45m/ s
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PROBLEM 11.13

Situation: Vortices are shed from a flagpole–additional details are provided in the
problem statement.

Find: Frequency of vortex shedding

ANALYSIS

From Problem 11.8 Re = 1.66× 105. From Fig. 11-10 St = 0.21

St = nd/V0

or

n = StV0/d

= 0.21× 25/0.1 = 52.5 Hz
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PROBLEM 11.14

Situation: Wind acts on a billboard–additional details are provided in the problem
statement.

Find: Force of the wind.

Properties: From Table A.3 ν = 1.58× 10−4 ft2/s; ρ = 0.00237 slugs/ft3.

ANALYSIS

Reynolds number

V0 = 50 mph = 73 ft/s

Re = V0b/ν

= 73× 10/(1.58× 10−4)
= 4.6× 106

Drag force
From Table 11-1 CD = 1.19. Then

FD = CDApρV
2
0 /2

= 1.19× 300× 0.00237× 732/2
= 2250 lbf
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PROBLEM 11.15

Situation: A 8 ft by 8 ft plate is immersed in a flow of air (60 ◦F).
Wind speed is Vo = 100 ft/ s. Flow direction is normal to the plate.

Find: Drag force on the plate.

Properties: From Table A.3 for air at 60 ◦F: ρ = 0.00237 slugs/ft3.

APPROACH

Apply drag force equation.

ANALYSIS

From Table 11-1,
CD = 1.18

Drag force

FD = CDAp

µ
ρV 2

0

2

¶
FD = (1.18)(8× 8)(0.00237)(100

2)

2

FD = 895 lbf

1011



PROBLEM 11.16

Situation: A 2m by 2m square plate is towed through water V = 1m/ s. The
orientation is (a) normal and then (b) edgewise.

Find: Ratio of drag forces (normal to edgewise orientation).

Properties: From Table A.5 ν = 1.31× 10−6 m2/s.

ANALYSIS

Drag force

Fedge = 2CfAρV
2/2

Fnormal = CDAρV
2/2

Then

Fnormal/Fedge = CD/2Cf

Re = ReL = V B/ν = 1× 2/(1.31× 10−6)
= 1.53× 106

From Fig. 9-14 Cf = 0.0030 and from Table 11-1 CD = 1.18. So

Fnormal/Fedge = 1.18/(2× 0.0030) = 197
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PROBLEM 11.17

Situation: A round disk (D = 0.5m) is towed in water (V = 3m/ s).
The disk is oriented normal to the direction of motion.

Find: Drag force.

APPROACH

Apply the drag force equation.

ANALYSIS

From Table 11.1 (circular cylinder with l/d = 0)

CD = 1.17

Drag force

FD = CDAp

µ
ρV 2

0

2

¶
= 1.17

µ
π × 0.52
4

¶µ
1000× 32

2

¶
= 1033. 8N

FD = 1030N
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PROBLEM 11.18

Situation: A circular billboard is described in the problem statement.

Find: Force on the billboard.

Properties: From Table A.3, ρ = 1.25 kg/m3.

APPROACH

Apply drag force equation.

ANALYSIS

Drag force
From Table 11.1 CD = 1.17

FD = CDApρV
2/2

= 1.17× (π/4)× 62 × 1.25× 302/2 = 18,608 N

= 18.6 kN
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PROBLEM 11.19

Situation: Wind acts on a sign post (see the problem statement for all the details).

Find: Moment at ground level.

Properties: From Table A.3 ρ = 1.25 kg/m3.

ANALYSIS

Drag force
From Table 1.1 CD = 1.18 Then

M = 3× FD = 3× CDApρV
2/2

= 3× 1.18× 22 × 1.25× 402/2
= 14.16 kN·m
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PROBLEM 11.20

Situation: A truck carries a rectangular sign.
Dimensions of the sign are 1.83m by 0.46m.
Truck speed is V = 25m/ s.

Find: Additional power required to carry the sign.

Assumptions: Density of air ρ = 1.2 kg/m3.

APPROACH

Apply the drag force equation. Then, calculate power as the product of force and
speed.

ANALYSIS

Drag force
From Table 11-1 for a rectangular plate with an aspect ratio of l/d = 3.98:

CD ≈ 1.20

Drag Force

FD = CDApρV
2/2

= 1.2× 1.83× 0.46× 1.2× 252/2
= 379 N

Power

P = FD × V

= 379× 25

P = 9.47 kW
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PROBLEM 11.21

Situation: A cartop carrier is used on an automobile (see the problem statement for
all the details).

Find: Additional power required due to the carrier.

Assumptions: Density, ρ = 1.20 kg/m3. CD will be like that for a rectangular plate:
c/b = 1.5/0.2 = 7.5

ANALYSIS

From Table 11-1
CD ≈ 1.25

The air speed (relative to the car) is

V = 100 km/hr

= 27. 78 m/s

The additional power is
∆P = FDV

Substituting drag force

∆P = CDAp(ρV
2/2)V

= 1.25× 1.5× 0.2× 1.20× 27.782/2× 80000/3600
= 3.86 kW
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PROBLEM 11.22

Situation: The problem statement describes motion of an automobile.

Find: Percentage savings in gas mileage when travelling a 55 mph instead of 65 mph.

ANALYSIS

The energy required per distance of travel = F × s (distance). Thus, the energy, E,
per unit distance is simply the force or

E/s = F

Substituting drag force

E/s = µ×W + CDApρV
2/2

E/s = 0.02× 3, 000 + 0.3× 20× (0.00237/2)V 2

For

V = 55 mph = 80.67 ft/sec

E/s = 106.3 ft-lbf

For

V = 65 mph = 95.33 ft/sec

E/s = 124.6 ft-lbf

Then energy savings are

(124.6− 106.3)/124.6 = 0.147 or 14.7%
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PROBLEM 11.23

Situation: A car (W = 2500 lbf) coasting down a hill (Slope = 6%)has reached steady
speed.
µrolling = µ = 0.01

CD = 0.32 AP = 20 ft
2

ρair = ρ = 0.002 slug/ ft3

Find: Maximum coasting speed.

ANALYSIS

Slope of a hill is rise over run, so the angle of the hill is

tan θ = 0.06

or

θ = arctan (0.06)

= 0.0599 rad = 3.43o

Equate forces
FD + Fr =W × sin 3.43o

where FD =drag force, Fr =rolling friction and W =weight of car.

Insert expressions for drag force and rolling friction.

CDApρV
2/2 +W × 0.01× cos 3.43o =W × sin 3.43o

V 2 =
2W (sin 3.43o − .01× cos 3.43o)

CDApρ

V 2 =
2× 2500(0.0599− 0.00998)

0.32× 20× 0.002
= 1. 95× 104 ft2/s2

V = 139.6 ft/s = 95.2 mph
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PROBLEM 11.24

Situation: The problem statement describes a car being driven up a hill

Find: Power required.

ANALYSIS

The power required is the product of the forces acting on the automobile in the
direction of travel and the speed. The drag force is

FD =
1

2
ρV 2CDA =

1

2
× 1.2× 302 × 0.4× 4 = 864 N

The force due to gravity is

Fg =Mg sin 3o = 1000× 9.81× sin 3o = 513 N
The force due to rolling friction is

Fr = µMg cos 3o = 0.02× 1000× 9.81× cos 3o = 196 N
The power required is

P = (FD + Fr + Ff)V = 1573× 30 = 47.2 kW
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PROBLEM 11.25

Situation: The problem statement describes a car traveling on a level road.

Find: Power required.

ANALYSIS

Power
P = FV

where F = FD + Fr.
Drag force

FD = CDApρV
2
0 /2

= 0.4× 2× 1.2× 402/2
= 972 N

Friction force

Fr = 0.02 W

= 0.02× 10, 000 N
= 200 N

Power

P = (972 + 200)× 30
= 35.2 kW
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PROBLEM 11.26

Situation: The problem statement describes the wind force on a person.

Find: Wind force (the person is you).

Assumptions: CD is like a rectangular plate: CD ≈ 1.20. Height is 1.83 meters;
width is .3 meters.

APPROACH

Apply the ideal gas law, then the drag force equation.

ANALYSIS

Ideal gas law

ρ = p/RT

= 96, 000/(287× (273 + 20))
= 1.14 kg/m3

Drag force

FD = CDApρV
2/2

= 1.2× 1.83× 0.30× 1.14× 302/2
= 338 N

COMMENTS

1. FD will depend upon CD and dimensions assumed.
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PROBLEM 11.27

Situation: A boxcar is described in the problem statement.

Find: Speed of wind required to blow boxcar over.

Assumptions: T = 10◦C; ρ = 1.25 kg/m3.

ANALYSIS

Take moments about one wheel for impending tipping.X
M = 0

Fwind

W

W

0.72 m
2.51 m

W × 0.72− FD × 2.51 = 0

FD = (190, 000× 1.44/2)/2.51 = 54, 500 N = CDApρV
2/2

From Table 11-1, assume CD = 1.20. Then

V 2 = 54, 500× 2/(1.2× 12.5× 3.2× 1.25)
V=42.6 m/s
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PROBLEM 11.28

Situation: A bicyclist is coasting down a hill–additional details are provided in the
problem statement

Find: Speed of the bicycle.

ANALYSIS

Consider a force balance parallel to direction of motion of the bicyclist:

X
F = 0

+Fwgt. comp. − FD − Frolling resist. = 0

W sin 8◦ − CDApρV
2
R./2− 0.02 W cos 8◦ = 0

W sin 8◦ − 0.5× 0.5× 1.2V 2
R/2− 0.02W cos 8◦ = 0

W = 80g = 784.8 N

W sin 8◦ = 109.2 N

W cos 8◦ = 777.2 N

Then
109.2− 0.15V 2

R − .02× 777.2 = 0
VR = 25.0 m/s = Vbicycle + 5 m/s

Note that 5 m/s is the head wind so the relative speed is Vbicycle + 5.

Vbicycle=20.0 m/s
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PROBLEM 11.29

Situation: A bicyclist is traveling into a 3 m/s head wind. Power of the cyclist is
P = 175W.
Frontal area is Ap = 0.5m

3. Coefficient of drag is CD = 0.3.

Find: Speed of the bicyclist.

Properties: Air density is 1.2 kg/m3.

APPROACH

The drag force depends on the wind speed relative to the cyclist. Use this fact, and
apply the power and drag force equation to give a cubic equation.

ANALYSIS

Drag force

FD = CDAp

µ
ρV 2

R

2

¶
VR = (Vc + 3)

FD = CDAp

Ã
ρ (Vc + 3)

2

2

!

Power

P = FD × Vc

= CDAp

Ã
ρ (Vc + 3)

2

2

!
Vc

175 = 0.3× 0.5
Ã
1.2 (Vc + 3)

2

2

!
Vc

Solving the cubic equation (we used a computer program) for speed gives two complex
roots and one real root: Vc = 10. 566.

Vc = 10.6 m/ s
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PROBLEM 11.30

Situation: The problem statement describes a sports car with (a) the roof closed and
(b) the roof open

Find: (a) Maximum speed with roof closed.
(b) Maximum speed with roof open.

Properties: From Table A.3 ρ = 1.2 kg/m3.

ANALYSIS

P = FV = (µrollMg + CDApρV
2
0 /2)V

P = µrollMg V0 + CDApρV
3
0 /2

Then

80, 000 = 0.05× 800× 9.81V + CD × 4× (1.2/2)V 3

80, 000 = 392.4V + 2.40CDV
3

Solving with CD = 0.30 (roof closed) one finds

V=44.3 m/s (roof closed)

Solving with CD = 0.42 (roof open) one finds

V=40.0 m/s (roof opened)
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PROBLEM 11.31

Situation: An automobile is traveling into a head wind–additional details are pro-
vided in the problem statement.

Find: Velocity of the head wind.

Assumptions: Gas consumption is proportional to power.

ANALYSIS

Gas consumption is proportional to FDV where V is the speed of the automobile and
FD is the total drag of the auto (including rolling friction).
Drag force

FD = CDApρV
2
0 /2 + 0.1Mg

= 0.3× 2× 1.2V 2
0 /2 + 0.1× 500× 9.81

= 0.360V 2
0 + 490.5 N

V0,still air = (90, 000/3, 600) = 25.0 m/s

Then

FD,still air = 0.36× 252 = 490.5 = 715.5 N
Pstill air = 715.5× 25 = 17.89 kW

Phead wind = 17, 890× 1.20 = (0.36V 2
0 + 490.5)(25)

where

V0 = Vheadwind + 25 = 32 m/s

Vheadwind=7 m/s
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PROBLEM 11.32

Situation: The problem statement describes a 1932 Fiat Balillo that is “souped up”
by the addition of a 220-bhp engine.

Find: Maximum speed of “souped up” Balillo.

ANALYSIS

From Table 11.2, CD = 0.60.

P = (FD + Fr)V

V = 60 mph = 88 ft/s

Fr = (P/V )− FD = (P/V )− CDApρV
2/2

= ((40)(550)/88)− (0.60)(30)(0.00237)(882)/2
= 250− 165 = 85 lbf

“Souped up” version:

(FD + 85)V = (220)(550)

((CDApρV
2/2) + 85)V = (220)(550)

(CDApρV
3/2) + 85V = (220)(550)

0.0213V 3 + 85V − 121, 000 = 0

Solve for V :

V = 171.0 ft/s

= 117 mph
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PROBLEM 11.33

Situation: To reduce drag, vanes are added to truck–additional details are provided
in the problem statement.

Find: Reduction in drag force due to the vanes.

Assumptions: Density, ρ = 1.2 kg/m3.

APPROACH

Apply drag force equation.

ANALYSIS

FD = CDApρV
2/2

FDreduction = 0.25× 0.78× 8.36× 1.2(100, 000/3, 600)2/2
FDreduction = 755 N
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PROBLEM 11.34

Situation: The problem statement describes a dirigible.

Find: Power required for dirigible.

ANALYSIS

Reynolds number

Re = V0d/ν = (25)(100)/(1.3× 10−4) = 1.92× 107

Drag force

From Fig. 11.11 (extrapolated) CD = 0.05

FD = CDApρV
2
0 /2

= (0.05)(π/4)(1002)(0.07/32.2)(252)/2

= 267 lbf

Power

P = FDV0

= (267)(25)

= 6,670 ft-lbf/s = 12.1 hp
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PROBLEM 11.35

Situation: To reduce drag, vanes are added to truck–additional details are provided
in the problem statement.

Find: Percentage savings in fuel.

Assumptions: Density, ρ = 1.2 kg/m3.

ANALYSIS

Assume that the fuel savings are directly proportional to power savings.

P = FV

P = CD × 8.36× 1.2V 3/2 + 450V

At 80 km/hr:

Pw/o vanes = 0.78× 8.36× 1.2V 3/2 + 450V = 52.9 kW

Pwith vanes = 42.2 kW

which corresponds to a 20.2% savings.
At 100 km/hr:

Pw/o vanes = 96.4 kW

Pwith vanes = 75.4 kW

which corresponds to a 21.8% savings.
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PROBLEM 11.36

Situation: A train is described in the problem statement.

Find: Percentage of resistance due to bearing resistance, form drag and skin friction
drag.

Assumptions: Density, ρ = 1.25 kg/m3 and velocity, ν = 1.41× 10−5 m2/s.

ANALYSIS

Drag force

FDform = CDApρV
2
0 /2

FDform = 0.80× 9× 1.25× V 2
0 /2 = 4.5V

2
0

FDsk in = CfAρV
2
0 /2

Reynolds number

ReL = V L/ν = V × 150/(1.41× 10−5)
ReL,100 = (100, 000/3, 600)× 150/(1.41× 10−5) = 2.9× 108
ReL,200 = 5.8× 108

From Eq. (9.54), Cf,100 = 0.00188; Cf,200 = 0.00173.

V = 100 km/hr V = 200 km/hr
FD,form,100 = 3, 472 N FD,form,200 = 13, 889 N
FD,skin,100 = 1, 360 N FD,skin,200 = 5006 N
Fbearing = 3, 000 N Fbearing = 3, 000 N
Ftotal = 7, 832 N Ftotal = 21, 895 N

44% form, 17% skin, 39% bearing 63% form, 23% skin, 14% bearing
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PROBLEM 11.37

Situation: Viscosity of liquids—water, kerosene, glycerin.

Find: (b) Design equipment to measure the viscosity of liquids using Stoke’s law.
(b) Write instructions for use the equipment.

ANALYSIS

Stoke’s law is the equation of drag for a sphere with a Reynolds number less than 0.5:

FD = 3πµV0d

or µ = FD/(3πV0d)

One can use this equation to determine the viscosity of a liquid by measuring the fall
velocity of a sphere in a liquid. Thus one needs a container to hold the liquid (for
instance a long tube vertically oriented). The spheres could be ball bearings, glass
or plastic spheres. Then one needs to measure the time of fall between two points.
This could be done by measuring the time it takes for the sphere to drop from one
level to a lower level. The diameter could be easily measured by a micrometer and
the drag, FD, would be given by

FD =W − Fbuoyant

If the specific weight of the material of the sphere is known then the weight of the
sphere can be calculated. Or one could actually weigh the sphere on an analytic
balance scale. The buoyant force can be calculated if one knows the specific weight
of the liquid. If necessary the specific weight of the liquid could be measured with a
hydrometer.

To obtain a reasonable degree of accuracy the experiment should be designed so that
a reasonable length of time (not too short) elapses for the sphere to drop from one
level to the other. This could be assured by choosing a sphere that will yield a fairly
low velocity of fall which could be achieved by choosing to use a small sphere over
a large one or by using a sphere that is near the specific weight of the liquid (for
instance, plastic vs. steel).

COMMENTS

1. Other items that should be or could be addressed in the design are:

A. Blockage effects if tube diameter is too small.
B. Ways of releasing sphere and retrieving it.
C. Possibly automating the measurement of time of fall of sphere.
D. Making sure the test is always within Stoke’s law range (Re < 0.5)
E. Making sure the elapsed time of fall does not include the time when the

sphere is accelerating.
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PROBLEM 11.38

Situation: A 1-ft diameter sphere moves through oil–additional details are provided
in the problem statement.

Find: Terminal velocity.

APPROACH

Apply equilibrium involving the weight, drag force and buoyant force.

ANALYSIS

Buoyancy force

Fbuoy. = V γoil
= (4/3)π × (1/2)3 × 0.85× 62.4
= 27.77 lbf

Under non-accelerating conditions, the buoyancy is equal to the drag force plus the
weight.

Fbuoy.

W+FD

FD = −W + Fbuoy.

= −27.0 + 27.77 lbf
= 0.77 lbf upward

Assume laminar flow. Then

FD = 0.77 = 3πµDV0

V0 = 0.77/(3πDµ)

V0 = 0.77/(3π × 1× 1)
V0 = 0.082 ft/s upward

Check laminar flow assumption with Reynolds number

Re = V0dρ/µ = 0.082× 1× 1.94× 0.85/1
= 0.14 <0.5

Therefore the assumption is valid.
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PROBLEM 11.39

Situation: A sphere 2 cm in diameter rises in oil at a velocity of 1.5 cm/s.

Find: Specific weight of the sphere material.

APPROACH

Apply equilibrium to balance the buoyant force with the drag force and weight.

ANALYSIS

Equilibrium X
F = 0 = −FD −W + Fbuoyancy

FD = Fbuoyancy −W (1)

Reynolds number

Re =
V Dρ

µ

=
0.015× 0.02× 900

0.096
= 2.812

Then from Fig. 11.11
CD ≈ 10.0

Substitute drag force, weight and Buoyancy force equations into Eq. (1)

CDApρV
2
0 /2 = V (γoil − γsphere) (2)

Sphere volume is

V = (4/3)πr3

= 4.19× 10−6 m3

Eq. (2) becomes

10× π × 0.012 × 900× 0.0152/2 = 4.19× 10−6(900× 9.81− γsphere)

γsphere = 8753N/m3

γsphere = 8753N/m
3
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PROBLEM 11.40

Situation: The problem statement describes a 1.5-mm sphere moving in oil.

Find: Terminal velocity of the sphere.

APPROACH

Apply the equilibrium principle. To find the drag force, assume Stokes drag.

ANALYSIS

Equilibrium. Since the ball moves at a steady speed, the sum of forces is zero.

W = FB + FD (1)

where W is weight, FB is the buoyant force and FD is drag.

Because the viscosity is large, it is expected that the sphere will fall slowly, so assume
that Stoke’s law applies. Thus, the drag force is

FD = 3πµV0D

= 3πνρV0D

Buoyant force

FB = γoil

µ
πD3

6

¶
Equilibrium (Eq. 1) becomes

W = FB + FD

γsphere

µ
πD3

6

¶
= γoil

µ
πD3

6

¶
+ 3πνρV0Dµ

πD3γwater
6

¶
(Ssphere − Soil) = 3πνρV0DÃ

π (0.0015m)3 × 9810N/m3
6

!
(1.07− 0.95) = 3πνρV0D

2. 080× 10−6N = 3π
¡
10−4m2/ s

¢ ¡
950 kg/m3

¢
Vo (0.0015m)

2. 080× 10−6N =
¡
1. 343× 10−3 kg/ s¢Vo

The solution is
Vo = 1.55mm/ s

Check Reynolds number

Re =
V0D

ν

=
(0.00155m/ s)× (0.0015m)

10−4m2/ s
= 0.023 25
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COMMENTS

The value of Re is within Stokes’ range (Re ≤ 0.5), so the use of Stokes’ law is valid.
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PROBLEM 11.41

Situation: A 2cm plastic ball with specific gravity of 1.2 is released from rest in water
(T=20 ◦C)–additional details are provided in the problem statement.

Find: Time and distance to achieve 99% of terminal velocity.

ANALYSIS

The equation of motion for the plastic sphere is

m
dv

dt
= −FD +W − FB

The drag force can is expressed as

FD =
1

2
ρv2CD

π

4
d2 =

CDRe

24
3πµdv

The equation of motion becomes

m
dv

dt
= −CDRe

24
3πµdv + ρb∀g − ρwg∀

Dividing through by the mass of the ball gives

dv

dt
= −CDRe

24

18µ

ρbd
2
v + g(1− ρw

ρb
)

Substituting in the values

dv

dt
= −0.0375CDRe

24
v + 1.635

Eq. 11.10 can be rewritten as

CDRe

24
= 1 + 0.15Re0.687 +

0.0175Re

1 + 4.25× 104Re−1.16
This equation can be integrated using the Euler method

vn+1 = vn +

µ
dv

dt

¶
n

∆t

sn+1 = sn + 0.5(vn + vn+1)∆t

The terminal velocity is 0.362 m/s. The time to reach 99% of the terminal velocity
is 0.54 seconds and travels 14.2 cm .
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PROBLEM 11.42

Situation: A small air bubble is rising in a very tall column of liquid—additional details
are provided in the problem statement.

Find: (a)Acceleration of the bubble.
(b)Form of the drag (mostly skin-friction or form).

ANALYSIS

Equating the drag force and the buoyancy force.

FD = C1γliq.D
3 = C2D

3

Also
FD = CDApρV

2/2 = C3D
2V 2

Eliminating FD between these two equations yields

V 2 = C4D or V =
p
C4D

As the bubble rises it will expand because the pressure decreases with an increase
in elevation; thus, the bubble will accelerate as it moves upward. The drag will
be form drag because there is no solid surface to the bubble for viscous shear stress
to act on.

COMMENTS

As a matter of interest, the surface tension associated with contaminated fluids creates
a condition which acts like a solid surface.
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PROBLEM 11.43

Situation: A 120 lbf (534N) skydiver is free-falling at an altitude of 6500 ft (1981
m).
Maximum drag conditions: CDA = 8 ft

2 (0.743 m2).
Minimum drag conditions, CDA = 1 ft

2 (0.0929 m2).
Pressure and temperature at sea level are 14.7 psia (101 kPa) and 60 ◦F (15 ◦C).
Lapse rate for the U.S. Standard atmosphere is α = 0.00587K/m.

Find: Estimate the terminal velocity in mph.
a.) Case A (maximum drag) CDA = 8 ft

2 (0.743m2).
b.) Case B (minimum drag) CDA = 1 ft

2 (0.0929m2).

APPROACH

At terminal velocity, the force of drag will balance weight. The only unknown is fluid
density—this can be found by using the ideal gas law along with the equations from
chapter 3 that describe the US Standard atmosphere. Use SI units throughout.

ANALYSIS

Atmospheric pressure variation (troposphere)

T = To − α(z − zo)

= (288.1K)− (0.00587K/m)× (1981− 0) m
= 276.5K

p

po
=

·
To − α(z − zo)

To

¸ g
αR

p

101 kPa
=

·
276.5K

288.1K

¸ 9.81
(0.00587)(287)

so
p = 79.45 kPa

Ideal gas law

ρ =
p

RT

=
79, 450

287× 276.5
= 1.001 kg/m3

Equilibrium

Weight = Drag

Case A

W = CDA
ρV 2

0

2

534N =
¡
0.743m2

¢ (1.001 kg/m3)V 2
0

2

1040



Calculations give
VO = 37.9m/ s

VO = 84.7 mph for maximum drag conditions

Case B.
Since CDA decreases by a factor of 8, the speed will increase by a factor of

√
8.

VO = (84.7mph)
√
8

VO = 240 mph for minimum drag conditions
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PROBLEM 11.44

Situation: Assume Stoke’s law is valid for a Reynolds number below 0.5.

Find: Largest raindrop that will fall in the Stokes’ flow regime.

Assumptions: Tair = 60◦F ; ρair = 0.00237 slugs/ft
3; µair = 3.74× 10−7 lbf-sec/ft2.

APPROACH

Apply Stoke’s law and the equilibrium principle.

ANALYSIS

Drag force is

FD = 3πµV0D

The equilibrium principle is

πD3γwater
6

= 3πµairV0D

D2γwater = 18µairV0

Reynolds number limit for Stokes flow

V0D/ν = 0.5

V0 =
0.5 νair
D

Combining equations

D2γwater = 18µair

µ
0.5 νair
D

¶
D3 = 9µair

νair
Dγwater

Solving for D

D3 =
9µ2air

ρairγwater

=
9× (3.74× 10−7)2
0.00237× 62.4

= 8.51× 10−12 ft3
D = 2.042× 10−4 ft

= 0.0024 in.
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PROBLEM 11.45

Situation: A falling hail stone is described in the problem statement.

Find: Terminal velocity of hail stone.

APPROACH

Apply the ideal gas law, then calculate the drag force and apply the equilibrium
principle.

ANALYSIS

Ideal gas law
ρ = p/RT = 96, 000/(287× 273) = 1.23 kg/m3

Equilibrium X
F = 0 = FD −W

FD = W

Substitute for drag force and weight

CDApρV
2/2 = V ol × 6, 000

Assume CD = 0.5

0.5× (πd2/4)× 1.23V 2/2 = (1/6)πd3 × 6, 000
V =

p
d× 1, 000× 16/1.23

V =
p
5× 16/1.23 = 8.06 m/s

Check Reynolds number

Re = 8.06× 0.005/(1.3× 10−5)
= 3100

From Fig. 11-11 CD = 0.39 so

V = 8.06× (0.5/0.39)1/2
= 9.13 m/s

COMMENTS

The drag coefficient will not change with further iterations.
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PROBLEM 11.46

Situation: The problem statement describes a rock falling in water.

Find: Terminal velocity of the rock.

APPROACH

Apply equilibrium with the drag force and buoyancy force. Use an iterative solution
to find terminal velocity.

ANALYSIS

Buoyancy force

Wair = V γrock
35 = V γrock

Fbuoy = (35− 7)
= V γwater
= V × 9790

Solving for γrock and d: γrock = 12, 223 N/m
3 and d = 0.1762 m.

Under terminal velocity conditions

FD + Fbuoy = W

FD = 35− 28 = 7 N
Drag force

FD = CDApρV
2
0 /2

or

V 2
0 = 2FD/(CDApρ)

V 2
0 = 2× 7/(CD × 0.17622π/4× 998)
V0 = 0.575/

p
CD

Assume CD = 0.4 so
V0 = 0.91 m/s

Calculate the Reynolds number

Re = (V D/ν)

= 0.91(0.176)/10−6

= 1.60× 105

From Fig. 11.11, try CD = 0.45, V0 = 0.86 m/s, Re = 1.51 × 105. There will be no
change with further iterations so

V = 0.86 m/s
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PROBLEM 11.47

Situation: A drag chute is used to decelerate an airplane–additional details are
provided in the problem statement.

Find: Initial deceleration of aircraft.

Assumptions: Density, ρ = 0.075 lbm/ft3 = 0.0023 slug/ ft3.

ANALYSIS

Drag force
FD = CDApρV

2
0 /2 =Ma

then
a = CDApρV

2
0 /(2M)

where M = 20, 000/32.2 = 621.1 slugs. From Table 11.1 CD = 1.20 .

Ap = (π/4)D
2 = 113.1 ft2

Then

a = 1.20× 113.1× 0.0023× 2002/(2× 621.1)
= 10.5 ft/s2
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PROBLEM 11.48

Situation: A paratrooper falls using a parachute—additional details are provided in
the problem statement

Find: Descent rate of paratrooper.

Assumptions: Density, ρ = 1.2 kg/m3

APPROACH

In equilibrium, drag force balances weight of the paratrooper.

ANALYSIS

Equilibrium

W = FD

Drag Force

FD = CDAp
ρV 2

0

2

From Table 11.1 CD = 1.20. Thus

W = FD = CDApρV
2
0 /2

V0 =
q
2W/(CDApρ)

=
p
2× 900/(1.2× (π/4)× 49× 1.2)

= 5.70 m/s
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PROBLEM 11.49

Situation: A weighted wood cylinder falls through a lake (see the problem statement
for all the details).

Find: Terminal velocity of the cylinder.

Assumptions: For the water density, ρ = 1000 kg/m3.

APPROACH

Apply equilibrium with the drag force and buoyancy force.

ANALYSIS

Buoyancy force

Fbuoy = V γwater
= 0.80× (π/4)× 0.202 × 9810
= 246.5 N

Then the drag force is

FD = Fbuoy −W

= 246.5− 200
= 46.5 N

From Table 11-1 CD = 0.87. Then

46.5 =
CDApρV

2
0

2
or

V0 =

s
2× 46.5
CDApρ

V0 =

s
2× 46.5

0.87× (π/4)× 0.22 × 1000
= 1.84 m/s
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PROBLEM 11.50

Situation: A weighted cube falls through water (see the problem statement for all the
details).

Find: Terminal velocity in water.

Assumptions: Density of water: ρ = 1000 kg/m3.

ANALYSIS

Drag force
From Table 11-1, CD = 0.81

FD = CDApρV
2
0 /2

Ap = (2)(L cos 45◦)(L) = 1.414L2

Equilibrium

FD = W − Fbuoy

= 19.8− 9, 810L3 = 19.8− 9, 810× (10−1)3 = 10 N
10 = (0.81)(1.414× 10−2)(1, 000)(V 2

0 )/2

V0=1.32 m/s
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PROBLEM 11.51

Situation: A helium-filled balloon moves through air (see the problem statement for
all the details).

Find: Terminal velocity of the balloon.

Properties: at T = 15◦C: ρair ≈ 1.22 kg/m3; ρHe = 0.169 kg/m
3

APPROACH

Apply equilibrium with the weight, drag force and buoyancy force.

ANALYSIS

Velocity from drag force
V0 = (2FD/(CDAρ))

1/2

Equilibrium

Fnet = FD −Wballoon −Whelium + Fbuoy = 0

FD = +0.15− (1/6)πD3(γair − γHe)

= +0.15− (1/6)π × (0.50)39.81(ρair − ρHe)

FD = +0.15− (1/6)π(0.50)3 × 9.81(1.22− 0.169) = −0.52 N
Assume CD ≈ 0.40 Then

V0 = ((2× 0.52/(0.40× (π/4)× 0.52 × 1.22))1/2
= 3.29 m/s

Check Re and CD:

Re = V D/ν = 3.29× 0.5/(1.46× 10−5) = 1.13× 105

From Fig. 11-11, CD ≈ 0.45 so one additional iteration is necessary.

V0 = 3.11 m/s upward
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PROBLEM 11.52

Situation: The balloon from problem 11.51

Find: Time for the balloon to reach 5000m in altitude.

Assumptions: Balloon does not change in size. Negligible effects of change in viscosity
with temperature.

ANALYSIS

The equation of motion is obtained by equating the mass times acceleration to the
forces acting on the balloon.

m
dv

dt
= −FD −W + FB

The mass of the balloon is the sum of the mass associated with the “empty” weight,
W0, and the helium.

m =
W0

g
+ ρH∀

= ρH∀(1 +
W

ρH∀g
)

The drag force can be expressed as

FD =
1

2
ρv2CD

π

4
d2 =

CDRe

24
3πµdv

The buoyancy force is

FB = ρag∀
Substituting the values into the equation of motion, we have

m
dv

dt
= −CDRe

24
3πµdv −mg + ρag∀

Dividing through by the mass, we get

dv

dt
= −CDRe

24

18µ

ρHd
2

1

F
v − g +

ρa
ρH

g
1

F

where

F = 1 +
W

ρH∀g
The density of helium at 23oC and atmospheric pressure is 0.1643 kg/m3. Substitute
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dv

dt
= −CDRe

24

0.0219

3.19
v − 9.81(1− ρa

0.1643× 3.19)
dv

dt
= −CDRe

24
0.00686v − 9.81(1− ρa

0.524
) (1)

The value for CDRe/24 is obtained from Eq. 11.10.

CDRe

24
= 1 + 0.15Re0.687 +

0.0175Re

1 + 4.25× 104Re−1.16
The value for the air density is obtained from the relations for a standard atmosphere.

T = 296− 5.87× 10−3h
and

p = 101.3(1− T

294
)5.823

and the density is obtained from the ideal gas law.

Eq (1) can be integrated using the Euler method:

vn+1 = vn +

µ
dv

dt

¶
n

∆t

hn+1 = hn + 0.5(vn + vn+1)∆t

The time to climb to 5000 m is 3081 seconds or 51.3 minutes . Other methods may
lead to slightly different answers.
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PROBLEM 11.53

Situation: A helium-filled balloon moves through air (see the problem statement for
all the details).

Find: Terminal velocity of balloon.

APPROACH

Apply equilibrium with the weight, drag force and buoyancy force.

ANALYSIS

Equilibrium

FD = Fbuoy −WHe −Wballoon

Substitute buoyancy force and weight

FD = −0.01 + (1/6)π × 13(γair − γair × 1716/12, 419)
FD = −0.01 + (1/6)π × 13 × 0.0764(1− 0.138)
FD = −0.010 + 0.0345

= 0.0245 lbf

Also

V0 =
q
2FD/(CDApρ) =

p
2× 0.0245/((π/4)× 0.00237CD)

=
p
26.3/CD

Assume CD = 0.40 Then

V0 =
p
26.3/0.4 = 8.1 ft/s upward

Check Reynolds number and CD.

Re = V D/ν = 8.1× 1/(1.58× 10−4) = 5.1× 104; CD = 0.50

From Fig. 11-11, CD = 0.50. Recalculate velocity

V0 =
p
26.3/0.5 = 7.25 ft/s

No further iterations are necessary.
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PROBLEM 11.54

Situation: A man in a boat is pulling up an anchor–additional details are provided
in the problem statement.

Find: Tension in rope to pull up anchor.

Assumptions: Density of water: ρ = 1000 kg/m3.

APPROACH

Apply equilibrium with the tension, weight, drag force and buoyancy force.

ANALYSIS

Equilibrium X
Fy = 0

T −W − FD − Fbuoy. = 0

Solve for T

T =W + FD + Fbuoy.

Substitute drag force, buoyancy force, and weight

T = (π/4)× 0.32 × 0.3(15, 000− 9, 810) + CD(π/4)× 0.32 × 1, 000× 1.02/2

From Table 11-1 CD = 0.90. Then

T = 110 + 31.8 = 141.8 N
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PROBLEM 11.55

Situation: The problem statement describes a small spherical pebble falling through
water.

Find: Terminal velocity of spherical pebble.

Assumptions: Water: ν = 10−5 ft2/s. Pebble: γs = 3.0.

APPROACH

Apply equilibrium to balance buoyancy force, weight and drag force. Guess a coeffi-
cient of drag and iterate to find the solution.

ANALYSIS

Assume CD = 0.5

V0 = [(γs − γw)(4/3)D/(CDρw)]
1/2

V0 = [62.4(3.0− 1)(4/3)× (1/(4× 12))/(0.5× 1.94)]1/2
V0 = 1.891 ft/s

Reynolds number

Re = 1.891× (1/48)/10−5 = 3940
Recalculate the coefficient of drag. From Fig. 11-11 CD = 0.39. Then

V0 = 1.891× (0.5/0.38)1/2 = 2.14 ft/s

No further iterations are necessary.
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PROBLEM 11.56

Situation: A 10-cm diameter ball (weight is 15 N in air) falls through 10oC water.

Find: Terminal velocity of the ball.

APPROACH

Apply equilibrium with the weight, drag force and buoyancy force.

ANALYSIS

Equilibrium

FD = W − Fbuoy

FD = 15− 9, 810× (1/6)πD3 = 15− 9, 810× (1/6)π × 0.13
= 9.86 N

Buoyant force is less than weight, so ball will drop.

9.86 = CD(πD
2/4)× 1, 000V 2/2

V =
p
9.86× 8/(πCD × 1, 000× 0.12) = 1.58/

p
CD

Assume CD = 0.4. Then
V = 2.50 m/s

Check Reynolds number and CD.

Re = V D/ν = 2.50× 0.1/(1.3× 10−6) = 1.9× 105

From Fig. 11-11 CD = 0.48. So

V = 1.58/
√
0.48

= 2.28 m/s downward
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PROBLEM 11.57

Situation: A helium-filled balloon is ascending in air (see the problem statement for
all the details).

Find: Ascent velocity of balloon..

APPROACH

Apply equilibrium with the weight, drag force and buoyancy force.

ANALYSIS

Equilibrium

0 = −Wballoon −WHe + Fbuoy − FD

FD = −3 + (1/6)πD3(γair − γHe)

= −3 + (1/6)π × 23 × γair(1− 287/2077)
= −3 + (1/6)π × 8× 1.225(1− 0.138)
= −3 + 4.422
= 1.422 N

Then drag force

FD = CDApρV
2
0 /2

V0 =
p
1.422× 2/((π/4)× 22 × 1.22CD)

=
p
0.739/CD

Assume CD = 0.4 then
V0 =

p
0.739/0.4 = 1.36 m/s

Check Reynolds number and CD

Re = V D/ν = 1.36× 2/(1.46× 10−5) = 1.86× 105

From Fig. 11-11 CD = 0.42 so

V0 =
p
0.739/0.42 = 1.33 m/s upward

No further iterations are necessary.
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PROBLEM 11.58

Situation: A spherical meteor (ρmeteor = 3000 kg/m
3) enters the earth’s atmosphere.

Find: Diameter of the meteor.

Properties: Air: p = 20 kPa T = −55oC.

APPROACH

Apply the drag force equation and equilibrium.

ANALYSIS

FD = W

CDApρV
2
0

2
= W

CDApkpM
2

2
= W

∴ Ap =
W × 2
CDkpM2

From Fig. 11-12 CD = 0.80

πD2

4
=

W × 2
CDkpM2

=
(3000πD3/6)(9.81)× (2)
(0.8)(1.4)(20× 103)(12)

0.7854D2 = 1.376D3

so

D =
0.785 4

1.376

= 0.571 m
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PROBLEM 11.59

Situation: A sphere is being sized to have a terminal velocity of 0.5 m/s when falling
in water (20oC).
The diameter should be between 10 and 20 cm.

Find: Characteristics of sphere falling in water.

APPROACH

Apply equilibrium with the drag force and buoyancy force.

ANALYSIS

Drag force

FD = CDApρV
2
0 /2

(γs − γw)πd
3/6 = CD(π/4)d

2 × 998V 2
0 /2

Assume CD = 0.50. Then
γs = (93.56/d) + γw

Now determine values of γs for different d values. Results are shown below for a CD

of 0.50

d(cm) 10 15 20 Re= V D/ν = 0.5× 0.1/10−6 = 5× 104
γs(N/m

3) 10,725 10,413 10,238 CD = 0.5 O.K.
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PROBLEM 11.60

Situation: A rotating sphere is described in the problem statement.

Find: Lift force on the sphere.

APPROACH

Use data shown in Fig. 11.17. Calculate lift force using coefficient of lift equation.

ANALYSIS

Rotational π-group.

rω

V0
=

(0.15 ft) (50 rad/ s)

3 ft/ s
= 2.50

From Fig. 11-17 CL = 0.43

Lift force

FL = CLApρV
2
0 /2

FL = (0.43)(π/4)(0.32)(1.94)(32)/2

FL = 0.265 lbf
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PROBLEM 11.61

Situation: A spinning baseball is thrown from west to east–additional details are
provided in the problem statement.

Find: Direction the baseball will ”break.”

ANALYSIS

It will ”break” toward the north. The correct answer is a) .
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PROBLEM 11.62

Situation: A rotating baseball is described in the problem statement.

Find: (a) Lift force on the baseball.
(b) Deflection of the ball from its original path.

Properties: From table A.3, ρ = 0.0023 slugs/ft3.

Assumptions: Axis of rotation is vertical, standard atmospheric conditions (T =
70◦F )..

ANALYSIS

Rotational parameter

V0 = 85 mph = 125 ft/s

rω/V0 = (9/(12× 2π))× 35× 2π/125 = 0.21

From Fig. 11-17 CL = 3× 0.05 = 0.15
Lift force

FL = CLAρV
2
0 /2

= 0.15× (9/12π)2 × (π/4)× 0.0023× 1252/2
= 0.121 lbf

Deflection will be δ = 1/2 at2 where a is the acceleration

a = FL/M

t = L/V0 = 60/125 = 0.48 s

a = FL/M = 0.121/((5/16)/(32.2)) = 12.4 ft/s2

Then
δ = (1/2)× 12.4× 0.482 = 1.43 ft
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PROBLEM 11.63

Situation: A circular cylinder in a wind tunnel is described in the problem statement.

Find: Force vector required to hold the cylinder in position.

APPROACH

Apply lift force and drag force.

ANALYSIS

Correct choice is force vector a) .
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PROBLEM 11.64

Situation: Air speed is being determined in a popcorn popper.
Additional information is provided in problem statement.

Find: Range of airspeeds for popcorn popper operation.

Properties: Air properties from Table A.3 at 150oC ρ = 0.83 kg/m3 and ν =
2.8× 10−5 m2/s.

ANALYSIS

Before corn is popped, it should not be thrown out by the air. Thus, let

Vmax =

s
2FD

CDApρair

where FD is the weight of unpopped corn

FD = mg

= 0.15× 10−3 × 9.81
= 1. 472× 10−3N

The cross-section area of the kernels is

Ap = (π/4)× (0.006)2 m2
= 2.83× 10−5m2

Assume CD w 0.4. Then

Vmax =

s
2FD

CDApρair

=

r
2× 1. 472× 10−3

0.4× 2.83× 10−5 × 0.83
= 17.7 m/s

Check Reynolds number and CD:

Re =
V D

ν

=
17.7× 0.006
2.8× 10−5

= 3800

From Fig. 11-11 CD ≈ 0.4 so solution is valid.
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For minimum velocity let popped corn be suspended by stream of air. Assume only
that diameter changes. So

Vmin = Vmax × (Au/Ap)
1/2

= Vmax
Du

Dp

whereDp = diameter of popped corn andDu = diameter of unpopped corn17.7
¡
6mm
18mm

¢
=

5. 9

Vmin w Vmax
Du

Dp

= 17.7

µ
6mm

8mm

¶
Vmin=5.9m/ s
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PROBLEM 11.65

Situation: Wind loads act on a flag pole that is carrying an 6 ft high American Flag.

Find: Determine a diameter for the pole.

Assumptions: The failure mechanism is yielding due to static loading.

ANALYSIS

An American flag is 1.9 times as long as it is high. Thus

A = 62 × 1.9 = 68.4 ft2

Assume

T = 60◦F, ρ = 0.00237 slugs/ft3

V0 = 100 mph = 147 ft/s

Compute drag force on flag

FD = CDAρV
2
0 /2

= 0.14× 68.4× 0.00237× 1472/2
= 244 lbf

Make the flag pole of steel using one size for the top half and a larger size for the
bottom half. To start the determination of d for the top half, assume that the pipe
diameter is 6 in. Then

Fon pipe = CDApρV
2
0 /2

Re = V D/ν = 147× 0.5/(1.58× 10−4)
= 4.7× 105

With an Re of 4.7×105, CD may be as low as 0.3 (Fig. 11-5); however, for conservative
design purposes, assume CD = 1.0. Then

Fpipe = 1× 50× 0.5× 0.00237× 1472/2 = 640 lbf
M = 244× 50× 12 + 640× 25× 12 = 338, 450 in.-lbf

Assume that the allowable stress is 30, 000 psi.

I

c
=

M

σmax

=
338, 450

30, 000

= 11.28 in3

From a handbook it is found that a 6 in. double extra-strength pipe will be ade-
quate.
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Bottom half, Assume bottom pipe will be 12 in. in diameter.

Fflag = 224 lbf

F6 in.pipe = 640 lbf

F12 in.pipe = 1× 50× 1× 0.00237× 1472/2
= 1, 280 lbf

M = 12(244× 100 + 640× 75 + 1, 280× 25)
= 1, 253, 000 in.-lbf

Ms = 41.8 in.3 = I/c

Handbook shows that 12 in. extra-strength pipe should be adequate.

COMMENTS

Many other designs are possible.
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PROBLEM 11.66

Situation: A plate is angled 30o relative to the direction of an approaching flow. A
pressure distribution is specified in the problem statement.

Find: Lift coefficient on plate.

ANALYSIS

Force normal to plate will be based upon the Cp,net, where Cp,net is the average net Cp

producing a normal pressure on the plate. For example, at the leading edge of the
plate the Cp,net = 2.0+1.0 = 3.0. Thus, for the entire plate the average net Cp = 1.5.

Then

Fnormal to plate = Cp,netAplateρV
2
0 /2

= 1.5AplateρV
2
0 /2

The force normal to V0 is the lift force.

FL = (Fnormal to plate)(cos 30
◦)

CLSρV
2
0 /2 = (1.5)(Aplate)(ρV

2
0 /2) cos 30

◦

CL = 1.5 cos 30◦ = 1.30

based on plan form area. However if CL is to be based upon projected area where

Aproj = Aplate sin 30
◦ then

CL=2.60
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PROBLEM 11.67

Situation: An airplane wing has a chord of 4 ft. Air speed is Vo = 200 ft/ s.
The lift is 2000 lbf. The angle of attack is 3o.
The coefficient of lift is specified by the data on Fig. 11.23.

Find: The span of the wing.

Properties: Density of air is 0.0024 slug/ft3.

APPROACH

Guess an aspect ratio, look up a coefficient of lift and then calculate the span. Then,
iterate to find the span.

ANALYSIS

Lift force
From Fig. 11-23 assume CL ≈ 0.60

FL = CLA
ρV 2

0

2

2000 = (0.60)(4b)
(0.0024)(2002)

2
b = 17.4 ft

b/c = 17.4/4 = 4.34

From Fig. 11-23, CL = 0.50. Recalculate the span

b = (17.4 ft)

µ
0.60

0.50

¶
= 20.9 ft

b = 20.9 ft

1068



PROBLEM 11.68

Situation: A lifting vane for a boat of the hydrofoil type is described in the problem
statement.

Find: Dimensions of the foil needed to support the boat.

ANALYSIS

Use Fig. 11-23 for characteristics; b/c = 4 so CL = 0.55

FL = CLAρV
2
0 /2

10, 000 = 0.55× 4c2 × (1.94/2)× 3, 600
c2 = 1.30 ft

c = 1.14 ft

b = 4c = 4.56 ft

Use a foil 1.14 ft wide × 4.56 ft long
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PROBLEM 11.69

Situation: Two wings, A and B, are described in the problem statement.

Find: Total lift of wing B compared to wing A.

ANALYSIS

CL increases with increase in aspect ratio. The correct choice is (d) .
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PROBLEM 11.70

Situation: An aircraft increases speed in level flight.

Find: What happens to the induced drag coefficient.

ANALYSIS

CDi =
C2
L

π(b2/S)

In the equation for the induced drag coefficient (above) the only variable for a given
airplane is CL; therefore, one must determine if CL varies for the given conditions. If
the airplane is in level flight the lift force must be constant. Because FL = CLAρV

2/2
it is obvious that CL must decrease with increasing V . This would be accomplished
by decreasing the angle of attack. If CL decreases, then Eq. (11.19) shows that CDi

also must decrease. The correct answer is (b) .
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PROBLEM 11.71

Situation: An airplane wing is described in the problem statement.

Find: (a) An expression for V for which the power is a minimum.
(b) V for minimum power

ANALYSIS

W/S =
1

2
ρCLV

2

or

CL = (2/ρ)(1/V 2)(W/S)

P = FDV

= (CDo + C2
L/πΛ)(1/2)ρV

3S

P =
1

2
ρV 3SCDo + (4/ρ

2)(1/V 4)W 2/S2)(1/(πΛ))(
1

2
ρV 3S)

P =

·
1

2
V 3CDo + (2/ρ)(1/(πΛV )(W

2/S2)

¸
S

dP/dV = ((3/2)ρV 2CDo − (2/ρ)(1/(πΛV 2))(W/S)2)S

For minimum power dP/dV = 0 so

(3/2)ρV 2CDo = (2/ρ)(1/(πΛV 2)(W/S)2

V=
£
4
3
(W/S)2(1/(πΛρ2CD0))

¤1/4
For ρ = 1 kg/m3,Λ = 10, W/S = 600 and CDo = 0.2

V =

·
4

3
(6002)(1/(π × 10× 12 × 0.02))

¸1/4
= 29.6 m/s
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PROBLEM 11.72

Situation: The airstream affected by the sing of an airplane is described in the problem
statement.

Find: Show that CDi = C2
L/(πΛ).

ANALYSIS

Take the stream tube between sections 1 and 2 as a control volume and apply the
momentum principle

V

V

Patm

Patm

Patm Patm

y

x

θ

For steady flow the momentum equation isX
Fy = ṁ2V2y − ṁ1V1y

Also V1 = V2 = V. The only Fy, is the force of the wing on the fluid in the control
volume:

Fy = (−V sin θ)ṁ = (−V sin θ)ρV A
= −ρV 2A sin θ

But the fluid acting on the wing in the y direction is the lift FL and it is the negative
of Fy. So

FL = ρV 2A sin θ

CL = 2FL/(ρV
2S)

Eliminate FL between the two equations yields

CL = 2ρV 2A sin θ/(ρV 2S)

CL = 2A sin θ/S

= 2(π/4)b2 sin θ/S

CL = (π/2) sin θ(b2/S)

But sin θ ≈ θ for small angles. Therefore

CL = (π/2)θ(b
2/S)

or

θ = 2CL/(πb
2/S)

CDiρV
2S/2 = (CLρV

2S/2)(θ/2)
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Eliminating θ between the two equations gives

CDiρV
2S/2 = (CLρV

2S/2)(CL/(πb
2/S))

CDi = C2
L/(πΛ)
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PROBLEM 11.73

Situation: The problem statement provides data describing aircraft takeoff and land-
ing.

Find: (a)Landing speed.
(b) Stall speed.

ANALYSIS

CLmax = 1.40 which is the CL at stall. Thus, for stall

W = CLmaxSρV
2
s /2

= 1.4SρV 2
s /2

For landing
W = 1.2SρV 2

L/2

But
VL = Vs + 8

so
W = 1.2Aρ(Vs + 8)

2/2

Therefore

1.2(Vs + 8)
2 = 1.4V 2

s

Vs = 99.8 m/s

VL = Vs + 8

VL = 107.8 m/s
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PROBLEM 11.74

Situation: An aircraft wing is described in the problem statement.

Find: Total drag on wing and power to overcome drag.

ANALYSIS

Calculate p and then ρ:

p = p0[T0 − α(z − z0))/T0]
g/αR

p = 101.3[(296− (5.87× 10−3)(3, 000))/296](9.81/(5.87×10−3×287)) = 70.1 kPa
T = 296− 5.87× 10−3 × 3, 000 = 278.4 K

Then

ρ = p/RT

= 70, 100/(287× 278.4)
= 0.877 kg/m3

CL = (FL/S)/(ρV
2
0 /2)

= (1, 200× 9.81/20)/(0.877× 602/2)
= 0.373

Then

CDi = C2
L/(π(b

2/S))

= 0.3732/(π/(142/20))

= 0.0045

Then the total drag coefficient

CD = CDi + 0.01

= 0.0145

Total wing drag

FD = CDApρV
2
0 /2

FD = 0.0145× 20× 0.877× 602/2
= 458 N

Power

P = 60× 458
= 27.5 kW
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PROBLEM 11.75

Situation: The problem statement provides data for a Gottingen 387-FB lifting vane.

Find: (a) Speed at which cavitation begins.
(b) Lift per unit length on foil.

ANALYSIS

Cavitation will start at point where Cp is minimum, or in this case, where

Cp = −1.95
Cp = (p− p0)/(ρV

2
0 /2)

Also
p0 = 0.70× 9, 810 Pa gage

and for cavitation

p = pvapor = 1, 230 Pa abs

p0 = 0.7× 9, 810 + 101, 300 Pa abs

So

−1.95 = [1, 230− (0.7× 9, 810 + 101, 300)]/(1, 000V 2
0 /2)

V0=10.5 m/s

By approximating the Cp diagrams by triangles, it is found that Cpavg. on the top of
the lifting vane is approx. -1.0 and Cpavg.,b ottom ≈ +0.45

Thus, ∆Cpavg. ≈ 1.45. Then

FL = CLApρV
2
0 /2

FL/length = 1.45× 0.20× 1, 000× (10.5)2/2
FL/length=16,000 N/m
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PROBLEM 11.76

Situation: The distribution of Cp on the wing section in 11.75 is described in the
problem statement.

Find: Range that CL will fall within.

ANALYSIS

The correct choice is (b) .
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PROBLEM 11.77

Situation: The drag coefficient for a wing is described in the problem statement.

Find: Derive an expression for the CL that corresponds to minimum CD/CL and the
corresponding CL/CD.

ANALYSIS

CD/CL = (CD0/CL) + (CL/(πΛ))

d/dCL(CD/CL) = (−CD0/C
2
L) + (1/(πΛ)) = 0

CL =
p
πΛCD0

CD = CD0 + πΛCD0/(πΛ) = 2CD0

Then
CL/CD = (1/2)

p
πΛ/CD0
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PROBLEM 11.78

Situation: A glider at elevation of 1000 m descends to sea level—see the problem
statement for all the details.

Find: Time in minutes for the descent.

ANALYSIS

c = 1, 000/(sin 1.7◦) = 33, 708 m

FL = W = (1/2)ρV 2CLS

200× 9.81 = 0.5× 1.2× V 2 × 0.8× 20
so

V = 14.3 m/s

Then

t = 33, 708 m/(14.3 m/s)

= 2357 s

= 39.3 min
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PROBLEM 11.79

Situation: An aircraft wing is described in the problem statement.

Find: Drag force on the wing.

APPROACH

Apply coefficients for lift and drag forces.

ANALYSIS

Lift force

FL = CLS
ρV 2

0

2

FL/S = CL
ρV 2

0

2

Thus

ρV 2
0

2
=

FL/S

CL

ρV 2
0

2
=

2000N/m2

0.3
= 6667N/m2

From Fig. 11-24 at CL = 0.30, CD ≈ 0.06

Drag force

FD = CDS
ρV 2

0

2
= (0.06)

¡
10m2

¢ ¡
6667N/m2

¢
= 4000 N
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PROBLEM 11.80

Situation: The problem statement describes an ultralight airplane.

Find: (a) Angle of attack.
(b) Drag force on wing.

ANALYSIS

Lift force

W = CLSρV
2
0 /2

CL = W/(SρV 2
0 /2) = (400)/((200)(0.002)(50

2)/2) = 0.80

From Fig. 11-23 CD = 0.06 and
α = 7◦

The drag force is

FD = CDSρV
2
0 /2

= (0.06)(200)(0.002)(502)/2

= 30 lbf
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PROBLEM 11.81

Situation: The parameters for a human-powered aircraft are given in the problem
statement.

Find: Design the human-powered aircraft using the characteristics of the wing in Fig.
11.23.

ANALYSIS

There are several ways to address this design problem. One approach would be to
consider the wing area and velocities necessary to meet the power constraint. That
is,

225 = (0.05 + CD)
1

2
(0.00238 slugs/ft3)V 3

0 S

Make plots of V0 versus S with CD as a parameter. Then use the constraint of the
lift equaling the weight.

40 + 0.12× S = CL
1

2
(0.00238 slugs/ft3)V 2

0 S

Make plots of V0 versus S with CL as a parameter. Where these curves intersect
would give values where both constraints are satisfied. Next you can plot the curve
for the pairs of CD and CL where the curves cross. You can also plot CD versus CL

(drag polar) for the airfoil and see if there is a match. If there is no match, the airfoil
will not work. If there is a match, you should try to find the configuration that will
give the minimum weight.
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PROBLEM 12.1

Situation: A sound wave travels in methane at 0 ◦C.

Find: Speed of wave.

ANALYSIS

Speed of sound

c =
√
kRT

=
√
1.31× 518× 273
c = 430 m/s
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PROBLEM 12.2

Situation: A sound wave travels in helium at 50 ◦C.

Find: Speed of wave.

ANALYSIS

Speed of sound

c =
√
kRT

=
p
1.66× 2077× (50 + 273)

c = 1055 m/s
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PROBLEM 12.3

Situation: A sound wave travels in hydrogen at 68 ◦F.

Find: Speed of wave.

ANALYSIS

Speed of sound

c =
√
kRT

=
p
1.41× 24, 677× (460 + 68)

c = 4286 ft/s
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PROBLEM 12.4

Situation: A sound wave travels in helium and another in nitrogen both at 20 ◦C.

Find: Difference in speed of sound.

ANALYSIS

Speed of sound

cHe =
p
(kR)HeT

=
√
1.66× 2077× 293

= 1005 m/s

cN2 =
p
(kR)N2T

=
√
1.40× 297× 293

= 349 m/s

cHe − cN2 = 656 m/s
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PROBLEM 12.5

Situation: A sound wave travels in an ideal gas.

Find: Speed of sound for an isothermal process.

ANALYSIS

c2 = ∂p/∂ρ; p = ρRT

If isothermal, T=const.

∴ ∂p/∂ρ = RT

∴ c2 = RT

c =
√
RT
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PROBLEM 12.6

Situation: The relationship between pressure and density for sound travelling through
a fluid is described in the problem statement.

Find: Speed of sound in water.

ANALYSIS

p− po = EV ln(ρ/ρo)

c2 =
∂p

∂ρ
=

Ev

ρ

c =
p
Ev/ρ

c =
p
2.20× 109/103

c = 1483 m/s
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PROBLEM 12.7

Situation: An aircraft flying in air at Mach 1.5 is described in the problem statement.

Find: (a) Surface temperature.
(b) Airspeed behind shock.

Properties: (a) FromTable A.1 atM1 = 1.5 , T/Tt = 0.6897; . M2 = 0.7011, T2/T1 =
1.320. (b) Air (Table A.2) k = 1.4 and R = 287 J/kg/K.

ANALYSIS

Total temperature will develop at exposed surface

T

Tt
= 0.6897

Tt =
(273− 30)
0.6897

= 352.3K = 79.2 ◦C

Temperature (behind shock)

T2
T1

= 1.320

T2 = 1.320× (273.15− 30)
= 320.96K

Speed of sound (behind shock)

c2 =
p
kRT2

=
p
(1.4) (287) 320.96

= 359.1m/ s

Mach number (behind shock)

M2 =
V2
c2

V2 = c2M2

= (359.1) (0.7011)

= 251. 77m/ s

V2 = 252m/ s = 906 km/h
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PROBLEM 12.8

Situation: A fighter is flying at Mach 2 though air at 273 ◦F.

Find: Temperature on nose.

Properties: From Table A.1 T/Tt = 0.5556 at M = 2.0

ANALYSIS

Tt = (1/0.5556)(273)

Tt = 491K = 218
◦C
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PROBLEM 12.9

Situation: An aircraft is flying at Mach 1.8 through air at 10000m, 30.5 kPa, and
−44 ◦C.
Find: (a) Speed of aircraft.
(b) Total temperature.
(c) Total pressure.
(d) Speed for M = 1.

ANALYSIS

Speed of sound (at 10,000 m)

c =
√
kRT

c =
p
(1.40)(287)(229)

c = 303.3m/ s

Mach number

V = (1.8)(303.3)(3, 600/1, 000)

= 1, 965 km/hr

Total temperature

Tt = 229(1 + ((1.4− 1)/2)× 1.82)
= 377K = 104 oC

Total pressure

pt = (30.5)(1 + 0.2× 1.82)(1.4/(1.4−1))
= 175 kPa

Mach number

M = 1; V = 1× c = c

V = (303.3)(3, 600/1, 000)

= 1092 km/hr
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PROBLEM 12.10

Situation: An airplane is travelling at sea level—additional details are provided in the
problem statement.

Find: Speed of aircraft at altitude where T = −40oC.

APPROACH

Apply the Mach number equation and the speed of sound equation.

ANALYSIS

At sea level
Speed of sound (sea level)

c =
√
kRT

=
p
(1.4)(287)(288)

= 340.2 m/s

Mach number(sea level)

V = 800 km/hr = 222.2 m/s

M = 222.2/340.2 = 0.653

Speed of sound (at altitude)

c =
p
(1.4)(287)(233)

= 306.0 m/s

Mach number (at altitude)

V = Mc

= 0.653× 306
V = 200m/ s = 719 km/h
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PROBLEM 12.11

Situation: An aircraft flying through air is described in the problem statement.

Find: Wing loading.

ANALYSIS

Kinetic pressure

q = (k/2)pM2

= (1.4/2)(30)(0.95)2

= 18.95 kPa

Lift force

FL = CLqS

W = FL/S = CLq

= (0.05)(18.95)

= 0.947 kPa

W = 947 Pa
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PROBLEM 12.12

Situation: An object immersed in airflow is described in the problem statement.

Find: (a) Pressure.
(b) Temperature at stagnation point.

ANALYSIS

Speed of sound

c =
√
kRT

=
p
(1.4)(287)(293)

= 343 m/s

Mach number

M = 250/343

= 0.729

Total properties
Temperature

Tt = (293)(1 + 0.2× (0.729)2)
= 293× 1.106
= 324 K

Tt = 51
◦C

Pressure

pt = (200)(1.106)3.5

pt = 284.6 kPa
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PROBLEM 12.13

Situation: An airflow through a conduit is described in the problem statement.

Find: Mass flow rate through conduit.

APPROACH

Apply the flow rate equation, the ideal gas law, Mach number, speed of sound, and
the total properties equations.

ANALYSIS

Total temperature equation

T =
Tt¡

1 + k−1
2
M2
¢

=
283.15K¡

1 +
¡
1.4−1
2

¢
0.752

¢
= 254.5K

Total pressure equation

p =
pt¡

1 + k−1
2
M2
¢ k
k−1

=
360 kPa¡

1 +
¡
1.4−1
2

¢
0.752

¢ 1.4
1.4−1

= 247.9 kPa

Speed of sound

c =
√
kRT

c =
p
(1.4)(287)(254.5)

= 319.8m/ s

Mach number

V = Mc

V = (0.75)(319.8)

= 239.9 m/s

Ideal gas law

ρ =
p

RT

=
247.9× 103
287× 254.5

= 3.394 kg/m3
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Flow rate equation

ṁ = V ρA

= (239.9)(3.394)(0.0050)

ṁ = 4.07 kg/s
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PROBLEM 12.14

Situation: Oxygen flows through a reservoir—additional details are provided in the
problem statement.

Find: (a) Velocity.
(b) Pressure.
(c) Temperature.

ANALYSIS

Total properties

Tt = 200◦C = 473 K
T = 473/(1 + 0.2× 0.92)

= 473/1.162

T = 407 K

pt = 300 kPa

p = 300/(1.162)3.5

p = 177.4 kPa

Speed of sound

c =
√
kRT

c = [(1.4)(260)(407)]1/2

= 384.9 m/s

Mach number

V = Mc

= (0.9)(384.9)

V = 346.4 m/s
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PROBLEM 12.15

Situation: High Mach number flow from a reservoir—additional details are provided
in the problem statement.

Find: Mach number condensation will occur.

APPROACH

Apply total temperature equation setting the T to 50K and Tt to 300K.

ANALYSIS

Total temperature equation

T0/T = 1 + ((k − 1)/2)M2

300/50 = 6 = 1 + 0.2M2

M = 5
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PROBLEM 12.16

Situation: Hydrogen flow from a reservoir—additional details are provided in the prob-
lem statement.

Find: (a) Temperature.
(b) Pressure.
(c) Mach number.
(d) Mass flow rate.

ANALYSIS

Tt = 20oC = 293 K

Pt = 500 kPa

cpT + V 2/2 = cpT0

T = Tt − V 2/(2cp)

= 293− (250)2/((2)(14, 223))
T = 290.8 K

Speed of sound

c =
√
kRT

=
p
(1.41)(4, 127)(290.8)

= 1, 301 m/s

Mach number

M = 250/1301

= 0.192

Total properties (pressure)

p = 500/[1 + (0.41/2)× 0.1922](1.41/0.41)
p = 487.2 kPa

Ideal gas law

ρ = p/RT

= (487.2)(103)/(4, 127× 290.8)
= 0.406 kg/m3

Flow rate equation

ṁ = ρAV

= (0.406)(0.02)2(π/4)(250)

ṁ = 0.032 kg/s
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PROBLEM 12.17

Situation: A sphere in a Mach-2.5 wind tunnel is described in the problem statement.

Find: Drag on the sphere.

ANALYSIS

p = pt/[1 + ((k − 1)/2)M2]k/(k−1)

= 600/[1 + 0.2(2.5)2]3.5

= 35.1 kPa

(1/2)ρU2 = kpM2/2

= 1.4× 35.1× 2.52/2
= 153.6 kPa

Drag force

FD = CD(1/2)ρU
2A

= (0.95)(153.6× 103)(0.02)2(π/4)
FD = 45.8 N
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PROBLEM 12.18

Situation: Eq. 12.27

Find: (a) Expression for pressure coefficient.
(b) Values for pressure coefficient

ANALYSIS

pt = (p)[1 + (k − 1)/2×M2](k/(k−1))

Cp = (pt − p)ρU2/2

= (pt − p)/kpM2/2

= (2/kM2)[(pt/p)− 1]
Cp = 2/(kM

2)[(1 + (k − 1)M2/2)(k/(k−1)) − 1]
Cp(2) = 2.43

Cp(4) = 13.47

Cpinc. = 1.0
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PROBLEM 12.19

Situation: With low velocities, one can write pt/p = 1 + ε
Additional details are provided in the problem statement.

Find: Show that Mach number goes to zero as � goes to zero, and that Eq. 12.32
reduces to M = [(2/k)(pt/p− 1)]1/2

ANALYSIS

pt/p = [1 + (k − 1)M2/2]k/(k−1)

M =
q
(2/(k − 1))[(pt/p)(k−1)/k − 1]

pt/p = 1 + ε; (pt/p)
(k−1)/k = (1 + ε)(k−1)/k = 1 + ((k − 1)/k)ε+ 0(ε2)

(pt/p)
(k−1)/k − 1 w ((k − 1)/k)ε+ 0(ε2)

Neglecting higher order terms

M = [(2/(k − 1))((k − 1)/k)ε]1/2
M = [(2/k)(pt/p− 1)]1/2 as ε→ 0
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PROBLEM 12.20

Situation: A normal shock wave is described in the problem statement.

Find: (a) Mach number.
(b) Pressure downstream of wave.
(c) Temperature downstream of wave.
(d) Entropy increase.

ANALYSIS

Speed of sound

c1 =
√
kRT

=
p
(1.4)(297)(223)

= 304.5 m/s

Mach number

M1 = V/c

= 500/304.8

= 1.64

Normal shock wave (Mach number)

M2
2 = [(k − 1)M2

1 + 2]/[2kM
2
1 − (k − 1)]

= [(0.4)(1.64)2 + 2]/[(2)(1.4)(1.64)2 − 0.4]
M2 = 0.657

Normal shock wave
Pressure ratio

p2 = p1(1 + k1M
2
1 )/[(1 + k1M

2
2 )]

= (70)(1 + 1.4× 1.642)/(1 + 1.4× 0.6572)
p2 = 208 kPa

Temperature ratio

T2 = T1(1 + ((k − 1)/2)M2
1 )/(1 + ((k − 1)/2)M2

2 )

= 223[1 + 0.2× 1.642]/[1 + 0.2× 0.6572]
T2 = 316K = 43

◦C

Entropy

∆s = Rcn[(p1/p2)(T2/T1)
k/(k−1)]

= R[cn(p1/p2) + (k/(k − 1))cn(T2/T1)]
= 297[cn(70/208) + 3.5cn(315/223)]

∆s = 35.6 J/kg K
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PROBLEM 12.21

Situation: A normal shock wave is described in the problem statement.

Find: (a) Mach number downstream of shock wave.
(b) Pressure downstream of shock wave.
(c) Temperature downstream of shock wave.

ANALYSIS

Mach number (downstream)

M2
2 = [(k − 1)M2

1 + 2]/[2kM
2
1 − (k − 1)]

M2 = 0.577

Temperature ratio

(T2/T1) = [1 + ((k − 1)/2)M2
1 ]/[1 + ((k − 1)/2)M2

2 ]

= (1 + (0.2)(4))/(1 + (0.2)(0.577)2) = 1.688

T2 = 505× 1.69
T2 = 851.7

◦R = 392 ◦F

Pressure ratio

p2/p1 = (1 + kM2
1 )/(1 + kM2

2 )

= (1 + 1.4× 4)/(1 + 1.4× (0.577)2)
= 4.50

p2 = (4.50)(30)

p2 = 135 psia
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PROBLEM 12.22

Situation: A normal shock wave is described in the problem statement.

Find: Mach number

APPROACH

Find pressure ratios and apply the compressible flow tables.

ANALYSIS

pt2/p1 = 150/40 = 3.75 = (pt2/pt1)(pt1/p1)

Using compressible flow tables:

M pt2/pt1 p1/pt1 pt2/p1
1.60 0.8952 0.2353 3.80
1.50 0.9278 0.2724 3.40
1.40 0.9582 0.3142 3.04
1.35 0.9697 0.3370 2.87

pt2

p1

Therefore, interpolating, M = 1.59

1106



PROBLEM 12.23

Situation: A shock wave is described in the problem statement.

Find: (a)The downstream Mach number.
(b) Static pressure.
(c) Static temperature.
(d) Density.

Properties: From Table A.2 k = 1.31

APPROACH

Apply the Normal shock wave equations to find Mach number, pressure, and temper-
ature. Apply the ideal gas law to find density.

ANALYSIS

Normal shock wave
Mach number

M2
2 = [(k − 1)M2

1 + 2]/[2kM
2
1 − (k − 1)]

= ((0.31)(9) + 2)/((2)(1.31)(9)− 0.31) =
0.2058

M2 = 0.454

Pressure ratio

p2/p1 = (1 + kM2
1 )/(1 + kM2

2 )

= (1 + 1.31× 9)/(1 + 1.31× 0.2058) = 10.07
p2 = 1, 007 kPa, abs

Temperature ratio

T2/T1 = [1 + ((k − 1)/2)M2
1 ]/[1 + ((k − 1)/2)M2

2 ]

= 2.32

T2 = (293)(2.32)

T2 = 680K = 407
◦C

Ideal gas law

ρ2 = p2/(RT2)

= (1, 007)(103)/((518)(680))

ρ2 = 2.86 kg/m
3
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PROBLEM 12.24

Situation: A shock wave is described in the problem statement.

Find: Velocity upstream of wave

Properties: From Table A.2 k = 1.66; R = 2, 077 J/kg/K.

ANALYSIS

Normal shock wave
Mach number

M2
1 = [(k − 1)M2

2 + 2]/[2kM
2
2 − (k − 1)]

= 1.249

M1 = 1.12

Temperature ratio

T1/T2 = [1 + ((k − 1)/2)M2
2 ]/[1 + ((k − 1)/2)M2

1 ]

= 0.897

T1 = (0.897)(373) = 335 K

Speed of sound

c1 =
√
kRT

= (1.66× 2, 077× 335)1/2
c1 = 1, 075 m/s

Mach number

V1 = c1M1

= (1, 075)(1.12)

V1 = 1, 204 m/s
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PROBLEM 12.25

Situation: A normal shock wave is described in the problem statement.

Find: (a) Lowest Mach number possible downstream of shock wave
(b) Largest density ratio possible
(c) Limiting values of M2 and ρ2/ρ1 for air.

ANALYSIS

M2
2 = ((k − 1)M2

1 + 2)/(2kM
2
1 − (k − 1))

Because

M1 >> 1, (k − 1)M2
1 À 2

2kM2
1 À (k − 1)

So in limit

M2
2 → ((k − 1)M2

1 )/2kM
2
1 = (k − 1)/2k

∴ M2 →
p
(k − 1)/2k

ρ2/ρ1 = (p2/p1)(T1/T2)

= ((1 + kM2
1 )/(1 + kM2

2 ))(1 + ((k − 1)/2)M2
2 )/(1 + ((k − 1)/2)M2

1 )

in limit M2
2 → (k − 1)/2k and M1 →∞

∴ ρ2/ρ1 → [(kM2
1 )/((k − 1)/2)M2

1 ][(1 + (k − 1)2/4k)/(1 + k(k − 1)/2k)]
ρ2/ρ1 → (k + 1)/(k − 1)
M2(air) = 0.378

ρ2/ρ1(air) = 6.0
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PROBLEM 12.26

Situation: A weak shock wave is described in the problem statement.

Find: (a) Approximation for Mach number downstream of wave.
(b) CompareM2 computed with equation from (a) with values in table A.1 forM1 = 1,
1.05, 1.1, and 1.2.

ANALYSIS

M2
2 = [(k − 1)M2

1 + 2]/[2kM
2
1 − (k − 1)]

= [(k − 1)(1 + ε) + 2]/[2k(1 + ε)− (k − 1)] = [k + 1 + (k − 1)ε]/[k + 1 + 2kε]
= [1 + (k − 1)ε/(k + 1)]/[1 + (2kε)/(k + 1)]
≈ [1 + (k − 1)ε/(k + 1)][1− (2kε)/(k + 1)]
≈ 1 + (k − 1− 2k)ε/(k + 1)
≈ 1− ε

≈ 1− (M2
1 − 1)

≈ 2−M2
1

M1 M2 M2 (Table A-1)
1.0 1.0 1.0
1.05 0.947 0.953
1.1 0.889 0.912
1.2 0.748 0.842
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PROBLEM 12.27

Situation: A truncated nozzle is described in the problem statement.
Inputs: total pressure, total temperature, back pressure, ratio of specific heats, gas
constant, and nozzle diameter.

Find: (a) Develop a computer program for calculating the mass flow.
(b) Compare program with Example 12.12 with back pressures of 80, 90, 100, 110,
120, and 130 kPa and make a table.

ANALYSIS

The computer program shows the flow is subsonic at the exit and the mass flow rate
is 0.239 kg/s. The flow rate as a function of back pressure is given in the following
table.

Back pressure, kPa Flow rate, kg/s
80 0.243
90 0.242
100 0.239
110 0.229
120 0.215
130 0.194

COMMENTS

One notes that the mass flow rate begins to decrease more quickly as the back pressure
approaches the total pressure.
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PROBLEM 12.28

Situation: A truncated nozzle is described in the problem statement.

Find: Mass flow rate

ANALYSIS

AT = 3 cm2 = 3× 10−4 m2
pt = 300 kPa; Tt = 20◦ = 293 K

pb = 90 kPa

pb/pt = 90/300 = 0.3

Because pb/pt < 0.528, sonic flow at exit.

Laval nozzle flow rate equation

ṁ = 0.685ptA∗/
p
RTt

= (0.685)(3× 105)(3× 10−4)/
p
(287)(293)

ṁ = 0.212 kg/s
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PROBLEM 12.29

Situation: A truncated nozzle is described in the problem statement.

Find: (a)Mass flow rate of methane.
(b) Mass flow rate if Bernoulli equation is valid.

Properties: From Table A.2 k = 1.31; R = 518 J/kgK.

ANALYSIS

AT = 3 cm2 = 3× 10−4m2
Ap = 12 cm2 = 12× 10−4m2
pt = 150 kPa; Tt = 303 K

pb = 100 kPa;

pb/pt = 100/150 = 0.667

p∗/pt|methane = (2/(k + 1))k/(k−1) = 0.544

pb > p∗, subsonic flow at exit

Mach number

Me =
q
(2/(k − 1))[(pt/pb)(k−1)/k − 1]

=
p
6.45[(1.5)0.2366 − 1]

= 0.806

Temperature

Te = 303 K/(1 + (0.31/2)× (0.806)2)
= 275 K

Speed of sound

ce =
p
kRTe

=
p
(1.31)(518)(275)

= 432 m/s

Ideal gas law

ρe = pb/(RTe)

= 100× 103/(518× 275)
= 0.702 kg/m3
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Flow rate equation

ṁ = ρeVeAT

= (0.702)(0.806)(432)(3× 10−4)
ṁ = 0.0733 kg/s

Assume the Bernoulli equation is valid,

pt − pb = (1/2)ρV
2
e

Ve =
p
2(150− 100)103/0.702

= 377 m/s

ṁ = (0.702)(377)(3× 10−4)
ṁ = 0.0794 kg/s

Error = 8.3% (too high)
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PROBLEM 12.30

Situation: A truncated nozzle is described in the problem statement.

Find: The total pressure.

ANALYSIS

Speed of sound

ce =
p
kRTe

=
p
(1.4)(287)(283)

= 337 m/s

Ideal gas law (assume sonic flow at the exit so pe = 100 kPa)

ρe = pe/RTe

= 100× 103/(287× 283)
= 1.23 kg/m3

Flow rate equation

ṁ = ρeAece

= (1.23)(4× 10−4)(337)
= 0.166 kg/s

Because the mass flow is too low, flow must exit sonically at pressure higher than the
back pressure.

Flow rate equation

ρe =
ṁ

ceAe

=
0.30

337× (4× 10−4)
= 2.226 kg/m3

Ideal gas law

pe = ρeRTe

= 2. 226× 287× 283 = 1. 808× 105 Pa
Then

pt
pe

= ((k + 1)/2)k/(k−1)

= (1.2)3.5 = 1.893

pt = 1.893× 1. 808× 105 Pa
pt = 3. 423× 105 Pa

pt = 342 kPa
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PROBLEM 12.31

Situation: A truncated nozzle is described in the problem statement.

Find: Mass flow rate of helium.

Properties: From Table A.2 k = 1.66.

ANALYSIS

(a) pt = 130 kPa
If sonic at exit,

p∗ = [2/(k + 1)]k/(k−1)pt
= 0.487× 130 kPa
= 63.3 kPa

Flow must exit subsonically
Total properties
Find Mach number

M2
e = (2/(k − 1))[(pt/pb)(k−1)/k − 1]
= 3.03[(130/100)0.4 − 1] = 0.335

Me = 0.579

Temperature

∴ Te = Tt/(1 + ((k − 1)/2)M2)

= 301/(1 + (1/3)(0.335))

= 271K

Ideal gas law

ρe = p/RTe

= 100× 103/[(2, 077)(271)]
= 0.178 kg/m3

Flow rate equation
ṁ = ρeAeVe

Substituting Mach number and Speed of sound equations for Ve

ṁ = ρeAeMe

p
kRTe

= (0.178)(12× 10−4)(0.579)
p
(1.66)(2, 077)(271)

ṁ = 0.120 kg/s
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b)

pt = 350 kPa

∴ p∗ = (0.487)(350) = 170 kPa

∴ Flow exits sonically

Flow rate equation from (a)

ṁ = 0.727ptA∗/
p
RTt

= (0.727)(350)103(12× 10−4)/
p
2, 077× 301

ṁ = 0.386 kg/s
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PROBLEM 12.32

Situation: A truncated nozzle is described in the problem statement.

Find: Pressure required for isokinetic sampling.

Properties: From Table A.2 R = 287 J/kgK; k = 1.4.

ANALYSIS

Ideal gas law

ρ = p/RT

= 100× 103/(287)(873)
= 0.399 kg/m3

Flow rate equation

ṁ = ρV A

= (0.399)(60)(π/4)(4× 10−3)2
ṁ = 0.000301 kg/ s

Mach number

M = V/
√
kRT

= 60/
p
(1.4)(287)(873)

= 0.101

Total properties

pt = (100)[1 + (0.2)(0.101)2]3.5

= 100.7 kPa

Tt = 875 K

Laval nozzle flow rate equation (assume sonic flow)

ṁ = 0.685ptA∗/
p
RTt

= 0.685(100.7× 103)(π/4)(2× 10−3)2/
p
(287)(875)

ṁ = 0.000432 kg/ s

Thus, flow must be subsonic at constriction and solution must be found iteratively.
Assume M at constriction and solve for ṁ in terms of M.

Total properties

ρe = ρt(1 + ((k − 1)/2)M2)(−1/(k−1) = ρt(1 + 0.2M
2)−2.5

ce = ct(1 + ((k − 1)/2)M2)−1/2 = ct(1 + 0.2M
2)−0.5
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Flow rate
ṁ = ρeAeceMe

Combine equations

ṁ = AeMeρtct(1 + 0.2M
2)−3

ρt = (0.399)[1 + (0.2)(0.101)2]2.5 = 0.401 kg/m3

Speed of sound

ct =
p
kRTt

=
p
(1.4)(287)(875) = 593 m/s

∴ ṁ = 7.47× 10−4M(1 + 0.2M2)−3

M ṁ× 104
0.5 3.22
0.4 2.71
0.45 2.98
0.454 3.004
0.455 3.01 (correct flow rate)

∴ pb = (100.7)(1 + 0.2× 0.4552)−3.5
pb = 87.2 kPa
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PROBLEM 12.33

Situation: Inputs of Mach number ratio (run with Mach number of 2) and specific
heats (run with 1.4, 1.3 and 1.67).

Find: Develop a computer program that outputs: area ratio, static to total pressure
ratio, static to total temperature ratio, density to total density ratio, and before and
after shock wave pressure ratio.

ANALYSIS

The following results are obtained from the computer program for a Mach number of
2:

A/A∗ 1.69 1.53 1.88
T/Tt 0.555 0.427 0.714
p/pt 0.128 0.120 0.132
ρ/ρt 0.230 0.281 0.186
M2 0.577 0.607 0.546
p2/p1 4.5 4.75 4.27
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PROBLEM 12.34

Situation: Inputs: area ratio (run with 5), specific heats (run with 1.4, 1.67, and
1.31), and flow condition.

Find: Develop a computer program that outputs Mach number.

ANALYSIS

The following results are obtained for an area ratio of 5:

k Msubsonic Msupersonic

1.4 0.117 3.17
1.67 0.113 3.81
1.31 0.118 2.99
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PROBLEM 12.35

Situation: A supersonic wind tunnel is described in the problem statement.

Find: The area ratio and reservoir conditions.

Properties: From Table A.2 k = 1.4.

ANALYSIS

Mach number-area ratio relationship

A/A∗ = (1/M)[(1 + ((k − 1)/2)M2)/((k + 1)/2)](k+1)/(2(k−1))

= (1/3)[(1 + 0.2× 32)/1.2]3
A/A∗ = 4.23

From Table A.1, p/pt = 0.02722; T/Tt = 0.3571

pt = 1.5 psia /0.0585

=
1.5 psia
0.02722

pt = 55.1 psia

Tt =
450 oR
0.3571

Tt = 1260
◦R = 800 ◦F
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PROBLEM 12.36

Situation: The design of a Laval nozzle is described in the problem statement.

Find: The nozzle throat area.

Properties: From Table .2 k = 1.4; R = 297 J/kgK.

ANALYSIS

Find Mach number

Me =
q
(2/(k − 1))[(pt/pe)(k−1)/k1]

=
p
5[(1, 000/30)0.286 − 1]

= 2.94

Mach number-area ratio relationship

Ae/A∗ = (1/M)[(1 + ((k − 1)/2)M2)/((k + 1)/2)](k+1)/(2(k−1))

= (1/2.94)[(1 + (0.2)(2.94)2)/1.2]3

Ae/A∗ = 4.00

Flow rate equation for Laval nozzle

ṁ = 0.685ptAT/
p
RTt

AT = ṁ
p
RTt/(0.685× pt)

= 5×
p
(297)(550)/((0.685)(106))

= 0.00295 m2

AT = 29.5 cm2
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PROBLEM 12.37

Situation: A rocket nozzle with the following properties is described in the problem
statement.
A/A∗ = 4; pt = 1.3 MPa = 1.3× 106 Pa; pb = 35 kPa;k = 1.4.
Find: The state of exit conditions.

ANALYSIS

From Table A1:

Me ≈ 2.94 => pe/pt ≈ 0.030
∴ pe = 39 kPa

∴ pe > pb under expanded
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PROBLEM 12.38

Situation: Same as problem 12.37, but the a ratio of specific heats of 1.2.

Find: State of exit conditions.

ANALYSIS

Running the program from Problem 12.33 with k = 1.2 and A/A∗ = 4 gives pt/p =
23.0. Thus the exit pressure is

pe =
1.3 MPa
23

= 56 kPa

Therefore the nozzle is underexpanded.
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PROBLEM 12.39

Situation: A Laval nozzle is described in the problem statement.

Find: (a) Reservoir pressure.
(b) Static pressure and temperature at throat.
(c) Exit conditions.
(d) Pressure for normal shock at exit.

ANALYSIS

a) p = pt in reservoir because V = 0 in reservoir
p/pt = 0.1278 for A/A∗ = 1.688 and M = 2 (Table A.1)

pt = p/0.1278

= 100/0.1278

pt = 782.5 kPa

b) Throat conditions for M = 1:

p/pt = 0.5283

T/Tt = 0.8333

p = 0.5283(782.5)

p = 413.4 kPa

T = 0.8333(17 + 273)

= 242K

T = −31 ◦C
c) Conditions for pt = 700 kPa:

p/pt = 0.1278

p = 0.1278(700) = 89.5 kPa =⇒ 89.5 kPa < 100 < kPa

overexpanded exit condition
d) pt for normal shock at exit:
Assume shock exists at M = 2; we know p2 = 100 kPa.
From table A.1: p2/p1 = 4.5

p1 = p2/4.5 = 22.2 kPa

p/pt = 0.1278

pt = p/0.1278

= 22.2/0.1278

pt = 173.7 kPa
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PROBLEM 12.40

Situation: A Laval nozzle is described in the problem statement.

Find: (a) Mach number.
(b) Area ratio.

ANALYSIS

Find Mach number

q = (k/2)pM2

= (k/2)pt[1 + ((k − 1)/2)M2]−k/(k−1)M2

cnq = cn(kpt/2)− (k/(k − 1))cn(1 + ((k − 1)/2)M2) + 2cnM

(∂/∂M)cnq = (1/q)(∂q/∂M)

= (−k/(k − 1))[1/(1 + ((k − 1)/2)M2)][(k − 1)M ] + 2/M
0 = [−kM ]/[1 + ((k − 1)/2)M2] + (2/M)

= [(−kM2 + 2 + (k − 1)M2)/[(1 + ((k − 1)/2)M2)M ]

0 = 2−M2

M =
√
2

Mach number-area ratio relationship

A/A∗ = (1/M)[1 + ((k − 1)/2)M2]/[(k + 1)/2](k+1)/2(k−1)

= (1/
√
2)[(1 + 0.2(2))/1.2]3

A/A∗ = 1.123
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PROBLEM 12.41

Situation: A rocket motor is described in the problem statement.

Find: (a) Mach number, pressure and density at exit.
(b) Mass flow rate.
(c) Thrust.
(d) Chamber pressure for ideal expansion.

ANALYSIS

Mach number-area ratio relationship

A/A∗ = (1/Me)((1 + 0.1×M2
e )/1.1)

5.5 = 4

a) Solve for M by iteration:

Me A/A∗
3.0 6.73
2.5 3.42
2.7 4.45
2.6 3.90
2.62 4.0

∴ Me = 2.62

Total properties
Pressure

pe/pt = (1 + 0.1× 2.622)−6 = 0.0434
∴ pe = (0.0434)(1.2× 106)

pe = 52.1× 103 Pa
Temperature

Te/Tt = (1 + 0.1× 2.622)−1 = 0.593
Te = (3, 273× 0.593)

= 1, 941 K

Ideal gas law

ρe = pe/(RTe)

= (52.1× 103)/(400× 1, 941)
pe = 0.0671kg/m3

Speed of sound

ce =
√
kRT

=
p
(1.2× 400× 1, 941)

= 965 m/s
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Mach number

Ve = (965)(2.62)

Ve = 2, 528 m/s

b) Flow rate equation

ṁ = ρeAeVe

= (0.0671)(4)(10−2)(2, 528)

ṁ = 6.78 kg/s

c) Momentum principle

FT = (6.78)(2, 528) + (52.1− 25)× 103 × 4× 10−2
FT = 18.22 kN

d)

pt = 25/0.0434

pt = 576 kPa

ṁ = (25/52.1)(6.78) = 3.25 kg/s

FT = (3.25)(2, 528)

FT = 8.22 kN
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PROBLEM 12.42

Situation: A rocket motor design is described in the problem statement.

Find: (a) Nozzle expansion ratio for ideal expansion.
(b) Thrust if expansion ratio reduced by 10%.

ANALYSIS

pt/pe = (1 + ((k − 1)/2)M2)k/(k−1)

= (1 + 0.1M2)6

Me =
q
10[(pt/pe)1/6 − 1]

=
q
10[(2, 000/100)1/6 − 1]

= 2.54

Mach number-area ratio relationship

Ae/A∗ = (1/Me)[(1 + 0.1M
2
e )/1.1]

5.5

Ae/A∗ = 3.60

Total properties (temperature)

Te = 3, 300/(1 + (0.1)(2.54)2)

= 2006 K

Ideal gas law

ρe = 100× 103/(400× 2, 006)
= 0.125 kg/m3

Speed of sound

ce =
p
(1.2)(400)(2006)

= 981 m/s

Flow rate equation

ṁ = ρeAeVe

= (0.125)(3.38)(10−3)(981)(2.54)
= 1.053 kg/s
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Momentum principle

FT = (1.053)(981)(2.54)

FT = 2624 N

(b)

Ae/A∗ = (0.9)(3.60) = 3.24

3.42 = (1/Me)((1 + 0.1M
2
e )/1.1)

5.5

Solve by iteration:

Me A/A∗
2.4 3.011
2.5 3.420
2.45 3.204
2.455 3.228
2.458 3.241

∴ Me = 2.46

pe/pt = (1 + 0.1M2
e )
−6 = 0.0585

pe = (0.0585)(2.0× 106) = 117 kPa
Te = 3, 300/(1 + 0.1× 2.462) = 2, 056 K

Speed of sound

ce =
p
kRTe

=
p
(1.2)(400)(2056)

= 993 m/s

Momentum principle

FT = (1.053)(993)(2.46) + (117− 100)× 103 × 3.24× 10−3
FT = 2627 N
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PROBLEM 12.43

Situation: A Laval nozzle is described in the problem statement.

Find: Area ratio where shock occurs in nozzle.

ANALYSIS

pb/pt = 0.5

Solution by iteration:
Choose M
Determine A/A∗

Find pt2/pt1 = A∗1/A∗2
(Ae/A∗)2 = 4(A∗1/A∗2)
Find Me

pe/pt1 = (pe/pt2)(pt2/pt1) and converge on pe/pt1 = 0.5

A T

Ac

1

2

M A/A∗ Pt2/pt1 (Ae/A∗) Me pe/pt1
2 1.69 0.721 2.88 0.206 0.7
2.5 2.63 0.499 2.00 0.305 0.468
2.4 2.40 0.540 2.16 0.28 0.511 ∴ A/A∗ = 2.46
2.43 2.47 0.527 2.11 0.287 0.497
2.425 2.46 0.530 2.12 0.285 0.50
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PROBLEM 12.44

Situation: A rocket nozzle is described in the problem statement.

Find: Area ratio and location of shock wave.

ANALYSIS

Use same iteration scheme as problem 12-43 but with k = 1.2 to find A/A∗ of shock:

pb/pt = 100/250 = 0.4 Ae/AT (8/4)
2 = 4

M A/A∗ Pt2/pt1 (Ae/A∗)2 Me pe/pt1
2.0 1.88 0.671 2.68 0.227 0.568
2.4 3.01 0.463 1.85 0.341 0.432
2.5 3.42 0.416 1.65 0.385 0.380 ∴ A/A∗ = 3.25
2.46 3.25 0.434 1.74 0.366 0.400

From geometry: d = dt + 2× tan 15◦

d/dt = 1 + (2x/dt) tan 15
◦

A/A∗ = (d/dt)
2 = 3.25

= [1 + (2x/dt)(0.268)]
2

= [1 + (0.536x/dt)]
2

∴ x/dt = 1.498

x = (1.498)(4)

x = 5.99 cm

15

d t

o

d

x
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PROBLEM 12.45

Situation: A normal shock wave occurs in a nozzle—additional details are provided in
the problem statement.

Find: Entropy increase.

Properties: From Table A.2 k = 1.41.

ANALYSIS

A

A∗
= (1/M)((1 + 0.205×M2)/1.205)2.939

Solve iteratively for M (to give A/A∗ = 4)

M A/A∗
2.5 2.61
2.8 3.45
3.0 4.16
2.957 4.0

M1 = 2.957

M2
2 = ((k − 1)M2

1 + 2)/(2kM
2
1 − (k − 1))

M2 = 0.4799

p2/p1 = (1 + kM2
1 )/(1 + kM2

2 ) = 10.06

pt/p|1 = (1 + ((k − 1)/2)M2
1 )

k/(k−1) = 34.20

pt/p|2 = 1.172

pt2/pt1 = (pt2/p2)(p2/p1)(p1/pt1) = 0.3449

∆s = R ln(pt1/pt2) = 4127 ln(1/0.3449)

∆s = 4390 J/kgK
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PROBLEM 12.46

Situation: Airflow in a channel is described in the problem statement.

Find: (a) Mach number.
(b) Static pressure.
(c) Stagnation pressure at station 3.

Properties: From Table A.1 M = 2.1, A/A∗ = 1.837, p/pt = 0.1094.

ANALYSIS

A∗ = 100/1.837 = 54.4

pt = 65/0.1094 = 594 kPa

A2/A∗ = 75/54.4 = 1.379

M = 1.74→ p2/pt = 0.1904→ p2 = 0.1904(594) = 113 kPa

after shock, M2 = 0.630; p2 = 3.377(113) = 382 kPa

A2/A∗ = (1/M)((1 + 0.2M2)/1.2)3

= 1.155

pt/p2 = (1 + 0.2M2)3.5 = 1.307

A∗ = 75/1.155 = 64.9; pt = 382(1.307) = 499 kPa

A3/A∗ = 120/64.9 = 1.849; from Table A.1, M3 = 0.336

p3/pt = 0.9245; p3 = 0.9245(499) = 461 kPa
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PROBLEM 12.47

Situation: A shock wave in air is described in the problem statement.
M1 = 0.3; A/A∗ = 2.0351; A∗ = 200/2.0351 = 98.3 cm2.

Find: Atmospheric pressure for shock position.

ANALYSIS

p/pt = 0.9395

pt = 400/0.9395

= 426 kPa

As/A∗ = 120/98.3

= 1.2208

By interpolation from Table A.1:

Ms1 = 1.562; p1/pt = 0.2490→ p1 = 0.249(426) = 106 kPa

Ms2 = 0.680; ps2/p1 = 2.679→ ps2 = 2.679(106) = 284 kPa

As/A∗2 = 1.1097→ A∗2 = 120/1.1097 = 108 cm2

ps2/pt2 = 0.7338; pt2 = 284/0.7338 = 387 kPa

A2/A∗2 = 140/108 = 1.296→M2 = 0.525

p2/pt2 = 0.8288

p2 = 0.8288(387)

p2 = 321 kPa
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PROBLEM 12.48

Situation: Inputs: f(x−x∗)/D (run for 1, 10, and 100 and k = 1.4) for a compressible,
adiabatic flow in a pipe.

Find: Develop a computer program that outputs: Mach number and the ratio of
pressure to the pressure at sonic conditions (pM/p∗).

ANALYSIS

Running the program for initial Mach number given a value of f̄ (x∗ − x) /D results
in

f̄ (x∗ − x) /D k = 1.4 k = 1.31
M pM/p∗ M pM/p∗

1 0.508 2.10 0.520 2.02
10 0.234 4.66 0.241 4.44
100 0.0825 13.27 0.0854 12.57
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PROBLEM 12.49

Situation: The design of a piping system is described in the problem statement.

Find: Pipe diameter.

Assumptions: Me = 1; pe = 100 kPa; Te = 373(0.8333) = 311 K

ANALYSIS

Speed of sound

ce =
p
kRTe

=
p
1.4(287)311

= 353 m/s

Ideal gas law

ρe = 100× 103/(287× 311)
= 1.12 kg/m3

Flow rate

A = ṁ/(ρV )

= 0.2/(1.12× 353) = 5.06× 10−4 m2 = 5.06 cm2

Solve for D

D = ((4/π)A)1/2

= 2.54 cm

Reynolds number

Re = (353× 0.0254)/(1.7× 10−5)
= 5.3× 105 → f = 0.0132

f∆x/D = (0.0132× 10)/0.0254 = 5.20
from Fig. 12.19M1 = 0.302
from Fig. 12.20 p/p∗ = 3.6

p1 = 100(3.6) = 360 kPa > 240 kPa

∴ Case B

Solve by iteration.

Me Te ce Ve ρe A× 104 Re×10−5 M1 p1/pe
0.8 331 365 292 1.054 6.51 4.54 0.314 2.55
0.7 340 369 259 1.026 7.54 4.11 0.322 2.18
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By interpolation, for p1/pe = 2.4, Me = 0.76

Te = 334 K; ce = 367 m/s; Ve = 279 m/s; ρe = 1.042 kg/m
3

A = 6.89× 10−4 m2; D = 0.0296 m

A = 2.96cm

1139



PROBLEM 12.50

Situation: Air entering a steel pipe is described in the problem statement.

Find: (a) Length of pipe for sonic flow.
(b) Pressure at pipe exit.

Properties: From Table A.2 R = 1, 716 ft-lbf/slug.

ANALYSIS

T = 67◦F = 527◦R

Speed of sound

c =
√
kRT

=
p
(1.4)(1, 716)(527)

= 1, 125 ft/sec

M1 = 120/1, 125

= 0.107

Ideal gas law

ρ = p/RT

= (30× 144)/(1, 716× 527)
= 0.00478 slug/ft3

Reynolds number

µ = 3.8× 10−7 lbf-sec/ft2
Re = (120× 1/12× 0.00478)/(3.8× 10−7) = 1.25× 105

From Figs. 10-8 and Table 10.2, f = 0.025

f̄(x∗ − xM)/D = (1−M2)/kM2 + ((k + 1)/2k)cn[(k + 1)M2/(2 + (k − 1)M2)] = 62.0

∴ x∗ − xM = L = (62.0)(D/f̄) = (62.0× 1/12)/0.025 = 207 ft

from Eq. 12.79

pM/p∗ = 10.2

p∗ = 30/10.2

p∗ = 2.94 psia
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PROBLEM 12.51

Situation: Air flows out of a brass tube—additional details are provided in the problem
statement.

Find: Distance upstream where M = 0.2.

Properties: From Table A.2 R = 287 J/kgK.

ANALYSIS

Total properties (temperature

Te = 373/(1 + 0.2× 0.92)
= 321 K

Speed of sound

ce =
p
kRTe

=
p
(1.4)(287)(321)

= 359 m/s

Mach number

V = Me/ce

= (0.9)(359)

= 323 m/s

Ideal gas law

µe = 2.03× 10−5N · s/cm2

ρ = p/RTe

= (100× 103)/(287× 321) = 1.085 kg/m3

Reynolds number

Re = (323)(1.085)(3× 10−2)/(2.03× 10−5) = 5.18× 105

from Figs. 10-8 and Table 10.2 f = 0.0145

f̄(x∗ − x0.9)/D = 0.014

f̄(x∗ − x0.2)/D = 14.5

∴ f̄(x0.8 − x0.2)/D = 14.49 = f̄L/D

∴ L = (14.49)(3× 10−2)/0.0145
L = 30.0m
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PROBLEM 12.52

Situation: The inlet and exit of a pipe are described in the problem statement.

Find: Friction factor: f̄ .

ANALYSIS

Eq. (12-75)

M = 0.2

f̄(xI − x0.2)/D = 14.53

M = 0.6

f̄(x∗ − x0.7)/D = 0.2

f̄(x0.6 − x0.2)/D = 14.33

f̄ = 14.33(0.5)/(20× 12)
f̄ = 0.0298
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PROBLEM 12.53

Situation: Oxygen flowing through a pipe is described in the problem statement.

Find: Mass flow rate in pipe.

Properties: From Table A.2 k = 1.4; R = 260 J/kgK.

Assumptions: Sonic flow at exit.

ANALYSIS

Temperature

Te = 293/1.2

= 244K = −29 ◦C

Speed of sound

ce = Ve =
p
(1.4)(260)(244)

= 298 m/s

Reynolds number

νe w 1× 10−5 m2/s (Fig. A3)
Re = (298× 2.5× 10−2)/(1× 10−5) = 7.45× 105

From Figs. 10-8 an Table 10.2, f = 0.024

f(x∗ − xM)/D = (10× 0.024)/0.025 = 9.6

From Fig. 12-19 M at entrance = 0.235

pM/p∗ = 4.6

p1 = 460 kPa > 300 kPa

Therefore flow must be subsonic at exit so pe/p1 = 100/300 = 0.333. Use iterative
procedure:

M1
f(x∗−xM )

D
Re×105 f fL/D f(x∗−xe)

D
Me pe/p1

0.20 14.5 6.34 0.024 9.6 4.9 0.31 0.641
0.22 11.6 6.97 0.024 9.6 2.0 0.42 0.516
0.23 10.4 7.30 0.024 9.6 0.8 0.54 0.416
0.232 10.2 7.34 0.024 9.6 0.6 0.57 0.396
0.234 10.0 7.38 0.024 9.6 0.4 0.62 0.366
0.2345 9.9 7.40 0.024 9.6 0.3 0.65 0.348
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For M1 near 0.234, pM/p∗ = 4.65

pe/p∗ = (pM/p∗)(pe/pM)

pe/p∗ = (4.65)(0.333) = 1.55

which corresponds to Me = 0.68

Total temperature

Te = 293/(1 + (0.2)(0.68)2)

= 268 K

Speed of sound

ce =
p
kRTe

=
p
(1.4)(260)(268)

= 312 m/s

Ve = 212 m/s

Ideal gas law

ρ = p/RTe

= 105/(260× 268)
= 1.435 kg/m3

Flow rate equation

∴ ṁ = (1.435)(212)(π/4)(0.025)2

ṁ = 0.149kg/s
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PROBLEM 12.54

Situation: Same as 12.53.

Find: Mass flow rate in pipe.

ANALYSIS

From the solution to prob. 12.53, we know flow at exit must be sonic since p1 > 460
kPa. Use an iterative solution. Guess f = 0.025

f̄(x∗ − xM)/D = 10

M = 0.23

Tt = 293/(1 + 0.2(0.23)2) = 290 K

c1 =
p
(1.4)(290)(260) = 325 m/s

ρ1 = (500× 103)/(260× 290) = 6.63 kg/m3

Assuming µ not a function of pressure

µ1 = 1.79× 10−5N · s/m2
Re = (0.23)(325)(6.63)(2.5× 10−2)/(1.79× 10−5) = 6.9× 105

From Fig. 10.8 and Table 10.2
f = 0.024

Try

f = 0.024

f(x∗ − xM)/D = 9.6; M = 0.235; Tt w 290 K
c1 = 325 m/s; ρ1 = 6.63 kg/m

3; µ1 w 1.79× 10−5 N · s/m2;
Re = 7× 105

gives same f of 0.024. For M = 0.235, pM/p∗ = 4.64

p∗ = 107.8 kPa

Te = 293/1.2 = 244 K

ce = 298 m/s

ρe = (107.8× 103)/(260× 244) = 1.70 kg/m3
∴ ṁ = (1.70)(298)(π/4)(0.025)2

ṁ = 0.248 kg/s
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PROBLEM 12.55

Situation: A pressure hose connected to a regulator valve is described in the problem
statement.

Find: Hose diameter.

Assumptions: Me = 1; pe = 7 psia.

ANALYSIS

Speed of sound

Te = 560(0.8333) = 467◦R

ce =
p
kRTe

=
p
1.4(1, 776)467 = 1, 077 ft/s

Ideal gas law

ρe = p/RT

= 7(144)32.2/(1, 776× 467)
= 0.039 lbm/ft3

Flow rate equation

A = ṁ/(ρV )

= 0.06/(0.039× 1, 077)
= 1.43× 10−3 ft2

D = 0.0427 ft = 0.51 in.

Reynolds number

Re = (1, 077)(0.0427)(0.039)/(1.36× 10−7 × 32.2) = 4.1× 105
ks/D = 0.0117; f = 0.040

f∆x/D = (0.04× 10)/0.0427 = 9.37
From Fig. 12-19 M1 = 0.24. From Fig. 12-20, p1/p∗ = 4.54

p1 = 31.8 psia < 45 psia

Therefore Case D applies so M = 1 at exit and pe > 7 psia.
Solve by iteration:

M1 T1 V1 ρ1 D Re×10−5 f M1 pe
0.24 553 281 0.212 0.0358 1.62 0.040 0.223 9.16
0.223 554 262 0.212 0.0371 1.56 0.040 0.223 9.16

D = 0.0371 ft
D = 0.445 in
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PROBLEM 12.56

Situation: The design of an air blower and pipe system is described in the problem
statement.

Find: (a)Pressure.
(b) Velocity.
(c) Density at pipe inlet.

Assumptions: Viscosity of particle-laden flow is same as air.

ANALYSIS

Speed of sound

c =
p
kRTe

=
p
1.4(287)288

= 340 m/s

Mach number

Me = V/c

= 50/340

= 0.147

Find M1

→ f̄(x∗ − x0.147)/D = 29.2

pe/p∗ = 7.44

Re = 50(0.2)/(1.44× 10−5) = 6.94× 105
ks/D = 0.00025; f = 0.0158

f̄∆x/D = [f̄(x∗ − xM)/D]− [f̄(x∗ − x0.147)/D]

= 0.0158× 120/0.2 = 9.48
f̄(x∗ − xM)/D = 29.2 + 9.48 = 38.7→M1 = 0.14

Pressure ratio

p1/p∗ = 7.81

p1/pe = (p1/p∗)(p∗/pe) = 7.81/7.44 = 1.050
p1 = 1.05(100)

p1 = 105 kPa

Mach number

V1 = 0.14(340)

V1 = 47.6 m/s
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Total properties

T1 = Tt/(1 + 0.2M
2
1 )

= 288/(1 + 0.2(0.14)2)

= 287

Ideal gas law

ρ1 = p/RT

= (105× 103)/(287× 287)
ρ1 = 1.27 kg/m

3
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PROBLEM 12.57

Situation: Methane is pumped into a steel pipe—additional details are provided in the
problem statement.

Find: Pressure 3 km downstream.

ANALYSIS

Speed of sound

c1 =
p
kRTe

=
p
1.31(518)320

= 466 m/s

Ideal gas law

ρ1 =
p

RT

=
1.2× 106
518× 320

= 7.24 kg/m3

Mach number

M =
V

c1
=
20

466
= 0.043

By Eq. 12-75
f̄(x∗ − x0.043)/D = 407

and by Eq. 12-79

p1/p∗ = 25.0

Re = 20(0.15)7.24/(1.5× 10−5)
= 1.448× 106; ks/D = 0.00035

f = 0.0160

f∆x/D = 0.0160(3000)/0.15 = 320

[f(x∗ − x0.043)/D]− [f̄(x∗ − xM)/D] = f∆x/D

f(x∗ − xM)/D = 407− 320 = 83→Me = 0.093

By Eq. 12-79

pe/p∗ = 11.5

pe = (pe/p∗)(p∗/p1)p1
= (11.5/25.0)

¡
1.2× 106¢

pe = 552 kPa
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PROBLEM 12.58

Situation: Hydrogen is transported in a n underground pipeline—additional details
are provided in the problem statement.

Find: Pressure drop in pipe.

Properties: From Table A.2 R = 4, 127 J/kgK; k = 1.41; ν = 0.81× 10−4m2.

APPROACH

Find the speed of sound at entrance

ANALYSIS

Speed of sound

c =
p
kRTe

=
p
(1.41)(4, 127)(288)

= 1, 294m/ s

Mach number

∴ M = 200/1, 294 = 0.154

∴ kM2 = .0334;
√
kM = 0.183

Reynolds number
(200)(0.1)/(0.81× 10−4) = 2.5× 105

From Fig. 10-8 and Table 10.2
f = 0.018

At entrance

f(xm − x1)/D = cn(0.0334) + (1− 0.0334)/0.0334 = 25.5
At exit

f(xm − x2)/D = f(xM − x1)/D + f(x1 − x2)/D = 25.5− (0.018)(50)/0.1
= 25.5− 9.0 = 16.5

From Fig. 12-22
kM2 = 0.05or

√
kM = 0.2236

Then

p2/p1 = (pm/p1)(p2/pm)

= 0.183/0.2236 = 0.818

∴ p2 = 204.5 kPa

∆p = 45.5 kPa
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PROBLEM 12.59

Situation: Helium flows in a tube—additional details are provided in the problem
statement.

Find: Mass flow rate in pipe.

Properties: From Table A.2 R = 2077 J/kgK; k = 1.66; ν = 1.14× 10−4 m2/s.

ANALYSIS

Speed of sound

c =
p
kRTe

=
p
(1.66)(2077)(288) = 996 m/s

p2/p1 = 100/120 = 0.833

Iterative solution:

V1 M1 Re×10−4 f kM2
1

f(xT−xM )
D

f(xT−xe)
D

kM2
2 p2/p1

100 0.100 4.4 0.022 0.0166 55.1 11.1 0.0676 0.495
50 0.050 2.2 0.026 0.00415 234.5 182.5 0.0053 0.885
55 0.055 2.4 0.025 0.00502 192.9 149.2 0.006715 0.864
60 0.060 2.6 0.25 0.00598 161.1 111.1 0.008555 0.836
61 0.061 2.6 0.25 0.00618 155.8 105.8 0.00897 0.830
60.5 0.0605 2.6 0.25 0.006076 158.5 108.5 0.00875 0.833

Ideal gas law

ρ = p/RT

= 120× 103/(2, 077)(288)
= 0.201 kg/m3

Flow rate equation

ṁ = ρV A

= (0.201)(60.6)(π/4)(0.05)2

ṁ = 0.0239 kg/s
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PROBLEM 12.60

Situation: The design of a supersonic wind tunnel is described in the problem state-
ment.

Find: Do a preliminary design of a the system.

ANALYSIS

The area of the test section is

AT = 0.05× 0.05 = 0.0025 m2
From Table A.1, the conditions for a Mach number of 1.5 are

p/pt = 0.2724, T/Tt = 0.6897 A/A∗ = 1.176

The area of the throat is

A∗ = 0.0025/1.176 = 0.002125 m2

Since the air is being drawn in from the atmosphere, the total pressure and total
pressure are 293 K and 100 kPa. The static temperature and pressure at the test
section will be

T = 0.6897× 293 = 202 K, p = 0.2724× 100 = 27.24 kPa
The speed of sound and velocity in the test section is

c =
√
kRT =

√
1.4× 287× 202 = 285 m/s

v = 1.5× 285 = 427 m/s
The mass flow rate is obtained using

ṁ = 0.685
ptA∗√
RTt

= 0.685
105 × 0.002125√
287× 293

= 0.502 kg/s

The pressure and temperature in the vacuum tank can be analyzed using the re-
lationships for an open, unsteady system. The system consists of a volume (the
vacuum tank) and an inlet coming from the test section. In this case, the first law of
thermodynamics gives

m2u2 −m1u1 = min(hin + v2in/2) +1 Q2

Assume that the heat transfer is negligible and that the tank is initially evacuated.
Then

m2u2 = m2(hin + v2in/2)
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since min = m2. Thus the temperature in the tank will be constant and given by

cvT = cpTin + v2in/2

717× T = 1004× 202 + 4272/2
T = 410 K

The continuity equation applied to the vacuum tank is

V
dρ

dt
= ṁ

The density from the ideal gas law is

ρ =
p

RT

which gives

V
dp

dt
= ṁRT

or

V =
ṁRT

dp/dt

Assume the final pressure in the tank is the pressure in the test section. Thus the
rate of change of pressure will be

dp

dt
=
27.24

30
= 0.908 kPa/s

The volume of the tank would then be

V =
0.502× 0.287× 410

0.908
= 65 m3

This would be a spherical tank with a diameter of

D =
3

r
6V

π
= 5.0 m

COMMENTS

1. The tank volume could be reduced if the channel was narrowed after the test
section to reduce the Mach number and increase the pressure. This would
reduce the temperature in the tank and increase the required rate of pressure
increase.

2. The tunnel would be designed to have a contour between the throat and test
section to generate a uniform velocity profile. Also a butterfly valve would have
to be used to open the channel in minium time.
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PROBLEM 12.61

Situation: The design of a test system involving truncated nozzles is described in the
problem statement.

Find: Explain how to carry out the test program.

ANALYSIS

A truncated nozzle is attached to a storage tank supplied by the compressor. The
temperature and pressure will be measured in the tank. These represent the total
conditions. The nozzles will be sonic provided that the tank pressure is greater than
14.7/0.528=33 psia (or 18 psig).

Ideal Gas Law

ρ =
p

RT
=
14.7× 144
1716× 520 = 0.00237 slugs/ft

3

A mass flow rate of 200 scfm corresponds to

ṁ = 200× 0.00237/60 = 0.00395 slugs/s
The flow rate is given by

ṁ = 0.685
ptA∗√
RTt

Using 120 psig and a flow rate of 200 scfm gives a throat area of

A∗ =
ṁ
√
RTt

0.685pt

=
0.00395×√1716× 520
0.685× 134× 144

= 2.82× 10−4 ft2
This area corresponds to an opening of

D =

r
4

π
× 2.82× 10−4

= 0.0189 ft = 0.23 in

COMMENTS

1. This would represent the maximum nozzle size. A series of truncated nozzles
would be used which would yield mass flows of 1/4,1/2 and 3/4 of the maximum
flow rate. The suggested nozzle diameters would be 0.11 in, 0.15 in and 0.19 in.
Another point would be with no flow which represents another data point.

2. Each nozzle would be attached to the tank and the pressure and temperature
measured. For each nozzle the pressure in the tank must exceed 18 psig to
insure sonic flow in the nozzle. The mass flow rate would be calculated for
each nozzle size and these data would provide the pump curve, the variation of
pressure with flow rate. More data can be obtained by using more nozzles.
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PROBLEM 13.1

Situation: A stagnation tube (d = 1 mm) is used to measure air speed.

Find: Velocity such that the measurement error is ≤ 2.5%.
Properties: ν = 1.46× 10−5 m2/s.

ANALYSIS

Algebra using the coefficient of pressure (from the vertical axis of Fig.13.1) gives

Vo =
q
2∆p/(ρCp)

The allowable error is 2.5%, thus

Vo =

s
2∆p

ρCp
= (1− 0.025)

s
2∆p

ρ

Thus s
1

Cp
= 0.975

1

Cp
= 0.9752

Cp =
1

0.9752
= 1.052

Thus when Cp ≈ 1.05, there will be a 2.5% error in Vo.

From Fig. 13-1, when Cp = 1.05, then Re ≈ 35
Vod

ν
= Re

Vod

ν
= 35

Vo =
35ν

d

=
35× (1.46× 10−5m2/ s)

0.001m
= 0.511m/ s

Vo = 0.511m/ s
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PROBLEM 13.2

Situation: A stagnation tube (d = 1 mm) is used to measure the speed of water.

Find: Velocity such that the measurement error is ≤ 1%.

ANALYSIS

Algebra using the coefficient of pressure (from the vertical axis of Fig.13.1) gives
Vo =

p
2∆p/(ρCp). The allowable error is 1%, thus

Vo =

s
2∆p

ρCp
= 0.99

s
2∆p

ρ

This simplifies to s
1

Cp
= 0.99

1

Cp
= 0.99

Cp =
1

0.992
= 1.020

Thus when Cp ≈ 1.02, there will be a 1% error in Vo.

From Fig. 13-1, when Cp = 1.02, then Re ≈ 60. Thus

Re =
V d

ν
= 60

V =
60ν

d

=
60× (10−6m2/ s)

0.001m
= 0.06m/ s

V ≥ 0.06 m/ s

1156



PROBLEM 13.3

Situation: A stagnation tube (d = 2 mm) is used to measure air speed.
Manometer deflection is 1 mm-H2O.

Find: Air Velocity: V

ANALYSIS

ρair = 1.25 kg/m3

∆hair = 0.001× 1000/1.25
= 0.80 m

From Bernoulli equation applied to a stagnation tube

V =
p
2g∆h = 3.96 m/s

Reynolds number

Re = V d/ν

= 3.96× 0.002/(1.41× 10−5)
= 563

Pressure coefficient

Cp ≈ 1.001

V = 3.96/
p
Cp

= 3.96/
√
1.001

= 3.96 m/s
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PROBLEM 13.4

Situation: A stagnation tube (d = 2 mm) is used to measure air speed (V = 12m/s).

Find: Deflection on a water manometer: ∆h

Properties: For air, ν = 1.4× 10−5 m2/s.

ANALYSIS

Determine Cp

Re = V d/ν

= 12× 0.002/(1.4× 10−5)
= 1714

From Fig. 13.1 Cp ≈ 1.00
Pressure drop calculation
Bernoulli equation applied to a stagnation tube

∆p = ρV 2/2

Ideal gas law

ρ =
p

RT

=
98, 000

287× (273 + 10)
= 1.21 kg/m3

Then

∆p = 9810∆h

= 1.21× 122/2
= 8.88× 10−3 m
= 8.88 mm
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PROBLEM 13.5

Situation: A stagnation tube (d = 2 mm) is used to measure air speed.
Air kinematic viscosity is 1.55× 10−5
Find: Error in velocity if Cp = 1 is used for the calculation.

Properties: Stagnation pressure is ∆p = 5 Pa.

APPROACH

Calculate density of air by applying the ideal gas law. Calculate speed of air by
applying the Bernoulli equation to a stagnation tube. Then calculate Reynolds
number in order to check Cp.

ANALYSIS

Ideal gas law

ρ =
p

RT

=
100, 000

287× 298
= 1.17 kg/m3

Bernoulli equation applied to a stagnation tube

V =

s
2∆p

ρ

=

r
2× 5
1.17

= 2.92 m/s

Reynolds number

Re =
V d

ν

=
2.92× 0.002
1.55× 10−5

= 377

Thus, Cp = 1.002

% error = (1− 1/√1.002)× 100
= 0.1%
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PROBLEM 13.6

Situation: A probe for measuring velocity of a stack gas is described in the problem
statement.

Find: Stack gas velocity: Vo

ANALYSIS

Pressure coefficient

Cp = 1.4 = ∆p/(ρV 2
0 /2)

Thus V0 =

s
2∆p

1.4ρ

ρ =
p

RT

=
100, 000

410× 573
= 0.426 kg/m3

Calculate pressure difference

∆p = 0.01 m× 9810
= 98.1 Pa

Substituting values

V0 =

s
2∆p

1.4ρ

=

r
2× 98.1
1.4× 0.426

= 18.1 m/s
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PROBLEM 13.7

Situation: In 3.5 minutes, 14 kN of water flows into a weigh tank.

Find: Discharge: Q

Properties: γwater 20◦C = 9790 N/m
3

ANALYSIS

Ẇ =
W

∆t

=
14, 000

3.5× 60
= 66.67N/ s

But γ = 9790 N/m3 so

Q =
Ẇ

γ

=
66.67N/ s

9790N/m3

Q = 6.81× 10−3 m3/s
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PROBLEM 13.8

Situation: In 5 minutes, 80 m3 of water flows into a weigh tank.

Find: Discharge: Q in units of (a) m3/s, (b) gpm and (c) cfs.

ANALYSIS

Q =
V–
t

=
80

300

= 0.267 m3/s

Q = 0.267 (m3/s)/(0.02832 m3/s/cfs)

= 9.42 cfs

Q = 9.42 cfs × 449 gpm/cfs
= 4230 gpm
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PROBLEM 13.9

Situation: Velocity data in a 24 inch oil pipe are given in the problem statement.

Find: (a) Discharge.
(b) Mean velocity.
(c)Ratio of maximum to minimum velocity.

ANALYSIS

Numerical integration

r(m) V (m/s) 2πV r area (by trapezoidal rule)
0 8.7 0
0.01 8.6 0.54 0.0027
0.02 8.4 1.06 0.0080
0.03 8.2 1.55 0.0130
0.04 7.7 1.94 0.0175
0.05 7.2 2.26 0.0210
0.06 6.5 2.45 0.0236
0.07 5.8 2.55 0.0250
0.08 4.9 2.46 0.0250
0.09 3.8 2.15 0.0231
1.10 2.5 1.57 0.0186
0.105 1.9 1.25 0.0070
0.11 1.4 0.97 0.0056
0.115 0.7 0.51 0.0037
0.12 0 0 0.0013

Summing the values in the last column in the above table gives Q = 0.196 m3/s.
Then,

Vmean = Q/A

= 0.196/(0.785(0.24)2)

= 4.33 m/s

Vmax/Vmean = 8.7/4.33

= 2.0

This ratio indicates the flow is laminar. The discharge is

Q=0.196 m3/s
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PROBLEM 13.10

Situation: Velocity data in a 16 inch circular air duct are given in the problem
statement.
p = 14.3 psia, T = 70 oF

Find: (a) Flow rate: Q in cfs and cfm.
(b) Ratio of maximum to mean velocity.
(c) Whether the flow is laminar or turbulent.
(d) Mass flow rate: ṁ.

APPROACH

Perform numerical integration to find flow rate (Q). Apply the ideal gas law to
calculate density. Find mass flow rate using ṁ = ρQ.

ANALYSIS

Numerical integration

y(in.) r(in.) V (ft/s) 2πrV (ft2/s) area (ft3/s)
0.0 8.0 0 0
0.1 7.9 72 297.8 1.24
0.2 7.8 79 322.6 2.58
0.4 7.6 88 350.2 5.61
0.6 7.4 93 360.3 5.92
1.0 7.0 100 366.5 12.11
1.5 6.5 106 360.8 15.15
2.0 6.0 110 345.6 14.72
3.0 5.0 117 306.3 27.16
4.0 4.0 122 255.5 23.41
5.0 3.0 126 197.9 18.89
6.0 2.0 129 135.1 13.88
7.0 1.0 132 69.4 8.51
8.0 0.0 135 0 2.88

Summing values in the last column of the above table gives Q = 152.1 ft3/ s = 9124 cfm
Flow rate equation

Vmean = Q/A

= 152.1/(0.785(1.33)2)

= 109 ft/s

Vmax/Vmean = 135/109

= 1.24
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which suggests turbulent flow .
Ideal gas law

ρ =
p

RT

=
(14.3) (144)

(53.3) (530)

= 0.0728 lbm/ft3

Flow rate

ṁ = ρQ

= 0.0728(152.1)

= 11.1 lbm/s
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PROBLEM 13.11

Situation: A heated gas flows through a cylindrical stack–additional information is
provided in the problem statement.

Find: (a) The ratio rm/D such that the areas of the five measuring segments are
equal.
(b) The location of the probe expressed as a ratio of rc/D that corresponds to the
centroid of the segment
(c) Mass flow rate

ANALYSIS

(a)

πr2m = (π/4)
£
(D/2)2 − r2m

¤
(rm/D)

2 = 1/16− (rm/D)2(1/4)
5/4(rm/D)

2 = 1/16

5(rm/D)
2 = 1/4

rm/D =

r
1

20

= 0.224

b)

rcA =

Z D/2

0.2236D

[r sin(α/2)/(α/2)](π/4)2rdr = 0.9(π/2)(r3/3)|0.5D0.2236D

(rc)(π/4)[(D/2)2 − (0.2236D)2] = 0.90(π/6)[(0.5D)3 − (0.2236D)3]
rc/D = 0.341

c)Ideal gas law

ρ = p/(RT )

= 110× 103/(400× 573)
= 0.480 kg/m3

Bernoulli equation applied to a stagnation tube

V =
q
2∆p/ρg

=
q
(2)ρwg∆h/ρg

=
p
(2)(1, 000)(9.81)/0.48

√
∆h

= 202.2
√
∆h

Values for each section are
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Station ∆h V
1 0.012 7.00
2 0.011 6.71
3 0.011 6.71
4 0.009 6.07
5 0.0105 6.55

Mass flow rate is given by

ṁ =
X

AsectorρVsector = ATρ(
X

V/5)

= (π22/4)(0.480)(6.61) = 9.96 kg/s
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PROBLEM 13.12

Situation: A heated gas flows through a cylindrical stack–additional information is
provided in the problem statement.

Find: (a) The ratio rm/D such that the areas of the measuring segments are equal
(b) The location of the probe expressed as a ratio of rc/D that corresponds to the
centroid of the segment
(c) Mass flow rate

ANALYSIS

Schematic of measurement locations

a)

πr2m = (π/6)[(D/2)2 − r2m]

7/6(rm/D)
2 = (1/6)(1/4)

(rm/D)
2 = 1/28

rm/D = 0.189

b)

rcA = 1/6

Z 0.5D

0.189D

[r sin(α/2)/(α/2)]2πr dr

(πrc/6)[(D/2)2 − (rm)2] = 0.955(π/3)(r3/3)|0.50D0.189D

rc(0.5
2 − 0.1892) = 0.955(6/9)[0.53 − 0.1893]D

rc/D = (0.955)6(0.118)/(9(0.2143)) = 0.351

c)

ρ = p/RT = 115× 103/((420)(250 + 273)) = 0.523 kg/m3

V =
q
2gρw∆h/ρg =

p
(2)(9.81)(1, 000)/0.523

√
∆h = 193.7

√
∆h

Calculating velocity from ∆h data gives
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Station ∆h(mm) V
1 8.2 17.54
2 8.6 17.96
3 8.2 17.54
4 8.9 18.27
5 8.0 17.32
6 8.5 17.86
7 8.4 17.75

From the above table, Vavg = 17.75 m/s, Then
Flow rate equation

ṁ = (πD2/4)ρVavg.

= ((π)(1.5)2/4)(0.523)(17.75)

= 16.4 kg/ s
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PROBLEM 13.13

Situation: Velocity data for a river is described in the problem statement.

Find: Discharge: Q

ANALYSIS

Flow rate equation

Q =
X

ViAi

V A V A
1.32 m/s 7.6 m2 10.0
1.54 21.7 33.4
1.68 18.0 30.2
1.69 33.0 55.8
1.71 24.0 41.0
1.75 39.0 68.2
1.80 42.0 75.6
1.91 39.0 74.5
1.87 37.2 69.6
1.75 30.8 53.9
1.56 18.4 28.7
1.02 8.0 8.2

Summing the last column gives

Q =549.1 m3/s
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PROBLEM 13.14

Situation: Velocity is measured with LDV. λ = 4880 Å, 2θ = 15o. On the Doppler
burst, 5 peaks occur in 12 µs.

Find: Air velocity: V

ANALYSIS

Fringe spacing

∆x =
λ

2 sin θ

=
4880× 10−10
2× sin 7.5o

= 1.869× 10−6m

Velocity

∆t = 12 µs/4 = 3 µs

V =
∆x

∆t

=
1.869× 10−6m
3× 10−6 s

= 0.623 m/s
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PROBLEM 13.15

Situation: A jet and orifice are described in the problem statement.

Find: Coefficients for an orifice: Cv, Cc, Cd.

Assumptions: Vj =
√
2g × 1.90

ANALYSIS

Cv = Vj/Vtheory =
p
2g × 1.90/

p
2g × 2

Cv =
p
1.90/2.0 = 0.975

Cc = Aj/A0 = (8/10)
2 = 0.640

Cd = CvCc = 0.975× 0.64 = 0.624

1172



PROBLEM 13.16

Situation: A fluid jet discharges from a 3 inch orifice. At the vena contracta, d = 2.6
cm.

Find: Coefficient of contraction: Cc

ANALYSIS

Cc = Aj/A0

= (2.6/3)2

= 0.751
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PROBLEM 13.17

Situation: A sharp edged orifice is described in the problem statement.

Find: Flow coefficient: K

ANALYSIS

If the angle is 90◦, the orifice and expected flow pattern is shown below in Fig. A.

We presume that the flow would separate at the sharp edge just as it does for the
orifice with a knife edge. Therefore, the flow pattern and flow coefficient K should
be the same as with the knife edge.

However, if the orifice were very thick relative to the orifice diameter (Fig. B), then
the flow may reattach to the metal of the orifice thus creating a different flow pattern
and different flow coefficient K than the knife edge orifice.

1174



PROBLEM 13.18

Situation: Aging changes in an orifice are described in the problem statement.

Find: Explain the changes and how they effect the flow coefficients.

ANALYSIS

Some of the possible changes that might occur are listed below:

1. Blunting (rounding) of the sharp edge might occur because of erosion or corro-
sion. This would probably increase the value of the flow coefficient because Cc

would probably be increased.

2. Because of corrosion or erosion the face of the orifice might become rough.
This would cause the flow next to the face to have less velocity than when it
was smooth. With this smaller velocity in a direction toward the axis of the
orifice it would seem that there would be less momentum of the fluid to produce
contraction of the jet which is formed downstream of the orifice. Therefore, as
in case A, it appears that K would increase but the increase would probably be
very small.

3. Some sediment might lodge in the low velocity zones next to and upstream of the
face of the orifice. The flow approaching the orifice (lower part at least) would
not have to change direction as abruptly as without the sediment. Therefore,
the Cc would probably be increased for this condition and K would also be
increased.

1175



PROBLEM 13.19

Situation: Water (60 oF, Q = 3 cfs) flows through an orifice (d = 5 in.) in a pipe
(D = 10 in.). A mercury manometer is connected across the orifice.

Find: Manometer deflection

Properties: Table A.5 (water at 60 ◦F): ρ = 1.94 slug/ ft3 , γ = 62.37 lbf/ ft3,

µ = 2.36 × 10−5 lbf · s/ ft2, ν = 1.22 × 10−5 ft2/ s. Table A.4 (mercury at 68 ◦F):
S = 13.55.

APPROACH

Find K, and then apply the orifice equation to find the pressure drop across the orifice
meter. Apply the manometer equation to relate the pressure drop to the deflection
of the mercury manometer.

ANALYSIS

Find K

d/D = 0.50

Red =
4Q

πdν

=
4× 3.0

π × 5/12× 1.22× 10−5
= 7.51× 105

from Fig. 13.13:
K = 0.625

Orifice section area

Ao = (π/4)× (5/12)2 = 0.136 ft2
Orifice equation

∆p =

µ
Q

KAo

¶2
ρ

2

=

µ
3

0.625× 0.136
¶2µ

1.94

2

¶
= 1208 lbf/ ft2

Apply the manometer equation to determine the pressure differential across the manome-
ter. The result is

∆p = γwaterh (Smercury − 1)
1208 lbf/ ft2 =

¡
62.37 lbf/ ft3

¢
h (13.55− 1)

Solving the above equation gives the manometer deflection (h)

h = 1.54 ft = 18.5 in
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PROBLEM 13.20

Situation: Water flows through a 6 inch orifice in a 12 inch pipe. Assume T = 60
◦F, ν = 1.22× 10−5 ft2/s.
Find: Discharge: Q

APPROACH

Calculate piezometric head. Then find K and apply the orifice equation.

ANALYSIS

Piezometric head

∆h = (1.0)(13.55− 1) = 12.55 ft
Find parameters needed to use Fig. 13.13.

(d/D) = 0.50

(2g∆h)0.5d/ν = (2g × 12.55)0.5(0.5)/(1.22× 10−5)
= 1.17× 106

Look up K on Fig. 13.13
K = 0.625

Orifice equation

Q = KA0(2g∆h)0.5

Q = 0.625(π/4× 0.52)(64.4× 12.55)0.5 = 3.49 cfs
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PROBLEM 13.21

Situation: A rough orifice is described in the problem statement.

Find: Applicability of figure 13.13

ANALYSIS

A rough pipe will have a greater maximum velocity at the center of the pipe relative to
the mean velocity than would a smooth pipe. Because more flow is concentrated near
the center of the rough pipe less radial flow is required as the flow passes through
the orifice; therefore, there will be less contraction of the flow. Consequently the
coefficient of contraction will be larger for the rough pipe. So, using K from Fig.
13.13 would probably result in an estimated discharge that is too small.
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PROBLEM 13.22

Situation: Water flows through a 2.5 inch orifice in a 5 inch pipe.
Orifice diameter is d = 2.5 in = 0.208 ft. Pipe diameter is D = 5 in = 0.417 ft.
A piezometer measurement gives ∆h = 4 ft.

Find: Discharge: Q

Properties: Table A.5 (water at 60 ◦F): ν = 1.22× 10−5 ft2/ s.

APPROACH

Find K using the upper horizontal scale on Fig. 13.13, and then apply the orifice
equation.

ANALYSIS

Calculate value needed to apply Fig. 13.13

Red
K

=
p
2g∆h

d

ν

=
p
2× (32.2 ft/ s2)× (4 ft)

µ
0.208 ft

1.22× 10−5 ft2/ s
¶

= 2. 736 × 105

For d/D = 0.5, Fig. 13.3 gives

K ≈ 0.63
Orifice section area

Ao =
π

4
× (2.5/12 ft)2

= 0.03409 ft2

Orifice equation

Q = KAo

p
2g∆h

= 0.63× ¡0.03409 ft2¢p2× (32.2 ft/ s2)× (4 ft)
= 0.345 ft3/ s

Q = 0.345 cfs
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PROBLEM 13.23

Situation: Kerosene at 20 oC flows through an orifice. D = 3 cm, d/D = 0.6,
∆p = 15 kPa

Find: Mean velocity in the pipe

Properties: Kerosene (20 ◦C) from Table A.4: ρ = 814 kg/m3, ν = 2.37× 10−6 m2/s.
APPROACH

Find K using the upper horizontal scale on Fig. 13.13, and then apply the orifice
equation to find the discharge. Find the velocity in the pipe by using V = Q/A.

ANALYSIS

Calculate value needed to apply Fig. 13.13

Red/K = (2∆p/ρ)0.5(d/ν)

= (2× 15× 103/814)0.5(0.6× 0.03/(2.37× 10−6))
= 4.611× 104

From Fig. 13.13 for d/D = 0.6
K ≈ 0.66

Orifice section area

Ao =
πd2

4

=
π (0.6× 0.03m)2

4
= 2. 545 × 10−4m2

Orifice equation

Q = KA0(2∆p/ρ)0.5

= 0.66
¡
2. 545 × 10−4¢ (2× 15× 103/814)0.5

= 1. 020× 10−3m3/ s
Flow rate

Vpipe =
Q

Apipe

=
4Q

πD2

=
4× (1. 020× 10−3m3/ s)

π (0.03m)2

= 1. 443
m

s

Vpipe = 1.44 m/ s
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PROBLEM 13.24

Situation: Water at 20 oC flows in a pipe containing two orifices, one that is horizontal
and one that is vertical. For each orifice, D = 30 cm and d = 10 cm. Q = 0.1 m3/s.

Find: (a) Pressure differential across each orifice: ∆pC , ∆pF .
(b) Deflection for each mercury-water manometer: ∆hC , ∆hF

ANALYSIS

Find value needed to apply Fig. 13.13

4Q/(πdν) = 4× 0.10/(π × 0.10× 1.31× 10−6)
= 9.7× 105

From Fig. 13.13 for d/D = 0.333
K = 0.60

Orifice section area

Ao = (π/4)(0.10)2

= 7.85× 10−3 m2
Orifice equation

Q = KAo

p
2g∆h

Thus

∆h = Q2/(K2A22g) = 0.12/(0.62 × (7.85× 10−3)2 × 2× 9.81)
∆hC = ∆hF = 22.97 m−H2O

The deflection across the manometers is

hC = hF = 22.97/(SHg − Swater) = 1.82 m

The deflection will be the same on each manometer

Find ∆p

pA − pB = γ∆h = 9790× 22.97 = 224.9 kPa
∆pC = 225 kPa

For manometer F

((pD/γ) + zD)− ((pE/γ) + zE) = ∆h = 22.97 ft

Thus,

∆pF = pD − pE = γ∆h− γ(zD − zE)

= 9, 810(22.97− 0.3)
∆pF = 222 kPa

Because of the elevation difference for manometer F, ∆pC 6= ∆pF
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PROBLEM 13.25

Situation: A pipe (D = 30 cm) is terminated with an orifice. The orifice size is
increased from 15 to 20 cm with pressure drop (∆p = 50 kPa) held constant.

Find: Percentage increase in discharge.

Assumptions: Large Reynolds number.

ANALYSIS

Find K values
Assuming large Re, so K depends only on d/D. From Fig. 13.13

K15 = 0.62

K20 = 0.685

Orifice equation

Q15 = K15A15
p
2g∆h

Q15 = 0.62× (π/4)(0.15)2
p
2g∆h

Q15 = 0.01395(π/4)
p
2g∆h

For the 20 cm orifice

Q20 = 0.685× (π/4)(0.20)2
p
2g∆h

Q20 = 0.0274(π/4)
p
2g∆h

Thus the % increase is

(0.0274− 0.01395)/0.01395)× 100 = 96%
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PROBLEM 13.26

Situation: Water flows through the orifice (vertical orientation) shown in the text-
book. D = 50 cm, d = 10 cm, ∆p = 10 kPa, ∆z = 30 cm.

Find: Flow rate: Q

APPROACH

Find K and ∆h; then apply the orifice equation to find the discharge Q.

ANALYSIS

Piezometric head

∆h = (p1/γ + z1)− (p2/γ + z2)

= ∆p/γ +∆z

= 10, 000/9, 790 + 0.3

= 1.321 m of water

Find parameters needed to apply Fig. 13.13

d/D = 10/50 = 0.20

Red
K

=
p
2g∆h

d

ν

=
√
2× 9.81× 1.321 0.1

10−6

= 5.091× 105

From Fig. 13.13
K = 0.60

Orifice equation

Q = KAo

p
2g∆h

= 0.60× (π/4)× (0.1)2√2× 9.81× 1.321
= 0.0240 m3/s
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PROBLEM 13.27

Situation: Flow through an orifice is described in the problem statement.

Find: Show that the difference in piezometric pressure is given by the pressure dif-
ference across the transducer.

ANALYSIS

Hydrostatic equation

pT,1 = p1 + γc1

pT,2 = p2 − γc2

so

pT,1 − pT,2 = p1 + γc1 − p2 + γc2

= p1 − p2 + γ(c1 + c2)

But
c1 + c2 = z1 − z2

or
pT,1 − pT,2 = p1 − p2 + γ(z1 − z2)

Thus,

pT,1 − pT,2 = (p1 + γz1)− (p2 + γz2)
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PROBLEM 13.28

Situation: Water (T = 50 oF, Q = 20 cfs) flows in the system shown in the textbook.
f = 0.015.

Find: (a) Pressure change across the orifice.
(b)Power delivered to the flow by the pump.
(c)Sketch the HGL and EGL.

APPROACH

Calculate pressure change by applying the orifice equation. Then calculate the
head of the pump by applying the energy equation from section 1 to 2 (section 1 is
the upstream reservoir water surface, section 2 is the downstream reservoir surface).
Then, apply the power equation.

ANALYSIS

Re = 4Q/(πdν)

= 4× 20/(π × 1× 1.41× 10−5) = 1.8× 106

Then for d/D = 0.50, K = 0.625

Orifice equation

Q = KA
p
2g∆h or ∆h = (Q/(KA))2/2g

where A = π/4× 12. Then
∆h = (20/(0.625× (π/4)))2/2g
∆h = 25.8 ft

∆p = γ∆h = 62.4× 25.8 = 1,610 psf

Energy equation

p1/γ + α1V
2
1 /2g + z1 + hp = p2/γ + α2V

2
2 /2g + z2 +

X
hL

0 + 0 + 10 + hp = 0 + 0 + 5 +
X

hL

hp = −5 + V 2/2g(Ke +KE + fL/D) + hL,orifice

Ke = 0.5; KE = 1.0

The orifice head loss will be like that of an abrupt expansion:

hL, orifice = (Vj − Vpipe)
2/(2g)

Here, Vj is the jet velocity as the flow comes from the orifice.

Vj = Q/Aj where Aj = CcA0
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Assume
Cc ≈ 0.65 then Vj = 20/((π/4)× 12 × 0.65) = 39.2 ft/s

Also
Vp = Q/Ap = 20/π = 6.37 ft/s

Then
hL,orifice = (39.2− 6.37)2/(2g) = 16.74 ft

Finally,

hp = −5 + (6.372/(2g))(0.5 + 1.0 + (0.015× 300/2)) + 16.74
hp = 14.10 ft

P = Qγhp/550

= 20× 62.4× 14.10/550
= 32.0 hp

The HGL and EGL are shown below:
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PROBLEM 13.29

Situation: Water flows (Q = 0.03 m3/s) through an orifice. Pipe diameter, D = 15
cm. Manometer deflection is 1 m-Hg.

Find: Orifice size: d

APPROACH

Calculate∆h. Then guess K and apply the orifice equation. Check the guessed value
of K by calculating a value of Reynolds number and then comparing the calculated
value with the guessed value.

ANALYSIS

Piezometric head
∆h = 12.6× 1 = 12.6 m of water

Orifice equation

Ao = Q/(K
p
2g∆h)

Guess K = 0.7, then

d2 = (4/π)Q/(K
p
2g∆h)

d2 = (4/π)× 0.03/
h
0.7
p
2g × 12.6

i
= 3.47× 10−3 m2

d = 5.89 cm

d/D = 0.39

Red = 4× 0.03/(π × 0.0589× 10−6) = 6.5× 105
K = 0.62

so
d =

p
(0.7/0.62)× 0.0589 = 0.0626 m

Recalculate K to find that K = 0.62. Thus,

d = 6.26 cm
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PROBLEM 13.30

Situation: Gasoline (S = 0.68) flows through an orifice (d = 6 cm) in a pipe (D = 10
cm).
∆p = 50 kPa.

Find: Discharge: Q

Properties: ν = 4× 10−7 m2/s (Fig. A-3)
Assumptions: T = 20◦C.

ANALYSIS

Piezometric head

∆h = ∆p/γ

= 50, 000/(0.68× 9, 810)
= 7.50 m

Find K using Fig. 13.13

d/D = 0.60p
2g∆hd/ν =

√
2× 9.81× 7.50× 0.06/(4× 10−7) = 1.82× 106

K = 0.66

Orifice equation

Q = KAo

p
2g∆h

= 0.66× (π/4)(0.06)2
p
2g × 7.50

Q = 0.0226 m3/s
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PROBLEM 13.31

Situation: Water flows (Q = 2 m3/s) through an orifice in a pipe (D = 1 m). ∆h = 6
m-H2O.

Find: Orifice size: d

APPROACH

Guess a value of K. Apply the orifice equation to solve for orifice diameter. Then
calculate Reynolds number and d/D in order to find a new value of K. Iterate until
the value of K does not change.

ANALYSIS

Orifice equation

Q = KAo

p
2g∆h

= K

µ
πd2

4

¶p
2g∆h

Algebra

d =

·µ
4Q

πK

¶µ
1√
2g∆h

¶¸1/2
Guess K ≈ 0.65

d =

·µ
4× 2
π · 0.65

¶µ
1√

2× 9.81× 6
¶¸1/2

= 0.601m

Calculate values needed for Fig. 13.13

d

D
=

0.601

1.0
= 0.6

Re =
4Q

πdν

=
4× 2

π × 0.601× (1.14× 10−6)
= 3.72× 106

From Fig. 13.13 with d/D = 0.6 and Re = 3.72× 106, the value of K is

K = 0.65

Since this is the guessed value, there is no need to iterate.

d = 0.601m
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PROBLEM 13.32

Situation: Water flows (Q = 3 m3/s) through an orifice in a pipe (D = 1.2 m).
∆p = 50 kPa.

Find: Orifice size: d

Assumptions: K = 0.65; T = 20◦C.

ANALYSIS

Piezometric head

∆h = ∆p/γ

= 50, 000/9790

= 5.11m

Orifice equation

d2 = (4/π)× 3.0/(0.65√2× 9.81× 5.11) = 0.587
d = 0.766 m

Check K:

Red = 4Q/(πdν)

= 4× 3.0/(π × 0.766× 10−6)
= 5× 106

From Fig. 13.13 for d/D = 0.766/1.2 = 0.64, K = 0.67
Try again:

d =
p
(0.65/0.67)× 0.766 = 0.754

Check K: Red = 5× 106 and d/D = 0.63. From Fig. 13.13 K = 0.67 so

d =
p
(0.65/0.670)× 0.766 = 0.754 m
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PROBLEM 13.33

Situation: Water flows through a hemicircular orifice as shown in the textbook.

Find: (a) Develop a formula for discharge.
(b) Calculate Q.

APPROACH

Apply the flow rate equation, continuity principle, and the Bernoulli equation to solve
for Q.

ANALYSIS

Bernoulli equation
p1 + ρV 2

1 /2 = p2 + ρV 2
2 /2

Continuity principle

V1A1 = V2A2; V1 = V2A2/A1

V2 =
p
2(p1 − p2)/p/

q
1− (A22/A21)

Flow rate equation

Q = A2V2·
A2/

q
1− (A22/A21)

¸p
2∆p/ρ

but A2 = CcA0 where A0 is the section area of the orifice. Then

Q =

·
CcA0/

q
1− (A22/A21)

¸p
2∆p/ρ

or orifice equation

Q = KA0
p
2∆p/ρ

where K is the flow coefficient. Assume K = 0.65; Also A = (π/8)× 0.302 = 0.0353
m2. Then

Q = 0.65× 0.0353
p
2× 80, 000/1, 000

Q = 0.290 m3/s
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PROBLEM 13.34

Situation: Water (20 oC, Q = 0.75 m3/s) flows through a venturi meter (d = 30 cm)
in a pipe (D = 60 cm).

Find: Deflection on a mercury manometer.

ANALYSIS

Reynolds number

Red = 4× 0.75/(π × 0.30× 1× 10−6)
= 3.18× 106

For d/D = 0.50, find K from Fig. 13.13

K = 1.02

Venturi equation

∆h = [Q/(KAt)]
2 /(2g)

=
£
.75/(1.02× (π/4)× 0.32)¤2 /(2× 9.81)

= 5.52 m H2O

Manometer equation

hHg = ∆hH2O/

µ
γHg

γH2O

− 1
¶

h = 5.52/12.6

h = 0.44 m
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PROBLEM 13.35

Situation: Water (Q = 10 m3/s) flows through a venturi meter in a horizontal pipe
(D = 2 m). ∆p = 200 kPa.

Find: Venturi throat diameter.

Assumptions: T = 20◦C.

ANALYSIS

Guess that K = 1.01, and then proceed with calculations

Q = KAo/
p
2g∆h

where ∆h = 200, 000 Pa/(9,790 N/m3) = 20.4 m. Then
Venturi equation

At = Q/(K
p
2g∆h)

or

πd2/4 = Q/(K
p
2g∆h)

d = (4Q/(πK
p
2g∆h))

1/2

d = (4× 10/(π × 1.01
p
2g × 20.4))1/2 = 0.794 m

Calculate K and compare with the guessed value

Re = 4Q/(πdν) = 1.6× 107

Also d/D = 0.4 so from Fig. 13.13 K ≈ 1.0. Try again:

d = (1.01/1.0)1/2 × 0.794 = 0.798 m
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PROBLEM 13.36

Situation: A venturi meter is described in the problem statement.

Find: Rate of flow: Q

ANALYSIS

Find K

∆h = 4 ft and d/D = 0.33

Red/K = (1/3)
√
2× 32.2× 4/1.22× 10−5) = 4.4× 105

K = 0.97 (Estimated from Fig. 13.13)

Venturi equation

Q = KA
p
2gh

= 0.97(π/4× 0.3332)√2× 32.2× 4
Q = 1.36 cfs
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PROBLEM 13.37

Situation: A venturi meter is described in the problem statement.

Find: Range that the venturi meter would read: ∆p

ANALYSIS

The answer is -10 psi < ∆ p < 0 so the correct choice is b) .
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PROBLEM 13.38

Situation: Water flows through a horizontal venturi meter. ∆p = 100 kPa,
d = 1 m, D = 2 m.

Find: Discharge: Q

Properties: ν = 10−6 m2/s.

ANALYSIS

∆p = 100 kPa so ∆h = ∆p/γ = 100, 000/9790 = 10.2 m

Find K

p
2g∆hd/ν =

√
2× 9.81× 10.2× 1/10−6

= 1.4× 107

Then K ≈ 1.02 (extrapolated from Fig. 13.13).
Venturi equation

Q = KA
p
2g∆h

= 1.02× (π/4)× 12
p
2g × 10.2

= 11.3 m3/s
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PROBLEM 13.39

Situation: A poorly designed venturi meter is described in the problem statement.

Find: Correction factor: K

ANALYSIS

Because of the streamline curvature (concave toward wall) near the pressure tap, the
pressure at point 2 will be less than the average pressure across the section. Therefore,
Q0 will be too large as determined by the formula. Thus, K < 1.
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PROBLEM 13.40

Situation: Water (50 ◦F) flows through a vertical venturi meter. ∆p = 6.2 psi, d = 6
in., D = 12 in., ν = 1.4× 10−5 ft2/s.
Find: Discharge: Q

ANALYSIS

∆p = 6.20 psi = 6.2 × 144 psf
Thus

∆h = 6.20× 144/62.4 = 14.3 ft
Find K

Red
K

=
p
2g∆h

d

ν

=
√
2× 32.2× 14.3

µ
6/12

1.4× 10−5
¶

= 10.8× 105

So K = 1.02.
Venturi equation

Q = KAt

p
2g∆h

= 1.02× (π/4)× (6/12)2√2× 32.2× 14.3
Q = 6.08 cfs
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PROBLEM 13.41

Situation: Gasoline (S = 0.69) flows through a venturi meter. A differential pressure
gage indicates ∆p = 45 kPa.
d = 20 cm, D = 40 cm, µ = 3× 10−4 N·s/m2.
Find: Discharge: Q

ANALYSIS

∆h = 45, 000/(0.69× 9, 810) = 6.65 m
ν = µ/ρ = 3× 10−4/690 = 4.3× 10−7 m2/s

Then p
2g∆hd/ν =

√
2× 9.81× 6.65× 0.20/(4.3× 10−7) = 5.3× 106

From Fig. 13.13
K = 1.02

Venturi equation

Q = KA
p
2g∆h

= 1.02× (π/4)× (0.20)2√2× 9.81× 6.65
Q = 0.366 m3/s
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PROBLEM 13.42

Situation: Water passes through a flow nozzle. ∆p = 8 kPa. d = 2 cm, d/D = 0.5,
ν = 10−6 m2/s, ρ = 1000 kg/m3.

Find: Discharge: Q

APPROACH

Find K, and then apply the orifice equation.

ANALYSIS

Find K

Red/K = (2∆p/ρ)0.5(d/ν)

= ((2× 8× 103)/(1, 000))0.5(0.02/10−6)
= 8.0× 104

From Fig. 13-13 with d/D = 0.5; K = 0.99.
Venturi equation

Q = KA(2∆p/ρ)0.5

= (0.99)(π/4)(0.022)(2× 8× 103/103)0.5
Q = 0.00124 m3/s
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PROBLEM 13.43

Situation: Water flows through the annular venturi that is shown in the textbook.

Find: Discharge

Assumptions: Cd = 0.98

ANALYSIS

From Eq. (13.5)

K = Cd/
p
1− (A2/A1)2

= 0.98/
√
1− 0.752

K = 1.48

Venturi equation

A = 0.00147m2

Q = KA(2g∆h)0.5

Q = (1.48)(0.00147)(2.0× 9.81× 1)0.5
Q = 0.00964 m3/s
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PROBLEM 13.44

Situation: The problem statement describes a flow nozzle with d/D = 1.3.

Find: Develop an expression for head loss.

APPROACH

Apply the sudden expansion head loss equation and the continuity principle.

ANALYSIS

Continuity principle

V0A0 = VjAj

Vj = V0A0/Aj

= V0 × (3/1)2 = 9V0
Sudden expansion head loss equation

hL = (Vj − V0)
2/2g

Then

hL = (9V0 − V0)
2/2g

= 64V 2
0 /2g
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PROBLEM 13.45

Situation: A vortex meter (1 cm shedding element) is used in a 5 cm diameter duct.
For shedding on one side of the element, St = 0.2 and f = 50 Hz.

Find: Discharge: Q

APPROACH

Find velocity from the Strouhal number (St = nD/V ) . Then, find the discharge
using the flow rate equation.

ANALYSIS

St = nD/V

V = nD/St

= (50)(0.01)/(0.2)

= 2.5 m/s

Flow rate equation

Q = V A

= (2.5)(π/4)(0.052)

Q = 0.0049 m3/s
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PROBLEM 13.46

Situation: A rotometer is described in the problem statement.

Find: Describe how the reading on the rotometer would be corrected for nonstandard
conditions.

APPROACH

Apply equilibrium, drag force, and the flow rate equation.

ANALYSIS

The deflection of the rotometer is a function of the drag on the rotating element.
Equilibrium (drag force balances weight):

FD = W

CDAρV
2/2 = mg

Thus
V =

p
2gm/(ρACD)

Since all terms are constant except density

V/Vstd. = (ρstd./ρ)
0.5

applying the flow rate equation gives

Q = V A

∴ Q/Qstd. = (ρstd./ρ)
0.5 (1)

Correct by calculating ρ for the actual conditions and then use Eq. (1) to correct Q.
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PROBLEM 13.47

Situation: A rotometer is calibrated for gas with ρstandard = 1.2 kg/m
3, but is used

for ρ = 1.1 kg/m3.
The rotometer indicates Q = 5 c/s.

Find: Actual gas flow rate (Q) in liters per second.

APPROACH

Apply equilibrium, drag force, and the flow rate equation.

ANALYSIS

The deflection of the rotometer is a function of the drag on the rotating element.
Equilibrium of the drag force with the weight of the float gives

FD = W

CDA
ρV 2

2
= mg

Use the above equation to derive a ratio of standard to nonstandard conditions gives

V

Vstd.
=

r
ρstd.
ρ

also
Q = V A

Therefore
Q

Qstd.
=

r
ρstd.
ρ

Thus

Q = 5×
r
1.2

1.1

Q = 5.22 c/s
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PROBLEM 13.48

Situation: One mode of operation of an ultrasonic flow meter involves the time for a
wave to travel between two measurement stations–additional details are provided in
the problem statement.

Find: (a) Derive an expression for the flow velocity.
(b) Express the flow velocity as a function of L, c and t.
(c) Calculate the flow velocity for the given data.

ANALYSIS

(a)

t1 = L/(c+ V )

t2 = L/(c− V )

∆t = t2 − t1

=
L

c− V
− L

c+ V

=
2LV

c2 − V 2
(1)

Thus

(c2 − V 2)∆t = 2LV

V 2∆t+ 2LV − c2∆t = 0

V 2 + (2LV/∆t)− c2 = 0

Solving for V :

[(−2L/∆t)±
p
(2L/∆t)2 + 4c2]/2 = (−L/∆t)±

p
(L/∆t)2 + c2

Selecting the positive value for the radical

V = (L/∆t)[−1 +p1 + (c∆t/L)2]

(b) From Eq. (1)

∆t =
2LV

c2
for c >> V

V = c2∆t
2L

(c)

V =
(300)2(10× 10−3)

2× 20
= 22.5 m/s
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PROBLEM 13.49

Situation: Water flows over a rectangular weir. L = 4 m; H = 0.20 m, P = 0.25 m.

Find: Discharge: Q

ANALYSIS

Flow coefficient

K = 0.40 + 0.05

µ
H

P

¶
= 0.40 + 0.05

µ
0.20

0.25

¶
= 0.440

Rectangular weir equation

Q = K
p
2gLH3/2

= 0.44×√2× 9.81× 4× (0.2)3/2
= 0.6973m3/ s

Thus
Q = 0.697 m3/s
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PROBLEM 13.50

Situation: Water flows over a 60o triangular weir. H = 0.35 m.

Find: Discharge: Q

ANALYSIS

Triangular weir equation

Q = 0.179
p
2gH5/2

Q = 0.179
√
2× 9.81(0.35)5/2

Q = 0.0575 m3/s
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PROBLEM 13.51

Situation: Two weirs (A and B) are described in the problem statement.

Find: Relationship between the flow rates: QA and QB

ANALYSIS

Correct choice is c) QA < QB because of the side contractions on A.
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PROBLEM 13.52

Situation: A rectangular weir is described in the problem statement.

Find: The height ratio: H1/H2

ANALYSIS

Correct choice is b) (H1/H2) < 1 because K is larger for smaller height of weir as
shown by Eq. (13-10); therefore, less head is required for the smaller P value.
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PROBLEM 13.53

Situation: A rectangular weir is being designed for Q = 4 m3/s, L = 3 m, Water
depth upstream of weir is 2 m.

Find: Weir height: P

ANALYSIS

First guess H/P = 0.60. Then

K = 0.40 + 0.05(0.60) = 0.43.

Rectangular weir equation (solve for H)

H = (Q/(K
p
2gL))2/3

= (4/(0.43
p
(2)(9.81)(3))2/3 = 0.788 m

Iterate:

H/P = 0.788/(2− 0.788) = 0.65; K = 0.40 + .05(.65) = 0.433

H = 4/(0.433
p
(2)(9.81(3))2/3 = 0.785 m

Thus:
P = 2.0−H = 2.00− 0.785 = 1.215 m
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PROBLEM 13.54

Situation: The head of the rectangular weir described in Prob. 13.53 is doubled.

Find: The discharge.

ANALYSIS

Rectangular weir equation
Q = K

p
2gLH3/2

Correct choice is c) .
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PROBLEM 13.55

Situation: A basin is draining over a rectangular weir. L = 2 ft, P = 2 ft. Initially,
H = 12 in.

Find: Time for the head to decrease from H = 1 ft to 0.167 ft (2 in).

ANALYSIS

With a head of H = 1 ft
H

P
=
1

2
= 0.5

thus

Ki = 0.40 + 0.05 ∗ 0.5
= 0.425

With a head of H = 0.167 ft (2 in)

H

P
=
2/12

2
= 0.0833

and

Kf = 0.40 + 0.05 ∗ 0.0833
= 0.404

As a simplification, assume K is constant at

K = (.425 + .404) /2

= 0.415

Rectangular weir equation

Q = 0.415
p
2gLH3/2

For a period of dt the volume of water leaving the basin is equal to ABdH where
AB = 100 ft2 is the plan area of the basin. Also this volume is equal to Qdt.
Equating these two volumes yields:

Qdt = ABdH³
0.415

p
2gLH3/2

´
dt = AB dH

Separate variables

dt =
AB dH¡

0.415
√
2gLH3/2

¢
=

¡
100 ft2

¢
dH³

0.415
p
2× (32.2 ft/ s2) (2 ft)H3/2

´
=

³
15.01

√
ft · s

´ dH

H3/2
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Integrate

∆tZ
0

dt = (15.01)

1Z
0.167

dH

H3/2

∆t = (−15.01)
µ
2√
H

¶1
0.167

= (−15.01)
µ
2√
1
− 2√

0.167

¶
= 43.44 s

∆t = 43.4 s
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PROBLEM 13.56

Situation: A piping system and channel are described in the textbook. The channel
empties over a rectangular weir.

Find: (a) Water surface elevation in the channel.
(b) Discharge.

ANALYSIS

Rectangular weir equation

Q = K
p
2gLH3/2

Assume H = 1/2 ft. Then K = 0.4 + 0.05(1
2
/3) = 0.41, then

Q = 0.41
√
64.4× 2H3/2

Q = 6.58H3/2 (1)

Energy equation

p1/γ + α1V
2
1 /2g + z1 = p2/γ + α2V

2
2 /2g + z2 +

X
hL

0 + 0 + 100 = 0 + 0 + 3 +H +
X

hL (2)

Combined head lossX
hL = (V 2/2g)(Ke + fL/D + 2Kb +KE)

= (V 2/2g)(0.5 + f(100/(1/3)) + 2× 0.35 + 1)

Assume f = 0.02 (first try). ThenX
hL = 8.2V

2/2g

Eq. (2) then becomes
97 = H + 8.2V 2/2g (3)

But V = Q/A so Eq. (3) is written as

97 = H + 8.2Q2/(2gA2)

where

A2 = ((π/4)(1/3)2)2 = 0.00762 ft4

97 = H + 8.2Q2/(2g × 0.00762)
97 = H + 16.72Q2 (4)
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Solve for Q and H between Eqs. (1) and (4)

97 = H + 16.72Q2

97 = H + 16.72(6.58H3/2)2

H = 0.51 ft and Q = 2.397 ft3/s

Now check Re and f
Flow rate equation

V = Q/A

= 27.5 ft/s

Reynolds number

Re = V D/ν = 27.5× (1/3)/(1.4× 10−5)
Re = 6.5× 105

From Figs. 10.8 and Table 10.2 f = 0.017. Then Eq. (3) becomes

97 = H + 7.3V 2/2g

and Eq. (4) is
97 = H + 14.88Q2

Solve for H and Q again:

H = 0.53 ft and Q = 2.54 ft3/s
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PROBLEM 13.57

Situation: Water flows into a tank at a rate Q = 0.1 m3/s. The tank has two outlets:
a rectangular weir (P = 1 m, L = 1 m) on the side, and an orifice (d = 10 cm) on
the bottom.

Find: Water depth in tank.

APPROACH

Apply the rectangular weir equation and the orifice equation by guessing the head on
the orifice and iterating.

ANALYSIS

Guess the head on the orifice is 1.05 m.
Orifice equation

Qorifice = KA0
p
2gh; K ≈ 0.595

Qorifice = 0.595× (π/4)× (0.10)2√2× 9.81× 1.05 = 0.0212 m3/s

Rectangular weir equation

Qweir = K
p
2gLH3/2; Hweir = (Q/(K

p
2gL)2/3 where K ≈ 0.405

Hweir = ((0.10− 0.0212)/(0.405√2× 9.81× 1))2/3 = 0.124 m

Try again:

Qorifice = (1.124/1.05)1/2 × 0.0212 m3/s = 0.0219 m3/s
Hweir = ((0.10− 0.0219)/(0.405√2× 9.81× 1))2/3 = 0.124 m

Hweir is same as before, so iteration is complete. Depth of water in tank is 1.124 m
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PROBLEM 13.58

Situation: Weirs with sharp edges are described in the problem statement.

Find: (a) If the weir behave differently if the edges were not sharp.
(b) Explain what might happen without the vent downstream and how it would affect
the flow and glow coefficient.

ANALYSIS

(a) With a sharp edged weir, the flow will break free of the sharp edge and a definite
(repeatable) flow pattern will be established. That assumes that the water surfaces
both above and below the nappe are under atmospheric pressure. However, if the
top of the weir was not sharp then the lower part of the flow may follow the rounded
portion of the weir plate a slight distance downstream.

This would probably lessen the degree of contraction of the flow. With less contrac-
tion, the flow coefficient would be larger than given by Eq. (13.10).
(b) If the weir is not ventilated below the Nappe, for example a weir that extends the

full width of a rectangular channel (as shown in Fig. 13.18), then as the water plunges
into the downstream pool air bubbles would be entrained in the flow and some of the
air from under the Nappe would be carried downstream. Therefore, as the air under
the Nappe becomes evacuated, a pressure less than atmospheric would be established
in that region. This would draw the Nappe downward and cause higher velocities to
occur near the weir crest. Therefore, greater flow would occur than indicated by use
of Eqs. (13.9) and (13.10).
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PROBLEM 13.59

Situation: Water flows over a rectangular weir. L = 10 ft, P = 3 ft, and H = 1.8 ft.

Find: Discharge: Q

APPROACH

Apply the rectangular weir equation.

ANALYSIS

The flow coefficient is

K = 0.40 + 0.05

µ
H

P

¶
= 0.40 + 0.05

µ
1.8

3.0

¶
= 0.43

Rectangular weir equation

Q = K
p
2gLH3/2

= 0.43
³√
2 · 32.2

´
10× 1.83/2

= 83.3 ft3/ s
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PROBLEM 13.60

Situation: Water (60 oF) flows into a reservoir through a venturi meter (K = 1,
Ao = 12 in2, ∆p = 10 psi). Water flows out of the reservoir over a 60o triangular
weir.

Find: Head of weir: H

ANALYSIS

Venturi equation

Q = KAo

p
2∆p/ρ

= 1× (12/144)
p
2× 10× 144/1.94

= 3.21 ft3/s

Rectangular weir equation

Q = 0.179
p
2gH5/2

3.21 = 0.179
√
64.4H5/2

H = 1.38 ft = 16.5 in.
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PROBLEM 13.61

Situation: Water enters a tank through two pipes A and B. Water exits the tank
through a rectangular weir.

Find: Is water level rising, falling or staying the same?

APPROACH

Calculate Qin and Qout and compare the values. Apply the rectangular weir equation
to calculate Qout and the flow rate equation to calculate Qin.

ANALYSIS

Rectangular weir equation

Qout = K(2g)0.5LH3/2

K = 0.40 + 0.05(1/2) = 0.425

Qout = 0.425(8.025)(2)(1)

= 6.821 cfs

Flow rate equation

Qin = VAAA + VBAB

= 4(π/4)(12) + 4(π/4)(0.52)

= π(1.25) = 3.927 cfs

Qin < Qout; therefore, water level is falling
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PROBLEM 13.62

Situation: Water exits an upper reservoir across a rectangular weir (L/HR = 3, P/HR =
2) and then into a lower reservoir. The water exits the lower reservoir through a 60o

triangular weir.

Find: Ratio of head for the rectangular weir to head for the triangular weir: HR/HT

Assumptions: Steady flow.

APPROACH

Apply continuity principle by equating the discharge in the two weirs.

ANALYSIS

Rectangular weir equation

Q = (0.40 + .05(1/2))
p
2g(3HR)H

1.5
R (1)

Triangular weir equation
Q = 0.179

p
2gH2.5

T (2)

Equate Eqs. (1) and (2)

(0.425
p
2g(3)H2.5

R = 0.179
p
2gH2.5

T

(HR/HT )
2.5 = 0.179/(3× 0.425)

HR/HT = 0.456
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PROBLEM 13.63

Situation: For problem 13.62, the flow entering the upper reservoir is increased by
50%.

Find: Describe what will happen, both qualitatively and quantitatively.

APPROACH

Apply the rectangular and triangular weir equations.

ANALYSIS

As soon as the flow is increased, the water level in the first reservoir will start to
rise. It will continue to rise until the outflow over the rectangular weir is equal to
the inflow to the reservoir. The same process will occur in the second reservoir until
the outflow over the triangular weir is equal to the inflow to the first reservoir.

Calculations

Determine the increase in head on the rectangular weir with an increase in discharge
of 50%. Initial conditions: HR/P = 0.5 so

K = 0.4 + .05× .5 = 0.425

Then
QRi = 0.425

p
2gLH

3/2
Ri (1)

Assume
Kf = Ki = 0.425 (first try)

Then
QRf = 0.425

p
2gLH

3/2
Rf (where QRf = 1.5Qi) (2)

Divide Eq. (2) by Eq. (1)

QRf/QRi = (0.425L/0.425L)(HRf/HRi)
3/2

HRf/HRi = (1.5)2/3 = 1.31

Check Ki :
K = 0.40 + .05× 0.5× 1.31 = 0.433

Recalculate HRf/HRi.

HRf/HRi = ((0.425/0.433)× 1.5)2/3 = 1.29
The final head on the rectangular weir will be 29% greater than the initial head . Now
determine the increase in head on the triangular weir with a 50% increase in discharge.

QTf/QTi = (HTf/HTi)
5/2

or HTf/HTi = (QTf/QTi)

= (1.5)2/5

= 1.18

The head on the triangular weir will be 18% greater with the 50% increase in discharge.
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PROBLEM 13.64

Situation: A rectangular weir (L = 3 m) is situated in a canal.
The water depth is 2 m and Q = 6 m3/s.

Find: Necessary weir height: P

APPROACH

Calculate the height by applying the rectangular weir equation by guessing K and
iterating.

ANALYSIS

Rectangular weir equation
Q = K

p
2gLH3/2

Assume K ≈ 0.41 then

H = (Q/(0.41
p
2g × 3))2/3

H = (6/(0.41×√2× 9.81× 3))2/3 = 1.10 m

Then

P = 2.0− 1.10 = 0.90 m
and H/P = 1.22

Check guessed K value:

K = 0.40 + 1.22× 0.05 = 0.461

Since this doesn’t match, recalculate H:

H = (6/(0.461×√2× 9.81× 3))2/3 = 0.986 m

So height of weir

P = 2.0− 0.986 = 1.01 m
H/P = 0.976

Try again:

K = 0.40 + 0.976× 0.05 = 0.449
H = (6/(0.449×√2× 9.81× 3))2/3 = 1.00 m
P = 2.00− 1.00 = 1.00 m
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PROBLEM 13.65

Situation: Water flows over a 60o triangular weir, H = 1.2 ft.

Find: Discharge: Q

APPROACH

Apply the triangular weir equation.

ANALYSIS

Q = 0.179
p
2gH5/2

Q = 0.179
p
2× (32.2 ft/ s2)× (1.2 ft)5/2

Q = 2.27 ft3/s

1225



PROBLEM 13.66

Situation: Water flows over a 45o triangular weir. Q = 10 cfm Cd = 0.6.

Find: Head on the weir: H

ANALYSIS

Q = (8/15)Cd(2g)
0.5 tan(θ/2)H5/2

Q = (8/15)(0.60)(64.4)0.5 tan(22.5◦)H5/2

Q = 1.064H5/2

H = (Q/1.064)2/5

= (10/(60× 1.064))2/5
H = 0.476 ft
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PROBLEM 13.67

Situation: A pump transports water from a well to a tank.
The tank empties through a 60o triangular weir.
Additional details are provided in the problem statement.

Find: Water level in the tank: h

Assumptions: f = 0.02

APPROACH

Apply the triangular weir equation to calculate h. Apply the flow rate equation and
the energy equation from well water surface to tank water surface to relate Q and h.

ANALYSIS

ks/D = 0.001
Energy equation

p1/γ + α1V
2
1 /2g + z1 + hp = p2/γ + α2V

2
2 /2g + z2 +

X
hL

0 + 0 + 0 + hp = 0 + 0 + (2 + h) + (V 2/2g)(Ke + (fL/D) +KE)

Inserting parameter values

20 = (2 + h) + (V 2/2g)(0.5 + (0.02× 2.5/0.05) + 1)
18 = h+ 0.127V 2

V = ((18− h)/0.127)0.5

Q = V A

= ((18− h)/0.127)0.5(π/4)(0.05)2 (10)

= 0.00551(18− h) (1)

Triangular weir equation
Q = 0.179

p
2gH2.5

where H = h− 1. Then
Q = 0.179

p
2g(h− 1)2.5 = 0.793(h− 1)2.5 (2)

To satisfy continuity, equate (1) and (2)

0.00551(18− h)0.5 = 0.793(h− 1)2.5
0.00695(18− h)0.5 = (h− 1)2.5

Solve for h:
h = 1.24 m

Also, upon checking Re we find our assumed f is OK.
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PROBLEM 13.68

Situation: A pitot tube is used to record data in subsonic flow. pt = 140 kPa, p = 100
kPa, Tt = 300 K.

Find: (a) Mach number: M
(b) Velocity: V

ANALYSIS

Use total pressure to find the Mach number

pt/p1 = (1 +
k − 1
2

M2)
k

k−1

= (1 + 0.2M2)3.5 for air

(140/100) = (1 + 0.2M2)3.5

M = 0.710

Total temperature

Tt/T = 1 + 0.2M2

T = 300/1.10 = 273

Speed of sound

c =
√
kRT

=
p
(1.4)(287)(273)

= 331 m/s

Mach number

V = Mc

= (0.71)(331)

V = 235 m/s
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PROBLEM 13.69

Situation: Eq. (13.13), the Rayleigh supersonic Pitot formula, can be used to calcu-
late Mach number from data taken with a Pitot-static tube.

Find: Derive the Rayleigh supersonic Pitot formula.

ANALYSIS

The purpose of the algebraic manipulation is to express p1/pt2 as a function of M1

only.

For convenience, express the group of variables below as

F = 1 + ((k − 1)/2)M2

G = kM2 − ((k − 1)/2)
p1/pt2 = (p1/pt1)(pt1/pt2) = (p1/pt1)(p1/p2)(F1/F2)

k/k−1

From Eq. (12-38),
p1/p2 = (1 + kM2

2 )/(1 + kM2
1 )

So
p1/pt2 = (p1/pt1)((1 + kM2

2 )/(1 + kM2
1 ))(F1/F2)

k/k−1

From Eq. (12-40), we have

(M1/M2) = ((1 + kM2
1 )/(1 + kM2

2 ))(F2/F1)
1/2

Thus, we can write

(p1/pt2) = (p1/pt1)(M2/M1)(F1/F2)
k+1/(2(k−1))

But, from Eq. (12-41)
M2 = (F1/G1)

1/2

Also, p1/pt1 = 1/(F
k/k−1
1 ). So

p1/pt2 = 1/(F
k/k−1
1 )(F

1/2
1 /G

1/2
1 )(1/M1)(F1/F2)

k+1/(2(k−1))

= (G
−1/2
1 /M1)F

−(k+1)/2(k−1)
2

However,

F2 = 1 + ((k − 1)/2)M2
2 = 1 + ((k − 1)/2)(F1/G2) = (((k + 1)/2)M1)

2/G1

Substituting for F2 in expression for p1/pt2 gives

p1/pt2 = (1/M1)(G
1/k−1
1 )/((k + 1)/2M1)

k+1/k−1

Multiplying numerator and denominator by (2/k + 1)1/k−1 gives

p1/pt2 =
{[2kM2

1/(k + 1)]− (k − 1)/(k + 1)}1/(k−1)
{[(k + 1)/2]M2

1}k/(k−1)
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PROBLEM 13.70

Situation: A Pitot tube is used in supersonic airflow. p = 54 kPa, pt = 200 kPa,
Tt = 350 K.

Find: (a) Mach number: M1

(b) Velocity: V1

APPROACH

Apply the Rayleigh Pitot tube formula to calculate the Mach number. Then apply the
Mach number equation and the total temperature equation to calculate the velocity.

ANALYSIS

p1/pt2 =
{[2kM2

1/(k + 1)]− (k − 1)/(k + 1)}1/(k−1)
{[(k + 1)/2]M2

1}k/(k−1)
54/200 = (1.1667M2

1 − 0.1667)2.5/(1.2M2
1 )
3.5

and solving for M1 gives M1 = 1.79

T1 = Tt/
£
1 + 0.5(k − 1)M2

1

¤
T1 = 350/(1 + 0.2(1.79)2)

= 213 K

c1 =
√
kRT

=
p
(1.4)(287)(213)

= 293 m/s

V1 = M1c1

= 1.79× 293
V1 = 521 m/s
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PROBLEM 13.71

Situation: A venturi meter is used to measure flow of helium–additional details are
provided in the problem statement.
p1 = 120 kPa p2 = 80 kPa k = 1.66 D2/D1 = 0.5, T1 = 17◦C R = 2077 J/kg·K.
Find: Mass flow rate: ṁ

APPROACH

Apply the ideal gas law and Eq. 13.16 to solve for the density and velocity at section
2. Then find mass flow rate ṁ = ρ2A2V2.

ANALYSIS

Ideal gas law

ρ1 = p1/(RT1)

= 120× 103/(2, 077× 290)
= 0.199 kg/m3

p1/ρ1 = 6.03× 105

Eq. (13.16)

V2 = ((5)(6.03× 105)(1− 0.6660.4)/(1− (0.6661.2 × 0.54)))1/2 = 686 m/s
ρ2 = (p2/p1)

1/kρ1 = (0.666)
0.6ρ1 = 0.784ρ1 = 0.156 kg/m

3

Flow rate equation

ṁ = ρ2A2V2

= (0.156)(π/4× 0.0052)(686)
= 0.0021 kg/s
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PROBLEM 13.72

Situation: An orifice is used to measure the flow of methane.
p1 = 150 kPa, p2 = 110 kPa, T = 300 K, d = 0.8 cm, and d/D = 0.5.

Find: Mass flow rate: ṁ

Properties: For methane: R = 518 J/kg*K, k = 1.31, and ν = 1.6× 10−5 m2/s.

ANALYSIS

Ideal gas law

ρ1 =
p1
RT

=
150× 103
518× 300

= 0.965 kg/m3

Parameter on the upper scale of Fig. 13.13

2g∆h = 2∆p/ρ1
= (2(30× 103))/0.965
= 6.22× 104

Red
K

=
p
2g∆h

µ
d

ν

¶
=
√
6.22× 104

µ
0.008

1.6× 10−5
¶

= 1.25× 105

From Fig. 13.13
K = 0.62

Y = 1− ((1/1.31)(1− (120/150))(0.41 + 0.35(0.4)4))
= 0.936

Flow rate equation

ṁ = (0.63)(0.936)(0.785)(0.008)2
p
(2)(0.965)(30× 103)

= 0.00713 kg/s
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PROBLEM 13.73

Situation: Air flows through a 1 cm diameter orifice in a 2 cm pipe. The pressure
readings for the orifice are 150 kPa (upstream) and 100 kPa (downstream).

Properties: For air ρ(upstream) = 1.8 kg/m3, ν = 1.8× 10−5 m2/s, k = 1.4.
Find: Mass flow rate

ANALYSIS

A0/A1 = (1/2)
2 = 0.25; A0 = 7.85× 10−5 m2

Expansion factor:

Y = 1− {(1/k)(1− (p2/p1))(0.41 + 0.35(A0/A1)2)}
Y = 1− {(1/1.4)(1− (100/150)(0.41 + 0.35(.25)2)}

= 0.897

ṁ = Y A0K(2ρ1(p1 − p2))
0.5

Red/K = (2∆p/ρ)0.5d/ν

= (2× 50× 103/1.8)0.5(.01/(1.8× 10−5))
= 236× 556
= 1.31× 105

From Fig. 13.13 K = 0.63

ṁ = (0.897)(7.85× 10−5)(0.63)(2× 1.8× 50× 103)0.5
= 1.88×10−2 kg/s
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PROBLEM 13.74

Situation: Hydrogen (100 kPa, 15 oC) flows through an orifice (d/D = 0.5, K = 0.62)
in a 2 cm pipe. The pressure drop across the orifice is 1 kPa.

Find: Mass flow rate

ANALYSIS

d/D = 0.50

d = 0.5× 0.02 m = 0.01 m

From Table A.2 for hydrogen (T = 15◦C = 288K) : k = 1.41, and ρ = 0.0851 kg/m3.

A0 = (π/4)(0.01)2 = 7.85× 10−5 m2
ṁ = Y A0K(2ρ1∆p)

ṁ = (1)(7.85× 10−5)(0.62)(2(0.0851)(1000))0.5
ṁ = 6.35× 10−4 kg/s
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PROBLEM 13.75

Situation: Natural gas (50 psig, 70 oF) flows in a pipe.
A hole (d = 0.2 in) leaks gas.
patm = 14 psia

Find: Rate of mass flow out of the leak: ṁ

Properties: For natural gas: k = 1.31, R = 3098 ft-lbf/slug ◦R.

Assumptions: The hole shape is like a truncated nozzle

ANALYSIS

Hole area

A =
πd2

4
=

π (0.2/12)2

4
= 2.182× 10−4 ft2

Pressure and temperature conversions.

pt = (50 + 14) = 64 psia = 9216 psfa

T = (460 + 70) = 530 ◦R

To determine if the flow is sonic or subsonic, calculate the critical pressure ratio

p∗
pt

=

µ
2

k + 1

¶ k
k−1

=

µ
2

1.31 + 1

¶ 1.31
1.31−1

= 0.544

Compare this to the ratio of back pressure to total pressure:

pb
pt

=
14 psia
64 psia

= 0.219

Since, pb/pt < p∗/pt, the exit flowmust be sonic (choked). Calculate the critical mass flow
rate.

ṁ =
ptA∗√
RTt

√
k

µ
2

k + 1

¶ (k+1)
2(k−1)

=
9216× 2.182× 10−4p

3098× 530)
√
1.31

µ
2

1.31 + 1

¶ (1.31+1)
2(1.31−1)

= 0.00105 slug/ s

ṁ = 0.0338 lbm/s
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PROBLEM 13.76

Situation: Weirs are often subject to physical effects—additional details are provided
in the problem statement.

Find: (a) List all physical effects not indicated in the text.
(b) Explain how each might influence the flow.

ANALYSIS

Some of the physical effects that might occur are:

a Abrasion might cause the weir crest to be rounded and this would undoubtedly
produce greater flow than indicated by Eqs. 13.9 and 13.10 (see the answer to
problem 13.58)

b If solid objects such as floating sticks come down the canal and hit the weir they
may dent the weir plate. Such dents would be slanted in the downstream
direction and may even cause that part of the weir crest to be lower than the
original crest. In either case these effects should cause the flow to be contracted
less than before thus increasing the flow coefficient.

c Another physical effect that might occur in an irrigation canal is that sediment
might collect upstream of the weir plate. Such sediment accumulation would
force flow away from the bottom before reaching the weir plate. Therefore,
with this condition less flow will be deflected upward by the weir plate and less
contraction of the flow would occur. With less contraction the flow coefficient
would be increased. For all of the physical effects noted above flow would be
increased for a given head on the weir.
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PROBLEM 13.77

Situation: A constant head laboratory tank is described in the problem statement.

Find: Design a piece of equipment that could be used to determine the coefficient of
contraction for flow through an orifice.

ANALYSIS

A jet to be studied can be produced by placing an orifice in the side of a rectangular
tank as shown below.

The plate orifice could be machined from a brass plate so that the upstream edge
of the orifice would be sharp. The diameter of the orifice could be measured by
inside calipers and a micrometer. The contracted jet could be measured by outside
calipers and micrometer. Thus the coefficient of contraction could be computed as
Cc = (dj/d)

2. However, there may be more than desired error in measuring the water
jet diameter by means of a caliper. Another way to estimate dj is to solve for it from
Aj where Aj is obtained from Aj = Q/Vj. Then dj = (4Aj/π)

1
2 . The discharge, Q,

could be measured by means of an accurate flow meter or by a weight measurement
of the flow over a given time interval. The velocity at the vena contracta could be
fairly accurately determined by means of the Bernoulli equation. Measure the head
on the orifice and compute Vj from Vj =

√
2gh where h is the head on the orifice.

Because the flow leading up to the vena contracta is converging it will be virtually
irrotational; therefore, the Bernoulli equation will be valid.

Another design decision that must be made is how to dispose of the discharge from
the orifice. The could be collected into a tank and then discharged into the lab
reservoir through one of the grated openings.
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PROBLEM 13.78

Situation: A laboratory setup is described in Prob. 13.77.

Find: Design test equipment to determine the resistance coefficient, f , of a 2- in
diameter pipe.

ANALYSIS

First, decisions have to be made regarding the physical setup. This should include:

a How to connect the 2 in. pipe to the water source.

b Providing means of discharging flow back into the lab reservoir. Probably have a
pipe discharging directly into reservoir through one of the grated openings.

c Locating control valves in the system

d Deciding a length of 2” pipe on which measurements will be made. It is desirable
to have enough length of pipe to yield a measurable amount of head loss.

To measure the head loss, one can tap into the pipe at several points along the
pipe (six or eight points should be sufficient). The differential pressure between
the upstream tap and downstream tap can first be measured. Then measure the
differential pressure between the next tap and the downstream tap, etc., until the
pressure difference between the downstream tap and all others has been completed.
From all these measurements the slope of the hydraulic grade line could be computed.
The discharge could be measured by weighing a sample of the flow for a period of time

and then computing the volume rate of flow. Or the discharge could be measured
by an electromagnetic flow meter if one is installed in the supply pipe.
The diameter of the pipe should be measured by inside calipers and micrometer.

Even though one may have purchased 2 inch pipe, the nominal diameter is usually
not the actual diameter. With this diameter one can calculate the cross-sectional
area of the pipe. Then the mean velocity can be computed for each run: V = Q/A.
Then for a given run, the resistance coefficient, f , can be computed with Eq. (10.22).

Other things that should be considered in the design:

a) Make sure the pressure taps are far enough downstream of the control valve or
any other pipe fitting so that uniform flow is established in the section of pipe
where measurements are taken.

b) The differential pressure measurements could be made by either transducers or
manometers or some combination.

c) Appropriate valving and manifolding could be designed in the system so that only
one pressure transducer or manometer is needed for all pressure measurements.
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d) The water temperature should be taken so that the specific weight of the water
can be found.

e) The design should include means of purging the tubing and manifolds associ-
ated with the pressure differential measurements so that air bubbles can be
eliminated from the measuring system. Air bubbles often produce erroneous
readings.
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PROBLEM 13.79

Situation: A laboratory setup is described in Prob. 13.77.

Find: Design test equipment to determining the loss coefficients of 2- in gate and
globe valves.

ANALYSIS

Most of the design setup for this equipment will be the same as for Prob. (13.78)
except that the valve to be tested would be placed about midway along the two inch
pipe. Pressure taps should be included both upstream and downstream of the valve
so that hydraulic grade lines can be established both upstream and downstream of
the valve (see Fig. 10.15). Then as shown in Fig. (10.15) the head loss due to the
valve can be evaluated. The velocity used to evaluate Kv is the mean velocity in the
2 in. pipe so it could be evaluated in the same manner as given in the solution for
Prob. (13.78).
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PROBLEM 13.80

Situation: A stagnation tube is used to measure air speed ρair = 1.25 kg/m
3, d = 2

mm, Cp = 1.00
Deflection on an air-water manometer, h = 1 mm.
The only uncertainty in the manometer reading is Uh = 0.1 mm.

Find: (a) Air Speed: V
(b) Uncertainty in air speed: UV

ANALYSIS

V =

µ
2∆p

ρairCp

¶1/2
∆p = hγw

Combining equations

V =

µ
2γwh

ρairCp

¶1/2
=

µ
(2)(9, 810)(0.001)

(1.25)(1.00)

¶1/2
V = 3.96 m/s

Uncertainty equation

UV =
∂V

∂h
Uh

The derivative is
∂V

∂h
=

s
2γw
ρaCp

1

2
√
h

Combining equations gives

UV

V
=

Uh

2h

=
0.1

2× 1.0
= 0.05

So

UV = 0.05V

= 0.05× 3.96
= 0.198 m/s
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PROBLEM 13.81

Situation: Water flows through a 6 in. orifice situated in a 12 in. pipe. On a mercury
manometer, ∆h = 1 ft-Hg. The uncertainty values are UK = 0.03, UH = 0.5 in.-Hg,
Ud = 0.05 in.

Find: (a) Discharge: Q
(b)Uncertainty in discharge: UQ

APPROACH

Calculate discharge by first calculating ∆h (apply piezometric head and manometer
equation) and to apply the orifice equation. Then apply the uncertainty equation.

ANALYSIS

Piezometric head

∆h =

µ
p1
γw
+ z1

¶
−
µ
p2
γw
+ z2

¶
Manometer equation

p1 + γwz1 − γHg
1 ft− γw(z2 − 1 ft) = p2

p1 − p2
γw

= −(z1 − z2) +

µ
γHg

γw

¶
1 ft− 1 ft

Combining equations

∆h = (1.0 ft)
µ
γHg

γw
− 1
¶

= 1.0(13.55− 1) = 12.55 ft of water

Uncertainty equation for ∆h

U∆h =

µ
0.5

12
ft
¶µ

γHg

γw
− 1
¶
=

µ
0.5

12

¶
(13.55− 1)

= 0.523 ft of water

Orifice equation

Q = K
π

4
d2
p
2g∆h

where K = 0.625 (from problem 13.20)

Thus, Q = 0.625× π

4
× 0.52√2× 32.2× 12.55

= 3.49 cfs
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Uncertainty equation applied to the discharge relationship

µ
UQ

Q

¶2
=

Ã
∂Q
∂K

UK

Q

!2
+

Ã
∂Q
∂d
Ud

Q

!2
+

Ã
∂Q
∂∆h

U∆h

Q

!2
µ
UQ

Q

¶2
=

µ
UK

K

¶2
+

µ
2Ud

d

¶2
+

µ
U∆h

2∆h

¶2
µ
UQ

Q

¶2
=

µ
.03

0.625

¶2
+

µ
2× 0.05
6

¶2
+

µ
.523

2× 12.55
¶2

UQ

Q
= 0.055

UQ = 0.055× 3.49 = 0.192 cfs
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PROBLEM 13.82

Situation: A rectangular weir (L = 10 ft, P = 3 ft, H = 1.5 ft) is used to measure
discharge. The uncertainties are Uk = 5%, UH = 3 in., UL = 1 in.

Find: (a) Discharge: Q
(b) Uncertainty in discharge: UQ

APPROACH

Calculate K and apply the rectangular weir equation to find discharge. Then apply
the uncertainty equation.

ANALYSIS

Rectangular weir equation

K = 0.4 + 0.05
H

P
= 0.4 + 0.05×

µ
1.5

3.0

¶
= 0.425

Q = K
p
2gLH3/2

= (0.425)
√
2× 32.2(10)(1.5)3/2

Q = 62.7 cfs

Uncertainty equation

U2
Q =

µ
∂Q

∂K
UK

¶2
+

µ
∂Q

∂L
UL

¶2
+

µ
∂Q

∂H
UH

¶2
µ
UQ

Q

¶2
=

µ
UK

K

¶2
+

µ
UL

L

¶2
+

µ
3

2
× UH

H

¶2
= (.05)2 +

µ
1/12

10

¶2
+

µ
3

2
× 3/12
1.5

¶2
= 0.2552

Thus, UQ = 0.255Q

= (0.255)(62.7)

UQ = 16.0 cfs
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PROBLEM 13.83

Situation: Pitot tubes cannot measure low speed air velocities, because the pressure
difference between stagnation and static is too small. Additional details are provided
in the problem statement.

Find: Develop ideas to measure air velocities from 1 to 10 ft/ s.

ANALYSIS

The are probably many different approaches to this design problem. One idea is to
support a thin strip of material in an airstream from a low friction bearing as shown
in the figure.

bearing

rectangular
stripwind

veloc ity

The drag force on the strip tends to rotate the strip and the angle of rotation will
be related to the flow velocity. Assume the strip has an area S, a thickness δ and a
material density of ρm. Also assume the length of the strip is L. Assume that the force
normal to the strip is given by the drag force associated with the velocity component
normal to the surface and that the force acts at the mid point of the strip. The
moment produced by the flow velocity would be

Mom = FDL/2 = CDS(ρaV
2
0 cos

2 θ/2)L/2

where θ is the deflection of the strip, ρa is the air density and V0 is the wind velocity.
This moment is balanced by the moment due to the weight of the strip

Mom =Mg(L/2) sin θ

Equating the two moments gives

Mg(L/2) sin θ = CDS(ρaV
2
0 cos

2 θ/2)L/2

Solving for V0 gives

V 2
0 =

2Mg sin θ

CDSρa cos
2 θ

V0 =

s
2Mg sin θ

CDSρa cos
2 θ
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But the mass of the strip can be equated to ρmSδ so the equation for velocity reduces
to

V0 =

s
2ρmδg sin θ

CDρa cos
2 θ

Assume the strip is a plastic material with a density of 800 kg/m3 and a thickness
of 1 mm. Also assume the drag coefficient corresponds to a rectangle with an aspect
ratio of 10 which from Table 11.1 is 1.3. Assume also that a deflection of 10o can be
measured with reasonable accuracy. Assume also that the air density is 1.2 kg/m3.
The wind velocity would be

V0 =

r
2× 800× 0.001× 9.81× 0.174

1.3× 1.2× 0.9852
= 1.3 m/s

This is close to the desired lower limit so is a reasonable start. The lower limit can
be extended by using a lighter material or possibly a wire frame with a thin film of
material. The relationship between velocity and angle of deflection would be

Angle, deg
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/s
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10
12
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This plot suggests that the upper range of 10 m/s could be reached with a deflection
of about 70 degrees. The simple model used here is only an approximation for design
purposes. An actual instrument would have to be calibrated.

Other features to be considered would be a damping system for the bearing to handle
flow velocity fluctuations and an accurate method to measure the deflection. The
design calculations presented here show the concept is feasible. More detailed design
considerations would then follow.
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PROBLEM 13.84

Situation: The volume flow rate of gas discharging from a small tube is less than a
liter per minute.

Find: Devise a scheme to measure the flow rate.

ANALYSIS

One approach may be to use a very small venturi meter but instrumentation would
be difficult (installing pressure taps, etc.). A better approach may be the use of some
volume displacement scheme. One idea may be to connect the flow to a flexible bag
immersed in a water (or some liquid) bath as shown. As the gas enters the bag, the
bag will expend displacing the liquid in the tank. The overflow of the tank would
discharge into a graduated cylinder to measure the displacement as a function of time.

overflow

graduated
cylinder

flexible
bag

valve

Features which must be considered are 1) the volume of the bag must be chosen such
that pressure in the bag does not increase with increased displacement, 2) evaporation
from the surface must be minimized and 3) a valve system has to be designed such
that the flow can be diverted to the bag for a given time and then closed.
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PROBLEM 13.85

Situation: A flowing fluid.

Find: Design a scheme to measure the density of the fluid by using a combination of
flow meters.

ANALYSIS

The two flow meters must be selected such that one depends on the density of the
fluid and the other is independent of the fluid density. One such combination would
be the venturi meter and the vortex meter as shown in the diagram.

P

Venturi meter Vortex meter

The discharge in the venturi meter is given by the orifice equation

Q = KAo

s
2∆p

ρ

while the velocity measured by a vortex meter is

V =
nD

St

where D is the size of the element. For a calibrated vortex flow meter one has

Q = Cf

where C is a calibration constant and f is the shedding frequency. The calibration
constant is essentially independent of Reynolds number over a wide range of Reynolds
number. Thus we have

Cf = KAo

s
2∆p

ρ

Solving for ρ

ρ =
2∆p(KAo)

2

(Cf)2

The flow coefficient does depend weakly on Reynolds number so there may be a source
of error if K is not known exactly. If the viscosity of the fluid is known, the Reynolds
number could be calculated and the above equation could be used for an iterative
solution.
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PROBLEM 14.1

Situation: A propeller is described in the problem statement.

Find: Thrust force.

ANALYSIS

From Fig. 14.2
CT = 0.048.

Propeller thrust force equation

FT = CTρD
4n2

= 0.048× 1.05× 34 × (1, 400/60)2
FT = 2223N
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PROBLEM 14.2

Situation: A propeller is described in the problem statement.

Find: (a) Thrust.
(b) Power.

APPROACH

Apply the propeller thrust force equation and the propeller power equation.

ANALYSIS

Reynolds number

Re = V0/nD

= (80, 000/3, 600)/((1, 400/60)× 3)
= 0.317

From Fig. 14.2
CT = 0.020

Propeller thrust force equation

F = CTρD
4n2T

= 0.020× 1.05× 34 × (1, 400/60)2
FT = 926 N

From Fig. 14.2
Cp = 0.011

Propeller power equation

P = Cpρn
3D5

= 0.011× 1.05× 35 × (1400/60)3
P = 35.7 kW
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PROBLEM 14.3

Situation: A propeller is described in the problem statement.

Find: (a) Thrust for V0 = 25 mph.
(b) Power for (a).
(c) Thrust for V0 = 0.

APPROACH

Apply the propeller thrust force equation and the propeller power equation. Calculate
Reynolds number to find CT .

ANALYSIS

Reynolds number

n = 1000/60 = 16.67 rev/sec

V0 = 25 mph = 36.65 fps

Advance ratio
V0
nD

=
36.65

16.67× 8
= 0.27

Coefficient of thrust and power (from Fig. 14.2)

CT = 0.023

Cp = 0.011

Propeller thrust force equation

F = CTρD
4n2T

= 0.023× 0.0024× 84 × 16.672
FT = 62.8 lbf

Propeller power equation

P = Cpρn
3D5

= 0.011× 0.0024× 16.673 × 85
= 4372 ft-lb/sec

P = 7.95 hp

When the forward speed is 0 (V0 = 0) ,then the thrust coefficient (Fig. 14.3) is

CT = 0.0475

Propeller thrust force equation

FT = CTρD
4n2T

= 0.0475× 0.0024× 84 × 16.672
FT = 130 lbf
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PROBLEM 14.4

Situation: A propeller is described in the problem statement.

Find: Angular speed of propeller.

APPROACH

Use Fig 14.4 to find the advance diameter ratio at maximum efficiency.

ANALYSIS

V0 = 30 mph = 44 fps

From Fig. 14.3, V0/(nD) = 0.285

n = D/(0.285V0)

n = 44/(0.285× 8)
= 19.30 rps

N = 1158 rpm
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PROBLEM 14.5

Situation: A propeller is described in the problem statement.

Find: (a) Thrust.
(b) Power output.

APPROACH

Apply the propeller thrust force equation and the propeller power equation. Use Fig
14.2 to find CT and CP at maximum efficiency.

ANALYSIS

From Fig. 14.2

CT = 0.023

Cp = 0.012

Propeller thrust force equation

FT = CTρD
4n2

= 0.023× 0.0024× 64 × 25.732
FT = 47.4 lbf

Propeller power equation

P = Cpρn
3D5

= 0.012× 0.0024× 65 × 25.733
= 3815 ft-lbf/s

P = 6.94 hp
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PROBLEM 14.6

Situation: A propeller is described in the problem statement.

Find: (a) Diameter of propeller.
(b) Speed of aircraft.

APPROACH

Apply the Ideal gas law to get the density for the propeller thrust force equation to
calculate the diameter. Then apply the lift force equation to calculate the speed.

ANALYSIS

Ideal gas law

ρ = p/RT

= 60× 103/((287)(273))
= 0.766 kg/m3

Propeller thrust force equation

FT = CTρn
2D4

FT = Drag = Lift/30 = (1, 200)(9.81)/(30) = 392 N

392 = (0.025)(0.766)(3, 000/60)2D4

D = 1.69m

Lift force

L = W = CL(1/2)ρV
2
0 S

L/(CLS) = (ρV 2
0 /2)

= (1, 200)(9.81)/((0.40)(10)) = 2, 943

V 2
0 = (2, 943)(2)/(0.766) = 7, 684

V0 = 87.7m/ s
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PROBLEM 14.7

Situation: A propeller is described in the problem statement.

Find: Maximum allowable angular speed.

ANALYSIS

Vtip = 0.9c = 0.9× 335 = 301.5 m/s
Vtip = ωr = n(2π)r

n = 301.5/(2πr) = 301.5/(πD) rev/s

N = 60× n rpm

D (m) N (rpm)
2 2, 879

3 1, 919

4 1, 440
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PROBLEM 14.8

Situation: A propeller is described in the problem statement.

Find: Angular speed of propeller.

APPROACH

Use Fig 14.2 to find the advance diameter ratio at maximum efficiency.

ANALYSIS

Advance ratio (from Fig. 14.2)

V0/(nD) = 0.285

Rotation speed

n = V0/(0.285D)

= (40, 000/3, 600)/(0.285× 2)
= 19.5 rev/s

N = 19.5× 60
N = 1170 rpm
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PROBLEM 14.9

Situation: A propeller is described in the problem statement.

Find: (a) Thrust.
(b) Power input.

APPROACH

Apply the propeller thrust force equation and the propeller power equation. Use Fig
14.2 to find CT and CP at maximum efficiency.

ANALYSIS

From Fig. 14.2,

CT = 0.023

Cp = 0.012

Propeller thrust force equation

F = CTρD
4n2T

= 0.023× 1.2× 24 × (19.5)2
FT = 168N

Propeller power equation

P = Cpρn
3D5

= 0.012× 1.2× 25 × (19.5)3
P = 3.42 kW
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PROBLEM 14.10

Situation: A propeller is described in the problem statement.

Find: Initial acceleration.

APPROACH

Apply the propeller thrust force equation. Use Fig 14.2 to find CT .

ANALYSIS

From Fig. 14.2
CT = 0.048

Propeller thrust force equation

FT = CTρD
4n2

= 0.048ρD4n2

= 0.048× 1.1× 24 × (1, 000/60)2
= 235 N

Calculate acceleration

a = F/m

= 235/300

a = 0.782 m/ s2

1258



PROBLEM 14.11

Situation: A pump is described in the problem statement.

Find: Discharge.

APPROACH

Apply discharge coefficient. Calculate the head coefficient to find the corresponding
discharge coefficient from Fig. 14.6.

ANALYSIS

n = 1, 000/60

= 16.67 rev/s

Head coefficient

CH = ∆hg/D2n2

= 3× 9.81/((0.4)2 × (16.67)2)
= 0.662

From Fig. 14.6, CQ = Q/(nD3) = 0.625.
Discharge coefficient

Q = 0.625× 16.67× (0.4)3
Q = 0.667m3/ s
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PROBLEM 14.12

Situation: A pump is described in the problem statement.

Find: (a) Discharge.
(b) Power demand.

APPROACH

Apply discharge coefficient and power coefficient. Calculate the head coefficient to
find the corresponding discharge and power coefficients from Fig. 14.6.

ANALYSIS

Angular velocity

n = 690/60

= 11.5 rev/s

Head coefficient

CH = ∆hg/(n2D2)

= 10× 9.81/((0.712)2(11.5)2)
= 1.46

From Fig. 14.6,

CQ = 0.40 and Cp = 0.76

Discharge coefficient

Q = CQnD
3

= 0.40× 11.5× 0.7123
Q = 1.66 m3/ s

Power coefficient

P = CpρD
5n3

= 0.76× 1, 000× 0.7125 × 11.53
P = 211 kW
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PROBLEM 14.13

Situation: A pump is described in the problem statement.

Find: (a) Discharge.
(b) Power required.

APPROACH

Plot the system curve and the pump curve. Apply the energy equation from the
reservoir surface to the center of the pipe at the outlet to solve the head of the pump
in terms of Q. Apply head coefficient to solve for the head of the pump in terms of
CH . Apply discharge coefficient to solve for CQ in terms of Q—then use figure 14.6
to find the corresponding CH . Find the power by using Fig. 14.7.

ANALYSIS

D = 35.6 cm

n = 11.5 rev/s

Energy equation from the reservoir surface to the center of the pipe at the outlet,

p1/γ + V 2
1 /(2g) + z1 + hp = p2/γ + V 2

2 /(2g) + z2 +
X

hL

hp = 21.5− 20 + [Q2/(A22g)](1 + fL/D + ke + kb)

L = 64 m

Assume f = 0.014, rb/D = 1. From Table 10-3, kb = 0.35, ke = 0.1

hp = 1.5 + [Q2((0.014(64)/0.356) + 0.35 + 0.1 + 1)]/[2(9.81)(π/4)2(0.356)4]

= 1.5 + 20.42Q2

CQ = Q/(nD3) = Q/[(11.5)(0.356)3] = 1.93Q

hp = CHn
2D2/g = CH(11.5)

2(0.356)2/9.81 = 1.71CH

Q(m3/s) CQ CH hp1 (m) hp2 (m)
0.10 0.193 2.05 1.70 3.50
0.15 0.289 1.70 1.96 2.91
0.20 0.385 1.55 2.32 2.65
0.25 0.482 1.25 2.78 2.13
0.30 0.578 0.95 3.34 1.62
0.35 0.675 0.55 4.00 0.94

Then plotting the system curve and the pump curve, we obtain the operating condi-
tion:

Q = 0.22 m3/s
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From Fig. 14.7
P = 6.5 kW
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PROBLEM 14.14

Situation: A pump is described in the problem statement.

Find: (a) Discharge.
(b) Power required.

APPROACH

Same solution procedure applies as in Prob. 14.13. To find power, apply power
coefficient (use figure 14.6 to find the CP that corresponds to the CQ.

ANALYSIS

The system curve will be the same as in Prob. 14.13

CQ = Q/[nD3] = Q/[15(0.356)3] = 1.48Q

hp = CHn
2D2/g = CH(15)

2(0.356)2/9.81 = 2.91CH

Q CQ CH hp
0.20 0.296 1.65 4.79
0.25 0.370 1.55 4.51
0.30 0.444 1.35 3.92
0.35 0.518 1.15 3.34

Q  (m2 /s)

0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36
2

3

4

5
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Pump curve

h
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)
p

Plotting the pump curve with the system curve gives the operating condition;

Q = 0.32 m3/ s

CQ = 1.48(0.32) = 0.474

Then from Fig. 14.6, Cp = 0.70
Power coefficient

P = Cpn
3D3ρ

= 0.70(15)3(0.356)51, 000

P = 13.5 kW
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PROBLEM 14.15

Situation: A pump is described in the problem statement.

Find: (a) Discharge.
(b) Head.
(c) Power required.

APPROACH

Apply discharge, head, and power coefficients. Use Fig. 14.6 to find the discharge,
power, and head coefficients at maximum efficiency.

ANALYSIS

From Fig. 14.6, CQ = 0.64;Cp = 0.60; and CH = 0.75

D = 1.67 ft

n = 1, 100/60 = 18.33 rev/s

Discharge coefficient

Q = CQnD
3

= 0.64× 18.33× 1.673
Q = 54.6 cfs

Head coefficient

∆h = CHn
2D2/g

= 0.75× 18.332 × 1.672/32.2
∆h = 21.8 ft

Power coefficient

P = CpρD
5n3

= 0.60× 1.94× 1.675 × 18.333
= 93, 116 ft-lbf/sec

P = 169.3 hp

1264



PROBLEM 14.16

Situation: A pump is described in the problem statement.

Find: (a) Discharge.
(b) Head.
(c) Power required.

APPROACH

Apply discharge, head, and power coefficients. Use Fig. 14.6 to find the discharge,
power, and head coefficients at maximum efficiency.

ANALYSIS

At maximum efficiency, from Fig. 14.6, CQ = 0.64; Cp = 0.60; CH = 0.75
Discharge coefficient

Q = CQnD
3

= 0.64× 45× 0.53
Q = 3.60m3/ s

Head coefficient

∆h = CHn
2D2/g

= 0.75× 452 × 0.52/9.81
∆h = 38.7m

Power coefficient

P = CpρD
5n3

= 0.60× 1, 000× 0.55 × 453
P = 1709 kW
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PROBLEM 14.17

Situation: A pump is described in the problem statement.

Find: Plot the head-discharge curve.

APPROACH

Apply the discharge and head coefficient equations at a series of coefficients corre-
sponding to each other from Fig. 14.6.

ANALYSIS

D = 14/12 = 1.167 ft

n = 1, 000/60 = 16.7 rev/s

Head coefficient

∆h = CHn
2D2/g

= CH(16.7)
2(1.167)2/32.2

= 11.8CH ft

Discharge coefficient

Q = CQnD
3

= CQ16.7(1.167)
3

= 26.5CQ cfs

CQ CH Q(cfs) ∆h(ft)
0.0 2.9 0 34.2
0.1 2.55 2.65 30.1
0.2 2.0 5.3 23.6
0.3 1.7 7.95 20.1
0.4 1.5 10.6 17.7
0.5 1.2 13.2 14.2
0.6 0.85 15.9 10.0

Discharge, cfs
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PROBLEM 14.18

Situation: A pump is described in the problem statement.

Find: Plot the head-discharge curve.

APPROACH

Apply the discharge and head coefficient equations at a series of coefficients corre-
sponding to each other from Fig. 14.6.

ANALYSIS

D = 60 cm = 0.60 m

N = 690 rpm

n = 11.5 rps

Head coefficient

∆h = CHD
2n2/g

= 4.853CH

Discharge coefficient

Q = CQnD
3

= 2.484CQ

CQ CH Q(m3/s) h(m)
0.0 2.90 0.0 14.1
0.1 2.55 0.248 12.4
0.2 2.00 0.497 9.7
0.3 1.70 0.745 8.3
0.4 1.50 0.994 7.3
0.5 1.20 1.242 5.8
0.6 0.85 1.490 4.2

Discharge, m3 /s

0 1 2
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PROBLEM 14.19

Situation: A pump is described in the problem statement.

Find: (a)Head at maximum efficiency.
(b) Discharge at maximum efficiency.

APPROACH

Apply discharge and head coefficients. Use Fig. 14.10 to find the discharge and head
coefficients at maximum efficiency.

ANALYSIS

D = 0.371× 2 = 0.742 m
n = 2, 133.5/(2× 60) = 17.77 rps

From Fig. 14.10, at peak efficiency CQ = 0.121, CH = 5.15.
Head coefficient

∆h = CHn
2D2/g

= 5.15(17.77)2(0.742)2/9.81

∆h = 91.3m

Discharge coefficient

Q = CQnD
3

= 0.121(17.77)(0.742)3

Q = 0.878 m3/ s
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PROBLEM 14.20

Situation: A fan is described in the problem statement.

Find: Power needed to operate fan.

APPROACH

Apply power coefficient. Calculate the discharge coefficient (apply the flow rate
equation to find Q) to find the corresponding power coefficient from Fig. 14.16.

ANALYSIS

Flow rate equation

Q = V A

= (60)(π/4)(1.2)2

= 67.8 m3/s

Discharge coefficient

CQ = Q/(nD3)

= (67.8)/((1, 800/60)(2)3

= 0.282

From Fig. 14.16 Cp = 2.6. Then
Power coefficient

P = CpρD
5n3

= (2.6)(1.2)(2)5(30)3)

P = 2.70MW
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PROBLEM 14.21

Situation: A pump is described in the problem statement.

Find: Discharge through pipe.

APPROACH

Guess the pump head and iterate using Fig. 14.9 to get the corresponding flow rate
and then Darcy-Weisbach equation to get the head for that flow rate (apply the flow
rate equation and Reynolds number to get the necessary parameters for the Darcy-
Weisbach equation).

ANALYSIS

∆z = 450− 366 = 84 m
Assume ∆h = 90 m (>∆z), then from Fig. 14.9, Q = 0.24 m3/s
Flow rate equation

V = Q/A

= 0.24/[(π/4)(0.36)2]

= 2.36 m/s; ks/D = 0.00012

Assuming T = 20◦C
Reynolds number

Re = V D/ν

= 2.36(0.36)/10−6

= 8.5× 105
Frictional head loss (Darcy-Weisbach equation)
from Fig. 10.8, f = 0.014

hf = (0.014(610)/0.36)((2.36)
2/(2× 9.81)) = 6.73 m

h ≈ 84 + 6.7 = 90.7 m

from Fig. 14.9 Q = 0.23 m3/s;

V = 0.23/((π/4)(0.36)2) = 2.26 m/s

hf = [0.014(610)/0.36](2.26)2/(2× 9.81) = 6.18 m
so

∆h = 84 + 6.2 = 90.2 m

V = 0.23/((π/4)(0.36)2) = 2.26 m/s

and from Fig. 14.9
Q = 0.225 m3/s
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PROBLEM 14.22

Situation: A pump is described in the problem statement.

Find: Discharge.

APPROACH

Apply discharge coefficient. Calculate the head coefficient to find the corresponding
discharge coefficient from Fig. 14.10.

ANALYSIS

D = 0.371 m = 1.217 ft

n = 1500/60 = 25 rps

Head coefficient

∆h = CHn
2D2/g

CH = 150(32.2)/[(25)2(1.217)2]

= 5.217

from Fig. 14.10
CQ = 0.122

Discharge coefficient

Q = CQnD
3

= 0.122(25)(1.217)3

Q = 5.50 cfs

1271



PROBLEM 14.23

Situation: A pump is described in the problem statement.

Find: Maximum possible head developed.

APPROACH

Apply head coefficient.

ANALYSIS

Head coefficient
CH = ∆Hg/D2n2

Since CH will be the same for the maximum head condition, then

∆H α n2

or
H1,500 = H1,000 × (1, 500/1, 000)2

H1,500 = 102× 2.25
H1,500 = 229.5 ft
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PROBLEM 14.24

Situation: A pump is described in the problem statement.

Find: Shutoff head.

APPROACH

Apply head coefficient.

ANALYSIS

H α n2

so
H30/H35.6 = (30/35.6)

2

or

H30 = 104× (30/35.6)2
H30 = 73.8 m
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PROBLEM 14.25

Situation: A pump is described in the problem statement.

Find: Discharge when head is 50 m.

APPROACH

Apply discharge coefficient. Calculate the head coefficient to find the corresponding
discharge coefficient from Fig. 14.10.

ANALYSIS

Head coefficient

CH = ∆hg/(n2D2)

= 50(9.81)/[(25)2(0.40)2]

= 4.91

from Fig. 14.10 CQ = 0.136
Discharge coefficient

Q = CQnD
3

= 0.136(25)(0.40)3

Q = 0.218 m3/s
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PROBLEM 14.26

Situation: A pump is described in the problem statement.

Find: (a) Flow rate.
(b) Pressure rise across pump.
(c) Power required.

Properties: From table A.4 ρ = 814 kg/m3.

APPROACH

Apply the discharge, head, and power coefficient equations. Use Fig. 14.10 to find
the discharge, power, and head coefficients at maximum efficiency.

ANALYSIS

N = 5, 000 rpm = 83.33 rps

From Fig. 14.10 at maximum efficiency CQ = 0.125; CH = 5.15; Cp = 0.69
Discharge coefficient

Q = CQnD
3

= (0.125)(83.33)(0.20)3

Q = 0.0833 m3/s

Head coefficient

∆h = CHD
2n2/g

= (5.15)(0.20)2(83.33)2/9.81

∆h = 145.8 m

Power coefficient

P = CpρD
5n3

= (0.69)(814)(0.20)5(83.33)3

P = 104.0 kW
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PROBLEM 14.27

Situation: A centrifugal pump with different impeller diameters is described in the
problem statement.

Find: Plot five performance curves for the different diameters in terms of head and
discharge coefficients.

APPROACH

Calculate the five discharge coefficients by applying the discharge coefficient equation,
and the five head coefficients by the applying head coefficient equation.

ANALYSIS

Discharge coefficient

CQ = Q/nD3

The rotational speed is 1750/60=29.2 rps. The diameter for each impeller is 0.4167
ft, 0.458 ft, 0.5 ft, 0.542 ft and 0.583 ft. One gallon per minute is 0.002228 ft3/s. So
for each impeller, the conversion factor to get the discharge coefficient is

5” gpm × 0.00105
5.5” gpm × 0.000794
6” gpm × 0.000610
6.5” gpm × 0.000479
7” gpm × 0.000385

Head coefficient

CH =
∆Hg

n2D2

The conversion factors to get the head coefficient are

5” ft × 0.2175
5.5” ft × 0.1800
6” ft × 0.1510
6.5” ft × 0.1285
7” ft × 0.1111

The performance in terms of the nondimensional parameters is shown on the graph.
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PROBLEM 14.28

Situation: A pump is described in the problem statement.

Find: Plot the head-discharge curve.

APPROACH

Apply the head and discharge coefficient equations at a series of coefficients corre-
sponding to each other from Fig. 14.10.

ANALYSIS

The rotational speed in rps is

n = 500/60 = 8.33 rps

Discharge coefficient

Q = CQnD
3

= CQ(8.33)(1.52
3)

= 29.25CQ (m
3/s)

Head coefficient

∆h = CHn
2D2/g

= CH(8.33
2)(1.522)/9.81

= 16.34CH (m)

CQ Q CH ∆h
0 0 5.8 94.9
0.04 1.17 5.8 94.9
0.08 2.34 5.75 94.1
0.10 2.93 5.6 91.6
0.12 3.51 5.25 85.9
0.14 4.10 4.8 78.5
0.16 4.68 4.0 65.4
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PROBLEM 14.29

Situation: A pump is described in problem 14.13.

Find: (a) Suction specific speed.
(b) Safety of operation with respect to cavitation.

APPROACH

Calculate the suction specific speed, and then compare that with the critical value of
85, 000.

ANALYSIS

Suction specific speed

Nss = NQ1/2(NPSH)3/4

N = 690 rpm

NPSH ≈ 14.7 psi × 2.31 ft/psi− hvap.press. ≈ 33 ft
Q = 0.22 m3/s× 264.2 gallons/s× 60 s/min = 3, 487 gpm

Nss = 690× (3, 487)1/2/(33)3/4
Nss = 2, 960

Nss is much below 8,500; therefore, it is in a safe operating range.
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PROBLEM 14.30

Situation: A pump system is described in the problem statement.
N = 1, 500 rpm so n = 25 rps; Q = 10 cfs; h = 30 ft

Find: Type of water pump.

APPROACH

Calculate the specific speed and use figure 14.14 to find the pump range to which it
corresponds.

ANALYSIS

Specific speed

ns = n
p
Q/[g3/4h3/4]

= (25)(10)1/2/[(32.2)3/4(30)3/4]

= 0.46

Then from Fig. 14.14, ns > 0.60, so use a mixed flow pump.
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PROBLEM 14.31

Situation: A pump system is described in the problem statement.

Find: Type of pump.

APPROACH

Calculate the specific speed and use figure 14.14 to find the pump range to which it
corresponds.

ANALYSIS

Specific speed

n = 25 rps

Q = 0.30 m3/sec

h = 8 meters

ns = n
p
Q/[g3/4h3/4]

= 25(0.3)1/2/[(9.81)3/4(8)3/4]

= 0.52

Then from Fig. 14.14, ns < 0.60 so use a mixed flow pump.
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PROBLEM 14.32

Situation: A pump system is described in the problem statement.

Find: Type of pump.

APPROACH

Calculate the specific speed and use figure 14.14 to find the pump range to which it
corresponds.

ANALYSIS

Specific speed

N = 1, 100 rpm = 18.33 rps

Q = 0.4 m3/sec

h = 70 meters

ns = n
p
Q/[g3/4h3/4]

= (18.33)(0.4)1/2/[(9.81)3/4(70)3/4]

= (18.33)(0.63)/[(5.54)(24.2)]

= 0.086

Then from Fig. 14.14, ns < 0.23 so use a radial flow pump.
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PROBLEM 14.33

Situation: A pump is described in the problem statement.
Q = 5000 gpm

Find: Maximum speed.

APPROACH

Apply the suction specific speed equation setting the critical value for Nss proposed
by the Hydraulic Institute to 8500.

ANALYSIS

Suction specific speed
8500 = NQ1/2/(NPSH)3/4

The suction head is given as 5 ft. Then assuming that the atmospheric pressure is
14.7 psia, and the vapor pressure is 0.256 psi, the net positive suction head (NPSH)
is

NPSH = 14.7 psi × 2.31 ft/psi
+5 ft− hvap.press. = 38.4 ft

Then

N =
8500× (NPSH)3/4

Q1/2

=
8500× (38.4)3/4

50001/2

N = 1850 rpm
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PROBLEM 14.34

Situation: A pump system is described in the problem statement.

Find: Type of pump

APPROACH

Calculate the specific speed and use figure 14.14 to find the pump range to which it
corresponds.

ANALYSIS

Specific speed

ns = n
p
Q/(g3/4h3/4)

n = 10 rps

Q = 1.0 m3/s

h = 3 + (1.5 + fL/D)V 2/(2g);

V = 1.27 m/s

Assume f = 0.01, so

h = 3 + (1.5 + 0.01× 20/1)(1.27)2/(2× 9.81)
= 3.14 m

Then

ns = 10×
√
1/(9.81× 3.14)3/4

= 0.76

From Fig. 14.14, use axial flow pump.
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PROBLEM 14.35

Situation: A blower for a wind tunnel is described in the problem statement.
Max. air speed = 40 m/s; Area = 0.36 m2; n = 2, 000/60 = 33.3 rps;

Find: (a) Diameter.
(b) Power requirements for two blowers.

APPROACH

Apply the discharge and power coefficient equations. Use Fig. 14.6 to find the
discharge and head coefficients at maximum efficiency. Apply the flow rate equation
to get the Q to calculate the diameter with discharge coefficient.

ANALYSIS

Flow rate equation

Q = V ×A

= 40.0× 0.36
= 14.4 m3/s

ρ = 1.2 kg/m3 at 20◦C

From Fig. 14.6, at maximum efficiency, CQ = 0.63 and Cp = 0.60
Discharge coefficient

D3 = Q/(nCQ)

= 14.4/(33.3× 0.63)
= 0.686 m3

D = 0.882 m

Power coefficient

P = Cpρn
3D5

= 0.6(1.2)(33.3)3(0.882)5

P = 14.2 kW
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PROBLEM 14.36

Situation: A blower for air conditioning is described in the problem statement.
Volume = 105 m3; time for discharge = 15 min = 900 sec

Find: (a) Diameter.
(b) Power requirements.

APPROACH

Apply the discharge and power coefficient equations. Use Fig. 14.6 to find the
discharge and head coefficients at maximum efficiency. Apply the flow rate equation
to get the Q to calculate the diameter with discharge coefficient.

ANALYSIS

N = 600 rpm = 10 rps

ρ = 1.22 kg/m3 at 60◦F
Q = (105 m3)/(900 sec) = 111.1 m3/sec

From Fig. 14.6, at maximum efficiency, CQ = 0.63; Cp = 0.60

For two blowers operating in parallel, the discharge per blower will be one half so

Q = 55.55 m3/sec

Discharge coefficient

D3 = Q/nCQ = (55.55)/[10× 0.63] = 8.815
D = 2.066 m

Power coefficient

P = CpρD
5n3

= (0.6)(1.22)(2.066)5(10)3

P = 27.6 kW per blower
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PROBLEM 14.37

Situation: A centrifugal compressor is described in the problem statement.

Find: Shaft power to run compressor

Properties: From Table A.2 for methane R = 518 J/kg/K and k = 1.31.

ANALYSIS

Pth = (k/(k − 1))Qp1[(p2/p1)(k−1)/k − 1]
= (kṁ/(k − 1))RT1[(p2/p1)(k−1)/k − 1]
= (1.31/0.31)(1)518(300)[(1.5)0.31/1.31 − 1]
= 66.1 kW

Pref = Pth/e

= 66.1/0.7

Pref = 94.4 kW
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PROBLEM 14.38

Situation: A compressor is described in the problem statement.

Find: Volume flow rate into the compressor.

APPROACH

Apply equation 14.17.

ANALYSIS

Pth = 12 kW× 0.6 = 7.2 kW
Pth = (k/(k − 1))Qp1[(p2/p1)(k−1)/k − 1]

= (1.3/0.3)Q× 9× 104[(140/90)0.3/1.3 − 1]
= 4.18× 104Q

Q = 7.2/41.8

Q = 0.172 m3/s
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PROBLEM 14.39

Situation: A centrifugal compressor is described in the problem statement.

Find: The shaft power.

APPROACH

Apply equation 14.17.

ANALYSIS

Pth = p1Q1cn(p2/p1)

= ṁRT1cn(p2/p1)

= 1× 287× 288× cn4

= 114.6 kW

Pref = 114.6/0.5

Pref = 229 kW

1290



PROBLEM 14.40

Situation: A turbine system is described in the problem statement.

Find: (a) Power produced.
(b) Diameter of turbine wheel.

Assumptions: T = 10◦C

APPROACH

Apply the energy equation from reservoir to turbine jet. Then apply the continuity
principle and the power equation.

ANALYSIS

Energy equation

p1/γ + V 2
1 /2g + z1 = p2/γ + V 2

2 /2g + z2 +
X

hL

0 + 0 + 650 = 0 + V 2
jet/2g + 0 + (fL/D)(V

2
pipe/2g)

Continuity principle

VpipeApipe = VjetAjet

Vpipe = Vjet(Ajet/Apipe) = Vjet(0.16)
2 = 0.026Vjet

so
(V 2
jet/2g)(1 + (fL/D)0.026

2) = 650

Vjet = [(2× 9.81× 650)/(1 + (0.016× 10, 000)/1)0.0262)]1/2
= 107.3 m/s

Power equation

P = QγV 2
jete

= 107.3(π/4)(0.16)29, 810(107.3)20.85/(2× 9.81)
P = 10.55 MW

Vbucket = (1/2)Vjet

= 53.7 m/s = (D/2)ω

D = 53.7× 2/(360× (π/30))
D = 2.85 m

1291



PROBLEM 14.41

Situation: An impulse turbine is described in the problem statement.

Find: Referencing velocities to the bucket.

APPROACH

Apply the momentum principle.

ANALYSIS

V-V
j B

V-V
j B

V-V
j B

Momentum principleX
Fbucket on jet = ρQ[−(Vj − VB)− (Vj − VB)]

Then X
Fon bucket = ρVjAj2(Vj − VB)

assuming the combination of buckets to be intercepting flow at the rate of VjAj. Then

P = FVB = 2ρAj[V
2
j VB − VjV

2
B]

For maximum power production, dP/dVB = 0, so

0 = 2ρA(V 2
j − Vj2VB)

0 = Vj − 2VB
or

VB = 1/2Vj
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PROBLEM 14.42

Situation: A jet of water strikes the buckets of an impulse wheel—additional details
are provided in the problem statement.

Find: (a) Jet force on the bucket.
(b) Resolve the discrepancy with Eq. 14.20.

APPROACH

Apply the momentum principle.

ANALYSIS

Consider the power developed from the force on a single bucket. Referencing velocities
to the bucket gives
Momentum principleX

Fon bucket = ρQrel. to bucket(−(1/2)Vj − (1/2)Vj)
Then

Fon bucket = ρ(Vj − VB)Aj(Vj)

but
Vj − VB = 1/2Vj

so
Fon bucket = 1/2ρAV

2
j

Then
P = FVB = (1/2)ρQV

3
j /2

The power is 1/2 that given by Eq. (14.20). The extra power comes from the
operation of more than a single bucket at a time so that the wheel as a whole turns
the full discharge; whereas, a single bucket intercepts flow at a rate of 1/2 VjAj.
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PROBLEM 14.43

Situation: A Francis turbine is described in the problem statement.

Find: (a) α1 for non-separating flow conditions .
(b) Maximum attainable power.
(c) Changes to increase power production.

ANALYSIS

Flow rate equation

Vr1 = q/(2πr1B)

= 126/(2π × 5× 1)
= 4.01 m/s

ω = 60× 2π/60 = 2π rad/s

α1 = arc cot ((r1ω/Vr1) + cot β1)

= arc cot ((5× 2π/4.01) + 0.577)
α1 = 6.78

◦

α2 = arc tan (Vr2/ωr2) = arc tan ((4.01× 5/3)/(3× 2π)) = arc tan 0.355
= 19.5◦

Equation 14.24

P = ρQω(r1V1 cosα1 − r2V2 cosα2)

V1 = Vr1/ sinα1 = 4.01/0.118 = 39.97 m/s

V2 = Vr2/ sinα2 = 20.0 m/s

P = 998× 126× 2π(5× 39.97× cos 6.78◦ − 3× 20.0× cos 19.5◦)
P = 112 MW

Increase β2
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PROBLEM 14.44

Situation: A Francis turbine is described in the problem statement.

Find: (a) α1 for non-separating flow conditions.
(b) Power.
(c) Torque.

ANALYSIS

Vr1 = 3/(2π × 1.5× 0.3) = 1.061 m/s
Vr2 = 3/(2π × 1.2× 0.3) = 1.326 m/s;
ω = (60/60)2π = 2πs−1

α1 = arc cot ((r1ω/Vr1) + cot β1) = arc cot ((1.5(2π)/1.415) + cot 85
◦)

= arc cot (6.66 + 0.0875)

α1 = 8
◦250

Vtan1 = r1ω + Vr1 cot β1 = 1.5(2π) + 1.061(0.0875) = 9.518 m/s

Vtan2 = r2ω + Vr2cot β2 = 1.2(2π) + 1.326(−3.732) = 2.591 m/s
T = ρQ(r1Vtan1 − r2Vtan2)

= 1, 000(4)(1.5× 9.518− 1.2× 2.591)
T = 44, 671 N-m

Power = Tω

= 44, 671× 2π
P = 280.7 kW
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PROBLEM 14.45

Situation: A Francis turbine is described in the problem statement.

Find: α1 for non-separating flow conditions.

ANALYSIS

ω = 120/60× 2π = 4π s−1
Vr1 = 113/(2π(2.5)0.9) = 7.99 m/s

α1 = arc cot ((r1ω/Vr1) + cot β1)

= arc cot ((2.5(4π)/7.99) + cot 45◦)

= arc cot (3.93 + 1)

α1 = 11
◦280
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PROBLEM 14.46

Situation: A small hydroelectric project is described in the problem statement.

Find: (a) Power output.
(b) Draw the HGL and EGL.

Assumptions: ke = 0.50; KE = 1.0; Kb = 0.2; Ks/D = 0.00016.

APPROACH

To get power apply the energy equation. Apply the flow rate equation to get V for
the head loss. Then apply the power equation.

ANALYSIS

Energy equation

p1/γ + α1V
2
1 /2g + z1 = p2/γ + α2V

2
2 /2g + z2 +

X
hL + ht

0 + 0 + 3000 = 0 + 0 + 2600 +
X

hL + htX
hL = (V 2/2g)(f(L/D) +KE +Ke + 2Kb)

Flow rate equation

V = Q/A = 8/((π/4)(1)2) = 10.19 ft/s;

Re = V D/ν = (10.19)(1)/(1.2× 10−5) = 8.5× 105
f = 0.0145X
hL = ((10.19)2/(64.4))[(0.0145)(1000/1) + 1.0 + 0.5 + 2× 0.2]X
hL = 1.612(16.4) = 26.44 ft

ht = 3000− 2600− 26.44 = 373.6 ft

Power equation

Pin = γQht/550

= (8)(62.4)(373.6)/550

Pin = 339 hp

Power output from the turbine

Pout = 339× η

= 339× 0.8
= 271.2 hp
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Pout = 271 hp

Plot of HGL & EGL
EGL

HGL
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PROBLEM 14.47

Situation: Pumps, with characteristics hp,pump = 20[1 − (Q/100)2] are connected in
series and parallel to operate a fluid system with system curve hp,sys= 5 + 0.002Q2.

Find: Operating point with a) one pump, b) two pumps connected in series and c)
two pumps connected in parallel.

APPROACH

Equate the head provided by the pump and the head required by the system.

ANALYSIS

a) For one pump

20[1−
µ

Q

100

¶2
] = 5 + 0.002Q2

20− 0.002Q2 = 5 + 0.002Q2

15 = 0.004Q2

Q=61.2 gpm

b) For two pumps in series

2× 20[1−
µ

Q

100

¶2
] = 5 + 0.002Q2

35 = 0.006Q2

Q=76.4 gpm

c) For two pumps in parallel

20[1−
µ

Q

2× 100
¶2
] = 5 + 0.002Q2

20− 0.0005Q2 = 5 + 0.002Q2

15 = 0.0025Q2

Q=77.4 gpm
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PROBLEM 14.48

Situation: Wind turbines are described in the problem statement.

Find: Width of wind turbine.

APPROACH

Apply the wind turbine maximum power equation.

ANALYSIS

Each windmill must produce 2 MW/20 = 100,000 W.
Wind turbine maximum power

Pmax =
16

54
ρV 3

o A

In a 20 m/s wind with a density of 1.2 kg/m3, the capture area is

A =
54

16

100000

1.2× 203 = 35.16 m
2

Consider the figure for the section of a circle.

R

H

The area of a sector is given by

As =
1

2
θR2 − 1

2
RH cos(θ/2)

where θ is the angle subtended by the arc and H is the distance between the edges
of the arc. But

R =
H

2 sin(θ/2)
so

A = 2As =
H2

4
[

θ

sin2(θ/2)
− 2cos(θ/2)

sin(θ/2)
]

= 56.2× [ θ

sin2(θ/2)
− 2cos(θ/2)

sin(θ/2)
]
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Solving graphically gives θ = 52o. The width of the windmill is

W = H[
1

sin(θ/2)
− 1

tan(θ/2)
]

Substituting in the numbers gives W=3.45 m.
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PROBLEM 14.49

Situation: A windmill is connected to a pump—additional details are provided in the
problem statement.

Find: Discharge of pump.

APPROACH

Apply the wind turbine maximum power equation to get P for the power equation
to get Q.

ANALYSIS

Wind turbine maximum power

P = (16/27/)(ρAV 3/2)

= (16/27)(0.07/32.2)(π/4)(10)2(44)3/2

= 4, 309 ft-lbf/s

Power equation

0.80× P = γQhp

(0.80)(4, 309) = γQhp

3, 447 ft-lbf/s = γQhp

Q = (3, 447)/((62.4)(10))

= 5.52 cfs = 331 cfm

Q = 2476 gpm
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PROBLEM 14.50

Situation: A system is to supply water flow from a reservoir to an elevated tank—
additional details are provided in problem 10.102.

Find: Design the system including the choice of pumps.

ANALYSIS

Assume that this system will be used on a daily basis; therefore, some safety should
be included in the design. That is, include more than one pump so that if one
malfunctions there will be at least another one or two to satisfy the demand. Also,
periodic maintenance may be required; therefore, when one pump is down there should
be another one or two to provide service. The degree of required safety would depend
on the service. For this problem, assume that three pumps will be used to supply
the maximum discharge of 1 m3/s. Then each pump should be designed to supply a
flow of water of 0.333 m3/s (5,278 gpm). Also assume, for the first cut at the design,
that the head loss from reservoir to pump will be no greater than 1 meter and that
each pump itself will be situated in a pump chamber at an elevation 1 m below the
water surface of the reservoir. Thus, the NPSH will be approximately equal to the
atmospheric pressure head, or 34 ft.
Assume that the suction Specific speed will be limited to a value of 8,500:

Nss = 8, 500 = NQ1/2/(NPSH)3/4

or NQ1/2 = 8, 500× (34)3/4 (1)

= 119, 681

Assume that 60 cycle A.C. motors will be used to drive the pumps and that these
will be synchronous speed motors. Common synchronous speeds in rpm are: 1,200,
1,800, 3,600; however, the normal speed will be about 97% of synchronous speed*.
Therefore, assume we have speed choices of 1,160 rpm, 1,750 rpm and 3,500 rpm.
Then from Eq. (1) we have the following maximum discharges for the different speeds
of operation:

N(rpm) Q(gpm) Q(m/s)
1,160 10,645 0.672
1,750 1,169 0.295
3,500 1,169 0.074

Based upon the value of discharge given above, it is seen that a speed of 1,160 rpm
is the choice to make if we use 3 pumps. The pumps should be completely free of
cavitation.
Next, calculate the impeller diameter needed. From Fig. 14.10 for maximum effi-
ciency CQ ≈ 0.12 and CH ≈ 5.2 or

0.12 = q/nD3 (2)

and 5.2 = ∆H/(D2n2/g) (3)
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Then for N = 1, 160 rpm (n = 19.33 rps) and Q = 0.333 m3/s we can solve for D
from Eq. (2).

D3 = Q/(0.12 n)

= 0.333/(0.12× 19.33)
= 0.144

or D = 0.524 m

Now with a D of 0.524 m the head produced will be

∆H = 5.2D2n2/g (from Eq. (3))

= 5.2(0.524)2(19.33)2/(9.81)

= 54.4 m

With a head of 54.4 m determine the diameter of pipe required to produce a discharge
of 1 m3/s. From the solution to Prob. 10.100 (as an approximation to this problem),
we have

hp = 50 m + (V 2/2g)(2.28 + fL/D) m

Assume f = 0.012

L = 400 m

so hp = 50 m + (V 2/2g)(2.28 + 4.8/D) m

54 m = 50 + (V 2/2g)(2.28 + 4.8/D) (4)

Equation (4) may be solved for D by an iteration process: Assume D, then solve for
V and then see if Eq. (4) is satisfied, etc. The iteration was done for D of 60 cm, 70
cm and 80 cm and it was found that the closest match came with D = 70 cm. Now
compute the required power for an assumed efficiency of 92%.

P = Qγhp/eff.

= 0.333× 9, 810× 54/0.92
P = 192 kW

P = 257hp

In summary, D = 70 cm, N = 1,160 rpm,

Q per pump = 0.333 m3/s, P = 192 kW

The above calculations yield a solution to the problem. That is, a pump and piping
system has been chosen that will produce the desired discharge. However, a truly
valid design should include the economics of the problem. For example, the first cost
of the pipe and equipment should be expressed in terms of cost per year based upon
the expected life of the equipment. Then the annual cost of power should be included
in the total cost. When this is done, the size of pipe becomes important (smaller
size yields higher annual cost of power). Also, pump manufacturers have a multiple

1304



number of pump designs to choose from which is different than for this problem. We
had only one basic design although considerable variation was available with different
diameters and speed.
The design could also include details about how the piping for the pumps would be
configured. Normally this would include 3 separate pipes coming from the reservoir,
each going to a pump, and then the discharge pipes would all feed into the larger
pipe that delivers water to the elevated tank. Also, there should be gate valves on
each side of a pump so it could be isolated for maintenance purposes, etc. Check
valves would also be included in the system to prevent back flow through the pumps
in event of a power outage.
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PROBLEM 15.1

Situation: Water flows through a rectangular channel. y = 4 in. V = 28 ft/ s.

Find: (a) Determine if the flow is subcritical or supercritical.
(b) Calculate the alternate depth.

APPROACH

Check the Froude number, then apply the specific energy equation to calculate the
alternative depth.

ANALYSIS

Froude number

Fr = V/
√
gy

= 28
√
32.2× 0.333

= 8.55

The Froude number is greater than 1 so the flow is supercritical .
Specific Energy Equation

E = y + V 2/g

E = 0.333 + 282/(2× 32.2)
= 12.51 ft

Let the alternate depth = y2, then

E = y2 +
V 2
2

2g

= y2 +
Q2

2g (y2 × 3)2

Solving for the alternative depth for E = 12.51 ft yields y2 = 12.43 ft.
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PROBLEM 15.2

Situation: Water flows through a rectangular channel.
Q = 900 ft3/ s y = 3 ft width = 16 ft.

Find: Determine if the flow is subcritical or supercritical.

APPROACH

Calculate average velocity by applying the flow rate equation. Then check the Froude
number.

ANALYSIS

Flow rate equation

Q = V A

900 = V × 18× 3
V = 18.75

Froude number

Fr = V/
√
gy

= 18.75/
√
32.2× 3)

= 4.09

The Froude number is greater than 1 so the flow is supercritical .
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PROBLEM 15.3

Situation: Water flows through a rectangular channel.
Q = 420 ft3/ s V = 9 ft/ s width = 18 ft.

Find: Determine if the flow is subcritical or supercritical.

APPROACH

Calculate y by applying the flow rate equation. Then check the Froude number.

ANALYSIS

Flow rate equation

Q = V A

420 = 9× 18× y

y = 2. 593 ft

Froude number

Fr =
V√
gy

=
9 ft/ s√

32.2× 2. 593
Fr = 0.985

Since Fr < 1, the flow is subcritical
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PROBLEM 15.4

Situation: Water flows through a rectangular channel.
Q = 12m3/ s width = 3m.
Three depths of flow are of interest: y = 0.3, 1.0, and 2.0m.

Find:
(a) For each specified depth:

(i) Calculate the Froude number.
(ii) Determine if the flow is subcritical or supercritical.

(b) Calculate the critical depth

APPROACH

Calculate average velocities by applying the flow rate equation. Then check the
Froude numbers. Then apply the critical depth equation.

ANALYSIS

Flow rate equation

Q = V A

12 m3/s = V (3× y)

V0.30 = 12 m3/s /(3 m× 0.30 m) = 13.33 m/s;
V1.0 = 12 m3/s /(3 m × 1 m) = 4 m/s
V2.0 = 12 m3/s/(3 m× 2 m) = 2 m/s

Froude numbers

Fr0.3 = 13.33 m/s/(9.81 m/s2 × 0.30 m)1/2 = 7.77 (supercritical)

Fr1.0 = 4 m/s/(9.81 m/s2 × 1.0 m)1/2 = 1.27 (supercritical)

Fr2.0 = 2 m/s /9.81 m/s2 × 1.0 m)1/2 = 0.452 (subcritical)

Critical depth equation

yc = (q2/g)1/3

= ((4 m2/s)2/(9.81 m/s2))1/3

= 1.18 m
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PROBLEM 15.5

Situation: Water flows through a rectangular channel.
Q = 12m3/ s width = 3m y = 0.3m.

Find: (a) Alternate depth.
(b) Specific energy.

APPROACH

Apply the flow rate equation to find the average velocity. Then calculate specific
energy and alternate depth.

ANALYSIS

Flow rate equation

V =
Q

A

=
12

3× 0.3
= 13.33 m/s

Specific Energy Equation

E = y + V 2/2g

= 0.30 + 9.06

= 9.36 m

Let the alternate depth = y2, then

E = y2 +
V 2
2

2g

= y2 +
Q2

2g (y2 × 3)2

Substitute numerical values

9.36 = y2 +
122

2× 9.81 (y2 × 3)2

Solving for y2 gives the alternate depth.

y = 9.35 m
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PROBLEM 15.6

Situation: Water flows at the critical depth in a channel; V = 5m/ s.

Find: Depth of flow.

APPROACH

Calculate the critical depth by setting Froude number equal to 1.

ANALYSIS

Froude number

Frc =
V√
gyc

1 =
5 m/sq

9.81 m/s2 × yc

Critical depth

yc =
V 2

g

=
(5 m/s)2

9.81 m/s2

yc = 2.55 m
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PROBLEM 15.7

Situation: Water flows in a rectangular channel. Q = 320 cfs width = 12 ft.
Bottom slope = 0.005 n = 0.014.

Find: Determine if the flow is subcritical or supercritical.

APPROACH

Calculate y, then calculate the average velocity by applying the flow rate equation.
Then check the Froude number.

ANALYSIS

Q =
1.49

n
AR2/3S1/2o

=
1.49

n
A(A/P )2/3S1/2o

=
1.49

n
By(By/(b+ 2y))2/3S1/2o

=
1.49

n
12y(12y/(12 + 2y))2/3S1/2o

320 =
1.49

0.014
12y(12y/(12 + 2y))2/3(0.005)1/2

Solving for y yields: y = 2.45 ft.
Flow rate equation

V = Q/A

= 320 ft3/s /(12 ft × 2.45 ft)
= 10.88 ft/s

Froude number

Fr = V/
√
gy

= 10.88/(32.2× 2.45)1/2
Fr = 1.22 supercritical
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PROBLEM 15.8

Situation: Water flows in a trapezoidal channel—additional details are provided in the
problem statement.

Find: Determine if the flow is subcritical or supercritical.

APPROACH

Calculate Froude number by first applying the flow rate equation to find average
velocity and the hydraulic depth equation to find the depth.

ANALYSIS

Flow rate equation

V =
Q

A

=
10 m3/s

(3× 1 m2) + 12 m2
= 2.50 m/s

Calculate hydraulic depth

D =
A

T

=
4m2

5m
= 0.80m

Froude number

Fr =
V√
gD

=
2.50√

9.81× 0.80
= 0.89

Since Fr < 1, the flow is subcritical

1313



PROBLEM 15.9

Situation: Water flows in a trapezoidal channel–additional details are provided in
the problem statement.

Find: The critical depth.

APPROACH

Calculate the critical depth by setting Froude number equal to 1, and simultaneously
solving it along with the flow rate equation and the hydraulic depth equation.

ANALYSIS

For the critical flow condition, Froude number = 1.

V/
p
gD = 1

or
(V/
√
D) =

√
g

Flow rate equation

V = Q/A = 20/(3y + y2)

D = A/T = (3y + y2)/(3 + 2y)

Combine equations

(20/(3y + y2))/((3y + y2)/(3 + 2y))0.5 =
√
9.81

Solve for y
ycr = 1.40 m
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PROBLEM 15.10

Situation: Water flows in a rectangular channel—additional details are provided in the
problem statement.

Find: (a) Plot depth versus specific energy.
(b) Calculate the alternate depth.
(c) Calculate the sequent depths.

APPROACH

Apply the specific energy equation.

ANALYSIS

Specific Energy Equation for a rectangular channel.

E = y + q2/(2gy2)

For this problem

q = Q/B = 18/6 = 3 m2/s

so

E = y + 32/(2gy2)

= y + 0.4587/y2

The calculated E versus y is shown below

y (m) 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.4 2.0 4.0 7.0
E (m) 7.59 5.4 3.27 2.33 1.87 1.64 1.52 1.47 1.46 1.48 1.63 2.11 4.03 7.01

The corresponding plot is
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The alternate depth to y = 0.30 is y = 5.38 m
Sequent depth:

y2 = (y1/2)(
q
1 + 8F 2

1 − 1)
Fr1 = V/

√
gy1

= (3/0.3)/
√
9.81× 0.30

= 5.83

Hydraulic jump equation

y2 = (0.3/2)(
√
1 + 8× 5.832 − 1) = 2.33 m
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PROBLEM 15.11

Situation: A rectangular channel ends in a free outfall–additional details are provided
in the problem statement.

Find: Discharge in the channel.

APPROACH

Calculate the critical depth by setting Froude number equal to 1, and simultaneously
solve it along with the brink depth equation. Then apply the flow rate equation.

ANALYSIS

At the brink, the depth is 71% of the critical depth

dbrink ≈ 0.71yc (1)

Just before the brink where the flow is critical, Fr = 1

1 =
V√
gyc

=
qp
gy3c

(2)

Combine Eqs. (1) and (2)

dbrink = 0.71

µ
q2

g

¶ 1
3

Or

q = g1/2
µ
dbrink
0.71

¶3/2
= (9.81)1/2

µ
0.35

0.71

¶3/2
= 1.084 m2/s

Discharge is

Q = qw

=
¡
1.084 m2/s

¢
(4m)

= 4.34m3/s
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PROBLEM 15.12

Situation: A rectangular channel ends in a free outfall–additional details are provided
in the problem statement.

Find: Discharge in the channel.

APPROACH

Same solution procedure applies as in Prob. 15.11.

ANALYSIS

From the solution to Prob. 15.11, we have

q = (1.20× 32.21/3/0.71)3/2
q = 12.47 m2/s

Then

Q = 15× 12.47 = 187 cfs
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PROBLEM 15.13

Situation: A rectangular channel ends in a free outfall. Q = 500 cfs Width = 14 ft.

Find: Depth of water at the brink of the outfall.

APPROACH

Calculate the depth at the brink by setting Froude number equal to 1, and simulta-
neously solve this equation along with the brink depth equation.

ANALYSIS

At the brink, the depth is 71% of the critical depth

dbrink ≈ 0.71yc (1)

Just before the brink where the flow is critical, Fr = 1

1 =
V√
gyc

=
qp
gy3c

(2)

Combine Eqs. (1) and (2)

dbrink = 0.71

µ
q2

g

¶ 1
3

where

q =
Q

w

=
500 ft3/ s

14 ft
= 35.71 ft2/ s

Thus

dbrink = 0.71

Ã¡
35.71 ft2/ s

¢2
32.2 ft/ s2

! 1
3

dbrink = 2.42 ft
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PROBLEM 15.14

Situation: Water flows over a broad-crested weir–additional details are given in the
problem statement.

Find: Discharge of water.

APPROACH

Apply the Broad crested weir—Discharge equation.

ANALYSIS

To look up the discharge coefficient, we need the parameter H
H+P

H

H + P
= (1.5/3.5)

= 0.43

From Fig. 15.7 C = 0.89.
Broad crested weir—Discharge equation

Q = 0.385 CL
p
2gH1.5

Q = 0.385(0.89)(10)
√
2× 32.2(1.5)1.5

Q = 50.5 cfs
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PROBLEM 15.15

Situation: Water flows over a broad-crested weir.
(b) The weir height is P = 2m The height of water above the weir is H = 0.6m.
(c) The length of the weir is L = 5m.

Find: Discharge.

APPROACH

Apply the Broad crested weir—Discharge equation.

ANALYSIS

To look up the discharge coefficient, we need the parameter H
H+P

H

H + P
=

0.6

0.6 + 2
= 0.23

From Fig. 15.7
C ≈ 0.865

Broad crested weir—Discharge equation

Q = 0.385 CL
p
2gH3/2

= (0.385) (0.865)(5)
√
2× 9.81(0.60)1.5

Q = 3.43 m3/s
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PROBLEM 15.16

Situation: Water flows over a broad-crested weir.
Additional details are given in the problem statement.

Find: The water surface elevation in the reservoir upstream.

APPROACH

Apply the Broad crested weir—Discharge equation.

ANALYSIS

From Fig. 15.7, C ≈ 0.85
Broad crested weir—Discharge equation

Q = 0.385 CL
p
2gH3/2

25 = 0.385(0.85)(10)
√
2× 9.81H3/2

Solve for H

(H)3/2 = 1.725

H = 1.438m

Water surface elevation

Elev. = 100m + 1.438m

= 101.4 m
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PROBLEM 15.17

Situation: Water flows over a broad-crested weir.
Additional details are given in the problem statement.

Find: The water surface elevation in the upstream reservoir.

APPROACH

Apply the Broad crested weir—Discharge equation.

ANALYSIS

From Fig. 15.7, C ≈ 0.85
Broad crested weir—Discharge equation

Q = 0.385C L
p
2gH3/2

1, 200 = 0.385(0.85)(40)
√
64.4H3/2

H = 5.07 ft

Water surface elevation = 305.1 ft
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PROBLEM 15.18

Situation: Water flows in a rectangular channel.
Two situations are of interest: an upstep and a downstep.
Additional details are provided in the problem statement.

Find: (a) Change in depth and water surface elevation for the upstep.
(b) Change in depth and water surface elevation for the downstep.
(c) Maximum size of upstep so that no change in upstream depth occurs.

APPROACH

Apply the specific energy equation and check the Froude number.

ANALYSIS

Specific Energy Equation for the upstep

E1 = y1 + V 2
1 /2g

= 3 + 32/(2× 9.81)
= 3.46 m

Froude number

Fr1 = V1/
√
gy1

= 3/
√
9.81× 3

= 0.55 (subcritical)

Then

E2 = E1 −∆zstep = 3.46− 0.30 = 3.16 m

Specific Energy Equation

y2 + q2/(2gy22) = 3.16 m

y2 + 9
2/(2gy22) = 3.16

y2 + 4.13/y
2
2 = 3.16

Solving for y2 yields
y2 = 2.49m

Then

∆y = y2 − y1

= 2.49− 3.00
= -0.51 m
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So water surface drops 0.21 m.
For a downstep

E2 = E1 +∆zstep

= 3.46 + 0.3 = 3.76 m

y2 + 4.13/y
2
2 = 3.76

Solving for y2 gives
y2 = 3.40m

Then

∆y = y2 − y1

= 3.40− 3
= 0.40 m

Water surface elevation change = +0.10 m
Max. upward step before altering upstream conditions:

yc = y2 =
3
p
q2/g = 3

p
92/9.81 = 2.02

E1 = ∆zstep +E2

where

E2 = 1.5yc = 1.5× 2.02 = 3.03 m
Maximum size of step

zstep = E1 −E2 = 3.46− 3.03 = 0.43 m
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PROBLEM 15.19

Situation: Water flows in a rectangular channel.
Two situations are of interest: an upstep and a downstep.
Additional details are provided in the problem statement.

Find: (a) Change in depth and water surface elevation for the upstep.
(b) Change in depth and water surface elevation for the downstep.
(c) Maximum size of upstep so that no change in upstream depth occurs.

APPROACH

Apply the specific energy equation by first calculating Froude number and critical
depth.

ANALYSIS

For the upstep

E2 = E1 − 0.60
V1 = 2 m/s

Froude number

Fr1 = V1/
√
gy1

= 2/
√
9.81× 3

= 0.369

Specific Energy Equation

E2 = 3 + (22/(2× 9.81))− 0.60 = 2.60 m
y2 + q2/(2gy22) = 2.60

where q = 2× 3 = 6 m3/s/m. Then

y2 + 6
2/(2× 9.81× y22) = 2.60

y2 + 1.83/y
2
2 = 2.60

Solving, one gets y2 = 2.24 m. Then
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∆y = y2 − y1 = 2.34− 3.00 = -0.76 m

Water surface drops 0.16 m
For downward step of 15 cm we have

E2 = (3 + (22/(2× 9.81)) + 0.15 = 3.35 m
y2 + 6

2/(2× 9.81× y22) = 3.35

y2 + 1.83/y
2
2 = 3.35

Solving: y2 = 3.17 m or

y2 − y1 = 3.17− 3.00 = +0.17 m

Water surface rises 0.02 m
The maximum upstep possible before affecting upstream water surface levels is for
y2 = yc
Critical depth equation

yc =
3
p
q2/g = 1.54 m

Then

E1 = ∆zstep +E2,crit

∆zstep = E1 −E2,crit = 3.20− (yc + V 2
c /2g) = 3.20− 1.5× 1.54

∆zstep = +0.89 m
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PROBLEM 15.20

Situation: Water flows over an upstep–additional details are provided in the problem
statement.

Find: Maximum value of ∆z to permit a unit flow rate of 6 m2/s.

ANALYSIS

Critical depth equation

yc = (q2/g)1/3

= (62/9.81)0.333

= 1.542 m

where yc is depth allowed over the hump for the given conditions.
Specific Energy Equation

E1 = E2

V1 = q/y1 = 6/3 = 2 m/s

V2 = 6/1.542 = 3.891 m/s

V 2
1 /2g + y1 = V 2

2 /2g + y2 +∆z

22/2g + 3 = (3.8912/(2× 9.81)) + 1.542 +∆z

∆z = 3.204− 0.772− 1.542 = 0.89 m
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PROBLEM 15.21

Situation: A rectangular channel has a gradual contraction in width–additional
details are provided in the problem statement.

Find: (a) Change in depth.
(b) Change in water surface elevation.
(c) Greatest contraction allowable so that upstream conditions are not altered.

ANALYSIS

Froude number

Fr1 = V1/
√
gy1

= 3/
√
9.81× 3

= 0.55 (subcritical)

Specific Energy Equation

E1 = E2

= y1 + V 2
1 /2g

= 3 + 32/2× 9.81 = 3.46 m
q2 = Q/B2 = 27/2.6 = 10.4 m3/s/m

Then

y2 + q2/(2gy22)

= y2 + (10.4)
2/(2× 9.81× y22) = 3.46

y2 + 5.50/y
2
2 = 3.46

Solving: y2 = 2.71 m.

∆zwater surface = ∆y = y2 − y1 = 2.71− 3.00 = 0.29 m

Max. contraction without altering the upstream depth will occur with y2 = yc

E2 = 1.5yc = 3.45; yc = 2.31 m

Then

V 2
c /2g = yc/2 = 2.31/2 or Vc = 4.76 m/s

Q1 = Q2 = 27 = B2ycVc

B2 = 27/(2.31× 4.76) = 2.46 m
The width for max. contraction = 2.46 m
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PROBLEM 15.22

Situation: Ships streaming up a channel cause a problem due to a phenomena called
“ship squat.” Additional details are provided in the problem statement.

Find: The change in elevation or “ship squat” of a fully loaded supertanker.

APPROACH

Apply the specific energy equation from a section in the channel upstream of the ship
to a section where the ship is located. Then apply the flow rate equation and solve
for y2.

ANALYSIS

Specific Energy Equation

E1 = E2

V 2
1 /2g + y1 = V 2

2 /2g + y2

A1 = 35× 200 = 7, 000 m2
V1 = 5× 0.515 = 2.575 m/s

2.5752/(2× 9.81) + 35 = (Q/A2)
2/(2× 9.81) + y2 (1)

where Q = V1A1 = 2.575× 7, 000 m3/s
A2 = 200 m × y2 − 29× 63

Flow rate equation

Q = V1A1 (2)

= 2.575× 7, 000 m3/s
A2 = 200 m × y2 − 29× 63 (3)

Substituting Eqs. (2) and (3) into Eq. (1) and solving for y2 yields y2 = 34.70 m.
Therefore, the ship squat is

y1 − y2 = 35.0− 34.7
= 0.30 m
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PROBLEM 15.23

Situation: A rectangular channel has a small reach that is roughened with angle
irons–additional details are provided in the problem statement.

Find: Determine the depth of water downstream of angle irons.

APPROACH

Apply the momentum principle for a unit width.

ANALYSIS

Momentum principle

X
Fx =

X
ṁoVo −

X
ṁiVi

γy21/2− γy22/2− 2000 = −ρV 2
1 y1 + ρV 2

2 y2

Let V1 = q/y1 and V2 = q/y2 and divide by γ

y21/2− y22/2− 2000/γ = −q21y1/(gy21) + q22y2/(gy
2
2)

1/2− y22/2− 3.205 = (+(20)2/32.2)(−1 + 1/y2)

Solving for y2 yields: y2 = 1.43 ft
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PROBLEM 15.24

Situation: Water flows out of a reservoir into a steep rectangular channel–additional
details are provided in the problem statement.

Find: Discharge.

Assumptions: Negligible velocity in the reservoir and negligible energy loss. Then
the channel entrance will act like a broad crested weir.

APPROACH

Apply the Broad crested weir—Discharge equation.

ANALYSIS

Broad crested weir—Discharge equation

Q = 0.545
√
gLH3/2

where L = 4 m and H = 3 m. Then

Q = 0.545
√
9.81× 4× 33/2

= 35.5 m2/s
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PROBLEM 15.25

Situation: A small wave is produced in a pond.
Pond depth = 8 in.

Find: Speed of the wave.

APPROACH

Apply the wave celerity equation.

ANALYSIS

Wave celerity

V =
√
gy

=
q
32.2 ft2/ s× 8/12 ft

= 4.63 ft/s
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PROBLEM 15.26

Situation: A small wave travels in a pool of water.
Depth of water is constant.
Wave speed = 1.5m/ s.

Find: Depth of water.

APPROACH

Apply the wave celerity equation.

ANALYSIS

Wave celerity

V =
√
gy

1.5 =
p
9.81y

y = 0.23 m
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PROBLEM 15.27

Situation: As ocean waves approach a sloping beach, they curve so that they are
aligned parallel to the beach.

Find: Explain the observed phenomena.

APPROACH

Apply the wave celerity equation.

ANALYSIS

As the waves travel into shallower water their speed is decreased.
Wave celerity

V =
√
gy

Therefore, the wave in shallow water lags that in deeper water. Thus, the wave crests
tend to become parallel to the shoreline.
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PROBLEM 15.28

Situation: A baffled ramp is used to dissipate energy in an open channel–additional
details are provided in the problem statement.

Find: (a) Head that is lost.
(b) Power that is dissipated.
(c) Horizontal component of the force exerted by ramp on the water.

Assumptions: The kinetic energy correction factors are ≈ 1.0. x positive in the
direction of flow.

APPROACH

Let the upstream section (where y = 3 ft) be section 1 and the downstream section
(y = 2 ft) be section 2. Solve for the velocities at 1 and 2 using the flow rate equation.
Then apply the energy equation and power equation. Determine the force of ramp
by writing the momentum equation between section 1 and 2. Let Fx be the force of
the ramp on the water.

ANALYSIS

Flow rate equation

V = Q/A

V1 = 18/3

= 6 ft/s

V2 = 18/2

= 9 ft/s

Energy equation

y1 + α1V
2
1 /2g + z1 = y2 + α2V

2
2 /2g + z2 + hL

3 + 62/(2× 32.2) + 2 = 2 + 92/(2× 32.2) + hL

hL = 2.30 ft

Power equation

P = QγhL/550

= 18× 62.4× 2.3/550
P = 4.70 horsepower
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Momentum principle X
Fx = ρq(V2x − V1x)

γy21/2− γy22/2 + Fx = 1.94× 18(9− 6)
(62.4/2)(33 − 22) + Fx = 104.8

Fx = −51.2 lbf

The ramp exerts a force of 51.2 lbf opposite to the direction of flow.
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PROBLEM 15.29

Situation: Water flows out a reservoir, down a spillway and then forms a hydraulic
jump near the base of the spillway.
Flow rate is q = 2.5m3/ s per m of width.
Additional details are provided in the problem statement.

Find: Depth downstream of hydraulic jump.

APPROACH

Apply the specific energy equation to calculate y1. Then calculate Froude number
in order to apply the Hydraulic jump equation.

ANALYSIS

Specific Energy

y0 + q2/(2gy20) = y1 + q2/(2gy21)

5 + 2.52/(2(9.81)52) = y1 + 2.5
2/(2(9.81)y21)

y1 = 0.258 9 m

Froude number

Fr1 =
qp
gy31

=
2.5p

9.81(0.258 9)3

= 6. 059

Hydraulic jump equation

y2 = (y1/2)

µq
1 + 8F 2

1 − 1
¶

= (0.258 9/2)
³p

1 + 8(6. 0592)− 1
´

= 2.09 m
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PROBLEM 15.30

Situation: Water flows out a sluice gate–additional details are provided in the prob-
lem statement.

Find: (a) Determine if a hydraulic jump can exist.
(b) If the hydraulic jump can exist, calculate the depth downstream of the jump.

APPROACH

Calculate Froude number, then apply the hydraulic jump equation.

ANALYSIS

Calculate Froude number

Fr =
V√
gy

=
qp
gy3

=
3.6m2/ s√

9.81× 0.33m2/ s
= 7.00

Thus, a hydraulic jump can occur.
Hydraulic jump equation

y2 = (y1/2)

µq
1 + 8F 2

1 − 1
¶

= (0.3/2)
³√
1 + 8× 72 − 1

´
y2 = 2. 82 m
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PROBLEM 15.31

Situation: A dam and spillway are described in the problem statement.

Find: Depth of flow on the apron just downstream of the hydraulic jump.

Assumptions: V0 is negligible; kinetic energy correction factors are negligible.

APPROACH

First develop the expression for y1 and Vtheor..Begin by applying the energy equation
from the upstream pool to y1. Then find q by applying the rectangular weir equation.
Then solve for the depth of flow on the apron by applying the hydraulic jump equation.

ANALYSIS

Energy equation

α0V
2
0 /2g + z0 = α1V

2
1 /2g + z1

0 + 100 = V 2
theor./2g + y1 (1)

But

Vtheor = Vact/0.95 (2)

and

Vact. = q/y1 (3)

Consider a unit width of spillway. Then
Rectangular weir equation

q = Q/L = K
p
2gH1.5

= 0.5
p
2g(51.5)

q = 44.86 cfs/ft (4)

Solving Eqs. (1), (2), (3), and (4) yields

y1 = 0.59 ft
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and
Vact. = 76.03ft/s

Froude number

Fr1 = V/
√
gy1

= 76.03/
p
(32.2)(0.59)

= 17.44

Hydraulic jump equation

y2 = (y1/2)((1 + 8Fr
2
1)
0.5 − 1)

= (0.59/2)((1 + 8(17.442))0.5 − 1)
y2 = 14.3 ft
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PROBLEM 15.32

Situation: A hydraulic jump is described in the problem statement.

Find: Depth upstream of the hydraulic jump.

APPROACH

Apply the hydraulic jump equation.

ANALYSIS

Hydraulic jump equation

y2 = (y1/2)((1 + 8Fr
2
1)
0.5 − 1)

where Froude number

Fr21 = V 2
1 /(gy1) = q2/(gy31)

Then

y2 = (y1/2)((1 + 8q
2/(gy31))

0.5 − 1)
y2 − y1 = (y1/2)[((1 + 8q

2/(gy31))
0.5 − 1− 2]

However

y2 − y1 = 14.0 ft (given)

q = 65 ft2/s

Therefore

14.0 ft = (y1/2)[((1 + 8× 652/(gy31))0.5 − 1)− 2]
y1=1.08 ft
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PROBLEM 15.33

Situation: An obstruction in a channel causes a hydraulic jump.
On the upstream side of the jump: V1 = 8m/ s y1 = 0.40m.

Find: Depth of flow downstream of the jump.

APPROACH

Calculate the upstream Froude number. Then apply the Hydraulic jump equation
to find the downstream depth.

ANALYSIS

Froude number

Fr1 =
V√
gy1

=
8√

9.81× 0.4
= 4. 039

Hydraulic jump equation

y2 =
y1
2

·q
1 + 8Fr21 − 1

¸
=

0.40

2

h√
1 + 8× 4. 0392 − 1

i
y2 = 2.09 m
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PROBLEM 15.34

Situation: A hydraulic jump is described in the problem statement.
γ = 9, 810 N/m2, B3 = 5 m, y1 = 40 cm= 0.40 m.

Find: Depth of flow downstream of jump.

ANALYSIS

Check Fr upstream to see if the flow is really supercritical flow. Then apply the
momentum principle.

Fr = V/(gD)0.5

D = A/T

= (By + y2)/(B + 2y)

Dy = 0.4 = (5× 0.4 + 0.42)/(5 + 2× 0.4)
= 0.372 m

Then

Fr1 = 10 m/s/((9.81 m/s2)(0.372))0.5

Fr1 = 5.23

so flow is supercritical and a jump will form. Applying the momentum equation (Eq.
15.23):

p̄1A1 + ρQV1 = p̄2A2 + ρQV2 (1)

Evaluate p̄1 by considering the hydrostatic forces on the trapezoidal section divided
into rectangular plus triangular areas as shown below:

Then

p̄1A1 = p̄AAA + p̄BAB + p̄CAC

= (γy1/3)(y
2
1/2) + (γy1/2) By1 + (γy1/3)(y

2
1/2)

= γ(y31/6) + γB(y21/2) + γ(y31/6)

= γ(y31/3) + γB(y21/2)

p̄1A1 = γ((y31/3) +B(y21/2))

Also
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ρQV1 = ρQQ/A1 = ρQ2/A1

Equation (1) is then written as

γ((y31/3) + (B(y
2
1/2)) + ρQ2/A1 = γ((y32/3) +B(y22/2)) + ρQ2/(By2 + y22)

Flow rate equation

Q = V1A1 = 21.6 m3/s

A1 = 5× 0.4 + 0.42 = 2.16 m2

Solving for y2 yields: y2 = 2.45 m
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PROBLEM 15.35

Situation: A hydraulic jump occurs in a wide rectangular channel.
The upstream depth is y1 = 0.5 ft.
The downstream depth is y2 = 10 ft.

Find: Discharge per foot of width of channel.

APPROACH

Apply the Hydraulic jump equation to solve for the Froude number. Next, use the
value of the Froude number to solve for the discharge q.

ANALYSIS

Hydraulic jump equation

y2 =
y1
2

·q
1 + 8Fr21 − 1

¸
12 =

0.5

2

·q
1 + 8× Fr21 − 1

¸
Solve the above equation for Froude number.

Fr1 = 14.49

Froude number

Fr1 =
qp
gy31

14.49 =
q√

32.2× 0.53

Solve the above equation for q

q = 29.07 ft2/s
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PROBLEM 15.36

Situation: A rectangular channel has three different reaches–additional details are
provided in the problem statement.

Find: (a) Calculate the critical depth and normal depth in reach 1.
(b) Classify the flow in each reach (subcritical, critical or supercritical).
(c) For each reach, determine if a hydraulic jump can occur.

APPROACH

Apply the critical depth equation. Determine jump height and location by applying
the hydraulic jump equation.

ANALYSIS

Critical depth equation

yc = (q2/g)1/3

q = 500/20 = 25 cfs/ft

yc = (252/32.2)1/3 = 2.69 ft

Solving for yn,1yields 1.86 ft.
Thus one concludes that the normal depth in each reach is

• Supercritical in reach 1

• Subcritical in reach 2

• Critical in reach 3

If reach 2 is long then the flow would be near normal depth in reach 2. Thus, the
flow would probably go from supercritical flow in reach 1 to subcritical in reach 2. In
going from sub to supercritical a hydraulic jump would form.

Hydraulic jump equation

y2 = (y1/2)((1 + 8Fr
2
1)
0.5 − 1)

Fr1 = V1/(gy1)
0.5 = (25/1.86)/(32.2× 1.86)0.5 = 1.737

y2 = (1.86/2)((1 + 8× 1.7372)0.5 − 1) = 3.73 ft

Because y2 is less than the normal depth in reach 2 the jump will probably occur in
reach 1. The water surface profile could occur as shown below.
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PROBLEM 15.37

Situation: Water flows out a sluice gate and then over a free overfall–additional
details are provided in the problem statement.

Find: (a) Determine if a hydraulic jump will form.
(i) If a jump forms, locate the position.
(ii)If a jump does not form, sketch the full profile and label each part.

(b) Sketch the EGL

APPROACH

Check Froude numbers. Then determine y1 for a y2 of 1.1 m by applying the hydraulic
jump equation.

ANALYSIS

Froude number

Fr1 = V1/
√
gy1 = 10/

√
9.81× 0.10 = 10.1 (supercritical)

V2 = q/y2 = (0.10 m) (10 m/s)/(1.1 m) = 0.91 m/s

Fr2 = V2/(gy2)
0.5 = 0.91/(9.81× 1.1)0.5 = 0.277

A hydraulic jump will form because flow goes from supercritical to subcritical.
Hydraulic jump equation

y1 = (y2/2)((1 + 8Fr
2
2)
0.5 − 1)

= (1.1/2)((1 + 8× .2772)0.5 − 1)
y1 = 0.14 m

Therefore the jump will start at about the 29 m distance downstream of the sluice
gate. Profile and energy grade line:
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PROBLEM 15.38

Situation: Water flows out a sluice gate and then over a free overfall–additional
details are provided in the problem statement.

Find: Estimate the shear stress on the bottom of the channel 0.5 m downstream of
the sluice gate.

Assumptions: The flow can be idealized as boundary layer flow over a flat plate,
where the leading edge of the plate is located at the sluice gate.

APPROACH

Apply the local shear stress equation.

ANALYSIS

Reynolds number

Rex =
V x

ν

=
10× 0.5
10−6

= 5× 106

Since Rex > 500, 000, the boundary layer would be turbulent. The most appropriate
correlation is given by Eq. (9.52a):

cf =
0.455

ln2 (0.06Rex)

=
0.455

ln2 (0.06× 5× 106)
= 0.00286

Local shear stress

τ o = cf
ρV 2

2

= 0.00286
1000× 102

2
= 143Pa

Therefore, the correct choice is (d) τ > 40 N/m2
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PROBLEM 15.39

Situation: Water flows out of sluice gate and then through a hydraulic jump–
additional details are provided in the problem statement.

Find: Horsepower lost in hydraulic jump.

Assumptions: Negligible energy loss for flow under the sluice gate.

APPROACH

Apply the Bernoulli equation from a location upstream of the sluice gate to a location
downstream. Then, calculate the Froude number and apply the equations that govern
a hydraulic jump. Calculate the power using P = QγhL/550, where the number
"550" is a unit conversion.

ANALYSIS

Bernoulli equation

y0 + V 2
0 /2g = y1 + V 2

1 /2g

65 + neglig. = 1 + V 2
1 /2g

V1 =
√
64× 64.4 = 64.2 ft/s

Froude number

Fr1 = V1/
√
gy1

= 64.2/
√
32.2× 1

= 11.3

Hydraulic jump equations

y2 = (y1/2)(
q
1 + 8F 2

1 − 1)
= (1/2(

√
1 + 8× 11.32 − 1)

= 15.5 ft

hL = (y2 − y1)
3/(4y1y2)

= (14.51)3/(4× 1× 15.51)
= 49.2 ft

Power equation

P =
QγhL
550

=
(64.2× 1× 5)× 62.4× 49.2

550

= 1793 horsepower
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PROBLEM 15.40

Situation: A flume is to be designed. This flume will be used to verify the hydraulic
jump relationships given in Section 15.2.

Find: Basic specifications of the flume.

ANALYSIS

For this experiment, it is necessary to produce supercritical flow in the flume and
then force this flow to become subcritical. The supercritical flow could be produced
by means of a sluice gate as shown in Prob. 15.39 and the jump could be forced by
means of another sluice gate farther down the flume. Therefore, one needs to include
in the design an upstream chamber that will include a sluice gate from which the high
velocity flow will be discharged.

The relevant equation for the hydraulic jump is Eq. (15.28). To verify this equation
y1, y2 and V1 can be measured or deduced by some other means. A fairly accurate
measurement of y2 can be made by means of a point gage or piezometer. The depth
y1 could also be measured in the same way; however, the degree of accuracy of this
measurement will be less than for y2 because y1 is much smaller than y2. Perhaps a
more accurate measure of y1 would be to get an accurate reading of the gate opening
of the sluice gate and apply a coefficient of contraction to that reading to get y1. The
CC for a sluice gate could be obtained from the literature.

The velocity, V1, which will be needed to compute Fr1, can probably be best calculated
by the Bernoulli equation knowing the depth of flow in the chamber upstream of the
sluice gate. Therefore, a measurement of that depth must be made.

Note that for use of V1 and y1 just downstream of the sluice gate, the hydraulic
jump will have to start very close to the sluice gate because the depth will increase
downstream due to the channel resistance. The jump location may be changed by
operation of the downstream sluice gate.

COMMENTS Other things that could or should be considered in the design:

A. Choose maximum design discharge. This will be no more than 5 cfs (see Prob.
13.77).

B. Choose reasonable size of chamber upstream of sluice gate. A 10 ft depth would
be ample for a good experiment.

C. Choose width, height and length of flume.

D. Work out details of sluice gates and their controls.
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PROBLEM 15.41

Situation: Water flows in a rectangular channel.
A sill installed on the bottom of the channel forces a hydraulic jump to occur.
Additional details are provided in the problem statement.

Find: Estimate the height of hydraulic jump (the height is the change in elevation of
the water surface).

Assumptions: n = 0.012.

APPROACH

Calculate Froude number in order to apply the Hydraulic jump equation.

ANALYSIS

V = (1/n)R2/3S
1/2
0

R = A/P = (0.4× 10)/(2× 0.4 + 10) = 0.370 m
V = (1/0.012)(0.370)2/3 × (0.04)1/2 = 8.59 m/s

Froude number

Fr1 = V/
√
gy1

= 8.59/
√
9.81× 0.40

= 4.34 (supercritical)

Hydraulic jump equation

y2 = (y1/2)(
q
1 + 8× F 2

1 − 1)
= (0.40/2)(

p
1 + 8× (4.34)2 − 1)

y2 = 2.26 m
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PROBLEM 15.42

Situation: Water flows in a rectangular channel.
A sill installed on the bottom of the channel forces a hydraulic jump to occur.
Additional details are provided in the problem statement.

Find: (a) Estimate the shear force associated with the jump.
(b) Calculate the ratio Fs/FH , where Fs is shear force and FH is the net hydrostatic
force acting on the jump.

Assumptions: (a) The shear stress will be the average of τ 01 (associated with uniform
flow approaching the jump), and τ 02 (associated with uniform flow leaving the jump).
(b) The flow may be idealized as normal flow in a channel.

APPROACH

Apply the local shear stress equation 10.21 and calculate the Reynolds numbers.
Then find V2 by applying the same solution procedure from problem 15.41. Then
estimate the total shear force by using an average shear stress.

ANALYSIS

Local shear stress

τ 0 = fρV 2/8

where f = f(Re, ks/4R)

Re1 = V1(4R1)/ν Re2 = V2 × (4R2)/ν

From solution to Prob. 15.41

V2 = V1 × 0.4/2.26 = 1.52 m/s

Re1 = 8.59× (4× 0.37)/10−6 R2 = A/P = (2.26× 10)/(2× 2.26 + 10) = 1.31 m
Re1 = 1.3× 107 Re2 = 1.52× (4× 1.56)/10−6 = 9.5× 106

Assume ks = 3× 10−3 m
ks/4R1 = 3× 10−3/(4× 0.37) ks/4R2 = 3× 10−3/(4× 1.56)
ks/4R1 = 2× 10−3 ks/4R2 = 4.8× 10−4

From Fig. 10-8, f1 = 0.024 and f2 = 0.017. Then

τ 01 = 0.024× 1, 000× (6.87)2/8 τ 02 = 0.017× 1, 000× (1.52)2/8
τ 01 = 142 N/m

2 τ 02 = 4.9 N/m2

τ avg = (142 + 4.9)/2 = 73 N/m2
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Then

Fs = τ avgAs = τ avgPL

where L ≈ 6y2, P ≈ B + (y1 + y2). Then

F2 ≈ 73(10 + (0.40 + 2.26))(6× 2.26)
= 10, 790 N

FH = (γ/2)(y22 − y21)B

= (9, 810/2)((2.26)2 − (0.40)2)× 10
= 242, 680 N

Thus

Fs/FH = 10, 790/242, 680

= 0.044

COMMENTS

The above estimate is probably influenced too much by τ 01 because shear stress will
not be linearly distributed. A better estimate might be to assume a linear distribution
of velocity with an average f and then integrate τ 0dA from one end to the other.
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PROBLEM 15.43

Situation: Water flows out of a sluice gate–additional details are provided in the
problem statement.

Find: (a) Determine the type of water surface profile that occurs downstream of the
sluice gate.
(b) Calculate the shear stress on bottom of the channel at a horizontal distance of
0.5 m downstream from the sluice gate.

Assumptions: The flow can be idealized as a boundary layer flow over a flat plate,
with the leading edge of the boundary layer located at the sluice gate.

APPROACH

Apply the hydraulic jump equation by first calculating q applying the flow rate equa-
tion. Then apply the local shear stress equation.

ANALYSIS

Flow rate equation

q = 0.40× 10
= 4.0

m2

s

Hydraulic jump equation

yc = 3
p
q2/g

= 3
p
(4.0)2/9.81

= 1.18m

Then we have y < yn < yc; therefore, the water surface profile will be an S3.
Reynolds number

Rex ≈ V × 0.5/ν
Rex = 10× 0.5/10−6

= 5× 106

The local shear stress coefficient is

cf =
0.455

ln2 (0.06Rex)

=
0.455

ln2 (0.06× 5× 106)
= 0.00286
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Local shear stress

τ 0 = cf
ρV 2

0

2

= 0.00286
998× 102

2

= 143 N/m2
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PROBLEM 15.44

Situation: Water flows in a rectangular channel–additional details are provided in
the problem statement.

Find: Classify the water surface profile as
a.) S1
b.) S2
c.) M1
d.) M2

ANALYSIS

yn = 2 ft

yc = (q2/g)1/3 = (102/32.2)1/3 = 1.46 ft.

y > yn > yc

From Fig. 15-16 the profile is M1. Thus, the correct choice is c.
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PROBLEM 15.45

Situation: Water flows in a rectangular channel–additional details are provided in
the problem statement.

Find: Classify the water surface profile as
a.) M2
b.) S2
c.) H1
d.) A2

ANALYSIS

The correct choice is d).
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PROBLEM 15.46

Situation: The problem statement shows a partial sketch of a water-surface profile.

Find: (a) Sketch the missing part of the water profile.
(b) Identify the various types of profiles.

APPROACH

Check the Froude number at points 1 and 2. Apply the Broad crested weir—Discharge
equation to calculate y2 for the second Froude number.

ANALYSIS

Froude number

Fr1 = q/
p
gy3

= (5/3)/
p
9.81(0.3)3

= 3.24 > 1(supercritical)

Broad crested weir—Discharge equation

Q = (0.40 + 0.05H/P )L
p
2gH3/2

5 = (0.40 + 0.05H/1.6)× 3
p
2(9.81)H3/2

Solving by iteration gives H = 0.917 m. Depth upstream of weir = 0.917+1.6 = 2.52
m

F2 = (5/3)/
p
9.81(2.52)3 = 0.133 < 1 (subcritical)

Therefore a hydraulic jump forms.
Hydraulic jump equation

y2 = (y1/2)(
q
1 + 8F 2

1 − 1)
y2 = (0.3/2)(

p
1 + 8(3.24)2 − 1)

y2 = 1.23m
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PROBLEM 15.47

Situation: A rectangular channel ends with a free overfall–additional details are
provided in the problem statement.

Find: Determine the classification of the water surface just before the brink of the
overfall.

ANALYSIS

The profile might be an M profile or an S profile depending upon whether the slope
is mild or steep. However, if it is a steep slope the flow would be uniform right to
the brink. Check to see if M or S slope. assume n = 0.012

Q = (1.49/n)AR0.667S0.5

AR2/3 = Q/((1.49/n)(S0.5));

= 120/((1.49/0.012)(0.0001)0.5)

(by)(by/(10 + 2y)).667 = 96.6

With b = 10 ft we can solve for y to obtain y = 5.2 ft.
Flow rate equation

V = Q/A

= 120/32

= 2.31 ft/s

Froude number

Fr = V/
√
gy

= 2.31/(
p
32.2× 5.2)

= 0.18 (subcritical)

Therefore, the water surface profile will be an M2.
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PROBLEM 15.48

Situation: Water flows out a sluice gate and thorough a rectangular channel.
A weir will be added to the channel.
Additional details are provided in the problem statement.

Find: (a) Determine if a hydraulic jump will occur.
(b) If a jump form, calculate the location.
(c) Label any water surface profiles that may be classified.

ANALYSIS

Rectangular weir equation

Q = K
p
2gLH3/2

where K = 0.40 + 0.05H/P . By trial and error (first assume K then solve for H,
etc.) solve for H yield H = 2.06 ft.
Flow rate equation

V = Q/A

= 108/(4.06× 10)
= 2.66 ft/s

Froude number

Fr = V/
√
gy

= 2.66/(32.2× (4.06))0.5
= 0.23 (subcritical)

The Froude number just downstream of the sluice gate will be determined:
Flow rate equation

V = Q/A

= 108/(10× 0.40)
= 27 ft/s

Froude number

Fr = V/
√
gy

= 27/
√
32.2× 0.40

= 7.52 (supercritical)

Because the flow is supercritical just downstream of the sluice gate and subcritical
upstream of the weir a jump will form someplace between these two sections.

Now determine the approximate location of the jump. Let y2 = depth downstream
of the jump and assume it is approximately equal to the depth upstream of the weir
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(y ≈ 4.06 ft). By trial and error (applying the hydraulic jump equation 15.25))
it can be easily shown that a depth of 0.40 ft is required to produce the given y2.
Thus the jump will start immediately downstream of the sluice gate and it will be
approximately 25 ft long. Actually, because of the channel resistance y2 will be
somewhat greater than y2 = 4.06 ft; therefore, the jump may be submerged against
the sluice gate and the water surface profile will probably appear as shown below.
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PROBLEM 15.49

Situation: A rectangular channel is described in the problem statement.

Find: (a) Sketch all possible water-surface profiles.
(b) Label each part of the water-surface profile with its classification.

APPROACH

Apply the critical depth equation to determine if a hydraulic jump will form.

ANALYSIS

Critical depth equation

yc = 3
p
q2/g

= 3
p
202/32.2

= 2.32 ft

Thus the slopes in parts 1 and 3 are steep.

If part 2 is very long, then a depth greater than critical will be forced in part 2 (the
part with adverse slope). In that case a hydraulic jump will be formed and it may
occur on part 2 or it may occur on part 1. The other possibility is for no jump to
form on the adverse part. These three possibilities are both shown below.
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PROBLEM 15.50

Situation: Water flow through a sluice gate and down a rectangular channel is de-
scribed in the problem statement.

Find: Sketch the water surface profile until a depth of 60 cm. is reached.

ANALYSIS

Froude number

Fr1 = q/
p
gy3

= 3/
p
9.81(0.2)3 = 10.71

Fr2 = 3/
p
9.81(0.6)3 = 2.06

Therefore the profile is a continuous H3 profile.

y ȳ V V̄ E ∆E Sf ∆x x
0.2 15 11.6678 0

0.25 12.5 6.2710 0.1593 39.4
0.3 10 5.3968 39.4

0.35 8.75 2.1298 0.0557 38.2
0.4 7.5 3.2670 77.6

0.45 6.75 0.9321 0.0258 36.1
0.5 6.0 2.3349 113.7

0.55 5.5 0.4607 0.0140 32.9
0.6 5.0 1.8742 146.6
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PROBLEM 15.51

Situation: A horizontal channel ends in a free outfall–additional details are provided
in the problem statement.

Find: Water depth 300 m upstream of the outfall.

APPROACH

Apply the critical depth equation. Then carry out a step solution for the profile
upstream from the brink.

ANALYSIS

q = Q/B

= 12/4 = 3 m3/s/m

yc = 3
p
q2/g

= 0.972 m (This depth occurs near brink.)

Reynolds number

Re ≈ V × 4R/ν ≈ 3× 1/10−6 ≈ 3× 106
ks/4R ≈ 0.3× 10−3/4 ≈ 0.000075

f ≈ 0.010

See solution table below.
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Section number 
upstream of yc

Depth 
y,m

Velocity at
section V,m/s

Mean Velocity 
in reach 

(V1+V0)/2 V2
Hydraulic Radius

R=A/P,m

Mean Hydraulic 
Radius

Rm=(R1+R2)/2
sf=fV2

mean/
8gRmean

∆x=((y2+V2
2/2g)-

(y1+V1/2g))/Sf

Distance upstream 
from brink x,m

1 at y=yc 0.972 3.086 0.654 3.9m

3.073 9.443 0.656 1.834 x 10-3 0.1m 4.0m
2 0.980 3.060 0.658

3.045 9.272 0.660 1.790 x 10-3 0.4m 4.4m
3 0.990 3.030 0.662

2.986 8.916 0.669 1.698 x 10-3 1.7m 6.1m
4 1.020 2.941 0.675

2.886 8.327 0.684 1.551 x 10-3 4.7m 10.9m
5 1.060 2.830 0.693

2.779 7.721 0.701 1.403 x 10-3 7.7m 18.6m
6 1.100 2.727 0.710

2.613 6.828 0.730 1.192 x 10-3 33.2m 51.8m
7 1.200 2.500 0.750

2.404 5.779 0.769 9.576 x 10-4 55.3m 107.1m
8 1.300 2.308 0.788

2.225 4.951 0.806 7.83 x 10-4 80.0m 187.1m
9 1.400 2.143 0.824

2.072 4.291 0.841 6.501 x 10-4 107.4m 294.5m
10 1.500 2.000 0.857
The depth 300 m upstream is approximately 1.51 m

Solution Table for Problem 15.51
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PROBLEM 15.52

Situation: Water flows through a sluice gate, down a channel and across a hydraulic
jump.
Additional details are provided in the problem statement.

Find:
(a) Determine the water-surface profile classification

i) Upstream of the jump.
ii) Downstream of the jump.

(b) Determine how the addition of baffle block will effect the jump.

ANALYSIS

Upstream of the jump, the profile will be an H3.
Downstream of the jump, the profile will be an H2.
The baffle blocks will cause the depth upstream of A to increase; therefore, the jump
will move towards the sluice gate.
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PROBLEM 15.53

Situation: Water flows out of a reservoir, down a spillway and then over an outfall.
Additional details are provided in the problem statement.

Find: Discharge in the channel.

Assumptions: V1 = 0 and α2 = 1.0.

APPROACH

Apply the energy equation from the reservoir, (1), to the entrance section (2) and set
the Froude number equal to 1 (critical flow) to solve for yc and Vc. Then calculate
the discharge by applying the flow rate equation.

ANALYSIS

The channel is steep; therefore, critical depth will occur just inside the channel en-
trance.
Energy equation

y1 + α1V
2
1 /2g = y2 + α2V

2
2 /2g

Then

2 = y2 + V 2
2 /2g

Froude number

V 2
2 /2g = V 2

c /2g (1)

= 0.5yc

The energy equation becomes
y1 = yc + 0.5yc

Let y1 = 2m and solve for yc

yc = 2m/1.5 = 1.33 m

From Eq. (1)

V 2
c /g = yc

= 1.33

or Vc = 3.62 m/s
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Flow rate equation

Q = VcA2

= 3.62× 1.33× 4
Q = 19.2 m3/s
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PROBLEM 15.54

Situation: Water flows out a reservoir and down a channel.

Find: (a) Estimate the discharge.
(b) Describe a procedure for calculating the discharge if the channel length was 100
m.

Assumptions: Uniform flow is established in the channel except near the downstream
end. n = 0.012 .

APPROACH

Apply the energy equation from the reservoir to a section near the upstream end
of the channel to solve for V . Then apply the flow rate equation to calculate the
discharge.

ANALYSIS

(a) Energy equation

2.5 ≈ V 2
n /2g + yn (1)

Also

Vn = (1/n)R2/3S1/2

V 2
n /2g = (1/n2)R4/3S/2g (2)

where

R = A/P = 3.5yn/(2yn + 3.5) (3)

Then combining Eqs. (1), (2) and (3) we have

2.5 = ((1/n2)((3.5yn/(2yn + 3.5))
4/3S/2g) + yn (4)

Assuming n = 0.012 and solving Eq. (4) for yn yields: yn = 2.16 m; also solving (2)
yields Vn = 2.58 m/s. Then

Q = V A

= 2.58× 3.5× 2.15
Q = 19.5 m3/s

(b) With only a 100 m-long channel, uniform flow will not become established in the
channel; therefore, a trial-and-error solution is required. Critical depth will occur
just upstream of the brink, so assume a value of yc, then calculate Q and calculate
the water surface profile back to the reservoir. Repeat the process for different values
of yc until a match between the reservoir water surface elevation and the computed
profile is achieved.
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PROBLEM 15.55

Situation: During flood flow, water flows out of a reservoir.

Find: Calculate the water surface profile upstream from the dam until the depth is
six meters.

APPROACH

Apply the critical depth equation. Then carry out a step solution for the profile
upstream from the dam.

ANALYSIS

q = 10 m3/s/m

yc = 3
p
q2/g

= 3
p
102/9.81

= 2.17 m

y ȳ V V̄ E ∆E Sf×104 ∆x x elev.
52.17 0.1917 52.170 0 52.17

51.08 0.1958 2.168 0.00287 -5,429
50 0.20 50.002 5,430 52.17

45 0.2222 9.999 0.00419 -25,024
40 0.25 40.003 -30,450 52.18

35 0.2857 9.997 0.00892 -25,048
30 0.333 30.006 -55,550 52.22

25 0.400 9.993 0.02447 -25,146
20 0.50 20.013 -80,650 52.26

15 0.6667 9.962 0.11326 -25,631
10 1.00 10.051 -106,280 52.51

9 1.1111 1.971 0.5244 -5,671
8 1.25 8.080 -111,950 52.78

7 1.4286 1.938 1.1145 -6,716
6 1.667 6.142 -118,670 53.47
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PROBLEM 15.56

Situation: Water flows in a wide rectangular concrete channel.
Additional details are provided in the problem statement.

Find: Determine the water surface profile from section 1 to section 2.

Assumptions: n = 0.015, K = 0.42, ks = 0.001 ft so ks/4R = 0.00034.

APPROACH

Determine whether the uniform flow in the channel is super or subcritical. Determine
yn and then see if for this yn the Froude number is greater or less than unity. Then
apply the hydraulic jump equation to get y2. Then apply the Rectangular weir
equation to find the head on the weir. A rough estimate for the distance to where the
jump will occur may be found by applying Eq. (15.35) with a single step computation.
A more accurate calculation would include several steps.

ANALYSIS

Froude number

Q = (1.49/n)AR2/3S1/2

12 = (1.49/0.015)× y × y2/3 × (0.04)1/2
yn = 0.739 ft and V = Q/yn = 16.23 ft/s

F = V/
√
gyn = 3.33

Solving for yn gives yn = 0.739 ft and

V = Q/yn = 16.23 ft/s

Therefore, uniform flow in the channel is supercritical and one can surmise that a
hydraulic jump will occur upstream of the weir. One can check this by determining
what the sequent depth is. If it is less than the weir height plus head on the weir
height plus head on the weir then the jump will occur.

Now find sequent depth:

y2 = (y1/2)(
q
1 + 8F 2

1 − 1)
= (0.739/2)(

√
1 + 8× 3.332 − 1)

y2=3.13 ft

Rectangular weir equation

Q = K
p
2gLH3/2

12 = 0.42
√
64.4× 1×H3/2

H = 2.33 ft

H/P = 2.33/3 = 0.78
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so

K = 0.40 + 0.05× 0.78
A better estimate is

H = 2.26 ft K = 0.44

Then depth upstream of weir = 3 + 2.26 = 5.56 ft. Therefore, it is proved that a
jump will occur.

The single-step calculation is given below:

∆x = ((y1 − y2) + (V
2
1 − V 2

2 ))/2g/(Sf − S0)

where y1 = 3.13 ft; V1 = q/y1 = 12/3.13 = 3.83 ft/s; V 2
1 = 14.67 ft

2/s2 and y2 = 5.56
ft; V2 = 2.16 ft/s.

V 2
2 = 4.67 ft2/s2

Sf = fV 2
avg/(8gRavg)

Vavg = 3.00 ft/s

Ravg = 4.34 ft

Assuming ks = 0.001 ft so ks/4R = 0.00034.

Re = V × 4R/ν = ((3.83 + 2.16)/2)× 4× 4.34/(1.22× 10−5) = 4.33× 106
Then

f = 0.015

and

Sf = 0.015× 3.02/(8× 32.2× 4.34) = 0.000121
∆x = ((3.13− 5.56) + (14.67− 4.67)/(64.4))/(0.000121− 0.04) = 57.0 ft

Thus, the water surface profile is shown below:
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